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Editorial on the Research Topic

Spatiotemporal modelling and assessment of water-related
multi-hazards

Extreme weather and climate events often show synchronicity in space and time

(Tonini et al., 2014; Berghuijs et al., 2019; Tuel and Martius, 2021; Gesualdo et al., 2024),

challenging disastermanagement capabilities and recovery times.Moreover, the trail of one

event type often acts as a preconditioning driver for subsequent event types that can spread

irrespective of geographic borders, overwhelming societal resilience and adaptation efforts

(Tang et al., 2023; Fu et al., 2024). The consequences of climate change and the intricate

nonlinear relationship between climate and physiographic drivers intensify multi-hazard

event chains, which can be a single hazard type with multiple attributes or a combination

of different hazard types that often overlap in a short time window (Matthews et al., 2019;

Raut et al., 2024). While the majority of hazard management frameworks rely on single

hazard types with single attributes, a credible risk assessment of multi-hazard event chains

requires an in-depth understanding of the physical controls in the event development and

consideration of the spatiotemporal connectedness of process controls (Berghuijs et al.,

2019; Gesualdo et al., 2024). One such example could be ignoring the spatial footprint

of “preconditioning” elevated water levels in design surge estimation for coastal flood

protection and assuming a uniform return period across coastal reaches (Kiesel et al., 2024).

Furthermore, the severity (or extremity) of multi-hazard weather and climate events does

not necessarily determine their impact; instead, the exposure and vulnerability of assets

and livelihoods amplify the overall risk potential.

Following these motivations, seven research articles were published as part of this

Research Topic. These can be broadly classified into three categories: three studies dealt

with the mapping of coastal compound floods, three introduced and explored the potential

of artificial intelligence-based approaches, such as long short-term memory (LSTM) and

sequential data assimilation (SDA) techniques as tools to forecast such unprecedented

climate hazards with the lead times necessary for operational perspectives, and finally
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one article dealt with the investigation of the likelihood of

wet-dry and dry-wet transitions in the Meuse River basin

in the Netherlands, highlighting the preconditioning role

of meteorological scenarios in triggering catchment-specific

hydrological responses.

Compound flooding (CF) is often driven by a combination of

physical processes, such as hurricanes, storm surges, heavy rainfall,

and high tides. However, current flood modelling and mitigation

strategies typically only focus on individualmechanisms, neglecting

the co-occurrence of these sources and their compounded effects

(Bevacqua et al., 2020; Radfar et al., 2024). Using statistically

grounded methods, such as encapsulating trend analysis with a

bivariate probabilistic framework, Lewis et al. showed the existence

of non-stationarity (i.e., temporal changes in hydrological and

meteorological variables), non-linearity (i.e., complex interactions

among flood drivers), and multi-dimensionality (i.e., various

factors influencing flood risk) among compound flood drivers,

focusing on two coastal areas on the Gulf Coast of the United States.

Combined with statistical tests, their study also included a

comprehensive review of relevant CF policy documents. The

authors found clear evidence of compounding flood drivers and

shifts in the first-order statistical moments (i.e., mean shift) of

such drivers in a warming climate. However, there remains a

significant gap between science and practise, as the majority of

current policies fail to adequately address the complex and dynamic

nature of CF. This highlights the critical need for an integrated

approach that accounts for multi-mechanism and non-stationarity

in CF assessments.

To bridge the gap between theory and practise, Wang et al.

developed a simple conceptual framework, “c-HAND” (Coastal-

Height Above Nearest Drainage) to map compound fluvial and

coastal inundation. Subsequently, c-HAND was coupled with a

fluvial flood forecasting model to create a workflow for mapping

compound fluvial-coastal inundation that can be run in near

real-time. The framework’s fast wall-clock time and low CPU

requirements add value to the near real-time flood inundation

mapping of compound coastal—fluvial floods in the low-lying

marine fluvial transition regime. The method was validated against

results from a state-of-the-art numerical ocean circulation model

ADCIRC for massive coastal flooding, resulting from Hurricane

Ike (11–13 September 2008) in the Southeast Texas region, along

the Gulf of Mexico. One of the practical challenges in CF

mitigation is either joint or back-to-back impacts of multiple

mutually interdependent climatic and weather stressors within a

short time window, leaving little time for recovery, which can

propagate through a network of infrastructure systems, causing

cascading failures (Najafi et al., 2021). The study by Preisser et al.

attempted to prioritise the critical resources (such as hospitals and

food) when a storm occurs in near-real time. Based on open-

source data and a network-based approach, they proposed a model

to solve the “user equilibrium traffic assignment problem” by

calculating how an individual’s access to critical resources changes

during and immediately after the flood event. In a case study

for Austin, Texas the authors found that the most vulnerable

households are the least resilient to the impacts of flooding and

experience the most volatile shifts in redundancy, reliability, and

recoverability. The open-source framework developed in the article

can benefit emergency planning stakeholders by helping to identify

households that require specific resources during and immediately

after hazard events.

