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in contaminated aquifer
sediments

Mohammad Sufian Bin Hudari1, Sushmita Deb1†, Carsten Vogt1,

Maria Filippini2 and Ivonne Nijenhuis1*

1Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ,

Leipzig, Germany, 2Department of Biological, Geological, and Environmental Sciences, Alma Mater

Studiorum - Università di Bologna, Bologna, Italy

Background: Aquifer thermal energy storage (ATES) is a subsurface technology

for urban heating and cooling. However, ATES systemsmay intersect with legacy

groundwater contaminants from past anthropogenic activities. Chlorinated

ethenes, particularly tetrachloroethene (PCE) and trichloroethene (TCE), are

common pollutants that can undergo microbial reductive dechlorination to

cis-dichloroethene (cis-DCE), vinyl chloride (VC), and ultimately ethene. Since

microbial activity is temperature dependent, heat storage in ATES systems may

influence dechlorination e�ciency.

Methods: The study assessed the e�ect of temperature on microbial

reductive dechlorination and community composition using sediment from a

contaminated aquifer in Ferrara, Italy, where VC accumulation is of concern.

Laboratory microcosms were amended with TCE and lactate, incubated at

10–60◦C, and monitored for 105 days.

Results: Complete dechlorination to ethene occurred at 10–20◦C and was

linked toDehalogenimonas spp. cis-DCE and VC accumulated at 30◦C and 40◦C,

respectively, while no dechlorination activity was observed at 50◦C and 60◦C,

suggesting temperature-related inhibition. Methanogenesis occurred between

10 and 40◦C and was associated with Methanosarcina, Methanothrix (mainly in

non-TCE-amended controls), and Methanomicrobia (10–30◦C). Methanogenic

activity was absent above 40◦C and delayed at 10◦C.

Conclusion: These results suggest that microbial dechlorination of chlorinated

ethenes is impaired at temperatures exceeding 40◦C. Therefore, integrating low-

or medium-temperature (<40◦C) ATES with enhanced natural attenuation may

o�er a viable strategy for simultaneous energy storage and bioremediation in

chlorinated solvent-contaminated aquifers.

KEYWORDS

ATES, reductive dechlorination, methanogenesis, temperature, chlorinated ethenes,

bioremediation

Introduction

Aquifer thermal energy storage (ATES) is a subsurface technology for urban heating

and cooling, offering a promising solution to reduce dependence on fossil fuels (Mathiesen,

2019), especially in densely populated areas with high energy demands (Elsland et al., 2017;

Menberg, 2014). However, many urban aquifers are contaminated due to anthropogenic
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activities, including the release of chlorinated ethenes (CEs)

through leakages and improper disposal practices (Bishop et al.,

1993; Rittmann et al., 2000; Ruden, 2006).

Chlorinated ethenes (CEs), i.e. tetrachloroethene

(perchloroethene, PCE), trichloroethene (TCE), the dichloroethene

isomers (DCEs), and vinyl chloride (VC), are widely used in

commercial and industrial applications, including as solvents,

cleaning agents and plastics manufacturing. Due to their

environmental persistence, toxicity, and frequent occurrence in

urban groundwater systems, these compounds are classified as

priority pollutants, subject to strict regulatory control to safeguard

surface and drinking water quality (Kalnins et al., 2019; Lepom

et al., 2009; Rivett et al., 2012; Squillace et al., 2004).

Under anoxic conditions, PCE and TCE can undergo microbial

reductive dechlorination to cis-DCE and VC, and ultimately to

the non-toxic end product ethene (Adrian and Löffler, 2016).

Ensuring complete conversion to ethene is critical for effective

bioremediation (Figure 1) (Huang et al., 2014; National Research

Council, 2000).

In the subsurface, microbial dechlorination activity is

influenced by environmental conditions, notably temperature

(Badin et al., 2016; Wiedemeier et al., 1998). Temperature

shifts can alter the composition of native microbial consortia

composition and affect their reductive dechlorination ability

(Beyer et al., 2016; Garcia et al., 2018; Yamazaki et al., 2022).

Microbial reductive dehalogenation (RDH) to ethene has been

observed up to 30◦C; above this, this process often becomes

incomplete—resulting in accumulation of DCE or VC—or is

entirely inhibited (for a review, see Bin Hudari et al., 2022a).

Temperature also influences microbial competition for electron

donors and carbon sources. For instance, hydrogenotrophic

methanogenesis may compete with dehalogenators and affect

overall dechlorination potential (Smatlak et al., 1996; Wei et al.,

2016). Methanogenesis can occur concurrently and typically

spans a broader and higher temperature range (Jones et al., 1987;

Prondzinsky et al., 2023).

