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Mudflows, a highly destructive natural phenomenon, frequently occurs in arid 
regions due to the activation of basins by extreme climate events. In Peru, the 
Pacific coastal basin and steep regions is particularly vulnerable to these events, 
which have caused significant damage and loss of life in recent years. This 
study aims to establish hourly rainfall thresholds for the initiation of mudflows 
events in Punta Hermosa, a region prone to these hazards. Acknowledging 
the shortcomings due to lack of observed precipitation data, this study utilizes 
gridded rainfall data to simulate mudflows events at an hourly scale. This 
methodology enables a more thorough investigation of rainfall patterns and their 
relationship with the occurrence of mudflows. Results indicates that the total 
rainfall during an event significantly influences the initiation of mudflows, with 
thresholds exceeding 10 mm consistently triggering these events. Furthermore, 
rainfall events lasting at least 5 h with an intensity of 1.13 mm/h or greater 
pose a substantial risk. The study emphasizes the significance of rainfall 
intensity, demonstrating that intensities surpassing 1.25 mm/h consistently result 
in mudflows. These findings offer valuable insights for developing reliable 
early warning systems and implementing effective mitigation strategies to 
safeguard vulnerable communities and infrastructure in Punta Hermosa and the 
applicability of this methodology for any other location in the Peruvian coast. 
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1 Introduction 

Mudflows, defined as rapid gravity-driven surges of water mixed with sediment, are 
a serious natural hazard in arid and mountainous regions due to their destructive nature 
and unpredictability (Cepeda et al., 2010). In particular, steep slopes, erodible soils, and 
intense rainfall contribute to the generation of these events (Wieczorek and Glade, 2007). 
In recent years, mudflows have caused significant damage to infrastructure and loss of life 
in various parts of the world (Villacorta et al., 2020; Nam et al., 2019; Ortega et al., 2022; 
Wang and Yamada, 2014). Coastal regions of Peru, such as Punta Hermosa, are particularly 
vulnerable. Accurate prediction of these events is critical for the implementation of 
effective early warning systems to reduce potential human and economic losses. 

Mudflows are often classified as rainfall-induced landslides (RILs) (Fustos-Toribio 
et al., 2022), typically triggered by intense or prolonged rainfall that destabilizes slopes and 
mobilizes large volumes of sediment. A widely used approach to assess the likelihood of 
RILs is through rainfall thresholds, which define the minimum rainfall conditions required 
to trigger slope failures (Guzzetti et al., 2008; Reichenbach et al., 1998). The thresholds 
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are typically expressed as empirical curves that delineate the 
boundary between rainfall conditions that have historically led to 
mudflow occurrence and those that have not. These curves are 
often defined in terms of rainfall intensity and duration, and in 
some cases are associated with the probability of event occurrence. 
Additionally, they may include uncertainty bounds to reflect the 
limitations or incompleteness of the input data used to define them 
(Segoni et al., 2018). 

Empirical thresholds are the most common form and are 
developed by analyzing historical landslide occurrences alongside 
rainfall measurements (Melillo et al., 2018; Bordoni et al., 2019). 
They can be tailored to different temporal scales to meet operational 
needs: hourly thresholds are essential for real-time early warning 
systems (RILEWS) (Fustos-Toribio et al., 2022; Ke et al., 2020), 
while daily or multi-day thresholds are useful for longer-term 
planning (Kuroiwa, 2002). In the absence of detailed observational 
data on mudflows events, physically based approaches such as two-
dimensional hydraulic models have proven useful. These models 
simulate non-Newtonian flow behavior and incorporate rheological 
properties—such as shear-thinning or shear-thickening–to better 
replicate the dynamics of mudflows (O’Brien et al., 1993; Hungr, 
1995; Gibson et al., 2022). 

In Metropolitan Lima, over 2.8 million people live on 
vulnerable hillsides, often in informal and unplanned settlements 
(Comercio, 2016). Recent studies have identified Punta Hermosa 
and Cieneguilla as districts with accelerated growth in informal 
urban development, which increases their exposure to geohazards 
(Moya et al., 2024; Badillo-Rivera et al., 2024). For example, 
Lurigancho has recorded destructive mudflows since 1907 
(Villacorta et al., 2020; Escobar et al., 2024), and in 2017 and 2023, 
Punta Hermosa experienced severe events that displaced residents 
and caused widespread infrastructure damage. 

Despite international advances in the development of rainfall 
thresholds and the application of hydraulic models, there is 
limited research on hourly rainfall thresholds tailored specifically 
for mudflows prediction in coastal Peruvian regions like Punta 
Hermosa. Most existing studies focus either on general rainfall-
landslide relationships (Fídel et al., 2006; Villacorta et al., 2020; 
Millán-Arancibia and Lavado-Casimiro, 2023) or on post-event 
hydraulic modeling (Iruri Guzman and Jiménez Garcia, 2021; 
Castillo et al., 2024). However, few efforts have attempted to 
define operational thresholds using hourly precipitation data for 
early warning purposes in such urbanized, hazard-prone areas. 
Moreover, Peru lacks comprehensive databases detailing the timing 
and magnitude of past mudflows events, which constrains the 
development of statistically robust threshold models. This gap calls 
for an integrated approach that combines historical event data, 
satellite-derived precipitation estimates, and hydraulic modeling to 
reconstruct and analyze triggering conditions. 

