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The application of GRACE satellite-derived Total Water Storage (TWS) data for 
local water management is constrained by its coarse spatial resolution (100-300 
km). To address this limitation, a Random Forest-based model was employed 
to downscale GRACE TWS data from 100 km to 1 km resolution over Morocco, 
a drought-prone region, covering the period from 2002 to 2022. The input 
datasets included precipitation (GPM, 10 km), NDVI (MODIS, 1 km), land surface 
temperature (LST, MODIS, 1 km), evapotranspiration (MODIS, 500 m), elevation 
(SRTM, 30 m), and the Normalised Difference Snow Index (NDSI, MODIS, 
500 m). While downscaling improves the spatial resolution of GRACE data, 
validating these higher-resolution outputs presents challenges. In this study, 
the downscaled data were validated using three complementary approaches: 
statistical validation, groundwater level in-situ data validation, and validation 
against known aquifer dynamics. Statistical validation demonstrated strong 
model performance, with a Nash-Sutcliffe Efficiency (NSE) of 0.80, a low RMSE 
of 0.82 cm, and MAE of 0.57 cm, along with an R² of 0.80 between original and 
downscaled data. Cross-validation confirmed the model’s consistency, yielding 
mean, median, and maximum R² values of 0.56, 0.64, and 0.89 respectively. Error 
metrics remained consistently low throughout the study period, with MAE values 
ranging from 0.36 cm to 0.6 cm and RMSE values between 0.5 cm and 0.8 cm. 
Comparison with in-situ groundwater levels showed significant improvements, 
with correlation coefficients increasing for 63% of the 139 analysed wells. The 
1 km TWS data revealed localised variations and clearer trends across different 
aquifers, with aquifer systems within the same structural domain exhibiting 
similar TWS patterns. These findings highlight the potential of the downscaling 
model to enhance local water management by capturing finer hydrological 
variations. The proposed approach effectively overcomes GRACE’s spatial 
resolution limitations, as demonstrated through comprehensive validation. 
This methodology shows particular promise for water resource monitoring in 
drought-vulnerable regions such as Morocco, providing decision-makers with 
higher-resolution data for improved water management strategies.

OPEN ACCESS

EDITED BY

Evangelos Rozos,  
National Observatory of Athens, Greece

REVIEWED BY

Raphael Schneider,  
Geological Survey of Denmark and 
Greenland, Denmark
Reed Maxwell,  
Princeton University, United States

*CORRESPONDENCE

Tarik Bouramtane  
 t.bouramtane@um5r.ac.ma

RECEIVED 15 December 2024
ACCEPTED 18 April 2025
PUBLISHED 30 May 2025

CITATION

 Hamou-Ali Y, Karmouda N, Mohsine I,  
Bouramtane T, Kacimi I, Tweed S, Tahiri M, 
Kassou N, El Bilali A, Chafki O, 
Ezzaouini MA, Laraichi S, Zerouali A and 
Leblanc M (2025) Downscaling GRACE total 
water storage data using random forest: a 
three-round validation approach under 
drought conditions.
Front. Water 7:1545821.
doi: 10.3389/frwa.2025.1545821

COPYRIGHT

© 2025 Hamou-Ali, Karmouda, Mohsine, 
Bouramtane, Kacimi, Tweed, Tahiri, Kassou, El 
Bilali, Chafki, Ezzaouini, Laraichi, Zerouali and 
Leblanc. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 30 May 2025
DOI 10.3389/frwa.2025.1545821

https://www.frontiersin.org/journals/Water
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2025.1545821&domain=pdf&date_stamp=2025-05-30
https://www.frontiersin.org/articles/10.3389/frwa.2025.1545821/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1545821/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1545821/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1545821/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1545821/full
mailto:t.bouramtane@um5r.ac.ma
https://doi.org/10.3389/frwa.2025.1545821
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Water#editorial-board
https://www.frontiersin.org/journals/Water#editorial-board
https://doi.org/10.3389/frwa.2025.1545821


Hamou-Ali et al. 10.3389/frwa.2025.1545821

Frontiers in Water 02 frontiersin.org

KEYWORDS

GRACE data, total water storage, downscaling, hydrological validation, drought, 
Morocco

1 Introduction

The growing effects of climate change, coupled with the increasing 
recurrence of droughts and overexploitation, have put enormous 
pressure on water resources worldwide (García-Ruiz et al., 2011; Jain 
et al., 2024). In this context, accurate and reliable information on the 
availability and quantity of water resources has become essential to 
ensure an effective planning and management, particularly during 
periods of drought (Kang et al., 2004; Scanlon et al., 2023; Sabale et al., 
2023; Sherif et al., 2023). This need is even more critical in arid and 
semi-arid regions, where water scarcity profoundly affects agriculture, 
ecosystems and human livelihoods, underlining the importance of 
informed decision-making for the sustainable management of water 
resources (García-Ruiz et al., 2011; Sherif et al., 2023). In this context, 
the Gravity Recovery and Climate Experiment (GRACE) satellites 
have played a key role since 2000 in providing crucial data on total 
water storage (TWS), which includes the combined contributions of 
groundwater storage (GWS), surface water bodies (SWB), snow water 
equivalent (SWE), soil moisture (SM) and canopy water (Ca) (Shen 
et al., 2015; Ouatiki et al., 2022).

Through its ability to track water mass variations in aquifers, In 
many studies, GRACE has provided valuable insights into 
groundwater depletion across numerous regions worldwide (Alghafli 
et al., 2023; Melati et al., 2023; Gautam et al., 2024; Satizábal-Alarcón 
et al., 2024). Additionally, it has been instrumental in monitoring 
changes in the water mass of major lakes and reservoirs, delivering 
essential data to support efficient water management strategies 
(Jeffcoat et al., 2009; Longuevergne et al., 2013; Wang et al., 2018; 
Wang et al., 2019; Carabajal and Boy, 2021). Furthermore, GRACE 
plays a crucial role in understanding the impact of climate change on 
the global hydrological cycle by tracking water mass variations over 
time (Wouters et al., 2014; Tapley et al., 2019; Zhou et al., 2022). These 
data are essential for calibrating and improving hydrological models, 
leading to more accurate forecasts of water resources (Bai et al., 2018; 
Soltani et al., 2021).

Research on TWS using GRACE data is only meaningful when 
conducted on a regional or large scale due to the low resolution of 
GRACE satellite data, which ranges between 100 km and 300 km 
depending on the GRACE solutions used. The low spatial resolution 
of GRACE poses a major limitation in arid and semi-arid regions, 
which are marked by significant climatic, topographic, and socio-
economic diversity. In such areas, the 100–300 km resolution of 
GRACE is often inadequate for detecting many hydrological changes 
(Longuevergne et al., 2010; Loomis et al., 2021; Xu et al., 2023). Such 
environments require a detailed understanding of water mass 
variations at a fine scale to effectively manage water resources for 
supply and irrigation (Wheater, 2002; Loomis et al., 2021; Bouizrou 
et al., 2023).

In arid and semi-arid regions, GRACE data is often downscaled, 
a process that involves reducing the resolution from a coarse spatial 
scale to a finer one for more detailed analysis (Miro and Famiglietti, 
2018; Wang et  al., 2024). Downscaling GRACE data is typically 
categorized into two approaches: dynamic and statistical (Lee and 

Jeong, 2014; Sahour et  al., 2020; Pellet et  al., 2024). Dynamic 
downscaling uses large-scale boundary conditions and external data 
to accurately simulate regional characteristics. This method often 
incorporates regional hydrological models that rely on input data from 
global hydrological models or coarse-scale satellite observations, such 
as GRACE data (Herrera et al., 2006; Sun et al., 2023a; Pellet et al., 
2024). The primary advantage of dynamic downscaling lies in its 
ability to capture complex physical processes and interactions within 
the hydrological cycle at a higher spatial resolution (Xue et al., 2014). 
This method proves particularly valuable in regions characterized by 
complex topography or diverse hydrological conditions, where 
accurate modeling is crucial. By using detailed physical equations, 
dynamic downscaling simulates the behavior of the hydrological 
system at a finer scale, starting with coarse-resolution data from global 
models. This enables more precise and localized representations of 
hydrological phenomena, enhancing the overall accuracy of 
predictions (Gemitzi et al., 2021; Gao et al., 2022).

Statistical downscaling involves identifying statistical relationships 
between coarse-resolution hydrological variables (predictors) and 
fine-resolution hydrological variables (predictands) (Yin et al., 2018; 
Sahour et al., 2020). Compared to dynamic downscaling, it is less 
computationally intensive and can be  more easily applied across 
different regions and variables (Vishwakarma et al., 2021; Wang et al., 
2024). Frequently used in hydrological studies, statistical downscaling 
helps generate high-resolution datas and assess the potential impacts 
on local water resources. It is especially useful in regions where 
dynamic downscaling is impractical due to limited computational 
resources (Khorrami, 2023; Zhang et al., 2021; Zuo et al., 2021).

