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A hybrid statistical-dynamical
forecast of seasonal streamflow
for a catchment in the Upper
Columbia River basin in Canada

Taylor Swift-LaPointe*, Rachel H. White and Valentina Radić

Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver,
BC, Canada

We explore a hybrid statistical-dynamical approach as a methodology for
potentially improving total seasonal streamflow volume forecasts at a key lake
reservoir in the Upper Columbia River basin, a region vital for hydroelectric
power generation in British Columbia. Seasonal streamflow forecasts in this basin
at early or mid-winter initialization times often exhibit limited skill due to the
lack of snowpack information in the initial conditions. Our method integrates
temperature and precipitation data from the ECMWF seasonal forecasts (SEAS5)
with a Long Short-Term Memory (LSTM) neural network. To our knowledge, this
is the first time an LSTM has been used specifically for predicting total seasonal
streamflow volume in this basin. When forced with reanalysis data (ERA5), the
LSTMmodel performs substantially better at predicting total seasonal streamflow
when trained and applied at a monthly timescale, as compared to the more
typical daily timescale used in previous streamflow LSTM applications. In the
case study region, when forecasts are initialized on 1 January, only three months
of meteorological forecast skill are needed to achieve strong predictive skill of
total seasonal streamflow (R2 > 0.7), attributed to accurate representation of
snowpack build up in the winter months. The hybrid forecast, with the LSTM
forced by SEAS5 data, tends to underestimate seasonal volumes in most years,
primarily due to biases in the SEAS5 input data. While bias correction of the inputs
improves model performance, no skill beyond that of a forecast with average
meteorological conditions as input is achieved. The e�ectiveness of the hybrid
approach is constrained by the accuracy of seasonal meteorological forcings,
although themethodology shows potential for improved predictions of seasonal
streamflow volumes if seasonal meteorological forecasts can be improved.
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streamflow, long short-term memory neural networks, seasonal forecasting, hybrid
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1 Introduction

On seasonal timescales, forecasting of streamflow is important for planning and

water management, particularly in the hydroelectricity sector, where decisions can have

great economic and environmental impacts. The Columbia River in British Columbia

(BC) generates about a quarter of the province’s electricity through hydroelectricity dams

in its basin, and also flows in the United States. The first dam along the river, Mica,

regulates streamflow into stations downstream, thus forecasting of streamflow entering the

Kinbasket Lake Reservoir that feeds into theMica dam is essential for electricity production

in BC. In this work, we develop a novel streamflow forecast method to predict seasonal total

streamflow at Mica.
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The Columbia River originates in the Rocky Mountains, and

the Kinbasket Lake Reservoir and Mica dam are within this

mountainous area. For forecasting streamflow in mountainous

catchments such as this, studies have highlighted the importance

of winter snowpack for spring streamflow levels (Arnal et al., 2018)

and glacier melt for summer streamflow levels (Jost et al., 2012). In

the Columbia River basin, previous research investigating seasonal

forecasting has studied the effects of modes of interannual climate

variability (e.g. El Niño Southern Oscillation, ENSO, or the Pacific

Decadal Oscillation, PDO) on snowpack (Hsieh and Tang, 2001)

and streamflow (Gobena et al., 2013; Hamlet and Lettenmaier,

1999) or combined information about the state of these modes with

existing forecast systems (Hamlet et al., 2002). Many studies focus

on stations in the portions of the Columbia River basin in southern

BC and the United States, tens of kilometers downstream of Mica

and not within the RockyMountains (e.g. Hamlet and Lettenmaier,

1999; Hsieh et al., 2003).

Most current operational streamflow forecasts, including those

at Mica, use dynamical and/or statistical models of the weather,

hydrological system, or both (Wood et al., 2019). Dynamical

models (also called numerical models) use equations to represent

physical processes describing the evolution of a system (weather

or hydrological conditions), numerically modeling these processes,

and their impacts, over time (Slater et al., 2023). Dynamical

weather models aim to predict the evolution of the atmosphere,

and sometimes ocean and land surface as well. Dynamical

hydrological models typically consist of a land surface hydrological

model initialized with observed current conditions and forced by

weather data. These weather data can be output from numerical

models (Yuan et al., 2015; NOAA, 2016) or historical weather

data (Day, 1985; van Dijk et al., 2013). Although dynamical

models are representative of physical processes, limitations in

their predictive skill remain (Arnal et al., 2018), including

representations of atmospheric teleconnections, i.e. the remote

impacts of localized changes (Schepen et al., 2016; Strazzo

et al., 2019), and parameterization of sub-grid scale processes.

Dynamical models often require large amounts of computational

resources for running and calibration (Slater et al., 2023;

Arheimer et al., 2020). Dynamical forecasts are especially popular

for streamflow prediction in snowmelt-dominated mountainous

catchments (Araya et al., 2023), as they can incorporate initial

hydrological conditions, such as snowpack, that can strongly

influence the spring and summer streamflow response. However,

the reliance on initial conditions means that it can be difficult for

these dynamical models to forecast streamflow from early-winter

initialization times when there is little snowpack present (Araya

et al., 2023).

In contrast to the dynamical, process-based models described

above, statistical, data-driven models require no prior knowledge

of the relevant physics—they utilize large amounts of data to find

connections between variables. This flexibility can be especially

useful when relationships between variables are not entirely

understood; however, it can result in challenges when attempting

to predict physically plausible extremes not previously observed

in the training datasets (Slater et al., 2023; Frame et al., 2022).

For applications in modeling streamflow, deep learning-based

models have been shown to outperform dynamical models in

numerous basins and flow regimes (Kratzert et al., 2019; Lees

et al., 2021). In particular, Long Short-Term Memory (LSTM)

neural networks have been proven a useful modeling tool for

streamflow in different regions, including in the United States

(Kratzert et al., 2018, 2019), Europe (Lees et al., 2021), and western

Canada (Anderson and Radić, 2022). Applications of LSTMmodels

for forecasting streamflow into the future (beyond one day lead

forecasts) typically fall under the category of hybrid forecasting,

as they utilize dynamical forecasts of meteorological conditions as

well.

Hybrid forecasting, where dynamical and statistical models

are combined, is becoming popular to increase predictive

skill of hydrological variables. Hybrid forecasts take advantage

of the computational power of data-driven methods while

retaining the sources of predictability in dynamical methods.

Slater et al. (2023) provide a comprehensive review of hybrid

forecasting in hydrology, highlighting the current advantages

and limitations. Hybrid statistical-dynamical forecasts combine

dynamical forecasts of meteorological conditions with data-

driven hydrological forecasting methods (Slater et al., 2023).

Hybrid forecasts with LSTMs have generally performed well

when compared to benchmark dynamical hydrological models, for

example by Hunt et al. (2022) in the western United States with five

days lead time, and by Hauswirth et al. (2023) in the Netherlands

with several months lead time. These studies, however, do not test

hybrid forecasts for predicting seasonal total streamflow, a variable

that is useful for hydroelectric operations.

In this study, we apply the hybrid statistical-dynamical method

with an LSTM to forecast streamflow on seasonal timescales at

the Kinbasket Lake Reservoir and Mica dam (referred to as “Mica

catchment” from now on), and test its ability to simulate seasonal

total January to September streamflow volume (“seasonal volume”)

at nine months lead time, i.e. initialized 1 January. We hypothesize

that a hybrid statistical-dynamical forecast may have predictive

skill at this initialization time by combining the long-term memory

retention of the LSTM with meteorological forecasts. There are few

studies that address hybrid forecasting with seasonal lead times,

and to our knowledge, this is the first study to investigate seasonal

volume forecasting using a hybrid LSTMmodel in this basin.