Thus, moderately increasing subsurface temperatures (e.g., up

to ∼30◦C) may support both ATES and enhanced contaminant

bioremediation, while avoiding the inhibitory effects observed

at higher temperatures (Badin et al., 2016; Bonte et al., 2013;

Delille et al., 2004; Ni et al., 2018, 2015, 2016). However, for

reasons of energy efficiency, there is growing interest in increasing

groundwater reinjection temperatures in low-temperature (LT)-

ATES (typically ≤25◦C) to >50◦C for high-temperature (HT)-

ATES applications. HT-ATES systems offer greater sustainability

for heating and cooling due to their higher energy storage capacity

FIGURE 1

Reductive dechlorination pathway of PCE to ethene via TCE, cis-DCE, and VC. Each step involves microbial replacement of a chlorine atom with

hydrogen under anoxic conditions.

(Daniilidis et al., 2022; Drijver et al., 2012; Kallesøe and Vangkilde-

Pedersen, 2019). This creates a trade-off between thermal energy

optimization and maintaining favorable conditions for microbial

contaminant degradation.

Despite its importance, few systematic studies have investigated

the effects of temperature on microbial reductive dehalogenation,

and even fewer that address shifts in the associated microbial

communities. In particular, data on how elevated temperatures

affect bioremediation in situ remain limited (for a comprehensive

review, please see Bin Hudari et al., 2022a).

This study aimed to investigate the impact of increasing

temperature on microbial reductive dehalogenation activity and

microbial community composition using contaminated sediments

in a controlled laboratory setting across a broad temperature range.

Materials and methods

Chemicals

All chemicals used in the experiments were purchased from

Merck (Darmstadt, Germany), AppliChem (Darmstadt, Germany),

Fluka (Buchs, Switzerland), or Sigma-Aldrich (Deisenhofen,

Germany) and were of analytical grade at the highest purity.

Laboratory microcosm preparation

Sediment samples were collected from cores drilled at

a chlorinated ethenes-contaminated site in northern Italy,

near a former disposal area where chlorinated pitches from

chloromethane production were illegally dumped between the

1950s and 1970s (Ghezzi et al., 2021; Nijenhuis et al., 2013). Field

observations have indicated ongoing dechlorination of PCE and

TCE at this site—where natural groundwater temperatures range

from 16 to 20◦C—with vinyl chloride (VC) often accumulating

as the primary or sole detectable intermediate (Filippini et al.,

2016). For the microcosm study, TCE was selected as the model

compound and its reductive dehalogenation was investigated at

six different temperatures (10, 20, 30, 40, 50, and 60◦C). Product

formation was monitored over 105 days, after which the bacterial

and archaeal community structures were analyzed.

The sediment samples used in this study were obtained from

a well-characterized hydrogeological setting comprising vertically

stacked sandy aquifers and clayey aquitards (Filippini et al., 2016,

2020). PCE and TCE, originally contained in DNAPL (dense
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non-aqueous phase liquids) wastes, have migrated downward into

the subsurface, resulting in chlorinated ethene contamination

detected in groundwater and sediments to depths of up to 50

meters below ground surface (bgs) reaching hundreds of mg

L−1. Sediments for the microcosms were collected from two core

sections: one aquifer layer between 15 and 25m bgs (corresponding

to the “Upper A1” aquifer) and one aquitard layer between 25 and

30m bgs (part of the “Lower Q1” facies). Sediments were obtained

from cores collected during previous site investigations described

by Nijenhuis et al. (2013) and Filippini et al. (2016); details of the

drilling and sampling procedures can be found in those studies.

These cores were recovered during a detailed site investigation

at the Caretti site in 2013 (boreholes MC1-2, MC3, and MC4-5),

which also included stratigraphic reconstruction using direct-push

drillings, multilevel monitoring wells, and piezocone penetration

testing (Filippini et al., 2016; Nijenhuis et al., 2013).

Microcosms were set up under anoxic conditions in a glove

box (COY Laboratory Products Inc., Michigan, USA), maintained

with an N2/H2 gas mixture (95:5%). This atmosphere ensured strict

anoxic conditions; while H2 can act as an electron donor, lactate

(3mM) was provided as the primary electron donor and carbon

source to support microbial reductive dechlorination. The intent

was to ensure that electron donor availability was sufficient, though

lactate was not added in large excess. All materials—including

serum bottles, septa, and crimps—were autoclaved, dried, and

placed inside the glove box several hours before use to prevent

oxygen intrusion. Sediments were consolidated and homogenized

inside the glove box. A total of 48 serum bottles (120mL) were

prepared, each comprising 20 g of sediment and 50mL of mineral

salts medium (composition in Supplementary Table S1) (Zinder,

1998). Bottles were sealed with Teflon coated rubber septa and

aluminum crimps. Bottles were incubated lying on their sides to

ensure that the liquid medium covered the septum, minimizing the

risk of air intrusion through the septum after perforation.

