
TYPE Original Research

PUBLISHED 25 June 2025

DOI 10.3389/frwa.2025.1586916

OPEN ACCESS

EDITED BY

Valentina Marsili,

University of Ferrara, Italy

REVIEWED BY

Maria Almeida Silva,

Lusofona University, Portugal

Semaria Moga,

Hawassa University, Ethiopia

Burak Kizilöz,

Kocaeli University, Türkiye

*CORRESPONDENCE

Sridharakumar Narasimhan

sridharkrn@iitm.ac.in

RECEIVED 03 March 2025

ACCEPTED 28 May 2025

PUBLISHED 25 June 2025

CITATION

Jamadarkhani M, Raphael R, Ramprasad SHP,

Babu H and Narasimhan S (2025) IoT enabled

smart water metering using multi sensor data

and machine learning techniques.

Front. Water 7:1586916.

doi: 10.3389/frwa.2025.1586916

COPYRIGHT

© 2025 Jamadarkhani, Raphael, Ramprasad,

Babu and Narasimhan. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

IoT enabled smart water
metering using multi sensor data
and machine learning techniques

Mallikarjun Jamadarkhani1,2, Rohit Raphael3,

Sri Hari Prasath Ramprasad3, Harish Babu1 and

Sridharakumar Narasimhan2,3,4*

1Department of Data Science and Artificial Intelligence, Indian Institute of Technology Madras,

Chennai, India, 2Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of

Technology Madras, Chennai, India, 3Department of Chemical Engineering, Indian Institute of

Technology Madras, Chennai, India, 4Wadhwani School of Data Science and Artificial Intelligence,

Indian Institute of Technology Madras, Chennai, India

Water Distribution Systems (WDS) are critical infrastructure assets that deliver

water from source to consumers. The increasing scarcity of fresh water has

heightened the importance of monitoring these systems. Conventional smart

metering solutions require intrusive installation in pipelines, increasing costs

and complexity. Moreover, in intermittently operated networks, which are

common in India and other countries of the global south, the line is not

pressurized for considerable amounts of time, resulting in poor performance of

conventional water meters. Periodic maintenance of these meters can cause

similar disruptions. This study introduces a novel non-intrusive technique for

WDS monitoring by measuring water consumption, o�ering a cost-e�ective

alternative to existing smart meters. The system can be e�ectively built,

including installation, at a fraction (1/10th) of the cost of existing smart

meters. The proposed technique utilizes low-cost level sensors in OverHead

Tanks (OHTs), sumps or reservoirs, which are used in many cities, towns,

and villages in the global south to cope with the intermittent supply. Two

estimation approaches are explored: predefined flow rates from baseline

experiments and a dynamic method that adapts to variations in tank level.

The methodology is validated through controlled experiments and from actual

operating systems, demonstrating its e�ectiveness in handling fluctuations in

inflows and intermittent outlet flows. Results show that while predefined flow

rates o�er accuracy in stable conditions, dynamic estimation is more adaptable

to real-world variability. This approach enables scalable and a�ordable smart

water monitoring, contributing to sustainable water management.

KEYWORDS

water distribution system, non-intrusive, water consumption, machine learning, smart

metering, IoT, cost e�ective, multi sensor

1 Introduction

Water Distribution Systems (WDS) are critical and essential infrastructure assets that

deliver water from storage reservoirs or treatment plants to consumers. A typical WDS

consists of a network of pumps, pipes, storage tanks and valves that are operated to

meet the water demand of residential, commercial, and industrial users. The effective

maintenance of theWDS is vital for sustainable water management, which can be achieved

by monitoring and making informed decisions, especially in regions facing water scarcity
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(Hejazi et al., 2023; Ullah et al., 2023). At least 2 billion people

on the planet face water scarcity at some point in the year, and

these numbers are expected to grow to 2.8 billion by 2030 as

water availability decreases (United Nations, 2022). In the last two

decades, the water sources on land and in the subsurface, including

ice and snow, have dropped at a rate of 1 cm per year, which is

higher than the total human water consumption per year. This

greatly impacts the fact that only 0.5% of the Earth’s water is usable

and available as freshwater. Sustainable Development Goal (SDG)

6, established by the General Assembly of the United Nations, aims

to ensure that everyone has access to clean water and sanitation

by 2030 (WMO, 2021). At the current rate of progress, the world

will achieve only 81% coverage by 2030. This shortfall will leave 1.6

billion people without safe managed drinking water supplies, which

requires a four-fold increase in the pace of progress to meet the

target. Countries in the global south, such as India, are considered

water-stressed with a per capita availability estimated at 1,567 m3

(Ministry of Jal Shakti, 2024). The percentage of urban population

covered by piped water systems varies from 53 to 71%, and the

water supply per capita varies from 70 to 112 lpcd (liters per capita

per day), with water supply limited to 4-6 h. The percentage of

metered connections is 48% in the larger cities, whereas there

are very few or no metered connections in the smaller cities and

towns (Indian Infrastructure, 2023). Supply is intermittent, with

actual supply only about 1.5-3 h a day (Vairavamoorthy et al., 2008;

Chinnusamy et al., 2018a). Leaks, amounting to almost 50% in

some networks result in gross inefficiencies due to the loss of water

and energy and have negative impacts on water quality, especially

in intermittently operated networks (Spedaletti et al., 2022).

Accurately measuring water usage and availability enables

better planning and management of water resources. It helps

in detecting leaks, promoting usage awareness and encouraging

sustainable practices. Effective measurement ensures informed

decision making, supports policy development and facilitates

crisis management during droughts or shortages. While water

scarcity is a significant issue, measuring water use is far from

straightforward. The typical method tomeasure domestic water use

is through traditional water meters, which typically provide limited

information on total consumption over time. Monitoring becomes

challenging due to the lack of data to detect leaks and anomalies.

Consequently, there is a need to transition from such basic

systems toward smart metering approaches by digitalizing the data,

enabling better data analysis and informed decision-making for

sustainable water use. Existing smart meters store data digitally and

provide detailed information on water usage patterns (Madias et al.,

2023). One such system integrates Electronic Interface Modules

(EIMs) with existingmechanical watermeters and transfers data via

smartphone interfaces or routers to the cloud, providing a solution

for digitizing water usage data (Suresh et al., 2017). This allows

for better monitoring, quicker leak detection, and more informed

decision-making by providing precise data, which can be analyzed

to optimize water usage and address issues promptly, making

them more effective tools for managing water resources (Madias

et al., 2022). However, these smart meters are often intrusive,

requiring installation within the plumbing system, which can be

disruptive and may need professional installation. Intrusive smart

water meter installations should comply with industry standards

such as Indian Standards IS 779 (Bureau of Indian Standards,

1994), or International Organization for Standardization ISO

4064 (International Organization for Standardization, 2014), or

AmericanWaterWorks Association C700 (AmericanWaterWorks

Association, 2020). These require specific flow-conditioning and

installation elements to ensure accuracy, including U-shaped

pipe loops or flow straighteners or long and straight runs

of pipe both upstream and downstream of the meters. To

protect the meters from debris, strainers are installed upstream,

and to stop any backflow disrupting the meters, non-return

valves or check valves are installed downstream, which increases

the capital cost and creates a barrier to scalable deployment

(Richard Koech and Syme, 2021).

