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Eutrophication and chronic harmful algal blooms (HABs) are a challenge for 
ecosystem managers and restoration planners. Drivers of HABs include nutrient 
availability, temperature patterns, atmospheric conditions, rainfall-runoff relationships, 
and lake hydrodynamics. In South Florida, water is managed by water control 
plans that leverage restoration and water management infrastructure to control 
water levels in Lake Okeechobee and downstream systems. This study evaluated 
factors that contribute to algal blooms within Lake Okeechobee, assessed the 
long-term trends in algal biomass, and developed a modeling tool to evaluate lake 
algal bloom risk in the context of restoration and water management planning. 
For this study, Lake Okeechobee was divided into five distinct ecological zones 
based on physical (i.e., bathymetric), chemical (i.e., nutrient concentrations), 
and ecological (i.e., littoral, shallow, and open water zones) characteristics. 
Long-term changes in chlorophyll-a concentrations were interrelated with lake 
stage, volume, residence time, nitrogen, phosphorus, and temperature. Algal 
biomass, as indicated by concentrations of chlorophyll-a and phycocyanin, was 
significantly influenced by stage elevation, season, and location within the lake. 
Given the spatially unique characteristics of the lake and the potential drivers of 
algal blooms, two separate models were developed to evaluate scenarios. The 
first was an updated and expanded stage-based algal bloom indicator model 
used in prior restoration planning efforts. This model demonstrated the sensitivity 
of average summer chlorophyll-a concentration and bloom frequency across 
the lake, with littoral south, littoral west, and nearshore zones being the most 
responsive to changes in stage. The second model was a hierarchical model 
that used hydrodynamic and biogeochemical variables to predict chlorophyll-a 
concentrations across the lake. This model enhanced the understanding of summer 
chlorophyll-a concentrations across ecological zones. Moreover, these models 
both demonstrated how changes in water management regimes and restoration 
infrastructure can improve ecological conditions and significantly shift algal bloom 
potential for the lake. These models are valuable tools for understanding algal 
bloom potential and can be incorporated as a performance measure to evaluate 
future restoration planning efforts.
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Introduction

Globally, the ecological function of aquatic ecosystem systems is 
being challenged by cultural eutrophication, leading to the 
proliferation of harmful algal blooms (HABs) (MacKeigan et al., 2023; 
Painter et al., 2023). In freshwater lake ecosystems, these blooms are 
typically dominated by cyanobacteria, also called harmful 
cyanobacterial blooms (CyanoHABs or cHABs). The combined effects 
of bloom conditions causing reduced light attenuation, oxygen 
depletion and potential toxin production threaten the ecological 
integrity of the system and pose significant human exposure risk 
(Carmichael, 2001; Backer, 2002; Orihel et  al., 2012). In most 
freshwater lakes, including Lake Okeechobee (Florida, United States) 
the common bloom-forming cHABs include Dolichospermum, 
Microcystis, and Raphidiopsis (now Cylindrospermopsis) all of which 
are capable of generating toxins (Lefler et al., 2023).

Monitoring algae and cyanobacteria in waterbodies is essential for 
water managers and ecosystem restoration professionals. It serves 
various purposes, including water quality assessment and ecological 
health evaluation. A variety of methods are used, ranging from 
extensive sampling and identification (e.g., grab samples, cytometry) 
to in-situ monitoring with optical and fluorescence sensors. Each 
monitoring method spans a range of spatial and temporal resolutions 
to provide estimates of algal biomass or cell count. Typically, when 
estimating algal biomass, chlorophyll-a is used as a proxy. However, 
chlorophyll-a content varies among different algal species, is 
non-specific to cyanobacteria, and is generally non-linearly related to 
cyanobacteria cell count (Matthews, 2011). Phycocyanin is an 
accessory pigment present in cyanobacteria associated with 
photosystem II (Macário et al., 2015). Given this pigment specific to 
cyanobacteria, early warning and human health risk alert levels have 
been suggested using in-situ sensors to include both chlorophyll and 
phycocyanin concentrations (Macário et al., 2015; Thomson-Laing 
et al., 2020; Rousso et al., 2022). While phycocyanin is a more specific 
indicator of cyanobacteria, the abundance of phycocyanin data is 
limited relative to chlorophyll-a due to the lack of a standardized 
accepted extraction and analysis method specific to phycocyanin from 
cells (Stumpf et al., 2016). Finally, chlorophyll-a has been established 
as a standard water quality indicator, a common algal biomass metric 
and is used as a reference for cyanobacterial blooms (Chorus and 
Welker, 2021).

Drivers of cHABs and bloom formation have been extensively 
studied and reviewed with an emphasis on nutrient controls of growth 
(O’Neil et  al., 2012). More recently, climate change perspectives 
centered on changes in temperature patterns, atmospheric conditions, 
and rainfall-runoff relationships have also been considered (Mowe 
et al., 2015; Martinsen and Sand-Jensen, 2022; Davidson et al., 2023; 
MacKeigan et al., 2023; Saros et al., 2025). Historically, the discussion 
of nutrient-driven productivity changes in cyanobacteria and cHAB 
proliferation has centered on phosphorus (P) loading and internal lake 
recycling of P (Vollenweider, 1975; Song and Burgin, 2017; Albright 
et  al., 2022; Hanson et  al., 2023; Waters et  al., 2023). While 
understanding P dynamics is important more recently, the focus has 
shifted to include concepts related to the role of both nitrogen (N) and 
P in bloom proliferation and control (Elser et al., 2007; Schindler et al., 
2008; Wu et al., 2022).

Lake Okeechobee is an iconic, large, shallow and very well studied 
lake in south Florida (United States) that has been affected by excessive 

external N and P loads, primarily from agricultural runoff, and 
manifests a chronic seasonal cHAB nearly annually (James et al., 1994, 
2011; Havens, 1995; Havens et  al., 1995). In the late 1970’s, the 
phytoplankton communities in Lake Okeechobee had an annual 
average composition of ~30% cyanobacteria (based on biovolume) 
with Bacillarophyceae and Cryptophyceae generally making up the 
remaining dominant phytoplankton classes (Marshall, 1977). By the 
early to mid-1990s the phytoplankton community structure shifted to 
a cyanobacteria dominated community (Cichra et al., 1995; Engstrom 
et  al., 2006). During this time, high nutrient loads degraded 
environmental conditions and changes in sediment characteristics 
including increased coverage of high-P mud were noted (Julian et al., 
2023). Additionally, during this time, several modifications to lake 
regulation schedules were adopted which managed the lake at different 
water levels and provided operational rules to water managers on 
when and how to release water to avoid flooding impacts and maintain 
or improve water supply, all of which negatively affected the ecology 
of the lake (Havens, 2002; Julian and Welch, 2022).

This study evaluates algal bloom dynamics within Lake 
Okeechobee, a subtropical eutrophic lake with persistent and chronic 
blooms often dominated by Microcystis (Phlips et al., 1993; Havens 
et al., 2016). We pursued three objectives: (1) evaluation of factors that 
contributed to favorable algal bloom conditions in unique ecological 
regions across the lake; (2) assessment of long-term trends and spatial 
distribution of algal pigments (chlorophyll-a and phycocyanin) within 
Lake Okeechobee, and (3) development of a tool to evaluate lake algal 
bloom risk. This tool is designed for application in ecosystem 
restoration and operational planning efforts within the Greater 
Everglades ecosystem. Hypotheses associated with these objectives 
included: (1) ecological zones across Lake Okeechobee are 
characterized by different variables with the pelagic/limnetic region 
experiencing higher nutrient concentrations and the littoral zones 
responding to changes in water levels (stage); (2) algal pigments have 
a pronounced seasonal peak and spatial distribution driven by 
environmental conditions; and (3) hydrodynamic variables such as 
water level (i.e., stage elevation), water residence time and discharge 
volume may affect limiting nutrient concentrations and algal biomass 
as indicated by chlorophyll-a concentrations. It is expected that the 
results of this study will aid in the understanding of the interplay 
between stage, other hydrodynamic variables, nutrients and seasonal 
algal biomass to evaluate algal bloom risk across restoration alternatives.

Methods

Study area

Lake Okeechobee (27°N, 81°W) is a large (1803 km2), shallow 
(mean depth 2.7 m) subtropical lake in South Florida at the center of 
the Kissimmee-Okeechobee-Everglades ecosystem and the Central 
and Southern Florida Project (Figure 1; Aumen, 1995). Water levels 
within Lake Okeechobee are influenced by the subtropical climate of 
South Florida combined with water management that focus on 
regulatory controls for water supply, flood protection and the 
environment (Qiu and Wan, 2013).

We evaluate the lake as three regions: (1) littoral, (2) nearshore, 
and (3) limnetic zones. The shallow nearshore and littoral region 
comprises a third of the total lake surface area and contains a diverse 
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plant community of emergent and submerged aquatic vegetation. The 
limnetic zone or open water region of the lake makes up the remaining 
two-thirds of the surface area. This limnetic portion in the central, 
north, and east has predominately flocculent mud sediments (Fisher 
et  al., 2001; Julian et  al., 2023), which are a persistent source of 
turbidity and nutrients in the lake (Phlips et  al., 1993; Harris 
et al., 2007).

