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Introduction: Optimizing the operation of interconnected hydropower
systems presents significant challenges due to complex non-linear dynamics,
hydrological uncertainty, and the need to balance competing objectives
like economic maximization and operational safety. Traditional optimization
methods often struggle with these complexities, particularly for high-resolution
intraday decision-making.
Methods: This paper proposes and evaluates a Deep Reinforcement Learning
(DRL) framework, specifically utilizing the Soft Actor-Critic (SAC) algorithm, to
optimize the hourly operation of the Baba hydropower facility and its strategic
water transfers to the downstream Marcel Laniado De Wind (MLDW) system
in Ecuador’s Guayas basin. A key component of our approach is a custom
Gymnasium simulation environment incorporating a validated internal dynamics
model based on a pre-trained neural network. This learned model, developed
using historical inflow data, accurately simulates the system’s hydraulic and
energy state transitions. The SAC agent was trained within this environment using
synthetically generated data (KNN-resampled) to learn policies that maximize
the combined economic revenue from Baba generation and the estimated
downstream MLDW generation benefit, while adhering to stringent operational
and safety constraints.
Results: Results demonstrate that the learned SAC policies significantly
outperform historical operations, achieving up to a 9.43% increase in total
accumulated economic gain over a decade-long validation period. Furthermore,
the agent effectively learned to manage constraints, notably reducing peak
uncontrolled spillway discharges by up to 9%.
Discussion: This study validates the effectiveness of SAC combined with
a learned internal dynamics model as a robust, data-driven approach for
optimizing complex, interconnected hydropower systems, offering a promising
pathway toward more efficient and resilient water resource management.

KEYWORDS

water resources management, reservoir operation, Deep Reinforcement Learning,
hydropower optimization, Soft Actor-Critic, Guayas River

1 Introduction

Hydropower serves as a cornerstone in the global transition toward sustainable
energy portfolios, valued not only for its renewable generation capacity but
also for its essential grid regulation services and integrated water resource
management capabilities (Bautista et al., 2022). However, the optimal operation of
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hydropower systems presents a significant challenge, necessitating
a complex trade-off between maximizing economic revenue
and adhering to a multitude of critical constraints. These
include safeguarding dam structural integrity, respecting dynamic
hydrological limits, ensuring operational safety, and satisfying
prioritized downstream water demands for human consumption,
irrigation, and ecological flows (Wu et al., 2024; Zarfl et al.,
2015). Effectively navigating this trade-off is further complicated by
the highly non-linear dynamics inherent in hydraulic and power
generation processes and the significant uncertainties associated
with hydrological inflows, especially at short timescales (Tabas and
Samadi, 2024; Negm et al., 2024). These operational complexities
are particularly amplified in large-scale, interconnected river
systems involving multiple reservoirs and strategic water transfers,
such as the Guayas basin central to this study, demanding
increasingly sophisticated optimization approaches (Wu et al.,
2024).

The optimization of short-term operations, specifically at
the intraday (e.g., hourly) resolution, is becoming paramount
(Ramos et al., 2019). This is driven by the increasing need for
operational flexibility to integrate intermittent renewable sources,
participate in volatile hourly electricity markets, and respond
rapidly to hydro-meteorological events. Traditional optimization
techniques, including linear programming (LP), non-linear
programming (NLP), mixed-integer linear programming (MILP),
and various forms of dynamic programming (DP/SDP), have
been the mainstay for reservoir operation scheduling (Castelletti
et al., 2010). However, applying these methods to complex,
interconnected systems like the Baba-Daule-Peripa for high-
resolution intraday decision-making reveals significant limitations
(Castro-Freibott et al., 2025). These conventional approaches often
struggle to adequately capture the system’s inherent hydrological
variability (including pronounced seasonality and extreme events
like El Niño) and complex non-linear system dynamics (e.g.,
turbine efficiencies, hydraulic losses) (Hidalgo-Proaño, 2017;
Ilbay-Yupa et al., 2019; Ghafoor et al., 2024). Furthermore, they
frequently encounter the “curse of dimensionality” when dealing
with multiple state variables and fine temporal discretization,
often leading to prohibitive computational times that hinder
their use for real-time or near-real-time control (Tabas and
Samadi, 2024; De Mel et al., 2022; Wu et al., 2024). Such
approaches may also necessitate substantial model simplifications
or exhibit heavy reliance on the accuracy of short-term forecasts,
which can be unreliable or unavailable (Ghobadi and Kang,
2023).