In many cities, towns, and villages in the global south,

users cope with the intermittent supply with intermediate storage

facilities such as tanks, sumps, or reservoirs. In intermittently

operated WDS, intermediate overhead tanks or elevated reservoirs

have separate inlets and outlets, i.e., they are filled by pipes

connected to their top, and the withdrawal is made through pipes

connected to their bottom (Kurian et al., 2023). It is important

for utility operators to monitor both the inlet volume of water

entering reservoirs or overhead tanks (OHTs) and the outlet

volume consumed from them (Sankar et al., 2015) for balancing

the water supply and demand by appropriate scheduling. Such

smart water meters require separate installations on both the

inlet and outlet pipelines, effectively doubling the installation and

maintenance costs.

Several notable approaches have been proposed to enable

non-intrusive monitoring of fixture-level water usage without

extensive modifications to existing plumbing systems. Among

these, NAWMS (Nonintrusive Autonomous Water Monitoring

System) is an augmented metering framework that infers water

usage of individual pipelines by combining measurements from

an inline water meter at the network inlet and clamp-on

vibration sensors installed on each pipe section (Kim et al.,

2008). These sensors detect vibration signatures generated by

water flow, which are then mapped to the total flow using

an information-fusion algorithm. The authors propose a two-

phase optimization framework, leveraging linear programming and

geometric programming, to automatically calibrate the vibration

sensors. Another notable system, HydroSense, installs a single

pressure sensor at an accessible point, such as a tap or drain, to

record transient pressure spikes caused by fixture usage (Froehlich

et al., 2009). During the training phase, the system learns the

pressure patterns and corresponding average flow volumes for

each fixture. A probabilistic classifier then disaggregates the

pressure data into individual events and estimates fixture-level

usage. Extending this idea, WATTR introduces self-powered

wireless tags that harvest energy from pressure pulses in the

pipe to power themselves and detect flow (Campbell et al.,

2010). While these systems achieve approximately 90% accuracy

in controlled indoor environments, they often require dense

sensor deployments and extensive training phases. A broader

survey in Abu-Bakar et al. (2021) summarizes these and other

non-intrusive technologies, highlighting their promise but also

the challenges in deploying them reliably at scale in real-world

distribution networks.
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Despite their promise, these approaches are predominantly

designed for indoor settings or require dense sensor deployments

and complex training procedures. Moreover, they are not directly

applicable to infrastructure commonly found in low- and middle-

income regions, such as overhead tanks and sumps where water

is supplied intermittently and stored for later consumption. This

highlights the need for scalable, low-cost, and infrastructure-light

methods tailored to the dynamics of such systems.

This study aims to develop non-intrusive techniques for

accurately estimating both the total volume of water supplied and

consumed without the need for direct flow meter installations on

pipelines. This is achieved by leveraging cost-effective sensors in

OHTs, sumps or reservoirs that monitor water levels and auxiliary

signals ensuring minimal disruption to existing infrastructure.

To ensure data reliability, advanced filtering techniques are

applied to address issues such as noise and outliers common in

low-cost sensors. Auxiliary information is also utilized to infer

flow, especially under simultaneous inlet and outlet conditions.

From these water-level trends and auxiliary variables, flow rates

are estimated using two methods. The first method used pre-

determined flow rates that can be interpreted as a supervised

learning approach when ground truth flow data is available during

the training phase. The second method can be interepreted as an

unsupervised inference method where consumption or supply is

inferred dynamically without labeled data. The methodology is

validated through multiple case studies, spanning scenarios with

synchronous inlet and outlet flows, variable demand patterns and

both controlled and uncontrolled conditions. Flow sensor readings

serve as a baseline to compare the performance of the methods.

Comparisons between the two methods highlight the method’s

adaptability and learning potential in real-world settings.

2 Materials and methods

2.1 System description

In intermittently operated networks, overhead tanks, sumps,

and reservoirs are commonly used to accommodate discrete supply

schedules. These storage structures typically have separate inlet

and outlet pipelines. Water is supplied for a limited period of

time and is stored in overhead tanks, sumps, or reservoirs. The

stored water is consumed during the day and is drawn by gravity

(from overhead tanks) or pumped from sumps or ground-level or

underground reservoirs.

2.2 Data acquisition and communication

To monitor parameters in the Water Distribution System

(WDS), various sensors are used to convert physical signals into

electrical data. The primary measurements considered in this study

include tank level and auxiliary indicators of flow status.

• Water level data: water level of the tank is the primary

measurement used in this study. In case study 2 of the Section

3, DF Robot’s Gravity: Industrial Stainless Steel Submersible

hydrostatic Level Sensor (0 to 500 cm H2O ± 0.5% full-scale

error) is used to determine the height of water in OHTs. These

level sensors provide critical data for managing water supply

and consumption by measuring the pressure exerted by the

water column (Zhou et al., 2020), which is then translated

into the water level. This sensor has a rated service life of 1 ×

108 pressure cycles, effectively ensuring long-term mechanical

reliability (DFRobot, n.d.). Potential sensor drift over time due

to physical wear or electrical aging can be addressed through

biennial calibration. The calibration can be done using the

sensor interface unit. The process of converting the current

signals from the sensor to voltage is done by a current-to-

voltage converter, which has two potentiometers to adjust the

zero and span of the voltage output. When the tank is empty,

the zero potentiometer is adjusted to set the voltage to 0. At

the maximum fill level, the span can be adjusted to make the

current-to-voltage converter’s output correspond to the actual

level. This can be done at site by locally trained electricians

with minimal equipment.

Alternatively, ultrasonic level sensors can also be used

(Ding et al., 2025; Cherqui et al., 2020). In this study, the

HC-SR04 ultrasonic level sensor (2 to 400 cm ± 0.3 cm),

is employed in Case Study 1 of the Section 3 for indoor

laboratory settings, while the MB7566 SCXL-MaxSonar-WR

(50 to 1,000 cm ± 1% full-scale error), which is more suitable

for outdoor installations, is used in case study 3. Ultrasonic

sensors deliver non-contact sensing with ≤ 1% full-scale

error but require proper mounting distance, temperature

compensation, echo filtering, and periodic calibration. In

contrast, hydrostatic level sensors can directly measure the

pressure of the water column are less prone to errors, have

built-in temperature compensation but require additional

circuitry to convert the current to voltage for interfacing them

with microcontrollers (Mohindru, 2023).

• Auxiliary data: in addition to level sensors, auxiliary data

such as valve and pump status play a crucial role in

inferring water flow dynamics. By analyzing when valves

are actuated or pumps are operational, the periods of water

supply or withdrawal can be determined, thereby enabling

more accurate flow estimation especially during intervals

when both inlet and outlet flows occur simultaneously. In

practical deployments, valve status can be obtained using

digital control systems that log actuation events or through

wired connections to the valve actuator. Pump status can be

inferred either from the electrical contactor of the pump or

through power monitoring using energy meters installed on

the pump line. Alternatively, independent sensor modules can

be deployed to collect auxiliary information. For example,

MPU6050-based vibration sensors can be mounted directly

on pipelines to detect flow-induced vibrations. By isolating

these vibration patterns from background noise, the presence

of flow can be confirmed and even correlated with flow rate

magnitudes (Ismail et al., 2014). These auxiliary signals are

essential for correctly identifying flow activity, particularly

when direct flow sensors are absent.