Data sources

Water quality and hydrodynamic data were retrieved from the 
South Florida Water Management District Online Environmental 
Database (Table 1) for locations across Lake Okeechobee (Figure 1) 
between October 1987 and September 2023 (Federal Water Years 
[WY] 1988 to 2023; Table 1). Nutrient and chlorophyll-a data were 
collected as surface water grab samples during the period of record. 
Daily average phycocyanin concentration data were collected from a 
subset of long-term, near-surface (0.5 m below water surface) 

monitoring locations (Figure 1) between October 2016 and September 
2023. Any data associated with a fatal qualifier indicating a potential 
data quality problem was removed from the analysis. For data analyses 
and summary statistics, values reported below the method detection 
limit (MDL) were assigned a value of one-half the MDL.

Scenario modeling was conducted using the Regional 
Simulation Model – Basins (RSM-BN). The RSM-BN model uses 
past climatology in a link-node framework to simulate hydrologic 
conditions by using a Hydrologic Simulation Engine (Chin et al., 
2005) combined with a Management Simulation Engine (Bras et al., 
2019). The RSM-BN model has a 52-year simulation period of 
record from January 1, 1965 to December 31, 2016. For purposes 
of restoration planning, the RSM-BN model uses observed 
variability in climatology across the SFWMD boundary as input to 
simulate water management changes. Therefore, over the 52-year 
simulation period, the model includes extreme events such as 
prolonged drought, hurricanes, tropical storms, and prolonged 
periods of high and low rainfall. The RSM-BN is a robust simulation 
tool that has been used in project planning efforts for several 

FIGURE 1

(A) Relative location of Lake Okeechobee within Florida, (B) overview map of important geographic features and restoration projects, and 
(C) monitoring locations used in this study and delineation of ecological zones, modified from Phlips et al. (1993).
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projects including the Central Everglades Planning Project, Lake 
Okeechobee Watershed Restoration Project, Western Everglades 
Restoration Project, Everglades Restoration Transition Plan, and 
Combined Operational Plan (South Florida Water Management 
District, 2020).

This study used the Lake Okeechobee System Operating Manual 
(LOSOM; US Army Corps of Engineers, 2024a) and the Lake 
Okeechobee Component a Reservoir (LOCAR; US Army Corps of 
Engineers, 2024b) RSM-BN based modeling efforts. Both efforts 
included unique baseline conditions and preferred/selected 
operational or restoration alternatives. Moreover, project planning 
and modeling were conducted at different times. In the LOSOM 
modeling effort, the intention was to evaluate changes in Lake 
Okeechobee’s regulation schedule, therefore, the no-action 2025 
(NA25; equivalent to a future without project baseline) baseline 
condition assumes the Lake Okeechobee Regulation Schedule of 2008 
(LORS08) lake operations. The infrastructure included in the NA25 
baseline contained the completion of capital projects and 
foundational Comprehensive Everglades Restoration Plan (CERP) 
projects including the rehabilitation of the Herbert Hoover Dike 
(HHD), operation of the C-44 reservoir (to the east of Lake 
Okeechobee), and operation of stormwater treatment areas (STAs) 
downstream of Lake Okeechobee that treat lake water in addition to 
agricultural runoff. The final alternative was the preferred alternative 
2025 (PA25) that represented the completed infrastructure outlined 
above for the NA25 alternative but also included C-43 reservoir 
(downstream of the western outlet), and the A-2 stormwater 
treatment area (downstream of southern outlets) with water 
management being guided by the new LOSOM regulation schedule 
(Table 2).

For the LOCAR modeling effort, the baseline condition (FWOLL) 
assumes LOSOM water management and regulatory operational 
guidance for Lake Okeechobee and included the Everglades 
Agricultural Area (EAA) Reservoir and stormwater treatment area. In 
the preferred alternative for LOCAR (LCR1), a 200,000 acre-ft storage 
reservoir located north of Lake Okeechobee was also included. The 
northern reservoir was modeled to attenuate flows to the lake by 

capturing wet season flows, and provide supplemental flows during 
the dry season (USACE, 2024; Figure 1; Table 2).

Generally, LORS08 was a prescriptive operational plan with 
numerous water level-based management bands that dictated 
recommended discharge volumes to the major lake outlets. These 
discharges primarily benefited water supply while providing 
highly damaging discharges to the Northern Estuaries 
(Caloosahatchee and St Lucie River estuaries) and starving the 
Everglades ecosystem to the south (Julian and Reidenbach, 2024). 
Meanwhile, LOSOM was developed to provide operational 
flexibility, providing ample water supply benefits while improving 
salinity regimes for the Northern Estuaries and increasing 
ecological flows to the southern Everglades (Julian and Welch, 
2022; Julian and Reidenbach, 2024).

Data analyses

Ecological zone factor analysis
To assess variations in biogeochemistry and the effect of 

hydrologic characteristics across the different ecological zones 
non-metric multidimensional-scaling analysis (NMDS; ‘metaMDS’ 
function in the vegan R-package; Oksanen and Guillaume, 2018) was 
used with the Kulczynski dissimilarity index. This approach, rather 
than other ordination techniques, was selected as this method 
preserves the rank order of dissimilarities and, therefore, the 
relationships among zones. The Kulczynski dissimilarity index was 
used as it is a good index for detecting underlying ecosystem gradients 
(Faith et al., 1987).

Global and pairwise analysis of similarities (ANOSIM) analyses 
using the ‘anosim’ (in the vegan R-package) and ‘anosim.pw’ (see 
supplemental) functions was conducted to test statistically whether 
there were significant differences between ecological zones. Variables 
included in these analyses were spatially averaged by ecological zone 
annual (WY) geometric mean concentrations of TP, TN, SRP, DIN, 
chlorophyll-a, surface water temperature, annual average stage 
elevation, storage volume, water residence time (WRT), total inflow 

TABLE 1 Data type, parameters, and sources for data used in this study.

Data type Period of record/simulation Parameters Locations

Hydrology1 Oct 1974 - Sept 2023
Daily Stage Elevation Lake Okeechobee

Daily Discharge Structures4

Water quality

(grab samples)1

Oct 1987 - Sept 2023

Chlorophyll-a Structures4 & In-lake4

Water Temperature

Total Nitrogen

Dissolved Inorganic Nitrogen

Total Phosphorus

Soluble Reactive Phosphorus

Oct 2016 – Sept 2023
Phycocyanin

(surface - daily average)

L001, L005, L006, LZ40, POLESOUT1,

POLESOUT3

Modeled Hydrology2,3 Jan 1965 - Dec 2016 Daily Modeled Stage Elevation Lake Okeechobee

Daily Modeled Discharge Structures4

1Link: https://www.sfwmd.gov/dbhydro. 2Link: https://apps.sfwmd.gov/smmsviewer/. 3Regional Simulation Model Basins (RSM-BN) for Lake Okeechobee System Operating Manual 
(LOSOM) and Lake Okeechobee Component A Reservoir (LOCAR). 4See Figure 1.
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discharge volume, TP load and TN Load, and total in-lake TP and TN 
load by zone.

Annual inflow nutrient loads were estimated by interpolating 
nutrient concentrations daily from grab samples collected at each 
respective water control structure during days of observed discharge. 
Daily interpolated nutrient concentrations were multiplied by daily 
flow and summed for each WY. Annual total in-lake nutrient loads 
were estimated for each monitoring location by determining a site-
specific water depth based on lake stage and lake bottom (from lake 
bathymetry) for each sample. Water depth was multiplied by nutrient 
concentration and annual average computed to produce an annual 
average areal load.

The annual average load was then spatially averaged across the 
ecological zone and multiplied by ecological zone area. The annual 
average storage volume was estimated from the stage-area-volume 
curve, which was estimated from spatial bathymetric data combined 
with daily stage data and average over the water year. Annual average 
water residence time was calculated by dividing the annual average 
storage volume by the total annual outflow volume.

Pigment trend analyses
To evaluate seasonal trends and spatial variability of chlorophyll-a 

and phycocyanin pigment concentrations across Lake Okeechobee, 
spatiotemporal generalized additive models (GAM; mcgv R-package; 
Wood, 2017) were fit for chlorophyll-a and phycocyanin, separately 
using the ‘bam’ function. Due to significant differences in how Lake 
Okeechobee was managed between regulation schedules (Tarabih and 
Arias, 2021; Julian and Welch, 2022; Julian et al., 2024), this evaluation 
of chlorophyll-a will focus on the 2008 to 2023 period of record. The 
model was constructed consistent with Equation 1 for chlorophyll-a 
and Equation 2 for phycocyanin. Differences in model variables, 
smoothing functions, and interaction effects were necessary due to 

differences in the frequency of data collection, spatial coverage, and 
time-series duration. The chlorophyll-a model was fit using the 
Gaussian log-linked distribution. Meanwhile, the phycocyanin model 
was fit using the Tweedie distribution. Model fit distributions were 
selected based on data distribution, model residual distributions, and 
overall model fit.

