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Contamination of treated drinking water is a critical public health and safety 
concern. In this study, a multi-objective Bayesian optimization (MOBO) framework 
is proposed to optimize operational response to contamination in drinking water 
distribution systems (WDSs). The optimization framework aims to balance the 
conflicting objectives of minimizing response time while maximizing water quality 
metrics after contamination events. This was achieved by simultaneously optimizing 
two objective functions: the number of field operations (i.e., valve-closings and 
hydrant-openings), and the total contaminant mass consumed. The framework 
integrates a WDS simulation model, EPANET, within the proposed framework to 
simulate the implementation of response actions to various contamination events. 
Simulation results are then propagated into MOBO to generate Pareto-optimal 
solutions of the objective functions. A sensitivity analysis was conducted to tune 
the hyperparameters of the MOBO algorithm, including the covariance kernel 
of the surrogate model. Two case study WDSs with varying sizes and topological 
complexities were used to evaluate the performance of the proposed MOBO 
framework. Additionally, the performance of the MOBO algorithm was compared 
to the commonly used NSGA-II algorithm. The results showed that the proposed 
MOBO framework can identify optimal response actions to rapidly and efficiently 
improve water quality in the wake of contamination events in WDSs.
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1 Introduction

Effective management of drinking water distribution systems (WDSs) necessitates 
safeguarding against, detecting, and responding to both natural and human-made hazards 
(Pandey and Srinivas, 2024; Wu et al., 2024). Among the various threats to WDSs, contaminant 
intrusion and/or injection into treated drinking water presents one of the most significant 
challenges. The uncertainty regarding the type, effects, location, and timing of contamination 
complicates mitigation efforts. The ability to take immediate response actions upon the 
discovery of contamination events is crucial to minimizing their potential impact on the public 
(Rasekh and Brumbelow, 2014). These response actions encompass contamination detection, 
source identification, and response management. Coordinated contamination response 
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typically requires both operational actions (e.g., valve and hydrant 
control) and public communication (e.g., notifications/advisories).

Numerous studies have aimed to develop frameworks to support 
the resilience of WDSs against contamination events. Initial research 
focused on determining the optimal layout for early warning detection 
systems to reduce contamination detection time and minimize the 
impact of contamination events on the public (Wu et al., 2024; Ostfeld 
and Salomons, 2004; Rathi and Gupta, 2016; Ponti et al., 2021; Aral 
et  al., 2010; Shahsavandi et  al., 2024; Mu et  al., 2022). Upon 
contamination detection, typically by water quality sampling or 
sensors, the need for contamination source identification (CSI) 
becomes crucial (Alnajim and Abokifa, 2024). The primary objective 
of CSI is to determine the characteristics of the contaminant intrusion/
injection event, including the event’s start time, duration, dosage, and 
the location of the contamination source(s). Various studies have 
employed diverse approaches and methodologies to solve the CSI 
problem, including linear programming (Preis and Ostfeld, 2006), 
non-linear programming (Laird et al., 2005), Genetic Algorithms (Hu 
et al., 2015), Bayesian probabilistic models (Yang and Boccelli, 2014), 
and machine learning algorithms (Grbčić et al., 2020).

Following contamination detection and source identification, 
response management is initiated to isolate the affected sections of the 
WDS and flush the remaining contaminant out of the system. 
Numerous research efforts have focused on designing and 
implementing algorithms for optimal operational response to 
contamination (OORC) within WDSs. The first OORC studies 
generally focused on developing heuristic algorithms based on 
strategic, operational, and safety rules. For instance, Poulin et  al. 
(2006) developed an operational response strategy that involved 
isolating a potentially contaminated zone, depending on which sensor 
provided the first detection signal, by closing targeted valves and 
incorporating a safety margin to trace the contamination and prevent 
further spread to the WDS. Their work was further extended in 
another study (Poulin et al., 2008), in which simple heuristic rules 
were designed to rapidly and safely isolate contaminants within the 
pressure zones of WDSs while limiting the extent of isolated zones. 
This heuristic approach insulates the polluted water by closing proper 
valves while leaving one pipe open to allow clean water to enter the 
isolated area, which is then flushed by hydrants. In a follow-up study, 
a set of heuristic rules was introduced to define unidirectional flushing 
strategies to manage the evacuation sequence of contaminated water 
throughout an isolated WDS zone by linking hydrant flushing with 
valve closure procedures (Poulin et al., 2010). In this approach, each 
unidirectional sequence is configured as follows: first, the necessary 
valves for the sequence are closed, which is then followed by opening 
the fire hydrant(s) to flush the current sequence, then closing the 
hydrant(s) and identifying the valves that should remain closed for the 
following sequence(s). Later, OORC studies focused on combining the 
hydraulic and water quality simulation engines of EPANET with 
metaheuristic optimization algorithms [e.g., genetic algorithm (GA)] 
to minimize the concentration of contaminants in WDSs, while 
simultaneously determining the nodes where demand changes are 
required, the new demands for these nodes, and the locations of pipe 
closures (Baranowski and Leboeuf, 2008).

Recognizing the importance of considering multiple, often 
conflicting, objectives while optimizing response strategies to 
contamination events, more recent studies focused on developing 
multi-objective optimization techniques for OORC in WDSs. For 

instance, Preis and Ostfeld (2008) proposed an algorithm that uses 
multi-objective, Non-Dominated Sorting Genetic Algorithm-II 
(NSGA-II) to optimize two conflicting objectives: (1) minimizing the 
contaminant mass consumed after detection; (2) minimizing the 
number of operations (i.e., the number of valve shutoffs and hydrants 
openings) required to contain and flush out the contamination from 
the WDS. Alfonso et al. (2010) proposed a method to couple EPANET 
with multi-objective evolutionary algorithms to find the optimal set 
of field interventions needed to flush out contaminants from WDSs 
while minimizing the impact on the population. In this study, two 
main objectives were considered: the number of polluted nodes and 
the number of required operations, including valve closing and 
hydrant flushing. The two objectives were formulated as a multi-
objective optimization problem and were also combined into a single 
composite objective function. Rasekh and Brumbelow (2015) 
developed a framework that combines a multi-objective dynamic 
evolutionary optimization model with a dynamic simulation model to 
address the time-varying characteristics of an emergency environment. 
This dynamic simulation model incorporates feedback mechanisms 
between the contaminated network, emergency administrators, and 
consumers to better represent the uncertain contamination emergency 
environment. This approach allows the identification and tracking of 
time-varying optimal health-protection measures to serve the utility 
operators’ needs during the course of an emergency. Hu et al. (2020) 
proposed a customized NSGA-II-based algorithm (C-NSGA-II) to 
solve the bi-objective optimization problem of minimizing both the 
amount of contaminated water delivered to the public, and the 
operational costs of contamination response (i.e., valve closing and 
hydrants opening).

