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Understanding the probability of drought occurrence in agricultural areas is

important for designing e�ective adaptation strategies to drought impacts

on agriculture and food security. This knowledge is critical, especially in

arid and semi-arid areas of Morocco, which are prone and vulnerable to

droughts. This study examines the linkage between meteorological drought

(MD) and agricultural drought (AD) in a critical agricultural region in Morocco.

Di�erent agricultural drought indexes [NDVI anomaly, vegetation condition index

(VCI), temperature condition index (TCI), vegetation health index (VHI)], and

a meteorological drought index [Standardized Precipitation Evapotranspiration

Index (SPEI) in di�erent time scales (3, 6, 9, 12 months)] are assessed for the

period 2000–2022. Statistical measures such as Spearman correlation (R), root

mean square error (RMSE), and mean absolute error (MAE), are utilized to assess

the performance of the meteorological drought index to detect the agricultural

drought. The propagation time from meteorological drought to agricultural

drought was identified, and probabilistic linkages between the two types of

droughts were investigated using the copula function and Bayesian network.

Results show that a combination of SPEI3 as meteorological drought index and

VHI as agricultural drought index has the highest correlation coe�cient of 0.65

and the lowest RMSE and MAE of 1.5 and 1.5, respectively. The propagation

time from meteorological to agricultural drought was 39 days on a scale of 12

months, and seasonally, it was 29, 32, and 82 days, for autumn, winter, and

spring, respectively. Bayesian network results show that agricultural droughts

have the high probability to occur whenever there is severe and extreme

meteorological drought, with the highest probabilities for mild and moderate

agricultural drought. The findings have significant applications in water resource

management and agricultural planning, for water usage and food security based

on likelihood of agricultural drought occurence.
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1 Introduction

Drought is one of the most destructive natural catastrophes, making it one of the

biggest threats to socio-economic development (Apurv et al., 2017; Fernández et al., 2023).

Agricultural drought directly impacts crop growth, negatively affecting yield production,

food security, and livelihoods, especially for rural populations. This stresses a need for
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research to improve early warning capabilities for agricultural

drought. Further research shows a strong relationship between

meteorological drought and other types of droughts, knowing

that meteorological drought is the precursor to other drought

types (Fang et al., 2020; Li et al., 2020; Zhengguang et al.,

2023). Therefore, a clear understanding of how meteorological

droughts propagate to agricultural droughts and the probabilistic

connections between the two drought types is important for

proactively predicting agricultural droughts and minimizing their

impacts (Zhengguang et al., 2023). This is of great importance

especially in arid and semi-arid areas which are water scarce.

The long-term climate of a region, whether arid or humid, can

be quantified using the aridity index (CAI), which is defined as the

ratio of mean annual potential evaporation (Ep) to precipitation

(P) (Budyko and Miller, 1974; Henning and Flohn, 1977). Regions

with an aridity index >1 are generally classified as dry, while those

with an index <1 are classified as humid (Arora, 2002; Ponce et al.,

2000; Budyko and Miller, 1974). Semi-aridity is a common climatic

characteristic that can have significant negative impacts. According

to the findings of Hamed et al. (2024), Morocco is classified as semi-

arid to sub-humid in the north and Arid in the south. Droughts are

more frequently documented in semi-arid and sub-humid regions,

which often attract high concentrations of human populations

(Ponce et al., 2000).

Morocco is in a climate change hotspot (IPCC, 2021). Several

studies indicate that drought events have become more frequent

and intense in Morocco and the larger northern Africa region

(Bouras et al., 2020; Henchiri et al., 2021; Verner et al., 2018; Zkhiri

et al., 2019). Ouharba et al. (2024) reported that Morocco has

experienced severe drought in different periods. Severe droughts

affected the country in 1980–1985, 1990–1995, 1998–2002, and

2015–2020, causing water shortage that led to overexploitation

of groundwater, and significant social and economic challenges.

Unfortunately, there is a gap in understanding the evolution of

the recent drought events from 2019 to 2024. According to IPCC

(2021), the rise in climate-related hazards may become more severe

in the future, causing significant material and human damage and

an important imbalance between water supply and demand (Hadri

et al., 2024; Saouabe et al., 2022). This is likely to derail efforts to

realize most Sustainable Development Goals among them SDGs 1

and 2 aiming at No Poverty and No Hunger, respectively (WMO,

2022; Filho et al., 2023).

In Morocco, severe periods of drought led to significant job

displacement in the agricultural sector with ∼6.5% of workers

losing their works and 39% remaining unemployed (Alfani et al.,

2023), rural populations migrate to urban areas due to the absolute

scarcity of water resources (Tribak et al., 2018). Women in rural

areas have been significantly affected by water scarcity, impacting

their agricultural roles and social activities (Bossenbroek and

Ftouhi, 2024). Staple crops like cereals, that are highly sensitive

to temperature and precipitation changes, were impacted by the

drought events (Alfani et al., 2023; Achli et al., 2024).

Several studies have analyzed drought variability in Morocco.

Researchers have investigated meteorological drought using

precipitation products from reanalyzed and satellite datasets

(PERSIAN-CDR, ERA5, CHIRPS) (e.g., Ouatiki et al., 2017; Salih

et al., 2022; Ait Dhmane et al., 2023; Tuel and El Moçayd, 2023;

Rachdane et al., 2022; Bouizrou et al., 2023); and agricultural

drought using soil moisture, evapotranspiration, and vegetation

indices from MODIS, Sentinel (Ezzine et al., 2014; Houmma

et al., 2024; Elair et al., 2023; Acharki et al., 2023; Hakam et al.,

2023). Terrestrial water storage changes are often monitored by

GRACE satellites to track groundwater (hydrological drought).

However, in the Casablanca Settat region, one of the most

important agricultural areas in Morocco, and severely affected by

meteorological and agricultural drought, a few studies have been

conducted to characterize those events and no study has been

conducted in the last period from 2019 to 2024.

