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In conventional socio-hydrological research, no studies have developed a
system dynamics model to capture the dynamics of pluvial floods alone, and the
target areas have been large-scale, such as cities and river basins. Thus, the target
social community is not single entity but rather multiple, encompassing various
communities, including both disaster-stricken and non-disaster-stricken areas.
In this study, we developed a system dynamics model to capture the dynamics of
pluvial floods alone. We identified frequent pluvial flooding areas using flooding
area records since 1993 for 25 years for only targeting disaster-stricken areas
on a scale of 400–1,000 m2, and applied the developed model to these areas
and verified that social vulnerability (levee effect and adaptation effect) could be
explained by residents’ flood memory estimated by the model. The adaptation
effect, a phenomenon in which the continued memory of flooding enhances a
society’s ability to cope with flooding and reduces social vulnerability, occurred
in both urban areas with public drainage systems and rural areas without public
drainage systems. On the other hand, the levee effect, a phenomenon in which
the frequency of flooding within the floodplain decreases by installing flood
control facilities, the development of floodplain areas is promoted, increasing
social vulnerability, and flood control facilities are enhanced to improve further
flood control safety, which is a typical phenomenon involving the interaction
between human activities and flooding, occurred only in rural areas. It was
considered that residents’ awareness of the increased flood risk in the area due
to changes in land use from rice paddy fields to residential areas was lacking,
as they had no prior experience with severe floods. In this study, by simplifying
the analysis of disaster-stricken areas (frequent pluvial flooding areas), it was
possible to capture the interaction between the simplified social community and
flooding more directly, allowing the adaptation and levee effects to be more
clearly captured. In future socio-hydrology research, it is essential to consider
the scale of the analysis target.
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socio-hydrology, frequent pluvial flooding, residents’ flood memory, community scale,
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1 Introduction

Pluvial flooding has had a strong and negative impact on many
cities around the world for much of human history, particularly in
recent decades (Hammond et al., 2015; Lowe et al., 2017; Wang
et al., 2018). More than half of the global population resides
in urbanized areas, and the frequency and intensity of hydro-
meteorological extremes are increasing (Hirabayashi et al., 2021).
Pluvial flooding will likely cause more significant losses in the
coming decades. For example, in Japan, the number of human
casualties caused by flooding has been decreasing over the long
term due to the progress of flood control facilities and policies;
however, in recent years, there has been an increase in the number
of floods caused by urbanization and changes in land cover, as
well as an increase in the number of torrential rains caused by
climate change. There are concerns that the amount of flood
damage caused by pluvial flooding will increase. In Wakayama City,
a front brought down 122.5 mm of rain in 1 h on 11 November
2009, the highest amount ever recorded, causing one fatality, 612
buildings with water above the floor, and 1,768 buildings below
the floor. The number of flooded houses due to the July 2018
heavy rain was approximately 28,000 nationwide, but about 15,000
were attributed to pluvial flooding in 88 cities, towns, and villages
across 19 prefectures. Furthermore, the number of houses damaged
by the 2019 East Japan Typhoon in October 2019 was 94,000, of
which approximately 30,000 were destroyed by pluvial flooding.
Thus, the scale of damage caused by pluvial flooding has increased
nationwide in recent years. The frequency of torrential rainstorms
has been increasing in recent years (IPCC-Intergovernmental Panel
on Climate Change, 2023), and it is expected that the damage
caused by pluvial flooding will become more severe and have a
global scale.

In general, countermeasures for pluvial flooding include flood
simulation using numerical models to estimate the flooded area,
understanding the extent and duration of flooding in the event
of an inundation, and alerting residents through maps and visual
aids. In other words, this method involves identifying the current
areas at risk and then taking measures to improve them. Since
this method is the basic approach to taking measures, research to
improve the model’s accuracy is crucial for taking measures against
pluvial flooding. However, flood simulations carried out under
limited conditions at a certain point do not consider parameters
such as urbanization in the target area. Therefore, while flood
simulation may identify flood-prone areas in a city at a given time, it
is challenging to comprehend the chronological transition process
of vulnerable points as the city evolves over time. Based on the
above, it is essential to understand the actual situation and changes
in urban flooding as the city grows by analyzing chronological flood
data from the past to the present.

Djamres et al. (2021) used flooding area records over seven
years from 2008 to 2015 to identify frequent pluvial flooding and
analyzed the topographical characteristics of Tangerang, Indonesia,
using Principal Component Analysis (PCA). The results showed
that 29% of pluvial flooding areas have low topographic similarity
due to human activities, such as changes in the direction of surface
flow caused by changes in the gradient of upstream conditions
resulting from changes in land use and the capture of floodwater

by dominant structures, including buildings and roads. Komori
et al. (2022) used the government’s 20 years of flooding area records
to define “frequent pluvial flooding areas” where pluvial flooding
damage frequently occurs. The topographical characteristics of
“pluvial flooding areas” in Osaka and Nagoya were analyzed
using PCA. The results showed that topographical characteristics
alone could not explain pluvial flooding in Osaka City. By
statistically analyzing the newly defined frequent pluvial flooding
areas, they have quantitatively shown that the factors causing
pluvial flooding have shifted from topographical characteristics to
anthropological characteristics.

