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This paper compares the inverse transient analysis (ITA) in the frequency domain 
(FITA) with its counterpart in the time domain (TITA) for leak detection and calibration 
of looped water supply networks (WSNs). The leak detection results demonstrate 
that both FITA and TITA achieve 100% accuracy in predicting leak location and 
size for the case study. However, FITA exhibits superior computational efficiency, 
converging twice as fast as TITA. Regarding the calibration performance, TITA 
demonstrates higher precision in estimating pipe friction factors, with an overall 
average error of 0.019%. In comparison, FITA achieves an average error of 4.14%, 
due to the linearization of the friction loss formula. It is also noteworthy that the 
high sensitivity of FITA to leak parameters allows for reliable leak detection even 
without simultaneous calibration of the friction factor. In fact, the impacts of leaks 
and frictional losses are nearly separable in the frequency domain. Furthermore, 
the novel dominant frequencies (DFs) method provides direct leak detection 
through frequency response analysis, while the Decision Table Method (DTM) 
optimizes measurement site placement with reduced computational overhead. 
Uncertainty analysis confirms FITA’s robustness to friction factor variations within 
reasonable ranges, making it particularly suitable for large or complex WSNs 
where computational efficiency is paramount.
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1 Introduction

Leakage in water supply networks (WSNs) remains a persistent and costly challenge, 
contributing to significant operational expenses, energy wastage, and deterioration of 
water quality (Colombo and Karney, 2002; LeChevallier et al., 2003; Ali et al., 2022). As 
aging infrastructure coupled with increasing water demand intensifies the need for 
sustainable water management, effective leak detection has become a paramount 
concern in both research and practical applications. In recent years, considerable 
progress has been made through the use of advanced simulation models and the 
implementation of digital twins (Mobadersani et al., 2024; Abdelmoez et al., 2024) that 

OPEN ACCESS

EDITED BY

Padam Jee Omar,  
Babasaheb Bhimrao Ambedkar University, 
India

REVIEWED BY

Luttfi A. Al-Haddad,  
University of Technology, Iraq
Mahmoud Heshmat,  
Assiut University Hospital, Egypt

*CORRESPONDENCE

Amin E. Bakhshipour  
 amin.bakhshipour@rptu.de

RECEIVED 07 July 2025
ACCEPTED 09 September 2025
PUBLISHED 08 October 2025

CITATION

Ranginkaman H, Bakhshipour AE, Haghighi A, 
Krumke SO and Dittmer U (2025) Leak 
detection in water supply networks using 
inverse transient analysis in time and 
frequency domain: a comparative 
investigation.
Front. Water 7:1661148.
doi: 10.3389/frwa.2025.1661148

COPYRIGHT

© 2025 Ranginkaman, Bakhshipour, Haghighi, 
Krumke and Dittmer. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  08 October 2025
DOI  10.3389/frwa.2025.1661148

https://www.frontiersin.org/journals/Water
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2025.1661148&domain=pdf&date_stamp=2025-10-08
https://www.frontiersin.org/articles/10.3389/frwa.2025.1661148/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1661148/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1661148/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1661148/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1661148/full
mailto:amin.bakhshipour@rptu.de
https://doi.org/10.3389/frwa.2025.1661148
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Water#editorial-board
https://www.frontiersin.org/journals/Water#editorial-board
https://doi.org/10.3389/frwa.2025.1661148


Ranginkaman et al.� 10.3389/frwa.2025.1661148

Frontiers in Water 02 frontiersin.org

integrate high-quality sensing data, both quantitative and 
qualitative, of WSNs. These innovations enable more accurate 
monitoring and management of urban water systems, thereby 
enhancing leak detection capabilities and supporting sustainable 
infrastructure operation.

Hydraulic transients, or water hammer waves, are viewed as 
a promising method for leak detection due to their long-range 
capability, effectiveness in large-scale systems, cost efficiency, 
and minimal disruption to pipeline operations (Ayati and 
Haghighi, 2023) Among model-based approaches, inverse 
transient analysis (ITA) stands out for its ability to identify leak 
parameters, such as location and size, and calibrate pipe friction 
factors by comparing measured data with computational 
simulations. Two distinct ITA methods have emerged: the time-
domain approach (TITA), which analyzes transient pressure 
signals as they evolve, and the frequency-domain approach 
(FITA), which examines the system’s frequency response to detect 
anomalies. Despite their widespread use, the literature lacks a 
systematic “head-to-head” comparison of TITA and FITA under 
identical conditions, leaving a critical gap in understanding their 
relative strengths and limitations. This study addresses that gap 
by rigorously evaluating both methods, offering insights into 
their performance and practical applicability in looped WSNs.

TITA has been extensively developed and applied by 
numerous researchers, focusing on method formulation (Liggett 
and Chen, 1994; Vítkovský et al., 2000), experimental validation 
(Covas and Ramos, 2001, 2010; Soares et  al., 2011), and 
implementation in complex networks (Kapelan et al., 2003, 2004; 
Shamloo and Haghighi, 2009, 2010; Haghighi and Ramos, 2012). 
Advances in computational techniques have further refined 
TITA’s efficiency (Vítkovský et al., 2007; Sophocleous et al., 2017; 
Wang et al., 2019; Capponi et al., 2017a; Keramat et al., 2017). 
Typically, TITA employs the method of characteristics (MOC) for 
forward simulations, a robust and versatile approach that 
discretizes pipelines in both time and space, maintaining a 
Courant number of unity for numerical stability. However, 
achieving high accuracy requires a fine mesh, escalating 
computational demands, and even then, leaks occurring between 
nodes can challenge precise localization.

In contrast, FITA leverages frequency-domain analysis (FDA) 
to eliminate spatial discretization across the entire network, 
solving equations only at critical nodes and potential leak sites. 
Early studies demonstrated that the frequency response diagram 
(FRD) is highly sensitive to system faults, enhancing detection 
capabilities (Lee et al., 2005, 2006, 2007, 2008, 2013; Sattar and 
Chaudhry, 2008; Ranginkaman et al., 2016).

Recent studies have proposed the use of FRD within the ITA 
framework. By leveraging frequency-domain analysis, which 
typically demands fewer computational resources than time-
domain simulations, FRD has the potential to reduce computation 
time for pipe network modeling significantly. However, since 
frequency-domain approaches rely on linearization assumptions, 
concerns remain regarding their accuracy compared to the more 
detailed method of characteristics (MOC)-based time-domain 
models (Lee and Vitkovsky, 2010; Capponi et  al., 2017b; 
Ranginkaman et al., 2019).