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

, ,
, , , ,

tE Chl a s stage s decMonth s CY
s Long Lat ti CY decMonth
ti Long Lat decMonth ti Long Lat CY

α= + + +
+ +
+ +  (1)

 

( ) ( ) ( ) ( )
( ) ( ), , ,

tE Phyco s stage s decYr s DOY
s Long Lat ti Long Lat decYr

α= + + +
+ +

 (2)

Degrees of smoothing (knots = k) were initially used to minimize 
the generalized cross-validation score, followed by post hoc 
adjustments of ‘k’ for individual terms using the function ‘gam.check’. 
The first derivative of the fitted trend was evaluated using finite 
differences (gratia R-package; Simpson, 2021). Periods of significant 
change were identified when the confidence interval of the first 
derivative for the fitted stage, year and decimal month spline for the 
chlorophyll-a model and stage, day-of-year and decimal year spline 
for the phycocyanin model spline did not include zero, consistent with 
Simpson (2018).

Algal bloom risk tool
To develop a simple predictive framework to evaluate changes in 

chlorophyll-a concentrations and algal bloom risk across Lake 
Okeechobee a series of models were developed to support restoration 
planning efforts consistent with Walker (2020). The models include 
summer (May–August) mean chlorophyll-a concentration, and bloom 

TABLE 2 Summary of baseline and restoration/operational alternative assumptions for the Lake Okeechobee System Operating Manual (LOSOM) and 
Lake Okeechobee Component a Reservoir (LOCAR) project.

LOSOM LOCAR

Region1 Feature1 NA25 PA25 FWOLL LCR1

Kissimmee River Regulation Schedule Headwater Regulation Schedule

River Restoration Complete

C-41A Not Include Not Include LOCAR Reservoir5

Lake Okeechobee Regulation Schedule LORS08 LOSOM LOSOM

HHD Rehabilitation Complete Complete

EAA STA + FEBs2 Restoration Strategies Complete

Reservoir + STA3 Not included Only STA4 Complete and Operational

St Lucie C-44 Reservoir + STA3 Complete and Operational

Caloosahatchee C-43 Reservoir3 Complete and Operational

WCA 1 Regulation Schedule Regulation Schedule of 1995

WCA 2 Regulation Schedule Regulation Schedule of 1998

WCA 3 Regulation Schedule 2020 Combined Operational Plan

1HHD, Herbert Hoover Dike; EAA, Everglades Agricultural Area; STA, Stormwater Treatment Area; FEB, Flow Equalization Basin; LOSOM, Lake Okeechobee System Operating Manual; 
LORS08, Lake Okeechobee Regulation Schedule of 2008; LOCAR, Lake Okeechobee Component-A Reservoir. 2Including STA-1E, STA-1 W (Phase 1 and 2), STA-2, STA 3/4, STA 5/6, L8 FEB, 
A1 FEB and C139 FEB. 3EAA reservoir and STA: 240,000 Ac-Ft storage reservoir and 6,599 acre STA; C-43 Reservoir: 175,800 Ac-Ft storage reservoir; C-44 reservoir and STA: 50,441 Ac-Ft 
storage reservoir and 6,384 acre STA. 4Under the LOSOM PA25 Alternative the STA was included but with limited operations to establish and maintain vegetative communities. 5LOCAR 
Reservoir: 200,000 Ac-Ft storage reservoir.
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frequency as defined by exceeding chlorophyll-a concentrations of 
20 μg L−1 (fChla20) and 40 μg L−1 (fChla40). Data between October 1999 
and September 2023 were used to fit the concentration and bloom 
frequency models with years of major hurricanes excluded (WYs 
2000, 2004, 2006, 2017, and 2022).

Bloom condition thresholds were based on Lake Numeric Nutrient 
Criteria (i.e., 20 μg L−1 for high color and alkalinity lakes) (Florida 
Administrative Code, 2016a, 2016b) and prior Lake Okeechobee algal 
studies (i.e., 40 μg L−1) (Havens, 1994; Walker and Havens, 1995; 
Havens and Walker, 2002). Seasonal annual mean chlorophyll-a and 
exceedance frequencies (fChla20 and fChla40) were estimated for each 
location across the lake followed by a spatial aggregation by ecological 
zones (Figure  1) adapted from Phlips et  al. (1993). These spatial 
aggregations reflect a combination of unique characteristics such as 
sediment types, vegetative communities, and average depth.

Ecological zone annual summer mean chlorophyll-a 
concentrations and exceedance frequencies (fChla20 and fChla40) were 
fit to summer mean lake stage elevation constrained to a minimum 
value of 3.5 meters National Geodetic Vertical Datum 1929 
(NGVD29; 11.5 feet) using a mixed effect model framework with 
the ‘gam’ function of the ‘mgcv’ R-package, incorporating random 
effects smooths. The models were specified with constrained stage 
as the fixed effect and ecological zone as a random effect to account 
for random slope and intercepts. The chlorophyll-a concentration 
mixed effect model was fit using the Tweedie distribution and the 
exceedance frequency models were fit using the binomial logit 
linked distribution. Since no unified method to estimate conditional 
(entire model) and marginal (fixed effects only) goodness of fits 
(i.e., R2) are available for mixed effect models using the ‘mgcv’ 
package, a fixed effect only and entire model were fit separately to 
approximate conditional and marginal deviance explained. All 
models were validated using a k-fold procedure with a total of 
5-folds, resulting in an approximately 20% testing and training split. 
Validation performance indicators used to evaluate the models 
include average mean absolute error (MAE), root mean square error 
(RMSE), and mean bias error (MBE). For completeness metric 
equations, hypothetical ranges and ideal values/goals are included 
in Supplementary Table S1.

The stage constraint was applied to daily summer stage elevations 
due to the low frequency of data below 3.5 m (2 out of 17 years used 
in the analysis) and the variability of chlorophyll-a concentrations 
across regions (Walker, 2020). This variability could be related to the 
difficulties in obtaining representative samples in shallow water depths 
and the spatial heterogeneity of water quality conditions under 
low-stage conditions.

Biogeochemical algal model
A second modeling approach was considered to evaluate summer 

average chlorophyll-a concentrations across the different ecological 
zones to assess the relative change in conditions across model 
alternatives. This modeling approach considered hydrodynamic and 
biogeochemical characteristics informed by the results of the NMDS 
evaluation and prior lake modeling studies (Olson and Jones, 2022; 
Hanson et al., 2023). Using the same period as identified above for the 
stage-based mixed models (October 1999  – September 2024 with 
hurricane years excluded). Summer average chlorophyll-a concentration 
data were fitted. The variables considered include summer mean TP, 

DIN concentrations, water residence time (WRT), depth (z), inflow 
discharge volume (Qin), and ecological zone (Equation 3) in a 
hierarchical GAM (HGAM) framework (Pedersen et al., 2019) with 
parametric, smoothing (s), and tensor interaction (ti) terms. Due to the 
dependency of TP and DIN concentrations in the summer average 
chlorophyll model (Equation 3), two additional models were also fit to 
predict summer average TP and DIN concentrations (Equations 4, 5, 
respectively) using hydrodynamic predictor variables (lake volume [V], 
and outflow discharge volume [Qout]) across ecological zones. Given the 
distribution of the data, chlorophyll and TP models were fitted using the 
Tweedie distribution with a log link while the Gamma distribution with 
a log link was applied to the DIN model. Models were tested using 
observed data between October 1976 and September 1999 with 
hurricane years excluded. Models were tested using several goodness of 
fit metrics including R2 between the observed vs. predicted during the 
testing period Kling Gupta model efficiency (KGE; 
Supplementary Table S1; Gupta et al., 2009), and absolute model fit 
metric used above (i.e., MAE, RMSE, and MBE). Finally, models were 
validated using the leave-one-out cross-validation (LOOCV) procedure 
and assessed using MAE, RMSE and MBE as validation 
performance indicators.

 

( ) ( )
( ) ( ) ( )

, ,sum

in

E Chla WRT TP DIN ti TP DIN EcoZone
s z s Q s Ecozone

α= + + + +
+ + +

 (3)

 ( ) ( ) ( ) ( )α= + + +,sum outE TP s V EcoZone s Q s Ecozone  (4)

 ( ) ( ) ( )α= + + + +,sum outE DIN Q V s WRT EcoZone s Ecozone  (5)

Application of algal risk models
Modeled stage elevation values for the entire period of simulation 

and summer only for all unique combinations of modeled scenarios 
were evaluated using the two-sample Anderson-Darling test 
(Anderson and Darling, 1952; Pettitt, 1976) using the ‘ad.test’ function 
in the ‘kSamples’ R-Package (Scholz and Zhu, 2023). To evaluate if 
simulated stage elevations were significantly different between 
alternatives considered in this study, a total of six unique comparisons 
were made (Supplementary Table S2). Other distribution comparison 
statistics such as the Kolmogorov Smirnov test (‘ks.test’) can become 
too sensitive in large sample sizes (high type II error) when computing 
test statistics and associated probabilities due to the high sample size 
of daily simulated stage values; therefore, the Anderson-Darling test 
was considered.

