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Introduction: Flood-prone regions face growing challenges due to climate-
induced variability, rapid urbanization, and competing demands on water
infrastructure. Multi-reservoir systems play a critical role in mitigating flood
damages, but climate change has intensified management complexity through
increased hydroclimatic volatility and reduced reaction times for dam operators.
Methods: This study presents a stochastic multi-objective optimization
framework that integrates ensemble-based inflow scenarios, high-resolution
hydraulic simulations, and an adaptive version of the Progressive Hedging
Algorithm enhanced by K-means scenario clustering. The approach was applied
to Tunisia’s Medjerda River basin, focusing on five interconnected reservoirs. The
model balances downstream flood risk reduction with long-term water storage
security by optimizing reservoir release policies across 1,000 synthetic inflow
scenarios, reduced to 10 representative scenarios through clustering.
Results: The proposed method achieved robust performance with normalized
objective values of 0.087 for storage security and 0.094 for flood control.
More than 93% of simulated scenarios satisfied both storage and flood-related
constraints, demonstrating superior reliability compared to traditional rule-
based methods (60–70%). The framework converged in 42 iterations with a
computational time of 3.2 hours, representing a 6.7-fold reduction compared
to full-scenario optimization while maintaining only 6–7% performance
degradation. Peak discharge reductions of 25–30% were achieved through
coordinated reservoir operations.
Discussion: The framework provides operationally feasible release policies that
perform consistently across diverse flood conditions while significantly reducing
computational costs. By combining hydrological realism with optimization
scalability, this work supports the design of resilient and anticipatory flood
management strategies in semi-arid regions, directly contributing to global
efforts toward sustainable water governance (SDG 6), climate resilience (SDG
13), and disaster risk reduction in human settlements (SDG 11).

KEYWORDS

stochastic multi-objective optimization, flood control, multi-reservoir systems,
Progressive Hedging, scenario clustering, climate-resilient water management

1 Introduction

Extreme flood events pose significant risks to human settlements, infrastructure,
and agricultural zones, particularly in semi-arid regions where rainfall is both intense
and highly variable. Multi-reservoir systems play a critical role in mitigating flood
damages by regulating river flows and storing excess water during peak inflows.
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However, climate change has intensified these challenges.
Global observations indicate a 10%–20% increase in extreme
precipitation events over recent decades, with Mediterranean
regions experiencing a 15% rise in flood frequency since 1980
(IPCC, 2021). In Tunisia, recent decades have seen a shift toward
shorter, more intense rainfall episodes, which overload reservoir
inflow systems and reduce reaction time for dam operators. This
increased hydroclimatic volatility complicates the management
of interconnected reservoirs, especially when decision windows
shrink from days to mere hours. Designing operational strategies
for such systems is complex due to the spatial-temporal variability
of hydrological processes and the conflicting objectives involved in
reservoir management.

The economic consequences of inadequate flood management
are substantial. Recent flood events in Mediterranean basins have
caused damages exceeding e100 million per event, with the 2019
southeastern Spain floods alone resulting in e425 million in losses
(European Environment Agency, 2021). These impacts underscore
the urgent need for improved flood management strategies that can
adapt to increasing hydrological uncertainty. In this context, this
research aligns with the United Nations Sustainable Development
Goals (SDGs), particularly SDG 6 (Clean Water and Sanitation),
SDG 11 (Sustainable Cities and Communities), and SDG 13
(Climate Action), by promoting resilient water infrastructure and
adaptive flood risk management under climate stress.

Flood-period reservoir operations must simultaneously address
short-term emergency control–by limiting downstream flood
peaks–and long-term sustainability concerns, such as preserving
adequate water reserves for post-event water supply and energy
production. These challenges are amplified in interconnected
reservoir networks, where upstream decisions cascade through
the system and affect downstream storage and flow dynamics.
The complexity of such coordination is exemplified by historical
events where uncoordinated reservoir releases have exacerbated
downstream flooding despite individual reservoirs operating
within design parameters (International Commission on Large
Dams, 2018). Moreover, uncertainty in natural inflows caused
by climate variability and forecast limitations further complicates
the development of robust and effective control strategies. These
dynamics require operational strategies that can rapidly adapt to
unexpected inflow patterns, a task traditional static rules struggle to
handle. The compound risk of simultaneous upstream inflows and
downstream saturation makes multi-reservoir coordination under
climate change stress a non-trivial challenge.

Traditional rule-based or deterministic optimization methods
are often insufficient for managing such uncertainty, leading to
either overly conservative or risk-prone operations. Studies have
shown that conventional operating rules can result in 30%–
40% suboptimal performance under non-stationary conditions
compared to adaptive strategies (Giuliani et al., 2021). As a result,
there has been a growing shift toward stochastic optimization
frameworks that explicitly incorporate inflow variability and assess
performance across ensembles of hydrological scenarios. These
frameworks enable the development of release policies that are not
only feasible under a wide range of conditions but also balanced in
their treatment of flood protection and water availability.

In this study, we focus on the Medjerda River basin in
northern Tunisia, a flood-prone region whose water infrastructure

is centered around a cascade of strategically interconnected
reservoirs. The Medjerda system exemplifies the challenges facing
semi-arid reservoir networks: it has experienced four major flood
events in the past two decades (2003, 2007, 2009, 2018), each
causing damages exceeding e50 million and affecting over 100,000
residents (United Nations Office for Disaster Risk Reduction,
2020). The system is highly sensitive to short-duration flood events
due to its steep terrain and rapid runoff, while also facing long-term
pressures from siltation and drought. The 2003 floods particularly
highlighted coordination challenges, where sequential reservoir
releases contributed to downstream peak flow amplification. These
competing demands and demonstrated vulnerabilities make it
an ideal testbed for evaluating advanced reservoir optimization
methods.

We propose a novel stochastic multi-objective optimization
model that aims to coordinate flood-season reservoir releases
across the network. The framework integrates ensemble-based
inflow modeling, hydraulic simulation of downstream water levels,
and a scenario-based decomposition algorithm to generate robust
and operationally viable control policies. The goal is to minimize
flood risk at downstream control points while preserving storage
security within each reservoir under a wide range of hydrological
scenarios.

The remainder of this paper is organized as follows.
Section 2 reviews related work on stochastic and multi-
objective optimization for flood control. Section 3 presents the
mathematical formulation, including system dynamics, objectives,
and constraints. Section 4 introduces the proposed solution
framework, which integrates adaptive Progressive Hedging with
scenario clustering. Section 5 applies the method to the
Medjerda reservoir system and analyzes the results. Section 6
discusses methodological contributions, practical implications, and
limitations. Section 7 concludes the paper by summarizing key
insights and outlining avenues for future research.

2 Literature review

Flood control in multi-reservoir systems under hydrological
uncertainty represents one of the most challenging problems in
water resources management. The complexity arises from the need
to balance multiple conflicting objectives–minimizing downstream
flood risk while preserving storage for post-flood water supply,
energy production, and irrigation demands–all under conditions
of uncertain and highly variable inflows. The increasing frequency
and intensity of extreme weather events, driven by climate change,
have amplified these challenges and motivated the development
of sophisticated reservoir operation frameworks that integrate
stochastic modeling, multi-objective optimization, and real-time
decision support capabilities.

The explicit incorporation of inflow uncertainty into reservoir
operation decisions has been a cornerstone of modern water
management research. Schwanenberg et al. (2014) demonstrated
the effectiveness of Sample Average Approximation (SAA) and
scenario tree methods for flood mitigation at Brazil’s Tres
Marias reservoir, showing clear advantages over deterministic
approaches in anticipating uncertain inflows. Draper (2001)
advanced this field by proposing an implicit stochastic optimization
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framework with rolling-horizon implementation, which links
short-term operational decisions through carryover storage values
while avoiding unrealistic perfect foresight assumptions. These
foundational approaches established the principle of prioritizing
robustness over purely optimal but fragile solutions, a paradigm
that continues to influence contemporary research.

Risk-aware multi-objective models have gained significant
traction in addressing the inherent trade-offs between competing
operational priorities. Chen et al. (2020) developed a pioneering
real-time flood control model that integrates stochastic differential
equations for risk assessment with the NSGA-III algorithm,
effectively balancing upstream overtopping risks against
downstream flood impacts. Building on these foundations,
Guo et al. (2024) incorporated AI-generated ensemble flood
forecasts and resilience indicators into a robust optimization
framework, demonstrating how machine learning can enhance
uncertainty representation. Liu and Luo (2019) extended this line
of research by introducing reactive strategies within a dynamic
multi-objective optimization model, enabling systems to adapt
their operational priorities in response to evolving hydrological
conditions.