To overcome these limitations (Villeneuve et al., 2023),
DRL has emerged as a powerful, data-driven paradigm for
tackling complex sequential decision-making problems under
uncertainty (Sutton and Barto, 2018; Negm et al., 2024).
DRL agents learn optimal control policies through direct
trial-and-error interactions with an environment (either real
or simulated) (Ortega et al., 2024) bypassing the need for
explicit, often simplified, system models and demonstrating
the capacity to effectively handle non-linearities, stochasticity,
and high-dimensional state-action spaces inherent in complex
systems (Ortega et al., 2024). Within the DRL landscape, the
SAC algorithm (Haarnoja et al., 2018, 2019) stands out as

particularly well-suited for continuous control problems like
hydropower operation (Tabas and Samadi, 2024; Riemer-Sørensen
and Rosenlund, 2020). As an off-policy actor-critic method
grounded in the maximum entropy framework, SAC offers
notable stability and sample efficiency (Haarnoja et al., 2018;
Raffin et al., 2021). Its unique principle of maximizing both
expected reward and policy entropy intrinsically encourages robust
exploration, reducing the risk of converging prematurely to
suboptimal solutions in complex reward landscapes, while its off-
policy nature enhances learning efficiency by effectively leveraging
past experiences.

This paper proposes and evaluates a DRL framework for
optimizing the hourly operation of the interconnected Baba-
Daule-Peripa hydropower system in Ecuador’s Guayas basin. We
specifically employ the SAC algorithm (Haarnoja et al., 2019, 2018),
a method well-suited for complex continuous control tasks. While
alternative DRL algorithms like Proximal Policy Optimization
(PPO) were considered, preliminary investigations indicated
challenges in achieving stable convergence for this specific problem,
further motivating the selection of SAC. A cornerstone of our
methodology is the development and integration of a data-driven,
internal NN-based dynamics model within a standard Gymnasium
simulation environment (Towers et al., 2024). This learned model
is trained on historical and synthetically generated data (using
KNN resampling) to approximate the system’s complex, non-linear
hydraulic and energy state transitions (Hidalgo-Proaño, 2017;
Ilbay-Yupa et al., 2019), allowing the SAC agent to learn effective
policies without requiring explicit differential equations. The
primary objective is to derive operational policies that maximize
the combined economic revenue from the system while adhering to
operational and safety constraints, implicitly respecting established
water use priorities (Asamblea Constituyente del Ecuador, 2008;
art. 318). Ultimately, this work validates the effectiveness of
this DRL-based approach as a robust and scalable strategy for
optimizing complex, interconnected hydropower systems (Tabas
and Samadi, 2024; Wu et al., 2024).

2 Methodology

To achieve the optimization objectives outlined previously, we
applied a approach to derive optimal hourly operational policies
for the Baba hydropower facility. This data-driven methodology
allows an artificial decision-maker, termed the RL Agent, to
learn effective operational strategies through simulated trial-and-
error interactions with the system (Sutton and Barto, 2018). We
specifically implemented the SAC Algorithm (Haarnoja et al.,
2018, 2019), a state-of-the-art, off-policy DRL technique adept at
handling the continuous control variables (e.g., turbine power,
gate adjustments) inherent in hydropower operations (Tabas and
Samadi, 2024; Riemer-Sørensen and Rosenlund, 2020).

The RL Agent learns within a custom Simulation Environment
developed according to the Gymnasium standard (Towers et al.,
2024), see Figure 1. This environment simulates the Baba system’s
response to the agent’s actions and provides feedback via a Reward
Function. This function is designed to reflect the primary goal of
maximizing economic revenue (considering both Baba generation
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FIGURE 1

Schematic diagram of the implemented Deep Reinforcement Learning framework. The SAC Agent interacts with the Gymnasium-based Simulation
Environment, receiving state information and rewards. The internal Dynamics Model predicts system responses. The reward signal guides the agent’s
policy learning during training.

and estimated downstream MLDW benefits) while incorporating
penalties for violating critical operational and safety constraints.
Central to the environment’s realism is an NN-based internal
Dynamics Model. This is a neural network pre-trained on extensive
historical data to predict the non-linear hydraulic and energy state
transitions resulting from the agent’s actions and stochastic river
inflows (Ortega et al., 2024). Through extensive interactions within
this environment, guided by the reward signal, the SAC Agent
develops an operational policy mapping observed system states to
optimized actions, aiming to maximize cumulative rewards over the
operational horizon.

