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Droughts are complex and recurring natural hazards throughout the ecosystems 
and impact many sectors of society. Droughts have complex spatiotemporal 
behaviors; therefore, monitoring them is a challenging task. Drought monitoring has 
depended chiefly on climate-based indices and indicators, thus deemed useful in 
many scenarios. This review aims to explore classical and holistic drought indicators/
indices for unravelling their usefulness and associated limitations. Given that they 
offer a broadened spatial perspective of drought conditions and fluctuations over 
large areas, climate-based drought index maps may be of limited use. Precise 
evaluations of drought are necessary for efficient monitoring and assessment 
of the condition. Here, this review examined more than 50 indices/indicators 
for their sensitivity to input data requirements, spatiotemporal scales, strengths, 
and weaknesses. Also, an analysis was carried out based on the previous studies 
to identify hotspots and show the dissimilarity in the results yielded by different 
indices/indicators. None of these indices is typically inclusive enough to provide a 
broad-gauge assessment and determine appropriate actions. New and enhanced 
geospatial intelligence-based drought indices and earth observations are needed 
to identify, classify, and communicate real-time drought-related phenomena 
and offer an in-depth breakdown of the constraints and requirements of novel 
indicators and data difficulties.
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1 Introduction

A global increase in temperature and severe changes in precipitation have been observed 
due to anthropogenic greenhouse gas emissions (Solomon et al., 2009; Tan et al., 2023). The 
United Nations Office for Disaster Risk Reduction (UNDRR) identified drought as one of the 
largest global risks that could impact the world over the next decades (Erian et al., 2021). In 
some regions of the planet, there will be severe drought and heatwaves (Tripathy and Mishra, 
2023). Droughts are among the most complex environmental effects, devastating natural 
hazards, and affect many different socio-ecological systems (e.g., air, forests, aquatic systems, 
soils, and humans) (Vicente-Serrano et al., 2020). Droughts can affect the quality, structure, 
diversity, and functioning of agroecosystems (Kundel et al., 2020). Due to changing climate, 
shifting ocean and atmospheric dynamic patterns, expanding human water usage, and human 
influence on the environment, novel forms of drought are emerging locally, regionally, and 
globally. Prolonged droughts are increasing the likelihood of ecological transitions that have 
expensive externalities and significant repercussions for anthropoid communities (Crausbay 
et al., 2020). The natural pattern of droughts has been exacerbated by climate change, becoming 
more prevalent, prolonged, and catastrophic. This situation can get worse, increasing water 
stress in already affected regions.
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The World Economic Forum (WEF) reported that, the frequency 
and duration of droughts have risen by 29% since 2000 and more than 
75% of the world could face drought by 2025 (WEF, 2022). Over the 
past four decades, weather, climate, and water hazards represented 
50% of disasters and 45% of disaster-related fatalities, especially in 
developing economies. Droughts contributed to 15% of natural 
catastrophes but took the highest humanitarian toll, with roughly 
650,000 deaths. From 1998 to 2017, droughts triggered global 
economic losses of approximately USD 124 billion (Crossman, 2018). 
In 2022, more than 2.3 billion people face water stress; almost 160 
million children are exposed to severe and prolonged droughts. 
Besides, by 2050, droughts may affect over three-quarters of the 
world’s population, and an estimated 4.8–5.7 billion people will 
remain in areas that are water-scarce for at least one month per year, 
up from 3.6 Bn now (Funk et al., 2019). De facto, up to 216 million 
people could be forced to migrate by 2050, largely due to drought in 
combination with other factors including water scarcity, declining 
crop productivity, sea-level rise, and overpopulation (King-Okumu 
et al., 2020).

In the current nature dynamics of multiple shocks, accurate 
measurement of drought events has become a central task and 
problematic in terms of the measurement system and effective way to 
forecast long-term drought. According to Wilhite and Glantz (1985), 
there are a whole range of types of droughts (often distinguished) 

(Figure  1), but new categories are being defined (Crausbay et  al., 
2020), including the following: (1) agricultural drought (farming) 
refers to the adverse impacts on farmland by factors such as rainfall 
shortages, soil water deficits, reduced groundwater, or dwindled 
reservoir levels required for irrigation (Jiang and Zhou, 2023; 
Orimoloye, 2022; Zhang et  al., 2023a); (2) hydrological drought 
(surface water) is characterized by prolonged meteorological drought. 
It is based on the impact of rainfall deficits on the water supply such 
as stream flow, cessation of spring flows, drying of reservoir and lake 
levels, and groundwater table decline (Brunner et al., 2023; Satoh et al., 
2022; Van Loon, 2015); (3) socio-economic drought (ones which affect 
humans) occurs when the demand for economic good exceeds supply 
as a result of a weather-related shortfall in water (Lee et al., 2022; Liu 
et al., 2020; Mehran et al., 2015); (4) meteorological drought (weather) 
is typically defined on the basis of the extent of dryness in comparison 
to some “normal” or average amount and the span of the dry period. 
It consists of normal precipitation below 25% (Monjo et al., 2020; 
Torelló-Sentelles and Franzke, 2022); and (5) ecological drought 
defined as “a prolonged and widespread deficit in naturally available 
water supplies  – including changes in natural and managed 
hydrology  – that create multiple stresses across natural-human 
systems” (Crausbay et al., 2017; McEvoy et al., 2018; Park et al., 2020).

Drought indices are a crucial way to assess the extent of the 
problem. A thorough understanding of drought events helps to 

FIGURE 1

Timeline of drought incidence and effects for the most widely recognized kinds of drought. Source: Author.
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formulate strategic policies aimed at the effective management of 
water, land, and atmospheric systems. Using drought indices, drought 
types, intensity, duration, location, timing, and frequency of droughts 
can be evaluated quantitatively and used to plan for probable risk 
assessments (Nagarajan, 2010).

Owing to the challenges associated with the current descriptions 
of drought, their evolution depends on the metrics or indicators that 
help define this occurrence. Consequently, to study drought, basic 
information about the climate and weather around a particular area is 
necessary to ascertain whether a drought event has occurred or is 
likely to occur in the future (Wilhite, 2016). A consistent regional 
climatological pattern could indicate that a drought is about to start 
in another part of the region. Appropriate planning may be a prospect 
for mitigating the impacts of credible drought in this case if it is 
presumed that an exceptional dry pattern occurs in the region 
(Svoboda and Fuchs, 2016). Monitoring drought conditions may 
be conducted by early warning systems that might be supportive of 
adequate preparation for any drought event (Faiz et al., 2021; Heim 
and Brewer, 2012). Until now, there has been no widely agreed 
drought index among scholars, practitioners, and policymakers. There 
is a necessity of developing integrated composite drought indices and 
indicators. Hence, they will serve as a bridge between research and 
policy and enable policymakers to make informed judgments.

