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a review
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Groundwater fluoride contamination poses serious health effects to humans, as 
excess amounts of fluoride can cause skeletal and dental fluorosis. The problem 
is critical in areas where the aquifers are surrounded by fluoride-bearing rocks. 
Apart from the geology, the meteorology of the place also plays an important role. 
The excess fluoride in water can also be associated with chemical ions found in 
water. Groundwater fluoride modeling using an artificial neural network (ANN) is a 
valuable approach. Inputs are selected through statistical analysis. The modeling 
process is carried out using the “nntool” in MATLAB software. This ANN model 
can be used to predict future fluoride levels based on primary data obtained from 
water sample analyses. The results of the correlation analysis help in deciding 
the inputs for the model. The network architecture can be determined through 
the trial-and-error method. The network should be trained, tested, and validated 
on separate datasets. The prediction accuracy of the network can be assessed 
using root mean square error (RMSE) analysis and the coefficient of determination 
(R2). Groundwater fluoride can also be modeled using logistic regression (LR), 
random forest (RF), Monte Carlo simulation (MCS), artificial neural network (ANN), 
support vector machine (SVM), gradient boosting (XGBoost), and Classification 
and Regression tree (CART) methods. However, ANN is best suited as it can 
address numerous inaccuracies within the data and extract information about 
the associations between input and output variables. The accurate prediction will 
help in decision-making and the proper management of groundwater fluoride 
contamination.
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1 Introduction

Groundwater is considered the safest source of drinking water (Saha et al., 2024). It 
constitutes 0.6% of the total water resources available on Earth. It caters to 80% of the total 
drinking water requirement and 50% of the agricultural requirement in rural India (Adimalla 
et al., 2018; Maheshwari, 2006). Major sources of fluoride in groundwater are fluoride-bearing 
rocks such as fluorite (CaF2), cryolite (Na3AlF6), topaz [Al2SiO4(F,OH2)], apatite [Ca5(Cl,F,OH)
(PO4)3], amphiboles [A0–1B2C5T8O22(OH,F,Cl)], micas [AB2–3(X,Si)4O10(O,F,OH)2] and sellaite 
(MgF2) (Hanse et al., 2019; Chicas et al., 2022; Agarwal et al., 1997). Fluorine is the major 
constituent found in large quantities in rock-forming minerals such as apatite, micas, 
amphiboles, and clay minerals (Chicas et al., 2022; Kumari and Pathak, 2019). In 1984, the 
WHO estimated that more than 260 million people worldwide consume water with a fluoride 
concentration above 1 mg/L (World Health Organization, 1984). The standard maximum 
fluoride concentration in drinking water is 1.5 mg/L, while the permissible limit is 1.0 mg/L 
(Saha et al., 2024; Su et al., 2013; World Health Organization, 2011). The desirable limit of 
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fluoride is 0.6–1.0 mg/L as per BIS 10500. The upper limit may 
be  extended to 1.5 mg/L in cases where no alternative source of 
drinking water is available (Bureau of Indian Standards, 2012; 
Standard DI, 2022).

Fluoride is mainly present in groundwater in the form of dissolved 
ions. Its concentration depends on many factors, such as the presence 
of fluoride minerals and their solubility in water, the velocity of 
flowing water, pH, temperature, and the concentration of Ca+2 and 
HCO3

−2 ions in water (Adimalla, 2020). Anthropogenic sources of 
fluoride include glass factories, aluminum smelters, superphosphate 
fertilizers, clay used in brick industries, irrigation with fluoride-
enriched water, and coal-based power stations (Ali et  al., 2016). 
Fluorite (CaF2) is a fluorine mineral that naturally occurs in nature 
and is often found as an accessory in granitic gneiss (Saxena and 
Ahmed, 2003). The key geochemical processes that affect groundwater 
fluoride mobilization are the dissolution and precipitation of 
carbonate, hydrolysis, evapotranspiration, halite, gypsum, and silicate 
weathering, among others (Su et al., 2015).

