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Long short-term memory (LSTM) networks have become indispensable tools in 
hydrological modeling due to their ability to capture long-term dependencies, 
handle non-linear relationships, and integrate multiple data sources but suffer 
from limited interpretability due to their black box nature. To address this limitation, 
we propose an explainable module within the LSTM framework, specifically designed 
for flood prediction across 531 catchments in the contiguous United States. Our 
approach incorporates a simplified gated module, which is interposed between 
the input data and the LSTM network, providing a transparent view of the module’s 
pattern recognition process. This gated module allows for easy identification of key 
variables and optimal lookback windows, and clusters the gated information into 
four categories: short-term and long-term impacts of precipitation and temperature. 
This categorization enhances our understanding of how the module utilizes input 
data and reveals underlying mechanisms in flood prediction. The modular design 
of our approach demonstrates high correlation with Saliency method, validating 
the credibility of its explanatory mechanisms, providing comparable interpretability 
features to LSTMs while illuminating key variables and optimal lookback windows 
considered most informative by hydrological models, and opening up new avenues 
for AI-assisted scientific discovery in the field.
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Highlights

 • An explainable module based on the LSTM framework has been developed specifically 
for flood prediction.

 • The module identifies key variables and the optimal time windows through 
intuitive visualization.

 • The module demonstrates high correlation with saliency method, validating the 
credibility of its explanatory mechanisms.
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1 Introduction

Streamflow estimation is essential for various applications, 
including flood hazards mitigation (Alfieri et  al., 2018), water 
sustainability studies (McDonnell et al., 2018; Zhang et al., 2023), 
reservoir management (Beça et  al., 2023), and humanitarian aid 
supports (Altay and Narayanan, 2022). The fundamental challenge in 
streamflow prediction lies in elucidating the hydrological mechanisms 
and establishing the relationship between various variables and 
streamflow, which are often characterized by dynamic complexity and 
non-stationarity (Coulibaly and Baldwin, 2005; Nourani, 2017). The 
most common method for forecasting streamflow is process-based 
hydrological modeling which facilitates an understanding of the 
physical processes involved in runoff generation and routing (Li et al., 
2013). However, these models rely on simplifying assumptions and 
require substantial input data (Danandeh Mehr et  al., 2013). An 
alternative approach is the use of data-driven models, which can 
quickly adapt to new conditions and are efficient in handling large 
datasets (Liu et al., 2015; Pokharel et al., 2023; Wilbrand et al., 2023). 
Currently, statistical and machine learning (ML) methods, both falling 
under the category of data-driven models, are widely used to develop 
predictive and analytical systems. Compared to statistical models that 
struggle to capture the nonlinear and nonstationary patterns inherent 
in time series (Han et al., 2024; Li et al., 2024), ML excels at extracting 
implicit patterns from high-dimensional, nonlinear, and multivariate 
data in complex and dynamic environments (Hussain et al., 2020; 
Herath et al., 2021; Yao et al., 2023; Tripathy and Mishra, 2024).

ML techniques have been increasingly applied in the 
hydrometeorological field (Zhu et al., 2020; Ditthakit et al., 2021; Ma 
et al., 2021; Mohammadi et al., 2022; Du et al., 2023). Among them, 
Long Short-Term Memory (LSTM) networks have demonstrated 
significant skills in estimating streamflow (Hochreiter and 
Schmidhuber, 1997; Greff et al., 2017; Kratzert et al., 2018; Van Houdt 
et al., 2020). For instance, Kratzert et al. (2019) showed that the LSTM 
model significantly improved the prediction of the rainfall-runoff 
process compared to several different hydrological benchmark 
models, such as the Variable Infiltration Capacity (VIC) model. 
Current research primarily focuses on enhancing model accuracy by 
integrating operational data or refining model components. Kwon 
et al. (2023) integrated reservoir operational data into a LSTM model 
for streamflow prediction, resulting in an increase in the Nash-
Sutcliffe Efficiency (NSE) values ranging from 0.18 to 0.21. Ni et al. 
(2020) utilized wavelet and convolutional modules to enhance the 
LSTM model for predicting streamflow and rainfall. Wang et  al. 
(2023) incorporated a Convolutional Neural Network (CNN) followed 
by the application of a LSTM model to simulate runoff, resulted in a 
marked enhancement in model accuracy. Nonetheless, ML is difficult 
to interpret, leading them to be termed “black boxes” (Shen, 2018). 
This lack of transparency can undermine trust, hinder informed 
decision-making, and pose challenges in regulatory and ethical 
contexts. Therefore, conducting research on the explainability of ML 
models is essential.

Interpretability is often associated with understanding the causal 
relationship between the model’s input and output, providing insights 
into the model’s reasoning process (Adadi and Berrada, 2018). 
Interpretability methods can be  broadly categorized into three 
principal approaches. First, the direct analysis of hidden states such as 
memory cells (Kratzert et al., 2018; Kratzert et al., 2019) and attention 

module (Ding et  al., 2020) scrutinize the model’s internal 
representations to understand its decision-making processes. Second, 
gradient-based methods, exemplified by the Layer-wise Relevance 
Propagation technique (Arras et al., 2019), utilize backpropagation to 
quantify the contribution of each input feature to the model’s 
predictions. Lastly, perturbation-based analysis, including variable 
contribution measures, cumulative local effect diagrams, SHapley 
Additive exPlanations, partial dependence profiles, individual 
conditional explanations, and local interpretable model-agnostic 
explanations (Althoff et  al., 2021; Núñez et  al., 2023), assess the 
model’s sensitivity to input changes by observing the variations of the 
output, thereby indicating the predictive influence.

Despite the focus of direct analysis of hidden states on 
visualization, gradient-based methods on model computation, and 
perturbation-based analyses on input data, there is a gap regarding the 
integration of these approaches to develop a straightforward, visually 
oriented method that considers the interaction between input data 
and model. Such a method is essential to explore the rationale behind 
hydrological predictions, particularly which variables and time 
periods within the time series data are most influential and their 
specific roles in the decision-making process. In this study, 
we  introduce a module designed to explore the potential of the 
explanatory ML to advance scientific understanding of hydrological 
processes, with a focus on identifying data choices for models. LSTM-
based models are established individually for 531 catchments across 
the contiguous United States. With a simple visible gated weights 
module adopted, we analyze the evolution of temporal information 
hidden in the networks, and reveal model behaviors in predicting 
streamflow from this information.