Up to now, investigations that focused on the 50 + drought 
indicators and indices based on various approaches (i.e., meteorology, 
soil moisture, hydrology, remote sensing, and modeled or composite), 
revealed that none encompasses all aspects of drought events. The 
Integrated Drought Management Programme (IDMP) declared that 
any, all, or none of the indicators/indices may be  suitable for a 
particular application, based on user knowledge, needs, data 
availability, and computer resources available to implement them 
(Svoboda and Fuchs, 2016). On one hand, most of the indices solely 
depend on meteorological conditions while ignoring the social, 
economic, and environmental factors. Drought indices may not fully 
account for these non-meteorological causes. On the other hand, 
many drought indices focus on surface-level indicators but do not 
incorporate interfaces of several data (e.g., surface water dynamics, 
topography, soil properties, soil moisture, etc.) which is crucial for 
agriculture, water resources, and socio-ecological systems (Dehghani 
et al., 2022). It should be noted that drought indices are retrospective 
and often developed based on historical data or past drought 
conditions, a climate patterns shift, the effectiveness of these indices 
in predicting future droughts may decline, as well as challenging to 
plan for long-term drought resilience. Some of the indices may yield 
different results for the same area or time. This lack of consistency can 
make it challenging to compare and combine findings from different 
indices (Savenije, 2000). The above issues can stem to contradictory 
results, confusion, and inconsistency in monitoring efforts and, at the 
same time, mislead public opinion and decision-making process by 
creating a false sense of security or insecurity.

Developing a better understanding of the changing expression 
and influences of drought across diverse ecosystems is one of 
contemporary foremost challenges. Coupling novel methodologies 
(i.e., machine learning, deep learning, artificial intelligence, etc.) with 
high-resolution datasets of drought metrics is essential for monitoring 
and quantifying the duration, frequency, severity, and spatial extent of 
droughts at global, regional, and particularly local scales. Drought 
indices are practical techniques to convert enormous volumes of data 

into quantitative facts that can be used in applications such as drought 
forecasts and declaration, contingency planning, and impact 
assessment. Therefore, urgent actions are essential to better 
comprehend and more effectively achieve drought risk to reduce the 
devastating toll on human livelihoods and ecosystems.

In this work previous studies published from 1985 to 2025 were 
analyzed using VOS Viewer, a software tool for constructing and 
visualizing bibliometric networks (Perianes-Rodriguez et al., 2016). 
From the resulting 2,691 published articles, 121 were clustered and 
reviewed. Based on the analysis, literature regarding drought indices 
and indicators can be  divided into 7 categories: (1) objectives of 
drought indices; (2) spatiotemporal coverage; (3) data availability and 
interpretability (4) sectoral focus; (5) complementarity and scientific 
validity; (6) applicability for early warning; and (7) adaptation to 
climate change. Here, we compared 50 drought indices/indicators 
against 21 input parameters of comparison, revealing how these 
indicators/indices miss certain areas and how they can be  used 
collectively to supplement their strengths and weaknesses. Out of 12 
indicators, 6 are widely used, and 6 are promising as holistic indicators. 
A few drought hotspots have also been located to demonstrate how 
various circumstances can have distinct effects.

2 Drought indices and indicators

2.1 Classical drought indices and indicators

Classical drought indices have been developed to assess and 
monitor drought conditions based on meteorological and hydrological 
data that is summarized using mathematical expressions. These indices 
have been in use for several decades. The most commonly used indices 
were first defined by Wayne Palmer in 1960s (Palmer, 1965), McKee 
and his team in the late 1990s (McKee et al., 1993), and Thornthwaite 
in the mid-20th century (Thornthwaite, 1948). Most of these indices 
have addressed one or more aspects of drought events and quantifiable 
ways to assess drought conditions and their impacts while providing 
valuable information for understanding drought severity. Classical 
drought indices vary in their complexity, data requirements, and 
temporal scales. The choice of index depends on the specific application 
and the data availability for a particular region. While they provide 
valuable insights into drought conditions, it is crucial to consider their 
limitations and supplement their findings with other information, 
especially for complex multifaceted drought assessments.

2.1.1 Palmer Drought Severity Index (PDSI)
The PDSI is one of the most influential, widely used, and 

recognized indices within scientific and meteorological communities 
(Lehner et al., 2017). In a hydrological accounting system, moisture 
demand (PE) and supply (P) are integrated over time (Mika et al., 
2005), to assess and monitor long-term regional drought conditions 
(typically 6–24 months). Its strengths are due to its long historical use, 
incorporation of multiple climate factors, standardization, long-term 
perspective (especially over low and middle latitudes), historical data 
utilization, integration of climatology, impact on water resources and 
agriculture, and scientific credibility (Dai, 2013). By using surface air 
temperature and a physical water balance model, PDSI considers the 
basic effect of global warming through potential evapotranspiration. 
Nonetheless, it also has some limitations including sensitivity to 
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parameter settings and the assumption of stationarity in climate data, 
which may be challenged in the face of changing climate patterns.

Recently, the PDSI was questioned for its inadequacy to predict 
droughts on temporal scales less than 12 months when monthly PDSI 
values were applied. It is, therefore, not to associate it with specific 
water resources such as runoff, snowpack, reservoir storage, and more 
using multi-timescale indices like the Standardized Precipitation 
Index (SPI) (Alley, 1984; Dai, 2011). A novel standardized Palmer 
drought index (SPDI) was established (Ma et al., 2014). Despite its 
limitations, the PDSI is known to be useful as a means of monitoring 
drought in terms of soil moisture and deciding the timing of 
agricultural drought contingency planning and measures (Zargar 
et al., 2011). A PDSI < − 4 represents an extreme drought, while a 
PDSI value >4 represents very wet conditions.

2.1.2 Standardized precipitation indices (SPIs)
SPIs such as the Standardized Precipitation Index (SPI) or 

Standardized Precipitation and Evapotranspiration Index (SPEI) are 
frequently used around the world to evaluate drought severity across 
a continent or a larger region covering different meteorological 
regimes (Laimighofer and Laaha, 2022; Vicente-Serrano et al., 2010). 
The SPI measures the deviation of observed P from the long-term 
average and quantifies it in terms of standard deviations. The SPI 
provides information about the probability of a certain level of 
precipitation deficit over different time scales. It is available at various 
time scales, from short-term (e.g., 1–6 months) to long-term (e.g., 
24 months or more) (McKee et  al., 1993). Several studies have 
demonstrated the SPI’s value in identifying droughts, and its basic and 
straightforward procedure has made it well-liked across a range of 
sectors. The SPI is calculated by first summing up monthly 
precipitation data over i-monthly accumulation periods, with 
i typically taking values of 1 to 12. However, in order to estimate the 
probability of no precipitation, the probabilities of the Weibull plotting 
position are calculated as follows (Equation 1):
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precipitation events in the observation period. The drought categories 
vary from mild drought (0–0.99) to extreme drought ≤−2 (Figure 2).

The SPI values are not exact as they depend on several choices 
made by the user. Drought indices are subject to five different 
uncertainties including sample size, choice of distribution, observation 
period, parameter estimation, and Goodness-of-fit (GOF).