The nonlinear, high-dimensional nature of multi-reservoir
flood control problems has motivated extensive research into
metaheuristic optimization algorithms. Zhang et al. (2019) applied
the decomposition-based evolutionary algorithm MOEA/D-DE
to flood operations at China’s Ankang reservoir, achieving
significant reductions in peak discharge while maintaining dam
safety constraints. Moridi and Yazdi (2017) developed a more
complex mixed-integer multi-objective model for coordinating
flood control capacity and hydropower production across six
reservoirs, solved using the ε-constraint method. The diversity of
algorithmic approaches reflects the complexity of the underlying
optimization landscape, with Qi et al. (2016) introducing a memetic
immune algorithm specifically designed for reservoir operation
topologies, while Luo et al. (2015) proposed a hybrid PSO-
EDA approach capable of learning inter-variable dependencies to
improve convergence on complex Pareto fronts.

Contemporary research increasingly emphasizes the
integration of machine learning techniques with traditional
optimization approaches. Zanutto et al. (2025) developed
reinforcement learning algorithms for processing multi-timescale
forecast information in multipurpose reservoir operations,
demonstrating improved reliability compared to conventional
model predictive control approaches. Gegenleithner et al. (2024)
advanced this integration further by proposing transformer-based
deep reinforcement learning for multiobjective multihydropower
reservoir optimization, achieving superior generalization capability
compared to traditional evolutionary algorithms such as NSGA-III
and MOEA/D. The coupling of optimization with real-time
forecasting capabilities has emerged as a particularly promising
research direction, with Becker et al. (2024) implementing moving-
horizon ensemble forecast optimization to support adaptive
decision-making, while Mohanty et al. (2025) developed coupled
optimization frameworks that integrate hedging rules with detailed
hydrodynamic modeling.

Research attention has increasingly focused on system-
scale applications and emergency operational scenarios. Wang
et al. (2022) addressed basin-wide coordination challenges

by formulating a multi-objective optimization model for the
coordinated operation of twelve major reservoirs in China’s Yangtze
River basin, highlighting both the potential and the computational
challenges of these methods for large-scale, interconnected systems.
Akbari et al. (2014) investigated emergency operation strategies
for Iran’s Abbaspour reservoir under damaged spillway conditions,
combining short-term flood risk mitigation with long-term
water supply objectives through a hybrid simulation-optimization
framework. Uysal et al. (2018) demonstrated the practical
application of Model Predictive Control enhanced by probabilistic
inflow forecasts and scenario tree reduction techniques, showing
improved flood control performance with reduced reliance on
unnecessary spillway releases.

Progressive Hedging (PH), originally introduced by Rockafellar
and Wets (1991), has emerged as a robust technique for solving
large-scale stochastic optimization problems through scenario-
based decomposition. Its application to reservoir operations spans
multiple contexts, including hydropower scheduling (Watkins
and McKinney, 2000) and drought management (Huang et al.,
2020). Gade et al. (2016) proposed adaptive penalty updates
to accelerate convergence and improve solution stability, while
Watson and Woodruff (2011) extended the method to enable
parallel implementation for real-time operational contexts. Recent
advances by Woodruff et al. (2023) introduced gradient-based
methods for computing variable-dependent penalty parameters,
achieving significant convergence improvements. Deliktaş
et al. (2024) further demonstrated the effectiveness of sample
intelligence-based Progressive Hedging algorithms for facility
location problems under uncertainty.

Parallel developments in scenario clustering have focused
on reducing computational complexity while preserving solution
quality. Giuliani et al. (2021) established theoretical foundations
for intelligent scenario reduction techniques, while Schlenkrich
and Parragh (2024) demonstrated practical applications of
scenario reduction combined with advanced optimization methods
for multi-stage problems. These approaches show promise
for maintaining solution quality while dramatically reducing
computational requirements.

The past five years have witnessed rapid progress in
multi-objective optimization approaches for water resources
management. Wang et al. (2023) introduced dynamic multi-
objective optimization methods based on classification strategies,
addressing the fundamental challenge of balancing population
diversity with convergence in time-varying environments. Xu
et al. (2024) developed hybrid artificial intelligence methods
that combine deep learning with multi-objective optimization for
reservoir development strategies, demonstrating the potential of
integrated AI-optimization frameworks. Regional applications have
also contributed important insights, with Hassan et al. (2021)
presenting genetic algorithm approaches for multipurpose dam
operation in Morocco, incorporating smoothing constraints to
reduce policy fluctuations, while Mansouri et al. (2023) focused on
simulation-optimization approaches for drought management in
arid regions.

These recent developments collectively illustrate a clear
shift toward integrated, adaptive, and AI-enhanced optimization
methods for water resources management. These advances
underscore the evolution toward practical, computation-ready
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frameworks–yet several gaps remain, limiting their deployment in
real-time flood control contexts.

Despite significant progress across multiple research fronts,
several critical gaps limit the operational deployment of advanced
stochastic optimization for multi-reservoir flood control. First,
while scenario clustering and Progressive Hedging have been
developed independently with demonstrated individual benefits,
their systematic integration remains largely unexplored. Existing
approaches typically either sacrifice computational efficiency
through exhaustive scenario evaluation or compromise solution
quality through oversimplified reduction techniques, creating a
persistent trade-off between accuracy and tractability.

Second, recent improvements in Progressive Hedging focus
primarily on single-objective optimization problems, with limited
adaptation to contexts where trade-offs between risk mitigation
and resource preservation must be dynamically managed. The
specialized penalty adjustment mechanisms required for effective
multi-objective optimization remain underdeveloped, particularly
for applications where objective importance varies seasonally or in
response to changing conditions.

Third, current stochastic approaches typically require
prohibitive computational resources that prevent deployment
in real-time flood management contexts where rapid decision
support is essential. The scalability challenge becomes particularly
acute for large-scale multi-reservoir systems where coordination
complexity grows exponentially with system size, making
traditional approaches impractical for operational use.

This study addresses these critical gaps through the first
systematic integration of adaptive Progressive Hedging with
intelligent scenario clustering, specifically designed for multi-
reservoir flood control applications. The proposed framework
bridges the computational tractability gap while maintaining
solution robustness, enabling the transition from academic
optimization concepts toward operational flood management
tools. By combining established stochastic programming principles
with novel algorithmic enhancements, our approach provides a
comprehensive solution tailored to the urgent demands of climate-
resilient water management under increasing uncertainty.

3 Mathematical model

3.1 Problem formulation

This work addresses the problem of optimizing water release
policies in a multi-reservoir system during flood events under
uncertainty. A stochastic multi-objective optimization framework
is developed to jointly manage two conflicting goals:

• Reducing downstream flood risk by regulating river levels at
key control points;

• Maintaining reservoir storage within operational bounds to
avoid overtopping while ensuring post-flood water supply.

The system is modeled over a finite discrete time horizon. It
incorporates:

• Spatially distributed reservoirs and downstream river
monitoring points;

• Temporally varying and stochastic inflows, modeled through
a finite ensemble of inflow scenarios;

• Operational constraints on reservoir storage capacities, release
bounds, and system connectivity.

The decision variables are time-dependent reservoir releases.
State variables include reservoir storage levels and river stages.
The model evaluates policy robustness across inflow scenarios,
enabling consistent performance under a wide range of flood
conditions. The mathematical components–variables, constraints,
and objective functions–are described in the following subsections.

3.2 Model components

The optimization framework is formulated over a discrete-
time horizon and captures the dynamics of a multi-reservoir flood
control system through a set of variables, stochastic inflows, and
physical parameters:

Temporal and spatial structure. The system comprises M
reservoirs and a finite planning horizon of T time steps T =
{1, 2, . . . , T} (e.g., 10-h intervals). Flood levels are monitored at a
set of downstream control points K, where river stages hk

t [m] are
evaluated for each k ∈ K.

Decision and state variables. At each time t ∈ T and for each
reservoir m ∈ {1, . . . , M}, the decision variable rm

t [m3] denotes
the volume released, while sm

t [m3] represents the corresponding
storage level. The variable hk

t captures river water level dynamics at
control points.

Stochastic forcing. Natural inflows ηm
t (ω), defined over a

discrete set of scenarios ω ∈ �, account for hydrological
uncertainty due to variable precipitation and runoff. These are
generated via a scenario-based stochastic process introduced in the
experimental design.