Drought propagation is the transition from meteorological

drought to other drought types. Amazirh et al. (2023) describe

the drought propagation process as primarily initiated by a

lack of precipitation, and it spreads slowly to soil moisture,

vegetation, streamflow, and groundwater, affecting the entire

hydrological processes across the landscape. The lag and probability

of the propagation ought to be understood when analyzing

the relationship between meteorological drought and agricultural

drought in each area.

A few studies have investigated the probabilistic linkages of

drought event characteristics between meteorological drought and

agricultural drought. Currently, most studies focus on creating

and understanding the relationship between agricultural and

meteorological drought characteristics using simple regression

models (Li et al., 2018; Wu et al., 2017; Yu et al., 2020; Zhou et al.,

2021a). Probabilistic methods can describe this relationship since

meteorological drought implies probability information regarding

subsequent agricultural and other droughts. Therefore, there is

a need to put more effort into demonstrating the feasibility of

probabilistic statistical approaches to determine the probabilistic

linkages between agricultural drought and meteorological drought

event characteristics, which can provide key risk reduction

information for decision-makers.

Probabilistic models offer significant advantages in evaluating

the link between different types of droughts. Different models

have been used, including Copula-based joint models that allow

the characterization of complete interactions between different

droughts, to identify the behaviors of large-scale drought datasets

(Pan et al., 2013; Fang et al., 2019a,b), probabilistic framework that

can analyze the propagation of meteorological drought to different

drought types, Bayesian network models and copula functions

method that estimate the joint probability of drought propagation,

providing information on how the meteorological drought evolves

into hydrological drought (Shin et al., 2019, 2016). All those

methods can be applied to different drought types.

Probabilistic models are applied worldwide to link between

droughts. Copula and Bayesian networks were applied in the

Yangtze River Basin in China. The application uses a standardized

precipitation index (SPI) and Soil moisture anomaly percentage

Index (ISMAPI) to indicate meteorological and agricultural

droughts; this method is applied to link the two drought types

(Xu et al., 2023). In The Qinhe River Basin, Bayesian networks,

and copula were used to determine the propagation threshold

between meteorological and hydrological drought (Liu et al., 2022).

In Balkhash Lake Basin in Central Asia, the Bayesian copula

multivariate analysis (BCMA) method was applied to assess the
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impact of spatial-temporal variation on drought risk (Yang et al.,

2022). Avilés et al. (2016) used the Markov chain and Bayesian

network-based models for drought forecasting, and the copula

functions were used to solve the Bayesian networks in Chulco

River Basin, Southern Ecuador. On a global scale, a copula

Bayesian framework was used to quantify the propagation from

meteorological drought to soil moisture drought (Ma and Yuan,

2024).

In this paper, bivariate copula functions are used since they offer

several advantages. It enables the analysis of two variables: drought

duration and severity (Kim and Seo, 2025). The joint analysis

helps better capture the relationship between meteorological

and agricultural drought, providing a detailed image of drought

dynamics (Nazeri Tahroudi et al., 2020). Bivariate Copula offers

flexibility in marginal distributions, which is beneficial when

dealing with different types of droughts (Madadgar et al., 2017);

this flexibility ensures that the best-fit distributions can be used for

each variable (Kim and Seo, 2025). Copulas enable the calculation

of conditional probabilities and return periods for drought events,

which is valuable for risk assessment and planning (Poonia et al.,

2021). the bivariate copulas are particularly useful in agricultural

drought risk management; they can model the dependencies

between drought conditions and crop yield anomalies (Li et al.,

2020; Ribeiro et al., 2019); this modeling is crucial in quantifying

the impact of drought on crop yields, wish is essential for irrigation

planning and agricultural practices (Li et al., 2021).

The purpose of this study is to determine the probability

of agricultural drought occurrence at different classes of

meteorological drought conditions in Casablanca Settat region

in Morocco, which is one the most important agrarian area in

Morocco. The findings of this paper will enable decision makers

and farmers to assess the likelihood of agricultural droughts

based on specific meteorological drought index classification. This

information is crucial for optimizing irrigation schedules, planning

crop cycles, and determining insurance premiums based on

probabilistic risks. This can significantly assist in risk assessment

and drought management in agricultural seasons.

2 Study area and data

2.1 Study area

Casablanca Settat region represents Morocco’s important

economic center. It lies between longitude −9◦ and −6.5◦, and

latitude 32◦ and 34◦, with an altitude ranging from 56m to 800m

(Figure 1). The region is characterized by a semi-arid climate,

featuring average temperatures ranging from 12 to 21◦C and an

average annual rainfall of 422.3mm. Moderate dry years are more

prevalent than severe and extreme droughts. A warming climate

was observed yearly and in the summer between 1961 and 2008

(Lachgar et al., 2022), severe droughts affecting this area located

in Oum Errabia basin were recorded during the periods 1983/84,

1992/95, 1998/01, 2019/21 (Hamid et al., 2024).

Agricultural land area accounts for 66.3% of the total land

area, of which irrigated land covers ∼10.8% of the cropland

(146,436 hectares). Furthermore, this region contributes 15.8%

of the National Agricultural Gross Domestic Product (Naamane

et al., 2020). According to the High Commission for Planning 2024

census, at least 7.68 million people live in the region, with more

than 2.055 million people in the rural areas (High Commission for

Planning, 2024). The region is surrounded by critical hydrological

infrastructure. The second largest dam in the country,Massira, with

a capacity of 2.800 Mm3, is used for irrigation in Doukkala plain,

located west of the study area and covering 96.000 ha. The region

contributes to the national production of poultry, sugar beet, milk,

cereals, and red meat by 45%, 40%, 24%, 24% and 18%, respectively

(MAPMDREE, 2018).

2.2 Datasets

This study used different datasets to calculate drought

indices (Table 1). PERSIANN-CDR is a satellite-based precipitation

dataset providing rainfall estimates at a 0.25◦ resolution from

1983 to 2024 for monthly precipitation data. It is designed

for long-term climate and hydrological studies, especially for

analyzing extreme precipitation events (Hsu et al., 2014).

The choice of PERSIANN CDR rainfall data is based on

a country-wide study (Salih et al., 2022) that evaluated the

performance of various datasets to reproduce rainfall over

Morocco. PERSIANN CDR emerged as the best product for

reproducing monthly and annual precipitation at all altitudes and

for daily precipitation at high altitudes. This was confirmed in a

related study.