Over two decades, FDA has evolved through theoretical 
advancements (Covas and Ramos, 1999; Vítkovský et al., 2003; Kim, 

2005; Liao et al., 2021), practical applications (Ferrante and Brunone, 
2003; Ferrante et al., 2016; Sun and Chang, 2014; Xu et al., 2024), and 
integration with innovative techniques like deep learning and 
viscoelastic pipe modeling (Duan et al., 2010, 2011a, 2011b; Duan, 
2017, 2018; Ranginkaman et al., 2016; Wang et al., 2019; Capponi 
et al., 2017a; Huang et al., 2015; Pan et al., 2022). This evolution has 
positioned FITA as a computationally efficient alternative, 
particularly suited to large or complex WSNs.

In operational terms, TITA models transient events, such as 
valve closures or pump failures, using MOC to simulate pressure 
wave propagation, iteratively adjusting leak parameters and 
friction factors to match observed data (Liggett and Chen, 1994; 
Vítkovský et al., 2000; Covas and Ramos, 2001). While effective 
in controlled settings, its reliance on fine discretization and 
precise synchronization between measurements and simulations 
limits scalability and robustness in real-world WSNs with sensor 
noise or latency. FITA, however, transforms pressure and flow 
data into the frequency domain (e.g., via Fourier transform), 
focusing on FRD shifts caused by anomalies (Lee et al., 2005; 
Sattar and Chaudhry, 2008). This approach reduces computational 
overhead and enhances fault detection sensitivity, yet its practical 
performance relative to TITA remains underexplored, a gap this 
study seeks to bridge.

This research conducts a comprehensive comparison of TITA 
and FITA, targeting leak detection and friction factor calibration 
in looped WSNs. A frequency-domain transient simulation model 
predicts the system’s FRD based on unknown parameters (leak 
location, size, and friction factors). Optimal measurement sites 
are selected using the Decision Table Method (DTM), prioritizing 
nodes sensitive to transients, and field data inform a non-linear 
programming (NLP) problem solved via a genetic algorithm (GA). 
This methodology evaluates both methods across key metrics: 
accuracy, precision, efficiency, and robustness under uncertainties 
like measurement noise.

By applying TITA and FITA to a realistic looped WSN under 
controlled conditions, this study clarifies their trade-offs, 
providing WSN operators with a decision-making framework 
tailored to network topology and operational needs. The 
integration of DTM and GA enhances ITA’s feasibility, while the 
comparative analysis advances the theoretical and practical 
foundations of frequency-domain techniques in water 
distribution systems.

In addition, to demonstrate the capability and efficiency of 
FDA in leak detection within WSNs, a novel conceptual and 
analytical approach called the DFs method has been introduced. 
This method leverages the unique frequency signatures of leaks 
to identify their presence and characteristics directly, eliminating 
the need for optimization techniques or computationally 
intensive tools.

2 Materials and methods

2.1 Governing equations

Inverse analysis requires a simulation model of the target 
system that makes numerical predictions of the system’s response 
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(forward analysis). Both time and frequency domain models are 
commonly used, and their simulation models are well described 
in detail in standard references (Streeter and Wylie, 1993; 
Chaudhry, 2014) and previous studies cited above. The principal 
continuity and momentum equations for the transient flow in 
pressurized pipes are as follows (Equations 1, 2):

	

∂ ∂
+ =
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where, x  = distance along the pipe, t  = time, a = wave speed, 
g  = gravitational acceleration, A = pipe cross-sectional area, D  = 
pipe diameter, Q = instantaneous discharge, H  = instantaneous 
piezometric head, and f  = friction factor. The subscript 0  in 
some of the variables denotes that the variable is based on an 
initial or steady state.

The governing equations, along with their corresponding 
boundary and initial conditions, are typically solved 
using the numerical Method of Characteristics (MOC), which 
discretizes the network in both time and space while maintaining a 
unit Courant number. In this study, a simulation package in 
MATLAB based on the MOC, developed by Shamloo and Haghighi 
(2010), is adopted and utilized for time-domain simulations.

For frequency-domain analysis of the network, the governing 
equations must be linearized and transformed into the frequency 
domain. Taking ( )= + 0H h H  and ( )= + 0Q q Q  (where h and q = 
the instantaneous variations in the head and flow for the steady-
state initial conditions, respectively), linearization of the steady 
friction term, and finally taking the Fourier transform 
concerning time, the transient flow equations in the frequency 
domain are obtained using Equations 3 and 4 (Chaudhry, 2014):
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Where = −1i , ω = angular frequency and the sign “ $ ” denotes 
a variable in the frequency domain. The solution of these equations 
for a reservoir-pipe-valve system (Figure  1) is as follows 
(Equations 5, 6):
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 is the propagation constant, and the subscripts D  

and U denote the downstream and upstream ends of the pipe, 
respectively.

Frequency domain analysis can be  performed using either the 
impedance or transfer matrix method. Both methods are based on the 
transient flow equations, but the transfer matrix often has benefits when 
analyzing topologically complex systems (Chaudhry, 2014; Streeter and 
Wylie, 1993). The transfer matrix method is incorporated here. Leakage 
is modeled here using Equation 7 (Ranginkaman et al., 2016):
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 is the linearized equation of the rate of flow 

from the leak (Lee et  al., 2005), lh , 0lQ  and 0lH  are the local head 
fluctuations at the leak, the steady-state leakage discharge, and the steady-
state head at the leak, respectively, where node j is the leak location, jni  = 
the number of pipes entering node j, jno  = the number of pipes exiting 
node j. Uiq  = the exiting rate of the flow from node j by pipe i, Diq  = the 
rate of flow entering node j by the pipe i, jd  = the demand at node j, and 
the remaining parameters are defined as before. Taking the Fourier 
transform with respect to time gives the following frequency domain at the 
leakage location, we get Equation 8 (Ranginkaman et al., 2016):

	 = =
− − =∑ ∑ 0

01 1

ˆ ˆˆ ˆ
2

j jni no
l

Di Ui j j
li i

Qq q h d
H 	

(8)

 

 

 

 

FIGURE 1

Reservoir-pipe system.
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For the frequency-domain transient analysis of the pipe network 
in this study, we utilized a MATLAB-based computational package, 
which is based on the above formulation and the transfer 
matrix method.

2.2 Transient flow generation

The efficacy of ITA hinges on the generation of transient flow, 
which drives the inverse process by eliciting a measurable system 
response to a controlled excitation. This excitation serves as the 
foundation for both TITA and FITA methods, enabling the 
identification of leak parameters and pipe friction factors through 
the analysis of pressure or flow perturbations. For ITA to succeed, 
the characteristics of the transient excitation must satisfy several 
critical criteria: duration, amplitude, and location of the 
disturbance. Each of these factors significantly influences the 
quality and interpretability of the system response, directly 
impacting the accuracy and efficiency of leak detection and network 
calibration. Vítkovský et al. (2007) experimentally investigated the 
effects of valve closure time on the ITA’s accuracy. They concluded 
that the bandwidth of the transient flow, which is created by slow 
valve closure, is insufficient to carry the necessary information. 
Jung and Karney (2008) showed that using the mild transient with 
many measurement sites can increase the accuracy of the 
ITA. Haghighi and Shamloo (2011) designed the optimal excitation 
for generating transients in WSNs by presenting a mathematical 
programming method that optimizes the duration, amplitude, and 
location of excitation, considering the generated maximum and 
minimum pressure heads. Lee et  al. (2014) suggested that, for 
practical fault detection, it is better to use both high and 
low-bandwidth signals.