2.1.3 Thornthwaite Moisture Index (TMI)
The TMI was developed by Thornthwaite (1948), to categorize the 

climate conditions of different regions. This index estimates potential 
evapotranspiration and compares it to actual evapotranspiration, 

which can indicate moisture deficits. The TMI model is widely used 
because it is easy to use and only needs monthly average temperature 
and latitude (Karunarathne et al., 2016; Li and Sun, 2015). However, 
this model ignores the effects of air humidity, wind speed, and other 
factors, thus the value of ET is frequently underestimated (Zhao et al., 
2019). It is a dimensional index spanning from +100 to −100 depicting 
weather conditions from humid to arid (Figure 3). TMI is calculated 
by combining two indices: aridity index and humidity index. Based on 
a water balance calculation, these indices are determined by run-off 
or surplus and water deficit. The calculation method of TMI is given 
by Equation 2:
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(2)

where TMI is the Thornthwaite Moisture Index, P is precipitation 
(mm), and PET is potential evapotranspiration (mm). The TMI is 
multiplied by 100 to create whole numbers (Grundstein, 2009).

2.1.4 Aridity Index (AI)
The AI characterizes the metric measure of the degree of 

dryness of the climate at a specific location. It is calculated by the 
ratio between precipitation (P) and potential evapotranspiration 
(PET) (Equation 3) (Prăvălie and Bandoc, 2015; Qu et al., 2019; 
Standler and Stephen, 2005). Aridity is commonly defined as the 
result of the interaction of evaporation, rainfall, and temperature 
(Thornthwaite, 1948). PET is an estimation of the atmosphere’s 
“drying power” to evaporate water from land surfaces (e.g., from 
the soil and plant canopy) and via plant transpiration. Obviously, 
the anomaly water deficits may also occur over shorter periods, 
e.g., seasonally or monthly, which are called droughts depending 
on their intensity and duration. Therefore, the AI provides the key 
material to assess the trends of aridity or humidity and 
characterize the drought. When AI becomes larger than normal 
in an area, the climate tends to suffer from drought and water 
resource shortages which negatively affects the food security and 
the livelihoods of the community (Hirwa et  al., 2022a; Li 
et al., 2017).

The ET0 indicates the maximum amount of water that can 
be evaporated from the soil and transpired from the vegetation of 
a specific surface, as a function of wind speed, solar radiation, 
vapor pressure, and temperature (Zhang et  al., 2007). The 
atmospheric evaporative demand, expressed as ET0, is especially 
relevant in drought evaluations as an important factor in AI 
computation (Vicente-Serrano et al., 2015). The results of analyzing 
the aridity trends differ in the magnitude of the AI and their spatial 
patterns as consequences of the difference in the forcing 
precipitation datasets employed and the model used to estimate 
ET0 and meteorological datasets used to calculate ET0. However, 
the strong differences in the magnitude of ET0 changes may 
be obtained using different methods to estimate ET0 (Donohue 
et al., 2010; Vicente-Serrano et al., 2014). Further, to hasten the 
uncertainties in aridity estimates and in the analysis of the AI 
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versus the hydro-ecological factors, the regions where the 
mainstream of models concur in sign should be  considered. 
However, note that the ensemble of climate models is not weighted, 
even though several models are from the same modeling 
institutions (Greve et al., 2019).

The AI map (Figure  4) is based on data computed using the 
30-year average of P/PET, where i denotes the ith year.
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2.1.5 Rainfall Anomaly Index (RAI)
The RAI was proposed by Van Rooy (1965). It incorporates and 

evaluates a ranking mechanism to assign dimensions to two anomalies 
for precipitation (i.e., positive and negative anomalies) (Raziei, 2021). 
First, the precipitation information is presented in descending order. 
The 10 greatest numbers are averaged to generate a positive anomaly 
limit, while the 10 lowest values are averaged to form a negative 
anomaly limit. Therefore, RAI is a simpler index that measures the 
deviation of monthly or seasonal rainfall from the long-term average. 
RAI is relatively easy to compute, with one input (i.e., precipitation) 
that can be examined on monthly, seasonal, and annual intervals. One 
of its flaws is that it requires a sequentially complete dataset with 
missing value estimates. Changes throughout the year must be minor 
in comparison to temporal variations. Moreover, the RAI classification 
is similar to that used by Gibbs (1967) to partition precipitation values 
between 10 deciles and is equally applicable to various lengths of 
drought, including flash droughts, meteorological droughts, deep soil 
moisture droughts, and hydrological droughts defined with RAI 
computed at different time scales.

FIGURE 2

9-month SPI global drought map. The Global Precipitation Centre (GPCC) monthly precipitation dataset from 1901 to present was calculated from 
global station data. Source: GPCC.

FIGURE 3

Revised Thornthwaite moisture-based climate classifications derived 
from Climate Research Unit (CRU) dataset. Adapted from Navarro 
et al. (2022).
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The study of Olukayode Oladipo (1985) revealed that the 
differences between RAI and the more complicated indices of Palmer 
and Bhakme-Mooley were negligible. It is useful for monitoring short-
term drought conditions. The standardization follows the unity-based 
feature scaling (Khansalari et al., 2018) to asymmetrically distribute 
the original anomalies between the predefined limits (−3 and + 3). For 
positive anomalies (i.e., −iP P  greater than 0), the prefix is positive 
(i.e., 3) and M  is the mean of the 10 highest precipitation values on 
track; for negative anomalies (i.e., − < 0iP P ), the prefix is negative 
(i.e., −3) and the mean of 10 lowest measurements can be utilized 
(Keyantash and Dracup, 2002). In contrast, a plethora studies revealed 
that the RAI (Equation 4) can perform well in humid to moderate 
climates of the world where monthly precipitation distributed 
relatively regularly throughout the year, and the associated distribution 
is less skewed (Hänsel et al., 2016; Loukas et al., 2003).

However, determining M  from the 10 largest (smallest) 
precipitation values appear arbitrary. The thresholds are computed 
using Equation 4, as described by Salehnia et al. (2017).

	

 −
= ±  − 

3 iP PRAI
M P 	

(4)

Where iP  is the sequence of measured precipitation at the time i, 
P  is the long-term average precipitation (mm), M  is average of 10 
highest (extrema) values of iP  for the positive anomaly and the mean 
of the 10 lowest values of iP  for the negative anomaly. The prefix ±3 is 
used to limit the deviations’ lower and upper boundaries. The RAI 
ranging from extremely dry (RAI ≤ −3) to extremely wet (RAI ≥ 3).