2.1 The Guayas River basin

This study focuses on the Guayas River basin, the largest
watershed draining into the Pacific Ocean from South America,
located in western Ecuador and encompassing approximately
45,948 km2. Originating in the Andean highlands and flowing
through extensive coastal plains, the basin’s hydrology is
fundamental to the region’s ecological and socio-economic
stability. It provides the primary source of potable water for
over eight million inhabitants and supports vast agricultural
activities, irrigating more than 300,000 hectares of diverse
crops. The basin’s hydrological regime is characterized by a
distinct unimodal rainfall pattern, with a pronounced wet season
typically occurring between February and March, followed
by a marked dry season from August to September. This
seasonality leads to significant variations in river discharge.
Furthermore, the basin is highly susceptible to interannual

climate variability, particularly the influence of El Niño
Southern Oscillation (ENSO) events, which can drastically
alter precipitation patterns, leading to both severe droughts and
extreme flood events (Hidalgo-Proaño, 2017; Ilbay-Yupa et al.,
2019).

2.1.1 The Baba-Daule Peripa interconnected
hydropower system

Within this basin, the study centers on a strategically important
interconnected hydropower system managed by the public utility
CELEC EP Hidronación (Campo-Carrera et al., 2025; Gelati et al.,
2014; CELEC EP. n.d..). The system comprises two main facilities
(Figure 2):

• The Daule-Peripa Reservoir and Marcel Laniado de Wind
(MLDW) Hydropower Plant: Located on the Daule River,
this is the region’s primary storage facility (approx. 5,200
hm3 capacity) (web Corporacion Electrica del Ecuador).
It serves multiple functions: hydropower generation
(3 x 71 MW turbines, avg. 1,033 GWh/year), potable
water supply, irrigation, flood control, and downstream
salinity management.

• The Baba Reservoir and Hydropower Plant: Situated
upstream on a tributary, operational since 2013 with a smaller
reservoir (approx. 70 hm3) (web Corporacion Electrica del
Ecuador). Its plant (2 x 21 MW turbines, avg. 154 GWh/year)
strategically transfers water from the wetter Quevedo basin to
Daule-Peripa, augmenting MLDW inflows, especially during
dry periods. Key control components include, see Figure 3:
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FIGURE 2

Schematic overview of the interconnected Baba and MLDW hydropower facilities within the Guayas River basin, Ecuador, indicating key components
and flow paths.

FIGURE 3

Detail of baba reservoir, dam 1, dam 4 (Powerhouse), conveyance channels, and Pico de Pato spillway.
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◦ An uncontrolled free spillway (“Pico de Pato”) for dam
safety overflows.

◦ A gated spillway (“Extravasor”) allowing regulated water
transfer (Nominal capacity, 70 m3/s) toward Daule-Peripa,
independent of turbine operation.

◦ The powerhouse turbines, whose discharge also
contributes to the transfer while generating electricity.

The interconnection enables flexible water management
but introduces significant operational complexity due to the
dependencies between the facilities.

2.1.2 Operational challenges and optimization
objectives

Operating the Baba hydropower plant optimally presents
significant challenges stemming from:

• Hydrological Uncertainty: High seasonality and
unpredictable interannual variations in Quevedo River
inflows, exacerbated by ENSO events.

• Complex Hydraulics: Non-linear relationships govern
turbine efficiency, head losses in the transfer system, and
spillway discharge dynamics.

• Interdependent System: Baba’s operation directly impacts
water availability and generation potential at the downstream
MLDW plant.

• Multiple, Potentially Conflicting Objectives: The need
to maximize economic revenue from energy sales (subject
to different energy tariffs at Baba and MLDW) must be
balanced against maintaining dam safety (reservoir level
limits), ensuring structural integrity and efficiency of turbines
(operational range constraints, minimizing start/stops),
and adhering to downstream flow requirements implicitly
managed through the large Daule-Peripa storage.

Therefore, the primary objective of this study is to develop
and evaluate an optimal hourly operational policy specifically for
the Baba facility (controlling its two turbines and the Extravasor
spillway) using a Deep Reinforcement Learning approach. The
goal is to maximize the combined economic benefit derived from
generation at Baba and the estimated downstream generation
benefit at MLDW resulting from the transferred water, while strictly
respecting all operational and safety constraints.

2.1.3 Data acquisition and preparation
Developing and validating the proposed methodology relied on

comprehensive datasets:

• Historical Operational and Hydrological Data: Hourly
operational records from January 1, 2015, to December 31,
2024, were obtained from CELEC EP Hidronación. These
included reservoir water levels (at various points like Dique 1,
Dique 4, see Figure 3), turbine discharges, generated power for
each unit, and gate openings for the Extravasor. Crucially, as

direct inflow measurements to Baba were unavailable, hourly
inflows for this period were derived using a water balance
calculation based on the observed changes in storage and
measured outflows. This historical dataset was primarily used
for: (a) training (70%) and validating (30%) the internal neural
network simulation model (Section 2.4.2), and (b) establishing
a baseline performance benchmark for comparison against the
DRL agent’s policies.