Statistical downscaling ML methods vary in approach and 
applicability (Tyralis et  al., 2019). Random Forest (RF) enhances 
predictive accuracy by aggregating multiple decision trees, effectively 
capturing complex, non-linear relationships (Wang et  al., 2024; 
Jyolsna et  al., 2021). Support Vector Machine (SVM) determines 
optimal hyperplanes for classification and regression (Yazdian et al., 
2023). Extreme Gradient Boosting (XG-Boost) sequentially refines 
weak models, improving performance in large datasets (Ali et al., 
2023). Multi-Layer Perceptron (MLP), a neural network-based 
approach, models intricate data interactions, making it suitable for 
downscaling applications (Sahour et al., 2020).

Based on the following studies (Chen et al., 2019; Zuo et al., 2021; 
Zhang et  al., 2021), a commonly adopted methodology for 
downscaling GRACE data emerges. This approach relies on 
establishing a machine learning (ML) relationship between the 
original GRACE product and resampled features such as precipitation 
and temperature. The methodology involves extracting residuals from 
the ML relationship between the upsampled features and the original 
GRACE data. These residuals are then incorporated into the prediction 
process to apply a correction, ultimately producing the downscaled 
GRACE product.

Downscaling GRACE data increases spatial resolution, but 
without proper validation, it may introduce noise rather than 
improving accuracy (Pascal et al., 2022). Validation ensures that the 
downscaled data reflect real-world hydrological variations 
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(Vishwakarma et al., 2021) by comparing them with independent, 
reliable sources to assess their accuracy and effectiveness (Zhang 
et al., 2017).

The validation of GRACE data downscaling methods, 
therefore, relies on a range of approaches, each offering distinct 
strengths and limitations. A widely used technique involves 
comparing the downscaled data with the original GRACE 
observations. This comparison helps assess how accurately the 
downscaling methods capture the spatial and temporal variations 
inherent in the raw data, offering critical insights into their 
effectiveness (He et  al., 2021; Milewski et  al., 2019; Ali et  al., 
2021). Furthermore, validation can be  achieved by comparing 
downscaled results with outputs from hydrological or climatic 
models, providing a reference for assessing accuracy (Zhong et al., 
2021a; Gemitzi et al., 2021; Gou and Soja, 2024). Additionally, in 
situ groundwater level data from wells and boreholes offer another 
widely used method for validating downscaling models 
(Foroumandi et al., 2023; Seyoum et al., 2019; Zhong et al., 2021a). 
This approach relies on the understanding that groundwater is a 
major component of the water budget, meaning variations in TWS 
detected by GRACE in arid areas largely correspond to changes in 
groundwater levels recorded through field measurements (Hu 
et al., 2019; Melati et al., 2019). Each validation approach offers 
distinct strengths and limitations, with their effectiveness varying 
based on the study context and data availability. The novelty of our 
method lies in the application of these three complementary 
validation methods to ensure robust and reliable downscaling 
results. Consequently, combining multiple methods often provides 
a more comprehensive and reliable assessment of downscaling 
model performance. The optimal choice of validation method 
ultimately depends on the study’s objectives, as well as the 
available resources and data (Chen et al., 2021).

In this study, we develop a statistical downscaling model based on 
the Random Forest (RF) method to refine GRACE Total Water Storage 
(TWS) data from a coarse resolution of 100 km to a finer resolution 
of 1 km. The model integrates multiple remote sensing datasets, 
including precipitation (GPM, 10 km), the Normalized Difference 
Vegetation Index (NDVI, MODIS, 1 km), Land Surface Temperature 
(LST, MODIS, 1 km), Actual Evapotranspiration (AET, MODIS, 
500 m), the Digital Elevation Model (DEM, SRTM, 30 m), and the 
Normalized Difference Snow Index (NDSI, MODIS, 500 m). This 
downscaling approach was applied to the northern regions of 
Morocco, which include major watersheds and aquifers responsible 
for storing most of the country’s water resources (Hssaisoune et al., 
2020). Over the past two decades, these areas have experienced 
recurring and increasingly severe droughts, with the current drought 
lasting for six consecutive years (Hadri et al., 2021; Gumus et al., 
2024). While these regions have a semi-arid climate, recent trends 
show a clear progression toward more arid conditions (Brahim et al., 
2017; Ouhamdouch and Bahir, 2017). This growing vulnerability 
highlights the importance of accurate water resource monitoring and 
management in these critical areas. In contrast, the southern regions 
of Morocco, primarily encompassing the Sahara Desert, were excluded 
from detailed analysis and calculations. This exclusion is due to the 
region’s stable and extremely arid climatic conditions, which 
contribute to minimal hydrological variability (Seo et  al., 2006; 
Ferreira et al., 2023; Zhong et al., 2023; Guo et al., 2024). In fact, the 
total water storage trends in this vast desert area is expected to be very 

low to nearly zero, as seasonal and inter-annual fluctuations in water 
storage are negligible (Gischler, 1976; Armon et al., 2024).

A thorough validation of the downscaling results was carried out 
through a three-round approach. The first method involved a 
statistical comparison between the original GRACE data and the 
downscaled data to assess the model’s performance. The second 
method used groundwater level measurements to verify if the 
downscaled data accurately reflected observed declines and 
hydrodynamic trends in Morocco. The third method evaluated the 
model’s ability to capture the behavior of key aquifers by comparing 
the downscaled results with known groundwater dynamics, 
particularly in the context of recurrent drought and overexploitation.

2 Materials and methods

2.1 Study area

Morocco’s coastline along the Atlantic Ocean and the Mediterranean 
Sea spans approximately 3,000 km. Its diverse geography includes 
extensive plains, high mountain ranges such as the Rif and Atlas, and 
vast Saharan deserts, covering an area of 710,850 km2 from the Strait of 
Gibraltar to the southern edges of the Sahara (Bouramtane et al., 2020a; 
Driouech, 2010) (Figures 1a,b). The geology of Morocco is characterized 
by a diverse stratigraphic history. The Precambrian and Paleozoic eras 
correspond to ancient basement rocks, including crystalline, 
metamorphic, and magmatic formations in the Anti-Atlas and Reguibat 
Shield (Bouramtane et al., 2020b). The Mesozoic period is marked by 
extensive sedimentary formations, including carbonate and red 
sandstone deposits in the High Atlas and Rif. The Cenozoic and 
Quaternary periods feature sedimentary basins, volcanic formations in 
the Middle Atlas, and recent alluvial and aeolian deposits in river valleys 
and the Sahara (Figure 1c) (Bouramtane et al., 2020c). The study area, 
located in the northern part of Morocco just north of the Saharan 
Desert, features a climate shaped by the Atlantic Ocean to the west, dry 
currents from the south and east, and Mediterranean influences from 
the north (Milewski et al., 2015). Positioned between temperate and 
tropical climatic zones, this region predominantly experiences semi-
arid and arid conditions (Figures 1d,e). Recent climatic data, however, 
reveal a northward shift of the semi-arid zone, indicating an expansion 
of drier conditions in this part of Morocco (Ouhamdouch et al., 2018; 
Bennouna, 2020; Hammoudy et al., 2022).

Since the early 2000s, Morocco has witnessed a decrease in annual 
precipitation variability (Figures  1f,g) and increase in temperature 
(Figures 1h,i), signaling a trend toward increasing drought conditions 
from 1980 to 2015 (El Ajhar et  al., 2018; Direction Générale de 
l’Hydraulique, 2023; Hamdi, 2023; Belahsen et al., 2016; Benassi, 2008; 
Driouech, 2010; Ahmed et  al., 2021). This has resulted in a more 
dynamic climate system prone to extreme events, such as more frequent 
and severe droughts and floods (García-Ruiz et  al., 2011). Climate 
change projections indicate a potential decrease in North African 
precipitation by up to 20% and a temperature increase of up to 3°C by 
2050, which could have profound effects on Morocco’s water resources 
and agriculture (Lachgar et al., 2022; Khalki et al., 2021; Schilling et al., 
2012). Currently, Morocco is entering its sixth year of drought 
(Mahdaoui et al., 2024). The arid to semi-arid regions are experiencing 
poor rainfall, reduced run-off from major catchment areas, a decline in 
dam volumes, and a sharp drop in groundwater levels, leading to 
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difficulties in supplying drinking water and meeting agricultural 
demands (Direction Générale de l’Hydraulique, 2023; Ouhamdouch 
et al., 2018; Ahmed et al., 2021).

The De Martonne Aridity Index (I), which classifies climate based 
on precipitation and temperature highlights Morocco’s increasing 
aridity from 1969–2002 to 2002–2022, with arid zones expanding and 
humid areas shrinking. This trend, likely driven by climate change, 
indicates reduced precipitation, rising temperatures, and growing 
water stress. Land cover patterns in Morocco, derived primarily from 
MODIS data, reflect this increasing aridity (Figure 1j). Vegetation 
cover, including forests and croplands, is concentrated in the Rif, 
Middle Atlas, and Atlantic plains, while vast areas of steppe and barren 
land dominate the plateaus and eastern regions. The expansion of 

desert and semi-arid zones, particularly in the southern and eastern 
parts of the country, aligns with the observed climatic trends. This 
shift highlights the vulnerability of Morocco’s ecosystems and 
agricultural zones to ongoing climate change and water scarcity.