Eight bottles were assigned to each of six different temperatures

(10◦C, 20◦C, 30◦C, 40◦C, 50◦C, and 60◦C): five active replicates

(A, B, C, F, G), two sterile controls (D and E), and one anaerobic,

non-amended control (ANA) to monitor background activity such

as methanogenesis or reductive dechlorination. Sterile replicates

were autoclaved at 121◦C for 40min on three consecutive days

(see Supplementary Table S2). All bottles were pre-acclimatized at

the respective temperatures for at least 48 h before initiating the

experiment. The experiment began with the addition of lactate

(3mM) and ∼5 µL of neat TCE, resulting in an estimated

starting concentration of 100 µmol L−1. ANA controls received no

TCE. After amendment, bottles were equilibrated for 3 h at their

target temperature prior to sampling. For sampling, 0.5mL of the

headspace was taken from each bottle using a Hamilton gas syringe,

with gas transferred to a helium-flushed 10mL gas chromatography

(GC) headspace vial. Following TCE depletion, additional doses

(100 µmol L−1) were added. The 20 and 30◦C replicates received

a total of four doses of TCE (0.4 mmol L−1 total).

Chemical analysis

Samples were analyzed via gas chromatography coupled with a

flame ionization detector (GC-FID; Varian Chrompack CP-3800),

with a GS-Q column (J&W Scientific, Waldbronn, Germany) and

injected via a headspace autosampler HP 7694 (Hewlett Packard,

Palo Alto, USA). The chromatographic separation program was

adapted fromNijenhuis et al. (2007) and initially set to 100◦C (held

for 1min), followed by a temperature ramp of 50◦Cmin−1 to 225◦C

(held for 6min). To improve separation of overlapping peaks—

particularly as ethene and methane concentrations increased

during incubation—the programwas further modified after 63 days

to start at 80◦C (1min), with the same ramp to 225◦C (6min hold).

Data was analyzed by the Varian STAR software for the respective

target compounds to obtain the area counts and concentrations

were calculated using independent calibration curves for TCE,

cis-DCE, VC, ethene, ethane, and methane (not shown).

Statistical analyses were performed in R (version 2024.12.1)

using pairwiseWilcoxon rank-sum tests with Benjamini–Hochberg

correction for multiple comparisons, based on the highest

accumulated concentrations of ethene and methane across

temperature treatments. Significant differences between treatments

are indicated in the boxplots.

Microbial community analysis

The microcosms were sacrificed after 397 days of incubation.

While the relevant results shown and discussed in this manuscript

reflect observations up to day 105, active microcosms were

maintained until day 397 through periodic amendment with

TCE as the electron acceptor. TCE was re-supplied only when

measurements indicated it had been fully consumed. Two to four

mL of sediment slurry were collected from 36 of the sample bottles,

except for the 12 sterile controls, into 2mL Eppendorf tubes (see

Supplementary Table S3). The slurry was centrifuged at 13 000

rpm for 2min, the supernatant was discarded, and the pellet was

stored at −20◦C until extraction. At each temperature, one non-

amended replicate (i.e., without TCE) was included to serve as

background control, allowing qualitative assessment of microbial

community composition in the absence of TCE. These background

samples were not included in statistical comparisons but supported

interpretation of temperature-related shifts in microbial profiles.

DNA extraction was carried out with the DNeasy Powersoil

Kit (Qiagen, Hilden, Germany) following the manufacturer’s

instructions with minor modifications.

For each replicate, sediment slurries from a single microcosm

bottle were distributed into multiple Eppendorf tubes and

processed in parallel. Prior to the elution step, lysates from the same

replicate were sequentially loaded onto a single spin column during

centrifugation, allowing DNA to be pooled and concentrated. The

DNA was eluted in a final volume of ∼20–30 µL. Specifically,

the elution step was performed by first adding 20 µL of elution

buffer onto the column membrane, letting it stand for 1min before

centrifugation. This step was repeated using the collected eluent

(15 µL) combined with an additional 15 µL of buffer to maximize

DNA recovery. DNA concentration was measured with the Qubit

HS (High Sensitivity) Assay Kit (Thermo Fisher Scientific, USA)

on the Qubit 3.0 Fluorometer (Life Technologies, Malaysia). MiSeq

sequencing procedures were similar to previous studies prescribed

elsewhere (Bin Hudari et al., 2020, 2022b) using the Klindworth

primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21).
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Briefly, sequencing libraries were assembled with Illumina MiSeq

Reagent Kit v3 (2 x 300 bp) following protocols recommended by

the manufacturer on 16S Metagenomic Sequencing Library

Preparations (Illumina, 2013). Sequencing was done on

the Illumina Miseq platform at the former Department of

Environmental Microbiology (currently, Applied Microbial

Ecology) of the Helmholtz Centre for Environmental Research—

UFZ. Sequences were analyzed on a QIIME 2 v2019.1 platform

using a pipeline as described previously (Bolyen et al., 2019).