• Extended Synthetic Flow Series for Agent Training: Deep
Reinforcement Learning agents typically require extensive
interaction with the environment, often spanning longer
periods than available historical records, to learn robust
policies across a wide range of hydrological conditions. To
address this, a long-term synthetic hourly inflow series for the
Baba reservoir was generated, effectively covering the period
1950–2015 for training purposes. This series was constructed
based on historical mean monthly data using the k-Nearest
Neighbors (KNN) resampling technique (Lall and Sharma,
1996; Yates et al., 2003), which was selected after comparative
analysis demonstrated its superior ability over simpler
methods (like the Method of Fragments) to preserve key
statistical properties (mean, variance, probability distribution)
and temporal correlation structures of the historical flows
observed post-2015 (see Supplementary Figures 1–3 for time-
series comparisons, QQ-plots and Cumulative Distribution
Functions). This high-fidelity synthetic series provided the
necessary long-term hydrological variability for effective
agent training.

2.2 Reinforcement learning approach

Reinforcement learning can be explained mathematically as
Markov Decision Processes (MDPs, Bellman, 1957). An MDP is
an extension of Markov chains that involves decision-making and
actions taken by an agent to maximize cumulative rewards over
time. Like Markov chains, MDPs are based on a fixed set of states,
where each represents the current environment situation. With
MDPs, the agent can take actions to influence state transitions
and achieve specific goals. The agent’s actions determine the
probability of transitioning to different states. MDPs contain
rewards associated with state transitions and actions. The agent’s
goal is to learn a strategy (policy) that maximizes the cumulative
rewards achieved over time.

Applying this framework to our hydropower operation
problem, the core components are defined as follows:

• Agent: The decision-maker (in our case, the SAC algorithm)
that learns the operational policy.

• Environment: A simulation representing the system
being controlled (the Baba reservoir, plant, and
associated hydraulics).

• State (s_t): A vector representing the environment’s condition
at hourly time step t (e.g., reservoir levels, inflow, previous
operational actions).

• Action (a_t): Decisions made by the agent at time step t (e.g.,
setting turbine power output, adjusting spillway gate opening).
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• Reward (r): A scalar feedback signal from the environment
indicating the immediate desirability of the action taken a_t
in state s_t. in the current state s_t.

• Policy (π): The strategy learned by the agent, mapping
states to actions, aiming to maximize the cumulative reward
over time.

The agent learns through a cycle of observing state s_t, selecting
action a_t, receiving reward r_t, observing the next state s_{t+1},
and updating its policy π.

2.3 Soft Actor-Critic algorithm

We selected the SAC algorithm (Haarnoja et al., 2019,
2018), a state-of-the-art DRL algorithm particularly well-suited for
continuous control problems like hydropower operation. Its key
advantages in this context include:

• Continuous Action Space: SAC naturally handles continuous
actions (e.g., precise power levels in MW or gate openings in
meters), allowing for finer operational control compared to
algorithms restricted to discrete actions.

• Entropy Maximization: SAC optimizes for both expected
return and policy entropy. This encourages structured
exploration, mitigating the risk of premature convergence to
suboptimal policies in the complex, potentially multi-modal
reward landscape of hydropower operation.

• Off-Policy Learning & Sample Efficiency: SAC is an off-
policy algorithm, meaning it can learn efficiently from
past experiences stored in a replay buffer, even if those
experiences were generated by a previous version of the policy.
This improves data efficiency, crucial when environment
interactions (simulations) can be computationally intensive.

SAC typically employs neural networks to approximate the
policy (the “actor”) and value functions (the “critics”) that estimate
the expected return of state-action pairs.

2.4 Simulation environment design

2.4.1 Environment design and interface
A custom simulation environment was developed following

the Gymnasium standard (Brockman et al., 2016), providing a
consistent interface for agent-environment interaction.

• State Representation (s_t): The state vector provided to
the agent at each hourly step comprised: current reservoir
water levels (e.g., Dique 1, Dique 4), estimated inflow for the
current hour, power generated by each turbine in the previous
hour (MW), and the Extravasor gate opening in the previous
hour (m).

• Action Space (a_t): The agent outputs a 3-dimensional
continuous action vector: target power for Unit 1 (MW), target
power for Unit 2 (MW), and target Extravasor opening (m).
These actions are typically normalized [e.g., to (−1, 1) or (0,

1)] by the SAC algorithm and then scaled by the environment
to the physical operational limits before application.

