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Evapotranspiration (ET), a key component of the hydrological cycle, responds to 
and influences climate change, making accurate estimation of reference ET (ETo) 
critical for long-term impact assessments. The widely applied FAO Penman–Monteith 
(FAO-PM) equation for calculating ETo does not account for rising atmospheric 
CO2, which reduces vegetation stomatal conductance and can lead to systematic 
overestimation of ETo. We derived a modified FAO-PM equation incorporating 
CO2 effects on stomatal behavior. Using projections from five global circulation 
models, we compared spatiotemporal average of ETo estimates for India from 
the original and modified equations under SSP5-8.5 and SSP1-2.6. Differences 
were 0.11–1.29 mm day−1 (2021–2030), 0.09–1.90 mm day−1 (2051–2060), and 
0.17–3.14 mm day−1 (2091–2100) under SSP5-8.5, with slightly lower values 
under SSP1-2.6. Seasonal differences between the predicted ETo from the two 
equations peaked during the pre-monsoon, reaching 3.90 mm day−1 (SSP5-8.5) and 
1.74 mm day−1 (SSP1-2.6). Neglecting stomatal responses to CO2 could lead to ETo 
overestimation of ~29% under SSP5-8.5 by 2100, potentially biasing projections of 
droughts, heatwaves, and water demand. By contrast, overestimation is moderate 
(~13%) under SSP1-2.6. Incorporating the impact of CO2 into ETo estimation is 
therefore essential for robust climate change impact assessments.
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1 Introduction

The study of climate change and its effects on the hydrological cycle is a prominent and 
highly emphasized research field. Among the essential components of the hydrological cycle, 
evapotranspiration (ET) is one crucial component that is highly responsive to climate change 
and atmospheric CO2 (Parasuraman et al., 2007; Abdolhosseini et al., 2012; Izady et al., 2013; 
Pan et al., 2015; Rezaei et al., 2016; Sarker, 2022). ET can affect discharge for a large-scale 
catchment (Dakhlaoui et al., 2020) and crop water requirements on a smaller scale (Djaman 
et al., 2018). Optimization of irrigation (Wright and Asae, 1985; Bashir et al., 2023) as a way for 
climate change adaptation (Li et al., 2020; Yang et al., 2023), also makes extensive use of ET 
estimations. ET can be estimated using field measurements (Tanner, 1967; Liu et al., 2013; 
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Kompanizare et al., 2022) or modeling techniques (Wang et al., 2024). 
In contrast to field measurements (Tanner, 1967; Liu et  al., 2013), 
modeling-based approaches (Allen et al., 1998; Das et al., 2023) to 
estimate ET are inexpensive because they rely on readily available 
meteorological data. One of the popular modeling-based approaches 
to estimate ET makes use of the FAO Penman-Monteith equation 
(FAO-PM) (Allen et al., 1998) to calculate reference evapotranspiration 
(ETo) which is evapotranspiration for a hypothetical reference crop 
with an assumed crop height of 0.12 m, a fixed surface resistance of 
70 s m−1, and an albedo of 0.23 under well-watered condition. The ETo 
is then multiplied by a crop specific parameter called crop coefficient 
(Allen et al., 1998) which varies by growth stages and management 
practices to determine the actual ET for a given crop. The fixed value 
of 70 s m−1 of surface resistance, incorporated in the FAO-PM, is based 
on an assumption of a constant stomatal resistance of 100 s m−1 for a 
single leaf (Allen et al., 1998). However, this assumption is not valid 
because increasing atmospheric CO2 concentration is known to 
increase stomatal resistance (Ainsworth and Long, 2021). The global 
atmospheric CO2 has increased from 320 ppm in 1965 (Statista, 2024), 
when the original Penman-Monteith equation (Monteith, 1965) was 
proposed, to 420 ppm in 2024, and CO2 levels could potentially exceed 
1,000 ppm by 2100 if the world follows the SSP5-8.5 pathway (Büchner 
and Reyer, 2022). Increasing CO2 concentration by 300 ppm resulted 
in a 50% increase in stomatal resistance in a field study of grassland 
(Vremec et al., 2023). Ainsworth and Rogers (2007) reported a 28% 
increase in leaf-level stomatal resistance as CO2 rose from 366 to 
567 ppm across global bioclimates. Therefore, ETo estimates made 
using the FAO-PM equation are prone to overestimation. This 
limitation has been addressed by incorporating a simple function into 
the FAO-PM equation that allows stomatal resistance to vary as a 
function of atmospheric CO2 (Li et  al., 2019; Yang et  al., 2019). 
Incorporating the impact of CO2 in calculating evapotranspiration 
(ET) led to a notable reduction in estimated water demand for maize 
grown under controlled condition (Li et  al., 2019), and helped in 
addressing anomalies caused by the concurrent occurrence of drought 
conditions and increased runoff (Yang et al., 2019).

An accurate estimation of ET over contiguous India is crucial for 
the wellbeing of more than a billion people in the context of climate 
change. Several factors such as reliance on the 4 months of monsoon 
(Mall et  al., 2006), intrinsic relationship between rainfall and ET 
(Stefanidis and Alexandridis, 2021), spatial–temporal mismatch 
between water demand and supply (Amarasinghe et al., 2007), makes 
it necessary to account for the impact of rising atmospheric CO2 
concentration in sustainable management of water resources in India. 
It is essential to consider rising atmospheric CO2 in water resource 
planning. However, several studies focusing on the availability of water 
resources (Mall et al., 2006), agricultural water demand (Sreeshna et al., 
2024), and extreme events such as flooding (Mall et al., 2006; Bharat 
and Mishra, 2021; Athira et  al., 2023) and droughts (Aadhar and 
Mishra, 2020) often do not explicitly include the effect of rising CO2 in 
their analyses. Earlier projections, which excluded the impact of CO2, 
indicated a significant spatial and temporal variation in the increase in 
potential ET due to rising temperatures (Chattopadhyay and Hulme, 
1997). In this study, we aim to investigate the influence of atmospheric 
CO2 concentrations alongside future climate projections under 
SSP1-2.6 and SSP5-8.5 to reassess ETo patterns across contiguous India. 
To achieve this, we  modified the FAO-PM equation and utilized 
climate projections, including atmospheric CO2 concentrations, to 

conduct a comprehensive analysis of the spatio-temporal variations in 
ETo, both with and without accounting for the effects of rising 
CO2 concentrations.

2 Methods

The overall methodology adopted in this study is summarized 
in the flowchart presented in Figure 1, which offers a step-by-step 
visual overview of the procedures and analyses undertaken to assess 
the impact of incorporating atmospheric CO2 concentrations into 
the estimation of the reference evapotranspiration over India. 
Detailed explanations of each step are provided in the subsequent 
subsections. A key strength of this approach is the use of 
harmonized and bias-corrected future climate data (Hempel et al., 
2013; Warszawski et  al., 2014), which enables a consistent and 
spatially explicit evaluation of how excluding atmospheric CO2 may 
influence evapotranspiration estimations in India, where water 
availability vary significantly over seasons and regions (Kumar 
et  al., 2005; Cronin et  al., 2014; Pathak et  al., 2014; Singh and 
Kumar, 2015).

2.1 Scope and study area

The aim of this paper is to demonstrate the extent of disparity 
between reference evapotranspiration (ETo) estimated with and 
without incorporating the influence of CO2 on contiguous India 
during three timeframes: the near-term (2021–2030), mid-term 
(2051–2060) and the long-term (2091–2100) periods. To achieve 
this, data from five Global Climate Models (GCMs) (see 
Supplementary Table S1) were obtained from the Inter-Sectoral 
Impact Model Intercomparison Project (ISIMIP) (Warszawski et al., 
2014; Hempel et al., 2013). These five models were chosen because 
their GCM projections were bias-corrected for the systematic 
deviation from observations and made freely accessible through the 
ISIMIP portal of the Potsdam Institute of Climate Impact Research.1 
Furthermore, ISIMIP data effectively capture the uncertainties in 
global temperature change projections (Ito et al., 2020), which is 
essential since temperature is an important variable in 
estimating ETo.

We focus on two contrasting climate change scenarios: SSP5-8.5 
and SSP1-2.6 (see Supplementary Figure S1), which correspond to 
projected global CO2 concentrations of approximately 1,130 ppm and 
474 ppm, respectively (Büchner and Reyer, 2022). These scenarios are 
associated with a projected mean temperature rise in India of 4.0-to-
4.4 °C under SSP5-8.5 and 1.2-to-1.8 °C under SSP1-2.6 by 2100. 
We selected SSP5-8.5 because it is commonly used in climate change 
impact assessment under the worst-case, high-emissions scenario 
(Jaiswal et al., 2017; Pielke, 2021; Climatedata.ca, 2024), which closely 
followed observed CO2 emission trends until recent years (Fuss et al., 
2014). In contrast, SSP1-2.6 represents a low-emissions, sustainable 
development pathway, serving as a benchmark for the most optimistic 
future with aggressive mitigation.

1  https://www.isimip.org/
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2.2 Estimation of reference 
evapotranspiration

We employed two approaches to estimate ETo, one without 
considering the effect of atmospheric CO2 concentration 
(Equation 1) and the second after incorporating atmospheric CO2 
concentration (Equation 6). The first approach is based on the 
FAO-PM equation (Allen et  al., 1998), which combines the 
aerodynamic component with the energy component and is 
idealized for a hypothetical reference crop (Allen et al., 1998). The 
second approach modifies FAO-PM equation by considering 
stomatal conductance as a function of atmospheric CO2 
(Equation 5) (Li et  al., 2019) instead of a fixed value of surface 
resistance of 70 s m−1 as used in the original FAO-PM equation 
(Equation 1) (Allen et al., 1998).

2.3 Derivation of the modified FAO-PM 
equation

According to the original FAO-PM equation  
(Allen et al., 1998),
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where, original
oET  is the reference evapotranspiration (mm day−1), 

Rn is the net radiation (MJ m−2 day−1) at the canopy surface, G is the 
soil heat flux density (MJ m−2 day−1) (G is assumed negligible and 
hence equals zero), γ is the psychrometric constant (kPa °C−1), T is 
mean daily air temperature (°C) at 2 m height, u2 is the wind speed at 
2 m height (m s−1), es is the saturation vapor pressure (kPa), ea is the 
actual vapor pressure (kPa), es - ea is vapor pressure deficit (kPa), and 
Δ is the slope of the saturated vapor pressure curve (kPa °C−1).

During the formulation of Equation 1, the term  
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Penman-Monteith (PM) model (Monteith, 1965) is substituted with 
rs = 70 s m−1 and =a

2
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u

, to obtain (1 + 0.34u2). As a first step to 

incorporating CO2 in FAO-PM equation, we modify Equation 1 in the 
following way (Allen et al., 1998; Li et al., 2019; Jarvis et al., 1997):
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FIGURE 1

Flow chart summarizing the overall methodology used to assess the impact of rising atmospheric CO2 on reference evapotranspiration under Indian 
conditions.

https://doi.org/10.3389/frwa.2025.1597728
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Surendran et al.� 10.3389/frwa.2025.1597728

Frontiers in Water 04 frontiersin.org

	 =c s activeg g LAI

	 =activeLAI 0.5 LAI

	 =LAI 24 h

	 =h 0.12

	 =c sHence,g 1.44 g

	
=s

s

0.694r
g 	

(2)

	
=a

2

208r
u 	

(3)

where, rs is the bulk surface resistance (s m−1), ra is the aerodynamic 
resistance (s m−1), gc is the canopy conductance (m s−1), gs is the leaf 
stomatal conductance (m s−1), LAIactive is effective leaf area index (m2 m−2), 
h is the hypothetical crop height (equals 0.12 assumed in Equation 1 in m).