The paper is structured in the following way: in Section 2, we

describe the study region, datasets used, the LSTM architecture

and hybrid forecast design; Section 3 presents the results of the

LSTM model and the hybrid forecasts; discussion of the results is

presented in Section 4; and in Section 5, we present a summary and

conclusions.

2 Data and methods

2.1 Study region

The Mica catchment, located in the Rocky Mountains, is

snowmelt-dominated and thus its annual streamflow has a

very strong seasonal cycle, with little streamflow in the winter

months and very high streamflow in late spring to summer

due to snowmelt. There is also some glacier contribution

that maintains high streamflow levels into the late summer
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FIGURE 1

The Mica catchment. (A) The annual modified streamflow measured at Mica station (Dakhlalla et al., 2020), averaged over 1982–2017. (B) The annual
daily minimum temperature (Tmin) and maximum temperature (Tmax) from ERA5 (Hersbach et al., 2020), averaged over 1981–2017 and the Mica
catchment area. (C) The annual daily precipitation (Precip) from ERA5 (Hersbach et al., 2020), averaged over 1981–2017 and the Mica catchment
area. (D) Elevation of the study region from the NOAA ETOPO Global Relief Model (NOAA, 2022). The Mica catchment area is outlined in red, the
Mica station location is indicated by a red star. The provincial borders of British Columbia and Alberta are shown in black. The inset shows the study
region in the context of North America.

(Jost et al., 2012). Figure 1 presents the annual streamflow at

Mica station averaged over 1982–2017 (Figure 1a), the annual

temperatures and precipitation in the Mica catchment averaged

over 1981–2017 (Figures 1b, c), as well as the location of the basin

(Figure 1d).

2.2 Streamflow data

We use daily inflow from 1982–2017 at Mica station

(118.57◦W, 52.08◦N) from the Bonneville Power Administration

2020 Level Modified Streamflow dataset (Dakhlalla et al., 2020).

In this dataset, the raw observed flow values have been modified

to account for current irrigation depletions and river regulations,

and therefore the modified values represent streamflow that would

have been observed in the past with irrigation and regulations

of 2018 (Dakhlalla et al., 2020). This enables these past values to

be used to predict the future in which there are regulations like

those of 2018. Streamflow observations at Mica were provided to

the Bonneville Power Administration by the project owner (BC

Hydro), and missing data were estimated using linear regression

from nearby stations (Dakhlalla et al., 2020). Irrigation depletions

were calculated by Washington State University, with demand

calculated through a crop water demand model (Hills et al.,

2020), although this was small for the upper Columbia River area,

including theMica catchment, due to little agriculture. Daily inflow

values are provided in cubic feet per second, and we convert to

cubic meters per second. We convert daily streamflow to monthly

streamflow volume by multiplying by the number of seconds in a

day (864,400 s) and summing all days in each month.

2.3 Meteorological data

Following Anderson and Radić (2022), who used LSTMmodels

to simulate daily streamflow across western Canada, we assume

that temperature and precipitation are sufficient inputs to the

LSTM model. For the dynamical forecast part of our hybrid

model, we use SEAS5 seasonal hindcasts from ECMWF (Johnson

et al., 2019), from 1981 to 2017. SEAS5 is the fifth generation

of ECMWF’s seasonal forecasting system. The hindcasts (also

known as re-forecasts) are initialized every month in 1981–2017

with 25 ensemble members using the same SEAS5 forecasting

system as their real-time forecasts, providing hindcasts (the forecast

that would have been made at that time, if the forecast model

had existed) of meteorological variables that can be compared

to historical observations (Johnson et al., 2019). We download

minimum temperature (Tmin), maximum temperature (Tmax),

and accumulated precipitation (Precip) as monthly values at 1◦

× 1◦ spatial resolution. Grid cells within the Mica catchment

area (11 grid cells) are averaged together to create one value for

each time and each variable. Grid cells are not weighted based

on the fraction of area contained within the basin; although we

acknowledge this could introduce bias, we expect this bias to be

low due to our analysis of different resolutions of data. We select

hindcasts initialized 1 January, and download data for January

through to June, i.e. with lead times of 1–6 months (with 6 months

lead time the maximum available for this hindcast dataset).

The LSTMmodel is trained on ERA5 reanalysis data (Hersbach

et al., 2020).We download hourly surface temperature at 2m height

(“2m temperature”) and precipitation, available at 0.25◦ horizontal

resolution, for the period 1981–2017. The data are aggregated to
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daily Tmin, Tmax, and Precip. In addition, we calculate monthly

mean Tmin and Tmax by taking the mean of daily Tmin and

Tmax over all days in each month, and monthly accumulated

Precip by summing the precipitation in all days of each month.

We choose to use mean daily Tmin and Tmax over each month

rather than the minimum and maximum of daily temperature

values in each month to represent average temperature in the

catchment for each month. The ERA5 data are regridded to the

1◦ × 1◦ spatial resolution of the SEAS5 hindcasts using Climate

Data Operators (Schulzweida, 2023). Tmin and Tmax are regridded

bilinearly and conservative mapping is used for Precip. Similarly to

SEAS5, the grid cells within the Mica catchment (11 grid cells) are

averaged together to produce one value for each day/month and

each variable.

2.4 Long Short-Term Memory (LSTM)
neural network

Here we briefly describe the LSTM model architecture

(additional details can be found in Kratzert et al. (2018)), followed

by the model set-up, training and evaluation. In general, neural

network models aim to approximate functions that connect input

data (e.g. meteorological data), represented by input neurons, to

output or target data (e.g. streamflow data), represented by output

neurons, through a series of hidden layers, each containing hidden

neurons. The training of these models, i.e. the tuning of model

parameters in the functions interconnecting each layer, aims to

minimize the distance between model output and observed target

data. The LSTM network is a type of recurrent neural network

(RNN), where information between input and output layers flows

in both directions through cycles and loops so that the model

can learn long-term dependencies in sequential data. This is done

through a second cell state that stores memory of the network, in

addition to the internal hidden state in a typical RNN. The input

x is a vector of the last n consecutive timesteps of meteorological

forcings, x = [x1, ..., xn], where each xi is itself a vector of length

equal to the number of forcings (three in this study: Tmin, Tmax,

Precip). For each time step t (1 ≤ t ≤ n), a series of gates update

both the cell and internal states, controlling the information flow.

These include the forget gate, potential cell update, input gate,

and output gate. The cell state (“long-term memory”) is updated

from the results of the forget gate, potential update vector, input

gate, and cell state of the previous time step, while the hidden

state (“short-term memory”) is updated from the cell state and the

results of the output gate. Finally, the output from the final hidden

state at the last time step is passed through a dense layer, where

it is linearly transformed into a value of normalized streamflow

(output data).

Following Anderson and Radić (2022), the model is designed to

include one LSTM layer followed by one dense layer, with hidden

and cell state vector lengths of 80 units, a mean squared error loss

function, Adam optimization (Kingma and Ba, 2017), a learning

rate of 10−4, and batch size of 64. The coding was done in Python

(Van Rossum and Drake, 2009) using the Keras (Chollet, 2015) and

TensorFlow (Abadi et al., 2015) libraries. The impact of the addition

of a second LSTM layer into the model was also investigated (see

Section 3.1 for further discussion), although further modifications

to LSTMmodel architecture are outside the scope of this work.

Initially the model was set to predict daily streamflow using

daily input data from the previous n (365) days, to predict

streamflow at the day n + 1. However, as we are interested

in seasonal streamflow and not daily variations, we also design

an LSTM model that is forced with monthly input data, using

n previous months, to predict the monthly streamflow volume at

the month n + 1. For the monthly LSTM model, we also explore

the sensitivity of the modeled streamflow to the choice of n, i.e.

n = 12, 24, and 36 months. Thus, our daily LSTM model has

input size of 365 × 3 neurons, and our monthly model has input

size of n × 3, where n = 12, 24, or 36. The training, validation,

and testing data are normalized (subtracted mean and divided by

standard deviation) relative to the selected training data, for each

variable separately.

