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A mobile ultrasonic stratified flow velocity measurement device, which utilizes a

pair of ultrasonic transducers, was characterized by its low power consumption

and the ability to measure multi-layer flow velocities in channels, o�ering

advantages in water measurement applications in agricultural irrigation areas.

The study combined experimental research with computational modeling to

investigate the impact of ultrasonic propagation time in downstream and

upstream flows and the e�ect of measurement position on flow velocity

prediction. Traditional time-di�erence methods were found to be less e�ective

for calculating water flow velocities using the proposed mobile ultrasonic

transducers. By employing the AdaBoost algorithmwith decision tree algorithms

asweak classifiers, the relative error of the testing set was<5% in 85.71% of cases,

achieving an R² value of 0.951, an RMSE value of 0.071, anMSE value of 0.795, and

anMAE value of 0.654. The experimental results demonstrated that the use of the

AdaBoost algorithm from machine learning for the mobile ultrasonic stratified

flow velocity measurement device was feasible and e�ective.

KEYWORDS

water measurement, irrigation area, flow velocity, machine learning, ultrasonic transit

time method

1 Introduction

Research Significance Flow measurement is an indispensable technical foundation in

industrial production and holds significant importance in the national economy, national

defense construction, and scientific research (Ling, 2007; Sun et al., 2018). Currently,

water conveyance in agricultural irrigation districts primarily relies on pipeline and

open channel methods, each with different water measurement techniques. Compared

to open channel methods, pipeline water measurement has relatively higher accuracy

and technological maturity (Sun and Zhao, 2012). Traditional open channel water

measurement methods include hydraulic structures, special facilities (flumes and weirs),

and instrument-based methods. Due to the complex construction site environment, the

accuracy of open channel water measurement is relatively low compared to that of pipeline

measurement. According to relevant water conservancy regulations, regardless of the

water measurement method used, calibration must be conducted using a rotor current

meter (Rongxiang et al., 2018). This study proposes a new water measurement device—

a mobile ultrasonic layered water measurement device—which consists of four parts: a

stepper motor, ultrasonic transducers, a sliding rail column, and a synchronous current
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meter system, as shown in Figure 1. A pair of ultrasonic transducers

are positioned at the same horizontal level, fixed at the bottom

by two stainless steel plates, which are also attached to the shaft

of the stepper motor. The middle of the stainless steel plates

are welded with a horizontal support beam, which are fixed

in position with the column and moves synchronously. Five

current meter mounting slots were evenly distributed on this

horizontal support beam for installing and calibrating current

meters. Regarding research progress, traditional ultrasonic water

measurement equipment is comprised of fixed single-channel and

multi-channel ultrasonic current meters (Jackson et al., 1989;

Jianfei et al., 2023). The former only measures the single-layer

line velocity of the flow profile and does not account for the

different velocity distributions in the measured flow field, leading

to larger measurement errors (Zhang et al., 2019; Lee et al., 2021),

particularly when flow variations are significant, which results in

decreasedmeasurement accuracy. The latter obtains corresponding

local flow field information from different channels but increases

equipment costs and power consumption. The increased current

also introduces noise to the ultrasonic signal, causing measurement

errors in multi-channel flow velocity (Xucun et al., 2023; Longhui,

2016). The mobile ultrasonic stratified flow velocity measurement

device is utilized with fewer ultrasonic transducers and lower

current, which does not interfere with the ultrasonic signal, thereby

offering the advantage of low-power measurement of flow velocity

at various water depths (Huang et al., 2024). Additionally, the

device is characterized by a simple structure, making it applicable to

rectangular channels of various sizes. Due to its vertical movement

in the water flow, the traditional time-difference method for

ultrasonic calculation is associated with relatively larger errors,

which presents a pressing issue for the measurement of flow

FIGURE 1

Schematic diagram of the mobile ultrasonic stratified water

measurement device. ① stepper motors, ② rotor flow meter, ③

horizontal support beam, ④ slide columns, ⑤ ultrasonic transducers.

velocity and the application of the mobile ultrasonic layered water

measurement device in agricultural irrigation channels.

Accurately predicting flow velocity has significant research

implications in the application of ultrasonic flow meters.