Substituting Equations 2, 3 in Equation 1, we get the modified 
FAO-PM model (Equation 4)
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In the above equation, stomatal conductance gs (m s−1) appears on 
the right-hand side of Equation 4. Li et al. (2019) developed a modified 
hyperbolic model that express gs as a function of atmospheric CO2 as 
shown in Equation 5.
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We replaced gs (m s−1) from Equation 5 to Equation 4 to obtain 
CO2 dependent value of reference evapotranspiration ( CO2

oET ) (in 
mm day−1). Our modified version of the FAO-PM equation, presented 
in Equation 6, provides a simplified representation of CO2

oET  as a 
function of atmospheric CO2, and all the other meteorological inputs 
used in the original FAO-PM equations (Allen et al., 1998).
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2.4 Data for validating the modified 
FAO-PM equation

To validate our proposed modified FAO-PM equation, 
we used measured data from six independent sites included in the 
AmeriFlux network (Novick et al., 2018), which is a part of the 

global FLUXNET (Pastorello et  al., 2020) network of eddy 
covariance towers.2 The six sites were selected based on details 
provided about vegetation and/or crop cover, availability of crop 
coefficients, and availability of the planting and harvest dates (see 
Supplementary Table S2; Nass, 2010). They comprise of four 
agricultural and natural vegetation types including alfalfa 
cultivation (Twitchell and Bouldin Islands), managed pastures 
(Medford hay pasture), irrigated croplands (continuous maize at 
Mead) and native prairie ecosystems (Rosemount Prairie and 
Konza prairie; see Supplementary Table S2). All of the sites also 
span across different types of climates. Twitchell alfalfa and 
Bouldin islands come under the Csa Koppen climate classification 
(Mediterranean) with mild winters and dry hot summers. Medford 
hay pasture and Konza Prairie exhibits Cfa climate (Humid 
subtropical) with mild winters, hot summers and year-round 
rainfall. Rosemount prairie and Mead’s maize site experience a 
Dfa climate (Humid Continental) with severe winters, hot 
summers, and no dry season. The downloaded data from the 
AmeriFlux site consisted of the following variables; air 
temperature, vapor pressure deficit, net radiation, wind speed, 
atmospheric pressure, atmospheric CO2 and latent heat flux. 
Additionally, weather data from two representative stations 
located in the southern Indian state of Kerala were used to 
compare model performance: one at Trivandrum (8.544°N, 
76.913°E) and the other at Palakkad (10.807°N, 76.7258°E). These 
datasets were used to compare the performance between the 
modified FAO-PM equation and two other methods: the original 
FAO-PM equation (Allen et  al., 1998) and the widely used 
Priestley-Taylor equation (Priestley and Taylor, 1972).

2.5 Validation approach

We converted the daily observed latent heat flux data into actual 
evapotranspiration by dividing latent heat flux with latent heat of 
vaporization [λ = 2.45 MJ kg−1 (Allen et  al., 1998)] (see 
Supplementary Equation S1). The actual evapotranspiration was then 
divided by crop coefficients (see Supplementary Table S2) 
corresponding to vegetation type (see Supplementary Equation S2) to 
estimate reference evapotranspiration ( obs

oET ). We  used obs
oET  to 

validate our predictions of CO2
oET made using modified FAO-PM 

equation (Equation 6) for the six sites.
To compare our model estimations against commonly used 

approaches for selected sites in India, we used the weather data from 
specific stations in the South Indian state of Kerala (see 
Supplementary Table S3) to estimate reference evapotranspiration 
using both the original and modified FAO-PM models. Additionally, 
the CO2

oET  values were further compared with the estimated values 
by the Priestley-Taylor equation, based on the same weather 
station data.

The statistics used for the validation and comparison were Root 
Mean Square Error (RMSE in mm day−1), coefficient of determination 
(R2), and the correlation coefficient (r) (see Supplementary Equations 
S3–S5).

2  https://ameriflux.lbl.gov/
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2.6 Climate data for regional simulations

The climate data to estimate ETo across India was obtained 
from the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP), ISIMIP3b protocol (Hempel et al., 2013; Warszawski 
et al., 2014). The ISIMIP project provides bias-corrected gridded 
global climate projection data from 1800 to 2100 at daily (and 
coarser) time steps with a spatial resolution of 0.5° × 0.5°. 
We used projected climate data for contiguous India for the period 
from 2021–2030 (near-term), 2051–2060 (mid-term), and 2091–
2100 (long-term) corresponding to the five GCMs, namely GFDL-
ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and 
UKESM1-0-LL under SSP1-2.6 and SSP5–8.5 scenarios (Lange 
and Büchner, 2021; see Supplementary Table S1). We downloaded 
six variables, namely near surface relative humidity, surface air 
pressure, surface downwelling shortwave radiation, near surface 
wind speed, daily maximum near surface temperature, and 
minimum near surface air temperature (Lange and Büchner, 
2021). Additionally, ISIMIP3b atmospheric composition input 
data for annual mean CO2 concentrations under SSP5-8.5 and 
SSP1-2.6 (Büchner and Reyer, 2022) was also downloaded (see 
Supplementary Figure S1) to calculate CO2

oET  using modified 
FAO-PM equation (Equation 6). The soil heat flux density (G) was 
assumed to be negligible in our calculations (Allen et al., 1998; 
Varghese and Mitra, 2024).

2.7 Estimations for spatio-temporal 
analyses

We estimated the daily original
oET (Equation 1) and CO2

oET  
(Equation 6) for each year from 2021–2030 (near-term), 2051–2060 
(mid-term) and 2091–2100 (long-term) across contiguous India using 
data from each of the five GCMs for both the scenarios (SSP1-2.6 and 
SSP5-8.5). From this point forward, any reference to India refers to 
contiguous India.

	(a)	 Decadal averages of original
oET and CO2

oET  were computed to 
conduct spatial analyses across India. Intra-decadal trends in 
the yearly averaged values of original

oET  and CO2
oET  spatially 

averaged across India were also analyzed.
	(b)	 We also calculated the daily difference between original

oET  and 
CO2
oET  for each GCM, time period, and scenario. These 

differences were averaged over each decade and mapped to 
analyze spatial patterns across India.

	(c)	 To assess seasonal variability, daily estimates of original
oET  

and CO2
oET were grouped into four seasons following 

Jhajharia et  al. (2009): winter (Jan–Feb), pre-monsoon 
(Mar–May), monsoon (Jun–Sep), and post-monsoon 
(Oct–Dec).
Thereafter, seasonal averages were computed for each GCM, 
time period, and scenario. The differences between seasonal 

original
oET  and CO2

oET  were then calculated for each GCM and 
these differences were averaged across all five GCMs to obtain 
an overall seasonal difference.

Maps were classified using manually determined class breaks after 
identifying the minimum and maximum values projected by all 
GCMs for each step (ESRI, 2024).

2.8 Estimating the impact of CO2 on the 
national average evapotranspiration

To quantify relative impact of incorporating CO2 on national 
average evapotranspiration we  have calculated −

original
o,near termET , 

−
original
o,mid termET  and −

original
o,long termET , which represent spatio-temporal 

averages (for entire country over a period of 10 years) of ETo estimated 
using the original FAO-PM (Equation 1) for near-term period (2021–
2030), mid-term (2051–2060) and long-term periods (2091–2100), 
respectively. Similarly, we calculated −

CO2
o,near termET , −

CO2
o,mid termET  and 

−
CO2
o,long termET , which represent the spatio-temporal averages of CO2

oET  
estimated using the modified FAO-PM (Equation 6). We calculated 
percentage change in original

oET , as we  move from near-term to 

mid-term −× original
o,near term(100 (ET  – −− ÷original original

o,near termo,mid termET ) ET ), and 

long-term −× original
o,near term(100 (ET   – −− ÷original original

o,near termo,long termET ) ET )  
with the assumption that original FAO-PM equation would 
be  continued to be  used. Similarly, we  also calculated percentage 
changes in the estimated ETo as a result of incorporating CO2 for near-
term −× original

o,near term(100 (ET  – − −÷ originalCO2
o,near term o,near termET ) ET ), mid-term 

−× original
o,mid term(100 (ET  – − −÷ originalCO2

o,mid term o,mid termET ) ET ), and long-term 

periods −× original
o,long term(100 (ET  – − −÷ originalCO2

o,long term o,long termET ) ET ) using 

original
oET  as base value.

2.9 Sensitivity analysis

After the spatio-temporal analyses, we identified two locations 
in India which exhibit drastically different response of rising CO2 
and temperature on ETo. These two locations were used to conduct 
a sensitivity analysis of CO2

oET  with respect to temperature and 
atmospheric CO2. To perform the sensitivity analysis, the CO2 
concentration was varied from 400 to 1,200 ppm while keeping all 
the remaining input parameters unchanged. Similarly, temperature 
sensitivity analysis was done by varying temperature from 18 to 
34 °C while keeping all the remaining input parameters unchanged. 
These ranges were determined based on meteorological data for the 
three decadal periods for these two specific locations. The values 
of all the other variables during sensitivity analysis were kept 
constant based on their average values and are given in 
Supplementary Table S4. All the data produced during this analyses 
is available publicly as an archive (Surendran et al., 2025).

3 Results

3.1 Model validation and comparison

We developed the modified FAO-PM (Equation 6) which 
effectively predicted the daily reference evapotranspiration ( CO2

oET ) 
at the six AmeriFlux (Novick et  al., 2018) sites (Figure  2) with 
atmospheric CO2 concentrations ranging from 370 ppm in 2001 to 
418 ppm in 2021 (see Supplementary Table S2). The correlation 
coefficient (r) indicates moderate to strong linear relationships 
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https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Surendran et al.� 10.3389/frwa.2025.1597728

Frontiers in Water 06 frontiersin.org

between the observed obs
o(ET  – see Supplementary Equation S2) and 

estimated ETo using Equation 6 ( CO2
oET ), with the site US-A32 

showing the highest correlation (r = 0.72) and the site US-Ne1 
showing the lowest correlation (r = 0.606). The slopes of the regression 
lines through the origin ranged from 0.8 to 1.04, demonstrating close 
alignment with the 1:1 line across all six sites (Figure 2). RMSE values 
ranged from 1.152 to 1.566 mm day−1, with the site US-Ro4 exhibiting 
the lowest RMSE and the site US-Bi1 showing the highest.