As described above, in addition to physical factors such as
rainfall and topography, human-related factors can also contribute
to water-related disasters, including pluvial flooding. In recent
years, several methods have been proposed for evaluating social
vulnerability to natural disasters, in addition to physical factors.
Cutter et al. (1996) used factor analysis to construct a Social
Vulnerability Index. Karunarathne and Gunhak (2020) also
developed a Multi-Faceted Composite Social Vulnerability Index,
which determines the components and weighting of vulnerability
based on expert opinions. However, human society and water
systems are not just related to each other but also interact with
each other. A hydrological approach alone cannot understand this
interaction between human society and water systems (Baldassarre
et al., 2021). For this reason, the field of socio-hydrology,
which integrates hydrological and social science perspectives, was
proposed by Sivapalan et al. (2012).

As one of the studies in socio-hydrology, Baldassarre et al.
(2013, 2015) applied a system dynamics model (SH model)
that mathematically formulates the interaction between flood
damage, flood memories, population, and flood control for a
dynamic analysis of the interaction between human society and
water system. Specifically, in two hypothetical societies—a “green
society” with no embankments and a “technological society” with
embankments—the memory of the green society is sustained
as it is recovered with each flood, while in the technological
society, the frequency of flooding is reduced by the embankments.
Hence, the memory, which initially increases with each flood,
temporarily decreases and almost disappears by the next flood,
causing more severe damage. These are known as the “adaptation
effect” and “levee effect” in flood management. The former is a
phenomenon in which the continued memory of flooding enhances
society’s ability to cope with flooding, and social vulnerability is
reduced (Baldassarre et al., 2019). At the same time, the latter
is a phenomenon in which the frequency of flooding within
the floodplain decreases by installing levees, the development of
floodplain areas is promoted, increasing social vulnerability, and
embankments are raised to improve further flood control safety,
which is a typical phenomenon involving the interaction between
human activities and flooding (White, 1945). Although this is
a numerical experiment in a virtual society, it captures features
generally consistent with common sense and understanding.

Research on the SH model for river flooding is being applied to
various regions. Baldassarre et al. (2017) clarified the interaction
between human society and the water system over the past 150
years in Rome, Italy. Ciullo et al. (2017) applied the SH model
to Italy as a target area for a technological society that takes
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structural measures to prevent flooding and to Bangladesh as
a target area for a green society that takes only non-structural
measures, comparing the resilience of the two societies. Shibata
et al. (2022) demonstrated the applicability of the SH model in
Japan, specifically in the Nagano Prefecture Naganuma district,
a region characterized by a technological society. In addition,
Perera and Nakamura (Perera and Nakamura, 2022) improved
the SH model to enable the integrated assessment of river and
pluvial flooding in areas of Sri Lanka where these two types of
flooding occur in combination. However, the SH model formula
developed by Perera and Nakamura (Perera and Nakamura, 2022)
is essentially a model based on river flooding, as it only incorporates
the formula for pluvial flooding based on rainfall into the formula
for river flooding. In other words, no studies currently apply the SH
model to pluvial flooding alone. Furthermore, in conventional SH
model research, the target area was on a large scale, such as a city or
river basin. For example, the target area encompasses both disaster-
stricken and non-disaster-stricken areas, resulting in a mixed social
community that needs to be analyzed. Therefore, it is undeniable
that much more research is still needed to capture the interaction
between complex social communities and water systems.

Therefore, in this study, we developed an SH model that targets
pluvial flooding alone in Wakayama City, where concerns have
been raised about the increasing flood damage caused by pluvial
flooding. In particular, to avoid the analysis of the interaction
between the complex social communities and water systems, which
is a mixture of both disaster-stricken areas and non-disaster-
stricken areas such as previous studies, we identified the analysis
target as “frequent pluvial flooding areas” (only disaster-stricken
areas) based on Komori et al. (2022) and developed and applied
an SH model that targets only pluvial flooding. The aim to analyze
the interaction between simplified social communities and pluvial
flooding by limiting the target area to “frequent pluvial flooding
areas” is to verify the developed model by comparing the residents’
flood memory estimated by the model and changes over time in
social vulnerability, such as the levee effect and adaptation effect.
Here, the levee effect in the case of pluvial flooding was considered
in terms of urban flooding management through rainwater
drainage facilities, not a levee for river flooding management.

2 Study area and material and methods

2.1 Study area

This study focused on Wakayama City, which has relatively
high pluvial flooding damage. The selection criteria were based on
the following items.

� The damage caused by pluvial flooding in the flood statistics
must be substantial. This is because it is expected that in cities
where the amount of damage caused by pluvial flooding is
high, it will be possible to obtain many flood area records.
As the number of cases of pluvial flooding is not recorded in
the flood statistics, the amount of damage caused by pluvial
flooding was used as a substitute value.

� The capital expenditure on the city’s drainage project must
be significant. This is because we thought that the more

investment in a city’s drainage projects, the more likely it is
that pluvial flooding has occurred in the past.

Wakayama City ranked 13th in Japan regarding the amount
of damage caused by pluvial flooding (1.98 billion yen on average
from 2006 to 2012) and 5th in terms of the cost of drainage projects
(114 million yen/m2 in 2016) (Ministry of Land, Infrastructure,
Transport and Tourism, n.d.d).

