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Hydrological models are widely used to assess climate change effect on water 
resources at the catchment scale. However, data scarcity is one of the main 
challenges faced by hydrological modelers especially in developing countries. 
Remotely sensed and large-scale climatic datasets offer a viable alternative for 
hydrological modeling. Hence, this study evaluates CFSR-NCEP reanalysis data for 
discharge simulation using SWAT semi-distributed and GR4J conceptual lumped 
hydrological models. First, the CFSR-NCEP monthly reanalysis precipitation and 
temperature were compared to the observed data. Then, the performance of SWAT 
and GR4J models to simulate monthly discharge using both daily CFSR-NCEP 
reanalysis data with and without bias correction was compared across different 
climate conditions. Results indicated that the GR4J model performed well, with an 
average NSE of 0.89 across calibration and validation periods, indicating its ability 
to handle low-quality input data. A poor performance of the SWAT model was 
observed using CFSR-NCEP data without bias correction (NSE < 0.60). Primarily due 
to biases in meteorological data, and to low quality of spatial data. Bias correction 
improved both models’ performance, with NSEs exceeding 0.78 for SWAT model 
and 0.91 for GR4J model. Moreover, the stability of models’ performances under 
the three calibration periods shows that SWAT and GR4J models are, respectively, 
influenced and not much influenced by the climate of the calibration period. 
Consequently, GR4J remains valid for climate projection. Our research shows 
that despite their widespread use, complex physics-based hydrological models 
such as SWAT are often less performing in data-limited catchments. However, 
conceptual models prove more performing, providing valuable information for 
researchers and decision-makers to devise robust quantitative water resource 
management strategies under these challenging conditions.
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1 Introduction

The effects of climate change on water resources are already 
evident globally (Allan et al., 2020), with the Mediterranean region 
being particularly the most vulnerable (Caloiero et al., 2018; Hallett 
et al., 2018; Hrour et al., 2022; Lionello and Scarascia, 2018; Naumann 
et  al., 2018; Tramblay et  al., 2020). Future projections suggest 
increasing aridity in Mediterranean basins throughout the 21st 
century, with a high spatial variability (Cos et al., 2022; Hrour et al., 
2023; Zittis et al., 2021). These changes, associated with a growing 
water demand, owing to population growth and socio-economic 
development, intensify the pressure on water resources (Javed et al., 
2020). Consequently, conflicts are arising between environmental 
needs and human activities, highlighting the need of an in-depth 
understanding of water issues, in order to develop more appropriate 
water resource management strategies at the local scale, particularly 
in arid and semi-arid contexts (Ostad-Ali-Askari et al., 2019).

Hydrological modeling is an important tool for integrated and 
interdisciplinary management of water resources (Badham et al., 2019; 
Devia et al., 2015; Hermassi et al., 2025; Tan et al., 2017). Hydrological 
models are widely used to understand hydrological processes (Borrelli 
et al., 2020; Bouslihim et al., 2019), as well as to assess the impact of 
climate variability, human activities and management practices at the 
catchment scale (Aawar and Khare, 2020; Alehu and Bitana, 2023; El 
Harraki et  al., 2021; El Khalki et  al., 2021). Several hydrological 
models with different typologies have been proposed, and categorized 
based on the hydrological processes involved and their degree of 
spatial discretization (Hrachowitz and Clark, 2017; Jajarmizadeh et al., 
2012). They range from global lumped conceptual models, such as the 
GR4J model (Perrin et al., 2003) to distributed and semi-distributed 
physically based models, such as the Soil and Water Assessment Tool 
(SWAT) model (Arnold et al., 1998).

Physically-based distributed models can produce reliable results 
and are more powerful in representing and analyzing the spatial 
variability of hydrological processes (Clark et al., 2017; Paniconi and 
Putti, 2015). However, their implementation requires a large amount 
of data. For example, SWAT model is widely used to simulate the 
hydrological functioning of catchments in response to complex 
phenomena such as climate change, erosion, infiltration, and changes 
in land use and agricultural practices (Neitsch et al., 2011). On the 
other hand, it requires an exhaustive database of spatial and 
meteorological data (Arnold et al., 1998), which are, inaccessible or 
limited, and frequently unavailable particularly in developing 
countries. The emergence of remote sensing techniques, along with 
the availability and accessibility of large-scale climate data have 
fostered and improved the application of SWAT model globally 
(Abbaspour, 2008). In the Moroccan context, many research studies 
have used this model, using the open-source databases available 
online [such as STATSGO and SSURGO (Corwin et al., 1997) for 
soils], and remote sensing data to develop land use maps (Acharki 
et al., 2023; Alitane et al., 2022; Aloui et al., 2023; Brouziyne et al., 
2018; Kusi et al., 2023; Lelieveld et al., 2016; Milewski et al., 2020).

Regarding meteorological data, satellite climate products have 
been developed to supplement standard weather station data, by 
providing spatio-temporal continuous data and capturing climate 
variability on a global scale (Abera et al., 2016). The Climate Forecast 
System Reanalysis (CFSR) of the National Centers for Environmental 
Prediction (NCEP) (CFSR-NCEP) (Dile and Srinivasan, 2014; Saha 

et  al., 2010) in among these products, and is commonly used in 
scientific research as a viable alternative in data scarce region. Several 
studies have evaluated the CFSR-NCEP reanalysis data and 
demonstrated their good performance in discharge simulations 
(Acharki et  al., 2023; Bui et  al., 2021; Dile and Srinivasan, 2014; 
Lagrini et  al., 2020). Conversely, some studies have reported 
unsatisfactory performance of CFSR-NCEP reanalysis data, 
particularly in tropical and subtropical regions (Monteiro et al., 2016; 
Tan et al., 2017), in China (Yang et al., 2019), as well as in South African 
catchments (Mararakanye et al., 2020). The CFSR-NCEP reanalysis 
data were chosen because of the availability of several meteorological 
variables necessary for the implementation of the SWAT model 
(precipitation, temperature, wind speed, solar radiation and relative 
humidity) over a long time period (from 1979 to 2014) (Saha et al., 
2010). These studies revealed that results vary between regions and 
models. In addition, these data may contain systematic errors and 
biases resulting in poor agreement with observations in some areas 
(Cui et  al., 2012; Mararakanye et  al., 2020; Yao et  al., 2020). This 
emphasizes the importance of assessing their potential, especially in 
areas with limited climatic data.