• Environment Step Logic: At each hour t, the environment:
(1) receives action a_t from the agent, (2) scales the
action to physical units, (3) uses the internal NN Dynamics
Model (Section 1.4.2) to predict the resulting physical state
transitions (flows, levels, power), (4) calculates the change in
storage via water balance, (5) computes the reward r_t (Section
1.5), (6) determines the next state s {t+1}, and (7) returns
(s_{t+1}, r_t, termination/truncation flags) to the agent.

To simulate the environment, a combination of classical
water balance equations and discharge equations for outflow
structures has been implemented, integrated with a multilayer
neural network model.

2.4.2 NN-based dynamics model
To accurately simulate the complex, non-linear response of

the Baba hydropower system within the environment, a dedicated
internal dynamics model was developed using a pre-trained
feedforward neural network (Multilayer Perceptron, MLP).

• Rationale: An NN approach captures the complex, non-
linear relationships (e.g., turbine efficiency curves, head losses,
spillway hydraulics) more effectively than simplified analytical
models, learning these directly from historical data.

• Architecture and Prediction: The MLP takes relevant
components of the current state s_t and the applied physical
action a_t as input. It predicts key physical outcomes for the
hour: resulting water levels (Dique 4, discharge point), total
turbine flow, Extravasor flow, individual turbine flows, and
total energy generated (MWh).

• Training and Validation: This NN model was trained and
validated offline using the 2015–2024 historical dataset before
integration into the RL environment. Supervised learning
techniques were used to minimize prediction errors for the
key outputs. The validation process confirmed the NN’s ability
to accurately reproduce observed system dynamics across
various operating conditions, justifying its use as the core
simulation engine. (Detailed validation metrics are presented
in Section 3.1).

2.4.3 Water balance in the reservoir
In order to estimate the inflows into Dam 1, the water balance

of the reservoir is defined as follows.:
Balance=Inflow − (Qecological(Dam 1 Level) +

QPico de Pato(Dam 1 Level) + Qturbines(NN Model) +
QExtravasor(NN Model))
where:

Qecological and QPico de Pato are functions dependent on the Dam
1 level.

Qturbines and QExtravasor are values estimated by the neural
network model.

Infiltration and evaporation were not explicitly included in the
water balance, as they are accounted for within the inflow estimates;
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evaporation, in particular, was omitted due to its negligible impact,
amounting to only 0.014% of the inflow.

2.5 Reward function design

The reward function translates the multi-objective
operational goals into a single scalar value guiding the agent’s
learning. It was designed to balance economic revenue with
operational constraints:

• Economic Objective: A positive reward component calculated
as the sum of: (a) revenue from energy generated at Baba
(MWh ∗ Baba tariff), and (b) estimated revenue from potential
energy generated at the downstream MLDW plant due to
water transferred from Baba. This incentivizes both direct
generation and beneficial water transfer.

Total Revenue(t)

= Revenue_Baba(t) + Estimated_Revenue_MLDW(t)

where:

Revenue_Baba(t) = Energy_Baba(t)[MWh] × Tariff _Baba[
$

MWh
]

Estimated_Revenue_MLDW(t) = Transferred_Vol(t)[m3]

×Yield_Factor[
MWh

m3 ] × Tariff _MLDW[
$

MWh
]

• Operational Constraints (Penalties): Negative rewards
(penalties) were applied to discourage violations
of operational limits and unsafe conditions. These
included penalties for:

◦ Exceeding maximum reservoir levels (magnitude-
scaled penalty).

◦ Operating turbines outside efficient/safe power ranges
(penalty, Figure 4).

◦ Excessive turbine start/stop frequency (penalty per event).
◦ Significant flow over the uncontrolled “Pico de Pato”

spillway (penalty, potentially magnitude-scaled, indicating
high levels or inefficient water use).

2.6 SAC agent training and implementation

• Training Protocol: The SAC agent was trained by interacting
with the custom Gymnasium environment over millions of
hourly time steps. The environment was driven by the long-
term synthetic hourly inflow series (1950–2015) generated
using the KNN method (Section 2.1.3). This ensured the

FIGURE 4

Penalty areas of the units, based on historical operation.

agent experienced a wide spectrum of hydrological conditions,
promoting the learning of a robust policy adaptable to
different flow regimes.