2.2 Flooding area records

The frequent pluvial flooding areas were identified using the
flooding area records based on Komori et al. (2022). The flooding
area record is a map describing the type, timing, extent of flooding,
and so on. It is created by municipalities as part of the flood damage
statistics survey each time flooding occurs. This study identified the
frequent pluvial flooding areas from 1993 to 2017.

2.3 Rainfall data

In this study, radar AMeDAS (Automated Meteorological Data
Acquisition System) reanalysis rainfall data was used as the rainfall
data. Radar AMeDAS analysis rainfall data is created by combining
meteorological radar and AMeDAS observation rainfall. The mesh
size varies depending on the observation period: from 1988 to
March 2001, it was 5 km square; from April 2001 to December 2005,
it was 2.5 km square; and from 2006 onwards, it was 1 km square. In
addition, values are recorded every hour until May 2003 and every
30 min from June 2003 onwards.

2.4 National census: small area aggregation

This study used census data for small areas (towns and streets)
from e-Stat, the government statistics portal site (e-Stat, n.d.a).
The census is conducted every 5 years based on the Statistics
Act to obtain basic data for various administrative measures and
other purposes and to understand the realities of the people
and households in Japan. The census of towns and streets was
conducted in 1995 and includes data on population (total, male,
female, foreign nationals) and the number of households.

2.5 Drainage system data

The drainage system coverage data was calculated based on the
map of the areas where the public rainfall drainage system has been
used in Wakayama City (Wakayama City, n.d.f). The map shows
the type of rainfall drainage system (combined or separate) and
the date when the system was used in each area. The data was
copied onto a GIS, and each area’s drainage system coverage rate
was calculated.
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2.6 Digital elevation model (DEM)

This study used the elevation data of the DEM of
Fundamental Geospatial Data (Geographical Survey Institute,
n.d.b). The Fundamental Geospatial Data is a database that
the Basic Act established on the Advancement of Utilizing
Geospatial Information, enacted in 2007, and for which
development has been underway. Currently, the Geospatial
Information Authority of Japan is playing a central role in
its development. The developed Fundamental Geospatial
Data is provided free of charge via the Internet. Domestic
geospatial information is being developed with the exact location
reference, making it possible to implement advanced uses such as
superimposition smoothly.

This study used the 5 m mesh DEM provided by the
Fundamental Geospatial Data in 2013. This digital elevation model
uses 5 m × 5 m mesh, aerial laser surveying, and photogrammetry.
Airborne laser surveys are mainly carried out in urban areas.
They are created by interpolating the elevation values (ground
data) of the measurement points that reach the ground surface
in airborne laser surveys to create elevation values for the
center points of the approximately 5 m mesh. The accuracy
is within 0.3 m in elevation and 1.0 m in horizontal position.
Photographic surveys are mainly carried out in urban areas and
island areas. It is created by interpolating the elevation values
of the center points of the approximately 5 m mesh from the
elevation values measured by photogrammetry. The accuracy
is within 0.7 m in elevation and 1.0 m in horizontal position.
The target areas in this study were all areas created by aerial
laser surveying.

2.7 Mesh data of land use classification

In this study, we used the mesh data of land use classification
from the National Land Numerical Information (National Land
Numerical Information, n.d.e) as the land use data. The
National Land Numerical Information is a GIS database of
basic information on the country, such as topography, land
use, and public facilities. It was created to promote national
land policies, such as the National Land Formation Plan and
the National Land Use Plan. It is provided free of charge via
the Internet by the Basic Act on the Advancement of Utilizing
Geospatial Information.

The Land Use Subdivision Mesh is a database of land use
in Japan, with each 100 m mesh containing information on
each land use category. The land use categories include rice
paddies, other agricultural land, forests, wastelands, building
sites, arterial transport routes, lakes and marshes, and rivers.
The data was created for eight fiscal years from 1976 to 2016.
In 1976 and 1987, it was made using 1:25,000 topographic
maps and 1:100 administrative data. From 1991 onwards, it
was created using 1:25,000 topographic maps or electronic
topographic maps and satellite images (Landsat, ALOS, SPOT,
RapidEye, etc.). In this study, data from 1976, 1997 and 2014
were used.

2.8 SH model analysis

2.8.1 Development of the SH model for pluvial
flooding

The SH model consists of the following equations: flood
intensity F, flood protection level H, household density D, residents’
flood memory M, flood damage L, and the increase in flood
protection level after pluvial flooding R. The conventional SH
model is designed for river flooding, so we have improved the
equations for flood damage L and flood protection level H in the SH
model to make it suitable for pluvial flooding. Flood damage was
calculated using the precipitation in the target area rather than the
high river water level. In addition, the flood protection level H of
the SH model for pluvial flooding was calculated using the drainage
system coverage rate in the area. The equations for the modified SH
model are shown below Equations 1–6.

Flood intensity F:

F = 1 − exp(−RF − αR × H−
co

)if RF > RT (1)

where H_: flood protection level before flood (–), RF : rainfall
per unit time (mm/h), αR: probability time rainfall (mm/h), RT :
threshold value of rainfall that flood plains can store (mm/h), co:
parameter related to rainfall and damage (mm/h).

Increase in flood protection level after flooding R:

R = RF − αR × H−
pd

(2)

where pd: parameter related to damage and the drainage system
coverage rate.