For each model (daily and monthly), we train five different

ensemble members, each initialized with different random weights,

but trained, validated, and tested on the same data. We calculate

the ensemble average and standard deviation of the outputs across

these five ensemble members. To maximize the available testing

data within our relatively short data availability period, we use a

leave-1-year-out testing method. Each year in the input data, from

1982 to 2017, is taken in turn as the test year, with training and

validation years chosen randomly from the remaining years (28

for training and 7 for validation). This method ensures the largest

possible number of years to evaluate the ability of this LSTM to

predict seasonal volumes, as we have 36 different test years.

The predicted total volume from the beginning of January to the

end of the water year at the end of September (“seasonal volume”)

is calculated from the denormalized LSTM model outputs for each

test year. For the daily LSTM model, this is calculated by summing

daily streamflow values (in m3) over all days from 1 January to

30 September. For the monthly LSTM model, this is calculated by

summing all predicted monthly volumes (in m3) from January to

September. These predicted seasonal volumes are then compared

to observed seasonal volumes.

To evaluate the sensitivity of results to the random selection

of training and validation years in each model, model training and

testing is repeated five times. In each case, testing is performed

on the same test years (1982–2017), but the random training and

validation years chosen from the remaining years may differ in

selection and order.

Both the daily and monthly LSTM models were trained and

tested using ERA5 data. Once the monthly LSTM model was

trained, it was also driven by the dynamical seasonal meteorological

forecast data. Given the known biases between the seasonal forecast

and ERA5 (see Section 3.3), we also tested the model using bias-

corrected seasonal forecasts. Two commonly used bias correction

methods were selected for this purpose (von Storch and Zwiers,

1999): a linear mean shift of the SEAS5 hindcasts to align with

the mean of ERA5 and a quantile–quantile bias correction to map

the cumulative distribution function of the SEAS5 hindcasts onto

that of ERA5 (White and Toumi, 2013). For the linear shift bias

correction, the SEAS5 hindcast temperature or precipitation for

eachmonth was adjusted linearly tomatch the correspondingmean

of ERA5. In the quantile–quantile bias correction, for each month
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and each variable, the SEAS5 hindcasts and ERA5 reanalysis data

from 1981 to 2017 were ranked. The SEAS5 values were then

replaced with those of the same rank from ERA5, creating a bias-

corrected dataset that retains the predictive skill of the SEAS5

model while aligning the climatology with ERA5.

2.5 Model evaluation

To evaluate how well the model predicts daily and monthly

streamflow for the testing dataset, we use the Nash-Sutcliffe

efficiency (NSE; Nash and Sutcliffe, 1970). The NSE is defined as

follows:

NSE = 1−

∑t=T
t=1 (Q

t
m − Qt

o)
2

∑t=T
t=1 (Q

t
o − Q̄o)2

(1)

where T is the total number of time steps in the test year (365

for the daily LSTM model, 12 for the monthly LSTM model), Qt
m

is the modeled streamflow at that time step, Qt
o is the observed

streamflow at that time step, and Q̄o is the annual mean observed

streamflow over the test year.We calculate theNSE on the ensemble

mean LSTM output. The NSE uses mean flow as a benchmark, thus

NSE < 0 indicates the model performs worse than if the mean

flow (in our case, annual mean) were used as the prediction for

each day or month (Knoben et al., 2019). A NSE = 1 indicates the

modeled streamflow is exactly equal to the observed streamflow.

We choose to evaluate the NSE over the entire test year (January–

December) rather than over the water year (January–September) to

better compare with previous studies.

To evaluate how well the model is able to predict total January-

September seasonal volume (hereafter “total seasonal volume”), we

use two metrics: the coefficient of determination (denoted R2) and

the Pearson correlation coefficient (denoted r). The coefficient of

determination, R2 is calculated as:

R2 = 1−

∑i=N
i=1 (V

i
m − V i

o)
2

∑i=N
i=1 (V

i
o − V̄o)2

(2)

where N is the total number of test years (=36) for which

seasonal volumes are calculated, V i
m is the modeled seasonal

volume of the ith test year, V i
o is the observed seasonal volume of

the ith test year, and V̄o is the mean observed seasonal volume over

all test years. AnR2 = 1 indicates themodeled seasonal volumes are

exactly equal to the observed seasonal volumes, that is, all points lie

along the line y = x. An R2 < 0 indicates the model performs

worse than if the climatological mean seasonal volume were used

as the prediction for the seasonal volume of each year. Whilst the

equations for R2 and NSE are identical formulations, they differ in

the time period over which they are evaluated. The NSE is evaluated

on daily or monthly streamflow over individual years, and is thus

a measure of how well the model captures intra-annual variability

in streamflow; conversely, R2 is evaluated on seasonal streamflow

volume, and is thus a measure of how well the model captures

interannual variability in seasonal volumes.

The Pearson correlation coefficient, r, measures how linear

the relationship between observed and modeled volumes is. It

FIGURE 2

Observed and predicted streamflow for an example test year (2014)
from (A) the daily LSTM model and (B) the monthly LSTM model
with n = 12 months. The ensemble mean (Ens Mean) is the mean
across the five models. Plus/minus one standard deviation (+/– σ )
across the ensemble models is indicated by shading in (A) and error
bars in (B). Note that standard deviations are small and not visible in
(B). Observed streamflow is indicated by the black curves. The NSE
values of the ensemble means are printed in each plot area.

is important to note that the Pearson correlation coefficient

squared is not equal to the coefficient of determination (i.e. r2 6=

R2). Statistical significance in the linear relationship is achieved

when p-values are <0.05 (indicating 95% confidence of statistical

significance).

3 Results

3.1 LSTM model

We first evaluate the skill of our LSTM models, both daily

and monthly, to reproduce observed streamflow when forced with

observed (ERA5) meteorological forcing. Figure 2 presents the

observed and LSTM-predicted ensemble average streamflow from

the daily model (Figure 2a) and monthly model with n = 12

(Figure 2b) for an example test year (2014). It is clear that both

models can reproduce the seasonal cycle well. Over all 36 test

years, the 5-member ensemble mean NSE for the daily (monthly

with n = 12) model is 0.90 (0.93), with standard deviation 0.08

(0.05), indicating good model performance. The monthly models

with n = 24 and n = 36 both have mean NSE 0.94 with standard

deviation 0.04 (not shown).
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FIGURE 3

Predicted total seasonal (January to September) volumes with (A)

the daily LSTM model and (B) the monthly LSTM model with n = 12
months, vs. observed seasonal volumes for test years in the range
1982–2017. Each point indicates the volume of the ensemble mean,
and error bars indicate plus/minus one standard deviation across the
ensemble models. R2 and r values are printed in the plot areas. The
dashed gray line indicates y = x.

The total seasonal volumes calculated from the daily and

monthly LSTM outputs are compared to observed total seasonal

volumes (Figure 3). For the daily model (Figure 3a), some test

years have large standard deviations across the ensemble members,

shown in the error bars. The model overestimates seasonal volumes

in all years with low volumes (< 1.5×1010 m3) and underestimates

seasonal volumes in all years with high volumes (> 1.8 × 1010

m3). This results in a negative R2 of –0.56 and a r almost zero

(1.7 × 10−3) with p > 0.05, reflecting the model’s poor ability to

capture interannual variability in seasonal volumes.

