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Groundwater and surface water are highly interconnected systems, with the 
connections varying spatially, temporally and by catchment. Representing this 
connectivity is of key importance for future effective water management, and 
to address the global decline of surface water flows. Previous studies have used 
baseflow separation methods to quantify the groundwater contribution to surface 
flow volumes. However, few studies have analysed the different dynamics of deep 
and shallower groundwater contributions to surface water flow rates across the 
flow regime and attempted to quantify this changing contribution. We analysed 
the distribution of fast (near-surface event flow), medium (seasonal shallow 
groundwater discharge) and slow (deeper groundwater) pathways into surface 
water flows for a case study involving 58 river water quality and flow monitoring 
sites across New  Zealand. This involved a novel application of the chemistry 
assisted baseflow separation method (BACH). We found that shallow and deep 
groundwater pathways were the most significant contributor (>80% of the daily 
flow rate) to river flow at most sites at the 75th flow percentile, and for many sites 
even at the 95th flow percentile. These findings emphasise the need to better 
integrate groundwater into surface water management strategies, particularly as 
droughts intensify, floods become more frequent and severe, and legacy nutrient 
input increases under changing climate and land-use.
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1 Introduction

Groundwater has long been known to be a significant contributor to river flows (Beck 
et  al., 2013). Despite this, the dynamics and disposition of surface- and ground-water 
interactions remain poorly understood. This knowledge gap has been linked to decreasing 
river flow trends globally (Scanlon et al., 2012, 2023; Seo et al., 2018a,b; Konikow and Leake, 
2014; Taylor et al., 2013; Das et al., 2021; Gorelick and Zheng, 2015), as declining river flows 
are attributed to increased abstractions from inter-connected groundwater systems (de Graaf 
et  al., 2019). These declining flows are impacting the chemistry and ecology of aquatic 
ecosystems (Rosenberry et al., 2008), the ability to assimilate nutrient and pollutant fluxes into 
streams and rivers (we refer to both as rivers in this paper), and the provision of drinking water 
(Fan et al., 2013; Bosch et al., 2017; Singh et al., 2019). A clear understanding of the importance 
of the groundwater contribution to surface waters is therefore critical for effective catchment 
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management. This paper advances our understanding of the 
interconnections of the surface- and ground-water components in the 
hydrological system (Scanlon et al., 2023; Seo et al., 2018b).

Baseflow separation methods have long been used to provide a 
rapid assessment of groundwater contributions to stream flow. These 
methods conceptualise river flow hydrographs as a combination of a 
lumped groundwater or “baseflow” estimate and precipitation runoff 
or “quick flow” (Beck et  al., 2013). The lumped groundwater 
“baseflow” component may be  variously comprised of regional 
groundwater flow, or more shallow near river sources such as adjacent 
perched aquifers, bank storage, the hyporheic zone, and braid plain 
aquifers (Wilson et al., 2024), and interflow from the unsaturated zone 
(Howcroft et  al., 2019). Baseflows are represented implicitly and 
estimated through minimising model-to-measurement misfit rather 
than being based on hydrogeological properties and the simulation of 
hydrological processes; hence they cannot simulate spatially explicit 
causal relationships within the upriver catchment.

The key advantage of baseflow separation methods is that they are 
simple to use and can be applied even where catchment data is limited. 
However, this simplicity comes with compromises as different 
baseflow separation methods adopt alternative simple 
conceptualisations of groundwater inflows, each of which can 
introduce different biases (e.g., Yang et  al., 2021), as occurs with 
simple representations of complex systems (Doherty and Christensen, 
2011), leading to Cartwright (2022) observing that estimating the 
groundwater inflow to streams is not straightforward.

Typically, hydrograph baseflow separation methods are based on 
an analytical model (Martinez and Gupta, 2010) or are defined using 
filtering or smoothing methods (Lott and Stewart, 2016). Digital filters 
are also used (Eckhardt, 2005), where precipitation runoff and 
groundwater contributions are estimated based on decomposing the 
time series, into a series of responses with different frequencies and 
are similar to Fourier transforms and wavelet filtering methods. 
Typically, these baseflow separation techniques are based on a 
conceptualisation of baseflow having a longer wavelength and lower 
amplitude variation, while quick flow is characterised by shorter 
wavelengths. In New Zealand, Singh et al. (2019) applied the digital 
filter method at a national level to separate river flow hydrographs into 
two components, i.e., precipitation (quick flow) and groundwater 
(baseflow); note that application of this method does not involve 
ground-truthing. Traditionally, a stream baseflow index, defined as the 
ratio of the baseflow volume to total flow volume over a specified time 
period, is used to characterise this groundwater contribution, and is 
estimated using baseflow separation methods. These methods are 
applied to a single river location at a time and are used to reflect the 
upriver catchment’s average hydrological process behaviour.

End-member mixing analysis (EMMA) (Adams et al., 2009; Klaus 
and McDonnell, 2013) is an alternative mass balance approach to 
baseflow separation, which makes use of additional groundwater 
chemistry information to identify the groundwater components of river 
flow, and using river chemistry data to anchor the baseflow estimation. 
It uses the assumption that waters flowing through specific 
compartments of a combined surface and subsurface watershed have 
unique chemical signatures (e.g., Bugaets et al., 2023). These signatures 
reflect the average water chemistry sources in the capture zone above the 
measurement point. While attractive conceptually, this method is 
challenged by the difficulty of adequately characterising the source water 
chemistry, which typically requires high resolution sampling, and is 

generally accompanied by considerable uncertainty (Barthold et al., 
2011; Delsman et al., 2013; Woodward et al., 2017). Cartwright (2022) 
also notes that the long-term variability and spatial heterogeneity of 
groundwater inflows also severely complicate efforts to calibrate baseflow 
separation techniques using such chemical mass balance methods.