Population density of the local community D, Flood protection
level H, Residents’ flood memory M:

dD
dt

= ρD {1 − D (1 + αDM)}− �(�(t))FD− (3)

dH
dt

=�(� (t))R (4)

dM
dt

=�(� (t))FD− − μSM (5)

where ρD: relative growth rate of the number of households (/year),
αD: ratio of preparedness and awareness (–), μS: rate of residents’
flood memory loss (/year), �(� (t)): a function that becomes one
during flooding and zero otherwise.

Flood damage L:

L = D × F (6)

2.8.2 Selection of the study area
In this study, the study area was selected from the areas that

had experienced multiple cases of pluvial flooding to analyze the
dynamics of residents’ memories in these areas. Therefore, we
identified frequent pluvial flooding areas in Wakayama City using
the method developed by Komori et al. (2022). Frequent pluvial
flooding areas were defined as those that had experienced three or
more pluvial flooding events in the 25 years from 1993 to 2017. As
a result, 79 frequent pluvial flooding meshes on a 100 m scale were
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FIGURE 1

Distribution of frequent urban pluvial flooding areas and study areas in Wakayama city.

identified in Wakayama City. Subsequently, the adjacent frequent
pluvial flooding meshes were integrated as one frequent pluvial
flooding area, with 19 areas (Figure 1).

The flood protection level of the SH model, which was
improved in the previous section, uses only the drainage system
coverage rate. However, in addition to developing drainage systems,
drainage channels and pump stations are also carried out to prevent
pluvial flooding. In other words, it is possible that appropriate
results cannot be calculated in areas where measures other than the
development of drainage systems are being carried out. Therefore,
areas where large-scale measures, such as the development of
drainage channels, have been confirmed were excluded as study
areas for the SH model. Seven areas with a high frequency of pluvial
flooding were selected as study areas for applying the SH model.

The study areas for applying the SH model are shown in
Figure 1. The study areas are divided into urban areas where
public drainage systems have been built (Sekido 3-chome, Kozaika,
Nakanoshima) and rural areas where they have not been built
(Isobe, Terauchi, Kire, Idakiso). Hereafter, urban areas where public
drainage systems have been built are referred to as Series 1, and
rural areas where they have not been built are referred to as Series 2.

2.8.3 Initial conditions and input data
When applying the SH model, we assigned initial values to the

model variables of flood protection level H and household density
D. The flood protection level H was calculated using the drainage
system coverage rate in the study area in 1992 (Chapter 2.4). The
household density D was calculated by normalizing the household
density in the study area in 1992, based on the national census.
Table 1 shows the initial conditions for the flood protection level
H, household density D and area for each study area.

The input data used were the radar AMeDAS analysis rainfall
data, which provided the annual maximum 1-h rainfall in the areas
prone to internal flooding from 1993 to 2017. In Wakayama City,

the pluvial flooding area record shows that no cases of pluvial
flooding have occurred more than once a year. Therefore, the
temporal scale of the SH model was set on an annual scale, and
the maximum 1-h rainfall for the year was used. Only the years in
which pluvial flooding was confirmed were included in this study,
and rainfall data were used as input.

Generally, there is a time lag between flood damage and the
implementation of countermeasures. In addition to flood damage,
economic factors also play a role in the development of drainage
systems. However, the flood protection level of the SH model
is assumed to increase immediately after damage occurs and
countermeasures are implemented. Therefore, there is a possibility
that the flood protection level of the SH model does not accurately
reflect the societal situation. Therefore, in this study, actual
drainage system coverage rate data was input.

2.8.4 Parameter settings
The values of the parameters used are shown in Table 2.
In drainage coverage projects, the 1/5th to 1/10th probability

time rainfall is used as the standard for drainage design. This
study adopted a 1/5th probability hourly rainfall of 44.8 mm/h for
Wakayama City as αR.

The relative growth rate of the number of households ρD was
calculated by averaging the relative growth rates of the number of
households in each year, which were calculated from the national
census data over the period and were set to ρD = 0.0048.

The preparation/awareness ratio αD was set to 5.0, using the
value from a previous study (Baldassarre et al., 2015). In previous
studies, the residents’ flood memory loss rate μS was given a range
of values from 0.05 (Baldassarre et al., 2013) to 0.50 (Ciullo et al.,
2017). Therefore, in this study, μS was set to a range of 0.05–0.50,
and the dynamics of memory were analyzed. In addition, μS was
calculated by dividing loge2 by the half-life of memory as described
by Ridolfi et al. (2020). When the residents’ flood memory loss rate
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TABLE 1 Initial conditions for the flood protection level H, household density D, and area for each study area.

Flood protection level H Household density D Area (m2)

Sekido 3-chome 0.00 0.12 500

Kozaika 0.00 0.17 400

Nakanoshima 0.00 0.12 400

Isobe 0.00 0.057 400

Terauchi 0.00 0.011 500

Kire 0.00 0.0069 600

Idakiso 0.00 0.012 1000

TABLE 2 The values of the model parameters.

Parameter Explanation Equation Value

αR 1/5th probability hourly
rainfall

(1) 44.8

co Parameter related to
rainfall and damage

(1) 180

ρD Relative growth rate of
the number of
households

(3) 0.0048

αD Preparation/awareness
ratio

(3) 5.0

μS Residents’ flood memory
loss rate

(5) 0.05–0.50

μS is 0.05, 0.10, and 0.50, the half-life of memory is approximately
14, 7, and 1.4 years, respectively.

