
TYPE Original Research

PUBLISHED 08 April 2025

DOI 10.3389/frwa.2025.1553146

OPEN ACCESS

EDITED BY

Manish Pandey,

Indian Institute of Technology,

Kharagpur, India

REVIEWED BY

Anoop Kumar Shukla,

Manipal Academy of Higher Education, India

Ayat-Allah Bouramdane,

International University of Rabat, Morocco

*CORRESPONDENCE

Wellington W. Musyoka

musyokawellington@gmail.com

RECEIVED 30 December 2024

ACCEPTED 17 March 2025

PUBLISHED 08 April 2025

CITATION

Musyoka WW, Jun W, Mwanthi AM and

Kiarii RW (2025) Flood early warning for early

action—evacuation and transfer: case of

Shouchang Town, Zhejiang Province, China.

Front. Water 7:1553146.

doi: 10.3389/frwa.2025.1553146

COPYRIGHT

© 2025 Musyoka, Jun, Mwanthi and Kiarii.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Flood early warning for early
action—evacuation and transfer:
case of Shouchang Town,
Zhejiang Province, China

Wellington W. Musyoka1,2*, Wang Jun1, Anthony M. Mwanthi3,4

and Ruth W. Kiarii5

1Department of Hydrology & Water Resources, Hohai University, Nanjing, China, 2Ministry of Water,

Sanitation & Irrigation, Nairobi, Kenya, 3Department of Earth and Climate Sciences, University of

Nairobi, Nairobi, Kenya, 4IGAD Climate Predictions and Applications Centre, Nairobi, Kenya,
5Department of Water Conservancy and Hydropower, Hohai University, Nanjing, China

Flooding in riverine basins remains a recurring disaster, often leading to

extensive property destruction and, in extreme scenarios, loss of lives. In

recent years, the Shouchang River Basin in Zhejiang Province, China, has

experienced increasing flood risks, driven by a combination of extreme weather

events, urban expansion, and alterations in natural land use. Managing these

events is becoming increasingly crucial to minimize the impact on vulnerable

communities and critical infrastructure. This study develops an integrated

framework for flood forecasting and hydrodynamic floodplain mapping using

HEC-HMS and HEC-RAS 6.5 over a 10 km stretch of the Shouchang River

upstream of Shouchang Town. The hydrological model (HEC-HMS) simulates

rainfall-runo� processes across five sub-basins, using observed rainfall and

streamflow data from four gauging stations, to capture key flow dynamics.

Based on local plans for Shouchang Town, a total of 28 villages are situated

within exposure areas of sub-basin 5. Out of villages only 22 rescue centers

are found to be una�ected and thus e�ective for sheltering flood victims.

Four rescue centers, Yongjiaqiao, Henanli, Ximen, and Datanbian would need

relocation to higher grounds, including adding new resettlement sites and

modifying transfer plans and routes. Simulations show that, while flood defenses

protect most regions under upstream flows of 1,200 m3/s, the levees along

Shili Shouchngjiang Ecology Leisure Greenway breach once this threshold is

surpassed. The study highlights the need to review the existing flood evacuation

and transfer analysis system, given that some evacuation centers could be

exposed to flood associated risks.

KEYWORDS

flood-mapping, flood-forecasting, HEC-HMS-HEC-RAS modeling, victims evacuation

and transfer, Shouchang River

1 Introduction

Floods are regarded as one of the most catastrophic disasters worldwide, second

to earthquakes, being aggravated by a combination of several natural and man-made

elements (https://science.nasa.gov/climate-change/extreme-weather/; Jonkman et al.,

2024; Ritchie et al., n.d.; Yu et al., 2022). Hydro-meteorological disasters cause

a great deal of death worldwide and have a profound effect, particularly on

populations who are less resilient, usually being residents of low to middle income

nations with inadequate flood protection infrastructure, and insufficient response and

evacuation systems. Over 2 billion people are in danger of flooding globally, and
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these hazards are anticipated to rise as a result of uncontrolled

development and climate change (Devitt et al., 2023; Rentschler

et al., n.d.). Extreme rainfall events due to climate change

(https://gpm.nasa.gov/) and urbanization-induced surface runoff

are viewed to be two interconnected factors that have increasingly

driven flooding cases globally (Rentschler et al., n.d.; Zhang

et al., 2018; Du et al., 2019; Dharmarathne et al., 2024; Miller

and Hutchins, 2017). Climate change has resulted in heavier

and more erratic rainfall (https://gpm.nasa.gov/; United States

Environmental Protection Agency (US EPA), n.d.), leading to

greater river discharge. Simultaneously, urbanization has reduced

the natural capacity of landscapes to absorb water by replacing

permeable areas with impervious surfaces (Sohn et al., 2020;

Ding et al., 2022), such as concrete and asphalt, significantly

weakening natural evaporation (Toronto Region Conservation

Authority, 2008). The combined effect results in higher runoff

volumes, overwhelming rivers and drainage systems, increasing the

frequency, and intensity of floods.

Extreme rainfall events in heavily urbanized regions are major

triggers for urban floods since the traditional river systems cannot

handle the surge of water. China is one of the countries where

flooding has become a regular occurrence in its rivers and cities

due to rapid urban expansion and climate change (Ding et al.,

2022; Islam and Wang, 2024; Ma et al., 2022). The country has

witnessed several major flood events, including the 2016 floods that

affected over 60 million people, resulting in significant loss of life

and economic damage (Jiang et al., 2018; Ritchie et al., n.d.). Rivers

in Zhejiang Province, such as the Shouchang River experience

seasonal flooding caused by heavy rainfall and urban expansion.

Recently, a report published on 4th of July 2024 by China’s

State Flood Control and Drought Relief indicated that China’s

flood control efforts had entered a critical phase, with 33 rivers

nationwide exceeding warning levels by June 24, 2024, according

to the Ministry of Water Resources. Triggered by persistent heavy

downpours, 22 rivers in Jiangxi, Hubei, Anhui, Zhejiang and

Guizhou had reported floods exceeding alert marks that resulted in

pelting of many areas by the torrential rains (Xinhua News Agency,

n.d.). These rivers included Xin’an River which has one of its

major tributaries as Shouchang river. As part ofmitigativemeasures

authorities had to initiate reservoirs to release water for flood

control in cities and towns like Jiande and Shouchang, East China’s

Zhejiang province. Even with flood protection infrastructure, there

still remains challenges in developing effective flood management

strategies due to the dynamic interplay of physical, socio-economic,

and hydrological factors (Awah et al., 2024; Mai et al., 2020).

Major damages in urban, semi-urban, and rural environments have

been experienced when hydrographic networks burst banks during

severe floods (Boudreau et al., n.d.). In the domain of hydrological

forecasting and disaster management, accurate prediction of floods

can help mitigate potential risks and reduce the impact on

communities and infrastructure (Kumar et al., 2023; Merz et al.,

2020; Kioko and Ouya, n.d.).

Although other research work has been done in this basin, this

study addresses the need for an integrated approach, by marrying

structural and non-structural mechanisms to manage flood risks

on the Shouchang River in Zhejiang Province. The study aims

at; (1) mapping flood-prone areas within the Shouchang River

basin, (2) developing flood early warning system by the use of

coupled HEC-HMS and AR models to predict both runoff and

stream flow at the Yuankou hydrological station based on historical

rainfall data, (3) providing actionable insights for flood mitigation

by aligning flood forecasts with hydrodynamic models, and (4)

constructing a flood evacuation transfer analysis model based

on hazard zones and evacuation units, evacuation population,

evacuation methods and designating resettlement areas. It is

anticipated that the flood early warning system, together with the

early actions related to evacuation and transfer, could be applied not

only to the Shouchang River but also to other flood-prone regions.