2 Materials and methods

2.1 Catchment attributes and meteorology 
for large-sample studies (CAMELS) data

The CAMELS dataset, introduced by Addor et  al. (2017) and 
Newman et al. (2015), is utilized for training and evaluating the LSTM 
model in this study. This dataset contains hydrometeorological time 
series observations over 671 reference basins across the contiguous 
United States. However, it should be noted that certain basins exhibit 
a significant (>10%) discrepancy in the calculation of their basin areas, 
which introduces considerable uncertainties in modeling studies. As 
a result, these basins with substantial discrepancies are excluded from 
the analysis, leaving only 531 basins with catchment areas smaller than 
2000 km2 from the CAMELS dataset as shown in Figure  1. This 
selection of basins aligns with the approach adopted by Newman et al. 
(2017) and Kratzert et al. (2019) in their respective studies.

Three different types of meteorological forcing data are included 
in CAMELS. For this study, the Daily Surface Weather Data on a 1-km 
Grid for North America is used. The input data for the study includes 
the following variables for the 30 days prior to the predicted day: daily 
streamflow (SF), cumulative precipitation (PRE), average short-wave 
radiation (RAD), maximum air temperature (Tmax), minimum air 
temperature (Tmin), and average vapor pressure (VP). Prior to model 
calculation, all inputs are normalized by utilizing the respective 
maximum and the minimum values. The model output is daily 
streamflow. Since the models are trained individually for each station, 
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the static attributes (e.g., typography) of the basins are not included as 
predictors in the model. The choice to train on a single station was 
primarily to capture local hydrological characteristics and dynamic 
changes more precisely, while avoiding biases caused by regional 
differences. The models are trained using the daily data during a 
10-year period from October 1st, 1989, to September 30th, 1999, and 
tested using another 10-year data from October 1st, 1999 to September 
30th, 2009.

2.2 Deep learning model

The deep-learning algorithm used in this study is shown as 
Figure 2. The model comprises a gated module, a LSTM module, and 
a prediction module. Firstly, a gated layer is employed to extract the 
gated information, which controls the passing weight of each input 
variable. Subsequently, the gated information is then fed into the 
traditional LSTM module. Finally, a predict module with two Fully 
Connected Neural Network (FCNN) layers, comprising 32 and 1 
neuron, respectively, and using a Leaky ReLU activation function, are 
utilized to predict the streamflow.

2.2.1 Input data format
Each group of input data, excluding SF, such as PRE, RAD, Tmax, 

Tmin, and VP, undergoes a gated information calculation prior to 
being integrated into the LSTM module. The input data originate as 
2D grids but are transformed into a 1D time series by calculating the 
watershed average for each variable over the study area. For instance, 
for PRE, the mean value across all grid cells within the watershed at 
each time step is computed, resulting in a single time series. This 
process is repeated for SF, RAD, Tmax, Tmin, and VP, yielding six 
distinct time series. These six time series, each spanning 30 time steps, 
are then combined into a 6×30 matrix X. Each row of X represents one 
of the six variables, and each column represents a time step. To 
determine the optimal look-back window, preliminary experiments 
were conducted with different window sizes. Results indicated that 
extending the look-back window beyond 30 days did not consistently 
improve model accuracy across all stations. Hence, a 30-day look-back 
window was selected as a balanced compromise, effectively capturing 
both short-term dynamics and long-term dependencies while 
maintaining computational efficiency.

2.2.2 Gated module
In order to focus on the selection of model input data using gated 

information for subsequent model calculations, a gated layer is 
specifically designed to facilitate this process between the input 
variables and the LSTM module. The gating layer computes a feature 
matrix G∈R6 × 30 for the input matrix X, where each element indicates 
the relative importance of the corresponding input variable at each 
time step: a value of 0 indicates that the corresponding information is 
completely disregarded and has no impact on the model; a value 
closer to 1 signifies that the model absorbs a greater amount of 
information from the input. The computation involves the 
following steps:

 1 Weight initialization

Each input variable xi,t (where i = 1,2, …, 6, t = 1,2, …, 30) is 
assigned an initial weight, which is learned during training.

 2 Gating transforms

The initial weights are derived from the input matrix X through a 
gating transformation, resulting in the matrix Y. This transformation 
is defined as Equation 1:

 ( )σ= =· g gY X W b  (1)

Where Wg is the weight matrix, bg is the bias term, and σ denotes 
the sigmoid function. The sigmoid activation function ensures that 
all elements in matrix Y fall within the range [0, 1], which allows 
them to serve as appropriate weighting factors in 
subsequent calculations.

 3 Self-attention mechanism

The inclusion of a self-attention mechanism is motivated by the 
need to enhance interactions not only across time but also between 
different hydrological variables. While LSTMs are capable of capturing 
long-term temporal dependencies, they may not fully leverage the 
intricate relationships between variables, especially in complex 
hydrological systems. The attention mechanism can improve the model’s 
ability to identify and weigh the importance of specific time steps and 
variables (Chen et al., 2025). This selective focus on relevant temporal 
patterns and variable interactions leads to improved predictive accuracy 
compared to baseline models without attention (Section 2.2.5).