The duration of the excitation determines the temporal window 
over which the transient signal evolves. Short, rapid excitations, such 
as those induced by a sudden valve closure, generate sharp pressure 
waves that propagate through the network, producing distinct 
reflections from leaks or other anomalies. All previous works 
advocated for such rapid excitations, citing examples like pump trips 
or the manual closure of a side-discharge valve, which create high-
frequency transients capable of revealing system faults. However, 
excessively prolonged excitations may dampen these reflections, blur 
the signal, and reduce the resolution of TITA’s time-domain analysis 
or FITA’s FRD. Conversely, an overly brief disturbance may fail to 
excite lower-frequency modes, limiting the applicability of methods 
like the DFs approach, which relies on resonant peaks in the FRD.

The amplitude of the excitation governs the strength of the 
pressure wave and, consequently, the signal-to-noise ratio in the 
measured response. A sufficiently large amplitude ensures that leak-
induced perturbations are distinguishable from background noise or 
minor hydraulic variations, enhancing the sensitivity of both TITA 
and FITA. However, practical constraints, such as avoiding damage to 
aging infrastructure or exceeding operational pressure limits, 
necessitate a balance between amplitude and safety.

The location of the disturbance is equally pivotal, as it dictates 
the propagation path of the transient wave and the nodes most 
affected by the response. Strategic placement near critical junctions 
or suspected leak sites can maximize the visibility of anomalies in 

the system’s response, whether analyzed in the time domain or 
frequency domain (Haghighi and Shamloo, 2011). For TITA, an 
excitation near the leak enhances the clarity of reflected pressure 
signals; for FITA and the DFs method, it amplifies shifts in the FRD’s 
dominant frequencies. However, not all excitation methods proposed 
by Lee et al. (2006) are universally ideal. For instance, while side-
discharge valve closures offer precise control over timing and 
location, their effectiveness depends on network topology, loops or 
branches may diffuse the transient signal, reducing its 
diagnostic power.

Notably, the choice of excitation method must align with the 
analytical framework of ITA. TITA benefits from excitations that 
produce clear, time-resolved wave reflections, necessitating rapid and 
localized disturbances. FITA, and particularly the DFs method, thrives 
on excitations that excite a broad spectrum of frequencies, enabling 
the identification of resonant peaks sensitive to leaks. Valve maneuvers 
offer customizable duration and amplitude tailored to specific network 
conditions. Thus, the success of ITA, whether through TITA’s iterative 
optimization or FITA’s frequency-based efficiency, relies on designing 
an excitation that balances these criteria to elicit a robust and 
interpretable system response.

In practice, the design of an ideal excitation is naturally highly 
dependent upon the physical specifications of the system. Therefore, 
for leak detection in the field by the ITA, a wide variety of excitations 
should be investigated to achieve a transient flow, which could reflect 
the leak’s effects appropriately. Another issue that should be considered 
to generate a transient is that, to control the FDA linearization errors, 
the amplitude of excitation should be capped at 10% of the steady-
state flow (Lee and Vitkovsky, 2010; Ranginkaman et al., 2019).

2.3 Measurement site design

The success of ITA, whether in the time domain (TITA) or 
frequency domain (FITA), relies heavily on the strategic deployment 
of pressure sensors within a WSN to capture transient signals for 
comparison with simulation outputs. This process estimates critical 
system parameters such as leak locations, sizes, and pipe friction 
factors. However, practical implementation is non-trivial due to 
challenges including limited site accessibility, sensor reliability, and 
network complexity. Unknown parameters, such as leaks, blockages, 
and friction factors affect pressure heads throughout the network, 
underscoring the need for measurement sites with heightened 
sensitivity to these variables. Selecting such locations enhances the 
ITA’s ability to discern the impacts of leaks and friction, improving 
diagnostic accuracy (Liggett and Chen, 1994; Zhang et al., 2019; Pan 
et al., 2022).

To optimize parameter estimation, the ITA objective function 
must leverage measurements from these sensitive sites, amplifying 
gradients within the optimization search space and enhancing 
problem convexity for reliable convergence. This necessitates robust 
methodologies to determine the optimal number and placement of 
sampling sites, specifically frequency responses for FITA, across a 
WSN’s numerous nodes.

Early efforts to address this challenge include Liggett and Chen 
(1994), who used sensitivity matrices to maximize information gain from 
pressure measurements, though their approach required significant 
computational resources. Vítkovský et al. (2003) presented a valuable 
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approach for determining the configuration of measurement sites that 
produces optimal results for ITA. Three performance indicators based 
on A- and D-optimality criteria and the sensitivities of the heads 
concerning the unknown parameters were used in that study. They used 
a GA to find the optimal measurement locations according to the 
aforementioned criteria. Shamloo and Haghighi (2010) similarly used 
the sensitivities of transient heads to unknown leaks at candidate sites to 
rank the best locations for installing sensors for doing ITA.

More recent studies have built on this foundation. Zhang et al. 
(2019) proposed a sensor placement strategy using inverse transient 
analysis, optimizing locations based on sensitivity to pipeline 
conditions, albeit with reliance on optimization algorithms. Pan 
et al. (2022) advanced this field by introducing a sensitivity-based 
approach for transient-based leak detection, emphasizing 
computational efficiency and site diversification, though still 
requiring numerical optimization in some cases. Ayati and 
Haghighi, (2023) introduced a novel sampling design method for 
hybrid Machine Learning/Transient-Based (ML/TB) leak detection 
of pipe networks. Their proposed technique exploits the hydraulic 
responses of the network in the frequency domain and the concept 
of Filter and Wrapper feature selection. They also utilized 
multiobjective optimization to handle the trade-off between leak 
detection error and the number of sampling nodes. While these 
methods offer valuable insights, they often entail drawbacks such as 
high computational demands, the need for optimization, and 
potential numerical instabilities (e.g., ill-conditioned matrices), 
limiting their scalability in complex WSNs.

This study employs DTM (Ayati et al., 2019) to design optimal 
measurement sites, offering a computationally efficient and practical 
alternative. DTM prioritizes nodes based on their sensitivity rank to 
decision variables (e.g., leak parameters and friction factors) rather 
than absolute sensitivity values. This rank-based approach mitigates 
the influence of extreme sensitivities, fostering a more uniform 
distribution of sites, a critical advantage for detecting distributed or 
multiple leaks in looped networks. Unlike optimization-heavy 
methods, DTM requires no mathematical programming, Hessian 
matrix computation, or iterative algorithms, reducing computational 
overhead while maintaining diagnostic accuracy.