This study aims to develop empirical rainfall thresholds for 
predicting mudflows in the district of Punta Hermosa. Building on 
previous work by Goyburo et al. (2024), conducted in collaboration 
with the District Municipality of Punta Hermosa, this research 
integrates satellite-based hourly precipitation data (Huerta et al., 
2022), historical event documentation, and 2D hydraulic modeling 
(O’Brien et al., 1993). We analyze rainfall conditions at the time 
of mudflows occurrence and during the preceding 2 h to identify 

threshold values capable of supporting early warning applications. 
By combining empirical analysis and physically based modeling, 
these thresholds are designed to be applied with near-real-time 
rainfall data, thereby providing a foundation for the development 
of future early warning systems (EWS). While this research does 
not present a fully operational real-time forecasting system, it 
offers critical baseline information that can be integrated with 
ongoing improvements in rainfall monitoring and prediction (e.g., 
numerical weather forecasts) to enable operational EWS in the 
near future. 

2 Materials and methods 

2.1 Study area 

Punta Hermosa district is located in the Lima region, south 
of the capital of Peru. It is a coastal town known to be a popular 
tourist destination for national and international visitors. Figure 1 
shows the study area divided into two parts: the contributing basin 
and the lower coastal plain regions where the mudflows have their 
ultimate impact. 

The contributing basin, called Malanche-Rio Seco (ML), has 
a drainage area of 151.9 km2 and is characterized by steep 
slopes (0–85%), narrow channels, and loose sediment deposits that 
can be easily mobilized during heavy rainfall events. As shown 
in the satellite imagery, the land cover is predominantly bare 
soil, with only sparse vegetation observed in the uppermost part 
of the basin. Elevation ranges from 320 m to 3,380 m above 
sea level. The main channel can be described as an ephemeral 
stream, which falls under the framework of Intermittent Rivers 
and Ephemeral Streams (IRES) proposed by Fovet et al. (2021). 
This classification is particularly relevant for the central coastal 
region of Peru, where non-perennial channels are highly responsive 
to extreme rainfall events and difficult to characterize using 
conventional hydrological methods. As described by Rau (2025), 
these systems present increasing flood risks due to factors such as 
El Niño Costero, Cyclone Yaku (2023), and urban encroachment 
into dry channels. The IRES framework provides a conceptual 
foundation for addressing these challenges by emphasizing field-
based hydrological reasoning and probabilistic approaches to 
estimate design flows in ungauged, dry-channel environments. 

The main hydraulic properties include a length of 28.5 
km and a mean slope of 5.7%. However, the hydrological 
processes are challenging to describe and assess due to the lack 
of hydrometric measurements.The coastal plain is where the 
mudflows reach their final deposition zones flowing through 
11.3 km. This area is densely populated, with informal 
settlements located in the path of the mudflows, and the 
beach town of Punta Hermosa is located at the outlet, with 
residential and commercial buildings. Both suffer great damage 
at occurrence. 

2.1.1 Climatology 
The climatological pattern shown in Figure 2 represents 

the monthly average precipitation in the study area. Rainfall 
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FIGURE 1 

Overview of the study area, including elevation distribution and mudflows path. 

is extremely limited and highly seasonal, with the majority 
concentrated between December and April, reaching a peak 
in March with just over 1.25 mm on average. From May to 
August, precipitation drops sharply—often falling below 0.2 mm 
per month—indicating a prolonged and intense dry season. 
This contrast between wet and dry periods is characteristic 
of hyper-arid coastal environments in Peru, where annual 
precipitation is minimal and mudflow events are typically 
triggered by short, high-intensity rainfall associated with extreme 
meteorological events. 

Figure 3 presents the hourly precipitation preceding the study 
periods in March 2017 (A) and March 2023 (B). In both cases, the 
rainfall events that triggered the mudflows were preceded by several 
days of light to moderate precipitation. In 2017, scattered rainfall 
began around March 6, gradually increasing in frequency and 
intensity leading up to March 13, when heavy rainfall associated 
with ENSO conditions resulted in 12 mm of accumulation 
within 24 h. In 2023, a similar buildup occurred starting around 
March 12, culminating in a major event on March 14 with over 
20.49 mm of rainfall in 24 h, which led to a widespread and 
catastrophic mudflow that damaged infrastructure and affected 
more than 5,000 families (ElPeruano, 2023). These antecedent 

rainfall pulses, although individually below threshold levels, 
likely contributed to progressive soil wetting prior to the main 
triggering events. 

2.2 Method and data preprocessing 

Figure 4 shows the methodology used in this study. To establish 
the rainfall thresholds for mudflows occurrence in Punta Hermosa, 
we combined a high-resolution digital elevation model, and remote 
sensing data to characterize the contributing basin and gridded 
hourly precipitation PISCOp_h (Huerta et al., 2022). First, we 
employed the FLO-2D model to reconstruct the hydrographs of 
major events in 2017 and 2023. Second, we used the hydrographs 
generated to determine the occurrence time and to generate flood 
inundation maps using the model FLO-2D. The validation process 
involved comparing the simulated flood extents with the actual 
flood imprints left by the modeled events and satellite imagery. 
The soil sampling carried out by Goyburo et al. (2024); Rau (2025) 
ensures that the debris flow modeling is based on rheological 
parameters that accurately reflect the real-world conditions. Finally, 
we applied the rainfall thresholds model to analyze the areal 
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FIGURE 2 

Monthly average precipitation in the study area. 

FIGURE 3 

Hourly precipitation preceding the study periods for (A) 2017 and (B) 2023. 

mean precipitation characteristics at the time and 2 h before 
their occurrence. 

