
TYPE Review

PUBLISHED 04 March 2025

DOI 10.3389/frwa.2025.1553732

OPEN ACCESS

EDITED BY

Alexandra Gemitzi,

Democritus University of Thrace, Greece

REVIEWED BY

Anurag Malik,

Punjab Agricultural University, India

Shiblu Sarker,

Virginia Department of Conservation and

Recreation, United States

*CORRESPONDENCE

Subhankar Ghosh

subhankarghosh1994@yahoo.in

Laishram Kanta Singh

kanta_lai@yahoo.co.in

RECEIVED 31 December 2024

ACCEPTED 05 February 2025

PUBLISHED 04 March 2025

CITATION

Behura KB, Raul SK, Paul JC, Mohanty S,

Jena PP, Dwibedi SK, Ghosh S, Singh LK,

Devi SR, Singha AK and Mohanty AK (2025)

Comprehensive analysis of methods for

estimating actual paddy evapotranspiration—A

review. Front. Water 7:1553732.

doi: 10.3389/frwa.2025.1553732

COPYRIGHT

© 2025 Behura, Raul, Paul, Mohanty, Jena,

Dwibedi, Ghosh, Singh, Devi, Singha and

Mohanty. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Comprehensive analysis of
methods for estimating actual
paddy evapotranspiration—A
review

Kiran Bala Behura1, Sanjay Kumar Raul1, Jagadish Chandra Paul1,

Sheelabhadra Mohanty2, Prachi Pratyasha Jena1,

Sanat Kumar Dwibedi3, Subhankar Ghosh4*,

Laishram Kanta Singh5*, Sougrakpam Roma Devi6,

Arun Kumar Singha7 and Amulya Kumar Mohanty7

1Department of Soil and Water Conservation Engineering, College of Agricultural Engineering and

Technology, Odisha University of Agricultural & Technology (OUAT), Bhubaneswar, Odisha, India,
2Department of Soil & Water Conservation Engineering, Indian Council of Agricultural Research

(ICAR)-Indian Institute of Water Management, Bhubaneswar, Odisha, India, 3Department of Agronomy,

College of Agriculture, Odisha University of Agricultural & Technology (OUAT), Bhubaneswar, Odisha,

India, 4Department of AgFE, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India,
5Indian Council of Agricultural Research (ICAR)-KVK Imphal West, ICAR Research Complex for NEH

Region, Imphal, Manipur, India, 6Indian Council of Agricultural Research (ICAR)-KVK Churachandpur,

ICAR Research Complex for NEH Region, Imphal, Manipur, India, 7Indian Council of Agricultural

Research (ICAR)-Agricultural Technology Application Research Institute, Zone VII, Umiam, Meghalaya,

India

Evapotranspiration (ET) has considerable significance in the water cycle,

especially in farming areas where it determines crop water needs, irrigation

plans, and sustainable management of water resources. This study stresses the

need for accurate ET estimation in paddy fields where rice is grown because

of its high-water sensitivity and consumption which has implications for water

use e�ciency and food security. The study attempts to address the problem

by estimating rice ET: Standard procedures such as the Penman–Monteith

equation, lysimeters, and even remote sensing procedures such as Surface

Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration

at High Resolution with Internalized Calibration (METRIC) are all investigated.

Furthermore, an attempt is made to combine remote sensing data with machine

learning techniques for refined ET estimation. Utilizingmodernized technologies

and hybrid models, the research investigation aims to deepen the understanding

of ET variability for rice cropping systems to promote improved water resources

management and sustainable agriculture practices as areas for future work

suggest the application of vegetation indices incorporating high-resolution

multi-spectral imagery to accurately estimate ET and appropriately di�erentiate

between evaporation and transpiration in these complex agricultural systems.

KEYWORDS

paddy evapotranspiration, direct ET estimation, water balance, remote sensing, SEBAL,

METRIC, machine learning, Internet of Things

1 Introduction

Evapotranspiration is a vital component of the hydrological cycle, influencing
crop water requirements, irrigation scheduling, and water resource management in
agricultural landscapes (Wanniarachchi and Sarukkalige, 2022). Precise estimation of
evapotranspiration (ET) is important for paddy fields due to rice’s sensitivity to water
availability and high-water consumption rate. Given the global reliance on rice as a staple
food, understanding and estimating ET in paddy fields is essential to improve water use
efficiency and contribute to sustainable agriculture (Bwire et al., 2024; Yang et al., 2021).
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Evapotranspiration (ET) is a key factor in paddy farming as
it determines the water requirements that are vital for efficient
water management which in turn affects agricultural outputs. The
process in question combines plant ooze and evaporation from
water and land surfaces making it integral in the context of
agricultural water balance (Wanniarachchi and Sarukkalige, 2022).
In paddy fields where efficient water use is a key factor, knowing
the ET helps farmers to know the crop water requirements and
optimize water use for irrigation to avoid drought in the fields.
The estimation of ET is complicated by the spatial variation in
vegetation, particularly in the periods of active change in the flux
following precipitation and irrigation events (Wanniarachchi and
Sarukkalige, 2022). In addition, employing technologies such as
remote sensing and especially machine learning can boost the
accuracy of ET assessments thereby making better management of
water resources possible (Ghobadi and Kang, 2023; Alemohammad
et al., 2017; Miralles et al., 2016). Since 39.0% of ET is accounted
for by precipitation, which by itself creates additional water stocks,
the dynamics of these water stocks and fluxes are important for
ensuring balance in water use in paddy farming in a sustainable
manner (Wanniarachchi and Sarukkalige, 2022).

Hydrological cycle and paddy fields interact at various growth
stages and are relative to one another in terms of growth and
yield of the plant. This interplay is pronounced in the case of
conventional flood irrigation (CFI), in which root systems are
developed in such a way that it does not penetrate deep soils (Arif
et al., 2022). On the other hand, under the deficiency of water, for
instance, in the System of Rice Intensification (SRI), this vertical
growth of rice roots in the soil is favored. This adaptation leads
to better nutrient acquisition and overall improved plant growth
than any of the old planting systems that lead to roots developing at
greater depth. The deeper root system helps the plant to withstand
phases of paddy growth in which water stress may occur more
frequently (Sarma et al., 2023). So, it can be observed that the
water cycle and the growing of paddy are interlinked systems.
Several environmental determinants are contributing to the water
balance in the ecosystems of paddy fields, out of which the ET rates
are highly affected (Kamruzzaman et al., 2020). In the context of
evapotranspiration, the soil moisture content is the most significant
factor as it limits water that may be evaporated or transpired by
plants (Allen et al., 1998; Baldocchi and Xu, 2007).

Rice, one of the most water-intensive crops, must be
continuously submerged to obtain maximum yields. Paddy
cultivation requires great quantities of fresh water for its production
in countries where rice is a major food and an important
economic crop, such as India, China, Indonesia, and Thailand.
Traditional rice cultivation involves flooding the fields for most
of the growing season to reduce weed emergence, maintain a
suitable microclimate, and keep pest populations low. Yet the
resultant water demand exerts tremendous pressure on limited
water resources, particularly in water-scarce areas facing conflicting
demands for water due to climate variability, urbanization,
and competing agricultural needs. But such a system needs a
lot of water—roughly 2,500 liters for every kilogram of rice
grown. These high-water requirements sustained throughout
a rice-growing season place enormous demand on freshwater
resources and can stress already scarce water resources in
many situations.

Asian countries account for approximately 90% of the world’s
source of rice (Fukagawa and Ziska, 2019). As a result, the
water needed for rice cultivation in these areas is enormous,
frequently greater than the available water supplies, particularly in
the dry season. ET is the total amount of water transferred from
vegetation and soil surfaces to the atmosphere by transpiration
and evaporation, respectively, and is the actual water used by the
crop (Frevert et al., 1983). Understanding water use efficiency
(WUE) is especially important because improvingWUEmaximizes
productivity per unit of water lost, and precise estimates of ET
are necessary for paddy systems to effectively schedule irrigation
(Avila, 2015). Traditional irrigation methods for rice tend to be
conservative and overpredict water needs, resulting in excessive
losses by percolation and seepage. With ET-based irrigation,
everything works much nicer: Farmers apply the amount of water
the rice plants really need, making water management more
sustainable (Bouman et al., 1994; Trinh, 2021). Good estimates of
ET are also useful for determining crop-specific water demands
at different growth stages in rice crops. For instance, the mid-
season stage, characterized by abundant canopy coverage and high
transpiration rates, is generally the most arduous time of the year
regarding water needs (Smith et al., 1998).

2 Understanding actual
evapotranspiration in paddy
cultivation

2.1 Concept of actual ET

In the context of paddy rice, evapotranspiration (ET) refers to
the total water lost from a rice field through both transpiration by
the rice plants and evaporation from the standing water and soil
surface. This ET estimation technique is important for establishing
the water demands of paddy fields, which are commonly flooded
and form special environments that are different from non-flooded
crops (Ikawa et al., 2017; Liu et al., 2018a,b; Kumari et al., 2022).
Paddy fields are different from all the other crops because of their
standing water, with varying footprints of the canopy stage, and
because of the differences in regional climate factors (Lobell et al.,
2009; Kamruzzaman et al., 2020). There are various key factors
affecting actual ET in paddy fields.

The long periods of flooding in paddy fields cause the soil
surface to be covered with the water level, which can lead to the
formation of a layer of standing water that will be another hotbed of
evaporation (Yan and Oue, 2011). This open-water evaporation is
different from the soil evaporation in non-flooded crops where the
sunshine and atmospheric conditions are directly onto the water;
hence, the evaporation in paddy fields could be much larger in a
hot and arid environment (Bwire et al., 2024; Penman, 1948). This
open-water evaporation is separated from the plant transpiration
but is still a significant part of the total ET; therefore, the ET in
the paddy field is inherently larger than that in the non-flooded
crops. After all, there are various stages of the paddy life cycle,
and over it, the water requirements and a changing canopy shape
both have direct relationships with ET rates (Jiang et al., 2023).
The canopy is sparse in the early years of growth, resulting in
higher direct evaporation from the surfaces of water and soil (Jiang
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et al., 2023; Liu et al., 2020; Ukpoju et al., 2023). Canopy cover
increases as the crop matures, so that less water evaporates from
the water surface, but transpiration from the plants increases as
plants take up more water (Yan and Oue, 2011; Wei et al., 2015).
Since ET is maximal at the flowering stage, due to the denser
plant canopy and maximum transpiration rates (Cruz and O’toole,
1984), changes in canopy structure through the growing season
result in high temporal variability of ET (Barnard Bauerle, 2016).
In the context of the paddy field, climate factors such as humidity,
temperature, wind speed, and solar radiation are considered to
have a significant impact on ET rates (Lage et al., 2003; Kim and
Kang, 2024). High temperatures and solar radiation can increase
evaporation from standing water and transpiration from plants in
tropical and subtropical regions where most of the world’s rice is
produced (YiMin et al., 2020). Seasonal monsoon rains also affect
the possible water availability, consequently, the ET (Liu et al.,
2018a,b; Yan et al., 2022).

