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Droughts are complex and recurring natural hazards throughout the ecosystems
and impact many sectors of society. Droughts have complex spatiotemporal
behaviors; therefore, monitoring them is a challenging task. Drought monitoring has
depended chiefly on climate-based indices and indicators, thus deemed useful in
many scenarios. This review aims to explore classical and holistic drought indicators/
indices for unravelling their usefulness and associated limitations. Given that they
offer a broadened spatial perspective of drought conditions and fluctuations over
large areas, climate-based drought index maps may be of limited use. Precise
evaluations of drought are necessary for efficient monitoring and assessment
of the condition. Here, this review examined more than 50 indices/indicators
for their sensitivity to input data requirements, spatiotemporal scales, strengths,
and weaknesses. Also, an analysis was carried out based on the previous studies
to identify hotspots and show the dissimilarity in the results yielded by different
indices/indicators. None of these indices is typically inclusive enough to provide a
broad-gauge assessment and determine appropriate actions. New and enhanced
geospatial intelligence-based drought indices and earth observations are needed
to identify, classify, and communicate real-time drought-related phenomena
and offer an in-depth breakdown of the constraints and requirements of novel
indicators and data difficulties.
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1 Introduction

A global increase in temperature and severe changes in precipitation have been observed
due to anthropogenic greenhouse gas emissions (Solomon et al., 2009; Tan et al., 2023). The
United Nations Office for Disaster Risk Reduction (UNDRR) identified drought as one of the
largest global risks that could impact the world over the next decades (Erian et al., 2021). In
some regions of the planet, there will be severe drought and heatwaves (Tripathy and Mishra,
2023). Droughts are among the most complex environmental effects, devastating natural
hazards, and affect many different socio-ecological systems (e.g., air, forests, aquatic systems,
soils, and humans) (Vicente-Serrano et al., 2020). Droughts can affect the quality, structure,
diversity, and functioning of agroecosystems (Kundel et al., 2020). Due to changing climate,
shifting ocean and atmospheric dynamic patterns, expanding human water usage, and human
influence on the environment, novel forms of drought are emerging locally, regionally, and
globally. Prolonged droughts are increasing the likelihood of ecological transitions that have
expensive externalities and significant repercussions for anthropoid communities (Crausbay
etal., 2020). The natural pattern of droughts has been exacerbated by climate change, becoming
more prevalent, prolonged, and catastrophic. This situation can get worse, increasing water
stress in already affected regions.
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The World Economic Forum (WEF) reported that, the frequency
and duration of droughts have risen by 29% since 2000 and more than
75% of the world could face drought by 2025 (WEE 2022). Over the
past four decades, weather, climate, and water hazards represented
50% of disasters and 45% of disaster-related fatalities, especially in
developing economies. Droughts contributed to 15% of natural
catastrophes but took the highest humanitarian toll, with roughly
650,000 deaths. From 1998 to 2017, droughts triggered global
economic losses of approximately USD 124 billion (Crossman, 2018).
In 2022, more than 2.3 billion people face water stress; almost 160
million children are exposed to severe and prolonged droughts.
Besides, by 2050, droughts may affect over three-quarters of the
world’s population, and an estimated 4.8-5.7 billion people will
remain in areas that are water-scarce for at least one month per year,
up from 3.6 Bn now (Funk et al., 2019). De facto, up to 216 million
people could be forced to migrate by 2050, largely due to drought in
combination with other factors including water scarcity, declining
crop productivity, sea-level rise, and overpopulation (King-Okumu
et al., 2020).

In the current nature dynamics of multiple shocks, accurate
measurement of drought events has become a central task and
problematic in terms of the measurement system and effective way to
forecast long-term drought. According to Wilhite and Glantz (1985),
there are a whole range of types of droughts (often distinguished)
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(Figure 1), but new categories are being defined (Crausbay et al.,
2020), including the following: (1) agricultural drought (farming)
refers to the adverse impacts on farmland by factors such as rainfall
shortages, soil water deficits, reduced groundwater, or dwindled
reservoir levels required for irrigation (Jiang and Zhou, 2023;
Orimoloye, 2022; Zhang et al., 2023a); (2) hydrological drought
(surface water) is characterized by prolonged meteorological drought.
It is based on the impact of rainfall deficits on the water supply such
as stream flow, cessation of spring flows, drying of reservoir and lake
levels, and groundwater table decline (Brunner et al., 2023; Satoh et al.,
2022; Van Loon, 2015); (3) socio-economic drought (ones which affect
humans) occurs when the demand for economic good exceeds supply
as a result of a weather-related shortfall in water (Lee et al., 2022; Liu
etal,, 2020; Mehran et al.,, 2015); (4) meteorological drought (weather)
is typically defined on the basis of the extent of dryness in comparison
to some “normal” or average amount and the span of the dry period.
It consists of normal precipitation below 25% (Monjo et al., 20205
Torello-Sentelles and Franzke, 2022); and (5) ecological drought
defined as “a prolonged and widespread deficit in naturally available
water supplies — including changes in natural and managed
hydrology - that create multiple stresses across natural-human
systems” (Crausbay et al., 2017; McEvoy et al., 2018; Park et al., 2020).

Drought indices are a crucial way to assess the extent of the
problem. A thorough understanding of drought events helps to
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FIGURE 1
Timeline of drought incidence and effects for the most widely recognized kinds of drought. Source: Author.
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formulate strategic policies aimed at the effective management of
water, land, and atmospheric systems. Using drought indices, drought
types, intensity, duration, location, timing, and frequency of droughts
can be evaluated quantitatively and used to plan for probable risk
assessments (Nagarajan, 2010).

