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Accurate flood forecasting is of critical importance for flood control and disaster 
mitigation. This study focuses on the upper basin of the Juma River and employs the 
China Flash Flood Hydrological Model (CNFF) to calibrate model parameters using 
three specific runoff generation models implemented within the CNFF platform: 
the Xin’anjiang three-source saturation-excess runoff model, the vertical mixed 
runoff model, and the Dahuofang model. These models, respectively, represent 
three distinct physical runoff mechanisms—saturation-excess, vertical mixing, and 
infiltration-excess. The primary scientific objective is to systematically compare the 
flood forecasting accuracy of these models and to identify the most suitable one 
for flood forecasting in this basin. The results indicate that the overall forecasting 
accuracy of the Xin’anjiang model is superior to that of the vertical mixed runoff 
model and the Dahuofang model. The absolute value of the relative error in peak 
discharge and the relative error in mean runoff depth simulated by the Xin’anjiang 
model are 6.8 and 10.7%, respectively. The absolute value of the mean peak arrival 
time error is 0.47 h, and the average Nash-Sutcliffe efficiency coefficient is 0.69. 
The Xin’anjiang model demonstrated superior performance, achieving an average 
Nash-Sutcliffe Efficiency (NSE) approximately 0.21 higher than the other models 
across the evaluated events. When flood discharge is high and exhibits a single-
peak pattern, the simulation performance of all runoff models improves. Overall, 
the Xin’anjiang model achieves a Class B accuracy level in flood simulation for 
the upper Juma River basin. These findings provide a reference for hydrological 
simulation, flood forecasting, and early warning in the upper Juma River basin.
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1 Introduction

Flood disasters have become a key risk factor constraining regional sustainable 
development (Birkmann et al., 2015; Mai et al., 2020; Rehman et al., 2019; Ran and Nedovic-
Budic, 2016; Sam et al., 2021; Kimuli et al., 2021; Wang et al., 2024; Wang et al., 2021). As one 
of the country’s most sensitive to monsoonal climate responses, China suffered direct 
economic losses of up to 128.899 billion yuan due to flood-related disasters in 2022, accounting 
for 54.01% of the total losses caused by disasters resulting from natural hazards (Compilation 
group of China Flood and Drought Disaster Prevention Bulletin, 2023; Kundzewicz et al., 

OPEN ACCESS

EDITED BY

Yuan Li,  
Shaanxi Normal University, China

REVIEWED BY

Michael Nones,  
Institute of Geophysics, Polish Academy of 
Sciences, Poland
Haibo Yang,  
Zhengzhou University, China
Longfei Wang,  
Hohai University, China
Wenchuan Wang,  
North China University of Water Resources 
and Electric Power, China

*CORRESPONDENCE

Fuxin Chai  
 chaifx@iwhr.com  

Shilong Hao  
 haoshilong24@163.com

RECEIVED 24 April 2025
ACCEPTED 04 July 2025
PUBLISHED 23 July 2025

CITATION

Li T, Hao S, Chai F, Li K and Tong H (2025) 
Comparative analysis of different hydrological 
models in flood forecasting for the upper 
Juma River basin.
Front. Water 7:1617212.
doi: 10.3389/frwa.2025.1617212

COPYRIGHT

© 2025 Li, Hao, Chai, Li and Tong. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Brief Research Report
PUBLISHED 23 July 2025
DOI 10.3389/frwa.2025.1617212

https://www.frontiersin.org/journals/Water
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2025.1617212&domain=pdf&date_stamp=2025-07-23
https://www.frontiersin.org/articles/10.3389/frwa.2025.1617212/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1617212/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1617212/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1617212/full
mailto:chaifx@iwhr.com
mailto:haoshilong24@163.com
https://doi.org/10.3389/frwa.2025.1617212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Water#editorial-board
https://www.frontiersin.org/journals/Water#editorial-board
https://doi.org/10.3389/frwa.2025.1617212


Li et al. 10.3389/frwa.2025.1617212

Frontiers in Water 02 frontiersin.org

2020; Zhang and Wang, 2022; Duan et al., 2016). Extreme events such 
as the record-breaking rainstorm in Henan Province on July 20, 2021 
(daily precipitation reaching 624.1 mm) (Zhao et al., 2023; Chen et al., 
2023; Nie and Sun, 2022), and the large-scale flood in the Haihe River 
Basin in 2023 (Lan and Wang, 2025) (peak discharge of the Juma River 
surpassing the 1963 record) underscore the urgent need for accurate 
flood forecasting. Flood forecasting plays a crucial role in mitigating 
the impacts of flood disasters (Emerton et al., 2016; Wee et al., 2023; 
Kumar et al., 2023). Hydrological models are essential tools for flood 
forecasting (Grimaldi et al., 2019; Qi et al., 2021; Kumar et al., 2023); 
however, due to differences in hydrological mechanisms and regional 
hydro-climatic characteristics, the applicability of different 
hydrological models varies across watersheds (Xu, 2010). Therefore, a 
comparative analysis of different model structures is crucial for 
identifying the most appropriate model for a specific basin,” which 
directly leads into our study’s objective (Jain et al., 2018; Chen et al., 
2016; Awol et al., 2021).