To compare the estimation of the modified FAO PM equation 
(Equation 6) against commonly used methods for selected Indian 
sites, we used daily weather data from two stations located in the 
southern Indian state of Kerala: Trivandrum (8.544°N, 76.913°E) 
and Palakkad (10.807°N, 76.7258°E). Using this data, reference 
evapotranspiration was estimated using the original FAO-PM 
model (ETₒ FAO–PM), the modified CO2-sensitive FAO-PM 
model ( CO2

oET ), and the Priestley-Taylor model (ETPT). Figure 3 
compares CO2

oET  with ETo FAO–PM and ETPT for both locations. 
The modified FAO-PM model exhibited a strong agreement with 
the original FAO-PM model at both sites, with high R2 values 
(0.999 for Trivandrum and 0.988 for Palakkad), strong correlation 
coefficients (r = 0.996 and 0.992, respectively), and low RMSE 
values (0.084 and 0.329-mm day−1, respectively). Comparisons 
with the Priestley-Taylor model showed relatively lower 

agreement, with higher RMSE values (0.486 and 0.887 mm day−1, 
respectively) and underprediction tendencies (slopes of 0.82 and 
0.76, respectively).

3.2 Spatio-temporal variations in original
oET  

and CO2
oET

Analyses of original
oET  and CO2

oET  under SSP1-2.6 and SSP5-8.5 
scenario utilizing five GCMs (see Supplementary Table S1; 
Supplementary Figure S1) during near-term (2021–2030), mid-term 
(2051–2060) and long-term (2091–2100) periods, and all spatial 
locations in India, showed that the former exceeded the latter 
consistently in all cases (Figure  4) due to the impact of rising 
atmospheric CO2 concentration that was not included in the original 
FAO-PM model (Equation 1). In general, both original

oET and  
CO2
oET , are decreasing as we move from west to east for all cases 

(Figure 4). The highest values of original
oET and CO2

oET  (Figure 4) and 
the difference between original

oET and CO2
oET  (Figure 5) were observed 

covering parts of desert regions in Rajasthan by all the five GCMs for 
all the time periods and scenarios.

While the differences between original
oET  and CO2

oET  were similar 
for both SSP1-2.6 and SSP5-8.5  in the near term, they became 
significantly larger under SSP5-8.5 during the mid-term and 

FIGURE 2

Scatter plots of the comparison between the observed rates of reference evapotranspiration ( ETobso in mm day−1) and predicted rates of reference 

evapotranspiration ( ETCO2o  in mm day−1) using the FAO-PM equation modified to incorporate the impact of atmospheric CO2 concentration on 

surface resistance at the six AmeriFlux sites (a) US-Tw3: Twitchell Alfalfa (2013–2018), (b) US-Bi1: Bouldin Island Alfalfa (2016–2021), (c) US-xKZ: NEON 
Konza Prairie Biological Station (KONZ) (2017–2021) (d) US-Ro4: Rosemount Prairie (2014–2021), (e) US-A32: ARM-SGP Medford hay pasture (2015–
2017) and (f) US-Ne1: Mead - irrigated continuous maize site (2001–2020).
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FIGURE 3

Scatter plots of the comparison between daily reference evapotranspiration estimates from the modified FAO Penman-Monteith model ( ETCO2o  in 
mm day−1) with those from the original FAO-PM model (ETₒ FAO–PM) and the Priestley-Taylor equation (ETPT) using observed weather data at two 
locations in Kerala, India; Trivandrum (8.544°E, 76.913°N) and Palakkad (10.807°E, 76.7258°N). Panels (a) and (c) compare ETCO2o  with ETₒ FAO–PM, 
while panels (b) and (d) compare ETCO2o with ETPT.

FIGURE 4

Decadal average of EToriginalo and ETCO2o in mm day−1 for near-term, mid-term and long-term periods across India for the five GCMs under (a) 
SSP1-2.6 and (b) SSP5-8.5.
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long-term time periods, indicating divergent temporal trajectories 
across the two scenarios (Figure 5). The regions predicted to have 
lowest values of original

oET  and CO2
oET  (Figure 4) and their difference 

(Figure  5) included high-altitude deserts of Ladakh and 
northeastern states.

The spatially averaged values of original
oET  and CO2

oET  across India 
(Figure 6) indicated a small variation in the time-series of estimated 
values within a period of 10-years corresponding to the near-term, 
mid-term and long-term time periods for all the GCMs and under 
both SSP1-2.6 and SSP5-8.5 scenarios. The predicted values of 

original
oET  was consistently higher than CO2

oET  for all the scenarios and 
time periods. The differences between the two were largest for the long-
term (2091–2100) period under SSP5-8.5 when CO2 concentrations 
are projected to reach 1,130 ppm (see Supplementary Figure S1).

3.3 Seasonal variations in the ETo difference

Spatial variations in the magnitude of the differences between 
original
oET  and CO2

oET for the four seasons are seen in all three time 
periods under both the scenarios (Figure 7). The differences between 

original
oET  and CO2

oET was the largest during the pre-monsoon season, 
in most parts of India except the far-northern and north-eastern 
states. The lowest differences were observed during the post-monsoon 
and winter season (Figure  7). Spatially, the magnitude of these 
differences for the winter and post-monsoon seasons were the least in 
the northern and north-eastern regions and highest in major parts of 
Rajasthan, Gujarat, Maharashtra and southern India for all time 
periods and scenarios. The differences were higher for the long-term 
period than for the near-term period and mid-term period only under 
scenario SSP5-8.5 for all the locations and seasons. Under the SSP1-2.6 
scenario, the differences were smaller and ranged from 0.05 to 
2.5 mm day−1 across all seasons and time periods.

The absolute spatio-temporal average values of the seasonal 
(monsoon, post-monsoon, winter, and pre-monsoon) variations 
of original

oET  and CO2
oET for the near-term, mid-term and long-term 

periods under SSP1-2.6 and SSP5-8.5 are shown in Table S5 and S6, 
respectively (see Supplementary material) for the five GCMs. The 
seasonal patterns are nearly consistent among GCMs with higher 
values of original

oET  and CO2
oET observed during pre-monsoon and 

lower values observed during the post-monsoon and winter season 
for all the three simulation periods and scenarios. All seasons show a 
decrease in the predicted ETo when incorporating the effect of CO2 for 
SSP5-8.5 (see Supplementary Tables S5, S6).

3.4 Sensitivity analyses of CO2
oET

The sensitivity analysis of CO2
oET  with respect to temperature and 

CO2 concentration (Figure 8) revealed distinct trends at both the 
locations selected. Location 1 (26.75°N, 70.25°E), situated in the arid 
desert region of Rajasthan with a hot desert climate, exhibited CO2

oET  
values ranging from 3.22 to 9.65 mm day−1 as CO2 concentration 
increased from 400 to 1,200 ppm and temperature was varied from 26 
to 33 °C. This location showed the greatest difference in ETo​ estimated 
using original and modified FAO-PM equations. Location 2 (23.75°N, 
93.25°E), situated in Arunachal Pradesh with a tropical rainforest 
climate, showed CO2

oET  values ranging from 0.6 to 1.35 mm day−1 for 
the same CO2 range and temperature variation from 18 to 24 °C. This 
location exhibited the lowest difference in ETo estimated using original 
and modified FAO-PM equations.

3.5 Impact of CO2 on the national average 
evapotranspiration

Spatio-temporal averages across India (Figure  9) shows that 
incorporating CO2 concentrations in calculating ETo results in a reduction 
of 12.4, 13.9, and 13.0% for near-term, mid-term, and long-term time 
periods respectively under SSP1-2.6. Under SSP5-8.5, the percentage 
difference (12.6%) was more-or-less similar to the ones observed under 
SSP1-2.6 for the near-term period but were much larger for the mid-term 
and long-term periods (18.0 and 29%, respectively).

If one continues to use original FAO-PM equation (Equation 1), 
which does not consider the effect of rising CO2, then the increase in 
the ETo is expected to be 4.0 and 4.6% as we move from near-term 
(2021–2030) to mid-term (2051–2060), and near-term to long-term 
(2091–2100) periods, respectively, under scenario SSP1-2.6. These 
numbers change to 6.0 and 16.0%, respectively under the scenario 
SSP5-8.5.

FIGURE 5

The decadal average of difference between EToriginalo and ETCO2o projected by each of the five GCM’s for near-term, mid-term and long-term 
across India under (a) SSP1-2.6 and (b) SSP5-8.5.
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FIGURE 6

Annual time series of (i) EToriginalo  for near-term (2021–2030) (ii) ETCO2o for near-term (iii) EToriginalo  for mid-term (2051–2060) (iv) ETCO2o for 
mid-term (v) EToriginalo  for long-term (2091–2100) and (vi) ETCO2o for long-term obtained using five GCMs and their overall average under (a) SSP1-
2.6 and (b) SSP5-8.5.

FIGURE 7

Average of difference between EToriginalo  and ETCO2o obtained using five GCMs, corresponding to four seasons for near-term, mid-term and long-
term periods under (a) SSP1-2.6 and (b) SSP5-8.5.
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4 Discussion

4.1 Reliability of modified FAO-PM 
equation spans a wide variety of vegetation 
types and climatic conditions

Our model performed satisfactorily against the AmeriFlux 
network data (Novick et al., 2018), with R2 values ranging from 0.75 to 
0.90 (Figure 2). These values are comparable to those reported by Li 

et al. (2019), who found R2 values of 0.76 to 0.83 while validating 
CO2
oET  against water balance-based estimates for maize under 

controlled conditions. In contrast, our validation included six sites with 
diverse vegetation types and management practices (see 
Supplementary Table S2), where site selection was guided by the 
availability of crop coefficient (Basketfield, 1985; Allen et al., 1998; 
Nass, 2010; Pereira et al., 2023), which is essential for converting actual 
evapotranspiration (ETactual) (see Supplementary Equation S1) from 
eddy covariance towers to obs

oET  using crop coefficients (see 

FIGURE 8

Interaction of CO2, temperature and ETCO2o  at location 1 (26.75°N, 70.25°E) and location 2 (23.75°N, 93.25°E). These locations are characterized by 
highest (location 1) and lowest (location 2) differences of EToriginalo  and ETCO2o .

FIGURE 9

ETo averaged over the entire country for near-term, mid-term and long-term periods under (a) SSP1-2.6 and (b) SSP5-8.5 using climate data from five 
GCMs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL).
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Supplementary Equations S1, S2). The greater scatter observed in our 
validation plot (Figure 2) can be attributed to uncertainties in crop 
coefficients (Peng et al., 2019), as well as site-specific factors such as 
spatial heterogeneity, variations in planting and harvest dates, irrigation 
practices, environmental stresses, and other management practices.

The comparison of the modified FAO-PM model using daily 
weather data from two locations in Kerala, Palakkad and Trivandrum, 
showed strong agreement with the original FAO-PM formulation, 
yielding high R2 values (0.98 to 0.99) (Figure 3). These sites represent 
typical humid tropical environments characterized by high moisture 
availability and seasonal variability, making them suitable test 
references for model evaluation in such climates. Palakkad includes 
agriculturally important areas, further supporting the relevance of 
these results. The high agreement with the original FAO-PM method 
suggests that the modified model preserves the core structure and 
reliability of the standard formulation while integrating the 
physiological response of vegetation to elevated CO2. Previous studies, 
such as Nandagiri and Kovoor (2006) have shown that radiation-
based models like Priestley-Taylor (PT) perform reasonably well in 
humid regions. Supporting this, our comparison of CO2

oET with ETPT 
at both Kerala locations showed strong statistical relationships 
(R2 = 0.936-to-0.966; r = 0.919-to-0.988), indicating that PT captures 
the temporal patterns of evapotranspiration well. However, the slopes 
of the lines (0.76 and 0.82) and relatively higher RMSE values (0.486 
to 0.887 mm day−1) point to a consistent underestimation by the PT 
method compared to the modified FAO-PM model (Figure 3). This 
underprediction highlights the advantage of including physiological 
and aerodynamic controls, as well as CO2 sensitivity, which are absent 
in simpler radiation-based models.