Lumped conceptual models are still an interesting alternative due 
to their structural simplicity and the small amount of data required 
for their implementation. These include the Génie Rural (GR) models 
family (Mouelhi, 2003; Mouelhi et al., 2006; Perrin et al., 2003), which 
benefit from a variety of application examples and several tools to 
facilitate their implementation [e.g., the airGR package under R 
(Coron et al., 2017)]. In addition to their robustness and parsimony, 
their main advantage is that they require few meteorological data 
(precipitation, temperature, and/or potential evapotranspiration). The 
GR4J model (Perrin et al., 2003) is widely adopted by the scientific 
community for rainfall-runoff modeling (Bouadila et  al., 2023; 
Bouizrou et al., 2023; Kodja et al., 2020; Wei et al., 2021) also for 
discharge simulation based on future climate projections (Séne et al., 
2024; Stephens et al., 2018). However, such an approach raises the 
question of whether the functions assessed by the calibrated 
parameters model can be  transferred to other climate conditions 
(Brigode et al., 2013; Coron et al., 2012). This issue becomes even 
more critical considering the uncertainties inherent in future climate 
projections and hydrological models, which are highly sensitive to the 
quality of available climate data, particularly as climate variability 
increases in the future (Joseph et al., 2018; Krysanova et al., 2018). It 
is therefore essential to evaluate the performance and temporal 
transferability of calibrated model parameters under climate 
non-stationarity (Deb and Kiem, 2020).

The main objective of this study is to evaluate the applicability of 
CFSR-NCEP reanalysis data for streamflow simulation in data-scarce 
basins by comparing the performance of two contrasting hydrological 
models: SWAT and GR4J. The study focuses on the Oued El 
Makhazine dam catchment in northwestern Morocco a subhumid 
Mediterranean watershed characterized by high temporal climatic 
variability. This catchment presents a relevant case study due to its 
limited availability of high-quality hydro-meteorological data, a 
challenge common to many basins in developing regions. The 
originality of this study lies in its integrated assessment of model 
performance using both uncorrected and bias-corrected CFSR-NCEP 
data and its comparison of a physically based, semi-distributed model 
(SWAT) with a lumped conceptual model (GR4J) under the same 
climatic and data constraints. The two models were deliberately 
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selected to represent different modeling philosophies and data 
requirements: SWAT for its detailed representation of spatial 
heterogeneity and process complexity, and GR4J for its parsimonious 
structure and minimal input needs. This dual-model comparison 
provides insight into the trade-offs between model complexity and 
performance robustness in data-limited settings. Furthermore, the 
study investigates the transferability of calibrated model parameters 
across different climatic periods, offering a novel perspective on 
model stability under climate variability. The findings contribute to 
the broader field of operational hydrology by identifying modeling 
approaches that are more reliable for planning and managing water 
resources in regions where observational data are sparse or uncertain. 
These results also establish a foundation for future scenario-based 
studies on climate change and water resource planning in similar 
Mediterranean and semi-arid contexts.

2 Material and method

2.1 Study area

The catchment area of the Oued El Makhazine dam (1,800 km2) 
is in north-western Morocco (Figure  1). The eastern part of the 
catchment is rugged and mountainous, with a maximum altitude of 
about 1,700 m a.s.l. The Oued El Makhazine dam catchment, 
primarily drained by the Oued-Loukkos River, extends 180 km from 
the Rif mountains in the east (Figure 1). The climate is subhumid 
Mediterranean, with a cool, wet season from October to April and a 
hot, dry season from May to September. It is one of the rainiest 
catchments in Morocco and supplies one of the most important 
agricultural sectors, with an average annual rainfall of about 

1,100 mm (70% of which falls between October and April), and a 
significant inter-annual variability. At the dam, the average annual 
specific discharge is 460 mm, resulting in a water supply to the dam 
of about 760 mm3. The average evaporation is estimated at 
1,200 mm yr.−1. However, water availability in this catchment has 
decreased significantly in the last decades (Hrour et  al., 2022; 
Milewski et  al., 2020). This situation, combined with population 
growth and the development of agricultural activities, could lead to 
devastating water shortages in the future (Acharki et al., 2023; Hrour 
et al., 2023).

2.2 Models’ description and configuration

2.2.1 SWAT model
The Soil and Water Assessment Tool (SWAT) is a semi-distributed 

and processes based hydrological model developed by the 
United  States Department of Agriculture’s Agricultural Research 
Service (USDA-ARS) (Arnold et al., 1998, 1993; Neitsch et al., 2011). 
It is a physically based that operates at continuous daily time steps 
(Neitsch et al., 2011). It is designed to assess the effects of climate, 
management practices and land use on runoff, sediment and 
agricultural yields in large complex catchments (Neitsch et al., 2011). 
SWAT has been widely used around the world, including in the 
Mediterranean region and more specifically in Morocco. Research has 
applied SWAT in a wide range of areas, including the assessment of 
climate change, agricultural practices, and land use change on past 
and future water resources (Acharki et al., 2023; Aloui et al., 2023; 
Brouziyne et al., 2017; Choukri et al., 2020; Khaleghi and Hosseini, 
2024; Lamane et  al., 2022; Milewski et  al., 2020; Sánchez-Gómez 
et al., 2025).

FIGURE 1

The study area of the Oued El Makhazine dam catchment (red outline), located to the west of the Rif mountains and representing a sub-basin of the 
Bas Loukkos catchment (black outline), the locations of the hydro-climatic stations and the digital elevation model detailing the topography.
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In the SWAT model, the catchment is divided into several 
sub-catchments, each of which is subdivided into hydrological 
response units (HRUs) (Arnold et  al., 2012). Each HRU is 
characterized by a unique and homogeneous combination of soil type, 
land use and slope. The outputs (discharges, sediments, nutrients, etc.) 
for each HRU are then aggregated at the sub-catchment outlet and 
conveyed through channels, ponds, reservoirs and wetlands to the 
catchment outlet. For further details on the theoretical concepts of the 
model, the reader is referred to the SWAT documentation (Neitsch 
et al., 2011).

SWAT’s input data includes meteorological data (daily rainfall, 
temperature, relative humidity, wind speed, and solar radiation) and 
spatial data (digital elevation model (DEM), land use map, soil type 
map, and slope map). More details on these data are given in 
Section 2.3.

2.2.2 GR4J model
The GR4J model (Perrin et al., 2003) is a global lumped rainfall-

runoff model with a daily time step. It has only four parameters (X1: 
daily maximum production storage capacity; X2: groundwater 
exchange coefficient; X3: daily maximum routing storage capacity; 
and X4: time base of the unit hydrograph). The GR4J model simulates 
discharge using two functions: production (nonlinear production 
storage) and routing (nonlinear routing storage) (see Perrin et al., 
2003 for more details). The model requires daily precipitation and 
potential evapotranspiration as meteorological input data to simulate 
discharge. The model has been widely used for hydrological 
simulations (Ait Naceur et al., 2025; Anshuman et al., 2021; Bouizrou 
et  al., 2023; Wei et  al., 2021) and has attracted attention for its 
simplicity, accuracy, and adaptability to various climate and 
catchment conditions.

