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Soil CO2 fluxes are a key component of the terrestrial carbon cycle. However, 
these fluxes are notoriously expensive to measure, especially in remote and 
understudied regions. This is primarily due to the cost of methods currently in 
use to measure soil CO2 fluxes. To address this gap, we developed and tested a 
low-cost, lightweight, and portable CO₂ flux chamber designed for use in remote 
environments. The chambers we developed are built from primarily open source 
and off-the-shelf components that use minimum power and are designed to 
be easy to construct and use. We evaluated the sensors’ performance through 
error analysis and tested them in the field at agricultural and prairie sites in Illinois 
and Nebraska USA. We use field data to produce a partial soil CO2 budget using the 
chamber flux estimates and production estimates from a gradient-based method. 
Overall, the results show that chamber size and sampling frequency can be used 
to reduce measurement error. Additionally, our results fall within the observed 
ranges for prairie CO2 fluxes in the literature. The simplicity, affordability, and ease 
of construction of our design make it a valuable tool for expanding soil carbon 
flux monitoring networks, facilitating education, and improving our understanding 
of ecosystem carbon budgets.
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Introduction

Soils contain an estimated 2,500–3,300 Pg of total carbon, making them an important 
component of the global carbon (C) budget (Brevik, 2012; Cavallaro et al., 2018). This carbon 
is cycled between the soil, vegetation, and the atmosphere with mean residence times that 
range from days to thousands of years (Davidson et al., 2006; Shi et al., 2020). The rapid 
turnover of soil carbon is facilitated by plant and microbial communities which take up and 
rerelease 130 Pg C/yr. (Friedlingstein et  al., 2025; Jansson and Hofmockel, 2020). The 
magnitude of these biotic processes is altered by both the changing climate and land use which 
in turn can act to reduce or enlarge the terrestrial carbon sink, depending on the direction of 
change. Despite the central role soils play in the global carbon cycle, soil carbon fluxes remain 
difficult to constrain due to their high spatial and temporal variability and the lack of sensors 
at high resolutions that could be used for remote monitoring.
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High spatiotemporal variability in soil carbon fluxes necessitates 
more in-situ measurements to quantify climate and land use change 
impacts on the carbon cycle and validate remote sensing and model 
outputs (Buczko et al., 2015; Wang et al., 2024). Direct measurements 
of changes within carbon stocks are possible but require years of 
continuous measurement and primarily provide quantification of 
changes within carbon stocks within the context of past events (Guo 
and Gifford, 2002). Comparatively, soil CO2 flux can be measured 
rapidly and provide a physical basis for modeling efforts which predict 
future changes to the carbon cycle. Soil CO2 is measured through a 
variety of methods including modeled production based on measured 
soil CO2 profiles, surface chamber-based methods, and eddy 
covariance flux towers (Lund et al., 1999; Makita et al., 2018; Pedersen 
et al., 2010; Wagner et al., 1997; M. Wang et al., 2010; Winnick et al., 
2020). Additionally, new methods are under development which 
would measure in-situ changes to soil stocks through time which 
would allow us to capture changes in many aspects of the soil C cycle 
(Gyawali et al., 2025). The high costs of these methods lead to few 
monitored sites that capture a variety of different soil CO2 
measurements. For example, eddy covariance towers capture 
aboveground respiration, and gradients capture soil CO2 production, 
instead of direct soil fluxes. This study addresses the need for more, 
and less expensive, measurements of soil carbon fluxes. Toward this, 
we describe the development of a low-cost and portable chamber-
based CO2 sampler.