Monthly temperature data was sourced from ERA5-Land for

the period 1983–2024. It is an enhanced global dataset developed

by the European Center for Medium-Range Weather Forecasts

(ECMWF) under the Copernicus Climate Change Service (C3S). It

focuses on the land component of the fifth generation of European

reanalysis (ERA5) and spans from 1950 to the present, with

continuous updates (Muñoz-Sabater et al., 2021).

Monthly NDVI derived fromMODIS MOD13A3v061 (https://

lpdaac.usgs.gov/products/mod13a3v061/) with a spatial resolution

of 1 km was extracted from 2000 to 2024 (Didan, 2021). This

data is of relatively high quality and has been used in related

research (e.g., Bai et al., 2019; Ma et al., 2017). Monthly land

surface temperature (LST) with a spatial resolution of 1km is

used from MODIS MOD11A2 (https://lpdaac.usgs.gov/products/

mod11a2v006/). This data has a 1 km spatial resolution and is

available in a 1,200 × 1,200 km grid (Wan et al., 2021). Each

pixel value represents the average of 8 days’ LST for that location.

MOD11A2 provided both daytime and nighttime LST. However, in

the present study, only daytime data were used for the LST analysis.

Table 1 presents the datasets used in research.

3 Methodology

Monthly VCI, VHI, TCI, SMAI, and NDVI anomaly was

evaluated to characterize agricultural drought to be linked with

meteorological drought at different time scales. Statistical metrics

[Spearman coefficient of correlation R, root mean square error

(RMSE) andmean absolute error (MAE)] are used for performance

evaluation of the combinations. Using the best combination

between agricultural and meteorological indices, different time lag

base cross-correlation and maximum correlation coefficients were

assessed to determine the time it takes for meteorological drought
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FIGURE 1

(a) Geographical location of the study area; (b) Koppen Geiger climate classification; (c) Land use and land cover from ESA Word cover V100.

TABLE 1 Datasets of the di�erent variables used in the study.

Dataset Source Resolution Regional
applicability

Precipitation PERSIAN-CDR 0.25◦ x 0.25◦

(roughly 25 km)

Global

Temperature ERA5-Land 0.1◦ x 0.1◦

(roughly 9 km)

Global

NDVI MODIS (MOD13A2) 1 km Global

LST MODIS (MOD11A1) 1 km Global

Soil Moisture SMAP 9 km Global

to propagate to agricultural drought. A probability framework

based on the copula function and Bayesian network was used

to quantify the probabilistic linkages between the two types of

droughts. Figure 2 shows the methodological framework adopted

in this study.

3.1 Drought indices

The SPEI (Vicente-Serrano et al., 2010) is among the

most used drought indices, particularly in arid and semi-arid

areas. SPEI uses the long-term difference between the potential

evapotranspiration (PET) calculated based on temperature and

precipitation to capture drought. The index integrates the

strengths of the standardized precipitation index (SPI) and the

Palmer Drought Severity Index (PDSI). It effectively captures the

cumulative effects of meteorological drought over various time

scales and shows promising potential for practical applications

(Zuo et al., 2019). Additionally, the Standardized Precipitation-

Evapotranspiration Index (SPEI) is similar to the self-calibrating

Palmar Drought Severity Index (scPDSI) and can identify increases

in drought severity due to global warming. This is primarily

attributed to the heightenedwater demand resulting from increased

evapotranspiration (Vicente-Serrano et al., 2010; Liu et al., 2024). In

this study, SPEI was calculated from 1983 to 2024 for accumulation

periods of 1, 3, 6, 9, and 12 months.

The SPEI is computed using monthly precipitation and

temperature data according to the following steps. The monthly

difference between precipitation and PET is determined using

Equation 1. The calculation of PET is done using the Hargreaves

method, this method demonstrated high accuracy in semi-arid

and arid climates (Er-Raki et al., 2010, 2011), and this method

is very reliable in semi-arid conditions supports efficient water

use in agriculture. Then, the accumulated difference between

precipitation and PET at different time scales is computed using

following Equation 2;

PET = 0.0023 Ra.(Tmean + 17.8).
√

Tmax − Tmin (1)

Dj = Pj PETj (2)


















Xk
i,j =

12
∑

I=13−k+j

Di−I,j +
j

∑

I=1
Di,j

Xk
i,j =

j
∑

I=j−k+j

Di,j

(3)
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FIGURE 2

Methodological framework for drought propagation assessment in the study area.

where Xk
i,j is the accumulated difference between precipitation

and PET values at the k-month timescale during (j) month in (i)

year;Di,j denotes the monthly difference between precipitation and

PET values in i-month of the I year. Thereafter, the accumulated

difference is normalized to avoid having negative values from

the data sequence Xk
i,j, a three-parameter log-logistic probability

distribution is used by the SPEI index (Vicente-Serrano et al., 2010).

For the data sequence of the entire timescales, the accumulative

function of the log-logistic probability distribution f(x) is given in

Equation 4, where α is the scale parameter, β the shape parameter,

and γ is the position parameter.

f (x) =
[

1 + (
x γ

α
)
β
]−1

(4)

ρ shows the probability of a definite X value, as presented in

Equation 5:

ρ = 1 f (x) (5)

When ρ ≤ 0.5

ω =
√

−2 ln ρ (6)

SPEI = ω −
C0 + C1ω + C2ω

2

1+ d1ω + d2ω2 + d3ω3
(7)

When ρ > 0.5

ω =
√

−2 ln(1− ρ) (8)

SPEI =
C0 + C1ω + C2ω

2

1+ d1ω + d2ω2 + d3ω3
(9)
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where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 =
1.432788, d2 = 0.189269, and d3 = 0.001308.

Five key indices are often utilized to monitor agricultural

drought. The temperature condition index (TCI) is widely used

to assess the impact of temperature on vegetation health, often

within the context of drought monitoring (Wassie et al., 2022).

It measures how the current temperature compares to historical

temperatures over a specific period, providing insight into how

temperature extremes might affect crop and vegetation health.