2.3 Dataset

2.3.1 Climatic and hydrological data

2.3.1.1 Observed data
Precipitation, temperature and discharge data were provided by 

the agricultural council [Office Régional de Mise en Valeur Agricole du 
Loukkos (ORMVAL)] and by the water agency [Agence du Bassin 
Hydraulique du Loukkos (ABHL)]. Monthly precipitation was 
provided for 10 stations (Figure  1) over the period 1960–2018. 
Average monthly discharges were provided for the Oued El Makhazine 
station (at the dam) over the period 1960–2012. Monthly maximum 
and minimum temperatures were provided for the Mrissa station over 
the period 1981–2008 (Figure 1). See Hrour et al. (2022) for more 
information on the available dataset.

2.3.1.2 CFSR-NCEP data
This study uses daily datasets from the Climate Forecast System 

Reanalysis (CFSR) by the National Centers for Environmental 
Prediction (NCEP) (Dile and Srinivasan, 2014; Saha et al., 2010) to 
address the lack of meteorological data in both space and time. The 
use of CFSR-NCEP datasets is justified by their global coverage, long-
term consistency 1981–2014, and ease of access. These datasets 
provide key meteorological variables such as precipitation, maximum 
and minimum temperatures, relative humidity, wind speed, and solar 

radiation which are essential inputs for the SWAT model. CFSR data 
combines observations with numerical weather models to generate 
continuous and homogeneous time series, making them particularly 
useful in regions with limited or unreliable ground measurements. 
Their spatial resolution (0.3125° × 0.3125°) and daily time step are 
well suited for large-scale hydrological studies like this one. In 
addition, the data can be directly formatted for use in SWAT, which 
makes CFSR-NCEP especially suitable for SWAT model especially in 
data-scarce regions (Fuka et al., 2014). However, these data contain 
systematic errors and biases (Cui et  al., 2012). For example, they 
overestimate precipitation, especially in mountainous areas such as the 
study area (Yao et al., 2020). Therefore, it is worth correcting these 
data before using them in hydrological models. In the present study, 
CFSR-NCEP data with and without bias correction were used to assess 
their respective performance in hydrological modelling.

2.3.1.3 Bias correction
Precipitation and temperature (maximum and minimum) were 

corrected using the linear scaling (LS) method. This method aims to 
fit the long-term monthly mean of the corrected values perfectly to 
that of the observed values (Teutschbein and Seibert, 2012). A 
monthly scaling factor is calculated as the ratio between the long-term 
monthly mean of the observed data and that of the CFSR-NCEP data. 
Each of the uncorrected CFSR-NCEP daily precipitation and 
temperature values for a given month is then corrected by the monthly 
scaling factor for that month. It is important to note that these 
correction factors vary according to the month of the year, but the LS 
method has certain limitations, especially that it does not capture all 
the characteristics of the observed data. (i.e., inter-monthly variation, 
daily probability distribution).

2.3.2 Spatial data

2.3.2.1 Digital Elevation Model (DEM)
The DEM (Figure  2) was obtained from the Global Digital 

Elevation Model of the ASTER sensor (GDEM-ASTER). It can 
be downloaded from the Earth Explorer portal1 of the United States 
Geological Survey (USGS). It has a spatial resolution of 30 m, similar 
to that used in many studies (Acharki et al., 2023; Aloui et al., 2023; 
Bouslihim et al., 2019; Chkara and EL Morabiti, 2016). Nevertheless, 
Nazari-Sharabian et  al. (2019) have shown that using a 12.5 m 
resolution leads to better discharge simulation results while using 
resolutions of 30 m and 90 m leads to discharge overestimation of 
about 0.74 and 2.73% (respectively) compared to a resolution 
of 12.5 m.

2.3.2.2 Soil data
The Harmonized World Soil Database (HWSD_v121) (FAO et al., 

2012), accessible through the Food and Agriculture Organization of 
the United Nations soil portal,2 was used in this study. The database 
was spatialized and rasterized to the same resolution as the DEM 
(30 m) using ARCGIS software, and then the soil classes were 
reclassified and renamed to match those in the SWAT database. This 

1 https://earthexplorer.usgs.gov

2 https://www.fao.org/home/en/
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database contains all the soil parameters required by the SWAT model, 
such as texture, soil water content, organic carbon content, bulk 
density, soil depth, and soil hydrological group (Supplementary 1). 
The soil types in the catchment are dominated by Chromic Luvisols 
(Lc42-2c-1407), followed by Calcic Kastanozems (KK13-3b-1394) and 
Eutric Fluvisols (KK11-3b-1392), accounting for 58.0, 32.2 and 9.8% 
of the total catchment area, respectively (Figure 2).

2.3.2.3 Land use/land cover data
The land cover map was produced by ABHL using remote sensing 

based on medium-resolution satellite imagery, field knowledge, field 
surveys, and Google Earth images. To be  consistent with the 
classification and nomenclature used in the SWAT database, the land 
cover map was reclassified, and land use types were renamed. The land 
use classes are Forest (FRSE), Agricultural Land-Generic (AGRL), 
Range-Grasses (RNGE), Water (WATR), and Residential-High 
Density (URHD), representing, respectively, 45.5, 29.9, 22.4, 2.05, and 
0.15% of the total surface area of the basin (Figure 2).

2.3.3 SWAT model
The model of the Oued El Makhazine dam basin was built using 

ArcSWAT software with the ArcGIS interface in its 2012 version 
(“SWAT,” 2012). The general approach used for the building and 
calibration of the SWAT model is presented in Figure 3.

The first step is to delineate the catchment and sub-catchments 
using the DEM. The hydrographic network was extracted from the 
DEM, verified and corrected using satellite imagery and information 
provided by ABHL. SWAT then divided the Oued El Makhazine dam 
catchment into 15 sub-catchments. This subdivision into 
sub-catchments is sufficiently detailed to represent the significant 
topographic variability of the catchment. This is crucial as it can affect 
the results of runoff simulations (Aouissi et  al., 2013; Neitsch 
et al., 2011).