Cascade dynamics. For each reservoir m, total inflow is
modeled as:

imt (ω) =
∑

j∈A(m)

rj
t + ηm

t (ω),

where A(m) denotes the set of direct upstream reservoirs
discharging into m.

System constraints and physical limits. Each reservoir is
constrained by a maximum capacity sm

max, a minimum security
storage sm

secu, and admissible releases within [rm
min, rm

max]. At
downstream points, water levels are evaluated against a desired
threshold hk

desired and a flood warning threshold hk
flood to ensure

regulatory compliance and flood mitigation.
These components define the structural and operational

foundation of the system, supporting the formulation of multi-
objective optimization goals and feasibility constraints discussed in
subsequent sections.

3.3 Objective functions

The optimization model addresses two conflicting objectives:
(i) maintaining sufficient reservoir storage after flood events,
and (ii) minimizing downstream flood risk by regulating river
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levels. Each objective is evaluated over a set of stochastic inflow
scenarios ω ∈ �, and the overall performance is assessed through
expectation.

(1) Reservoir storage security.
This objective ensures that post-flood storage levels remain

above the minimum security threshold sm
secu for each reservoir.

A quadratic penalty is applied to storage deficits across time and
space. The expression is normalized with respect to the total
potential deviation in the system:

Qω =

∑
t∈T

M∑
m=1

(
sm
t − sm

secu
)2

T ·
M∑

m=1

(
sm
max − sm

secu
)2

(1)

This normalized formulation ensures comparability across
reservoirs with different capacities.

(2) River level regulation.
This objective penalizes deviations of river stages hk

t from
desired thresholds hk

desired at control points k ∈ K. The penalty
is scaled relative to the flood risk range, defined as the difference
between the flood threshold and target level:

Lω =

∑
t∈T

∑
k∈K

(
hk

t − hk
desired

)2

T · ∑
k∈K

(
hk

flood − hk
desired

)2 (2)

This approach prioritizes control points with narrow safety
margins and higher flood sensitivity.

3.3.1 Stochastic multi-objective formulation
The model seeks to minimize the expected values of the two

objectives over all inflow scenarios:

min
r

(
Eω[Qω], Eω[Lω]

)
(3)

This multi-objective structure captures the trade-off between
short-term flood protection and long-term water availability. In
practice, the problem can be solved using scalarization (e.g.,
weighted sums) or Pareto-front exploration to support informed
decision-making under uncertainty.

3.4 System constraints

The model is subject to a set of deterministic constraints that
govern the physical behavior of the reservoir network and ensure
operational feasibility. These constraints apply to all time steps
t ∈ T , reservoirs m = 1, . . . , M, and inflow scenarios ω ∈ �.

(a) Mass balance. Reservoir storage levels evolve over time
according to the continuity equation, which conserves water
volume between time steps:

sm
t+1 = sm

t + imt (ω) − rm
t , with sm

1 given. (4)

(b) Storage bounds. To prevent overtopping and ensure post-
flood availability, each reservoir’s storage must stay within its
operational range:

sm
secu ≤ sm

t ≤ sm
max (5)

(c) Release constraints. Releases from each reservoir are
bounded to reflect infrastructure capacities and operational limits:

rm
min ≤ rm

t ≤ rm
max (6)

(d) Inflow routing. The total inflow to a reservoir includes
upstream releases and local (natural) inflows:

imt (ω) =
∑

j∈A(m)

rj
t + ηm

t (ω) (7)

Here, A(m) denotes the set of reservoirs directly upstream of
reservoir m, enabling the routing of flows through the network.

(e) River level estimation. Downstream river stages hk
t at each

control point k ∈ K are computed externally using the HEC-
RAS hydraulic model (Brunner, 2016). This model takes reservoir
release sequences as inputs and simulates unsteady flow in open
channels based on the one-dimensional Saint-Venant equations,
widely used for river hydraulics and flood routing (Chaudhry,
2007):

• Continuity:

∂A
∂t

+ ∂Q
∂x

= 0 (8)

• Momentum:

∂Q
∂t

+ ∂

∂x

(
Q2

A

)
+ gA

∂H
∂x

+ gQ|Q| n2

AR4/3 = 0 (9)

In these equations, A is the cross-sectional area, Q is the
discharge, H is the water surface elevation, R is the hydraulic radius,
n is Manning’s roughness coefficient, x is the longitudinal distance,
and t is time.

HEC-RAS solves these equations using an implicit finite-
difference scheme over a predefined river network geometry (U.S.
Army Corps of Engineers, 2025). The resulting water levels hk

t are
then passed back to the optimization model to evaluate flood risk
via the objective function Lω .

This modular coupling enables high-resolution hydraulic
simulation without embedding complex flow physics inside the
optimization loop, while remaining flexible for integration with
alternative solvers like TELEMAC (Goutal and Maurel, 2007) or
MIKE 11 (DHI Water and Environment, 2017), which offer similar
functionalities for unsteady open channel flow modeling.

3.5 Stochastic inflow modeling

To capture the uncertainty inherent in flood-period hydrology,
natural inflows ηm

t (ω) are modeled as stochastic variables.
This reflects variability in both rainfall events and catchment
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response, which directly influence reservoir inputs during extreme
weather conditions. The stochastic inflow process is constructed
through a combination of univariate extreme value modeling and
multivariate scenario generation.

3.5.1 Marginal distribution modeling
For each reservoir m and time step t, the marginal distribution

of natural inflows is modeled using the Gumbel distribution,
widely adopted in hydrological extremes analysis (Jenkinson, 1955;
Stedinger et al., 1993). This choice is suitable for simulating flood
scenarios due to its capacity to reproduce the statistical properties
of annual maxima and high flow events. The probability density
function is expressed as:

fη(x;μ, β) = 1
β

exp
(
−x − μ

β
− exp

(
−x − μ

β

))
(10)

Here, μ and β are the location and scale parameters of
the distribution. These parameters are calibrated individually for
each reservoir using historical inflow records, typically through
maximum likelihood estimation (MLE) or method of moments
(Martins and Stedinger, 1984).

3.5.2 Multivariate scenario generation
To preserve spatial dependencies between reservoirs, a

multivariate scenario generation approach is employed (Yates et al.,
2005). Let μt denote the vector of expected inflows at time t, and
let � be the covariance matrix representing the inter-reservoir
dependencies derived from historical joint inflow data.

For each scenario ω ∈ �, a correlated inflow vector ηω
t is

sampled using Cholesky decomposition (Lerman, 1980):

ηω
t = μt + L · zω

t (11)

where L is the lower triangular matrix such that � = LL�, and zω
t is

a vector drawn from the standard multivariate normal distribution
N (0, I). This ensures that the synthetic inflow trajectories match
both the marginal distributions and the spatial correlation structure
observed in real data.

3.5.3 Scenario set construction
A total of |�| = 1, 000 inflow scenarios are generated, each

covering a 60-day period with a temporal resolution of 10 h. These
scenarios form the stochastic input space for the optimization
model, enabling evaluation of release strategies under a wide
spectrum of plausible flood conditions.

3.6 Optimization framework and scenario
evaluation

The optimization model is developed within an open-loop
framework, in which all inflow scenarios are assumed to be fully
known at the time of decision-making. This formulation yields a

static release policy r defined over the entire planning horizon,
independent of real-time feedback. While more conservative
than closed-loop (adaptive) approaches, the open-loop structure
is computationally efficient and suitable for offline planning
applications where inflow forecasts are uncertain or unavailable.

A finite ensemble of inflow scenarios � = {ω1, ω2, . . . , ω|�|}
is generated using the stochastic inflow model described in the
previous section. For each candidate policy r, the reservoir system
is simulated across all scenarios ω ∈ �, and the corresponding
objective values Qω and Lω are evaluated.

The expected system performance is then defined as the mean
of these values over the full scenario ensemble:

Eω[Qω] = 1
|�|

∑
ω∈�

Qω , Eω[Lω] = 1
|�|

∑
ω∈�

Lω (12)

This expectation-based formulation ensures that the resulting
policy is not only feasible under uncertainty, but also robust in
the sense that it minimizes average performance losses over a
broad spectrum of hydrological realizations. Moreover, the use
of multiple scenarios enables a comprehensive exploration of the
trade-offs between flood control and storage retention, supporting
the identification of Pareto-optimal operating strategies.