Comprehensive and in-depth studies on the calculation methods

for gas and fluid velocities are conducted by scholars both

domestically and internationally through experimental research,

theoretical analysis, and numerical simulation. Based on the

principles of numerical computation methods (Ling and Fusheng,

2005; Tongfu et al., 2013), the integration of flow in circular

pipes (Chapa and Rao, 2001; Wang et al., 2023) using a

fixed multi-channel approach is challenging due to the volume

constraints of ultrasonic transducers, making it difficult to obtain

average velocities frommultiple channels (Yuezhong, 2010; Pereira

et al., 2022). Instead, an approximate value is derived through

mathematical transformations, making measurement accuracy

difficult to control (Chen et al., 2020). The velocity distribution

function in the flow field was obtained by Voser (1999) through

discrete numerical integration, and the weight coefficients for the

Gauss-Jacobi formula were calculated. This method provided good

predictive results in ideal symmetrical flows but deviated from

actual flow fields (Voser, 1999). Iooss et al. (2002) described a

numerical procedure to estimate the uncertainties due to these

approximations in the case of fully developed turbulence. The

ultrasonic propagation is modeled in 2D, moving inhomogeneous

media via a ray tracing algorithm. Influence of mean profiles

of temperature and velocity is studied on simple examples.

Fluid temperature fluctuations and fluid velocity turbulence

are considered in the stochastic framework to obtain average

uncertainties on the measurements of the liquid flow rate (Iooss

et al., 2002). Pannell et al. (1990) divided the circular pipe into

core turbulent regions, transition regions, and laminar regions

based on fluid mechanics theory. This method provides higher

measurement accuracy at low Reynolds numbers but is less suitable

formeasuring flow in rectangular channels in agricultural irrigation

areas (Pannell et al., 1990). Zheng et al. (2015) suggested first

obtaining the cross-sectional distribution of the flow field using

CFD simulation software and then applying Gaussian methods

to correct and calculate the flow velocity, which can reduce

errors to some extent. Luntta and Halttunen (1999) proposed

that support vector machines, combined with particle swarm

optimization algorithms, were used to determine relaxation factors

and regularization parameters. This approach further established

the optimal hyperplane and facilitated prediction using Lagrange

multipliers and duality theory algorithms. Although this method

produced good prediction results, it was noted for its low

computational efficiency. Further research was deemed necessary

to measure real-time flow velocity. The traditional flow calculation

method based on Gaussian integration encountered numerous

issues in multi-channel ultrasonic flow measurement. Zhao et al.

(2014) highlighted that the two primary factors affecting the

sensitivity of multi-channel ultrasonic flow measurement to the

cross-sectional profile of the flow field were channel positions and

weights. For the first time, a neural network computation model

was applied in ultrasonic flow velocity measurement research.

This significantly improved prediction accuracy by interpolating

the flow field profile and applying weighted corrections to
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FIGURE 2

Layout of test device. ① Control gate, ② rectangular canal, ③ mobile ultrasonic stratified water measurement device, ④ triangular weir, ⑤ backwater

corridor, ⑥ water pump, ⑦ underground reservoir.

multi-channel ultrasonic flow velocities. However, the alternating

backward gradient propagation of neural networks resulted in

slow convergence speed, consuming significant power during

computation (Jie et al., 2024; Bahrami et al., 2024). Xiaoyu

et al. (2017) employed computational fluid dynamics methods

based on the ultrasonic transit time method to investigate six-

channel three-planar multi-channel flow measurements. It was

found that when the flow field distribution was asymmetric,

changes in the installation angles of multi-channel flow meters

affected the flow measurement results, posing high requirements

for construction sites in practical applications and making it

difficult to achieve ideal results (Xiaoyu et al., 2017). Afaridegan

and Amanian (2025) have demonstrated that the LSTM-ALO

model, as a hybrid machine learning approach, shows significant

advantages in prediction accuracy, especially in handling complex

time series data in hydraulic engineering. However, the model

has also faced challenges such as poor interpretability, the risk

of overfitting, and high computational resource demands. In

practical applications, these advantages and disadvantages need to

be balanced, with corresponding optimizations and improvements

considered (Afaridegan and Amanian, 2025). Adnan et al. (2025)

have demonstrated that the RVFL-EROAmodel has proven to be an

effective tool for streamflow prediction, demonstrating significant

improvements in accuracy and performance, especially in regions

with limited data. Its ability to handle complex relationships and

estimate peak streamflow values has positioned it as a valuable

asset in hydrological forecasting. However, its computational

complexity and sensitivity to input choices have highlighted the

need for further optimization and simplification to ensure broader

applicability, particularly in real-time and resource-constrained

environments (Adnan et al., 2025).