All of the aforementioned studies implemented demand-driven 
analysis (DDA) to simulate the hydraulics and water quality in WDSs. 
However, the opening of fire hydrants can result in pressure 
deficiencies in the WDS under certain circumstances, requiring the 
use of pressure-dependent analysis (PDA). Rasekh and Brumbelow 
(2014) introduced a pressure-dependent demand model and 
iteratively employed EPANET to account for pressure deficits and 
their impact on contaminant transmission in the WDS. In this study, 
evolutionary algorithms were used to construct quantitative 
simulation-optimization models for emergency response 
management, taking into account the effects on system serviceability 
(the difference between water demand and supply for all consumers) 
and public health (total number of illnesses or total contaminant mass 
ingested). Similarly, Bashi-Azghadi et  al. (2017) developed a 
simulation-optimization approach that integrated the Pressure Driven 
Network Solver (PDNS) with the multi-objective NSGA-II. Each 
solution produced by the NSGA-II represents a different system 
topology by altering the operational modes of the designated valves 
and hydrants. Consequently, the PDNS calculates the nodal pressures 
and refines the nodal withdrawals for each trial solution. Their 
approach effectively considered the pressure deficiency issue in the 
WDS, and the results showed that their methodology may be more 
appropriate and realistic for emergency response actions than DDA.

Machine learning was also previously applied to solve the OORC 
problem. For instance, a reinforcement deep learning-based method 
was proposed for scheduling real-time valve and hydrant operations 
(Hu et al., 2020). This approach considered the sensing data from the 
sensors as states and the valve and hydrant scheduling as actions, 
enabling real-time valve and hydrant operation scheduling by utilizing 
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reinforcement learning without accurately characterizing the 
contamination sources. Another study proposed a decision tree-based 
approach coupling EPANET, multi-objective NSGA-II optimization, 
Monte Carlo analysis, multi-attribute decision-making, and a machine 
learning technique called M5P to determine the optimal flushing 
duration for hydrants (Bazargan-Lari, 2018). The latter was achieved 
by searching for the best configuration of flushing nodes and 
developing a set of straightforward rules that can be readily applied in 
a real-time manner. Another study designed a sensor-hydrant decision 
tree methodology that provides a set of rules for opening and closing 
hydrants based on the order of activated sensors (Shafiee and 
Berglund, 2015). This methodology involved three steps: (1) 
generating contamination events for a water network using Monte 
Carlo simulation, (2) categorizing contamination events into classes 
based on the activation of sensors, and (3) determining the best 
hydrant placement strategy for each class of water events using a Noisy 
GA coupled with EPANET.

The majority of the aforementioned OORC studies relied on 
evolutionary optimization algorithms to optimize contamination 
response actions using both single-objective (e.g., GA) and multi-
objective (e.g., NSGA-II) formulations. However, evolutionary 
algorithms are known to require numerous evaluations of the 
underlying objective function(s), with each evaluation typically 
requiring simulation of the hydraulics and water quality in the WDS 
using a numerical solver (e.g., EPANET). The high computational cost 
of implementing evolutionary algorithms for OORC represents a 
significant challenge to the real-time identification of the response 
actions required to minimize the impacts of contamination events.

Multi-objective Bayesian Optimization (MOBO) has gained 
significant research interest in recent years, thanks to its high 
computational efficiency in handling complex and competing 
objectives in various real-world applications, including chemical 
engineering problems (Park et al., 2018), mechanical design problems 
(Shu et al., 2020), and vehicle design problems (Daulton et al., 2022). 
The MOBO algorithm involves building a computationally efficient 
probabilistic surrogate model of the objective functions using 
Gaussian Processes (GP), followed by using Bayesian inference to 
update the GP models and guide the search for the optimal solution. 
Thus, MOBO offers two key benefits compared to other optimization 
techniques: (1) it does not require an analytical understanding of the 
objective functions, making the method effective for optimizing 
black-box functions, and (2) it minimizes the number of objective 
function evaluations needed to achieve near-optimal solutions. The 
latter makes MOBO a powerful tool for quickly and efficiently 
optimizing multiple conflicting objectives and, thus, is proposed 
herein for solving the OORC problem.

In this study, we present the first attempt at applying MOBO for 
emergency response to contamination events in WDSs. While there 
have been several attempts to apply Bayesian optimization (BO) to 
solve WDS problems, its application to real-time operational response 
to contamination remains largely unexplored. Furthermore, these 
applications were generally limited to single-objective problems. For 
instance, we  previously developed a BO-based framework for 
contamination source identification (CSI) in WDSs (Alnajim and 
Abokifa, 2024). This CSI framework coupled BO with EPANET to 
reveal the most likely contaminant injection/intrusion scenarios by 
minimizing the error between simulated and measured concentrations 
at a given number of water quality monitoring locations. Other studies 

explored the application of single-objective BO for optimizing the 
scheduling of chlorine booster stations in WDSs (Moeini et al., 2023) 
and pump scheduling (Candelieri et al., 2018).