2.2 Components influencing ET in paddy
fields

2.2.1 Crop stage
Water loss through evaporation and plant transpiration

(evapotranspiration) in rice farming changes a lot during different
growth periods (Djaman et al., 2019a,b; Chen et al., 2023). Young
rice plants have small leaves, so they do not release much water
(Maina et al., 2014), but farmers flood the fields to stop weeds
and create a good environment for the seedlings (Johnson, 1996).
This standing water adds a lot to evaporation, which makes up
most of the evapotranspiration at this early stage (Bouman et al.,
2007; Johnson, 1996). For the tillering stage, water loss through
evaporation and plant transpiration (evapotranspiration) in rice
farming changes a lot during different growth periods (Abdullahi
et al., 2013; Djaman et al., 2019a,b). To manage water, farmers
need to understand these changes. This knowledge helps them to
improve irrigation and reduce waste. First, in the planting stage,
when farmers grow rice crops, evapotranspiration remains low
(Abdullahi et al., 2013).

Then in the flowering stage, rice plants hit their bloom phase,
that is, when they suck up the most water in the fields (Yang et al.,
2019; He et al., 2020). Plants grow this thick leaf that hides the water
underneath, making them lose all the leaves they have got. Even
though the water does not evaporate as much because the leaves are
blocking the sun, the total water use stays sky-high since the rice
needs a lot of water when it is trying to make seeds (Zhang et al.,
2007). Finally, rice plants get close to harvest time in the harvesting
stage, and their evapotranspiration, or ET, goes down a lot. Paddy
fields are dried out to help with the harvest, and because of that,
there is less water for evaporation and loss of water through the
plants (Covay et al., 1992). As the plants begin to get old and wither,
their leaves start to shrink, and then, they do not transpire as much.
This means the amount of water the air sucks up is the tiniest since
they started growing (Lv et al., 2024; Kobayashi et al., 2013).

2.2.2 Environmental factors
Weather conditions, such as how hot or cold it is, how much

water is in the air, how fast the wind’s blowing, and how much

sun is beaming down, matter for how much water gets evaporated
out of rice fields, which is called evapotranspiration (ET). The
temperature influences ET (Allen et al., 1998; Snyder et al., 2013;
Dai et al., 2022). When it gets hotter, the gap in vapor pressure
between the water’s surface or the rice plant’s leaves and the nearby
air gets bigger. Bigger ET numbers in hot spots where rice grows
a bunch, but when it is chillier, ET figures tend to go down. This
means places might not need as much water when it is not so
hot out. Moisture in the air, which we call humidity, goes the
opposite way of ET (Djaman et al., 2019a,b). When there is lots of
humidity, the air is almost full up, which makes it harder for water
to evaporate. This slows down how fast water and plants release
moisture, making ET dive. But if it is not as humid, the air can take
more water, speeding up ET for both water bodies and rice crops.
Even if the heat is the same, ET may be lower in humid and hot
areas than in dry, parched areas.

Wind speed is super important because it gets rid of that wet
air layer hanging right above water and leaves (Shapira et al., 2024;
Davarzani et al., 2014). When it is windy, there is more of that
misty air swapping with dry air, which makes stuff dry up quicker
because of all the evaporation and transpiration from plants. It was
observed that in the paddy fields with the wind blowing, it was
observed that more water evaporated when the weather was hot
and the air was exceptionally dry, but if it is just a light breeze
or pretty much still, that water vapor is not going anywhere fast,
which means less water’s disappearing into thin air (Allen et al.,
1998; Skidmore et al., 1969). The main power behind ET in rice
fields full of water is sunshine, because the water just soaks up those
sunbeams, kicking up the amount of evaporation (Yoshida, 1979).
When the sun cranks up its shine, there is more affinity to turn
water into mist, and both evaporation and transpiration rates go up
(Ikawa et al., 2017). As the rice gets taller and the leaves spread out,
the sun’s rays are more about transpiration since those plants are
all involved in photosynthesis (Vishwakarma et al., 2023; Burgess
et al., 2017). When it is cloudy or raining heavily during monsoon
season, ET might take a hit with less energy coming in, but when
the sky is clear, ET is on the rise (Hong et al., 2020; Ruosteenoja
and Räisänen, 2013).

2.2.3 Soil and water management
Evapotranspiration (ET) rates in rice fields are affected not

only by the weather but also by things related to how the
fields are managed and the type of soil, such as water levels,
soil characteristics, and drainage (Arif et al., 2022, 2020). These
elements work together to determine how water is kept, used, and
lost from the field, which is important for good irrigation practices.
The amount and depth of water level in rice fields have a big impact
on ET rates (Arif et al., 2022; Liu et al., 2023). Fields with more
water usually have higher evaporation from the surface. This is
especially true in the early growth stages when there is less canopy
cover, leaving more water exposed to sunlight and air (Suzuki et al.,
2013). Later, when plants growmore, the canopy covers somewater,
but deeper water levels can still help increase soil moisture and ET
through what plants take up. Keeping the water levels lower can
help cut down on evaporation without harming the plants, thus
conserving water (Bwire et al., 2024; Arouna et al., 2023; Amin et al.,
2011).
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Soil type is key in affecting ET because it influences how much
water the soil can hold, how easily water moves through it, and
how water rises in the soil (Zhao Y. et al., 2023; Li et al., 2014). In
rice farming, soils with a lot of clay are common because they hold
water well and do not let it drain quickly, which keeps standing
water (Khanh et al., 2024). Soils with high clay content can slow
down water drainage, allowing more water to be available for
evaporation and transpiration, which increases ET (Tsiampousi,
2023; Krisdianto et al., 2023). On the other hand, sandy soils
have fast drainage, needing more regular watering to keep water
levels up and raising the chance of losing water (Linderman et al.,
1976; Christen et al., 2006). Drainage systems are used in paddy
fields to control water levels, prevent excessive waterlogging, and
manage soil aeration (Negishi, 1970; Arif et al., 2020). Well-
designed drainage systems allow excess water to be removed at
specific crop growth stages, especially during the ripening phase
when lower water levels are required (Matsue et al., 2021). Proper
drainage can decrease ET by reducing the standing water available
for evaporation, particularly during cooler parts of the season
when drainage can also mitigate disease risks associated with
waterlogged conditions (Yu et al., 2021). Conversely, poor drainage
systems lead to excessive water retention, which increases open-
water evaporation and soil surface evaporation (Darzi-Naftchali
and Shahnazari, 2014).

3 Methods for ET estimation in paddy
fields

3.1 Conventional methods

The adoption of the Penman–Monteith method is functional
and widespread, whereby it is seen as the benchmark for the
estimation of ETs (Allen et al., 1998). The Penman–Monteith
method combines energy balance and mass transfer methods
(Penman, 1948; Monteith, 1965). The evapotranspiration rate is
represented by the latent heat flux: The method integrates climatic
variables such as temperature, wind speed, humidity, and solar
radiation to estimate ET. The Blaney–Criddle (Doorenbos et al.,
1977) and Hargreaves and Samani (Allen et al., 1998) methods are
classified as empirical because they are easy to use and utilize less
data input, which makes them ideal in regions where data are less
available (Sobrinho et al., 2020). Lysimeters determine the reliable
actual ET from the soil–plant system by measuring variations from
the initial water volume contained in the soil (Fisher, 2012). This
method may be very suitable for the validation and calibration of
other models as it is possible to acquire highly accurate ET data
(Ragheb et al., 2015; Fenner et al., 2019). The cost of installing and
maintaining lysimeters is quite high (Fisher, 2012).

Also, at times it may miss out on larger field scales of variability
in paddy systems (Shahrajabian and Sun, 2024). In addition to
this, they do not separate evaporation from transpiration and
therefore have limited use in trying to appraise the flooded rice
fields’ ET characteristics. These models estimate ET using a water
balance approach in which soil moisture is evaluated over time,
taking into account rainfall, irrigation, percolation, and runoff
(Westenbroek et al., 2018; Andales et al., 2011). They may be
transformed into paddy fields by incorporating parameters for

percolation and seepage, which are typical in flooded systems.
These models are data intensive as they require a lot of soil
moisture and hydraulic data, which is not easy to gather in paddy
fields because of the standing water (Bhadra et al., 2013). Remote
sensing techniques, such as the SEBAL model and the METRIC
model, utilize vegetation indexes and land surface temperature to
determine ET over large areas (Wang et al., 2014; Pareeth and
Karimi, 2023; Shamloo et al., 2021; Allen et al., 2007; Morse et al.,
2004). These techniques provide means of ET assessment at several
growth stages.

Remote sensing models, inside the emergent layer, require
rigorous calibration and can be limited due to cloud interference,
over the rice-growing season (Sah et al., 2024; Yuan et al., 2021).
They might also struggle to deal with the field scale heterogeneities
that pervade the paddy fields and waterlogged soils (Ferreira et al.,
2023; de Lima, 2021). This approach measures the water vapor and
heat fluxes interchange directly between the field surface and the air
in a bottom-up method and can estimate ET on an instantaneous
basis (Ha et al., 2014; Denager et al., 2020). It yields high precision
and near-continuous ET estimates that also make it easy to track
ET parameters on a seasonal or daily pattern basis for rice areas
(Hossen et al., 2012; Chatterjee et al., 2021). Eddy covariance
systems are costly and are inherently complicated and have high
requirements on equipment and expertise (Ferrara et al., 2021). In
addition, they are not applicable for high spatial scales appropriate
for many Asian cultures of paddy (Zhao Y. et al., 2023).

Lysimeters are among the most reliable methods for directly
measuring evapotranspiration (ET) as they simulate natural
field conditions while allowing for precise water supply balance
appraisal (Allen et al., 1998; Yang et al., 2000; Shahrajabian and
Sun, 2024; Sagar et al., 2022). Moreover, they are labor-intensive
and necessitate constipated sustenance, standardization, and data
point recording, which bestow operating complexity in extended
and remote study localization (López-Urrea et al., 2021; Shukla
et al., 2006). To boot, multiple lysimeters may be necessary to seize
spatial variability accurately across large paddy fields, far increasing
both costs and trade union movement demands (Rana and Katerji,
2000). Lysimeters are widely used to measure evapotranspiration
(ET) directly by going after the pee balance in a controlled soil
volume that mimics field stipulation (Bryla et al., 2010; Sagar et al.,
2022; López-Urrea et al., 2021).

Common methods for estimating evapotranspiration (ET)
include the Penman–Monteith and Hargreaves-Samani equation,
each with particular strong suits and restrictions in their respective
harvest and climate context of use (Allen et al., 1998; Moratiel
et al., 2019). The Penman–Monteith method is believed to be
the stock advance for ET ideas as it mixes multiple climatic
components, including solar radiation, air temperature, humidity,
and the number of nothingness, making it extremely reliable under
diverse agricultural conditions (Allen et al., 1998; Howell and Evett,
2004; Hao et al., 2018; Raoufi and Beighley, 2017; Varga-Haszonits
et al., 2022). However, in paddy fields, where the filth is endlessly
swampy, the Penman–Monteith model can bump difficulties as
it assumes unsaturated status, implying that the water-saturated
environment needs site-specific calibration to render accurate ET
values (Jensen et al., 1990; Facchi et al., 2013; Saggi and Jain,
2022). Moreover, the Penman–Monteith equation relies on wide
meteorological data, which may be challenging to receive in remote
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or resource-limited areas where paddy fields are often placed
(Jensen et al., 1990).