The subsequent sections of the manuscript are arranged as

follows; Section 2 presents the Study Area, Data and Methods

are presented in Section 3, while the Results, Discussion and

Conclusion follow in Sections 4–6, respectively.

2 Study area

Shouchang Town, located in the southwest-central part of

Jiande City in Zhejiang Province, China, spans an area of 145.75

km² and has a population of 45,000 people, as recorded by the

Zhejiang Provincial Government in 2023. Geographically, the town

lies between latitudes 29.000◦N and 29.050◦N, and longitudes

118.967◦E and 119.250◦E, with an elevation of ∼73.55m (241.31

ft) above sea level. The basin lies within the broader Qianjiang

River system, which is a tributary of the larger Qiantang River.

The basin is characterized by a mix of mountainous terrain and

valleys. The surroundingmountains influence the flow of water into

the basin, creating a network of streams and rivers that converge

in the low-lying areas. The predominant soil type in the basin

is typically red soil, which is common in southern China The

region’s topography features mountainous terrain, steep slopes,

river basins, and low-lying areas, making it susceptible to natural

hazards such as landslides, riverine and flash floods since land use

here majorly consists of residential areas, farmlands, reservoirs,

tourist attractions, and infrastructure such as roads, dikes, and

power facilities.

In the central and low-hill regions of the basin, human

activities have fragmented the evergreen broad-leaved forests over

time, giving way to coniferous forests and plantations (Zhu

et al., 1991). Common cultivated species include citrus, Chinese

tallow, camellia, oleifera, and bamboo. The northern mountainous

areas feature natural vegetation such as Pinus massoniana,

Cunninghamia lanceolata, Phyllostachys pubescens, tung oil trees,

and tea. Large tracts of artificial warm coniferous forests, including

Cunninghamia lanceolata, Cryptomeria fortunei, and Huangshan

pine, dominate the landscape, accounting for over 90% of the

forested area (Zhu et al., 1991). The Shouchang River basin forms

the basis of the study area for this research, with themost vulnerable

subbasin being subbasin five (5) as illustrated in Figure 1. The river,

originating from Shangmacun and Lijiazhen towns, flows for over

60 km downstream. This study focuses on a 10 km section of the

river, chosen for its geographical and socio-economic significance.

The total catchment area of the basin is ∼690 km², where higher

elevations are particularly prone to landslides and lower areas are

at risk of inundation.

The catchment generally experiences a humid subtropical

climate (Cfa) with an average annual temperature of 18.63◦C
(65.53◦F), which is about 0.18◦C warmer than China’s national

average. The region receives about 167.64mm (6.6 in) of
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FIGURE 1

The five sub-basins within the study area forming part of the Shouchang River Basin as delineated for this study. The highlight in purple indicates the

focus area, with the topographic map presented on the top-right inset. R1 and R2 presents the main river outlines, with tributaries joining at the

points labeled Junctions.

precipitation annually, distributed about 178 rainfall days, making

up 48.87% of the year. The combination of frequent rainfall, low

elevation, and steep terrain increases the likelihood of flooding,

water-logging, and landslides. Given these geographic and climatic

conditions, comprehensive flood control measures are essential

to protect the town’s population and infrastructure. To address

the flood risks effectively, grid-based monitoring and disaster

preparedness plans are implemented alongside hydrodynamic

floodplain mapping.

3 Data and methods

This section presents the various datasets and techniques

utilized to achieve the objectives of the study.

3.1 Terrain model, land use and
meteorological datasets

Digital terrain model (DTM) is a critical component in

hydrological and hydraulic modeling as it governs the river

channel network and water routing both within and outside the

channels. This study utilized the 12.5m resolution DTM from the

Alaska Satellite Facility (https://search.asf.alaska.edu/). The 12.5m

resolution provides a balance between computational efficiency

and spatial detail, enabling accurate representation of topographic

features such as slopes, depressions, and drainage patterns, which

are essential for flood prediction. The vertical accuracy of the DTM

is reported to be within±2m, which is suitable for large-scale flood

modeling studies.

To further enhance the terrain representation, cross-sections

are defined and adjusted within the model to achieve an

effective resolution of 5m, after trade-offs between resolution and

computational demand have been factored. The 12.5m DTM,

enhanced to 5m in critical areas, strikes a balance between detail

and computational feasibility, ensuring reliable flood predictions

while maintaining model efficiency. This refinement ensures

a more precise representation of river morphology and flow

patterns, particularly in areas with complex topography. The higher

resolution is especially important for capturing small-scale features

that influence flood dynamics, such as levees, embankments,

and floodplains, which are critical for accurately simulating

flood extents and depths. For instance, finer resolution helps in
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identifying subtle elevation changes that can divert floodwaters or

create localized pooling. Land-cover and land-use data at 30m

resolution are obtained from the United States Geological Survey

(USGS) Earth Explorer platform (https://earthexplorer.usgs.gov/).

To ensure consistency between the DTM and land-use datasets,

the land-use data are resampled to match the 12.5m resolution of

the DTM using a nearest-neighbor interpolation technique. This

approach preserves the categorical nature of the land-use data while

aligning it with the higher-resolution DTM. The resampled land-

use data are then integrated with theDTM to account for the impact

of land surface characteristics on hydrological processes, such as

infiltration and surface runoff.

Hydrometric indicators, including flow rates, precipitation,

and evaporation data from 2001 to 2020, are acquired from

the Emergency Plan of Flood Control, Typhoon Prevention, and

Drought Relief for Shouchang Town, Jiande City (Liang et al.,

2022). The meteorological data include records of major storm

events, such as those occurring on June 15, 2011; June 8, 2014;

May 27, 2008; April 29, 2012; and June 17, 2017. These events

were selected to represent a range of flood scenarios for model

calibration and validation.

3.2 Processing of input datasets

The study utilizes the 2D version of HEC-RAS 6.5, a hydraulic

modeling software designed by the U.S. Army Corps of Engineers,

using the following key steps:

• Mapping the topographic data, both DTM and land use to the

study domain:

In this study, the DTM and land use data are mapped to

the study domain. The DTM is preprocessed to remove artifacts

and outliers using a combination of manual inspection and

automated filtering techniques. For instance, Python’s pandas

library is applied to handle and clean the data, removing any

erroneous elevation values, including negative values and extreme

outliers that could distort the terrain representation. Cross-

sections are then defined and adjusted within the model to

enhance terrain accuracy, achieving the higher resolution of 5m.

This involved interpolating missing data points using spatial

interpolation techniques, ensuring a more precise representation of

river morphology and flow patterns.

• Meteorological data processing:

At this step the rainfall data is preprocessed by calculating

the inverse distance weights (IDW) for each gauge, since all the

coordinates are available, based on proximity to the hydrological

station. This is implemented using Python’s scipy.spatial and

numpy libraries to compute the weights and normalize them.

The weighted rainfall values are then aggregated to compute

a total weighted rainfall for each station. Discharge data is

then merged with the weighted rainfall data for modeling.

Missing or inconsistent discharge records are handled using linear

interpolation and by applying a rolling mean to smooth the

data, ensuring continuity and reliability in the input dataset. The

evaporation data is not explicitly processed but is averaged and

directly loaded into the model. Any gaps in the evaporation dataset

are filled using a simple mean imputation method.