Using annual summer average stage elevations for each 
alternative, chlorophyll-a concentration, fChla20, and fChla40 were 
predicted for the entire period of simulation. For alternative 
comparison purposes, the average percent difference of 
chlorophyll-a concentration, fChla20, and fChla40 was calculated for 
each ecological zone between project alternatives to evaluate the 
integrated effect of changes in water management and the 
addition of storage capacity within the system. To avoid pseudo 
replication of estimated values, predicted chlorophyll-a 
concentration, f20Chla, and f40Chla from fixed effects were 
compared between alternatives using Pairwise Wilcoxon Rank 
Sum Test (‘pairwise.wilcox.test’ in the base R-package) with 
p-values being adjusted using the Holm-Bonferroni method. The 
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fixed effects model, often called the “mean model” or “within 
estimator,” refers to the variation between groups. Therefore, in 
the case of this study, it better represents a comparison between 
model alternatives. Like the stage-based model, the Lake 
Okeechobee hydrodynamic and biogeochemical chlorophyll 
hierarchal additive zonal model (Equations 3–5; LOK HABAM) 
compared the average percent difference of predicted 
chlorophyll-a concentrations for each ecological zone between 
restoration and operations scenarios.

Due to the nature of GAMs, sharing a simple equation for 
future use in other code/object-oriented programs or spreadsheet-
based platforms is not feasible, a shiny application (and source 
code) has been developed to extend the functionality of the models 
presented here. The stage-based mixed models and LOK HABAM 
predictive functionality is provided as an interactive application1 
where model alternatives presented in this study or future 
alternatives can be  evaluated. The source code for this shiny 
application is available in a public repository.2

All statistical operations were performed with R © (Ver 4.1.0, 
R Foundation for Statistical Computing, Vienna Austria). Unless 
otherwise stated, all statistical operations were performed using 
the base R library. The critical level of significance was set at 
α = 0.05.

1 https://swampthingpaul.shinyapps.io/lok_algaeevaltool/

2 https://github.com/SwampThingPaul/LOK_AlgaeEval

Results

Ecological zone factor analysis

Results from the NMDS demonstrated a clear separation of 
ecological regions for in-lake characteristics, in-lake load estimates, stage 
and lake inputs (inflow discharge volume and nutrient loading; Figure 2) 
with a stress value of 0.14 for the first two dimensions with a relatively 
high non-metric and linear fit R2 values of 0.98 and 0.91, respectively 
(Supplementary Figure S1). Inflow discharge was linked to inflow TP 
and TN loads, while stage, volume, WRT, TN, temperature, and 
chlorophyll-a were also interrelated. Meanwhile, TP, SRP, and DIN 
concentrations were generally associated. Ecological regions were 
stretched across the first NMDS axis with the littoral zones clustering and 
pelagic and nearshore zones forming separate, distinct groups (Figure 2). 
This observed grouping of ecological zones was confirmed by ANOSIM, 
showing a significant global difference between groups and significant 
pairwise differences between pelagic/nearshore and littoral zones, while 
littoral zones were not significantly different from one another (Table 3).

Pigment trend models

Chlorophyll-a concentrations varied across space, time, and stage 
(Figures  3A–D) with the GAM explaining 75% of the deviance 
(relative to a null model) and an R2 of 0.69 (Table 4). The spatial effect 
of the model (Figure 3D) varied across the lake with the largest spatial 
effect located in a region of the southwestern edge of the lake while 
the lowest spatial effect was adjacent to the southern part of the pelagic 

FIGURE 2

Nonmetric dimensional scaling (NMDS) biplot of in-lake and lake input parameters relative to lake ecological regions. Ordination ellipses are based on 
95% confidence limit of the NMDS sites score.
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zone (Figures 1, 3D). Temporally, within year (i.e., monthly) effects 
were greatest in the summer months peaking around July with 
significant increases being detected between April and June and 
significant decreases between October and later November 
(Figure  3B). Between-year effects (Figure  3C) varied with some 
notable fluctuations after major hurricanes and other climatic events. 
For example, the annual effect significantly declined after 2008 
following a tropical storm that relieved regional drought conditions, 
but increased, while not significant following 2017 (year of Hurricane 
Irma). The effect of stage elevation varied across the observed range 
of stage conditions during the 2008 to 2023 POR, with a significant 
increase between 3.57 and 3.96 m NGVD29 and a significant decrease 
between 4.91 and 5.15 m NGVD29 (Figure 3A).

Despite the much shorter period of record and spatial coverage, 
variation in phycocyanin concentrations across space, time, and stage 
were also detected (Figures 3E–H) with the model explaining 93% of the 
deviance and an R2 of 0.92 (Table 4). The spatial effect of the model 
(Figure 3H) varied across the lake with the greatest spatial effect along 
the northern littoral zone and at the center of the lake and the lowest 
adjacent to the northern and southern littoral zone edge (nearshore 
zone). Temporally, within-year (i.e., DOY) effects were greatest at the 
start and end of the year with a double peak in within-year effect with 
the first smaller peak occurring near the end of July/beginning of August 
followed by a significant increase and the second peak near the beginning 
of December. A significant increase in annual effect was detected 
between late 2020 and late 2022 (Figure 3G). Despite the relatively short 
time series, significant changes in model effect were also detected relative 
to stage elevation with a consistent relative decline starting after 4.25 m 
NGVD29 (Figure 3E). However, due to the short time-series, the stage 
effect curve was truncated relative to the longer POR for the chlorophyll 
model therefore the relationship between phycocyanin concentrations 
and stage is uncertain when stages are less than 3.81 m NGVD29.

Algal risk tool

Due to the limited temporal and spatial coverage of phycocyanin 
concentrations and the truncated stage conditions, a predictive 
equation was not developed. The effect of lake stage (constrained to 

3.5 m) on summer mean chlorophyll-a concentrations was significant, 
with a coefficient of 0.178 (SE = 0.089; t-value = 2.0; p-value<0.01; 
Table  5; Figure  4). The random effect of the ecological zone was 
significant with respect to random effect on chlorophyll-a 
concentrations (F = 519.1; p-value <0.01) and chlorophyll-a and stage 
(F = 332.9; p-value <0.01) with a variance of 0.279 and 0.035, 
respectively. The deviance explained by the entire model (i.e., 
conditional deviance explained) was 0.47 (Table 5) meanwhile the 
deviance explained by just the fixed effects (i.e., marginal) was 0.12. 
The average MAE, RMSE, and MBE of the five-fold validation were 
7.24, 9.24, and 0.27, respectively.

The effect of lake stage (constrained to 3.5 m) on summer fChla20 
was not significant, with a coefficient of 0.263 (SE = 0.1973; 
z-value = 1.33; p-value = 0.18; Table  5; Figure  4). However, the 
ecological zone had a significant random effect on fChla20 
(χ2 = 14,542,575; p-value <0.01) and fChla20 and stage (χ2 = 13,042,007; 
p-value <0.01) with a variance of 1.68 and 0.235, respectively. The 
deviance explained by the entire model (i.e., conditional deviance 
explained) was 0.42 (Table 5) meanwhile the deviance explained by 
just the fixed effects (i.e., marginal) was 0.05. The average MAE, 
RMSE, and MBE of the five-fold validation were 0.14, 1.81, and 0.02, 
respectively.

The effect of lake stage (constrained to 3.5 m) on summer fChla40 
was not significant, with a coefficient of 0.25 (SE = 0.15; z-value = 1.68; 
p-value = 0.09; Table 5; Figure 4). The ecological zone had a significant 
random effect on fChla40 (χ2 = 2,825; p-value <0.01) and fChla40 and 
stage (χ2 = 1754; p-value <0.01) with a variance of 0.660 and 0.100, 
respectively. The deviance explained by the entire model (i.e., 
conditional deviance explained) was 0.27 (Table 5) meanwhile the 
deviance explained by just the fixed effects (i.e., marginal) was 0.08. 
The average MAE, RMSE, and MBE of the five-fold validation were 
0.10, 0.13, and 0.02, respectively.