The Hargreaves-Samani equation, on the other hand, is
an empirical model that requires only temperature and extra-
terrestrial radiation data to arrive at it utilitarian in data-
scarce parts (Hargreaves and Samani, 1985). While its simplicity
enables broader applicability, the Hargreaves-Samani method lacks
sensitivity to important environmental divisors such as humidity
and wind, which are critical in the unique microclimate of
swamp paddy study (Hargreaves and Samani, 1985). As a result,
the ET estimate derived from the Hargreaves-Samani model
may be inaccurate for paddy fields, frequently ask for empirical
adjustments to improve alignment with the specific water and
vapor exchange moral force of rice culture (Xu and Singh, 2002).

Irrigation records, which get across the amount and frequency
of water applied to fields, can sometimes be expended to indirectly
estimate evapotranspiration (ET) by assuming that the primary
water exit from the study is due to ET (Allen et al., 1998;
Wanniarachchi and Sarukkalige, 2022; Bochetti et al., 2016). This
advance is in particular useful in data-scarce environments, where
direct ET measurements are unavailable, and it can provide an
approximate discernment of water requirements (Ghiat et al., 2021;
Cutting et al., 2024; Bochetti et al., 2016). All the same, one
limitation of using irrigation records for ET estimation is that these
disks do not describe other components of the piddle equalizer,
such as soil moisture change, runoff, and deep percolation, which
can vary considerably based on subject area shape and soil
eccentricity (Seckler et al., 2003; Li et al., 2019; Bethune et al.,
2008; Schulz and Becker, 2021). To boot, the efficiency of irrigation
practices affects the accuracy of ET approximation; for lessons,
losses due to vaporization, outflow, or mismatched body of water
distribution mean that not all implemented water is used by the
harvest (Kisekka et al., 2019; Irmak et al., 2011). In paddy areas,
the presence of standing water further perplexes the relationship
between irrigation and ET, as vaporization from the water control
surface may not reflect crop economic consumption accurately,
leading to potential overestimation or underestimation of actual ET
(Bouman et al., 2007; Satpathi et al., 2024). Due to these factors,
ET estimates based solely on irrigation records lack precision;
progressing to them to a lesser extent is more authentic than
methods that directly evaluate or model ET with greater detail in
environmental input (Allen et al., 1998; Pinos, 2022). A detailed
information about different ET estimation methods is given in the
flowchart below (Figure 1).

3.2 New directions and trends emerging

New studies are combining remote sensing data with machine
learning algorithms to enhance ET estimation (Costa et al., 2023;
Chatterjee et al., 2023). They are data-driven, and machine learning
models can learn from large datasets to abstract complicated
patterns and relationships, which can potentially increase the
estimation accuracy of the ET in all paddy field conditions (Gokool
et al., 2024; Onojeghuo et al., 2018). IoT sensors, such as soil
moisture, temperature, and water level sensors, are more frequently
used to collect field data in real time (Garg et al., 2021; Binayao

et al., 2024). These sensors provide a more holistic insight into the
dynamics of paddy field water when integrated and help facilitate
remote sensing data and hydrological models (Alahmad et al.,
2023; Wattanapanich et al., 2024; Chiaradia et al., 2015). Future
research is focusing on developing ET models specifically designed
for flooded rice systems (Facchi et al., 2013; Xu et al., 2023).
These models consider unique factors such as water depth, canopy
dynamics, and seasonal water demand fluctuations to improve ET
estimation accuracy (Adhikary et al., 2024; Nay-Htoon et al., 2018;
Timm et al., 2014).

4 Remote sensing-based approaches
for ET estimation in paddy fields

4.1 Introduction to remote sensing for ET
estimation

Satellite-free base and airborne sensing technology have
significantly enhanced evapotranspiration (ET) estimates by
providing large-exfoliation, uninterrupted data points that improve
both accuracy and scalability (Allen et al., 2007; Pareeth and
Karimi, 2023;Wasti, 2020; Peddinti et al., 2024). These technologies
allow for the collection of spectral and multi-spectral imagery,
which is employed to calculate vegetation indices and landed
estate surface temperatures—key parameters for estimating ET
expend surface energy balance models (Bastiaanssen et al., 1998;
García-Santos et al., 2022). Remote sensing-based models, such
as the Surface Energy Balance Algorithm for Land (SEBAL) and
Mapping Evapotranspiration at High Resolution with Internalized
Calibration (METRIC), comprise these data to develop ET
mapping over extensive agricultural fields, enhancing the spatial
insurance coverage compared to traditional ground-based methods
(Allen et al., 2007; Derardja et al., 2024; Saha et al., 2022).
Estimation at different spatial and temporal resoluteness, satellite
platforms such as Landsat, MODIS, and Sentinel provide frequent
observance of appropriate seasonal declination in water utilization,
which is essential for dynamic water resource management (Senay
et al., 2016; Rashid and Tian, 2024; Singh et al., 2020). The
capability is especially valuable in regions with limited primary
data or outside areas where ET measurement is logistically
challenging and expensive (Tang et al., 2017; Li et al., 2009; Cutting
et al., 2024; Derardja et al., 2024). Yet, challenges such as cloud
cover, in particular in tropic regions, can occasionally limit data
point availability from satellites, although improvements in datum
optical fusion and cloud-removal techniques are helping tomitigate
these publications (Gao et al., 2017; Meraner et al., 2020; Prudente
et al., 2020; Chen S. et al., 2022).

4.2 Surface energy balance models

Surface Energy Balance Algorithm for Land (SEBAL) is a
wide-habitat remote sensing-based model for estimating actual
evapotranspiration (ETa) by examining the surface energy balance
over land surfaces, making it suitable for agricultural water
management applications (Wei et al., 2022; Bastiaanssen et al.,
2005). This method uses satellite data to calculate ETa by

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2025.1553732
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Behura et al. 10.3389/frwa.2025.1553732

FIGURE 1

Flowchart for evapotranspiration estimation methods in paddy fields.

TABLE 1 Evapotranspiration estimation methods.

Method Accuracy Applicability Limitations

Penman–Monteith High Research and practice Requires detailed meteorological data,
limited accuracy in flooded conditions

Lysimeters Very high Experimental validation,
small-scale studies

Expensive, labor-intensive, and not feasible
for large-scale applications

Water balance models Moderate Field-scale hydrological studies Requires extensive input data, sensitive to
errors in input parameters

SEBAL (remote sensing) Moderate-high Large-scale monitoring using
satellite imagery

Requires clear-sky conditions, sensitive to
input calibration

METRIC (remote sensing) High High-resolution ET estimation Computationally complex, requires
ground-based weather data for calibration

Machine learning models Variable (can be very high) Data-driven, adaptable to complex
conditions

Requires large datasets for training,
black-box nature may limit interpretability

Hybrid approaches (ML+ remote
sensing+ IoT sensors)

Very High Best for real-time and precision
agriculture applications

Requires advanced computational resources
and integration of multiple data sources

evaluating get-up-and-go substitution between the soil surface and
atmosphere (Bastiaanssen et al., 1998; Shamloo et al., 2021). Paddy
fields are qualified by a high-pitched arc degree of wetness, and
SEBAL can capture this by assessing the latent heat flux, which
is the energy expended for evapotranspiration. SEBAL counts
ETa by using parameters such as net radioactivity, soil heat flux,
and temperature deviation, which are in particular similar to
waterlogged precondition typical in paddy fields (Teixeira et al.,
2009; Wei et al., 2022). SEBAL uses satellite imagery, enabling
spatially continuous ETa appraisal over extensive areas, which is
valuable formonitoring water use across paddy fields at the regional
scale (Bastiaanssen et al., 2005). Unlike traditional method acting,
SEBAL does not rely heavily on in situmeteorological data as it uses
infrared data to estimate temperature and ETa directly, making it
efficient in data-scarce regions (Pareeth and Karimi, 2023). SEBAL
requires clear skies for accurate thermal infrared data acquisition,
which can be challenging during the monsoon season in the paddy-
uprise part, leading to data gaps (Sun L. et al., 2017; Long and
Singh, 2010). The status for the partition may not be checked in
all scenarios, such as assuming uniform vegetation cover, which
can touch on ETa accuracy, particularly in heterogeneous or mixed
cropping landscapes (Tasumi et al., 2008; Taheri et al., 2022; Yang
et al., 2015). The solution of satellite data used in SEBAL may not
be appropriate for finer field-level variations in water utilization
within paddy fields, potentially hampering its application program
for precision agriculture (Allen et al., 2007; Sishodia et al., 2020).
These strengths and limits guide the application program of surface

energy models for estimating ET in paddy fields, where frequent
monitoring and direction are crucial for crop productiveness and
sustainability.

Mapping Evapotranspiration at High Resolution using
Internalized Calibration (METRIC) is an outside-sensing-based
model that estimates actual evapotranspiration (ETa) by aiming
the airfoil energy balance wheel at a high spatial firmness of
purpose, ideal for heterogeneous and water-intensive crops such
as rice paddy. The model refines energy balance calculations
through internalized calibration, enhancing accuracy for localized
ET estimates (Allen et al., 2007; De la Fuente-Sáiz et al., 2017;
Madugundu et al., 2017). By desegregating reason-ground
condition data with thermal infrared satellite imagery, METRIC
effectively assesses ETa across fields with high spatial detail, which
is crucial for precise management in these fields (Irmak et al.,
2011; Derardja et al., 2024). METRIC provides high-resolution
ET functions that can spot between case-by-case paddy patches,
enable direct irrigation practice sessions, and improve water
use efficiency (Chandel et al., 2021; Biggs et al., 2016). METRIC
leverages localized weather conditions and ground data for interior
calibration, minimizing misplay in ET estimation, and making
it adaptable to different neighborhoods and crop types, such
as water-intensive paddy fields (Gonzalez-Dugo et al., 2009;
Ortega-Salazar et al., 2021; De la Fuente-Sáiz et al., 2017). METRIC
can sire multiple ETs to function over a single farm season, which
allows monitoring of paddy water indigence and growth stages,
enhancing crop management efficiency (Allen R. et al., 2011). It
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requires local weather data, including solar irradiation and wind
speed, for exact calibration. This dependence on soil data can be
a limitation in regions with limited data availability, which may
affect truth in certain paddy field-originating areas (Hankerson
et al., 2012; Khan et al., 2018). METRIC’s reliance on cloud-free
orbital imagery, especially for thermal striation, may result in
data gaps during monsoon or cloudy conditions, a common issue
in paddy regions (Singha and Kamruzzaman, 2019; Jiang et al.,
2021). METRIC’s complex internal calibration mental process
can require significant computational resources, which may be
challenging for large-weighing machine applications without
tolerable processing infrastructure.