A variant to both EMMA and hydrograph separation methods, is 
the Bayesian chemistry assisted hydrograph separation method, 
“BACH” (Woodward and Stenger, 2018; Woodward and Stenger, 2020; 
Stenger et al., 2024). BACH combines a recursive digital filter (Su 
et al., 2016) and EMMA in a Bayesian Framework using chemical or 
tracer data to inform and reduce the uncertainty of the separated 
hydrograph components. This combination of the strengths of both 
EMMA and digital filter methods allows the BACH method to harness 
more information than either EMMA or digital filters alone, while 
retaining the minimal data requirements and application simplicity of 
recursive digital filter methods.

The BACH method relies on river flows conceptualised as the 
product of time varying combinations of slow, medium and fast flow 
paths, which are attributed to deeper groundwater, seasonal shallow 
groundwater discharge, and near-surface event flow, respectively. This 
results in BACH being able to provide insights into possible shallow 
and deeper groundwater contributions to low and high stream flows 
very quickly, using river flow and chemical concentration data. 
Further, while EMMA typically requires conservative chemistry 
analytes, BACH is freed from this requirement, because any 
attenuation in groundwater, the hyporheic zone or instream is 
implicitly included in the concentrations assigned to each flow path 
(Woodward et al., 2017). Similarly, depth, area, storage and other 
hydraulic properties relevant to flow path delineation when using 
distributed numerical models, are implicitly included in the flow path 
filter parameters when using BACH. To date, studies using BACH 
have focussed on identifying nutrient load pathways into surface 
water ways (Woodward and Stenger, 2018; Woodward and Stenger, 
2020; Stenger et al., 2024; and most recently a companion paper to 
this study in Yang et al., 2025).

In this study we  use the advantages of BACH, to present an 
ambitious application of the BACH method that for the first time 
explores and quantifies the dynamics of changing slow, medium and 
fast flow path contributions to rivers across a national river monitoring 
network. This paper describes the application of the BACH method in 
a nationwide study of 58 river sites across New Zealand to quantify the 
dynamic contributions of fast (near-surface event flow), medium 
(seasonal shallow groundwater discharge) and slow (deeper 
groundwater) pathways into surface water daily flows. The results of this 
analysis are discussed followed by some conclusions on the important 
insights the application of the method reveals. These results provide 
important information for the application of integrated land and water 
management policy by contributing to a broader understanding of the 
magnitude and dynamics of the combination of near-surface and 
groundwater flow paths to a stream flow varying over time.

2 Methodology

2.1 General

The BACH method, developed by Woodward and Stenger (2018, 
2020), assumes that a river flow hydrograph can be separated into fast, 
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medium and slow flow components, whose relative contributions can 
be  inferred from the temporally varying observations of water 
chemistry. These flow components are conceptually associated with 
distinct chemical end members, which have typically been 
differentiated using two routinely measured water analytes acting as 
tracers (e.g., nitrogen and phosphorous).

The method as applied to date has generally assumed fast flow 
components represent event-response, surface or near-surface flow, 
medium flow components represent seasonal shallow local 
groundwater flow, and slow flow components represent a persistent 
deeper regional groundwater pathway (Figure  1). Similar 
conceptualisations of these flow paths has been established in other 
catchment studies (e.g., Hesser et al., 2010; Broda et al., 2011; O’Brien 
et al., 2013; Aubert et al., 2013), and we have adopted the same flow 
path conceptualisation in this study. Each pathway implicitly connects 
land to the surface water monitoring site as depicted in Figure 1, 
however the method is not able to identify the spatial disposition of 
these pathways.

The BACH method uses a three-component recursive digital filter 
(RDF) with chemical mixing models to separate the hydrograph into 
the fast, medium and slow flow components. Each flow component is 
linked to the physical near surface, shallow groundwater and deep 
groundwater pathways by assuming they have characteristic 
concentrations of each analyte, that can be considered time-invariant 
(Figure  2). The BACH analysis outputs comprise simulated river 
concentration time-series for: the mixed nutrient components that are 
used during history matching, the separate nutrient fluxes from the 
fast, medium, and slow flow components, and the fast, medium and 
slow contributing flows. Though not the focus of this paper, BACH 
outputs also include nutrient flux volumes as discussed in Yang 
et al. (2025).

The BACH signal filtering method conceptually models a flow 
response to long term recharge and rainfall events, with the 
incorporation of water chemistry information. The outcome is a 

hydrograph separation that better reflects slow to fast rates of 
movement through the catchment system by inferring dominant flow 
path velocities.

The BACH model is described fully in Woodward and Stenger 
(2018, 2020), but we give a brief summary here for clarity. The method 
uses two RDFs, that separate the river flow ( )ny  on day n, first, into fast 
flow ( )nf  and remaining flow ( )nr  (Equation 1), and then into medium 
flow ( )nm  and slow flow components ( )ns  (Equation 2):

 = −n n nf y r  (1)

 = − ,n n nm r s  (2)

where nr  is estimated by the first RDF:

 ( )( )−= ∗ + ∗, 1, 1 0,min ,n n m n m nr y a r b y  (3)

And the second RDF, ns  is estimated by

 ( )( )−= ∗ + ∗, 1, 1 0,min .n n s n s ns r a s b r  (4)

Here, 1,ma , 0,mb , 1,sa , and 0,sb  are filter parameters in the interval 
[0,1], with the constraint that a1/(1 − b0) ≤ 1, this constraint is also 
used in Eckhardt (2005) and Su et al. (2016). These filter parameters 
are estimated along with component concentration parameters (for 
each analyte; cf, cm, and cs for fast, medium, and slow component 
analyte concentrations, respectively). The mixing model (Equation 5) 
predicts analyte concentration in the river (on day n) as:

 
.n n n f n m n sy c f c m c s c∗ = ∗ + ∗ + ∗
 (5)

FIGURE 1

Schematic depiction of fast, medium and slow flow paths contributing to a river flow, modified from Stenger (2022). Surface runoff, interflow and 
near-surface flow contribute to fast flows into the river. Shallow groundwater provides medium flow contributions into the river. Deeper groundwater 
provides a slower contribution to flows.
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In the current study, fc , mc , and sc  are assumed to vary nonlinearly 
through time according to the following harmonic form, as described 
in Equation 6 (Woodward and Stenger, 2020),

 ( ) ( ) ( )π π= ∗ − + ∗ + ∗ + ∗0 1 1 21 sin sin 2tc e x e x f x f x  (6)

where 0e  is the initial concentration, 1e  is the final concentration, 
x  is the time scaled between 0 and 1, and 1f  and 2f  are harmonic 
coefficients to be inferred.