Together, these results show that the modified FAO-PM model 
not only performs reliably under controlled or semi-controlled 
conditions but also maintains robustness across complex, real-world 
scenarios. This consistency across different climates, vegetation types, 
and data sources supports the model’s potential for large-scale 
applications in climate impact studies and agricultural 
water management.

4.2 Impacts of incorporating changing CO2 
concentrations across the three decadal 
periods

The CO2 range in the validation data for the modified FAO-PM 
equation (Equation 6) was relatively narrow (370–418 ppm) (see 
Supplementary Table S2), reflecting past natural environmental 
conditions. However, this modified FAO-PM equation (Equation 6) 
has been previously validated under controlled conditions with CO2 
levels up to 900 ppm (Li et al., 2019). This higher level is comparable to 
the atmospheric CO2 concentrations projected by the SSP5-8.5 scenario 
in the long-term period (2091–2100) (see Supplementary Figure S1), 
considered in our study to evaluate the spatial variation of the impact 
of CO2 on ETo across India (Figures 4b, 5b).

We predicted a consistent trend of CO2
oET being less than 

original
oET  (Figures 4, 5) due to the CO2 impacts on stomatal closure, 

which is similar to reported trends in previous studies (Li et al., 2019; 
Yang et al., 2019; Varghese and Mitra, 2024). In our knowledge, the 
absolute values of CO2

oET  and original
oET  covering whole India have not 

been reported previously. The predicted original
oET  for the near-term 

period ranged from 1.94-to-7.04 mm day−1 under both SSP1-2.6 and 
SSP5-8.5 (Figure 4), aligning with recent estimates done for smaller 
regions within India (Jhajharia et al., 2009; Nag et al., 2014; Pandey 
et al., 2016; Das et al., 2023). The increase in original

oET  from the near-
term to long-term (Figure 4b) can be attributed to rising temperatures 
under SSP5-8.5, as studies have shown a positive correlation between 
temperature and ETo (Wang et  al., 2022; Zhou et  al., 2022) with 
temperature contributing up to 45% of ETo variation (Varghese and 
Mitra, 2024). However, this increase in ETo is moderated ( CO2

oET  < 
original
oET  in Figure 4) as a consequence of incorporating the effect of 

CO2 in our calculations. Estimations using all five GCMs (Figures 4, 
5) are consistent in predicting the CO2

oET  to be less than the original
oET  

but they differ in the magnitude as well as spatial variations of the 
differences. The spatial averages (Figure 6) reveal no distinct temporal 
trends within 10-year intervals for either the near-term or long-term 
periods across all GCMs. However, transitioning from the near-term 
to long-term period highlights the dominant influence of CO2 on ETo, 
with reductions in ETo due to elevated CO2 levels outweighing 
increases driven by rising temperatures under SSP5-8.5 (Figure 6b). 
Consequently, long-term CO2

oET  is projected to be  lower than the 
current estimates, under the SSP5-8.5 scenario, contrary to several 
previous studies (Liu et al., 2020; Zhai et al., 2020) that did not account 
for the impact of CO2.

The spatial variability of differences between CO2
oET  and original

oET  
(Figure 5) is influenced by climate inputs beyond CO2 as shown in the 
sensitivity analyses of the modified FAO-PM (Equation 6) for two 
distinct locations (Figure  8). Location 1 (26.75°N, 70.25°E), 
characterized by the hot desert climate in the northwest, exhibits a 
pronounced response to rising CO2, with CO2

oET  ranging from 3.22-
to-9.65 mm day−1, as CO2 concentration increases from 400 to 
1,200 ppm and temperature varies from 26-to-33  °C. In contrast, 
Location 2 (23.75°N, 93.25°E), characterized by a tropical rainforest 
climate of the northeast, shows minimal response, with CO2

oET  values 
varying from 0.6-to-1.35 mm day−1 for the same CO2 range and 
temperature variation from 18-to-33 °C. This non-linear, location-
specific interaction between CO2, temperature, and ETo may help 
explain deviations from the typically positive correlation between ETo 
and temperature (Wang et al., 2022; Zhou et al., 2022), a phenomenon 
often referred to as the “evapotranspiration paradox” (Rao and Wani, 
2011; Varghese and Mitra, 2024). The “evapotranspiration paradox” 
may result from overly simplistic vegetation representation in 
hydrological models, despite the fact that leaf stomatal transpiration 
can account for over 80% of evapotranspiration (Nelson et al., 2020; 
Yu et al., 2024). Similar behavior was observed by Vremec et al. (2024) 
in the Austrian Alps. Consequently, the effects of climatic factors such 
as CO2, temperature, humidity, wind speed, and radiation on leaf 
stomatal behavior are often unappreciated (Ainsworth and Long, 
2021) and continue to remain a challenge in the field of hydrology 
(Blöschl et al., 2019). However, substantial uncertainties also remain 
in predicting these variables (temperature, humidity, wind speed, and 
radiation), making it essential to select GCMs based on performance 
indicators tailored to specific regions (Raju and Kumar, 2020). 
Unfortunately, most studies evaluating the suitability of GCMs have 
focused on specific regions within India (Song et al., 2023; Verma 
et al., 2023). Panjwani et al. (2019) have covered all of India but could 
not identify a single GCM capable of reliably predicting all variables 
required for evapotranspiration calculations. Consequently, it is 
challenging to determine which of these models (see 
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Supplementary Table S1) is best for ET predictions across India. 
However, multimodal ensemble methods are often preferred over 
single-model predictions (Khan et  al., 2018), as demonstrated in 
several studies on issues related to water resources under climate 
change (Haddeland et al., 2011; Davie et al., 2013).

Incorporating changing CO2 concentrations in the mid-term 
period (2051–2060) allows us to assess not only the long-term 
implications of elevated CO2 but also the potential transitional effects 
that may influence water demand and crop planning strategies over 
the coming few decades. Although the mid-term atmospheric CO2 
levels (~550-to-650 ppm under SSP5-8.5) are lower than those 
projected for the long-term period, they still represent a significant 
increase compared to the near-term period (2021–2030). Our results 
show that even at these intermediate concentrations, CO2

oET  is 
consistently lower than original

oET  across most regions of India 
(Figures  4, 5), suggesting that stomatal closure effects begin to 
noticeably influence evapotranspiration well before the end of the 
century (Figure  9). This mid-term reduction in ETo has critical 
implications for regional irrigation scheduling and water resource 
allocation, especially in semi-arid and arid zones where small changes 
in evaporative demand can significantly alter water availability 
(Konapala et al., 2020). Furthermore, by capturing the gradual onset 
of CO2-driven feedbacks on evapotranspiration, our study emphasizes 
the importance of accounting for dynamic CO2 trajectories even in 
near- and mid-term projections, an aspect often overlooked in 
traditional ETo estimation frameworks.

4.3 Impact of CO2 on the national average 
evapotranspiration

The outcomes of this study suggest that atmospheric CO2 can 
greatly impact India’s annual water budget. Rainfall in India is expected 
to rise by 6 to 14% under various climate scenarios (Chaturvedi et al., 
2012; Kumar et al., 2013) by the end of the century. The combination 
of reduced ETo due to incorporation of CO2 and seasonal variations 
may exacerbate the difference between water demand and supply both 
spatially and temporally, potentially leading to water scarcity during 
peak agricultural demand and flooding during the monsoon season 
when water demand is minimal. Evapotranspiration, accounting for 
approximately 40% of India’s water budget (Narasimhan, 2008), is 
anticipated to be over-estimated by approximately 29% over the long 
term (Figure 9) under SSP5-8.5 if the effects of CO2 are disregarded. 
However, under SSP1-2.6, the contribution of CO2 is not significant 
because of limited increase in atmospheric CO2 concentration and 
temperature. This underscores the critical necessity to incorporate CO2 
in models that forecast water demand and supply, especially when 
considering business-as-usual scenario such as SSP5-8.5.

4.4 Implications of incorporating CO2 in 
evapotranspiration estimations for 
environmental protection and climate 
change

The differences between original
oET  and CO2

oET averaged across five 
GCMs using the multimodal ensemble method, shows significant 
spatial variations across India for the four seasons (monsoon, post-
monsoon, winter, and pre-monsoon; Figure 7). These variations in the 

ETo caused by atmospheric CO2, often ignored in climate change 
impact assessments on agricultural water demand (Sreeshna et al., 
2024) and drought (Aadhar and Mishra, 2020; George and Athira, 
2025; Varghese and Mitra, 2025), could play a critical role in future 
water resources planning in India (Varghese and Mitra, 2024). 
Generally, a reduction in ETo corresponds to a decrease in agricultural 
water demand, aligning with field observations (Ainsworth and Long, 
2021). However, this effect is often overlooked or inadequately 
represented in climate change impact assessments on water resources 
(Döll et al., 2015; Athira et al., 2023) resulting in poor predictions of 
water availability and demand in the agricultural sector. Our 
projections indicate that the impact of CO2 on ET will remain 
moderate from the near-term to mid-term and long-term time 
periods under SSP1-2.6, but will intensify significantly under SSP5-
8.5, potentially leading to severe consequences for various sectors 
intricately linked to climate change. For example, the major grain 
producing states in India (Uttar Pradesh, Madhya Pradesh; Ministry 
of Finance, 2023) are expected to experience a decrease of 1.1-to-
2.8 mm day−1 in CO2

oET  (Figure 5b) by the end of the century, which 
appears to be  beguiling in terms of reduced agricultural water 
demand, but could pose serious challenges for the management of 
water resources and extreme hydrological events, if CO2 effects are not 
considered. In this context itself, we  must also consider seasonal 
variations (Kingra et al., 2024; Figure 7b) as water consumption may 
differ throughout the seasons. The seasonal variation (see 
Supplementary Table S6; Figure  7b) has major consequences for 
extreme events such as flooding (Döll et al., 2015) and heatwaves 
(Ford and Schoof, 2017). While runoff is estimated to be  more 
responsive to variations in precipitation than ETo (Bharat and Mishra, 
2021), the role of ETo is likely to become more important in a future 
with higher levels of CO2 (Davie et al., 2013; Meng et al., 2016). Flood-
prone regions in India (Chakraborty and Joshi, 2016) may likely 
experience a decrease in ETo of up to 2.1 mm day−1 during the 
monsoon season (Figure  7b), potentially worsening the flood 
conditions. The increasing severity of heatwaves attributed to climate 
change in Rajasthan, Bihar, West Bengal, specific areas of Kerala, and 
northeastern India may be underestimated, as prior work on impact 
of climate change on heatwaves (Dubey and Kumar, 2023; Ravindra 
et al., 2024) did not account for the influence of rising CO2 levels on 
ETo and, subsequently, on heatwaves. Additionally, neglecting CO2 in 
seasonal ETo estimates can influence prediction of flash droughts 
which are closely linked to evapotranspiration rates (Mahto and 
Mishra, 2020; Wang et al., 2016; Pendergrass et al., 2020). Accurately 
representing the role of CO2 in estimating ET is crucial for 
hydroclimatic forecasting, as it helps explain contradictory 
phenomena like the observed greening of the earth despite continental 
drying (Milly and Dunne, 2016; Chen et al., 2023) and inconsistent 
runoff estimations (Kooperman et al., 2018; Zhou et al., 2023; Lesk 
et al., 2024). The implementation and scaling of large-scale land-based 
climate solutions (Jaiswal et al., 2025) that rely on plants will also 
be influenced by the accurate representation of evapotranspiration, 
particularly in the context of water demand and supply.