2.2.1 Digital elevation model for hydrology and 
hydraulic modeling 

Two different digital elevation models (DEM) were used in this 
study. For the characterization of ML basin, FABDEM (Hawker 
et al., 2022) product with 30 m spatial resolution was utilized. 
FABDEM is a global elevation map with buildings and forests 
digitally removed. This removal process significantly improves 
elevation accuracy, especially in areas with dense forests or urban 
development. This makes it ideal for hydrological modeling as it 
provides a more accurate representation of the bare-earth terrain, 
leading to better water flow, infiltration, and runoff simulations. 

To provide a highly detailed and accurate representation of 
the mudflows path and urban areas, a 1 m resolution digital 
elevation model derived from high-resolution RPAS (remotely 
piloted aircraft system) surveys was employed. This fine-scale 
elevation data enabled us to precisely map the complex terrain and 
infrastructure (Figure 5) along the 11.09 km path, which covered 
a total area of 7.5 km2 in the lower coastal plain region where the 
mudflows deposits accumulated. 

2.2.2 Gridded precipitation data (PISCOp_h) 
Due to the inexistence of observed precipitation data, we used 

PISCOp_h (Huerta et al., 2022). It is a high-resolution (0.1 ◦) 
gridded hourly precipitation dataset for Peru, covering 2015-2020. 
It was created by temporally disaggregating the daily precipitation 
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FIGURE 4 

Methodology used to estimate and validate rainfall thresholds. 

FIGURE 5 

High-resolution digital elevation model from RPAS. 
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dataset PISCOp (Aybar et al., 2019) and incorporating data from 
309 automatic weather stations and three satellite precipitation 
products (IMERG-Early, PERSIANN-CCS, and GSMaP_NRT). 
The process involved spatial interpolation of hourly precipitation 
and bias correction of the diurnal rainfall cycle. The analysis 
focused on the precipitation data from March 13–17, 2017, and 
March 12–16, 2023. Figure 6 shows the spatial distribution of 
the maximum precipitation during these periods, with 3.96 
mm in 2017 and 2.90 mm in 2023. The PISCOp_h dataset, 
has recently been extended to include hourly precipitation data 
for the year 2023. Although this updated version has not yet 
been released for public use, it is available for internal research 
purposes within SENAMHI. This access enabled the inclusion of 
recent precipitation events that occurred in 2023 at the analysis of 
rainfall thresholds related to mudflows occurrences in the Punta 
Hermosa region. 

To assess whether the gridded precipitation data reproduces the 
magnitude of extreme observed precipitation events at Antioquia 
(Figure 1) conventional rain gauge station. We employed the 
Wilcoxon signed-rank test on paired annual maxima. This 
nonparametric test was chosen because it evaluates a location 
shift between two related samples without assuming normality of 
the differences, making it robust to skewness and outliers that 
frequently characterize extreme-value data (Helsel et al., 2020). The 
PISCOp dataset was used as the basis for this test because the 
Antioquia station provides daily observational records, enabling 
a consistent pairing of annual maxima. Furthermore, as noted 
previously, PISCOp_h is a disaggregation of PISCOp, so the 
cumulative precipitation and the timing/location of extreme events 
remain consistent between them; this ensures that differences 
detected by the test reflect the interpolation and representation 
process rather than discrepancies in event identification. By pairing 
the largest event of each year from the observed and gridded 
series, the test directly probes whether the central tendency of 
those maxima differs, whether the gridded values systematically 
over or under estimate the observed extremes while controlling for 
inter annual variability. This paired design isolates discrepancies 
attributable to the interpolation method itself rather than temporal 
changes in the climate or event occurrence. 

2.2.3 Hydrology and hydraulic simulation 
(FLO-2D) 

FLO-2D is a software model that simulates the behavior 
of water and mudflows. It works by dividing the terrain into 
a grid, with each cell having its elevation and roughness. By 
applying equations of motion and continuity to each cell, FLO-
2D can calculate how the flow of water or mud would move and 
change over time, including its velocity, depth, and distribution 
(Guo et al., 2024). Its relative simplicity and ease of use make 
hydrology modeling accessible even for users with limited modeling 
experience (Mitra et al., 2021). FLO-2D can still provide valuable 
results even with limited or older datasets, which is particularly 
beneficial in data-scarce regions. Furthermore, the FLO-2D model 
can use precipitation data with a spatial and temporal distribution, 
allowing it to accurately represent these events. The model’s 
ability to incorporate the spatial and time-varying characteristics 

of the precipitation data enables a more realistic simulation of the 
hydrological processes that lead to mudflows occurrences. 

2.2.3.1 Hydrological modeling 
For the hydrological modeling of the basin, the principal 

elements used were the precipitation data from PISCOp_H, the 
digital elevation model from FABDEM (Hawker et al., 2022). Curve 
number (CN) values ranging from 59 to 85 were obtained under dry 
soil conditions (Jaafar et al., 2019). The CN method was selected 
because the dominant runoff generation mechanism appears to 
be Hortonian (Gutiérrez-Jurado et al., 2019), implying that soil 
saturation is not a prerequisite for flow initiation. 

The Curve Number (CN) method in FLO-2D estimates the 
precipitation excess (Pe) hence surface runoff from rainfall events 
based on land use, soil type, and antecedent moisture conditions. 
The key elements include rainfall depth (P), initial abstraction 
(Ia) (representing interception, infiltration, and surface storage), 
and potential maximum retention (S), which is determined by 
the Curve Number (CN). The CN value reflects the surface’s 
runoff potential, with higher values indicating more runoff-prone 
surfaces. The Pe is calculated using the equation: 

Pe = 
(P − Ia)2 

(P − Ia) + S 
(1) 

Where Ia = 0.2S and S = 25400 
CN − 254. FLO-2D assigns a CN value 

to each grid cell based on surface characteristics and adjusts the 
runoff calculation dynamically at each time step based on rainfall 
and infiltration losses. 