Simplified Surface Energy Balance Operational Model
(SSEBop) is a simplified surface proportion model that estimates
literal evapotranspiration (ETa) by commingling land airfoil
temperature data points with minimal auxiliary data, making
it highly efficient for large-ordered series applications (Pareeth
and Karimi, 2023). Unlike former ET models, SSEBop calls for
entirely a few stimulations, such as land surface temperature and
acknowledgment of ET data, simplifying its habit in areas where
meteorological data are sparse, a vernacular scenario in remote
paddy regions (Senay et al., 2016; Yin et al., 2020). SSEBop’s
simplified algorithm enables faster processing, which is critical for
large-scale monitoring. It can engender high-frequency ET maps
over magnanimous paddy cultivation areas, aiding in regional
water management and crop monitoring. SSEBop can be applied
across assorted weighing machines, from regional to continental
levels, allowing agricultural agencies to supervise usage in the
field consistently, regardless of area size (Zhuang et al., 2022).
SSEBop uses generalized assumptions for free energy balance that
may not capture the complex hydrology of flooded rice paddy
fields as accurately as other detailed ET frameworks, potentially
affecting ETa precision (Yin et al., 2020; McShane et al., 2017). Like
near-remote sensing models, SSEBop relies on clear-sky satellite
images for land surface temperature data, which can be a challenge
in monsoon regions, potentially leading to ETa data gaps (Senay
et al., 2016; Tawalbeh et al., 2024). Overall, SSEBop’s reduced datum
and computational requirements make it a pragmatic alternative
for large-scale paddy monitoring, maintaining sustainable water
supply direction in rice cultivation.

Mokhtari et al. (2011) conducted a study that estimated ET
over a pistachio orchard using the SEBAL and METRIC models
with Landsat TM5 data. The results showed that the two models
estimated similar ET at the time of the satellite overpass but
differed at the daily level, especially when ET rates were higher.
These differences were attributed to variations in the calculation
of sensible heat flux and the methods each model employs to
extrapolate instantaneous ET to daily values. Notably, SEBAL’s
advantage lies in its minimal requirement for ground-based
weather data, whereas METRIC, though necessitating high-quality
local weather data, accounts for daily climatic variability through
the use of reference ET, making it more suitable in environments
with fluctuating daily weather conditions.

Research that compared the SEBAL and METRIC models
under various field conditions, including flooded and non-flooded
areas, established that ET was estimated correctly by both models,
but differences in their performance occurred under specific
environmental conditions. In the case of floodwater in open fields,

these assumptions and parameterizations of models have affected
their accuracy in computing ET (Thoreson et al., 2009). Model
selection based on field conditions thus becomes important in
this regard. More recent efforts have been to evaluate SEBAL and
METRIC for their viability in precision agriculture. Such studies
therefore emphasize the fact that, before selecting and applying
these models to estimate ET, local environmental conditions such
as soil moisture levels and vegetation cover have to be taken
into consideration.

4.3 Challenges in surface energy balance
models

Paddy fields are frequently waterlogged, especially during
growth stages, which alters reflectance patterns in remote sensing-
based ET exemplars (Gan et al., 2021; Wei J. et al., 2023). The
standing water makes high reflectance, particularly in the visible
and near-infrared circle, making it challenging to differentiate
between water and vegetation accurately (Wei J. et al., 2023;
Carracelas et al., 2024). This can affect ET estimates as role
models may misread water bodies (Carracelas et al., 2024; Ferreira
et al., 2023). ET models such as SEBAL and METRIC take
calibration to match specific characteristics, which is especially
important in paddy fields due to their unparalleled water–soil–flora
interaction (Wei et al., 2022). Harvest-specific parameters, such
as albedo and emissivity, need deliberate adjustment to capture
the effects of swamp grime and heavy canopy accurately. Without
these accommodations, model yield may not reflect the actual
ET patterns of paddy fields (Bastiaanssen et al., 1998; Bashir
et al., 2008; Sun L. et al., 2017). These parameters for paddy
rice are all important to answer the unique dynamics and water
use pattern of flooded rice culture. Paddy fields’ water orbitally
influences temperature and reflection factors (Liu et al., 2019).
The surface typically maintains a low temperature compared to
dry stain, which impacts the thermal infrared signal utilized in
many ET models (García-Santos et al., 2022; Mallick et al., 2018).
Water supply speculates sunlight differently compared to land or
vegetation, which can modify the airfoil albedo value utilized in
ET deliberation, leading to inaccurate ET estimates if not addressed
properly (Ponce et al., 1997; Hannabas, 1989). These water supply-
link impressions are essential for precise ET modeling in the paddy
area, where dynamic H2O floors are rife throughout the growing
time of the year (Xu et al., 2023; Adhikary et al., 2024). These
unparalleled preconditions in the paddy field require measured
considerateness in the ET role model, with specific alterations
for water reflectance, crop-specific calibration, and the cool-down
upshot of water on surface temperature.

4.4 Use of high-resolution satellite data

Artificial satellite data points from rootage, such as Landsat
and Sentinel, play a critical role in accurately estimating ET
in paddy fields, where water distribution and crop conditions
vary at minuscule scales (Singh et al., 2020; Xue et al.,
2021). These satellites provide finer spatial resolution (10–30m),
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enabling precise identification of individual paddy fields, which is
substantive for understanding localized ET variability (Allen R. G.
et al., 2011). High-resolving imagery assists in discerning between
plots with tolerable water, unseasoned seedlings, and mature crops,
improving ET accuracy by admitting ET models to account for
these distinct stages and their unequaled water system demands
(Imtiaz et al., 2023; Fernández-Urrutia et al., 2023; Ramadhani
et al., 2020). For paddy cultivation, where plot sizes are frequently
humble, the high spatial answer of satellites such as Landsat and
Sentinel is peculiarly good (Waleed et al., 2022; Park et al., 2018).
This declaration helps one monitor intra-field heterogeneity in
moisture and flora and moderate more exact ET estimates across
paddy plots (Bai et al., 2019; Mengen et al., 2023). Fine spatial
data enhance the dependability of ET modeling by minimizing the
“mixed pixel” force, which occurs when harsh firmness of purpose
imagination averages conditions over a field, potentially missing
small exfoliation variations typical of paddy fields (Cammalleri
et al., 2013; Liou and Kar, 2014; Zhang et al., 2024a,b).

Although high-resolution satellites declare themselves spatially
detailed, they typically let retentive revisit times, which can limit
their ability to detect rapid changes in ETa, particularly during
decisive paddy growth form or seasonal changeover (Xue et al.,
2021; Anderson et al., 2021). This craft-off between spatial and
temporal resolution frequently necessitates a balance between
precision and relative frequency, where temperate-settlement
satellites with more frequent overpasses, such as MODIS, might be
desegregated for continuous ET monitoring at a coarser graduated
scale (Cenci et al., 2018; Bair et al., 2023). However, advancements
in high-resoluteness artificial satellite constellations, such as
Sentinel-2′s five 25-h revisit period, help accost this limitation and
hit high-absolute frequency and high-pitched-resolution ET, which
supervises progressively viable (Drusch et al., 2012; Guzinski et al.,
2020). To mitigate the trade-off, many researchers practice datum
fusion proficiency that conflates high-resolution data with frequent,
modest-resolution data points (Cammalleri et al., 2013; Guzinski
et al., 2020). This approach provides both spatial particularity
and worldly continuity, taking to more robust and timely ET
approximation. Data fusion raises the potency of the ET model
by maintaining spatial precision while accommodating temporal
variety in crop emergence and water use (Cammalleri et al., 2013;
Wang et al., 2019).

TerraClimate is a global dataset that provides monthly climate
and water balance variables at a spatial resolution of about
4 km, covering the period from 1958 to 2018. It integrates high-
spatial-resolution climatological data with coarser-resolution time-
varying data to offer detailed insights into climatic conditions.
This dataset is especially useful for regional climate assessments
and hydrological studies (Solaimani and Ahmadi, 2024). ERA5
is a comprehensive reanalysis dataset developed by the European
Center for Medium-Range Weather Forecasts (ECMWF), which
provides hourly estimates of various atmospheric, land, and
oceanic variables at a horizontal resolution of 31 km, covering
the period from 1979 to the present (Muñoz-Sabater et al.,
2021). ERA5-Land is a complementary dataset that focuses
on land variables, with enhanced spatial resolution at 9 km.
Both datasets are significant for climate monitoring, weather
forecasting, and hydrological modeling. GLDAS combines satellite
and ground-based observation data with more advanced land

surface modeling techniques for generating optimal fields of land
surface states and fluxes (Rodell et al., 2004). GLDAS has global
high resolution at the finest of 1 km to the coarsest of 2.5 degrees.
Therefore, it could provide information in terms of the variables
of soil moisture, surface temperature, ET, etc. GLDAS is widely
used for drought monitoring, water resource assessments, and
climate studies. GLEAM is a satellite-based model dedicated to
estimating terrestrial evaporation and root-zone soil moisture
globally (Miralles et al., 2011). It operates at a daily time step
with a spatial resolution of 0.25 degrees (Martens et al., 2017)
and uses various satellite observations to provide detailed estimates
of ET components, including transpiration, soil evaporation, and
interception loss. GLEAM is useful in ecological studies, drought
monitoring, and climate research.

5 Machine learning techniques for ET
estimation in paddy fields

5.1 Introduction to machine learning in ET
estimation

Machine learning (ML) models are sinewy tools for estimating
ET in paddy fields of honor as they can seize complex, non-
linear relationships among meteorological data (for instance,
temperature, humidity, and wind speed), remote sensing data,
and field observation (Noghankar et al., 2023; Costa et al., 2023).
Unlike traditional models, ML algorithmic rules can analyze vast
and various datasets to learn the underlying convention in these
variables and run to a greater extent accurate ET prediction
(Kamble et al., 2013). ML models, particularly those grounded
in deep learning, can handle high-dimensional remote smell
data from generators such as Landsat and Sentinel, along with
meteorological input signals, to provide continuous ET ideas for
paddy fields (Xu et al., 2021; Waleed et al., 2022). By analyzing
both spatial and worldly data, these models appropriate seasonal
and harvest-specific mutants in ET, enabling exact monitoring of
water employment throughout the paddy field (Rong et al., 2024).
Machine learning examples, such as random forests and support
vector machines, have progressed in mechanisms for feature
article extraction, give up on them to name the most influential
variable in ET estimates from extensive datasets (Ayaz et al., 2021;
Sammen et al., 2023). In addition, ML models support datum
fusion techniques, commingle meteorological datum, artificial
satellite imaging, and field observations to account for both local
environmental consideration and all-embracing climatic radiation
patterns, leading to improved ET estimation accuracy (Cammalleri
et al., 2013; Zhao et al., 2024).

Paddy fields often get dynamic shapes, such as fluctuating water
degrees and rapid growth degrees (Ismail et al., 2012; Wang et al.,
2024). ML models can be retrained or updated with new data to
conform to these changing conditions, ensuring that ET appraisal
is accurate over sentences. This adaptive electrical capacity ML
model is to a greater extent suitable for long-term ET monitoring
in paddy schemes under variable environmental conditions. In
areas with modified fields of data, machine learning is a good
example that can leverage remote sensing data as a proxy for
field mensuration, effectively making a full data point (Reyes Rojas
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et al., 2021; Chatterjee et al., 2023). This flexibility is particularly
beneficial in outside paddy field-developing regions, where in situ

data point collection can be challenging (Ferreira et al., 2023;
Satpathi et al., 2024). Machine learning models thus enhance
ET estimation in paddy fields by leveraging diverse datasets and
complex interactions among variables, leading to a greater extent
of exact and adaptable ET predictions.