For FITA, DTM is adapted to focus on nodes with significant 
sensitivity to changes in FRD, leveraging the frequency domain’s 
inherent efficiency. The method evaluates sensitivity to leak 
parameters and friction factors independently and then integrates 
these rankings to produce a cohesive measurement site design that 
supports both leak detection and calibration. The DTM approach is 
implemented as follows:

	 1.	 The sensitivity of the nodes’ frequency responses to unknown 
parameters is calculated using Equations 7, 8. Each row of these 
matrices is ranked in terms of the sensitivity value and stored in 
matrices named Rank _a and Rank _ f . So the element with the 
highest degree of sensitivity takes rank no. 1, and the element 
with the lowest sensitivity takes the rank sN  (Equations 9, 10) 
(Ayati et al., 2019).

	 =
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where ijSa  is the pressure sensitivity matrix of site j concerning the 
leak area jAe , ijSf is the sensitivity matrix of the pipe friction factor if  
in NS  (possible) candidate node as a location for pressure 
measurement, NL is the number of leaks in the network, and NP  is the 
number of main pipes in the network.

	 2.	 The summation of rank in each node is stored in two vectors 
named Sum_a  (Equation 11) and Sum_ ,f  (Equation 12), 
which indicate the sum of ranks in each candidate node 
concerning the unknown parameters of the leak and the pipe 
friction factors, respectively.
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	 3.	 In matrices of Rank _a and Rank _ f , the node with the lowest 
value of rank summation is selected as the first measurement 
site. It means that this node has the highest priority in 
comparison with other nodes.

	 4.	 Rows that have the rank no. 1 for the selected node in step 3 are 
removed from Rank _a and Rank _ f . As the selected node has 
the best priority for these unknowns (leaks and friction 
factors), the effect of these parameters is eliminated in future 
selections. It should be noted that in _a, each row indicates the 
effect of the leak at a node of the network, and in Rank _ f  each 
row indicates the effect of the loss coefficient in a pipe. In other 
words, the number of rows in Rank _a and Rank _ f  is equal 
to the number of nodes and pipes of the network, respectively.

	 5.	 If all rows of Rank _a and Rank _ f have been removed in 
step 4, the algorithm goes to step 6, and if not, the Sum_a  and 
Sum_ f  are recalculated by the new values from step 4, and the 
algorithm returns to step 3.

	 6.	 Update Sum_a  and Sum_ f  vectors. The new Rank matrix is 
taken into account for the new computations, and the 
algorithm returns to step 2.

	 7.	 In case all candidate nodes are selected, the algorithm is 
stopped. The nodes that are selected sooner have higher 
priority. It means that the selection of sN  nodes out of the total 
NTS candidate nodes, it is enough that the first sN  nodes are 
selected from DTM. Figure  2 shows the flowchart of this 
method, schematically.

2.4 Methodology of leak detection and 
calibration by FITA

Based on the transient excitation in the network and the transient 
pressure heads sampled at predetermined measurement sites, the ITA 
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method can be applied. Since the TITA has been extensively developed 
and explained in previous studies (Liggett and Chen, 1994; Kapelan 
et al., 2003, 2004; Shamloo and Haghighi, 2009, 2010; Haghighi and 
Ramos, 2012), this section focuses exclusively on the step-by-step 
formulation of the FITA.

	 1.	 Excitation of transient flow: a transient event is introduced into the 
network by imposing a rapid change in a nodal demand or valve 
operation. This perturbation generates a propagating transient 
signal that interacts with system anomalies, such as leaks.

	 2.	 Data acquisition and frequency transformation: transient 
pressure heads are recorded at selected measurement sites 
with the highest possible sampling frequency to capture the 
full spectral characteristics of the transient response. The 

recorded time-domain pressure signals are then transformed 
into the frequency domain using the Fast Fourier 
Transform (FFT).

	 3.	 Development of the frequency-domain simulation model: a 
hydraulic simulation model of the water supply network is 
formulated in the frequency domain using the FDA. This 
model predicts the network’s frequency response as a function 
of both leak parameters and pipe friction factors. By 
representing the system behavior in the frequency domain, the 
effects of leaks manifest as distinct shifts in dominant 
frequencies, which can be  utilized for leak localization 
and characterization.

	 4.	 Optimization formulation for leak detection: the inverse 
problem is formulated as a nonlinear programming (NLP) 
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DTM flowchart.
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problem, where an objective function is defined to 
minimize the discrepancy between the measured and 
simulated frequency responses at the monitoring sites. The 
optimization is based on a least-squares criterion, ensuring 
that the estimated leak parameters minimize the overall 
error between observed and computed data. The objective 
function is expressed as shown in Equation 13 (Shamloo 
and Haghighi, 2010).

	
( )

= =
= −∑∑

N 2

1 1

ˆ ˆsN

Oij mij
j i

C h h
	

(13)

where, ˆmijh  and ˆOijh  = the model predicted and observed 
frequency responses at site j for ith spectral data point, respectively, 

sN  = the number of measurement sites in the network and the 
remaining parameters are as before. Objective function C is a function 
of all unknown parameters in the network, leaks and friction 
factors herein.

	 5.	 A nonlinear optimization solver is applied to solve the above 
problem. When the objective function is minimized to zero, 
the optimum decision variables represent the states of leakage 
and pipe friction factors in the network (Equation 13).

A similar approach is employed in the time domain using 
TITA. Following this method, the initial analysis identifies 
potential leakage-prone areas within the network. To enhance the 
accuracy of leak localization, a refined modeling approach can 
be adopted by incorporating sub-main pipelines into the primary 
network model.

In this refinement process, all relevant data about the sub-main 
branches, including physical attributes and hydraulic conditions, 
must be  accurately gathered and integrated into the model. If 
necessary, additional monitoring nodes can be strategically placed 
within the sub-main network to improve the resolution of the 
analysis. The leak detection procedure is then repeated using these 
expanded datasets, ensuring a more precise and reliable localization 
of leaks.

By iteratively refining the network representation and 
optimizing measurement site selection, both TITA and FITA can 
be effectively adapted for real-world applications, where network 
complexity and uncertainty pose significant challenges to accurate 
leak detection.

3 Case study

The FITA and TITA methods are applied to a benchmark WSN 
originally introduced by Pudar and Liggett (1992) for leak detection 
and calibration, which has since been widely used as a case study 
in numerous investigations. The plan and physical properties of the 
network are shown in Figure 3. A small leak with an effective area 
of = 21eA cm  is located at Node 2, and the transient flow is induced 
by a sudden change in demand at Node 4 (Figure 4). This example 
aims to examine the impact of leakage on the network’s frequency 
response and to compare the results of the FITA and TITA methods.