Each of the methods mentioned above has advantages and 
drawbacks in terms of area sampled, price, data requirements, and 
ease of use. Eddy flux towers provide a continuous ecosystem scale 
estimate of fluxes along with many other meteorological 
measurements. These flux estimates are based on the eddy covariance 
method, which relies on covariances between high frequency 
observations of wind speed and CO2 concentration to quantify 
upward or downward fluxes at sub-hourly timescales (Baldocchi, 
2003). However, eddy flux towers are very expensive to install and 
maintain (installation $10,000 s to $100,000, upkeep $1000s yearly) 
due to the large number of sensors and necessary tower height 
(Haszpra et  al., 2005). Additionally towers capture net ecosystem 
exchange, which combines soil respiration and photosynthetic uptake. 
Alternatively, soil CO2 profiles involve estimating soil CO2 production 
by utilizing measured CO2 gradients in the soil and Fick’s second law 
of diffusion to predict the net rate of soil CO2 production or 
consumption. These profiles can be relatively inexpensive ($100 s) if 
manual sampling is conducted but are time consuming, require 
additional continuous costs for analyzing samples ($100 s per 
sampling), and rely on detailed site-specific knowledge (Cerling, 1984; 
Davidson et al., 2006; Davidson and Trumbore, 1995; Tang et al., 2005; 
Winnick et al., 2020).

Chamber-based methods are another common approach that 
directly measure soil CO2 flux (Bouma et al., 1997; Conen and Smith, 
1998; Cueva et al., 2017; Li et al., 2021). In principle, chamber-based 
methods take a parcel of atmospheric air, trap it against the soil surface 
and then measure the change in concentration of that air parcel to 
estimate production or fluxes into or out of the soil (Davidson et al., 
2002). There are two types of chamber-based methods: the active 
method and the passive method (Gao and Yates, 1998). The active 
method, sometimes called a dynamic chamber, takes a continuous 
measurement of soil CO2 production. This is achieved by continuously 
pumping a known amount of air with a measured concentration of CO2 

into and out of the chamber. The difference in the concentration of CO2 
leaving and entering the chamber can then be used to calculate the rate 
of production continuously (Fang et  al., 1996; Heinemeyer and 
McNamara, 2011). The additional pumps require extra equipment and 
power, causing the active method to be more complicated. The passive 
chamber method takes a snapshot of soil CO2 production by measuring 
the buildup of CO2 in a sealed chamber over time. This is in principle 
the simplest direct measurement of soil CO2 flux (Gao and Yates, 1998). 
A primary benefit of chamber-based methods is that they provide a 
direct measurement of soil CO₂ fluxes and are relatively simple to use. 
Chamber methods also require minimal site information, such as soil 
moisture, diffusion, and texture, which makes them ideal for use in 
understudied or remote regions. Often passive chambers are automated 
to open and close at set intervals, enabling semi-continuous 
measurements of an area, however this increases the power and 
equipment costs. Due to these benefits, chamber-based methods offer a 
middle ground, allowing for rapid, high-resolution, direct measurements 
of soil fluxes without some of the extreme costs that eddy flux towers 
incur, or detailed site knowledge required for gradient methods.

While automated chambers are ideal for some sites, they are still 
power consumptive and relatively expensive to implement ($1000s per 
chamber). In general, the financial and infrastructural challenges of 
established methods and chamber designs to measure CO2 fluxes make 
for few heavily monitored sites where soil flux measurements are 
collected, leaving many under-studied regions (Perez-Quezada et al., 
2023). In response to the cost of current chamber systems on the market 
and with the variety of readily available non-dispersive infrared (NDIR) 
sensors, many studies have developed less expensive chambers to allow 
for greater access to automated chamber-based measurements (Gagnon 
et al., 2016; Midwood et al., 2008; Zawilski and Bustillo, 2023). However, 
these often attempt to fully recreate the industry available automated 
chambers (making them expensive when compared to our design), 
power consumptive, and requiring significant fabrication skills and 
access to tools to construct (Gagnon et al., 2016). While the open-source 
fully automated chambers are beneficial in allowing for a cheaper 
alternative to install at an intensely monitored site, there is still a need for 
a maximally simple and portable solution for measurements in remote 
locations, multiple locations, or to rapidly pair flux samples with other 
data. We have thus developed a light, portable, low-power, inexpensive, 
and easily constructed chamber-based CO2 flux sampler to fill the gap of 
an easily deployable sampler that can measure soil fluxes in conjunction 
with sampling activities. This sampler is composed of readily available 
components that can be obtained from most hardware stores or major 
online retailers and uses open-source electronics when possible. 
We  anticipate that this design along with the detailed build guide 
(Supplementary Information) will allow for greater spatial coverage of 
soil CO2 flux sampling. Therefore, in this manuscript we compare our 
new design to fluxes measured using a gas chromatograph, provide a 
sensitivity analysis for critical measurement factors, and show examples 
of applications in which our sensor could be used.