2.1.6 Crop Moisture Index (CMI)
CMI is designed expressly for assessing the impact of drought on 

crop conditions. It takes into account both precipitation and 
temperature data to evaluate soil moisture levels (Isard et al., 1995). 
The CMI, which varies quickly from week to week, might provide the 
short-term or current condition of primarily agricultural drought or 

moisture surplus. The CMI was developed based on PDSI (Juhasz and 
Kornfield, 1978). It is calculated by subtracting the difference between 
potential evaporation and moisture, to determine any deficit. Input 
parameters (i.e., weekly mean temperature, weekly mean precipitation, 
and the previous week’s CMI value. The CMI values vary from 
excessively wet (+3 and above) to severely dry (−3 or less) (Zarafshani 
et al., 2016). Nonetheless, the CMI is limited to use only in the growing 
season; it cannot determine the long-term period of drought.

2.2 Holistic indices and indicators

Holistic drought indices are more comprehensive tools that 
attempt to provide a more complete picture of drought conditions by 
considering multiple factors and impacts beyond just meteorological 
and hydrological data. These indices take into account the broader 
socioeconomic and environmental consequences of drought. Due to 
their complexity, they may require a variety of data inputs. Besides, 
comprehensive indicators offer a more integrated view of the overall 
drought situation. The holistic drought indicators are particularly 
valuable for decision-makers, actors, and stakeholders who need a 
more complete understanding of the impacts of drought on society, the 
environment, and the economy. They can help guide policy decisions, 
resource allocation, and drought management strategies by providing 
a more comprehensive view of the complex nature of drought events. 
However, they often require extensive data and resources for their 
implementation and may be more challenging to use in regions with 
limited data availability or monitoring infrastructure.

2.2.1 U.S. Drought Monitor (USDM)
The USDM was conceived in 1999 and is produced through a joint 

effort of the National Drought Mitigation Center, U.S. Department of 
Agriculture (USDA), National Oceanic and Atmospheric 
Administration (NOAA), and local experts. It combines data from 
various sources across the hydrological cycle (i.e., meteorological, 

FIGURE 4

Distribution of global drylands based on AI. Drylands are delineated based on the AI, humid (AI > 0.65), dry sub-humid (0.50 < AI ≤ 0.65), semi-arid 
(0.20 < AI ≤ 0.50), arid (0.05 < AI ≤ 0.20), hyper-arid (AI < 0.05). AI values and corresponding climate classes developed by UNEP (1992). Mean global-
Aridity_ET0 and global_ET0 datasets (Trabucco and Zomer, 2018). Source: Cherlet et al. (2018).
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hydrological, and agricultural information), to provide a holistic view 
of drought conditions in the United States (Svoboda et al., 2002). The 
USDM also considers water supply, ecosystems, and society (Leeper 
et al., 2022). The USDM categories are classified based on drought 
indicator percentiles from “no drought or abnormal dryness” to 
“exceptional drought” corresponding to 31–100 and 0–2, respectively. 
For instance, abnormally dry corresponds to 20–30% chance for a 
drought to occur in ranges from 20 to 30 while for exceptional drought 
it is <2% (Pendergrass et al., 2020). Most of the maps drawn using 
USDM refer to NOAA/NCEI (2023).

Additionally, USDM’s uniqueness includes: (i) being the first 
nationwide unifying drought monitoring of multiple entities; (ii) 
receiving local bystanders’ observation, for instance, more than 425 
local observers such as state climatologists, and National Weather Staff, 
(iii) simple and effective, the classification system for droughts is easy 
to understand for public; (iv) timely, it is a weekly product which 
illustrates drought conditions and impacts promptly (Hatami Bahman 
Beiglou et al., 2021). The precipitation-deficit-driven (PDD) and heat-
wave-driven (HWD definitions have no positive correlation with the 
USDM definition (Osman et al., 2021). While the USDM offers real-
time maps of drought spatial extent, unlike several other drought 
indices, it lacks a straightforward method for analyzing drought over 
time. Since 2000, as the USDM has only been in circulation, its value 
is constrained when a lengthy historical backdrop is required.

2.2.2 Drought Severity and Coverage Index (DSCI)
An index known as the DSCI was created to improve the 

quantitative capabilities of the USDM in order to better assess spatial 
coverage and intensity combined and enable better comparisons 
between drought occurrences for places or between locations. In order 
to transform categorical USDM drought levels into single continuous 
aggregated number for a particular area, the DSCI was created as an 
experimental technique. The five USDM drought classes are added 

simultaneously to generate the DSCI (Akyuz, 2017; Smith et al., 2020). 
Month-to-month changes in the DSCI are used to inform the rate at 
which drought can improve or worsen in different months of the year. 
To calculate, there are two ways: (1) use cumulative drought monitor 
data, and (2) add the percentages for D0 through D4 for a given week. 
To compute the DSCI using a weighted average, a weight between 1 
and 5 is assigned to each USDM category (D0–D4), and this weight is 
subsequently multiplied by the categorical percent area for the drought 
category, and these totals are summed together (Equation 5). Possible 
cumulative values of the DSCI are from 0 (i.e., none of the areas is 
abnormally dry or in drought) to 500 (i.e., area in exceptional drought). 
This results in a DSCI value that has a continuous scale of 0–500.

	 ( ) ( ) ( ) ( ) ( )= + + + +1 0 2 1 3 2 4 3 5 4DSCI D D D D D 	 (5)

where the continuous DSCI (USDM) values are 0–99 (None), 
100–199 (D0), 200–299 (D1): Moderate Drought, 300–399 (D2): 
Severe Drought, 400–499 (D3), and 500 (D4).

Two advantages can result from converting the percent of an area 
in each USDM drought category into the DSCI: (1) it provides a single 
numerical value describing current drought extent and intensity and 
(2) it allows for drought to be quantified over time. DSCI is a new tool 
that increases the capacity of the USDM for further drought 
monitoring and analysis (Johnson et al., 2020).

2.2.3 Agricultural Drought Risk Index (ADRI)
ADRI is designed to assess the risk and vulnerability of agriculture 

to drought by combining meteorological information on soil moisture, 
crop types, and irrigation. It uses indicators such as Hazard, Exposure, 
Sensitivity, and Adaptive capacity (Equation 6). Vulnerability indicates 
the function of exposure, sensitivity, and adaptive capacity (Equation 7). 
In this case, high drought vulnerability when the exposure to drought 
risks is high, the sensitivity of the environment is high and adaptive 

FIGURE 5

Global drought risk for agricultural systems. Source: Meza et al. (2020).
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capacity is low (Figure  5). All the three parameters are highly 
interconnected (Carrão et al., 2016). The ADRI was developed using a 
conceptual framework that was applied to Kazakhstan and South Korea 
(Kim et al., 2021).

	 = ∗ ∗DR H E V 	 (6)

	 = /V S A	 (7)

Where DR is the disaster risk, H  is the hazard, E  is exposure, V  is 
vulnerability, S is sensitivity, and A is adaptive capacity. After all, the 
indicators are then normalized in terms of a common baseline using 
the min-max normalization method. The indicators then can 
be combined in each risk category by assessing equal weights (Moss 
et al., 2000). The final index can be computed with equally weighted 
hazard, exposure, and vulnerability components. This enables the 
evaluation of each category independently, increasing understanding 
of the strengths and weaknesses of each component of the risk index 
in each region (Iglesias et al., 2009).