Herein, we present a novel multi-objective framework, integrating 
MOBO with EPANET, to simultaneously optimize the speed and 
extent of contamination removal via valve and hydrant control. Two 
case study WDSs with different sizes and topological complexities 
were used to evaluate the proposed framework and gain unique 
insight into the trade-off between response speed and contaminant 
removal. Additionally, a comprehensive analysis was conducted to 
compare the performance of the proposed MOBO framework against 
widely used multi-objective evolutionary optimization methods (i.e., 
NSGA-II).

The rest of this paper is organized as follows: Section 2 illustrates 
the optimization framework, followed by a detailed description of the 
MOBO methodology and the performance metrics utilized to evaluate 
the proposed framework. Section 3 first presents the two benchmark 
WDSs featured in the case study, including a description of the design 
parameters to test the efficacy of the proposed algorithm, followed by 
a discussion of the results, including convergence and sensitivity 
analyses, and a comparison of MOBO against NSGA-II. Finally, 
Section 4 summarizes the key takeaways of the present study, and 
offers recommendations for future research.

2 Methodology

This paper presents a multi-objective Bayesian optimization 
(MOBO) framework that aims to identify non-dominated optimum 
contamination response actions in WDSs. In this framework, the 
Water Network Tool for Resilience (WNTR) was used as a Python-
based wrapper for EPANET 2.2 to simulate the hydraulics and water 
quality in the WDS (Klise et  al., 2017). The latter enables the 
calculation of contaminant concentrations at consumer junctions and 
the application of operational actions, such as valve closing and 
hydrant opening, generated by the MOBO algorithm. Pressure-
dependent analysis (PDA) extended period simulations (EPS) were 
used to account for pressure-deficient conditions resulting from the 
dynamic changes resulting from various operational actions.

2.1 Optimization problem formulation

The MOBO framework considers two of the most commonly used 
objective functions in the field of OORC in WDSs, namely minimizing 
the total number of operational field actions (f1), and minimizing the 
contaminant mass consumed by the network users (f2). The two 
objective functions are competing since increasing the number of field 
operations (i.e., valve closings and hydrant openings) decreases the 
amount of contaminants consumed. Therefore, the optimization 
model aims to balance these two competing functions to achieve 
optimal response strategies.

Figure 1 illustrates the main steps of the proposed closed-loop 
methodology. The process starts with MOBO generating initial 
evaluations for both functions. Subsequently, Gaussian Processes (GP) 
regression is used to construct probabilistic surrogate models of the 
objective functions. The algorithm then generates operational actions 
f1 (valve closings and hydrant openings) that are then implemented by 
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the simulator (EPANET) to calculate f2. Next, the acquisition function 
determines the next solution to evaluate, after which the model is 
updated, and the values of f1 and f2 are re-generated. This closed-loop 
process continues until optimal values are achieved for both 
objective functions.

2.1.1 Number of operational field actions
The first objective function represents the number of operational 

actions needed to minimize the amount of contamination in the 
WDS. The total number of field operational actions, combining 
shutting off valves and opening hydrants to isolate the contaminated 
area and flush contaminated water out of the WDS, is described as f1: 

 = =
= +∑ ∑1

1 1

VA HY

k j
k j

f VA HY
 

(1)

Where, k represents the valve index, VAk is the kth valve, VA 
denotes the total number of valves in the WDS, j is the hydrant index, 
HYj is the jth hydrant, and HY represents the total number of hydrants 
in the WDS. VAk and HYj are binary variables, where a value of 0 
indicates that the kth valve is closed for isolation, while a value of 1 
indicates that it remains open. Similarly, a value of 1 for HYj means 
that the jth hydrant is opened for flushing, while 0 means that it stays 
closed. In normal operational mode, valves remain open, while 
hydrants remain closed. Therefore, f1 is subject to two sets of 
constraints as described in Equations 2 and 3:

 { } { }∈ ∈0,1 , 0,1k jVA HY
 (2)

 ∑ ≤ ∑ ≤,k jVA VA HY HY  (3)

The objective function f1, as shown in Equation 1, offers a 
simplified model of the actions taken to respond to contamination 
events in WDSs. This objective function is commonly found in 

previous literature on contamination response. While closing valves 
and opening hydrants are essential and commonly used responses, 
real-world situations often require various interventions, such as 
adjusting pump speeds. Additionally, the current formulation assumes 
that all valve closures and hydrant openings are equal in cost and 
feasibility, which oversimplifies the issue. In practice, some valves may 
be  more challenging to access or operate than others, and the 
consequences of closing different valves can significantly impact 
system performance and customer service.

2.1.2 Contaminant mass consumed
The second objective function (f2), as shown in Equation 4, is 

designed to account for public health and safety by measuring the total 
mass of contaminant consumed after operational actions have 
been applied:

 
( ) ( )

= =
= ∗∑∑2

1 d

N EPS

i i
i t t

f C t V t
 

(4)

Where, i represents the node index, N is the total number of 
consumer nodes, t is the time since the first detection time dt , and EPS 
represents the total duration of the simulation. Ci(t) represents the 
contaminant concentration at node i at time t, and Vi(t) is the volume 
of consumed water at node i at time t.

2.2 Multi-objective Bayesian optimization

Multi-objective optimization produces a set of optimal solutions 
for conflicting functions known as Pareto optimal solutions. With a 
set of feasible solutions (dominated solutions) that fulfill all functions, 
Pareto improvement is a shift from one feasible solution to another 
that can cause at least one objective function to yield a better value 
with no other objective function being worse off. Based on that 
concept, the optimal (non-dominated) set of solutions is established. 
This set of solutions is known as the Pareto-optimal front, beyond 
which further Pareto improvement cannot be achieved (i.e., further 
enhancement in one objective function would be accompanied by 
worsening the other objective functions). This study employs 
MOBOpt (Galuzio et al., 2020), a Python-based implementation of 
the multi-objective Bayesian optimization algorithm, to optimize the 
two abovementioned objective functions.

