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General circulation models (GCM) have comprised ubiquitous tools for

supporting water resources planning and decision-making under changing

climate conditions. However, GCMs are often highly biased, which may

limit their utilization for representing future trajectories of the hydroclimatic

processes of interest. In addition, assessing the predictive uncertainty of climate

models, which is paramount for simulation purposes, is not straightforward.

For tackling these problems, in this paper we resort to the expanded Bluecat

framework, which utilizes empirical conditional distributions for providing a

complete stochastic representation of GCM outputs simultaneously to bias

correction. The stochastic model was employed for assessing future trajectories

of monthly rainfall and temperatures, under three Shared Socioeconomic

Pathways, namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in the Metropolitan

Region of Belo Horizonte, Brazil. Our results indicated that e-Bluecat properly

corrected bias for both variables and provided coverage probabilities close to

the theoretical ones. Nonetheless, the resulting uncertainty, as materialized

by confidence intervals, was deemed too large, which implicitly reflects the

inability of the GCMs in describing the observed processes. In addition, inmedian

terms, the bias-corrected estimates suggest considerably smaller increases in

temperatures (∼1◦C), as compared to the climate models (up to 5◦C), in all

future scenarios. These findings suggest that deterministic outputs of GCMsmay

present limitations in e�ectively informing adaptation strategies, necessitating

complementary approaches. Moreover, in view of the large uncertainty levels

for the projected climate dynamics, simulating critical trajectories from the

stochastic model is paramount for optimizing the allocation of financial

resources over time in the study area.
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1 Introduction

Anthropogenic climate change (ACC) has become a matter
of paramount importance for both social and environmental
sustainability (Sarker, 2022; Gabric, 2023). In effect, according to
the Intergovernmental Panel on Climate Change (IPCC), ACC
is expected to alter the patterns of variability of hydroclimatic
processes due to global warming (Sarker, 2022), which has led to
growing concerns on the intensification of extreme meteorological
and hydrological events (IPCC, 2023; Malede et al., 2024). In
particular, many regions of the world may experience prolonged
dry spells and more severe drought events, which would pose
significant challenges for the management of water resources
systems (Malede et al., 2024; Tegegne and Melesse, 2020). As a
result, recent literature has focused on investigating future changes
in the spatiotemporal distribution of water (mainly its occurrence
as precipitation) and in temperatures—arguably the main drivers
of meteorological droughts—as a response to ACC.

The future dynamics of hydroclimatic processes is frequently
inferred from climate models [or Global Circulation Models
(GCM)], which are forced under distinct scenarios of greenhouse
gases concentrations (GGC) and economic development intended
to translate the impacts of anthropogenic activities on the global
climate patterns (Brêda et al., 2020; IPCC, 2023). Information
from climate models has underpinned most of the discussion on
potential effects and adaptation strategies to climate change (Chiew
et al., 2022). However, such models are rarely able to capture the
actual evolution of climate-related variables, irrespective of the
considered emission scenario and the initial/boundary conditions
(Muerth et al., 2013; Koutsoyiannis and Montanari, 2022b). In fact,
incomplete knowledge on natural systems—and therefore their
imperfect representation in model structures—may introduce high
levels of bias to model predictions (Rajulapati and Papalexiou,
2023). As climate models’ components are frequently nonlinear,
this bias may be greatly amplified as the prediction errors propagate
over time (e.g., Koutsoyiannis, 2010;Montanari and Koutsoyiannis,
2014), possibly leading to physically unrealistic trajectories for the
modeled processes (Chiew et al., 2022; Tegegne et al., 2019; Tegegne
and Melesse, 2020). Furthermore, climate models depend on a
very large number of (interrelated) parameters, which may hinder
the quantification of the epistemic and the predictive uncertainties
(Bastola et al., 2011; Wang et al., 2020). Consequently, climate
models raw outputs may not be useful for decision-making in
many situations (Koutsoyiannis and Montanari, 2022b), despite
their widespread utilization in water sciences and other fields.

For tackling these problems, several techniques for bias
correction have been explored in previous research. These
techniques may simply involve the scaling of low order moments,
such as the mean and the variance, or the matching of the
entire distributions under variants of a general class of methods
termed quantile mapping—which may encompass parametric,
semiparametric or machine learning models (Bastola et al.,
2011; Rajulapati and Papalexiou, 2023; Sa’adi et al., 2024; Wang
et al., 2020). To different extents, these approaches may remove
systematic bias and improve the information that stems from
raw climate model outputs. However, they are not effective for
summarizing the inherent variability of the observed realizations of
the hydroclimatic processes of interest with respect to the climate

model outputs (i.e., the conditional distributions), which, in turn,
limits their utilization for simulation purposes (Koutsoyiannis and
Montanari, 2022a,b).

Based on this gap, Koutsoyiannis and Montanari (2022a,b)
have recently discussed a simple modeling framework, termed
expanded “Brisk local uncertainty estimator for generic simulations
and predictions” (hereafter denoted e-Bluecat for simplicity), that
simultaneously corrects bias and derives the empirical distribution
functions of the observations conditioned on the raw climate
model outputs. This framework provides a complete stochastic
description of climate projections, which is interesting for tracking
critical trajectories of processes that are not described by the
bias-corrected deterministic model. Also, it may provide multiple
inputs for hydrological modeling, which are frequently required
for water resources management and risk assessment. e-Bluecat
was applied for bias correction of precipitation and temperature
over the entire territory of Italy, which is a relatively large
area with no prominent seasonal climate characteristics—climate
models are usually more accurate in these cases (Koutsoyiannis
and Montanari, 2022b). Results demonstrated that e-Bluecat was
able to remove bias and reproduce “observed trends” in distinct
ranges of the hydroclimatic variables. Furthermore, it provided
appropriate coverage probabilities throughout the historical period
of simulation.