Methods

Site description

The sensors were implemented in the Critical Interface Network 
(CINet) Management Induced Reactive Zone (MIRZ) 
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(Supplementary Figure 1) sites in Illinois and Nebraska. The MIRZ 
sites were designed to monitor the rooting zone where 
biogeochemical processes are influenced by plants in both prairie 
and agricultural environments. The Illinois sites include an active 
agricultural field (ILAG) rotated annually between corn and 
soybeans and a restored prairie site (ILPR) established in 2007. Both 
sites feature soils with an average bulk density of 1.47 gdw cmws

−3 
(dry weight, wet soil volume). They receive an average annual 
precipitation of 101.9 cm a year and have a mean air temperature of 
11.5 °C (MRCC, CHAMPAIGN 3S (IL) USC00118740). During the 
summer and fall of 2024 a D0 drought (20 to 30 percentile for most 
indicators as defined by U.S. Drought Monitor) (Simeral and 
Artusa, 2025) lasted from mid-June to mid-July reaching D2 (5 to 
10 percentile for most indicators) at its peak, which lasted from 
September 2024 to January 2025 [National Drought Mitigation 
Center (NDMC), U.S. Department of Agriculture (USDA) and 
National Oceanic and Atmospheric Administration (NOAA)]. The 
ILPR site is located 365 m from the Sangamon River, while the 
ILAG site is tile-drained to an adjacent ditch that is a tributary to 
the Sangamon River. The Nebraska sites are within the Glacier 
Creek Preserve, consisting of restored prairie (NEPR) and 
agricultural land (NEAG) (Dere et al., 2019). Both are located on 
adjacent hilltop summits with slopes <0.05 m m−1. The soils are 
Contrary-Monona-Ida Complex, derived from loess, with bulk 
densities of 1.11 ± 0.09 gdw cmws

−3 for agricultural and 1.14 ± 0.05 
gdw cmws

−3 for prairie soils. NEPR, restored ~50 years ago, is 
maintained with periodic 3-year burns, whereas NEAG is in a 
yearly corn-soy rotation and has a deep water table (~20 m). The 
Nebraska sites receive 78 cm of annual precipitation with an average 
temperature of 10 °C (Dere et al., 2019). Douglas County NE was 
in a drought reaching D2 stage at its peak for all of 2024 except June 
through August which were not considered a drought (U. S. Drought 
Monitor) Currently all the MIRZ sites are monitored via sensor 
arrays installed at depths of 20, 60, 110, and 180 cm. These sensor 
arrays included Eosence eosGP for CO₂, Apogee SO-110 for O₂, and 
Campbell Scientific CS655 and Meter Group Teros 12 for soil 
moisture and temperature in Nebraska and Illinois, respectively.

Flux sensor design

The soil flux sensor is designed after the passive chambers that 
are commonly used (Conen and Smith, 1998), and was redesigned 
after field testing two additional times leading to V1, V2, and V3 
chambers. The V2 sensor redesign was primarily to move the 
non-sensor electronics out of the sensor chamber to minimize 
corrosion, and the sample interval was decreased from 15 min to 
10 s (supplemental Build Guide V2). The V3 was developed as a 
cheaper  and easier to assemble version for educational and 
research purposes, and therefore data from the V3 is not included 
in this study (supplemental Build Guide V3). The sensors are 
programmed to take data at set intervals (15 min for V1 and 10 s 
for V2 and V3) and are comprised of two major parts: the 
datalogger and the sensor chamber. For all versions the sensor 
chamber consists of 6in PVC housing. V1 and V2 had two sensors, 
one to measure CO2 and one for relative humidity and 
temperature, whereas version 3 used a combined sensor for all 
three measurements (Figure 1). The CO2 sensor used in V1 and 