Biogeochemical algal model

Summer average chlorophyll-a varied significantly between 
ecological regions, with water depth being a significant effect for 
nearshore and littoral west ecological zones (Supplementary Table S4). 
Additionally, TP and DIN parametric terms were significantly 
different from zero (Supplementary Table S4), while the interaction of 
TP and DIN did not significantly vary between ecological regions, 
including it in the model did improve the predictive capabilities of the 
model. However, TP and DIN interaction and mean depth by 
ecological zone resulted in a non-linear relationship for most 
ecological regions (based on effective degrees of freedom (edf) values; 
Supplementary Table S4). For the testing dataset, the chlorophyll-a 
model resulted in an R2 of 0.51 (observed vs. predicted during the 
training period), KGE of 0.59, MAE of 5.61 μg L−1, RMSE of 
7.45 μg L−1

, and MBE of −2.83 μg L−1. For validation, the MAE, RMSE, 
and MBE were 8.75, 11.29, and −0.47 μg L−1, respectively as estimated 
by the LOOCV procedure. The resulting model produced a model fit 
(R2

adj) of 0.70 and a deviance explained of 83.5% 
(Supplementary Table S4).

Summer average TP concentration varied between ecological 
zones, outflow discharge volume, and lake volume for most ecological 
zones (littoral south, littoral west, and nearshore; 
Supplementary Table S4). Based on the edf values of the lake volume 

TABLE 3 Analysis of similarities results including global (overall) and 
pairwise comparisons between ecological zones in Lake Okeechobee.

Value 1 Value 2 ANOSIM R p-value

Global 0.477 <0.01

Nearshore Pelagic 0.493 <0.01

Nearshore Littoral North 0.469 <0.01

Nearshore Littoral South 0.509 <0.01

Nearshore Littoral West 0.410 <0.01

Pelagic Littoral North 0.846 <0.01

Pelagic Littoral South 0.857 <0.01

Pelagic Littoral West 0.827 <0.01

Littoral North Littoral South 0.0005 1.00

Littoral North Littoral West −0.002 1.00

Littoral South Littoral West 0.055 0.17

Bold values indicate p < 0.05.
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by ecological zone smoothing terms, summer TP was linear and not 
significantly different from zero for littoral north and pelagic zones, 
the nearshore zone was linear but significantly different from zero 
(with a slight positive slope based on first derivative values) and the 
littoral south and littoral west were non-linear. For the testing dataset, 
the TP model resulted in an R2 of 0.45, KGE of 0.49, MAE of 
0.040 mg L−1, RMSE of 0.044 mg L−1

, and MBE of 0.038 mg L−1. For 
validation, the MAE, RMSE, and MBE were 0.042, 0.052, and 
−0.0002 mg L−1, respectively as estimated by the LOOCV procedure. 
The resulting model produced a model fit (R2

adj) of 0.64 and a deviance 
explained of 70.8% (Supplementary Table S4).

Summer average DIN concentrations varied between ecological 
zones, outflow discharge volume, and WRT, specifically within the 
littoral north zone. For the testing dataset, the DIN model resulted in 
an R2 of 0.32, KGE of 0.22, MAE of 0.039 mg L−1, RMSE of 
0.048 mg L−1

, and MBE of 0.025 mg L−1. For validation, the MAE, 
RMSE, and MBE were 0.078, 0.100, and −0.009 mg L−1, respectively 
as estimated by the LOOCV procedure. The resulting model produced 
a model fit (R2

adj) of 0.58 and a deviance explained of 61.2% 
(Supplementary Table S4).

Application of algal risk models
Over the simulation periods, among the four alternatives, daily 

stage elevation ranged from 2.5 to 5.4 m (NGVD29; 
Supplementary Table S5). Daily stage distributions among 
alternatives were significantly different (Table  6; Figure  5). 
Generally, NA25 has the lowest stage elevations while PA25 is the 

highest with the greatest difference in the two stage duration 
curves (or cumulative distribution curves) occurring at 4.75 m 
NVGD29 (Figures 5A,C,D). Meanwhile, the FWOLL and LCR1 
stage duration curves fell between those of NA25 and PA25, with 
the latter two being closer together but showing a notable shift in 
stage timing (Figures 5B,E,F). LCR1 further reduced high stages 
and decreased the occurrence of relatively low stage conditions 
(<4.0 m NGVD29). The greatest difference between FWOLL and 
LCR1 occurred at 3.65 m NGVD29 (Figure 5B).

Mean predicted chlorophyll-a concentrations ranged from 7.6 to 
55.6 μg L−1 for random effects (ecological zones) and 14.9 to 
35.1 μg L−1 for fixed effects (Supplementary Table S6). Predicted fChla20 
values ranged from 0.05 to 0.89 (proportion) for random effects and 
0.29 to 0.58 for fixed effects (Supplementary Table S6). Finally, 
predicted fChla40 values ranged from 0.03 to 0.52 for random effects 
and 0.09 to 0.26 for fixed effects (Supplementary Table S6). In most 
cases, chlorophyll-a concentration, fChla20, and fChla40 increased 
between NA25 and PA25, with the greatest difference in all variables 
observed in the Littoral South ecological region (Figure 6; Table 7). 
For most ecological regions, chlorophyll variables showed a relative 
decrease or remained unchanged (±5%) between PA25 and FWOLL, 
as well as between FWOLL and LCR1 alternatives (Figure 6; Table 7). 
Finally, the comparison between PA25 and LCR1 indicated a decrease 
or relatively no change in bloom conditions across ecological zones 
(Figure 6, Table 7).

All chlorophyll parameters (i.e., concentration, fChla20, and 
fChla40) varied among alternatives (Supplementary Table S7) and 

FIGURE 3

Chlorophyll-a (A–D) and phycocyanin (E–H) spatio-temporal generalized additive model effect plots for stage (A,E), short-term/within-year (B,F), 
long-term/annual (C,G) and spatial (D,H) effects with significant changes identified. For each respective effect, splines with significantly increasing and 
decreasing segments are indicated by red and blue line segments, respectively. Each spline represents the smoothed parameter, along with its 95% 
confidence interval.
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TABLE 4 Spatio-temporal generalized additive model results for chlorophyll-a (1) and phycocyanin (2) pigment concentration within Lake Okeechobee.

Predicted 
variable

Term Estimate Standard 
error

t-value p-value edf (Ref df) F-value p-value Adj R2 
(Dev. Exp.)

Smooth 
selection 
criterion

Scale (n)

(1) Chlorophyll-a1 Intercept 2.84 0.09 31.01 <0.01 --- --- --- 0.69

(0.75)

18710.42

(fREML)

120.95

(4589)
s(CY) --- --- --- ---

4.76

(5.17)
3.29 <0.01

s(Month) --- --- --- ---
4.53

(28.00)
28.95 <0.01

s(Stage) --- --- --- ---
5.64

(6.13)
2.22 0.04

s(UTMX, UTMY) --- --- --- ---
26.69

(38.00)
24.52 <0.01

ti(CY, Month) --- --- --- ---
210.71

(529.00)
3,864,673.90 <0.01

ti(CY, UTMX, UTMY) --- --- --- ---
170.91

(398.00)
3.51 <0.01

ti(UTMX, UTMY, Month) --- --- --- ---
481.52

(1890.00)
1.56 <0.01

(2) Phycocyanin2 Intercept 3.71 0.26 14.14 <0.01 --- --- --- 0.92

(0.93)

5346.54

(fREML)

0.7

(3626)
s(CY) --- --- --- ---

1.40

(1.44)
12.24 <0.01

s(DOY) --- --- --- ---
30.70

(48.00)
50,900.22 <0.01

s(Stage) --- --- --- ---
15.86

(17.68)
7.27 <0.01

s(UTMY, UTMX) --- --- --- ---
4.73

(8.00)
188.83 <0.01

ti(CY, DOY) --- --- --- ---
40.72

(43.89)
1.27 0.12

ti(UTMX, UTMY, CY) --- --- --- ---
148.35

(204.00)
14,386.50 0.72

1Gaussian log link distribution; 2Tweedie distribution. Minimum selection criteria and method are defined as fREML (restricted maximum likelihood). Other values provided include effective degrees of freedom (edf), reference degrees of freedom (Ref df), adjusted R2 
and deviation explained.
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TABLE 5 Mixed effect model summary for chlorophyll-a concentration (1), frequency of exceeding 20 μg L–1 (2), and frequency of exceeding 40 μg L–1 
(3) within Lake Okeechobee across ecological zones.

Variable Effects Ecological 
zone

Estimate Std. 
error

Statistic p-
value

Std.
Dev.

log 
Lik.1

Cond.
R2

Marg.
R2

(1) Chl-a Conc.2 Fixed Intercept 2.70 0.25 10.96 < 0.01 --- 339.46 0.47 0.12

Slope 0.18 0.09 2.00 < 0.05 ---

Random Zone --- --- 519.06 < 0.01 0.53

Zone, Stage --- --- 332.95 < 0.01 0.19

Residual --- --- --- --- 0.83

(2) ƒ(Chl-a > 20 μg L−1)3 Fixed Intercept −0.92 0.59 −1.56 0.12 --- 272.18 0.41 0.05

Slope 0.26 0.22 1.16 0.25 ---

Random Zone --- --- 32,882.46 < 0.01 1.30

Zone, Stage --- --- 24,140.84 < 0.01 0.48

(3) ƒ(Chl-a > 40 μg L−1)3 Fixed Intercept −2.26 0.39 −5.83 < 0.01 --- 215.52 0.27 0.08

Slope 0.25 0.15 1.67 0.09 ---

Random Zone --- --- 2,825.34 < 0.01 0.81

Zone, Stage --- --- 1,754.00 < 0.01 0.32

1Log Likelihood estimated by REML. 2Tweedie log linked distribution. 3Binomial logit linked distribution. Log likelihood is estimated using restricted maximum likelihood (REML).