A sensitivity analysis was conducted on the parameter co,
related to rainfall and damage, to obtain values that fit the
actual observation data. co must be greater than the numerator
in the exponential function in Equation 1 when calculating the
flood intensity F. The numerator in the exponential function in
Equation 1 is based on the amount of rainfall in the target area, so
co needs to be a value greater than the amount of rainfall. The most
considerable hourly rainfall in Wakayama Prefecture on record, as
recorded by the Japan Meteorological Agency, was 145 mm/h at
Shionomisaki (Japan Meteorological Agency, n.d.c), so we set co
to be a value greater than 145, and in the sensitivity analysis, we
gave co a range of 150 or more. We put the range for co to be 150–
340 and calculated it in 10 increments. For accuracy verification,
we used the RMSE (root mean square error) of the flood intensity F
and the actual inundation area ratio for the years when flooding
occurred. Since both the flood intensity F, which is calculated
from the amount of rainfall and the flood protection level, and the
actual inundation area ratio are indicators that show the degree
of inundation, a linear relationship must be established. Therefore,
the minimum RMSE of both indicators was adopted. The RMSE of
both indicators was adopted. The results of the sensitivity analysis
of co are shown in Table 3. The parameters of the SH model used in
this study were set to values that commonly used in areas prone to
urban flooding. Therefore, in this chapter, we used co = 180, which
resulted in the lowest RMSE for the target area.

2.8.5 Validation of model
To validate the residents’ flood memory loss rate μS in the

SH model, a survey was conducted to assess residents’ awareness
of flood hazards in each area of Wakayama City. The survey was
conducted from December 22 to December 24, 2023. This survey
involved interviews with all residents living in detached houses
within the target areas to assess their perception of flood threat
levels and experiences with flooding.

Furthermore, as verification data for the results of the SH
model, the inundation area ratio due to pluvial flooding and the
relative household density in the target area were calculated. The
inundation area ratio due to pluvial flooding was created from
the flood area map. The relative household density was derived
from national census sub-area statistics and used to calculate the
household density D.

3 Results and discussion

3.1 Application of the SH model

The results of applying the SH model to each area are shown
in Figures 2–8. We defined F_ratio, which divides the inundation
area ratio at the target areas by the flood intensity F. If the F_ratio
is less than 1, it means that the actual damage was minor than the
estimated result by the SH model, and if the F_ratio is greater than
1, it means that the damage was more significant than the calculated
result by the SH model. Table 4 shows the F_ratios for each target
area. The F_ratios for Isobe, Terauchi, and Idakiso in 2017 were 3.3,
2.3, and 4.2, respectively, which were more significant than those
for other areas and years. In addition, the F_ratio was less than
0.30 in Terauchi and Idakiso in 2008 and Isobe in 2012. When the
F_ratio is greater than 1, it was likely that factors other than the
coverage of drainage systems were affecting the damage caused by
pluvial flooding. This is thought to be due to changes in land use,
the condition of waterways, and the lack of accumulated memories,
as well as insufficient measures against pluvial flooding. The same is
true for cases where the F-ratio is less than 1, and it is thought that
this is because sufficient accumulated memory and preparations
have been made for pluvial flooding. The influence of memory will
be discussed in the next section. In addition, the areas where the
F-ratio was particularly large or small were in Series 2, where public
drainage systems had not been introduced. For example, in the
areas in Series 2, waterways that are sometimes used for agricultural
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TABLE 3 The results of the sensitivity analysis of co.

co

150 160 170 180 190 200 210 220 230 240

Sekido 3-chome 0.31 0.28 0.25 0.22 0.19 0.17 0.15 0.13 0.12 0.10

Kozaika 0.32 0.33 0.34 0.35 0.36 0.37 0.37 0.38 0.39 0.40

Nakanoshima 0.24 0.23 0.23 0.23 0.24 0.24 0.25 0.25 0.26 0.26

Isobe 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.60

Terauchi 0.45 0.43 0.41 0.40 0.39 0.38 0.37 0.37 0.37 0.37

Kire 0.22 0.23 0.23 0.25 0.26 0.27 0.28 0.30 0.31 0.32

Idakiso 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.75

Total 2.806 2.764 2.741 2.730 2.730 2.737 2.750 2.767 2.788 2.811

250 260 270 280 290 300 310 320 330 340

Sekido 3-chome 0.09 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.09 0.09

Kozaika 0.41 0.42 0.42 0.43 0.44 0.44 0.45 0.45 0.46 0.46

Nakanoshima 0.27 0.28 0.28 0.29 0.29 0.30 0.30 0.31 0.31 0.32

Isobe 0.61 0.62 0.62 0.63 0.64 0.65 0.65 0.65 0.66 0.66

Terauchi 0.37 0.37 0.37 0.37 0.38 0.38 0.38 0.39 0.39 0.39

Kire 0.34 0.35 0.36 0.37 0.38 0.40 0.40 0.40 0.41 0.42

Idakiso 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.78 0.78 0.78

Total 2.837 2.865 2.896 2.928 2.962 3.033 3.033 3.069 3.104 3.140

purposes are mainly used for rainwater drainage. Thus, we can infer
that the factors affecting the occurrence of pluvial flooding, which
are not considered in the SH model, have a more significant impact
on the areas in Series 2.