V2 were the “006-0-0008 Senseair Sunrise HVAC,” a 
non-dispersive infrared sensor that has a measurement range of 
400–10,000  ppm and an accuracy of ±30 ppm or 3% of the 
reading. The Sunrise CO2 sensor was chosen as it can operate at 
3.05–5.5 V and uses 1–34 μA of power. However, alternative 
sensors such as the “030-8-0006K30,” “004-0-0053 Senseair S8,” 
“Adafruit SCD-41,” or “Adafruit SCD-30” are available and in the 
V3 design (which has yet to be field tested) the “Adafruit SCD-30” 
is used. For the relative humidity (RH) and temperature sensor, 
an Adafruit SHT30 was used in V1 and V2 with an accuracy of 
±1.5 for RH and ±0.1 °C for temperature. The datalogger is made 
up of three components: an SD card reader for data storage, a 
clock, and an Arduino which is consistent across all versions 
except V3, which omits the clock. For a detailed guide on how to 
build V2 and V3, see the Supplemental Documents.

Analytical methods

Throughout the growing season two methods were used to 
measure soil CO2 fluxes and one was used to measure production 
from the sites. These include the static chamber sensor developed 
here to measure surface fluxes (Davidson et al., 2002) a static chamber 
measured using samples which were run on a gas chromatography to 
compare our sensor to, and a gradient-based approach for 
determining soil CO2 production (Cerling, 1984; Davidson et al., 
2006; Winnick et al., 2020). The gradient method used a diffusion 

FIGURE 1

V1 sensor deployed in the field. The orange box is the battery box 
and the white PVC is the chamber (A). V3 sensor top (B) and bottom 
(C) including, from left to right, the Arduino Nano, Adafruit SCD-30, 
and SD card reader.
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model, and CO2 was measured using an Eosence eosGP CO2 sensor 
installed in a PVC housing (Supplementary Figure 1). These soil 
production and flux measurements were used to estimate a 
percentage of the CO2 production that was released to the 
atmosphere. This was done by taking the mean CO2 production at 
20 cm for each site from 10:00 a.m. to 5:00 p.m. each day that 
chamber data was available and then calculating the percent of that 
which was released to the atmosphere using the CO2 soil flux rate. 
Although these methods are temporally paired, there is still the 
possibility of deeper soil production or buildup from prier respiration 
and therefore may result in greater than 100% fluxes as the CO2 was 
produced either deeper than the current flux or before the current 
flux measurements. However, since the surface soils account for most 
production, this can be considered an upper bound of the percent of 
CO2 production released.

The chambers were installed at each site using a PVC female 
threaded to non-threaded adapter. The non-threaded side was pressed 
into the ground 5 cm and left in the field between measurements to 
minimize disturbance. The sensor housing was connected to the 
battery and threaded onto the PVC adapter for at least 15 min. During 
separate deployments the chambers were also sampled at 2-min 
intervals for 20 min as a comparison for the sensor fluxes. The data 
was cleaned by manually removing all points that were after the CO2 
peak. This was done because after CO2 has peaked within the chamber, 
the sample is no longer measuring a flux rate but is instead measuring 
the CO2 concentration at equilibrium. This will artificially flatten the 
regression, under predicting the rate of soil CO2 flux. Fluxes were 
calculated from the chamber data using the Hutchinson and Mosier 
Regression (HMR) Library in R (Pedersen et al., 2010; R Core Team, 
2025) which uses a hybrid approach that classifies data into linear, 
nonlinear, or no significant flux (Supplemental text).