Owing to the challenges associated with the current descriptions
of drought, their evolution depends on the metrics or indicators that
help define this occurrence. Consequently, to study drought, basic
information about the climate and weather around a particular area is
necessary to ascertain whether a drought event has occurred or is
likely to occur in the future (Wilhite, 2016). A consistent regional
climatological pattern could indicate that a drought is about to start
in another part of the region. Appropriate planning may be a prospect
for mitigating the impacts of credible drought in this case if it is
presumed that an exceptional dry pattern occurs in the region
(Svoboda and Fuchs, 2016). Monitoring drought conditions may
be conducted by early warning systems that might be supportive of
adequate preparation for any drought event (Faiz et al., 2021; Heim
and Brewer, 2012). Until now, there has been no widely agreed
drought index among scholars, practitioners, and policymakers. There
is a necessity of developing integrated composite drought indices and
indicators. Hence, they will serve as a bridge between research and
policy and enable policymakers to make informed judgments.

Up to now, investigations that focused on the 50 + drought
indicators and indices based on various approaches (i.e., meteorology,
soil moisture, hydrology, remote sensing, and modeled or composite),
revealed that none encompasses all aspects of drought events. The
Integrated Drought Management Programme (IDMP) declared that
any, all, or none of the indicators/indices may be suitable for a
particular application, based on user knowledge, needs, data
availability, and computer resources available to implement them
(Svoboda and Fuchs, 2016). On one hand, most of the indices solely
depend on meteorological conditions while ignoring the social,
economic, and environmental factors. Drought indices may not fully
account for these non-meteorological causes. On the other hand,
many drought indices focus on surface-level indicators but do not
incorporate interfaces of several data (e.g., surface water dynamics,
topography, soil properties, soil moisture, etc.) which is crucial for
agriculture, water resources, and socio-ecological systems (Dehghani
etal,, 2022). It should be noted that drought indices are retrospective
and often developed based on historical data or past drought
conditions, a climate patterns shift, the effectiveness of these indices
in predicting future droughts may decline, as well as challenging to
plan for long-term drought resilience. Some of the indices may yield
different results for the same area or time. This lack of consistency can
make it challenging to compare and combine findings from different
indices (Savenije, 2000). The above issues can stem to contradictory
results, confusion, and inconsistency in monitoring efforts and, at the
same time, mislead public opinion and decision-making process by
creating a false sense of security or insecurity.

Developing a better understanding of the changing expression
and influences of drought across diverse ecosystems is one of
contemporary foremost challenges. Coupling novel methodologies
(i.e., machine learning, deep learning, artificial intelligence, etc.) with
high-resolution datasets of drought metrics is essential for monitoring
and quantifying the duration, frequency, severity, and spatial extent of
droughts at global, regional, and particularly local scales. Drought
indices are practical techniques to convert enormous volumes of data
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into quantitative facts that can be used in applications such as drought
forecasts and declaration, contingency planning, and impact
assessment. Therefore, urgent actions are essential to better
comprehend and more effectively achieve drought risk to reduce the
devastating toll on human livelihoods and ecosystems.

In this work previous studies published from 1985 to 2025 were
analyzed using VOS Viewer, a software tool for constructing and
visualizing bibliometric networks (Perianes-Rodriguez et al., 2016).
From the resulting 2,691 published articles, 121 were clustered and
reviewed. Based on the analysis, literature regarding drought indices
and indicators can be divided into 7 categories: (1) objectives of
drought indices; (2) spatiotemporal coverage; (3) data availability and
interpretability (4) sectoral focus; (5) complementarity and scientific
validity; (6) applicability for early warning; and (7) adaptation to
climate change. Here, we compared 50 drought indices/indicators
against 21 input parameters of comparison, revealing how these
indicators/indices miss certain areas and how they can be used
collectively to supplement their strengths and weaknesses. Out of 12
indicators, 6 are widely used, and 6 are promising as holistic indicators.
A few drought hotspots have also been located to demonstrate how
various circumstances can have distinct effects.

2 Drought indices and indicators
2.1 Classical drought indices and indicators

Classical drought indices have been developed to assess and
monitor drought conditions based on meteorological and hydrological
data that is summarized using mathematical expressions. These indices
have been in use for several decades. The most commonly used indices
were first defined by Wayne Palmer in 1960s (Palmer, 1965), McKee
and his team in the late 1990s (McKee et al., 1993), and Thornthwaite
in the mid-20th century (Thornthwaite, 1948). Most of these indices
have addressed one or more aspects of drought events and quantifiable
ways to assess drought conditions and their impacts while providing
valuable information for understanding drought severity. Classical
drought indices vary in their complexity, data requirements, and
temporal scales. The choice of index depends on the specific application
and the data availability for a particular region. While they provide
valuable insights into drought conditions, it is crucial to consider their
limitations and supplement their findings with other information,
especially for complex multifaceted drought assessments.

2.1.1 Palmer Drought Severity Index (PDSI)

The PDSI is one of the most influential, widely used, and
recognized indices within scientific and meteorological communities
(Lehner et al., 2017). In a hydrological accounting system, moisture
demand (PE) and supply (P) are integrated over time (Mika et al.,
2005), to assess and monitor long-term regional drought conditions
(typically 6-24 months). Its strengths are due to its long historical use,
incorporation of multiple climate factors, standardization, long-term
perspective (especially over low and middle latitudes), historical data
utilization, integration of climatology, impact on water resources and
agriculture, and scientific credibility (Dai, 2013). By using surface air
temperature and a physical water balance model, PDSI considers the
basic effect of global warming through potential evapotranspiration.
Nonetheless, it also has some limitations including sensitivity to
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parameter settings and the assumption of stationarity in climate data,
which may be challenged in the face of changing climate patterns.

Recently, the PDSI was questioned for its inadequacy to predict
droughts on temporal scales less than 12 months when monthly PDSI
values were applied. It is, therefore, not to associate it with specific
water resources such as runoff, snowpack, reservoir storage, and more
using multi-timescale indices like the Standardized Precipitation
Index (SPI) (Alley, 1984; Dai, 2011). A novel standardized Palmer
drought index (SPDI) was established (Ma et al., 2014). Despite its
limitations, the PDSI is known to be useful as a means of monitoring
drought in terms of soil moisture and deciding the timing of
agricultural drought contingency planning and measures (Zargar
etal, 2011). A PDSI < — 4 represents an extreme drought, while a
PDSI value >4 represents very wet conditions.