In this paper, we further explore the e-Bluecat framework
for simulating historical and future dynamics of precipitation
and temperature in the Metropolitan Region of Belo Horizonte
(MRBH). Given the region’s reliance on reservoirs for water
supply, the study’s findings may contribute to the understanding
of potential vulnerabilities to increases in temperature and long dry
spells. The main distinction of this study, with respect to the paper
of Koutsoyiannis and Montanari (2022b), is that the MRBH is a
somewhat small area (∼10, 000 km2), with marked seasonality in
the rainfall regime. In effect, it has been widely acknowledged that,
for fine spatial scales, uncertainty of climatemodelsmay be too high
because of downscaling (Bastola et al., 2011; Wang et al., 2020).
Moreover, assessing e-Bluecat in regions with complex climate
regimes and very distinct precipitation generation mechanisms,
such as the MRBH, is yet to be tackled. Hence, this application
may provide additional insights on the performance of e-Bluecat
in more challenging conditions for bias-correction and uncertainty
estimation. The remainder of this paper is organized as follows.
In Section 2, the study area is presented and details on the
expanded Bluecat framework are provided. Section 3 describes the
main results of the study along with a comprehensive discussion
of advantages and limitations of the proposed approach. Finally,
In Section 4, the concluding remarks and envisaged research
development are addressed.

2 Materials and methods

2.1 Study area and data

The MRBH is located in the Brazilian state of Minas Gerais,
in the southeastern region of the country. The MRBH is a
densely populated area, which encompasses 26 municipalities and
covers 9, 441 km2 (Figure 1). A diversity of economic activities,
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which have required increasing amounts of water, are developed
in the region—these include mining, agriculture, industry and
services. Water supply in the MRBH strongly relies on three
reservoirs: Rio Manso, Serra Azul, and Vargem das Flores. This
dependence makes the region highly vulnerable to droughts, as
demonstrated by some severe and extreme events in the last decade
(Rodrigues et al., 2019). In this sense, stochastic simulation of
rainfall and temperature might comprise an effective approach to
assess critical situations, such as future drought scenarios, in the
study area. This could be helpful for decision makers in developing
strategies for adaptation to the effects of climate change in water
availability and for increasing resilience to rainfall shortages in
the MRBH.

Climate in the MRBH is predominantly tropical and presents
a marked seasonality, with a wet season spanning from October
to March, and a dry counterpart from April to September. The
average rainfall amounts vary between 200 mm to 350 mm in the
wet months—which amount for∼85% of the mean annual rainfall,
and from 0 to 20mm during the dry season. Average monthly
temperatures, in turn, range from 22 to 24◦C in the wet season,
and 18–20◦ in the drymonths. Finally, annual evaporative demands
amount∼1, 000mm.

In this paper, the monthly time scale is utilized for assessing the
descriptive and predictive abilities of e-Bluecat—despite not being
suitable for modeling extreme flooding events, this resolution is
appropriate for dealing with droughts, which have become a major
concern in the Brazilian southeastern region since the extreme
event that occurred in 2013/2014 (Rodrigues et al., 2019)—rainfall
amounts were 40% below average during this period. Monthly
rainfall data, from 1961 to 2021, were obtained from the digital
platform of the Brazilian Agency of Water and Sanitation (ANA,
2024) and from the National Meteorology Institute (INMET)
database (INMET, 2024). The selected rainfall gauging stations are
shown in Figure 2. Among these, only stations 1943023, 1944004,
and 83587 have no missing data during the period-of-record. For
the remaining ones, the daily missing values were filled through
multiple linear regression using the R package “hyfo” (Xu, 2015).
Rainfall data were spatialized over the study area with the Thiessen
polygons method.

As for temperature, we utilized the gridded reanalysis dataset
from the European Center for Medium-Range Weather Forecasts
(ECMWF) Re-Analysis (ERA5) (Hersbach et al., 2020), in view
of the limited availability of climatological stations in the region.
Average monthly temperature data were obtained as a raster matrix
layer by using the “download_ERA()” tool from R Studio (Kusch
and Davy, 2022). Again, the period-of-record for calibrating and
validating e-Bluecat ranged from 1961 to 2021.

Finally, gridded estimates for the historical and projection
periods, with spatial resolution of 27.8 km × 27.8 km, were
obtained, at the daily time scale, from the NASA Earth Exchange
Global Daily Downscaled Projections, derived from the Coupled
Model Intercomparison Project Phase 6 GCMs (NEX-GDDP-
CMIP6) (Rama Nemani, 2021; Thrasher et al., 2022). This
dataset is obtained by applying the Bias-Correction Spatial
Disaggregation method discussed in Wood et al. (2004) to the
Global Meteorological Forcing Dataset (GMFD), at the 0.25◦

resolution. The downscaling procedure, which is intended to
provide more detailed information on the processes at the regional

scale, is as follows. First, the GMFD is resampled to the resolution of
the original GCM. Then, a quantile mapping procedure is utilized
for “scaling” the raw GCM outputs according to the resampled
observations (Xu and Wang, 2019). Finally, the corrected GCM
output is interpolated, based on the “scaling factor” estimated in
the previous step, at resolution of the original observational dataset
(Thrasher et al., 2022).