An uncertainty analysis was conducted by propagating error 
through the flux equation. We considered error from the measurement 
of the chamber volume, sample size, rate of CO2 buildup and the CO2 
sensor error across a range of mean chamber CO2 concentrations. 
We used the Ideal Gas Law and the linear rate of change in chamber 
CO₂ concentration over time to determine the chamber flux (F, μmol 
m−2 s−1) estimation error using Equation 1:

	
= ∗

PV dCF
RTA dt 	

(1)

where P is atmospheric pressure (Pa), V is the chamber volume 
(m3), R is the universal gas constant (8.314 J mol−1  K−1), T is air 
temperature in the chamber (K), A is the chamber footprint area (m2), 
and dC/dt is the linear rate of change in CO₂ concentration over time 
(ppm s−1). The uncertainty in the slope was estimated based on the 
sensor error with Equation 2:

	

σσ =
∗∆
CdC

dt N t
	

(2)

Where σC is the standard deviation of CO₂ concentration based on 
sensor accuracy (3% of the mean CO₂ concentration during the 
measurement), N is the number of samples in the regression, and Δt is 
the total sample time in seconds. The flux uncertainty (σF) was then 

estimated by propagating error through the flux equation using standard 
techniques for uncertainty propagation resulting in Equation 3:

	
σ σ σ σ    = ∗ + +    

    

22 2

2F T V
PV dC PV P

RTA dt RTART A 	
(3)

Where σT is the uncertainty of the temperature measurement and 
σV is the uncertainty of the chamber volume.

Additionally, we performed correlations to compare the chamber 
measurements to additional data such as temperature and Normalized 
Difference Vegetation Index (NDVI). Specifically, we used Pearson 
correlations of soil temperature at 20 cm and NDVI to CO2 fluxes. The 
NDVI data was acquired from Landsat 8 through Google Earth 
Engine and all calculations were done in R (R Core Team, 2025).

Results and discussion

Chamber component-based errors

When comparing our chamber measured fluxes from the two 
methods (manual sampling or NDIR sensor) during the growing 
season (May to Oct) we note no significant differences (Figure 2). 
Despite no significant differences in the mean the ranges seen at each 
site vary with the sensor measurements in NEAG having the largest 
range. This is due primarily to the outlier in July which had a flux of 
10.7 μmol m−2 s−1 3.6X higher than any other measurement in NE 
during the growing season. Despite this large difference there is no 
corresponding rain or fertilization event with the time of the NEAG 
July flux outlier. However, this sample was conducted using the V1 
sensor which had a sample interval of 15 min resulting in just three 
readings before exceeding the sensor range likely resulting in the 
excessively high measurement. While the long sampling interval saves 
power and is sufficient for times when fluxes are low, we fixed this 
oversite in the V2 sensors as it samples at a 10 s interval. Overall, the 
developed sensors show reasonably similar fluxes over the growing 
season for all sites and the measured fluxes fall within the range seen 
within the literature.

Our flux chamber design is based on the static chamber method 
and uses an NDIR (nondispersive infrared) CO2 gas sensor, both of 
which are commonly used in measuring soil CO2 fluxes, as chamber 
measurements have been around since the 1920s (Davidson et al., 
2002; Lundegardh, 1926). Therefore, past studies have identified many 
of the potential sources of error such as changes in pressure, the 
number of samples taken, or alterations to the CO2 gradient due to 
buildup in the chamber (Davidson et al., 2002). Furthermore, many 
of these errors are due to the soil environment in which the chamber 
is installed (Butnor et al., 2005) or due to the length of time that the 
chamber is closed. Conventionally, shorter sample durations are an 
easy method to reduce some of these sampling biases; however, too 
few samples can also increase error. Therefore, we present an idealized 
analysis of the error due to chamber size, mean chamber CO2 
concentration, CO2 rate of buildup, and sample duration so that errors 
can be minimized for each deployment.