To reduce sampling error and ensure statistical
representativeness, the scenario set � is constructed to preserve
key probabilistic characteristics of the inflow process, including
marginal distributions, spatial covariance structure, and temporal
variability.

4 Solution approach: adaptive
Progressive Hedging with scenario
clustering for multi-objective reservoir
optimization

Building upon the need for robust reservoir operation strategies
under hydrological uncertainty, we propose an enhanced solution
framework based on the Progressive Hedging Algorithm (PHA).
PHA is a scenario-based decomposition method particularly
suited for large-scale stochastic programs with non-anticipativity
constraints, where decisions must remain consistent across
uncertain future realizations (Rockafellar and Wets, 1991; Watson
and Woodruff, 2011).

In our context, each inflow scenario ω ∈ � defines
a subproblem in which a scenario-specific release policy rω

is optimized to minimize a weighted sum of the normalized
objectives: the storage deviation Qω and the river level deviation
Lω :

f ω(r) = λQω(r) + (1 − λ)Lω(r) (13)

where λ ∈ [0, 1] is a scalarization parameter controlling the trade-
off between post-flood storage security and downstream flood risk
mitigation.

The classical PHA is extended in two key ways: (i) an adaptive
penalty adjustment mechanism that improves convergence and
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robustness, and (ii) a scenario clustering step that reduces the
effective number of subproblems and enhances scalability.

4.1 Step-by-step procedure

4.1.1 Scenario clustering
Solving a subproblem for every inflow scenario ω ∈ � is

computationally expensive, especially when each scenario encodes
a full multivariate time series. To reduce dimensionality, we apply
K-means clustering to group similar inflow trajectories and extract
a reduced set of representative scenarios �′ (Steinschneider and
Brown, 2015; Gupta et al., 2020).

Rather than clustering directly on raw time series data, we
extract hydrologically meaningful summary features for each
scenario, namely:

• Peak inflow magnitude (maximum value),
• Time-to-peak (temporal index of the maximum),
• Cumulative inflow volume (integrated inflow over time),
• Intra-horizon variability (standard deviation).

These features are standardized to ensure scale invariance. K-
means is then applied in the standardized feature space, and the
centroid of each cluster is selected to form �′ ⊂ �. The number
of clusters (typically between 5 and 15) is chosen to strike a balance
between scenario diversity and computational efficiency.

This approach retains the diversity of hydrological behavior
while enabling stable and tractable optimization.

4.1.2 Initialization
For each representative scenario ω ∈ �′, a scenario-specific

release policy rω
0 is initialized, often as a flat release vector or based

on historical averages. A global consensus policy r̄0 is initialized
as the mean of the initial scenario policies. The initial penalty
parameter ρ0 is set (e.g., ρ0 = 100) and is dynamically updated
in subsequent iterations.

Solving Scenario Subproblems : At each iteration k, the
algorithm solves the following penalized subproblem in parallel for
all scenarios ω ∈ �′:

rω
k+1 = arg min

r

{
f ω(r) + ρk‖r − r̄k‖2} (14)

The penalty term encourages alignment with the shared policy
r̄k while still allowing some exploration.

4.1.3 Integration of hydraulic model outputs
After each scenario-specific policy rω is updated, it is passed

to an external hydraulic simulator (HEC-RAS) that returns the
resulting river level trajectories hk

t . These outputs are used to
compute Lω(r), which feeds back into the subproblem cost.
This decoupled model ensures high-fidelity simulation without
embedding full hydraulic equations into the optimization process.

4.1.4 Consensus update
The new consensus policy is computed as the average of

updated scenario policies:

r̄k+1 = 1
|�′|

∑
ω∈�′

rω
k+1 (15)

This step gradually aligns the scenario-specific solutions toward
a non-anticipative policy.

4.1.5 Adaptive penalty adjustment
To enhance convergence, the penalty coefficient ρ is updated

based on the variance of the scenario-specific decisions:

ρk+1 = ρk ·
(
1 + α · Var({rω

k+1})
)

(16)

The adaptation rate α is a hyperparameter (typically between
0.1 and 0.5), selected via sensitivity analysis. This update
strengthens non-anticipativity as consensus improves, while
maintaining flexibility in early iterations.

4.1.6 Convergence criterion
The algorithm terminates once the policies across all scenarios

converge sufficiently to the consensus:

‖rω
k+1 − r̄k+1‖ < ε, ∀ω ∈ �′

At convergence, the policy r̄ constitutes a robust, scenario-
agnostic release schedule optimized under inflow uncertainty.

4.2 Implementation and workflow

The complete solution procedure is summarized in
Algorithm 1, which formalizes the iterative structure of the
Adaptive Progressive Hedging method with scenario clustering.
The corresponding computational pipeline is visualized in Figure 1.

The workflow begins with the generation of a large ensemble
of inflow scenarios ω ∈ � based on the stochastic inflow
modeling process described in the previous section. Each scenario
represents a multivariate inflow trajectory across all reservoirs over
the simulation horizon.

To reduce computational complexity while preserving
hydrological diversity, we apply K-means clustering to a
transformed feature space. For each scenario, a vector of
hydrologically relevant features is computed–such as peak inflow,
time-to-peak, cumulative volume, and standard deviation–and
standardized prior to clustering. One representative scenario
(typically the centroid) is selected per cluster, forming the reduced
scenario set �′ ⊂ �.

The optimization process is initialized by assigning an initial
release policy rω

0 to each representative scenario, typically using a
flat or heuristically-informed baseline. A global consensus policy
r̄0 is computed as the average of the scenario-specific policies. The
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Input: Full scenario set �, initial release
policies {rω

0 }, penalty ρ0, tolerance ε,
adaptation rate α

Output: Consensus release policy r̄

1 Cluster scenarios � into C clusters using K-means
on standardized hydrological features
Extract representative scenario set �′ ⊂ � (one
centroid per cluster)
Initialize consensus policy r̄0 = 1

|�′ |
∑

ω∈�′ rω
0

Set iteration counter k ← 0
2 repeat

3 foreach scenario ω ∈ �′ do

4 Solve subproblem:

rω
k+1 = argmin

r

{
fω(r)+ ρk‖r− r̄k‖2

}

Evaluate fω(r) via hydraulic simulation
(HEC-RAS);

5 Update consensus policy:

r̄k+1 = 1
|�′|

∑
ω∈�′

rω
k+1

Update penalty:

ρk+1 = ρk ·
(
1+ α · Var({rω

k+1})
)

Increment k ← k+ 1;

6 until ‖rω
k − r̄k‖ < ε for all ω ∈ �′;

7 return r̄

Algorithm 1. Adaptive progressive hedging with scenario clustering.

penalty coefficient ρ0 is initialized to a fixed value and will evolve
over the iterations to control inter-scenario coherence.

Each iteration of the PHA loop involves solving all scenario
subproblems in parallel. For each ω ∈ �′, the release policy rω

is optimized using a penalized objective that balances individual
scenario performance with proximity to the shared consensus
policy. Once a candidate solution is obtained, it is passed to
an external hydraulic simulation model (HEC-RAS) to evaluate
downstream river levels and compute the flood penalty Lω . This
ensures high-resolution evaluation of flood risk without embedding
hydraulic equations directly into the optimization model.

After solving all subproblems, the consensus policy r̄ is
updated by averaging the scenario-specific policies, and the penalty
parameter ρ is adaptively increased based on the variance across
scenario solutions. This feedback mechanism enforces stronger
agreement as the algorithm converges.

The loop continues until all scenario-specific policies are
sufficiently close to the consensus, as defined by a convergence
threshold ε. Upon termination, the final consensus policy r̄
represents a robust and non-anticipative reservoir release strategy
optimized under uncertainty, incorporating both upstream storage
targets and downstream flood constraints.

Generate full inflow
scenarios ω ∈ Ω

Extract hydrological features
and cluster (K-means)

Select representative
scenarios Ω′ ⊂ Ω

Initialize PHA
variables: rω, r̄, ρ0

Solve each scenario
subproblem with penalty ρ

Evaluate Lω via HEC-
RAS simulations

Update consensus r̄
and adapt penalty ρ

Convergence: ‖rω − r̄‖ < ε Output final release policy
Yes

No

FIGURE 1

Workflow of the proposed adaptive Progressive Hedging framework
with K-means scenario clustering and hydraulic simulation.

4.3 Algorithmic complexity and stability
analysis

This section provides a theoretical foundation for
understanding the computational characteristics, convergence
properties, and scalability behavior of the proposed adaptive
Progressive Hedging framework with scenario clustering.