The TCI (Equation 9) measures the fluctuations in land surface

temperature. Sensitive to temperature variations, this index is

used to reflect thermal stress on vegetation and thus is more

effective in regions where temperature is the limiting factor for

vegetation growth.

TCI =
Tmax− Tcurrent

Tmax− Tmin
∗100 (10)

The VCI is an agricultural drought index that measures the

health and intensity of vegetation based on the NDVI. It helps

assess the impact of drought on vegetation by comparing current

vegetation conditions to historical data. The VCI (Equation 10)

indicates vegetation health based on greenness and sensitivity to

water availability; it is effective in regions where water is the limiting

factor for vegetation growth (Kogan, 1995).

VCI =
NDVI i− NDVI min

NDVI max− NDVI min
∗100 (11)

The VHI is an agricultural drought index that indicates the

health and intensity of vegetation based on the vegetation condition

index and the temperature condition index. It provides a more

integrated view of vegetation stress by considering vegetation and

temperature conditions, making it a valuable tool for monitoring

drought impacts on agriculture. It comprehensively measures

vegetation health by integrating greenness and thermal stress

(Kogan, 1997). It suits diverse climatic regions, offering a balanced

view of drought impacts. It is calculated based on the combination

of VCI and temperature condition index. VHI is calculated using

Equation 11.

VHI = α∗VCI + β ∗TCI (12)

Normalized Difference Vegetation Index anomaly (NDVI

anomaly) measures how the NDVI deviates from long-term

averages, reflecting changes in vegetation health caused by drought.

This anomaly is effective for identifying areas with significant

changes in vegetation due to drought, making it useful for early

warning systems. NDVI anomaly is the simplest andmost common

NDVI-based approach for detecting and mapping drought using

its long-term mean for a pixel or region at a given time (Anyamba

and Tucker, 2012). The variation of the NDVI with a positive value

indicates normal conditions, while a negative value indicates severe

drought conditions (Vaani and Porchelvan, 2017). NDVI anomaly

is computed using Equation 12.

NDVI anomaly i =
NDVI (i)− NDVI mean

std(NDVI)
(13)

Soil Moisture Anomaly Index (SMAI) is essential for accurately

characterizing soil water status. This index provides a global

TABLE 2 Agricultural drought indices classification.

VCI/TCI/VHI (%) NDVI Anomaly Drought level

80–100 2 Very good

60–79 1 Normal

40–59 −1 Moderate

20–39 −1.5 Severe

0–19 −2 Extreme

analysis of water conditions in a region, making it an invaluable

tool for monitoring and assessing drought. According to Bergman

et al. (1988), the interpretation of the SMAI can help identify dry

periods indirectly. Specifically, suppose that when SMAI is <0,

it indicates that the average soil moisture for a month i is lower

than the historical average for that month, suggesting a potentially

dry period. Conversely, suppose the SMAI is >0. In that case, it

indicates that the average soil moisture for month i is higher than

the historical average, suggesting a wet period due to rainfall or

irrigation. Equation 13 calculates the SMAI.

SM anomaly i =
SM (i)− SM mean

std(SM)
(14)

Table 2 presents the classification used to define agricultural

drought intensities.

3.2 Drought propagation time

Determining the propagation time is crucial for linking

agricultural drought and meteorological drought. The two widely

used methods come into play to calculate propagation between

different types of droughts. The first method involves determining

the lag time between drought types using correlation analysis. This

method is practical for understanding the relationship between

different drought types. The second method quantifies the interval

between the start, peak, and end times of paired drought events

to understand the duration and intensity of drought events.

Examining the propagation time across different seasons is a

practical approach for seasonal variability analysis. In this study,

we adopted the first method to calculate the lag time between

the meteorological and agricultural drought that occurred in the

studied region over the period.

3.3 Occurrence probabilities of agricultural
drought under di�erent levels of
meteorological drought

3.3.1 Copula function
The copula function is a mathematical function used in

statistics and probability theory to describe the relationship

between the distributions of multiple random variables (Sklar,

1959). Copula is a multivariable joint distribution function that is

the joint distribution of multiple random variables through their

respective marginal distribution functions (Sklar, 1959; Michele
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and Salvadori, 2003; Salvadori and Michele, 2004). It has been

widely utilized in studies related to drought (Geng et al., 2024;

Kanthavel et al., 2023; Bai et al., 2023; Jung et al., 2022; Hadri et al.,

2024).

This study uses the bivariate copula, where random variables

X remain to the meteorological drought indices and Y remain

to the agricultural drought indices with marginal distribution

FX(x) and Fy(y). There is a two- dimensional copula function C

that combines these two marginal distributions to form a joint

distribution function, FX,Y(x, y) (Equation 13):

FX, Y(x, y) = P{X ≤ x ;Y ≤ y} = C(FX(x), Fy(y)) (15)

The copula function was used to analyze the occurrence

probability of agricultural drought under meteorological

drought conditions. There are many copula families, including

Archimedean, elliptical, and quadratic copula. The most widely

used is the Archimedean copula for analyzing bivariate joint

dependence structures (Wu et al., 2015). This study uses five

copula functions: Clayton, Frank, Gumbel, Student’s, and Gaussian

Copula. The RMSE between the empirical and theoretical values is

adopted for the fit of goodness to choose the best copula in each

grid. Descriptive of the Copula functions used in this work are

presented in Table 3.

3.3.2 Conditional probabilities calculation using
Bayesian network

Meteorological drought indices and agricultural drought

indices variables of each grid are regarded as two random variables,

and the choice of distribution to fit depends on the index. If the

index used is standardized, a normal distribution is used; if not, we

assess a different distribution. Significant correlations between MD

and AD are essential for the construction of the joint distribution

of MD and AD series using Copula; for that, we keep only grids

with a correlation coefficient between MD and AD >0.5 for this

study to estimate the conditional probability of agricultural drought

conditioned on meteorological drought.

A Bayesian network is a method that represents the conditional

dependencies between various variables and has been extensively

utilized in calculating conditional probabilities (Guo et al., 2020;

Han et al., 2021; Sattar and Kim, 2018; Sattar et al., 2019).