Practically, there are limitations related to the frequency of 
updates and the unavailability of data at the required resolution (data 
quality). Even if the datasets are available, the accuracy thereof does 
not always meet the requirements (Aubrecht et al., 2013). The quality 
of available input data in terms of spatial resolution and reliability is 
an important factor in disaster risk assessments. While most 
environmental indicators rely on quantitative measures and spatial 
statistics, socio-economic indicators introduce a certain amount of 
uncertainty and subjectivity (Ozceylan and Coskun, 2012). The ADRI 
can contribute to addressing risk, and prioritizing risk areas at 
reasonable scale leading to effective decisions and policymaking for 
risk reduction related to drought events.

2.2.4 Hydrological Drought Index (HDI)
HDI evaluates drought conditions from a hydrological 

perspective, incorporating streamflow, soil moisture, and groundwater 
data to assess the impact on water resources and ecosystems 
(Tokarczyk, 2013). This index is often used in broader assessments of 
drought conditions, especially in areas where water resources are 
critical for purposes, such as agriculture, industry, and ecosystem 
health (Tareke and Awoke, 2022). HDI relies on accurate and up-to-
date hydrological data, which can be a limitation in areas with sparse 
monitoring networks or data gaps. Its calculations can be complex, 
involving various hydrological components and statistical methods, 
which may require expertise to use effectively. Like many drought 
indices, HDI may not provide significant lead time for drought 
prediction, making it challenging for proactive drought management.

Therefore, calculations for this index involve a combination of 
different hydrological parameters, and the methodology can be more 
complex. It often involves the use of drought indices like SPI or 
PDSI. For instance, the HDI is grounded on discharge data (HDI1), 
and simulation (HDI2) (Hadiani et al., 2022). The drought index is a 
comparison of the deficit to the watershed area as indicated in the 
following Equation 8.

	

( )
( )

=
3

2

/ secDeficit m
HDI

Areal km
	

(8)

HDI is the Hydrological Drought Index, the deficit is the 
difference between X0 and Xt (ith daily), X0 I the dry threshold, and Xt 
is the ith daily periods of discharge. Drought severity involves the 
analysis of the duration and deficit in dry conditions.

2.2.5 Socioeconomic Drought Index (SEDI)
The SEDI is defined as a measure of the drought conditions-related 

impacts on the supply and demand of economic goods. SEDI combines 
meteorological and economic data to gauge the economic impacts of 
drought. It considers factors like agricultural losses, employment, and 
food prices. Four categories are distinguished: water deficit, water 
security and support, economic damage and impact, and environmental 
and sanitation effects (Lee et al., 2022). SEDI also has four values, that is, 
1, 2, 3, and 4, corresponding to the four levels of socioeconomic drought, 
that is, SEDI = 1 for low level, SEDI = 2 for moderate level, SEDI = 3 for 
severe level, and SEDI = 4 for extreme level (Liu et al., 2020). As for the 
SEDI, it ignores the influence of reservoir water storage on future 
socioeconomic drought (Guo et al., 2019). It can provide early warnings 
about the potential economic and social consequences of drought, 
enabling proactive measures to mitigate the impact.

2.2.6 Composite Drought Index (CDI)
The CDI is a comprehensive drought monitoring tool that 

combines multiple drought indicators or indices to provide a more 
holistic view of drought conditions (Beccari, 2016). The CDI is 
designed to capture various aspects of drought, such as agricultural, 
hydrological, meteorological, and socioeconomic components on a 
seasonal time scale, and thus blend them into a single, integrated 
index in a more robust picture. When developing the CDI, water 
balance conditions are considered along with actual evapotranspiration 
and meteorological data (Sepulcre-Canto et al., 2012). It generally uses 
remote sensing and modeled data inputs to reflect anomalies in 
precipitation, vegetation greenness, soil moisture, and 
evapotranspiration (Faiz et  al., 2022). Using CDI, agricultural 
drought-prone areas are detected by CDI, as well as areas where 
drought-affected vegetation already exists; and regions that are 
returning to normal following a drought spell. The CDI is 
conceptualized by a cause-effect theory - taking drought as cascading 
process, where a precipitation shortage (i.e., watch stage) turns into a 
soil water deficit (i.e., warning stage), then causes stress on vegetation 
growth and production (i.e., alert stage) (Cammalleri et al., 2021).

A new CDI was established using the integration of potential and 
actual evapotranspiration, climatic water balance, and precipitation. 
The CDI provides a concise overview of agricultural drought evolution 
that can be used to communicate with both specialized actors and 
policymakers (Vogt et al., 2018). This index is presented as below 
(Equation 9), but may have multiple forms depending on the types of 
input parameters considered:

	
−

= ∗ + ∗ + ∗
−

m
P AETCDI x RAI y WBAI z
P AET 	

(9)

where , , andx y z  are coefficients for mod Rainfall Anomaly 
Index ( mRAI ), Water Balance Anomaly Index (WBAI), actual 

evapotranspiration (AET), and moisture index (
−

=
−

MI) P AET
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The CDI classification index varies from no drought (CDI < −0.60) to 
extreme drought (extreme drought).

The selection of indices and the weighting assigned to each 
component in the CDI calculation can be  subjective, potentially 
leading to different results based on the choices made. Likewise, when 
it comes to identifying mild to extreme drought conditions, the CDI 
outperforms the PDSI in terms of false alarm ratio. In practice, CDI 
calculation requires a significant amount of computing power, 
especially when analyzing large volumes of data and long-time series 
from multiple sources (Ali et al., 2022). Also, it may have limitations 
in predicting future drought events.

3 Drought indices and indicators 
comparisons

3.1 Comparison criteria

50 + indices/indicators were reviewed during this study based. 
The criteria for evaluating drought indices and indicators can vary 
depending on the specific application and context such as accuracy, 
relevance, sensitivity, consistency, lead time, spatiotemporal 
resolution, data requirements, data quality, user-friendliness, 
transparency, validation, flexibility, intersectoral applicability, and 
stakeholder engagement. Despite the fact that no leading index or 
indicator is always better than the others, some indices are more 
appropriate than others for specific uses (Table 1).

3.2 Drought event hotspots

Drought indices and indicators are used worldwide to monitor, 
assess, and manage drought conditions. Hotspots, in this context, refer 
to regions or countries where drought indices and indicators are 
commonly used due to the prevalence or severity of drought 

conditions. These hotspots may vary based on the type of drought and 
regional characteristics. The maps used in this study were used to 
identify 12 drought event hotspots, i.e., United  States, Australia, 
China, India, Africa, Brazil, Europe, Mediterranean regions, Southern 
Africa (South Africa, Zimbabwe, Namibia, and Mozambique), Latin 
America, and the Middle East. For this purpose, the thresholds of 
PDSI, SPI, TMI, AI, RAI, CMI, USDM, DSCI, ADRI, HDI, SEDI, and 
CDI were reduced to three categories (low, medium, and high severity).