• River geometry and mesh generation:

HEC-RAS employs a finite-volume solution scheme to generate

structured and unstructured meshes. The river geometry is

extracted using RASMapper (U.S. Army Corps of Engineers, n.d.f),

which involved delineating the main channel and bank-lines within

the original DTM. Python’s geopandas library is used to preprocess

and validate the spatial data, ensuring accurate representation of

the river system (U.S. ArmyCorps of Engineers, n.d.c; Ongdas et al.,

2020). HEC-RAS Mapper was utilized to develop the RAS terrain,

outline the geometric dataset, extract the terrain data, and visualize

the outcomes in the form of tables and maps (U.S. Army Corps of

Engineers, n.d.b). To further enhance accuracy, cross-sections were

manually adjusted within the model to better align with observed

river morphology. This step included filtering out noise in the DTM

data and refining the mesh resolution to 5 m resolution.

• Visualization and output:

HEC-RAS Mapper was utilized to develop the RAS terrain,

outline the geometric dataset, extract terrain data, and visualize the

outcomes in the form of tables and maps. Python’s matplotlib and

seaborn libraries are used for additional visualization and analysis

of the preprocessed data, ensuring that the final input datasets met

the required quality standards.

3.3 Rainfall–runo� model: HEC-HMS

For this hydrodynamicmodeling project, HEC-HMS andHEC-

RAS 6.5 are employed as the primary tools to simulate and

analyze flood behavior. These models utilize high-resolution ALOS

POLAR satellite imagery and DEM (Digital Elevation Model)

data to ensure accuracy. The integration of these technologies

supports the development of effective flood management strategies

and enhances the town’s resilience against natural disasters. The

overall workflow in this study is presented in Figure 2 ranging

from data preparation, model development to the visualization of

the outputs.

Flood model set-up is generated by integrating QGIS with the

HEC-HMS (rainfall-runoff model) and hydraulic model HEC-RAS

for the study area. A rainfall-runoff model is created in HEC-HMS

to prepare the input data. The output data of the HEC-HMS model

simulation is employed as input data to run the HEC-RAS 2D

flow model and generate flood risk and flood inundation maps.

HEC-RAS 6.5 is used to facilitate precise floodplain mapping and

hydrodynamic simulations of how floodwaters flow through river

reaches under various scenarios (U.S. Army Corps of Engineers,

n.d.b, n.d.f), while HEC-HMS is used to simulate watershed runoff

and rainfall’s impact on flood peaks (U.S. Army Corps of Engineers,

n.d.e). Major storm events (June 15 2011, June 8, 2014, May 27

2008, April 29 2012, and June 17 2017) that occurred in the past

20 years within the Shouchang River basins are selected to develop
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FIGURE 2

Schematic representation of the workflow involved in data preparation, model setup, and simulation of the case studies.

the flood events for current flood mapping and analysis. Based on

simulation outcomes, flood risk and inundationmaps are generated

for the Shouchang River basin, with a specific focus on theMay 27th

2008 event.

The application of 2D hydraulic modeling using HEC-RAS 6.5

is useful to calculate velocity, water surface elevation (WSE), and

cross-sectional average at distinct cross-sections within the river

(U.S. Army Corps of Engineers, n.d.d). This process employs the

Saint-Venant (SV) equations for 2D flow simulation, considering

key assumptions such as small channel slope and hydrostatic

pressure distribution. Manning’s roughness coefficients of 0.3 for

the main stream channel and 0.035 for the floodplain sections

are utilized in this model. Boundary conditions, including critical

depth, normal depth, known water surface elevations, and rating

curves, are established to define the upstream and downstream ends

of the simulated river system.

To create the basin model for the study area, a hydrologic

model, combined with GIS tools (HEC-GeoHMS), is employed

(U.S. Army Corps of Engineers, n.d.d). HEC-HMS simulates the

runoff response of the various sub-basins to a certain amount

and precipitation distribution over a specified period (U.S. Army

Corps of Engineers, n.d.f,n). In cases where high-resolution

data were unavailable, land use and cover data were calibrated

using the RAS Mapper tool within HEC-RAS. This involved

overlaying the DEM with available imagery from open datasets

such as Google Earth and Microsoft Bing Maps, identifying land

use categories, and refining classifications based on elevation

and terrain features for improved accuracy. Based on the land-

use classification, impervious percentage, lag time and curve

numbers are calculated for each sub-basin which are presented

in the results section. Other physical features such as the

distance along the stream path, the stream slope and length, the

longest flow direction for each sub-basin, and, the location of

the sub-basin elevation and its centroid are also derived from

the model.

• Model parameters

The HEC-HMS model relies on several key parameters to

simulate rainfall-runoff processes, including:

i. Curve number (CN)

This represents the runoff potential of the land surface based

on soil type and land use. CN values are calculated for each of the

five sub-basins using weighted averages based on land use and soil

type distributions.

In subbasins with diverse land use or soil types, calculating

a single CN requires weighting the values according to their

respective areas. The weighted CurveNumbers here are determined
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by applying Equation 1.

Weighted CN =
∑

(CNi ∗ Areai)
∑

Ai
(

Total Area
) (1)

WhereCNi represents the Curve Number for land use/soil type and

Areai is the corresponding area. For example, if a subbasin is 30%

forest with a CN of 55, 50% agricultural land with a CN of 75, and

20% urban area with a CN of 85, the weighted CN would also have

a direct impact on the final values of the lag times.

ii. Lag time (Tl)

This represents the time delay between peak rainfall and peak

runoff. It is calculated using Equation 2:

Tl =
L ∗ (S+ 1)0.7

1900∗
√
Y

(2)

Where Tl is Lag time (hours), L Hydraulic length of the sub-basin

(ft or m), S is Potential maximum retention after runoff begins

(inches) ∼ S= 1000
CN

−10, CN is Curve number (dimensionless,

typically 0–100) and Y is the Average land slope of the watershed

(percentage, in decimal form).

iii. Impervious percentage

This parameter is intended to reflect the fraction of the sub-

basin area that is impervious, directly influencing runoff volume.

iv. Stream slope and length

Derived from the DEM, these parameters influence the flow

velocity and timing of runoff.

v. Initial abstraction

This is incorporated to represent the amount of rainfall

absorbed by the soil before runoff begins, typically estimated as 20%

of the potential maximum retention (SS).

• Calibration process

The HEC-HMS model was calibrated using observed

streamflow data from historical storm events. The calibration

process involved the following steps:

In order to achieve parameter initialization, the initial values

for CN, lag time, and impervious percentage were derived from

land use and soil data. Sensitivity analysis, adjusted against key

parameters such as CN and lag time is adjusted iteratively to

minimize the difference between simulated and observed runoff

hydrographs. Performance metrics: The Nash-Sutcliffe Efficiency

(NSE) and Root Mean Square Error (RMSE) are then used

to evaluate model performance. The model is considered well-

calibrated when NSE values exceeded 0.7 and RMSE values are

minimized. Finally validation is done on the calibrated model by

use of independent storm events not included in the calibration

process to ensure its reliability under different conditions.

3.4 Model for discharge predictions

The predictive model for discharge predictions involves

several key steps, including data collection, normalization, model

calibration, and validation. The normalization step, which was

previously omitted, is crucial for adjusting the flow data to account

for seasonal variations and extreme events.

A total of 35 storms are simulated in this study. This step

involves applying a normalization technique to the historical flow

data, ensuring that the data is scaled appropriately before being

integrated into the model. The normalized data is then used to

recalibrate the model parameters, improving the accuracy of the

discharge predictions.