2.1.2 Standardized precipitation indices (SPIs)

SPIs such as the Standardized Precipitation Index (SPI) or
Standardized Precipitation and Evapotranspiration Index (SPEI) are
frequently used around the world to evaluate drought severity across
a continent or a larger region covering different meteorological
regimes (Laimighofer and Laaha, 2022; Vicente-Serrano et al., 2010).
The SPI measures the deviation of observed P from the long-term
average and quantifies it in terms of standard deviations. The SPI
provides information about the probability of a certain level of
precipitation deficit over different time scales. It is available at various
time scales, from short-term (e.g., 1-6 months) to long-term (e.g.,
24 months or more) (McKee et al., 1993). Several studies have
demonstrated the SPT’s value in identifying droughts, and its basic and
straightforward procedure has made it well-liked across a range of
sectors. The SPI is calculated by first summing up monthly
precipitation data over i-monthly accumulation periods, with
i typically taking values of 1 to 12. However, in order to estimate the
probability of no precipitation, the probabilities of the Weibull plotting
position are calculated as follows (Equation 1):

P(x):PO +(1—po)F(po >0,a,,6'),x>0

_HOP_O +1 _
(%)= 2(n+1) "

with F being F ( Po>0,a.8 ) the gamma distribution with & as the
shape parameter and £ as the scale parameter. py is the probability of
Mop—0

s __Vp =0 .
zero precipitation by Po = (n* 1) and " =0 is the number of zero

precipitation events in the observation period. The drought categories
vary from mild drought (0-0.99) to extreme drought <—2 (Figure 2).

The SPI values are not exact as they depend on several choices
made by the user. Drought indices are subject to five different
uncertainties including sample size, choice of distribution, observation
period, parameter estimation, and Goodness-of-fit (GOF).

2.1.3 Thornthwaite Moisture Index (TMI)

The TMI was developed by Thornthwaite (1948), to categorize the
climate conditions of different regions. This index estimates potential
evapotranspiration and compares it to actual evapotranspiration,
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which can indicate moisture deficits. The TMI model is widely used
because it is easy to use and only needs monthly average temperature
and latitude (Karunarathne et al., 2016; Li and Sun, 2015). However,
this model ignores the effects of air humidity, wind speed, and other
factors, thus the value of ET is frequently underestimated (Zhao et al.,
2019). It is a dimensional index spanning from +100 to —100 depicting
weather conditions from humid to arid (Figure 3). TMI is calculated
by combining two indices: aridity index and humidity index. Based on
a water balance calculation, these indices are determined by run-off
or surplus and water deficit. The calculation method of TMI is given
by Equation 2:

[L—IJ,P <PET

PET
P
TMI={|1-—— |,P > PET 2)
PET
0,P=PET =0

where TMI is the Thornthwaite Moisture Index, P is precipitation
(mm), and PET is potential evapotranspiration (mm). The TMI is
multiplied by 100 to create whole numbers (Grundstein, 2009).

2.1.4 Aridity Index (Al)

The AI characterizes the metric measure of the degree of
dryness of the climate at a specific location. It is calculated by the
ratio between precipitation (P) and potential evapotranspiration
(PET) (Equation 3) (Pravilie and Bandoc, 2015; Qu et al., 2019;
Standler and Stephen, 2005). Aridity is commonly defined as the
result of the interaction of evaporation, rainfall, and temperature
(Thornthwaite, 1948). PET is an estimation of the atmosphere’s
“drying power” to evaporate water from land surfaces (e.g., from
the soil and plant canopy) and via plant transpiration. Obviously,
the anomaly water deficits may also occur over shorter periods,
e.g., seasonally or monthly, which are called droughts depending
on their intensity and duration. Therefore, the AI provides the key
material to assess the trends of aridity or humidity and
characterize the drought. When AI becomes larger than normal
in an area, the climate tends to suffer from drought and water
resource shortages which negatively affects the food security and
the livelihoods of the community (Hirwa et al., 2022a; Li
etal., 2017).

The ET, indicates the maximum amount of water that can
be evaporated from the soil and transpired from the vegetation of
a specific surface, as a function of wind speed, solar radiation,
vapor pressure, and temperature (Zhang et al, 2007). The
atmospheric evaporative demand, expressed as ET,, is especially
relevant in drought evaluations as an important factor in Al
computation (Vicente-Serrano et al., 2015). The results of analyzing
the aridity trends differ in the magnitude of the AT and their spatial
patterns as consequences of the difference in the forcing
precipitation datasets employed and the model used to estimate
ET, and meteorological datasets used to calculate ET,. However,
the strong differences in the magnitude of ET, changes may
be obtained using different methods to estimate ET, (Donohue
et al., 2010; Vicente-Serrano et al., 2014). Further, to hasten the
uncertainties in aridity estimates and in the analysis of the AI

frontiersin.org


https://doi.org/10.3389/frwa.2025.1672070
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org

Hirwa

10.3389/frwa.2025.1672070

<—2: Exceptional —1.9to-1.6:
- ? - Extreme drought

drought
- 0.8t01.2:
Moderate wet

0.5t00.7:
Abnormally wet

FIGURE 2

global station data. Source: GPCC.

-1.5t0-1.3:
Severe drought

1.3to 1.2:
Severe wet

9-month SPI global drought map. The Global Precipitation Centre (GPCC) monthly precipitation dataset from 1901 to present was calculated from

-1.2t0-0.8:
Moderate drought

-0.7t0-0.5:
Moderate drought

1.6t01.9:

= 2: Exceptional
Extreme wet -

wet

90'N
48NS
ON 4 s
¥ <
45°S +
90 , , | )
180 90°W 0 90F 180°
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from Climate Research Unit (CRU) dataset. Adapted from Navarro
etal. (2022).

versus the hydro-ecological factors, the regions where the
mainstream of models concur in sign should be considered.
However, note that the ensemble of climate models is not weighted,
even though several models are from the same modeling
institutions (Greve et al., 2019).