High concentrations of F- in groundwater are found in many parts 
of the world, notably in Asia and Africa (Saha et al., 2024; Kumar 
et  al., 2020). Fluorosis is the condition that is most severe and 
widespread in the two largest countries—India and China. According 
to the UNICEF, fluorosis is endemic in at least 25 countries, with 
approximately 200 million people at health risk due to high fluoride 
levels in groundwater (Yadav et al., 2023; Hanse et al., 2019; Ayoob 
and Gupta, 2006). The issue of high fluoride concentration in the 
groundwater is a global concern. Many countries, such as India, 
Sri Lanka, China, East African nations (including those in the Rift 
Valley), Türkiye, and parts of South Africa, are facing this problem on 
a large scale (Yadav et al., 2023; Adimalla, 2020). The Rift Valley passes 
through countries in the Middle East, such as Jordan, Lebanon, and 
Israel, as well as East African nations including Ethiopia, Tanzania, 
Kenya, Uganda, Eritrea, and Djibouti (Adimalla, 2020) (Figure 1). In 
India, groundwater supplies mostly have water quality issues (Central 

Groundwater Board of India, 2024). Fluoride contamination in 
groundwater is more pronounced in states such as Andhra Pradesh, 
Bihar, Gujarat, Madhya Pradesh, Punjab, Rajasthan, Tamil Nadu, and 
Uttar Pradesh (Kumar et al., 2024). Among these, the most affected 
states are Rajasthan, Gujarat, and Andhra Pradesh (Adimalla, 2020; 
Susheela et al., 1999; Choubisa, 2018). Major factors responsible for 
the higher concentration of fluoride in groundwater are the influence 
of local lithology and the semi-arid climate of the region. The fluoride 
concentration in groundwater is a natural phenomenon, mainly 
influenced by the geological setting at both local and regional levels, 
as well as hydrogeological conditions. The main sources of fluoride in 
natural water are fluoride-bearing minerals such as cryolite, 
fluorapatite, fluorite, and apophyllite, as well as the replacing of F- for 
OH- in ferromagnesium silicates such as micas and amphiboles, and 
in soil having clay minerals (Narsimha and Rajitha, 2018; Adimalla 
and Venkatayogi, 2017, 2018; Dey et al., 2012).

The health impact associated with excess fluoride in groundwater 
is that it causes dental and skeletal fluorosis in humans. A fluoride 
concentration higher than 1.5 mg/L and less than 3 mg/L can cause 
dental fluorosis, while elevated levels of fluoride (>3 mg/L) can cause 
skeletal fluorosis (Sunitha et  al., 2022; Kom et  al., 2022). Dental 
fluorosis causes tooth discoloration, ranging from white spots to 
brown staining and pitting on the tooth enamel. Skeletal fluorosis is 
characterized by joint pain, stiffness, and bone deformities, which can 
eventually lead to immobility. Therefore, fluoride levels in groundwater 
must be managed through reverse osmosis treatment and artificial 
recharge systems (Kom et al., 2022). Proper waste disposal facilities 
should be installed to stop the leaching of contaminants. Fluoride 
concentration in groundwater is closely related to hydrogeochemical 
characteristics and ionic composition (Yarlanki et al., 2025). Total 
dissolved solids (TDS), chloride (Cl−), nitrate (NO3−), sodium 
(Na+), bicarbonate (HCO3−), sulfate (SO42−), potassium (K+), zinc 
(Zn + 2), calcium (Ca2+), and magnesium (Mg2+) are some of the 
chemical parameters that influence groundwater fluoride mobility 

FIGURE 1

Worldwide groundwater fluoride-affected countries and their geological setting (source: https://mrdata.usgs.gov/geology/world/, Shaji et al., 2024).
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(Yarlanki et al., 2025; Etikala et al., 2024). Thus, statistical analysis 
using descriptive statistics (DS), correlation and regression analysis, 
and cluster analysis (CA) can help in understanding the related ionic 
composition. Software such as “SPSS” and “R” can be  used for 
statistical analysis. Based on the insights gained from statistical 
analysis, groundwater modeling can be  performed to predict the 
fluoride levels in groundwater.

The groundwater fluoride is modeled using various methods such 
as logistic regression (LR), random forest (RF), Monte Carlo 
simulation (MCS), artificial neural network (ANN), support vector 
machine (SVM), extreme gradient boosting (XGBoost), multilayer 
perceptron (MLP), extreme learning machine (ELM), Gaussian 
process (GP), long- and short-term memory (LSTM), principal 
component analysis (PCA), firefly algorithm (FA), multi-criteria 

decision making (MCDM) models, Fuzzy-TOPSIS, and Classification 
and Regression Tree (CART). Among these models, ANN is 
considered an important non-parametric modeling technique, where 
the model output is non-linearly associated with the input 
(Mayilvaganan and Naidu, 2011). It is inspired by biological neuron 
processing and is widely applied to pattern recognition, time series 
forecasting, and process control. MATLAB is a mathematical software 
developed by MathWorks (USA) in 1982, known for its powerful 
capabilities in numerical computation and data visualization (Zhang, 
1999). The “nntool” and graphical user interface (GUI) functions of 
MATLAB can be used to create a water quality forecast model. The 
flowchart for ANN model development using the “nntool” of 
MATLAB GUI function is shown in Figure 2. ANN is used in rainfall-
runoff prediction, groundwater simulation, variations in groundwater 