In contrast to manual sampling, these sensors allow for near 
continuous measurements (every 2 s), making shorter deployments 
possible without reducing the number of sample points (Figure 3). 
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This is a critical aspect of reducing error within chamber measurements 
as uncertainties of over 10% are seen when less than 100 samples are 
taken, especially when mean chamber CO2 concentrations are high 
(Figure 4). From this analysis we  found that chamber size plays a 
smaller role in the uncertainty associated with measurements 
(Figure  4) with chambers of 1,000 cm3 or larger sufficient for the 
sensor limitations used within our design which used a 1,390 cm3 
chamber. The rate of CO2 buildup from the soil can influence 
measurement error with lower slopes having higher errors (Figure 4). 
This means that sites or times with minimum soil respiration are likely 
to have larger errors and therefore it is prudent to increase the number 
of samples taken to minimize this additional error. However, this 
comes with a tradeoff of increased sample duration which may result 
in additional errors due to changing chamber conditions. Therefore, 
sampling interval should be decreased to compensate. With proper 
installation and well-planned deployments, it is possible to minimize 
errors due to chamber construction and soil chamber interactions. 
We suggest that in times of low respiration such as winter months or 
uncharacterized remote locations it is best to use moderately sized 
(1,000 to 2,000 cm3) chambers and short (2 s) sampling intervals to 
minimize errors from slow CO2 buildup and under-sampling.

Flux drivers

When we compare the fluxes measured to those found for other 
prairie sites in the literature, we note that our values are within the 

range reported −16 to 27 (μmol ms
−2  s−1) (Bovsun et  al., 2021; 

Dugas et al., 1999; Frank and Dugas, 2001; Mielnick and Dugas, 
2000; Suyker and Verma, 2001). In addition to determining the 
magnitude of soil CO2 fluxes, observations over time can help infer 
processes. For example, we find statistically significant correlations 
between CO2 fluxes with temperature and NDVI. However, NDVI 
showed stronger correlations with CO2 fluxes than soil temperature 
did with fluxes across all the sites except ILAG, and with net CO2 
production in soil in NE (Table 1). These correlations are from the 

FIGURE 2

Fluxes measured using the static chamber methods at the NEAG and NEPR sites during the growing season months (May to Oct). Each site has 
an N of 4. Red (left) are from the samples and purple (right) are from the sensor chamber developed here. The center line of each box is the 
median, the box bounds the first and third quartile, the whiskers are 1.5 times the interquartile range, and all other points are outside of the 
interquartile range.

FIGURE 3

CO2 concentration data taken at the NEAG (yellow circles) and NEPR 
(green triangle) on August 28, 2024. The calculated fluxes for the 
sites were 0.4 μmol m−2 s−1 for NEAG and 1.4 μmol m−2 s−1 for NEPR.
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seasonality of CO2 fluxes due to both rising temperatures increasing 
microbial and enzyme activity and plant–soil interactions (Fang 
and Moncrieff, 2001; Tang et al., 2005). The stronger correlation 
with NDVI likely relates to the important role that plant exudates 
play in CO2 production in these environments as they supply soil 
microbes with substrate to increase respiration (Huang et al., 2014). 
In other research we have seen similar results with stronger daily 
CO2 flux correlations with NDVI than temperature (Saccardi et al., 
in review).

Soil CO2 budgets

When determining the effects of climate and land use on soil 
budgets, produced CO2 is primarily lost through diffusion into 
groundwater, chemical weathering, or evasion to the atmosphere. 
With the measurements taken at each site, the net soil CO2 
production, which accounts for both soil CO2 respiration and 
weathering losses as well as surface fluxes, were calculated using a 
gradient and chamber method, respectively. From this 
we determined the average net soil CO2 production emitted to the 
atmosphere in ILAG at 47% ± 46%, ILPR at 21% ± 29%, NEAG at 
17% ± 8%, and NEPR at 106% ± 159%. While patterns are less 
distinguished in NE, the IL sites often show a larger percentage of 
soil production contributing to surface fluxes at the agricultural site 
(Figure 5). This may be due to the shallower roots, tile drains, and 
often lower rates of net CO2 production seen in agricultural 
compared to prairie environments. Furthermore, these results 
suggest a weaker connection between agricultural soil gases and 
groundwater, which may have implications for carbon sequestration 

based on weathering exports and suggests that prairie soils may 
offer grater sequestration potential.