The model is calibrated and validated using observed

streamflow data from historical storm events. The calibration

process involved adjusting key parameters, that is, Manning’s

roughness coefficient, grid sizes, and computation intervals to

minimize discrepancies between simulated and observed data. To

evaluate the model’s performance, the following error metrics

were computed.

• Flood volume error

This metric assesses the accuracy of the model in predicting

the total volume of floodwater. The absolute and relative errors for

flood volume were calculated using Equations 3, 4:

efl =
T − 1
∑

t = 0

qt + qt + 1

2
1t −

T − 1
∑

t = 0

(

ot + ot + 1

2

)

1 t (3)

Ofl =
efl

∑T − 1
t = 0

(

qt + qt + 1
2

)

1 t
∗100% (4)

Where; efl is the absolute error for flood volume (m3),Ofl is the

relative error for flood volume (%), qt is the forecasted discharge at

time t (m3/s), Ot is the observed discharge at time t (m3/s) and 1t

is the time interval in hours.

• Peak discharge error

This metric evaluates the model’s ability to predict the

maximum discharge during a flood event. The absolute and relative

errors of peak discharge were computed using Equations 5, 6:

epd = qpeak − opeak (5)

θpd =
epd

qpeak
∗ 100% (6)

Where epd is the absolute error of peak discharge (m
3/s), θpd is the

relative error of peak discharge, opeak is the observed peak discharge

(m3/s) and qpeak is the forecasted peak discharge.

• Peak time error

This metric is intended to measure the temporal discrepancy

between the forecasted and observed peak discharge times. The

formula used is shown in Equation 7:

1Tpeak = Tpeak − T̂peak (7)
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Where Tpeak is the forecasted time and T̂peak is the flood

observation time.

These error metrics provide a comprehensive assessment of

the model’s performance, highlighting its strengths and areas for

improvement. The calibration process ensured that the model

accurately captures terrain characteristics and hydrodynamic

behaviors, as evidenced by the low error values for flood volume,

peak discharge, and peak time.

3.5 Hydrologic model: HEC-RAS

The model is designed to provide key outputs, including

velocity, water surface elevation (WSE), and flood inundationmaps

for 10-, 20-, and 100-year periods. These outputs facilitate the

assessment of the impacts of increased flooding under different

scenarios. The flood inundation is determined by simulating water

flow across the terrain and identifying regions where water depth

exceeds a threshold value, typically above ground level. This process

involves the following steps:

• Terrain and hydraulic inputs

The terrain layer is constructed using a 12.5m resolution DEM

and 10m resolution land cover data in vector format. Geometry for

the terrain is defined, including boundary conditions, Manning’s

roughness coefficient, and unsteady flow data. A 2D flow area is

outlined, generating a computational mesh with an initial 80m cell

size to model water movement efficiently.

• Setting of the boundary conditions

The upstream boundary (near Wutancun) receives hydrograph

data from 2001 to 2020, while the downstream boundary (at

the Xin’an River confluence) uses a 0.01 slope and normal

depth conditions. These boundary conditions ensure that the

model accurately represents the hydrological behavior of the study

area (Figure 3).

• Flood inundation mapping

The model produces flood inundation maps by simulating

water flow across the terrain and identifying areas where water

depth exceeds a predefined threshold. These maps provide insights

into the extent and depth of flooding, which are critical for assessing

flood risk and planning evacuation routes. The inundation area is

directly related to the evacuation analysis, as it identifies regions

that are likely to be affected by flooding and require evacuation.

• Calibration and validation

The model is calibrated for the 2008, 2011, and 2014 flood

events and validated using 2017 data. Calibration involved

adjusting Manning’s roughness coefficient, grid sizes, and

computation intervals to ensure the model accurately captures

terrain characteristics and hydrodynamic behaviors.

• Land use and land cover (LULC) analysis

Time series of yearly global LULC maps, generated from ESA

Sentinel-2 imagery at 10-meter resolution, were processed in QGIS

to estimate the influence of land use changes on runoff generation.

The analysis revealed a systematic increase in impervious surfaces,

which has likely amplified runoff and flood risk over time.

These changes were incorporated into the model to improve

its accuracy.

• Evacuation analysis

The flood inundation maps were used to identify areas at

high risk of flooding and to plan evacuation routes. By correlating

the inundation extent with population density and infrastructure

data, the model helps prioritize evacuation efforts and allocate

resources effectively. These classifications are produced using the

Planetary Computer platform, which applies models to annual

Sentinel-2 scene collections (Esri, n.d.; Karra et al., n.d.). The

land-use categories in the study area include: Residential areas—

high-density urban zones with impervious surfaces; Farmlands—

Agricultural lands primarily used for citrus, bamboo, and

other crops; Forests—dominated by coniferous species such as

Cunninghamia lanceolata and Pinus massoniana; Water bodies—

Reservoirs and rivers; and Infrastructure—Roads, dikes, and power

facilities. These land-use types influence hydrological processes

such as infiltration, surface runoff, and evapotranspiration, which

are critical for flood modeling. Temporal changes in land use,

particularly the expansion of developed areas and the reduction

of forested regions, are analyzed using annual land-use maps

from 2017 to 2023. This analysis revealed a systematic increase in

impervious surfaces, which has likely amplified runoff and flood

risk over time.

The project’s spatial reference system (SRS) is set for

the development of the RAS terrain layer using a projection

file from https://spatialreference.org/. Shown in Figure 2 is the

upstream boundary (near Wutancun) receives hydrograph data

from 2001 to 2020, while the downstream boundary (at the

Xin’an River confluence) uses a 0.01 slope and normal depth

conditions. The model produces flood inundation maps, providing

insights into water flow through the study area. The calibration

of the flood model involves adjusting three key parameters:

Manning’s roughness coefficient, grid sizes, and the computation

interval. These adjustments ensure the model performs accurately,

capturing terrain characteristics and hydrodynamic behaviors

effectively. There is a significant temporal land cover change over

time. For instance, the available data from 2017 to 2023 shows

evidence of systematic expansion of high intensity developed areas

and a proportional shrinking of the forested areas, as illustrated

in Figure 4.

Manning’s roughness coefficients (n values) are derived for

Cross-Sections and 2D Flow Areas directly within the RAS Mapper

(U.S. Army Corps of Engineers, n.d.b, n.d.d). The final n values

raster and sub-layers for calibration regions are generated using the

Manning’s n group layer (Krest Engineers, n.d.).

Base n values, along with overrides, are assigned and linked to

the model’s geometry. Depending on the most recent type of land
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FIGURE 3

Upper and lower boundary condition lines.

FIGURE 4

Mean land use and land cover states over the study area for the years 2017 (a) and 2023 (b) based on Sentinel 2 datasets. The spatial characteristics

indicates major changes being an increase in the proportion of urban areas, and a decline in mixed forests.

use and cover the, the Manning’s values applied are as shown in

Table 1 (CivilGEO, n.d.; Soliman et al., 2022).

Calibration regions, defined through a polygon layer, are

refined during the analysis in between the upper boundary and

the lower boundary in order to improve the model’s performance

and accuracy. In HEC-RAS, visualization is managed through

the RAS Mapper (U.S. Army Corps of Engineers, n.d.b). Initial

conditions account for moisture, infiltration, and temperature
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TABLE 1 Sample table format.