If using two analytes, as in this study where we used nitrate-nitrite 
nitrogen (NNN) and total phosphorus (TP), a total of 28 parameters 
are estimated when applying the BACH model, i.e., the four filter 
parameters in Equations 3, 4, and 12 concentration parameters for 
each analyte ( 0e , 1e , 1f , and 2f  for each flow path component).

2.2 Model convergence, goodness of fit 
and uncertainty quantification

History matching of the model parameters was achieved using the 
Bayesian Markov Chain Monte Carlo (MCMC) methodology, this was 
implemented using the Stan algorithm (Stan Development Team, 
2024). Goodness of fit metrics, as described below, are used to evaluate 
the credibility of the model parameterisation.

Detail on the specific computation algorithm and its 
implementation in BACH can be found in Woodward and Stenger 
(2018, 2020), and references therein. In our study, we employed the 
Gelman and Rubin (1992) statistic, often known as the R-hat statistic, 
to determine convergence of the MCMC algorithm. It is a metric for 
analysing the variability of samples collected from multiple chains of 
a Bayesian sampling method. It is defined as the sample size-adjusted 
ratio of between-chain variance to within-chain variance (Equation 7).

 
−

≈
−

between chain variance .
within chain variance

R
 

(7)

where between-chain variance is the variance of the parameters 
across all Markov chains, within-chain variance is the average of the 
variance in the parameters for each chain.

An R-hat near to one, suggests convergence to a stable posterior 
distribution. Values noticeably higher than 1 indicate that more 
iterations are required for improved convergence. In our study 
we aimed for a Gelman-Rubin statistic of 1.1, as suggested by Gelman 
et al. (2004).

We also used a goodness-of-fit statistic to evaluate model to 
measurement fit. In this investigation, we  used daily flow and 
available coincident river NNN and TP data to calibrate our BACH 
models (refer to Supplementary Table S4), initially assuming that the 
standard uncertainty for each analyte was 0.02 mg L−1 for TP and 
0.2 mg L−1 for NNN as employed by Woodward and Stenger (2018).

The root mean squared error (RMSE) is the most used goodness-
of-fit statistic in BACH: RMSE measures the average squared difference 
between observed and predicted values, providing a sense of the model’s 
accuracy in the original units of the data to assess the goodness-of-fit of 
model findings and to provide a visual comparison of simulated and 
modelled data. A generalised form of the RMSE (GRMSE, after 
Woodward and Stenger, 2018) is presented below. This provides a measure 
of reliability of the estimated “endmember” concentrations for fast, 
medium and slow flows components, and the ratio of flow components 
from low to high flows based on how well they provide outputs that can 
reproduce the observed phosphorous and nitrate concentrations:

 
( ) ( )σ

=

 = − − ∑ 2

1

1GRMSE ˆ2 0
nD

Dj j j
j

l l D D
nD

 
(8)

where, ˆ jD  is value of the jth observation, with a total number of 
Dn ; jD  is the corresponding model prediction value; ( )−ˆ j jl D D  is the 

log-likelihood of residual ( )−ˆ j jD D , while ( )0l  is the log-likelihood 
of ( )−ˆ j jD D  being zero; σ

jD  is the standard deviation of 
the observation.

FIGURE 2

Illustration of BACH model inputs, their concurrent processing by the Bayesian parameter inference scheme, and resulting outputs. Modified from 
Stenger et al. (2024).
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The initial 3 years of the time series are used as warm-up data, and 
hence goodness of fit criteria are only applied after that time.

The goodness of fit metrics do not necessarily provide a reliable 
indication of the uncertainty of the model predictions of fast, medium 
and slow flow components (Kitlasten et al., 2022). Instead, the MCMC 
adopted with BACH is used to quantify the uncertainty of the 
simulated outputs due to parameter non-uniqueness, model 
simplification, observation error and an assumed prior 
parameter distribution.

2.3 Groundwater contributions to river 
flow dynamics

Previous studies have used the BACH method to explore the fast, 
medium and slow flow path contributions to estimate nutrient loads 
to rivers. In this study we instead explore groundwater contributions 
to flow rates. Fast, medium and slow contributions to river flows can 
be analysed for any hydrograph, and the patterns of these pathways in 
river dynamics can be  explored across the cumulative flow 
distribution. We discuss the contribution of different flow pathways to 
river flow rates, with pathway contributions normalised as percentages 
of the measured total flow at seven selected flow exceedance thresholds 
or “percentiles” (i.e., 1st, 5th, 25th, 50th, 75th, 95th, 99th) at each of 
the selected river monitoring sites.

To explore potential relationships between the BACH separated flow 
ratios and a representative site characteristic we utilised the flashiness 
index (FI) as used in Woodward and Stenger (2018) (Table 1). The FI 
(Equation 9) is a dimentionless measure of the river flow variability at 
short timescales. It is computed by dividing the pathlength of flow 
oscillations for that time period (i.e., the sum of the absolute values of 
daily variations in mean daily flow) by the total discharge for a given time 
period (Baker et al., 2004; Equation 8). A higher FI number implies a 
river in which the flow varies quickly and is often associated with 
reduced baseflow contributions (Deelstra and Iital, 2008).

 

−
=

=

−

=
∑

∑

1
1

1

FI

n

i i
i

n

i
i

q q

q
 

(9)

where FI is the Flashiness Index, −
=

−∑ 1
1

n

i i
i

q q  is the sum of the 

absolute values of daily changes in mean daily flow (pathlength of flow 

oscillations), 
=
∑

1

n

i
i

q  is the total of the mean daily flows.

2.4 New Zealand case study

New Zealand river catchments occur across multiple geologies, 
soils, topographies, land uses, and rainfalls, resulting in multiple 
catchment types. Many of these catchments have headwaters in hilly 
or mountainous terrain, and outflows at the coast, and are associated 
with mapped alluvial aquifers. In most of these catchments 
groundwater flow is known to interact substantially with the surface 
water flow systems (Yang et al., 2025; Singh et al., 2019).