FIGURE 2

Flow Chart of ANN model Development using MATLAB GUI.
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quality, forecasting groundwater contamination, water demand 
forecasting, water table depth fluctuations, and the prediction of 
nitrate distribution in groundwater (Minns and Hall, 1996; El-Shafie 
et al., 2011; Jalalkamali and Jalalkamali, 2011; Gholami et al., 2024; 
Wang et al., 2011; Brédy et al., 2020).

2 Groundwater fluoride modeling 
using machine learning methods

Different machine learning techniques, which are also considered 
artificial intelligence methods, generally extract patterns from data 
based on which they make predictions. These techniques can also 
assess and interpret non-linear and intricate associations among input 
and output data. The large amounts of data collected over the years 
can be used for groundwater level and quality parameter predictions 
(Feng et al., 2024). Different machine learning methods are used to 
develop models for groundwater quality prediction. Some of them are 
listed below:

 a Logistic Regression (LR): LR is a supervised learning approach. 
It works by rapid training of the dataset using 
binary classification.

 b Support vector machine (SVM): SVM is one of the most 
popular supervised learning algorithms in machine learning, 
used for both regression and classification tasks. It is used to 
produce the best hyperplane that can divide n-D space into 
categories, allowing new data to be  added to the correct 
category in future analysis. This optimal decision boundary is 
known as a hyperplane, which is created by choosing points or 
vectors; hence, its algorithm is known as SVM. The first stage 
of the model is developed by preparing a dataset, which is 
divided into training and testing. The testing data are used 
post-training for calibration and validation purposes. Function 
fitting using SVM aims to diminish the variation between the 
observed values and the output of the model.

 c Random forest (RF): Random forest (RF) is a supervised 
learning approach that grows multiple decision trees to form a 
‘forest’ and provide outputs. Individual trees in the RF model 
are trained on a random subset of the data, hence it is called 
‘random’. Thus, a substantial number of different trees can 
be grown through random resampling of the original data. 
Variables are also randomly selected for forecasting the 
dependable variable. The forecasting result is the concluding 
outcome of the entire tree population. The RF model can 
handle multi-scaled data, dichotomous data, and misplaced 
data (Singh and Mehta, 2024).

 d CART model: The Classification and Regression Trees (CART) 
model is a powerful and flexible machine learning tool that has 
gained prominence for prediction and decision-making tasks. 
It excels at identifying crucial features within datasets by 
analyzing their tree structure, helping with feature selection, 
dimensionality reduction, and anomaly detection. This model 
helps with the prediction of both categorical and continuous 
numerical values, while maintaining high interpretability, 
prioritizing transparency, and accountability. It can also capture 
intricate non-linear relationships in data, accommodating 
interactions between variables that linear models may struggle 

to capture, which is an advantage over linear regression models. 
This model can handle missing data gracefully, making 
decisions based on the available information for 
each observation.

 e Monte Carlo simulation (MCS): A Markov chain is a 
mathematical model for stochastic systems whose states, 
whether discrete or continuous, are governed by transition 
probabilities. The current state in a Markov chain only depends 
on the most recent previous states. Monte Carlo simulation 
(MCS) is a strong probabilistic tool that allows for the 
evaluation of health risks by modeling a large range of possible 
exposure scenarios using probability distributions of important 
variables (Islam et  al., 2024). MCS has demonstrated 
effectiveness in generating more realistic risk estimations by 
accounting for variability in parameters such as fluoride 
content and individual intake rates. While MCS captures 
uncertainty, it may not always accurately represent the 
complex, non-linear connections between numerous exposure 
variables and health consequences (Ali et al., 2023).

 f Gradient boosting (GB): GB relies on weak learners that, when 
combined, create an effective learning model. Each learner 
improves by learning from previous misclassifications (Singh 
and Mehta, 2024).