At present, a large body of research has focused on using different 
hydrological models for flood forecasting in various watersheds. For 
example, in the Tunxi watershed of southern Anhui Province, the 
Xin’anjiang model and the API-Nash model have been used for flood 
event simulations. Under limited parameter conditions, the API-Nash 
model demonstrated sufficient accuracy to meet the requirements of 
flash flood forecasting (Ye et al., 2012). In the Shuangqiao watershed 
of the Pearl River system, Zhu and Zhou (2016) conducted a 
comparative analysis of the Xin’anjiang model, TOPMODEL, and 
BTOPMC model in terms of simulation accuracy and adaptability in 
small watersheds. The Juma River, one of the main tributaries of the 
Daqing River system within the Haihe River Basin, is not only a critical 
area affected by flooding in the basin but also the core region of the 
large-scale flood event on July 23, 2023. The Upper Juma River Basin, 
characterized by its steep topography, flashy flood responses typical of 
mountainous catchments, and increasing vulnerability due to localized 
intense rainfall events in recent years, presents a significant challenge 
for operational flood forecasting. Identifying the most suitable 
hydrological model for the Juma River is therefore of great significance 
to enhancing flood forecasting capabilities in the Haihe River Basin. 
Some scholars have already applied individual hydrological models to 
study the Daqing River Basin. For example, Ma et al. (2024) utilized 
the domestically developed distributed hydrological model 
SKY-HydroSAT to analyze runoff generation during the “7·23” flood 
event. Che (2024) used the Xin’anjiang model for calibration of 
moderate and large flood events in the Zijingguan watershed. 
However, research on the Juma River Basin has predominantly focused 
on the application of single models, with a lack of systematic 
comparative analysis among different hydrological models.

To address this gap, the China Institute of Water Resources and 
Hydropower Research developed a distributed hydrological model 
known as the China Flash Flood Hydrological Model (CNFF), based 
on runoff generation and confluence characteristics across various 
climate zones in China. This model is built upon a large-scale 
distributed framework and detailed geomorphological data, with 
simplified parameterization that can be largely determined using the 
national small watershed basic dataset. It is particularly suited for 
simulating and forecasting flash floods in small and medium-sized 
watersheds with limited data, and has been widely used in China for 
rainstorm and flash flood warning applications (Chen et al., 2025; Zhai 

et al., 2021; Zhai et al., 2021; Zhai et al., 2020; Wang et al., 2023). In this 
study, the CNFF framework operates at the sub-watershed scale, with 
the sub-watershed delineation based on DEM analysis and hydrological 
characteristics, providing a spatial discretization foundation for 
distributed modeling. We selected the Xinanjiang model, the vertical 
exchange model, and the DahuoFang model to simulate multiple flood 
events in the upper reaches of the Juma River basin, and conducted a 
comparative analysis of the simulation accuracy and adaptability of the 
three models. The aim of this study is to provide a scientific basis for 
improving flood forecasting capability in the Juma River basin, and to 
offer useful insights for optimizing and improving flood forecasting 
systems in small and medium-sized watersheds nationwide. These three 
models were chosen because they represent three key runoff generation 
mechanisms: saturation-excess runoff (Xinanjiang model), where 
runoff occurs after soil moisture capacity is saturated; infiltration-excess 
runoff (DahuoFang model), where runoff is generated when rainfall 
intensity exceeds the soil infiltration capacity; and vertical water 
exchange (vertical exchange runoff model), which focuses on the 
vertical interaction between soil water and groundwater. By comparing 
these three models, we  aim to diagnose which physical process 
dominates flood formation in the semi-humid mountainous area with 
thin soil layers in the Juma River basin.