In addition to these climatic challenges, irrigated agriculture in 
Morocco consumes approximately 80% of the country’s freshwater. 
Furthermore, the agricultural sector contributes 15–20% to the 
national GDP and employs 44% of the workforce (Schilling et al., 
2012; Schyns and Hoekstra, 2014). These factors place immense 
pressure on water resources, particularly groundwater. Moreover, the 
increasing demand for irrigation highlights the urgent need for 
effective water management strategies. Hence, given Morocco’s diverse 
geography, climatic variability, and the critical pressures on 

FIGURE 1

(a) Location of the study area; (b) Digital elevation model (SRTM); (c) Dominant geological formations from United States geological survey data; (d) 
and (e) Martonne index for 1980–2002 and 2002–2022, respectively; (f,g) Average rainfall (CHIRPS, ERA5) for 1980–2002 and 2002–2022, 
respectively; (h,i) Average temperature (ERA5) for 1980–2002 and 2002–2022, respectively; (j) 2024 MODIS average land cover.
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groundwater resources, the region offers an ideal setting for applying 
GRACE data downscaling techniques (Figure 2).

2.2 Satellite data

This Downscaling study leverages multiple remote sensing 
datasets to examine environmental parameters across varying spatial 
resolutions. These datasets include:

 • GRACE Data.
 • Precipitation from the Global Precipitation Measurement (GPM) 

sensor at 10 km resolution.
 • Normalized Difference Vegetation Index (NDVI) from MODIS 

at 1 km resolution.
 • Soil Surface Temperature (LST) from MODIS at 1 km resolution.
 • Evapotranspiration (ET) from MODIS at 500 m resolution.
 • Digital Elevation Model (DEM) from SRTM at 

30 m resolution.

FIGURE 2

Flowchart of the downscaling method.
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 • Normalized Difference Snow Index (NDSI) from MODIS at 
500 m resolution.

Notably, the MODIS-derived products (NDVI, NDSI, and 
ET) are generated directly from MODIS images, offering global 
coverage and benefiting from rigorous quality control. While 
these processed datasets provide standardized, quality-assured 
information, our study primarily emphasizes the extraction of 
primary satellite signals from directly acquired remote sensing 
data. This approach minimizes processing-induced alterations 
and enhances data fidelity, accuracy, temporal consistency, 
and reproducibility.

2.2.1 GRACE data
In this study, the GRACE dataset defined by the Center for 

Space Research (CSR) Monthly GRACE Level-3 Surface Water 
Density Equivalent Mass-Anomaly Dataset version 6.0 was used 
(https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_CSR_
RL06_LND_v03). The GRACE data are based on the CSR RL06 
spherical harmonics (CSR-SH) and have a resolution of 1°. The 
monthly terrestrial TWS anomalies from the CSR GRACE 
mascon solutions are used in this study for the period from 2002 
to 2022. Using the mass balance approach, the monthly TWS 
anomalies are the sum of the masses of water contained in various 
terrestrial reservoirs (Ouatiki et  al., 2022; Shen et  al., 2015) 
as follows:

 = + + + +TWS SWB SWE SM Ca GWS  (1)

Where:

 • TWS – Total water storage.
 • SWB – Surface water (rivers, lakes, reservoirs).
 • SWE – Snow water equivalent.
 • SM – Soil moisture.
 • Ca – Canopy water storage.
 • GWS – Groundwater storage.

In semi-arid or arid regions, we can consider that changes in TWS 
are close to changes GWS (Zhong et al., 2021b):

 ≈TWS GWS (2)

2.2.2 Precipitation (GPM 10 km)
Global Precipitation Measurement (GPM) is an international 

mission providing rain and snow observations every three hours. 
The Integrated Multi-satellite Retrievals for GPM (IMERG) 
algorithm combines data from all passive microwave sensors 
using the 2017 Goddard Profiling Algorithm, with estimates 
gridded at 0.1° × 0.1° (~10 × 10 km). Adjustments against the 
GPM Combined Ku Radar-Radiometer Algorithm (CORRA) and 
the GPCP Satellite-Gauge product correct known biases. The 
final product offers half-hourly and monthly precipitation 
estimates and is available at https://disc.gsfc.nasa.gov/datasets/
GPM_3IMERGM_06/summary.

2.2.3 Normalized difference vegetation index 
NDVI (MODIS 1 km)

The Terra MODIS Vegetation Indices 16-Day (MOD13A2) 
Version 6.1 product provides NDVI at 1 km resolution (Yin et al., 
2020). Serving as a continuity index with NOAA-AVHRR derived 
NDVI (Ma et al., 2022), it selects the best pixel from each 16-day 
period based on low cloud cover, optimal view angles, and maximum 
NDVI values. This dataset is accessible at https://developers.google.
com/earth-engine/datasets/catalog/MODIS_006_MOD13A2.

2.2.4 Soil surface temperature LST (MODIS 1 km)
The Terra MODIS Land Surface Temperature/Emissivity 8-Day 

(MOD11A2) Version 6.1 product provides average LST and emissivity 
over 8-day periods at 1 km resolution (Rousta et al., 2021; Kafy et al., 
2021; Tariq and Shu, 2020). Each pixel represents an average of 
MOD11A1 LST values, with accompanying quality control metrics 
and observation details. Annual and monthly averages are derived 
once all data are acquired, and the product is available at https://
developers.google.com/earth-engine/datasets/catalog/
MODIS_006_MOD11A2.

2.2.5 Evapotranspiration ET (MODIS 500 m)
The MOD16A2 Version 6.1 product offers evapotranspiration and 

latent heat flux data over 8-day periods at 500 m resolution. Based on the 
Penman-Monteith equation, it integrates daily reanalysis meteorological 
data with MODIS sensor observations (Guerschman et al., 2022; Chao 
et al., 2021). ET and potential ET represent the eight-day sum, while latent 
heat flux is averaged; note that the final period of each year may cover only 
5–6 days (Knipper et al., 2017; Kim, 2009). Data are available at https://
developers.google.com/earth-engine/datasets/catalog/MODIS_061_MO 
D16A2.

2.2.6 Digital elevation model DEM (SRTM 30 m)
The digital elevation data from the Shuttle Radar Topography 

Mission (Farr et al., 2007) is the result of an international research 
effort that produced nearly global elevation models. This SRTM V3 
(SRTM Plus) product is provided by NASA JPL with a resolution of 1 
arc second (approximately 30 m) (Magruder et al., 2021).

This dataset underwent a void-filling process using open-source 
data (ASTER GDEM2, GMTED2010, and NED), unlike other 
versions that contain voids or were filled with commercial sources 
(Mudd, 2020). This product was accessed from: https://developers.
google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003.

2.2.7 Normalized difference snow index NDSI 
(MODIS 500 m)

The MOD10A1 V6.1 Snow Cover Daily Global product provides 
daily snow cover, albedo, fractional cover, and quality assessments at 
500 m resolution. It utilizes the Normalized Difference Snow Index 
(NDSI) along with additional criteria (Wang et al., 2020) and is key 
for disaggregating GRACE data by detecting snow patterns (Singh 
et al., 2022). Although snow impact is minimal in this study due to 
limited snow-covered areas (Winkler et al., 2021; Dong and Menzel, 
2020), integrating NDSI can enhance model accuracy in targeted 
regions. The product is available at https://developers.google.com/
earth-engine/datasets/catalog/MODIS_061_MOD10A1.
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3 Downscaling method using random 
forest

Statistical downscaling, particularly employing the Random 
Forest (RF) algorithm, has emerged as a widely preferred 
technique for downscaling GRACE data due to its computational 
efficiency, simplicity, and broad applicability (Mohtaram and 
Shafizadeh-Moghadam, 2025; Kalu et al., 2024; Agarwal et al., 
2024; Shi et al., 2024; Arshad et al., 2024; Tian et al., 2024; Cui 
et  al., 2024; Zhong et  al., 2025). The RF algorithm (Breiman, 
2001) operates by constructing multiple decision trees, where 
each tree is trained on a bootstrapped sample of the original 
dataset, introducing randomness through both sample selection 
and feature subset optimization at each split. These individual 
trees function independently, making predictions based on their 
unique subset of training data and features, while the final 
prediction is determined through majority voting for 
classification tasks or averaging for regression problems. The 
ensemble nature of Random Forest, combined with its 
bootstrapping mechanism and random feature selection, 
effectively mitigates overfitting and enhances model 
generalization, making it particularly robust for handling 
complex, nonlinear relationships in geospatial data. Moreover, its 
robustness and effectiveness in capturing complex nonlinear 
relationships make it the preferred method for regional-scale 
GRACE downscaling applications (Wang et al., 2024).

The downscaling methodology employed in this study, consists of 
several sequential steps. Initially, six hydrological variables covering 
the period from 2006 to 2022 are resampled to 1° spatial resolution. 
This involves aggregating the 1 km resolution data of NDVI (MODIS), 
NDSI (MODIS), mean land surface temperature (MODIS), elevation 
(SRTM), and precipitation (GPM) through pixel averaging. Given the 
arid environmental conditions of the study area, we  make the 
assumption that total water storage (TWS) is approximately equal to 

groundwater storage (GWS), as other water storage components are 
minimal in such environments (Figure 2).

Following the initial resampling, a random forest model is 
established to capture the relationship between TWS and the five 
environmental variables at 1° spatial resolution. The next step involves 
calculating the residual distribution of TWS at 1° resolution by 
subtracting the random forest model simulated TWS from the 
GRACE-derived TWS data. These residuals are then interpolated to 
1 km resolution using a radial basis function interpolation method, 
which is particularly well-suited for smooth interpolation of scattered 
data points.