 g Artificial neural network (ANN): ANN operates like a “black 
box” model, requiring no detailed information about the 
physical parameters of the system (Tabach et  al., 2007). 
Training of the network on the recorded dataset results in 
learning the relationship between the input and output 
parameters. ANN can handle complex and large datasets with 
many interconnected parameters. It is made up of a large 
number of interconnected processing elements referred to as 
neurons. ANN is an error-tolerant, self-adaptable, self-
organizing, and widely adopted technology for forecasting 
water quality (Niu et al., 2006). The advantage of using ANN in 
place of statistical and conventional models is that it stores 
information on the entire network and can work even with 
incomplete data. It has fault tolerance, meaning that if one layer 
becomes corrupted, the network can still generate output. 
ANN also features distributed memory and undergoes gradual 
corruption. The network does not get corrupted immediately, 
which allows time for correction. It first learns from events and 
then comments on similar events. Its numerical strength allows 
it to efficiently perform more than one task at the same time 
(Mijwel, 2021). The groundwater contamination depends upon 
the variables that change over time, thus a flexible algorithm is 
necessary. Thus, ANN provides the requisite flexibility.

The ANN model network consists of three layers, namely the input 
layer, output layer, and hidden layer. ANN models can be specified by 
the following major aspects: (1) processing units called “neurons,” (2) 
activation function, (3) an output function, (4) network topology, and 
(5) a propagation rule. The activation rule updates each unit’s activity 
using the activation value. The external input provides information to 
the network, allowing it to interact with the network. In an ANN, the 
accuracy is also influenced by the number of hidden layers. Increasing 
the number of hidden layers can increase accuracy, but this improvement 
is typically effective for up to three layers (Awan et al., 2018; Uzair and 
Jamil, 2020). The algorithmic structure decides the predictive capacity 
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of the network. The performance of any algorithm depends on data 
quality, algorithm structure, and input parameter selection (Asim et al., 
2018). The process of identifying the decisive variable responsible for 
groundwater contamination is very complicated. Therefore, a more 
flexible network is required to accommodate the complexity (De’ath and 
Fabricius, 2000). A learning rule modifies the connectivity pattern by 
using external environment information. Modeling methods other than 
ANN, such as logistic regression (LR), random forest (RF), Monte Carlo 
simulation (MCS), and support vector machine (SVM), can be used to 
increase the accuracy of the model. Table 1 shows the modeling methods 
used for groundwater fluoride management, including ANN and other 
suitable modeling techniques. Table 1 lists the modeling methods that, 
alongside ANN, can effectively predict groundwater fluoride. The 
flowchart for the ANN model development is shown in Figure 2.

Among all the methods discussed, the ANN is best suited for 
groundwater quality prediction as it can address numerous 
inaccuracies within the data. It can extract information regarding the 
association between the input and output variables. The RF model is 
efficient at managing binary and continuous data, missing values, and 
high-dimensional data (Singh and Mehta, 2024).

3 Discussion

Groundwater is considered the safest source of drinking water 
worldwide. Most countries depend on groundwater sources for 
agricultural, household, and industrial purposes (Sutradhar and 
Mondal, 2021; Singh and Mehta, 2024). Groundwater fluoride 
concentration is affected by various natural and anthropogenic 
processes. The major geochemical processes affecting fluoride 
dissolution include precipitation, weathering of silicate, 
evapotranspiration, carbonate dissolution, and hydrolysis (Etikala 
et al., 2024). Fluoride is present in mainly three forms: Apatite, 
which is also called calcium phosphate (Ca3 F(PO4)3), fluorspar, also 
known as calcium fluoride (CaF2), and cryolite, which is represented 
as sodium hexafluoroaluminate (Na3 AlF6) (Sunitha et al., 2022; 
Sreedevi et al., 2017). In correlation analysis, the variables most 
closely related to fluoride are TDS, Cl−, NO3

−, Na+, HCO3
_, SO4

−2, 
Ca+2, and Mg+2. The pH of the groundwater sample should lie within 
the range of 6.5 to 7.5 (Bureau of Indian Standards, 2012). The 
electrical conductivity (EC) increases with TDS. Higher EC and 
TDS values represent increased geochemical processes and 
anthropogenic activities. The increase in sodium ion concentration 
is related to the leaching of the deposits and the breakdown of 
certain minerals (Sunitha et al., 2022). High sodium levels are not 
recommended as they degrade the soil. Industrial and municipal 
waste, as well as runoff from various sources, contribute to sodium 
in the natural water. Higher chloride content indicates the leaching 
of rocks and soil and industrial pollution. The permissible limit and 
the desirable limit of groundwater fluoride are 1.5 mg/L and 1 mg/L, 
respectively (World Health Organization, 2006; World Health 
Organization, 2009). A fluoride level of 0.8–1 mg/L is beneficial for 
human health as it prevents dental caries and helps with enamel 
growth in children (Sunitha et al., 2022). A fluoride concentration 
beyond 1.5 mg/L and less than 3 mg/L causes dental fluorosis, 
which is characterized by the presence of white spots, brown 
staining, and pitting on the teeth’s enamel. An exceeded level of 
fluoride (>3 mg/L) causes skeletal fluorosis, which is characterized 