The second step involved the definition of Hydrological Response 
Units (HRUs), which are unique combinations of land use, soil type, 
and slope classes. To generate the HRUs, spatial overlay of the land use 

map, soil map, and a slope map (derived from the DEM using the 
SWAT interface) was performed (Figure 2c). Each layer was treated 
with equal importance in the overlay process, and no weighting 
factors were applied, in line with the standard SWAT procedure. A 
threshold of 20% was applied to each category (land use, soil, and 
slope) to exclude minor classes and avoid the generation of HRUs with 
negligible area, following the recommendation of Arnold et al. (2012). 
This method strikes a balance between spatial detail and model 
manageability. As a result, 360 HRUs were delineated across the 15 
sub-catchments.

The third step consisted on integrating the daily meteorological 
data, precipitation, minimum and maximum temperature, relative 
humidity, wind speed and solar radiation from the CFSR-NCEP. The 
SWAT model was first Configurated and simulated with the CFSR-
NCEP meteorological data without bias correction, and then with the 
data with bias correction, with all other input parameters held 
constant. Surface runoff was calculated as a function of soil moisture 
using the curve number method. Potential evapotranspiration (PET) 
was estimated using the Penman-Monteith equations, while variable 
storage was used to move water through the channels. After building 
and configuring the SWAT model, a simulation was run on a monthly 
time step for 28 years (1981–2008) for both models with and without 
bias correction of the CFSR-NCEP data.

2.3.4 Sensitivity and uncertainty analysis
Before calibrating and validating the SWAT model, it is essential 

to perform a sensitivity analysis to the model parameters. This aims to 
identify the key parameters that affect the model performance (Song 
et al., 2015) and helps to reduce the number of parameters that need 
to be adjusted when calibrating the SWAT model (Abbaspour, 2008; 
Abbaspour et al., 2017). For this purpose, the Sequential Uncertainty 
Fitting Version 2 (SUFI-2) algorithm from the SWAT Calibration and 
Uncertainty Programs (SWAT-CUP) software package (Abbaspour 
et al., 2007) was used. SUFI-2 is particularly effective due to its ability 
to account for uncertainties on parameters and input data, which 
enhances the robustness and accuracy of the SWAT model. Its built-in 

FIGURE 2

Spatial data layers used in the SWAT Model. (a) Land use/ land cover map classified according to SWAT categories: Forest (FRSE), Agricultural Land—
Generic (AGRL), Rangeland—Grasses (RNGE), Water (WATR), and Urban Residential—High Density (URHD); (b) Soil map classified using SWAT-
compatible soil types; and (c) Slope class distribution, highlighting dominant soil types: Luvisols (Lc42-2c-1407), Calcic Kastanozems (KK13-3b-1394), 
and Eutric Fluvisols (KK11-3b-1392). Models’ setup, calibration and validation.
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sensitivity analysis and efficient exploration of the parameter space 
make it well-suited for model calibration, especially in complex 
systems and data-scarce environments. The algorithm quantifies 
prediction uncertainty using the 95% prediction uncertainty (95PPU), 
defined by the 2.5th and 97.5th percentiles of the cumulative 
distribution of the model outputs (Memarian et al., 2014). Among the 
available calibration algorithms, SUFI-2 is the most widely used in 
hydrological modeling because it efficiently manages water balance 
parameters, requires fewer simulations to define uncertainty bounds, 
and performs well with limited computational resources (Abbaspour 
et al., 2019; El Harraki et al., 2021; Mehan et al., 2019). In addition, the 
SUFI-2 method assumes that model uncertainty includes all types of 
uncertainties, such as those related to input data, model 
conceptualization, model parameters, and those related to measured 
data (Abbaspour et al., 2007). SUFI-2 allows the parameters to vary 
within possible ranges, specified for each parameter 
(Supplementary Table S2). The P-factor and the R-factor are calculated 
to estimate uncertainty. The P-factor is the percentage of observations 
within the 95% uncertainty band (95PPU). The R-factor is the width 
of the 95PPU uncertainty band. It thus represents the amplitude of the 
uncertainty attributed to the model parameters. The aim of calibration 
is to have as many observations as possible within the 95PPU with the 
lowest possible R-factor (see Abbaspour et al., 2007 for more details).

As the focus of this study is on discharge simulation, the sensitivity 
analysis has been done with the 19 parameters (Supplementary Table S2) 
of the water balance equations (Briak et al., 2019; Chkara and EL 
Morabiti, 2016; Rafik et al., 2023; Strohmeier et al., 2020).

2.3.5 GR4J model
Daily precipitation and potential evapotranspiration (PET) used 

as inputs to the GR4J model, with and without bias correction were 
provided from CFSR-NCEP database. This approach allows a 
comparison of the performance of the two models using the same 
input data, ensuring a consistent and objective evaluation of the 

influence of the bias correction on the hydrological simulations. The 
GR4J model was run using the airGR package (Coron et al., 2017) of 
R software (R Core Team, 2021).

2.3.6 Calibration and validation
The sample split test (SST) method (Klemeš, 1986; Thirel et al., 

2015) was used to evaluate the performance of the SWAT and GR4J 
models. This method was chosen because it allows for a clear and 
objective assessment of model performance under different 
precipitation conditions by dividing the dataset into distinct 
calibration and validation periods. Unlike other methods, SST helps 
detect overfitting and assess the model’s ability to generalize beyond 
the calibration period, which is essential for evaluating the 
robustness and predictive reliability of hydrological models. The 
simulation period (1981–2008) was divided into three 
non-overlapping sub-periods of equal duration to represent distinct 
climatic conditions, based on the standardized precipitation index 
(Hrour et  al., 2022). The period 1981–1990 (Config.1) was 
characterized as very dry, 1991–1999 (Config.2) included a dry 
phase (1991–1994) followed by normal conditions (1995–1999), and 
2000–2008 (Config.3) corresponded to average precipitation 
conditions with a higher frequency of extreme events. These periods 
were selected to ensure the model’s robustness by covering a range 
of hydroclimatic variability (dry, normal, and variable/extreme). The 
models were calibrated separately for each of these periods. For 
validation, each calibrated model was applied to the concatenation 
of the two remaining periods, which served as an independent 
validation set. For example, when the model was calibrated on 1981–
1990, it was validated using the combined period of 1991–2008. This 
approach allows the evaluation of model performance under 
different climatic conditions. A two-year warm-up period was 
applied at the start of each simulation to initialize model state 
variables, and results from these warm-up years were excluded from 
the analysis.

FIGURE 3

General methodology for the set-up, calibration and validation of the SWAT model.

https://doi.org/10.3389/frwa.2025.1582589
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Hrour et al. 10.3389/frwa.2025.1582589

Frontiers in Water 07 frontiersin.org

The performance of the models was assessed by calculating the 
efficiency criteria: Nash-Sutcliffe efficiency coefficient (NSE) (Nash 
and Sutcliffe, 1970) (Eq. S3.1), the Coefficient of determination (R2) 
(Eq. S3.2), the Root mean square error (RMSE) (Eq. S3.3) and the 
Percentage bias (Pbias) (Supplementary 3). The mathematical 
definitions and detailed interpretations of these metrics are provided 
in Supplementary 3.