2 Materials and methods

2.1 General situation of the research region

The Juma River is a key tributary of the Daqing River system 
within the Haihe River Basin. It originates from the southern foothills 
of Qishan Mountain in Laiyuan County, Hebei Province. Its 
headwaters are characterized by the emergence of surface runoff from 
a cluster of underground springs. The river flows generally from 
northwest to southeast and bifurcates into two branches at Tiesuoya 
in Laishui County, Baoding City, Hebei Province. The southern 
branch, known as the South Juma River, continues to flow within 
Hebei Province, while the northern branch, referred to as the North 
Juma River, passes through Laishui County (Hebei), Fangshan 
District (Beijing), and Zhuozhou City (Hebei), eventually discharging 
into the Baiyangdian water system. The geographical location of the 
study area is shown in Figure 1.

The Juma River Basin exhibits hydrometeorological 
characteristics typical of rivers in northern monsoon regions. The 
average annual precipitation ranges from 550 to 650 mm, with 
approximately 70% falling during the flood season from June to 
September. The average annual temperature is between 11°C and 
13°C. According to observational data from the Zijingguan 
Hydrological Station (1955–2019), the basin’s average annual 
runoff is approximately 1.56 billion cubic meters, with a significant 
proportion contributed by baseflow. Runoff distribution is highly 
uneven across seasons, with over 60% occurring in summer (June 
to August), while winter often experiences flow interruptions. 
Flood events in the basin are characterized by sharp rises and falls 
in discharge. The historical maximum peak flow has reached 
10,000 m3/s. During the extraordinary flood event of July 2023 
(“7·23” event), the runoff coefficient at Zhangfang Station reached 
0.40, surpassing historical records and highlighting the basin’s 
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hydrological sensitivity under extreme climatic conditions. Under 
the influence of global climate change, recent observations indicate 
a marked increase in the frequency of extreme precipitation events 
within the basin. From 2010 to 2020, the number of heavy rainfall 
days increased by 23% compared to the baseline period (1961–
1990), exacerbating flood risk and intensifying pressure on flood 
management. This study focuses on the upstream region of the 
Juma River above the Zijingguan Hydrological Station. The area is 
located within a temperate continental monsoon climate zone and 
is characterized by distinct seasonal variation. Summers are 
typically hot and humid, whereas winters are cold and dry.

2.2 Data collection and processing

The fundamental data used in this study comprise two main 
categories: geographic information data and rainfall–runoff event data. 
The geographic information data primarily include the Digital 
Elevation Model (DEM), river network distribution, land use types, 
and soil texture. All datasets were obtained from the National 
Geomatics Center of China.1 Standard pre-processing, including 
resampling of DEM and soil texture data to a consistent spatial 
resolution and reclassification of land use categories to match model 
input requirements, was performed to ensure compatibility with the 
CNFF model structure. Within the study basin, 14 rainfall stations and 
2 hydrological stations are installed. Due to insufficient data availability 

1 https://www.ngcc.cn

at the Shimen Hydrological Station, this study selects the Zijingguan 
Hydrological Station as the forecast section. The Zijingguan (River) 
Station serves as the control point for the Zijingguan section, with a 
controlled drainage area of 1868.47 km2. The basin’s topographic 
features and the spatial distribution of monitoring stations are 
illustrated in Figure 2. The hydrological data for the Zijingguan section 
are derived from observed records, which have been compiled and 
verified, ensuring high reliability. Hourly rainfall data from 14 rainfall 
stations—including Xieshan, Aihecun, Laiyuan, Chajin, Tuanyuancun, 
Huziyu, Shiziyu, Shimen, Dongtuanpu, and Wulonggou—were 
collected for the period 1955–2019. Additionally, flood event records 
for the Zijingguan section were compiled. From these, seven 
representative flood events were selected for model parameter 
calibration. These seven historical flood events were selected for model 
calibration to represent a diverse range of hydrological conditions, 
including varying flood magnitudes (from small to large peak 
discharges and runoff volumes), different seasons within the typical 
flood period of the basin, and distinct antecedent rainfall patterns. This 
selection aims to ensure robust parameterization and comprehensive 
model evaluation.

2.3 Model evaluation

To evaluate the accuracy of flood forecasting, fur key 
indicators are employed: Relative Error of Runoff Depth (RER), 
Relative Error of Peak Discharge (REQ), Peak Time Error (TP), 
and the Nash–Sutcliffe Efficiency Coefficient (NSE) (Mathevet 
et al., 2006). The optimal values for RER, REQ, and TP are 0, while 
the optimal value for SNSE is 1. In model performance evaluation, 

FIGURE 1

Location map of the study area.
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simulation results are considered acceptable when the absolute 
values of RER and REQ are within 20%, TP is within ±2 h, and 
SNSE exceeds 0.6. The calculation formulas for these indicators 
are as follows:

 
−

=
Rs RoRER

Ro
∣ ∣

 
(1)