• Implementation Details: The implementation utilized
Python, employing the Stable-Baselines3 library (Raffin et al.,
2021) for the SAC algorithm and PyTorch (Paszke et al.,
2019) for the internal NN model. Key SAC hyperparameters
(e.g., learning rates, batch size, network architecture for actor
and critic, discount factor γ, entropy coefficient α) were
configured based on preliminary testing and established
practices (specific values detailed in Table 1 of the original
document). The agent’s policy and associated models were
saved periodically during training.

3 Results

This section presents the results obtained from validating the
simulation components and evaluating the performance of the
SAC agent trained to optimize the hourly operation of the Baba
hydropower facility.

3.1 Validation of the NN-based system
dynamics model

The fidelity of the internal neural network (NN) model,
responsible for simulating the hydraulic and electrical dynamics
within the RL environment (Section 2.4.2), was validated against
historical operational data (January 2015—October 2022). The
comparison between the NN model’s predictions and the actual
recorded measurements demonstrated high accuracy:
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TABLE 1 Training parameters and architecture of the SAC models.

Model Training steps Network architecture Learning rate Batch size Training frequency

SAC M01 6,100,000 (256, 512, 1024, 1024, 512, 256) 2.00E-04 4,096 10

SAC M02 5,400,000 (256, 512, 1024, 1024, 1024, 512, 256) 3.00E-04 8,192 10

SAC M03 6,750,000 (256, 512, 1024, 1024, 1024, 256) 2.00E-04 8,192 25

SAC M04 11,090,000 (256, 512, 1024, 1024, 1024, 256) 2.00E-04 8,192 10

SAC M05 17,000,000 (256, 512, 1024, 1024, 1024, 512, 256) 3.00E-04 8,192 10

SAC M06 5,500,000 (256, 512, 1024, 2048, 2048, 1024, 256) 3.00E-04 4,096 25

SAC M07 3,700,000 (256, 512, 1024, 1024, 512, 256) 2.00E-04 4,096 10

FIGURE 5

Comparison of results with historical actions: measured results vs. outcomes generated by the environment.

• Energy Production: A Pearson correlation coefficient of
0.994 was achieved between the simulated and historically
recorded hourly energy generation at the Baba plant. This
metric was chosen to specifically quantify the strength of
the linear relationship, which is visually confirmed in scatter
plots (Figures 5, 6) and is the primary assumption for this
validation. The test is also considered robust to normality
deviations in large datasets. The deviation in the total
accumulated energy over the entire validation period was
only 0.12%.

• Economic Gain: When considering the total economic gain
(including estimated downstream benefits from transfer),
the correlation between simulated and historical values
was also 0.994, with a cumulative deviation of 0.89%
over the period.

Scatter plots comparing simulated vs. measured values
(Figure 5) visually confirm the strong linear relationship and
minimal dispersion.

Further validation using specific hydraulic variables (discharge
levels, dam levels, turbine flows—Figure 6) showed excellent

agreement, with coefficients of determination (R²) generally
exceeding 0.99, and above 0.92 even for the most sensitive
variables. Minor deviations observed are likely attributable to
potential inaccuracies in manual historical data logging rather
than systemic model flaws. These results confirm the NN
model’s capability to reliably reproduce the complex system
dynamics, providing a high-fidelity simulation environment for RL
agent training.

3.2 Validation of synthetic inflow
generation

To ensure robust agent training across diverse hydrological
conditions, the k-Nearest Neighbors (KNN) method was selected
for generating the long-term synthetic hourly inflow series (1950–
2015), as described in Section 2.1.3. The suitability of KNN was
confirmed by comparing its statistical properties against both
historical data (2015–2024) and an alternative generation method
(Method of Fragments):
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FIGURE 6

Internal model for simulating the behavior of diversion channels and dikes along with the Hydroelectric Power Plant. Comparison of
environment-predicted results with historical measurements.

• Statistical Fidelity: KNN demonstrated superior performance
in preserving key statistics. Compared to the Method of
Fragments, KNN yielded significantly lower Root Mean
Square Error (RMSE: 63.6 vs. 111.5 m3/s) and Mean Absolute
Percentage Error (MAPE: 29.4% vs. 76.2%) relative to the
historical monthly means.

• Distributional and Temporal Similarity: The KNN
method demonstrated superior performance in replicating
the historical series compared to the Fragments method.
For temporal similarity, KNN achieved a higher Pearson
correlation (0.906 vs. 0.709) and a significantly lower
Dynamic Time Warping (DTW) distance (84,198 vs.
253,055), indicating a better reproduction of temporal
patterns. Furthermore, for distributional similarity, the
Kolmogorov-Smirnov (KS) test confirmed that the KNN-
generated distribution was closer to the historical data,
yielding a smaller KS statistic (0.106 vs. 0.112; p < 0.001
for both).