The self-attention mechanism captures the temporal dependencies 
and interactions among different input variables. It performs point-wise 
multiplication with the input matrix Y, ensuring that each pixel point 
engages in a synergistic fusion with its counterparts across both spatial 
and temporal scales. This augmentation transcends the limitations of 
isolated information representation and preserves the fidelity of the 
original input data’s informational content. Specifically, given the input 
matrix Y, the self-attention mechanism computes attention as follows:

Firstly, generate Query (Q), Key (K), and Value (V) matrices as 
Equation 2:

 = = =· , · , ·Q K VQ Y W K Y W V Y W  (2)

FIGURE 1

Reference basins used in this study. The basins are represented by 
dots, with color intensity indicating the slope gradient and dot size 
reflecting the basin area.
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Where WQ, WK, WV are learnable weight matrices. Secondly, 
compute attention scores using dot-product and scale as Equation 3:

 
=

· TQ K
S

d  
(3)

Where d is the dimension of the matrix K. Finally, compute the 
output matrix as a weighted sum of values as Equation 4:

 ( )= ·O Softmax S V
 (4)

 4 Element-wise multiplication

The computed weight matrix O is applied to the input matrix X 
via element-wise multiplication as Equation 5:

 
= W O X

 (5)

Where W represents the gated output matrix with the same 
dimensions as the input matrix X.

Empirical experimentation has substantiated that situating the self-
attention mechanism after the gating layer is more conducive to 
preserving the intrinsic spatiotemporal characteristics of the original 
data. Premising the self-attention mechanism on the input data directly 
would imply an interaction that may not fully encapsulate these 
characteristics. By applying the self-attention mechanism to the gated 
output, the model can better leverage the learned control weights, 
ensuring robust and consistent behavior across diverse input conditions. 
The gating mechanism steadfastly preserves the learned control weights 
invariant, irrespective of the input state to which it is applied. This 
ensures that the model maintains a consistent and reliable performance 
across various scenarios, enhancing its overall robustness.

2.2.3 LSTM module
The output from the previous module, denoted as the weight 

matrix W∈R6 × 30, serves as the input to the LSTM module. The 
LSTM module processes this input sequentially over time steps, 
capturing temporal dependencies and long-term patterns in the 
data. Below is the detailed computation process of the 
LSTM module.

At each time step t, the LSTM cell updates its hidden state ht and 
cell state ct using the following as Equations 6–11:

 ( )σ − = + 1,t f t t ff W h W b  (6)

 ( )σ − = + 1,t i t t ii W h W b
 (7)

 
 ( )− = + 1tanh ,t c t t cc W h W b

 (8)

 


−= + 1t t t t tc f c i c
 (9)

 ( )σ − = + 1,t o t t oo W h W b  (10)

 ( )=  tanht t th o c  (11)

Where Wt is the input vector at time step t; ht is the hidden state 
at time step t; ct is the cell state at time step t; ft, ot, it are the forget gate, 
input gate, and output gate activations, respectively; tc  is the candidate 
cell state; Wf, Wi, Wc, Wo are the weight matrices for the gates and cell 
state; bf, bi, bc, bo are the bias terms.

The LSTM processes the 30 time steps sequentially, updating the 
hidden state ht and cell state ct at each step. The final hidden state h30 

FIGURE 2

The deep learning model architecture utilized in this study.
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captures the temporal information across all 30 time steps, which is 
used as the output of the LSTM module.

2.2.4 Prediction module
The prediction module consists of two FCNN layers to predict the 

streamflow from the final hidden state h30. The computation is as 
Equations 12, 13:

 ( )= +1 30 1·z LeakyReLU W h b
 (12)

 
= +2 2· ,ŷ W z b

 (13)

Where W1, W2 are the weight matrix for the FCNN layers, b1, b2 
are the bias terms. The output ŷ  is the final prediction of the model, 
representing the estimated streamflow.

2.2.5 Optimized design
To ensure optimal performance, several key hyperparameters 

were carefully calibrated through preliminary experiments 
conducted on a randomly selected station, allowing to establish a 
robust foundation for the subsequent comprehensive analysis. The 
model was implemented using Python 3.8.2 and PyTorch 1.9.0 on 
a GeForce RTX 3090 GPU. An Adam optimizer with a mean 
square error (MSE) loss function was employed to minimize 
prediction errors. The initial learning rate was set to 0.01 and 
reduced by one-tenth if the test dataset loss did not decrease for 
three consecutive epochs. Training was halted if the learning rate 
dropped to 0.00001, or after a maximum of 100 epochs to ensure 
convergence without excessive computation. A weight decay rate 
of 0.0001 was applied to prevent overfitting. The batch size was 
chosen based on computational efficiency and memory 
constraints, ensuring stable training while maintaining model 
performance. The number of hidden units in the LSTM module 
was determined through grid search to balance model complexity 
and predictive accuracy. These hyperparameter configurations are 

summarized in Table  1, along with their corresponding 
performance metric improvement.

2.3 Evaluation of modeling performance

2.3.1 Instructive days
As outlined in Section 2.2.2, the model incorporates a gated layer 

to dynamically control the flow of information from input variables 
into subsequent computations. To gain deeper insights into the role of 
this gated mechanism, we introduce the concept of instructive days, 
which represents the size of the lookback window that effectively 
conveys useful temporal information for each variable in streamflow 
prediction. The analysis of instructive days provides insights into how 
the model prioritizes and utilizes different temporal information 
windows for each variable, shedding light on the overall information 
processing dynamics within the model. A larger number of instructive 
days indicates that the variable’s long-term information plays a crucial 
role in model inference. Conversely, a smaller number suggests that 
only information from a short period is necessary for the variable, and 
long-term information may not be as influential.

2.3.2 Clustering analysis
To explore the differences in state information conveyed by the 

gated mechanism, clustering analysis is adopted on the gated 
information based on the concept of instructive days. This approach 
aims to group variables according to their temporal influence and 
reveal patterns in how the model utilizes short-term versus long-
term information.

Initially, the gated information for each variable is projected onto 
one-dimensional feature vectors. These vectors represent the variable 
type (e.g., SF, PRE, RAD, Tmax, Tmin, VP) and encode the temporal 
dependencies of the variable. This projection simplifies the 
representation while retaining the key characteristics of the gated 
information. From these projected feature vectors, two main features 
are selected for further classification: one captures the size of the 
lookback window (instructive days) that effectively contributes to 

TABLE 1 Hyperparameter configurations and corresponding performance metrics.