The third phase applies the established random forest model 
with a total number of estimators set at 100 to the environmental 
variables at their original 1 km resolution to obtain estimated TWS 
at this finer scale. The downscaled TWS estimates are then refined 
by adding the previously interpolated residuals at 1 km resolution, 
resulting in the final monthly TWS dataset with 1 km spatial 
resolution. This residual correction step helps preserve the mass 
conservation property of the original GRACE observations while 
incorporating the spatial details captured by the higher-resolution 
environmental variables. As previously mentioned, due to the arid 
nature of the study region and the assumption that TWS 
approximately equals GWS, the final 1 km resolution GWS 
estimates are obtained directly from the downscaled TWS values. 
These results are then validated against measured water level data 
to assess the accuracy of the downscaling procedure.

4 Validation method

4.1 Statistical validation

The statistical validation methodology combines direct 
statistical comparison between original and disaggregated GRACE 

FIGURE 3

Flowchart of the validation method.
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data (Zhang et al., 2021; Pulla et al., 2023) with rigorous 5-fold 
cross-validation. The first approach employs performance indices 
(RMSE, MAE, NSE) to quantify discrepancies between GRACE 
observations (100 km) and downscaled outputs (1 km) (Chen et al., 
2019; Gonçalvès et al., 2021), while correlation coefficients (CC) 
and determination coefficients (R2) assess dynamic consistency in 
trends and fluctuations (Karunakalage et  al., 2021a; Ning et  al., 
2014). To enhance robustness, we  implemented comprehensive 
5-fold cross-validation where the dataset was partitioned into five 
subsets, with the model trained on four folds (80%) and tested on 
the remaining fold (20%) across all pixels and time steps. This 
process was repeated five times with rotationally assigned test folds, 
generating monthly performance metrics (R2, MAE, RMSE) that 
collectively evaluate the model’s temporal stability and spatial 
generalization capability. The validation framework additionally 
incorporates statistical significance tests (Student’s t-test, Fisher’s 
F-test) (Rafik et al., 2023; Yin et al., 2018; Abbaspour, 2013) and the 
Nash-Sutcliffe efficiency coefficient (NSE) to provide a multi-
dimensional assessment of downscaling performance, ensuring 
both methodological rigor and physical consistency with original 
GRACE data dynamics.

The correlation coefficient indicates the degree of linear 
relationship between two variables. The value of CC measures the 
extent of correlation between different datasets. The higher the value 
of CC, the stronger the degree of correlation.
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Where Xi and Yi represent two independent datasets with the 
mean values of X and Y. Xi represents the total input water storage, Yi 
represents the simulated value from the RF model, and N is the total 
number of samples.

The coefficient of determination, often denoted as R2, is a 
crucial statistical measure used to evaluate the quality of a model’s 
fit to observed data. In the context of statistical downscaling of 
GRACE data, it plays a fundamental role in validating the models 
developed to estimate spatial and temporal variations in gravity 
data. Several articles highlight the importance of this coefficient 
in assessing the accuracy of downscaling models, particularly 
when applied to complex, high-resolution spatial data such as that 
from GRACE. By using the coefficient of determination, 
researchers can quantify the extent to which the models are 
capable of reproducing the variability observed in GRACE data, 
thereby providing critical validation for the accuracy and 
reliability of downscaling results.

 =  
22R Correlation Coefficient  (4)

The Mean Absolute Error (MAE) is the average absolute deviation 
of all simulated values from the arithmetic mean, which helps avoid 
the issue of cancelation of errors and accurately reflects the actual 
prediction error.
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The Root Mean Squared Error (RMSE), also known as the 
standard error, is the difference between the actual value and the 
model’s predicted value. The smaller the RMSE, the closer the 
predicted value is to the actual value, indicating higher model accuracy.
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The Nash-Sutcliffe Efficiency (NSE) coefficient is a measure of the 
predictive quality of a hydrological model. It is used to assess the 
model’s ability to reproduce observed downstream flow values. 
Specifically, the NSE measures the similarity between observed and 
predicted flow values, normalized by the variance of the observations. 
The closer the NSE is to 1, the better the model’s predictions are.

The formula to calculate the Nash-Sutcliffe Efficiency (NSE) is 
as follows:
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It is important to note that the Nash-Sutcliffe Efficiency (NSE) 
does not account for modeling errors or systematic biases in the 
model’s input data. Therefore, it should not be used alone to evaluate 
a model’s quality. However, it can be used in conjunction with other 
performance measures to provide a more comprehensive assessment 
of a model’s predictive accuracy.

The t-test is commonly used to evaluate the significance of the 
correlation between two datasets. The process begins by formulating 
the hypothesis and calculating the correlation coefficient (R) for the 
time series. Next, the degrees of freedom (v) are calculated using the 
formula v=n − 2, where n is the total number of data points in the 
time series. Afterward, the critical value is obtained from a 
t-distribution table based on the degrees of freedom. The significance 
level α is typically set at either 0.05 (5%) or 0.01 (1%). The final step 
involves comparing the calculated correlation coefficient with the 
critical value. If ∣R∣ is less than R0.05, it indicates that the correlation is 
not significant. If R0.05 ≤ ∣R∣ < R0.01, the correlation is considered 
significant at the 0.05 level. Finally, if ∣R∣ is greater than or equal to 
R0.01, the correlation is deemed significant at the 0.01 level. This 
method helps assess whether the observed correlation is statistically 
significant at different confidence levels (Sahour et al., 2020).

The F-test is used to compare the variances of two or more 
datasets to determine if they differ significantly (Sahour et al., 2020). 
First, the test hypothesis is constructed, and the F statistic is calculated 
based on the variances of the groups being compared. Next, the 
degrees of freedom (df) for both the numerator and the denominator 
are determined, with df1 = n1-1 for the first group and df2 = n2-1 for 
the second group, where n1 and n2 are the number of observations in 
each group. Once the degrees of freedom are established, the F critical 
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values are obtained from the F distribution table, typically using a 
significance level of 0.05 (5%) or 0.01 (1%). Finally, the F statistic is 
compared to the F critical value, yielding three possible outcomes: if 
the calculated F statistic is less than the F critical value, the variances 
are not significantly different; if the calculated F statistic is between 
the critical values at different significance levels, the variances are 
significantly different; and if the F statistic exceeds the F critical value, 
the variances are significantly different at the specified level.

4.2 Validation using in situ groundwater 
level data

Validation can also rely on field data, particularly piezometric data 
(Chen et  al., 2019; Gonçalvès et  al., 2021): Field data validation, 
considered the second part of the validation process, is crucial (Miro 
and Famiglietti, 2018; Pascal, 2022; Karunakalage et  al., 2021a; 
Karunakalage et al., 2021b). Its significance lies in its ability to assess 
how closely the downscaling aligns with reality (Zhang et al., 2021). 
Indeed, piezometric data represent ground reality (Foroumandi et al., 
2023; Chen et al., 2019). Several articles use this method as an essential 
validation step (Jyolsna et al., 2021; Seyoum et al., 2019). The usual 
procedure involves comparing statistical coefficients before and after 
the downscaling of GRACE data, such as correlation and the 
coefficient of determination (Zhang et al., 2021; Ning et al., 2014). A 
validation is considered positive if these coefficients increase after 
downscaling, indicating a better approximation of reality (Zhang et al., 
2021; Ning et al., 2014).

In this study, the downscaling of GRACE TWS were validated 
using groundwater level data, a method that has already been 
successfully employed in arid and semi-arid regions such as Morocco 
(Rafik et al., 2023; Arshad et al., 2022; Zhong et al., 2021b; Agarwal 
et al., 2023). Since TWS primarily comprises GWS (Equations 1, 2) 
(groundwater storage) and Morocco is a semi-arid and arid area, other 
components like soil moisture, surface water, and snow can 
be disregarded, thus focusing mainly on GWS [Ouatiki et al. (2022); 
Ahmed et al. (2021); Rafik et al. (2023)]. Groundwater level data are 
therefore suitable for this field validation. A network of 139 wells 
distributed across the central semi-arid and arid areas regions of 
Morocco were used (Table 1).

Before calculating correlation and determination coefficients, it 
was essential to preprocess the data. Outliers using the Z-Score 
method were initially identified and corrected, which detects data 
points significantly deviating from the mean. This step is crucial for 
maintaining data integrity (Oussou et  al., 2022; Hamdi, 2023; 
Dembélé, 2020). Once the outliers were addressed, a linear 
interpolation was applied to estimate missing values based on available 
data. This method, also used by Gonçalvès et al. (2021) and Zuo et al. 
(2021) smooths time series and enhances data continuity, which is 

vital for accurate analyses. In situ groundwater level data were also 
adjusted by standardizing them to ensure consistency across different 
measurement sites and time periods, minimizing any local biases or 
discrepancies. This standardization process improved the 
comparability of the data and enhanced the robustness of the analysis. 
Additionally, the impact of these adjustments was evaluated to ensure 
that the integrity of the original data was maintained while enabling 
more accurate interpretation of spatial and temporal groundwater 
trends (Ouatiki et al., 2022; Ahmed et al., 2021).