3 Results and discussion

3.1 Bias correction and evaluation of 
meteorological data from CFSR-NCEP

The CFSR-NCEP precipitation (without bias correction) provides 
a satisfactory representation of the temporal dynamics of monthly 
and annual precipitation (Figure 4). The R2 values are 0.83 and 0.89 
for monthly and annual precipitation respectively, indicating a high 
statistical agreement between the CFSR-NCEP and observed 
precipitation. However, the CFSR-NCEP precipitation overestimates 
the monthly averages, especially during the winter period, and the 
annual cumulative of the observed precipitation (Figure  4). The 
RMSE is 60.68 mm and 382.04 mm (i.e., a bias of between 59 and 
59%) at monthly and annual timescales, respectively.

The potential evapotranspiration (PET) estimated from CFSR-
NCEP data shows poor agreement with the mean monthly dynamics 

of those estimated from observed data (Figure 4). The R2 values are 
relatively low at 0.45 and 0.18 on monthly and annual timescales, 
respectively. Overall, the potential evapotranspiration (PET) estimated 
from CFSR-NCEP data is lower than that derived from observed data 
(Figure 4), with a root mean square error (RMSE) of 16.59 mm at the 
monthly scale and 103.74 mm at the annual scale. In addition, the 
intra-and inter-annual variability of PET estimated from the CFSR-
NCEP data is lower than that of PET from observed data.

Bias correction ensures a good agreement between precipitation 
and PET from CFSR-NCEP and the observed values (Figure 4), with 
an R2 of 0.95 and 0.97 and RMSE of 21.32 and 76.31 (i.e., a bias of 8.82 
and 8.82%) for monthly and annual precipitation, respectively. 
Similarly, for PET, the R2 are of 0.96 and 0.99 and RMSE of 4.32 and 
29.74 (i.e., a bias of 0.18 and 0.17%) for monthly and annual 
timescales, respectively.

3.2 Sensitivity analysis of SWAT model

The sensitivity analysis of the SWAT parameters showed that the 
most sensitive parameters were the runoff curve number (CN2), the 
available water capacity of the soil layer (SOL_AWC), the wet bulk 
density (SOL_BD), and the soil evaporation compensation factor 
(ESCO) (Table 1). These results are in line with several studies, such as 
the study by (Chkara and EL Morabiti, 2016), which confirmed that the 
parameters CN2, SOL_AWC, and ESCO are the most sensitive in a small 

FIGURE 4

Comparison of CFSR-NCEP with and without bias correction against observed precipitation (Top) and PET (Estimated Using the Penman-Monteith 
Method) (bottom): Annual precipitation (a) and PET (a’); scatter plots of annual cumulated precipitation (b) et PET (b’) and Box plot of monthly 
precipitation (c) and PET (c’) over the period 1981–2008.
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catchment in northern Morocco. Finally, 7 significant parameters were 
identified for calibration of the SWAT model in this case (Table 1). The 
sensitivity of these parameters was based on the T-statistic and p-value, 
with a threshold of less than 15% (Abbaspour et al., 2007).

3.3 SWAT calibration and discharge 
simulation

3.3.1 Using CFSR-NCEP data without bias 
correction

The SWAT model calibration results using data without bias 
correction are unsatisfactory. The statistical efficiency criteria calculated 
between the measured and simulated discharges by calibrated SWAT 
model (Table 2), as well as the hydrograms (Figure 5), indicate low to 
medium performance (Moriasi et al., 2007). The NSE coefficient ranges 
from 0.53–0.60 (0.47–0.53) during calibration (during validation) across 
the three configurations (Table 2). The correlation coefficient R2 varies 
between 0.71 and 0.80 (0.65 and 0.74) in the calibration (validation) 
periods for the three configurations (Table 2), which indicates that the 
SWAT model was able to satisfactorily reproduce the overall trend of the 
measured discharges (Figure 4). However, high discharges are slightly 
underestimated and low-discharges are overestimated (Figure 4). The 
RMSE values indicate relatively high levels of error and the Pbias varies 
between 32.7 and 55.5% (18.50 and 79.7%) for calibration (validation) 
periods (Table 2). These biases should be between −25 and +25% for a 
satisfactory simulation and between −15 and +15% for a good simulation 
(Arnold et al., 2012; Moriasi et al., 2007). Overall, the Pbias show poor 
model performance for all three calibration configurations. The 
overestimation of the low discharge and the underestimation of the high 
discharge were the main reasons for the high Pbias values. In addition, 
SWAT failed to simulate some high-peak events for the three 
configurations, e.g., in December/January 1984, 1990, 1991, 1996, 1997 
and around March/April 2003 and 2004.

The mean monthly precipitation, observed discharges, and 
simulated discharges (without bias correction) over the period 1981–
2008 (Figure 5, top right) show a significant difference between the 
three calibration configurations. The simulated discharges by Config.1 
(blue line) overestimate those observed for all months of the year, with 
a relative mean difference of 42% (the monthly mean simulated 
discharge exceeds those observed ca. 42% for all months). For 
Config.2 (black line), the monthly mean discharge is overestimated, 
while for Config.3 (green line), the high and low discharge are 
significantly underestimated and overestimated, respectively.

3.3.2 Using CFSR-NCEP data with bias correction
The performance of the SWAT model was substantially improved 

using the CFSR-NCEP data with bias correction. The statistical criteria 
(Table 2) and the hydrograms (Figure 5, bottom) show a satisfactory 
performance of the SWAT model (with bias correction) for the three 
calibration categories. The NSE coefficient ranges from 0.75 to 0.82 in 
calibration and from 0.67 to 0.73 in validation (Table 2), indicating 
good model performance. The R2 coefficient improved, reaching 0.89–
0.91 in calibration and 0.87–0.89 in validation.

Analysis of the hydrograms (Figure  5, bottom right) reveals 
differences between the three configurations, with Pbias values 
ranging from 20.40 to 43.90% during calibration and 22.30 to 33.50% 
during validation. In general, the average monthly discharges are 

overestimated, even after correcting for the bias in the CFSR-NCEP 
data. Config.1 and Config.2 show similar results, with an average 
overestimation of the monthly mean discharges of 17% (Table 2 and 
Figure 5). However, these configurations fail to correctly simulate high 
peak events. Config.3 further overestimates monthly discharges (by 
about 33% on average) and overestimates both low and 
high discharges.