5.2 Machine learning models used in paddy
ET estimation

Linear regression (LR) is often used in evapotranspiration (ET)
studies to model simple, analog relationships between ET and
meteorological variables such as temperature, humidity, and solar
radiation (Cristea et al., 2013; Jayashree et al., 2023). For instance,
linear simple regression can foretell ET found on temperature
trends in an area where ET exhibits a nearly analog response to
temperature changes. This approach is square and computationally
efficient, making it useful for ET estimates in paddy fields when the
relationships are relatively wide-eyed. While elongate regression
can bring home the bacon with initial estimates, it often falls
short in paddy areas, where ET moral force is influenced by
complex, non-linear interactions among agent-like vegetation
cover and soil moisture (Aghelpour and Norooz-Valashedi, 2022).
Paddy production involves multiple outgrowth stages and water
management practices that involve modeling to capture the non-
linear core (Wei et al., 2022; Anapalli et al., 2019).

Decision trees (DT) are in force in enamoring the non-linear
relationships present in ET estimation, in particular in complex
agricultural settings such as paddy fields. By dividing datum into
subsets found on input signal lineament, decision trees can model
interactions between variables such as temperature, vegetation
parameters, and moisture (Jain and Gupta, 2024; Treder et al.,
2023). This bodily structure enables them to address mixed effects,
such as the influence of standing water on ET at different harvest
microscope stages (Jain and Gupta, 2024; Bijlwan et al., 2024).
Decision trees can incorporate both continuous (e.g., temperature
and solar irradiation) and flat variables, making them extremely
adaptable to the diverse data used in rice paddy ETmodeling (Zhao
L. et al., 2023; Hancock and Khoshgoftaar, 2020). This flexibility
takes into account decision trees to simulate the influence of crop-
specific consideration and irrigation drills on ET, improving ET
estimation in paddy fields where different increase points give
varying water requirements. Ensemble plans, such as random
woods, compound multiple decision trees to improve prediction
accuracy and validity in ET modeling (Agrawal et al., 2022).
By aggregating results from multiple trees, the ensemble method
reduces forecasting variability and captures good, complex, active
ET design in the paddy arena, even under varying water and
climatic status (Salahudin et al., 2023; Wu et al., 2021). In sum,
linear regression allows a service line for bare ET molding, while
decision trees and their ensemble variants capture the complex,
non-linear relationship decisive for accurately figuring ET in
paddy fields.

Artificial neural networks (ANNs) are particularly suited for
estimating evapotranspiration (ET) in paddy fields due to their

ability to model complex, non-linear family relationships among
input variables (Amaratunga et al., 2020; Arif et al., 2013). The
psyche’s structure enables them to learn intricate dependencies
between agents such as temperature, humidity, and vegetation
indices that impact ET. This capability builds ANNs that are highly
effective for ET models as paddy ET calculates on respective non-
linear interactions. ANNs can easily desegregate both satellite-
derived data, such as solid ground Earth’s surface temperature
and vegetation indices, with area-measured parametric quantities
such as ground moisture and crop growth stage (Efremova et al.,
2019; Kumar et al., 2011). On the heterogeneous datum, ANNs
learn spatial and secular patterns in ET, readying them ideally for
covering that involves mixing remote sensing data with reasoned
truth observations to calculate ET in the paddy battlefield (Wang
et al., 2018; Jeong et al., 2022). One of the merits of ANNs
lies in their ability to automatically take out meaningful features
from input data (Hemanth, 2021; Shaheen et al., 2016). For ET
approximation, think of that ANNs can uncover subtle patterns
between satellite imagery characteristics and orbit data, which
may not be apparent using traditional statistical methods (Liu
et al., 2021; Karahan et al., 2024). This potentiality is essential
in paddy fields, where active water levels, crop covert variety,
and seasonal variation bestow complex ET patterns. Paddy fields
are characterized by phases of water inundation, ontogenesis, and
harvest, all of which falsify ET (Ikawa et al., 2017; Chen et al.,
2024). ANNs can adapt to these dynamic circumstances because
they determine now from data, refining their parameters with
each modern stimulant (Islam et al., 2024; Ger et al., 2024; Dai
et al., 2013). This adaptability allows them to render accurate
ET ideas throughout the integral growing season, accounting for
sport in water levels and craw growth stages (Chowdhary and
Shrivastava, 2010; Karahan et al., 2024; Laaboudi et al., 2012).
ANNs, particularly cryptical neural nets, are capable of using high-
declaration planet imagination to generate elaborated ET maps for
rice paddy fields (Imtiaz et al., 2023). By learning from pixel-level
data, ANNs provide fine-scale ET gauges that account for field-
specific conditions, enabling more precise water resource direction
and irrigation planning for Mick cultivation (Arif et al., 2013; Khan
et al., 2020). Overall, ANNs are substantially suited for paddy ET
approximation due to their capacity to capture complex, non-linear
habituation, integrate diverse data authors, and adapt to switch
conditions, leaving highly accurate ET predictions.

Support vector machines (SVMs) are widely applied in ET
appraisal for paddy fields due to their ability to model complex,
non-linear human relationships between comment characteristics
such as temperature, solar radiation, and flora indicants (Yang
et al., 2011; Ashrafzadeh et al., 2020; Guo et al., 2024). SVMs are
especially beneficial for charm interaction among diverse variable
stars in paddy study, where ET is regulated by water presence,
harvest stage, and climatic conditions (Ashrafzadeh et al., 2020;
Ayalew and Lohani, 2023). SVMs use a kernel map to map input
data points into a gamey-dimensional quad, which allows them
to capture non-linear colonies in ET data (Tejada et al., 2022;
Wilimitis, 2018). SVMs are highly accurate in predicting ET for
paddy fields, where the relationship between crop growth stages,
water layer, and ET is far from linear. As a result, SVMs can
provide more accurate ET estimates under varying field conditions
(Guo et al., 2024). Random forests, an ensemble learning method
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based on decision trees, are especially robust in ET estimation
because they aggregate predictions from multiple tree diagrams
and contract prevision variants (Treder et al., 2023; Wu M. et al.,
2020). This robustness makes random forests highly suitable for ET
modeling in rice paddy fields, where environmental and crop status
interchange often. By averaging results from various decision trees,
random forest produces consistent ET estimates across diverse
shapes (Dhillon et al., 2023; Wang et al., 2020). Random forests
are, in effect, integrating high-dimensional data from multiple
sources, such as satellite imagery, meteorological records, and
soil moisture measurements (Clewley et al., 2017; Shokati et al.,
2024). This flexibility allows them to sit ET accurately by capturing
the influence of dissimilar data sources and adjusting to seasonal
variation and spatial heterogeneity in paddy areas (Wang et al.,
2020; Msangi, 2024). Both SVMs and random forests heighten ET
idea truth and robustness in paddy plains by caring for complex
data and adapting to various conditions. SVMs provide reliable
foretelling by managing non-linear relationships, while random
forest sums robustness through ensemble averaging (Son et al.,
2018; Wang et al., 2020; Guo et al., 2024). In concert, these methods
enable exact ET estimates across various growth levels, water levels,
and climatic scenarios. In summary, SVMs and random forests
proffer high accuracy and robustness in ET estimation for paddy
plains and enable effective water management in various and
dynamic agricultural conditions.

Many other machine learning (ML) methods apart from
artificial neural networks (ANN), support vector machines (SVM),
and random forests (RF) applied to evapotranspiration modeling
include convolutional neural networks (CNNs). Their main
strength is the ability to take in grid-based data, so they are
useful for capturing spatial features in ET data. Long short-term
memory networks are a subtype of recurrent neural networks
and particularly perform well at the handling of temporal
sequences that qualify them very much to time-series ET data.
Gated Recurrent Units (GRUs), as an alternative to LSTMs
but with a simplified architecture, have also been applied in
ET modeling in addition to extracting long dependencies. A
comparative analysis of such deep learning models indicated
that hybrid models such as CNN-GRU can outperform their
individual counterparts in the tasks of ET prediction (Paul
et al., 2024). Levenberg–Marquardt (L-M) algorithm is the L-M
model with a focus on neural networks and has been utilized
in the application of ET estimation. Compared with the GA-BP
model, it provides greater accuracy (Niu et al., 2023). The use
of gradient boosting methods (GBM) combines weak predictive
models into a strong predictor for enhanced prediction accuracy
in ET (Ayaz et al., 2021). Random Vector Functional Link (RVFL)
Networks, enhanced with metaheuristic algorithms such as the
Quantum-based Avian Navigation Optimizer Algorithm (QANA)
and Artificial Hummingbird Algorithm (AHA), have been applied
to ET modeling, with encouraging results (Mostafa et al., 2023).

The application of the k-NN algorithm to the estimation
of daily ET has demonstrated its feasibility and effectiveness in
ET pattern capture (Yildirim et al., 2023). Multigene Genetic
Programming (MGGP) has been applied to model ET, providing
an adaptable approach to capturing complex data relationships
(Yildirim et al., 2023). Relevance Vector Machines (RVMs) for ET
modeling result in sparse solutions and probabilistic predictions,

useful in some contexts (Mostafa et al., 2023). These ML
approaches have some benefits over ET model formulation, that
is, better accuracy enhanced treatment of non-linear relationships,
and enhanced generalization ability. The choice of the method,
however, depends upon several factors including the characteristics
of the dataset, the availability of computational resources, and the
balance among model complexity, interpretability, and associated
problems. A brief overview about different ET estimation methods
is provided in Table 1.

5.3 Performance evaluation of machine
learning models

Studies comparing machine learning (ML) models for paddy
ET estimation reveal that examples, such as support vector
machines (SVMs), random forests (RFs), and artificial neural
networks (ANNs), perform well in data-plentiful contexts (Sattari
et al., 2021; Jain and Gupta, 2024; Granata, 2019). For example,
studies show that ANNs, which can model complex non-linear
family relationships, excel in capturing ET unevenness when
put up with obtuse distant sensing and meteorological data
points, leading to accurate results (Chen et al., 2013; Dimitriadou
and Nikolakopoulos, 2022; Kumar et al., 2011). Random forests
have been highlighted as especially strong in scene with greater
dimensional and interracial data as they handle both uninterrupted
and categorical variables (Fellinghauer et al., 2013). Cogitation
reports that RF models outperform traditional statistical methods
and yet some other ML models in ET ideas by integrating various
data cases, such as satellite images, soil moisture records, and
harvest phenology information. RF’s ensemble approach adds
lustiness to ET estimates in dynamic paddy environments (Yi et al.,
2018; Wang et al., 2020; Shokati et al., 2024).

Support vector machines are noted for enhancing non-linear
human relationships in ET estimation while resisting overfitting,
even when the data are complex (Tejada et al., 2022; Guo et al.,
2024). Relative studies argue that SVMs uphold high accuracy
across different stages of paddy development and varying water
levels, making them reliable for ET estimation in puddled rice
fields. However, SVMs can be computationally intensive, especially
with large datasets (Marsujitullah et al., 2019; Tsang et al., 2005).
Despite their specialty, ML examples face limitations in data-
scarce environments. Studies have found that while ANN and
SVM models often require extensive training data points to avoid
overfitting, they can struggle with special datasets, leading to
shrinkage in truth in sparse data regions (Han and Jiang, 2014;
Bilbao and Bilbao, 2017). Random forests run to perform slightly
comfortably in data-scarce place settings due to their ensemble
approach but may nonetheless underperform compared to data-
rich scenarios (Sameen et al., 2019). Subjects have also highlighted
that ML theoretical accounts for paddy ET estimation a great
deal take crop-specific calibration to account for paddy field
precondition, such as standing water and specific outgrowth stages
(Arif et al., 2022). This demand for exact standardization can
limit the all-inclusive pertinence of ML exemplars across different
rice-growing regions unless extensive regional data are usable for
role model adaptation (Mostafa et al., 2023). In summary, whileML
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models such as ANNs, RF, and SVMs have shown great promise
for ET estimation in datum-rich paddy environments, their truth
can decrease in data-scarce terms, and they often take careful
calibration for crop-specific scenarios.