MD and AD are classified into four categories (mild, moderate,

severe, and extreme). The marginal distribution of the two random

variables and the best-fit copula is determined, and the conditional

probabilities of AD conditioned on MD can be calculated using a

Bayesian network. Hence, the conditional probability of moderate

or severe AD under moderate or severe MD conditions can be

estimated using Equation 16:

P(a1≤A≤a2;m1≤M≤m2) = C(FA(a2), FM(m2))

+C(FA(a1), FM(m1))− C(FA(a1), FM(m2)

−C(FA(a2), FM(m1))C(FM(m2), FM(m1)) (16)

The conditioned probability of extreme AD under light

(moderate or severe) MD conditions can be estimated as follows

(Equation 17):

P(A≤a1;m1≤M≤m2) = C(FA(a1), FM(m2))− C(FA(a1),

FM(m1))C(FM(m2), FM(m1)) (17)

The conditioned probability of light (moderate or severe) AD

under extreme MD conditions can be estimated by this equation

(Equation 18):

P(A≤a1;m1≤M≤m2) = C(FA(a2), FM(m1))

−C(FA(a1), FM(m1))FM(m1) (18)

The conditioned probability of extreme AD under extremeMD

conditions can be estimated by this equation (Equation 19):

P(A≤a1;m1≤M≤m2) = C(FA(a1), FM(m1))FM(m1) (19)

where FM and FA are the marginals cumulative distributions of the

MD indices and AD indices,FM(m) and FA(a) are the cumulative

probabilities of M ≤ m and A ≤ a, and C(FA(a), FM(m)) is the

joint cumulative probability ofM ≤ m and A ≤ a, m1 and m2 are

the minimum andmaximum value of meteorological drought class,

and a1 and a2 are the minimum andmaximum value of agricultural

drought class, respectively. For instance, for severe meteorological

drought m1= 1.5 and m2= 2.

4 Results and discussion

This study analyzed the propagation process from

meteorological drought to agricultural drought, focusing on

identifying drought type, propagation time and conditional

probability of drought occurrence. The conditional probability

is calculated using the copula function and Bayesian network;

this method has the advantage of describing the relationship

between variables.

4.1 Drought variability

Fluctuations in drought conditions within the Casablanca-

Settat region were analyzed over the period from 1985 to 2024

using SPEI index calculated at various time scales (3, 6, 9, and

12 months). Figure 3 shows that drought episodes occur more

frequently at shorter time scales, although drought variability

exhibited a consistent trend across all scales. Notably, exceptionally

dry decades were recorded in the 2000s and 2020s, while unusually

wet periods were observed in 1990, 1996, and 2010.

The SPEI time series demonstrates sensitivity to the time

scales employed. The SPEI3 and SPEI6 indices capture short-

term and frequent seasonal fluctuations. In contrast, the SPEI9

and SPEI12 indices, being less frequent but of longer duration,

provide a more comprehensive representation of average or annual

water conditions. For instance, the SPEI3 and SPEI6 indicate

drought occurrences of 30.27 and 30.48%, respectively, with

average severities of −1.41 and −1.42 and average durations of 3

months, and 3 to 4 months. In contrast, the SPEI9 and SPEI12

indices reveal less frequent but longer droughts, with a relatively
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TABLE 3 Copula function used in the study.

Copula Function Expression (C (u, v; θ)) Parameter Range

Archimedean Gumbel exp(−((−ln uθ )+ (−ln vθ ))1/θ θ ≥ 1

Clayton {max{ u−θ + v−θ − 1; 0}}−1/θ θ ≥ −1, θ 6= 0

Frank − 1
θ
ln{1+ (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1
} θ 6= 0

Gaussian
∅

−1(u)
∫

−∞
∗

∅−1(v)
∫

−∞

1

2π
√
1−θ2

exp{− x2−2θxy+y2

2(1−θ2)
}xy −1 < θ < 1

Elliptical Student’s t

t−1
∅2(u)
∫

−∞

t∅2−1(v)
∫

−∞

1

2π
√

1−θ1
2
{1+ x2−2θ1xy+y2

θ2(1−θ1
2)

}
−(θ2+2)

2
xy −1 < θ1 < 1, θ2 > 0

FIGURE 3

Historical time series of SPEI at 3-, 6-, 9-, and 12-month time scales during the period (1983–2024), white for normal conditions, light yellow for

Light drought, yellow for Moderate drought, orange for severe drought, and red for severe drought.

high average severity of −1.39 and −1.2 and average durations

of 4 and 7 months, respectively. Historically, the frequency of

drought episodes for the SPEI3, 6, 9, and 12 is 0.47, 0.4, 0.34,

and 0.2, suggesting that the shorter time scale SPEI series exhibit

a higher frequency of drought occurrences. In contrast, the

frequencies for the longer time scales of 9 and 12 months have

stabilized significantly.

Therefore, longer analysis periods are better suited for

understanding the conditions and identifying historically

significant events. They also shed light on the seasonal and

interannual fluctuations that occur regularly. The characteristics of

drought in the studied region have varied over time, revealing a

history of recurrent drought occurrences and notable fluctuations

in their frequency, which indicate a high sensitivity to this

hydrological extreme. These findings are consistent with the

results reported by Hamid et al. (2024) and Zhim et al. (2019),

who also observed similar patterns of drought variability in Oum

Errabia watershed.