3.4 GR4J calibration and discharge 
simulation

3.4.1 Using CFSR-NCEP data without bias 
correction

The monthly discharges simulated by GR4J using data without bias 
correction varied (Figure 5, top). The performance criteria indicate 
satisfactory results, with NSE values ranging from 0.86 to 0.91 (0.73 to 
0.86) in the calibration (validation), while the R2 coefficient is greater 
than 0.9 in all configurations (Table 3). These results, combined with the 
analysis of the hydrograms (Figure 5, top), show a strong agreement 
between the monthly discharges simulated with data without bias 
corrections and the observed discharges. In general, the long-term 
discharge data simulated by the GR4J models were in good agreement 
with the observed discharges data in terms of seasonal variations. 
However, the three calibration configurations failed to reproduce high 
peaks such as those recorded in 1984, 1990, 1991, 1996, 1997 and around 
March/April in 2003 and 2004 (Figure 5, top). The same observation was 
made for the SWAT model using data without bias correction.

Pbias show significant differences between the three 
configurations: Config.1 shows a moderate bias (−7.0% in calibration, 
3.2% in validation), while Config.2 significantly overestimates the 
mean monthly discharge over the period 1981–2008 (24.50% in 
calibration and 50.40% in validation) (Table 3 and Figure 5, top right, 
line blue). Config.3 underestimates discharges during the wet period 
(October to March) and overestimates them during the low water 
period (April to September), with Pbias of 13.8% in calibration 
and-12.7% in validation (Table 3).

The calibrated parameters of the GR4J model show differences 
between the three configurations. The X1 and X4 parameters remain 
relatively constant, reflecting the consistency of the maximum capacity 
of the GR4J production reservoir and the delay between the three 
configurations. On the other hand, the X2 parameter increases from 
−0.90 (Config.1) to 0.00 (Config.2 and Config.3), assuming a different 
level of exchange with the outside of the catchment. Similarly, the X3 
parameter varies from 0.96 mm (Config.1) to 4.82 and 3.85 mm for 
Config.2 and Config.3 respectively, reflecting a difference in the 
capacity of the routing reservoir between these three configurations.

3.4.2 Using CFSR-NCEP data with bias correction
The performance of the GR4J model was improved when using 

data with bias correction, with a very good performance range of 
statistical criteria. A visual (Figure  5) and quantitative (Table  3) 
comparison of the performance criteria over the period 1981–2008, 
both during calibration and validation, confirms this improvement. 
The NSE and R2 values were slightly higher than those obtained using 
data without bias correction, with values above 0.92 and 0.96, 
respectively, for the calibration and validation periods in all three 
configurations. This indicates a very good agreement between 
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TABLE 1 Description, initial calibration range and fitted values of the most sensitive parameters used to calibrate the SWAT model.

Fitted value (after calibration)

Variable name Definition P-value Spatial 
level

Default 
value

Initial 
interval

Without bias correction With bias correction

Config.1 Config.2 Config.3 Config.1 Config.2 Config.3

r_CN2 (.mgt)
Condition II curve 

number
0 HRU

Changes for 

HRU
[−0.75, 0.75] −0.12 −0.43 −0.73 −0.23 0.14 −0.57

v_RCHRG_DP (.gw)
Deep aquifer percolation 

fraction
0 HRU 0.05 [0, 1] 0.3 0.78 0.15 0.15 0.01 0.03

r_SOL_AWC (.sol)

Available water capacity 

of the soil layer (mm 

H2O/mm sol)

0 HRU
Changes for 

HRU
[−0.5, 0.5] 0.01 0.25 −0.25 0.39 −0.49 0.67

r_SOL_BD (.sol)
Moist bulk density (mg/

m3 or g/cm3)
0 HRU

Changes for 

HRU
[−0.5, 0.5] −0.19 0.05 −0.08 −0.31 0.17 −0.49

v_ESCO (.hru; .bsn)
Soil evaporation 

compensation factor
0.06 Sous bassin 0.95 [0, 1] 0.37 0.82 0.92 0.15 0.01 0.59

v_GW_Revap (.gw)
Groundwater “revap” 

coefficient
0.12 HRU 0.02 [0.02, 0.2] 0.14 0.04 0.18 0.04 0.1 0.14

v_GWQMN (.gw)

Threshold depth of water 

in the shallow aquifer 

required for return flow 

to occur (mm H2O)

0.15 HRU 1,000 [0, 5,000] 1,500 1,400 2067 3,280 4,320 3,825

The prefix “v_” denotes a replacement, while “r_” denotes a relative change (the existing) parameter is multiplied by (1 + the specified value).
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TABLE 2 Performance criteria of the SWAT model for the Oued El Makhazine dam catchment under the three calibration configurations.

Data Configuration
RMSE NSE R2 Pbias

Cal. Val. Cal. Val. Cal. Val. Cal. Val.

Without bias 

correction

Config.1 29.92 39.31 0.60 0.53 0.80 0.74 55.50 79.70

Config.2 39.57 29.64 0.58 0.47 0.71 0.65 52.70 67.80

Config.3 26.65 45.64 0.53 0.57 0.73 0.69 57.90 18.50

With bias 

correction

Config.1 14.80 15.50 0.82 0.73 0.91 0.88 20.40 22.30

Config.2 15.47 25.25 0.78 0.69 0.89 0.87 14.20 30.50

Config.3 14.92 16.39 0.75 0.67 0.90 0.89 43.90 26.70

For each configuration (Config.1: 1981–1990, Config.2: 1991–1999, Config.3: 2000–2008), the model was calibrated on the specified period (Cal.) and validated on the concatenation of the 
two remaining periods (Val.).

FIGURE 5

SWAT model calibration results: (right) monthly variation and (left) monthly mean of precipitation, observed discharge, and simulated discharge 
(mm month−1) using parameters sets from Config.1, Config.2 and Config.3 over the simulation period (1981–2008); using data without (top) and with 
(bottom) bias correction.

TABLE 3 Calibrated parameters and performance criteria of the GR4J model for the Oued El Makhazine dam catchment under the three calibration 
configurations.

Data Configu-
ration

GR4J parameters RMSE NSE R2 Pbias

X1 
(mm)

X2 
(mm/
day)

X3 
(mm)

X4 
(day)

Cal. Val. Cal. Val. Cal. Val. Cal. Val.