Hyperparameter Baseline setting Optimized value Performance metric 
improvement (MSE %)

Learning rate 0.001
0.01 (initial, reduced by 1/10 if no 

improvement)
26

Batch size 64 64 3.2

Number of hidden units 64 128 33

Number of epochs 50 100 (max) 17

Weight decay 0.001 0.0001 1.3

Activation function ReLU Leaky ReLU 0.9

Optimizer SGD Adam 3.0

Early stopping criterion None
LR < 0.00001 or no improvement for 3 

epochs
34

Adding self-attention mechanism None Self-attention 42

Number of FCNN layers 1 2 33

The baseline settings represent the initial configurations before hyperparameter tuning, while the optimized values were determined through grid search and cross-validation to minimize the 
MSE and improve model performance.
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streamflow prediction, and the other reflects the relative importance 
of the variable within the gated mechanism, indicating its overall 
impact on the model’s predictions.

Subsequently, the k-means clustering algorithm is applied using 
scikit-learn v1.3.0 package to aggregate the projected features into two 
distinct clusters. Specifically, each feature vector is treated as a data 
point in the two-dimensional feature space defined by the selected 
features. The k-means algorithm partitions the data points into two 
clusters based on their similarity in terms of temporal span and 
contribution magnitude. The resulting clusters highlight variables with 
similar temporal dynamics, distinguishing between those that 
primarily rely on short-term trends and those that leverage long-
term dependencies.

2.3.3 Performance measures
Three performance measures are used to qualitatively evaluate the 

performance of the models: MSE, Pearson correlation coefficient 
(CC), and NSE. They are calculated as Equations 14–16:

 

( )
=

−

=
∑ 2

1

N

i i
i

X Y
MSE

N  
(14)

 

( )( )

( ) ( )
=

= =

− −

=

− −
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(16)

Where N is the number of evaluation pair, Y is the modeled value, 
and X is the corresponding reference value. The optimum value of CC 
and NSE is 1, while 0 for MSE.

2.3.4 Explainable methods
To validate the credibility of the interpretability mechanisms in 

the proposed gated approach, two complementary attribution 
methods—saliency maps and feature ablation—are employed for 
comparative analysis.

 1 Saliency maps

Saliency maps provide a straightforward approach for attributing 
importance to input features in neural networks. This method 
calculates the gradient of the output with respect to each input, 
revealing which input features most strongly influence the model’s 
predictions. Mathematically, this involves computing the partial 
derivatives of the output with respect to each input dimension. The 
magnitude of these gradients indicates how sensitive the output is to 

changes in the corresponding input feature. For deeper theoretical 
insights into gradient-based feature attribution, these can be found in 
Baehrens et al. (2009).

 2 Feature ablation

Feature ablation quantifies feature importance by systematically 
replacing input values with baselines and measuring output changes. 
This perturbation-based method can evaluate individual features or 
feature groups collectively. In implementation, each feature’s values are 
independently replaced while observing prediction impacts 
(Kokhlikyan et al., 2020). Features causing significant error increases 
when modified are deemed important, indicating model reliance; 
conversely, features whose permutation does not affect predictions are 
considered unimportant. The procedure follows a structured 
approach: first calculating baseline error with original data, then 
systematically permuting each feature while measuring resulting error 
changes, and finally ranking features by their impact on model 
performance. This methodology provides an interpretable, 
quantitative assessment of feature contributions to model predictions.

3 Results

3.1 Spatial analysis of model performance

The Figure 3 present a comprehensive spatial evaluation of our 
model’s performance across the continental United States using three 
key metrics: MSE, CC, and NSE. Each metric provides distinct insights 
into the model’s predictive capabilities across different geographical 

FIGURE 3

The spatial distribution of model performance for (a) MSE, (b) CC, 
and (c) NSE for the testing period. The subplots in the right represent 
the empirical distribution of the basins.
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regions, revealing both strengths and limitations in spatial 
performance patterns.

The MSE distribution reveals significant spatial heterogeneity in 
prediction accuracy across the continental United  States. The 
logarithmic scale (ranging from 0 to 106) demonstrates that error 
magnitudes vary by several orders of magnitude. This variation is 
primarily attributable to differences in streamflow magnitude across 
watersheds, as MSE is calculated as the squared difference between 
predicted and observed values. Watersheds with naturally higher 
discharge volumes, such as those in the Pacific Northwest, parts of 
the Midwest around the Great Lakes, and portions of the 
Appalachian region, inherently produce larger absolute errors even 
when relative performance is similar to other regions (Krause et al., 
2005; Gupta et al., 2009). The regions with apparently lower MSE 
values in the Mountain West and parts of the Southwest likely reflect 
the smaller streamflow volumes characteristic of these more arid 
watersheds rather than necessarily indicating superior model 
performance. This interpretation is supported by Addor et  al. 
(2018), who observed that error metrics normalized by flow 
magnitude provide more consistent spatial patterns than absolute 
metrics when evaluating model performance across diverse 
hydroclimatic regimes.

The CC distribution provides insights into the model’s ability to 
capture temporal patterns and trends across different regions. The 
majority of stations display CC values ranging from 0.6 to 1.0 (orange 
to dark brown), indicating generally strong correlation between 
predicted and observed values. The highest correlations (CC > 0.8) are 
predominantly observed in the Pacific Northwest, parts of California, 
the Mountain West region, and clusters along the Eastern Seaboard. 
Interestingly, some areas with high MSE values also show high 
correlation coefficients, particularly in the Pacific Northwest and 
Northeast regions. This indicates that while the model may not 
perfectly predict the magnitude of values in these regions, it 
successfully captures the timing and pattern of variations, which is 
crucial for many hydrological applications.

The NSE metric, which ranges from 0.0 to 1.0 in the visualization, 
provides a normalized assessment of model skill relative to using the 
observed mean as a predictor. The spatial pattern of NSE closely 
resembles that of the correlation coefficient, with highest values (> 0.8) 
concentrated in the Western states, parts of the Midwest, and along 
the Eastern Seaboard. This similarity between CC and NSE 
distributions confirms the model’s consistent skill in these regions. 
Notably, some stations in the central United States show moderate 
NSE values (0.4–0.6) despite having relatively high correlation 
coefficients. This discrepancy suggests that while the model captures 
temporal patterns well in these areas, there may be systematic biases 
in magnitude prediction.