Research on multi-channel ultrasonic water measurement was

focused on the ultrasonic transit time method and Doppler method

for calculating flow velocity in the past. The volumetric flow rate

was obtained by multiplying the line-average velocities at multiple

fixed positions by corresponding weight coefficients and summing

them up. This method was based on the assumption of ideal

flow fields and encountered many challenges when applied in

practical ultrasonic flow meters (Zhen et al., 2013). Research on

mobile multi-layer ultrasonic flow measurement devices has not

been reported yet. The key problem to be addressed was to draw

on previous studies related to the installation angles of ultrasonic

transducers (Guolong et al., 2022), while factors such as the large

variation in water volume within channels in agricultural irrigation

areas were considered. Through a combination of experimental

research and computationalmodel prediction, experimental studies

on mobile multi-layer ultrasonic flow velocity measurement were

conducted. The outcomes could provide a theoretical basis for the

application and promotion of mobile multi-layer ultrasonic flow

measurement devices in agricultural irrigation areas.

2 Methodology

2.1 Test configuration and procedure

The experiment was conducted in the hydraulics laboratory

of the Xinjiang Water Conservancy and Hydroelectric Power

Research Institute. The layout of the experimental setup is shown

in Figure 2. Water from the underground reservoir was pumped

to a high-level water tank and then introduced into a stilling

basin. Following the stilling basin, a rectangular open channel

was installed, which was 25m long, 1m wide, and 1.3m deep,

with a longitudinal slope ratio of 1/1,000. The open channel was

constructed using brick and concrete materials, and the cement

mortar was smoothed with trowels to ensure a smooth surface

and tight joints with the edges of the bricks. A mobile ultrasonic

stratified water measurement device was installed 10m from the

inlet of the open channel, and a control gate was placed at the

end of the open channel to regulate the water depth. Downstream

of the control gate, a triangular weir was installed to calibrate

the flow rate in the open channel. After passing through the

triangular weir, the water flowed into a return corridor and

was diverted back to the underground reservoir, thus achieving

a closed-loop water circulation system. In this experiment, the

vertical position of the ultrasonic transducer was set as the starting

point, 8 cm above the channel bottom. The distance between the

ultrasonic transducer and the initial position was defined as Yi,
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FIGURE 3

Schematic diagram of working and calculating principle of

ultrasonic transit time method.

and the non-dimensionalization was performed by dividing Yi by

the maximum displacement Ymax, i.e., Y = Yi/Ymax. The cross-

sectional dimensions and bottom slopes of the open channels

in agricultural irrigation areas vary. This experiment primarily

focused on 11 different flow rates, each tested for 2 h, with specific

conditions detailed in Table 1.

To verify the ultrasonic measurement of water flow velocity,

five rotor current meters were evenly deployed 10 cm downstream

at the same horizontal elevation as the connecting line of a pair of

ultrasonic transducers. These current meters were equipped with

the LGY-III multifunctional intelligent current meter developed

by the Nanjing Hydraulic Research Institute. The equipment,

consisting of a terminal, a main unit, and a propeller combination,

was utilized to test and collect flow velocity data, with a precision of

up to 0.01 cm/s.

2.2 Prediction model description

2.2.1 Ultrasonic transit time method
The principle of the transit time method in ultrasonic

flowmeters (Qi et al., 2016) is that ultrasonic signals are transmitted

from one transducer and are received by the other transducer

after being influenced by the flow field, temperature field, and

impurities in the water through multi-physical field coupling. Each

transducer emits a wave signal once, and the transit time of the

ultrasonic signal is used to extract flow-related information from

the sound pressure (pulse) signal. The propagation times of the

ultrasonic signal in the downstream and upstream directions are

obtained (British Standards Institute Staff, 2017), and the fluid

velocity is calculated accordingly. A schematic diagram illustrating

the calculation principle of the transit time method in ultrasonic

flowmeters is shown in Figure 3, and the calculation formula for

the t transit time method is expressed as follows:

V̂i =
( Lt1 −

L
t2
)

2cosθ
(1)

where: V̂i—The i-th predicted the line velocity of the water

across the channel in the direction of flow, in cm·s−1;

L—The path lenth(distance between transducer A and

transducer B), in cm;

θ—The angle between the path and direction of flow, in ◦;
t1—The transit time from transducer A to B, in µs;

t2—The transit time from transducer B to A, in µs.