• Digitization and communication: the interface unit

plays a critical role in connecting the sensors to the
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FIGURE 1

Interface unit and a high level communication architecture.

data communication network. At its core is an ESP8266

microcontroller, which collects data from various sensors,

including level sensors and other auxiliary sensors and

transmits it to a nearby gateway–also an ESP8266–using

the ISM radio band. This gateway then relays the real-time

data to the cloud via integrated WiFi, ensuring up-to-date

monitoring for timely interventions and effectivemanagement

(Chinnusamy et al., 2018b; Raphael and Narasimhan, 2022;

Raphael et al., 2024). The cloud platform used for this purpose

is ThingSpeak, which enables real-time visualization and

analytics of the sensor data (MathWorks, n.d.a). To ensure

secure access and protect the integrity of the transmitted

data, the system supports HTTPS-based communication and

requires authenticated API keys (MathWorks, n.d.b). This

architecture is particularly advantageous for multi-sensor

setups, enabling efficient data communication and centralized

control. The high-level communication architecture is shown

in Figure 1.

Any existing air vent on the roof of the tank or sump can be

utilized for installing these level sensors. For hydrostatic sensors,

the probe is submerged vertically to the bottom of the tank or

sump. In the case of ultrasonic sensors, the device is mounted

on the ceiling of the tank or sump, facing downward at 90

degrees. A shielded multicore cable is used to supply power and

transmit sensor readings to the Interface Unit, which handles

signal digitization and communication. This Interface Unit is

installed at an accessible location to allow for future calibrations

and is powered using a nearby AC mains source. To obtain the

pump status, the NO (Normally Open) terminals of the electrical

contactor are connected to the interface unit, which act as a simple

switch and closes the circuit when the contactor is energized.

Alternatively, a Non-Invasive current transformer can be installed

in the power line of the pump, which measures the current

passing through the wire. The Non-Invasive current transformer

is connected to the Interface unit, which is then converted to a

binary decision (Pump is ON if the measured current is greater

than 0 A). The entire installation process can be carried out by

local technicians with ease. Furthermore, the modular architecture

and accessible placement of components significantly reduce the

burden of long-term maintenance, allowing routine inspections,

recalibrations and part replacements to be conducted without

dismantling the system. This supports long term sustainability

of the system and capacity-building through community-level

technical involvement.

In this study, level sensors serve as the primary data

source, while valve status or pump status act as the key

auxiliary parameters. We aim to validate the non-intrusive

parameter estimation method, ensuring accurate measurement

of water consumption and effective monitoring of the water

distribution system.

2.3 Level data pre processing

One of the most critical steps in water flow estimation is

determining whether the tank level is increasing or decreasing after

processing the sensor data. Raw sensor data are noisy and this

variation can obscure true trends, making it difficult to estimate

flow rates accurately. To address this, smoothing techniques such as

ℓ1 trend filtering are employed to reduce fluctuations and provide

a clearer representation of water level changes (Kim et al., 2009;

Tibshirani, 2014).

ℓ1 trend Filtering effectively reduces large variances while

preserving underlying trends, allowing for a more algorithmically

reliable estimation of water flow. It generates piecewise linear

estimates through convex optimization based on the ℓ1 norm. The

optimization formulation minimizes residuals between estimated

and actual data while ensuring that the result remains piecewise

linear. This method is particularly valuable for level sensor

data, where sudden spikes or drops in readings are improbable

under normal conditions. Moreover, in intermittently operated

networks, the level changes are typically piecewise linear with the
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individual trends corresponding to different modes of operation.

The enhanced smoothing technique employs the objective function

as in Equation 1:

min ||y− f (x)− u||1 + λ||Df (x)||1 + µ||u||1 (1)

where:

• y: Original sensor data

• f (x): The trend function

• ||.||1: The L1 norm (sum of absolute values)

• λ : Regularization parameter controlling the sparsity

• Df (x): Derivative of the trend function (encourages

smoothness)

• u : The spike signal

• µ : Regularization parameter for the spike signal u.

The objective function balances two primary terms: the error

term and the regularization term. The error term minimizes the

difference between actual data points and the trend function, while

the regularization term penalizes complex functions with large

variations, encouraging sparsity. By adjusting the λ parameter,

we can control the trade-off between fitting the data closely

and maintaining a smooth, sparse trend. Although smoothing

techniques help remove noise from sensor data, sudden spikes

can still persist. To effectively isolate these spikes, an additional

regularization term µ||u||1 is introduced. This term specifically

penalizes the complexity of the “spike signal” u, encouraging

a solution with fewer, larger spikes that align with real-world

expectations. Adjusting λ and µ, we can control the trade-off

between fitting the data, maintaining a smooth trend and isolating

spikes or outliers.

Intuitively, ℓ1 trend filtering works by fitting straight-line

segments to the data, allowing the slope to change only at a small

number of points. This creates a piecewise linear approximation

that preserves sharp transitions (if present) while removing high-

frequency noise. Compared to classical smoothing methods such

as moving averages or quadratic smoothing, ℓ1 trend filtering is

particularly well-suited for level sensor data where the underlying

physical process is expected to be piecewise linear with occasional

transitions. The original and filtered level sensor data from a typical

observation are shown in Figure 2.

2.4 Methodology

We employ level sensors to continuously monitor the water

level in overhead tanks or reservoirs. The change in the water level

over a specific period allows us to calculate the volume of water

entering or leaving the tank, which is described in Raphael and

Narasimhan (2022). This methodology relies on the principle that

the change in water level, when multiplied by the tank’s cross-

sectional area, provides an accurate measurement of changes in

volume of water.

For instance, consider a tank with a known cross-sectional area

A (in square meters). Let 1h(t) represent the change in water level

(in meters) over a time interval 1t (in seconds). The change in

height can be related to inflow (Qin) and outflow Qout as follows:

A ·1h(t)

1t
= Qin(t)− Qout(t) (2)

To compute water consumption as a temporal quantity, all positive

and negative changes in water level must be considered over

time. By measuring water levels at regular intervals and recording

changes in height, the variation in water volume can be analyzed.

The total volume over a given time period is calculated by summing

up the instantaneous flow rates, where cumulative volume supplied

Vin(T) and consumed Vout(T) is given in the Equation 3.

Vin(T) =

T∑

t=0

Qin(t)1t; Vout(T) =

T∑

t=0

Qout(t)1t (3)

When inlet and outlet are asynchronous, i.e., the supply and

consumption periods do not overlap,Vin andVout can be calculated

as follows:

Vin(T) =

T∑

t,1h(t)>0

Qin(t)1t; Vout(T) =

T∑

t,1h(t)<0

Qout(t)1t (4)

However, when supply and consumption periods overlap, it is not

straightforward to estimate the supply or consumption. In the

following sections, we present two techniques to disambiguate the

supply and consumption patterns from water level data.

2.4.1 Predefined flow rates
Accurately estimating water inflow and outflow using level

sensors alone is challenging, particularly when both inlet and outlet

flows occur simultaneously. In such cases, the net change in water

level may not capture the underlying dynamics, making it difficult

to infer the actual flow rates. This creates ambiguity, as the level

sensor can only measure the overall effect of both flows rather

than distinguishing between them. To overcome this limitation, it is

necessary to integrate flow occurrence or directionality information

with level change data, enabling a more reliable estimation of

water movement.

To address this, we leverage auxiliary information from valve

switch status or pump status. The key principle is that auxiliary data

helps in knowing when the flow in inlet or outlet pipelines is active.

This helps in resolving ambiguities and distinguishing the duration

of when both the inlet and outlet flows occur simultaneously. This

crucial information of the duration when both flows occur can be

leveraged to use historical data where known flow rates are available

to estimate the actual inlet and outlet flow rates separately. From a

machine learning perspective, this process can be viewed as a simple

form of supervised learning, where past labeled data (i.e., known

flows during controlled events) is used to infer flows in unseen

situations with similar auxiliary patterns.