In summary, an integrative assessment across all three metrics 
reveals distinct regional patterns in model performance. The model 
performs exceptionally well in the Western mountainous regions, 
particularly in the Pacific Northwest and along the Sierra Nevada 
range, where all three metrics indicate strong predictive skill. The 
northeastern United States also shows consistently strong performance 
across metrics, particularly along coastal areas. In contrast, parts of 
the southeastern United States and central Plains exhibit more variable 
performance, with generally good correlation but sometimes higher 
MSE values, suggesting that the model captures patterns but may have 
magnitude biases.

3.2 Evaluation of information flow by 
instructive days

In Figure 4, the distribution of instructive days for four selected 
variables is presented. The results indicate that the model tends to 
focus on a limited number of days for obtaining relevant information, 
potentially suppressing the importance of long-term information 
through relatively low gating. The distribution of instructive days 
approximately follows a normal distribution, with the majority falling 
within the range of 20–30 days (Figure 4a). In the traditional LSTM 
model without the gated control, information from all input variables 
in the previous 210 days is provided to the model for all basins. 
However, it is observed that for most stations, the model can 
be  effectively trained using <30 days of data, indicating that a 
significant amount of information may be going underutilized. This 
suppression becomes more evident when examining the distributions 
of streamflow, precipitation, and maximum temperature, as depicted 
in Figures 4b–d. In these cases, the instructive days are concentrated 
within a short period, typically only spanning 5 days.

Figure 4b highlights that for streamflow prediction at individual 
stations, a relatively short temporal window of information for a 
specific input variable is often sufficient, even though more extensive 
dataset is necessary when considering all input variables. Specifically, 
the model typically derives realistic streamflow predictions with 
information spanning only the most recent 5 days at approximately 
three-fourths of the stations. However, some stations located in the 
central and northeastern regions require longer-term streamflow 
information. This observation aligns with previous studies on 
streamflow persistence in these regions, where snowmelt processes 
and groundwater contributions create significant temporal 
dependencies (Godsey et  al., 2014). Herman et  al. (2018) has 
demonstrated that northeastern watersheds often exhibit longer 
memory effects in streamflow patterns due to the combination of 
seasonal snow accumulation and subsurface storage dynamics.

As shown in Figure 4c, in the case of precipitation, the model 
predominantly relies on information from the past 10 days at most 
stations. This pattern aligns with rapid rainfall-runoff responses 
typical in many watersheds (Berghuijs et al., 2016). However, this 
temporal window varies significantly by region and season. In snow-
dominated regions such as the Rockies, the relationship between 
precipitation and streamflow operates across longer timescales, as 
winter precipitation is stored as snowpack and subsequently released 
during spring and summer melt periods (Barnhart et al., 2016; Livneh 
and Badger, 2020). The model captures these varying precipitation-
streamflow relationships through the integrated analysis of multiple 
hydrometeorological variables, where temperature inputs help 
characterize the delayed influence of snowmelt processes on 
streamflow generation.

In terms of temperature, as shown in Figures 4d, a longer period 
of information is generally necessary compared to precipitation. In 
particular, some basins in the northwest region demand temperature 
information spanning over 25 days or more. Compared to 
temperature, the impact of radiation on streamflow is relatively small 
and acts as a more indirect factor, often influenced by specific 
temperature conditions. Vapor pressure, on the other hand, indirectly 
affects streamflow by modulating water vapor in the atmosphere. 
More water vapor is likely to lead to heavier precipitation, provided 
other environmental conditions favors precipitation. As a result, the 
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distribution of vapor pressure exhibits a similar pattern to that of 
precipitation. The spatial distributions of variables not presented in 
the main text are detailed in the supplementary graphical appendix.

3.3 Interpreted flooding mechanisms 
analysis

In this section, the gated information are clustered based on the 
instructive days to explore the differences in their state information. 
Figures 5a–c present the average values of each cluster. From a variable 
type perspective, gated information can be categorized into either 
precipitation (P-type) or temperature (T-type) (Figure 5a). The P-type 
demonstrates higher weights for streamflow, precipitation, and vapor 
pressure, while the T-type shows significantly higher relative weights 
for maximum and minimum temperature. The distinction between 
the two types is most pronounced for maximum temperature, with 
their weight differences approaching 0.2. Additionally, gated 
information for precipitation and temperature is further classified as 
either long-term or short-term. Regarding precipitation (Figure 5b), 
the difference between precipitation-long-term (Pl) and precipitation-
short-term (Ps) types mainly lies close to the predicted streamflow 
date. While both types show significantly higher weights, the weight 
of the Ps type exceeds 0.3 as it nears the predicted date, whereas the 
highest weight for the Pl type remains around 0.1. Regarding the 
impact time span of temperature (Figure 3c), there is a clear distinction 
between the two types. Temperature-long-term (Tl) weights 
demonstrate a decreasing trend toward the predicted day, with a slight 
recovery 2–3 days prior. Conversely, temperature-short-term (Ts) 

weights exhibit a concentration toward the predicted day, reaching 
over 0.15.”

When combining the precipitation and temperature types, 
we obtain the mechanisms for the stations: PsTl, PsTs, PlTl, and PlTs, 
as shown in Figure 5d. Observations indicate that PsTl accounts for 
roughly two-thirds of all sites, primarily distributed in the central and 
eastern parts of the continent. The proportion of PsTs is only 15%, 
mostly concentrated in the northeastern region. This indicates that 
short-term precipitation is dominant, accounting for over 80%. 
Similar in number to PsTs, PlTl accounts for 14% and is predominantly 
found in the northwestern regions. The least frequent type, PlTs, 
makes up only 2% and is scattered across northwestern and central 
areas. These observations suggest that temperature tends to be long-
term, while precipitation is short-term. To demonstrate the 
characteristics of different types of gated information and their 
relationship with streamflow, we select four stations (Station A-D in 
Figure 3d). The selections are carefully made to cover a wide range of 
latitudes and longitudes, thereby providing a comprehensive 
representation of the aggregated clustered types.