The monthly model with n = 12 months (Figure 3b) captures

the interannual variability in seasonal volumes more accurately

than the daily model. The variance across the ensemble members

is also lower, with standard deviation error bars visible only for a

few years. The R2 of 0.75 and r of 0.87 with p < 0.05 indicating

statistical significance reflects much better predictive skill of total

seasonal streamflow anomalies (i.e. relative to the climatology)

compared to the daily model. The results for the model runs with

n = 24 and 36 are similar to those of n = 12, with R2 of 0.70 and

r of 0.85 for n = 24, and R2 of 0.71 and r of 0.86 for n = 36 (not

shown). Completing five sets of n = 12 model runs, where each set

differs only in the random order of training and validation years,

gives mean R2 and r of 0.74 and 0.86, with standard deviations 0.02

and 0.01, respectively (Table 1). This suggests that the high skill

TABLE 1 Mean R
2 and r across five sets of 36 models testing on 36 test

years for the LSTM trained on ERA5 with ERA5 input (“ERA5-ERA5”), with

ERA5 climatology input (“ERA5-Climatology”) and with SEAS5 input

(“ERA5-SEAS5”).

Forecast R2 r

ERA5-ERA5 0.74 (0.02) 0.86 (0.01)

ERA5-Climatology 0.30 (0.03) 0.55 (0.03)

ERA5-SEAS5 –1.50 (0.10) 0.52 (0.04)

ERA5-SEAS5-JFM –0.50 (0.06) 0.53 (0.02)

ERA5-SEAS5-JF 0.07 (0.03) 0.57 (0.02)

ERA5-SEAS5-J 0.23 (0.03) 0.57 (0.02)

ERA5-SEAS5-JFM (T only) 0.19 (0.03) 0.52 (0.03)

ERA5-SEAS5-JF (T only) 0.25 (0.03) 0.54 (0.03)

ERA5-SEAS5-J (T only) 0.27 (0.03) 0.53 (0.03)

The LSTM with SEAS5 input is further tested with SEAS5 input in Jan–Mar, Jan–Feb, and Jan

only (“-JFM,” “-JF,” “-J”), and with temperature only in these months (“T only”). One standard

deviation across the five sets are indicated in parentheses. The models in each of the five sets

differ only in the random order of training and validation years.

seen with the n = 12 model is robust to changes in the order of

training and validation data. All further analysis is thus completed

with the 12-month model.

Previous studies have found that models with multiple LSTM

layers perform better than those with a single LSTM layer, with

many studies choosing two-layer LSTM models (Kratzert et al.,

2018; Hauswirth et al., 2021; Zheng et al., 2024). To test whether

this is the case for the Mica catchment, an additional LSTM layer is

added into our model. A dropout layer is inserted between the two

LSTM layers, following Kratzert et al. (2018), to prevent overfitting.

This two-layer LSTM model does not perform better than the

single-layer model reported above, in fact it obtains lower R2 and

r values of 0.41 and 0.70, respectively. This indicates that adding

an additional LSTM layer to the model does not increase model

performance. The single-layer LSTM model is used in all further

analysis.

We compare our results to those calculated from the LSTM

models applied to multiple streamflow stations across Western

Canada (Anderson and Radić, 2022) and the United States

(Kratzert et al., 2019) in Figure 4. Anderson and Radić (2022)

employ a convolutional neural network (CNN) combined with an

LSTM to predict daily streamflow of 226 stations across British

Columbia and Alberta. We use their published model outputs to

generate streamflow curves and calculate total seasonal volumes for

their five test years (2011–2015) for comparison to our simulation.

Kratzert et al. (2019) develop a daily LSTM to predict streamflow

at 531 stations across the United States. We use the published

results from one of their models without static catchment attributes

to calculate seasonal volumes of their ten test years (1990–1999).

We select their stations with NSE > 0 and R2 > −1.0 to better

visualize the results (43 stations from Anderson and Radić, 2022

and 472 stations from Kratzert et al., 2019). The evaluation metrics

calculated for our station are not outliers from the distribution

of values from these two studies, although our station’s NSE is

among the stations with highest NSE, and the daily model is

unusual in having such a low r with such a high NSE. Our
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FIGURE 4

Performance of our daily and 12-month LSTM models compared to those of Kratzert et al. (2019) and Anderson and Radić (2022). For each station
modeled by Kratzert et al. (2019) and Anderson and Radić (2022), the NSE calculated across their test years (10 and 5 years, respectively) is plotted
against (A) R2 and (B) r calculated from the seasonal volumes of their test years. Only stations with NSE > 0 and R2

> −1.0 are plotted (472 and 43
stations, respectively). The mean NSE across five sets of model runs for our daily and monthly models are plotted against the mean R2 and r across all
five sets of model runs. Error bars indicate plus/minus one standard deviation across the five sets of model runs.

daily model has the lowest r but not the lowest R2 and our

monthly model does not have the highest R2 or r. The high

NSE of our basin is likely related to the strong seasonality of the

streamflow.

The higher temporal resolution with the daily model allows the

user to identify local daily extremes in streamflow, which is lost with

the monthly timescale; however, the monthly model is better able

to predict interannual variability in seasonal volume, which is the

focus of the current study. The monthly LSTM model is therefore

used for all further analysis.

Previous studies on catchments in the United States have shown

that LSTM models trained on multiple catchments can perform

better than those trained on a single catchment (Kratzert et al.,

2018, 2019, 2024). These studies suggest a larger training dataset

that spans multiple catchment types of streamflow responses

enables the LSTM model to ‘fine tune’ the learning of relationships

between forcings and streamflow. To test the impact of this for our

study, we repeat our analysis on an LSTM model trained on 265

stations across British Columbia and Alberta from Environment

and Climate Change Canada’s Historical Hydrometric Data website

(similar to Anderson and Radić, 2022), and fine-tuned on the Mica

catchment. This multi-basin method gave similar results for the

monthly LSTM model, with R2 of 0.60 and r of 0.80 for n =

12 (not shown), suggesting there is no advantage to training on

multiple catchments when predicting seasonal volumes for the

Mica catchment.

3.2 Seasonal streamflow sensitivity to
meteorological lead time skill

Having established that the monthly LSTM model predicts

interannual streamflow variability with good skill using observed

(ERA5) meteorological data, we explore how much lead time

in meteorological forecast skill is needed for an accurate total

seasonal streamflow forecast. We use a combination of ERA5

reanalysis (i.e. “perfect” meteorological skill) and climatology (i.e.

no meteorological skill) data to simulate different levels of forecast

skill for each test year.

Since we are using the 12-month model, the first 12 minus

i months use ERA5 data (past year), while the remaining

i months use either ERA5 or climatology data to represent

varying meteorological forecast skill. For example, to test for the

importance of meteorological skill in January and February of the

forecast year, ERA5 data are used for the first two months of the

year, and climatological values are used for the remaining months.

Figure 5 presents a schematic of the inputs used in this example.

Nine simulations of different levels of meteorological skill are

completed (Figure 6). The results show that good streamflow skill

(R2 = 0.73) is achievable with meteorological skill extending just

three months into the forecast year (Jan–Mar). Note that although

the simulation with meteorological skill in Jan-Apr achieves a

slightly higher R2 than the simulation with meteorological skill

in all months (“All” in Figure 6), the means are not significantly

different (p > 0.1 in a Student’s t-test), and thus we cannot reject

the null hypothesis that the twomeans are equal. Extending forecast

skill beyond this period adds minimal improvement, indicating

that accurate seasonal forecasts mainly depend on meteorological

data up to three months into the forecast year. Conversely,

when meteorological skill is applied only in late spring and

summer (May–Aug), no significant improvement in streamflow

forecasting is observed, highlighting the critical importance of

winter snowpack accumulation for seasonal streamflow volume in

this basin.

3.3 Hybrid streamflow forecasts

Our hybrid streamflow forecasts use SEAS5 hindcast data as

meteorological input for the “future” months. To first understand

themeteorological skill, and any biases, of the SEAS5 dataset, values

of Tmin, Tmax, and Precip averaged over the Mica catchment

area are compared to ERA5 for lead times 1–3 months (Figure 7).