4.2 Performance of meteorological
drought indices in capturing agricultural
drought conditions

SPEI in different timescales (3, 6, 9, and 12 months) as

a meteorological drought index were utilized to find the best

combination of drought indices that best describes the link between
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FIGURE 4

Monthly maximum Spearman correlation between SPEI in di�erent time scales and agricultural drought indices.

meteorological and agricultural drought indices. The Standardized

Precipitation-Evapotranspiration Index (SPEI) considers both

precipitation and potential evapotranspiration (PET), which is

calculated from temperature. This dual consideration makes it

effective for monitoring and predicting drought (Saharwardi et al.,

2023). In contrast, the Standardized Precipitation Index (SPI) relies

solely on precipitation data (Saharwardi et al., 2023; Mckee et al.,

1993). When SPEI is used with probabilistic model, it becomes

a method that demonstrates superior spatial coverage than other

indices like SPI, and high accuracy in predicting drought (Talebi

and Samadianfard, 2024). Spearman correlation coefficients were

calculated between the SPEI at various time scales and several

agricultural drought indices (NDVI anomaly, VCI, TCI, VHI)

(Figure 4). The results show a notable variation in correlation

values between these indices’ time series and the SPEI, depending

on the time scale applied. The correlation strengthened when the

SPEI at shorter time scales was associated with indices related

to vegetation condition, such as NDVI and VCI. Furthermore,

the analyses confirm the hypothesis observed in the time series,

suggesting that the SPEI3 is the most relevant for capturing

agricultural drought conditions. This finding aligns with the

work of Bouras et al. (2020) and Hakam et al. (2023), who

also observed a strong correlation between vegetation cover and

SPEI-3. However, some studies (e.g., Vermote and Saleous, 2006;

Ejaz et al., 2023) indicate that monthly and annual time scales

could also provide important explanatory insights. It is therefore

essential to consider local conditions in vegetation’s response

to drought.

At longer time scales (SPEI 9 and SPEI 12), the correlation

values reveal a significant response with the TCI index, which

reflects thermal stress experienced by vegetation, particularly on an

annual scale and during the dry summer season (Figure 4). This

strong correlation can be explained by the calculation parameters

of these indices, which are primarily based on temperature.

A composite index that assesses vegetation health by

accounting for both hydric and thermal stress shows moderate

correlations with the SPEI across different time scales. Moreover,

the seasons where the highest correlation between SPEI3 and

VHI occur is spring (March–May) and winter (December–

February), with correlation values exceeding 0.5. In contrast, the

SPEI6 shows relatively weak correlations compared to the other

scales analyzed.

The SPEI3 shows high correlations with NDVI anomaly indices

and the VCI, with correlation coefficients exceeding 0.7. These

correlations indicate a strong response of vegetation to drought

conditions on short time scales, consistent with the direct impact

of water deficits on vegetation cover (Bento et al., 2018). A spatial

correlation analysis was conducted for each pixel in the region

to better identify areas vulnerable to drought due to unfavorable

climatic conditions. This analysis also helps assess the effectiveness

of SPEI3 in tracking agricultural drought across the entire region.

Results (Figure 5) reveal that the highest and most consistent

correlations are observed between SPEI3 and vegetation indices,

such as NDVI anomaly, VCI, and VHI, covering the entire

study region. These high correlations demonstrate that SPEI3

is particularly effective in representing vegetation’s water stress

status at a seasonal scale, as these indices (NDVI, VCI, and VHI)

capture changes in vegetation greenness and health in response

to variations in water availability. The RMSE and MAE of the

correlations are relatively low, with values ranging from 0.5 to

0.7 for VHI and VCI, and up to 1.5 to 1.6 for NDVI anomaly.

These low error values show that vegetation-based indices respond

consistently to changes in SPEI3, reinforcing the notion that this

index is reliable for assessing agricultural drought. In contrast, the

correlation values between TCI and SPEI3 are primarily between

0.1 and −0.1, indicating areas without any correlations. This

suggests that the TCI, which measures thermal stress, is less

influenced by water deficits and more by episodes of extreme heat,
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FIGURE 5

Spatial correlation, RMSE, and MAE maps between SPEI at 3-month time scale and agricultural drought indices.

independently of drought conditions, explaining the low RMSE and

MAE values observed for this index compared to the others.

The soil moisture anomaly (SM anomaly), on the other hand,

shows the weakest correlations with SPEI3 of −0.1 to 0.2, along

with some of the highest RMSE and MAE values of 1.5 and 1.3,

respectively. These results may be explained by the relatively low

spatial resolution of the soil moisture products used, which may

not adequately capture drought variations at the regional scale.

Additionally, soil moisture dynamics can be influenced by local

factors such as soil type, water-holding capacity, and vegetation

cover, which are not fully represented in global data (Chai et al.,

2021; Liu et al., 2024).

Overall, the results of this analysis highlight the importance of

using a range of indices for agricultural drought monitoring, as

each index responds differently to climatic conditions. The SPEI3

proves particularly relevant for assessing the effects of short-term

droughts on vegetation, while indices like TCI and soil moisture

anomaly can provide complementary information but are less

directly related to water deficits base of the spatial resolution that

we have from soil moisture product.

4.3 Drought propagation time and its
seasonal variability

The transition from meteorological drought to agricultural

drought is influenced by a range of complex physiological

processes, ecosystem dynamics, and water availability (Amazirh

et al., 2023; Nemani et al., 2003). This suggests that the time taken

for propagation can vary significantly based on these factors. As

a meteorological drought evolves beyond a certain threshold, it

can profoundly impact soil moisture levels, ultimately leading to

reduced agricultural yields. In contrast to meteorological drought,
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FIGURE 6

Propagation time from meteorological to agricultural drought and its corresponding Spearman correlation coe�cient in the Casablanca Settat

region.
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FIGURE 7

Seasonal variability of propagation time from meteorological to agricultural drought.

the monitoring of agricultural drought typically reveals a temporal

lag in its onset (Cammalleri et al., 2024).

In this section, we utilized the SPEI index at different

time scales (1, 3, 6, 9, and 12 months) along with the VHI to

illustrate meteorological and agricultural droughts, respectively.

According to the sequence of drought occurrences, the maximum

correlation was used to calculate the propagation relationship

of these two types of droughts at annual, interannual, and

seasonal scales. Figure 6 presents the spatial patterns of the

propagation from meteorological drought to agricultural

drought, as well as the corresponding Spearman correlation

coefficients. It appears that the propagation delay from

meteorological drought to agricultural drought in this region

shows a certain homogeneity, oscillating between 31 and 61 days

depending on the different time scales, while displaying relatively

low correlations.

In contrast, a shorter average delay of 31 days was observed

using the SPEI at a 3-month scale. The Spearman rank

correlation coefficient between SPEI3 and VHI in the study area

is 0.61, indicating a substantial response relationship between

agricultural drought and meteorological drought in the study area.