For the PsTl class, station A located in the south is selected 
(Figure 5d). Gated information for station A is presented in Figure 6a, 
which has a distinct characteristic of favoring temperature over 
precipitation, as evident from its higher overall temperature-to-
precipitation control ratio. It can be found that recent precipitation 
and vapor pressure have high pass rates. However, when considering 
overall significance, the temperature information within nearly all 
time periods needs to be propagated to the subsequent model layer. 
Its weight distribution remains relatively consistent throughout the 
historical period. Temperature not only affects the evaporation rate 

FIGURE 4

The spatial distribution of instructive days for (a) all variables, (b) streamflow, (c) precipitation and (d) maximum temperature for the testing period. The 
subplots in the lower left represent the empirical distribution of the individual variable.
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but also influences soil moisture content. This could be a reason why 
the Tl type is also present in the southern region. In the corresponding 
time series plot (Figure 6b), the measured streamflow at station A is 
represented by the red line, while the streamflow predicted by the 
model is depicted by the blue dashed line. The highest flow level is 
indicated by the black pentagram. The corresponding daily 
precipitation, shown by the green line, exhibited a clear correlation 
with the peak flow. There is an inconsistency in the relationship 
between heavy precipitation and flood peaks. For instance, in 2005, 
there are two peak flood events with daily streamflow reaching 
approximately 6,000 m3. Despite heavy rainfall occurring on both 
occasions, the second rainfall is significantly heavier, exceeding 
100 mm. Surprisingly, there is not much difference between the two 
peaks. This suggests that the flood mechanisms in these two events are 
different. Furthermore, the largest flood occurred in 2007, whereas 
precipitation is not very heavy in this flooding period. This 
inconsistency also indicates that precipitation is not the primary 
driving factor for this flood. It is possible that temperature information 
could play a crucial role in improving the model performance for this 
type of stations.

Station B, located in the northern region, represents the PsTs class. 
Its gated information displays high values for streamflow and low 
values for other variables (Figure  5c). Unlike the PsTl type in 
Figure 6a, the gated information for temperature diminishes across all 
30 days without any effect. This indicates that the model does not 
require temperature data to make accurate predictions at this station, 
implying the station’s flood generation mechanism is not related to 

temperature. Regarding the time series plot (Figure  6d), the 
streamflow at this station shows distinct dry seasons and rainy 
periods. For the extreme flow labeled as the highest peak in 2008, 
there was heavy precipitation 1 or 2 days preceding the peak, aligning 
with the threshold criteria suggested by the gated weights, requiring 
consideration of short-term data. The strong correlation between 
precipitation and streamflow implies that brief periods of precipitation 
can quickly trigger rises in streamflow.

The PlTl category, exemplified by station C in the east, has a higher 
pass rate for long-term information for both precipitation and 
temperature (Figure 6e). In the gated information plot, precipitation 
is the variable that requires the most information after temperature. 
The temperature information indicates that the temperature data for 
the upcoming forecast days is not as important as the overall 
temperature performance. Additionally, temperature exhibits a clear 
seasonal periodicity, and there is a strong correlation between the 
highest and lowest temperatures. Therefore, when the information 
about the lowest temperature is emphasized, the information about the 
highest temperature can sometimes be disregarded. The streamflow at 
this station exhibits significant fluctuations, with a low base flow 
during most time periods (Figure 6f). Meanwhile, heavy precipitation 
events clearly increase the volume of streamflow. For instance, during 
the 2001 flood, a precipitation of over 100 mm results in a flow of 
nearly 25, 000 m3/day. Since the precipitation for the predicted day is 
not included in the model calculation, this non-cyclical and highly 
variable curve may require more days of information to predict sudden 
increases in runoff. Additionally, it is worth noting that heavy rainfall 

FIGURE 5

(a) The average relative weights of P-type and T-type; (b) the average relative weights of Ps type and Pl type; (c) the average relative weights of Ts type 
and Tl type; and (d) The spatial distributions of four types of gated information where a–d represent PlTl, PsTl, PlTs, and PsTs, respectively.
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FIGURE 6

Visualization of gated weight heatmaps on the left columns and time series plots of streamflow on the right columns for station A (subplot a,b), station 
B (subplot c,d), station C (subplot e,f), and station D (subplot g,h). In the gated weight heatmaps, the variables SF, PRE, RAD, Tmax, Tmin, and VP denote 

(Continued)
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does not always lead to a significant rise in streamflow. For example, 
during 2006, despite several rainfall events exceeding 50 mm/day, the 
change in streamflow is not substantial. This may be attributed to that 
this station is located in the southern region, where the predominant 
streamflow generation mechanism is storage overflow. Runoff only 
occurs when the soil moisture content reaches its maximum capacity.

For the final class, PlTs, station D in the northwest is chosen 
(Figure 5d). Figure 6g presents the gated information, where the gating 
value for precipitation on the final day is notably higher than the rest, 
yet still >0 for most other days. This emphasizes the significance placed 
on hydrological variables like streamflow, precipitation, and vapor 
pressure, leading to its categorization as a P-type station. 
Simultaneously, temperature primarily focuses on specific days’ 
information, aligning with the Ts curve in Figure 5c, hence falling into 
the PlTs category. In the time series plot (Figure 6h), the exceptional 
performance of the model at this station merits attention, achieving a 
CC of 0.985 and NSE of 0.970. The consistent pattern observed 
reinforces the substantial correlation between prolonged precipitation 
occurrences and peak streamflow timings. Specifically, brief intense 
rainfall does not consistently cause an instant surge in runoff. For 
example, the maximum streamflow in 2004 wasn’t brought about by 
the strongest rainfall. This accentuates the importance of long-term 
precipitation for accurate forecasting at this station.