The pseudocode shown in Table 1 outlines the steps of the MOBO 
framework for optimizing emergency response actions within WDSs. 
The process begins by initializing a training set using Latin Hypercube 
Sampling (LHS), which ensures a well-distributed sample space and 
enhances the accuracy of the surrogate models. Initial points for the 
objectives, f1 (operational actions) and f2 (contaminant mass 
consumed), are generated from this set. Next, GP surrogate models 
are trained to approximate these objective functions, thereby reducing 
the need for computationally intensive simulations. The algorithm 
iteratively refines these models until one of the predefined stopping 
criteria is satisfied, either convergence within a certain tolerance or 
reaching a maximum number of iterations. During each iteration, 
operational actions are generated and implemented within the system. 
EPANET simulations evaluate the hydraulic and water quality 
responses, allowing for the computation of f2.

FIGURE 1

Multi-objective Bayesian optimization framework for optimal 
operational response to contamination in water distribution systems.
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At the end of each iteration, the acquisition function selects the 
next solution to evaluate, effectively balancing exploration and 
exploitation. The surrogate models are then updated with the new 
data, and the Pareto front is refined to reflect the trade-offs between 
conflicting objectives. Once convergence is reached, the algorithm 
provides the Pareto-optimal solutions, offering a set of efficient 
emergency response strategies. This approach effectively balances 
multiple objectives while minimizing computational costs.

2.2.1 Covariance kernel functions
Bayesian optimization is based on creating GP regression 

surrogate models of the objective functions, enabling optimization of 
these surrogate models rather than the objectives themselves (Brochu 
et al., 2010). GP are probability distributions over functions (Williams 
and Rasmussen, 2006), which can be fully characterized by their mean 
and covariance functions (Brochu et al., 2010). In other words, GP is 
a random function that, for any given value x , provides the mean and 
variance of a Gaussian distribution that best describes ( )if x  based on 
our current understanding of if , and our estimate of how these 
observations are correlated, as represented by the covariance 
kernel function.

Although individual WDS simulations in our case study are 
relatively quick, the iterative process of MOBO necessitates multiple 
evaluations of the objective functions. Even brief simulation times can 
accumulate and lead to substantial computational costs. Consequently, 
GP surrogates are crucial for enhancing the computational feasibility 
of the MOBO process. They enable rapid predictions of the objective 
functions, facilitating efficient design space exploration and 
significantly reducing the overall time required for optimization.

This study examined three of the most commonly implemented 
covariance kernel functions for the GP surrogate model: Squared-
Exponential; Matérn 3/2; and Rational Quadratic.

The squared-exponential (SE) function, shown in Equation 5, is 
described as (Melkumyan and Nettleton, 2009):

 
( )′  

= −  
 

 

2

2, exp
2
rK x x
l  

(5)

The Matérn 3/2 (M32) kernel function, shown in Equation 6, can 
be defined as:

 
( )′    

   = + −
   
   

 

3 3
, 1 exp

r r
K x x

l l  
(6)

The Rational Quadratic (RQ) kernel, shown in Equation 7, can 
be specified as:

 
( )

α

α

−
′  
= +  
 

 

2

2, 1
2
rK x x
l  

(7)

Where α is a positive-valued scale-mixture parameter, l is the 
characteristics scale length of the kernel, and r is the Euclidean 
distance between 



x  and ′x  calculated as: ( ) ( )′ ′− −
 

 

T
x x x x .

2.2.2 Pareto front approximation
Once GP surrogate models ( )η ;i x t  are obtained after t observations 

of the objective functions, the models are used to estimate an 
approximation to the Pareto front of the objectives ( if ). The Pareto front 
approximation (PFA) at time t is denoted herein as Φt, and the Pareto set 
approximation (PSA) that produces Φt is designated as Xt. The PFA can 
be  achieved by optimizing the GP surrogate models (ηi), which are 
significantly faster to evaluate than the real objectives. If the models are 
precise enough in the proximity of the Pareto front of the problem, then 
the PFA is a good approximation of the actual Pareto front.

The proposed method employs an iterative framework that requires 
a rule for selecting the next point in the search space. To improve the 
quality of the PFA, it is important to choose points located near the best 
solution in the search space in such a way as to make the models ( )η 

i x  
more descriptive of their respective objective functions ( )if x . However, 
it is also essential to explore under-sampled areas of the search space and 
prevent the algorithm from getting stuck with an incomplete 
representation of the Pareto front. These two contradicting strategies 
uniformly depict the trade-off between exploitation and exploration, 
which is a key advantage of implementing Bayesian optimization.

2.2.3 Handling of integer variables
MOBO is designed to handle continuous objective function 

variables. However, in this study, the f1 objective function, which 
denotes the number of operational fields, generates an integer Pareto 
solution. To address this challenge, a set of rules was developed to 
estimate the integer Pareto front and, at the same time, evaluate the 
accuracy of that solution compared to the continuous Pareto front 
generated by the algorithm.

First, the MOBO algorithm generates the Pareto front and Pareto 
set (decision variables) of the problem. For instance, in the Net3 WDS, 
every single solution of the Pareto front results from 52 design space 
values, which is the total number of valves and hydrants in the 
WDS. For each variable, the generated Pareto Set of the problem is 
rounded to 1 if the produced design value is above 0.5 and 0 if it is 
below 0.5. The rounding threshold (0.5) was chosen for its simplicity 
and effectiveness in enforcing binary activation states (open/close) for 
valves and hydrants. Next, the number of zeros and ones is counted 
for the valve and hydrant design space values for each single Pareto set 
of the problem. The counted outcomes are then added to estimate f1 
integer values for each Pareto set of the problem (Figure 2A). As this 
process results in duplicate solutions of estimated f1 values with the 
corresponding generated values of the f2 function, the minimum f2 

TABLE 1 Pseudocode of the MOBO algorithm.