FIGURE 4

Summer mean Chlorophyll-a concentration (A–E), frequency of exceeding 20 μg L−1 (fChla20; F–J), and frequency of exceeding 40 μg L−1 (fChla40; K–O) 
for the five ecological zones across Lake Okeechobee. Random effect (i.e., ecological specific models; line with shading) and fixed effect (black dashed 
line) relative to observed values between water years 2000 and 2023 with hurricane years excluded (water years: 2000, 2004,2006,2017, and 2022).
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across ecological zones (Supplementary Table S7; Figure 6). Since the 
models were developed using the annual summer average stages, each 
variable exhibited similar responses specific to the parameter of 
interest. Generally, the littoral north and pelagic zones exhibited the 
least variability in predicted chlorophyll concentrations and bloom 
categories (Figures 6A,E) while the other zones (Figures 6B,C,D) 
demonstrated notable variability among alternatives. Regardless of 
the slight lack of sensitivity in some regions (Figures 6A–E), there are 
significant differences in chlorophyll-a concentrations and 
exceedance rates among alternatives (Figure  6F; 
Supplementary Table S7). Chlorophyll-a concentrations and 
exceedance frequencies were significantly different between NA25 
and PA25 and all other alternatives while FWOLL and LCR1 were 
similar (Supplementary Table S7; Figures 6F,L,R).

Predicted chlorophyll-a concentrations from LOK HABAM 
ranged from 4.5 to 113.5 μg L−1 across all alternatives and 
ecological zones. Predicted chlorophyll-a values from LOK 
HABAM varied among alternatives and ecological zones 
(Figures 7A–E). Due to the much more complex nature of LOK 
HABAM relative to the stage-only model (above), chlorophyll-a 
concentrations demonstrated more variability between zones and 
alternatives, especially in the pelagic and littoral north zones 
(Figures 6E, 7E). Additionally, TP and DIN concentrations varied 
between zones and alternatives (Figures 7F–O). Consistent with 
the stage-based model, the average percent difference between 
NA25 and PA25 resulted in an increase in chlorophyll-a 
concentrations with the largest difference being observed in the 
littoral south zone (Table 8). Overall, across all zones a decrease 
in chlorophyll-a concentration up to 18.3% in the littoral south 
zone was detected between PA25 and FWOLL (Table 8). Little 
change in chlorophyll-a concentrations was predicted between 
FWOLL and LCR1 with littoral west seeing the largest percent 
increase of 5.2% (Table 8). Finally, the comparison of predicted 
chlorophyll-a concentrations between PA25 and LCR1 resulted in 
a net improvement across all ecological zones (Table 8).

Discussion

Lake Okeechobee is a highly modified and heavily managed 
system with strong seasonal algal blooms that appear to be sensitive 
to water level management, as observed in this study and others 
(Havens, 1997, 2003). Additionally, while nutrient loading and 
concentrations have changed over time (Julian et al., 2023), internal 
nutrient loading has continued to subsidize the nutrient demand 
(Julian et al., In Prep), allowing for the proliferation of algal blooms. 
Watershed inputs, internal nutrient loading, and hydrodynamics have 
been identified as drivers of algal blooms for lakes that span the highly 
managed to semi-natural state (Havens et al., 2001; James et al., 2009; 
Isles et al., 2015).

Chlorophyll-a and phycocyanin concentrations within Lake 
Okeechobee follow a strong seasonal pattern that peaks during 
summer, when the days are relatively long with respect to daylight 
hours and temperatures (air and water) are warmer which corresponds 
to the start of the south Florida wet season (Figures 3B,F). Additionally, 
phycocyanin concentrations exhibit a dual peak seasonality suggesting 
something other than warm temperatures and long days contributed 
to the proliferation of the dominant pigment in cyanobacteria. While 
stage elevation has a significant effect on algal pigments (i.e., 
chlorophyll-a and phycocyanin), biogeochemical and hydrodynamic 
factors and processes also corresponded to changes in chlorophyll-a 
concentration over time with a notable spatial effect (Figures 2, 3D). 
However, due to spatial differences across the lake and how 
hydrodynamic and biogeochemical processes interacted across each 
ecological zone, stage alone was not sufficient enough to predict 
chlorophyll-a for all zones. Generally, littoral south, littoral west and 
nearshore zones are well characterized by changes in stage elevation 
(Figure 4). Although, including biogeochemical and hydrodynamic 
factors in a hierarchical statistical model framework provided a higher 
level of understanding concerning summer chlorophyll-a 
concentrations across ecological zones (Figure  7; 
Supplementary Table S4). The contrast between the hierarchical 
model and stage-based mixed models underscores the dynamic and 
complex drivers of phytoplankton in a highly variable system.

Seasonal patterns in algal biomass

Generally, in the northern hemisphere, algal biomass, expressed 
as chlorophyll-a concentrations, tends to peak between July and 
October (mid-summer to mid-fall) due to a complex interaction of 
between and within-season factors with significant intra- and inter-
annual variability in peak season biomass (Singh and Singh, 2015; 
Wilkinson et al., 2022; Beal et al., 2023). This period was characterized 
by warmer temperatures and increased sunlight (longer days) that 
contributed to algal productivity. However, algal biomass is also driven 
by local hydrology and regional weather modulated to some degree by 
global climate teleconnections (weather and climate patterns that 
connect regions globally) (Beal et al., 2021). The hydrologic driver of 
algal productivity has been linked to the transport of external 
nutrients to lake ecosystems (Vollenweider, 1976; Schindler, 1977; 
Elliott et al., 2006) with watershed land cover composition influencing 
nutrient concentration and loading intensity (Bachmann et al., 2012; 
Xiong and Hoyer, 2019). Moreover, internal loading (nutrients fluxing 

TABLE 6 Comparison of daily stage elevations over the entire period of 
simulation (1) and summer only (2) between all unique combinations of 
alternatives using the two-sample Anderson-Darling test.

Period Alt 1 Alt 2 A2

statistic
p-value

(1) All NA25 PA25 636.7 <0.01

NA25 FWOLL 98.7 <0.01

NA25 LCR1 107.0 <0.01

PA25 FWOLL 246.4 <0.01

PA25 LCR1 386.3 <0.01

FWOLL LCR1 69.7 <0.01

(2) Summer NA25 PA25 247.9 <0.01

NA25 FWOLL 42.4 <0.01

NA25 LCR1 48.6 <0.01

PA25 FWOLL 98.9 <0.01

PA25 LCR1 129.8 <0.01

FWOLL LCR1 28.3 <0.01

Bold values indicate p < 0.05.
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from sediment and to some degree plant biomass decomposition) has 
resulted in a significant influence on the overlying water column and 
has been known to fuel algal blooms (Albright et al., 2022; Waters 
et al., 2023).

In addition to specific drivers of algae dynamics within discrete 
ecological zones, algae pigments varied spatially and temporally 
(Figure 3). While direct comparison of algal pigments (chlorophyll-a 
vs. phycocyanin) dynamics was problematic with the current analyses 
due to spatial and temporal limitations between datasets, it was 
apparent that stage elevation, season, and location affected pigment 
concentrations. Some drivers were different (e.g., seasonal and spatial; 
Figures  3B,F,D,H, respectively). Meanwhile, there appeared to 
be  consistency with the influence of stage to some degree 
(Figures  3A,E; Supplementary Figure S2). The spatial differences 
observed in chlorophyll-a concentrations (Figure 3D) as demonstrated 
by the fine scale spatial effect, were consistent with zonal descriptions 
of algal dynamics in prior studies (Havens et al., 1994; Havens, 2003).

Lake Okeechobee experienced distinct wet and dry seasons where 
the wet season (May – October) corresponded with peak algal bloom 
periods. Moreover, the majority of surface water inputs occurred 
during the wet season. Wet season inputs combined with water 
management rules affected water storage volumes, water levels, and 
water retention times of the lake (Tarabih and Arias, 2021; Julian and 
Welch, 2022). Inflow discharges introduced the bulk of the surface 
water nutrient loads. However, internal lake loads were many times 
greater than surface water inputs (Havens and James, 2005) with some 
regions within the lake (i.e., pelagic) having a much higher sediment 
nutrient concentration, hence a nutrient reservoir (Julian et al., 2023). 

Internal loading effects on algal communities are not isolated to just 
Lake Okeechobee. In Lake Mendota (Wisconsin, United  States), 
studies have demonstrated internal loading met phytoplankton 
demand for growth (Kamarainen et al., 2009b; Kamarainen et al., 
2009a; Carpenter and Brock, 2024). This internal loading 
supplementation of phytoplankton simulation has been observed in 
other lake systems such as Lake Taihu (Ding et al., 2018; Yin et al., 
2022), Lake Chaohu (Yang et  al., 2020), Lake Rauwbraken (van 
Oosterhout et al., 2022), Lake Erie (Wang et al., 2021) to name a few.