 

−
=

Qs QoREQ
Qo

∣ ∣

 
(2)

 = −TP Ts To (3)

 

( ) ( )=

=

 − = −
 − 

∑
∑

2
1

2

1

1
n
i

n
i

Qs i Qo i
NSE

Qo Qo  

(4)

Where Rs is the simulated runoff depth (mm); Ro is the observed 
runoff depth (mm); Qs is the simulated peak discharge (m3/s); Qo is 
the observed peak discharge (m3/s); Ts is the simulated time to peak 
(h); To is the observed time to peak (h); Qs(i) is the simulated 
discharge at time step i (m3/s); Qs(i) is the observed discharge at time 
step i (m3/s); Qo is the mean observed discharge (m3/s); and n is the 
length of the flood event time series.

Accuracy Grading: Based on the ‘Specifications for Hydrological 
Forecasting Information’ (GB/T 22482–2008), flood forecast accuracy 
is categorized to standardize performance evaluation. For key 

indicators such as the Relative Error of Peak Discharge (REQ) and 
Relative Error of Runoff Depth (RER), a forecast is typically classified 
as follows:

 ( )Class A Excellent : If the absolute relative error is £ 20%

 ( )Class B Good : If the absolute relative error is between 20 and 40%

 

( )Class C Acceptable : If the absolute relative error 
is between 40 and 50%

For the Peak Time Error (TP), a forecast within ±2 h of the 
observed peak is generally considered to meet high-grade accuracy 
requirements (i.e., Class A). This framework is now introduced early 
in our methodology and is used consistently to interpret model 
performance in the Results and Discussion sections.

2.4 Model configuration method

Taking the upper reaches of the North Juma River Basin as the 
research object, the runoff generation, runoff concentration, 
evaporation, and river channel evolution patterns of each model are 
shown in the following table (see Table 1), the use of a ‘Three-layer 
Evaporation’ module in the Xin’anjiang model versus a ‘Daily Average 
Evaporation’ in the other two reflects a key structural difference in how 

FIGURE 2

Topographic map and distribution of monitoring stations in the upper Juma River basin.
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soil moisture dynamics are accounted for. Conversely, employing the 
‘Dynamic Muskingum Method’ for river routing in all three models 
ensures consistency in the confluence process, allowing our comparison 
to focus primarily on the differences in the runoff generation modules.

2.5 Parameter calibration

The parameters of each of the three hydrological models were 
optimized using a multi-event joint calibration approach, which 
involved simultaneously utilizing seven representative flood events 
(see Table  2) to identify a single, robust parameter set that best 
captures the overall rainfall-runoff characteristics of the upper Juma 

River basin. The calibration process was conducted by manually 
adjusting the parameters to maximize the Nash–Sutcliffe efficiency 
(NSE) and minimize errors in runoff depth and peak discharge across 
all seven flood events. The final optimized parameter values for each 
model are presented in Tables 3–5. All the calibrated parameter values 
fall within the physically reasonable range for similar climatic regions, 
confirming the reliability of the calibration results. The key parameters 
of each model are described in the following sections.

2.5.1 Xin’anjiang model parameters
The Xin’anjiang model is characterized by parameters that 

describe the basin’s water storage capacity and runoff generation 
process (see Table 3). The key parameters include:

TABLE 1 Configuration methods of each model.

Mode Runoff generation module Runoff concentration 
module

Evaporation module River flood routing 
module

Xin’anjiang model Three-source full storage runoff 

generation method

Standardized unit hydrograph Three - layer evaporation Dynamic Muskingum method

Vertical mixed runoff 

generation model

Vertical mixed runoff generation method Standardized unit hydrograph Daily average evaporation Dynamic Muskingum method

Dahuofang model Dahuofang method Standardized unit hydrograph Daily average evaporation Dynamic Muskingum method

TABLE 3 Parameters of the Xin’anjiang Model for the Zijingguan section.

Parameter symbol Parameter name Parameter value

B Exponent of the storage capacity curve 0.2

IMP Impervious area ratio 0.01

WUM Upper layer soil storage capacity 20

WLM Lower layer soil storage capacity 70

WDM Deep layer soil storage capacity 45

EX Exponent of the free water storage curve 1.1

SM Free water storage capacity 45

KS Daily outflow coefficient of interflow 0.67

KG Daily outflow coefficient of groundwater runoff 0.2

KKS Daily recession coefficient of interflow 0.5

KKG Daily recession coefficient of groundwater runoff 0.1

KC Evapotranspiration conversion coefficient of the basin 0.95

C Deep evapotranspiration diffusion coefficient 0.11

TABLE 2 Historical flood events table of the Zijingguan section.