The data were supplied by the New Zealand Institute of Water and 
Atmospheric (NIWA) National River Water Quality Network 

(NRWQN, 2024; Ballantine and Davies-Colley, 2014). Surface water 
flow and water quality time-series data suitable for BACH analysis 
were available for 58 sites across our New Zealand case study (Figure 3 
and Table  1). Further site details can be  found in 
Supplementary Table S4.

Flow time series data was available at daily intervals at all sites, but 
with some data gaps that were filled using linear interpolation 
methods. Generally, the dataset provided monthly measurements of 
water quality analytes, collected by a combination of automated and 
grab samples. The time series of flow and water quality generally 
spanned more than 20 years (e.g., Figure 4).

We elected to use the combination of flow, TP and NNN data for 
the BACH analysis, as these analytes were most widely available in 
NRWQN (2024). Variations in the river TP and NNN concentrations 
at varying flow rates were used to identify distinct water quality 
signatures associated with slow, medium, and fast surface water flow 
components. This enabled us to explore the deeper and shallower 
groundwater pathway contributions to river flow across the full 
hydrograph range for multiple sites in New Zealand.

The reliability of flow-concentration relationships, and therefore 
the performance of the BACH method can be  compromised by 
artificial modulation of the flow response to catchment recharge 
events. This includes the presence of dams, controlled flows, and 
lakes—the presence of these features is inconsistent with the 
governing assumptions of the applied methodology. The flows at 
monitoring site AX1 on the Clutha River, for example, are impacted 
by the dam on Lake Hawea (as well as by buffering from the lake 
itself), while flows at site AX2 on the Kawarau River are likely 
impacted by the buffering effect of Lake Wakatipu and the control 
gates that influence lake outflow, and at Clutha River site AX4 by the 
Roxburgh Dam. The sequence of hydroelectric dams on the Waitaki 
River strongly modulates flow at site TK4, as well as at the downriver, 
non-convergent site TK6. Sites RO6 and RO1 are proximally 
downriver of the outflows of Lake Taupō and Lake Tarawera, 
respectively, and the flow-concentration relationship is likely to 
be  impacted by buffering of the lakes. Site TK3 on the Makaroro 
River, had a large number of gaps in the site flow record, and Site RO1 
had very low nutrient concentration, compromising the ability to use 
these data time series. These eight sites were removed from the 
analysis (see grey shading in Table 1), leaving a total of 50 sites used 
for this analysis.

Observation weights assigned in the BACH analysis were initially 
based on the assumption of a uniform standard uncertainty across all 
sites (0.2 mg L−1 and 0.02 mg L−1 for TP and NNN, respectively), with 
a Gaussian distribution assumed for observation errors. These weights 
essentially serve as a fitting tolerance, reflecting the anticipated 
combined error from measurement error and model structure and 
parameterisation error (Woodward and Stenger, 2018). For the sites 
with very low concentrations, this error term was subsequently 
reduced, to ensure the signal was not obscured by underfitting (refer 
to Section 3.1).

3 Results and discussion

3.1 Data summary

A range of catchments with various dimensions, topography, 
hydrogeology and land use patterns are represented across the 
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TABLE 1 Statistics of count, mean, and standard deviation for observed annual mean flow, TP, NNN, and FI for sites assessed in this study.

Data 
metric

River name and site Flow (m3 s−1) NNN (mg m−3) TP (mg m−3) FI

n Mean Std. n Mean Std. n Mean Std.

AK1 hoteo_@_gubbs 7,993 5.7 11.7 263 293 233 262 60 35.2 0.52

AK2 rangitopuni_@_walkers 7,993 1.4 3.3 263 185 138.6 261 66 41.1 0.66

AX1 clutha_@_luggate_br 8,008 264.8 98.1 259 32 11.5 258 4 16.4 0.06

AX2 kawarau_@_chards_rd 7,980 202.0 90.6 258 24 6.6 255 35 109.9 0.05

AX3 shotover_@_bowens_peak 8,008 36.0 26.3 261 17.7 9.8 261 97 293.6 0.20

AX4 clutha_@_millers_flat 8,007 521.5 198.0 260 35 18.4 257 9 15.8 0.07

CH1 hurunui_@_mandamus 7,994 51.1 43.0 258 18 22.4 261 36 235.7 0.17

CH2 hurunui_@_sh1_br 7,995 71.8 69.1 263 365 182.5 262 44 166.1 0.17

CH3* waimakariri_@_gorge 7,994 125.3 101.7 262 79 36.2 262 48 177.6 0.24

CH4* waimakariri_@_old_highway_bge 7,995 111.0 102.6 256 148 119.3 260 63 235.8 0.27