4 Drought indices and indicators 
discussion

Drought can have significant implications for achieving the 
Sustainable Development Goals (SDGs) of 2030 Agenda (Tabari and 
Willems, 2023). Mainly, it strikes at the heart of SDG1 (No Poverty) by 
leading to crop failures and reduced productivity causing income loss 
and pushing people deeper into poverty; SDG2 (Zero Hunger) by posing 
a major threat to food security (i.e., crop failures, reduced livestock 
productivity, and water scarcity resulting in food shortages and 
malnutrition; SDG6 (Clean Water and Sanitation) by reducing water 
availability for personal, agricultural, and industrial use; SDG15 (Life on 
Land) by exacerbating land degradation, deforestation, desertification, 
impacting ecosystems and biodiversity (Lindoso et al., 2018; Zhang et al., 
2019). As drought affects various aspects of society and the environment, 
addressing the interconnected challenges of drought and SDGs requires 
a comprehensive and multisectoral approach.

Ever since the soil and water management challenges surfaced 
during the Mid to late 20th century, scholars have attempted the 
development of drought indices and indicators for disaggregating the 
complex and simple indications of drought conditions. Classical and 
holistic indicators provided the foundations for drought measurement. 
Researchers developed indicators sensitive to agricultural, 
socioeconomic, and environmental aspects of droughts, since these 
indicators cover only limited aspects of drought episode. For example, 

TABLE 1  Comparison of different drought indicators.

Index/
indicator

P T PE AWC CD SF GW SM Multiple Spatial 
scale

Temporal scale Data 
requirement

Classical

PDSI ✓ ✓ ✓ Global Monthly High

SPI/SPEI ✓ ✓ Global Daily, weekly, monthly High

TMI ✓ Global Monthly Low

AI ✓ ✓ Global Monthly Low

RAI ✓ Regional Monthly Medium

CMI ✓ ✓ Regional Weekly Medium

Holistic

USDM ✓ Country Weekly Medium

DSCI ✓ Global Monthly, annually High

ADRI ✓ Regional Monthly, annually High

HDI ✓ Regional Annually High

SEDI ✓ Global Annually High

CDI ✓ Global Annually High

Source: Author.
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the SEDI, HDI, CMI, ADRI, and PSIs are founded on broader sets of 
drought aspects. Further research studies pointed out more missing 
areas including the new authenticities like climate change and 
adaptation strategies.

4.1 Spatial applicability and heterogeneity 
of drought indices and indicators

Various indices have been developed to quantify and track 
drought at different spatial and temporal scales. Their spatial relevance 
and statistical robustness are crucial characteristics of drought. 
Certain indices are globally comparable and robust in different 
climates, while others are more sensitive to regional or local conditions 
(Gebrechorkos et al., 2023). According to Heim et al. (2023), drought 
indices and indicators, in general, are not perceived to perform equally 
well across regions. Many scholars classified drought monitoring 
models and techniques into two groups. First, drought models based 
on meteorological stations, which use station monitoring data to 
provide a simple drought monitoring index. Consequently, the 
outcomes of such methods are dependent on the quantity and quality 
of surface meteorological observation data. For ungauged or in areas 
with limited ground meteorological stations, it would be challenging 
to generate a reliable and spatially representative drought index. 
Second, drought model based on remote sensing data for inversion. 
This approach, therefore, utilizes satellite remote sensing monitoring 
data to obtain ground-related indices to assess drought situation and 
spatio-temporal distribution patterns (Hirwa, 2023; Li et al., 2022). 
Accordingly, most of the drought evaluation techniques solely 
examines and build assessment models based spatial relationship 
between drought propagation characteristics and potential influencing 
factors, including climatic factors (e.g., temperature, precipitation 
variability, atmospheric circulation patterns) (Wu et  al., 2021), 
hydrological factors (e.g., soil moisture groundwater recharge rates, 
surface water availability) (Buitink et al., 2021), land use factors (e.g., 
vegetation cover, deforestation, urbanization) (Yhdego et al., 2025), 
socioeconomic factors (e.g., water demand and consumption, 
population growth, over-extraction of groundwater, agricultural 
practices) (Li et  al., 2024; Liu et  al., 2020), and ignore complex 
interplay of factors such as the effect of physical features on drought 
processes (e.g., topography, digital elevation, slope, aspect, and 
altitude) (Liu and Cheng, 2025). The dynamic and thermal effects of 
topography are intimately associated with variations in large-scale 
atmospheric circulation and cloud microphysical processes (Wu et al., 
2024). Few studies investigated the catchment parameters such as soil 
type, slope, and vegetation cover influence to drought dynamics 
(Barker et  al., 2016; Xiong et  al., 2025). Understanding drought 
development process is crucial for early warning and mitigation, but 
mechanisms of development from drought type to outcome, remain 
largely underexplored. Thus, to gain better insights into drought 
dynamics and propagation processes, it is necessary to analyze 
drought propagation at the event scale, as well as considering the 
underlying causal factors behind.

Moreover, large-scale geographical environments often exhibit 
obvious spatial heterogeneity, leading to significant spatial differences 
in drought dynamics, timing, duration, type, and intensification. In 
contrast, traditional drought monitoring techniques do not cover the 
influence of regional spatial heterogeneity on drought, leading to 

evaluation results that do not match the actual drought condition (Xu 
Q. et al., 2024). On one hand, several scholars indicated that spatial 
heterogeneity in resilience changes is mainly attributed to climate 
zone, water deficit and their interactions (Zhang et al., 2023b). On the 
other hand, some researchers reaffirmed that spatial heterogeneity is 
influenced by climate oscillations, landform effects, hydro-
meteorological variables, edaphic parameters (Balti et al., 2023; Wang 
et al., 2024; Zhang et al., 2024). Hence, there is a need to reflect on the 
spatial heterogeneity characteristics of drought as an important issue 
for establishing drought monitoring assessment models using drought 
indices and indicators.

4.2 Predictive capability of drought indices 
and indicators

Drought prediction is of critical importance to early warning for 
disaster risk management. Developing accurate large-scale drought 
prediction models is challenging due to the complex spatio-temporal 
correlation patterns that govern drought dynamics. Notably, three 
types of methods have been used for drought prediction, including 
dynamical, statistical, and hybrid methods (Hao et al., 2018; Pozzi 
et  al., 2013). Drought prediction has been tackled more state-of-
the-art general circulation models, which provide drought prediction 
based on the physical processes of the atmosphere, ocean, and land 
surface. Global climate models (GCMs) are valuable tools to support 
assessments of future water supply and various drought types (Cook 
et al., 2020). Nonetheless, errors and interdependence between the 
time series data of GCMs reduce the accuracy of drought 
characterization (Shakeel et  al., 2025). Meanwhile, to solve the 
uncertainties in GCMs outputs require methods like bias correction 
and ensemble weighting to improve accuracy and reliability for 
predicting drought onset, duration, and severity (Hao et al., 2018).