Without 

bias 

correction

Config.1 5.44 −0.90 0.96 2.25 15.98 21.86 0.91 0.86 0.96 0.93 −7.00 3.20

Config.2 5.08 0.00 4.82 2.32 20.98 23.49 0.91 0.73 0.96 0.92 24.50 50.40

Config.3 5.79 0.00 3.85 2.43 14.17 28.86 0.86 0.79 0.93 0.93 13.80 −12.70

With bias 

correction

Config.1 5.65 −1.92 3.15 0.41 9.43 16.19 0.97 0.92 0.98 0.96 −2.40 −12.80

Config.2 5.31 −2.11 4.41 0.17 18.04 13.39 0.93 0.91 0.97 0.97 1.20 10.70

Config.3 5.36 −2.51 4.36 0.16 9.70 16.30 0.94 0.93 0.97 0.97 1.50 −5.30

For each configuration (Config.1: 1981–1990, Config.2: 1991–1999, Config.3: 2000–2008), the model was calibrated on the specified period (Cal.) and validated on the concatenation of the 
two remaining periods (Val.).
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simulated and observed discharges in terms of seasonal variations. The 
hydrograms also show an improvement in the simulation of high 
discharges for the three configurations. In addition, the Pbias values did 
not exceed 17.70% in absolute terms, indicating very acceptable results.

Using data with bias correction minimizes the differences in 
calibrated model parameters, with minimal variation between 
configurations. The hydrograms showed no clear differences between 
the configurations. However, it should be noted that Config.2 (blue 
line in Figure  5, bottom right) slightly overestimates the mean 
monthly discharges from December to May. Nevertheless, this 
overestimation remains much lower than that observed with data 
without bias correction, with Pbias values of 1.2% during calibration 
and 17.70% during validation.

Overall, the GR4J model demonstrated excellent performance 
when input variables (P and PET) were bias corrected (see Figure 6).

4 Discussions

4.1 Simulated discharge using SWAT model

Although other studies have reported good results with the SWAT 
model in catchments similar to the Oued El Makhazine dam catchment 
(Aloui et al., 2023; Chkara and EL Morabiti, 2016; Markhi et al., 2019; 
Sellami et al., 2016; Tan et al., 2020), the results obtained in this study are 
not satisfactory when using CFSR-NCEP data with or without bias 
correction. Fadil et  al. (2011) demonstrated that the SWAT model 
yielded highly satisfactory results in simulating discharges in the 
Bouregreg catchment (Morocco), achieving an NSE coefficient of over 
0.80 and an R2 exceeding 0.9. Milewski et al. (2020) employed databases 

identical to those used in our study as inputs for the SWAT model in the 
Oum Er Rbia basins (central Morocco): DEM (ASTER-GDEM), a soil 
map (HWSD), land cover data (Corine Land Cover, 2000), and 
meteorological data for precipitation and temperature without bias 
correction (sourced from CFSR-NCEP reanalysis). They successfully 
calibrated the model with an NSE coefficient greater than 0.65 and an R2 
exceeding 0.75, which is not in line with results of this paper. Moreover, 
Mararakanye et al. (2020) evaluated the performance of the SWAT model 
using CFSR-NCEP data (without bias correction) to simulate runoff in 
the lower Vaal catchment. Their results showed poor statistical agreement 
between CFSR precipitation and rain gauge data. They reported that the 
SWAT model performed poorly in simulating discharges with these data. 
These results are consistent with the results of this study.

In addition to the low quality of the CFSR-NCEP data, the less 
satisfactory results of the SWAT model obtained in this study can 
be explained by the inaccuracies in the spatial data utilized and their 
unsuitable resolution. Serval studies have analyzed the sensitivity of the 
SWAT model to soil data. They have demonstrated that the resolution of 
the soil map used, as well as the type and amount of information present 
on it, significantly impact the quality of the simulations (Bouslihim et al., 
2019; Romanowicz et al., 2005; Worqlul et al., 2018; Ye et al., 2011). Ye 
et al. (2011) analyzed the impact of the spatial resolution of soil data, in 
a large wetland catchment of the Xinjiang River (15,535 km2) in the 
Poyang Lake catchment in China. They revealed that soil data resolution 
influences the quality of simulations by altering soil water storage. The 
high-resolution soil data generates higher monthly streamflow 
simulations compared to the lower-resolution data across the entire 
watershed. In a related study, Bouslihim et al. (2019) performed a similar 
analysis on the Tamedroust catchment (Morocco), with highly 
contrasting climatic conditions during the period 1998–2002. They used 

FIGURE 6

GR4J model calibration results: (right) monthly variation and (left) monthly mean of precipitation, observed discharge, and simulated discharge 
(mm month−1) using parameters sets from Config.1, Config.2 and Config.3 over the simulation period (1981–2008); using data without (top) and with 
(bottom) bias correction.
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two soil databases: (i) HWSD-2 L, a low-resolution database with only 
three soil types, and (ii) TAMED-SOL, a refined database comprising 11 
soil types, developed through field measurements and laboratory soil 
analysis. Initial results, prior to calibration, highlighted significant 
variability and the critical influence of soil characteristics on different 
aspects of the hydrological cycle. Simulated discharges using the 
HWSD-2 L database were consistently lower than those simulated with 
TAMED-SOL, despite both databases overestimating observed 
discharges. Model calibration significantly improved model performance 
for both databases, achieving an R2 and an NSE of about 0.64 and 0.65, 
respectively. The findings underscore the pivotal role of soil data quality 
and resolution in influencing the accuracy of SWAT model simulations 
across all components of the hydrological cycle, mainly discharges.

Other studies have shown that the quality and resolution of the land 
use map significantly affect SWAT model performance (Moriasi and 
Starks, 2010). Furthermore, using a single land use map (from 1 year, or 
the average over several years) throughout the simulation period fails to 
integrate the variability or changes in land use and agricultural practices 
into the modelling approach. Indeed, Jin et al. (2019) demonstrated that 
using a high-resolution precision dataset and a reduced number of 
land-use classes can improve the performance of the hydrological model 
between 1.1 and 6.9%. Additionally, the same authors have shown that 
using multiple years of land cover/land use data, with reduced time 
intervals (e.g., annual), can improve the modelling of discharges by about 
2.2 to 13.9% compared to using only 1 year. However, El Harraki et al. 
(2021) did not find any improvement in the modelling discharge through 
the SWAT model by refining the spatial resolution of the land use data. The 
land use map used in this study has a resolution of 30 m, but it is not highly 
detailed. In addition, agricultural management and practices (tillage, 
drainage, irrigation, pumping, etc.) were not simulated. The accuracy of 
certain parameters may have had an impact on the results and may explain 
the poor performance of SWAT model over the catchment area.