Flood number Start and end 
time

Rainfall amount 
(mm)

Peak flood (m3/s) Peak–arrival time Volume of flood 
(106m3)

19550817 1955/8/15 12–8/20 12 223.1 2020 1955/8/17 5 208.661

19590806 1959/8/3 0–8/8 21 164.2 648 1959/8/6 16 114.57

19630808 1963/8/3 4–8/9 21 426.2 4,490 1963/8/8 6 440.029

20060630 2006/6/28 20–7/1 0 33.7 56.5 2006/6/30 2 1.951

20110825 2011/8/24 9–8/31 3 72.6 109 2011/8/25 16 6.868

20120721 2012/7/21 9–7/25 8 174 2156.349 2012/7/21 21 73.376

20160720 2016/7/19 11–7/24 0 122.1 113.2 2016/7/20 18 15.281
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WUM, WLM, WDM: These represent the water storage capacity 
(in mm) of the upper, lower, and deep soil layers, respectively. They 
collectively define the total water holding capacity of the basin’s soil 
profile before runoff is generated.

B: The exponent of the storage capacity distribution curve, which 
describes the spatial variability of soil water storage capacity across 
the basin.

IMP: The fraction of the basin area that is impervious, directly 
contributing to surface runoff.

KC: The coefficient relating pan evaporation to potential 
evapotranspiration, which governs water loss from the basin.

KG, KS: The outflow coefficients for interflow and groundwater, 
respectively. They control the recession rate of these two runoff components.

2.5.2 Vertical mixed runoff model parameters
This model focuses on vertical water movement and infiltration 

(see Table 4). Its key parameters are:
WUM, WLM, WDM: Similar to the Xin’anjiang model, these 

define the water storage capacities (in mm) of the upper, middle, and 
deep soil layers.

Fc: The final, steady-state infiltration capacity of the soil (in 
mm/h), representing the maximum rate at which water can enter the 
soil after prolonged wetting.

F0: The initial maximum infiltration capacity of the basin (in 
mm/h), which is typically higher than Fc and decreases as the soil 
becomes wetter.

K: The decay coefficient of the Horton infiltration curve, 
which describes how quickly the infiltration rate decreases from 
F0 to Fc.

IMP: The impervious area ratio.

2.5.3 Dahuofang model parameters
The Dahuofang model is a lumped model primarily based on the 

infiltration-excess concept (see Table 5). The key parameters include:
SO: The surface storage capacity (in mm), representing the initial 

abstractions such as depression storage before runoff begins.
U0, V0: The initial storage capacity (in mm) of the lower layer soil 

moisture and the groundwater reservoir, respectively.
a: The shape parameter of the surface storage capacity distribution 

curve, describing its spatial variability.
B: The shape parameter of the parabolic infiltration distribution 

curve, which reflects the spatial heterogeneity of infiltration capacity.
K2: The curvature coefficient of the lower layer infiltration curve, 

which influences how rainfall is partitioned between surface runoff 
and infiltration.

IMP: The impervious area ratio.

TABLE 5 Parameters of the Dahuofang model for the Zijingguan section.

Parameter symbol Parameter name Parameter value

IMP Impervious area ratio 0.01

S0 Surface storage capacity 30

a Shape parameter of the surface storage capacity distribution curve 4

U0 Lower layer storage capacity 80

V0 Groundwater reservoir storage capacity 40

B Shape parameter of the parabolic infiltration distribution curve 2

K2 Curvature coefficient of the lower layer infiltration curve 0.5

Kw Ratio of groundwater runoff to groundwater reservoir infiltration intensity 0.8

TABLE 4 Parameters of the vertical mixed runoff generation model for the Zijingguan section.

Parameter symbol Parameter name Parameter value

IMP Impervious area ratio 0.01

B Exponent of the storage capacity distribution curve 0.3

WUM Upper layer soil water storage capacity 20

WLM Middle layer soil water storage capacity 80

WDM Deep layer soil water storage capacity 40

K Decay coefficient of Horton infiltration capacity 0.08

F0 Average initial maximum infiltration capacity of the basin 10

Fc Average steady infiltration capacity of the basin 4

BX Exponent of the infiltration capacity distribution curve 0.5

DW Permissible error of soil moisture content 0.01

KS Daily outflow coefficient of interflow 0.5

KG Daily outflow coefficient of groundwater runoff 0.2

KKS Daily recession coefficient of interflow 0.1

KKG Daily recession coefficient of groundwater runoff 0.1
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3 Results