Initialize training set X, Y using Latin Hypercube Sampling (LHS)

Generate initial points for f1 and f2

Train GP surrogate models for f1 and f2

WHILE stopping criteria:

   Generate operational actions (f1) based on x*

   Implement operational actions in the system

   Simulate hydraulic and water quality responses using EPANET

   Calculate f2 (e.g., contaminant mass consumed)

   Select the next sample point x* using the acquisition function

   Update the GP surrogate models with new points (x*, f1, f2)

   Regenerate Pareto front approximation

Return final Pareto-optimal solutions
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value generated by the algorithm is selected for the f1 duplicates that 
arise from rounding the design decision values (Figure 2B). Selecting 
the minimum f2 value for duplicate f1 solutions helps maintain an 
optimal trade-off between response actions and contaminant mass 
reduction. Finally, Figure  2C displays the ascending values of the 
generated continuous MOBO values and the estimated integer MOBO 
values. The latter is intended to demonstrate that the estimated integer 
values are parallel to the ones generated by the proposed algorithm 
(continuous values) and not crossing them. The estimated integer 
values are higher and in close proximity to the continuous ones, 
indicating that the procedures used to estimate the integer Pareto front 
for the f1 function have produced an accurate outcome.

The validation in Figure 2 confirms that the estimated integer Pareto 
front remains closely aligned with the continuous MOBO-generated 

solutions. Despite handling continuous variables by default, MOBO 
efficiently explores the Pareto front while maintaining solution accuracy 
through the proposed rounding strategy. These advantages expedite the 
process of dealing with contamination response in WDS, making 
MOBO a powerful tool to handle complicated real-time problems.

2.2.4 Performance evaluation
The performance of the proposed optimization framework was 

evaluated using multiple criteria, providing a comprehensive analysis 
of the algorithm’s effectiveness. Specifically, the assessment included 
the hypervolume indicator, diversity metric (DM), generational 
distance (GD), and inverted generational distance (IGD).

Hypervolume indicator: the hypervolume indicator is a performance 
evaluation metric applied to the optimal solution returned by the 
MOBO. For a given reference point (R), the hypervolume indicator 
calculates the region between the obtained Pareto solutions 
and R. Figure 3A (adapted from Fonseca et al., 2006) demonstrates how 
the hypervolume is calculated for a two-objective example, where the 
area dominated by a set of point solutions is displayed in grey.

Diversity metric: DM can be  applied to precisely evaluate the 
diversity and the spread of the Pareto front solutions returned by an 
algorithm. This metric can be calculated as (Deb et al., 2002):
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In Equation 8, df and dl represent the Euclidean distances between 
the extreme and the boundary solutions, as illustrated in Figure 3B. The 
parameter di denotes the Euclidean distance between the consecutive 
solutions in the obtained optimal set of solutions. The symbol d  
denotes the average of all distances di (i = 1,… N), where N is the 
number of solutions in the obtained optimal solution. A smaller DM 
value indicates a better distribution of solutions (Deb et al., 2002).

Generational distance: the GD performance indicator measures 
the average Euclidean distance between the Pareto front and the 
optimal solution an algorithm achieves. This metric was proposed by 
Van Veldhuizen and Lamont (1998):
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In Equation 9, di is the Euclidean distance between any solution 
in the obtained optimal solution and its nearest reference point in the 
Pareto front, and n is the number of solutions in the acquired optimal 
solution. Smaller GD values indicate better performance of the 
optimization algorithm.

Inverted generational distance: the IGD performance indicator 
reverses the GD and gives more comprehensive outcomes. It estimates 
the distance from any point in the Pareto front to the closest points in 
the optimal solution as follows (Coello Coello and Reyes Sierra, 2004):
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FIGURE 2

Estimating the integer Pareto front from continuous MOBO results 
for two objectives: contaminant mass (f2, kg) vs. field operations (f1). 
(A) Continuous vs. duplicate integer Pareto front, (B) Continuous vs. 
integer Pareto front, and (C) Sorted continuous and estimated 
integer outcomes.
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In Equation 10, di is the Euclidean distance, and m is the number 
of solutions in the true Pareto front. Again, a smaller value of IGD is 
preferred, indicating that the obtained set is closer to the true 
Pareto front.

2.3 Comparison against multi-objective 
genetic algorithm

Non-dominated Sorting Genetic Algorithm II (NSGA-II), first 
proposed by Deb et  al. (2002), is a popular multi-objective 
optimization algorithm that has been extensively used in various 
applications over the past two decades. NSGA-II has been widely 
applied to WDS optimization problems, including OORC. Therefore, 
in order to understand how the performance of the proposed MOBO 
approach compares to NSGA-II, we  applied both optimization 
algorithms to the case study network.

The NSGA-II algorithm is generally implemented through the 
following steps described in Yusoff et  al. (2011). The first step is 
initialization, whereby a specified number of potential solutions are 
randomly generated based on the given constraints. In the subsequent 
fitness evaluation step, each vector in the population is evaluated for 
all objective functions and assigned a functional value. Next, the 
selection step chooses a number of points with the lowest functional 
values based on the non-domination criteria, ensuring they satisfy 
the equality and inequality constraints. Following selection and once 
the sorting is complete, the crowding distance value is assigned front-
wise, allowing for careful selection of individuals in the population 
based on rank and crowding distance. In the crossover stage, 
recombination is made between the selected best points to generate 
offspring, and the population size returns to its initial number. In the 
final mutation stage, alterations are made to random genes of some 
vectors based on the mutation operator. The mutation operator can 
modify the gene in reverse; for example, if it was originally one, it will 
change it to zero and vice versa. This iterative process continues until 
the minimum objective values are achieved, or the maximum 
number of generations is reached. Following this procedure, the 
NSGA-II algorithm can identify non-dominated solutions 
representing the trade-offs between the conflicting objectives in 

multi-objective optimization problems. In this study, the Pymoo 
python package was used to apply the NSGA-II algorithm (Blank and 
Deb, 2020).

3 Results and discussion

3.1 Case study

In this study, two water distribution networks were employed to 
showcase the performance of the proposed MOBO model in finding 
the OORC in WDSs. The first network, EPANET Net3, is a well-
known small-scale example comprising 92 nodes, two water sources, 
three elevated storage tanks, two pumps, and 117 pipes. The second 
network, BWSN Network 1, is larger and features more complex 
hydraulics, comprising 126 nodes, one water source, two tanks, two 
pumps, and 168 pipes. Thus, the smaller Net3 network can help 
facilitate detailed analysis and validation of the proposed MOBO 
framework, while the larger BWSN network can help test its scalability 
and efficiency. The layouts of the two water networks, the locations of 
contaminant intrusions/injections, contamination sensors, and valves 
are illustrated in Figures 4, 5. Valve and hydrant IDs for both networks 
are listed in Table 2.