DN2 sutton_stm_@_sh87 7,210 1.2 2.6 237 24 66.3 237 22 19.4 0.40

DN4 clutha_@_balclutha 8,009 567.7 218.6 262 94 104.5 262 14 17.1 0.08

DN5 mataura_@_seaward_downs 8,008 87.8 85.3 262 1,155 352.1 262 54 57.8 0.21

DN9 waiau_@_tuatapere 8,009 132.2 148.9 261 246 125.9 261 18 29.9 0.20

GS1 waipaoa_@_kanakanaia_c/w 8,001 30.5 62.0 262 163 172.6 262 157 324.9 0.42

GS2 waikohu_@_no_1_br 8,001 0.8 1.5 262 216 180.1 262 34 59.1 0.39

GS3* motu_@_waitangirua 8,000 11.8 17.8 261 177 164.8 260 42 55.0 0.40

GS4 motu_@_houpoto 8,001 85.5 113.9 262 61 53.6 262 59 119.8 0.40

GY1 buller_@_te_kuha 8,001 411.1 440.9 262 72 45.8 260 20 42.0 0.37

GY2 grey_@_dobson 8,002 348.0 321.5 262 138 72.1 259 21 50.7 0.36

GY3 grey_@_waipuna 8,002 55.2 62.0 262 44 41.2 262 16 68.7 0.45

GY4 haast_@_roaring_billy 7,971 187.4 220.3 260 32 11.0 260 27 97.9 0.47

HM1 waipa_@_otewa 8,008 11.8 12.6 263 276 159.1 263 37 63.4 0.25

HM2 waipa_@_sh23_br_whatawhata 8,009 82.6 80.5 263 764 388.9 262 80 42.1 0.16

HM6 ohinemuri_@_karangahake 8,002 11.5 18.4 262 441 267.5 262 16 16.0 0.38

HV1* Makaroro_@_Burnt_Bridge 10,179 6.5 9.3 334 66 59 332 34 93 0.27

HV2 Tukituki_@_Red_Bridge 11,419 42,0 93.2 374 637 508 373 54 141 0.42

HV3* Ngaruroro_@_Chesterhope 11,418 40.8 70.6 371 96 94 370 42 95 0.34

HV4 Ngaruroro_@_Kuripapango 11,417 16.9 20.3 374 11 11 371 7 20 0.31

NN1* motueka_@_woodstock 8,001 51.6 61.6 262 205 149.1 262 15 32.7 0.36

NN2* motueka_@_gorge 8,001 7.0 10.3 262 26 23.0 261 6 17.8 0.51

NN3* wairau_@_dip_flat 8,000 26.5 22.8 260 14 12.5 260 16 58.0 0.21

NN5* buller_@_longford 8,000 69.5 53.0 262 35 26.0 262 12 54.3 0.19

RO1 tarawera_@_lake_outlet_recorder 8,000 6.9 1.4 260 1 1.7 260 8 2.2 0.02

RO2 tarawera_@_awakaponga 8,001 28.9 6.4 263 386 45.5 263 110 22.8 0.03

RO3 rangitaiki_@_murupara 8,001 20.1 7.2 263 804 241.4 262 31 7.5 0.03

RO4 whirinaki_@_galatea 8,001 14.6 12.3 263 111 81.6 263 39 26.4 0.13

RO5 rangitaiki_@_te_teko 8,001 66.2 33.1 262 404 158.0 261 38 11.1 0.13

RO6 waikato_@_reids_farm 8,000 150.9 62.2 261 0.9 1.0 261 5 1.6 0.20

TK1 opihi_@_waipopo 8,001 17.9 40.3 263 572 388.2 263 13 29.4 0.22

TK2 opihi_@_rockwood 8,001 4.8 7.9 263 1,121 663.2 263 24 79.9 0.30

TK3* Opuha_@_Skipton 8,001 8.2 6.2 263 278 157.7 261 14 17.9 0.07

TK4 waitaki_@_kurow 8,002 348.9 121.5 263 7 8.2 262 8 55.4 0.12

(Continued)
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monitored sites. Summary statistics for the flow, NNN, and TP 
datasets used in the analysis, for each site, are presented in Table 1. 
Across these sites the mean flows and concentrations vary widely. For 
example, the mean flow across all sites ranges from a minimum of 
0.8 m3 s−1 (site GS2) up to 567.7 m3 s−1 (site DN4), the mean NNN 
concentration varies from 0.9 (RO6) to 1,155 mg m−3 (site DN5) and 
the mean TP concentrations varies from 4 (site AX1) and 157 mg m−3 
(site GS1).

At a number of sites with low nutrient concentrations, some 
adjustment of the observation weights was required to enhance the signal 
to noise ratio, and to facilitate the extraction of the flow partitioning 
information used by the BACH model (see Section 3.2). These sites are 
denoted by an “*” symbol in Table 1, if TP or NNN was a concern. 
Weights adjustment generally involved an iterative increase in 
observation weight (i.e., seeking a tighter fit to the data) for sites with low 
TP and NNN concentrations. However, in a few cases the weights were 
decreased to avoid fitting to noise. The final weights and parameters 
applied to the data at each site are listed in Supplementary Table S1.

3.2 History matching

History matching with the BACH model was able to establish fast, 
medium and slow flow components of river flow, based on acceptably 
good fits to the measured nutrient concentrations for all 50 sites used 
in the analysis. Figures 4, 5 depict the model to measurement fits to 
the observed instream concentration values (depicting the AK1 and 
WA4 sites). These 50 sites all converged to an acceptable level as 
defined by the Gelman R statistic, with the R-hat values all within the 
acceptable  1–1.1 range. The performance of the model is slightly 
challenged however in reproducing high observed TP concentrations, 
while the model was able to fit intermediate and low TP concentrations 
reasonably well. This reflects a weakness of the BACH model, which 

does not represent the non-linear increases in TP entering near-
surface pathways during storm events as particulates.

The BACH method relies on the presence of a clear (and simple) 
relationship between river flow and analyte concentrations to 
effectively and reliably separate flow components. At the same time 
BACH allows the hysteresis between the flow components to 
be represented, allowing the mix of flow path components for any flow 
rate to vary on the rising and falling limb of a hydrograph. At other 
sites the relationship between these variables appears even more 
complex. Despite a converging solution, it was sometimes challenging 
to reproduce (relatively infrequent) high TP concentrations, 
suggesting that there is a stream flow and phosphorous loading 
behaviour that the BACH model conceptualisation is unable to 
represent as depicted in Figures 4, 5 for sites AK1 and WA4, with 
mean flows of 5.7 m3 s−1 and 206.8 m3 s−1, respectively. At other sites 
it was difficult to achieve an acceptable converged solution without 
careful attention to observation weights, and this reflects the lack of a 
unique parameter solution potentially caused by similar flow path 
tracer concentrations. Application of BACH at these sites is 
presumably challenged by the absence of strong relationship between 
river flow and analyte concentrations and potentially contamination 
of the relationships by erroneous data points.

The fits to the NNN observations in Figure 4 indicate some bias 
in the simulated concentration values, with high NNN concentrations 
biased low. Woodward and Stenger (2020) suggested that similar 
biased trends could be  related to structural deficiency within the 
model inhibiting its ability to represent flashy system behaviour and 
its relationship to Total Nitrogen concentration.