3.1 Designing the optimum measurement 
sites

In the first step, DTM and the methods proposed by Vítkovský et al. 
(2003) are employed to determine the optimal measurement sites. 
Vítkovský et al. (2003) introduced three key indicators for evaluating the 
optimal performance of the ITA for a given configuration of 
measurement sites: ηJ , which is based on the Jacobian of the heads and 
should be maximized; ηA, which follows the A-optimality criterion and 
should be minimized, as it represents the variance of parameter errors; 
and ηD, which follows the D-optimality criterion and should 
be maximized, as it accounts for the curvature and covariance matrices. 
For further details, refer to the original study (see Table 1).

As shown in Tables 2, 3, the results of DTM closely align with those 
obtained by Vítkovský et  al. (2003). However, DTM offers a more 
straightforward and computationally efficient approach, as it does not 
require an optimization process. Based on the results, if only a single 
measurement site is to be selected, Node 4 is identified as the optimal 
location for sensor installation. However, when considering the 
installation of two sensors, Nodes 4 and 6 are preferred, as they provide 
more comprehensive coverage of the network’s frequency responses and 
offer better sensitivity for detecting anomalies such as leaks.

3.2 Concept of dominant frequencies

Before addressing leak detection and calibration of friction factors 
using the FITA and TITA methods, a general analysis of the network’s 
frequency response is conducted for both leaking and non-leaking 
scenarios. The frequency response function (FRF) diagrams of the 
network, obtained from excitation at Node 4 for the non-leaking case, are 
presented in Figure 5. The FRF describes how a system reacts to different 
input frequencies, providing insights into its dynamic behavior. In 
pipeline networks, the FRF represents the relationship between pressure 
fluctuations and flow disturbances, allowing for a detailed analysis of 
system responses under various conditions. This method is beneficial for 
leak detection, as differences in frequency responses between leaking and 
non-leaking scenarios can reveal anomalies.

The FRF is computed by analyzing how the pressure head reacts to 
an applied excitation. After the transient event was initiated in the 
network and the frequency responses of the network at nodes were 
computed, the FFT was applied to the excitation (Figure 4a) converting it 
into the frequency domain (Figure 4b). The nodal FRF is obtained by 
dividing the frequency responses of nodal heads by the FFT of the 
excitation, revealing how different frequency components propagate 
through the network. This method helps in leak detection and system 
analysis by identifying frequency-dependent behavior.

Figure 5 shows that the FRF diagram values are repeated at the same 
frequency intervals. As seen, the frequency range of the first harmonic is 
( 0 1.75≤ω≤ ), the second harmonic is (1.75 2 1.75≤ω≤ ∗ ) and so on 
up to the end. Regarding the similarity of the shape of all the FRF 
harmonics, only the first harmonic could be taken into account. Each 
harmonic of the FRF consists of two identical parts that have axial 
symmetry. Therefore, the second part of the first harmonic could 
be removed, and only the first part could be considered (Figure 6).

Figure 5 illustrates the FRF diagram, where the response values repeat 
at regular frequency intervals, indicating a periodic structure. As 
observed, the frequency range of the first harmonic extends from 0 to 1.75 
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(i.e., 0 1.75≤ω≤ ), while the second harmonic spans 1.75 to 2 × 1.752, 
and this pattern continues across higher harmonics. Due to the self-
similar nature of the FRF across different harmonic ranges, the analysis 
can be simplified by focusing solely on the first harmonic, as it captures 
the essential characteristics of the system’s frequency response. 
Furthermore, each harmonic in the FRF exhibits axial symmetry, 
meaning it consists of two mirrored sections. This symmetry arises due 
to the properties of the Fourier transform in linear time-invariant systems, 
where the frequency response in the positive spectrum mirrors the 
negative spectrum. Consequently, the second half of the first harmonic 
contains redundant information and can be disregarded without loss of 
accuracy. As a result, only the first half of the first harmonic is retained for 
further analysis, as depicted in Figure  6, leading to a more efficient 
representation of the system’s frequency behavior.

The FRF diagrams exhibit peak values that vary depending on the 
location of the node within the network. In this study, the DFs are defined 
as the frequencies corresponding to peak values in the FRF diagram that 
exceed half of the maximum peak value. These DFs represent the most 
significant resonant responses of the system. Since each node may exhibit 
different DFs due to variations in local hydraulic conditions and wave 
reflections, the set of all DFs across the network collectively defines the 
network’s DFs. The DFs identified for each node in the studied network 

are summarized in Table 3, providing insights into the system’s dynamic 
behavior and potential resonance characteristics.

When a leak occurs at a node, the most significant changes in the FRF 
diagram are expected to appear at the DFs of that node. This is because 
the DFs represent the natural resonance points of the system, where 
pressure and flow perturbations are most sensitive to disturbances such 
as leaks. The presence of a leak alters the hydraulic impedance of the 
network, modifying the frequency response by shifting peak amplitudes 
or introducing new frequency components. Figure 7 illustrates the FRF 
diagram of Node 6 (as a measurement site) under both non-leaking and 
leaking conditions for different leak locations. The comparison of these 
diagrams highlights how leaks influence the network’s frequency 
response, providing a basis for detecting and localizing leaks based on 
deviations at the dominant frequencies.

By comparing Figure 7 with Table 3, it becomes clear that the 
concept of DFs can be effectively utilized for both leak detection and 
sensor placement design. The leak detection process using the DFs 
method is as follows:

	•	 Step 1: The DFs for each node are determined based on the FRF 
diagram under non-leaking conditions. These frequencies serve 
as baseline markers for identifying potential leaks.

FIGURE 3

Test case water supply network.
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	•	 Step 2: The measured FRF diagrams at the selected measurement 
sites are compared with the non-leaking FRF diagram obtained 
in Step 1. If the measured FRF diagrams match the non-leaking 
baseline, it indicates no leakage. However, if there are 

discrepancies, the frequencies corresponding to the most 
significant variations in the FRF diagram values are identified, 
which highlights the potential areas of disturbance caused 
by leaks.

	•	 Step 3: The frequencies identified in Step 2 are then compared to 
the DFs table (Table 3). If any of the identified frequencies match 
the DFs of a particular node, it indicates that a leak is present at 
that node. This method enables accurate leak localization based 
on variations in frequency responses at critical locations within 
the network.