It is important to note that the gating mechanism was applied to 
only four representative stations, one from each major cluster, rather 
than across all stations within each cluster. While these selected 
stations were chosen as representative samples based on their 
flooding mechanisms, this approach introduces an element of 
uncertainty regarding the generalizability of the results across all 
stations within each cluster. The performance of the gating 
mechanism at other stations within the same clusters may vary due 
to local microclimatic conditions, data quality issues, or other site-
specific factors not captured in current analysis.

3.4 Verify the effectiveness of the gated 
module

Figure 6a illustrates the LSTM gated information at station A when 
all six input variables in the 30-day lookback window are used for the 
prediction model. It can be observed that radiation plays a negligible 
role in the subsequent model calculations. To examine the effectiveness 
of gated information, we remove radiation from the input variables 
and re-train the model using the remaining five variables. The 
distributions of gate weights for these five input variables are similar 
between the model with radiation as the input variable (Figure 6a) and 
the model without radiation (Figure 7a). This similarity implies that 
the underlying physical mechanism for the same station, as derived 
from the gated module, remains consistent regardless of the specific 
variables are used as in the model inputs. Furthermore, the simulation 
results show that the removal of radiation from the input variables has 
minimal impact on the model performance when comparing Figure 6b 

with Figure 7b. While the MSE value is slighter larger, and the values 
of CC and NSE are slightly smaller for the case where radiation is not 
included, the differences are not significant.

Since station A is classified as the PsTl type, we conduct another 
experiment involving a narrower lookback window for the input 
variables. In Figure 7c, it is evident that the gated module consistently 
assigns a high priority to temperature information within a 10-day 
lookback window, mirroring the pattern observed in the 30-day 
window depicted in Figure 6a. By contrast, the higher weights of other 
variables are primarily concentrated within the last 1–2 days 
(Figure 7c). Moreover, the model with the 10-day lookback window 
(Figure 7d) performs similarly to the model with the 30-day window 
(Figure 6b). The third experiment is conducted involving a 90-day 
lookback window for input variables. In this case, a greater amount of 
information is found to pass through the gated weights, including 
long-term precipitation information and partial radiation information 
(Figure 7e). However, the model performs poorer when the 90-day 
lookback window is used, with a decrease in the NSE value from 0.871 
for the 30-day window to 0.851 for the 90-day window (Figure 7f). 
This indicates that additional information might introduce noise and 
potentially disrupt the model’s ability to focus on the more pertinent 
information that should be prioritized.

The fundamental concept behind gated information is to 
selectively choose relevant data from the input, either by discarding 
or emphasizing specific segments. This process effectively reduces the 
amount of data and therefore facilitates the training of subsequent 
models. Moreover, it provides a means to visualize the variables and 
time series that the model considers important, enabling direct 
adjustments and optimizations at the input level. Additionally, this 
approach can be used to evaluate the value of newly added variables 
or time series. Nevertheless, it is important to note that we are not 
opposed to adding more information to the network, as the model 
could potentially learn new features from additional variables. Our 
primary goal, however, is to streamline the input variables, 
simplifying the learning process for the model by removing 
redundant and complex information. It should be acknowledged that 
introducing white noise or irrelevant variables will inevitably lead to 
a decrease in the model’s accuracy. Furthermore, it is worth 
mentioning that the model used in this study consisted of a simple 
LSTM followed by two fully connected layers. Given its relatively 
shallow architecture, it may struggle to capture effectively large 
amounts of information. This could explain why the model tended to 
perform better with smaller scale input data. Deepening the model 
architecture may potentially enhance its ability to handle variable 
additions. In conclusion, for the model employed in this study, 
removing redundant long-term series information did not 
compromise the accuracy of the model simulation, challenging the 
common practice of incorporating lengthy series and numerous 
variables into LSTM models without empirical validation. It is 
recommended to utilize gated information to determine whether 
long-term and multiple variables are necessary as input data 
for models.

streamflow, precipitation, radiation, maximum temperature, minimum temperature, and vapor pressure, respectively. In the time series plots, the 
streamflow measured and predicted by the LSTM model are represented by the red and blue dash lines, respectively while the corresponding daily 
precipitation is indicated by the green lines. The highest flow level is indicated by the black pentagram.

FIGURE 6 (Continued)
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4 Discussion

4.1 Comparative analysis of attribution 
methods

Various types of explanation methods, including gradient-based 
approaches (e.g., Integrated Gradients, SmoothGrad), perturbation-
based methods (e.g., LIME, SHAP), and attention-based techniques, had 
been established to understand the interpretation of models from 
different perspectives. These algorithms operate on the principle that the 
output gradient of a neural network with respect to each input unit 

indicates its importance, or the effect of masking an input unit on the 
model’s output can reveal its significance. Deng et  al. (2024) have 
demonstrated that these algorithms can be unified in a mathematical 
framework, where the model’s purpose is to calculate how to allocate 
independent and interactive effects. In other words, explainability 
algorithms are formulated to quantify the influence of an input unit on 
the network output, either independently, without dependence on other 
input units (independent effect), or through interactions with other input 
units (interactive effect). To validate the reliability of the Gated method 
proposed in this study, we conducted a comparative analysis against two 
widely-applied interpretability methods, Saliency and Feature Ablation.

FIGURE 7

Gated weight heatmaps and hydrological variable time series for station A: Model configurations with 5 dominant variables as input (subplots a,b), 
10-day lookback window (subplots c,d), and 90-day lookback window (subplots e,f).
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Figure 8 shows the analysis of feature importance heatmaps 
across three attribution methods: Saliency, Feature Ablation, and 
Gated with a random station. The Saliency method highlights a 
pronounced increase in the importance of the SF feature toward 
the later stages of the time series, particularly around time step 24, 
underscoring its critical role in capturing long-term dependencies 
(Figure  8a). In contrast, other features exhibit consistently low 
importance, with PRE and RAD showing minimal impact on 
model predictions. Feature Ablation corroborates the prominence 
of SF but offers a more granular perspective on the contributions 
of secondary features like Tmax and Tmin (Figure 8b). While these 
features remain less influential than SF, their variability suggests 
potential contextual relevance under specific conditions, which is 
less evident in the Saliency analysis. In the Gated method’s 
heatmap, feature importance dynamically shifts over time, 
reflecting condition-dependent variability (Figure  8c). Unlike 
Saliency and Feature Ablation, it highlights how key features like 
SF maintain overall importance but still fluctuate with 
changing conditions.