by stiff bones and joint pain, which eventually leads individuals to 
become unable to move (Singh and Mehta, 2024; Sunitha 
et al., 2022).

The association of fluoride with other water quality parameters 
can be assessed through statistical analysis such as DS, correlation and 
regression analysis, principal component analysis (PCA), CA, and 
analysis of variance (ANOVA), which helps in identifying the input 
parameter for the modeling (Singh and Mehta, 2024). This analysis 
determines the accuracy of fluoride forecasting through machine 
learning methods (Singh and Mehta, 2024). In a few decades, 
groundwater quality modeling will be considered the most effective 
method as it could save time and money.

Through groundwater modeling, it becomes easier to understand 
and predict the behavior of groundwater systems, solute flow, 
transport processes, and anthropogenic impact. Various machine 
learning algorithms, such as logistic regression (LR) and random 
forest (RF), Monte Carlo simulation (MCS), artificial neural network 
(ANN), and support vector machine (SVM), are used to model the 
groundwater systems (Singh and Mehta, 2024). ANN has an 
advantage over all other algorithms in that it can work with 
incomplete knowledge or datasets. It has fault tolerance, meaning that 
if any one layer gets corrupted, the network can still generate output. 
It has distributed memory and undergoes gradual corruption 
(Mijwel, 2021). The accuracy of these algorithms is assessed by 
calculating the root mean square error (RMSE), coefficient of 
determination (R2), and biases. The performance of the model is 
assessed before and after network runs. RMSE serves as a global 
measure of the goodness-of-fit between the target and simulated, 
predicted, or calculated values. A lower value of RMSE indicates 
more accuracy and vice versa. The proportion of total variance in the 
observed data and its value ranges between 0 and 1. The coefficient 
of determination (R2) represents the proportion of total variance in 
the observed data, with values ranging between 0 and 1 (Islam et al., 
2024). The higher the value of the coefficient, the greater the 
agreement between the observed and simulated or predicted values.

ANN works efficiently with large amounts of data as well as with 
inadequate data. It provides the requisite flexibility as it is suitable for 
groundwater fluoride modeling. Among all the methods, ANN is best 
suited for groundwater quality prediction since it can address 
numerous inaccuracies within the data (Singh and Mehta, 2024; Islam 
et al., 2024). It can extract information about the association between 
the input and output variables. RF model is efficient in managing 
binary and continuous data, missing values, and high-dimensional data.

4 Limitations

ANN modeling requires processors with parallel processing 
power, making it equipment-dependent. The determination of 
network structure is not governed by a fixed rule but is based on a 
trial-and-error method; therefore, an optimal network can be achieved 
through experience. Thus, the performance of the network depends 
on the user’s ability. ANN can only understand problems in numerical 
terms; thus, problems must be translated in terms of numerical values. 
Overfitting during ANN training is a complex problem that decreases 
its efficiency. While ANN is evolving each day, ongoing research is 
aimed at overcoming its limitations. In the future, it is predicted to 
become highly important and indispensable (Mijwel, 2021).
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TABLE 1 Modeling methods used for groundwater fluoride management using ANN and other suitable modeling methods.

S.N. Modeling parameter Technique used Place/Data type Best model References

1. 482 groundwater sampling points, total 

dissolved solids (TDSs), chloride (Cl−), 

nitrate (NO3
−), sodium (Na+), bicarbonate 

(HCO3
−), sulfate (SO4

2−), potassium (K+), 

zinc (Zn+2), calcium (Ca2+), and 

magnesium (Mg2+) as input parameter

artificial neural network (ANN), 

logistic regression (LR), and random 

forest (RF),

Datong Basin, Northern 

China

RF Nafouanti et al. (2021)

2. A total of 85 groundwater samples Artificial neural network (ANN) 

model and Monte Carlo simulation 

(MCS)

Kasganj, Uttar Pradesh, 

India

Islam et al. (2024)