Many sites demonstrate strong seasonal signal in NNN 
concentration data. For example, in the case of AK1 and WA4 
(Figure 4) NNN concentrations peak in winter. Typically, where such 
seasonal variations are present the BACH model is able to reproduce 
them. However, there is still variation in the fit of the NNN predictions, 

TABLE 1 (Continued)

Data 
metric

River name and site Flow (m3 s−1) NNN (mg m−3) TP (mg m−3) FI

n Mean Std. n Mean Std. n Mean Std.

TK5 hakataramea_@_above_mhbr 8,002 5.1 11.3 262 50 131.9 260 9 26.3 0.26

TK6 waitaki_@_sh1_br 8,001 356.8 124.1 263 67 71.3 263 11 16.0 0.11

TU1* whanganui_@_te_maire 8,002 70.0 69.9 259 263 200.9 259 42 91.1 0.25

TU2 tongariro_@_turangi 8,002 30.7 21.7 258 40 30.1 258 22 21.4 0.16

WA1 waitara_@_bertrand_rd 8,001 54.0 75.6 262 323 196.5 262 93 151.5 0.45

WA2 manganui_@_sh3 8,001 1.6 2.3 262 114 89.6 262 32 190.5 0.61

WA4 whanganui_@_paetawa 8,002 206.8 247.9 259 218 185.6 258 81 126.9 0.32

WA5* rangitikei_@_mangaweka 8,001 63.2 63.1 261 85 84.1 260 53 181.0 0.27

WA7 manawatu_@_weber_rd 7,988 13.5 28.8 263 470 338.1 263 100 299.4 0.46

WH1 waipapa_@_forest_ranger 7,995 4.8 10.9 263 24 27.5 263 13 21.5 0.62

WH2 waitangi_@_wakelins 7,993 7.9 14.5 263 238 188.6 262 30.0 29.6 0.46

WH3 mangakahia_@_titoki_br 7,978 23.3 42.0 263 120 124.2 263 34 38.4 0.49

WH4 wairua_@_purua 8,009 17.5 28.8 263 391 339.2 263 75 53.9 0.36

WN2 hutt_@_kaitoke 8,008 8.0 11.1 263 34 17.5 263 9 29.0 0.60

WN5* ruamahanga_@_mt_bruce 8,009 9.6 13.2 263 36 23.9 263 11 31.6 0.69

Grey background are sites where the BACH method could not be reliably applied.

https://doi.org/10.3389/frwa.2025.1584947
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Moore et al. 10.3389/frwa.2025.1584947

Frontiers in Water 08 frontiersin.org

FIGURE 4

Simulated and observed TP and NNN concentrations and flows at site; (a) AK1 and (b) WA4. The model prediction for TP and NNN are displayed in red 
for the median model prediction, and grey bands include the 95% credible interval (which reflects parameter uncertainty).

with greater misfit occurring for more extreme observed values (e.g., 
near zero concentrations).

TP observations are not dominated by seasonal processes to the 
same extent. The modelled TP time series typically has greater 
variability, with a higher frequency and amplitude of variations, than 
observations. Peak observed concentrations, especially for TP, are 
often not well reproduced by the BACH model. These model to 
observation misfits can be attributed to system dynamics that are not 
well represented by the underlying simplifying assumptions of the 
BACH model.

The magnitude of the prediction uncertainty varies from site to site. 
Generally, for most catchments the GRMSE was around or below the 
assumed standard deviation for each analyte (e.g., 0.02 mg/L for TP and 
0.2 mg/L for NNN, Supplementary Figure S1). The GRMSE for a 
number of sites is well below the assumed standard deviation (especially 
for NNN). This may be an indication that the model is over-fitting. 
However, it is noted that the sites with particularly low GRMSE 
generally have low concentrations, and hence a lower GRMSE 
is appropriate.

We note that despite some poor fits to the concentration time 
series, Stenger et al. (2024) observed that in general the relative 
pathway flow contributions had small errors. Our study is 
consistent with this, with all sites estimating the proportion of 
flow path contributions to stream flow with a small uncertainty 
quantified from the MCMC process (e.g., Figure 5). Slow (deep 
groundwater) flow path contributions typically have the 
narrowest confidence interval, with medium (shallow 
groundwater) and fast (near surface) flow contributions having 
slightly larger confidence intervals, indicating greater correlation 
between the medium and fast flow paths.

As mentioned above, field validation of chemistry assisted 
baseflow separation techniques using such chemical mass balance 
methods are challenged by long-term variability and spatial 
heterogeneity of groundwater inflows. However, two of the study 

FIGURE 3

Location of the 58 New Zealand River Water Quality Network 
monitoring sites used across the New Zealand case study.
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catchments (HM6 and HV2) have relatively hydrogeologically simple 
catchment flow systems with some long-term groundwater nitrate 
concentration data (Moreau et al., 2025). We compared stream NNN 
concentrations for these sites with the groundwater nitrate 
concentrations in the surrounding catchment; we focussed only on 
measured nitrate concentrations, as in groundwater NNN is almost 
solely comprised of nitrate. Assuming a simplifying assumption of a 
medium and slow flow path separation depth of 80 m and 90 m below 
ground surface in the HM6 and HV2 stream catchments respectively, 
a reasonable correspondence between average groundwater measured 
concentrations and BACH flow-path concentration estimates was 

observed (refer to Supplementary Figure S2 and 
Supplementary Table S5).

However, this result does not verify the BACH flow-path insights. 
If independent groundwater chemistry data was more widely available, 
within delineated groundwater capture zones above the stream 
monitoring site, such a field validation of the chemistry end members 
could be possible, as noted by Cartwright (2022). However, it is worth 
emphasising that the strength of baseflow separation methods, 
including BACH, lies in the insights it provides quickly with little data. 
These insights can be used to guide future more detailed sampling and 
modelling work.

FIGURE 5

Predicted flow contributions as a fraction of total flow volume over the 20 year period for sites AK1 and WA4. Boxplots indicate the 0.025, 0.25, 0.5, 
0.75, and 0.975 uncertainty quantiles for the inferred value.
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FIGURE 6

Separation of flow at (a) AK1 and (b) WA4 into slow, medium and fast flow components.