By applying predefined flow values to these identified periods,

we can improve the accuracy of flow estimation and mitigate errors

that arise from overlapping flows. When auxiliary information,

such as pump status or valve actuation, indicates that the inlet or
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FIGURE 2

Original noisy level data (red points) compared with the denoised, piecewise-linear trend obtained using ℓ1 trend filtering (blue line). The method

preserves major structural changes while removing high-frequency noise, allowing more accurate flow estimation.

outlet is active, the predefined flow rate is applied. The flow rate is

calculated as:

Qin(t) =

{
Qpre, in, if Auxin(t) = 1

0, if Auxin(t) = 0
(5)

Qout(t) =

{
Qpre, out, if Auxout(t) = 1

0, if Auxout(t) = 0
(6)

where:

• Qin(t) = Instantaneous inlet flow rate at time t

• Qout(t) = Instantaneous outlet flow rate at time t

• Qpre, in = Predefined inlet flow rate

• Qpre, out = Predefined outlet flow rate

• Auxin(t) = Auxiliary indicator for inlet at time t

• Auxout(t) = Auxiliary indicator for outlet at time t

Auxin(t) =

{
1, if auxiliary data indicates inlet flow

0, if no inlet flow is indicated

Auxout(t) =

{
1, if auxiliary data indicates outlet flow

0, if no outlet flow is indicated

To determine these predefined flow rates (Qpre, in, Qpre, out), a

separate baseline experiment is conducted where only one of the

flows (either inlet or outlet) is active at a time. By measuring the

resulting level change over a known period, the corresponding

flow rate is calculated using Equation 2. Once both inlet and outlet

flow rates are established through this controlled setup, it becomes

possible to identify which one is lower in a given scenario.

For practical implementation, auxiliary data is utilized

exclusively for the pipeline with the lowest flow rate in the system.

As the occurrence of the higher flow rate will dominate the lower

one, there will be a change in the tank level, which can be used as

implicit auxiliary information for the higher flow rate.

Let two pipelines feed and draw from a tank of constant

cross-sectional area A. Denote their instantaneous flow rates by

Qin(t), Qout(t) ≥ 0,

and suppose w.l.o.g. that Qin(t) ≤ Qout(t) for all t in some interval

I. The tank volume V(t) and level h(t) are related by V(t) = Ah(t).

By mass-balance,

dV

dt
= Qin(t) − Qout(t) H⇒ A

dh

dt
= Qin(t)− Qout(t).

Since by assumption Qin(t) ≤ Qout(t), it follows that

dh

dt
=

Qin(t)− Qout(t)

A
≤ 0,

with strict inequality whenever Qout(t) > Qin(t).

Thus:

(i) By monitoring the auxiliary signal on the pipeline with

the lower flow (e.g., where Qin occurs), we know exactly

when Qin(t) > 0.

(ii) At times when the tank level is strictly decreasing, we

can infer directly without (without any additional sensor)

that the other outlet is active, i.e., Qout(t) is active and in

fact dominates.

Therefore, it suffices to install auxiliary sensors only on the

pipeline with the lower flow. The behavior of the tank level itself

reveals the activation of the larger flow through its decreasing trend.

In most cases of intermittent supply, where water is supplied

for only a few hours in a day, the inlet and outlet flow rates are

significantly different. E.g., if water from the source is stored in a

tank or sump and is supplied itermittently to consumers, the inlet

flow rate to the tank or sump would be significantly lower than the

outlet. On the other hand, the inlet flow to a household sump or

tank would be much higher than the consumption or outlet flow

rate. However, in rare instances where they are, auxiliary data is

required from both sides to determine the presence of flow and

estimate the contribution of each. This ensures that even in cases

where no significant net level change is observed, the underlying

inflow and outflow can still be quantified. To further refine this

estimation, additional sensor data can be incorporated. Sensors that

detect flow movement, either through mechanical vibrations or

other indirect methods, can help distinguish between an active inlet

and an active outlet. These auxiliary data sources confirm whether

water is entering or leaving the system, resolving cases where the

level change alone is insufficient to determine flow direction.

Frontiers inWater 06 frontiersin.org

https://doi.org/10.3389/frwa.2025.1586916
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Jamadarkhani et al. 10.3389/frwa.2025.1586916

The integration process follows these steps to accurately

estimate water flow in ambiguous situations:

1. Monitor Level Changes: Continuously track water levels using

sensors to detect fluctuations over time.

2. Determine the Flow Rate: Conduct a baseline experiment where

only one flow (either inlet or outlet) is active at a time to establish

predefined flow rates using the known cross-sectional area of the

tank by Equation 2. Use this data to compare the inlet and outlet

flows to identify which one is lower

3. Identify Flow Occurrence: Determine pipeline activity using

auxiliary data like pump status or flow detection sensors.

4. Use Historical Flow Data: Once the pipeline activity is recorded,

use predefined flow rates established in the baseline experiment

to estimate its magnitude over the observed duration of

its occurrence.

5. Compute Individual Flow Volumes: Using the estimated flow

rate, calculate the inlet and outlet flow rates separately over

time using Equations 5, 6 and finally the total volume by using

Equation 3.

By combining level change measurements with flow occurrence

data, a robust and accurate estimation of water movement is

achieved. This approach ensures that even in scenarios where direct

level changes are inconclusive, the presence or absence of flow

provides the necessary validation to determine water distribution

patterns accurately.

2.4.2 Dynamic flow rates
In real-world water distribution systems, flow rates are rarely

constant and can fluctuate due to various factors, including

network demand, infrastructure constraints, and environmental

conditions. One major contributor to this variability is the nature

of water sources and their supply dynamics. For instance, in

many regions, water distribution relies on storage systems such

as overhead tanks, which regulate supply to different areas. In

water-scarce regions, particularly in South Asia, these OHTs are

often filled using bore wells, introducing an additional layer of

uncertainty. Bore well yield can vary significantly due to seasonal

changes in groundwater levels, affecting the consistency of inflow

(Choudhary and Singh, 2024; Minea et al., 2022; Shamsudduha

et al., 2009). At the same time, the outlet flow rate remains

unpredictable as it depends on network withdrawal patterns,

which fluctuate based on demand and human behavior (Cassiolato

et al., 2024). For this method to work effectively, one of the

flow rates (either inlet or outlet) must remain relatively stable

during the estimation period. This is because the approach

relies on using the known flow rate and observed level changes

to infer the unknown flow rate. If both the inlet and outlet

flow rates vary unpredictably, the estimation becomes highly

uncertain and may require additional measurements or advanced

modeling techniques.

To estimate an unknown flow rate Qu(t) using tank level

measurements and the known flow Qk(t). This unknown signal

should ideally:

• Be consistent with the observed tank dynamics (mass balance),

• Vary smoothly or change slowly over time (since abrupt shifts

in flow are rare in physical systems),

• Align with prior expectations, such as decreasing borewell

yield or steady household demand.

A technique to estimate Qu(t) under these assumptions is by

formulating a convex optimization problem that enforces data

fidelity and smoothness:

min
Qu(t)

∑

t

∣∣∣∣sk · A ·
dh(t)

dt
+ (Qk(t)− Qu(t))

∣∣∣∣+ λ · ‖∇Qu(t)‖1

where

• sk = +1 if Qk(t) is the inlet flow and sk = -1 if it is the outlet

flow. This sign convention ensures that sk · A ·
dh(t)
dt

correctly

reflects the net contribution to tank level.