In addition to CO2, other factors such as vegetation, temperature, 
rainfall (Lovelli et al., 2010), and vapor pressure deficit (VPD) (Ort 
and Long, 2014) will also impact ET. Assessing the complex 
interactions among these variables including teleconnections between 
climate variables is challenging (He et al., 2022; Sidhan and Singh, 
2025). Both ETo (Soni and Syed, 2021) and climate teleconnections 
(Sharma et al., 2020; Sahu et al., 2025) can influence the water budgets 
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of India’s 20 major river basins, which collectively provide an average 
of 1,914 billion cubic meters of replenishable water resources (Bassi 
et al., 2020). India’s multiple river basins are not only hydrologically 
fragmented but also affected by the non-uniform distribution of 
rainfall, both of which pose major challenges to achieving nationwide 
water security. In response, the national river-linking project was 
proposed to redistribute water from flood-prone regions to water-
scarce areas and to manage rainfall variability according to regional 
demand. However, the original design of this initiative did not account 
for the impacts of climate change. This omission is particularly critical, 
as rising atmospheric CO2 levels can significantly influence ETo, 
especially in large river basins where hydrological responses are highly 
sensitive to land use/land cover changes (Das et al., 2018) and climatic 
variability (Sarker, 2022). To ensure long-term sustainability and 
effectiveness, the river-linking project must incorporate climate 
change considerations — particularly the effects of elevated CO2 on 
ETo — in evaluating impacts on river networks (Abed-Elmdoust et al., 
2016), the role of critical hydrological monitoring nodes (Singhal 
et al., 2024), the maintenance of river network integrity (Sarker et al., 
2019), and the strategic placement of dams (Gao et al., 2022).

4.5 Limitations and future scope

Our approach is based on empirical data that does not make 
distinction between C3 and C4 crops (Li et  al., 2019). It is well 
recognized that these plant types respond differently to elevated CO2 
(Leakey et al., 2019) but semi-empirical approaches such as FAO-PM 
are not suitable to incorporate such details. Making ETo predictions 
after accounting for the photosynthetic pathway (C3 or C4 types) 
would require using biophysical approaches (Lochocki et al., 2022) 
that model behavior of stomatal conductance to CO2 concentration 
(Ball et al., 1987) while accounting for leaf biochemical characteristics. 
Model coupling tools (Surendran and Jaiswal, 2023) can also be a 
simpler way to enhance existing models neglecting CO2 concentration 
to make reliable predictions under rising CO2 concentrations. The 
sensitivity of evapotranspiration water losses may also vary 
(Lockwood, 1999) across different landcover types (such as grasslands, 
slow growing tall canopies) and these factors are also not included in 
our modified approach.

Our analysis aimed to provide a broad, country-level perspective 
on the impact of CO2 on reference evapotranspiration using ISIMIP 
data at a spatial resolution of 0.5° × 0.5°. For studies focused on finer 
spatial scales or specific regions within India (Mishra et al., 2020), 
incorporating spatial downscaling or using regional climate models 
(RCMs) would enhance the resolution and enable more localized 
insights. Such approaches can be particularly valuable for translating 
large-scale climate projections into actionable information at the state 
or district level.

5 Conclusion

In order to account for the impact of increasing CO2 levels on the 
estimation of ETo we developed a modified equation from the original 
FAO-PM equation to include the stomatal conductance as a function 
of CO2 (Equation 6). The difference between CO2

oET  and original
oET  

exhibited minimal spatial and magnitude variations in the near-term 

(2021–2030) period, but it substantially varied both spatially and in 
magnitude during the mid-term (2051–2060) and long-term (2091–
2100) period for all five GCMs under scenarios SSP1-2.6 and SSP5-
8.5. But the overall impact of CO2 on ETo was moderate under scenario 
SSP1-2.6  in comparison to SSP5-8.5. There was a significant 
overestimation of ETo when CO2 was not incorporated under both 
scenarios SSP1-2.6 and SSP5-8.5. For both scenarios, the seasonal 

CO2
oET  and original

oET  were highest during the pre-monsoon season 
and decreased progressively toward the winter season for all the three 
time periods and for all five GCMs. Predicting ETo without considering 
the effects of changing CO2 concentrations on stomatal closure is 
essentially incorrect, which could lead to unreliable evaluations on 
water availability, water demand, extreme droughts, runoff, floods, 
and heatwaves especially under scenario SSP5-8.5 characterized by 
elevated CO2 concentration of greater than 1,000 ppm.

Our modified FAO-PM model offers a straightforward yet robust 
approach for estimating reference evapotranspiration, which, in 
conjunction with crop coefficients, could be used for calculating actual 
evapotranspiration, enabling more accurate predictions under various 
environmental conditions especially those characterized by elevated 
CO2. Under future climate conditions with increasing CO2 
concentrations, this improvement would be especially beneficial for 
applications in agriculture, water resource management, and climate 
modeling, where precise evapotranspiration estimates are crucial for 
decision-making. The results produced here are important for 
practical use by irrigation planners, farmers, researchers, and 
other stakeholders.

Data availability statement

Data underlying this study is openly available in https://doi.
org/10.5281/zenodo.17178834. All the codes supporting this study are 
available in a GitHub repository https://github.com/sruthi162114001/
ETo-India-CO2-impact-code.git.

Author contributions

SS: Investigation, Software, Conceptualization, Writing – original 
draft, Validation, Writing  – review & editing, Data curation, 
Visualization, Methodology, Formal analysis. NS: Software, Data 
curation, Visualization, Writing  – review & editing. TP: 
Conceptualization, Writing  – review & editing, Software. YH: 
Visualization, Validation, Investigation, Writing – review & editing. 
DJ: Formal analysis, Visualization, Data curation, Project 
administration, Resources, Validation, Investigation, Software, 
Writing  – review & editing, Methodology, Supervision, 
Conceptualization, Writing – original draft.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. We also acknowledge the 
support from the Ministry of Education (MoE), Government of India, 
through the Prime Minister’s Research Fellowship (PMRF; Grant ID: 
3102511).

https://doi.org/10.3389/frwa.2025.1597728
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://doi.org/10.5281/zenodo.17178834
https://doi.org/10.5281/zenodo.17178834
https://github.com/sruthi162114001/ETo-India-CO2-impact-code.git
https://github.com/sruthi162114001/ETo-India-CO2-impact-code.git


Surendran et al.� 10.3389/frwa.2025.1597728

Frontiers in Water 14 frontiersin.org

Acknowledgments

We acknowledge the Inter-Sectoral Impact Model 
Intercomparison Project (ISIMIP) for their role as provider and 
coordinator of climate data. This work used eddy-covariance (EC) 
data acquired and shared by the EC global and regional networks 
FLUXNET, and AmeriFlux. The individual sites DOIs and citations 
are available in Supplementary Table S2. We gratefully acknowledge 
the use of the High-Performance Computing (HPC) at the Indian 
Institute of Technology Palakkad for supporting the computational 
work involved in this study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that Gen AI was used in the creation of this 
manuscript to correct grammatical errors and rephrase texts. After 

using these tools/services, the author(s) reviewed and edited the 
content as needed.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frwa.2025.1597728/
full#supplementary-material

References
Aadhar, S., and Mishra, V. (2020). Increased drought risk in South Asia under 

warming climate: implications of uncertainty in potential evapotranspiration estimates. 
J. Hydrometeorol. 21, 2979–2996. doi: 10.1175/JHM-D-19-0224.1

Abdolhosseini, M., Eslamian, S., and Mousavi, S. F. (2012). Effect of climate change 
on potential evapotranspiration: a case study on Gharehsoo sub-basin, Iran. Int. J. 
Hydrol. Sci. Technol. 2, 362–372. doi: 10.1504/IJHST.2012.052373

Abed-Elmdoust, A., Miri, M.-A., and Singh, A. (2016). Reorganization of river 
networks under changing spatiotemporal precipitation patterns: an optimal channel 
network approach. Water Resour. Res. 52, 8845–8860. doi: 10.1002/2015WR018391

Ainsworth, E. A., and Long, S. P. (2021). 30 years of free-air carbon dioxide 
enrichment (FACE): what have we  learned about future crop productivity and its 
potential for adaptation? Glob. Chang. Biol. 27, 27–49. doi: 10.1111/gcb.15375

Ainsworth, E. A., and Rogers, A. (2007). The response of photosynthesis and stomatal 
conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell 
Environ. 30, 258–270. doi: 10.1111/j.1365-3040.2007.01641.x

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). FAO penman-Monteith 
equation. In: Crop evapotranspiration-guidelines for computing crop water 
requirements-FAO irrigation and drainage paper 56. Available online at: https://www.
fao.org/4/x0490e/x0490e06.htm#chapter%202%20%20%20fao%20penman%20
monteith%20equation (Accessed May 14, 2024).

Amarasinghe, U., Shah, T., Turral, H., and Anand, B. (2007). India’s water future to 
2025–2050: Business-as-usual scenario and deviations. Colombo, Sri Lanka: IWMI.

Athira, K., Singh, S., and Abebe, A. (2023). Impact of individual and combined 
influence of large-scale climatic oscillations on Indian summer monsoon rainfall 
extremes. Clim. Dyn. 60, 2957–2981. doi: 10.1007/s00382-022-06477-w

Ball, J. T., Woodrow, I. E., and Berry, J. A. (1987). “A model predicting stomatal 
conductance and its contribution to the control of photosynthesis under different 
environmental conditions” in Progress in photosynthesis research. ed. J. Biggins 
(Dordrecht: Springer Netherlands), 221–224.

Bashir, R. N., Khan, F. A., Khan, A. A., Tausif, M., Abbas, M. Z., Shahid, M. M. A., 
et al. (2023). Intelligent optimization of reference evapotranspiration (ETo) for precision 
irrigation. J. Comput. Sci. 69:102025. doi: 10.1016/j.jocs.2023.102025

Basketfield, D. L. (1985). Irrigation requirements for selected Oregon locations. 
Corvallis: Oregon State University.

Bassi, N., Schmidt, G., and De Stefano, L. (2020). Water accounting for water 
management at the river basin scale in India: approaches and gaps. Water Policy 22, 
768–788. doi: 10.2166/wp.2020.080

Bharat, S., and Mishra, V. (2021). Runoff sensitivity of Indian sub-continental river 
basins. Sci. Total Environ. 766:142642. doi: 10.1016/j.scitotenv.2020.142642

Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., et al. 
(2019). Twenty-three unsolved problems in hydrology (UPH)  – a community 
perspective. Hydrol. Sci. J. 64, 1141–1158. doi: 10.1080/02626667.2019.1620507

Büchner, M., and Reyer, C. P. O. (2022). ISIMIP3b atmospheric composition input data. 
Version Number: 1.1

Chakraborty, A., and Joshi, P. K. (2016). Mapping disaster vulnerability in India using 
analytical hierarchy process. Geomat. Nat. Hazards Risk 7, 308–325. doi: 
10.1080/19475705.2014.897656

Chattopadhyay, N., and Hulme, M. (1997). Evaporation and potential 
evapotranspiration in India under conditions of recent and future climate change. Agric. 
For. Meteorol. 87, 55–73. doi: 10.1016/S0168-1923(97)00006-3

Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G., and Ravindranath, N. H. (2012). 
Multi-model climate change projections for India under representative concentration 
pathways. Curr. Sci. 103, 791–802.