4.3.1 Time complexity analysis
The overall computational complexity can be decomposed into

two main phases: scenario clustering and iterative Progressive
Hedging optimization.

4.3.1.1 Scenario clustering phase
The K-means clustering procedure operates on the original

scenario set � to produce the reduced set �′. The complexity is
dominated by distance calculations and centroid updates:

Ccluster = O(|�| · F · |�′| · Ikmeans) (17)

where F is the feature dimension (4 hydrological features), |�′|
is the number of clusters, and Ikmeans is the number of K-means
iterations. For typical values (|�| = 1, 000, |�′| = 10, F = 4,
Ikmeans = 50), this represents less than 1% of total computational
cost.

4.3.1.2 Progressive Hedging iterations
Each PH iteration requires solving |�′| quadratic programming

subproblems in parallel. For each scenario ω ∈ �′, the subproblem
involves optimizing over n = T × M decision variables subject
to O(T × M) constraints. Using interior-point methods, each
subproblem has complexity O((T × M)2.5).
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4.3.1.3 Overall time complexity
With K iterations required for convergence, the total time

complexity is:

Ctotal = O(|�| · F · |�′|) +O(K × |�′| × (T × M)2.5) (18)

For our case study parameters, the dominant term yields
approximately O(4.2 × 108) operations, providing theoretical
justification for observed computational requirements.

4.3.2 Space complexity analysis
4.3.2.1 Memory requirements

The algorithm’s memory footprint comprises three main
components:

Sscenarios = O(|�′| × T × M) (scenario storage) (19)

Svariables = O((|�′| + 1) × T × M) (decision variables) (20)

Sfeatures = O(|�| × F) (clustering features) (21)

Total space complexity:

Stotal = O(|�′| × T × M + |�| × F) (22)

This linear scaling in both reduced scenario count and problem
dimensions ensures memory requirements remain manageable
even for large-scale applications.

4.3.3 Convergence theory and stability
4.3.3.1 Theoretical convergence guarantees

Under standard Progressive Hedging assumptions–convexity
of scenario subproblems and boundedness of the feasible region–
the algorithm converges to the optimal solution. For reservoir
optimization, these conditions are satisfied because:

• Quadratic penalty terms ensure strict convexity of augmented
subproblems,

• Physical reservoir constraints define compact feasible regions,
• Hydraulic simulation provides Lipschitz-continuous objective

evaluations.

4.3.3.2 Convergence rate
Progressive Hedging exhibits linear convergence under

regularity conditions:

‖r̄k+1 − r∗‖ ≤ γ ‖r̄k − r∗‖ (23)

where γ < 1 is the convergence factor and r∗ is the optimal
consensus policy. The adaptive penalty mechanism typically
achieves faster convergence by dynamically adjusting penalty
parameters based on solution variance.

4.3.3.3 Numerical stability
The algorithm’s stability is enhanced by several design

features:

• Scenario clustering reduces condition numbers by eliminating
redundant constraints,

• Adaptive penalty bounds prevent numerical overflow during
convergence,

• L2-norm penalty terms ensure well-conditioned quadratic
subproblems,

• Hydraulic simulation decoupling isolates numerical
sensitivities.

4.3.4 Theoretical scalability properties
4.3.4.1 Scaling with system size

The complexity dependence on reservoir count M appears in
the (T × M)2.5 term. However, the scenario-based decomposition
structure and typical sparsity patterns in reservoir networks suggest
more favorable practical scaling, closer to O(M1.2−1.5) for realistic
topologies.

4.3.4.2 Scenario set scaling
The clustering phase scales linearly with |�|, while

optimization cost depends only on |�′|. This design ensures
computational cost grows slowly with ensemble size, enabling
the use of large scenario ensembles without proportional cost
increases.

4.3.4.3 Parallel scalability
The scenario decomposition structure enables theoretical

parallel efficiency up to |�′| processors, with each scenario
subproblem solved independently. Beyond this point, load
balancing and communication overhead determine practical
efficiency limits.

4.3.4.4 Algorithmic complexity bounds
For well-conditioned problems typical in reservoir operation,

the following complexity bounds apply:

Best case: O(|�′| × T × M × log(1/ε)) (24)

Worst case: O(|�′| × (T × M)3) (25)

where ε is the convergence tolerance. The adaptive penalty
mechanism typically achieves performance closer to the best-case
bound.

This theoretical analysis provides the mathematical foundation
for understanding the algorithm’s computational behavior and
guides parameter selection for optimal performance across
different problem scales and computational environments.

4.4 Reservoir network and system
structure

The study focuses on the Medjerda reservoir system in
northern Tunisia, which constitutes the backbone of the country’s
surface water infrastructure. The Medjerda River–originating
in northeastern Algeria and flowing 484 km eastward to the
Mediterranean–supplies over 80% of Tunisia’s surface water
resources. The region’s semi-arid climate is marked by high
spatiotemporal variability in rainfall, with frequent heavy
downpours capable of triggering significant flood events, such as
those recorded in 1969, 1973, 1986, 2003, 2007, and 2009.
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Ben Metir Bou Heurtma

Kasseb Mellegue

Sidi Salem

rBenMetir rBouHeurtma

rKasseb rMellegue

rSidiSalem

FIGURE 2

Schematic layout of the reservoir system: Ben Metir and Bou
Heurtma flow into Kasseb; Kasseb and Mellegue discharge into Sidi
Salem. Arrows indicate reservoir releases and external inflows.

The hydrographic network comprises five interconnected
reservoirs organized in a mixed parallel-serial topology,
as illustrated in Figure 2: Ben Metir and Bou Heurtma
operate in parallel and discharge into Kasseb. Kasseb and
Mellegue, in turn, converge toward the terminal reservoir,
Sidi Salem.

Each reservoir receives localized natural inflows ηm
t ,

representing stochastic runoff contributions during storm
events. The controlled variables rm

t represent operator-
managed releases, routed downstream following the
network’s hydraulic structure. In the diagram, solid arrows
indicate operational flows, while dashed arrows represent
stochastic inflows.

Among these, Sidi Salem is the largest and most strategic
reservoir in Tunisia. It accounts for over 51% of the total
active storage capacity in the system and alone receives roughly
44.5% of the annual natural inflow. Its role is central to flood
control, multi-seasonal water supply, and hydropower production.
In addition to regulating excess flows from the three upstream
reservoirs (Kasseb, Bou Heurtma, Mellegue), it supplies water to
major demand zones, including Greater Tunis and central Tunisia.
However, the reservoir is also subject to siltation, which poses
long-term sustainability concerns for both flood mitigation and
water supply.

The objective of the optimization framework is to coordinate
reservoir operations across this complex network to achieve
two goals: reduce the risk of downstream flooding along the
Medjerda floodplain and preserve sufficient storage in all reservoirs,
particularly Sidi Salem, to meet post-event and seasonal water
demands.

TABLE 1 Key characteristics of the reservoirs in the Sidi Salem system.

Reservoir Annual
inflow

Min
inflow

Storage
capacity

Max
release

(Mm3) (Mm3) (Mm3) (m3/s)

Mellegue 117,250 36,200 147,540 5,400

Ben Metir 41,187 3,740 57,630 610

Kasseb 46,288 7,840 69,620 460

Sidi Salem 120,789 8,388 1,098,000 2,500

Bou Heurtma 447,000 94,288 762,000 5,260

4.5 Data and inflow scenario generation

Reservoir storage, release, and network topology data are based
on historical records provided by Tunisia’s national water agency.
However, in order to assess system performance under uncertain
flood conditions, natural inflows are synthetically generated using
a probabilistic approach.

4.5.1 Inflow scenario generation
Natural inflow trajectories were generated synthetically using

a Gumbel distribution, which is appropriate for modeling extreme
hydrological events. The distribution parameters were calibrated to
approximate the historical inflow characteristics for each reservoir,
as summarized in Table 1.

To account for spatial dependence between upstream
catchments, multivariate inflow vectors were produced using
Cholesky decomposition of a manually defined covariance matrix.
This method preserves both the marginal distributions and the
cross-correlations between inflows at different reservoirs.