This pipeline removes primer sequences and adapters from the

de-multiplexed sequences, then trimming and denoising them to

remove low quality reads and chimeras, before merging. Amplicon

sequence variants (ASVs) were then assigned to the bacterial DNA

using the Silva132 database (Quast et al., 2013; Yilmaz et al., 2014).

Sequences were deposited at the European Nucleotide Archive

(ENA) under the primary accession number PRJEB73360 (https://

www.ebi.ac.uk/ena/browser/view/PRJEB73360).

Results

Reductive dechlorination and
methanogenesis at di�erent temperatures

TCE dechlorination product formation was monitored for

up to 105 days to highlight treatment-specific differences in

activity. Product profiles varied with temperature: ethene was

detected at 10–30◦C, with ethane appearing at 20◦C and 30◦C,

indicating more complete dechlorination at these temperatures.

VC was observed only at 30◦C, while cis-DCE accumulated at

30◦C and 40◦C, suggesting incomplete dechlorination at higher

temperatures. No dechlorination products were detected at 50◦C

and 60◦C.

Figure 2 presents representative data from 20, 30, and 40◦C to

illustrate the temperature-dependent transition from complete to

incomplete dechlorination. These temperatures were selected to

highlight the effects of thermal elevation on dechlorination

and methanogenesis. The 10◦C condition, which reflects

the native groundwater temperature and exhibited complete

dechlorination, is shown in Supplementary Figures S1A–C due

to space limitations. Additional replicate data for all conditions,

including full triplicate datasets at 10◦C and 60◦C, are provided in

Supplementary Figures S1–S3.

Methanogenesis and reductive dechlorination were

temperature dependent and inhibited at higher temperatures

(≥50◦C). Dechlorination occured at 10–40◦C, though the extent

decreased at 30 and 40◦C. Complete TCE dechlorination to ethene

was observed at 10◦C (Supplementary Figures S1A–C), 20◦C

(Figure 2A; Supplementary Figures S1E–G), and 30◦C (Figure 2C;

Supplementary Figures S2A–C), with ethene concentrations

increasing over time. No activity was observed in sterile controls

(data not shown).

In setups at 10◦C, following a lag phase, ethene accumulated

after 50 days without detectable cis-DCE or VC accumulation

(Supplementary Figures S1A–C). Methanogenesis was not

significant during the early phase (<0.1 mmol L−1 of methane;

Supplementary Figure S1D) but was observed after 130 d of

incubation, including in the non-amended controls (data not

shown). At 20◦C and 30◦C, ethene was observed after 10–20 days

and increased before declining after 80 days, accompanied by rising

ethane concentrations (Figures 2A, C; Supplementary Figures S1E–

G, S2A–C). Methane accumulation in the TCE-amended replicates

ranged between 11 and 18 mmol L−1 at 20◦C (Figure 2B,

Supplementary Figure S1H) and 16–31 mmol L−1 at 30◦C

(Figure 2D; Supplementary Figure S2D).

At 30◦C, VC began to accumulate after 63 days, reaching

stable levels (∼0.4 mmol L−1), while ethene remained the

primary product until 42 days, after which both ethene and

ethane were detected (Supplementary Figures S2A–C). At

40◦C, dechlorination stalled at cis-DCE by day 105 (Figure 2E;

Supplementary Figures S2E–G), and no further transformation

occurred even after extended incubations (397 days; data not

shown). Methane accumulation in 40◦C TCE-amended replicates

was comparable to that at 20◦C, ranging between 11 and 25

mmol L−1 (Figure 2F; Supplementary Figure S2H). Notably,

methane production occurred to a similar extent in the non-

amended controls, indicating that it was not directly coupled to

TCE amendment.

In general, the total measured concentrations of chlorinated

ethenes in microcosms incubated at 10–40◦C exceeded the initial

TCE input. This discrepancy is likely due to residual CEs in the

sediment and potential sampling artifacts, such as increased partial

pressures at higher temperatures or elevated headspace pressure

resulting from methane production.

To summarize treatment effects across all conditions, ethene

and methane concentrations were compared using boxplots and

Wilcoxon rank-sum tests (Figure 3). Ethene production peaked at

20◦C and 30◦C, with statistically significant differences (p ≤ 0.05)

compared to all other treatments. Methane showed a similar trend,

with the highest concentrations at 20–30◦C, moderate levels at

40◦C, and little or no production at 10◦C, 50◦C, or 60◦C. These

results confirm a temperature optimum between 20 and 30◦C

for both reductive dechlorination and methanogenesis, while no

significant product formation was observed at ≥50◦C.