CFSR-NCEP data with bias correction shows good agreement with 
observed data. Our simulations using CFSR-NCEP data with bias 
correction improved the SWAT model discharge simulations and 
minimized biases in the simulated discharges. However, despite this 
improvement, the overall performance of SWAT in this case remains 
unsatisfactory. This highlights the importance of meteorological data 
quality in accurately simulating discharges using the SWAT model. In 
addition, the use of bias-corrected data reduces the differences in model 
performance between the three configurations and improves the stability 
of the SWAT model under varying precipitation conditions. The 
application of bias correction methods to the CFSR-NCEP reanalysis 
data (precipitation and temperature) prior to their use in the SWAT 
model is crucial to further improve the results.

4.2 Simulated discharge using GR4J model

Our results demonstrate the effective performance of the GR4J 
model in simulating discharges, aligning with the results of several 
previous studies conducted in the Mediterranean region and in regions 
with hydro-climatic conditions like the study context (high variability of 
the hydro-climatic regime). Those work has shown the good 
performance of GR4J model in simulating discharge (Ait Naceur et al., 
2025; Kodja et al., 2020; Oueldkaddour et al., 2021). In general, the GR4J 
model underestimates high-peaks events and overestimates 
low-discharges, which is a common modelling problem already observed 
by many authors (Rwasoka et al., 2014; Tramblay et al., 2013).

Furthermore, conceptual and global hydrological models such as 
GR4J are not designed to handle abrupt and widespread transitions in 
climatic conditions (Gutierrez-Jurado et al., 2021) and are unable to 
simulate extreme values whose time scale is more at the event level (a few 
hours to a few days). Moreover, errors in CFSR-NCEP data without bias 
correction and measured discharges may explain this anomaly. In fact, 
using data with bias correction solves this problem and gives a better 
simulation of peak events. In larger catchments or when the density of 
observations is higher, distributed and semi-distributed hydrological 
models can help account for the spatial and temporal variability of 
precipitation (Aouissi et al., 2018).

For GR4J, a slight difference was observed between the three 
calibration configurations in terms of performance criteria (in calibration 
and validation). The results show that the distribution of the four GR4J 
model parameters is significantly different under contrasting 
precipitation conditions (using data without bias correction). Moreover, 
using data with bias minimizes variation in calibrated model parameters 
among the three configurations. This shows that the GR4J model 
parameters can be transferred to different climatic conditions. In fact, the 
three configurations have been calibrated over three contrasting periods 
in terms of precipitation (Hrour et al., 2022). It should be noted that in 
the present study we have only focused on the performance of the model 
in simulating discharges.

4.3 Comparative analysis of the two models

In this study, the inter-comparison between the semi-distributed 
model (SWAT) and the conceptual lumped model (GR4J) was carried 
out to identify the most robust model for simulating discharge from 
CFSR-NCEP satellite meteorological data, with and without bias 
correction, and to assess the transferability of its parameters under 
contrasting precipitation conditions.

The GR4J model performed well with NCEP data without bias 
correction (Figure 5 and Table 3), illustrating its ability to compensate 
for the poor quality of the meteorological data input. This robustness 
can be  attributed to its simple and parsimonious structure (two 
reservoirs and only four parameters), which limits over-
parametrization and minimize the impact of the input data bias 
(Darbandsari and Coulibaly, 2020; Pushpalatha et  al., 2012). 
Furthermore, the calibration of conceptual models such as GR4J can 
deform the parameters to produce good results even with data 
without bias correction (Drogue and Khediri, 2016). On the other 
hand, results show a slight improvement in GR4J performance using 
data with bias correction, which is in line with the work of Coron 
et al. (2012), who found that bias correction provides limited gains in 
some cases. These results lend support to the idea that GR4J is 
particularly well suited to contexts in which data are incomplete or 
of limited quality. Furthermore, the model showed satisfactory 
calibration and validation performance for different calibration 
configurations, with or without bias correction, highlighting temporal 
transferability of its calibrated parameters.

The performance of the SWAT model is highly dependent on the 
quality of the meteorological data. When using data without bias 
correction, performance is unsatisfactory, but becomes acceptable after 
bias correction, highlighting the importance of rigorous pre-processing 
of inputs (Fuka et al., 2014). Although capable of modelling complex 
hydrological processes, the SWAT model is sensitive to biases in the input 
data, which are propagated into the calculation of key processes such as 
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discharge and aquifer recharge (Arnold et al., 2012; Ashraf Vaghefi et al., 
2015). This was confirmed by Srivastava et al. (2020), who compared a 
semi-distributed and a lumped model, again demonstrating the 
superiority of the lumped model for hydrological modelling in data-
limited basins. However, the stability of performance between the three 
calibration configurations for data with and without bias correction 
underlines a certain temporal transferability of its parameters, even 
under different climatic conditions.

5 Conclusion

This study evaluates the performance of the semi-distributed model 
SWAT and the conceptual lumped model GR4J, to simulate monthly 
discharge using CFSR-NCEP satellite meteorological data in the Oued 
El Makhazine dam catchment, a data-scarce catchment. First, 
precipitation and temperature data from the CFSR-NCEP reanalysis 
were compared with those observed on a monthly timescale, revealing 
poor agreement between the two sources. Precipitation and potential 
evaporation were bias corrected. The models were calibrated over three 
sub-periods with contrasting precipitation conditions to assess the 
transferability of its parameters under different climatic conditions. The 
performance of the SWAT and GR4J models in simulating monthly 
discharge was then assessed using daily CFSR-NCEP data, with and 
without bias correction.

Without bias correction, the two models reproduced the monthly 
runoff trends (base and peak) well, although to different extents. The 
SWAT model performed unsatisfactorily, with an NSE of less than 
0.60 over the three calibration periods, mainly due to biases in the 
meteorological data and the low quality of the spatial data. In 
contrast, the GR4J model performed well, with an average NSE of 
0.89 over all calibration and validation periods, demonstrating its 
ability to assimilate low quality input data. However, with bias 
correction, both models improved their performance: SWAT 
achieved an NSE of more than 0.78, while GR4J achieved an NSE of 
more than 0.91 over all calibration and validation periods. On the 
other hand, this study showed that the performance of the two 
models remained stable between the different calibration 
configurations, indicating that their parameters are transferable over 
time, even under varying climatic conditions.

The study concludes that the GR4J model is the most robust for data-
poor catchments, thanks to its ability to handle uncertainties in input 
data such as precipitation and temperature. CFSR-NCEP data are a 
promising source for feeding hydrological models in these regions. 
However, the biases inherent in these data need to be  corrected, 
particularly before use in semi-distributed models such as the 
SWAT model.

This study provides valuable information for researchers and 
practitioners working on hydrological modelling in data-limited 
contexts. However, its conclusions are mainly applicable to basins with 
similar morphological characteristics and climatic conditions. Further 
research on other basin types and with different spatial and climatic data 
is recommended.
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