According to USDA (1986), a 5-min time interval is 
recommended for hydrological modeling in small basins, 
particularly for generating hyetographs and hydrographs. In this 
study, the available gridded precipitation data had an hourly 
temporal resolution; therefore, each hourly value was evenly 
distributed across twelve 5-min intervals to preserve the total 
precipitation amount. Importantly, the original spatial distribution 
of the gridded dataset was maintained during this temporal 
disaggregation process. This finer temporal resolution was adopted 
to better represent the rapid runoff response observed in the study 
area. Consequently, hydrographs generated represent the first 
wave of mudflows, which is typically the most destructive due 
to its high velocity and substantial material transport (Yu et al., 
2020). This initial surge carries the highest concentration of mud 
and sediment, causing the greatest damage to infrastructure and 
buildings, loss of life in the affected areas. 

2.2.3.2 Hydraulic modeling 
After obtaining the hydrographs corresponding to the 2017 and 

2023 events, they are integrated as input flows into the hydraulic 
model. This model, by applying the specific rheological parameters, 
converts the flow series into hyper-concentrated flow. 

Governing Equation: 
The two-dimensional constitutive equations include the 

continuity equation. 

∂h 

∂t 
+ 

∂(uh) 
∂x 

+ 
∂(vh) 
∂y 

= I (2) 
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FIGURE 6 

Max gridded precipitation for (A) March 13–17, 2017 and (B) March 12–16, 2023. 

and the two-dimensional equations of motion 

Sfx = Sox − 
∂h 

∂x 
− 

∂u 

g∂t 
− u 

∂u 

∂x 
− v 

∂u 

∂u 
(3) 

Sfy = Soy − 
∂h 

∂y 
− 

∂v 

g∂x 
− u 

∂v 

g∂x 
− v 

∂u 

g∂y 
(4) 

In which h = flow depth; and Vx and Vy = depth-averaged velocity 
components along the x and y coordinates. The excess rainfall 
intensity i may be nonzero on the alluvial fan or the floodplain. The 
friction slope components Sfx and Sfy are written in Equations 3, 
4 as a function of bed slope Sox and Soy, pressure gradient, 
and convective and local acceleration terms. A diffusive wave 
approximation to the equations of motion is defined by neglecting 
the last three acceleration terms of Equations 3, 4. Further, by 
neglecting the pressure term, a kinematic wave representation is 
derived. These approximations are valid for steep alluvial fans. The 
option of using either a kinematic wave or diffusive wave equation 
is available in FLO-2D. 

Rheological model: 
The total shear stress in highly concentrated sediment flows, 

such as mud and mud floods, can be calculated by summing five 
shear stress components. 

τ = τc + τmc + τv + τt + τd (5) 

where τc, τmc, τv, τt , and τd are viscous yield stress, Mohr-Coulomb 
shear stress, viscous shear stress, turbulent shear force, and discrete 
shear stress, respectively. 

The above equation is rewritten into a dimensionless form 
as follows: 

Sf = Sy + Sv + Std (6) 

Where Sf is friction slope, Sy is yield slope, Sv is viscous slope, and 
Std is turbulence dispersion slope. This equation is mainly used to 
calculate stress changes. 

The first term Sy, yield slope, in the above formula can be 
rewritten as τy 

γmh
. 

The second term viscous slope, Sv, can be expressed by the 
average depth flow velocity u, which can be rewritten as Knu

8γmh2 . 
The third term Std represents turbulent dispersion slope 

expressed as the velocity in terms of equivalent Manning’s 

coefficient, water depth, and average depth, given by 
K2
tdu

2 

h3/4 . 
Where η is the viscosity coefficient, K is the laminar flow 

resistance coefficient, γm is the unit weight of mudflows, and ntd 

is the equivalent Manning coefficient. 
The above three equations are substituted into Equation 6 to 

obtain the dimensionless form of the rheology equation 

Sf = 
τy 

γmh 
+ 

Knu 

8γmh2 + 
K2 
td u 2 

h3/4 
(7) 

The continuity Equation 2, motion Equations 3, 4, and rheology 
Equation 7 are applied to each grid cell within the computational 
domain to solve for the key parameters that characterize 
the mudflows motion. This approach yields results that 
describe the overall mudflows fluid dynamics across the entire 
computational domain. 

Viscosity Coefficient: 
The simulation in FLO-2D requires the setting of viscosity 

coefficient (η) and yield stress τc. The formula is as follows 

η = α1eβ1cv (8) 

τc = α2eβ2cv (9) 
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TABLE 1 Values used in the modeling of mudflows. 

Description Value 

Shear components α = 0.0811 β = 13.72 

Volumetric 
concentration (CV) 

0.45 

Mixture dynamic 
viscosity (exponential) 

33.1 

Manning’s roughness 
coefficient (n) 

0.03 

Specific gravity (Gs) 2.6 

Resistance parameter 
for laminar flow (K) 

2,285 

According to the formula, obtaining the viscosity coefficient and 
yield stress only requires determining the correlation coefficients of 
rheological parameters α1, α2, β1, and β2. 

To determine the rheological parameters (Table 1), both the 
soil sampling conducted by Goyburo et al. (2024) and the 
report published by INGEMMENT (2019) were used. In the field 
campaign, eleven test pits of 1 meter depth were excavated along 
the 11.3 km path of the mudflows. Due to the similarity among all 
the collected samples, three were selected for laboratory analysis. 
This approach allowed for a representative characterization of the 
alluvial deposits along the entire mudflows path. According to 
INGEMMENT (2019), the alluvial deposits found in the channel 
originate from the slopes of the contributing basin, where the 
material is mobilized by rainfall events. Therefore, it can be inferred 
that the material analyzed in this study effectively represents 
the sediment composition of the mudflows generated by the 
contributing basin. 