The AI map (Figure 4) is based on data computed using the
30-year average of P/PET, where i denotes the ith year.
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230 P,
i=1| PET;

30

Al = (3)

2.1.5 Rainfall Anomaly Index (RAI)

The RAI was proposed by Van Rooy (1965). It incorporates and
evaluates a ranking mechanism to assign dimensions to two anomalies
for precipitation (i.e., positive and negative anomalies) (Raziei, 2021).
First, the precipitation information is presented in descending order.
The 10 greatest numbers are averaged to generate a positive anomaly
limit, while the 10 lowest values are averaged to form a negative
anomaly limit. Therefore, RAI is a simpler index that measures the
deviation of monthly or seasonal rainfall from the long-term average.
RAI is relatively easy to compute, with one input (i.e., precipitation)
that can be examined on monthly, seasonal, and annual intervals. One
of its flaws is that it requires a sequentially complete dataset with
missing value estimates. Changes throughout the year must be minor
in comparison to temporal variations. Moreover, the RAI classification
is similar to that used by Gibbs (1967) to partition precipitation values
between 10 deciles and is equally applicable to various lengths of
drought, including flash droughts, meteorological droughts, deep soil
moisture droughts, and hydrological droughts defined with RAI
computed at different time scales.
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Distribution of global drylands based on Al. Drylands are delineated based on the Al, humid (Al > 0.65), dry sub-humid (0.50 < Al < 0.65), semi-arid
(0.20 < Al £ 0.50), arid (0.05 < Al < 0.20), hyper-arid (Al < 0.05). Al values and corresponding climate classes developed by UNEP (1992). Mean global-
Aridity_ET, and global_ET, datasets (Trabucco and Zomer, 2018). Source: Cherlet et al. (2018).

The study of Olukayode Oladipo (1985) revealed that the
differences between RAI and the more complicated indices of Palmer
and Bhakme-Mooley were negligible. It is useful for monitoring short-
term drought conditions. The standardization follows the unity-based
feature scaling (Khansalari et al., 2018) to asymmetrically distribute
the original anomalies between the predefined limits (—3 and + 3). For
positive anomalies (i.e., P, — P greater than 0), the prefix is positive
(i.e., 3) and M is the mean of the 10 highest precipitation values on
track; for negative anomalies (i.e., B; -P< 0), the prefix is negative
(i.e., —3) and the mean of 10 lowest measurements can be utilized
(Keyantash and Dracup, 2002). In contrast, a plethora studies revealed
that the RAI (Equation 4) can perform well in humid to moderate
climates of the world where monthly precipitation distributed
relatively regularly throughout the year, and the associated distribution
is less skewed (Hinsel et al., 2016; Loukas et al., 2003).

However, determining M from the 10 largest (smallest)
precipitation values appear arbitrary. The thresholds are computed
using Equation 4, as described by Salehnia et al. (2017).

RAI =+3 Pﬁ—_q (4)
M

Where B, is the sequence of measured precipitation at the time i,
P is the long-term average precipitation (mm), M is average of 10
highest (extrema) values of P, for the positive anomaly and the mean
of the 10 lowest values of P, for the negative anomaly. The prefix £3 is
used to limit the deviations’ lower and upper boundaries. The RAI
ranging from extremely dry (RAI < —3) to extremely wet (RAI > 3).

2.1.6 Crop Moisture Index (CMI)

CMI is designed expressly for assessing the impact of drought on
crop conditions. It takes into account both precipitation and
temperature data to evaluate soil moisture levels (Isard et al., 1995).
The CMI, which varies quickly from week to week, might provide the
short-term or current condition of primarily agricultural drought or
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moisture surplus. The CMI was developed based on PDSI (Juhasz and
Kornfield, 1978). It is calculated by subtracting the difference between
potential evaporation and moisture, to determine any deficit. Input
parameters (i.e., weekly mean temperature, weekly mean precipitation,
and the previous week’s CMI value. The CMI values vary from
excessively wet (+3 and above) to severely dry (—3 or less) (Zarafshani
etal., 2016). Nonetheless, the CMI is limited to use only in the growing
season; it cannot determine the long-term period of drought.

2.2 Holistic indices and indicators

Holistic drought indices are more comprehensive tools that
attempt to provide a more complete picture of drought conditions by
considering multiple factors and impacts beyond just meteorological
and hydrological data. These indices take into account the broader
socioeconomic and environmental consequences of drought. Due to
their complexity, they may require a variety of data inputs. Besides,
comprehensive indicators offer a more integrated view of the overall
drought situation. The holistic drought indicators are particularly
valuable for decision-makers, actors, and stakeholders who need a
more complete understanding of the impacts of drought on society, the
environment, and the economy. They can help guide policy decisions,
resource allocation, and drought management strategies by providing
a more comprehensive view of the complex nature of drought events.
However, they often require extensive data and resources for their
implementation and may be more challenging to use in regions with
limited data availability or monitoring infrastructure.

2.2.1 U.S. Drought Monitor (USDM)

The USDM was conceived in 1999 and is produced through a joint
effort of the National Drought Mitigation Center, U.S. Department of
(USDA),
Administration (NOAA), and local experts. It combines data from

Agriculture National Oceanic and Atmospheric

various sources across the hydrological cycle (i.e., meteorological,
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hydrological, and agricultural information), to provide a holistic view
of drought conditions in the United States (Svoboda et al., 2002). The
USDM also considers water supply, ecosystems, and society (Leeper
et al., 2022). The USDM categories are classified based on drought
indicator percentiles from “no drought or abnormal dryness” to
“exceptional drought” corresponding to 31-100 and 0-2, respectively.
For instance, abnormally dry corresponds to 20-30% chance for a
drought to occur in ranges from 20 to 30 while for exceptional drought
it is <2% (Pendergrass et al., 2020). Most of the maps drawn using
USDM refer to NOAA/NCEI (2023).