Furthermore, in ∼90% of the analyzed grids, the Spearman rank

correlation coefficient was ≥0.60, highlighting the robustness of

this correlation. This reinforces our findings that the quarterly

SPEI3 index effectively captures agricultural drought conditions

and can be used to predict this drought using the VHI.

SPEI at the 6-month scale showed a high correlation of 0.67,

indicating a good response between agricultural drought and

meteorological drought using this index. However, the average

delay was 56 days, which indicates that SPEI at 6-month scales

will take longer to predict agricultural drought. The maximum

correlation was lower for SPEI at 1, 9, and 12-month scales, 0.48,

0.49, and 0.46, respectively. Also, the response between the two

types of droughts was longer than SPEI3 and SPEI6, 61 days for

SPEI1 and SPEI9 and 60 days for SPEI at 12-month scales.

At the seasonal scale, a relatively homogeneous drought

propagation from meteorological to agricultural drought is

observed across the entire Casablanca-Settat region. Figure 7

showing results from SPEI3 and VHI, reveals propagation delays

that vary by season: 29 days in winter, 32 days in autumn, 82

days in spring, and 87 days in summer. The longer propagation

times in spring and summer may be attributed to more prolonged

meteorological and agricultural drought episodes, which limit the

rapid succession of propagation events.

During winter, the drought propagation time covers the

entire region uniformly. In autumn, this duration is significantly

shortened, with a heterogeneous distribution of 3 to 4 months

across the region. In spring, propagation is faster in the central
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part compared to the western and eastern areas. In summer,

the propagation time remains like that observed in autumn,

reflecting the region’s consistent response to drought events despite

seasonal variations.

Overall, seasonal differences in drought propagation time

are minor in the study region. Propagation time in spring and

summer (with average durations of 82 and 87 days, respectively)

is slightly longer than in winter and autumn (with averages

of 29 and 32 days, respectively). These observations align with

previous research on drought propagation dynamics in similar

environments. For example, Possega et al. (2023) reported a

transition from meteorological drought to agricultural drought

within 1 to 2 months in the Iberian region, influenced by the

severity of the initial drought. Similarly, Amazirh et al. (2023), in

their study on drought propagation in Africa using NDVI anomaly

and SPEI3 indices, found that a persistent precipitation deficit

translates into a soil moisture deficit in about a month before

manifesting in vegetation. The results of this study are consistent

with those of Amazirh et al. (2023) for northern and central

Morocco, where a similar lag of 1 to 2 months is observed.

Several environmental factors can modulate these variations in

the duration and spatial dynamics of drought propagation between

meteorology and agriculture. Indeed, watershed characteristics, soil

composition, and the structure of aquifer systems all influence

the region’s response to drought periods (Huang et al., 2017).

Funk and Brown (2006) documented a typical 1–2 months lag

between rainfall and vegetation response in semi-arid areas of

Africa, particularly after periods of heavy rainfall. Thus, these

results highlight the importance of considering local and regional

factors in interpreting drought propagation patterns. They also

highlight the relevance of using various indices to characterize

agricultural drought and assess vegetation response times to water

conditions, allowing for a more fine-grained analysis of climate

impacts on plant ecosystems in the region.

Drought propagation demonstrates how a drought

signal transitions from one type of drought to another,

such as meteorological drought to agricultural drought. This

demonstration is crucial for effectively predicting and managing

drought impacts. Also, agricultural drought significantly impacts

crop yield and food security, and by understanding propagation

from meteorological to agricultural drought, we can predict and

mitigate drought impacts and ensure food supply stability.

4.4 Probability of agricultural drought
occurrence under meteorological drought
scenarios

4.4.1 Best-fit copula for joint distribution of
meteorological and agricultural drought indices

The copula function was used to quantify the propagation from

meteorological to agricultural drought. Five copulas were selected

for the best-fit test according to the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) goodness of fit

test results. The copula with the lowest AIC and BIC compared to

drought datasets is considered the best copula. The average AIC and

BIC values for the region are shown in Table 4. The Frank copula

TABLE 4 Comparison of Five Copula using AIC and BIC.

Copula AIC BIC

Gumbel 54.4 46.8

Clayton 49.8 46.5

Frank 49.6 45.7

Gaussian 65.2 54.3

Student’s t 67.3 54.7

function exhibits the lowest AIC and BIC values for describing the

joint distribution between SPEI3 and VHI (e.g., MD to AD) with

49.6 in AIC and 45.7 in BIC, similar results using Clayton with 49.8

in AIC and 46.5 in BIC, the rest of the copulas show significant

results with 54.5 in AIC and 46.8 in BIC using Gumbel, 65.2 in

AIC and 54.3 in BIC using Gaussian and 67.3 in AIC and 54.7 in

BIC using Student’s copula. Figure 8 shows the spatial distributions

of copula functions along with their respective percentages. The

results indicate that the Frank copula fits 82.24% of the pixels,

while the Gumbel copula fits 7.27%, and both the student’s t and

Clayton copulas fit 4.24% each. Statistical analysis demonstrates

that the Frank copula provides the best fit, as evidenced by its lower

AIC and BIC values. Based on these findings, the Frank copula is

utilized to examine the conditional probability of the progression

from meteorological drought to agricultural drought.

4.4.2 Conditional probability of drought
propagation using Bayesian network

The research employed a copula with the best-fit function

to calculate the conditional probability of propagation from

meteorological drought to agricultural drought. The research was

done under various drought conditions, including light, moderate,

severe, and extreme, to understand the relationship between these

two types of droughts comprehensively.

Figure 9 illustrates the probability of progression from

meteorological drought to agricultural drought under various

preceding drought conditions. The probabilities of meteorological

drought (MD) transitioning to agricultural drought (AD) vary from

mild to extreme classifications.