The microcosms were monitored until day 397 to evaluate

possible delayed activity in the 50◦C and 60◦C treatments.

However, no dechlorination or methanogenesis was observed

(Supplementary Figures S3A–H). A slight decrease in TCE

concentration was noted, but no intermediate or end products

accumulated, and these trends mirrored those of sterile controls.

Meanwhile, active microcosms (e.g., 20◦C and 30◦C) were

maintained with occasional TCE supplementation until the end of

the experiment and were later sacrificed for microbial community

analysis. While results up to 105 days and microbial community

profiles are shown, data from the extended incubation period

(105–397 days) are not shown.

Microbial community analysis

A total of 36 samples—comprising five TCE-amended

biological replicates and one non-amended active control per

temperature—were sequenced using 16S rRNA gene primers
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FIGURE 2

Representative profiles of trichloroethene (TCE) dechlorination and methanogenesis in microcosms incubated at 20◦C (A, B), 30◦C (C, D), and 40◦C

(E, F). (A, C, E) show concentrations of TCE, its dechlorination products (cis-DCE, vinyl chloride, ethene, ethane), and the cumulative TCE mass

balance over 105 days. “Mass balance” represents the total molar sum of TCE and its dechlorination products. (B, D, F) show methane production in

TCE-amended microcosms (black) and in the corresponding non-amended anaerobic controls (red). These replicates are representative; additional

replicate data are provided in Supplementary Figures S1–S3.

targeting bacteria. This approach generated an average of 72,867

reads per sample (±16,160), with read counts ranging from 42,205

to 104,396 reads. To assess methanogenic community composition,

an additional eight samples (one replicate with and one without

TCE amendment per temperature, for 10–40◦C) were sequenced

with the methanogen specific mcrA-targeted primers, targeting

the methyl coenzyme M reductase gene (Supplementary Table S3).

This mcrA sequencing generated an average of 75,749 reads per

sample (±20,636), with read counts between 51,018 and 113,905.

While the mcrA-based dataset provided valuable insight into

methanogen diversity, we acknowledge that the use of single

replicates precludes statistical analysis. Community composition

profiles from one representative replicate per active temperature

treatment (10–40◦C) are shown in Figures 4, 5. Additional replicate

data are provided in Supplementary Figures S4, S5 at both family

and genus levels.
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FIGURE 3

Maximum observed concentrations of ethene and methane in microcosms across temperature treatments. (A) Ethene; (B) Zoomed view of ethene

(≤3 mmol L−1); (C) Methane. Boxplots represent the highest concentration measured in each replicate. Individual replicate values are overlaid as

jittered points. Statistically significant di�erences between treatments (Wilcoxon test, Benjamini–Hochberg corrected) are indicated by asterisks with

corresponding adjusted p-values.

Phylotypes observed in 10◦C and 20◦C replicates (with and

without TCE) were relatively similar in composition (Figure 4 and

Supplementary Figures S4, S5). Dehalogenimonas was consistently

present at 17–27% relative abundance in all four microcosms

(Figure 4). Acetobacterium was more abundant in the 10◦C TCE-

amended (28%) and 20◦C non-amended (ANA) replicates (25%)

but was less dominant (4–5%) in the corresponding reciprocal

treatments. In contrast, phylotypes such as Acidaminobacter and

Cryptanaerobacter showed higher relative abundances specifically

in the TCE-amended 20◦Cmicrocosms. Other phylotypes detected

at lower abundance (3–9%) included uncultured Spirochaetaceae

members and Geobacter.

At 30◦C, Cryptanaerobacter reached 8% in the 30◦C TCE-

amended replicate shown in Figure 4 and was also detected in

the other replicates (Supplementary Figure S5). Dehalogenimonas

remained present, albeit at lower levels (0.2–1.2%), while

uncultured Spirochaetaceae (17%), Acidaminobacter (8%),

Desulfovibrio (3%), and Desulfobulbus (2%) were also identified. At

40◦C, the TCE amended replicate was dominated by Sporomusa

(26%), uncultured Spirochaetaceae (12%) and Desulfobulbus (7%)

while Dehalogenimonas was nearly absent (0.4%), indicating a

potential temperature threshold for its activity or survival.

Methanogen community composition (10–40◦C) is shown

at the genus level in Figure 5. One TCE-amendment and one

non-amended replicate was analyzed per temperature. At 10◦C—

despite the absence of methane production during the first 105

days (Supplementary Figure S1D), methane was detected after 130

days (data not shown), justifying the inclusion of this sample in the

analysis. At 10◦C,Methanosarcina was the dominant genus in both

amended (40%) and non-amended (45%) microcosms (Figure 5).