Information for 35 GCMs is available in NEX-GDDP-CMIP6
from 1950-01-01 to 2100-12-31 (Thrasher et al., 2022) for the
climate change scenarios utilized in this study, namely, SSP1-2.6,
which is an optimistic scenario in which the emissions steadily
decline from 2020 to 2100, when it reaches zero; SSP2-4.5, which
is a baseline scenario in which emissions increase up to 2040
and then decline; and SSP5-8.5, which is a pessimistic scenario
in which emissions steadily increase until 2100 (IPCC, 2023). For
averaging the hydroclimatic variables across the study region, 21
grids were defined, as shown in Figure 2—each grid has a “weight”
proportional to the overlapping areas among the pixels and the
boundaries of the MRBH. After spatial averaging, we build the
“ensemble” by simply computing the arithmetic means of the 35
GCM estimates at each month, as usual (e.g., Koutsoyiannis and
Montanari, 2022b). We note that more effective approaches for
building the ensemble have been reported in recent literature (e.g.,
Sa’adi et al., 2024 and references therein), but unless some of the
GCM components are able to reproduce higher order moments
of the observed processes, these techniques are not expected to
improve the performance of e-Bluecat.

Figure 3 depicts the annual rainfall amounts, as obtained from
the GCM ensemble in the MRBH—here, we consider both the
historical (1950–2014) and the projection (2015–2100) periods,
the latter for scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5. One may
notice that the SSP1-2.6 scenario suggests a positive “jump” in
the average rainfall amounts from 2015 to 2100, as opposed to
the remaining ones, for which slight to moderate reductions in
such variable are expected. Moreover, no noticeable trends for
precipitation are observed for any of the scenarios during the
projection period. Similarly, Figure 4 illustrates the trajectories for
annual mean temperatures, under the same scenarios. For this
variable, however, upward trends are already perceived during the
historical period (starting in the 1990s) and the three scenarios
indicate increases for the projection counterpart. The SSP1-2.6
scenario presents an upward trend until the mid-2050s, but this
trend apparently vanishes from point onwards. In the SSP2-4.5
scenario, a more pronounced increase in annual temperature
is observed between 2015 and 2055, and then a less steep
rise stems up to 2100. For the SSP5-8.5 scenario projections,
a very sharp rise throughout the period from 2015 to 2100
is verified.

2.2 The expanded Bluecat (e-Bluecat)
framework

For deriving the stochastic model, let us assume that q

comprises a hydroclimatic stochastic process (e.g., rainfall or
temperature), with distribution function Fq

(

q
)

and probability
density function fq

(

q
)

. Also, let Q be an estimator for process
q (e.g., climate model outputs), with distribution function
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FIGURE 1

Location of MRBH and highlighting the city of Belo Horizonte.

FIGURE 2

Spatial distribution of grids and rain gauges applied.
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FIGURE 3

Trajectories for annual mean rainfall amounts under scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5.

FIGURE 4

Trajectories for annual mean temperatures under scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5.

FQ (Q) and probability density function fQ (Q) (note that,
following Koutsoyiannis and Montanari, 2022a,b, underlined
symbols comprise stochastic variables and processes, whereas
non-underlined ones are related to regular counterparts). Finally,
suppose that q and Q are sampled concurrently at discrete times
t. The reasoning behind eBlucat is converting the deterministic
climate model into a stochastic one through the following
conditional distribution

Fq|Q
(

q|Q
)

=

∫ q

−∞

fq|Q
(

q|Q
)

dq = Pr
{

q < q|Q = Q
}

(1)

which should obey the obvious constraints
∫ ∞

−∞
fq|Q

(

q|Q
)

dq =

1,
∫ 1
0 fq|Q

(

q|F−1
Q (z)

)

dz = fq
(

q
)

and
∫ 1
0 Fq|Q

(

q|F−1
Q (z)

)

dz =

Fq
(

q
)

(by definition, z = FQ (Q) and dz = fQ (Q) dQ).
Equation 1 inherently acknowledges the inability of the climate
model in fully representing the observed realizations of q, provided
that the distribution is not degenerated. In effect, the variance
of the conditional distribution accounts for the proportion of
the observed variability that cannot be accounted for by the
climate model. Hence, if the climate model provides a suitable
representation of the observed process, the variance should be
small. Otherwise, the dispersion around q becomes large.
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Although some parametric form may be specified for the
marginal distribution functions of q and Q, such measures may
be also approximated by empirical plotting positions, which
makes calculations easier. Here, following (Koutsoyiannis and
Montanari, 2022b), we utilize the unbiased estimator of the
quantity − ln (F/ (1− F)), termed excess return period (in log
scale), for this purpose, but other plotting positions could be used
as well. The empirical cumulative frequencies are then expressed as

Fq
(

q(i,N)

)

≈
i− 0.439

N + 0.123
(2)

FQ

(

Q(j,N)

)

≈
j− 0.439

N + 0.123
(3)

in which q(i :N) and Q(j :N) are, respectively, the ith and jth
order statistics of the observed samples of q and Q, both of which
with size N.

On the other hand, deriving the conditional distribution
Fq|Q

(

q|Q
)

solely based on data is not straightforward. In fact,
both q and Q are continuous random variables, for which each
realization is not expected to be observed more than once in a
particular time series. Hence, it would not be feasible to empirically
estimate the distribution for a given Q, as only the concurrent
observation of q (at time τ ) would be included in the sample
(Koutsoyiannis and Montanari, 2022a). For circumventing this
problem with no strong assumptions on the functional form of
the joint distribution Fq,Q

(

q,Q
)

(e.g., copulas or multivariate
distributions), Koutsoyiannis and Montanari (2022a) suggested
building the q-sample from a set of neighbors of each Q. Formally

Fq|Q
(

q|Q
)