4.3 Validation using known aquifer 
dynamics

Validation based on the identification of known aquifer dynamics 
plays a crucial role in ensuring that the downscaled data reflect real-
world conditions accurately (Sahour et al., 2020; Vishwakarma et al., 
2021). At the coarse resolution of 100 km, many localized groundwater 
trends are difficult to detect. Downscaling to 1 km enhances the 
representation of these trends, particularly in regions experiencing 
recurrent drought and overexploitation. Therefore, the validation 
approach focused on assessing whether the downscaled GRACE data 
captured the dynamics of key aquifers accurately. This was achieved 
by analyzing trends in 66 aquifers across Morocco from 2002 to 2022, 
using their spatial delineation to isolate the variations in both the 
original and downscaled GRACE TWS data. The validation focused 
on assessing whether the downscaled GRACE TWS data captured the 
well-documented patterns of water resources decline and response to 
drought conditions observed in previous studies (Hssaisoune et al., 
2020). Successful validation was determined by the model’s ability to 
reflect these known trends, thereby providing a clearer understanding 
of water resources dynamics at the local scale—something not possible 
with the original 100 km GRACE data, as many aquifers are smaller 
than a single coarse-resolution pixel.

5 Results and discussion

5.1 GRACE data downscaling results

Figure  4 shows the original GRACE TWS data at 100 km 
resolution and GRACE data at 1 km after downscaling in September 
2002, September 2012, and September 2021; dates that correspond 
to the beginning of the wet season in Morocco (Knippertz et al., 
2003). After downscaling, it is now possible to distinguish an East–
West gradient, in addition to variations between different areas of 
Morocco. The downscaling results on the three dates have enabled 
us to identify distinct hydrological and geological features across 
the country. The northern limestone ridge has been differentiated 

TABLE 1 Number of wells and measurement periods by region, with average data gaps per well.

Regions Period Number of wells Average number of gaps

Casablanca-Settat 2004–06 To 2019–03 12 11

Draa-Tafilalet 2002–05 To 2018–01 69 90

Marrakech-Safi 2004–06 To 2017–02 8 92

Beni Mellal-Khenifra 2002–04 To 2019–03 50 142
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from the rest of the Rif relief. The Middle Atlas (MA), High Atlas 
(HA), and Anti-Atlas (AA) mountain ranges are now distinguishable 
from each other. The Western Meseta (WM) is clearly distinct from 
the Eastern Meseta (EM) and the plains to the east of the Atlas 
mountain ranges.

In September 2002, the downscaled GRACE data at 1 km 
resolution reveals significant distinctions that are not visible in the 
original 100 km data. This enhanced resolution allows for a more 
detailed detection of spatial variations (Figure 4a). Notably, positive 
TWS anomalies emerge in areas that previously appeared uniformly 

FIGURE 4

Examples of GRACE TWS anomalies data and Their Downscaling over northern Morocco (09–2002, 09–2012, 09–2021). With MA, HA, AA, WM and 
EM, representing, respectively, Middle Atlas, High Atlas, Anti Atlas, Western Meseta and Eastern Meseta.
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negative in the coarser GRACE images. These positive anomalies are 
particularly evident in the southwest of the High Atlas, the south of 
the Middle Atlas, and parts of the eastern Rif Mountains. These 
variations reflect greater precipitation in these regions during this 
period (Driouech, 2010; Ouhamdouch et al., 2018).

In September 2012, the 100 km GRACE data predominantly 
shows positive TWS values, with the exception of the Eastern Meseta 
(Figure  4b). However, the downscaled data reveals more detailed 
spatial variation in these positive anomalies. Positive TWS values 
extend further eastward, particularly over the reliefs of the Atlas 
Mountains intersecting the Eastern Meseta. The positive anomalies 
over the Middle Atlas and High Atlas are even more pronounced, with 
extreme positive values precisely identified in the southern High Atlas, 
the central Anti-Atlas, and their southern foothills. These positive 
TWS anomalies are likely attributed to the rainy period Morocco 
experienced between 2008 and 2015, which significantly contributed 
to the recharge of aquifers and reservoirs (Ahmed et al., 2021; Jasechko 
et al., 2024).

By September 2021, Morocco’s drought had reached its peak 
(Hamid et al., 2024), a situation reflected in the predominance of 
negative TWS values in both the 100 km and downscaled GRACE 
data (Figure  4c). However, the downscaled data provides clearer 
spatial variations in these negative anomalies, highlighting areas with 
more severe depletion. In particular, the eastern regions of the Rif, the 
Eastern Meseta, and the Anti-Atlas Mountains show the most negative 
TWS values. These regions have already been identified as among the 
hardest hit by drought and water resource scarcity in Morocco 
(Touchan et al., 2011; Zkhiri et al., 2019; Gouahi et al., 2023; Hachem 
et al., 2023; El-Yazidi et al., 2024).

Therefore, downscaling GRACE data enables the identification of 
regions most affected by drought and total water storage depletion. 
This approach also captures the multi-annual progression of drought 
impacts. The downscaled data from 2002 reveal early signs of drought 

onset, while the 2012 data reflect a transitional period influenced by 
intermittent rainy years. By 2021, the data show a marked decline in 
water storage, highlighting the severe consequences of the prolonged 
drought. These insights emphasize the importance of high-resolution 
analysis for understanding and managing Morocco’s water resources 
under increasing climatic stress.

Figure 5 shows the trend in total water storage (TWS) in Morocco 
from 2002 to 2022, analyzed using the Theil-Sen method at 100 km 
and 1 km resolutions. The 100 km GRACE data (Figure 5a) and the 
downscaled 1 km GRACE data (Figure 5b) show a predominance of 
negative trends in TWS. However, the 1 km resolution data provides 
a more detailed view, revealing finer spatial variations and highlighting 
regional differences in trends in water storage changes (Figure 5b). 
The most significant negative trends, ranging from −0.23 cm/year to 
−0.17 cm/year, are concentrated in the extreme northeast, particularly 
to the east of the Eastern Meseta and its surrounding regions 
(Figure 5b). Trends between −0.17 cm/year and −0.11 cm/year are 
primarily observed in the Rif Mountains and the higher elevations of 
the Middle Atlas, High Atlas, and Anti-Atlas (Figure 5b). Negative 
trends ranging from −0.11 cm/year to −0.05 cm/year dominate the 
low-relief areas, the coastal Atlantic regions, and the plains in the 
eastern parts of the study area (Figure 5b).

The negative trends in Total Water Storage (TWS) observed in the 
GRACE data underscore the critical state of water resources in 
Morocco, particularly in the study area, which supports the majority 
of the country’s agricultural, industrial, and economic activities. These 
negative trends highlight the profound impact of climate change, 
drought, and over-exploitation on the country’s water reserves, a 
situation that has been widely observed and documented in recent 
studies (Gouahi et al., 2023; Hamid et al., 2024; El-Yazidi et al., 2024).

The feature importance results (Figure  6), derived from Gini 
index, highlight key drivers influencing the downscaling of GRACE 
TWS data from 100 km to 1 km in Morocco (Al-Abadi et al., 2024). 

FIGURE 5

Trend of GRACE TWS anomalies data and their downscaling in northern Morocco from 2002 to 2022 using the Theil-Sen Method.
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NDVI (0.29) emerged as the most important variable for TWS 
downscaling, effectively capturing groundwater dynamics in 
Morocco’s arid/semi-arid context where vegetation serves as a 
sensitive indicator of water availability, particularly in groundwater-
dependent agricultural areas (Ndehedehe et al., 2019; Xie et al., 2019). 
Precipitation (0.22) ranked second, reflecting its crucial role as the 
primary recharge source, with declining rainfall since 2018 
exacerbating water stress and groundwater dependence (Ait Dhmane 
et al., 2024). The equal importance of temperature and elevation (both 
at 0.19) reflects their combined control on water availability. In 
Morocco, temperature varies with altitude, with documented increases 
in both minimum and maximum temperatures depending on 
elevation (Qadem and Tayfur, 2024). Higher temperatures—
particularly at lower elevations—amplify evapotranspiration and 
agricultural water demand, directly depleting surface and groundwater 
reserves and reducing TWS. The model appropriately assigned lower 
weights to evapotranspiration (0.09) and NDSI (0.02), consistent with 
Morocco’s rainfall-dominated hydrology and limited snowmelt 
contributions. These, feature importance results demonstrate that the 
Random Forest model successfully captured Morocco’s key 
hydrological constraints (Drought, irrigation, overexploitation) when 
downscaling GRACE TWS data from 100 km to 1 km resolution.

5.2 Validation of GRACE downscaling

5.2.1 Statistical validation
Figure 7 presents a scatter plot comparing GRACE data at 100 km 

and 1 km resolutions across the study area, with a linear regression 
line illustrating their alignment (Figure 7b). To further assess the 
relationship between GRACE data at both resolutions on a watershed 
scale and validate the downscaling within more localized hydrological 
systems, similar scatter plots were created for the Loukkos (Figure 7c) 
and Bouregreg (Figure 7d) basins. This allows for a closer examination 

of regional water storage dynamics and the effectiveness of the 
downscaling approach. The scatter plot of the study area shows a 
strong alignment of points along the diagonal regression line, 
indicating a high correlation between TWS data at both resolutions. 
A similar trend is observed for the Loukkos and Bouregreg basins, 
though the alignment is less pronounced compared to the entire 
study area.