2.2.2 Machine learning model
2.2.2.1 Decision tree

Decision Tree (DT) regression, as a tree-structured regression

model with one root node and several leaf nodes, is used to

predict values. The prediction is made by recursively partitioning

the input, starting from the root node to determine which leaf

node the sample data should belong to. The target value of the

training samples within that leaf node is then used as the predicted

value. Each path from the root to a leaf node corresponds to

a unique test sequence (Jung et al., 2023). In establishing the

model for this experiment, the first step involves calculating the

information gain index for three features (propagation time in

both directions of ultrasonic transit time and speed measurement

position), and ranking the feature contributions. The second step

includes partitioning the dataset based on the size of the feature

contributions to form sub-nodes. The third step repeats the above

steps recursively for each sub-node until the stopping condition

is met. The mean target value of the training samples within

each sub-node, defined as ŷm, the calculation formula is expressed

as follows:

ŷm = 1

Nm

∑

i∈Dm

yi (2)

Where: ŷm—Per leaf node target mean value;

Dm—The set of sample indices within the m-th child node;

Nm—The number of samples within the m-th child node;

yi—Target value for the training sample associated with the i-th

leaf node.

2.2.2.2 Random forest

The Random Forest model (RF), proposed by Breiman (2001)

constitutes a machine learning algorithm that amalgamates the

Bagging class of supervised ensemble learning algorithms with the

random subspace method. It is designed to augment generalization

performance through the construction of multiple decision trees

and their integration. In the context of this experiment’s model

establishment, training data are sampled with replacement to

generate several distinct datasets. Subsequently, a decision tree is

constructed for each dataset, adhering to the process detailed in

Section 1.2.2.1. Features are randomly selected for splitting at each

leaf node’s branching point, rather than considering all possible

features. The final prediction value, denoted as Ŷ , is derived by

averaging the predictions from each tree, the calculation formula

is expressed as follows:

Ŷ = 1

Ntrees

Ntrees
∑

i=1

fi(X) (3)

where: Ŷ—The projected value;

Ntrees—Number of trees in the model;

fi(X)—Predicted values associated with the i-th tree.
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TABLE 1 Design experience condition table.

Flow Location Number of data Flow Location Number of data Flow regime

Q/(L·s−1) Y units Q/(L·s−1) Y units

73.19 0.05 22 59.7 0.05 42 Submerged discharge

0.1 31 0.1 36 Submerged discharge

0.15 35 0.15 40 Submerged discharge

0.2 43 0.2 36 Submerged discharge

0.25 35 55.5 0.05 46 Submerged discharge

0.3 50 0.1 45 Submerged discharge

0.35 34 0.15 39 Submerged discharge

68.83 0.05 44 0.2 21 Submerged discharge

0.1 33 48.87 0.05 52 Submerged discharge

0.15 33 0.1 55 Submerged discharge

0.2 37 0.15 41 Submerged discharge

0.25 42 47.86 0.05 49 Submerged discharge

0.3 40 0.1 43 Submerged discharge

66.16 0.05 42 0.15 18 Submerged discharge

0.1 37 46.72 0.05 72 Submerged discharge

0.15 42 0.1 66 Submerged discharge

0.2 44 0.15 10 Submerged discharge

0.25 41 44.26 0.05 63 Submerged discharge

62.2 0.05 45 0.1 51 Submerged discharge

0.1 42 40.96 0.05 70 Submerged discharge

0.15 49 0.1 59 Submerged discharge

0.2 49 Submerged discharge

0.25 21 Submerged discharge

2.2.2.3 Gradient boosting decision tree

Gradient Boosting Decision Tree (GBDT) regression is

achieved by combining multiple decision trees as weak learners

(Lin, 2022). The prediction error of the previous learner is

calculated by the next learner, gradually reducing the model’s

residuals on the training data. GBDT can flexibly handle

both continuous and discrete features without requiring feature

transformation. During iterative computation, multiple weak

learners are combined in a serial manner. For the model

construction in this experiment, the first step involves the

calculation of the negative gradient, which represents the residual

of the current model for the previous sample. In the second step,

a new weak learner is learned to fit this residual. In the third

step, the learning rate is specified to control the weight of each

weak learner, updating the model’s predicted values. The final

predictive model is the sum of the computed values of the weak

learners, denoted as ŷ(x), the calculation formula is expressed

as follows:

ŷ (x) =
T

∑

t=1

ηht(x) (4)

where: ŷ(x)—Accumulated value of weak learners;

η—Learning rate;

ht(x)—Weak learners for the t-th tree.

2.2.2.4 Adaptive boosting

The Adaptive Boosting(AdaBoost) model, an ensemble

learning method (Meng-ran et al., 2019), is designed to construct

a strong regressor by combining multiple weak regressors

to accomplish training tasks. Proposed by Yoav Freund and

Robert Schapire, it is a type of Boosting algorithm. In the model

establishment for this experiment, the first step involves the

initialization of weight values, the training of a weak regressor,

and the calculation of the error. The second step entails the

readjustment of weights based on the previous calculation results,

so that samples with larger errors receive more attention in the

next round of training, while the weights of samples with smaller

errors are reduced. The third step involves the repetition of the

above process to continuously alter the weights of the samples in

the learning process until the weak regressor achieves zero error.