A total of 1,000 inflow scenarios were created, each simulating
a 60-day winter flood season, discretized into 144 time steps (10-h
intervals). To reduce computational complexity while maintaining
diversity, the full ensemble was reduced to a representative subset
of |�′| = 10 scenarios using K-means clustering. Clustering was
applied not to the raw time series but to hydrologically relevant
features extracted from each scenario: peak inflow magnitude, time
to peak, cumulative volume, and intra-period standard deviation.
All features were standardized to ensure scale invariance prior to
clustering. Details of the clustering methodology are presented in
Section 4.

4.5.2 Hydraulic routing and river level evaluation
Flood risk downstream of Sidi Salem is evaluated using a

hydraulic routing model implemented in HEC-RAS. For each
scenario ω and corresponding release strategy rω , the model
simulates unsteady river flow and computes the resulting stage
levels hk

t at key downstream control points.
The HEC-RAS model is used in a decoupled manner as

a black-box simulator. This allows the optimization process to
remain modular while benefiting from high-fidelity hydrodynamic
simulations. The resulting river stages are then used to evaluate the
river-level deviation term Lω in the objective function.
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4.5.3 Simulation setup and objective weighting
The simulation horizon spans 60 days, covering the winter

flood season from December to January, with a temporal resolution
of 10 h, resulting in 144 time steps. The optimization is initialized
with a uniform release policy and executed using the Adaptive
Progressive Hedging algorithm with scenario clustering, as detailed
in Section 4.

Unless otherwise specified, |�′| = 10 representative
scenarios are used for optimization. The objective function uses
a scalarization parameter λ = 0.5 to give equal weight to flood
mitigation and reservoir storage objectives.

All simulations are implemented in Python, with parallel
computation across scenarios to improve efficiency. The entire
workflow is executed on a high-performance computing platform.

5 Results and analysis

This section presents the outcomes of applying the proposed
optimization framework to the Sidi Salem multi-reservoir system,
over a synthetic 60-day winter flood period. The goal is to evaluate
the method’s ability to balance flood mitigation and reservoir
storage management under hydrological uncertainty.

5.1 Performance of the adaptive PHA
framework

The Adaptive Progressive Hedging Algorithm (PHA) with
scenario clustering was executed using a reduced set of 10
representative inflow scenarios (|�′| = 10), extracted from an
original ensemble of 1,000. The algorithm converged in an average
of 42 iterations, requiring ∼3.2 h on a parallel computing platform
with 16 cores.

The resulting consensus release policy r̄ achieved the following
expected (normalized) objective values:

• Storage security deviation: E[Qω] = 0.087,
• River level deviation: E[Lω] = 0.094.

These results indicate a robust and well-balanced solution.
More than 93% of the simulated scenarios respected both storage
and flood-related constraints, confirming the framework’s ability to
handle uncertainty while preserving system resilience.

5.1.1 Interpretation of performance metrics
The normalized objective values around 0.09 suggest that the

system operates within a 9% deviation from ideal conditions. This
level of performance is significant given the stochastic nature
of inflows and the dual objectives involved. The 93% constraint
satisfaction rate substantially outperforms traditional rule-based
methods, which typically achieve only 60–70% reliability under
comparable uncertainty conditions (Loucks and Van Beek, 2005).

The balanced performance between storage security (E[Qω] =
0.087) and flood control (E[Lω] = 0.094) underscores the
effectiveness of the multi-objective formulation.

TABLE 2 Comparison of optimization strategies.

Method E[Qω] E[Lω] Runtime (h)

Adaptive PHA + clustering 0.087 0.094 3.2

Static PHA + clustering 0.103 0.114 2.9

Adaptive PHA (full �) 0.081 0.090 21.5

5.2 Comparison with alternative strategies

To assess the benefits of each methodological enhancement,
three framework variants were compared:

1. Adaptive PHA with clustering: full implementation of the
proposed method.

2. Static PHA with clustering: constant penalty coefficient ρ = 100.
3. Adaptive PHA without clustering: full 1,000-scenario solution

without dimensionality reduction.

As summarized in Table 2, adaptive penalty adjustment
improves both convergence and objective performance. Full-
scenario optimization offers marginally better outcomes at
significantly greater computational cost, while scenario clustering
provides an efficient compromise.

5.2.1 Analysis of computational efficiency gains
The adaptive penalty mechanism shortens convergence time by

30% compared to static penalty use. This gain is due to dynamic
penalty updates, which enhance scenario consensus formation
without premature convergence.

Scenario clustering achieves impressive efficiency: reducing
from 1,000 to 10 scenarios leads to only a 6%–7% performance
drop but a 6.7-fold computational time reduction (21.5–3.2 h). This
trade-off makes the method operationally viable for near real-time
decision support.

5.3 Reservoir storage dynamics

Figure 3 depicts storage trajectories in each reservoir over the
simulation period. Dashed red lines indicate maximum capacities;
dotted lines show minimum operational thresholds.

Sidi Salem, the downstream terminal node, exhibits gradual
refilling, while upstream reservoirs (Kasseb, Mellegue) display early
drawdowns followed by strategic refill. All reservoirs operate within
bounds, validating solution feasibility.

5.3.1 Interpretation of optimal release strategies
Key operational insights include:

• Anticipatory management: upstream reservoirs (Ben Metir,
Bou Heurtma) implement drawdowns in days 10–25 to create
buffer capacity prior to peak inflows.

• Cascade coordination: sequential refilling (upstream first)
maintains flood safety and system storage, reducing peak
discharges by 25%–30%.
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FIGURE 3

Simulated storage evolution across all reservoirs under the optimized release strategy.

• Safety margin preservation: reservoirs remain above 85% of
security thresholds, balancing flood protection and supply
reliability.

The strategy reflects temporal planning: early conservation,
mid-season flood buffering, and post-peak recovery.

5.4 Flood risk control at downstream
critical points

River stages hk
t were simulated at five downstream control

points (P1–P5) on the Medjerda River. These are locations
vulnerable to overflow.
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FIGURE 4

Simulated river levels at downstream control points P1–P5 under the optimized release strategy.

As Figure 4 shows, river levels largely remain below flood
thresholds. Short exceedances (2–4 h) occur at P1 and P2 (near the
dam outlet), but attenuate further downstream.

5.4.1 Detailed flood risk analysis
• Near-dam vulnerability: 12% of scenarios exceed thresholds at

P1/P2 by 0.3–0.5 m, with limited structural risk.
• Downstream attenuation: threshold breaches drop below 3%

at P3–P5.
• Peak flow reduction: maximum discharges fall by 40–50% vs.

uncontrolled flood scenarios.

While perfect flood prevention is infeasible under extreme
conditions, the strategy maintains risks within acceptable limits
while sustaining operational functionality.

5.5 Robustness and sensitivity analysis

5.5.1 Performance under extreme conditions
To assess the framework’s robustness beyond nominal

operating conditions, we evaluated performance on two stress-test
scenarios: extreme inflow events (top 5% by magnitude) and highly
correlated spatial events (correlation coefficient r > 0.8).
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5.5.1.1 Extreme inflow events
Under the most severe inflow conditions (peak flows exceeding

1,200 m3/s), the system maintained:

• 88% constraint satisfaction (vs. 93% under nominal
conditions).

• 15%–20% objective degradation relative to baseline
performance.

• Zero catastrophic failures (reservoir overflows or system
breakdowns).

• Maximum storage utilization of 97% across all reservoirs.

5.5.1.2 Spatially correlated events
When all catchments experience synchronized high inflows (r

> 0.8):

• 90% feasibility maintained despite system-wide stress.
• 12% improvement in storage efficiency due to coordinated

management.
• Adaptive penalty mechanism effectively synchronized releases

across reservoirs.
• Reduced peak downstream flows by 35% compared to

independent operation.

These results demonstrate that while extreme conditions
challenge system performance, the optimization framework
maintains operational safety and avoids catastrophic outcomes.

TABLE 3 Sensitivity of model performance to number of representative
scenarios.

|�′| E[Qω] E[Lω] Runtime (h)

5 0.109 0.121 2.4

10 0.087 0.094 3.2

15 0.084 0.090 4.7

20 0.082 0.088 6.8

5.5.2 Sensitivity to algorithmic parameters
5.5.2.1 Number of representative scenarios (|�′|)

The number of representative inflow scenarios directly
influences the diversity of hydrological patterns captured during
optimization. Table 3 demonstrates that while reducing from 1,000
to 5 scenarios achieves the fastest runtime (2.4 hours), this comes
at the cost of degraded performance. The optimal balance occurs at
|�′| = 10–15 scenarios. Increasing |�′| improves performance by
better representing uncertainty, but also increases computational
burden. The observed trade-offs are:

• |�′| < 8: Poor generalization and risk of under-
representation.