The Nash-Sutcliffe Efficiency (NSE) index is commonly used to 
assess model performance, with a value above 0.5 generally indicating 
good performance (Seyoum et al., 2019; Jyolsna et al., 2021; Miro and 
Famiglietti, 2018). In this study, the NSE index for the overall study 
area is 0.90, which reflects a strong correlation and demonstrates that 
the downscaling model accurately reproduces TWS variations at finer 
scales (Figure 7). For the Loukkos and Bouregreg basins, the NSE 
values are 0.61 and 0.66, respectively, both exceeding the 0.5 threshold 
and confirming that the model performs satisfactorily in these 
localized hydrological systems as well (Figure 7).

The performance indices for the study area, with an RMSE of 
0.25 cm and an MAE of 0.18 cm, validate the model’s good accuracy, 
as they fall within the acceptable error range of less than 10% of the 
mean actual values from GRACE 100 km data (Zhang et al., 2021; Zuo 
et al., 2021; He et al., 2021). In this study, the 10% threshold translates 
to RMSE and MAE limits of 0.28 cm and 0.21 cm, respectively. For the 
Loukkos basin, the RMSE is 2.06 cm and the MAE is 1.37 cm, while 
for the Bouregreg basin, the RMSE is 1.70 cm and the MAE is 1.09 cm. 
The corresponding 10% limits for these basins are RMSE = 2.12 cm 
and MAE = 1.39 cm for Loukkos, and RMSE = 2.00 cm and 
MAE = 1.12 cm for Bouregreg.

Th cross-validation results are presented in Figure 8. For each 
month, 5-fold cross-validation was employed by splitting the data into 
five folds. In each iteration, one fold was reserved for testing while the 
other four were used for training. The resulting performance metrics 
were then averaged to assess the downscaling. The R2 distribution, 
with an interquartile range (IQR) of 0.5 to 0.7, a mean value of 0.56 

FIGURE 6

Variable importance ranking from the random forest downscaling model (Gini index).
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and a median of 0.64, indicates that the downscaled data generally 
maintain a strong correlation with the original dataset. While some 
months exhibit near-perfect alignment (maximum R2 = 0.89), a few 

outliers (minimum R2 = −0.67) suggest localized inconsistencies 
(Figure 8a). The MAE values, mostly ranging between 0.36 cm and 
0.6 cm, with a mean value of 0.49 cm and a median of 0.46 cm, 

FIGURE 7

Scatter Plot of GRACE TWS Anomalies at 100 km and 1 km Resolutions: (a) Map of the study area with the delimitation of the Loukkos and Bouregreg 
basins; (b) Scatter plot of the study areas; (c) Scatter plot of Loukkos basin; (d) Scatter plot of Bouregreg basin.

FIGURE 8

Box plots of cross-validation performance for GRACE-TWS downscaling, (a) R2, (b) MAE and (c) RMSE.
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indicate that discrepancies between the downscaled and original 
GRACE-TWS data remain small (Figure 8b). Similarly, the RMSE 
values, with an IQR of 0.5 cm to 0.8 cm and a mean value of 0.74 cm 
a median of 0.69 cm, confirm the overall accuracy of the downscaling 
process (Figure 8c). Although some higher errors appear (outliers at 
1.5 cm for MAE and 3 cm for RMSE), they are relatively rare, 
suggesting that the model effectively preserves temporal trends while 
improving spatial resolution.

Overall, the model demonstrates reliable accuracy at both 
regional and local scales, with all performance indices falling within 
acceptable thresholds, further supporting the robustness of the 
downscaling approach. The scatter plots and performance indices 

further confirm the model’s ability to preserve temporal trends and 
spatial consistency when transitioning from 100 km to 1 km 
resolution (Ali et al., 2021; Ning et al., 2014; Chen et al., 2019; Zhang 
et al., 2021; Zuo et al., 2021). The cross-validation results reinforce 
this reliability, as the R2 values indicate a strong correlation between 
the downscaled and original GRACE-TWS data, while MAE and 
RMSE values remain low, suggesting minimal reconstruction errors. 
However, despite these promising results, the presence of outliers 
and localized discrepancies highlights areas for improvement, 
suggesting that further refinement of the downscaling methodology 
could enhance accuracy in regions with complex hydrological  
variability.

FIGURE 9

Temporal Variation of GRACE TWS anomalies data at 100 km and 1 km: (a) The study area; (b) The Loukkos basin; (c) The Bouregreg basin.
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Figure 9 presents the time series of GRACE TWS data at 100 km 
and 1 km resolutions, along with their respective trends, for the study 
areas the Loukkos basin, and the Bouregreg basin. The correlation 
coefficient (CC), determination coefficient (R2), and p-value are 
shown to evaluate the statistical significance of the correlations, with 
significance indicated when the p-value is less than the α-value of 0.05. 
Additionally, results from Student’s t-test and Fisher’s F-test are 
provided to assess whether there are significant differences in the 
means and variances between the two datasets, respectively.

As illustrated in Figure 9, the statistical validation reveals a strong 
alignment between the downscaled GRACE data and the original 
GRACE data across all three cases analyzed. Initially, the comparison 
of trends shows that the downscaled fluctuations closely follow those 
of the original data, demonstrating consistent patterns over time. This 
visual agreement is further supported by high statistical metrics, 
including correlation coefficients (CC) and coefficients of 
determination (R2). The analysis yields CC values of 0.94 for the study 
area, 0.80 for the Loukkos basin, and 0.82 for the Bouregreg basin, 
with corresponding R2 values of 0.92, 0.64, and 0.68, respectively. 
Additionally, the p-values for all cases are significantly below the 
threshold α-value of 0.05 (4.68e-18 for Morocco, 7.52e-46 for the 
Loukkos basin, and 2.08e-50 for the Bouregreg basin), confirming that 
these correlations are statistically significant (Zhang et  al., 2019; 
Rahaman et al., 2019; Ning et al., 2014).

Additionally, the downscaled GRACE data display significant 
underestimation of extreme positive values and overestimation of 
extreme negative values, particularly prior to 2018—a year marked by 
worsening drought conditions following a brief wet period that began 
in 2015 (Figure  9) (Bennouna, 2020; Hammoudy et  al., 2022; 

Direction Générale de l’Hydraulique, 2023). The finer resolution of the 
1 km data allows for better detection of local variations in water 
storage, which likely explains the differences observed compared to 
the 100 km data (He et  al., 2021; Sahour et  al., 2020). The 
underestimation of extreme positive values may represent a more 
accurate reflection of localized water recharge events, which were less 
frequent during drought (Rahaman et al., 2019; Sahour et al., 2020). 
Similarly, the overestimation of extreme negative values may result 
from improved detection of declines in groundwater levels and surface 
water reserves in drought-affected and over-exploited areas 
(Foroumandi et al., 2023).

For the study area, Student’s t-test yields a p-value of 0.86, 
which exceeds the α-value of 0.05, indicating no significant 
difference between the means of the GRACE data at 100 km and 
1 km resolutions (Figure 9) (Yin et al., 2018; Zhang et al., 2019). 
Similarly, Fisher’s F-test produces a p-value of 0.86, also higher 
than the α-value of 0.05, suggesting no significant difference in 
variances between the two datasets. The Loukkos basin (T-test 
p-value = 0.38, F-test p-value = 0.38) and Bouregreg basin (T-test 
p-value = 0.98, F-test p-value = 0.98) follow the same pattern, 
both with p-values exceeding the α-value of 0.05 (Figure  9) 
(Davis et  al., 2008; Pertiwi et  al., 2020; Ameur et al., 2017; 
Massuel et al., 2017; Kuper et al., 2012). These results suggest that 
the downscaled 1 km data retain the overall statistical 
characteristics of the original 100 km data. Consequently, the 
observed discrepancies in extreme values are likely linked to 
downscaling effects, particularly in response to drought 
conditions (Bennouna, 2020; Hammoudy et al., 2022; Direction 
Générale de l’Hydraulique, 2023; Foroumandi et al., 2023).

FIGURE 10

The spatial distribution of wells and their correlations with GRACE TWS anomalies data befor and after downscaling: (a) Casablanca-Settat region, (b) 
Draa-Tafilalet region, (c) Marrakech-Safi region, (d) Beni Mellal-Khenifra region.
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5.2.2 Validation using groundwater level in situ 
data

Figure 10 presents the spatial distribution of the 139 studied wells 
across the four regions of Casablanca-Settat, Draa-Tafilalet, Béni 
Mellal-Khénifra, and Marrakech-Safi. The figure also depicts the 
evolution of correlation coefficients between in-situ groundwater 
levels and GRACE TWS data before and after downscaling. Among 
the analyzed wells, 88 (63%) exhibited an improvement in correlation, 
with 66 surpassing a threshold of 0.2.