Laboratory analysis of the samples revealed that the material 
consists of gravel embedded in a silt-sand matrix, with alternating 
layers of silt, sand, and a minor fraction of clay, along with a 
significant amount of unconsolidated particles. Based on these 
findings, the rheological properties of the mudflows were classified 
as corresponding to GLENWOOD SAMPLE 4. 

2.2.4 Rainfall thresholds 
In this study, a rainfall threshold is defined as the 

minimum rainfall condition expressed in terms of intensity 
and accumulation above which mudflows events have occurred. 
These thresholds are derived empirically by analyzing the 
statistical relationship between recorded precipitation and 
documented mudflows occurrences (Millán-Arancibia and 
Lavado-Casimiro, 2023; Garcia-Urquia and Axelsson, 2015; 
Prenner et al., 2018; Hsu et al., 2018), without explicitly modeling 
internal physical processes such as soil saturation. As such, 
the thresholds represent operational criteria that delineate 
rainfall conditions associated with a high likelihood of event 
initiation, rather than mechanistic triggers based on subsurface 
hydrological responses (Guzzetti et al., 2008; Segoni et al., 
2018). 

Empirical thresholds were evaluated using two metrics: 
event-duration and intensity-duration. Rainfall amounts were 

computed as the areal mean of ML. The resulting thresholds 
are represented as empirical threshold curves on the intensity-
duration and accumulation-duration diagrams. These curves define 
the minimum rainfall conditions under which mudflow events 
were observed to occur. Thresholds were estimated for both the 
time of occurrence and for conditions 2 h prior to the events. In 
both cases, the threshold curves follow a power-law relationship of 
the form: 

E(D) = αDβ (10) 

I(D) = αDβ (11) 

The equation defining rainfall thresholds takes the form of 
a power law function, where the cumulative event rainfall E 
(mm) is a function of the rainfall intensity I (mm/h) and 
the duration of rainfall event D (hrs). On a bi-logarithmic 
scale, this threshold curve appears as a straight line. The 
parameters α and β are empirically derived, with α representing 
a scaling factor and β controlling the slope curve. These 
parameters were determined by drawing lower-bound fitting 
curves through the data points. Figure 7 shows the process used 
to estimate and extract the average rainfall intensity from the 
storm’s beginning to the mudflows occurrence and the concerned 
lead time. 

3 Results 

3.1 Comparative PISCOp and observed 
data 

Figure 8 compares paired annual maximum precipitation 
values from observed data against the PISCOp gridded series. 
Most points lie reasonably close to this line, indicating that the 
interpolated values generally capture the magnitude of the observed 
annual extremes, although there is noticeable scatter some years 
the interpolation overestimates and others underestimates the 
observed maximum. The Wilcoxon signed-rank test (V = 433, p 
= 0.22), given the non-significant difference in central tendency, 
the gridded annual maxima can be considered representative of the 
observed extremes, with no consistent over or underestimation of 
the largest yearly events. 

3.2 Mudflows occurrence 

Figure 9 illustrates both the hyper-concentrated flow 
(HyperFlow) and precipitation (PP) patterns. The marked 
mudflows events correspond to observed occurrences, confirmed 
by local records and satellite imagery. To determine the timing 
of these events within the simulations, two criteria were applied: 
the timing of the peak hyper-concentrated flow and the visual 
identification of flood wave impacts. As shown in Figure 9, during 
2017, five peak flows coincided with observed mudflows, while 
one did not. Similarly, in 2023, three peaks were associated 
with observed mudflows, and one peak flow occurred without a 
corresponding event. 
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FIGURE 7 

Example of determination of intensity and duration of storm leading to mudflows occurrence. 

FIGURE 8 

Observed vs. PISCOp gridded annual maximum precipitation (mm). 

3.3 Thresholds assessment and validation 

3.3.1 Event-duration (ED) thresholds 
Figure 10 shows the distribution of accumulative rainfall (E) 

and duration (D) of events that resulted in mudflows at the 
time of occurrence (Equation 12) and 2 h before (Equation 13). 
The threshold curve for the possible occurrence of mudflows 
in the area of Punta Hermosa can be expressed by the 
following equation. 

E = 4 × D0.27 7 < D(h) < 18 (12) 

E = 1.78 × D0.6 5 < D(h) < 16 (13) 

The threshold relationships reveal that the exponent coefficient 
β (0.3 and 0.6) is less than one in both cases, indicating a 
non-linear relationship where shorter-duration events require 
proportionally less rainfall to trigger mudflows. While this behavior 
is consistent with general hydrological understanding, confirming 
it empirically in the specific context of arid coastal basins helps 
strengthen the applicability of the thresholds and aligns with 
findings from previous studies (Guzzetti et al., 2008; Segoni et al., 
2018). Validation results indicate that the thresholds effectively 
capture the distribution of mudflow occurrences, particularly when 
considering a 2-h lead time. The confidence interval, shown as a 
shaded band around the regression line, was calculated at a 95% 
level based on the fitted power-law model. Most observed events 
(brown dots) fall within or near this band, reinforcing the utility 
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FIGURE 9 

Precipitation and flow during mudflows events and time of occurrence and no ocurrence. (a) Precipitation and HyperFlow during the period of 
13/03/2017 to 17/03/2017. (b) Precipitation and HyperFlow during the period of 12/03/2023 to 16/03/2023. 

of the threshold for early warning. Non-triggering events (black 
dots) fall below the threshold, while one extreme case (red dot) 
lies above it without an observed mudflow, suggesting possible 
undocumented activity or a false positive. The regression curve 
serves to describe the lower bound of rainfall conditions that 
historically led to mudflows, and supports the establishment of a 
practical threshold–where cumulative rainfall exceeding 10 mm is 
consistently associated with mudflow initiation in the study area. 