The valve layouts for both networks are sourced from the previous 
study by Preis and Ostfeld (2008). Hydrants are assigned a demand of 
zero until a flushing event occurs at a demand of 100 GPM 
(0.006308 m3/s). The Net3 system features a 24-h demand flow 
pattern, whereas the BWSN system features a 96-h demand flow 
pattern. Contaminant injection locations for Net3 and BWSN 
networks are at nodes 101 and node 30, respectively (Preis and 
Ostfeld, 2008). In both networks, the injection pattern is designed to 
form a uniform pattern starting at 8 a.m. and ending at 10 a.m. The 
EPANET source type was selected as a “set point booster” for both 
networks, with a fixed concentration of 50 mg/L for Net3, and 
100 mg/L for BWSN.

The contamination early warning detection system (EWDS) in 
Net3 consists of five monitoring stations located at nodes 15, 35, 145, 
225, and 255, while the EWDS in the BWSN network comprises five 
sensors placed at junctions 10, 31, 45, 83, and 118. The layout design 

FIGURE 3

(a) Hypervolume (adapted from Fonseca et al., 2006), and (b) diversity metric, for 2 objectives.
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was placed in a way that would increase the probability of detecting 
any random intrusion event (Preis and Ostfeld, 2008). Based on the 
contamination detection process, the BWNS sensor located at node 
31 discovered the presence of contaminants at 08:25, while the Net3 
sensor at node 35 detected contamination at 10:55. It is assumed that 
identifying the contamination source and stopping any further spread 
of contamination will take approximately 65 min. Furthermore, it is 
expected that determining the most optimal actions and initiating a 
response by deploying operational teams to address the contamination 
risk will require 1 h. As a result, the optimal consequence management 
response activities, which involve shutting off valves and turning on 
the hydrants, are estimated to begin at 13:00 for Net3 and 10:30 
for BWSN.

3.2 Performance comparison of GP kernels

A key aspect of Bayesian optimization is the use of surrogate 
models to approximate the objective functions. Herein, we  used 
Gaussian Processes (GPs) due to their flexibility and ability to quantify 
uncertainty. In GP regression, the covariance kernel defines how 
points in the input space are correlated with each other. This 
correlation is essential for making predictions about the objective 
functions at unsampled points based on the observations at sampled 
points. Here, we examined three different covariance kernel functions, 
namely Squared-Exponential (SE), Matérn 3/2 (M32), and Rational 
Quadratic (RQ) to find which MOBO method produces the 
best performance.

For each kernel, 25 initial points and 30 iterations were 
implemented. The choice of 30 iterations is based on the study by 
Galuzio et al. (2020), in which MOBO were systematically evaluated 
against several benchmark functions (Galuzio et  al., 2020). The 
analysis showed that MOBO generally produced high-quality Pareto 
front approximations at 20 objective function evaluations, even for 
problems with various dimensionalities and constraints. Thus, a 
number of 30 iterations were selected in this study to ensure MOBO 
convergence. Additionally, for each one of the three covariance 
kernels, the MOBO optimization was performed 25 times, where each 

optimization run starts with a different set of 25 randomly generated 
initial points, followed by 30 optimization iterations. The Net3 WDS 
was selected for this analysis.

3.2.1 Execution time and number of Pareto 
solutions

In this study, execution time is defined as the duration of running 
the MOBO algorithm for the total of 55 objective function evaluations 
(25 initial + 30 iterations). The study was conducted using a 
VivoBook_ASUS Laptop featuring an Intel(R) Core i5-10th 
generation processor and 12 GB of RAM. As can be seen in Figure 6A, 
the M32 kernel exhibits the lowest median and average execution 
times, followed by those of SE and RQ, respectively. Furthermore, the 
variability in the execution times among the 25 optimization runs is 
the highest for the RQ kernel. Consequently, the results indicate that 
the M32 kernel outperforms other kernels in terms of efficiency and 
consistency. Figure  6B displays the number of optimal Pareto 
solutions (NOPS) obtained by each GP kernel. In general, the higher 
the NOPS, the better performance. The RQ covariance function 
produced a limited number of NOPS, while the M32 kernel produced 
the highest median NOPS value of all the kernels.

3.2.2 Quality of Pareto front
In addition to the execution time and number of Pareto solutions, 

it is important to assess the quality of the Pareto fronts generated by 
the algorithm. Although it is impossible to determine whether the 
proposed algorithm has reached the true optimum since the real 
Pareto-front is unknown, it is feasible to evaluate when the algorithm 
has produced high-quality Pareto fronts using various metrics. Herein, 
the hypervolume indicator and the diversity metric are employed to 
compare the quality of the solutions obtained by various covariance 
kernels. Figure 7 presents the estimated hypervolume and diversity 
metric values obtained after 30 iterations of the MOBO algorithm 
applied to the Net3 water network for 25 optimization runs. To 
compute the hypervolume, a reference point that exceeds the 
maximum value of the Pareto front must be selected. For Net3, a 
reference point representing 22 filed actions and 73 kg consumed 
contaminant mass was selected based on the obtained Pareto 
solutions values.

As can be seen in Figure 7A, the M32 kernel displays the highest 
median and average, and lowest variability in hypervolume values. 
Figure 7B reveals that the diversity of all three kernels is somewhat 
comparable, with SE and M32 kernels generating solutions with 
slightly higher diversity distribution compared to the RQ kernel. 
However, the MOBO with SE kernel produced a slightly more evenly 
dispersed set of non-dominated solutions. Overall, the results suggest 
that the MOBO_M32 algorithm produces the most reliable outcomes, 
resulting in the highest quality solutions compared to the other 
kernels assessed.

