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Editorial on the Research Topic

Harnessing artificial intelligence to address climate-induced challenges

in water resources management

The intensifying effects of climate change are increasingly disrupting the hydrological
cycle (Barnett et al., 2005; Wu et al., 2013), contributing to more extreme droughts (Satoh
et al., 2022), erratic precipitation and flow (O’Gorman and Schneider, 2009; Diffenbaugh
et al., 2017; Gudmundsson et al., 2021; Swain et al., 2025), and frequent flooding (e.g.,
Hirabayashi et al., 2013). These shifting patterns pose significant challenges for water
resources planning and management, especially as traditional models often fall short in
capturing the complex, non-linear dynamics of climate-driven hydrologic systems (Milly
et al., 2008). Accurate and timely forecasting of hydrological extremes has become more
critical than ever—not only to reduce loss of life and property but also to guide long-
term planning in water supply and ecosystem protection. However, the high variability
and uncertainty associated with climate impacts demand approaches that can learn from
data, adapt to changing conditions, and operate at finer spatial and temporal resolutions.

Artificial intelligence (AI) offers a promising path forward—enabling the integration
of vast and heterogeneous data sources, improving the precision of predictions, and
supporting proactive decision-making (Kratzert et al., 2019; Camps-Valls et al., 2025). In
particular, machine learning (ML) (Jordan and Mitchell, 2015) and deep learning (DL)
(LeCun et al., 2015) models have shown great potential in extracting meaningful patterns
from complex datasets such as remote sensing imagery, senor networks, reanalysis data,
and hydrometeorological time series (Avand et al., 2021; Han et al., 2017; Nearing et al.,
2024; Zhu et al., 2017). These AI techniques not only enhance predictive capabilities but
also offer the flexibility to develop location-specific solutions, capture interactions between
physical drivers, and improve lead times for early warning systems.

Early contributions have laid the groundwork for AI applications in the field of
hydrology and water resources. For instance, Kratzert et al. (2018) provided one of
the first comprehensive applications of Long Short-Term Memory (LSTM), a type of
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DL model, in hydrology, demonstrating superior predictive skill
over traditional models. Shen (2018) offered a broader perspective
by reviewing DL applications across water sciences, highlighting
how these models can not only enhance prediction but also
serve as tools for scientific discovery by revealing underlying
physical patterns. Complementing these efforts, Fang et al. (2017)
employed DL to extend the Soil Moisture Active Passive satellite
data, achieving seamless spatiotemporal coverage across the
continental United States. Their approach significantly improved
the resolution and continuity of soil moisture datasets, which are
critical for hydrologic modeling and drought monitoring. Building
on these advancements, Sawadekar et al. (2025) introduced a
differentiable hydrologic modeling framework that fuses multiple
precipitation datasets using interpretable neural networks. This
fusion approach enhanced streamflow simulations, particularly for
high-flow events, and provided spatially adaptive weighting of
data sources, offering a more nuanced and accurate representation
of precipitation inputs across diverse regions. Together, these
foundational works underscore both the promise and the
complexity of applying AI in hydrology and water resources, setting
the stage for the more targeted and diverse studies included in this
Research Topic.

This Research Topic brings together cutting-edge studies that
apply AI methods to three central challenges in climate-impacted
water systems: predicting precipitation and flood, downscaling
coarse scale remote sensing water-related data, and developing
interpretable deep learning models. The selected contributions
span a range of modeling strategies—from LSTM-based neural
networks and convolutional frameworks to ensemble machine
learning techniques—each demonstrating how AI can be tailored
to address specific needs while advancing scientific insight
and practical application. A summary of each contribution is
provided below.