≈ Pr
{

q < q|Q− 1Q ≤ Q ≤ Q+ 1Q
}

= Pr
{

q < q|FQ (Q) − 1F ≤ FQ (Q) ≤ FQ (Q) + 1F
}

(4)

in which 1F (or 1Q) should allow aggregating a suitable
number of realizations of q for reliably estimating the conditional
distribution and, at the same time, be as small as possible so
that FQ (Q) ± 1F does not deviate much from FQ (Q). A simple
alternative for defining the increment in the non-exceedance
probability is setting 1F = m/N, in which m denotes the number
ofQ-neighbors to be included in the sample—this results in 2m+ 1
values of q for each Q. The empirical conditional distribution may
thus be written as

Fq(i : 2m+1)|Q
(

q|Q
)

=
i− 0.439

2m+ 1+ 0.123
(5)

This approach, however, renders estimating the empirical
distribution for Q < Q(m+1 :N) and Q > Q(N−m :N) unfeasible.
For these cases, one may specify parameters cl 6= 1 and cu 6= 1
so that Q(m+1 :N) ≤ clQl and Q(N−m :N) ≥ cuQu, in which l refers
to lower bound and u refers to upper bound. This allows building
“synthetic” samples of q for the lower and upper order statistics of
Q, and even extrapolate for unobserved values of the hydroclimatic
process of interest. The conditional distribution functions for the
extrapolation ranges may be approximated as

Fq|Q
(

q|Q
)

≈ Fq|Q

[

q+ al

(

1−
1

cl

)

clQ|clQ

]

, for Q < Q(m+1 :N)

(6)

and

Fq|Q
(

q|Q
)

≈ Fq|Q

[

q+ au

(

1−
1

cu

)

cuQ|cuQ

]

, for

Q > Q(N−m :N) (7)

in which a. denotes the slopes of a linear regression model for
the lower (al) and upper (au) portions of the scatterplot between
q and Q (Figure 5). One may notice that extrapolation of the real
process is a function of the estimates of the climate model, which,
depending on the climate change scenario, may suggest increases
(or reductions) of the hydroclimatic processes well beyond (or
below) the observed ranges (e.g., Figures 3, 4). Hence, for building
samples with size 2m + 1 for the entire projection period—usually
2015 to 2100–, one may assume that clQl = Q(m+1 :N) and cuQu =

Q(N−m :N), in which Ql and Qu are, respectively, the smallest and
the largest values of Q in the extrapolation range; this allows
estimating cl and cu.

The approximations in Equations 6, 7 are precise for Gaussian
processes; for non-Gaussian counterparts, we utilize the following
transformation (Koutsoyiannis and Montanari, 2022a)

q′ = α ln
(

1+
q

α

)

(8)

in which α is a parameter estimated by minimizing the
quadratic differences among the empirical frequencies, as obtained
by the Blom plotting position (which is unbiased for quantiles of
the Gaussian distribution; see Naghettini, 2017), and the theoretical
probabilities derived from the fitted Gaussian model after the
transformation. We note that Equation 8 maps to the logarithmic
function as α → 0 and to the identity function as α → ∞.
Besides, the transformation maps zero to itself (Koutsoyiannis and
Montanari, 2022a).

For bypassing the effects of seasonality in model identification
(e.g., cyclostationarity), we linearly transform the original variables
by subtracting the long-term monthly averages prior to the
application of e-Bluecat. This preserves as much information as
possible, in terms of Q-neighbors, for building the conditional
empirical conditional distributions (Koutsoyiannis andMontanari,
2022b). Figure 6 provides an example of such distribution, for Q =

1.75 and m = 50 after removing seasonal effects. The e-Bluecat
framework is summarized in Figure 7.

As concurrent observations of q and Q are available from
1961 to 2021, we have split the sample for performing an ad

hoc validation of the model: the first 50 years of the period-
of-record were utilized for deriving the conditional distributions
in Equation 1, whereas the subsequent period would provide
testing conditions (i.e., prediction). As e-Bluecat is fully stochastic,
we assess its predictive abilities by comparing the theoretical
coverage probability—here defined as 90%-, and the actual ones.
Moreover, for obtaining further insights on the effects of each
climate change scenario on the conditional distributions, i.e., the
prediction uncertainty, we also estimate the average width of
the 90% confidence intervals; these should be wider for worst
performing climate models (note that the confidence intervals are
built with respect to the observed values and not the climate model
estimates).

As compared to other well-established bias-correction
techniques (see, for instance, Dinh and Aires, 2023, and references

Frontiers inWater 06 frontiersin.org

https://doi.org/10.3389/frwa.2025.1541052
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Santos et al. 10.3389/frwa.2025.1541052

FIGURE 5

Scatterplot between q and Q (distance between vertical dashed lines is given by 2m+ 1).

FIGURE 6

Conditional empirical conditional distribution, for Q = 1.75 and m = 50 after removing seasonal e�ects.

therein), e-Bluecat provides a formal probabilistic account
of the processes’ variability with respect to the observations,
not GCM estimates—previous research has indicated that
even sophisticated deterministic bias-correction techniques
may be unable to reproduce the variances of the observed
processes (Maraun et al., 2017). Moreover, the conditional
representation of the processes, to a great extent, avoids
implausible changes in the climate signals after deterministic
bias-correction (Maurer and Pierce, 2014; Maraun, 2016; Maraun

et al., 2017), which could result in ill-posed adaptation strategies
for water resources management. Finally, as e-Bluecat may be
applied for simulation (Koutsoyiannis and Montanari, 2022b),
the efficiency of distinct adaptation measures could be tested on a
probability-consequence basis. This could be useful for optimizing
the allocation of financial resources or devising insurance-
based strategies for dealing with potential economic impacts on
water systems stemming from climate change (Gesualdo et al.,
2024).