3.2.3 Pareto front convergence
In order to assess the proximity of the estimated integer Pareto 

front to the continuous MOBO Pareto front, the GD and IGD 
indicators are employed. The performance of the kernel improves 
with a smaller distance between the two Pareto fronts. Figure 8A 
presents the results of the performance indicators for the MOBO 
algorithm using the tested kernels. Notably, the IGD metric 
provides a more comprehensive understanding than the GD 

FIGURE 4

Layout of case study WDS Net3.
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indicator. In contrast to GD, IGD evaluates the distance between 
each point on the integer Pareto front and its nearest reference 
points on the continuous Pareto front, considering all points on the 
continuous Pareto front. Based on the outcomes of Figure 8B, it can 
be inferred that the M32 and RQ kernels’ results converge to the 
continuous MOBO Pareto front solutions, as demonstrated by their 
low GD and IGD values. M32 also displays the lowest IGD results.

Overall, the M32 and RQ kernels exhibited strong performance 
indicators compared to the SE kernel. Taken together, the results of 
the sensitivity analyses revealed that MOBO with the M32 kernel 
function displays the best performance for the case study. The Integer 
MOBO Pareto front outcomes attained with the M32 kernel function 
demonstrated excellent convergence to the continuous Pareto front 
results, reasonable diversity point solutions, the best quality Pareto 
front solutions, and the highest number of point solutions. 
Consequently, the MOBO algorithm with the M32 kernel (MOBO_
M32) is selected for further analysis throughout the remainder of 
this study.

3.3 Comparison against NSGA-II

Next, we  compared the performance of the MOBO_M32 
algorithm against the widely used NSGA-II algorithm. The parameters 
for NSGA-II were selected based on an earlier application for OORC 
in WDSs by Preis and Ostfeld (2008). Specifically, the probabilities of 

crossover and mutation were set at 0.75 and 0.07, respectively, and a 
total of 30 generations with a population size of 24 were selected (i.e., 
720 iterations).

In Figure 9, the convergence profiles for the Net3 water network 
are presented for both the MOBO and NSGA-II algorithms. The red 
circles in the figure represent the estimated hypervolume values for 
each corresponding iteration in MOBO vs. NSGA-II. The results 
indicate that MOBO converges to a high-quality Pareto front within 27 
iterations, after which no significant improvement is achieved by 
conducting more iterations. In contrast, NSGA-II demonstrates a sharp 
increase in performance for the first 250 iterations, followed by a steady 
improvement until it ultimately stalls near 650 function evaluations.

We conducted several independent runs of the MOBO algorithm 
under a varying number of iterations. For all runs, the results indicated 
that increasing the number of evaluations generally enhanced the quality 
of the Pareto front. However, the MOBO algorithm consistently 
achieved a stable Pareto front after 25–30 iterations, with the 
hypervolume remaining relatively consistent afterward. This analysis 
confirmed the robustness and stability of the proposed MOBO algorithm.

The results show how fast MOBO converges to the optimal Pareto 
front compared to NSGA-II. It is important to note that each iteration 
for both algorithms requires a single evaluation of both objective 
functions. Thus, MOBO requires significantly fewer iterations to 
converge compared to NSGA-II. This highlights the significant 
advantage of implementing Bayesian optimization for the real-time 
optimization of operational response to contamination events in WDSs.

FIGURE 5

Layout of case study WDS BWSN.

TABLE 2 Valve and hydrant IDs for both used water networks.

Network Type ID

Net 3

Valves (links) ‘111’, ‘175’, ‘105’, ‘116’, ‘177’, ‘215’, ‘204’, ‘237’, ‘269’, ‘173’, ‘123’, ‘107’, ‘229’, ‘311’, ‘155’, ‘309’, ‘221’, ‘231’, ‘317’, ‘301’

Hydrants (junctions)
‘20,’ ‘40’, ‘50’, ‘60’, ‘601’, ‘61’, ‘120’, ‘129’, ‘164’, ‘169’, ‘173’, ‘179’, ‘181’, ‘183’, ‘184’, ‘187’, ‘195’, ‘204’, ‘206’, ‘208’, ‘241’, ‘249’, ‘257’, ‘259’, 

‘261’, ‘263’, ‘265’, ‘267’, ‘269’, ‘271’, ‘273’, ‘275’

BWSN

Valves (links) ‘0,’ ‘1’, ‘33’, ‘40’, ‘45’, ‘109’, ‘143’, ‘66’, ‘35’, ‘42’, ‘160’, ‘46’, ‘111’, ‘34’, ‘164’, ‘31’, ‘94’, ‘53’, ‘73’, ‘51’, ‘71’, ‘70’, ‘69’, ‘68’, ‘67’, ‘121’, ‘115’, ‘113’

Hydrants (junctions)
‘7,’ ‘9’, ‘13’, ‘14’, ‘16’, ‘21’, ‘24’, ‘26’, ‘29,’ ‘36’, ‘38’, ‘47’, ‘48’, ‘56’, ‘57’, ‘59’, ‘60’, ‘61’, ‘62’, ‘63’, ‘64’, ‘65’, ‘66’, ‘67’, ‘78’, ‘79’, ‘80’, ‘85’, ‘86’, ‘87’, ‘88’, 

‘90’, ‘91’,'92′, ‘105’, ‘106’, ‘109’, ‘110’, ‘111’, ‘112’, ‘113’, ‘115’, ‘119’, ‘120’, ‘121’, ‘125’, ‘128’
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3.4 Effect of network size and complexity

To better understand how the size and complexity of the WDS 
affects the performance of the proposed MOBO framework, 
we compared the results of the two WDSs for both MOBO vs. NSGA-II.

Figure  10 shows the Pareto front solutions obtained by both 
algorithms of the number of field operations (f1) versus the 
contaminant mass consumed (f2) for both Net3 and BWSN.

As can be seen in the figure, if no actions were executed, EPANET 
simulation results revealed that up to 76 kg and 108 kg of 
contamination mass would have been consumed in Net3 and BWSN 
networks, respectively, during a simulation period of 24 h and 96 h, 
respectively.