The contribution by Hamou-Ali et al. demonstrates the
application of Random Forests (RF) for generating high-
resolution Total Water Storage (TWS) maps. This approach
integrates multiple remote sensing datasets, including precipitation
(GPM, 10 km resolution), normalized difference vegetation index
(NDVI, 1 km), land surface temperature (LST, 1 km), actual
evapotranspiration (AET, 500m), a digital elevation model (DEM,
30m), and the normalized difference snow index (NDSI, 500m).
The initial RF output is a TWS map at 1 km resolution. To
enhance its reliability, the model output is rectified using data from
GRACE satellites, which provide TWS information at a coarser
resolution of 100 km. Specifically, the RF output is first aggregated
to match the GRACE resolution, and the residuals (differences
from GRACE data) are then disaggregated back to 1 km. This
correction step yields a more accurate TWS estimation, enhancing
our understanding of groundwater resources—particularly crucial
in arid regions where groundwater plays a vital role in
drought resilience.

Hafyani et al. explore the use of six ML models—Decision
Tree, Random Forest, K-Nearest Neighbors (KNN), AdaBoost,
XGBoost, and Long Short-Term Memory (LSTM)—for monthly
precipitation forecasting. After comparing the performance of
individual models, the study proposes a two-layer stacked learning

approach. The first layer is trained on the original data, while
the second layer, a meta-learner, is trained on the output of
the first. This ensemble method achieved outstanding results,
reducing the Root Mean Squared Error by more than 50%
compared to the best-performing single model. Such improvement
is particularly valuable in arid regions affected by the El Niño
Southern Oscillation (ENSO), where climate complexity challenges
forecasting efforts, and effective water management depends on
accurate precipitation predictions.

Oddo et al. present an early warning system for extreme
flood events using a hybrid deep learning architecture
known as ConvLSTM, which combines a Convolutional
Neural Network (CNN) with an LSTM model. The CNN
processes four spatiotemporal datasets: NEXRAD Mosaic 8-
bit Base Reflectivity, Noah LSM Soil Moisture, IMERG Final
Precipitation L3 Rate, and KLWX Level-III NEXRAD 1-h
Accumulated Precipitation. The CNN output is then passed
to the LSTM, which captures temporal dependencies. In their
case study, ConvLSTM outperforms a baseline LSTM model
by effectively uncovering non-linear relationships between
input variables and flood outcomes—without the need for
explicit representation of a specific catchment. This makes it
particularly suited to flashy watersheds with frequent and intense
flood histories.

Zhang et al. introduces an interpretable DL architecture
tailored for flood prediction in 531 watersheds across the
continental United States. While LSTM models are widely
adopted in hydrology for their strength in modeling sequential
and non-linear patterns, they often lack transparency. To
overcome this limitation, the authors embed a streamlined
gating component between the inputs and the LSTM layers. This
intermediary unit selectively filters and highlights influential
meteorological variables and time lags, facilitating insight into
the model’s decision-making process. The filtered information
is organized into four impact groups—short- and long-duration
effects of both precipitation and temperature—enabling a clearer
understanding of which drivers most affect flood outcomes.
Compared to conventional LSTM models, the proposed
method offers comparable predictive skill while introducing
interpretability mechanisms. These enhancements contribute
to the growing field of explainable AI in hydrology and help
bridge the gap between black-box performance and actionable
scientific understanding.

Taken together, these contributions highlight three cross-
cutting themes in the application of AI in hydrology: the
adaptation of advanced machine learning architectures, the
fusion of diverse data sources, and the exploration of model
interpretability. While each study targets a distinct challenge,
they collectively demonstrate the transformative potential of
AI in improving hydrologic forecasting, particularly under a
changing climate.

In a nutshell, this Research Topic highlights the growing
strengths of ML approaches in hydrology, particularly for
predictive tasks such as early warning systems and water resource
management. The contributions showcase innovative methods that
not only outperform standard ML models but also address some
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of their known limitations, such as interpretability. We extend
our sincere thanks to all the authors and reviewers for their
valuable contributions. We are confident that this Research Topic
of work will significantly advance knowledge in this important and
evolving field.
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