3. Groundwater sample analysis results Artificial neural network (ANN) 

model

Throughout China ANN Cao et al. (2022)

4. A total of 420 observations, F−, pH, 

electrical conductivity (EC), total dissolved 

solids (TDS), chloride (Cl−), nitrate 

(NO3
−), Sulfate (SO4

2−), phosphate (PO4
3−), 

bicarbonate (HCO3
−), sodium (Na+), 

potassium (K+), calcium (Ca2+), and 

magnesium (Mg2+)

random forest (RF), support vector 

machine (SVM), extreme gradient 

boosting (XGBoost), multilayer 

perceptron (MLP), and extreme 

learning machine (ELM)

Punjab, used Secondary 

data

ELM Kerketta et al. (2024)

5. A total of 225 groundwater samples,

pH, EC, TDS, Ca2+, Mg2+, Na+, Cl−, HCO3
−, 

SO4
2−, and F−

Gaussian process (GP) and long 

short-term memory (LSTM). The 

results were compared to support 

vector machine (SVM), extreme 

learning machine (ELM), random 

forest (RF), and multi-layer 

perceptron (MLP)

Sindhudurg district, 

Maharashtra, India

Gaussian process 

(GP)

Gupta and Maiti 

(2022)

6 1,024 water samples, 2,401 nail samples

For water samples, pH, dissolved oxygen 

(DO, mg/l), electrical conductivity (EC, 

s/m), turbidity (NTU), fluoride (mg/l), and 

nitrate (mg/l)

For nail samples- weight, height, age, and 

gender

hybrid model (HM) combines 

principal component analysis (PCA), 

the firefly algorithm (FA), and the 

artificial neural network (ANN)

348 villages in Rajasthan Khan et al. (2021)

7 A total of 283 groundwater samples

For water samples, pH, electrical 

conductivity, total dissolved solids, total 

hardness, NO3
−, HCO3

−, SO4
2−, Cl−, Ca2+, 

Mg2+, K+, Na+, and F−

Multi-Criteria Decision Making 

(MCDM) models (Fuzzy-TOPSIS), 

machine learning algorithms [logistic 

regression (LR), Classification and 

Regression Tree (CART), and 

random forest (RF)], and classical 

methods

Baliapur block, Dhanbad 

district

LR Nandi et al. (2024)

8 A total of 176 water samples were analyzed 

for pH, Temp, EC, TDS, TH, calcium, 

alkalinity, Cl−, SO4−2, HCO3-, Ca+2, Mg+2, 

Na+, and fluoride ions

ANN Khaf is a city in Khorasan 

Razavi province

Mohammadi et al. 

(2016)

9 A total of 143 water samples were tested for extreme learning machine (ELM) 

model, multilayer perceptron (MLP), 

and support vector machine (SVM) 

models.

Maku area, located in the 

north of West Azerbaijan 

province in the northwest 

of Iran

ELM models 

learned faster, and 

SVM models had 

the highest 

computation time.

Barzegar et al. (2017)

Four of the parameters, namely pH, 

chlorides, sulfates, and calcium, were 

found to have a greater capacity to 

influence fluorides

ANN and inverse distance weighting 

approach

0.61–6.59 mg/L

Mamundiyar basin, India

Dar et al. (2012)
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5 Conclusion and recommendations

Groundwater fluoride concentration is affected by various natural 
and anthropogenic processes. Different machine learning techniques 
that are also considered artificial intelligence techniques generally 
extract patterns from the data based on which it makes predictions. It 
also assesses and interprets non-linear and intricate associations 
among input–output data. The large amounts of data collected over 
the years can be  used for quality parameter prediction. Different 
machine learning methods are used to develop models for 
groundwater quality prediction. Various researchers have proved that 
ANN modeling has a very good predictive capability for fluoride 
levels. Groundwater contamination depends upon the variables that 
change over time; therefore, a flexible algorithm is required to enhance 
the reliability of the model. The ANN provides the requisite flexibility, 
making it suitable for groundwater fluoride modeling. Inputs are 
selected based on correlation analysis, and the hidden layers are taken. 
A maximum of two hidden layers can be  taken, with the output 
representing fluoride concentration. The network undergoes sufficient 
training through the trial-and-error method. After the training, the 
model undergoes testing and validation, and the network’s predictive 
efficiency is measured based on root mean square error and the 
coefficient of determination. Overfitting during ANN training is a 
complex problem that decreases the efficiency of the ANN.
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