Frontiers inWater 07 frontiersin.org

https://doi.org/10.3389/frwa.2025.1541052
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Santos et al. 10.3389/frwa.2025.1541052

FIGURE 7

Flowcharf of e-Bluecat.

3 Results

Before utilizing e-Bluecat, we briefly assessed the goodness-of-
fit of the climate models during the period 1961–2021. For this
purpose, concurrent realizations of variables q (observed values)
and Q (GCM ensemble) for monthly rainfall and temperature are
provided in Figures 8, 9, respectively. For the former, some level
of systematic bias is perceived, as the climate model consistently
underestimates the observed rainfall amounts. Also, the ensemble
largely misrepresents the variability of the observed process—note
that the climate model is unable to reproduce the higher rainfall
amounts along the entire period, which may be a result of the
very distinct spatial scale across which (regular) variables q and Q

are averaged over, the averaging process over models for building
the ensemble, or the very structures of the GCM’s, which may
not fully represent the meteorological processes. On the other
hand, no noticeable “trends” are verified for both time series. For
monthly temperatures, model outputs are already relatively larger
than observations (in average terms) throughout the historical
period, and a steep increasing “trend” can be visualized for the
ensemble during projections—this behavior, termed the hot model
problem, has been reported for several models in CMIP6, for
which the future dynamics may be deemed physically unrealistic
(Hausfather et al., 2022). Moreover, the climate model is again
unable to reproduce the variance of the of q. In other words,
the GCM outputs do not provide an appropriate description
of the observed phenomena and, as a result, their ability to
summarize future climate conditions in the MRBH is disputable. In

addition, while scaling the two first moments appear to be sufficient
for bias correction of precipitation amounts, larger levels of
extrapolation would be necessary for matching the distributions of
monthly temperatures.

Next, we derived the empirical conditional distributions in
Equation 5 for the period 1961–2011, after removing seasonal
effects and transforming the original variables (Equation 8)—the
estimated values of α are 21.07 mm and 10.96◦C for rainfall and
temperature, respectively. Results are summarized in Figures 10,
11. For monthly rainfall, e-Bluecat was able to reproduce the local
averages throughout the entire period. In fact, the model median
estimates are in close agreement with those of the observed time
series and are slightly larger than those of the GCM ensemble. In
addition, apart from the largest rainfall amounts, the conditional
distributions properly described the variability of the process—
the empirical coverage probability is 86.8%, which is close to
the theoretical one (90%). This suggests that e-Bluecat properly
corrected the bias in the first moment of the ensemble and
provided reasonable estimates of the conditional variances of
rainfall amounts in the MRBH. However, the model is unable to
simulate very wet conditions, which are important for replenishing
soil moisture in agricultural areas within the MRBH and for
providing water to the water supply systems reservoirs. Finally, the
average width of the confidence intervals during the calibration
stage amounts 6.47 mm/day (after the backwards transformation
with the inverse of Equation 8). Although this quantity is deemed
too large, since we are dealing with a smoothed process (monthly
time scale) which filters out the effects of extreme events, it will
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FIGURE 8

Realizations of variables q and Q for monthly rainfall.

FIGURE 9

Realizations of variables q and Q for monthly average temperature ◦C.

provide a baseline for assessing model performance in validation
and extrapolation.

For monthly temperatures, the ensemble more strongly
disagrees with the observed process, but, to some extent, e-Bluecat
is able to approximate the local averages and reproduce the
observed “trend,” particularly for the period after the year 2000,
in which a more pronounced increasing trend is verified for the
GCM estimates. The empirical coverage probability is 87.8%, which
is slightly higher than that obtained for rainfall, but the model
again could not reproduce the larger observed temperatures. The
average width of the confidence intervals interval is 2.81◦C (after

the backwards transformation with the inverse of Equation 8), but
the upper limits of the confidence intervals become more similar
as the model more strongly departs from observations. This may
be a direct result of the hot model problem (Hausfather et al.,
2022)—the higher observed order statistics are similar for a wide
range of increasing values of Q, which leads to similar conditional
distributions (or at least the upper tails) during extrapolation. We
also note that the lower limits of the confidence intervals move
upwards for most of the period between 2000 and 2011 as a result
of the extrapolation procedure, but there is much more variability
in the 5th percentiles than in the 95th counterparts. A similar
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FIGURE 10

Comparation between GCM’s ensemble and e-Bluecat realizations for rainfall.

FIGURE 11

Comparation between GCM’s ensemble and e-Bluecat realizations for temperature.

behavior was observed by Koutsoyiannis and Montanari (2022b)
when applying e-Bluecat over the Italian territory.

We then proceeded to model validation in the period 2012–
2021—note that the levels of extrapolation for the lower and higher
order statistics (i.e., Q < Q(m+1 :N) and Q > Q(N−m :N)) are
similar to those in the calibration stage, which, to a great extent,
preserves the parameter estimates obtained during model training.

We again refer to Figures 10, 11 for discussing the results for rainfall
and temperature, respectively. The empirical coverage probability
for the former variable is 85.8%, which is slightly lower than in
calibration, but the model is again able to reproduce the local
averages. Also, the average width of the confidence intervals is only
slightly wider in testing conditions, amounting 6.93mm/day (after
the backwards transformation with the inverse of Equation 8).
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Overall, e-Bluecat appears to reliably extrapolate rainfall amounts
in future scenarios in the MRBH, albeit the model could not
properly reproduce the rainfall amounts in a few of the drier
months after 2012—which was a very dry period in the Brazilian
southeastern region.