Figure 9a provides insight into the inter-method similarities by 
illustrating the Pearson correlation coefficients between these 
approaches. Specifically, it reveals a strong positive correlation of 0.86 
between Saliency and Gated methods, indicating substantial 
agreement in their attribution patterns. Conversely, the correlation 
between Feature Ablation and Gated is markedly lower at 0.44, 
suggesting more distinct attribution behaviors. Figure  9b offers a 
comparative analysis of average feature importance scores across the 
aforementioned methods for atmospheric variables including SF, PRE, 
RAD, Tmax, Tmin, and VP. This visualization highlights that the SF 
variable garners significant attention across all methods, underlining 
its pivotal role in model predictions. However, notable differences 
emerge in the attribution of importance to other variables, with each 
method assigning varying degrees of significance to PRE, RAD, Tmax, 
Tmin, and VP. Such distinctions suggest that while certain features 
dominate universally, others exhibit method-specific relevance, 
thereby informing nuanced interpretations of model behavior and 
guiding targeted feature engineering efforts.

Figure  10 comprises three subplots depicting the temporal 
dynamics of feature importance across different attribution methods. 
In Figure 10a, the Saliency method illustrates a pronounced increase in 
feature importance toward the latter stages of the time series, suggesting 

that features become increasingly pivotal as the prediction horizon 
extends. Figure  10b presents the Feature Ablation method, which 
reveals relatively stable feature importance levels throughout most of 
the timeline, followed by a steep rise toward the final time steps. In 
Figure 10c, the curve for the Gated method shares a similar shape with 
that of the Saliency method. Both curves exhibit a series of peaks and 
troughs, indicating fluctuating feature importance across time steps.

Overall, the results of the Gated method show a high 
correlation with those of the Saliency method, suggesting a 
certain degree of reliability in their similar attribution patterns. 
However, there is a notable discrepancy when comparing these 
results to those obtained through Feature Ablation, highlighting 
significant differences in how each method assesses feature 
contributions. These observations underscore the need for 
further investigation into the applicability and robustness of 
various interpretability methods, aiming to better understand 
their strengths and limitations in different contexts.

4.2 Limitations and future directions

The module designed in this study integrates considerations of 
both gradient and data occlusion, and facilitates the visualization by 
extracting intermediate layer units in a concise and convenient 
manner. To account for interactive effects within the module, a self-
attention mechanism is employed in the gate layer. This design 
concept aligns with the philosophy presented by Zhang et al. (2024) 
and Ren et  al. (2021) that the methodology must be  capable of 
elucidating the patterns of change in the model’s generalizability. 
However, there currently lacks a unified theoretical foundation or 
framework for attribution algorithms, leading to divergent 
interpretability results across different methods. This divergence 
makes it challenging to rigorously analyze and determine which 
attribution algorithm is reasonable and reliable beyond the illusory 
sense of direct perception. Moreover, most explanation algorithms 
for ML are designed based on experimental experiences or intuitive 
cognition (Bach et al., 2015; Lundberg and Lee, 2017; Sundararajan 
et al., 2017). The gated module in this study was also designed and 
proven for its practicality through empirical experiments. Its deeper 
theoretical underpinnings and applicability in a broader range of 
scenarios still require further refinement and exploration.

FIGURE 8

Visualization of feature importance heatmaps using (a) saliency, (b) feature ablation and (c) gated methods.
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The current study, relying solely on single-station data, may 
inherently limit the model’s ability to capture spatial variability and 
broader regional dynamics. To address this limitation, future research 
should extend the analysis to multiple stations, thereby providing a 
deeper understanding of the model’s performance across diverse 
spatial scales.

5 Conclusion

In this study, we propose an explicable model built upon the 
LSTM framework used for flood prediction throughout 531 
catchments within the contiguous United States. We developed a 
simplified gated module positioned between input data and the 
LSTM model to discern how patterns are captured within the 
inputs. The proposed visual and understandable gated module 
affords insight into how the relationship among various variables 
and lookback windows are learned. Gated weight outputs enable 
modification of the model’s input and offer perception regarding 
what influences changes in streamflow. Moreover, we  explore 
disparities among four categories derived from gated information: 
PsTl, PsTs, PlTs, and PlTl representing whether temperature and/or 
precipitation belong to either the short- or long-term classes. This 
categorization significantly aids our comprehension of how the 
flood prediction model utilizes input data along with what drives 

functionality. Implementing gating to selectively reduce input 
information does not compromise accuracy but boosts prediction 
strength by prioritizing crucial aspects.

Moreover, the gating method exhibits a high degree of 
correlation with the Saliency method in terms of feature 
importance attribution patterns. When compared to Feature 
Ablation, notable differences emerge. These discrepancies illustrate 
the variability among different interpretability methods and 
underscore the importance of selecting the appropriate method 
based on the specific requirements of the analysis. The gating 
method’s capability to capture condition-dependent variability and 
interactive effects among features offers a deeper understanding of 
model behavior beyond simple input selection. By integrating 
gradient considerations and data occlusion techniques, facilitated 
by a self-attention mechanism, it provides valuable insights into 
how different features interact and influence predictions over time. 
This enhanced understanding contributes to explaining certain 
mechanisms driving model predictions, highlighting its utility in 
improving model interpretability. However, the current study, 
relying solely on single-station data, may inherently limit the 
model’s ability to capture spatial variability and broader regional 
dynamics. To address this limitation, future research should extend 
the analysis to multiple stations, thereby providing a deeper 
understanding of the model’s performance across diverse 
spatial scales.

FIGURE 9

(a) The correlation between three explainable methods and (b) feature importance across different methods.

FIGURE 10

Visualization of temporal importance for (a) saliency, (b) feature ablation and (c) gated methods.
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