3.1 Comparison of forecast accuracy

The simulation results of seven selected flood events using three 
hydrological models—Xinanjiang (XAJ), Vertical Mixed Runoff 
Generation (HHC), and Dahuofang (DHF)—were evaluated based on 
four key performance indicators defined by Equations (1–4) described 
in Section 2.3. Table 6 provides a comprehensive summary of this 
comparative analysis. For each flood event and each model, the table 
presents the Nash-Sutcliffe Efficiency (NSE), the Relative Error in 
Runoff Depth (RER, in %), the Relative Error in Peak Discharge (REQ, 
in %), and the Peak Timing Error (TP, in hours). Furthermore, based 
on the accuracy criteria outlined in our methodology, a “Pass/Fail” 
assessment is provided for each indicator to quickly evaluate whether 
the simulation meets the operational forecasting standards. A “Pass” 
indicates that the result falls within the acceptable range (e.g., 
|REQ| ≤ 20% and |TP| ≤ 2 h for Class A). The following subsections 
provide a detailed analysis and discussion of these results, assessing 
the overall performance, stability, and applicability of each model for 
flood forecasting in the Upper Juma River Basin.

3.2 Simulation accuracy assessment

3.2.1 Efficiency coefficient
Among the seven flood events simulated in the upper Juma River 

Basin, the average Nash–Sutcliffe efficiency coefficients for the Vertical 
Mixed Runoff Generation Model and the Dahuofang Model were 0.48 
and 0.41, respectively. In contrast, the Xin’anjiang Model achieved a 
higher average efficiency coefficient of 0.69, representing an 
improvement of 0.21 over the other two models. Moreover, the 
Vertical Mixed Model and the Dahuofang Model exhibited greater 
event-to-event variability (i.e., a wider range and standard deviation) 
in their efficiency coefficients across the seven flood events, indicating 
lower predictive stability compared to the Xin’anjiang model. These 
results demonstrate that, in terms of fitting the flood hydrograph, the 
Xin’anjiang Model outperforms the other two models.

3.2.2 Relative error of runoff depth
According to the flood forecasting accuracy evaluation criteria, 

analysis of the seven simulated flood events revealed that the Vertical 
Mixed Model and the Dahuofang Model each achieved a compliance 
rate of 57%, while the Xin’anjiang Model reached a significantly higher 
compliance rate of 86%. This indicates better applicability of the 
Xin’anjiang Model for flood forecasting. Additionally, the average and 
range of RER for the Xin’anjiang Model were both lower and more 
concentrated compared to the other two models, suggesting superior 
performance in simulating runoff depth.

3.2.3 Relative error of peak discharge
The Dahuofang Model achieved a 71% compliance rate for peak 

discharge simulation, meeting Class B accuracy requirements. In 
comparison, the Vertical Mixed Model and the Xin’anjiang Model 
achieved compliance rates of 86 and 100%, respectively, both meeting 
Class A standards. Furthermore, the Xin’anjiang Model exhibited the 
smallest average and range of peak discharge errors, indicating higher 
accuracy and overall superiority in peak discharge simulation.T
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3.2.4 Peak time error
Both the Xin’anjiang Model and the Vertical Mixed Model 

achieved 100% compliance in simulating peak arrival time, while the 
Dahuofang Model achieved 86%. Overall, all three models met the 
Class A standard in this category. However, a comparison of average 
peak time errors shows that the Xin’anjiang Model provides higher 
simulation accuracy for peak timing than the other two models. This 
high accuracy in predicting flood peak timing, particularly the 100% 
compliance for TP (within ±2 h) by the Xin’anjiang and VMM 
models and an average error of only 0.47 h for Xin’anjiang, is crucial 
for effective flood warning and timely emergency response, 
significantly enhancing the operational value of these models.

The Xin’anjiang Model achieved an average compliance rate of 
95.3% across the three primary forecast indicators—peak discharge, 
runoff depth, and peak time—meeting Class A accuracy standards. 
In contrast, the Vertical Mixed Model and the Dahuofang Model 
achieved average compliance rates of 81 and 71.3%, respectively, both 
corresponding to Class B accuracy. Based on a comprehensive 
analysis of the four evaluation indicators defined in the flood 
forecasting accuracy methodology, the Xin’anjiang Model achieves an 
overall Class A performance in simulating floods in the upper Juma 
River Basin. Although the Vertical Mixed Model and the Dahuofang 
Model performed relatively well in simulating peak arrival time, their 
lower compliance rates for the remaining indicators indicate limited 
reliability. Therefore, the Xin’anjiang Model is considered the most 
suitable option for flood simulation in this basin and is recommended 
as the preferred comprehensive model.