For temperatures, e-Bluecat could not properly describe the
local averages, more likely due to “opposite” behaviors between
observations and GCM estimates during the testing stage. In effect,
for many cases, high observed temperatures are associated with
concurrent low estimates from the ensemble. This fact clearly
indicates the limited ability of the climate projections in describing
the actual evolution of the climate system in the RMBH and
highlights the potential problems of utilizing deterministic bias-
corrected estimates for decision-making, even under complex
bias-correction techniques [see the discussion in Maraun et al.
(2017)]—critical scenarios may not be disclosed because of the
limited predictive abilities of the ensemble. On the other hand,
the empirical coverage probability obtained with e-Bluecat, 85.8%,
is still acceptable, which suggests that the process variability is
reasonably accounted for by the model. In other words, although
the bias in the first moment could not be entirely removed,
the stochastic description offered by e-Bluecat circumvents the
poor representation of the observed process through GCM point
estimates and allows simulating more extreme events and observed
“trends” almost irrespective of the behavior of the conditioning
variable. At last, the average width of the confidence intervals
during prediction, 2.71◦C (after the backwards transformation with
the inverse of Equation 8), is narrower than that obtained in model
training. This may be again ascribed to the extrapolation procedure,
which, as compared to the calibration stage, entailed relatively
larger values for the 5th percentiles but very similar estimates for
the 95th ones.

Finally, we calibrated the parameters of e-Bluecat considering
the projection period (here assumed as 2022–2100), under the
three climate change scenarios. Results are summarized in Table 1.
One may notice that, for rainfall, the slopes al are positive
and relatively close to 1 for all climate change scenarios, which
indicates reasonable agreements among observations and ensemble
estimates in the lower portions of the scatterplots. Parameters au are
also positive for this variable, but the slopes approach zero for SSP2-
4.5 and SSP5-8.5, which highlights the mismatches between the
time series as Q increases. As a result, the conditional distributions
become flatter for the larger rainfall amounts due to the limited
explanatory ability of the climate model. We also note that the
lower bound Ql is considerably higher for SSP2-4.5, which suggests
that, under this scenario, smaller deviations with respect to the
mean values (i.e., less severe drought episodes, in terms of intensity)
are expected during the projection period. On the other hand,
the values of Qu were similar for all scenarios, with a slightly
larger estimate for the optimistic climate change scenario. This fact
suggests that, at least at the monthly scale, the differences among
emission scenarios are more strongly perceived during droughts in
the MRBH.

For temperatures, slopes al and au are either negative (SSP2-
4.5 and SSP5-8.5) or very close to zero (SSP1-2.6), which
indicates that the ensemble cannot provide useful information
for deriving the empirical conditional distributions in the
extrapolation ranges—model estimates and observations follow

opposite “trends.” We also note that, while the values of Ql

are similar for all climate change scenarios, the value of Qu for
SSP5-8.5 is more than twice that for SSP1-2.6 and roughly 1.5
times larger than that for SSP2-4.5. Hence, differences on GGC
would imply a much stronger effect on temperatures than on
rainfall amounts in the MRBH—depending on the trajectory of
the process, as materialized by distinct climate change scenarios,
the vulnerability of the water supply system to meteorological
droughts may be greatly enhanced by the increased evaporation
in the reservoirs. On the other hand, the extent to which these
very distinct temporal dynamics are affected by the “hot model”
problem (Hausfather et al., 2022) is not clear. As a result, some
of these trajectories might be physically implausible, in view of
the current empirical knowledge on climate dynamics—this further
complicates developing strategies for drought mitigation in the
study area.

Finally, Figure 12 illustrates the bias-corrected rainfall
estimates during the projection period for the three climate change
scenarios. Overall, the processes dynamics do not differ much
from those of the historical time span—irrespective of the future
GGC, no trends or variance changes are perceived, which suggests
that the asymptotic behavior of the conditional distributions was
fully captured during model calibration. However, the variability
informed by the stochastic model is much larger than that predicted
by the GCM ensemble, which could make the actual alternation
between very dry and very wet years much more pronounced than
anticipated by the climate models, further complicating future
drought mitigation. As compared to the previous e-Bluecat runs,
the average width of the confidence intervals is slightly larger
for SSP1-2.6 (7.81 mm/day) and SSP2-4.5 (7.22 mm/day), but
virtually the same for SSP5-8.5 (6.94 mm/day)—these large ranges
again translate the high levels of uncertainty associated with
the climate models and highlight the difficulties for informing
adaptation strategies, even after bias correction (Maraun et al.,
2017). To sum up, based on results obtained with e-Bluecat, no
marked changes in monthly rainfall patterns are expected in the
MRBH. Nonetheless, it is possible to note physically implausible
values for rainfall amounts in all scenarios, which indicates that
the model misrepresents the probability dry and, as a result, the
simulation of long dry spells may be hindered. This is surely
a limitation of the proposed approach in regions with strong
seasonal characteristics, such as the MRBH. However, adapting
model structures for encompassing mixed discrete-continuous
distributions would require alternative approaches for addressing
seasonality (cyclostationarity) and autocorrelation, which could
severely reduce the number of sample points for deriving the
conditional distributions.

For monthly temperatures (Figure 13), on the other hand,
increasing “trends” are verified in the bias-corrected projections,
at least for some periods in the future, for all climate change
scenarios. For SSP1-2.6, median temperatures are expected to
increase up to the 2050s and then stabilize. It is worth noting,
however, that, while the ensemble predicts an average increase
of ∼2◦C, e-Bluecat estimates suggest this quantity would not
surpass 0.5◦C at the end of the projection period. For SSP2-4.5,
the median temperature estimates steadily increase throughout the
projection period, albeit at a much lower rate than that predicted
by the ensemble—the former amounts an increase of <1◦C in
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TABLE 1 Parameters of the e-Bluecat model and the corresponding ranges for extrapolation in the period 1961–2100.