6 Hybrid approaches

6.1 Rationale for hybrid models

Combining the Surface Energy Balance (SEB) model, which
utilizes energy flux measurements from satellite datum, with
machine learning (ML) techniques can enhance evapotranspiration
(ET) approximation for rice paddy fields (Wei et al., 2022; Du
et al., 2013). SEB models, such as SEBAL and METRIC, leverage
outback sensing datum to estimate ET and establish themuscularity
balance at the land surface, capturing spatial variability effectively.
ML models, on the other hand, can learn complex, non-linear
relationships from various datasets, offering increased adaptability
to active stipulation and enabling more exact ET prediction
(Bastiaanssen et al., 2005; Allen R. et al., 2011; McShane et al.,
2017; Treder et al., 2023). SEB models benefit from the high spatial
answer of satellite imagery, allowing for detailed ET mapping
(Pareeth and Karimi, 2023; Kiptala et al., 2013). Even so, they
oftentimes lack the temporal declaration needed to capture daily or
intra-seasonal variations in paddy areas. Integrating ML with SEB
serves to bridge this gap by using historical and material-time data
to falsify secular trends, thus achieving finer temporal resolution
without relying solely on frequent satellite imagery (Bai et al., 2024).

SEB andMLmodel combinations provide complementary data
desegregation strengths that ameliorate ET estimation accuracy.
While SEB relies on satellite inputs such as land surface
temperature and coefficient of reflection, ML modeling can
incorporate extra stimulants such as meteoric datum, soil wetness,
and harvest-specific data (Pareeth and Karimi, 2023; López-Urrea
et al., 2021; McShane et al., 2017). Combining SEB outturn withML
models, such as random forests or artificial neural networks, helps
capture the complex interactions between environmental factors
and ET cognitive operation, resulting in raised accuracy (Zhao
et al., 2021). SEB modeling can struggle with ingredients specific to
paddy fields, such as standing paddy reflectance and crop-specific
push magnetic fields (Chatterjee et al., 2019; Mauder et al., 2020).
ML models can come up against these limitations by memorizing
patterns specific to paddy field circumstances from historical data.
This combination improves ET ideas by adjusting for unique crop
characteristics and water that SEB models alone may not handle
easily (Mostafa et al., 2023; Cheng et al., 2024).

6.2 Hybrid models for paddy ET estimation

Hybrid applications integrating surface energy balance (SEB)
models with machine learning (ML) approaches are widely used
to improve evapotranspiration (ET) estimation accuracy. Here
are a few notable examples from recent studies. This approach
incorporates ML techniques to ameliorate foretelling of stomatal
conductance, an all-important parameter in the Penman–Monteith
equation (Xue et al., 2024; Rong et al., 2024), and applies models

such as Artificial Neural Network (ANN), random forests, and
support vector machines to estimate day-by-day ET for croplands
globally. They analyzed that the ANN-based model provided the
best accuracy with depressed root mean square error (RMSE) and
high correlational statistics coefficient when fused with remote
sensing factors (Abdel-Fattah et al., 2023; Liu et al., 2021). Another
intercrossedmethod combines autoregressive incorporatedmoving
average (ARIMA) models with ML methods acting such as
ANN and neuro-fuzzy systems to foreshadow ET (Küçüktopcu
et al., 2023; Landeras et al., 2009). ARIMA with ML shortens
RMSE significantly likened to standalone models, enhancing
the dependability of ET predictions, especially in agricultural
water management (Phesa et al., 2024). This intercrossed method
incorporates Bayesian framework averaging with ML models to
estimate daily ET by poise fault and uncertainties across multiple
models. This approach leverages ML to minimize remainder,
resulting in heightened foretelling of truth in various climates and
land types (Yang et al., 2021; Sun T. et al., 2017).

6.3 Integrating SEB models and ML
techniques

The SEBAL model, often combined with ML, is used to
enhance ET predictions in paddy fields. This intercrossed approach
compensates for modeling doubtfulness, especially under variegate
climate preconditions such as monsoon, resulting in improved
accuracy across multiple growing seasons and years (Koppa et al.,
2022). For enhanced calibration of remote sensing ET models, in
another field of study focused on the Poyang Lake river basin’s rice
paddy, coupled modeling (PML-V2) integrated SEB rule with ML-
based calibration, in effect addressing site-specific variations in rice
phenology (He et al., 2022). The ML component serves in refining
parameters such as stomatal conductance, conforming themodel to
local hydrological oscillation, and improving seasonal ET estimates
(Xue et al., 2024; Gaur and Drewry, 2024). Using Landsat data with
SEB and ML for long-term analysis can also be done. A long-term
study in China’s Ganfu Plain engaged Landsat data combined with
SEBAL andML techniques to canvass ET across the paddy-growing
season from 2000 to 2017 (Wei et al., 2022). This model keys out
discrete ET patterns for early, middle, and late variety rice crops.
ML algorithms serve orbiter-educe features, easing better handling
of high humidity and cloud cover, which can perplex SEB model
predictions in monsoon climates (Wang et al., 2023; Djaman et al.,
2023).

7 Challenges and future directions in
paddy ET estimation

7.1 Challenges in current methods

7.1.1 Data limitations
These limitations can impact the accuracy and applicability of

ET models, particularly in regions where infrastructure for data
collection is lacking. The limited availability of high-resolution
remote sensing data limits its usage. Although in high spirits,
declaration data from sources such as Sentinel-2 and Landsat
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are available, their temporal resolution is often insufficient for
uninterrupted ET monitoring in paddy fields, especially in cloudy
or monsoon neighborhoods where clouds spread over frequently
obscure reflection (Steinhausen et al., 2018; Xue et al., 2021).
Sentinel-2 offers a spatial resolution of 10–20m; its revisit relative
frequency (5 days) and dependence on the unmortgaged sky
can produce data gaps, limiting its effectiveness in regions with
frequent cloud cover versions, such as Southeast Asia (Lasko, 2022;
Sudmanns et al., 2020; Nazarova et al., 2020). Many ET estimation
models, such as Surface Energy Balance Algorithm for Land
(SEBAL) andMapping Evapotranspiration at High Resolution with
Internalized Calibration (METRIC), expect thermal data to be
surface temperature. However, in high spirits—solving thermic
datum is special, with Landsat’s 30-meter thermal data point being
available only every 16 days, and Sentinel-2 lacks a thermal sensor
totally (Guzinski et al., 2020; Xue et al., 2021). This scarcity
limits the accuracy of vitality balance models as broken-frequency
thermal observations may lose decisive ET variation in the rapidly
changing paddy fields (Nanda et al., 2012; Bhattacharya et al., 2022).

Meteorological data, including temperature, wind speed,
humidity, and solar radiation, are all important for the ET
framework but are a great deal limited in rural paddy-growing
regions (Adhikary et al., 2024; Wei et al., 2022; Chen et al.,
2024). Many remote detection-based ET models rely on in

situ meteorological data for standardization and proof, but in
modernized countries, such ground stations are sparse, resulting
in data interruption and less precise ET estimates (Wasti, 2020;
Tran et al., 2023). These cracks are peculiarly problematic for
paddy ET estimation, as local microclimatic conditions to a
great extent influence water need (Caguiat and Samoy-Pascual,
2023; Timm et al., 2014). Data fusion is coming, such as
combining Sentinel-2 with MODIS or Landsat, and is anticipated
to overcome data limitations while commanding cloud computing
resources and technical expertise (Xu et al., 2022; Ivanchuk et al.,
2023). Processing and analyzing large datasets from multiple
sources, especially high-resolution imagery, demands important
computational index and computer memory. For many institutions
and local water management authorities in paddy-growing regions,
such a base is either circumscribed or unavailable, which can restrict
the application of the in-advance ET estimation method (Han et al.,
2024; Sahbeni et al., 2023).

7.1.2 Data quality issues
Data tone is a notable challenge in using remote sensing and

the Surface Energy Balance (SEB) method acting to calculate ET in
paddy field of honor, especially under flooded conditions. Inundate
stipulation in paddy fields alters the spectral reflectance properties
of the surface, making it unmanageable to secernate between
water and vegetation and employ standard outside-sensing bands
(Martin andHeilman, 1986). Such reflectance issues are particularly
knotty during other harvest growth stages when the field is mostly
inundated (Ahmad et al., 2021; Choubey, 1999). Surface Energy
Balance (SEB) exemplars, such as SEBAL and METRIC, rely on
precise measuring of temperature gradients and vapor pressure
to bet ET (Singh et al., 2008; Allen et al., 2007; McShane et al.,
2017). Nevertheless, flooded paddy fields typically go through high

spirit humidity and depleted airflow due to the stagnant water
surface, which can blot out temperature and humidity gradients.
These conditions precede to overestimate or underreckoning of
reasonable and latent heat fluxes, bringing down the accuracy of
ET calculations in SEB models (Maruyama et al., 2023; Zhao R.
et al., 2023). Inundated fields tend to deliver a more uniform
surface temperature due to the high thermal inactivity of water,
which can skew the surface temperature readings that SEB models
employ to estimate ET (Lu et al., 2020; Bateni et al., 2013). This
temperature uniformity passes water which is difficult for SEB
simulation to becharm the unevenness in ET, especially when
temperature differences between the soil, water, and vegetation are
minimal. Misinterpretation of control surface temperature in this
status much ensues in inaccurate ET yield as temperature gradient
drives SEB-free base ET estimation (Pareeth and Karimi, 2023;
Bastiaanssen et al., 2012).

7.1.3 Site-specific calibration
Situation-specific calibration is all important in SEB models for

ET estimation in paddy fields due to these ecosystems’ unparalleled
environmental and agronomical device characteristics, including
flooded soils and high humidity estimation of SEB role models,
such as SEBAL and METRIC, for estimating ET by calculating
energy fluxes from distant sensing data points. Still, paddy fields
have an unequaled counterpoise feature due to standing water,
high humidness, and vacillating water levels, which falsify the heat
energy flux partitioning compared to distinctive highland crops
(Wei J. et al., 2023; Wei et al., 2022; Schirmbeck et al., 2018).
Site-specific standardization allows SEBAL models to account for
this by adjusting model parametric quantity according to local
circumstances, heightening the accuracy of ET estimation (Awal
et al., 2022; Pohanková et al., 2024). Site-specific adjustments
are particularly significant in paddy fields because of the high
variance in airfoil temperature caused by the water’s thermal
holding (Wallach et al., 2023; Liu et al., 2019; Maruyama et al.,
2023). This approach is peculiarly necessary for countries with
distinct hydrological and climatic circumstances, such as monsoon
regions, where traditional SEB parameters may not go directly
(Hong et al., 2020). In the paddy field, heterogeneity in water depth
and land place further complicates the ET approximation process.
Variations in field conditions need localized calibration of the SEB
framework to accurately account for deviation in surface albedo,
soil heat magnetic flux, and canopy bookbinding (Bhattacharya
et al., 2022; Corbari and Mancini, 2014; Anapalli et al., 2018). This
specific standardization can address the active nature of paddy
field surroundings by adapting parameters to local fluctuations in
water management and cropping stages, making SEB models more
reliable for real-world practical application.