3.3 Comparison of individual flood events

Selected flood events are presented to illustrate the model 
performance under different flood types. The event on August 17, 
1955 (19550817) is used as an example of a large flood with a double 
peak; the event on August 8, 1963 (19630808) represents an 
extraordinary flood with a double peak; the event on July 21, 2012 
(20120721) demonstrates a large flood with a single peak; and the 
event on July 20, 2016 (20160720) serves as an example of a small 
flood with a double peak. The observed and simulated hydrographs 
for these events are shown in Figure 3.

Overall, the simulation performance was better for large flood 
events and poorer for small floods. As flood magnitude increased, the 
simulation accuracy for single-peak floods improved. However, for the 
flood event on July 20, 2016, all three models exhibited a delayed peak 
time, which is consistent with the findings of Zhai et al. (2020), who 
reported that under varying rainfall intensities—from moderate rain 
to extremely heavy rain—the average flood peak appeared earlier and 
the passing rate of the determinacy coefficient improved, indicating a 
significant enhancement in simulation performance. Nonetheless, 
under moderate rainfall conditions, the CNFF model still exhibited a 
certain degree of delay in simulating the peak time. Among the three 
models, the Xin’anjiang model showed superior simulation results 
compared to the Vertical Mixed Runoff Generation Model and the 
Dahuofang Model. In summary, the Xin’anjiang model demonstrates 
higher simulation accuracy and is more suitable for application in the 
upper reaches of the Juma River compared to the other two models.

FIGURE 3

Comparison of observed and simulated flood discharges for three hydrological models.
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4 Discussion

4.1 Applicability of the Xin’anjiang model

The study demonstrates that the flood simulation results of the 
Xin’anjiang model show a high degree of agreement with observed 
data in the upper reaches of the Juma River, confirming its applicability 
in the semi-arid to semi-humid mountainous regions of northern 
China. This finding, which confirms the applicability of the Xin’anjiang 
model in this basin, is consistent with the results of Che (2024). The 
upper Juma River basin is characterized by a temperate continental 
monsoon climate, with a flood season that is concentrated between 
June and September. Precipitation predominantly occurs in the form 
of heavy rainfall. The region has shallow soil layers with limited water 
storage capacity, a deep groundwater table, and a low contribution 
from baseflow. The Xin’anjiang model is based on the saturation-
excess runoff generation mechanism, wherein rainfall generates 
surface runoff only after the soil becomes saturated (Lu, 2021; Jin 
et al., 2022; Ren-Jun, 1992). This model utilizes a “runoff yield capacity 
curve” to simulate the soil saturation process, effectively capturing 
runoff generation following rapid soil saturation. Given the shallow 
soil and low water retention capacity of the Juma River basin, even 
moderate rainfall can quickly saturate the soil, triggering saturation-
excess runoff. This characteristic enables the Xin’anjiang model to 
accurately capture the key processes of rainfall-runoff transformation, 
thereby improving flood forecasting accuracy in the region.

4.2 Inapplicability of the vertical mixed 
runoff generation model

The Vertical Mixed Runoff Generation Model focuses on 
simulating vertical water exchange between the soil and groundwater, 
making it more suitable for regions with significant baseflow 
contributions. However, the Juma River basin has a deep groundwater 
table and a negligible baseflow contribution (<10%). The model’s 
emphasis on vertical processes results in underestimation of surface 
runoff. Moreover, it typically assumes sufficient soil infiltration 
capacity and neglects the infiltration-excess runoff mechanism. 
During intense rainfall events, this leads to an underestimation of 
runoff volumes. For example, during the 20,120,721 flood event, 
characterized by high rainfall intensity, the model significantly 
underestimated peak discharge compared to observed values, 
indicating its inability to accurately simulate flood responses under 
high-intensity rainfall. This shortcoming demonstrates that the model 
is not suitable for the Juma River basin or similar mountainous regions 
in northern China, particularly under extreme precipitation conditions.