Land cover type Manning’s n
value

Impervious
percentage

Developed, high intensity 0.15 60

Developed, low intensity 0.1 10

Developed, open space 0.035 0

Open water 0.035 100

Mixed forests 0.12 0

Evergreen forest 0.15 0

Hay/pasture 0.045 0

Barren land 0.025 40

gradients by running the model for 1 h, with a 0.1 wrap-up

time (U.S. Army Corps of Engineers, n.d.a). The diffusion wave

equation for unsteady flow remains at its default setting. Interval

settings for computations, hydrographs, and mapping outputs are

configured before starting the simulation to ensure accurate and

reliable modeling.

4 Results and discussion

4.1 Peak flows and precipitation

This study involved the analysis of 35 storm events in the

Shouchang River Basin, occurring between the year 2001 and 2020,

and successfully identified nine major storms that generated peak

runoff averaging 1,000 cubic meters per second (cms). Among

these, three events—May 2008, July 2002, and July 2010—exhibited

single peak flows, while the remaining six displayed multiple

peaks (May 2016, June 2017, June 2014, June 2012, June 2011,

and April 2012). This distinction in peak behavior maybe be

explained by a combination of hydrological, meteorological, and

geomorphological factors.

4.1.1 Single-peak events
As an attempt to explain the rainfall-discharge synchronization,

the first three graphs in Figure 5, correlate precipitation at different

stations (Dakengyuan, Datong, Qudou, Shouchang, Yuankou)

with discharge response in different storms. The lag time

between peak rainfall and peak discharge varies across storms,

indicating hydrological response differences among sub-basins.

On the other hand, the rainfall distribution across stations; some

stations, like Dakengyuan and Qudou, received significantly higher

precipitation amounts during certain storm events. In some cases,

the spatial distribution of rainfall shows that higher precipitation

at multiple stations leads to a sharper and more synchronized peak

in discharge.

The bar graph (d) shows that Qudou had the greatest influence

on the number of storms, followed by Yuankou. As part of storm-

specific responses, Storm 18 indicates a strong peak in discharge

closely following the highest precipitation event (July 9), suggesting

a quick runoff response. Storm 5 [Graph (b) exhibits a double peak],

indicating prolonged and secondary rainfall pulses from multiple

sources. Storm 12 (third precipitation-discharge graph) has a

high correlation between multiple rainfall pulses and discharge

peaks, reinforcing the idea of multiple peak storm events due to

staggered rainfall patterns. The analysis on the number of all storms

influenced by each gauging station suggests Qudou is the most

influential station, affecting the highest number of storms (14),

while Dakengyuan has the least impact.

These single peak events are typically associated with

short-duration, high-intensity rainfall concentrated over a brief

period. Such storms generate rapid surface runoff, particularly

in sub-basins with steep slopes, low infiltration capacity, and

high imperviousness. The following factors were considered as

influential to the single peak storms:

• Concentrated rainfall over short duration

Single peak storms are often driven by intense convective

precipitation, where heavy rainfall occurs in a short span, leading to

a single, sharp peak in discharge. For example, the May 2008 flood

event, which resulted in a single sharp peak exceeding 800 cms, was

likely driven by a tropical system ormonsoonal burst, causing rapid

saturation and overland flow.

• Limited influence from sub-basin lag effects

When precipitation is uniform across the basin without major

secondary rainfall pulses, runoff converges quickly to the main

river, forming a single dominant flood peak. This contrasts with

storms characterized by extended rainfall duration or intermittent

bursts, which tend to produce multiple peaks.

• Soil moisture and initial abstraction

Antecedent soil moisture conditions play a critical role in

shaping runoff responses. If the soil is already near saturation

before the event, runoff generation is immediate, leading to a

single dominant peak. This was evident in the July 2002 and

July 2010 events, where pre-saturated soils likely amplified the

runoff response.

• Hydrological model response

The Peak Rate Factor (PRF) in models like the Clark Unit

Hydrograph significantly influences the shape of the hydrograph.

Higher PRF values produce sharper hydrographs, indicating a

single concentrated discharge peak rather than extended, spread-

out flows. In this study, the PRF value of 200 was found

to be suitable for the basin, producing a flatter hydrograph

that aligns with the observed single peak behavior during

intense storms.

• Management implications

Early warning systems should be prioritized in regions

where Qudou and Yuankou dominate runoff response. Real-time

precipitation monitoring at these key stations would improve

flood prediction accuracy. Understanding the cumulative impact

of rainfall from multiple stations can aid in reservoir operation

adjustments and emergency flood response strategies

Frontiers inWater 09 frontiersin.org

https://doi.org/10.3389/frwa.2025.1553146
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Musyoka et al. 10.3389/frwa.2025.1553146

FIGURE 5

Graphical illustration of the relationship between precipitation at di�erent stations and the resulting discharge across multiple storms. The bar chart

indicates the number of storms influenced by each rainfall station.

4.1.2 Multiple-peak events
In contrast, six events—May 2016, June 2017, June 2014, June

2012, June 2011, and April 2012—exhibited multiple peaks, also

averaging around 1,000 cms. These events are characteristic of

prolonged or intermittent rainfall, where precipitation occurs over

an extended period or in multiple bursts. The outcome is illustrated

in Figure 6.

The following factors were found to be key in influencing the

occurrence of the multiple peaked storms:

• Multiple rainfall pulses and synchronicity of sub-basin runoff

Unlike single-peak storms, multiple-peak events are

characterized by successive rainfall pulses over an extended

period. For example, the June 2017 and June 2014 events show

several peaks, reflecting intermittent rainfall bursts rather than

a single deluge. The lag times between sub-basins (ranging

from 100 to 150min) mean that flow accumulation does not

occur simultaneously, leading to staggered contributions and

multiple peaks.

• Variable sub-basin contributions

Sub-basins with shorter lag times (e.g., Subbasin 5)

contribute runoff first, while delayed runoff from other

sub-basins creates additional peaks. This pattern is evident

in the June 2012 and April 2012 hydrographs, which show

sequential flow surges, suggesting staggered contributions from

different areas.

• Complex terrain and flow routing

Multiple peaksmay also result from valley storage effects, where

floodwaters temporarily accumulate in low-lying areas before being

released gradually. This phenomenon is particularly evident in

the June 2011 event, where multiple peaks likely resulted from

a combination of direct runoff and delayed storage release from

floodplains or reservoirs.

• Variable soil saturation and runoff response

Early rainfall can prime the system, allowing for more efficient

runoff generation during subsequent rainfall bursts. For example,

in the June 2017 event, the first burst of rain likely saturated the

soil, enabling higher runoff volumes during later rainfall, which

reinforced the multiple peaks.

• Human and structural influences

Urbanization and artificial storage structures (e.g., reservoir

releases or flood control operations) may modulate peak flows,

leading to secondary peaks. The hydrographs for June 2014 and

June 2012 show signs of flow regulation, where peaks might have

been influenced by controlled discharges upstream.
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FIGURE 6

Six multiple-peak events indicating prolonged and intermittent rainfall patterns with distinct hydrological triggers—(May 2016, June 2017, June 2014,

June 2012, June 2011, and April 2012).

• Hydrological implications

The distinction between single and multiple peak events

has significant implications for flood risk management. Single

peak events, driven by short-duration, high-intensity storms,

require rapid response mechanisms to mitigate flash flood risks,

particularly in steep and impervious sub-basins. In contrast,

multiple peak events, associated with prolonged rainfall, necessitate

strategies to manage cumulative runoff and reduce the risk of

sustained flooding in downstream areas.

The observed patterns also highlight the importance of

antecedent soil moisture conditions in shaping hydrological

responses. Wetter soils, resulting from prior rainfall, reduce

infiltration capacity, and increase runoff generation during

subsequent storms, leading to higher and more frequent peaks.