The amended setup also contained Methanomicrobia (32%) and

Methanoregula (13%), whereas the non-amended replicate had

higherMethanoregula (26%) andMethanothrix (15%).

At 20◦C, unknown Methanomicrobia members were abundant

in both the amended (51%) and non-amended (39%) setups,

followed by Methanosarcina (25% and 21%, respectively).

Methanolinea (11% and 7%) and Methanothrix (2% and 19%)

were also present. At 30◦C, Methanosarcina (47% and 29%)

and an unknown member of Methanomicrobia (33% and 14%)

dominated both treatments. Methanoculleus was more abundant

in the TCE-amended replicate (13%), while Methanothrix (44%)

was predominant in the non-amended replicate.

At 40◦C, Methanosarcina abundance decreased in the TCE-

amended setup (12%), while Methanoregula and Methanolinea

—previously detected at lower temperatures—were absent. In

contrast, Methanocella (39%) and Methanoculleus (36%) became

more prominent, suggesting a shift toward thermotolerant

methanogens. In the corresponding non-amended replicate,
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FIGURE 4

Relative abundance (%) of microbial genera (≥6% in at least one condition) across temperature treatments (10–40◦C) under anaerobic conditions,

with and without trichloroethene (TCE). Warmer heatmap colors indicate higher abundance. Conditions are labeled as “TCE” (with TCE) and “sans

TCE ‘ANA”’ (anaerobic control). Genera below 6% are grouped as “Others <6.0%.”

Methanosarcina (18%) and Methanothrix (48%) remained

abundant, consistent with patterns observed in non-amended

replicates at lower temperatures. Notably, Methanobacterium

reached 32% in the 40◦C non-amended replicate, indicating a

possible temperature- and treatment-specific niche for this genus.

Discussion

Temperature significantly influenced both microbial

community composition and the extent of TCE dechlorination,

leading to cis-DCE and VC accumulation at 40◦C and 30◦C,

respectively. Dechlorination rates were highest at 20–30◦C,

while temperatures >40◦C were inhibitory to both reductive

dechlorination and methanogenesis. Complete dechlorination to

ethene occurred only in microcosms incubated between 10 and

30◦C, confirming the temperature sensitivity of this process, as

shown in earlier studies (Friis et al., 2007b; Heimann et al., 2007).

A 10◦C temperature increment (e.g., from 30 to 40◦C) affected

the transformation sequence, leading to VC accumulation at

30◦C and cis-DCE at 40◦C after 60 days. At higher temperatures

(50–60◦C), neither dechlorination nor methanogenesis occurred,

consistent with previous reports (Friis et al., 2007b; Zhuang

and Pavlostathis, 1995). This likely reflects the inability of key

dechlorinating microbes to remain viable or competitive at these

elevated temperatures (Fletcher et al., 2011; Magnuson et al., 1998).

Despite a lag phase at 10◦C, complete TCE dechlorination

to ethene was eventually observed, similar to findings at low

temperatures—including 4, 10, and 15◦C—in other studies (De

Bruin et al., 1992; Heimann et al., 2007). In our study, ethene

formation began after ∼50 days, indicating delayed microbial

activity, likely due to slower metabolism or growth rates at

suboptimal temperatures.

Community analysis suggests that Dehalogenimonas (Dhgm.)

is a likely candidate for TCE dechlorination to ethene at

10–20◦C. For example, isolate Dehalogenimonas etheniformans

has been reported to dechlorinate TCE, DCE, and VC to

ethene at 15–34◦C (Chen et al., 2022; Cui et al., 2023). Here,

Dehalogenimonas reached 17–27 % relative abundance at 10–20◦C

in line with complete dechlorination (Figure 2). Conversely,

its low abundance (∼1%) at ≥30◦C corresponded to partial

TCE dechlorination, suggesting thermal inhibition. Although

some Dehalogenimonas phylotypes were present at 60◦C, no

dechlorination occurred, reinforcing their temperature sensitivity.

At 40◦C, Dehalogenimonas was absent; instead, phylotypes such

as Peptococcaceae (e.g., Desulfitobacterium) or Geobacter, known
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FIGURE 5

Methanogenic community composition (genus level) across temperature treatments (10–40◦C) in TCE-amended (+) and unamended (–) anaerobic

microcosms. Relative abundances (%) are based on mcrA gene sequencing. Genera ≥2% in at least one condition are shown; others are grouped as

“<2%.” Color intensity reflects relative abundance.

to reduce PCE to cis-DCE, may have contributed to TCE

transformation (Röling, 2014; Villemur et al., 2006).