Additionally, USDM’s uniqueness includes: (i) being the first
nationwide unifying drought monitoring of multiple entities; (ii)
receiving local bystanders’ observation, for instance, more than 425
local observers such as state climatologists, and National Weather Staff,
(iii) simple and effective, the classification system for droughts is easy
to understand for public; (iv) timely, it is a weekly product which
illustrates drought conditions and impacts promptly (Hatami Bahman
Beiglou et al., 2021). The precipitation-deficit-driven (PDD) and heat-
wave-driven (HWD definitions have no positive correlation with the
USDM definition (Osman et al., 2021). While the USDM offers real-
time maps of drought spatial extent, unlike several other drought
indices, it lacks a straightforward method for analyzing drought over
time. Since 2000, as the USDM has only been in circulation, its value
is constrained when a lengthy historical backdrop is required.

2.2.2 Drought Severity and Coverage Index (DSCI)

An index known as the DSCI was created to improve the
quantitative capabilities of the USDM in order to better assess spatial
coverage and intensity combined and enable better comparisons
between drought occurrences for places or between locations. In order
to transform categorical USDM drought levels into single continuous
aggregated number for a particular area, the DSCI was created as an
experimental technique. The five USDM drought classes are added
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simultaneously to generate the DSCI (Akyuz, 2017; Smith et al., 2020).
Month-to-month changes in the DSCI are used to inform the rate at
which drought can improve or worsen in different months of the year.
To calculate, there are two ways: (1) use cumulative drought monitor
data, and (2) add the percentages for DO through D4 for a given week.
To compute the DSCI using a weighted average, a weight between 1
and 5 is assigned to each USDM category (D0-D4), and this weight is
subsequently multiplied by the categorical percent area for the drought
category, and these totals are summed together (Equation 5). Possible
cumulative values of the DSCI are from 0 (i.e., none of the areas is
abnormally dry or in drought) to 500 (i.e., area in exceptional drought).
This results in a DSCI value that has a continuous scale of 0-500.

DSCI =1(D0)+2(D1)+3(D2)+4(D3)+5(D4) (5)

where the continuous DSCI (USDM) values are 0-99 (None),
100-199 (D0), 200-299 (D1): Moderate Drought, 300-399 (D2):
Severe Drought, 400-499 (D3), and 500 (D4).

Two advantages can result from converting the percent of an area
in each USDM drought category into the DSCI: (1) it provides a single
numerical value describing current drought extent and intensity and
(2) it allows for drought to be quantified over time. DSCI is a new tool
that increases the capacity of the USDM for further drought
monitoring and analysis (Johnson et al., 2020).

2.2.3 Agricultural Drought Risk Index (ADRI)

ADRI is designed to assess the risk and vulnerability of agriculture
to drought by combining meteorological information on soil moisture,
crop types, and irrigation. It uses indicators such as Hazard, Exposure,
Sensitivity, and Adaptive capacity (Equation 6). Vulnerability indicates
the function of exposure, sensitivity, and adaptive capacity (Equation 7).
In this case, high drought vulnerability when the exposure to drought
risks is high, the sensitivity of the environment is high and adaptive
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capacity is low (Figure 5). All the three parameters are highly
interconnected (Carrao et al., 2016). The ADRI was developed using a
conceptual framework that was applied to Kazakhstan and South Korea
(Kim et al., 2021).

DR=H=*E*V (6)

V=§/A (7)

Where DR is the disaster risk, H is the hazard, E is exposure, V is
vulnerability, S is sensitivity, and A is adaptive capacity. After all, the
indicators are then normalized in terms of a common baseline using
the min-max normalization method. The indicators then can
be combined in each risk category by assessing equal weights (Moss
et al.,, 2000). The final index can be computed with equally weighted
hazard, exposure, and vulnerability components. This enables the
evaluation of each category independently, increasing understanding
of the strengths and weaknesses of each component of the risk index
in each region (Iglesias et al., 2009).

Practically, there are limitations related to the frequency of
updates and the unavailability of data at the required resolution (data
quality). Even if the datasets are available, the accuracy thereof does
not always meet the requirements (Aubrecht et al., 2013). The quality
of available input data in terms of spatial resolution and reliability is
an important factor in disaster risk assessments. While most
environmental indicators rely on quantitative measures and spatial
statistics, socio-economic indicators introduce a certain amount of
uncertainty and subjectivity (Ozceylan and Coskun, 2012). The ADRI
can contribute to addressing risk, and prioritizing risk areas at
reasonable scale leading to effective decisions and policymaking for
risk reduction related to drought events.

2.2.4 Hydrological Drought Index (HDI)

HDI evaluates drought conditions from a hydrological
perspective, incorporating streamflow, soil moisture, and groundwater
data to assess the impact on water resources and ecosystems
(Tokarczyk, 2013). This index is often used in broader assessments of
drought conditions, especially in areas where water resources are
critical for purposes, such as agriculture, industry, and ecosystem
health (Tareke and Awoke, 2022). HDI relies on accurate and up-to-
date hydrological data, which can be a limitation in areas with sparse
monitoring networks or data gaps. Its calculations can be complex,
involving various hydrological components and statistical methods,
which may require expertise to use effectively. Like many drought
indices, HDI may not provide significant lead time for drought
prediction, making it challenging for proactive drought management.

Therefore, calculations for this index involve a combination of
different hydrological parameters, and the methodology can be more
complex. It often involves the use of drought indices like SPI or
PDSI. For instance, the HDI is grounded on discharge data (HDI1),
and simulation (HDI2) (Hadiani et al., 2022). The drought index is a
comparison of the deficit to the watershed area as indicated in the
following Equation 8.