At the regional scale, all four regions show a general enhancement 
in correlation following downscaling. The average correlation 
coefficient increased from 0.42 to 0.47 in Béni Mellal-Khénifra, from 
0.46 to 0.53 in Casablanca-Settat, from 0.41 to 0.49 in Draa-Tafilalet, 
and from 0.38 to 0.46  in Marrakech-Safi (Table  2). However, the 
correlation values and their variability differ across regions. 
Casablanca-Settat exhibits the widest correlation range, spanning 
from −0.81 to 0.87, indicating high variability in well responses. In 
contrast, Marrakech-Safi displays the narrowest range (−0.25 to 0.25), 
suggesting more uniform behavior. The Draa-Tafilalet and Béni 
Mellal-Khénifra regions present similar correlation ranges, from 
−0.53 to 0.53, reflecting moderate variability in correlation 
improvement (Figure  10). Statistical significance tests (p-values) 

confirm that the observed correlations remain robust before and after 
downscaling (Table 2), reinforcing the reliability of the relationship 
between GRACE TWS and in-situ groundwater levels (Figure 11).

We used Cohen’s q method to evaluate the improvement in 
correlation between GRACE TWS and groundwater level in-situ data 
of the wells exhibiting enhanced correlations (Cohen, 1988). Out of 
the wells that showed a correlation coefficient higher than 0.2 after 
downscaling, 67% showed a small improvement (q < 0.1), 32% showed 
a moderate to high improvement (q between 0.1 and 0.3), and only 
one well had a large improvement (q > 0.3). Since all wells exhibited 
post-downscaling correlations above the 0.2 threshold, this indicates 
that the downscaling model consistently improved the relevance of the 
GRACE data, even though the magnitude of improvement varied 
from one well to another.

When compared with previous studies, our results demonstrate 
significant advancements in the downscaling of GRACE TWS data for 
groundwater monitoring. Earlier works have reported improvements 
in correlation metrics, but often on a limited number of wells or with 
less pronounced effects. In contrast, our study achieved an average 
correlation coefficient improvement of 27.12% across 66 wells, 
highlighting both the robustness of our methodology and its 
applicability on a larger spatial scale. Additionally, while some studies 

TABLE 2 Correlation coefficients and p-value.

TWS (100 Km) - In situe TWS (1 Km) - In situe

Region CC p-value CC p-value

Beni Mellal-Khenifra 0,42 0,002 0,47 0,0004

Casablanca-Settat 0,46 4.00 × 10−10 0,53 1.17 × 10−13

Draa-Tafilalet 0,41 7.28 × 10−6 0,49 1.26 × 10−6

Marrakech-Safi 0,38 0,04 0,46 0,01

FIGURE 11

Spatial distribution of wells with improved correlation coefficients exceeding 0.2 and their Cohen’s q values.
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have assessed downscaling success by focusing on wells surpassing a 
predefined correlation threshold, our results indicate a clear 
enhancement, with an increased number of wells exceeding a 
correlation coefficient of 0.2 after downscaling. This suggests that our 
approach not only maintains but strengthens the relationship between 
GRACE TWS and in-situ groundwater observations (Ning et al., 2014; 
Chen et al., 2019; Zhang et al., 2021).

While earlier studies have reported correlation improvements, 
these were often observed in a limited number of wells or with less 
pronounced effects. In contrast, this study achieved an average 
correlation coefficient improvement of 27.12% across 66 wells, 
underscoring both the robustness of the methodology and its 
applicability on a larger spatial scale. Importantly, the validation 
was not restricted to wells that initially exhibited strong 
correlations with GRACE TWS at 100 km resolution; wells with no 
prior correlation were also included to ensure a more objective 
assessment of the model’s effectiveness. Additionally, while some 
studies have assessed downscaling success by focusing on wells 
surpassing a predefined correlation threshold, the results indicate 
a clear enhancement, with an increased number of wells exceeding 
a correlation coefficient of 0.2 after downscaling. Moreover, since 
the analysis is based on TWS, which integrates both surface and 
groundwater storage, the correlations specifically reflect the 
relationship between TWS and in-situ groundwater levels (GWL) 
rather than total groundwater storage (GWS) (Ning et al., 2014; 
Chen et al., 2019; Zhang et al., 2021). This distinction highlights 
the model’s ability to capture the variability in GWL, despite the 
complex interactions between groundwater and surface 
water storage.

The observed regional variations in correlation are largely 
influenced by the heterogeneity of groundwater data (Table 2), as 
groundwater monitoring is managed by distinct hydraulic basin 
agencies in each region (Othman et  al., 2022). One of the key 
factors contributing to these differences is the inconsistency in the 
length and continuity of temporal groundwater records, with some 
wells exhibiting more data gaps than others (Table 1) (Bouramtane 
et  al., 2023; Bikše et  al., 2023). Among the studied regions, 
Casablanca-Settat has the lowest average number of data gaps per 
well, indicating superior data quality and contributing to stronger 
correlations. Conversely, the Marrakech-Safi region exhibits the 
highest number of data gaps per well, combined with a lower well 
density, leading to weaker correlation results both before and after 
downscaling (Table  1). Additionally, regional differences in 
correlation strength stem from the varying influence of SWB and 
GWS on TWS (Zhu et al., 2021; Cui et al., 2022; Deng et al., 2022). 
These hydrological differences, combined with factors such as land 
use, agricultural activities, irrigation practices, groundwater 
pumping intensity, and local climatic conditions, further contribute 
to the observed spatial variability in correlation strength (Pulido-
Bosch et al., 2018; Tweed et al., 2018; Cavelan et al., 2022).

Figure  12 presents the time series of GRACE TWS data at 
100 km and 1 km resolution alongside groundwater level variations 
for four wells selected from the 88 wells that showed an 
improvement in their correlation coefficients. Additionally, the 
figure illustrates the evolution of correlation coefficients before and 
after downscaling for three wells. The TWS at 1 km resolution 
(black line) more closely follows groundwater level fluctuations 
compared to the 100 km GRACE TWS data, demonstrating a 

better alignment with aquifer dynamics. Notably, the 1 km TWS 
reduces both underestimation and overestimation of rapid and 
abrupt groundwater level changes. The improvements in 
correlation coefficients (CC) for wells 1, 2, 3, and 4—rising from 
0.78 to 0.84, 0.19 to 0.28, 0.17 to 0.24, and 0.42 to 0.46, 
respectively—highlight the effectiveness of the downscaling 
approach. The enhanced resolution at 1 km has strengthened the 
direct relationship between TWS and groundwater dynamics, 
especially in semi-arid and arid regions where surface water is 
scarce and groundwater serves as the primary water resource. This 
refined spatial resolution improves the ability to capture 
groundwater trends within aquifers more effectively (Ouassanouan 
et al., 2022; El Ouali et al., 2023; El Meknassi Yousoufi et al., 2024).

5.2.3 Validation using known aquifer dynamics
The trends in GRACE data for 100 km and 1 km were calculated 

and analyzed using the Theil-Sen trend calculation method, for 66 
groundwater tables in Morocco over four periods 2002–2007, 2007–
2012, 2012–2017 and 2017–2022. The results are shown in Figure 13, 
where aquifer systems in red exhibit negative trends and those in blue 
show positive trends, with the shades reflecting the intensity of these 
trends. The TWS trends for the 100 km and 1 km GRACE data over 
the same periods reveal overall consistency in the water table trends, 
underscoring the effectiveness of the 1 km GRACE data in preserving 
the original characteristics and trends of the TWS. However, the 1 km 
GRACE data shows a discrimination in TWS trends between 
groundwater tables that belong to the same structural domain or are 
geographically close.

For instance, during the period from 2002 to 2007, GRACE 
data for the Tamlelet aquifer at the 100 km resolution indicated a 
positive but relatively weak trend in TWS, ranging between 0.0 cm/
year and 0.02 cm/year (Figure 13a). In contrast, the downscaled 
GRACE data for the Temlelet aquifer at the 1 km resolution 
revealed a more pronounced negative trend, ranging from 
−0.04 cm/year to −0.09 cm/year. This negative TWS trend is now 
more consistent with the overall negative trend observed across the 
eastern region of the study area, particularly in the aquifers of the 
Eastern Meseta, where groundwater resources exhibit a persistent 
decline and a significant water deficit (Hssaisoune et  al., 2020; 
Ahmed et al., 2021).

The period from 2007 to 2012 was marked by predominantly 
positive trends in groundwater tables across northern Morocco. 
Notably, aquifers along the Atlantic coast (Western Meseta), the 
middle Moulouya aquifer (Eastern Meseta), and those in the high 
relief areas of the Middle Atlas and High Atlas exhibited similar 
trends in TWS when analyzed using GRACE data at the 100 km 
resolution, ranging from 0.04 cm/year to 0.07 cm/year. However, 
the finer resolution of the GRACE 1 km data provides a clearer 
spatial differentiation, revealing distinct trends among aquifers 
based on their structural domains. Specifically, aquifers in the 
western part of the study area, closer to the Atlantic Ocean, exhibit 
stronger positive trends, while those in the eastern part, on the 
leeward slopes of the Atlas Mountains, display a generally positive 
but weaker trend. This pattern aligns with the geomorphological 
and climatic characteristics of northern Morocco, where western 
regions, influenced by Atlantic moisture, receive higher 
precipitation and show stronger positive groundwater trends. In 
contrast, eastern regions, experiencing drier conditions and greater 
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FIGURE 12

Comparison of in situ groundwater levels with downscaled and original GRACE TWS anomalies data and the evolution of their coefficients before and 
after downscaling: well (1) Casablanca-Settat region; well (2) Draa-Tafilalet region; well (3) Marrakech-Safi region; well (4) Béni Mellal-Khénifra region.
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FIGURE 13

Trends in cm per year of GRACE TWS anomalies data at 100 km and 1 km for aquifer systems in northern Morocco (Theil-Sen): (a) Before downscaling; 
(b) After downscaling.
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reliance on groundwater resources, display weaker positive trends 
in groundwater levels (Ahmed et al., 2021).