• Time-series comparisons (Supplementary Figure 1), QQ-
plots (Supplementary Figure 2) and empirical cumulative
distribution functions (Supplementary Figure 3) visually
corroborate these findings. The KNN method provided a
statistically robust and temporally coherent long-term inflow
series, deemed essential for effective DRL training.

3.3 DRL agent training and learned policy
characteristics

Multiple SAC agents were trained using different NN
architectures and hyperparameter configurations (detailed in
Table 1) interacting with the validated simulation environment
driven by the synthetic KNN inflow series.

• Convergence: Training runs typically converged toward stable
policies, exhibiting characteristic learning curves where the
cumulative reward per episode increased and stabilized over
millions of simulation steps (Learning curves can be shown in
Supplementary material if needed).

• Policy Variations: Despite converging to high-performance
policies, different training configurations resulted in distinct
operational strategies, particularly regarding reservoir level
management and turbine usage (Table 2, Figure 7):

◦ Reservoir Level Management: While most models
maintained average reservoir levels close to the historical
mean (approx. 115.68 m a.s.l.), the temporal patterns
varied. Some models (e.g., SAC M05) tended to maintain
slightly higher levels, potentially maximizing head for
dry periods but increasing spill risk during floods.
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Others (e.g., SAC M06) operated at slightly lower levels,
reducing spill probability but potentially foregoing some
generation opportunities.

◦ Turbine Operation: A trade-off was observed between
maximizing immediate economic gain and minimizing
turbine wear-and-tear. Some configurations (e.g., SAC
M05 achieved high gains but exhibited more frequent
daily unit startups (Table 2). Others (e.g., SAC M03)
achieved comparable or higher gains with significantly
fewer startups, indicating a more stable operational regime.

• Adaptability: The emergence of multiple high-performing,
yet distinct, policies highlights the flexibility of the DRL
approach and its ability to find different balances between
competing objectives based on subtle differences in training
setup or inherent system trade-offs.

3.4 Performance evaluation against
historical benchmark

The performance of the trained SAC policies was evaluated
by simulating their operation over the historical period (January
2015—December 2024) using the actual derived historical inflows
and comparing the outcomes against the actual historical
operation record.

• Economic Gain: All evaluated SAC models demonstrated
a significant improvement in total accumulated economic
gain (Baba generation revenue + estimated MLDW transfer
benefit) compared to the historical baseline (153.7 million
USD). Annualized improvements ranged from approximately
+2.13% to a maximum of +9.43% (Table 2). The top-
performing models were SAC M03 (+9.43%), SAC M06
(+8.67%), and SAC M07 (+8.49%).

• Constraint Adherence and Spill Management: The
reward function penalties effectively guided the agents to
respect operational limits:

– Uncontrolled Spillway (“Pico de Pato”): The specific
penalties applied for high discharges via the Pico de Pato
spillway resulted in all SAC models significantly reducing
the peak discharge compared to the historical maximum
(1,136.37 m3/s). Reductions reached nearly 9% in the
best case (SAC M05: 1,035.30 m3/s) (Table 3). Analysis
of the peak historical spill event (April 2022) showed
that the trained models successfully maintained discharges
below the observed historical peak, demonstrating effective
flood mitigation behavior learned via the reward signal
(Figure 8).

– Reservoir Levels: As noted previously (Figure 7), average
levels were maintained within a safe and operationally
reasonable range comparable to historical practice,
although with differing dynamic behaviors.

• Water Balance Conservation: Analysis of the difference
between total inflows and outflows for each model over the
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FIGURE 7

Baba reservoir level evolution: comparison of SAC optimization models and historical data.

TABLE 3 Percentage difference between inflows and outflows during the
modeled historical validation period (2015–2024).

Model % In-out diff.
vs. historical

Maximun discharge at
Pico de Pato

2015–2024 (m3/s)

HISTORICAL 0.00000% 1,136.37

SAC M01 0.00558% 1,044.62

SAC M02 0.00154% 1,040.05

SAC M03 −0.00950% 1,043.51

SAC M04 0.00391% 1,050.65

SAC M05 −0.00609% 1,035.3

SAC M06 −0.01530% 1,054.9

SAC M07 0.00290% 1,055.33

Maximum flows released to the river through the Pico de Pato spillway for different SAC
optimizations and historical data.

validation period showed negligible deviations (ranging from
+0.00558% to −0.01530% relative to historical flows, Table 3).
This confirms that the simulation environment, including the
NN model, rigorously conserves mass, ensuring that economic
gains are not based on artificial water creation or loss.