Deficit (m3 /sec)
HDI = ®)

Areal (kmz)
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HDI is the Hydrological Drought Index, the deficit is the
difference between X, and X, (ith daily), X, I the dry threshold, and X;
is the ith daily periods of discharge. Drought severity involves the
analysis of the duration and deficit in dry conditions.

2.2.5 Socioeconomic Drought Index (SEDI)

The SEDI is defined as a measure of the drought conditions-related
impacts on the supply and demand of economic goods. SEDI combines
meteorological and economic data to gauge the economic impacts of
drought. It considers factors like agricultural losses, employment, and
food prices. Four categories are distinguished: water deficit, water
security and support, economic damage and impact, and environmental
and sanitation effects (Lee et al., 2022). SEDI also has four values, that is,
1,2, 3, and 4, corresponding to the four levels of socioeconomic drought,
that is, SEDI = 1 for low level, SEDI = 2 for moderate level, SEDI = 3 for
severe level, and SEDI = 4 for extreme level (Liu et al., 2020). As for the
SED], it ignores the influence of reservoir water storage on future
socioeconomic drought (Guo et al., 2019). It can provide early warnings
about the potential economic and social consequences of drought,
enabling proactive measures to mitigate the impact.

2.2.6 Composite Drought Index (CDI)

The CDI is a comprehensive drought monitoring tool that
combines multiple drought indicators or indices to provide a more
holistic view of drought conditions (Beccari, 2016). The CDI is
designed to capture various aspects of drought, such as agricultural,
hydrological, meteorological, and socioeconomic components on a
seasonal time scale, and thus blend them into a single, integrated
index in a more robust picture. When developing the CDI, water
balance conditions are considered along with actual evapotranspiration
and meteorological data (Sepulcre-Canto et al., 2012). It generally uses
remote sensing and modeled data inputs to reflect anomalies in
precipitation,  vegetation greenness, soil moisture, and
evapotranspiration (Faiz et al, 2022). Using CDI, agricultural
drought-prone areas are detected by CDI, as well as areas where
drought-affected vegetation already exists; and regions that are
returning to normal following a drought spell. The CDI is
conceptualized by a cause-effect theory - taking drought as cascading
process, where a precipitation shortage (i.e., watch stage) turns into a
soil water deficit (i.e., warning stage), then causes stress on vegetation
growth and production (i.e., alert stage) (Cammalleri et al., 2021).

A new CDI was established using the integration of potential and
actual evapotranspiration, climatic water balance, and precipitation.
The CDI provides a concise overview of agricultural drought evolution
that can be used to communicate with both specialized actors and
policymakers (Vogt et al., 2018). This index is presented as below
(Equation 9), but may have multiple forms depending on the types of
input parameters considered:

CDI=x*RAIm+y*WBAI+z*Ij_i 9)
P—AET

where % >and z gare coefficients for mod Rainfall Anomaly

Index (RAI,,), Water Balance Anomaly Index (WBAI), actual
o ) ) P—-AET
evapotranspiration (AET), and moisture index (MI)=—=——+—.
P—-AET

frontiersin.org


https://doi.org/10.3389/frwa.2025.1672070
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org

Hirwa

The CDI classification index varies from no drought (CDI < —0.60) to
extreme drought (extreme drought).

The selection of indices and the weighting assigned to each
component in the CDI calculation can be subjective, potentially
leading to different results based on the choices made. Likewise, when
it comes to identifying mild to extreme drought conditions, the CDI
outperforms the PDSI in terms of false alarm ratio. In practice, CDI
calculation requires a significant amount of computing power,
especially when analyzing large volumes of data and long-time series
from multiple sources (Ali et al., 2022). Also, it may have limitations
in predicting future drought events.

3 Drought indices and indicators
comparisons

3.1 Comparison criteria

50 + indices/indicators were reviewed during this study based.
The criteria for evaluating drought indices and indicators can vary
depending on the specific application and context such as accuracy,
relevance, sensitivity, consistency, lead time, spatiotemporal
resolution, data requirements, data quality, user-friendliness,
transparency, validation, flexibility, intersectoral applicability, and
stakeholder engagement. Despite the fact that no leading index or
indicator is always better than the others, some indices are more
appropriate than others for specific uses (Table 1).

3.2 Drought event hotspots

Drought indices and indicators are used worldwide to monitor,
assess, and manage drought conditions. Hotspots, in this context, refer
to regions or countries where drought indices and indicators are
commonly used due to the prevalence or severity of drought

TABLE 1 Comparison of different drought indicators.

10.3389/frwa.2025.1672070

conditions. These hotspots may vary based on the type of drought and
regional characteristics. The maps used in this study were used to
identify 12 drought event hotspots, i.e., United States, Australia,
China, India, Africa, Brazil, Europe, Mediterranean regions, Southern
Africa (South Africa, Zimbabwe, Namibia, and Mozambique), Latin
America, and the Middle East. For this purpose, the thresholds of
PDSI, SPI, TMI, Al, RAIL, CMI, USDM, DSCI, ADRI, HDI, SEDI, and
CDI were reduced to three categories (low, medium, and high severity).

4 Drought indices and indicators
discussion

Drought can have significant implications for achieving the
Sustainable Development Goals (SDGs) of 2030 Agenda (Tabari and
Willems, 2023). Mainly, it strikes at the heart of SDG1 (No Poverty) by
leading to crop failures and reduced productivity causing income loss
and pushing people deeper into poverty; SDG2 (Zero Hunger) by posing
a major threat to food security (i.e., crop failures, reduced livestock
productivity, and water scarcity resulting in food shortages and
malnutrition; SDG6 (Clean Water and Sanitation) by reducing water
availability for personal, agricultural, and industrial use; SDG15 (Life on
Land) by exacerbating land degradation, deforestation, desertification,
impacting ecosystems and biodiversity (Lindoso et al., 2018; Zhang et al.,
2019). As drought affects various aspects of society and the environment,
addressing the interconnected challenges of drought and SDGs requires
a comprehensive and multisectoral approach.