Chen, Z., Wang, W., Cescatti, A., and Forzieri, G. (2023). Climate-driven vegetation 
greening further reduces water availability in drylands. Glob. Change Biol. 29, 
1628–1647. doi: 10.1111/gcb.16561

Climatedata.ca. (2024). Understanding Shared Socio-economic Pathways (SSPs). 
ClimateData.ca. Available online at: https://climatedata.ca/resource/understanding-
shared-socio-economic-pathways-ssps/ (Accessed September 3, 2024).

Cronin, A. A., Prakash, A., Priya, S., and Coates, S. (2014). Water in India: situation 
and prospects. Water Policy 16, 425–441. doi: 10.2166/wp.2014.132

Dakhlaoui, H., Seibert, J., and Hakala, K. (2020). Sensitivity of discharge projections 
to potential evapotranspiration estimation in northern Tunisia. Reg. Environ. Chang. 
20:34. doi: 10.1007/s10113-020-01615-8

Das, P., Behera, M. D., Patidar, N., Sahoo, B., Tripathi, P., Behera, P. R., et al. (2018). 
Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in 
eastern Indian river basins during 1985–2005 using variable infiltration capacity 
approach. J. Earth Syst. Sci. 127, 1–19. doi: 10.1007/s12040-018-0921-8

Das, S., Kaur Baweja, S., Raheja, A., Gill, K. K., and Sharda, R. (2023). Development 
of machine learning-based reference evapotranspiration model for the semi-arid region 
of Punjab, India. J. Agric. Food Res. 13:100640. doi: 10.1016/j.jafr.2023.100640

Davie, J. C. S., Falloon, P. D., Kahana, R., Dankers, R., Betts, R., Portmann, F. T., 
et al. (2013). Comparing projections of future changes in runoff from hydrological 
and biome models in ISI-MIP. Earth Syst. Dynam. 4, 359–374. doi: 
10.5194/esd-4-359-2013

Djaman, K., O’Neill, M., Owen, C. K., Smeal, D., Koudahe, K., West, M., et al. (2018). 
Crop evapotranspiration, irrigation water requirement and water productivity of maize 
from meteorological data under semiarid climate. Water 10:405. doi: 10.3390/w10040405

https://doi.org/10.3389/frwa.2025.1597728
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/frwa.2025.1597728/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frwa.2025.1597728/full#supplementary-material
https://doi.org/10.1175/JHM-D-19-0224.1
https://doi.org/10.1504/IJHST.2012.052373
https://doi.org/10.1002/2015WR018391
https://doi.org/10.1111/gcb.15375
https://doi.org/10.1111/j.1365-3040.2007.01641.x
https://www.fao.org/4/x0490e/x0490e06.htm#chapter%202%20%20%20fao%20penman%20monteith%20equation
https://www.fao.org/4/x0490e/x0490e06.htm#chapter%202%20%20%20fao%20penman%20monteith%20equation
https://www.fao.org/4/x0490e/x0490e06.htm#chapter%202%20%20%20fao%20penman%20monteith%20equation
https://doi.org/10.1007/s00382-022-06477-w
https://doi.org/10.1016/j.jocs.2023.102025
https://doi.org/10.2166/wp.2020.080
https://doi.org/10.1016/j.scitotenv.2020.142642
https://doi.org/10.1080/02626667.2019.1620507
https://doi.org/10.1080/19475705.2014.897656
https://doi.org/10.1016/S0168-1923(97)00006-3
https://doi.org/10.1111/gcb.16561
https://climatedata.ca/resource/understanding-shared-socio-economic-pathways-ssps/
https://climatedata.ca/resource/understanding-shared-socio-economic-pathways-ssps/
https://doi.org/10.2166/wp.2014.132
https://doi.org/10.1007/s10113-020-01615-8
https://doi.org/10.1007/s12040-018-0921-8
https://doi.org/10.1016/j.jafr.2023.100640
https://doi.org/10.5194/esd-4-359-2013
https://doi.org/10.3390/w10040405


Surendran et al.� 10.3389/frwa.2025.1597728

Frontiers in Water 15 frontiersin.org

Döll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N. W., Benito, G., Cogley, J. G., et al. 
(2015). Integrating risks of climate change into water management. Hydrol. Sci. J. 60, 
4–13. doi: 10.1080/02626667.2014.967250

Dubey, A. K., and Kumar, P. (2023). Future projections of heatwave characteristics and 
dynamics over India using a high-resolution regional earth system model. Clim. Dyn. 
60, 127–145. doi: 10.1007/s00382-022-06309-x

ESRI. (2024). Data classification methods—ArcGIS Pro Documentation. Available 
online at: https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-
classification-methods.htm (Accessed July 24, 2024).

Ford, T. W., and Schoof, J. T. (2017). Characterizing extreme and oppressive heat 
waves in Illinois. J. Geophys. Res. Atmos. 122, 682–698. doi: 10.1002/2016JD025721

Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., et al. (2014). 
Betting on negative emissions. Nat. Clim. Chang. 4, 850–853. doi: 10.1038/nclimate2392

Gao, Y., Sarker, S., Sarker, T., and Leta, O. T. (2022). Analyzing the critical locations in 
response of constructed and planned dams on the Mekong River basin for environmental 
integrity. Environ. Res. Commun. 4:101001. doi: 10.1088/2515-7620/ac9459

George, J., and Athira, P. (2025). Graphical representation of climate change impacts 
and associated uncertainty to enable better policy making in hydrological disaster 
management. Int. J. Disaster Risk Reduct. 122:105449. doi: 10.1016/j.ijdrr.2025.105449

Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., et al. 
(2011). Multimodel estimate of the global terrestrial water balance: setup and first 
results. J. Hydrometeorol. 12, 869–884. doi: 10.1175/2011JHM1324.1

He, Y., Jaiswal, D., Liang, X.-Z., Sun, C., and Long, S. P. (2022). Perennial biomass 
crops on marginal land improve both regional climate and agricultural productivity. 
GCB Bioenergy 14, 558–571. doi: 10.1111/gcbb.12937

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F. (2013). A trend-
preserving bias correction - the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236. doi: 
10.5194/esd-4-219-2013

Ito, R., Shiogama, H., Nakaegawa, T., and Takayabu, I. (2020). Uncertainties in climate 
change projections covered by the ISIMIP and CORDEX model subsets from CMIP5. 
Geosci. Model Dev. 13, 859–872. doi: 10.5194/gmd-13-859-2020

Izady, A., Alizadeh, A., Davary, K., Ziaei, A., Akhavan, S., and Shafiei, M. (2013). 
Estimation of actual evapotranspiration at regional – annual scale using SWAT. Iran. J. 
Irrig. Drainage 7, 243–258.

Jaiswal, D., De Souza, A. P., Larsen, S., LeBauer, D. S., Miguez, F. E., Sparovek, G., et al. 
(2017). Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. 
Nat Clim Change 7, 788–792. doi: 10.1038/nclimate3410

Jaiswal, D., Siddique, K. M., Jayalekshmi, T. R., Sajitha, A. S., Kushwaha, A., and 
Surendran, S. (2025). Land-based climate mitigation strategies for achieving net zero 
emissions in India. Front. Clim. 7:816. doi: 10.3389/fclim.2025.1538816

Jarvis, P. G., Monteith, J. L., and Weatherley, P. E. (1997). The interpretation of the 
variations in leaf water potential and stomatal conductance found in canopies in the 
field. Philos. Trans. R. Soc. London B Biol. Sci. 273, 593–610. doi: 10.1098/rstb.1976.0035

Jhajharia, D., Shrivastava, S. K., Sarkar, D., and Sarkar, S. (2009). Temporal 
characteristics of pan evaporation trends under the humid conditions of Northeast 
India. Agric. For. Meteorol. 149, 763–770. doi: 10.1016/j.agrformet.2008.10.024

Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., and Son, M. (2018). 
Performance assessment of general circulation model in simulating daily precipitation 
and temperature using multiple gridded datasets. Water 10:1793. doi: 10.3390/w10121793

Kingra, P. K., Setia, R., Aatralarasi, S., Kukal, S. S., and Singh, S. P. (2024). Spatio-
temporal variability in evapotranspiration and moisture availability for crops under 
future climate change scenarios in north-West India. Arab. J. Geosci. 17:126. doi: 
10.1007/s12517-024-11921-8

Kompanizare, M., Petrone, R. M., Macrae, M. L., De Haan, K., and Khomik, M. 
(2022). Assessment of effective LAI and water use efficiency using eddy covariance data. 
Sci. Total Environ. 802:149628. doi: 10.1016/j.scitotenv.2021.149628

Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E. (2020). Climate change will 
affect global water availability through compounding changes in seasonal precipitation 
and evaporation. Nat. Commun. 11:3044. doi: 10.1038/s41467-020-16757-w

Kooperman, G. J., Fowler, M. D., Hoffman, F. M., Koven, C. D., Lindsay, K., 
Pritchard, M. S., et al. (2018). Plant physiological responses to rising CO2 modify 
simulated daily runoff intensity with implications for global-scale flood risk assessment. 
Geophys. Res. Lett. 45, 12,457–12,466. doi: 10.1029/2018GL079901

Kumar, R., Singh, R. D., and Sharma, K. D. (2005). Water resources of India. Curr. Sci. 
89, 794–811.

Kumar, P., Wiltshire, A., Mathison, C., Asharaf, S., Ahrens, B., Lucas-Picher, P., et al. 
(2013). Downscaled climate change projections with uncertainty assessment over India 
using a high resolution multi-model approach. Sci. Total Environ. 468-469, S18–S30. doi: 
10.1016/j.scitotenv.2013.01.051

Lange, S., and Büchner, M. (2021). ISIMIP3b bias-adjusted atmospheric climate input 
data. ISIMIP Repository.

Leakey, A. D., Ferguson, J. N., Pignon, C. P., Wu, A., Jin, Z., Hammer, G. L., et al. 
(2019). Water use efficiency as a constraint and target for improving the resilience and 
productivity of C3 and C4 crops. Annu. Rev. Plant Biol. 70, 781–808. doi: 
10.1146/annurev-arplant-042817-040305

Lesk, C., Winter, J., and Mankin, J. (2024). Projected runoff declines from plant 
physiological effects on precipitation. PREPRINT (Version 1) available at 
Research Square.