The following questions may arise: Does the generated pattern in 
the FRF diagram remain preserved as the effective leak area increases? 
And can this method be  applied to leaks with a larger area? The 
answer to both of these questions is yes. As the effective leak area 
increases, the variations in the FRF values at the DFs become more 
pronounced. This leads to more significant deviations in the FRF 
diagram, making the detection of the leak location easier. Figure 8 
illustrates the FRF diagram at Node 6 for cases where the effective leak 
area at Node 2 varies between = 21cmAe  and = 24cmAe . As the leak 
area increases, the changes in the FRF diagram are amplified, allowing 
for more accurate detection of the leak location and its severity. This 
demonstrates that the DFs method remains effective and even 
improves in its sensitivity to leak detection as the leak area expands.

According to the DFs concept, the optimal nodes for measurement 
sites are those whose DFs match the network’s DFs or have the highest 
number of matching frequencies. Based on the results presented in 
Table 3, Nodes 4 and 6 are identified as the best locations for sensor 
installation, which aligns with the findings obtained through DTM in 
the previous section. However, it is important to note that the DFs 
method is not universally applicable to all WSNs. Its effectiveness is 
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FIGURE 4

The excitation at nodes 4, (a) in the time domain and (b) in the 
frequency domain.

TABLE 1  Comparison of the results of DTM with Vítkovský et al. (2003) for leak detection.

Best measurement site configuration using

NS
DTM ηJ ηD ηA

1 4 4 4 6

2 4,6 4,6 4,6 4,6

3 3,4,6 4,6,7 4,6,7 2,4,6

4 3,4,6,7 2,4,6,7 2,4,6,7 2,4,6,7

5 2,3,4,6,7 2,4,5,6,7 2,3,4,6,7 2,3,4,6,7

6 2,3,4,5,6,7 2,3,4,5,6,7 2,3,4,5,6,7 2,3,4,5,6,7

TABLE 2  Comparison of the results of DTM with Vítkovský et al. (2003) for calibration of friction factors.

Best measurement site configuration using

NS NS NS NS NS

1 4 4 4 4

2 4,6 4,6 4,6 4,6

3 4,6,7 4,6,7 4,6,7 2,4,6

4 2,4,6,7 2,4,6,7 2,4,6,7 2,4,6,7

5 2,3,4,6,7 2,3,4,6,7 2,3,4,6,7 2,3,4,6,7

6 2,3,4,5,6,7 2,3,4,5,6,7 2,3,4,5,6,7 2,3,4,5,6,7
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highly dependent on factors such as the resolution of transient flow 
data and the shape and scale of the network. Despite these limitations, 
the DFs method shows potential as a supplementary tool for leak 
detection and measurement site design, complementing existing 
approaches. Further investigations are necessary to fully assess its 
applicability and refine the method for broader use across different 
network configurations.

3.3 Leak detection by FITA and TITA

To solve the problem using the ITA approach, due to the unknown 
location and number of leaks, all junction nodes except the reservoir 
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FIGURE 5

The FRF diagrams of the network for the non-leaking case.

TABLE 3  Dominant frequencies.

Node number Hz (dominant frequency)

Node 2 { }0.32,0.53,0.6

Node 3 { }0.42,0.6

Node 4 { }0.54,0.32,0.6,0.42

Node 5 { }0.54,0.6

Node 6 { }0.32,0.6,0.54,0.42,0.53

Node 7 { }0.54,0.32,0.6

Network’s dominant frequency { }0.32,0.6,0.54,0.42,0.53
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are assumed to be  potential leaky nodes with unknown sizes. 
Consequently, the problem consists of 17 unknown decision variables: 
6 of these correspond to the leak’s effective areas (Ae) of the leaky 
nodes, while the remaining 11 parameters represent the pipe friction 
factors ( f ) for each pipe segment. To determine the unknown 
parameters, the objective function (Equation 13) at Node 4 (as the 
only selected measurement site) is minimized to zero using a real GA 
with the constraints ≤ ≤ 20 Ae 2 cm  and ≤ ≤0.015 0.05f .

In our study, the GA parameters such as mutation rate, number of 
generations, population size, and crossover methods were determined 
using a well-established, statistically guided trial-and-error approach 
with a limited number of iterations. Accordingly, the optimization 
process began by generating an initial population of 100 chromosomes. 
The optimization was carried out with a uniform gene exchange 
mechanism, and the mutation rate decreased linearly from 0.03 in the 

first generation to 0.005 in the final generation. Tables 4, 5 summarize 
the responses obtained from the GA for the leakage effective area and 
the friction factor. After 70 and 140 generations, the objective function 
values were minimized to −× 49.523 10  for FITA and −× 47.851 10  for 
TITA, respectively, showing that both methods were able to converge 
to a solution with minimal error.

Tables 4, 5 demonstrate that both FITA and TITA can accurately 
determine the effective area and location of leaks. However, the 
calibration results for friction factors from FITA are less accurate 
compared to TITA. This discrepancy can be attributed to the higher 
sensitivity of the frequency response to leak parameters, as opposed 
to the friction factors, as well as the linearization of the friction loss 
equation in FITA. The linearization in FITA may introduce 
approximations that reduce the accuracy, especially when compared 
to the more comprehensive approach in TITA, which directly accounts 
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FIGURE 6

The first half of the first harmonic of the FRF diagrams for the non-leaking case.
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for the nonlinear behavior of friction loss. This combination of factors 
contributes to the relatively lower accuracy of FITA in determining 
the leak parameters. This represents one of the key advantages of using 
the frequency domain analysis for leak detection via the inverse 
method. Unlike TITA, where the accuracy of leak parameter 
determination heavily relies on the precise estimation of friction 
factors, the FITA method is more robust. It can yield acceptable results 
even when the friction factors vary within a reasonable range around 
their initial estimates. This suggests that, for leak detection with FITA, 
simultaneous calibration of friction factors is not essential; an initial 
estimate of the friction factors is sufficient. The following section will 
explore the impact of friction factor estimation on the accuracy of leak 
detection to further support this point.

3.4 Uncertainty in friction factors

To evaluate the impact of friction factor estimation uncertainty on the 
accuracy of leak detection, five distinct scenarios were considered. In the 
first and second scenarios, the friction factors for all pipes were assumed 
to be at their minimum and maximum values, namely, = 0.015f  and 
= 0.05f , respectively. In scenarios three through five, the friction factors 

were randomly assigned within the range of the above values for each 
pipe. Table 6 presents the friction factor values for each scenario, alongside 
the percentage differences relative to the actual friction factor values used 
in the simulation. These scenarios help investigate how variations in 
friction factor estimates affect the performance and accuracy of leak 
detection methods, specifically FITA and TITA.
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FIGURE 7

The FRF diagram of node 6 for non-leaking and leaking cases for different leak locations.
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In the next stage, leak detection was performed for each scenario 
using both FITA and TITA methods. Table 7 presents the mean errors 
of the estimated leak parameters for all scenarios, providing a 
comparison of the accuracy of leak detection under varying 

uncertainties in the friction factor values. These results allow for an 
evaluation of how different assumptions about the friction factors 
impact the performance of the leak detection process using 
both methods.
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FIGURE 8

The impact of node 2’s leakage effective area on the FRF diagram at node 6.