Although lactate degradation was not directly measured, the

occurrence of reductive dechlorination and methanogenesis at 10–

40◦C suggests that fermentation likely occurred, providing the

electron donors such as acetate and hydrogen. Lactate, added as

both an electron donor and carbon source, is typically converted

by a metabolically diverse microbial consortium into substrates

used by organohalide-respiring bacteria (e.g., Dehalogenimonas)

(summarized in Supplementary Figure S6) (McInerney et al., 2009;

Schink and Stams, 2006; Stams and Plugge, 2009). Acetate is

essential for biomass synthesis in dehalogenators (He et al., 2002;

Robles et al., 2021; Rosell et al., 2019), while acetate and hydrogen

can also be consumed by hydrogenotrophic and acetotrophic

methanogens (Conrad, 2020; Jones et al., 1987).

Community composition analysis revealed temperature-

and treatment-dependent trends among key microbial taxa.

Acetobacterium showed notably contrasting patterns: it was

abundant in the 10◦C TCE-amended (27.8%) and 20◦C non-

amended (24.6%) replicates, but nearly absent (<5%) in the

reciprocal conditions. This suggests a potential interaction between

TCE exposure and temperature on Acetobacterium abundance

or activity. Given its roles in lactate fermentation, hydrogen

production, and corrinoid biosynthesis, Acetobacterium may have

supported syntrophic partners such as dehalogenators under

selective conditions (Puentes Jacome et al., 2019; Wen et al., 2015).

At 40◦C, Sporomusa was more abundant (26.4%) in the

TCE-amended setup, possibly serving as a temperature-adapted

fermenter. In contrast, Dehalogenimonas, a key organohalide-

respiring bacterium, was prominent at 10–30◦C but declined

at 40◦C. Sulfate-reducing genera such as Desulfovibrio and

Desulfobulbus, capable of incomplete lactate oxidation, were

detected at 10–30◦C andmay have contributed to hydrogen cycling

in both amended and non-amended systems.

Hymenobacter dominated one of the 40◦C non-amended

replicates (>60%), despite being primarily aerobic or facultatively

anaerobic and not typically associated with anaerobic degradation.

Its prevalence may reflect reduced microbial competition, thermal

stress tolerance, or sequencing variability.

Spirochaetaceae were detected across treatments, with higher

abundance at 30◦C and 40◦C. Species such as Rectinema cohabitans

are known necromass feeders or acetate producers (Dollhopf et al.,

2001; Dong et al., 2018; Koelschbach et al., 2017; Ritalahti et al.,

2012). Some Spirochaetes can also oxidize acetate to produce

hydrogen and carbon dioxide (Cheng et al., 2022; Si et al., 2016;

Wang et al., 2019; Yi et al., 2020), and may be able to utilize lactate

anaerobically (Troshina et al., 2015), suggesting a role in carbon

and electron donor cycling.
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These observations underscore the interplay between

temperature and TCE in shaping microbial community structure

and function, with implications for fermentation, methanogenesis,

and reductive dechlorination dynamics.

The temperature range for ethene-to-ethane formation

was narrower (20–30◦C) than that observed for complete

reductive dechlorination (10–30◦C) or methanogenesis (20–

40◦C), suggesting that ethane formation may be coupled to other

biological processes (Belay and Daniels, 1987; Fullerton et al., 2013;

Koene-Cottaar and Schraa, 1998; Xie et al., 2013). For example, in a

methanogenic consortia, members of theMethanomicrobiales have

been postulated to reduce ethene to ethane, and this conversion

was shown to be inhibited by the methanogenesis inhibitor

BES (Koene-Cottaar and Schraa, 1998; Xie et al., 2013). In our

study, ethene-to-ethane conversion coincided with complete

dechlorination and methanogenesis at 20–30◦C, supporting

ethanogenesis within this temperature range.

Methanogenesis occurred at 20–40◦C within 95 days and at

10◦C after 130 days, but not at 50–60◦C, even after extended

incubation (up to 397 days). This indicates that the indigenous

microbial community is adapted to mesophilic conditions (15◦C

to 40◦C). Notably, methane production occurred in both

TCE-amended and non-amended microcosms, indicating that

methanogenesis was independent of TCE presence and likely fueled

by fermentation-derived substrates such as hydrogen and acetate.

Although methanogenesis can occur between −2.5 and 122◦C in

other systems (Jones et al., 1987; Mancini et al., 2002; Pannekens

et al., 2019; Schupp et al., 2020; Zeman et al., 2014), the community

in our study appears more temperature restricted.

Some methanogenic phylotypes exhibited broader tolerance.