Li, Y., Guan, K., Peng, B., Franz, T. E., Wardlow, B., and Pan, M. (2020). Quantifying 
irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 
3065–3078. doi: 10.1111/gcb.15002

Li, X., Kang, S., Niu, J., Huo, Z., and Liu, J. (2019). Improving the representation of 
stomatal responses to CO2 within the penman–Monteith model to better estimate 
evapotranspiration responses to climate change. J. Hydrol. 572, 692–705. doi: 
10.1016/j.jhydrol.2019.03.029

Liu, X., Li, C., Zhao, T., and Han, L. (2020). Future changes of global potential 
evapotranspiration simulated from CMIP5 to CMIP6 models. Atmos. Ocean. Sci. Lett. 
13, 568–575. doi: 10.1080/16742834.2020.1824983

Liu, S., Xu, Z., Zhu, Z., Jia, Z., and Zhu, M. (2013). Measurements of evapotranspiration 
from eddy-covariance systems and large aperture scintillometers in the Hai River basin, 
China. J. Hydrol. 487, 24–38. doi: 10.1016/j.jhydrol.2013.02.025

Lochocki, E. B., Rohde, S., Jaiswal, D., Matthews, M. L., Miguez, F., Long, S. P., et al. 
(2022). BioCro II: a software package for modular crop growth simulations. In silico 
Plants 4:diac003. doi: 10.1093/insilicoplants/diac003

Lockwood, J. G. (1999). Is potential evapotranspiration and its relationship with actual 
evapotranspiration sensitive to elevated atmospheric CO2 levels? Clim. Chang. 41, 
193–212. doi: 10.1023/A:1005469416067

Lovelli, S., Perniola, M., Di Tommaso, T., Ventrella, D., Moriondo, M., and Amato, M. 
(2010). Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean 
area. Agric. Water Manag. 97, 1287–1292. doi: 10.1016/j.agwat.2010.03.005

Mahto, S. S., and Mishra, V. (2020). Dominance of summer monsoon flash droughts 
in India. Environ. Res. Lett. 15:104061. doi: 10.1088/1748-9326/abaf1d

Mall, R. K., Gupta, A., Singh, R., Singh, R. S., and Rathore, L. S. (2006). Water 
resources and climate change: an Indian perspective. Curr. Sci. 90, 1610–1626.

Meng, F., Su, F., Yang, D., Tong, K., and Hao, Z. (2016). Impacts of recent climate 
change on the hydrology in the source region of the Yellow River basin. J. Hydrol. 6, 
66–81. doi: 10.1016/j.ejrh.2016.03.003

Milly, P. C. D., and Dunne, K. A. (2016). Potential evapotranspiration and continental 
drying. Nat. Clim. Chang. 6, 946–949. doi: 10.1038/nclimate3046

Ministry of Finance. (2023). Economic Survey. Available online at: https://www.
indiabudget.gov.in/economicsurvey/ (Accessed January 11, 2025).

Mishra, V., Bhatia, U., and Tiwari, A. D. (2020). Bias-corrected climate projections for 
South Asia from coupled model Intercomparison Project-6. Sci Data 7:338. doi: 
10.1038/s41597-020-00681-1

Monteith, J. L. (1965). Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234

Nag, A., Adamala, S., Raghuwanshi, N. S., Singh, R., and Bandyopadhyay, A. (2014). 
Estimation and ranking of reference evapotranspiration for different spatial scale in 
India. J. Indian Water Resour. Soc. 34, 1–11.

Nandagiri, L., and Kovoor, G. M. (2006). Performance evaluation of reference 
evapotranspiration equations across a range of Indian climates. J. Irrig. Drain. Eng. 132, 
238–249. doi: 10.1061/(ASCE)0733-9437(2006)132:3(238)

Narasimhan, T. N. (2008). A note on India’s water budget and evapotranspiration. J. 
Earth Syst. Sci. 117, 237–240. doi: 10.1007/s12040-008-0028-8

Nass, U. (2010). Field crops: Usual planting and harvesting dates. USDA National 
Agricultural Statistics Service, Agriculural Handbook 628.

Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken, P. D., et al. 
(2020). Ecosystem transpiration and evaporation: insights from three water flux 
partitioning methods across FLUXNET sites. Glob. Chang. Biol. 26, 6916–6930. doi: 
10.1111/gcb.15314

Novick, K. A., Biederman, J., Desai, A., Litvak, M., Moore, D. J., Scott, R., et al. (2018). 
The AmeriFlux network: a coalition of the willing. Agric. For. Meteorol. 249, 444–456. 
doi: 10.1016/j.agrformet.2017.10.009

Ort, D. R., and Long, S. P. (2014). Limits on yields in the Corn Belt. Science 344, 
484–485. doi: 10.1126/science.1253884

Pan, S., Tian, H., Dangal, S. R. S., Yang, Q., Yang, J., Lu, C., et al. (2015). Responses of 
global terrestrial evapotranspiration to climate change and increasing atmospheric 
CO2 in the 21st century. Earths Future 3, 15–35. doi: 10.1002/2014EF000263

Pandey, P. K., Dabral, P. P., and Pandey, V. (2016). Evaluation of reference 
evapotranspiration methods for the northeastern region of India. Int. Soil Water Conserv. 
Res. 4, 52–63. doi: 10.1016/j.iswcr.2016.02.003

Panjwani, S., Naresh Kumar, S., Ahuja, L., and Islam, A. (2019). Prioritization of global 
climate models using fuzzy analytic hierarchy process and reliability index. Theor. Appl. 
Climatol. 137, 2381–2392. doi: 10.1007/s00704-018-2707-y

Parasuraman, K., Elshorbagy, A., and Carey, S. K. (2007). Modelling the dynamics of 
the evapotranspiration process using genetic programming. Hydrol. Sci. J. 52, 563–578. 
doi: 10.1623/hysj.52.3.563

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., et al. 
(2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy 
covariance data. Scientific data 7:225. doi: 10.1038/s41597-020-0534-3

https://doi.org/10.3389/frwa.2025.1597728
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://doi.org/10.1080/02626667.2014.967250
https://doi.org/10.1007/s00382-022-06309-x
https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm
https://doi.org/10.1002/2016JD025721
https://doi.org/10.1038/nclimate2392
https://doi.org/10.1088/2515-7620/ac9459
https://doi.org/10.1016/j.ijdrr.2025.105449
https://doi.org/10.1175/2011JHM1324.1
https://doi.org/10.1111/gcbb.12937
https://doi.org/10.5194/esd-4-219-2013
https://doi.org/10.5194/gmd-13-859-2020
https://doi.org/10.1038/nclimate3410
https://doi.org/10.3389/fclim.2025.1538816
https://doi.org/10.1098/rstb.1976.0035
https://doi.org/10.1016/j.agrformet.2008.10.024
https://doi.org/10.3390/w10121793
https://doi.org/10.1007/s12517-024-11921-8
https://doi.org/10.1016/j.scitotenv.2021.149628
https://doi.org/10.1038/s41467-020-16757-w
https://doi.org/10.1029/2018GL079901
https://doi.org/10.1016/j.scitotenv.2013.01.051
https://doi.org/10.1146/annurev-arplant-042817-040305
https://doi.org/10.1111/gcb.15002
https://doi.org/10.1016/j.jhydrol.2019.03.029
https://doi.org/10.1080/16742834.2020.1824983
https://doi.org/10.1016/j.jhydrol.2013.02.025
https://doi.org/10.1093/insilicoplants/diac003
https://doi.org/10.1023/A:1005469416067
https://doi.org/10.1016/j.agwat.2010.03.005
https://doi.org/10.1088/1748-9326/abaf1d
https://doi.org/10.1016/j.ejrh.2016.03.003
https://doi.org/10.1038/nclimate3046
https://www.indiabudget.gov.in/economicsurvey/
https://www.indiabudget.gov.in/economicsurvey/
https://doi.org/10.1038/s41597-020-00681-1
https://doi.org/10.1061/(ASCE)0733-9437(2006)132:3(238)
https://doi.org/10.1007/s12040-008-0028-8
https://doi.org/10.1111/gcb.15314
https://doi.org/10.1016/j.agrformet.2017.10.009
https://doi.org/10.1126/science.1253884
https://doi.org/10.1002/2014EF000263
https://doi.org/10.1016/j.iswcr.2016.02.003
https://doi.org/10.1007/s00704-018-2707-y
https://doi.org/10.1623/hysj.52.3.563
https://doi.org/10.1038/s41597-020-0534-3


Surendran et al.� 10.3389/frwa.2025.1597728

Frontiers in Water 16 frontiersin.org

Pathak, H., Pramanik, P., Khanna, M., and Kumar, A. (2014). Climate change and 
water availability in Indian agriculture: impacts and adaptation. Indian J. Agri. Sci. 
84:41421. doi: 10.56093/ijas.v84i6.41421

Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A., 
AghaKouchak, A., et al. (2020). Flash droughts present a new challenge for subseasonal-
to-seasonal prediction. Nat. Clim. Chang. 10, 191–199. doi: 10.1038/s41558-020-0709-0

Peng, L., Zeng, Z., Wei, Z., Chen, A., Wood, E. F., and Sheffield, J. (2019). Determinants 
of the ratio of actual to potential evapotranspiration. Glob. Change Biol. 25, 1326–1343. 
doi: 10.1111/gcb.14577

Pereira, L. S., Paredes, P., Espírito-Santo, D., and Salman, M. (2023). Actual and 
standard crop coefficients for semi-natural and planted grasslands and grasses: a review 
aimed at supporting water management to improve production and ecosystem services. 
Irrig. Sci. 42, 1139–1170. doi: 10.1007/s00271-023-00867-6

Pielke, R. (2021). How to Understand the New IPCC Report: Part 1, Scenarios. The 
Honest Broker. Available online at: https://rogerpielkejr.substack.com/p/how-to-
understand-the-new-ipcc-report (Accessed August 30, 2024).

Priestley, C. H. B., and Taylor, R. J. (1972). On the assessment of surface heat flux and 
evaporation using large-scale parameters. Available online at: https://journals.ametsoc.
org/view/journals/mwre/100/2/1520-0493_1972_100_0081_otaosh_2_3_co_2.xml 
(Accessed May 6, 2025).