This is evident in the June 2014 and June 2017 events, where

sustained rainfall led to multiple peaks despite moderate individual

rainfall intensities.

4.2 Modeling and predictive insights

The hydrological modeling results further support these

observations. The AutoReg(2) model, while demonstrating strong

predictive capability, shows some systematic errors in predicting

peak flows, particularly during multiple peak events. This may be

attributed to variations in soil moisture and rainfall characteristics,

which influence the timing and magnitude of runoff. For instance,

the model accurately predicts the timing of single peak events but

may underestimate the cumulative effects of prolonged rainfall,

as seen in the June 2014 and June 2017 events in Figure 7.

These findings emphasize the need for improved model calibration

to account for antecedent conditions and rainfall duration,

particularly in basins prone to both flash and cumulative flooding.

The results show that the simulated flows (both Sink1 and R1)

often underestimated the observed flows, especially during peak

events. This is consistent with the finding that the mean observed

flow is generally higher than the simulated flow from both models.

This observation reinforces the need for further model calibration,

particularly to improve the accuracy of mean flow predictions.

The simulation shows significant discrepancies during peak

flow events, with Sink1 sometimes overestimating and R1

consistently underestimating the observed peaks. For example, in

the June 2001 storm, the observed peak was 331 m3/s, while Sink1

simulated 223.88 m3/s and R1 simulated 78.82 m3/s.

The finding that Sink1 tends to overestimate peak flows in some

cases while R1 underestimates them is consistent in highlighting the

importance of improving peak flow simulations, especially for flood

forecasting and management.

Figures 7, 8 indicate that both models generally followed the

observed flow trends, but with varying degrees of accuracy. R1,

despite underestimating peaks, often followed the overall trend
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FIGURE 7

Observed vs. predicted discharges for multiple-peak events indicating prolonged or intermittent rainfall patterns with distinct hydrological triggers:

(May 2016, June 2017, June 2014, June 2012, June 2011, April 2012).

more closely. The correlation analysis (e.g., 0.973 for Sink1 and

0.976 for R1 in May 2004) supports the idea that while R1 may

underestimate peaks, it tracks the overall flow pattern better. This

is useful for understanding model performance and identifying

areas for improvement. For example, the June 2001 storm was

a single-peaked event, while the June 2003 storm had multiple

peaks. The observation that multiple-peaked storms show greater

variations in simulated vs. observed peaks suggests that models

may struggle more with complex hydrographs, which is critical for

flood forecasting in regions prone to multi-peak storms. The lag

time analysis across five sub-basins in the Shouchang River Basin

reveals variations in hydrological responses to rainfall, with lag

times ranging from 100 to 150min. Subbasin 1, with the longest

lag time, 150min, indicates slower runoff due to gentler slopes

or permeable soils, while Subbasin 5, with the shortest lag time,

100min, suggests steeper slopes and quicker runoff, increasing the

risk of flash floods. Synchronization of peak flows from multiple

sub-basins poses a critical risk for downstream flooding in events

heavy rainfall across the sub-basins.

In this study, peak rate factor (PRF) is applied in the Clark Unit

Hydrograph and SCS (Soil Conservation Service) Unit Hydrograph

methods to simulate runoff behavior. The PRF significantly

influences runoff generation in HEC-HMS by affecting the shape

and magnitude of the unit hydrograph, which directly impacts

the timing and intensity of the runoff. A higher PRF reduces the

time to peak and increases the peak discharge, resulting in more

concentrated runoff in a shorter period. Based on Equation 3, a PRF

value of 200 creates a relatively flatter hydrograph, which spreads

runoff over a longer duration, resulting in lower peak discharge and

thus making it most suitable for our catchment area (Equation 8).

Qp =
484 ∗ A
Tp ∗ PRF

(8)

Where Qp is peak runoff rate (cfs or m3/s), A is Drainage area (mi²

or km²), Tp is time to peak (hours), and PRF as Peak rate factor

(unitless, typically 484 for standard SCS).

The hydrological plots reveal a strong correlation between

high precipitation events and rapid flow peaks, indicating limited

infiltration and fast surface runoff. Notable flood events, such

as the May 2008 flood, demonstrate peak flows exceeding 800

cms at the confluence of Reach 1 and Reach 2, likely driven by

steep terrain and intense rainfall or saturated soils within the

upstream sub-basins. Similarly, June 2012 and June 2017 events

showmultiple peaks, suggesting consecutive rainstorms or repeated

rainfall, increasing the likelihood of flash floods or back-to-back

flooding events. This pattern highlights the subbasin’s susceptibility
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FIGURE 8

Observed vs. predicted discharges for single peak storms indicating short-duration, high-intensity rainfall events over a single dominant runo�

generation zone.

to rapid onset flooding disasters, requiring timely early warning and

effective pre-disaster actions.

Subbasin 5, situated at the lowest boundary of the watershed,

acts as a flow accumulation point for upstream subbasins,

particularly during heavy rainfall. High runoff in this area results

from contributions from the rest of the sub-basins, 1–4. Key

junction points or outlets converge within Subbasin 5, making it

essential for flood management, especially to protect downstream

communities like Shouchang Town, which is vulnerable to

flooding, as illustrated in Figure 9. Rainfall events in April and

June 2012 show sharp peaks followed by rapid recession, indicating

a flashy hydrological response likely due to impervious surfaces

or steep slopes. In contrast, prolonged events like those in

June 2014 and June 2017 exhibit smaller but multiple peaks.

While individual peaks are moderate, the cumulative effect of

sustained rainfall can saturate soils, increasing the potential

for flooding.

The AutoReg(2) model demonstrates strong predictive

capability with significant coefficients (p < 0.001), but moderate

fit issues: an AIC of 4430.14 and RMSE of 79.54. A negative

correlation coefficient (−0.586) and a bias of 76.51 indicate

some systematic errors in predictions. It is noted that with the

current setup, the model accurately predicts the timing and

magnitude of runoff flows. However, variations in peak discharge

across years reflect changes in soil moisture, with wetter soils

producing higher runoff. Rainfall characteristics also influence

flow patterns, where short, intense storms generate sharp peaks,

while sustained rainfall leads to moderate but prolonged runoff.
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FIGURE 9

Response relationship between flow peaks and precipitation events for simulations of June 2012, June 2014, and June 2017.

The rainfall data recorded at Gauge 5 is essential for feeding

flow inputs into the HEC-RAS model, which is used for flood

inundation mapping.

4.3 Principal component analysis (PCA) of
storm-discharge relationships

The PCA Analysis and Station Influence on Storms data

provide additional insights into the hydrological behavior of the

Shouchang River Basin, particularly regarding the relationships

between storm events, sub-basin characteristics, and discharge

patterns. This analysis reveals that Principal Component 1 (PC1)

accounts for 92.08% of the variance, while Principal Component

2 (PC2) explains 4.36% of the variance, as illustrated in Figure 10.

This indicates that the majority of the variability in storm-discharge

relationships is driven by a number of factors associated with PC1,

which likely represents dominant hydrological processes such as

basin characteristics etc.

• Dominance of PC1

The high variance explained by PC1 suggests that the primary

drivers of peak discharge in the Shouchang River Basin are

consistent across most storm events. These drivers may include:

Rainfall intensity and duration: Short-duration, high-intensity

storms (single peak events) and prolonged rainfall (multiple peak

events) are likely key contributors to PC1; Sub-basin characteristics:

Factors such as slope, soil permeability, and land use (e.g.,

impervious surfaces) significantly influence runoff generation and

are likely captured by PC1; Antecedent soil moisture: Pre-storm

soil conditions play a critical role in shaping runoff responses,

particularly during multiple peak events.