The household density D of Series 1 captured the actual trend
better than Series 2 (Figures 2–8). The results for household density
D in Series 2 were higher than the exact values for the entire period.
Urban areas, such as Series 1, are thought to be more likely to
experience population growth, and areas with farmland, such as
Series 2, are less likely to experience population growth to the same
extent as urban areas. For this reason, it is thought that the relative
growth rate ρD of the number of households given uniformly to the
target area was too high to apply to the areas in Series 2. In addition,
the results of the SH model showed more significant fluctuations
than the actual household density. These reasons are that the areas
to which the SH model has been applied in the past are large in
scale, such as urban areas and river basins, and the relative growth
rate ρD includes both the population decrease in disaster-stricken
areas and the population increase due to economic growth outside
the disaster-stricken areas, so it is thought that the population
increase and decrease will be significant. On the other hand, in this
study, only the disaster-stricken areas were targeted in a small area
of 400–1,000 m2 (Table 1), so it is considered that the population
increase due to economic growth outside the disaster-stricken areas
was not strongly reflected.

The maximum value of the residents’ flood memory M was 0.84
at Sekido 3-chome in 2009 (Figure 2). The maximum value of the
residents’ flood memory M for Series 1 was in the range of 0.057–
0.084, and the maximum value of the residents’ flood memory

M for Series 2 was in the range of 0.041–0.052, so it was found
that Series 1 had a higher residents’ flood memory (Figures 2–
8). In particular, the residents’ flood memory M for Series 1 in
Sekido 3-chome remained at a high value. This was likely due to
the continuous occurrence of relatively sizeable pluvial flooding.
In addition, it was confirmed that within the period, there were
alternating periods of attenuation, during where the residents’ flood
memory M decreased, and periods of amplification, during where
the residents’ flood memory M increased. Furthermore, the same
dynamics were observed when the residents’ flood memory loss rate
μS was varied between 0.05 and 0.50 (Figures 2–8).

We, therefore, evaluated the effect of the value of the residents’
flood memory loss rate μS on household density D. We calculated
the multiplier for household density D in the cases of μS = 0.05
and μS = 0.50, using household density D for μS = 0.10 as the
standard. The results for the year with the most significant change
in each area are shown in Table 5. Regarding the residents’ flood
memory loss rate μS = 0.05, the household density D was 0.99–
1.0 times. In addition, when the residents’ flood memory loss rate
μS = 0.50, the household density D was 1.0 times. The area that
changed the most for both μS = 0.05 and μS = 0.50 was Kozaika.
From the above, when the residents’ flood memory loss rate μS is
in the range of 0.05–0.50, the impact of the residents’ flood memory
loss rate μS on the household density D is almost non-existent. One
reason for this is that in Japan, the value of houses is higher than the
damage caused by pluvial flooding, so it is thought that few people
move even if they are affected by a disaster. In this application of
the SH model, although there was no difference in the dynamics of
residents’ flood memory M due to differences in the residents’ flood
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FIGURE 2

The results of applying the SH model to Sekido 3-chome (Series 1). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d)
Flood damage D.
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FIGURE 3

The results of applying the SH model to Kozaika (Series 1). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d) Flood
damage D.
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FIGURE 4

The results of applying the SH model to Nakanoshima (Series 1). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d)
Flood damage D.
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FIGURE 5

The results of applying the SH model to Isobe (Series 2). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d) Flood
damage D.
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FIGURE 6

The results of applying the SH model to Terauchi (Series 2). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d) Flood
damage D.
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FIGURE 7

The results of applying the SH model to Kire (Series 2). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d) Flood
damage D.
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FIGURE 8

The results of applying the SH model to Idakiso (Series 2). (a) Flood intensity F, (b) Household density D, (c) Residents’ flood memory M, (d) Flood
damage D.
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TABLE 4 The F_ratios for each target area.

1995 2000 2008 2009 2012 2014 2017

Series 1 Sekido 3-chome 0.68 0.78 0.50 0.76 – – –

Kozaika 0.38 1.3 – 2.09 – – –

Nakanoshima 1.7 1.3 – 0.54 – – –

Series 2 Isobe – – – 1.6 0.27 – 3.3

Terauchi 0.69 – 0.20 1.0 0.48 – 2.3

Kire 1.0 – – 1.2 1.6 0.41 –

Idakiso 0.57 – 0.22 1.1 0.49 – 4.2

TABLE 5 The households density D as a multiple of the residents’ flood
memory loss rate μS.

Household density D ratio with μS
= 0.10

Year

μS = 0.05 μS = 0.50

Sekido 3-chome 0.9944 1.010 2017

Kozaika 0.9930 1.012 2017

Nakanoshima 0.9947 1.009 2017

Isobe 0.9985 1.005 2017

Terauchi 0.9982 1.004 2017

Kire 0.9987 1.003 2017

Idakiso 0.9974 1.004 2016

memory loss rate μS, and the effect on household density D was
small, the determination of the residents’ flood memory loss rate
μS needs to be verified by conducting interviews with residents.