3.3 Contribution of groundwater to surface 
water flows

While previous studies using BACH analysis have focussed on 
nutrient loads entering rivers, also implicit in the BACH analyses is a 
characterisation of the surface- and ground-water interactions above 
the measurement site over time.

Figures 6a,b show the median of the posterior predicted timeseries 
for the flow pathway components for sites AK1 and WA4, respectively. 
From this figure it is clear that the variability of the slow flow 
component is significantly dampened relative to the total river flow, 
showing only low frequency signals. The medium flow component has 
a dampened frequency and amplitude of the total flow time series, 
while the fast flow component tends to have a frequency and 
amplitude commensurate with the total flow time series.

Also implied in Figure 6 is that groundwater input to rivers is 
irregular over short timescales (days to months). A similar observation 
was noted by Cartwright (2022), who comments that it is not clear 
whether baseflow as a whole varies smoothly, as is typically assumed 
in hydrograph baseflow separation techniques.

Due to the relative magnitude of the three flow components (e.g., 
slow flow, median flow and quick flow) it is often difficult to identify 
the changes in the dominant flow component during temporally 
varying river flow conditions. To address this, we explored the relative 
magnitude of each flow path component for the flow duration 
(exceedance) curve at all sites. When the three flow components are 
normalised by the total flow, the relative contributions of slow, 
medium and fast components across the flow range become more 
apparent. Figures 7a,b provides an example of these results for sites 
AK1 (Hoteo River, Auckland) and WA4 (Whanganui River) which 
correspond to the time series plots shown in Figure 6.

As expected, at all sites, at low river flows (highest probability of 
flow exceedance) the slow flow components dominate, reflecting 
deeper groundwater inflow. Fast flows (reflecting near surface flows) 

dominate at the highest river flows. The median flow component 
contributions (shallow groundwater) also increase with increasing 
total river flow.

Different flow paths are activated during the rising limb 
compared to the falling limb of a flow event and seasonal patterns, 
with a resulting hysteresis of flow pathway characteristics (Woodward 
and Stenger, 2020; Bowes et al., 2005). Therefore, hysteresis in the 
flow path contribution to total flow ratios will depend on the 
antecedent or postcedent interaction between multiple dynamic 
components (e.g., river stage, aquifer head). Because of this the 
simulated flow component ratios vary for specific flow percentiles 
(Woodward and Stenger, 2020). The changing flow paths that are 
activated in the rising and falling limbs of hydrographs results in 
scatter or variability in these contributions for any selected river flow 
percentile as seen in Figure 7.

Somewhat surprising, and an important motivation for writing 
this paper, is the indication of the continuing importance of 
groundwater (both slow and medium groundwater contributions) at 
reasonably high flow percentiles (Figure 7). Such results suggest that 
high river flows are as much a function of increased medium (shallow 
groundwater) discharges as fast (near surface) flows. For most sites 
groundwater components (combined slow and medium components) 
dominate, even to higher flow percentiles.

We focus on flow rates as our primary interest is understanding 
how groundwater flow paths contribute to river flows during low flow 
drought events and during flood events. However, we  note that 
previous studies using BACH have focussed on flow volumes and 
nutrient loads. The same flow path contributions depicted in Figure 7 
could also be normalised by total volume rather than flow rate, which 
would tend to compress the left-hand end and expand the right-hand 
end of the above Figure 7.

Figure  8 shows the case study distribution of the combined 
groundwater flow path proportions normalised by river flow, for the 
25th, 75th and 95th flow percentiles of the flow exceedance 
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distribution for all sites. These contributions are also summarised for 
all sites in Supplementary Tables S2, S3. The key result in Figures 8a,b 
is the predominance of groundwater contributions at low flows (at 
the 25th flow exceedance percentile), which continues at the 75th 
flow percentile for most sites in this study. This groundwater 
contribution dominance extends to many sites even at high flows (the 
95th flow percentile) as depicted in Figures 8c.

These results are supported by previous work which has also 
indicate that groundwater plays an important contribution to river 
baseflows. Using a baseflow a filtering method Singh et al. (2019) 
found that the baseflow index indicated that on average 53% of 
streamflow volume in New Zealand is sustained by groundwater and 
other delayed sources. Similarly, Rajanayaka et  al. (2020) and 
Ahiablame et al. (2013) found that groundwater contributed 77 and 

FIGURE 7

Flow and flow contributions summary at all flow percentiles at river sites: (a) AK1 (left), and (b) WA4 (right). Top panel is the river flow exceedance 
curve. Next is the ratio of total groundwater contribution to the measured river flow, then the ratio of slow (deep groundwater) contribution to 
measured river flow, the ratio of medium (shallow groundwater) contribution to measured river flow, and the bottom panel is the ratio of fast (near 
surface) flow path contribution to measured river flow.

FIGURE 8

Contribution of groundwater components (slow and medium flow paths) to: (a) the 25%, (b) 75%, and (c) 95% river flow percentile.
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FIGURE 9

Box plot grid displaying median estimates of total, slow, medium groundwater, and near surface flow path contributions at 5, 25, 50, 75, and 95 river 
flow exceedance percentiles. Each row represents total, slow, medium groundwater, and near surface flow contributions respectively, with columns 
showing the distribution of these flow path contribution estimates at specified flow exceedance percentiles.

60% of total stream volumes in the Waikato catchment (New Zealand) 
and sites in Indiana (USA), respectively. These studies pointed out the 
importance of these substantial groundwater contributions to total 
stream flow for adequate management of water resources and 
water quality.

By exploring the dynamics of the groundwater contribution to 
river flow, the results shown in this paper suggest that groundwater 
contributions to stream flow rates may be even higher, with values of 
groundwater contributions being commonly over 80% of river flow at 
the 75th flow percentile and many streams are still predominantly 
groundwater sourced at the 95th flow percentile.