Machine learning (ML) models, which are increasingly used
for ET estimates, postulate extensive and mellow character data
to ascertain accurate prevision. Models rely on heavy datasets
to compare patterns and correlational statistics within the data,
which often include variables such as realm aerofoil temperature,
vegetation indices, and meteorological conditions (Wallach et al.,
2023; Multsch et al., 2013; Costa et al., 2023; Zhao et al., 2024).
A machine learning model in one area may not perform well in
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another, referable to disputes in climate, water direction recitation,
and geographical characteristics (Alibabaei et al., 2022; Prity et al.,
2024). For instance, an ML model trained on data from tropical
paddy fields may fail to foreshadow ET accurately in temperate
climates without retraining and site-specific alteration (Nyéki et al.,
2021; Ayaz et al., 2021). This colony on region-specific data limits
the scalability of ML models for turgid-scale ET estimation in
paddy fields.

7.2 Future research directions

7.2.1 Use of high-resolution and multi-spectral
imagery

High-resolution thermal infrared (TIR) data are critical for
accurately determining ET in energy balance exemplars, yet it is
much more restrained in current satellite delegation (Cheng and
Kustas, 2019; Schultz et al., 2020). Future research should focus on
incorporating high-resolving thermal imagery with multi-spectral
datum reservoirs, such as Sentinel-2, to improve ET estimates over
paddy fields (Xue et al., 2021). This consolidation could play a
role in spatial detail, enabling more precise ET approximation that
accounts for spatial heterogeneity in battleground conditions (Xue
et al., 2021; Guzinski et al., 2020). One of the key challenges in ET
estimation in paddy fields of study is differentiating between open-
water evaporation and plant transpiration (Ikawa et al., 2017; Wei
et al., 2015; Timm et al., 2014). Multi-spatial imaging, particularly
with narrowband reflectance in red—sharpness and virtually
infrared wavelengths—could help separate these components by
enhanced vegetation indices such as the Enhanced Vegetation
Index (EVI) and Normalized Difference Water Index (NDWI)
(Kang et al., 2021). Future inquiry should explore the role of these
indicators to better the favoritism of exposed water and vegetation
signals, thereby raising ET accuracy.

Merging high-result imaging from multiple sources (e.g.,
Landsat, Sentinel-2, and MODIS) through data point fusion
techniques can provide both high spatial and secular resolution ET
data (Singh et al., 2020; Yang et al., 2021). Data fusion methods
such as Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) allow for the desegregation of datum with unlike
resolving, helping to achieve to a greater extent uninterrupted
ET monitoring in paddy fields (Chen S. et al., 2022). Succeeding
research could focus on refining these fusion techniques to improve
the reliability of consolidated ET datum for paddy flying fields
with frequent cloud cover (Zhao R. et al., 2023; Zhao et al.,
2021). High-solution, multi-spectral data from sources such as
Sentinel-2 provide detailed spectral information that can enhance
machine learning models for ET estimation (Costa et al., 2023;
Pasqualotto et al., 2019). Succeeding inquiry could explore deep-
finding approaches, which leverage expectant datasets and complex
spectral bands, to develop robust ET estimation exemplars that
account for the dynamic and heterogeneous nature of the paddy
force field (Sharma et al., 2022; Wu M. C. et al., 2020) and apply
multi-spectral data points as comments; ML algorithms could
improve ET prediction accuracy across paddy growth (Sah et al.,
2024, 2023; Zhang et al., 2024a,b). Incorporating climate variability
into ET models using multi-spectral data research is also called for

to contain mood variance into ET estimation models using multi-
spectral imaging. Climate factors such as seasonal temperature,
humidity, and rain impact ET rates in the paddy discipline (Wei
et al., 2022; Imtiaz et al., 2023). Future research could upraise
models that integrate these clime cistrons with multi-spiritual
data to adapt ET estimates for different climatic shapes. This
path could amend the robustness of ET models under diverging
climate scenarios, particularly in areas susceptible to seasonal and
interannual mood fluctuations (Liu et al., 2024; Jamshidi et al.,
2019). The evolution of advanced vegetation indices for paddy-
specific ET supervision of existing vegetation power is often
deficient in capturing the alone canopy construction and H2O–
land–industrial plant interaction in the paddy field of study (Din
et al., 2019; Xue et al., 2024). Succeeding research could focus
on developing advanced vegetation indices tailored specifically for
paddy fields that leverage the full range ofmulti-spectral data points
(Ikasari et al., 2016; Moharana et al., 2018). These indices could
better bewitch the variations in paddy field canopy, from initial
flooding to harvest, enhancing ET estimate accuracy throughout
the growing stage (Satpathi et al., 2024).

7.2.2 Development of hybrid models
Future research could explore hybrid models that desegregate

machine learning (ML) with the strong-arm framework, such
as energy balance or Penman–Monteith model, to meliorate ET
prediction. ML algorithms excel at identifying complex, non-
linear relationships in data points but often require extensive
computational power and data point (Li et al., 2024; ElGhawi
et al., 2023; Thompson et al., 2007). By integrating them with a
dewy-eyed, physics-based framework, hybrid models can achieve
high spirit prediction accuracy without excessive complexity, poise
computational efficiency, and accuracy (Li et al., 2024). Research
on datum-driven models has shown that commingling data-driven
ingredients (e.g., neural networks) with physical parameters (such
as temperature and solar radiation) can leave accurate ET estimates
even with sparse datasets (Li et al., 2024; Koppa et al., 2022;
Chen et al., 2013; ElGhawi et al., 2023). This path can slenderize
complexity, as the physical parameters act as boundary conditions,
minimizing the volume of datum that the ML component calls for
to treat. Further research could enhance such exemplar by integrate
high-settlement remote sensing data point into the model (Li et al.,
2024; Peddinti et al., 2024). One bright area is transplant learning,
where an ML role model developed on one dataset is adapted to
a new, related area or condition. By transferring cognition from
advantageously—consider paddy regions to a lesser extent—canvas
domain, cross models can hold truth while invalidating the need
to retrain from dinero in every new region (Jo et al., 2022; Tseng
et al., 2022; Dixit and Verma, 2023). Succeeding research could
optimize transfer learning proficiency to improve the adaptability
and accuracy of ET estimate models in diverse paddy environments
(Rong et al., 2024; Tseng et al., 2022; Jo et al., 2022).

There is a need to explicate simplified hybrid models that use
merely essential predictive features and balance modeling accuracy
with minimal computational requirements. Succeeding research
could sharpen feature selection techniques to retain critical remarks
for ET prediction, reducing the dimensionality of the model
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and enhancing interpretability (Qin et al., 2024). Such models
could rely on multi-spectral data with targeted climate variable
stars to bring home the bacon with an accurate ET idea with
reduced complexity (Bartkowiak et al., 2024). This desegregation
could take into account the model to absorb literal sentence
meteorological and outside perception datum and cater to more
accurate, responsive ET prediction (Huang et al., 2024). Ensemble
models, which combine predictions from multiple model types,
represent a valuable coming to achieving exact ET ideas in complex
status. Succeeding inquiry could uprise ensemble hybrid exemplars
that reap on both ML algorithms and traditional physical methods
acting to balance accuracy and complexity (Bhasme et al., 2022;
Li et al., 2024; Salahudin et al., 2023; Reitz et al., 2023). This is in
particular useful in paddy areas, where environmental conditions
alter importantly across time of year and emergence stages (Li et al.,
2024; Ikawa et al., 2017; Chen D. et al., 2022).

7.2.3 Potential for real-time ET estimation
Future research could focus on the growth of the Internet of

Things (IoT)-enable ET monitoring systems specifically designed
for paddy fields. Such a scheme, which may admit moisture,
temperature, and humidity sensors, can cater real-time ET figure
by continuously trail domain experimental conditions (Revathi
and Sengottuvelan, 2019a,b; Sethy et al., 2021; Khanal et al., 2024;
Aisyah et al., 2024). This system of rules can work autonomously
and broadcast data flat to the cloud-free base for analysis. IoT-
based ET sensing organization is valuable in outside paddy areas
where steady data assembling is taken exception (Revathi and
Sengottuvelan, 2019a,b; Sanjula et al., 2020; Uddin et al., 2022).
Another bright focus is integrating IoT in in situ data point with
remote sensing and machine learning (ML) algorithms to enhance
ET estimation exemplar. By commingle high-frequency IoT data
points with broader spatial brainstorm from remote sensing, hybrid
models could provide real-time, accurate ET anticipation (Costa
et al., 2023; Bashir et al., 2008). IoT datum can help calibrate
and formalize satellite-based models, especially for a variable such
as water level and canopy temperature, which fluctuate day by
day in paddy fields (Wei G. et al., 2023; Ferreira et al., 2023;
King et al., 2020; Chavez et al., 2009). IoT technology could
support decision support systems (DSS) that enable actual-time
irrigation scheduling by continuously monitoring ET and other
environmental parameters. Succeeding research could develop DSS
that integrates ET data with weather prognosis to correct irrigation
requirements, preserve water supply, and improve crop yield. This
is especially critical in water-scarce regions where apropos, accurate
ET data are all important for sustainable water role (Saggi and Jain,
2022; Mirás-Avalos et al., 2019).

Research should focus more on long-term monitoring of
environmental factors, such as temperature, humidity, solar
radiation, and wind speed, which influence ET rates in paddy
fields. IoT sensors can trace these dynamic variable quantities
continuously, proffering insights that amend the secular solving
of the ET model. Actual-time monitoring countenance ET models
are cursorily set to changing environmental conditions, providing
timely data vital for irrigation determination (Nsoh et al., 2024;
Revathi and Sengottuvelan, 2019a,b). For IoT-enabled ET models

to be reliable and rigorous, standardization and proof are necessary
to secure accuracy in paddy-specific consideration. Succeeding
studies should take encompassing testing across different paddy
environments, and incorporate variables such as altered water
depths and crop stages, to refine ET poser (Liu et al., 2020;
Narongrit and Chankao, 2009). Literal time IoT datum can play
a central role in corroborating ET estimates from satellites—
establishing models, helping to handle repugnance, and improving
model accuracy (Guo et al., 2022; Tran et al., 2023). Future
research should also investigate data processing techniques worthy
of handling the large volume of data brought forth by IoT
network deployment over encompassing paddy fields. Efficient
algorithmic programs for data cleaning, transmission, and real-
time psychoanalysis are crucial to ensure that IoT-enabled ET
networks operate effectively (Has et al., 2024; Alfred et al.,
2021; Revathi and Sengottuvelan, 2019a,b). Cloud computing and
boundary computing technologies are substantive for real-time clip
processing of high-absolute-frequency ET datum, providing insight
for large-scale irrigation management (Nsoh et al., 2024; Munir
et al., 2021).