• h(t) is the observed (or denoised) tank level over time,

• A · dh(t)
dt

approximates the net flow derived from level change,

• ∇Qu(t) is the discrete derivative (variation) of Qu(t),

• λ is a regularization parameter balancing fit and smoothness.

This formulation closely resembles methods used in sparse

signal recovery and regularized regression in machine learning.

In particular, it aligns with the fused lasso or trend filtering

models used to recover structured signals from noisy or partial

observations. The minimization of a data fidelity term combined

with an ℓ1 penalty on the variation of the unknown signal is a

common pattern in statistical learning. Thus, the estimation of

Qu(t) from tank level dynamics can be interpreted as a regression

task, where we learn a structured, low-complexity approximation

of the unknown flow signal using level data as a proxy.

Rather than solving this problem directly, we instead apply ℓ1

trend filtering to the tank level data h(t). This produces a piecewise

linear approximation ĥ(t), from which we derive the unknown flow

rate as:

Qu(t) = Qk(t)+ sk · A ·
dĥ(t)

dt

This is, in fact, equivalent to solving the earlier convex program

implicitly, because:

• ℓ1 trend filtering enforces sparsity in the second derivative of

h(t), leading to structured, piecewise-linear behavior,

• The derivative dĥ(t)
dt

yields a denoised, structured estimate of

net flow,

• Subtracting from Qk(t) provides a smoothed, implicitly

regularized estimate of Qu(t).

In discrete time, with sampling interval 1t, this yields:

Qu(t) = Qk(t)+ sk ·
A

1t
·
(
ĥ(t +1t)− ĥ(t)

)
.

This formulation reveals a deeper structural link: the temporal

differences in Qu(t) are directly proportional to the second-order
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differences in the filtered level trajectory h(t). Specifically,

Qu(t +1t)− Qu(t) = sk ·
A

1t
·
(
ĥ(t + 21t)− 2ĥ(t +1t)+ ĥ(t)

)

= sk ·
A

1t
· Dĥ(t).

Taking ℓ1 norms on both sides:

‖1Qu‖1 =
∑

t

|Qu(t+1t)−Qu(t)| =
A

1t

∑

t

|Dĥ(t)| =
A

1t
‖Dĥ‖1.

‖1Qu‖1 ∝ ‖Dĥ‖1 H⇒ ℓ1 trend filtering on h(t)

implicitly regularizes Qu(t).

Thus, trend filtering on h(t) implicitly solves a fused-lasso

problem on Qu(t), achieving a structured and regularized flow

estimate without requiring a separate optimization step. As a result,

our method achieves a structured, smooth, and regularized flow

estimate while avoiding a direct optimization step.

For practical implementation, the monitoring system should

have the information:

• Known flow rate Qk (either inlet or outlet)

• Tank level changes 1h(t)

• Time intervals 1t.

At any given time, the estimate of the unknown flow rate Qu(t)

is determined as:

Qu(t) = sk ·
A ·1h(t)

1t
+ Qk (7)

where:

• A is the cross-sectional area of the tank,

• 1h(t) is the observed change in water level,

• 1t is the time interval over which the change occurred.

The known flow rate Qk is assumed to be approximately

constant over short intervals. It can be determined either

from isolated flow periods or, during simultaneous flows, by

approximating it from stable regions immediately before or after a

transition. Thus, Qk reflects a locally constant flow rate rather than

requiring strict isolation, making the approach applicable even in

intermittently operated networks.

When both inlet and outlet flows occur simultaneously,

periods of overlap are detected using auxiliary data such as

pump or valve status. During these intervals, the unknown flow

rate Qu(t) is estimated dynamically using the known flow Qk

and the relationship in Equation 7. This enables accurate flow

monitoring even under complex real-world conditions, where

direct measurement of all flows may not be available. In the

following, we assume that Qout >> Qin. The technique can be

easily modified to accommodate the case when Qout << Qin.

The dynamic algorithm (see Figure 3) operates by iterating

through each time step of the level data and making inferences

based on the observed trends and auxiliary conditions.

1. Start [Start at t = tinitial]: The process begins once a sufficient

time window is available to compute a discrete slope.

2. Trend Detection [Is 1h
1t > 0?]: As seen in Figure 3a, the

algorithm detects whether the tank level is increasing. This

condition implies dominant inflow and minimal outflow.

3. Inflow Estimation [Estimate Qin = A · 1h
1t ]: When the level is

rising, inflow is estimated directly from the slope of the water

level curve assuming outflows are negligible.

4. Transition Check [Did slope change?]: The algorithm

checks whether the sign of the slope has changed, i.e.,(
1h
1t

∣∣∣
t+1t

t
· 1h

1t

∣∣∣
t

t−1t
< 0

)
, to detect a turning point in

the trend.

5. Known Flow Estimation [ComputeQout = Qin(t0)−A · 1h
1t ]:At

time t0, the outflow is calculated using the previously estimated

inflow. This value is stored as Qk for use in future calculations.

6. Auxiliary Check [Auxiliary ON?]: If auxiliary systems (e.g.,

hidden inlets, pump actions) are active, the algorithm prepares

to infer hidden inflows that would otherwise be unaccounted for.

7. Unknown Inflow Estimation [Infer Qu(t)]: Using the stored Qk,

the unknown or hidden inflow is estimated as:

Q′in(t) = Qu(t) = Qk − A ·
1h(t)

1t

8. Outflow Estimation [Estimate Qout = −A ·
1h
1t ]: If no auxiliary

inflow is present, the tank is assumed to be only draining, and

the outflow is computed directly from the negative slope.

9. Advance Time [t ← t + 1t]: Time is incremented and the

process repeats for the next time step until the full dataset

is processed.

10. Termination Check [Is t > tfinal?]: Once the current time

exceeds the final timestamp of the series, the algorithm

terminates; otherwise, it continues to the next iteration.

By integrating level changes and auxiliary data within this

dynamic framework, the monitoring system becomes adaptive

to real-world variability. It allows robust estimation even during

simultaneous flows, supports scalable deployment without needing

complete sensorization, and improves the accuracy of water usage

measurement over long-term operations. Although this dynamic

approach works reliably in practice, it is important to theoretically

quantify the estimation error incurred due to flow variability and

finite observation windows. We now present a formal derivation of

the error bounds under mild regularity assumptions.

2.4.2.1 Theoretical justification for dynamic estimation

accuracy

In practical water systems, flow rates such as Qin(t) and Qout(t)

fluctuate over time due to changing demands, supply variations,

and operational factors, as discussed earlier. In order to estimate

unknown flows in the presence of fluctuations, our dynamic

estimation method assumes that during each estimation window,

the known flow Qk remains approximately constant, and that the

flow rates are Lipschitz continuous, i.e., there is a limit on rate of

change of the flow rates.

To rigorously quantify the impact of these assumptions on the

estimation accuracy, we now derive a formal error bound. We

show that:
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FIGURE 3

(a) A sample tank level trajectory with the characteristic slope changes, transition window. (b) Flow chart of algorithm.

• The estimation error introduced by the dynamic method

remains small and controlled, provided the known and

unknown flows do not change too rapidly.

• The additional error from using a previously estimated

constant Qk (from a nearby isolated flow period) also remains

bounded and manageable.
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The following proof establishes that the total estimation error

grows linearly with the time window size 1t and the delay τ

from the isolated transition time t0, and is fully controlled by the

Lipschitz constants of the flows.