The loss function used in AdaBoost differs from that in gradient

boosting tree models. The final prediction model is the cumulative

value ĝ(x) calculated by the weak learners, the calculation formula
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is expressed as follows:

ĝ (x) =
T

∑

t=1

αt · ht(x) (5)

where: at—Cumulative value of the weak learner for the t-

th tree;

at—weighted value.

2.3 Flow velocity prediction

2.3.1 The collection and pre-processing of data
The ultrasonic transit time and flow velocity data used in

this experiment were stored in a MySQL database. The ultrasonic

transmitter was subjected to errors due to its own track sliding and

water flow during operation, necessitating the preprocessing of the

raw data.

2.3.2 Outlier handling
To reduce the errors in data caused by environmental and

human factors, the 3-sigma rule of normal distribution (Xiuli et al.,

2023) was applied to process the propagation times of ultrasonic

waves that were traveling with and against the water flow at the

same location during a certain period, as shown in Figure 4. The

calculation formula is expressed as follows:

µ − 3σ < t1, t2 < µ + 3σ (6)

where: µ—The mean value over a certain time period;

σ—The standard deviation value over a certain time period.

2.3.3 Processing of ultrasonic transit time in the
downstream and upstream flows

The ultrasonic upstream and downstream times obtained from

the experiment were processed. After the outliers were filtered

according to Section 1.3.2, the average propagation time in the

ultrasonic upstream and downstream flow at the same location

during a certain period was calculated, and the calculation formula

is expressed as follows:

ts =
1

N

N
∑

i=1

ti (7)

tn = 1

M

M
∑

i=1

tj (8)

where: ts,tn—The average transit time of ultrasonic waves at the

same position in the flow of water over a certain period of time for

both downstream and upstream currents, in µs;

N,M—The amount of experimental data on the transit time of

ultrasonic waves at the same position in the flow of water for both

downstream and upstream currents has been collected;

ti, tj—The transit time of ultrasonic waves at the same location

in the flow of water of the downstream and upstream currents was

measured, in µs.

2.3.4 Dimensionless data processing
To eliminate the dimensional differences at measurement

points affecting the model’s prediction accuracy, the feature range

was normalized to the [0,1] interval. In the experiment, the

ultrasonic transducer and the stepper motor were fixed on a

stainless steel plate for synchronous displacement. To study the

flow velocity conditions at different water depths, the initial height

was set when the ultrasonic transducer reached its lowest point,

which was 8 cm above the channel bottom. The distance between

the ultrasonic transducer and the initial position was defined as Yi,

and it was normalized with respect to the maximum displacement

value Ymax, i.e. Y= Yi/Ymax. The stepper motor was controlled by a

program to move 5 cm each time, and data collection began 2min

after each displacement stop, followed by another 2-min interval

before the next displacement and data collection.

To effectively avoid the influence of extreme velocities in the

flow field, the average value of the velocity measurements from

five flow meters were taken to obtain the final research data for

modeling and predicting flow velocities. After processing, 139 sets

of experimental data were obtained, each set containing three

independent variables (measurement position, ultrasonic transit

time in both directions) and one dependent variable (flow velocity

measured by the rotor flow meter). A random 70% of the samples

were randomly selected with replacement from the dataset for use

as the training set, while the remaining 30% of the samples were

utilized as the testing set, the distribution characteristics of the data

set are shown in Figure 5.

3 Results and discussion

3.1 Modeled flow velocity predictions

Based on the principle of the ultrasonic transit time method,

it was determined that the location factor for ultrasonic velocity

measurement could be neglected when estimating flow velocity.

The flow velocity was calculated using two variables: the

propagation times of ultrasound in the downstream and upstream

directions. In comparison to the ultrasonic transit time method,

the other four types (DT, RF, GBDT, and AdaBoost), which are

categorized as machine learning models, required three variables—

the propagation times of ultrasound in both downstream and

upstream directions and the position of velocity measurement—

to estimate the flow velocity. Consequently, this section of the

discussion was bifurcated into distinct parts for transit timemethod

predictions and machine learning model forecasts.