3.3.2 Intensity-duration (ID) thresholds 
Rainfall intensity-duration thresholds are the most 

widely reported type of thresholds in the literature. 
Figure 11 shows the distribution of rainfall events that 
have resulted in mudflows at both the occurrence 

(Equation 14) and 2 h lead (Equation 15). The intensity-
duration threshold relationships for the potential 
initiation of mudflows can be expressed using the 
following equations. 

I = 4.05 × D−0.73 5 < D(h) < 16 (14) 

I = 1.75 × D−0.4 5 < D(h) < 16 (15) 

The results demonstrate that the intensity-duration thresholds, 
evaluated both at the time of mudflow occurrence and with 
a 2-h lead time, achieved coefficients of determination (R2) 
of 0.79 and 0.49, respectively. The fitted power-law curves are 
shown with their associated 95% confidence intervals. Most 
observed mudflow events (brown dots) fall within or near the 
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FIGURE 10 

Empirical cumulative event rainfall-duration threshold at mudflows occurrence and 2 h before. Brown dots represent mudflows occurrence, black 
dots, no occurrence and red dot an extreme event (2023) (a) Rainfall-duration threshold at occurrence. (b) Rainfall-duration threshold 2 h before 
occurrence. 

confidence bands, while non-triggering events (black dots) are 
clearly outside them. The red dot corresponds to a documented 
extreme event with high intensity, reinforcing the upper boundary 
of triggering conditions. These results support the use of 
intensity-based thresholds for early warning purposes. The analysis 
suggests that rainfall events with a minimum duration of 5 h 
and an average intensity of at least 1.13 mm/h are likely to 
initiate mudflows. For longer-duration events (e.g., 16 h), the 
threshold intensity decreases to 0.5 mm/h. Furthermore, events 
exceeding 1.25 mm/h in average intensity consistently resulted 
in mudflows. 

3.4 Mudflows simulation 

For threshold validation, hydraulic modeling of the events was 
employed. Calibration in the study area is particularly challenging 
due to the lack of observed data before, during, and after the 
mudflows events. However, satellite images from Google Earth 
Pro (Earth, 2023) revealed the extent of flood stains along the 
entire mudflows path resulting from the event that occurred in 
March of the same year. Additionally, soil samples were collected 

TABLE 2 Area coverage for each depth range and number of affected 
houses. 

Depth 
Area (Ha) Houses People 

2017 2023 2017 2023 2017 2023 

0–0.5 98.8 99.4 1,547 2,442 7,735 12,210 

0.5–1 54.8 69.2 

1–2 32.6 59.9 

2 34.0 50.3 

along the mudflows path, which enabled the characterization of 
rheological parameters. 

Figure 12 shows the beach town of Punta Hermosa before and 
after the 2023 mudflow event, along with the simulated maximum 
depth extents for the 2017 and 2023 events. The spatial extent 
of the simulated events closely matches the sediment deposits 
observed after the 2023 event. However, no reliable measurements 
of maximum flood depth are available for direct validation of 
the simulations. Despite this limitation, the results are considered 
reliable due to the use of high-resolution topography and the 
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FIGURE 11 

Empirical intensity-duration threshold at mudflows occurrence and 2 h before. Brown dots represent mudflows occurrence, black dots no 
occurrence and red dot an extreme event (2023). (a) Intensity-duration threshold at occurrence. (b)Intensity-duration threshold 2 h before 
occurrence. 

detailed characterization of the sediment material. Furthermore, 
this urban area can be classified as an alluvial fan (Grodek and 
Benito, 2024), where floodwaters tend to spread out and dissipate 
energy, resulting in widespread sediment deposition and the 
formation of multiple shallow flow paths. The affected area spans 
2.8 km2 , with simulated maximum mudflow depths reaching up 
to 1 meter. 

Therefore, this urban alluvial fan is a highly hazardous location 
for any mudflows that may occur. This fan-shaped area, formed 
by the deposition of sediments from past mudflows (Grodek and 
Benito, 2024), poses a significant risk to the surrounding urban 
settlement. Any future mudflows event in the area is likely to spread 
across this alluvial fan, potentially causing extensive damage and 
posing a threat to the lives and property. Thus, this urban alluvial 
fan is a high-risk area that requires appropriate mitigation measures 
to protect the residents and infrastructure. 

Table 2 presents the area covered by each depth range in 
all the mudflow path, along with the corresponding number 
of affected houses and estimated population. To determine the 
number of houses impacted by the mudflow extent, we used the 
Open Buildings dataset (Sirko et al., 2021) to obtain georeferenced 
building footprints, which were spatially intersected with the 

mudflow polygons. The number of affected people was then 
estimated using an average household size of five individuals, based 
on national statistics (INEI, 2017). It is important to note that 
the impacts of the mudflows and disrupted services may have 
extended beyond the directly affected population. Unfortunately, 
official records regarding the number of people affected by these 
events are unavailable due to the lack of urban planning and 
updated census data. The number of affected individuals is expected 
to continue increasing, as, according to Moya et al. (2024), Punta 
Hermosa is a district experiencing rapid growth in informal 
urban settlements. 