The hindcasts underestimate Tmin relative to ERA5 in almost all

years at all three lead times. Tmax is underestimated in almost all

years for lead time 1 month, and in just over half of years for lead

times 2 and 3 months. However, the hindcasts exhibit significant

linear relationships with ERA5 (p < 0.05) out to 3 months lead
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FIGURE 5

Schematic showing forcings input into the pre-trained LSTM model for a simulation of meteorological skill in January and February of the forecast
year only. ERA5 reanalysis is used in months with meteorological skill and ERA5 climatology is used in months with no meteorological skill.

for Tmin and 5 months lead (not shown) for Tmax. As expected,

precipitation hindcasts do not perform as well, with a significant

linear relationship (p < 0.05) only for 1 month lead. Precipitation

is underestimated in many years, particularly at 3 months lead

time. The results of Section 3.2 suggest that skill in the input

meteorological forcings is required only out to ∼3 months lead

time for a skillful seasonal volume forecast. Thus, we judge that

the significant skill in the SEAS5 hindcasts in these initial months,

particularly in temperature, may be sufficient to provide some skill

in the hybrid statistical-dynamical seasonal volume forecast.

Similar to the method of Section 3.2, the first 12minus imonths

of the hybrid forecast inputs use ERA5 forcings (past year). The

following imonths in the forecast year use SEAS5 hindcast data. As

SEAS5 hindcasts extend to only 6months lead time, we can only use

SEAS5 hindcast data for January to June. For forecasts of August

and September streamflow, the remaining months of forcings (July

and August) use ERA5 climatology. Figure 8 presents a schematic

of the inputs used to predict seasonal volume of one test year. We

refer to this hybrid forecast as ERA5-SEAS5, using the naming

convention of the training dataset (ERA5) followed by the input

dataset (SEAS5); we use the same naming convention for all hybrid

forecasts.

The hybrid ERA5-SEAS5 streamflow forecast for one test

year (2014) is presented in Figure 9a, with observed monthly

volumes and the results of the LSTM with ERA5 input (denoted

“ERA5-ERA5,” also shown in Figure 2b). The hybrid ERA5-SEAS5

forecast predicts lower monthly volumes than the ERA5-ERA5

forecast for all months January to September. This translates into

a lower seasonal volume prediction. The ERA5-SEAS5 forecast

underestimates seasonal volumes for almost all of the 36 test years

(Figure 9b). This is reflected in the negative R2 of –1.53. However,

the r of 0.48 indicates there is a linear relationship between the

hybrid-forecasted volumes and observed seasonal volumes, and the

ERA5-SEAS5 forecast correctly predicts some of the interannual

variability in seasonal volumes. A bias correction step in post-

processing of the forecast results could correct the climatological

volume underestimation. Repeating four additional sets of model

runs, where each run differs only in the order of training and

validation data, yields a mean R2 and r of −1.50 and 0.52 with

standard deviations 0.10 and 0.04, respectively (Table 1). The high

standard deviation of the R2 indicates there is some disagreement

among model runs, however the r values are more consistent.

The seasonal volume underestimation by the hybrid

ERA5-SEAS5 forecast is physically consistent with an average

underestimation of winter precipitation seen in Figures 7g–i,

and of the underestimation of Tmin and Tmax during the

summer (similar to winter/early spring shown in Figure 7).

The lower hindcast Precip values in January, February, and

March translate to less snowpack buildup, and the lower Tmin

and Tmax values in April, May, and June result in less glacier

and/or snowmelt.

Critically, the hybrid ERA5-SEAS5 streamflow forecast does

not perform better than a forecast that uses meteorological

climatology as input in all months of the forecast year, as seen in

Section 3.2 (Figure 6, simulation labeled “None”). The forecast with

climatology as input in all months, hereafter referred to as ERA5-

Climatology to follow our naming convention, achieves a mean R2

of 0.30 and mean r of 0.55, higher than the R2 of the ERA5-SEAS5

forecast (–1.50), and not statistically different from the r value

(0.52). This suggests that the underestimation of meteorological

conditions in the SEAS5 hindcasts is critical in limiting the ability of

the hybrid streamflow forecast to simulate the absolute streamflow

volumes—using climatological meteorological conditions in the

forecast year produces a forecast better able to capture the annual
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FIGURE 6

The (A) R2 and (B) r calculated from the seasonal volumes of nine simulations of various levels of skill in input forcings. Error bars indicate plus/minus
one standard deviation across five sets of model runs. Months of the forecast year with meteorological skill use ERA5 reanalysis forcings, while
months without meteorological skill use monthly ERA5 climatological forcings.

seasonal volume. Whilst the SEAS5 forecast can predict some of

the interannual variability (as measured by r) of temperature with

lead times of 1–3 months (as seen in Figure 7), this does not

translate into any improved skill in predicting seasonal streamflow

interannual variability.

The results of Section 3.2 suggest that, in this basin, only

meteorological skill in the first three months of the forecast year

is necessary to achieve skill in a seasonal volume forecast (when

meteorological climatology are used for the remaining months).

The skill of the SEAS5 hindcasts diminishes rapidly with lead

time, and thus we investigate whether only using SEAS5 hindcast

data in the early months of the forecast (with meteorological

climatology in the latter months) improves the skill of the hybrid

forecast. Table 1 presents mean R2 and r achieved in a hybrid

forecast with SEAS5 hindcasts used as input in Jan–Mar only

and meteorological climatology used for the remaining months of

the forecast year (“ERA5-SEAS5-JFM”), compared with mean R2

and r of ERA5-ERA5, ERA5-Climatology, and ERA5-SEAS5. The

R2 of ERA5-SEAS5-JFM forecast is still negative, however there

has been a significant improvement compared to ERA5-SEAS5.

Replacing another month with meteorological climatology input

(SEAS5 input Jan–Feb only; “ERA5-SEAS5-JF”) further improves

the R2 values, and slightly improves the r value (from 0.53 to

0.57). A forecast with SEAS5 input in January only (“ERA5-

SEAS5-J”) achieves the highest R2 of 0.23, however this is still

significantly lower than the ERA5-Climatology forecast, and the

highest r is within the uncertainty range of the r value of the ERA5-

Climatology forecast. This suggests that there is no added skill in

using SEAS5 hindcasts of Tmin, Tmax, and Precip as input for

future months in a hybrid forecast, relative to using climatological

values for the future months.

Lastly, we investigate the roles of precipitation and temperature

separately. As seen in Figure 7, SEAS5 Precip hindcasts exhibit a

significant linear relationship with ERA5 only for a lead time of

1 month. Including SEAS5 Precip in the ERA5-SEAS5-JFM and

ERA5-SEAS5-JF forecasts likely introduces bias and uncertainty

that translates into errors in the streamflow forecast. Using

climatological values for Precip in all months, whilst still using

SEAS5 hindcasts for Tmin and Tmax in Jan–Mar (with climatology

for the remaining months), improves the mean R2 from –0.50

to 0.19 (“ERA5-SEAS5-JFM (T only)” in Table 1), illustrating the

important role of precipitation biases and uncertainty in forecast

error. These results, summarized in Table 1, indicate that the

inclusion of SEAS5 Precip does not contribute any significant
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FIGURE 7

SEAS5 hindcasts of (A–C) minimum temperature (Tmin), (D–F) maximum temperature (Tmax), and (G–I) precipitation (Precip) vs. ERA5 reanalysis of
1981–2017. The hindcasts are initialized 1 January and lead times 1, 2, and 3 months are presented, showing forecasts for January, February, and
March, respectively. Pearson correlation r-values and p-values are printed in each plot area. The dashed gray lines indicate y = x.

skill to the streamflow forecast. Forecasts with SEAS5 data in

January only (whether including Precip or not), and climatology

for the remaining months in the forecast year (“ERA5-SEAS5-

J” and “ERA5-SEAS5-J (T only)”) achieve the highest skill when

considering both R2 and r. Neither of these forecasts provide

any statistically significant improvement from a forecast using

climatological meteorology in the forecast year.