In this context, there are numerous emerging studies addressing 
big data and its implication in drought monitoring. Big data handle 
data heterogeneity which is an additive value for the prediction of 
drought, resulting in offering a view of the different dimensions 
including the spatio-temporal distribution and severity detection and 
trends (Balti et al., 2020). In recent research, scholars proposed an 
integrated framework for monitoring vegetation drought with remote 
sensing, deep learning, and spatiotemporal fusion, in situ stations, and 
biophysical data (Xu Z. et al., 2024). There is still a lack of a technical 
framework for integrated drought management at the event scale. 
High-resolution drought data helps to better assess the spatial and 
temporal changes and variability in drought duration, severity, and 
magnitude at a much finer scale, which supports the development of 
site-specific adaptation measures.

4.3 Limitations of the indices and indicators

Understanding the limitations of drought indices and indicators 
is crucial for using the holistic and classical indices effectively and 
making informed decisions.

	•	 Sensitivity to data inputs: The accuracy of indices is highly 
dependent on the quality and availability of data inputs (i.e., 
meteorological data, socioecological data, agricultural data, etc.). 
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The quality and quantity of input data are important for accurate 
drought assessment. For example, precipitation data is used to 
derive the SPI-based drought index. By comparing the 
spatiotemporal differences and drought area capture capabilities 
over 23 sub-datasets spanning 30 years, the study of Liu et al. 
(2016) concluded that SPDI is less sensitive to data selection than 
sc-PDSI. Moreover, the SPDI series derived from different 
datasets are highly correlated and consistent in drought area 
characterization. SPDI is most sensitive to changes in the scale 
parameter, followed by location and shape parameters. It was 
looked into how sensitive each of the seven precipitation-based 
drought indices was to varying record lengths at monthly, 
seasonal, and annual time scales. The findings showed that better 
time steadiness was observed in Z-score Index (ZSI) and Effective 
Drought Index (EDI) compared to other indices such as the 
Deciles Index (DI), Standardized Precipitation Index (SPI), 
Percent of Normal Precipitation Index (PNPI), China Z Index 
(CZI), and the Modified China Z Index (MCZI) (Mahmoudi 
et  al., 2019). Due to sensitivity to a relatively wider range of 
factors, holistic indices/indicators have the advantage over 
classical indices/indicators.

	•	 Lack of consistency: Different drought indices may yield different 
results for the same area or time period. Inconsistencies may arise 
when set thresholds are applied to different climatic zones; for 
instances, what is deemed as extreme drought in an arid region 
may represent normal variability in a humid environment 
(Ahady et  al., 2025). The study of Mahmoudi et  al. (2021) 
recapped the standard procedure to estimate SPI for each desired 
time scale, including steps to calculate average precipitation 
amounts for each temporal dimension; tailor Gamma distribution 
to each time; to estimate the probability linked to each 
precipitation value and determine the SPI values by inverting the 
probability evaluated with a Gamma distribution using the 
standard normal function. Indeed, the choice of probability 
distribution functions in calculating drought index like SPI can 
influence drought classification outcomes, raising questions 
about robustness and comparability (Moccia et al., 2022). There 
is no universal drought indicator and previous studies identified 
significant discrepancies between the state drought indices (Feng 
et al., 2017). The most exact and accurate techniques to track 
agricultural conditions are drought indices estimated from 
ground observations of soil moisture, precipitation, and 
temperature. The accuracy of drought indices also depends on 
accurate estimates of soil parameters based on in-situ 
measurements; calculation methods and missing data (Pan et al., 
2023). Coupled climatic and socioeconomic aspects are 
interlinked to drought conditions in one region and distinct in 
another location. Many of these features are meticulously 
interrelated with each other and any decision-making ability 
regarding their inclusion has certain consequences in terms of 
accuracy and effective outcomes. The problem of inconsistency 
is prominent in the case of both holistic and classical indicators 
that consider multiple parameters.

	•	 Artificial Intelligence-based drought assessment: Droughts can 
be  modeled, observed, and predicted using high-resolution 
spatiotemporal resolution data. Drought-causing factors and 
mechanisms operate on a wide range of spatial scales, from the 
movement of soil water to global atmospheric circulation. There 

is huge lack of multiscale drought monitoring and early warning 
systems (Mardian, 2022). Further, the Centre for Environmental 
Data Analysis (CEDA) developed new high-resolution datasets 
providing more detailed local information that can be used to 
evaluate drought severity for specific periods and regions and 
determine global, regional, and local trends, thereby supporting 
the development of site-specific adaptation measures 
(Gebrechorkos et al., 2023). There is an urgent need to develop 
novel datasets that can serve fundamental data support for future 
studies. The integration of machine learning (ML) models  – 
usually superior to traditional techniques  – has a promising 
answer since they are good at addressing non-stationarities and 
non-linearities in drought assessment. For instance, DroughtCast 
ML was utilized to forecast a very extreme drought event up to 
12 weeks before its onsets. It offers promising findings for 
decision-makers, land managers, and public institutions in 
preparing for and mitigating the impacts of drought.

	•	 Complex interpretation: Some drought indices are based on 
complex mathematical algorithms, making them difficult for 
non-experts (i.e., smallholder farmers) to interpret and need 
more attention. This can limit their utility for decision-making. 
The work of reported that Fluixá-Sanmartín et al. (2018) due to 
the general complexity of droughts, the comparison of the index-
identified events with droughts at different levels of the complete 
system, including soil humidity or river discharges, relies 
typically on model simulations of the latter, entailing potentially 
significant uncertainties and decidedly biased outcomes. The 
short-term anomalies are overlooked – regarding the interactions 
of soil moisture and evapotranspiration – hiding the influence of 
long-term anomalies of rainfall, soil moisture, and 
evapotranspiration that cause recurrent droughts and heatwaves 
(Gaona et al., 2022). To solve these challenges, there is a need for 
collaborative efforts (e.g., expert consultation, access 
documentation, multi-indices understanding, access to historical 
data and stakeholder engagement, etc.) and requiring 
interdisciplinary expertise from various fields (e.g., 
agriculturalists, climatologists, socio-economists, and 
ecologists, etc.).