4 Discussion 

This study builds upon the methodology developed in a 
previous assessment by Goyburo et al. (2024), carried out 
in collaboration with the Municipality of Punta Hermosa. In 
that earlier work, storm distributions were generated using the 
time of concentration to estimate synthetic hyetographs, which 
allowed for hazard delineation based on design rainfall. However, 
that approach–based on daily rainfall records–did not allow 
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FIGURE 12 

Comparison between observed and simulated mudflow extents in Punta Hermosa. (A) Aerial image before the 2023 event; (B) observed mudflow 
deposits after the 2023 event; (C) simulated extent of the 2017 mudflow; (D) simulated extent of the 2023 mudflow. 

for identifying the exact timing of mudflow initiation. In arid 
catchments like Punta Hermosa, where hydrological response is 
likely dominated by Hortonian runoff, the temporal link between 
rainfall input and mudflow generation remains poorly understood. 
For this reason, the present study uses gridded hourly precipitation 
(PISCOp_h) to improve the temporal resolution and better capture 
short-duration rainfall events. 

Although this study focused on the definition of rainfall 
thresholds based on observed events and representative rheological 
properties, it is important to acknowledge the potential influence 
of parameter uncertainty on simulation outputs. The rheological 
values used in the hydraulic modeling were derived from 
field sampling and laboratory analysis, and were found to be 
relatively homogeneous along the mudflows path. This justified 
the selection of a single representative rheological configuration 
(GLENWOOD SAMPLE 4) for all simulations. However, variations 
in rheological properties–such as yield stress and dynamic viscosity 
can significantly affect the modeled flow depth, velocity, and 
inundation extent. While the homogeneity of the sampled material 
supports the robustness of the results under current conditions, a 
formal sensitivity analysis was not conducted in this study. Future 
work should evaluate the influence of parameter variability through 

sensitivity or uncertainty analyses. Incorporating a probabilistic 
modeling framework would allow for a better understanding of 
the reliability of the derived thresholds under different volumetric 
concentration and improve the resilience of early warning systems. 

A key limitation of this study is the lack of observed or remotely 
sensed soil moisture data for the analyzed mudflows events (2017 
and 2023), which prevented the explicit inclusion of antecedent 
moisture conditions in the derivation of rainfall thresholds. While 
soil moisture is widely recognized as a critical factor influencing 
runoff generation and sediment transport, recent findings from 
arid and semi-arid basins in southern Morocco suggest that its 
role may be limited in such environments. In particular, Rachdane 
et al. (2024) reported consistently weak correlations (median values 
below 0.35) between the Soil Water Index and key flood variables 
across 20 basins with similar geomorphological and climatic 
characteristics. These results indicate that in regions dominated 
by infiltration-excess (Hortonian) processes–such as steep, sparsely 
vegetated basins with shallow soils–sub-daily flood response can be 
primarily driven by rainfall intensity alone. 

The methodology used in this study focuses on an empirical, 
data-driven framework based on the analysis of input-output 
relationships: precipitation as the input, and documented mudflow 
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occurrence as the output. As such, internal physical processes 
like soil saturation or moisture redistribution were not explicitly 
modeled. Therefore, although the omission of antecedent soil 
moisture data represents a constraint, the rainfall thresholds 
derived in this study are considered robust within the context of 
prevailing hydrological conditions in Punta Hermosa. Nonetheless, 
future research should aim to integrate soil moisture dynamics 
where possible, particularly as high-resolution satellite products 
and in-situ monitoring networks become more accessible. 

Another important source of uncertainty in this study relates 
to the use of the gridded precipitation dataset PISCOp_h (Huerta 
et al., 2022), which was adopted due to the lack of observed 
hourly rainfall data for the 2017 and 2023 events. PISCOp_h 
provides hourly precipitation at 0.1◦ spatial resolution ( 10 
km) by temporally disaggregating the daily PISCOp product 
(Aybar et al., 2019), using bias-corrected satellite products and 
data from 309 automatic weather stations. According to the 
validation conducted by Huerta et al. (2022), the performance 
of PISCOp_h is moderate to high in the central coastal region 
of Peru, where the study area is located. Specifically, frequency 
and intensity ratios between PISCOp_h and automatic weather 
stations were generally within ±25% during the austral summer 
season, suggesting acceptable accuracy for hydrometeorological 
applications in this region. To further assess its representativeness, 
Figure 8 compares annual maximum precipitation values from 
observed conventional stations against PISCOp gridded data. Most 
paired points lie close to the perfect fit line, indicating that the 
interpolated dataset generally captures the magnitude of extreme 
rainfall events. Nonetheless, due to its spatial resolution, PISCOp_h 
may not fully capture localized convective rainfall peaks that can 
trigger mudflows in arid coastal basins. Therefore, the hourly 
rainfall thresholds derived in this study should be interpreted 
as regional-scale approximations that provide a useful basis for 
early warning systems but may underestimate localized extremes. 
Future efforts should aim to complement gridded products with 
denser ground-based networks or radar observations to enhance 
the precision of threshold-based forecasting in highly vulnerable 
coastal zones. 

Rainfall thresholds have been widely used to identify the 
possible triggering of landslides on global, regional, and local 
scales, which encompasses diverse climatic, morphological, and 
geotechnical settings (Lainas et al., 2016). This paper presents a first 
approach to define empirical statistical intensity-duration (ID) and 
event-duration (ED) rainfall thresholds for the potential occurrence 
and the 2-h lead time of mudflows in an arid basin of the Pacific 
coast. This methodology has been used before by Villacorta et al. 
(2020); Song Chang-Ho (2021); Yang et al. (2020); Wang and 
Yamada (2014), highlighting the need for such an approach in these 
regions to develop a reliable early warning system for mudflows 
events. This study focused on the most severe mudflows events that 
occurred in 2017 and 2023 within the Punta Hermosa district of 
Lima, Peru, as the basis for the analysis. 