Raju, K. S., and Kumar, D. N. (2020). Review of approaches for selection and 
ensembling of GCMs. J. Water Clim. Chang. 11, 577–599. doi: 10.2166/wcc.2020.128

Rao, A. K., and Wani, S. P. (2011). Evapotranspiration paradox at a semi-arid location 
in India. J. Agrometeorol. 13, 3–8. doi: 10.54386/jam.v13i1.1326

Ravindra, K., Bhardwaj, S., Ram, C., Goyal, A., Singh, V., Venkataraman, C., et al. 
(2024). Temperature projections and heatwave attribution scenarios over India: a 
systematic review. Heliyon 10:e26431. doi: 10.1016/j.heliyon.2024.e26431

Rezaei, M., Valipour, M., and Valipour, M. (2016). Modelling evapotranspiration to 
increase the accuracy of the estimations based on the climatic parameters. Water 
Conserv. Sci. Eng. 1, 197–207. doi: 10.1007/s41101-016-0013-z

Sahu, R., Kumar, P., Gupta, R., and Ahirwar, S. (2025). Teleconnections and long-term 
precipitation trends in the Alaknanda River basin, Uttarakhand, India. Earth Syst. 
Environ. 2025:536. doi: 10.1007/s41748-024-00536-4

Sarker, S. (2022). Fundamentals of climatology for engineers: lecture note. Eng 3, 
573–595. doi: 10.3390/eng3040040

Sarker, S., Veremyev, A., Boginski, V., and Singh, A. (2019). Critical nodes in river 
networks. Sci. Rep. 9:11178. doi: 10.1038/s41598-019-47292-4

Sharma, P. J., Patel, P. L., and Jothiprakash, V. (2020). Hydroclimatic teleconnections 
of large-scale oceanic-atmospheric circulations on hydrometeorological extremes of 
Tapi Basin, India. Atmos. Res. 235:104791. doi: 10.1016/j.atmosres.2019.104791

Sidhan, V. V., and Singh, S. (2025). Climatic oscillation based 3-dimensional drought 
risk assessment over India. J. Hydrol. 648:132357. doi: 10.1016/j.jhydrol.2024.132357

Singh, R., and Kumar, R. (2015). Vulnerability of water availability in India due to 
climate change: a bottom-up probabilistic Budyko analysis. Geophys. Res. Lett. 42, 
9799–9807. doi: 10.1002/2015GL066363

Singhal, A., Jaseem, M., Divya, D., Sarker, S., Prajapati, P., Singh, A., et al. (2024). 
Identifying potential locations of hydrologic monitoring stations based on topographical 
and hydrological information. Water Resour. Manag. 38, 369–384. doi: 
10.1007/s11269-023-03675-x

Song, Y. H., Chung, E.-S., Shahid, S., Kim, Y., and Kim, D. (2023). Development of 
global monthly dataset of CMIP6 climate variables for estimating evapotranspiration. 
Sci Data 10:568. doi: 10.1038/s41597-023-02475-7

Soni, A., and Syed, T. H. (2021). Analysis of variations and controls of 
evapotranspiration over major Indian River basins (1982–2014). Sci. Total Environ. 
754:141892. doi: 10.1016/j.scitotenv.2020.141892

Sreeshna, T. R., Athira, P., and Soundharajan, B. (2024). Impact of climate change on 
regional water availability and demand for agricultural production: application of water 
footprint concept. Water Resour. Manag. 38, 3785–3817. doi: 10.1007/s11269-024-03839-3

Statista. (2024). Atmospheric CO2 ppm by year 1959–2023. Statista. Available online at: 
https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-
historic/ (Accessed May 14, 2024).

Stefanidis, S., and Alexandridis, V. (2021). Precipitation and potential 
evapotranspiration temporal variability and their relationship in two forest ecosystems 
in Greece. Hydrology 8:160. doi: 10.3390/hydrology8040160

Surendran, S., and Jaiswal, D. (2023). “A brief review of tools to promote 
transdisciplinary collaboration for addressing climate change challenges in agriculture 
by model coupling” in Digital ecosystem for innovation in agriculture. eds. S. 
Chaudhary, C. M. Biradar, S. Divakaran and M. S. Raval (Singapore: Springer 
Nature), 3–33.

Surendran, S., Sunil, N., Tanushri, P., He, Y., and Jaiswal, D. (2025). Data supporting: 
“Overestimation of evapotranspiration across India if not considering the impact of 
rising atmospheric CO2” [Data set]. Zenodo. doi: 10.5281/zenodo.17178834

Tanner, C. B. (1967). “Measurement of evapotranspiration” in Irrigation of agricultural 
lands (New York: John Wiley & Sons, Ltd), 534–574.

Varghese, F. C., and Mitra, S. (2024). Investigating the role of driving variables on ETo 
variability and “evapotranspiration paradox” across the Indian subcontinent under 
historic and future climate change. Water Resour. Manag. 38, 5723–5737. doi: 
10.1007/s11269-024-03931-8

Varghese, F. C., and Mitra, S. (2025). Assessing consistency in drought risks in 
India with multiple multivariate meteorological drought indices (MMDI)  
under climate change. Sci. Total Environ. 964:178617. doi: 
10.1016/j.scitotenv.2025.178617

Verma, S., Kumar, K., Verma, M. K., Prasad, A. D., Mehta, D., and Rathnayake, U. 
(2023). Comparative analysis of CMIP5 and CMIP6 in conjunction with the hydrological 
processes of reservoir catchment, Chhattisgarh, India. J. Hydrol. Reg. Stud. 50:101533. 
doi: 10.1016/j.ejrh.2023.101533

Vremec, M., Burek, P., Guillaumot, L., Radolinski, J., Forstner, V., Herndl, M., et al. 
(2024). Sensitivity of montane grassland water fluxes to warming and elevated CO2 from 
local to catchment scale: a case study from the Austrian Alps. J. Hydrol. 56:101970. doi: 
10.1016/j.ejrh.2024.101970

Vremec, M., Forstner, V., Herndl, M., Collenteur, R., Schaumberger, A., and Birk, S. 
(2023). Sensitivity of evapotranspiration and seepage to elevated atmospheric CO2 from 
lysimeter experiments in a montane grassland. J. Hydrol. 617:128875. doi: 
10.1016/j.jhydrol.2022.128875

Wang, Y., Li, Z., Feng, Q., Si, L., Gui, J., Cui, Q., et al. (2024). Global 
evapotranspiration from high-elevation mountains has decreased significantly at a 
rate of 3.923%/a over the last 22 years. Sci. Total Environ. 931:172804. doi: 
10.1016/j.scitotenv.2024.172804

Wang, R., Li, L., Gentine, P., Zhang, Y., Chen, J., Chen, X., et al. (2022). Recent increase 
in the observation-derived land evapotranspiration due to global warming. Environ. Res. 
Lett. 17:024020. doi: 10.1088/1748-9326/ac4291

Wang, L., Yuan, X., Xie, Z., Wu, P., and Li, Y. (2016). Increasing flash droughts 
over China during the recent global warming hiatus. Sci. Rep. 6:30571. doi: 
10.1038/srep30571

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J. (2014). 
The inter-sectoral impact model Intercomparison project (ISI–MIP): project framework. 
Proc. Natl. Acad. Sci. 111, 3228–3232. doi: 10.1073/pnas.1312330110

Wright, J. L., and Asae, M. (1985). Evapotranspiration and Irrigation Water 
Requirements. in: Proceedings of the National Conference on Advances in 
Evapotranspiration, (St. Joseph, MI, Chicago: American Society of Agricultural 
Engineers), pp. 105–113.

Yang, Y., Jin, Z., Mueller, N. D., Driscoll, A. W., Hernandez, R. R., Grodsky, S. M., et al. 
(2023). Sustainable irrigation and climate feedbacks. Nat Food 4, 654–663. doi: 
10.1038/s43016-023-00821-x

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J. (2019). 
Hydrologic implications of vegetation response to elevated CO2 in climate projections. 
Nat. Clim. Chang. 9, 44–48. doi: 10.1038/s41558-018-0361-0

Yu, Z., Jia, W., Zhang, M., Zhang, F., Lan, X., Zhang, Y., et al. (2024). Evapotranspiration 
variation of soil-plant-atmosphere continuum in subalpine scrubland of Qilian 
Mountains in China. Hydrol. Process. 38:e15156. doi: 10.1002/hyp.15156

Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., et al. (2020). Future 
drought characteristics through a multi-model ensemble from CMIP6 over South Asia. 
Atmos. Res. 246:105111. doi: 10.1016/j.atmosres.2020.105111

Zhou, J., Jiang, S., Su, B., Huang, J., Wang, Y., Zhan, M., et al. (2022). Why the effect 
of CO2 on potential evapotranspiration estimation should be  considered in future 
climate. Water 14:986. doi: 10.3390/w14060986

Zhou, S., Yu, B., Lintner, B. R., Findell, K. L., and Zhang, Y. (2023). Projected increase 
in global runoff dominated by land surface changes. Nat. Clim. Chang. 13, 442–449. doi: 
10.1038/s41558-023-01659-8

https://doi.org/10.3389/frwa.2025.1597728
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://doi.org/10.56093/ijas.v84i6.41421
https://doi.org/10.1038/s41558-020-0709-0
https://doi.org/10.1111/gcb.14577
https://doi.org/10.1007/s00271-023-00867-6
https://rogerpielkejr.substack.com/p/how-to-understand-the-new-ipcc-report
https://rogerpielkejr.substack.com/p/how-to-understand-the-new-ipcc-report
https://journals.ametsoc.org/view/journals/mwre/100/2/1520-0493_1972_100_0081_otaosh_2_3_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/100/2/1520-0493_1972_100_0081_otaosh_2_3_co_2.xml
https://doi.org/10.2166/wcc.2020.128
https://doi.org/10.54386/jam.v13i1.1326
https://doi.org/10.1016/j.heliyon.2024.e26431
https://doi.org/10.1007/s41101-016-0013-z
https://doi.org/10.1007/s41748-024-00536-4
https://doi.org/10.3390/eng3040040
https://doi.org/10.1038/s41598-019-47292-4
https://doi.org/10.1016/j.atmosres.2019.104791
https://doi.org/10.1016/j.jhydrol.2024.132357
https://doi.org/10.1002/2015GL066363
https://doi.org/10.1007/s11269-023-03675-x
https://doi.org/10.1038/s41597-023-02475-7
https://doi.org/10.1016/j.scitotenv.2020.141892
https://doi.org/10.1007/s11269-024-03839-3
https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-historic/
https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-historic/
https://doi.org/10.3390/hydrology8040160
https://doi.org/10.5281/zenodo.17178834
https://doi.org/10.1007/s11269-024-03931-8
https://doi.org/10.1016/j.scitotenv.2025.178617
https://doi.org/10.1016/j.ejrh.2023.101533
https://doi.org/10.1016/j.ejrh.2024.101970
https://doi.org/10.1016/j.jhydrol.2022.128875
https://doi.org/10.1016/j.scitotenv.2024.172804
https://doi.org/10.1088/1748-9326/ac4291
https://doi.org/10.1038/srep30571
https://doi.org/10.1073/pnas.1312330110
https://doi.org/10.1038/s43016-023-00821-x
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1002/hyp.15156
https://doi.org/10.1016/j.atmosres.2020.105111
https://doi.org/10.3390/w14060986
https://doi.org/10.1038/s41558-023-01659-8

	Overestimation of evapotranspiration across India if not considering the impact of rising atmospheric CO2
	1 Introduction
	2 Methods
	2.1 Scope and study area
	2.2 Estimation of reference evapotranspiration
	2.3 Derivation of the modified FAO-PM equation
	2.4 Data for validating the modified FAO-PM equation
	2.5 Validation approach
	2.6 Climate data for regional simulations
	2.7 Estimations for spatio-temporal analyses
	2.8 Estimating the impact of CO2 on the national average evapotranspiration
	2.9 Sensitivity analysis

	3 Results
	3.1 Model validation and comparison
	3.2 Spatio-temporal variations in and 
	3.3 Seasonal variations in the ETo difference
	3.4 Sensitivity analyses of 
	3.5 Impact of CO2 on the national average evapotranspiration

	4 Discussion
	4.1 Reliability of modified FAO-PM equation spans a wide variety of vegetation types and climatic conditions
	4.2 Impacts of incorporating changing CO2 concentrations across the three decadal periods
	4.3 Impact of CO2 on the national average evapotranspiration
	4.4 Implications of incorporating CO2 in evapotranspiration estimations for environmental protection and climate change
	4.5 Limitations and future scope

	5 Conclusion

	References