As a result of climate change consequences, not only are

the frequency and magnitude of similar or dissimilar types of

hydrological extremes (e.g., floods and droughts) increasing in

some regions, but the transitions between these events are also

becoming more frequent and abrupt, accelerating economic and

societal impacts (Chen and Wang, 2022; Bai et al., 2023; Xi

et al., 2023; Banfi et al., 2024; Bowers et al., 2024). Based

on observations spanning more than seven decades (1951–

2022), Sudha et al. developed a statistical framework to define

meteorological extremes—wet (i.e., abundance of water) and

dry (i.e., lack of water) events—and investigated the transitions

between them using a case study of the Meuse River basin in

the Netherlands. Their analysis indicates a statistically significant

increase in water deficit due to evapotranspiration in spring and

summer, along with an increased length of dry spells due to

warming temperatures. They also identified abrupt transitions

between wet and dry phases of extremes that challenge water

management, with such conditions occurring in 6% of wet-dry

transitions and 20% of dry-wet transitions. These findings provide

new insights into nonstationary trends of contrasting compound

climate stressors in hydrological risk assessment.

Modelling and quantifying catastrophic risk requires the

interaction of several correlated hazards from natural and

anthropogenic stressors. In particular, the coincident and/or

lagged occurrence of different hazard categories, responsible for

extreme impacts is dictated by the causality or interconnectedness

of different stressors, which in turn are influenced by climate

change, and urbanisation—leading to changes in land use and

land cover (LULC) patterns—and technological advancement.

Siddique et al. quantified changes in land use and land cover

for an ecologically critical area, a freshwater wetland system,

Hakaluki Haor in the Sylhet region of Bangladesh. Leveraging

Landsat satellite data in a cloud-based platform (Google Earth

Engine Database), coupled with state-of-the-art machine learning

models, this study analysed LULC dynamics from 2000 to 2023.

While one of the study’s striking findings is that, overall more

than half of the areas show a reduction in water bodies in the

wetland ecosystem, other notable changes include a more than

350% increase in settlements with a substantial decline (>70%)

in vegetation cover. Similar shifts in wetland extent have been

observed in other locations around the globe. A prominent example

is Lake Urmia in northwestern Iran, which has experienced

drastic shrinkage due to multiple anthropogenic stressors, such

as aggressive water resources development plans, intensive

agricultural practises, and competition for water resources in

upstream reaches (AghaKouchak et al., 2015). The lake has

not managed to recover to its designated ecological threshold,

even during normal water years after the persistent 5-year

drought of 1998–2002 (AghaKouchak et al., 2015; Alborzi et al.,

2018). Although anthropogenic stressors are major drivers, the

natural drivers responsible for wetland changes may be shifted

in precipitation patterns—more drying in arid environments

and increased infiltration in the nival regime due to warmer

temperatures that reduce soil ice along with substantial drying
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of the wetland ecosystem when biotic processes peak (Xu et al.,

2024).

In a complex landscape, runoff mechanisms and subsurface

flows are dictated by varying geological formations that influence

baseflows, soil types, and vegetation, which may be difficult to

model given the paucity of data. Merizalde et al. highlighted the

importance of feature engineering to improve the performance

of deep learning models in ungauged hydrologic systems. The

authors combined satellite-derived rainfall products, soil and land

cover maps, digital elevation models, and empirical rainfall-runoff

methods to feed specialised runoff forecasting models in the

Ecuadorian Andes. The results of this research are promising

with lead times of up to 11 h, enabling near real-time forecasting

and paving the way for more advanced techniques focused

on mountainous areas characterised by geographic complexity

and data availability constraints. While there are few efforts

on the application of statistical learning to runoff forecasting

in ungauged catchments (Razavi and Coulibaly, 2013; Pugliese

et al., 2018; Prieto et al., 2019; Herath et al., 2021), such

approaches have recently started gaining popularity in modelling

groundwater flow and contaminant transport (McConnell et al.,

2022; Rad et al., 2024). Béraud et al. introduced an innovative

data assimilation method that combines Ensemble Smoother with

Multiple Data Assimilation, where parameters are updated locally

around each observation well through successive assimilations,

thus enabling credible calibration of large, complex groundwater

models with limited observations. The model is further validated

with a synthetic 3D model and a real regional groundwater

flow model, showing significant improvements in calibration

and prediction in heterogeneous areas, proving the model’s

ability to predict changes in groundwater flow patterns and

contaminant transport.

Finally, a few aspects of this collection are worth highlighting:

(1) Water resources modellers and stakeholders need to be aware

of the limitations of existing practises, such as assumptions of

independence for modelling multi-hazard events in space and

time. Proper coordination between scientists and the stakeholder

community is required to develop societal resilience to mitigate

such hazards. (2) The consequences of climate change have led to

shifts in the timing and trend of hydroclimatic extremes, which in

turn mediate the frequency of compound hazards (Blöschl et al.,

2017; Kemter et al., 2020; Raut and Ganguli, 2024). Through

the application of “process-based advanced machine learning”

tools, the development and implementation of credible multi-

hazard warning systems may be one of the most effective ways

to reduce mortality associated with such natural hazards and to

protect natural and built environmental systems in multi-hazard

risk hotspots in a changing climate (ESCAP, 2023).
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