8 Potential implications

Evapotranspiration (ET) is a crucial factor in understanding
the hydrology of watersheds and river basins, making its accurate
estimation important for sustainable water management. The
findings of this study contribute to a much broader understanding
of ET in paddy fields, which has significant implications
related to environmental conservation, climate adaptation, and
hydrological balance.

8.1 Water resource management and
watershed hydrology

Precise ET estimation is vital for proper water allocation
in river basins and watersheds. This will influence hydrologic
modeling, groundwater recharge, and watershed sustainability
as a whole (Singhal et al., 2024). In river networks, ET is an
essential factor influencing the availability of water, especially
during changes in spatiotemporal precipitation patterns (Abed-
Elmdoust et al., 2016). Knowledge about the trend of ET can
optimize hydrologic monitoring and facilitate better decisions
on water distribution between agricultural, industrial, and
ecological demands.

8.2 Climate change and hydrological
adaptation

Climate change is causing alterations in precipitation, increased
extreme weather events, and affecting available water in river
basins globally. Improved ET estimation could be integrated with
climate models to predict future water shortages and adapt for
managing those (Sarker, 2022). Constructed and planned dams
and other water management infrastructures must consider the
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dynamics of ET for effective environmental integrity and to check
the exacerbative effect of climate change on river basins (Gao et al.,
2022).

8.3 Riparian ecosystem protection

ET modeling also finds practical uses in the protection of
riparian zones and river morphological control. The availability of
high-resolution ET can be useful in determining sensitive areas
for ecosystem conservation as well as giving insight into rivers’
morphodynamic features, such as the Brahmaputra River, which
also suffers from exploitation and environmental degradation
(Sarker et al., 2023). Due to ET integration, the application of
sustainable agricultural measures may reduce water stress and
minimize adverse ecological impacts.

9 Conclusion

This study deals with comprehensive review of current and
emerging techniques used for estimating evapotranspiration from
paddy fields. Due to the advancement in RS and ML approach,
and excessive increase in the availability of data over the
last few decades, numerous ET estimation methods have been
developed. Because it incorporates climate variables, Penman–
Monteith is recognized as a standard technique. This method
relies on the combination of energy balance and mass transfer,
making it applicable to many climatic types. In case of excess
water, the model does run on assumptions regarding unsaturated
conditions, which can make the simulation inaccurate unless well
calibrated. Lysimeters are the best measurement devices since they
provide direct measurements, effectively increasing the accuracy.
However, due to the high costs and intensive labor required,
they are relatively difficult to work with to capture variability
in paddy fields. Remote sensing data allow ET to be estimated
in a spatially distributed manner across large regions which is
beneficial for the management of water resources. They struggle
with cloud cover, especially in areas that have a monsoon or a
tropical climate.

Artificial neural networks (ANNs), support vector machines
(SVM), and random forests (RF) are some of the machine
learning models that are able to capture non-linear dependencies
effectively. However, ML models may not be always suitable
as they require extensive calibration and large training data
which may not be available in data sparse regions. IoT sensors
measuring soil moisture, temperature, and water level in real
time are vital field data that improve model outputs. Despite
a lot of progress in this area, there are still gaps as well as
future directions and recommendations for estimation of ET.
More reliable estimation approaches should be looked into by
incorporating water parameters such as open-water and canopy
evaporation. The wider availability of high-resolution data will
help solve issues with monsoon-heavy regions. ET estimation,
which is a sophisticated technique, can be made accessible to
smallholder farmers through the use of drones, Internet of
Things (IoT) applications, and machine learning. The combination

of these new methods will revolutionize water use in rice-
growing areas.

Author contributions

KB: Investigation, Writing – original draft. SR: Project
administration, Resources, Supervision, Writing – review &
editing. JP: Project administration, Resources, Supervision,
Writing – review & editing. SM: Project administration, Resources,
Supervision, Writing – review & editing. PJ: Writing – original
draft. SKD: Project administration, Resources, Software, Writing –
review & editing. SG: Writing – review & editing. LS: Writing –
review & editing. SRD: Writing – review & editing. AS: Writing –
review & editing. AM: Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

The authors gratefully acknowledge the valuable contributions
of their colleagues at the Department of Soil and Water
Conservation Engineering, Odisha University of Agriculture
and Technology, Bhubaneswar, for their guidance and support
throughout this study. Special thanks are extended to the
ICAR-Indian Institute of Water Management, Bhubaneswar, for
providing access to critical resources and technical expertise.
The authors also express their gratitude to the Department
of Agronomy, College of Agriculture, Odisha University of
Agriculture and Technology, for their insights and collaboration.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers inWater 15 frontiersin.org

https://doi.org/10.3389/frwa.2025.1553732
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Behura et al. 10.3389/frwa.2025.1553732

References

Abdel-Fattah, M. K., Abd-Elmabod, S. K., Zhang, Z., and Merwad, A. M. A.
(2023). Exploring the applicability of regression models and artificial neural networks
for calculating reference evapotranspiration in arid regions. Sustainability 15:15494.
doi: 10.3390/su152115494

Abdullahi, A. S., Soom, M. A. M., Ahmad, D., and Shariff, A. R. A. (2013).
Characterization of rice (‘Oryza sativa’) evapotranspiration using micro paddy
lysimeter and class a pan in tropical environments. Aust. J. Crop Sci. 7, 650–658.

Abed-Elmdoust, A., Miri, M. A., and Singh, A. (2016). Reorganization of river
networks under changing spatiotemporal precipitation patterns: an optimal channel
network approach.Water Resour. Res. 52, 8845–8860. doi: 10.1002/2015WR018391

Adhikary, P. P., Mohanty, S., Rautaray, S. K., and Sarangi, A. (2024). Evaluating
EvapotranspirationModels for Simulation of Soil Water Dynamics in Data-Scarce Paddy
Growing Areas of Eastern India. doi: 10.21203/rs.3.rs-4878352/v1

Aghelpour, P., and Norooz-Valashedi, R. (2022). Predicting daily reference
evapotranspiration rates in a humid region, comparison of seven various
data-based predictor models. Stoch. Environ. Res. Risk Assess. 36, 4133–4155.
doi: 10.1007/s00477-022-02249-4

Agrawal, Y., Kumar, M., Ananthakrishnan, S., and Kumarapuram, G. (2022).
Evapotranspiration modeling using different tree based ensembled machine learning
algorithm.Water Res. Managem. 36, 1025–1042. doi: 10.1007/s11269-022-03067-7

Ahmad, U., Alvino, A., and Marino, S. (2021). A review of crop water stress
assessment using remote sensing. Remote Sens. 13:4155. doi: 10.3390/rs13204155

Aisyah, P. Y., Pratama, I. P. E. W., Rahmadhana, F., and Al Ghifari, M. G. (2024).
Internet of things-based rice field irrigation evaporation monitoring system. Bullet.
Elect. Eng. Inform. 13, 2331–2339. doi: 10.11591/eei.v13i4.5803

Alahmad, T., Neményi, M., and Nyéki, A. (2023). Applying IoT sensors and
big data to improve precision crop production: a review. Agronomy 13:2603.
doi: 10.3390/agronomy13102603

Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa,
J., et al. (2017). Water, Energy, and Carbon with Artificial Neural Networks
(WECANN): a statistically based estimate of global surface turbulent fluxes and gross
primary productivity using solar-induced fluorescence. Biogeosciences 14, 4101–4124.
doi: 10.5194/bg-14-4101-2017

Alfred, R., Obit, J. H., Pei-Yee Chin, C., Haviluddin, H., and Lim, Y. (2021). Towards
paddy rice smart farming: a review on big data, machine learning, and rice production
tasks. IEEE Access 9, 50358–50380. doi: 10.1109/ACCESS.2021.3069449

Alibabaei, K., Gaspar, P. D., Lima, T. M., Campos, R. M., Girão, I.,
Monteiro, J., et al. (2022). A review of the challenges of using deep learning
algorithms to support decision-making in agricultural activities. Remote Sens. 14:638.
doi: 10.3390/rs14030638

Allen, R., Irmak, A., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W., Kjaersgaard,
J., et al. (2011). Satellite-based ET estimation in agriculture using SEBAL andMETRIC.
Hydrol. Process. 25, 4011–4027. doi: 10.1002/hyp.8408

Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E. (2011).
Evapotranspiration information reporting: I. Factors governing measurement
accuracy. Agricult. Water Managem. 98, 899–920. doi: 10.1016/j.agwat.2010.12.015

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). “Crop
evapotranspiration-Guidelines for computing crop water requirements,” in FAO
Irrigation and Drainage Paper 56. Rome: FAO, D05109.

Allen, R. G., Tasumi, M., and Trezza, R. (2007). Satellite-based energy balance
for mapping evapotranspiration with internalized calibration (METRIC)—Model. J.
Irrigat. Drain. Eng. 133, 380–394. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)

Amaratunga, V., Wickramasinghe, L., Perera, A., Jayasinghe, J., and Rathnayake, U.
(2020). Artificial neural network to estimate the paddy yield prediction using climatic
data.Mathem. Prob. Eng. 2020:8627824. doi: 10.1155/2020/8627824

Amin, M., Rowshon, M., and Aimrun, W. (2011). “Paddy water management for
precision farming of rice,” in Current Issues of Water Management (Chantilly, VA:
InTech), 107–142.

Anapalli, S. S., Fisher, D. K., Reddy, K. N., Rajan, N., and Pinnamaneni, S. R. (2019).
Modeling evapotranspiration for irrigation water management in a humid climate.
Agricult. Water Managem. 225:105731. doi: 10.1016/j.agwat.2019.105731

Anapalli, S. S., Green, T. R., Reddy, K. N., Gowda, P. H., Sui, R., Fisher,
D. K., et al. (2018). Application of an energy balance method for estimating
evapotranspiration in cropping systems. Agricult. Water Managem. 204, 107–117.
doi: 10.1016/j.agwat.2018.04.005

Andales, A. A., Chávez, J. L., and Bauder, T. A. (2011). Irrigation Scheduling: The
Water-Balance Approach. Fort Collins, CO: Colorado State University Extension.

Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., et al. (2021).
Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time
series at sub-field scales. Refmote Sens. Environm. 252:112189. doi: 10.1016/j.rse.2020.
112189

Arif, C., Mizoguchi, M., and Setiawan, B. I. (2013). Estimation of soil moisture
in paddy field using artificial neural networks. arXiv [preprint] arXiv:1303.1868.
doi: 10.14569/IJARAI.2012.010104

Arif, C., Saptomo, S. K., Setiawan, B. I., Taufik, M., Suwarno, W. B., Mizoguchi,
M., et al. (2022). A model of evapotranspirative irrigation to manage the various
water levels in the system of rice intensification (SRI) and its effect on crop and water
productivities.Water 14:170. doi: 10.3390/w14020170

Arif, C., Setiawan, B. I., Saptomo, S. K., Matsuda, H., Tamura, K., Inoue, Y., et al.
(2020). Performances of sheet-pipe typed subsurface drainage on land and water
productivity of paddy fields in Indonesia.Water 13:48. doi: 10.3390/w13010048

Arouna, A., Dzomeku, I. K., Shaibu, A. G., and Nurudeen, A. R. (2023). Water
management for sustainable irrigation in rice (Oryza sativa L.) production: a review.
Agronomy 13:1522. doi: 10.3390/agronomy13061522
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