4.4 Necessity for multidisciplinary indices 
and indicators

Drought impacts are not limited to a single sector or dimension. 
Sectors affected by drought are interconnected. For example, drought 
conditions can lead to reduced agricultural productivity, which in turn 
can impact food security. By incorporating various indicators, these 
systems can provide timely alerts for different sectors, which is 
essential for effective planning, response, and resilience-building in 
the face of a changing climate. Literature reveals that all indicators 
have certain limitations, either conceptual, operational, or both (Hayes 
et al., 2007; Hayes et al., 1999; Heim, 2002; Keetch and Byram, 1968; 
Palmer, 1965; Vicente-Serrano et al., 2010). None of the indices cover 
simultaneously all the necessary areas, duration, intensity, frequency, 
impacts, etc. However, the major shortcoming occurs when some vital 
parameters are not included in the account (Yang et al., 2015). For 
example, while many parameters are essential for a robust assessment, 
some may be  considered “leftover” when designing or using a 

https://doi.org/10.3389/frwa.2025.1672070
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Hirwa� 10.3389/frwa.2025.1672070

Frontiers in Water 12 frontiersin.org

particular index, including solar radiation, relative humidity, wind 
speed, cloud cover, barometric pressure, snowpack data, turbidity 
(Dikici, 2020). In any region experiencing drought events, any 
evaluation or monitoring practice without considering coupled 
climatic features will yield defective outcomes and wrong decisions. 
This is not limited to weather parameters only. Each region has a 
unique scenario of drought experience, spatial and temporal 
distribution, socioeconomic development, water scarcity concerns, 
and adaptive capacity. Some countries (e.g., the United  States of 
America, Australia, and European Union countries) have developed 
their specific indicators/indices for monitoring drought (Heim et al., 
2020). However, many indices, particularly classical, are unable to 
reflect the cause-effect relationship of drought. Thus, in planning, it 
would be wise not to use a single indicator because it will not lead to 
consistent results or delusion of security. Artificial intelligence-derived 
methods (e.g., machine learning, deep learning and among others) 
have a high potential for prediction of extremes due to the ability of 
machine learning methods to learn from past data, to handle large 
numbers of input variables, to integrate physical understanding into 
the models and to discover additional knowledge from the data.

4.5 Data, methodological and 
technological challenges

One of the major issues influencing the adoption of indices, 
causing shortcomings and restricting research and development, is 
data challenge, leading to complications in the development and use 
of indices. Many holistic indices have not been extensively employed 
because the requisite data is not readily available. Assessment of 
drought conditions requires a reasonably long time series at the 
desired time phase. Different indices/indicators consider different 
parameters. Hence, the data required for holistic indices is huge and 
diverse. Many regions, especially in developing countries, lack 
sufficient data collection and monitoring infrastructure (e.g., Long-
term Ecological Research) (Van Vanderbilt and Gaiser, 2017), leading 
to data gaps and inaccuracies. Data collected at a regional or national 
scale may not provide the necessary detail for local-level 
drought assessments.

Moreover, remote sensing technologies, while valuable for 
monitoring drought conditions, have limitations, including cloud 
cover, instrument errors, and sensor calibration issues, lack of 
integration tools and standardized data formats for main parameters 
such as satellite-based precipitation, soil moisture, groundwater levels, 
and among others (Hao et al., 2014; Hirwa et al., 2022b). While climate 
models offer projections of future climate conditions, uncertainties in 
these projections can limit their utility for long-term drought planning 
and adaptation. Conspicuously, integrating socio-economic data, such 
as agricultural statistics, demographic data, greenhouse gas emission, 
and land use/land cover information is crucial for a holistic 
understanding of drought impacts, but to such data may be restricted 
or limited in many regions. Besides, there is a critical need of 
considering the relationship between different systems, including 
water-energy-food nexus (Muhirwa et al., 2021; Muhirwa et al., 2022), 
climate change-drylands-food security (Hirwa et al., 2022a), water-
energy-food-biodiversity-health nexus (Hirwa et al., 2021). In some 
regions, access to advanced technology and computing resources can 
be  limited, leading to the inability to develop and implement 

sophisticated drought monitoring and assessment tools. Similarly, data 
privacy, security, and sovereignty concerns can hinder data sharing and 
collaborative drought assessment across transboundary regions. There 
is an urgent need to invest in data infrastructure, develop standardized 
data-sharing protocols, and enhance technological capabilities. Lastly, 
international cooperation is crucial for sharing data, methodological, 
and technological advancement.

5 Conclusion

Drought is a creeping natural phenomenon with highly 
destructive power, which unfolds their impacts on different temporal 
and spatial scales. After reviewing 50 + drought indices/indicators, 
this study presented descriptions of 12 indices/indicators in terms of 
drought characterization, spatiotemporal scale suitability, calculation 
methods, data requirements, level of complexity, strengths, and 
weaknesses. Therefore, based on previous literature on drought 
assessment and monitoring using different indices/indicators, 
we compiled a global comparison. Based on this review, the following 
conclusions can be drawn:

	 i)	 There is no single drought indicator, whether classical or 
holistic, for all drought types in all specific regions and 
climates, because all available drought indicators have their 
limitation during development and application. Therefore, 
drought indicator selection requires a thorough investigation 
related to the type of drought and the respective drought 
indicator based on the availability of data, ease of 
communication, result implication, strength and limitations of 
the indices, and the objective of the investigation. Drought 
indices/indicators assimilate thousands of bits of data on 
meteorological, agricultural, socioeconomic, and ecological 
data into a comprehensive big picture. Due to a lack of large-
scale application, experts must make their own judgments 
regarding holistic indicators’ pros and cons.

	ii)	 Holistic indices require huge amounts of data. The lack of 
sufficient infrastructure for collecting and monitoring data in 
many regions, particularly in developing countries, produces 
gaps and inaccuracies in data. A regional or national drought 
assessment may not be able to provide the necessary details 
based on data collected at the local level. There is a need for 
affordable geospatial infrastructures and technologies. The 
development of new composite methods should be used as 
building blocks and integrating remote sensing to support 
multinational and disciplinary approaches with local 
participation to attain sustainable drought monitoring.

	iii)	 Various indices/indicators produce contradictory findings 
regarding drought hotspots. For instance, the PDSI also tends 
to underestimate runoff conditions whereas CMI is limited to 
use only in the growing season; it cannot determine the long-
term period of drought. The meteorological drought indices 
may not solely be  appropriate and adequate to assess 
agricultural drought due to the lag between agricultural and 
meteorological drought. The main reason for these 
controversial results can be  the choice of drought indices/
indicators and the accuracy of satellite products used to derive 
drought indices/indicators. Ultimately, the evaluation criteria 
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should align with the objectives of the drought monitoring and 
management efforts, and the chosen index should meet the 
specific needs of the stakeholders and decision-makers.

	iv)	 Future research studies should focus on novel geospatial 
intelligence (Geo-AI) based drought indices that could 
facilitate in assessing, categorizing, and disclosing deep drought 
conditions; utilization of earth observations that include 
satellite, climate, oceanic, and biophysical data for efficient 
drought analysis and improved seasonal prediction; combine 
or integrate drought indices based on improved modelling 
techniques; apply the data mining and GIS applications to 
build Drought Early Warning Systems (DEWSs); and explore 
the impact of drought on sustainable food systems.

In summary, both holistic and classical drought indices/indicators 
play roles in monitoring and assessing drought conditions. In practice, 
both types of indices/indicators are often used in combination to 
provide a more comprehensive and well-rounded understanding of 
drought events. Combining these tools with advancements in 
technology, early warning systems, and international cooperation is 
crucial for addressing the complex challenges posed by drought.
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