• Secondary influence of PC2

The smaller variance explained by PC2 suggests secondary

factors that modulate storm-discharge relationships. These may

include: Spatial variability in rainfall distribution: Differences in

rainfall patterns across sub-basins can lead to variations in runoff

timing and magnitude; Flow routing and storage effects: Valley

storage, floodplain interactions, and reservoir operations may be

introducing additional complexity, particularly during multiple

peak events.

4.4 Station influence on storms

The Station Influence on Storms data highlights the role of

specific gauging stations in influencing storm events at Shouchang

Town, providing further insights into the spatial variability of

hydrological responses across the basin.

Qudou station: This station influenced the highest number of

storms (14 out of 35), indicating its central role in the basin’s
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FIGURE 10

The principal component analysis (PCA) plot (a) and cluster analysis scatter plot (b) illustrating significant insights on the storm-discharge

relationships and rainfall influence across di�erent storm events.

hydrological dynamics. The storms influenced by Qudou are

majorly associated with prolonged or intermittent rainfall events,

given the station’s location in a sub-basin with moderate lag times

and variable runoff contributions.

Yuankou station: Influencing 10 storms, Yuankou is

another critical station, particularly for events characterized

by multiple peaks. The station’s influence may reflect its

position in a sub-basin with complex terrain and flow routing,

where valley storage effects and delayed runoff contribute to

multiple peaks.

Datong station: Influencing five storms, Datong is associated

with both single and multiple peak events. The station’s influence

may be linked to its sub-basin’s steep slopes and rapid runoff

response, particularly during high-intensity storms.

Shouchang and Dekengyuan stations: These stations influenced

very few storms, suggesting their sub-basins play a more localized

role in the basin’s hydrological behavior. Shouchang, located at

the basin’s outlet, is critical for downstream flood management,

particularly during events with synchronized peak flows from

upstream sub-basins.

• Hydrologic model calibration

Upon calibration for 2008, 2011, and 2014 floods the

model is verified with the event data of 2017, demonstrating

excellent predictive power with an overall volume accounting

percent error of 0.4399% between simulated and observed

discharges. Simulations for May 28–31, 2008, are run using various

computation intervals.

4.5 Flood inundation area and depth
analysis

The catchment area spans 690 km², with flooding affecting∼28

villages in Shouchang towns, situated immediately downstream of

the confluence of the Shouchang and Xin’an rivers. In the entire

area, 54.4% of the affected area consists of urban land, withminimal

agricultural use. Simulations reveal that Ximen and Datangbian

villages are the worst-hit area, exacerbated by backwater effects.

Floodwaters gradually breach levees and walls, advancing through

floodplains and low-lying areas, as illustrated in the Figure 11.

Using HEC-RAS 2D, depth maps are generated with the

inundation levels categorized into high (>2m), medium (1–2m),

and low (0–1m) risk areas, as well as discharge variation as

illustrated in Table 2. The classification is necessary to identify

flood-prone regions, affected communication route—roads and

rails and the affected rescue centers in the study area. The maps,

displayed in RAS Mapper, align with reported flood data, with the

maximum inundation depth occurring onMay 28, the day after the

peak discharge as shown in Figure 12. The RAS Mapper enhances

2D flow analysis by animating water surface elevation, velocity,

and depth providing a clear visualization of flood dynamics.

Typical flow rates within the channel were about 2 m/s, with

some regions of remarkable reduction in channel width reaching

5 m/s (Figure 13).

Calibration results show that flow levels change with

varying discharge values, with maximum velocity and depth

aligning with peak flooding. Simulation performance is

also influenced by the compute interval and warmup time

settings in HEC-RAS. It’s ensured that initial conditions

approximate steady-state or near-steady-state behavior to

reduce warmup need to 8 h. This visualization capability

improves understanding of the model performance flood behavior

over time.

On examining how variations in upstream boundary

conditions and initial channel conditions affect computational

mesh performance, simulations using three different mesh

sizes reveal no major variations due to the inclusion of break-

lines and refinement regions along the channel. However,

changing the initial conditions influences the time required

to breach break-lines, reflecting differences in cell sizes across

regions. This suggests that localized mesh adjustments impact

simulation outcomes, even when overall discharge values

remain constant.
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FIGURE 11

Water surface elevations showing the inundated zones at Shouchang area along the Shouchang River for the May 2008 flood event.

4.6 Population evacuation transfer analysis

A good flood risk mapping project should integrate population

distribution, road characteristics, terrain, and existing public

infrastructure to optimize evacuation routes and resettlement

sites. Based on local plans for Shouchang Town, a total of 28

villages are situated within exposure areas of sub-basin 5. Out

of these 28 villages only 22 rescue centers were found to be

unaffected and thus effective for sheltering flood victims. Four

rescue centers would need relocation to higher grounds, including

adding new resettlement sites and modifying transfer plans. These

include Yongjiaqiao, Henanli, Ximen, and Datanbian Centers

where current arrangements prove susceptible to flood events of

similar threshold.

4.7 Analysis of evacuation scope and target
population

The downstream community neighborhoods of the Shouchang

brook includes the villages shown in Figure 14 alongside the

indicated communities rescue centers. An approximate population

of 48,000 residents, with the Dongchang, Xihu, and Wangjiang

communities constituting the highest population and making up

TABLE 2 Flow variation against inundation area variation.

Discharge variation
(%)

Change in inundated area (km2)

5 4.8

15 12.4

25 18.96

35 25.62

45 31.33

the core of the local administrative structure of Shouchang (Stevens

et al., 2015; Nieves et al., 2020), is exposed to floods caused by

this river.

In the event of a heavy down pour equivalent to that of May

2008, under design flood conditions, the flash floods would result

in a peak flow rate of∼1,400 m3/s. The floodwaters’ powerful force

would pose significant threats to infrastructure damage, loss of

life and property and disruption of activities near the inundated

areas. As a result, evacuation measures must be implemented for

the affected administrative villages of Shouchang and its outskirts,

under the unified coordination of the Hangzhou Municipal

Government Flood Control and Drought Relief Command.
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FIGURE 12

Flood depth extent around Shouchang Town in May 2008 relative to the lower boundary line.

By overlaying risk maps with layers representing residential

settlements and administrative villages, the evacuation scope

and targets are identified. Figure 15, illustrating the maximum

inundation area, shows that the inundation boundaries intersect

with majority of the administrative villages and easily shows low

risk areas with the potential of relocation as rescue centers. Thus,

the evacuation scope includes all residents within the inundation

zones of these administrative villages. In the case of the Pujiapeng

community rescue center, the proximity from flood pathway is safe,

however, the access routes to this center are not adequate. This

would pose a significant challenge to a rescue operation since the

terrain is also hilly.

4.8 Analysis of existing resettlement points
and their transfer routes

Based on the progression of extreme flood events, inundation

areas, water depth, and the distribution of evacuees, resettlement

points, and transfer routes, evacuation routes and timing are

determined. The evacuation routes are developed by analyzing

transfer targets, resettlement points, and field investigations to

identify potential danger points along the routes that may

threaten the safety of evacuees. While most of these routes

maybe assumed as safe, a number of them may pose danger to

rescue operations. For instance, the Shili Shouchngjiang Ecology

Leisure Greenway, illustrated in Figure 15, would pose challenges

to rescuers since it would be substantively submerged near the

Bujiapeng South Street. Alternative routes connecting to 320

National Road, such as Xifeng and Dong Gui Roads would be safer

to use.