Flood damage L is expressed as the product of flood intensity
F and household density D. However, as mentioned above,
although few people relocate their homes due to damage caused
by pluvial flooding, the SH model assumes many people will
relocate. Therefore, if damage caused by pluvial flooding occurs
in succession, there is a high possibility that damage in later years
will be underestimated. In fact, in all three areas of Sekido 3-
chome, Terauchi and Idakiso, where pluvial flooding occurred in
2008 and 2009, the damage in 2009 was calculated to be small.
Therefore, it was inferred that about flood damage L if modifying
the household density D would result in a result that conformed to
the actual damage.

3.2 Validation of the SH model by
comparing the residents’ flood memory
and changes over time in social
vulnerability

3.2.1 Validation of the residents’ flood memory
loss rate

To validate the residents’ flood memory loss rate μS in the
SH model, a survey was conducted to assess residents’ awareness
of flood hazards in each area of Wakayama City. The survey

results are shown in Table 6. The results were summarized, by each
area, the total number of responses, average length of residence,
average household size, the average response to Question 1 “How
much of a threat do you perceive flooding to be to yourself or
your home?”, and Question 2 “the proportion reporting flood
experience.” Question 1 was presented on a Five-point Likert scale
from “1 Not a threat” to “5 A threat.” Question 2 was a yes/no
question. Kozaika (Series 1), which had no experience of flooding,
showed the lowest awareness of flooding, while Idakiso (Series
2), which had the highest experience of flooding, showed the
highest awareness of flooding. A positive relationship was observed
between awareness of flooding and experience of flooding.

Based on the survey results, the residents’ flood memory loss
rate μS was estimated. Responses to Question 1 of the survey were
interpreted as the perceived threat level of flooding. For each area,
risk perception in the base year was set as the maximum value
of 5, and the half-life of risk perception from that year to 2023
was calculated. Here, the base year was defined as the last year
within the target period for that study area where the flooded area
ratio reached 50% or more of the maximum flooded area ratio.
Then, referencing Ridolfi et al. (2020), the residents’ flood memory
loss rate μS was calculated by dividing 2 by the memory half-
life. In addition, the calculation of the residents’ flood memory
loss rate μS for each area within each city utilized only responses
from residents who had lived in that area prior to the base year.
The overall residents’ flood memory loss rate μS was calculated by
taking the weighted average of the residents’ flood memory loss rate
μS for each area. The residents’ flood memory loss rate μS for each
area, as well as the weighted average residents’ flood memory loss
rate μS, is shown in Table 7. The weighted average residents’ flood
memory loss rate μS for Wakayama City was 0.05 at a city scale.
The memory half-life is approximately 14 years. It should be noted
that Perera and Nakamura (Perera and Nakamura, 2022) generally
indicate that the residents’ flood memory loss rate μS ranges from
0.05 to 0.50 at a large scale, and the results obtained from this survey
broadly confirmed alignment with this value at a city scale.

3.2.2 The residents’ flood memory and adaptation
effect

The areas where the adaptation effect was clearly expressed
within the target area were Nakanoshima (Series 1) and Kire (Series
2) regardless of the presence or absence of public drainage systems.
In Nakanoshima, the residents’ flood memory M had accumulated
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TABLE 6 The survey results of residents living in detached houses within the target areas.

Total number of
responses

Average length
of residence

(year)

Average
household size

(person)

Average response
to question 1

Average response
to question 2 (%)

Sekido 3-chome 22 30.5 2.2 3.1 31.9

Kozaika 6 17.0 2.3 2.0 0.0

Nakanoshima 12 38.8 2.3 2.6 27.3

Isobe 12 49.1 3.0 3.5 50.0

Terauchi 16 41.2 3.0 2.6 64.3

Kire 26 26.0 2.9 3.5 80.0

Idakiso 19 47.2 2.5 4.0 100.0

Total 113 36.3 2.6 3.2 58.5

TABLE 7 The survey results of residents’ flood memory loss rate μS for
each area.

μS (year) Memory half-life (year)

Sekido 3-chome 0.04 16.6

Kozaika 0.07 10.6

Nakanoshima 0.02 34.9

Isobe 0.05 13.1

Terauchi 0.10 6.8

Kire 0.03 20.1

Idakiso 0.04 18.6

Weighted average 0.05 14.0

since 1993. In contrast, in Kire, the residents’ flood memory M was
almost zero until 2009, after which it accumulated rapidly due to
frequent flooding experiences from that point onwards. Therefore,
the levee effect was also confirmed in Kire (see Section 3.2.2).

In Nakanoshima, the F-ratio was more significant than 1 in the
1995 and 2000 pluvial flooding events; however, in 2009, the F-ratio
was 0.54, which was less than 1. The residents’ flood memory M in
the year prior to pluvial flooding was higher in 2008 than in 1994
and 1999. Therefore, it was inferred that in 2009, the adaptation
effect of the accumulation of residents’ flood memory M occurred,
and the inundated area ratio was smaller than the flood intensity
F estimated by the SH model. In addition, since the 2000 flood
experience influenced the adaptive effects in the 2009 flood. Many
previous studies (e.g., Baldassarre et al., 2017; Ciullo et al., 2017;
Shibata et al., 2022; Perera and Nakamura, 2022) have treated the
initial value of residents’ flood memory M as zero. However, flood
experiences prior to the target period influence the initial value of
residents’ flood memory M. Therefore, it is necessary to verify the
initial value of residents’ flood memory M in future studies.