4 Discussion

The results of this study demonstrate the significant potential
of DRL for optimizing the complex, hourly operation of the
Baba hydropower facility. The development of operational policies
that yield up to a 9.43% increase in economic gain over

the historical baseline is a core achievement, highlighting the
capacity of DRL to identify and exploit complex efficiencies
often missed by traditional methods or manual operation. The
magnitude of this improvement is considerable and aligns with
performance gains reported in other recent studies applying DRL
to hydropower optimization (e.g., Wu et al., 2024; Tabas and
Samadi, 2024). While direct numerical comparisons are challenging
due to differences in reservoir characteristics and objectives,
our results confirm that the proposed framework is a state-
of-the-art approach, particularly in its ability to concurrently
optimize economic revenue while enhancing operational safety,
evidenced by the up to 9% reduction in peak uncontrolled
spillway discharges.

The fidelity of these results is strongly supported by the
rigorous validation of the underlying simulation framework.
The integration of a pre-trained NN-based dynamics model
within the Gymnasium environment proved highly effective,
accurately reproducing the system’s non-linear hydraulics
and energy generation (R2 > 0.99 for key variables, Figure 6)
while strictly conserving mass balance (Table 3). Furthermore,
the use of a statistically validated, long-term synthetic inflow
series generated via the KNN method ensured that the
agent was trained across a diverse and representative range
of hydrological conditions, fostering the robustness of the
learned policies.

Beyond the simulation framework, the choice of the SAC
algorithm was instrumental. Extensive experimentation was
conducted with the PPO algorithm, exploring various architectures
and hyperparameter configurations, yet it failed to achieve
satisfactory performance on this hydroelectric dispatch problem.
In contrast, SAC’s unique principle of maximizing both expected
reward and policy entropy intrinsically encourages robust
exploration. This, combined with its off-policy nature, allowed it
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FIGURE 8

Evolution of the flow discharged through Pico de Pato between April 26 and 30, 2022, for different SAC optimizations and historical data.

to excel in a scenario requiring continuous, highly interdependent
actions, confirming SAC as a more effective and stable option for
the operation of the Baba power plant. This success led to the
discovery of not a single optimal policy, but a suite of diverse,
high-performing strategies. This presents a key advantage in the
form of operational flexibility, offering human operators a choice
of policies adaptable to varying real-time conditions or strategic
priorities. However, it also reveals inherent trade-offs; for example,
some policies achieved high gains at the cost of more frequent
turbine startups, which could increase long-term maintenance
costs, whereas others found a more stable operational regime with
comparable gains.

Despite the promising results, certain limitations inherent
to DRL applications warrant discussion. The performance is
ultimately bound by the accuracy of the simulation model;
while validated, discrepancies between the NN model and
true system dynamics could arise under novel conditions. The
representativeness of the training data also influences policy
generalization. Moreover, further refinement of the simulation
framework and rewards remains an open direction, since
hydropower plants are inherently complex systems influenced by
diverse and evolving factors that cannot be fully captured at
once, but can be progressively incorporated. Furthermore, the
design of the reward function involves subjective weighting of
competing objectives, and alternative weighting schemes could
lead to different optimal policies. Finally, the computational cost
and expertise required for DRL training and hyperparameter
tuning remain considerations for practical deployment. These
limitations suggest clear directions for future work, including the
exploration of online learning to close the model-reality gap, the
use of multi-objective DRL to map Pareto-optimal policies, and
the integration of climate forecasts to enhance policy robustness
against future uncertainties.

5 Conclusions

This study successfully demonstrated that a Deep
Reinforcement Learning framework using the Soft Actor-
Critic algorithm can derive high-performing operational policies
for a complex, real-world interconnected hydropower system.
The combination of a high-fidelity, NN-based simulation
model and an advanced DRL algorithm capable of efficient
exploration in continuous control spaces proved key to
this success.

The learned policies significantly outperformed historical
operations, achieving up to a 9.43% increase in total economic
gain over a decade-long validation period. Crucially, this
economic optimization was achieved while respecting
operational and safety constraints, most notably by reducing
peak uncontrolled spillway discharges by up to 9%. The
research also highlighted the discovery of a diverse set
of viable policies, revealing practical trade-offs between
maximizing immediate revenue and ensuring long-term
operational stability.

Ultimately, this work provides a strong foundation and
a methodological blueprint for leveraging DRL to develop
more resilient, adaptive, and economically efficient hydropower
management systems. It paves the way for a new generation of
data-driven tools that can help operators navigate the increasing
complexities of water and energy resource management.
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