For example,Methanosarcinawas present at 10–40◦C and is known

to grow under both mesophilic (25–40◦C) and thermophilic (50–

55◦C) conditions, utilizing either acetate or H2/CO2 (Jetten et al.,

1992; Wagner, 2020). Other phylotypes showed more restricted

temperature distributions—for instance, an unclassified member

of Methanomicrobia lineage was only detected between 10◦C

and 30◦C, while Methanobacterium was predominant at 40◦C,

indicating a possible temperature-specific niche. The absence of

methanogenesis above 40◦C reinforces the idea that the native

microbial community from this contaminated site is not adapted

to higher temperatures.

Implications for the
ATES-bioremediation combination
and outlook

In this study, we systematically assessed the effect of

temperature on microbial reductive dechlorination of TCE,

relevant to combining enhanced natural attenuation with ATES.

At the study site, TCE and its degradation products were

detected in both the aquifer (particularly in groundwater) and the

surrounding sediment matrix, down to a depth of 50 meters below

ground surface.

Based on our findings, within LT- ATES systems (≤25◦C),

reductive dechlorination of TCE to ethene is unlikely to be

inhibited, as we observed dechlorination to ethene up to 30◦C.

However, the VC accumulation at 30◦C and cis-DCE at 40◦C

deserves more attention, specifically in the context of medium

temperature ATES (MT-ATES; 25–40◦C), given their health and

environmental impacts (Benedict et al., 2024; Williams et al., 2022).

In HT-ATES systems, where injection temperatures exceed

60◦C, microbial dechlorination is likely to be inhibited.

Nevertheless, in situ temperature gradients are expected,

ranging from elevated temperatures near the injection point

to cooler conditions farther from the heat source (Kallesøe and

Vangkilde-Pedersen, 2019; Lerm et al., 2013). This could create

subsurface zones where dechlorination is enhanced (25–30◦C) and

others —particularly near the hotter core—where it may stall at

cis-DCE. Importantly, such thermal effects would primarily occur

in the aquifer, while surrounding low-permeability sediments

(e.g., aquitards) may remain largely unaffected and continue to

act as long-term sources or microbial reservoirs. These findings

underscore the importance of accounting for spatial heterogeneity

in thermal effects when designing ATES–bioremediation systems.

Beyond considering an upper temperature threshold (e.g.,

40◦C) ormodulating injection and extraction temperatures, further

in situ investigations are essential to evaluate the long-term

feasibility of the combined approach. Future studies should

also evaluate seasonal temperature fluctuations via heat cycle

experiments and field validations in diverse geological settings.

Applying microbiological tools such as quantitative PCR

(qPCR) and metagenomics could provide deeper insights

into temperature-driven shifts in community structure

and function, thereby improving our understanding of

subsurface microbial interactions and bioremediations under

dynamic thermal conditions. Moreover, studies should assess

recolonisation rates—whether from surviving consortia in

sediment or from microbial inflow following heat-affected phases

(Friis, 2006; Friis et al., 2007a).

If complete reductive dechlorination cannot be re-

established after high-temperature exposure, biostimulation

or bioaugmentation with temperature-adapted consortia could

be viable options (Delgado et al., 2014; Ni et al., 2018; Sewell and

Gibson, 1991; Xiao et al., 2020).

Additionally, temperature effects on microbial partners

supplying essential cofactors, electron donors (e.g., hydrogen) and

carbon source (e.g., acetate) must be considered, as inhibition of

these auxiliary processes may limit dechlorination rates.

In summary, our results show that lower temperatures

(e.g., 10◦C) delayed the onset of both dechlorination and

methanogenesis (Supplementary Figures S1A–D). Temperature

significantly influenced microbial community composition—

promoting syntrophic organisms such as fermenters and acetogens

that convert lactate into key metabolites. These, in turn, are

utilized by reductive dechlorinators (e.g., Dehalogenimonas),

and competitors such as hydrogenotrophic methanogens, which

compete for shared resources. The 20◦C and 30◦C incubations

supported more favorable conditions for lactate degraders and

the dechlorinators, resulting in earlier and more complete

product accumulation.

Conversely, unfavorable conditions (e.g., 40◦C) could inhibit

or eliminate reductive dechlorinators, leading to necromass
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scavenging and accumulation of intermediates like cis-DCE or

VC. Accumulation may result from competition for hydrogen

among processes such as reductive dechlorination, ethene-to-

ethane reduction, and hydrogenotrophic methanogenesis, or from

toxic effects of accumulated intermediates on the native community

(Garcia et al., 2018; Lee and Lee, 2016; Smatlak et al., 1996).

Thus, the observed VC accumulation at 30◦C and cis-DCE at

40◦C remains a key challenge for bioremediation. In conclusion,

combining LT-ATES with enhanced natural attenuation is feasible

based on our results. However, maintaining a suitable operational

temperature range is crucial when implementing MT- or HT-ATES

at chlorinated ethene-contaminated sites to ensure a sustainable,

continuous natural attenuation.
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