TABLE 4  Leak detection results of the FITA and TITA methods.

Node Actual Ae (cm2) Detected Ae (cm2) Detected Ae (cm2)

FITA TITA

2 1 1 1

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

TABLE 5  Calibration results of the FITA and TITA methods.

Pipe Actual Calibrated Error (%) Calibrated Error (%)

FITA TITA

1 0.04 0.039 1.91 0.040 0.001

2 0.04 0.041 3.47 0.040 0.000

3 0.04 0.043 7.21 0.040 0.040

4 0.025 0.025 1.46 0.025 0.017

5 0.025 0.027 6.66 0.025 0.013

6 0.025 0.026 3.68 0.025 0.014

7 0.03 0.030 0.00 0.030 0.037

8 0.03 0.028 7.39 0.030 0.007

9 0.03 0.030 1.46 0.030 0.052

10 0.02 0.020 0.41 0.020 0.001

11 0.02 0.022 11.89 0.020 0.023

FITA’s overall average error = 4.14% TITA’s Overall average error = 0.019%
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As shown in Table 7, the FITA method is more sensitive to leakage 
than to the pipe friction factors. This sensitivity allows for acceptable 
leak detection results without the need to perform calibration 
simultaneously with the leak detection process. Thus, an initial 
estimation of the friction factors is sufficient for the FITA method to 
provide reliable leak detection results.

In these scenarios, incorrect parameter values were 
intentionally introduced into the TITA and FITA models to assess 
the impact on leak detection accuracy. The scenarios are as follows: 

(1) A 10% error in the length of pipe 3, changing from 762 m to 
838.2 m; (2) A 10% error in the wave speed of pipe 3, changing 
from 1,316 m/s to 1447.6 m/s; (3) A 10% error in the lengths of 
pipes 1 and 3, with changes from 762 m to 685.2 m and 762 m to 
838.2 m, respectively, along with a 10% error in the wave speeds of 
pipes 2 and 4, changing from 1,316 m/s to 1447.6 m/s and 
1,316 m/s to 1195.5 m/s, respectively. Table 8 presents the overall 
mean error and the maximum error in leak detection for each of 
the aforementioned scenarios.

TABLE 6  Pipe friction factors scenarios.

Scenario number Actual Percent of differentiation for each scenario 
(%)

Pipe 
number

1 2 3 4 5 1 2 3 4 5

1 0.015 0.05 0.045 0.047 0.050 0.04 62.5 25 13.54 18.57 23.86

2 0.015 0.05 0.025 0.020 0.049 0.04 62.5 25 37.50 49.83 21.72

3 0.015 0.05 0.018 0.037 0.046 0.04 62.5 25 54.21 8.45 13.91

4 0.015 0.05 0.031 0.028 0.042 0.025 40 100 22.23 11.10 67.49

5 0.015 0.05 0.040 0.044 0.035 0.025 40 100 61.19 74.35 39.66

6 0.015 0.05 0.029 0.035 0.017 0.025 40 100 14.32 39.59 32.30

7 0.015 0.05 0.043 0.050 0.043 0.03 50 66.67 42.28 65.06 43.48

8 0.015 0.05 0.037 0.038 0.032 0.03 50 66.67 24.81 26.18 5.42

9 0.015 0.05 0.016 0.022 0.030 0.03 50 66.67 46.86 26.75 1.42

10 0.015 0.05 0.018 0.018 0.047 0.02 25 150 10.25 10.13 136.66

11 0.015 0.05 0.035 0.019 0.024 0.02 25 150 74.66 2.86 20.11

Average of differentiation (%) 46.1 79.54 36.53 30.26 36.91

TABLE 7  Mean error of the estimated leak parameters for the pipe friction scenarios.

Scenario name Leak detection method Mean error%

Scenario 1
FITA 4.67

TITA 34.67

Scenario 2
FITA 6.50

TITA 4.00

Scenario 3
FITA 0.005

TITA 1.50

Scenario 4
FITA 0.86

TITA 1.67

Scenario 5
FITA 0.38

TITA 8.33

TABLE 8  Overall mean error and the maximum error of leak detection by TITA and FITA for uncertainty scenarios of friction factors.

Scenario name Leak detection method Overall average error% Maximum error%

Scenario 1
FITA 6.53 21.53

TITA 4.17 7.80

Scenario 2
FITA 10.21 55.38

TITA 5.53 9.82

Scenario 3
FITA 29.04 135.05

TITA 17.72 66.39
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Table  8 demonstrates that the FITA method exhibits greater 
sensitivity to variations in pipe length and wave speed compared to 
TITA. Consequently, uncertainties in the lengths of pipes and wave 
speeds can significantly impact the accuracy of the FITA method. 
Figure  9 illustrates the frequency response at node 4 under the 

uncertainty scenarios, contrasting these results with the 
actual conditions.

We observe that uncertainties, particularly in pipe length and 
wave speed, induce shifts in the DFs of the system by altering transient 
signal travel times, as demonstrated in Figure 9. These shifts lead to 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2 2.5 3 3.5

|h
^
|

Frequency (HZ)

Scenario 1

real Scenario 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3 3.5

|h
^
|

Frequency (HZ)

Scenario 2

real Scenario 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3 3.5

|h
^
|

Frequency (HZ)

Scenario 3

real Scenario 3

FIGURE 9

Frequency response at node 4 under different uncertainty scenarios of friction factors, illustrating the impact of friction variability on system dynamics.

https://doi.org/10.3389/frwa.2025.1661148
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Ranginkaman et al.� 10.3389/frwa.2025.1661148

Frontiers in Water 16 frontiersin.org

discrepancies between predicted and actual system behaviors, 
resulting in less accurate leak detection and an increased likelihood of 
false alarms, especially in complex and large-scale water supply 
networks. Notably, while FITA exhibits a high sensitivity to leak 
parameters, it is comparatively more sensitive to uncertainties in pipe 
length and wave speed than TITA. This is primarily because FITA 
relies on linearized frequency-domain models, which can be affected 
by nonlinearities and parameter variability. On the other hand, TITA, 
operating in the time domain, better accounts for nonlinear friction 
losses but may require friction factor calibration for improved accuracy.

Our results (Tables 7, 8) reveal that FITA can provide reliable leak 
detection without necessitating simultaneous calibration of friction 
factors, using just initial estimates. However, the accuracy of FITA 
deteriorates with increasing parameter uncertainties, highlighting the 
importance of precisely characterizing these uncertainties in practical 
applications. As such, effective practical implementation of ITA 
methods demands comprehensive uncertainty quantification and 
sensitivity analyses to accommodate parameter variability. In this 
context, our findings suggest that practitioners employing transient-
based leak detection should prioritize precise measurements or 
estimations of pipe geometries and wave speeds to mitigate the adverse 
impacts of uncertainties. Future research should focus on developing 
advanced uncertainty modeling and robust calibration techniques that 
improve the resilience of FITA and TITA in operational environments. 
By explicitly acknowledging and addressing these uncertainties, our 
work guides practitioners in applying inverse transient analysis more 
effectively, thereby enhancing leak detection accuracy and operational 
reliability in real-world water supply networks.