The proposed rainfall thresholds are derived from empirical 
data analysis, and their reliability is contingent on the quality 
of available data. Incorporating more, such as observed hourly 
rainfall, detailed analysis of antecedent soil moisture conditions, 
precise timing and characteristics of past events, could substantially 

enhance the applicability and accuracy of these thresholds. This 
initial effort represents an important step forward and can motivate 
further research and collaborations aimed at developing a robust 
and comprehensive early warning system to safeguard properties, 
infrastructure, and local communities from the devastating impacts 
of rainfall-induced hazards. 

Rainfall-induced landslide early warning systems (RILEWS) are 
crucial in many parts of the world (Fustos-Toribio et al., 2022) 
but are often hampered by the lack of high-quality data, especially 
in remote or developing regions (Miardini and Susanti, 2020). 
The development of rainfall thresholds for triggering mudflows 
provides a valuable tool for forecasting and mitigating these hazards 
(Thomas et al., 2018). Extreme climate events, such as the El 
Niño (Morera et al., 2017) phenomenon or the highly unusual 
tropical depression system dubbed “Cyclone Yaku” (Peng et al., 
2024), are the primary drivers for the initiation of mudflows 
processes. These extreme events can significantly disrupt the 
region, leading to severe impacts on local communities and the 
built environment. 

Establishing representative rainfall thresholds for triggering 
mudflows in Punta Hermosa could prove valuable in developing 
an Rainfall-induced landslide early warning systems (RILEWS) 
in the near future. As described by Aleotti (2004), an effective 
early warning system typically consists of three key components: 
precipitation forecasts, real-time monitoring, and established 
rainfall-mudflows thresholds. Given that the rainfall thresholds 
presented in this study were generated using data from 2017 
and 2023, an update and analysis of new events is necessary 
to assess the ongoing performance and continued relevance 
of these thresholds. This study also highlights the pressing 
need to establish a national politics, whose primary objective 
would be to promptly evaluate mudflows and provide technical 
insights into their underlying causes and mechanisms. This will 
enable the expansion of mudflows database with entries where 
rainfall has been confirmed as the primary trigger, excluding 
those events whose human-induced factors have hindered the 
establishment of a reliable threshold. Deploying additional rainfall 
monitoring stations in the Malanche basin is also necessary 
to mitigate uncertainties associated with spatial variability in 
precipitation patterns. These stations can then be used to 
provide real-time monitoring and issue warnings if the established 
rainfall thresholds are surpassed. Finally, as improvements 
in weather forecasting technology enhance the reliability of 
rainfall predictions, municipal emergency teams can prepare 
and execute evacuation protocols if real-time rainfall monitoring 
indicates the potential for critical conditions, as defined by the 
established thresholds. 

5 Conclusions 

This study demonstrates that empirical rainfall thresholds can 
serve as a robust tool for predicting mudflows events in arid coastal 
basins, particularly in the vulnerable region of Punta Hermosa, 
Peru. By integrating high-resolution gridded hourly rainfall data 
with detailed digital elevation models and 2D hydraulic simulations 
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using FLO-2D, the research has successfully established both event-
duration (ED) and intensity-duration (ID) threshold relationships 
for mudflows initiation. 

The results indicate that the cumulative event rainfall (E) 
plays a more significant role than the rainfall duration (D) in 
shaping the thresholds for mudflows occurrence. The event-
duration (ED) relationship showed a stronger correlation for 
the 2-h lead time, suggesting the thresholds can serve as a 
reliable early warning system. Furthermore, the analysis reveals 
that cumulative rainfall exceeding 10 mm will consistently 
trigger mudflows occurrences. For the intensity-duration (ID) 
thresholds, both, at time of occurrence and 2 h prior achieved 
acceptable mean square error values (0.79 and 0.49), validating 
their applicability. The findings suggest that rainfall events with 
a minimum duration of 5 h and an intensity of at least 
1.13 mm/h can initiate mudflows. For longer-duration events, 
the minimum intensity required to trigger is 0.5 mm/h. 
Additionally, an intensity exceeding 1.25 mm/h, will consistently 
result in occurrences. 

The methodology presented not only provides a framework for 
hazard assessment in data-scarce regions but also underscores the 
importance of integrating meteorological data with hydrological 
and hydraulic modeling to improve predictive capabilities. The 
results support the implementation of proactive risk mitigation 
strategies and the development of early warning systems that 
can significantly reduce damage and enhance community 
resilience. Future research should focus on incorporating 
observed hourly rainfall data, refining antecedent soil moisture 
assessments, and expanding the rainfall monitoring network 
to further reduce uncertainties. Such improvements will 
enhance the reliability of the thresholds and ensure that 
the early warning systems remain effective under varying 
climatic conditions. 

Overall, this work should be viewed as a foundational 
step toward the development of operational early warning 
systems, rather than as a fully established real-time tool. 
The thresholds derived here offer actionable criteria 
that can already be applied with near real-time rainfall 
products, and they form the groundwork for integration 
with numerical forecasts, denser monitoring networks, 
and municipal emergency protocols. As such, this study 
represents a critical step in the progressive development 
of operational EWS for rainfall-induced mudflows in arid 
coastal basins. 
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