3.1.1 The flow velocity prediction by ultrasonic
transit time method

Based on the working mechanism of the mobile ultrasonic

stratified water measurement device and the principle of the

ultrasonic transit time method for calculation, it can be known

that after processing the transit time values of ultrasonic waves in

the different directions as described in Sections 1.3.2 and 1.3.3, the

predicted flow velocity values can be calculated. A linear regression

was performed on these predicted values. The relative error δ

[δ = |(Vmeasured − Vpredicted )/Vmeasured|] between the ultrasonic
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FIGURE 4

Sigma rule removes noisy data. (a) t1 values are treated by the 3sigma rule. (b) t2 values are treated by the 3 sigma rule.

FIGURE 5

Distribution of feature scaling values for dataset. (a) Visualization of feature scaling values for training set. (b) Visualization of feature scaling values for

testing set.

transit time method predicted values and the actual measured flow

velocities is shown in Figure 6a. From the figure, it can be seen that

in the training set, the proportion of relative errors <5% is 31.96%,

and <10% is 64.95%. In the testing set, the proportion of relative

errors <5% is 28.57%, and <10% is 47.62%. The comparison

between the ultrasonic transit timemethod predicted values and the

actual measured flow velocities is shown in Figure 6b. In the figure,

the x-axis represents the predicted values, which are the calculated

values using the ultrasonic transit time method, and the y-axis

represents the actual measured flow velocities from the flowmeter

in the experiment. From the data distribution of the training and

testing sets, it can be observed that the prediction effect of the

ultrasonic transit time method in measuring flow velocities using

the mobile ultrasonic device is not satisfactory.

3.1.2 Machine learning flow velocity prediction
model

Based on the working mechanism of the mobile ultrasonic

stratification water measurement device and the principles of

machine learning, it was found that the optimal parameters for each

machine learning model could be set by using the ultrasonic transit

time method in both downstream and upstream flow directions

and the position of velocity measurement as independent variables.

These optimal parameters were determined for each model using a

grid searchmethod (Xianqing et al., 2012), machine learning model

learning curves for parameters as shown in Figure 7. The optimal

parameter settings for eachmachine learningmodel were presented

in Table 2.

The same sequence dataset as the ultrasonic transit time

method was utilized, and machine learning models were employed

to predict the training and testing datasets. The DT, RF, GBDT,

and AdaBoost prediction models calculated the relative error

values. These values are depicted in Figures 8a–11a. From these

figures, we can observe that, in the training set, the proportions

of relative errors <5% were 100.00% for DT, 92.79% for RF,

100.00% for GBDT, and 100.00% for AdaBoost. The proportions

of relative errors <10% were all 100.00% for these models. In the

testing set, the proportions of relative errors <5% were 85.71%,

83.33%, 85.71%, and 85.71%, respectively, and the proportions of

relative errors <10% were 95.24%, 92.86%, 95.24%, and 95.24%,

respectively. The comparisons between the predicted andmeasured

values for the DT, RF, GBDT, and AdaBoost models are shown in

Figures 8b–11b. From the distribution of the training and testing
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FIGURE 6

Prediction model of ultrasonic transit time method. (a) Absolute value of relative error. (b) Comparison of predicted and measured values.

FIGURE 7

Machine learning model learning curves for parameters. (a) DT Learning curves for parameters. (b) AdaBoost learning curves for parameters. (c) RF

learning curves for parameters. (d) GBDT learning curves for parameters.

TABLE 2 Model grid search optimization parameters.

Model N_estimators Max_depth Min_samples_split Criterion

DT 11 2 Friedman_mse

RF 48 4 6 Friedman_mse

GBDT 17 4 2 Friedman_mse

AdaBoost 5 11 Friedman_mse
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datasets, it is evident that the prediction accuracy of the mobile

ultrasonic device for flow velocity measurement was significantly

improved compared to the ultrasonic transit time method when

utilizing the DT, RF, GBDT, and AdaBoost models.

3.2 Evaluation of model accuracy

Based on the calculation results presented in Section 2.1, it is

found that the mobile ultrasonic transit timemethod for measuring

flow velocity is not ideal. Consequently, this section focuses on

further evaluating the machine learning models. Using the training

set and testing set defined in Section 1.3.4, models are trained and

tested with DT, AdaBoost, RF, and GBDT algorithms to predict

flow velocity. The accuracy of the models is compared using four

evaluation metrics: mean absolute error (MAE), mean squared

error (MSE), root mean squared error (RMSE), and coefficient of

determination (R2) (Adnan et al., 2019; Fukami et al., 2020). The

best mobile ultrasonic flow velocity predictionmodel is determined

based on these comparisons. Among thesemetrics, MSE,MAE, and

RMSE have a range of [0, +∞], where values closer to 0 indicate

better precision and fit of the model, while the R2 metric has a

range of [0, 1], with values approaching 1 indicating better model

fit (Meng et al., 2024). The formulas for calculating each evaluation

metric are expressed as shown in Equations 9–12, and the results of

each metric are illustrated in Figure 12.