When meteorological drought is categorized as “Mild,” the

occurrence probability for mild agricultural drought ranges from

0.1 to 0.3. Moderate agricultural drought probabilities average

between 0.3 and 0.45, while severe agricultural droughts have a

probability of 0.1 to 0.3. Extreme agricultural droughts show a

probability between 0.5 and 1.5. Under moderate meteorological

drought, the occurrence probability for mild agricultural drought

averages between 0.3 and 0.4. For moderate agricultural drought,

the probability ranges from 0.15 to 0.4; for severe agricultural

drought, it is between 0.1 and 0.3, and for extreme agricultural

drought, it falls between 0.05 and 0.15. In conditions of severe

meteorological drought, the probability of mild agricultural

drought ranges from 0.3 to 0.4, followed by moderate agricultural

drought with probabilities from 0.1 to 0.4, severe agricultural

drought ranging from 0.1 to 0.3, and extreme agricultural drought

between 0 and 0.5. Under Extreme meteorological drought, the

Frontiers inWater 13 frontiersin.org

https://doi.org/10.3389/frwa.2025.1559046
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Dahhane et al. 10.3389/frwa.2025.1559046

FIGURE 8

Spatial distribution of copula function fits and their pixel counts.

occurrence probability of mild agricultural drought is the highest,

averaging 0.7 across most of the study area. Moderate agricultural

drought has a probability averaging between 0.2 and 0.8, severe

agricultural drought averages between 0.1 and 0.3, and extreme

agricultural drought ranges from 0 to 0.5.

Our finding on drought occurrence probabilities indicates

a strong link between meteorological and agricultural droughts.

Even mild to moderate meteorological drought can lead to

significant agricultural drought, with the likelihood of transition

increasing as the severity of the meteorological drought rises.

For instance, during extreme meteorological drought conditions,

the probability of experiencing mild or moderate agricultural

drought exceeds 0.7 in most areas studied. Furthermore, the

consistent risk of agricultural drought occurring even during

mild to moderate meteorological droughts ranging from 0.3

to 0.5 highlights the importance of implementing regional

early warning systems and response strategies for irrigation

planning and crop management immediately. Interestingly, the

probability of facing extreme or severe agricultural drought

remains low, even when severe or extreme meteorological

drought conditions are present. This suggests that farmers

have developed adaptive strategies to cope with high levels

of drought stress or the occurrence of such events are

very rare.

Droughts tend to be more frequent in the eastern parts of

the study area compared to the western regions, largely due to

the presence of irrigation fields in the east. Human activities also

intensify the impacts of prolonged meteorological droughts by

disrupting natural river flows and altering water retention times

(Li et al., 2024), especially during periods of low streamflow. While

irrigation can enhance soil moisture, helping to alleviate the effects

of agricultural drought on vegetation, it can also reduce surface

water levels, thereby increasing the risk of agricultural drought

(Zhou et al., 2021b; Chang et al., 2017). These human-induced

factors, compounded by climatic variability, affect arid regions over

shorter periods and influence drought dynamics, particularly in
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FIGURE 9

Probabilities of agricultural drought conditions under meteorological drought conditions (where M, Mod, S, and E represent mild, moderate, severe,

and extreme drought, respectively. The first letter denotes the meteorological drought level, and the second letter denotes the agricultural drought

level. For example, M–S represents the occurrence probability of severe agricultural drought under mild meteorological drought).

intensively managed basins such as Oum Errabia and Bou Regreg,

where this study is situated.

According to several studies including IPCC (2021), Morocco

and the MENA region at large is a climate change hotspot.

Observational scientific evidence show that various natural systems

are impacted by regional climate changes, specifically temperature

increases (Sarker, 2022). Agriculture is one of the most impacted

economic sectors. Increase in droughts is a threat to food security.

The findings of our study provide information on propagation

of meteorological to agricultural drought. This information is an

important component of early warning system for decision making

in agricultural sector. The information can inform farmers on the

choice of crops to plant, and where need be, decision makers can

use the information to make key decisions such as food reservation

and importation.

5 Conclusion

Agricultural drought is a complex phenomenon caused

by different sources, natural and anthropogenic, which limits

conventional temporal evolution. Different drought indices

were calculated and compared in the Casablanca-Settat using

multiple datasets to identify meteorological and agricultural

droughts. Gridded datasets from PERSIAN-CDR (Precipitation)

and ERA5 land (Temperature) were used to calculate SPEI

in different time scales (1, 3, 6, 9, and 12), NDVI and LST

from MODIS was used to calculate VCI, NDVI Anomaly

and TCI. We also used VCI and TCI to calculate VHI, soil

moisture from SMOS to calculate soil moisture anomaly

index (SMI).

The findings indicate that VCI, NDVI Anomaly, and VHI

exhibit the highest correlations with SPEI3, with correlation

coefficients of 0.78, 0.71, and 0.63, respectively. The RMSE and

MAE for VCI and NDVI Anomaly ranged from 1 to 1.5, while for

VHI, they were between 0.5 and 1. Based on this information, we

consider the combination of VHI and SPEI3 to be themost effective

for using these datasets in this region, as they demonstrate a strong

correlation and low statistical error metrics (RMSE and MAE).

The average propagation times frommeteorological drought to

agricultural drought were 31 days, and the seasonal time was 32, 29,

82, and 87 in autumn, winter, spring, and summer, respectively. The

occurrence probabilities for agricultural droughts under various

preceding meteorological drought conditions were calculated using

the copula function and Bayesian network. Research findings

indicate that the likelihood of agricultural drought rises with

the severity of meteorological drought, highlighting a strong

correlation between the two types of droughts. Additionally, the

high probability of agricultural drought, even during periods

of mild or moderate meteorological drought, underscores the

necessity for building local resilience. This can be achieved by

implementing an early drought warning system that provides
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farmers with specific recommendations, which may not be

apparent during Mild or moderate drought conditions.

Propagation times and probabilities for MD to AD show

different change patterns in the study area, indicating that the

output of combining copula and Bayesian network using different

drought indices as a tool for drought early warning can be helpful

to tasks such as risk assessment for drought management and for

local policymakers in managing agriculture seasoned and drought,

While copula-based models provide a promising approach for

agricultural drought early warning, the complexity of the models,

the need to assess different distributions and the need for accurate

parameter estimation can pose challenges in practical applications.
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