Assumptions : Both Qk(t) and Qu(t) are assumed to be

Lipschitz continuous with constants Lk and Lu, respectively.

Further, we assume that Qk is an outlet.

∣∣Qi(t1)− Qi(t2)
∣∣ ≤ Li |t1 − t2| for all t1, t2 and i ∈ {k, u}.

Mass balance : Over the interval [t, t + 1t], the mass

balance gives:

∫ t+1t

t

[
Qk(s)− Qu(s)

]
ds = sk · A

[
h(t +1t)− h(t)

]
.

Dynamic estimator : We assume that Qk at t = t0 is known.

Defining Q̂k = Qk(t0), we approximate Qk(t) ≈ Q̂k. we estimate

Q̂u(t) as follows:

Q̂u(t) = sk ·
A
[
h(t +1t)− h(t)

]

1t
+ Q̂k.

Error decomposition : Assume Qk is an outlet. By

mass balance:

−A
[
h(t +1t)− h(t)

]
=

∫ t+1t

t

[
Qk(s)− Qu(s)

]
ds.

Dividing both sides by 1t and rearranging terms:

Q̂u(t) = Q̂k −
1

1t

∫ t+1t

t

[
Qk(s)− Qu(s)

]
ds.

Add and subtract Qu(t) and Qk(t):

Q̂u(t)− Qu(t) =
[
Q̂k − Qk(t)

]
+

[
Qk(t)−

1

1t

∫ t+1t

t
Qk(s) ds

]

+

[
1

1t

∫ t+1t

t
(Qu(s) − Qu(t))ds

]
.

After rearranging terms:

Q̂u(t)− Qu(t) =
[
Q̂k − Qk(t)

]
+

[
1

1t

∫ t+1t

t
(Qk(t)− Qk(s)) ds

]

+

[
1

1t

∫ t+1t

t
(Qu(s) ds− Qu(t))

]
.

From the triangle inequality, we have

∣∣Q̂u(t)− Qu(t)
∣∣ ≤

∣∣Q̂k − Qk(t)
∣∣+

∣∣∣∣
1

1t

∫ t+1t

t
(Qk(t)− Qk(s)) ds

∣∣∣∣

+

∣∣∣∣
1

1t

∫ t+1t

t
(Qu(s) − Qu(t))ds

∣∣∣∣ .

Each term can be bounded separately using Lipschitz

continuity. Applying the generalized triangle inequality and using

the fact that Qi is Li-Lipschitz, i.e., |Qi(t) − Qi(s)| ≤ Li|t − s|. we

have:
∣∣∣∣
1

1t

∫ t+1t

t
(Qi(t)− Qi(s)) ds

∣∣∣∣ ≤
1

1t

∫ t+1t

t

∣∣(Qi(t)− Qi(s))
∣∣

ds ≤
Li

1t

∫ t+1t

t
|t − s| ds.

Over the interval [t, t +1t], we have s ≥ t, so:

∫ t+1t

t
|t − s| ds =

∫ t+1t

t
(s− t) ds. =

1t2

2

Thus:

1

1t

∫ t+1t

t

∣∣(Qi(t)− Qi(s))
∣∣ ds ≤ Li1t

2
.

• If the known flow value Qk is taken from a past transition

time t0, then using its Lipschitz continuity with constant Lk,

we have:

|Q̂k − Qk(t)| ≤ Lk · |t − t0| = Lk · τ .

• The averaging error due to the variation of Qk(t) over the

interval [t, t +1t] is bounded by:

1

1t

∫ t+1t

t

∣∣(Qk(t)− Qk(s))
∣∣ ds ≤ Lk1t

2
.

• Similarly, for the unknown flow Qu(t) with Lipschitz constant

Lu, the averaging error is:

1

1t

∫ t+1t

t

∣∣Qu(s)− Qu(t)
∣∣ ds ≤ Lu1t

2
.

Total error bound : Adding these bounds together yields the

total estimation error:

∣∣Q̂u(t)− Qu(t)
∣∣ ≤ Lk · τ +

Lk + Lu

2
·1t

This expression shows that the dynamic estimation remains

accurate as long as:

• The known flow Qk(t) is slowly varying (Lk is small),

• The unknown flow Qu(t) is also smooth (Lu is small),

• The estimation window 1t and delay τ from the transition

time are small.

Thus, under mild Lipschitz continuity assumptions, the

dynamic flow estimation method guarantees that the error between

the estimated and true unknown flow is bounded by a term

proportional to the time window size 1t and the delay τ from the

transition point. By choosing small enough 1t and ensuring Qk is

as close to the transition, an accurate and stable flow estimation

is achieved even without simultaneous direct measurement of

both flows.

3 Results

3.1 Case study 1

This case study is a controlled laboratory experiment, as shown

in Figure 4. A 100-liter OHT, which is fed by a centrifugal pump of

0.5 HP capacity, pumping water from the ground-based reservoir
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FIGURE 4

Experimental setup.

of 650 L capacity. The system includes control mechanisms, such

as Data Acquisition (DAQ) modules to regulate the on/off state

of the pump and a continuously adjustable control valve for the

outlet. The automatic logging of these switching events through

LabVIEW provides valuable auxiliary data. To accurately measure

the water flow, Keyence FD-Q10C and Keyence FD-Q20C were

installed at the outlet and inlet pipes, respectively, while the HC-

SR04 ultrasonic sensor was used as a level sensor.

3.1.1 Baseline experiment
A series of initial experiments were conducted to determine

the inlet flow rate Qin and outlet flow rate Qout under controlled

conditions. The Qin was maintained constant, as the water was

pumped from a reservoir with a stable water supply. To characterize

the outlet flow, the control valve at the tank outlet was adjusted to

two distinct states: a fully open condition, where the valve allowed

unrestricted flow, and a half-open condition, where the valve was

partially closed to restrict outflow. Figures 5a, b illustrates the tank

level profiles for various experimental combinations, while Table 1

presents the flow rates corresponding to the marked sections in the

baseline experiments. In the same Figure, the horizontal flat lines

are when both inlet and outlet are off. These predefined flow rates

serve as reference values for the method discussed in Section 2.4.1,

where known flow rates and auxiliary data are used. Notably, since

the valve adjustments were controlled, the timestamps of actuation

events themselves serve as auxiliary data for analysis.

3.1.2 Validation of flow estimation methods
Building upon the baseline experiments, three additional tests

were conducted in which both the inlet and outlet flows were active

simultaneously. During these experiments, the inlet valve remained

open, while the outlet valve was adjusted to either fully open or

half-open at different intervals to create varying flow conditions.

Figures 5c, e, g present the tank level profiles for experiments 1, 2,

and 3, respectively, with the corresponding flow condition sections

detailed in Table 2.

• Experiment 1: The inlet valve was open throughout. The outlet

valve was fully open at different intervals.

• Experiment 2: The inlet valve was open throughout. The outlet

valve was half-open at different intervals.

• Experiment 3: The inlet valve was open throughout. The outlet

valve was initially half-open and then switched to fully open.