MAE = 1

n

n
∑

i=1

∣

∣

∣

Vi − V̂i

∣

∣

∣

(9)

MSE = 1

n

n
∑

i=1

(Vi − V̂i)
2

(10)

RMSE =
√
MSE (11)

R2 = 1−
∑n

i=1 (Vi − V̂i)
2

∑n
i=1 (Vi − V)

2
(12)

Where: Vi—The flow velocity measure value for the ith, cm·s−1

n—Number of experiment groups

The computational results derived from Figure 12 indicated

that four machine learning models were found to exhibit good

predictive performance, with the R2 values of the testing set

decreasing in the following order: AdaBoost, DT, GBDT, and RF.

The R2 value of the AdaBoost model on the training set was 1.0,

with an RMSE value of 0.071, an MSE value of 0.005, and an

MAE value of 0.023. The R2 value of the AdaBoost model on the

testing set was 0.951, with an RMSE value of 0.071, an MSE value

of 0.795, and an MAE value of 0.654. Compared to other machine

learning models on the testing set, the AdaBoost model was found

to have the highest R2 value and the lowest RMSE, MSE, and

MAE values, indicating the best prediction accuracy. Additionally,

Taylor diagrams (Figure 13) were used to present the models as

individual polar plots (Adnan et al., 2023), summarizing three

key statistical indices: RMSE, standard deviation, and correlation

coefficient. The model is drawn from training set and testing

dataset. The Taylor diagrams of the testing set clearly shows that

the correlation coefficient of AdaBoost (0.951) is higher than that

of other models.

4 Discussion

This study presented a novel mobile ultrasonic stratified

flow velocity measurement device, integrating machine learning

algorithms to predict flow velocities in agricultural irrigation

channels. The comparison of traditional ultrasonic transit time

methods with machine learning-based models revealed several

key findings that highlight the advantages and limitations of

each approach.

4.1 E�ectiveness of the mobile ultrasonic
stratified flow velocity measurement device

The experimental results demonstrate that the mobile

ultrasonic stratified flow velocity measurement device offers a

practical and low-power solution for measuring flow velocities at

multiple water depths. This device is characterized by its ability to

perform velocity measurements with minimal power consumption

and without introducing noise that often affects multi-channel

ultrasonic flowmeters. The use of fewer ultrasonic transducers

eliminates the need for complex multi-channel configurations,

which are not only expensive but also prone to higher energy

consumption and noise interference. Therefore, the simplicity

of the device’s design makes it particularly well-suited for field

applications in agricultural irrigation systems, where channel sizes

and flow conditions may vary.

However, the traditional ultrasonic transit time method proved

to be less effective in estimating flow velocities, with notable

inaccuracies in predicting water flow compared to the machine

learning models. The relative error analysis showed that, while

the ultrasonic transit time method predicted flow velocities with

errors below 5% in only 28.57% of cases, machine learning models

like AdaBoost achieved significantly better performance, with

relative errors under 5% in 85.71% of cases. This suggests that the

traditional ultrasonic transit time method struggles to account for

the variations in flow dynamics, especially in non-ideal, variable

conditions typical of agricultural channels.

4.2 Comparison of machine learning
models

When comparing machine learning models (Decision Tree,

Random Forest, Gradient Boosting Decision Tree, and AdaBoost),

it is evident that machine learning can significantly improve

the accuracy of flow velocity prediction. Specifically, AdaBoost

emerged as the most effective model, outperforming other

algorithms in terms of prediction accuracy and computational

efficiency. The R² value for the AdaBoost model in the testing

set was 0.951, which is much higher than the values obtained

for the other models. Additionally, AdaBoost exhibited the lowest

RMSE (0.071) and MSE (0.795), demonstrating a more robust

fit and reduced prediction error compared to Decision Tree

(DT), Random Forest (RF), and Gradient Boosting Decision

Tree (GBDT).
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FIGURE 8

DT prediction model. (a) Absolute value of relative error. (b) Comparison of predicted and measured values.

FIGURE 9

RF prediction model. (a) Absolute value of relative error. (b) Comparison of predicted and measured values.

FIGURE 10

GBDT prediction model. (a) Absolute value of relative error. (b) Comparison of predicted and measured values.

The AdaBoost algorithm’s superior performance can be

attributed to its ability to combine weak learners to form a strong

regressor, allowing it to focus more on difficult-to-predict cases

by adjusting weights (Kim et al., 2008). This results in more

precise predictions, even in the presence of noisy or incomplete

data. Decision Trees, while effective, struggled with overfitting,

which is evident from their lower performance in real-world

testing scenarios.