Stochastic
variable

Climate
change
scenario

al au cl cu Q <
Q(m+1 :N)

Q >
Q(N−m :N)

Ql Qu

Rainfall SSP1-2.6 1.430 0.662 0.15 0.29 –0.45 0.46 –3.03 1.59

SSP2-4.5 1.160 0.168 0.30 0.29 –0.50 0.44 –1.66 1.52

SSP5-8.5 1.058 0.008 0.18 0.29 –0.48 0.44 –2.65 1.52

Temperature SSP1-2.6 –0.444 0.140 0.38 0.32 –0.52 0.75 –1.37 2.36

SSP2-4.5 –0.393 –0.336 0.38 0.19 –0.52 0.68 –1.37 3.50

SSP5-8.5 –0.444 –0.058 0.38 0.12 –0.52 0.68 –1.37 5.54

FIGURE 12

Bluecat results—monthly mean of rainfall (A) for scenario SSP1-2.6. (B) For scenario SSP2-4.5. (C) For scenario SSP5-8.5.

2100 whereas the latter indicates almost 4◦C. Finally, for SSP5-
8.5, which also increases during the entire projection period, but
much more steeply than in the baseline scenario, the climate model
suggests an average increase of more than 5◦C in 2100; e-Bluecat,
in turn, again points to <1◦C. On the other hand, the variability
inferred by e-Bluecat is again much larger than that predicted
by the climate models, which may complicate the mechanisms of
water transport to the atmosphere and the water budget in the
water supply system reservoirs. Finally, for all scenarios, the average

width of the confidence intervals is 2.8◦C, which suggests that
the asymptotic behavior of the conditional distributions is also
captured for temperatures during calibration, despite the larger
disagreement among observations and climate model estimates for
this variable in the historical period.

Based on our results, the main difficulty for future drought
mitigation and adaptation in the MRBH would not be related to
changes in the processes’ averages, which are expected to vary
smoothly over time, but rather to the much higher variability
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FIGURE 13

Bluecat results—monthly mean of temperature (A) for scenario SSP1-2.6. (B) For scenario SSP2-4.5. (C) For scenario SSP5-8.5.

predicted by the stochasticmodel as compared to GCMprojections.
Increased variability, along with the processes’ persistence, might
lead to longer periods with very low rainfall amounts and very
high temperatures, worsening drought conditions and impacting
the region’s economy and environment. This fact highlights the
importance of simulation, which is possible with the e-Bluecat
framework, for tracking critical yet physically plausible trajectories
for the processes and for defining more effective adaptation
strategies in the study area. Moreover, the high uncertainty levels
in future projections, as translated by the large variances of the
conditional distributions for both stochastic variables, suggests that
deterministic bias-correction only may hinder risk assessment and
communication and misinform decision-making.

4 Discussion

Climate projections predict diminishing precipitation and
rising temperatures in the following decades in several areas across
the world, (IPCC, 2023), with potential increases in the frequencies
of drought events, as well as in their durations and severities.

Prolonged drought conditions, in turn, may strongly affect rainfall-
runoff relationships (e.g., Deb et al., 2019), which would impose
additional challenges for water resources management under
changing climate and more intricate drought dynamics. This
situation is critical in urban and periurban areas, such as the
MRBH, due to their high demands for water (Nobre et al., 2016)
and their usual dependence on reservoirs for multiple water
uses. On the other hand, climate projections, as obtained from
GCMs, are acknowledged biased and uncertain (Koutsoyiannis
and Montanari, 2022b), particularly for small areas with marked
seasonality in hydroclimatic processes. As a result, effective bias-
correction techniques, preferably with formal mechanisms for
uncertainty estimation, become necessary for devising strategies for
future drought mitigation and adaptation in such areas.

This study was built upon the drawbacks of using deterministic
GCM-based forecasts to establish management plans for water
resources in the MRBH. Possible effects of wrongful projections
of rainfall and temperature may lead to important implications for
watersheds. Among them, one may cite the inaccurate predictions
of surface water supply (Liu et al., 2021), unreliable assessment
of impacts on ecosystems’ stability and water availability due to
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the rainfall-related reorganization of river network reorganization
(Abed-Elmdoust et al., 2016), and poor representation of nutrient
load dynamics in water supply reservoirs (Miralha et al., 2021).
To some extent, the stochastic representation provided by e-
Bluecat in our application circumvents these problems, as it allows
simulating distinct trajectories of the processes of interest and
testing alternatives on a probability-consequence basis.

Our results suggested that, on average terms and irrespective
of the considered climate change scenario, no significant changes
would be observed in monthly rainfall amounts and only small
increases (∼ 1◦C) would be verified in monthly temperatures. To a
great extent, these results contrast with deterministic approaches
for bias-correction, which mostly indicate more pronounced
increases in temperatures and more noticeable variations in rainfall
in other parts of the world (e.g., Deb et al., 2018; Dai et al., 2022),
as well as a stronger influence of the radiative forcing levels on
the future trajectories of the processes (e.g., Bukovsky et al., 2021;
Dinh and Aires, 2023). On the other hand, the stochastic bias-
correction approach utilized in this study suggested a much larger
variability for both future temperature and rainfall, which might
reflect the long-range persistence associated with these processes
(Koutsoyiannis, 2023) and may enhance the likelihood of severe
and extreme drought events in the future. This fact highlights
the limited predictive abilities of deterministically bias-corrected
climate projections (Maraun et al., 2017) and their potentially small
effectiveness for decision-making (Koutsoyiannis and Montanari,
2022b). Also, properly accounting for uncertainty in climate
projections comprises a key step for modeling possible changes in
the mechanisms of water transferring through atmosphere, soils,
streams and aquifers during severe multiyear droughts (Deb et al.,
2019, 2022).