The actual timestamps of valve operations were recorded,

providing precise data on flow variations. These experiments enable

testing the estimation approach under dynamic inlet and outlet

conditions, aiding in the validation of the proposed method’s

reliability in real-world applications. In the experiments conducted,

the flows were recorded via a flow sensor for validation. The

method described in Section 2.4.1, which utilizes predefined flow

rates along with auxiliary data, was initially applied to estimate

water consumption. Our primary focus is on estimating the Qout(t)

at any given time, as it is the lesser of the two (inlet and outlet)

and also varies, which is challenging to estimate while the inlet
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FIGURE 5

(a, b) Tank level profiles for baseline experiments, with corresponding sections marked as detailed in Table 1 while (c, e, g) are the tank level profiles

for the experiments done for validation and (d, f, h) are the comparison of estimated cumulative volume with the flow sensor data for the validation

experiments. This is summarized in the Table 2.

flow remains constant throughout the experiment. Therefore, the

estimation is performed on the outlet flow, and the results are

validated using the flow sensor measurements.

The cumulative volumes for the three experiments are plotted

in Figures 5d, f, h where both the methods and the flow sensor

data are overlapping throughout the experiments. The final values

obtained are presented in Table 2. The results demonstrate that the

estimated cumulative volumes using predefined flow rates closely

matched the actual recorded values from the flow sensor, with

minimal error. For Experiment 1, the predefined method estimated

10.57 liters, closely matching the sensor reading of 10.56 liters.

Similarly, for Experiment 2, the predefined method yielded 6.51

liters, compared to the sensor reading of 6.50 liters. However, in

Experiment 3, the predefined method resulted in 18.32 liters, which

had a slightly higher deviation from the sensor measurement of

18.98 liters.

Subsequently, the method discussed in Section 2.4.2, which

dynamically estimates flow rates based on the observed level

changes and historical trends, was applied to the same experiments

where Qk is the inlet flow rate as it is constant throughout
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the experiment, while Qu is the outlet flow rate which changes

throughout the experiment and can be determined using

Equation 7. The cumulative volume is plotted in the same figures,

with final values of 10.43 liters, 6.25 liters, and 18.65 liters

for Experiments 1, 2, and 3, respectively. The results show a

slightly higher error compared to the predefined flow method in

Experiments 1 and 2. However, in Experiment 3, the dynamic

method performed better than the predefined method, yielding

an estimate (18.65 liters) that was closer to the actual value

(18.98 liters). This improvement in accuracy for Experiment 3 can

be attributed to the fact that the outlet flow condition changed

mid-experiment–from half-open to fully open. Unlike predefined

flow estimation, which assumes constant flow rates based on

historical data, the dynamic method adjusts based on observed

level changes. Since the predefined method assumes a single flow

rate per valve position, it could not fully capture the transition

between half-open and fully open conditions in Experiment 3,

leading to a greater deviation. In contrast, the dynamic approach

was able to detect this variation and adjust accordingly, resulting

in a more accurate cumulative volume estimate. Despite slightly

higher errors in Experiments 1 and 2, the dynamic approach

demonstrated its potential advantage when flow conditions change

within the estimation period, making it a more suitable method

in scenarios where predefined flow rates may not fully capture

transient flow behavior.

3.2 Case study 2

This case study was conducted on an overhead tank with a

capacity of 30,000 liters, which supplies water to a peri-urban area

in Chennai, India. The inlet source is a borewell, presenting a key

challenge, that is the yield is not constant throughout the year.

Additionally, the outlet connects to a distribution network, where

TABLE 1 Flow rates corresponding to the marked sections in the baseline

experiments, as illustrated in Figures 5a, b.

Range Qin (LPM) (average) Qout (LPM) (average)

A–B 31.38 0

C–D 0 7.99

E–F 31.49 0

G–H 0 8.01

I–J 0 4.88

withdrawal rates vary significantly based on the time of day. To

monitor and analyze the system, pump operation data was recorded

and transmitted to the cloud storage. Pump status information is

obtained from the electrical contactors in the pump circuit. The

baseline experiments revealed that the inlet flow rate from the

pump was the lowest. Therefore, auxiliary data should be obtained

from the inlet side, and in this case, the pump status is the auxiliary

signal. The setup is shown in Figure 6 where, in addition to the

level sensor, a flow meter was installed at the inlet to validate

the methodology.

3.2.1 Baseline experiment
To conduct baseline experiments and determine the lower flow

rate between the inlet and outlet, each was opened sequentially.

Table 3 presents the marked sections of average flow rates in liters

per minute (LPM) from the baseline experiment, as illustrated in

Figure 7. It is clear that the borewell flow rate is lower than the

tank outlet flow rate. The flowmeter readings were recorded every 5

min, and both the cumulative volume and inlet flow rate are plotted

in Figures 7b, c. One of the key challenges in this system is the

gradual decline and fluctuation in borewell yield over time, which is

evident in the same figure, combined with the intermittent nature

of the outlet flow, which varies depending on the time of day when

water is distributed to the community.

3.2.2 Validation of flow estimation methods
The dataset for this analysis spans over 13 days. To validate

the proposed methods, totalized volume readings from a flow

meter were recorded at different points in time, with at least a

day between consecutive readings. This approach ensured that

cumulative errors could be observed and analyzed over an extended

period. Unlike the controlled baseline experiments, this scenario

was entirely uncontrolled, meaning the operator turned the pump

on and off as needed to meet the requirements of the distribution

network. Figure 8 illustrates the tank level profile along with

the corresponding pump status over the observed period. The

pump status is represented as 1 whenever the pump is turned

on and 0 when it is off, providing a clear indication of active

pumping intervals and their impact on tank level fluctuations. The

challenge in such an uncontrolled setting is that the operator’s

actions, network withdrawal rates, and pump operation schedules

vary dynamically. Both estimation methods were evaluated to

assess their accuracy in determining water consumption. The

predefined flow rate method, derived from baseline experiments,

was applied whenever the pump status was on. This approach

TABLE 2 Outlet valve conditions for the marked sections in Figures 5c, e, g and final cumulative volume values for Experiments 1, 2, and 3

corresponding to the plots in Figures 5d, f, h.

Experiment A-B B-C C-D D-E Cumulative flows from
sensor readings (liters)

Estimation with
predefined flow rates

(liters)

Dynamic
estimation
(liters)

1 full close full close 10.56 10.57 10.43

2 half close half close 6.50 6.51 6.25

3 half full - - 18.98 18.32 18.65
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FIGURE 6

Illustration of the setup, including the overhead tank and meter installation.

TABLE 3 Average flow rate for the sections corresponding to the tank

level profiles shown in Figure 7a.

Section Qin (LPM) (average) Qout (LPM) (average)

A–B 183.96 0

C–D 186.37 0

E–F 0 462.92

assumes that the borewell yield remains constant throughout the

experiment, similar to the methodology used in Case Study 1

(Section 3.1). Alternatively, the dynamic flow estimation method

was implemented, where flow rates were continuously adjusted

based on tank level changes.

The dynamic estimation allows for adaptation to changing

conditions without assuming a constant borewell flow rate over

the entire period. This algorithm is applied only to the time

intervals when the pump is active within the given dataset. For

the dataset presented in Figure 8, the marked section indicates

the recorded cumulative values at specific timestamps. Table 4

provides a comparison of volume estimations obtained using both

the predefined flow rate method and the dynamic flow estimation

method, alongside the actual recorded values from the flow meter.

As discussed earlier, the predefined flow rate method relies

on flow rates recorded during baseline experiments. However,

in real-world scenarios, this assumption is rarely accurate.