Specifically, the Western Meseta and Middle Atlas aquifers 
display consistent trend values between 0.04 cm/year and 0.07 cm/
year, which can be  attributed to their climatic linkage and the 
shared influence of Atlantic climatic conditions (Tramblay et al., 
2012; Ahmed et  al., 2021). In contrast, the High Atlas aquifers 
show slightly lower trends ranging from 0.02 cm/year to 0.04 cm/
year. Being further south, these aquifers are less influenced by the 
Atlantic climate and are more affected by arid continental Saharan 
influences (Tramblay et al., 2012; Ahmed et al., 2021). Additionally, 
the middle Moulouya aquifer, when analyzed at the 1 km 
resolution, demonstrates a trend of 0.02 cm/year to 0.04 cm/year, 
aligning closely with other aquifers in the Eastern Meseta 
structural domain.

Downscaling to a 1 km resolution has unveiled specific 
variations in the TWS trends for certain aquifers during the 2012–
2017 period that were not visible at the 100 km resolution of 
GRACE data. Specifically, the Tafilalt and Mejatte aquifers showed 
TWS trends ranging from −0.04 cm/year to −0.09 cm/year in the 
100 km GRACE data, which were consistent with trends observed 
in other aquifers within their structural domain. However, when 
analyzed at the 1 km resolution, these aquifers displayed relatively 
weak positive TWS trends, ranging from 0.0 cm/year to 0.02 cm/
year. For the Tafilalt aquifer, this observation aligns with the 
findings of El Ouali et al. (2023), who reported alternating wet and 
dry years following a prolonged drought up to 2005/2006. These 
fluctuations likely contribute to the positive TWS trend at the 1 km 

resolution, capturing recharge periods missed by the coarser 
resolution. On the other hand, the Mejatte aquifer’s TWS trends 
during this period are likely influenced by a less severe dry period 
from 2008 to 2014, which resulted in a smaller decline in 
groundwater levels compared to neighboring aquifers 
(Ouassanouan et al., 2022).

For the period 2017–2022, the downscaling of GRACE data has 
highlighted the widespread impact of drought in all of Morocco’s 
northern regions, revealing no significant differences between 
them. Indeed, the intensity of the drought is so severe and 
pervasive that all regions of Morocco are experiencing water 
resource shortages to similar degrees (Hamdi, 2023; 
Bennouna, 2020).

The aquifer systems in Morocco were categorized based on 
their geographical locations within structural domains in the study 
area: the Rif Mountains (RIF), Western Meseta, Eastern Meseta, 
Atlas Mountains and Southern Atlas. (Bouramtane et al., 2020b) 
(Figures 14a,b). The median Theil-Sen slope values for GRACE 
data at 100 km and 1 km resolutions were analyzed and compared 
for two periods: 2002–2012 and 2012–2020.

Figures  14c,d show scatter plots comparing the median 
Theil-Sen slope values representing TWS trends from 2002–2012 
(Y-axis) to 2012–2022 (X-axis) for both 100 km and downscaled 
1 km GRACE data. These comparisons assess the downscaling 
model’s ability to capture geographical variations in TWS trends. 
A similarity in the overall distribution of aquifer systems is 
observed between the 100 km and 1 km data. At both resolutions, 
the aquifers displayed positive trends during 2002–2012, followed 

FIGURE 14

Locations of Aquifer systems in Morocco and scatter plot showing the evolution of trends in GRACE TWS anomalies data for the aquifer systems at 
100 km and 1 km resolutions [2002–2012; 2012–2022] using Theil-Sen estimation: (a) Locations of aquifers in Morocco; (b) Zoom at the location of 
the aquifers; (c) Scatter plot before downscaling; (d) Scatter plot after downscaling.
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by a marked shift to negative trends during 2012–2022. This shift 
highlights the model’s consistency in capturing the significant 
changes caused by drought and water resources overexploitation 
(Gouahi et al., 2023; Hamid et al., 2024; El-Yazidi et al., 2024).

For the GRACE 100 km TWS scatter plot, significant 
dispersion is observed in the trends among the points for each 
aquifer system over the two decades, particularly in the Southern 
Atlas and Rif domains. This suggests greater variability or 
heterogeneity in groundwater trends within these regions, as the 
100 km resolution is too coarse to capture localized variations 
accurately, resulting in increased variability within each class. In 
contrast, the GRACE 1 km TWS scatter plot shows much less 
dispersion within each class, with points more concentrated and 
grouped, especially for the Rif and Southern Atlas groundwater 
systems (Figure  14d). This indicates a greater coherence and a 
more precise representation of groundwater trends at the finer 
1 km resolution.

These findings indicate that downscaling GRACE data to a 
finer 1 km resolution more effectively captures localized variations, 
yielding more consistent and accurate groundwater trends 
compared to the coarser 100 km resolution. Moreover, the 
downscaling process reveals that aquifer systems within the same 
structural domain, tend to exhibit similar TWS trends, highlighting 
the model’s ability to preserve spatial coherence in 
groundwater dynamics.

6 Conclusion

In this study, a Random Forest (RF)-based algorithm was 
developed to downscale GRACE TWS data from a 100 km to a 
1 km resolution, incorporating multiple remote sensing variables 
to enhance spatial precision. The selected predictors included 
precipitation from the Global Precipitation Measurement (GPM) 
sensor (10 km resolution), the Normalized Difference Vegetation 
Index (NDVI) from MODIS (1 km), Land Surface Temperature 
(LST) from MODIS (1 km), Evapotranspiration (ET) from 
MODIS (500 m), the Digital Elevation Model (DEM) from SRTM 
(30 m), and the Normalized Difference Snow Index (NDSI) from 
MODIS (500 m). This methodology was applied to Morocco, a 
region characterized by significant climatic, hydrological, and 
topographical variability and facing severe drought conditions 
since 2016. The primary objective was to enhance the resolution 
and accuracy of GRACE TWS data to better assess groundwater 
storage dynamics in response to drought.

The validation of the downscaling model was comprehensive, 
employing multiple assessment methods to ensure robustness. 
Statistical validation demonstrated strong model performance, 
with a Nash-Sutcliffe Efficiency (NSE) of 0.80, a low RMSE of 
0.82 cm, and an MAE of 0.57 cm. Time series analysis confirmed 
a high correlation (R2 = 0.80) between the original and 
downscaled data, with consistent temporal trends. While minor 
discrepancies were noted for extreme values, statistical tests 
indicated no significant differences in means and variances, 
confirming the model’s reliability. The cross-validation 
results further reinforced the robustness of the downscaling 
approach. Box plots of performance metrics (R2, MAE, RMSE) 

showed that, for most pixels, the downscaled GRACE-TWS data 
maintained a strong correlation with the original 100 km data, 
with a median R2 of 0.64 and an interquartile range between 0.5 
and 0.7. The error metrics remained low across tested pixels, with 
MAE values predominantly between 0. 36 cm and 0.6 cm with a 
mean value of 0.49 cm and a median of 0.46 cm, and RMSE 
values between 0.5 cm and 0.8 cm with a mean value of 0.74 cm 
a median of 0.69 cm. While outliers indicated occasional local 
discrepancies, overall performance indices remained within 
acceptable thresholds, further validating the model’s reliability. 
Additionally, the comparison of downscaled GRACE TWS data 
with in-situ groundwater measurements showed significant 
improvements in correlation coefficients for 63% of the analyzed 
wells. The downscaling process enhanced alignment with 
groundwater level variations, with 66 wells exceeding a 
correlation threshold of 0.2.

The validation of GRACE TWS trends at different resolutions 
(100 km vs. 1 km) for 66 monitored groundwater tables between 
2002 and 2022 revealed key findings. The general TWS trends 
remained consistent across resolutions, confirming that the 
downscaling model preserved large-scale hydrological patterns. 
However, the high-resolution (1 km) data provided a more 
detailed representation of local groundwater variations, allowing 
for finer differentiation of TWS trends within and between 
aquifers. This was particularly evident during critical periods 
such as 2007–2012 and 2012–2017, where the downscaling 
revealed distinct trends not observable at 100 km resolution. 
Specific cases, such as the Mejatte and Tafilalt aquifers, showcased 
localized variations that were previously undetectable. Moreover, 
the ability to distinguish TWS trends between aquifers within the 
same structural domain further validated the model’s capacity to 
refine regional water storage assessments.

While the results are promising and confirm the robustness 
of the downscaling approach, they also highlight areas for 
improvement. Some local inconsistencies suggest the need for 
enhanced modeling techniques that better capture spatial 
heterogeneity. Future research will explore the integration of 
temporal dynamics through recurrent neural networks (RNNs) 
or other machine learning frameworks to improve accuracy and 
refine trend estimations in downscaled GRACE TWS data.
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