In the next section, we test methods of bias correcting the

SEAS5 inputs to determine whether this can reduce the bias

in seasonal streamflow of the hybrid forecast, and provide any

additional skill.

3.3.1 Streamflow forecast with bias-corrected
input data

Our first bias correction method linearly shifts the SEAS5

hindcasts to obtain the same mean as ERA5 in each month.

These linearly shifted hindcasts (SEAS5-LS) are then used as

forecast year input to the LSTM trained on ERA5, similar to the

ERA5-SEAS5 input in Figure 8. We denote this linearly shifted

hybrid forecast ERA5-SEAS5-LS. Figure 10a presents the hybrid

ERA5-SEAS5-LS predicted streamflow forecast for one test year

(2014), with observed monthly volumes and ERA5-ERA5 results.

The ERA5-SEAS5-LS forecast predicts higher volumes for the

first seven months compared to the ERA5-SEAS5 forecast in

Figure 9a, thus a higher seasonal volume for 2014 is predicted

(Figure 10b), although the seasonal volume is still underestimated

by a small amount. Overall, the underestimation of seasonal

volumes is reduced in ERA5-SEAS5-LS (Figure 10b) compared to

the ERA5-SEAS5 forecast (Figure 9b), leading to a positive R2 of

0.28. The r of 0.56 is also higher than that of the ERA5-SEAS5

forecast (0.48), indicating there is an improvement in predicting

interannual variability of seasonal volumes with the linearly shifted

SEAS5 inputs. Completing five sets of model runs gives mean R2

and r of 0.24 and 0.54, with standard deviations 0.04 and 0.03,

respectively (summarized in Table 2).

The ERA5-SEAS5-LS forecast still does not provide any

significant improvement on the forecast with meteorological

climatology input in all months of the forecast year, ERA5-

Climatology, with R2 and r of 0.30 and 0.55 respectively.

Table 2 presents mean R2 and r values from forecasts that use

SEAS5-LS as input in Jan–Mar only (“ERA5-SEAS5-LS-JFM”),
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FIGURE 8

Schematic showing forcings input into the pre-trained LSTM model for the hybrid ERA5-SEAS5 streamflow forecast.

Jan–Feb only (“ERA5-SEAS5-LS-JF”), and January only (“ERA5-

SEAS5-LS-J”) in the forecast year, with meteorological climatology

used in the remaining months. Whilst the mean R2 improves with

only using SEAS5-LS in January of the forecast year, which was

also seen in the previous section with the forecasts without bias-

correction on the input data (see Table 1), it is still not significantly

different from the ERA5-Climatology forecast. This is also true for

a hybrid forecast using linearly shifted SEAS5 data of temperature

only, with climatological Precip—see data for ERA5-SEAS5-LS-

JFM, -JF, and -J (T only) in Table 2.

We next use a quantile–quantile (QQ) bias correction method

to allow for correction of non-linear biases (e.g. if high values are

underestimated more than low values, as seen for lead months

2 and 3 in Figure 7). These bias corrected hindcasts (SEAS5-

QQ) are then used as forecast year input to the LSTM trained

on ERA5, and we denote this bias corrected hybrid forecast

ERA5-SEAS5-QQ. Note that for this method to be applicable in

operational settings, a formula to apply the quantile–quantile bias

correction to future years would need to be derived. The monthly

volumes predicted by the ERA5-SEAS5-QQ forecast for one test

year (2014) are presented in Figure 10c, with observed monthly

volumes and the ERA5-ERA5 results. Compared to the ERA5-

SEAS5 forecast in Figure 9a, the ERA5-SEAS5-QQ forecast gives

a higher prediction of seasonal volume for 2014 (Figure 10d),

slightly over the observed seasonal volume of that year. The

average bias in streamflow over all years is small (Figure 10d)

compared to the ERA5-SEAS5 forecast (Figure 9b). Completing

five sets of model runs results in a mean R2 of –0.23, and r of

0.48, higher than the uncorrected ERA5-SEAS5 model, but lower

than the ERA5-SEAS5-LS forecast and the ERA5-Climatology

(Table 2).

As with the previous bias correction method, we investigate the

impact of using SEAS5-QQ hindcasts as input in Jan–Mar, Jan–Feb,

and Jan only in the forecast year, and of using climatological Precip

in all months. These results are summarized in Table 2, denoted

“ERA5-SEAS5-QQ-JFM” etc. Similar to the results for the LS bias

correction method, reducing the number of months (and thus the

lead time) of the SEAS5 forecast data increases the R2 and r values,

but overall the skill in the QQ forecasts is typically lower than that

of the corresponding LS method, and no configuration significantly

improves on the ERA5-Climatology forecast.

3.3.2 Streamflow forecast with re-trained LSTM
model

As shown in the previous section, bias correcting the seasonal

meteorological forecast data input into the hybrid forecast yields

little to no improvement to the model’s ability to predict the

interannual variations in seasonal streamflow, as measured by r,

and no hybrid forecast was able to improve upon a forecast that uses

meteorological climatology in all months of the forecast year. Here,

we investigate whether the model skill can be improved if the LSTM

model is trained on the seasonal meteorological forecasts in the

forecast year instead of ERA5 (ERA5 is still used in the past year). In

this way, the model can indirectly learn and “correct” for the biases

present in the seasonal forecast. For every forecast year within the

training, validation, and testing datasets, we apply the same set-

up for the 12 months of forcings as in the ERA5-SEAS5 forecast

in Figure 8, i.e. ERA5 in the previous year, SEAS5 in the first 6

months in the forecast year, and meteorological climatology in the

remaining months in the forecast year; this forecast is denoted

SEAS5-SEAS5.

The monthly streamflow volumes predicted by the SEAS5-

SEAS5 forecast for one test year (2014) are presented in Figure 11a,

with observed monthly volumes and the ERA5-ERA5 results. This

SEAS5-SEAS5 forecast generally predicts higher volumes than the
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FIGURE 9

(A) Observed and modeled monthly volumes for one example test
year (2014) with predicted volumes from the ERA5-SEAS5 forecast
(orange diamonds), predicted volumes from the LSTM with ERA5
input (“ERA5-ERA5”; blue squares), and observed volumes (black
circles). The NSE value of the ERA5-SEAS5 forecast is printed in the
plot area. (B) Seasonal (Jan–Sep) volumes predicted by the
ERA5-SEAS5 forecast vs. observed seasonal volumes for the test
years 1982–2017. The R2 and r values are printed in the plot area.
The seasonal volume of 2014 is plotted as a black star, and the
dashed gray line indicates y = x. Both monthly volumes (A) and
seasonal volumes (B) shown are ensemble means of five models,
and error bars indicate plus/minus one standard deviation across the
ensemble models.

ERA5-SEAS5 forecast (Figure 9a), indicating the model is able to

correct for the low temperature and precipitation bias present

in the hindcasts. The seasonal volume prediction for this year is

still underestimated compared to observations (Figure 11b), but

by less than the ERA5-SEAS5 forecast in Figure 9b. Overall, the

underestimation bias seen in ERA5-SEAS5 is reduced, with the

SEAS5-SEAS5 achieving an R2 of 0.17 (Figure 11b). Completing

five sets of model runs gives a mean R2 of 0.09, and a mean r of

0.42 (Table 2), similar to the ERA5-SEAS5 and ERA5-SEAS5-QQ

mean r values, and lower than both the ERA5-SEAS5-LS forecast,

and the ERA5-Climatology.