Ever since the soil and water management challenges surfaced
during the Mid to late 20th century, scholars have attempted the
development of drought indices and indicators for disaggregating the
complex and simple indications of drought conditions. Classical and
holistic indicators provided the foundations for drought measurement.
Researchers developed indicators sensitive to agricultural,
socioeconomic, and environmental aspects of droughts, since these

indicators cover only limited aspects of drought episode. For example,

Index/ SM | Multiple Spatial Temporal scale Data
indicator scale requirement
Classical

PDSI v v Global Monthly High
SPI/SPEL v Global Daily, weekly, monthly High
T™MI v Global Monthly Low
Al v Global Monthly Low
RAI Regional Monthly Medium
CMI v v Regional Weekly Medium
Holistic

USDM v Country Weekly Medium
DSCI v Global Monthly, annually High
ADRI v Regional Monthly, annually High
HDI v Regional Annually High
SEDI v Global Annually High
CDI v Global Annually High

Source: Author.
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the SEDI, HDI, CMI, ADRI, and PSIs are founded on broader sets of
drought aspects. Further research studies pointed out more missing
areas including the new authenticities like climate change and
adaptation strategies.

4.1 Spatial applicability and heterogeneity
of drought indices and indicators

Various indices have been developed to quantify and track
drought at different spatial and temporal scales. Their spatial relevance
and statistical robustness are crucial characteristics of drought.
Certain indices are globally comparable and robust in different
climates, while others are more sensitive to regional or local conditions
(Gebrechorkos et al., 2023). According to Heim et al. (2023), drought
indices and indicators, in general, are not perceived to perform equally
well across regions. Many scholars classified drought monitoring
models and techniques into two groups. First, drought models based
on meteorological stations, which use station monitoring data to
provide a simple drought monitoring index. Consequently, the
outcomes of such methods are dependent on the quantity and quality
of surface meteorological observation data. For ungauged or in areas
with limited ground meteorological stations, it would be challenging
to generate a reliable and spatially representative drought index.
Second, drought model based on remote sensing data for inversion.
This approach, therefore, utilizes satellite remote sensing monitoring
data to obtain ground-related indices to assess drought situation and
spatio-temporal distribution patterns (Hirwa, 2023; Li et al., 2022).
Accordingly, most of the drought evaluation techniques solely
examines and build assessment models based spatial relationship
between drought propagation characteristics and potential influencing
factors, including climatic factors (e.g., temperature, precipitation
variability, atmospheric circulation patterns) (Wu et al, 2021),
hydrological factors (e.g., soil moisture groundwater recharge rates,
surface water availability) (Buitink et al., 2021), land use factors (e.g.,
vegetation cover, deforestation, urbanization) (Yhdego et al., 2025),
socioeconomic factors (e.g., water demand and consumption,
population growth, over-extraction of groundwater, agricultural
practices) (Li et al., 2024; Liu et al., 2020), and ignore complex
interplay of factors such as the effect of physical features on drought
processes (e.g., topography, digital elevation, slope, aspect, and
altitude) (Liu and Cheng, 2025). The dynamic and thermal effects of
topography are intimately associated with variations in large-scale
atmospheric circulation and cloud microphysical processes (Wu et al.,
2024). Few studies investigated the catchment parameters such as soil
type, slope, and vegetation cover influence to drought dynamics
(Barker et al., 2016; Xiong et al., 2025). Understanding drought
development process is crucial for early warning and mitigation, but
mechanisms of development from drought type to outcome, remain
largely underexplored. Thus, to gain better insights into drought
dynamics and propagation processes, it is necessary to analyze
drought propagation at the event scale, as well as considering the
underlying causal factors behind.

Moreover, large-scale geographical environments often exhibit
obvious spatial heterogeneity, leading to significant spatial differences
in drought dynamics, timing, duration, type, and intensification. In
contrast, traditional drought monitoring techniques do not cover the
influence of regional spatial heterogeneity on drought, leading to
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evaluation results that do not match the actual drought condition (Xu
Q. et al., 2024). On one hand, several scholars indicated that spatial
heterogeneity in resilience changes is mainly attributed to climate
zone, water deficit and their interactions (Zhang et al., 2023b). On the
other hand, some researchers reaffirmed that spatial heterogeneity is
influenced by climate oscillations, landform effects, hydro-
meteorological variables, edaphic parameters (Balti et al., 2023; Wang
etal, 2024; Zhang et al., 2024). Hence, there is a need to reflect on the
spatial heterogeneity characteristics of drought as an important issue
for establishing drought monitoring assessment models using drought
indices and indicators.

4.2 Predictive capability of drought indices
and indicators

Drought prediction is of critical importance to early warning for
disaster risk management. Developing accurate large-scale drought
prediction models is challenging due to the complex spatio-temporal
correlation patterns that govern drought dynamics. Notably, three
types of methods have been used for drought prediction, including
dynamical, statistical, and hybrid methods (Hao et al., 2018; Pozzi
et al., 2013). Drought prediction has been tackled more state-of-
the-art general circulation models, which provide drought prediction
based on the physical processes of the atmosphere, ocean, and land
surface. Global climate models (GCMs) are valuable tools to support
assessments of future water supply and various drought types (Cook
et al., 2020). Nonetheless, errors and interdependence between the
time series data of GCMs reduce the accuracy of drought
characterization (Shakeel et al., 2025). Meanwhile, to solve the
uncertainties in GCMs outputs require methods like bias correction
and ensemble weighting to improve accuracy and reliability for
predicting drought onset, duration, and severity (Hao et al., 2018).

In this context, there are numerous emerging studies addressing
big data and its implication in drought monitoring. Big data handle
data heterogeneity which is an additive value for the prediction of
drought, resulting in offering a view of the different dimensions
including the spatio-temporal distribution and severity detection and
trends (Balti et al., 2020). In recent research, scholars proposed an
integrated framework for monitoring vegetation drought with remote
sensing, deep learning, and spatiotemporal fusion, in situ stations, and
biophysical data (Xu Z. et al., 2024). There is still a lack of a technical
framework for integrated drought management at the event scale.
High-resolution drought data helps to better assess the spatial and
temporal changes and variability in drought duration, severity, and
magnitude at a much finer scale, which supports the development of
site-specific adaptation measures.