• |�′| = 10–12: Optimal balance between accuracy and
efficiency.

• |�′| > 15: Marginal performance gains, but significant
runtime increase.

5.5.2.2 Penalty adaptation rate (α)
The adaptation rate α governs how aggressively the penalty

parameter ρk evolves in response to disagreement among scenario-
specific decisions. Figure 5 reveals that both objective values and
convergence iterations follow a U-shaped pattern with respect to
α, with optimal performance occurring between α = 0.5–1.0.
Different values yield the following convergence behavior:

• α = 0: static penalty; slow convergence (60–80 iterations).
• α ∈ [0.5, 1.0]: optimal range; faster convergence (35–45

iterations).
• α > 1.2: risk of instability and oscillatory solution trajectories.

5.5.2.3 Objective weighting parameter (λ)
The weighting parameter λ defines the relative emphasis placed

on flood mitigation vs. reservoir storage objectives. The following
outcomes were observed:

• λ = 0.3: emphasis on flood control, suitable for early-season
flood risk.

FIGURE 5

Effect of penalty adaptation rate α on convergence and objective values.
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• λ = 0.5: balanced weighting; favorable compromise across
objectives.

• λ = 0.7: emphasis on storage conservation, useful for dry-end
seasons.

Table 4 summarizes the impact of varying λ on system
performance, quantifying how objective prioritization influences
the trade-off between flood protection and storage reliability.

Tuning the parameters |�′|, α, and λ is essential for
adapting the framework to specific operational contexts, balancing
performance with computational feasibility.

5.6 Computational performance and
scalability

Empirical validation of the theoretical complexity analysis
(Section 4.3) confirms the framework’s practical efficiency:

5.6.1 Algorithm convergence
The adaptive PHA converged in 42 iterations on average,

consistent with the theoretical linear convergence rate.
Convergence time of 3.2 h for 10 scenarios validates the
computational tractability for operational use.

5.6.2 Empirical validation of theoretical bounds
• Observed parallel efficiency (88% on 16 cores) matches

theoretical predictions.
• Memory usage (8 GB for 1,000 scenarios) aligns with linear

scaling analysis.
• Runtime dominated by |�′| rather than reservoir count,

confirming theoretical scalability properties.

5.6.3 Operational implications
The demonstrated computational performance enables near

real-time decision support, with solution times compatible with
operational planning horizons (3–6 h for flood management
decisions).

6 Discussion

6.1 Methodological contributions and
advantages

6.1.1 Innovative integration of Progressive
Hedging with scenario clustering

This study introduces the first application of K-means scenario
clustering with adaptive Progressive Hedging algorithm for
reservoir optimization under uncertainty. Compared to traditional
approaches, our framework offers several distinct advantages:

6.1.1.1 Computational efficiency gains
While Schwanenberg et al. (2014) employed Sample Average

Approximation (SAA) without dimensionality reduction, our
clustering approach reduces computational complexity from 1,000

TABLE 4 Effect of objective weight λ on optimization outcomes.

λ E[Qω] E[Lω] Runtime (h)

0.3 0.112 0.071 3.1

0.5 0.087 0.094 3.2

0.7 0.061 0.132 3.1

to 10 scenarios with only 6% performance loss. This represents
a significant advancement in making stochastic optimization
tractable for operational contexts.

6.1.1.2 Enhanced convergence properties
Unlike Chen et al. (2020) who used NSGA-III without scenario

decomposition, our adaptive penalty mechanism improves
convergence speed by 30% compared to static penalty approaches.
The dynamic adjustment of penalty parameters based on scenario
variance provides superior stability and faster consensus formation.

6.1.1.3 Scalability for large systems
Liu and Luo (2019) proposed dynamic multi-objective

optimization but without adaptive penalty mechanisms. Our
framework demonstrates near-linear scaling (88% parallel
efficiency on 16 cores) and shows promise for larger networks
based on its modular decomposition structure.

6.1.2 Modular coupling with hydraulic simulation
The integration with HEC-RAS as a “black-box” hydraulic

simulator provides several operational advantages:

• Flexibility: compatible with alternative hydraulic models
[TELEMAC (Goutal and Maurel, 2007), MIKE 11 (DHI Water
and Environment, 2017)] without framework modification.

• High-fidelity physics: maintains detailed representation of
river hydraulics without embedding complex PDEs in
optimization.

• Extensibility: readily adaptable to complex river geometries
and multi-dimensional flow modeling.

This modular approach contrasts with integrated models that
sacrifice either hydraulic detail or optimization efficiency.

6.2 Practical applicability and operational
relevance

6.2.1 Utility for dam operators and water
managers

The consensus release policy generated by our framework
serves multiple operational purposes:

Seasonal operating guidelines. The robust policies provide
anticipatory strategies for flood season management, replacing
reactive rule-based approaches with probabilistically-informed
decision support. Unlike empirical rules (e.g., “release 50% of
storage before rainy season"), our approach optimizes decisions
based on spatiotemporal inflow correlations.
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TABLE 5 Performance comparison with related studies.

Study Method Reservoirs Scenarios Runtime Flood control

Zhang et al. (2019) MOEA/D-DE 1 Deterministic ∼2h 15% peak reduction

Moridi and Yazdi (2017) ε-constraint 6 20 ∼5h Not reported

Wang et al. (2022) Multi-objective 12 50 ∼8h Not reported

Qi et al. (2016) Memetic algo. 3 Deterministic ∼4h 20% improvement

This study Adaptive PHA 5 10 (of 1,000) 3.2h 93% satisfied

Real-time decision support. The framework enables
rapid evaluation of “what-if ” scenarios, supporting adaptive
management during evolving flood events. Computational times
of 3.2 h make the approach suitable for day-ahead operational
planning.

Multi-reservoir coordination. Traditional approaches manage
reservoirs independently, often leading to suboptimal system
performance. Our framework simultaneously optimizes five
interconnected reservoirs, achieving estimated 25%–30% reduction
in flood risk compared to decentralized management.

6.2.2 Performance comparison with existing
methods

Table 5 provides quantitative comparison with similar studies
in the literature:

Our approach demonstrates superior performance-to-runtime
ratio and provides explicit uncertainty quantification, unlike
deterministic approaches that cannot assess robustness under
varying conditions.

6.3 Limitations and methodological
challenges

6.3.1 Acknowledged methodological limitations
6.3.1.1 Open-loop decision framework

Our current formulation does not incorporate real-time
observations or forecast updates, contrasting with Model Predictive
Control approaches (Uysal et al., 2018; Akbari et al., 2014). This
limitation may result in suboptimal performance when actual
conditions deviate significantly from predicted scenarios.

Impact assessment: preliminary analysis suggests 10%–15%
performance degradation during extreme events that fall outside
the scenario ensemble. However, the robust nature of our policies
provides reasonable fallback strategies even under unprecedented
conditions.

Future mitigation: extension to rolling-horizon MPC with
scenario tree updates could address this limitation while
maintaining computational tractability.

6.3.1.2 Fixed objective scalarization
Unlike studies that explore complete Pareto fronts (Moridi and

Yazdi, 2017; Chen et al., 2020), our current implementation uses
fixed weighting parameter λ. This approach limits exploration of
trade-offs and may not capture all stakeholder preferences.

Practical implications: different operational contexts may
require different priority balances. Water-scarce periods favor
storage conservation (λ > 0.6), while high flood risk periods
prioritize discharge management (λ < 0.4).

Proposed enhancement: implementation of NSGA-II or similar
multi-objective algorithms could generate complete Pareto fronts,
enabling context-adaptive decision making.

6.3.1.3 Climate stationarity assumptions
Our stochastic inflow generation relies on historical data

distributions, assuming stationary climate conditions. Guo
et al. (2024) and others have demonstrated the importance of
incorporating climate change projections for long-term reservoir
planning.

Limitation scope: current approach may underestimate future
extreme event frequencies and intensities under climate change
scenarios (RCP 4.5/8.5).

Adaptation strategy: integration with downscaled climate
projections and non-stationary extreme value modeling represents
a critical future development direction.

6.3.2 Implementation and operational challenges
6.3.2.1 Data requirements

Successful implementation requires:

• High-resolution inflow time series (minimum 10-year
records).

• Detailed river geometry for hydraulic modeling.
• Reservoir operational characteristics and constraints.
• Stakeholder preference parameters for objective weighting.