Bore well flow rates fluctuate over time due to groundwater

depletion and seasonal variations, leading to potential errors

when applying a fixed flow rate over extended periods. The

estimation error is likely to increase as seasonal conditions

change. Additionally, this method requires prior knowledge

of the flow rate, which may not always be available. The

predefined method yielded a mean absolute percentage error

(MAPE) of 2.73%, with a 95% confidence interval ranging

from 1.18% to 4.40%. While, dynamic flow estimation approach

continuously adjusts flow rates based on tank level changes,

allowing for better adaptability to fluctuations in bore well yield

and network withdrawal patterns. However, despite its flexibility,

the dynamic method resulted in a slightly higher MAPE of

2.76%, with a 95% confidence interval ranging from 1.42%

to 4.00%.

This approach was further extended to two additional

30,000-liter OHTs within the same peri-urban region of Chennai,

where similar water distribution patterns were observed. While

no dedicated flow meters were installed at these sites, the

methodology was still applied using tank level sensors and

auxiliary data. Figure 9 illustrates the tank level profiles for two

additional OHTs along with the daily water supply estimation

using the dynamic estimation method, highlighting the daily

supply patterns. These profiles provide valuable insights into

the system’s operational characteristics, including refilling

schedules, withdrawal trends, and supply intermittency. The

results demonstrate that the proposed method remains effective

even in real-world scenarios where direct flow measurement is

unavailable, reinforcing its potential for scalable deployment in

similar water distribution systems.

3.3 Case study 3

Building on the approach outlined in Case Study 2, this

methodology was validated with another system operating within

the IIT Madras campus. The setup used is identical to that

described in Raphael and Narasimhan (2022), where the estimation

is performed on a sump system. In this setup, the YF-DN50 flow

sensor is installed on the outlet side of the sump, and the MB7566

SCXL-MaxSonar-WR ultrasonic sensor is used to measure the level

of water in the sump.

The tank level profiles illustrated in Figure 2 are used for

estimating inlet and outlet flows. This system presents unique

challenges as the outlet flow rate changes abruptly when demand

is met at the demand node, and the inlet flow rate shows significant

variations. In such complex systems, relying on predefined flow

Frontiers inWater 14 frontiersin.org

https://doi.org/10.3389/frwa.2025.1586916
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Jamadarkhani et al. 10.3389/frwa.2025.1586916

FIGURE 7

(a) tank level profiles from the baseline experiment, with corresponding sections marked as detailed in Table 3. (b, c) inlet cumulative volume and the

inlet flow rates for the baseline experiment respectively.

FIGURE 8

Tank level profile and corresponding pump status over the observed period.

rates is impractical. Therefore, in this case study, auxiliary data

is utilized by identifying timestamps when the outlet flow rate is

greater than zero.

The figure shows that initially there are periods where the

outlet is active, but the sump level remains flat, followed by

an increase when the outlet is turned off. This indicates that

the inlet was also active during this time, making the inlet

and outlet flow rates equal. In this scenario, the Qout which

is an unknown flow rate Qu was estimated using Equation 7

by considering Qin from the nearest increasing period. Finally,

when only the outlet is active, the sump level decreases.

The final volume obtained for outlet volume from the flow

sensor is 16,553 liters, and through dynamic estimation it is

17,113 liters.

4 Discussion and conclusion

This study presented a cost-effective and non-intrusive

approach to estimating water consumption in overhead tanks
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(OHTs) and reservoirs by utilizing tank level sensors and

auxiliary data sources. Unlike conventional smart meters,

which require intrusive installation and are expensive, our

methodology provides a scalable alternative that significantly

reduces infrastructure and operational costs while maintaining

high accuracy.

Two estimation methods were explored: predefined flow rate

estimation and dynamic flow estimation. The predefined flow

method relied on flow rates obtained from baseline experiments

and auxiliary indicators such as pump status, demonstrating

minimal error when flow rates remained stable. However, due to

the natural variability of the borewell yields and fluctuating demand

patterns, this approach can introduce higher errors over extended

periods. To address this, the dynamic flow estimation method

was implemented, which continuously updates flow rates based on

tank level variations. This method proved to be more adaptive,

TABLE 4 Comparison of volume estimations using predefined flow rate

and dynamic flow estimation methods with actual recorded values from

the flowmeter.

Section Flow
meter
(L)

Estimation with
predefined flow

rates (L)

Dynamic
estimation

(L)

A–C 538,851 513,123 524,105

A–B 463,503 466,011 480,318

B–C 75,347 77,945 71,721

C–D 209,079 213,085 211,357

D–E 75,744 75,655 75,604

E–F 93,953 99,253 97,817

effectively capturing short-term fluctuations in borewell yield and

network withdrawal.

While the dynamic method relies on physical principles

and trend filtering, its structure aligns closely with implicit

regularization objectives commonly seen in machine learning.

This opens up future opportunities to treat flow estimation

as a learning problem, where data-driven methods could

complement the physics-based models to improve robustness. This

interpretation opens the door to incorporating additional learning-

based extensions, such as adaptive regularization, Bayesian

priors, or neural approximators for flow patterns under more

complex settings.

The proposed approach was validated through controlled and

uncontrolled case studies, demonstrating its robustness across

various operational conditions. The results indicate that while

predefined flow rates provide highly accurate estimations under

controlled settings, dynamic flow estimation is better suited for

real-world scenarios where flow rates are subject to change.

In terms of affordability, Commercial Off-The-Shelf (COTS) 3-

inch smart water meters, typically used in 30,000-liter OHTs, with

built-in communication capabilities that periodically store data in

the cloud are available. These meters cost approximately $500, with

an additional $250 for installation. While they can be used upto

a maximum flow rate of 100,000 liters per hour, they are often

optimized for a limited operational range and can struggle with

accuracy at lower flow rates also their accuracy deteriorates over

time due to factors such as silt deposition and pipeline corrosion.

Offsite recalibration requires the instrument to be removed and

serviced while onsite recalibration requires experienced technicians

and portable reference equipment. In contrast, the methodology

proposed in this paper provides a cost-effective alternative, with

total expenses–including installation–limited to approximately $75,

FIGURE 9

Tank level profile with the corresponding daily water supply.
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without limiting the range of flow rate, while maintaining reliable

water usage monitoring. Moreover, it simplifies commissioning,

requiring no invasive plumbing modifications or specialized

equipment. Calibration is straightforward and does not require

mobile calibrators or specialized technicians and does not rely on

fixed flow measurement ranges, allowing it to adapt seamlessly

across a wide range of flow conditions.

This approach directly supports Sustainable Development Goal

6, particularly Target 6.5, which calls for implementing integrated

water resources management at all levels (United Nations, n.d.).

By enabling flow estimation without intrusive infrastructure,

the method equips utilities with actionable data to balance

supply and demand, reduce losses, and improve decision-making.

It complements initiatives such as India’s Jal Jeevan Mission

(Ministry of Jal Shakti, 2022, 2019), which emphasizes on robust

operation and maintenance, community-led monitoring, and data-

driven decision making. Moreover, by equipping local governance

bodies with analytical tools that do not rely on high-cost flow

meters, the approach promotes transparency, empowers low-

level committees, and supports sustainable service delivery. The

insights gained from such analysis can also inform national-level

policy and planning by identifying systemic issues and prioritizing

infrastructure interventions.

In conclusion, this study establishes a reliable, smart water

metering framework that requires minimal infrastructure. The

proposed approach offers a practical, scalable solution for water

management, particularly in resource-constrained environments,

paving the way for more efficient and sustainable water distribution

systems. The proposed methodologies are filed under Indian Patent

CONFIDENTIAL; - PATENT PENDING 202541010251.
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