Following from the results of Section 3.3, where the hybrid

forecasts perform worse when SEAS5 hindcasts are included as

input beyond three months of the forecast year, we train an

LSTM model on SEAS5 hindcasts in Jan–Mar and ERA5 for the

remaining months. This trained model, denoted SEAS5-SEAS5-

JFM is then tested with SEAS5 data in Jan–Mar in the forecast year

and meteorological climatology for the remaining months. This

SEAS5-SEAS5-JFM forecast performs about the same as SEAS5-

SEAS5, with mean R2 of 0.11 and mean r of 0.41, both within

one standard deviation of the means of SEAS5-SEAS5. Thus,

training the LSTM on fewer months of SEAS5 hindcasts does not

result in any improvement in skill. Both the SEAS5-SEAS5 and

SEAS5-SEAS5-JFM forecasts have mean R2 significantly lower than

the ERA5-Climatology forecast, indicating these forecasts do not

improve upon using meteorological climatology input into the

LSTM trained on ERA5 for all months in the forecast year.

4 Discussion

Out of the four hybrid forecast types we test in this work,

ERA5-SEAS5, ERA5-SEAS5-LS, ERA5-SEAS5-QQ, and SEAS5-

SEAS5, the ERA5-SEAS5-LS forecast obtains the highest mean R2

value (0.24) across five sets of model runs (see Table 2), indicating

that the linear bias correction method provides the greatest skill

in predicting climatological mean seasonal volumes. The SEAS5-

SEAS5 forecast obtains a positive R2 value, but significantly lower

than that of the ERA5-SEAS5-LS forecast, indicating it is more

effective to input bias-corrected data to the LSTM model rather

than train the LSTMmodel on the SEAS5 hindcasts.

The ERA5-SEAS5-LS forecast also obtains the highest r value

(mean 0.54); however, this is not a large improvement on the

other hybrid forecasts ERA5-SEAS5 and ERA5-SEAS5-QQ, each

with similar mean r values (0.48–0.52). Thus, bias correction of

the meteorology SEAS5 inputs does not substantially improve the

skill in predicting interannual variability in seasonal volumes. The

SEAS5-SEAS5 forecast has a lower mean r value (0.42). Thus,

attempting to correct for systematic biases in the SEAS5 by training

forecasts on the SEAS5 hindcasts is not as effective at improving the

skill as applying a simple linear shift correction to SEAS5 data prior

to using it as input. Whilst the SEAS5-SEAS5 model does likely

learn to correct for systematic biases in the SEAS5 hindcasts, it is

probable that the uncertainty in the SEAS5 hindcasts prevent the

model from learning the true relationships between temperature,

precipitation and seasonal mean streamflow.

Of note, none of our hybrid forecasts exhibit significantly

higher skill than a forecast that uses meteorological climatological

inputs to the LSTM model for each month in the forecast year

(ERA5-Climatology). The ERA5-Climatology forecast derives its

skill from the previous year’s meteorological conditions. This

is consistent with physical knowledge of this basin, in which

snowpack is known to be a key factor in subsequent streamflow.

Using fewer months of SEAS5 input (i.e. only forecasts with

shorter lead times) and replacing longer lead time input with

meteorological climatology improves forecasts trained on ERA5

data, with the ERA5-SEAS5-LS-JF, ERA5-SEAS5-LS-J, and the

ERA5-SEAS5-QQ-J forecasts giving the highest mean R2 and r

values of the hybrid SEAS5 forecasts. This indicates that skill can

be improved by limiting the use of SEAS5 data to shorter lead

times, even when using bias correction techniques. While these

models all have slightly higher mean r (0.57) relative to the ERA5-

Climatology forecast (0.55), the difference is very small—there

is thus still little to no added skill in using SEAS5 input rather

than meteorological climatology. This suggests that the skill of the

SEAS5meteorological forecasts in leadmonths 1–3 is insufficient to

Frontiers inWater 12 frontiersin.org

https://doi.org/10.3389/frwa.2025.1595898
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Swift-LaPointe et al. 10.3389/frwa.2025.1595898

FIGURE 10

(A) Observed and modeled monthly volumes for one example test year (2014) with predicted volumes from ERA5-SEAS5-LS (pink pentagons),
predicted volumes ERA5-ERA5 (blue squares), and observed volumes (black circles). The NSE value of the ERA5-SEAS5-LS forecast is printed in the
plot area. (B) Seasonal (Jan–Sep) volumes predicted by the ERA5-SEAS5-LS forecast vs. observed seasonal volumes for the test years 1982–2017.
The R2 and r values are printed in the plot area. The seasonal volume of 2014 is plotted as a black star, and the dashed gray line indicates y = x. (C) As
(A) but for predicted volumes from ERA5-SEAS5-QQ (red crosses). (D) As (B) but for seasonal volumes predicted by the ERA5-SEAS5-QQ forecast.
Both monthly volumes (A, C) and seasonal volumes (B, D) shown are ensemble means of five models, and error bars indicate plus/minus one
standard deviation across the ensemble models.

translate to any substantial increase in skill in the hybrid seasonal

streamflow forecasts.

Since precipitation hindcasts exhibit more biases and less

correlation with ERA5, using only SEAS5 temperature hindcasts

and climatological precipitation further improve the forecasts. Both

the ERA5-SEAS5-LS-JFM and ERA5-SEAS5-QQ-JFM forecasts

with SEAS5 temperature in Jan–Mar only and climatological

precipitation in all months obtain mean R2 values within

one standard deviation of the ERA5-Climatology forecast, an

improvement upon their equivalents that use SEAS5 precipitation

in Jan–Mar. There is no improvement in further reducing the

number of months that use SEAS5 temperature input; the forecasts

with SEAS5 temperature input in Jan–Mar, Jan–Feb, and Jan only

for both bias correction techniques all obtain R2 values within 0.01

of each other.

The SEAS5 hindcasts will likely continue to improve in the

future as advances are made to the forecast model. These future

changes may improve upon the bias and uncertainty in the

meteorological variables in the Mica catchment area. It will be

necessary to continue to evaluate whether hybrid forecasts can

improve on forecasts with ERA5 climatology in the forecast

year for this region. Other methods to obtain meteorological

forecasts at least three months into the future, such as statistical

techniques, may also be useful, rather than relying on numerical

forecasts. Hsieh et al. (2003) use multiple linear regression (MLR)

to predict seasonal April–August streamflow further downstream

in the Columbia River basin using modes of climate variability

indices. They find a range of r values from 0.47–0.70 for various

predictor combinations. The hybrid forecasts in our study perform

similarly to this MLR based on r values, suggesting that using a

statistical technique such as MLR may be able to provide improved

streamflow forecasts, and this is worth investigating in future

work.

The forecasts developed in this study use a simple LSTM

model with one layer. Increasing the number of LSTM layers

from one to two did not improve results, however there are other

parameters of the LSTMmodel that can be varied andmay improve

model performance, such as the length of the hidden and cell

state vectors and the loss function used. Kratzert et al. (2019)

found the inclusion of static catchment attributes, including area,

mean elevation, and fraction of snow, improved LSTM model

performance. As the Mica catchment is in a mountainous area,

the model may benefit from a snowpack measure that facilitates

the relationship between temperature, precipitation, and snowmelt.