4.3 The role of ultrasonic transit time and
measurement position

The ultrasonic transit time method relied on measuring the

time it takes for the ultrasonic signal to travel downstream and

upstream, which is traditionally an effective way to determine

flow velocity in ideal conditions (Qi et al., 2016). However, this

method fails to account for the dynamic flow variations commonly
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FIGURE 11

AdaBoost prediction model. (a) Absolute value of relative error. (b) Comparison of predicted and measured values.

FIGURE 12

Model prediction evaluation parameters.

found in agricultural irrigation systems, where turbulent flows

and varying flow profiles can introduce significant measurement

errors. Moreover, the measurement position, which varies with

water depth, significantly influenced the accuracy of flow velocity

predictions. This variability is more challenging to address with

traditional ultrasonic methods that do not adapt to the changing

environmental conditions.

By contrast, machine learning models such as AdaBoost and

Random Forest incorporated additional features like measurement

position and propagation times, which enabled them to capture

the complexities of flow dynamics more effectively. The ability of

these models to leverage multiple features allowed for more robust

predictions, even when environmental factors like water turbulence

or transducer misalignment introduced errors into the data.

5 Conclusion

This study focused on an experimental investigation of

the velocity prediction method for mobile ultrasonic flow

measurement equipment. This study comparing only with rotor

flow meters, the conclusions of this research could provide a

theoretical basis for water measurement applications in agricultural

irrigation canals. In practical applications, the water quality in

open channels was complex, and many issues remained to be

studied regarding the application of measurement equipment in

engineering practice. Due to limitations of time and space, the

aesthetic upgrades of mobile ultrasonic measurement devices and

the flow rate–area relationship will be further investigated in

subsequent studies. The key findings are summarized as follows:

(1) The experiment results show that the traditional ultrasonic

transit time method was not effective in calculating water flow

velocity with mobile ultrasonic transducers. The proportion

of predicted flow velocities with a relative error <5% in the

test dataset was 28.57%, which did not meet the relevant

hydraulic standards.

(2) By using the positions of the ultrasonic transducer

measurements and the transit times of ultrasound in

both downstream and upstream directions as independent

variables, further research was carried out using machine

learning models such as DT, RF, GBDT, and AdaBoost. After

grid search optimization of the model parameters, these

four models were utilized to predict the flow velocity. The

machine learning models were found to perform better than

the traditional ultrasonic transit time method. Among the four

machine learning models, the proportions of predicted flow

velocities with a relative error <5% from highest to lowest

were: AdaBoost (85.71%), DT (85.71%), GBDT (85.71%), and

RF (83.33%).

(3) For the AdaBoost model, the R² value for the training set was

reported as 1.0, RMSE was 0.071, MSE was 0.005, and MAE

was 0.023; in the testing set, the AdaBoost model had the

highest R² value at 0.951 compared to other machine learning

models, and the smallest values for the other three evaluation

metrics: RMSE was 0.071, MSE was 0.795, andMAE was 0.654.

It was evident that the AdaBoost model had higher prediction

accuracy and a better fit compared to other machine learning

models, making it more suitable for mobile ultrasonic flow

measurement equipment.

The study also presents several limitations that require further

attention in future research. First, the performance of the device

was only validated using the rotor flowmeter, and the experimental
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FIGURE 13

Taylor diagrams of the observed and predicted flow velocity by DT, AdaBoost, RF and GBDT in dataset. (a) Taylor diagram of each model in the

training set. (b) Taylor diagram of each model in the testing set.

conditions were somewhat limited, focusing on a specific range of

flow velocities and flow conditions. Therefore, future studies should

expand the experimental scope to include a wider range of flow

velocities, water qualities, and environmental conditions to assess

the broader applicability of the model. In terms of algorithms,

while AdaBoost showed excellent performance, other advanced

machine learning algorithms, such as deep learning models and

support vector machines, may offer further improvements in

prediction accuracy. Future work should consider a comprehensive

comparison of various machine learning algorithms and optimize

the current models to improve the overall performance of

the device.

In conclusion, while the mobile ultrasonic stratified flow

velocity measurement device demonstrated clear advantages in

terms of accuracy and low power consumption, challenges

remain in real-world applications, particularly in dealing with

fluctuating water quality and dynamic flow conditions. Future

research will focus on optimizing measurement algorithms,

enhancing device performance, and exploring broader applications

in agricultural irrigation.
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