Nearly all freshwater cyanobacteria contain phycocyanin, an 
accessory pigment that complements chlorophyll-a to produce energy, 
especially in low light conditions (Alegria Zufia et al., 2021; Kheimi 
et al., 2024). As observed in this study, chlorophyll-a and phycocyanin 
concentrations had distinct seasonality (Figure  3). This seasonal 
change corresponds with the typical algal biomass trends observed 
across the northern hemisphere in aquatic systems. However, 
phycocyanin concentrations within Lake Okeechobee exhibited a 
bimodal seasonality with the first peak occurring in the typical 
summer months followed by another peak later in the year (Figure 3). 
This bimodality was driven by either changes in light attenuation/
water clarity, physiological changes in cyanobacteria due to changing 
seasonal conditions, shifts in species composition, or a combination 
of these factors (Zhang et al., 2016; Carpenter and Brock, 2024).

Seasonally, cyanobacteria blooms occurred in the summer 
months, predominately as Microcystis sp. (Supplementary Figure S3) 
between April to July. Meanwhile, later in the year between September 
and March there was a much more diverse cyanobacteria community 
composed of Microcystis sp., Cylindrospermopsis sp., Dolichopermum 

FIGURE 5

Stage duration curves for (A) the Lake Okeechobee System Operating Manual evaluation between the baseline (NA25) and preferred alternative (PA25) 
and (B) the Lake Okeechobee Component a Reservoir evaluation between baseline (FWOLL) and preferred alternative (LCR1) with the greatest 
difference in duration curves identified. For comparison, each plot has all alternatives presented but de-emphasized depending on the focus (i.e., 
LOSOM (A) presents both LOSOM and LOCAR with LOCAR alternatives in a light shade of color). Density plots of daily stage elevation during the period 
of simulation for (C) NA25, (D) PA25, (E) FWOLL, and (F) LCR1.

https://doi.org/10.3389/frwa.2025.1619838
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Julian et al. 10.3389/frwa.2025.1619838

Frontiers in Water 14 frontiersin.org

FIGURE 6

Boxplot of the 52-year period of simulation for each ecological zone (A–E, G–K and M–Q; i.e. random effects) and lake-wide (F,L and R; fixed effect) 
predictions of chlorophyll-a concentration (A–F), frequency of exceeding 20 μg L−1 (G–L) and frequency of exceeding 40 μg L−1 (M–R) across Lake 
Okeechobee and alternatives.

TABLE 7 Period of simulation mean and mean percent difference of predicted chlorophyll-a concentration (1), frequency of exceeding 20 μg L–1 (2), and 
frequency of exceeding 40 μg L–1 (3) across ecological zones and alternatives.

Mean Percent difference1

Variable
Ecological 
zone

NA25 PA25 FWOLL LCR1
NA25

x
PA251

PA25
x

FWOLL1

FWOLL
x

LCR11

PA25
x

LCR11

(1) Chl-a Conc. (μg L−1) Littoral North 27.54 27.97 27.68 27.69 1.6 −1.0 0.0 −1.0

Littoral South 14.51 20.23 16.51 16.01 39.4 −18.4 −3.0 −26.3

Littoral West 16.92 20.91 18.29 18.07 23.6 −12.5 −1.2 −15.7

Nearshore 19.00 21.16 19.72 19.68 11.4 −6.8 −0.2 −7.5

Pelagic 21.62 21.60 21.62 21.61 −0.1 0.1 −0.0 0.1

(2) ƒ(Chl-a > 20 μg L−1) Littoral North 0.56 0.54 0.55 0.55 −2.3 1.6 −0.1 1.5

Littoral South 0.23 0.34 0.27 0.26 49.8 −22.1 −1.1 −29.8

Littoral West 0.34 0.36 0.34 0.35 8.6 −5.3 0.2 −5.4

Nearshore 0.33 0.36 0.34 0.34 9.2 −5.6 0.2 −5.8

Pelagic 0.45 0.44 0.45 0.45 −3.6 2.5 −0.2 2.3

(3) ƒ(Chl-a > 40 μg L−1) Littoral North 0.21 0.21 0.21 0.21 −0.6 0.4 −0.0 0.4

Littoral South 0.10 0.17 0.13 0.12 59.0 −23.9 −4.6 −37.7

Littoral West 0.15 0.17 0.15 0.15 14.8 −8.5 −0.2 −9.6

Nearshore 0.11 0.13 0.11 0.11 21.3 −11.6 −0.8 −14.0

Pelagic 0.12 0.12 0.12 0.12 0.1 −0.0 0.0 −0.0
1Calculated as [(Alt 2 - Alt 1)/Alt 1] * 100.
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FIGURE 7

Boxplot of the 52-year period of simulation for each ecological zone predictions of chlorophyll-a concentration (A–E), total phosphorus (TP) 
concentrations (F–J), and dissolved inorganic nitrogen (DIN) concentrations (K–O) across Lake Okeechobee and alternatives.

TABLE 8 Period of simulation mean and mean percent difference of predicted chlorophyll-a concentration (1), total phosphorus (TP) concentration (2), 
and dissolved inorganic nitrogen (DIN) concentration (3) across ecological zones and alternatives.

Mean Percent Difference1

Variable
Ecological 
zone

NA25 PA25 FWOLL LCR1
NA25

x
PA251

PA25
x

FWOLL1

FWOLL
x

LCR11

PA25
x

LCR11

(1) Chl-a Conc. (μg L−1) Littoral North 32.2 31.8 31.6 31.4 −1.3 −0.7 −0.7 −1.4

Littoral South 15.5 22.0 18.0 17.9 41.9 −18.3 −0.1 −22.5

Littoral West 19.5 21.1 19.3 20.3 8.0 −8.6 5.2 −4.0

Nearshore 20.2 24.5 21.3 22.0 21.3 −12.7 3.3 −10.9

Pelagic 23.9 24.3 23.8 24.3 1.7 −2.0 1.9 −0.2

(2) TP Conc. (μg L−1) Littoral North 91 90 91 91 −0.7 0.7 0.2 1.0

Littoral South 61 68 63 66 10.5 −7.5 4.8 −3.2

Littoral West 67 66 65 70 −1.5 −0.4 8.0 7.0

Nearshore 100 108 103 104 7.9 −5.0 1.1 −4.1

Pelagic 136 139 137 138 2.1 −1.3 0.7 −0.6

(3) DIN Conc. (mg L−1) Littoral North 0.05 0.05 0.05 0.05 2.2 4.1 1.7 5.6

Littoral South 0.07 0.07 0.07 0.07 5.8 −4.8 −0.3 −5.4

Littoral West 0.04 0.05 0.05 0.05 3.4 1.2 1.0 2.2

Nearshore 0.10 0.11 0.10 0.10 7.1 −8.0 −1.2 −9.9

Pelagic 0.09 0.10 0.10 0.10 5.1 −3.1 0.0 −3.2
1Calculated as [(Alt 2 - Alt 1)/Alt 1] * 100.
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sp., and other species (Supplementary Figure S3). While phycocyanin 
pigments/sensors themselves cannot differentiate between species, 
they are more sensitive to detecting cyanobacteria specific biomass 
changes than just chlorophyll-a (Carpenter and Brock, 2024). 
However, in Lake Chaohu (Anhui Province, China), Zhang et  al. 
(2016) observed seasonal changes in chlorophyll-a, phycocyanin 
concentrations, and species biomass. Additionally, Zhang et al. (2016) 
observed a bimodal seasonality in cyanobacteria biomass, with 
Anabaena sp. (now Dolichospermum sp.) as the dominant species 
contributing to this pattern, while Microcystis sp. was less dominant 
when bloom conditions peaked in summer and gradually declined 
throughout the rest of the year. While individual species demonstrated 
a single unimodal seasonality, together they exhibited a cyanobacteria 
biomass bimodal seasonality.

Algal bloom prediction

Generally, TP-chlorophyll-a statistical models have been used to 
predict chlorophyll-a concentrations, algal bloom conditions, and 
trophic conditions (Vollenweider, 1975, 1976; Nicholls and Dillon, 
1978; Håkanson et al., 2005; Quinlan et al., 2021; Olson and Jones, 
2022). However, these relationships typically had poor predictive 
capabilities due to stochastic dynamics, error, variability and 
uncertainty in predictors, simplified model structure and failure to 
meet model assumptions. Moreover, most of these models were 
developed using a single year or average values across several years 
thereby missing the year-to-year variability. Year-to-year variation in 
the TP-chlorophyll-a relationship has been significant, driven by a 
combination of internal and external processes that either maintain 
some disequilibrium or conflate inter-annual variation in relationships 
(Davidson et al., 2023). However, process-driven models, like the one 
presented by Olson and Jones (2022), can identify biological 
limitations and other factors driving variability in TP–chlorophyll-a 
relationships across space and time.