Other studies, such as Tang et al. (2024), suggest that segmenting

training data into dry and wet periods and training separate

models for each characteristic may improve model performance;

the strong seasonal streamflow variations in our basin indicate

this technique may be useful. Modifications to the LSTM model

architecture, such as those suggested above, could improve the

benchmark performance of the LSTM model, i.e. with ERA5

input (ERA5-ERA5). LSTM forecasts would likely also improve;

however, this may not lead to any improvement of the hybrid

forecasts relative to ERA5-Climatology. Future studies will need
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TABLE 2 Mean R
2 and r across five sets of 36 models testing on 36 test

years for the LSTM trained on ERA5 with ERA5 climatology input

(“ERA5-Climatology,” as in Table 1), with shifted SEAS5 input

(“ERA5-SEAS5-LS”), with quantile–quantile bias corrected SEAS5 input

(“ERA5-SEAS5-QQ”), and the LSTM trained on SEAS5 with 6 months of

SEAS5 input (“SEAS5-SEAS5”) and 3 months of SEAS5 input

(“SEAS5-SEAS5-JFM”).

Forecast R2 r

ERA5-Climatology 0.30 (0.03) 0.55 (0.03)

ERA5-SEAS5-LS 0.24 (0.04) 0.54 (0.03)

ERA5-SEAS5-LS-JFM 0.24 (0.04) 0.54 (0.02)

ERA5-SEAS5-LS-JF 0.29 (0.03) 0.57 (0.02)

ERA5-SEAS5-LS-J 0.32 (0.03) 0.57 (0.02)

ERA5-SEAS5-LS-JFM (T only) 0.27 (0.03) 0.53 (0.03)

ERA5-SEAS5-LS-JF (T only) 0.28 (0.03) 0.53 (0.02)

ERA5-SEAS5-LS-J (T only) 0.28 (0.03) 0.53 (0.02)

ERA5-SEAS5-QQ –0.23 (0.05) 0.48 (0.02)

ERA5-SEAS5-QQ-JFM –0.25 (0.05) 0.48 (0.02)

ERA5-SEAS5-QQ-JF 0.14 (0.04) 0.55 (0.02)

ERA5-SEAS5-QQ-J 0.28 (0.03) 0.57 (0.02)

ERA5-SEAS5-QQ-JFM (T only) 0.27 (0.03) 0.53 (0.03)

ERA5-SEAS5-QQ-JF (T only) 0.29 (0.03) 0.54 (0.03)

ERA5-SEAS5-QQ-J (T only) 0.28 (0.03) 0.54 (0.02)

SEAS5-SEAS5 0.09 (0.09) 0.42 (0.07)

SEAS5-SEAS5-JFM 0.11 (0.05) 0.41 (0.04)

The LSTMs with bias corrected SEAS5 inputs are further tested with SEAS5 input in Jan–

Mar, Jan–Feb, and Jan only (“-JFM,” “-JF,” “-J”), and with temperature only in these months

(“T only”). One standard deviation across the five sets are indicated in parentheses. The

models in each of the five sets differ only in the random order of training and validation

years.

to assess whether there is substantial improvement to the hybrid

forecasts with LSTM architecture modification beyond that of

ERA5-Climatology.

Due to the limitations from meteorological input on the

hybrid forecast skill, other types of forecast model may show

improvement beyond that of the hybrid statistical-dynamical

forecast, for example, combining LSTM models with other deep

learning methods or streamflow forecasts. Zheng et al. (2024) use

a Bayesian deep learning approach with an LSTM to improve

quantification of uncertainty, and Modi et al. (2025) combine an

LSTMwith a probabilistic ensemble streamflow prediction forecast.

In addition, Modi et al. (2025) found their models that included

past snow accumulation performed better than those without,

further highlighting that a snowpack measure may be useful.

We note that our results are for a snowmelt-dominated

catchment with low streamflow levels in the winter and high

levels in the spring and summer, and this likely has a strong

impact on some of our conclusions, particularly on the forecast

skill that can be acquired with only Jan–Mar meteorological data

(see Figure 6), as the snowmelt accumulated during September to

March plays a substantial role in summer streamflow. Further work

FIGURE 11

(A) Observed and modeled monthly volumes for one example test
year (2014) with predicted volumes from SEAS5-SEAS5 (green
triangles), predicted volumes ERA5-ERA5 (blue squares), and
observed volumes (black circles). The NSE value of the SEAS5-SEAS5
forecast is printed in the plot area. (B) Seasonal (Jan–Sep) volumes
predicted by the SEAS5-SEAS5 forecast vs. observed seasonal
volumes for the test years 1982–2017. The R2 and r values are
printed in the plot area. The seasonal volume of 2014 is plotted as a
black star, and the dashed gray line indicates y = x. Both monthly
volumes (A) and seasonal volumes (B) shown are ensemble means
of five models, and error bars indicate plus/minus one standard
deviation across the ensemble models.

is required to understand which of our results can be generalized to

other basins.

5 Summary and conclusions

This study develops and analyzes the performance of a hybrid

statistical-dynamical streamflow model for seasonal forecasting

of total January to September inflow volume at 9 months lead

time, i.e. at the beginning of January. We focus on a single

catchment that flows into the Kinbasket Lake Reservoir and

Mica Dam in southeast British Columbia, a snowmelt-dominated

catchment with low streamflow levels in the winter and high

levels in the spring and summer. The hybrid forecast uses

dynamical seasonal meteorological hindcasts from ECMWF SEAS5

as input into an LSTM model trained on meteorological forcings

and streamflow observations. We use a leave-1-year-out cross

validation methodology, performing 36 model runs in total, each

tested on a different year in 1982–2017 and trained and validated

on a random selection of the remaining 35 years. We summarize

the major findings of this study as follows:
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1. The monthly LSTM model, which uses the previous 12 months

of meteorological data, outperforms the daily model (using the

previous 365 days) in capturing seasonal volumes and their

interannual variability, achieving an R2 > 0.7, while the daily

model fails to capture this variability effectively (R2 < 0).

2. For this catchment, only 3 months of accurate meteorological

input (January–March) are needed to achieve high predictive

skill for seasonal streamflow, with little to no added value from

meteorological skill in the summer months (May–August).

3. The hybrid forecast (ERA5-SEAS5) tends to underestimate

streamflow volumes due to biases in the SEAS5 hindcasts.

Despite this, the model captures over half of the interannual

variability (r ≈ 0.52).

4. Applying linear and quantile–quantile bias corrections to the

SEAS5 hindcasts improves the accuracy of seasonal volume

predictions but does not significantly enhance themodel’s ability

to predict interannual variability.

5. Training the LSTMmodel directly on SEAS5 data enables better

volume predictions but slightly reduces the model’s skill in

capturing interannual variability (r ≈ 0.42).

6. Reducing the number of months of SEAS5 hindcasts input

improves the forecasts, as the hindcast data with significant

biases relative to ERA5 are removed.

7. No hybrid forecast is able to substantially improve upon a

forecast with meteorological climatology input in all months of

the forecast year (mean R2 = 0.30, r = 0.55), indicating that

there is currently little to no added value in using SEAS5 forecast

input.

The results presented demonstrate that although it is possible

to use a hybrid statistical-dynamical LSTM forecast to predict

seasonal volumes with 9 months lead time, there is no added skill

in using SEAS5 hindcast data as input to the LSTM model for

the forecast year compared to using meteorological climatology.

However, some hybrid forecasts are able to reproduce the same

skill level as the forecast with meteorological climatology input,

and thus, as improvements are made to seasonal meteorological

forecasts, there is the potential that these hybrid forecasts will

provide improved predictions of seasonal volumes.

As our hybrid models use ERA5 reanalysis and ECMWF

SEAS5 seasonal forecasts, both of which are available as global

gridded datasets, our model framework could be applied to other

catchments with streamflow observations available. Many of our

results, particularly on the meteorological forecast months required

for accurate seasonal streamflow predictions, are likely unique

to snowmelt-dominated catchments; however, this framework is

modifiable to use different predictor variables as input to better

reflect streamflow processes in other regions.
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