Future improvements and educational 
opportunities

Through collaboration with educators a V3 was developed which 
simplifies the design, code, and reduces the power consumption. To 
make the V3 easier to build and use we have also included the printed 
circuit board (PCB) design (Supplemental Documents) as it can 
be  easily and cheaply ordered from several online retailers. This 
improvement allows for minimum experience with circuitry, and 
minimal soldering required. Furthermore, the sensor used was 
switched to an all-in-one temperature, relative humidity, and CO2 
sensor with the same level of precision and accuracy as the original. 
These changes improve the user friendliness of the system and allow 

FIGURE 4

Percent error of the soil chamber in ideal conditions in relation to the number of samples collected (N). The plots represent the range of errors in fluxes 
as a percentage for varying modeled conditions. When the respective variable is not the Y axis, the values used in the model are chamber volume 
(1,390 ± 10 cm3), rate of CO2 change (0.3 ppm s−1), mean chamber CO2 (5,000 ppm), and CO2 sensor accuracy (3%).

TABLE 1  Correlations between method predicted fluxes and soil 
temperature at 20 cm or NDVI for each site.

Site Chamber flux Gradient production

Soil 
Temp

NDVI Soil 
Temp

NDVI

ILAG (0.55) (0.55) 0.70 0.68

ILPR (0.65) 0.68 0.69 0.62

NEAG (0.58) 0.80 0.73 0.84

NEPR 0.80 0.92 0.27 0.29

Correlations that are not significant (p < 0.05) are in parentheses.
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for the sensor to be used as a teaching tool. For this to be feasible the 
third version was made to be significantly cheaper at roughly half the 
price of V1 or V2. The educational modules will allow students to 
learn about soil carbon as well as how object-oriented coding 
languages work. To help achieve the goal of reducing barriers in 
education and science we  include a detailed build guide in the 
Supplemental Documents.

Considerations for designing chamber 
sensors

Overall, the chamber flux sensors used in this research are 
extremely inexpensive (~$150 for V3 in 2024), easily portable and 
made of readily available materials. These characteristics were among 
our priorities during the design of the sensor as they allow for easier 
adoption and use of the technology regardless of the fabrication tools 
and skill of the user. Although scientists often need a variety of skills, 
especially when conducting field work, adding additional skills such 
as fabrication and circuitry are often a barrier to the use of many 
homemade sensors. Not only are the required skills often outside of 
the typical, so are the tools required to fabricate housing and other 
parts, often leading to clunky or delicate workarounds that differ from 
the original design or require significant investment in fabrication 
services or equipment. Our V3 design circumvents these barriers, as 
we freely provide prebuilt code and PCB schematics that are easily 
purchased from a variety of inexpensive sources. Furthermore, the 
components used are off-the-shelf and many are open source making 
them both inexpensive and available from a variety of sources. The 
final design requires the one-time use of a soldering iron as the only 
specialized equipment and the fully built sensor uses quick connectors 
so all parts are easily individually replaceable.

Power consumption and weight were additional priorities 
during development as they are often barriers to data collection in 

remote locations. Therefore, the V3 sensor is designed to 
be lightweight weighing only 36 g, plus a 9 V battery at 45 g, and 
housing at 762 g. Furthermore, the sensor uses on average 0.31 
watts of power and can be used with any dc power supply ranging 
from 6–12 V. The design includes onboard data storage so that it 
can be deployed while other samples are taken, minimizing the time 
requirements of taking the flux measurements. These design 
decisions were specifically made to make this sensor easy to adopt 
and use in remote or power limited environments without 
sacrificing measurement quality, as a spatially robust dataset is 
needed to understand the effects the climate is having on soils in a 
variety of environments.
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