Comparing the performance of MOBO_M32 and NSGA-II 
algorithms, it can be  seen that the MOBO_M32 algorithm 
outperforms the NSGA-II algorithm in terms of total contamination 
reduction. Specifically, for Net3, the MOBO_M32 algorithm achieved 
a 76% reduction in contamination using 17 field operations as 
illustrated in Figure  10A, whereas the NSGA-II algorithm 
accomplished a 69% reduction using the same number of operations 
as demonstrated in Figure 10B. Similarly, for the BWSN network, the 
MOBO_M32 algorithm achieved a 91% reduction in contamination 
by executing 20 valve closings and hydrant openings as shown in 
Figure 10C. In comparison, the NSGA-II algorithm accomplished an 
84% reduction in contamination by performing the same number of 
field operations as illustrated in Figure 10D. Overall, these findings 

suggest that the MOBO_M32 algorithm yields better solutions than 
those produced by the NSGA-II algorithm.

Comparative analysis of the performance of NSGA-II and 
MOBO_M32 algorithms in terms of the whole Pareto front quality 
reflects that the NSGA-II algorithm slightly outperforms the MOBO_
M32 algorithm. Specifically, the hypervolume values estimated from 
the Pareto front obtained by the genetic algorithm are 0.89 and 0.98 
for Net3 and BWSN water networks, respectively (Figures 10B,D), 
which are slightly higher than the hypervolume values obtained by the 
MOBO_M32 algorithm that are 0.85 and 0.92 for Net3 and BWSN 
water networks, respectively (Figures  10A,C). However, when 
comparing the Pareto front results of Figure 10A to those of Figure 10B, 
the MOBO_M32 algorithm achieved better contamination reduction 
after six field operations, whereas NSGA-II achieved outstanding 
contamination reduction between three and six operations. Similarly, 
the MOBO_M32 algorithm showed better contamination reduction 
after the tenth operation, while NSGA-II outperformed it before the 
tenth action in the case of BWSN (as shown in Figures 10C,D).

A practical solution for the management of water networks 
involves the implementation of seven specific actions for the Net3 
water network and 10 actions for the BWSN water network. For the 
Net3 water network, the recommended actions include opening 
hydrants number 259, 249, and 269, as well as closing valves number 
111, 229, and 204. In the case of the BWSN water network, the 
suggested actions consist of opening hydrants number 38, 24, 57, 91, 
and 68, as well as closing valves number 42, 51, 143, 109, and 33. This 

FIGURE 6

(a) Execution time, and (b) Number of Pareto Solutions, produced by different MOBO covariance kernels.

FIGURE 7

(a) Hypervolume, and (b) diversity metric values produced by different MOBO kernels.
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selection aims to balance operational efforts with a significant 
reduction in contamination.

The average time required to obtain the optimal Pareto front for 
the Net3 water network was approximately 1.15 min using the 
MOBO_M32 algorithm and 7.50 min using NSGA-II. The total 
elapsed time for the BWSN water network was 2.45 and 25.43 min 
for the MOBO_M32 algorithm and NSGA-II, respectively. The 
overall computational time includes both the EPANET simulation 
time and the algorithm running time for each evaluation. NSGA-II 
took approximately 10 times longer than the MOBO_M32 algorithm 
because its total computing time comprises the EPANET simulation 
running time for each multi-objective chromosome, multiplied by 
the size of the population and, by then, the number of NSGA-II 
generations. The MOBO_M32 algorithm required only 30 iterations 
to generate the optimal Pareto fronts shown in Figure 10. Therefore, 
MOBO_M32 is particularly useful when dealing with more complex 
water networks. The proposed algorithm demonstrated superior 
performance in identifying optimal solutions with a significantly 
shorter computation time than NSGA-II. Consequently, the MOBO_
M32 algorithm is highly recommended as a promising tool for 
optimizing water distribution network design and management.

4 Conclusion

Contamination of treated drinking water is a significant public 
health and safety concern. This study introduces a multi-objective 
Bayesian optimization (MOBO) framework aimed at optimizing the 
operational response to contamination incidents in drinking water 
distribution systems (WDSs). The framework seeks to optimize the 
conflicting objectives of reducing response time while improving water 
quality metrics after contamination. To achieve this, two objectives were 
concurrently optimized: the number of field operations (closing valves 
and opening hydrants) and the total mass of contaminants consumed.

A sensitivity analysis was carried out to select the MOBO 
algorithm’s hyperparameters, including the covariance kernel of the 
surrogate model. The efficacy of the framework was illustrated 
through a case study involving two WDSs with varying sizes and 
complexities. Moreover, the performance of the MOBO algorithm was 
evaluated against the commonly used NSGA-II algorithm.

Taken together, the results demonstrated that the MOBO framework 
can effectively determine optimal response actions, swiftly and efficiently 
enhancing water quality following contamination events in WDSs. 
Comparing the performance of various covariance functions using 

FIGURE 9

Convergence profiles for (a) MOBO and (b) NSGA-II.

FIGURE 8

(a) Generational distance, and (b) inverted generational distance of different kernels.
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multiple performance indicators revealed that MOBO with the Matern 
kernel consistently performed better than other kernels, as measured by 
convergence, spread, and the number of non-dominated solutions. 
Convergence analysis confirmed that the proposed MOBO algorithm 
converged to high-quality Pareto front solutions, requiring significantly 
fewer evaluations of the objective functions than NSGA-II.

While the results of the two case study WDSs demonstrated the 
potential of the MOBO framework for optimizing contamination 
response in WDSs of different sizes and complexities, scaling the 
proposed framework to larger and more complex WDSs might present 
several challenges. The increased complexity of the models and the larger 
number of decision variables can significantly affect the computational 
cost of both individual simulations and the overall optimization process. 
Future research could explore strategies to address these challenges, 
including dimensionality reduction, using advanced GP models such as 
sparse GP or hierarchical GP, and implementing parallelization techniques 
to speed up both the simulation runs and the GP training process.
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BWSN; (D) NSGA-II on BWSN.
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