Between and within lakes the TP-chlorophyll-a relationship can 
be  highly variable. Several synthesis studies have suggested the 
relationship was non-linear across the TP concentration continuum 
and affected by other factors. These factors included lake morphology, 
lake depth, thermal regime, N vs. P growth limitations, inputs, 
outflow, sedimentation, and depth-dependent processes (Guildford 
and Hecky, 2000; Phillips et al., 2008; Søndergaard et al., 2017; Qin 
et  al., 2020; Quinlan et  al., 2021; Davidson et  al., 2023). Depth-
dependent and hydrodynamic processes either directly affect the lake 
nutrient mass balance (e.g., changes in inflow P or N loads) or 
in-directly affect lake mixing, biotic interactions (e.g., zooplankton 
grazing) or biogeochemical cycling (e.g., denitrification). Some 
TP-chlorophyll-a modeling approaches attempted to account for the 
potential influences of these other factors by including lake depth, 
WRT, and water balance to name a few (Vollenweider, 1975; Olson 
and Jones, 2022).

Lake water depth, water level, or stage elevation, sometimes all 
used interchangeably, have been applied as metrics by water managers 
for reservoir and natural system management to estimate the storage 
volume in a given lake and to inform management decisions. 
Moreover, lake water level is a relatively easy and effective metric to 
measure. Storage volume, outflow discharge rate, and WRT are key 
factors in nutrient cycling, collectively influencing ‘contact time’—the 

duration for which nutrients remain available for uptake (dissolved) 
or settling (particulate).

Early Lake Okeechobee studies generally focused on algal 
biomass, TP concentrations, and water level (Walker and Havens, 
1995; Havens and Walker, 2002). Prior studies documented a direct 
effect of water levels on algal biomass and recognized it as a local 
phenomenon generally restricted to the near-littoral region. However, 
on a lake-wide basis the correlation of stage and bloom frequency was 
observed to be highly variable (Havens et al., 1994; James et al., 1994). 
Lake Okeechobee is a spatially heterogeneous ecosystem with 
variability in physical attributes, water chemistry (Phlips et al., 1993), 
sediment nutrient distribution (Julian et al., 2023), and hydrodynamic 
influences (Chen and Sheng, 2003, 2005). These factors combined 
with seasonal variability in stage drives algal biomass trends and 
bloom frequency. This variability was also apparent in the stage-based 
chlorophyll-a and bloom frequency models developed by Walker 
(2020) and in this study (Figures 4, 6). Therefore, including other 
factors that account for the unique spatial characteristics of the system 
should provide a more robust estimation of algal biomass.

While phosphorus (P) is predominantly the limiting nutrient in 
most lake ecosystems, in some cases, nitrogen (N) can be a limiting 
nutrient for algal growth (Guildford and Hecky, 2000; Jones et al., 
2008). Therefore, incorporating N into the TP-chlorophyll-a model 
can improve model fit and better explain changes in primary 
productivity (Søndergaard et al., 2017). While Lake Okeechobee has 
received high TP loads from its watershed, to the point of reducing its 
assimilative capacity and contributing to high internal loading 
(Havens and James, 2005; Julian et al., 2023) resulting in abundant 
resources for algal growth, N has been an important driver of algal 
dynamics as well.

For example, Havens (1995) documented a shift from P limitation 
to a secondary N limitation in the mid to late 1980s, however some 
variability in this limitation status has been identified across ecological 
regions of the lake (Supplementary Figure S4; Julian Unpublished 
Data). Moreover, it has been documented through in-situ observations 
and incubation experiments that algal dynamics in Lake Okeechobee 
have been driven in part by changes in DIN concentrations (Phlips 
and Ihnat, 1995; Gu et al., 1997; James et al., 2011). Based on this 
dynamic and the interplay between P, N, hydrodynamic characteristics, 
and the overall heterogeneity of the lake among regions, the 
hierarchical predictive models (i.e., LOK HABAM) presented in this 
study were developed to understand changes in chlorophyll-a with an 
aim to evaluate changes in system management. The inclusion of DIN 
and the interactive effect with TP allowed for capturing greater 
variability in the pelagic zone. In contrast, the stage-only model 
captured very little variability in the various algal bloom metrics with 
relatively flat slopes (Figure 4; Supplementary Table S3), resulting in 
reduced predictive capabilities in restoration scenarios (Figure 6). This 
result demonstrated that important ecosystem drivers other than stage 
influence this part of the system, consistent with prior studies 
discussed above.

Despite some variation in potential nutrient limitations 
(Supplementary Figure S4), prior studies have conducted nutrient 
limitation bioassays and determined that Lake Okeechobee is 
predominantly N-limiting, especially in summer when nitrate 
concentrations are typically the lowest (Supplementary Figure S5; 
Phlips and Ihnat, 1995; Philips et  al., 1997; James et  al., 2011). 
Additionally, Philips et al. (1997) noted regional occurrences of N 
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and P co-limitation in the mid to late summer. These patterns 
suggest seasonal shifts in nutrient concentrations and biological 
cycling that align with variations in potential summer nutrient 
limitations observed over the period of record 
(Supplementary Figure S4). Meanwhile, ammonium concentrations 
remained relatively low and did not vary much between seasons 
(Supplementary Figure S5). Despite these low concentrations, 
Hampel et  al. (2019) documented significant ammonium 
regeneration within Lake Okeechobee from internal sources 
suggesting rapid ammonium turnover rates have the ability to fuel 
and sustain algal blooms. Given this dynamic, including DIN 
concentrations as a predictor to the hierarchical predictive models 
not only resulted in an improved fit to the model it also captures the 
internal biogeochemical dynamics of the system.

Water management and planning

Water management, regional flood control, and restoration 
infrastructure (e.g., reservoirs, flow-equalization basins, stormwater 
treatment areas, etc.) have exhibited significant influences on local and 
regional hydrology as well as the ecology of lakes and downstream 
waterbodies (Havens, 2002; Richter et al., 2003; Julian and Welch, 
2022). In the context of this study, both water management and 
restoration infrastructure were evaluated by comparing in-lake water, 
biogeochemical, and algal dynamics between LORS08 and LOSOM 
followed by the effect of utilizing storage north (LOCAR) and south 
(EAA Reservoir). Changes in lake hydrodynamics (i.e., inflow, 
outflow, storage volume, HRT, etc.) have shown a substantial effect on 
lake water quality and algal dynamics, effectively regulating the 
bioreactor nature of the lake as suggested by LOK HABAM and other 
modeling efforts in other lake ecosystems (Wang et al., 2013; Olson 
and Jones, 2022; Hanson et al., 2023).

As a potential application of LOK HABAM, water quality 
improvement scenarios were evaluated to understand the response of 
summer mean chlorophyll-a concentrations across the lake under 
LOSOM with the EAA reservoir in place. These scenarios are not 
necessarily the “how” but the final results of nutrient reductions 
observed within the lake. While more robust water quality modeling 
is needed, this modeling exercise demonstrates that not all parts of the 
lake respond similarly. Moreover, the predicted chlorophyll-a 
concentrations responded disproportionately with greater changes 
relative to in-lake TP concentration reductions (ranging from 10 to 
30%) relative to concurrent changes in DIN concentrations 
(Supplementary Figure S6).

Under LOSOM (PA25) algal bloom conditions and/or bloom risk 
could be  greater than all other alternatives. This risk is driven by 
significantly higher stage elevations relative to the baseline conditions 
(Julian and Welch, 2022) and alternatives associated with LOCAR 
(Figures 5–7) in its current eutrophic state with consistent exceedance 
of the regulatory inflow load limit. Although with the addition of 
southern storage features (FWOLL) and the addition of northern 
storage (LCR1) with LOSOM in place, the benefits of LOSOM (i.e., 
reduce discharges to northern Estuaries, increased discharges to the 
Everglades) (Julian and Reidenbach, 2024) were achieved and algal 
bloom risk was reduced with added storage. This added storage aids in 
modulating water levels in the lake by buffering high flow events from 
the north and reducing periods of high-water levels thereby improving 

the lake’s ecology and building resilience in the system (Figure 5). The 
combined effect of water management utilizing the necessary storage 
infrastructure significantly improved the hydrodynamic condition of 
the lake, which can alleviate some ecological stress associated with 
high water levels (Julian and Welch, 2022). However, other issues 
remained that also contribute to the lake’s chronic algal bloom and 
eutrophic condition, including high nutrient inflow loads and the 
legacy effect of high nutrient storage in lake sediment. While an 
attempt was made to address inflow nutrient loads with water quality 
improvement projects and deployment of best management practices, 
efforts may need to be more aggressive to achieve the expected goal 
outlined in the Lake Okeechobee Basin Action Management Plan to 
ensure that the Total Maximum Daily Load can be achieved (Florida 
Department of Environmental Protection, 2020; Julian et al., 2023).
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