In the case of Kire, as with Nakanoshima, the F-ratio was more
significant than 1 for the 2009 and 2012 pluvial flooding events, but
in 2014, the F-ratio was 0.41, which was less than 1. The residents’
flood memory M in the year prior to pluvial flooding was higher in
2013 than in 2008 and 2011. Therefore, it is thought that damage
was reduced in Kire due to the adaptation effect. In addition, the

rainfall, flood intensity F, inundation area ratio, and residents’ flood
memory M for the 1995 and 2014 pluvial flooding events in Kire
are shown in Table 8. The rainfall and estimated flood intensity F
during the 1995 and 2014 pluvial flooding events were similar. The
residents’ flood memory M for the previous year was 0.034 larger in
2014. At this time, the inundation area ratio was 0.38 times that
of 1995, indicating that the residents’ flood memory M reduced
damage by about 60%.

3.2.3 The residents’ flood memory and levee
effect

The levee effects were confirmed in the target area of Kire
(Series 2) and Isobe (Series 2) only in the absence of public drainage
systems. Until the 1980s and 1960s, both Kire and Isobe were rural
areas surrounded by rice paddy fields, which served as flood control
basins to prevent pluvial flooding. Therefore, no public drainage
systems have been constructed to date. However, in recent years,
land use has shifted from rice paddy fields to urban areas, and
the flood retention effect at the rice paddy fields has continued
to decline, resulting in frequent pluvial flooding since 2009. As
a result, the residents’ flood memory M had almost zero until
2009, but it has rapidly accumulated since then due to frequent
flooding experiences.

In the case of Kire, it was thought that the levee effect was
confirmed during an urban pluvial flood in 2009. Although an
urban pluvial flood occurred in Kire in 1995, no pluvial flooding
occurred for the next 12 years, and the residents’ flood memory M
decreased to less than 0.001. This means that the residents’ flood
memory loss rate μS was 0.10, and the memory had reduced to
28% of the level it was at in 1995. It was inferred that when the
flood occurred in 2009, the F-ratio was 1.2 because there was little
memory accumulation.

Similarly, in Isobe, since there were no pluvial flooding
incidents from 1993 to 2008, it is thought that when the incident
occurred in 2009, there was minimal memory accumulation, and
damage occurred with an F-ratio of 1.6 due to the levee effect. In
addition, even if the same level of damage as in 2009 occurred
before 1992, it was estimated that a similar result would be obtained
because the residents’ flood memory M in 2008 would be less
than 0.0070.
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TABLE 8 The comparison of rainfall, flood intensity F, inundation area ratio, and residents’ flood memory M for the 1995 and 2014 urban pluvial flooding
in Kire.

Rainfall (mm/h) Flood intensity F Inundation area ratio Residents’ flood memory M

1995 45 0.22 0.23 0

2014 43 0.21 0.09 0.034

4 Conclusions

We developed an SH model for pluvial flooding. We applied
the developed model to the frequent pluvial flooding areas in
Wakayama City and verified that social vulnerability (levee effect
and adaptation effect) could be explained by residents’ flood
memory estimated by the model.

Adaptation effect occurred in both urban areas with public
drainage systems (Series 1) and rural areas without public
drainage systems (Series 2). In Series 1, pluvial flooding has
occurred intermittently since 1993, and each time it has occurred,
residents’ flood memory has accumulated, and adaptation effects
have emerged. On the other hand, in Series 2, which is
surrounded by paddy fields with flood retarding functions, there
had been no major flooding before 2009; however, frequent
pluvial flooding since 2009 has led to the shortly accumulation
of residents’ flood memory and the emergence of adaptation
effects. Additionally, because flood experiences prior to the target
period influence the initial value of residents’ flood memory, it is
necessary to verify the initial value of residents’ flood memory in
future studies.

The levee effect occurred only in Series 2. In Series 2, it was
considered that residents lacked awareness of the increased flood
risk in the area due to land-use changes from rice paddy fields to
residential areas. It was considered that residents’ awareness of the
increased flood risk in the area due to changes in land use from rice
paddy fields to residential areas was lacking, as they had no prior
severe flood experiences.

System dynamics modeling is a method of dynamic analysis
based on strong correlations between elements. On the other hand,
it is indisputable that when various communities are mixed within
the social system under analysis, as in the conventional SH model,
further research is needed to fully understand how the interactions
between the complex social community and the water system can
be captured. In this study, by simplifying the analysis target to only
the disaster-stricken areas (frequent pluvial flooding area), it was
possible to capture the interaction between the simplified social
community and flooding more directly so that the adaptation and
levee effects were more clearly captured. In future socio-hydrology
research, it is essential to consider the scale of the analysis target.

In the future, quantitative verification of the model is expected
to contribute to further improvements in the model, such as
quantitative analysis of the effects of flood experience, disaster risk
reduction (DRR) infrastructure, and DRR education on residents’
flood memory dynamics, as well as modeling of residents’ flood
memory dynamics itself. A deeper understanding of the role of
residents’ flood memory in DRR is expected to contribute to the
implementation of resident-participatory DRR policies and to the
quantitative evaluation of DRR education aimed at enhancing
residents’ flood memory.
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