On the other hand, the marked seasonal characteristics of
climate in the MRBH entailed physically inconsistent estimates
when bias-correcting rainfall amounts, even for a relatively coarse
temporal resolution (monthly) for rainfall aggregation. Such a
limitation has not been reported in previous research with e-
Bluecat (Koutsoyiannis and Montanari, 2022b) and suggests that,
under some circumstances, devising cyclostationary models might
be unavoidable. It should also be noted that e-Bluecat was unable
to reproduce very large rainfall amounts and temperatures—which
is an obvious result of its essentially empirical nature. However,
deterministic bias correction techniques often cannot also map
high GCM quantiles in a physically meaningful way (Maraun,
2016), and this remains an unresolved issue in the literature
(e.g., Dinh and Aires, 2023). Based on these arguments, utilizing
e-Bluecat in other areas, with distinct climate characteristics,
is feasible, albeit the model appears to perform better when
seasonality is less pronounced [see the discussion in Koutsoyiannis
and Montanari (2022b)].

Finally, from a practical perspective, our results might
be useful to strengthen the MRBH’s water supply system by
implementing early drought warning systems using e-Bluecat’s
probabilistic analyses, and developing robust contingency plans
that account for climate projection uncertainties (Di Baldassarre
et al., 2018). At the same time, adaptive water management in
the MRBH must consider both anthropogenic climate change
and land use changes [current limitations on this are discussed
in Deb et al. (2018)]. For instance, Magaña et al. (2021)

pointed out that expanding metropolitan areas need integrated
approaches combining technical and socioeconomic aspects of
drought management. Furthermore, to enhance the adaptive
management of the study area in response to climate change,
selecting appropriate locations for hydrologic monitoring is
paramount (Singhal et al., 2024). At last, to maintain the long-
term environmental integrity of river basins, Gao et al. (2022)
also stress the necessity of assessing dam development and water
infrastructure design in light of unknown climate dynamics.

5 Conclusions

The findings of this study highlight both the limitations and
potential of the e-Bluecat model for bias correction and uncertainty
quantification in climate projections in small areas with marked
seasonality. The stochastic representation of precipitation and
temperature in the MRBH revealed the following key points:

• Global climate models (GCM) demonstrated notable
limitations in reproducing observed processes. For
precipitation, there was a systematic underestimation
of maximum monthly amounts and an inadequate
representation of its variability. Regarding temperature,
the “hot model” problem emerged, with future projections
showing physically disputable upward trends. Also, the
variance was again misrepresented for this variable;

• The e-Bluecat model effectively corrected bias of the
first moment (mean) for precipitation, and provided
empirical coverage close to theoretical levels (86.8%–87.8%).
However, the confidence intervals for both precipitation
and temperature revealed large uncertainty, especially under
extrapolation conditions. Additionally, e-Bluecat struggled
to fully reproduce observed extreme values, reflecting the
inherent limitations from GCMs;

• Across the three climate change scenarios (SSP1-2.6, SSP2-
4.5, and SSP5-8.5), e-Bluecat captured, to a great extent,
the asymptotic behavior of the conditional distributions for
precipitation in the study area. No significant shifts in
monthly precipitation patterns were observed, even under the
most extreme scenarios. In contrast, temperature projections
indicated progressive increases, albeit at much smaller rates
than those predicted by GCMs. This highlights e-Bluecat’s
potential to temper exaggerated predictions in the most
pessimistic scenarios;

• e-Bluecat’s stochastic structure proved an useful tool for
capturing climate variability and simulating extreme events,
despite the frequent disagreement among GCM outputs and
observations. In fact, these discrepancies indicate the need for
caution when applying deterministic bias-corrected estimates
in strategic decisions, particularly in sensitive contexts such
as water resource management and drought mitigation in the
MRBH;

• Despite e-Bluecat’s relative success, uncertainties remain
regarding the physical plausibility of certain projected
trajectories, particularly for temperature. The challenges of
extrapolation and inconsistencies between climate scenarios
call for continuous efforts to improve climate model
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representativeness and developmore advanced bias correction
techniques.

On the other hand, the stochastic representation provided by
e-Bluecat has still some limitations. First, the essentially empirical
approach for estimating the conditional distributions hinders
extrapolation to very extreme levels of the modeled processes. In
the context of future drought assessment in the MRBH, this might
conceal the effects of very high temperatures in evaporation and,
accordingly, in water availability in the water supply reservoirs.
Moreover, the simplified approach for dealing with seasonality
implied physically implausible values for monthly precipitation
amounts. This would call for a more structured model for dealing
with the probability dry during the dry seasons in the study area.
However, inference would be affected by loss of information as
the cyclostationarity of the processes is formally accounted for.
Finally, the use of a simple averaging over models for building the
GCM ensemble might have led to oversmoothed trajectories for the
climate projections. The use of alternative approaches for selecting
more influential members among the available climate models (e.g.,
Sa’adi et al., 2024) could improve the representativeness of the
ensemble with respect to the observed processes.

The application of e-Bluecat for bias correction of temperature
and precipitation in a small area with a complex climate, such as
the RMBH, demonstrated its predictive skills and generalization
abilities, and highlighted some limitations. More importantly,
however, is that our results indicate that climate-related planning
strategiesmust necessarily account for the high levels of uncertainty
related to GCM outputs for defining critical trajectories of
hydroclimatic processes and, accordingly, optimizing the allocation
of financial resources for drought adaptation and mitigation.
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