In practical terms, as pipeline networks grow in scale and complexity, 
these types of uncertainties, including variations in pipe length, material 
properties influencing wave speed, and modeling assumptions, become 
more significant. Such uncertainties elevate the risk of false alarms in 
leak detection or condition assessment applications, reducing the 
robustness of transient-based diagnostic methods.

We observe that uncertainties, particularly in pipe length and wave 
speed, induce shifts in the dominant frequencies (DFs) of the system 
by altering transient signal travel times, as demonstrated in Figure 9. 
These shifts lead to discrepancies between predicted and actual system 
behaviors, resulting in less accurate leak detection and an increased 
likelihood of false alarms, especially in complex and large-scale water 
supply networks. Notably, while FITA exhibits a high sensitivity to leak 
parameters, it is comparatively more sensitive to uncertainties in pipe 
length and wave speed than TITA. This is primarily because FITA 
relies on linearized frequency-domain models, which can be affected 
by nonlinearities and parameter variability. On the other hand, TITA, 
operating in the time domain, better accounts for nonlinear friction 
losses but may require friction factor calibration for improved accuracy.

Therefore, for the effective deployment of ITA in real-world 
scenarios, it is essential to deepen the understanding of these 
uncertainties and their impacts on transient signal characteristics. 
This entails developing advanced modeling approaches, sensitivity 
analyses, and uncertainty quantification techniques that can better 
capture the influence of pipe length, wave speed variability, and other 
factors on system dynamics. Enhancing the reliability of FITA and ITA 
methods through such efforts will improve confidence in transient-
based monitoring solutions applied to complex pipeline infrastructures.

For a more comprehensive understanding of the uncertainties 
associated with the transient simulation model and the ITA, readers 

can refer to studies such as Vítkovský et al. (2007), Jung and Karney 
(2008), Haghighi et al. (2012), and Sabzkouhi and Haghighi (2018). 
To obtain reliable results in real-world applications using ITA, it is 
essential to account for all the aforementioned challenges. Given the 
range of uncertainties inherent in the problem, ITA may, in some 
cases, yield inaccurate or false results.

4 Discussion and conclusion

This study conducted a comparative investigation of ITA 
methods for leak detection in WSNs, focusing on FITA and TITA 
approaches. The research demonstrated that both methods achieved 
equivalent leak detection accuracy (100% correct identification of 
leak location and size) but exhibited distinct performance 
characteristics. FITA provided superior computational efficiency, 
converging twice as fast, while maintaining acceptable accuracy 
without simultaneous friction factor calibration. TITA delivered 
higher friction factor calibration precision (0.019% versus 4.14% 
average error) but required greater computational resources. The 
novel DFs method enabled direct leak detection through frequency 
response analysis, while DTM proved effective for optimal sensor 
placement with reduced computational overhead. Uncertainty 
analysis confirmed FITA’s robustness to friction factor variations, 
establishing its suitability for large or complex networks with 
incomplete parameter knowledge.

The comparative analysis revealed fundamental trade-offs between 
FITA and TITA that have significant implications for practical leak 
detection. FITA’s computational advantage stemmed from its 
elimination of spatial discretization across the entire network, solving 
equations only at critical nodes and potential leak sites, which reduced 
the number of unknown parameters and simplified the optimization 
process. In contrast, TITA’s superior calibration accuracy reflected its 
comprehensive treatment of nonlinear friction behavior, making it more 
suitable for scenarios requiring precise parameter estimation. However, 
TITA’s higher sensitivity to friction factors necessitated simultaneous 
calibration, increasing computational demands, a limitation. The DFs 
method advanced beyond traditional FDA by exploiting natural 
resonance points for direct, analytical leak detection without iterative 
optimization. The DFs approach reduced detection time and improved 
sensitivity to leaks, as evidenced by the case study where DFs captured 
significant frequency response shifts at leak nodes. Similarly, DTM 
provided a rank-based approach to sensor placement that mitigated 
extreme sensitivities and promoted uniform site distribution, 
outperforming genetic algorithm-based methods in computational 
simplicity while maintaining accuracy for looped networks.

Uncertainty analysis highlighted differential impacts on FITA and 
TITA, guiding their practical application. FITA exhibited greater 
sensitivity to variations in pipe length and wave speed, causing shifts 
in dominant frequencies that could lead to false positives in complex 
networks. In contrast, TITA showed more robustness, but its 
performance degraded under friction factor uncertainties. These 
findings underscore that uncertainties in geometric and hydraulic 
parameters can distort transient signals, reducing detection reliability. 
For practical implementation, such uncertainties necessitate careful 
model validation; however, FITA’s ability to function with initial 
friction factor estimates makes it more forgiving in data-
scarce environments.
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Based on these insights, we offer the following evidence-based 
guidelines for practitioners:

	 1.	 Method Selection: Choose FITA for large-scale or complex WSNs, 
prioritizing computational efficiency and minimal calibration as 
it reduces unknown parameters and converges faster.

	 2.	 Uncertainty Management: Incorporate sensitivity analyses for 
pipe length and wave speed in FITA applications to mitigate 
frequency shifts; for TITA, prioritize accurate friction factor 
inputs. Use uncertainty quantification techniques to reduce 
false alarms, especially in aging infrastructure.

	 3.	 Sensor and Excitation Design: Leverage DFs for strategic 
sensor placement via DTM, minimizing the number of sites 
and excitation types that excite broad frequency spectra. This 
reduces costs while enhancing signal quality, addressing 
challenges like noise and suboptimal placement.

	 4.	 Network-Specific Considerations: For scaled-up applications, 
account for factors like network complexity, measurement 
noise, and signal resolution; hybrid FITA-TITA approaches 
may optimize trade-offs.

Future research should integrate FITA with advanced machine 
learning frameworks to leverage DFs as input features for automated 
leak pattern recognition across diverse network topologies. Researchers 
should extend the DFs method with deep learning models for adaptive 
frequency analysis under varying operating conditions. Implementation 
studies should evaluate hybrid FITA-TITA systems, using FITA for 
rapid initial screening and TITA for refined calibration. DTM should 
be enhanced for dynamic, adaptive sensor placement that responds to 
seasonal or demand-driven changes. Finally, comprehensive field 
validations are essential to test these methods in real-world settings, 
incorporating effects like measurement noise and hydraulic variability 
systems to advance operational reliability and water conservation.
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