6.3.2.2 Computational infrastructure
While our approach is efficient, operational deployment

requires:

• Multi-core computing capabilities (minimum 8 cores
recommended).

• Reliable hydraulic modeling software (HEC-RAS or
equivalent).

• Automated data processing pipelines for real-time application.

6.3.2.3 Institutional adoption
Transition from rule-based to optimization-based management

requires:
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• Staff training on stochastic optimization concepts.
• Integration with existing decision support systems.
• Regulatory approval for modified operating procedures.

6.4 Broader implications for water
resources management

6.4.1 Contribution to sustainable development
goals

Our framework directly supports multiple UN Sustainable
Development Goals:

SDG 6 (clean water and sanitation). By optimizing storage
conservation while managing flood risk, our approach enhances
water security and availability. The 93% constraint satisfaction rate
ensures reliable post-flood water supply for municipal, agricultural,
and industrial uses.

SDG 11 (sustainable cities and communities). Improved flood
control (40-50% peak discharge reduction) directly reduces urban
flood risk in downstream metropolitan areas, including Greater
Tunis with over 2.3 million residents.

SDG 13 (climate action). The stochastic framework provides
climate adaptation capacity by managing increased hydrological
variability. The robust policies remain effective across diverse
scenarios, supporting climate resilience.

6.4.2 Geographic and system transferability
The methodology demonstrates broad applicability beyond the

Medjerda basin:

6.4.2.1 Mediterranean and semi-arid regions
Similar climate patterns (intense, variable precipitation) make

the approach relevant for:

• Iberian Peninsula reservoir systems (Guadalquivir, Duero
basins).

• North African coastal basins (Morocco, Algeria).
• Middle Eastern water systems (Jordan, Lebanon).
• Southwestern United States (Colorado River tributaries).

6.4.2.2 Cascade system configurations
The framework is particularly suited for:

• Multi-reservoir cascades with mixed parallel-serial topology.
• Systems with dominant downstream reservoir (similar to Sidi

Salem).
• Networks with 3–15 interconnected reservoirs.

6.4.2.3 Data-sparse environments
The scenario reduction capability makes the approach viable in

regions with limited historical data, where large scenario ensembles
compensate for observational uncertainty.

6.5 Future research directions and
extensions

6.5.1 Methodological enhancements
6.5.1.1 Advanced risk metrics

Replacement of expectation-based objectives with Conditional
Value-at-Risk (CVaR) would better address tail risk management:

CVaRα[Lω] = E[Lω|Lω ≥ VaRα[Lω]] (26)

This modification would improve management of low-
probability, high-impact flood events that pose the greatest
risks to infrastructure and human safety.

6.5.1.2 Real-time adaptive framework
Integration with ensemble weather forecasting systems could

enable dynamic scenario updating:

• Rolling-horizon optimization with 72-h update cycles.
• Probabilistic forecast integration for scenario generation.
• Adaptive penalty adjustment based on forecast skill.

6.5.1.3 Multi-objective pareto exploration
Implementation of evolutionary algorithms (NSGA-III,

MOEA/D) would provide complete trade-off analysis, enabling:

• Seasonal adaptation of objective priorities.
• Stakeholder-specific policy selection.
• Robustness analysis across preference spaces.

6.5.2 Climate change integration
6.5.2.1 Non-stationary inflow modeling

Incorporation of climate projections requires:

• Downscaled GCM outputs for regional hydrology.
• Time-varying distribution parameters in extreme value

models.
• Scenario weighting based on emission pathway probabilities.

6.5.2.2 Adaptive infrastructure planning
Extension to long-term capacity planning could assess:

• Optimal reservoir expansion strategies under climate
uncertainty.

• Cost-benefit analysis of flood protection investments.
• Regional water allocation under changing hydrology.

6.5.3 Empirical validation requirements
6.5.3.1 Historical event analysis

Retrospective testing on documented flood events (Medjerda
floods of 2003, 2007, 2009) would provide empirical validation of
framework performance against actual operational decisions.

6.5.3.2 Operational pilot studies
Collaborative implementation with Tunisian water authorities

could demonstrate real-world applicability and identify practical
implementation challenges.
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6.5.3.3 Comparative field studies
Systematic comparison with current operational practices over

multiple flood seasons would quantify actual performance gains
and identify optimization opportunities.

6.5.4 Large-scale reservoir system extensions
6.5.4.1 Regional network scaling

Extension to national-scale networks (50+ reservoirs)
requires:

• Hierarchical decomposition strategies for multi-level
optimization.

• Distributed computing architectures for parallel subproblem
solving.

• Advanced clustering techniques for spatial-temporal scenario
correlation.

• Load balancing algorithms for heterogeneous reservoir
networks.

6.5.4.2 Multi-regional coordination
Cross-boundary water management involves:

• Inter-regional water transfer optimization.
• Negotiation mechanisms for competing stakeholder

objectives.
• Robust policies under institutional uncertainty.

7 Conclusion

This study introduced a novel stochastic optimization
framework for flood-resilient operation of multi-reservoir
systems, combining adaptive Progressive Hedging with K-means
scenario clustering. The approach addresses core challenges of
uncertainty, scalability, and operational realism in water resources
management.

Tested on Tunisia’s Medjerda system, the method yielded
robust and anticipatory release strategies while maintaining
computational tractability. Its modular structure and integration
with hydraulic simulation tools make it well-suited for diverse
geographic and institutional contexts.

7.1 Strategic relevance

By explicitly accounting for hydrological uncertainty, the
framework provides a scientifically grounded alternative to rule-
based practices. It supports long-term planning and short-term
adaptation, aligning with global climate resilience and water
security goals.

7.2 Path forward

Future research should focus on real-time adaptability,
exploration of trade-offs via multi-objective metaheuristics, and

integration of non-stationary climate projections. Empirical
validation in operational settings will be key to demonstrating full
practical value.

Ultimately, this work bridges methodological innovation and
decision-making needs in uncertain hydrological environments,
laying the foundation for the next generation of climate-adaptive
water management systems.

Data availability statement

The datasets generated and analyzed during this study
are not publicly available due to proprietary restrictions on
reservoir operational data provided by Tunisia’s national water
agency. Synthetic inflow scenarios generated for this research
can be reproduced using the stochastic modeling methodology
described in Section 4.5. The HEC-RAS hydraulic model
configurations and optimization framework parameters are
available from the corresponding author upon reasonable
request and subject to data sharing agreements with the original
data providers.

Author contributions

MA: Project administration, Resources, Writing – original
draft, Formal analysis, Methodology. KM: Writing – review
& editing, Validation, Supervision, Data curation, Software,
Investigation, Visualization, Conceptualization.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. The authors gratefully
acknowledge financial support from the Deanship of Scientific
Research, King Faisal University (KFU) in Saudi Arabia (Grant
number KFU252972).

Acknowledgments

The authors would like to express their sincere gratitude to
the Deanship of Scientific Research at King Faisal University for
supporting this research. The authors also thank their respective
institutions, the University of Sousse and King Faisal University,
for providing the necessary academic environment and resources.
Special thanks go to the teams involved in data collection and
simulation testing, whose contributions were instrumental in the
completion of this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Water 18 frontiersin.org

https://doi.org/10.3389/frwa.2025.1606096
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Argoubi and Mili 10.3389/frwa.2025.1606096

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Akbari, M., Afshar, A., and Mousavi, S. (2014). Multi-objective reservoir operation
under emergency condition: abbaspour reservoir case study with non-functional
spillways. J. Flood Risk Manag. 7, 374–384. doi: 10.1111/jfr3.12061

Becker, B. P. J., Ochterbeck, D., and Piovesan, T. (2024). Reservoir operations under
uncertainty with moving-horizon approach and ensemble forecast optimization. J.
Hydroinform. 26, 265–276. doi: 10.1080/23249676.2023.2276948

Brunner, G. W. (2016). HEC-RAS River Analysis System Hydraulic Reference
Manual. Davis, CA: US Army Corps of Engineers, Hydrologic Engineering Center.
Version 5.0.

Chaudhry, M. H. (2007). Open-Channel Flow, 2nd Edn. Cham: Springer.
doi: 10.1007/978-0-387-68648-6

Chen, J., Zhong, P.-a., Liu, W., Wan, X.-Y., and Yeh, W. W.-G. (2020). A multi-
objective risk management model for real-time flood control optimal operation of a
parallel reservoir system. J. Hydrol. 590:125264. doi: 10.1016/j.jhydrol.2020.125264
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