4.3 Inapplicability of the Dahuofang model

The Dahuofang Model is centered on the infiltration-excess 
mechanism, where surface runoff is generated only when rainfall 
intensity exceeds soil infiltration capacity. This mechanism performs 
well in regions with thick soils and high water retention capacity. 
However, in the Juma River basin, soil often becomes saturated after 
continuous rainfall, meaning that even moderate rainfall can produce 
runoff via the saturation-excess mechanism. The Dahuofang Model fails 

to represent this process. When the soil is unsaturated, the model 
assumes continuous infiltration, overlooking the threshold effects of 
saturation-excess runoff. Consequently, the model underperforms 
during initial rainfall and prolonged rain events. For example, under 
pre-event drought conditions, the model may allocate all early rainfall 
to infiltration, delaying or underestimating the flood peak. Furthermore, 
the model is highly sensitive to infiltration-related parameters, requiring 
accurate calibration of initial infiltration rate, infiltration decay 
coefficients, and others. However, infiltration capacity in the Juma River 
basin is heavily influenced by antecedent soil moisture conditions (e.g., 
low water absorption in dry soils), complicating parameter calibration 
and undermining the reliability of flood forecasting.

In different climatic regions—particularly under short-duration, 
high-intensity rainfall—both saturation-excess and infiltration-excess 
mechanisms may coexist within small watersheds. Since a single 
runoff generation mechanism cannot fully capture the diverse rainfall-
runoff responses of various basins, it is difficult to establish an accurate 
quantitative relationship using a single model type (Zhai et al., 2020). 
The geographic and climatic conditions of the Juma River basin may 
cause saturation-excess runoff to occur rapidly at the onset of rainfall, 
While infiltration-excess runoff can also occur during localized 
downpours—conceptually, for example, when hourly rainfall exceeds 
30 mm and surpasses the soil’s infiltration capacity even if the soil is 
not saturated—this threshold is used illustratively here unless specific 
regional studies inform it. The generally good performance of the 
Xin’anjiang model (XAJ), particularly in capturing the initial rising 
limb and peak timing for many events, suggests that saturation-excess 
runoff, driven by rising water tables in shallow soils, is a dominant 
mechanism in the Juma basin. However, occasional underestimations 
during very intense, short-duration rainfall within larger events might 
hint at challenges in fully capturing localized infiltration-excess 
contributions, suggesting a potential co-existence or temporal shift in 
dominant mechanisms under specific storm characteristics. Therefore, 
a model capable of handling both mechanisms simultaneously is 
needed to accommodate the spatial and temporal variability of rainfall 
in the Juma River basin, particularly under conditions such as early 
drought followed by intense, concentrated rainfall.

5 Conclusion

Based on precipitation and evaporation data from 1955 to 2019 in 
the upper reaches of the Juma River basin, this study employed the 
Xin’anjiang Model, the Vertical Mixed Runoff Generation Model, and 
the Dahuofang Model to analyze representative flood events in the 
region. Using a standardized flood forecasting evaluation 
methodology, the simulation accuracy and relevant performance 
indicators of each model under identical flood scenarios were 
compared to assess their applicability and forecasting capabilities. The 
main conclusions are as follows:

 (1) Compared to the Vertical Mixed Runoff Generation Model and 
the Dahuofang Model, the Xin’anjiang Model demonstrates 
better agreement between simulated and observed flood 
processes in the upper Juma River basin, indicating that it is 
more suitable for application in this region.

 (2) The forecasting indicators of the Xin’anjiang Model meet the 
required technical standards: the relative errors of simulated 
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flood volume and peak discharge are both below 20%; the 
average absolute error of peak time occurrence is 0.47 h; and the 
average Nash-Sutcliffe Efficiency Coefficient reaches 0.69. These 
results indicate that the model is applicable for operational 
hydrological forecasting in the upper Juma River basin.

 (3) All three runoff generation models perform better in simulating 
single-peaked floods compared to multi-peaked ones, with 
improved simulation accuracy observed for larger-magnitude 
single-peaked floods.

Due to limitations in available flood data, a complete flood validation 
process could not be conducted strictly in accordance with hydrological 
forecasting standards. Moreover, the selected flood events spanned a long 
time period during which the basin underwent large-scale management, 
leading to significant changes in the underlying surface conditions and 
affecting the basin’s storage and regulation capacity (Wang et al., 2021; Li 
et  al., 2012). For instance, significant changes in land use (e.g., 
urbanization expanding impervious areas) could alter runoff generation 
rates and concentration times, while new or modified water management 
structures (e.g., reservoirs or diversion channels) could directly modify 
flow regimes. Such changes might impact the stationarity of calibrated 
model parameters over long periods, potentially requiring model 
recalibration or structural adjustments to maintain forecast accuracy. 
Future efforts should prioritize acquiring data from recent major floods 
(e.g., post-2019 events including the 2023 Haihe flood) for model 
validation under potentially evolving contemporary conditions. 
Furthermore, investigating adaptive parameterization techniques or 
ensemble multi-model approaches could be beneficial to account for 
long-term basin changes and the nuanced interplay of different runoff 
generation mechanisms (Wu et al., 2020).
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