An emergency transfer plan is established by considering

the current traffic conditions, community distribution, and

resettlement points in the affected areas. For highly urbanized areas

with flat terrain, where most residents live in multi-story buildings,

on-site flood sheltering is feasible. In rural flood-protected areas,

as in the case of Bujianpeng, Nanpucun, and Wushicun, where

buildings are primarily low-rise, evacuation to higher ground away

from floodwaters is recommended.
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FIGURE 13

Flood extent showing the inundated areas as at 28th May 2008 over Shouchang Town (a), together with the simulated flow velocities (b) along the

Shouchang River.

FIGURE 14

All available existing centers and proximity to evacuation routes and flood waters.

Frontiers inWater 18 frontiersin.org

https://doi.org/10.3389/frwa.2025.1553146
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Musyoka et al. 10.3389/frwa.2025.1553146

FIGURE 15

A�ected rescue centers and routes.

According to the current evacuation plans for Shouchang

Town, most of the designated resettlement points are located

within or on the edge of the Shouchang Brook (as shown

in Figure 16). The existing resettlement points as compared

to the number of affected residents for each administrative

region are not adequate. Therefore, the current transfer and

resettlement plans cannot be adequately implemented without

minor adjustments.

The statistical analysis indicates that in the event of a record

storm flood in the Shouchang river, a total of 12,524 people

would require evacuation into Hengshan, Wangjiang, Dongmen,

Chengbei, Henanli, and Shibaqiao Centers. However, these existing

resettlement points provided by the Office of Shouchang Flood

Control, Taiwan Prevention and Drought Relief Headquarters

would only comfortably accommodate 4,350 people, leaving

approximately over 8,174 people without resettlement options.

This highlights that the capacity of the current resettlement

points is significantly insufficient, necessitating the planning

of additional resettlement points and the development of an

additional emergency response plan.

4.9 Limitations and considerations for
evacuation scope

While the evacuation scope was determined based on flood

inundation maps, population distribution, and proximity to rescue

centers, certain vulnerability factors such as age, health status,

and mobility constraints were not explicitly incorporated into the

analysis due to the unavailability of detailed demographic and

health data. These factors are critical for identifying populations

that may require additional assistance during evacuations, such as

the elderly, disabled, or those with chronic illnesses. In the absence

of such data, the current analysis assumes a uniform vulnerability

across the population. However, it is strongly recommended

that future studies and evacuation plans incorporate detailed

demographic and health data to better address the needs of

vulnerable groups. This would enable the development of more

targeted evacuation strategies, such as prioritizing the evacuation

of high-risk individuals, providing specialized transportation for

those with mobility challenges, and ensuring that rescue centers are

equipped to handle medical emergencies.
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FIGURE 16

A�ected centers of Yongjiaqiao and Wushicun communities.

5 Summary and conclusions

The PCA and station influence data provide valuable insights

for flood risk management in the Shouchang River. Stations

like Qudou and Yuankou, which influence a large number of

storms, should be prioritized for real-time monitoring and early

warning systems. Understanding the spatial variability of rainfall

and runoff contributions can help improve flood forecasting

accuracy. The dominance of PC1 in the PCA analysis suggests

that hydrological models should focus on accurately representing

rainfall intensity, sub-basin characteristics, and antecedent soil

moisture. The secondary influence of PC2 highlights the need to

incorporate spatial variability and flow routing effects into model

calibration, particularly for multiple peak events.

For flood mitigation strategies, sub-basins with steep slopes

and rapid runoff responses (e.g., Datong) require measures to

mitigate flash flood risks, such as improved land-use planning

and floodplain management. Sub-basins with complex terrain and

delayed runoff (e.g., Yuankou) may benefit from strategies to

manage cumulative flooding, such as reservoir operations and

valley storage enhancements.

The Curve Number (CN) analysis highlights variability in

runoff potential, with CN values ranging from 72 to 77. Subbasins

TABLE 3 Calculated curve numbers and lag time.

SUBBASIN &
associated station

Graph type Curve
numbers

Lag
time
(mins)

Subb1-Gauge2(Datong) Peak rate factor

200

72 150

Subb2-

Gauge1(Dakengyuan)

Peak rate factor

200

75 120

Subb3-

Gauge1(Dakengyuan)

Peak rate factor

200

74 130

Subb4-Gauge3(Qudou) Peak rate factor

200

75 120

Subb5-Gauge4(Shouchang) Peak rate factor

200

77 100

with higher CN values, such as Subbasin 5, exhibit greater runoff

potential and faster peak flow responses. In contrast, Subbasin

1, with a lower CN, shows higher infiltration capacity and

slower runoff. The impervious area percentages further influence

runoff, with Subbasin 4 exhibiting the highest impervious cover

(19.2%), increasing flood risks. The initial abstraction value
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FIGURE 17

Map of Shouchang Town showing existing rescue centers (orange) and already proposed safer locations (yellow) for safe evacuation and transfer of

flood victims.

of 20mm, consistent across all sub-basins, indicates uniform

rainfall absorption before runoff occurs, with higher CN sub-

basins generating more runoff during intense rain events. Effective

coordination of flow management is essential to mitigate peak flow

synchronization and reduce flood risks as well as for computation

of the lag times as shown in Table 3.

The integration of HEC-RAS and HEC-HMS generates precise

flood forecasts, offering insights into flood extent, depths, velocities,

and durations. It applies hydrodynamic modeling to assess flood

risks within the Shouchang River Basin, combining hydraulic data

with satellite imagery for accurate predictions.While existing levees

near the Xin’an River confluence are generally sufficient, further

improvements are recommended.

The research provides several important insights into

flood inundation modeling and flood risk management. The

choice of appropriate computational parameters to balance

simulation accuracy and processing time and parameters

influencing the HEC-RAS simulations such as grid spacing,

computation intervals, and the use of break-lines and refinement

regions around levees, is therefore very important for localized

flood modeling.

Based on the flood risk maps and inundation analysis, four

rescue centers (Yongjiaqiao, Henanli, Ximen, and Datangbian)

should be relocated to higher grounds. This can be achieved

by identifying safe zones outside the flood-prone areas, such

as the point locations marked in yellow in Figure 17, and

constructing new facilities or retrofitting existing structures to serve

as evacuation centers. Relocating these centers will reduce the risk

of flood damage to evacuation infrastructure, ensure safer andmore

accessible routes for residents during emergencies, and improve the

overall efficiency of rescue operations. This will ultimately save lives

and reduce property damage during future flood events.

It is also important that local authorities develop alternative

evacuation routes, such as Xifeng and Dong Gui Roads, which are

less likely to be submerged during floods. Enhance these routes with

better signage, lighting, and emergency communication systems to

facilitate smoother evacuations. Such improvement on evacuation

routes will ensure faster and safer movement of residents to

resettlement points, reducing the risk of casualties and minimizing

disruptions to rescue operations.

Finally, this study illustrates that although levees can play a

crucial role in shaping flood inundation patterns and determining
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the areas affected by flooding, they may not be adequate. This

observation amplifies the importance of in cooperating such

infrastructure with early warnings in future modeling efforts to

better simulate real-world flood behavior. This is particularly

critical for flood vulnerable communities near Shouchang and the

town outskirts. The south-east zone, including the neighborhoods

around Henanli, Shibaqio and Datangbian, is shown to be

especially prone to inundation during major flood events. These

areas require special attention, and priority should be given

to flood rescue operations and infrastructure improvements

to prevent loss of life and reduce property damage during

future floods.
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