Further, the analysis suggests that on average more than 40% of the 
50th flow percentile is contributed by older water in slow flow paths. 
While not reflected in current water management practice, these results 
are consistent with those of Tetzlaff et  al. (2014) who found that 

pre-event water (e.g., older than near surface flows) accounted for >80% 
of flow, even in large events. Similarly, Stewart et al. (2012), Morgenstern 
et al. (2010), and Stewart et al. (2010) have also identified old water 
contributions to river flow. The results are also consistent with Sklash 
and Farvolden (1979) who noted that groundwater discharge into rivers 
explains the temporal variations in river water chemistry which are not 
adequately accounted for by other theories.

Figure 9 provides a summary of the variation around the mean 
proportions for the 5th, 25th, 50th, 75th, and 95th percentiles for all 
sites. The figure shows a clear pattern of a decreasing proportion of 
slow flow paths and increasing proportion of medium flow paths as 
river flows increase at all sites. Also evident is the dominance of fast 
flows only at very high flows (>95% flow percentile), but with 
similarly high contributions also occurring from shallow groundwater 
flow paths. The variation in these mean flows across catchments is 
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high and can likely be attributed to differences in surface runoff, 
infiltration and flashiness.

Finally, we explored the relationship between the slow flow path 
contributions and the FI (combining data from Table  1 and 
Supplementary Table S2), and found that while these are generally 
negatively correlated, consistent with patterns already reported in the 
literature (Woodward and Stenger, 2018, 2020), the correlation was 
not statistically significant. We note that Singh et al. (2019) and Yang 
et al. (2025) explored the relationship of average baseflow volumes 
with geological and geomorphological characteristics of catchments 
to extend catchment baseflow estimates and river nutrient loads to 
unmonitored catchments. Preliminary analyses were undertaken in 
this study which also indicate correlations with these characteristics, 
albeit with each mappable variable not correlated at a statistically 
significant level. Correlations of combinations of these mappable 
variates with the flow components would be a useful extension to 
this work.

4 Conclusion

Our study demonstrates two key advantages of the BACH method; 
(i) it can be used to provide conceptual insights on the deep and 
shallow groundwater contribution to stream flow very quickly and at 
large scales, and (ii) it can provide these insights based on only sparse 
datasets. This offers distinct advantages over existing chemistry 
assisted (e.g., EMMA) and conventional two component baseflow 
separation methods. These insights can then be used to guide future 
field programmes and modelling work.

Applying the BACH methodology to sites within the active 
National Water Quality Network in New Zealand provided important 
information on the source of river inflows. A key finding of this study, 
and the primary motivation for writing this paper, is the persistent and 
significant contribution of groundwater to river flows (both deep slow 
and shallow groundwater flow paths) even at high flow percentiles.

The results obtained in this study indicate that for most sites 
analysed, groundwater components (combined slow and medium flow 
components) were found to dominate flows, even at higher flow 
percentiles. The analyses indicate that on average more than 40% of 
the 50th flow percentile is contributed by slow groundwater flow paths 
(considered to be analogous to deeper regional groundwater flow). 
The combination of slow flow paths (deep groundwater) and medium 
flow paths (shallower groundwater) contributes more than 80% of 
river flows at the 75% flow percentile. For many sites this high 
groundwater contribution persists even at the 95% flow percentile. 
Meanwhile high river flows can be a function of increased medium 
(shallow groundwater) discharges as much as fast (near surface) flows.

Our analysis also revealed that the slow and medium baseflow 
components of river flows vary significantly over short time scales 
(days to months). This calls into question the common assumption of 
a smoothly varying baseflow component. Understanding these 
dynamics is important for a broader understanding of how the 
quantity and quality of baseflow may vary over time, particularly as 
future climate patterns change.

This study demonstrated the use of BACH, as a powerful but 
simple alternative to current baseflow separation methods for 
examining the extent and dynamics of surface- and ground-water 

system connectedness across the river flow regime as measured at a 
single location. This extends the current application of the BACH 
method which to date has been used to identify whether the 
provenance of nutrient sources in rivers originates from slow, medium 
or fast flow components.

A cautious approach to these results is warranted. The model is 
very simple, in particular the estimated magnitude of the medium 
flow-shallow groundwater flow pathway can be questioned, as the 
MCMC analysis indicates that the separation between the near surface 
and medium pathway is often non-unique. However, other widely 
used baseflow separation techniques are also simplistic, and do not 
have the benefit of additional information from river chemistry time 
series. The questioning of these previous estimates of low-moderate 
groundwater contributions to stream flow we consider to be the major 
contribution of this study. Use of water age data (Stenger et al., 2024), 
and groundwater chemistry concentrations to corroborate these 
results would be  a useful extension to this study where age data 
becomes available.

We found that the BACH method works well wherever there is a 
strong relationship between flow and the TP and NNN water quality 
analytes, which exists in many developed catchments with intensive 
land use. Stenger et al. (2024) commented that other water quality 
analytes can be  used successfully in the BACH analysis and may 
be more suitable in undeveloped catchments were the relationships 
between TP, NNN and river flows do not hold. We  note that the 
analyses described in this paper were only applied to perennial rivers. 
Ephemeral rivers are estimated to be up to 51% of rivers globally 
(Messager et al., 2021), and it would be useful to test the performance 
of the BACH method in that context.

A potential extension of this study is to combine the BACH 
method with physically based numerical models (Ghattas and 
Willcox, 2021), with the goal of enhancing the efficiency and 
effectiveness of decision support modelling. In such an approach, the 
application of BACH would be to rapidly pre-process the information 
in hydrographs, so that only the relevant information from the time 
series needs to be  represented in the numerical model, allowing 
significant run time and model complexity savings. A further benefit 
could be that the groundwater flow path estimation is not obfuscated 
by other stresses (e.g., natural stresses such as the meteorology, climate 
change etc.), even if they have a larger contribution to the river flow 
regime. In this manner the flow pathway component separation is 
isolated, which may provide large benefits for reducing the uncertainty 
in future decision-critical predictions.

Understanding these very substantial groundwater contributions 
to total river flow is important for any management of water resources 
and water quality in New  Zealand and could support similar 
approaches in other countries. Further these results are somewhat 
counter to the general conceptualisation of the contributions that 
groundwater makes to river flows. This has important implications for 
management of freshwater to mitigate both drought and flood 
impacts, as well as for the management of river quality.
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