4.3 Limitations of the indices and indicators

Understanding the limitations of drought indices and indicators
is crucial for using the holistic and classical indices effectively and
making informed decisions.

o Sensitivity to data inputs: The accuracy of indices is highly

dependent on the quality and availability of data inputs (i.e.,
meteorological data, socioecological data, agricultural data, etc.).
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The quality and quantity of input data are important for accurate
drought assessment. For example, precipitation data is used to
derive the SPI-based drought index. By comparing the
spatiotemporal differences and drought area capture capabilities
over 23 sub-datasets spanning 30 years, the study of Liu et al.
(2016) concluded that SPDI is less sensitive to data selection than
sc-PDSI. Moreover, the SPDI series derived from different
datasets are highly correlated and consistent in drought area
characterization. SPDI is most sensitive to changes in the scale
parameter, followed by location and shape parameters. It was
looked into how sensitive each of the seven precipitation-based
drought indices was to varying record lengths at monthly,
seasonal, and annual time scales. The findings showed that better
time steadiness was observed in Z-score Index (ZSI) and Effective
Drought Index (EDI) compared to other indices such as the
Deciles Index (DI), Standardized Precipitation Index (SPI),
Percent of Normal Precipitation Index (PNPI), China Z Index
(CZI), and the Modified China Z Index (MCZI) (Mahmoudi
et al,, 2019). Due to sensitivity to a relatively wider range of
factors, holistic indices/indicators have the advantage over
classical indices/indicators.

o Lack of consistency: Different drought indices may yield different
results for the same area or time period. Inconsistencies may arise
when set thresholds are applied to different climatic zones; for
instances, what is deemed as extreme drought in an arid region
may represent normal variability in a humid environment
(Ahady et al.,, 2025). The study of Mahmoudi et al. (2021)
recapped the standard procedure to estimate SPI for each desired
time scale, including steps to calculate average precipitation
amounts for each temporal dimension; tailor Gamma distribution
to each time; to estimate the probability linked to each
precipitation value and determine the SPI values by inverting the
probability evaluated with a Gamma distribution using the
standard normal function. Indeed, the choice of probability
distribution functions in calculating drought index like SPI can
influence drought classification outcomes, raising questions
about robustness and comparability (Moccia et al., 2022). There
is no universal drought indicator and previous studies identified
significant discrepancies between the state drought indices (Feng
et al., 2017). The most exact and accurate techniques to track
agricultural conditions are drought indices estimated from
ground observations of soil moisture, precipitation, and
temperature. The accuracy of drought indices also depends on
accurate estimates of soil parameters based on in-situ
measurements; calculation methods and missing data (Pan et al.,
2023). Coupled climatic and socioeconomic aspects are
interlinked to drought conditions in one region and distinct in
another location. Many of these features are meticulously
interrelated with each other and any decision-making ability
regarding their inclusion has certain consequences in terms of
accuracy and effective outcomes. The problem of inconsistency
is prominent in the case of both holistic and classical indicators
that consider multiple parameters.

o Artificial Intelligence-based drought assessment: Droughts can
be modeled, observed, and predicted using high-resolution
spatiotemporal resolution data. Drought-causing factors and
mechanisms operate on a wide range of spatial scales, from the
movement of soil water to global atmospheric circulation. There
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is huge lack of multiscale drought monitoring and early warning
systems (Mardian, 2022). Further, the Centre for Environmental
Data Analysis (CEDA) developed new high-resolution datasets
providing more detailed local information that can be used to
evaluate drought severity for specific periods and regions and
determine global, regional, and local trends, thereby supporting
the
(Gebrechorkos et al., 2023). There is an urgent need to develop

development of site-specific adaptation measures
novel datasets that can serve fundamental data support for future
studies. The integration of machine learning (ML) models -
usually superior to traditional techniques — has a promising
answer since they are good at addressing non-stationarities and
non-linearities in drought assessment. For instance, DroughtCast
ML was utilized to forecast a very extreme drought event up to
12 weeks before its onsets. It offers promising findings for
decision-makers, land managers, and public institutions in
preparing for and mitigating the impacts of drought.

o Complex interpretation: Some drought indices are based on
complex mathematical algorithms, making them difficult for
non-experts (i.e., smallholder farmers) to interpret and need
more attention. This can limit their utility for decision-making.
The work of reported that Fluixa-Sanmartin et al. (2018) due to
the general complexity of droughts, the comparison of the index-
identified events with droughts at different levels of the complete
system, including soil humidity or river discharges, relies
typically on model simulations of the latter, entailing potentially
significant uncertainties and decidedly biased outcomes. The
short-term anomalies are overlooked - regarding the interactions
of soil moisture and evapotranspiration — hiding the influence of

of

evapotranspiration that cause recurrent droughts and heatwaves

long-term  anomalies rainfall, soil moisture, and

(Gaona et al., 2022). To solve these challenges, there is a need for

(e.g.
documentation, multi-indices understanding, access to historical

collaborative efforts expert consultation, access

data and stakeholder engagement, etc.) and requiring
fields (e.g.,
socio-economists, and

interdisciplinary  expertise from various

agriculturalists,  climatologists,

ecologists, etc.).

4.4 Necessity for multidisciplinary indices
and indicators

Drought impacts are not limited to a single sector or dimension.
Sectors affected by drought are interconnected. For example, drought
conditions can lead to reduced agricultural productivity, which in turn
can impact food security. By incorporating various indicators, these
systems can provide timely alerts for different sectors, which is
essential for effective planning, response, and resilience-building in
the face of a changing climate. Literature reveals that all indicators
have certain limitations, either conceptual, operational, or both (Hayes
et al,, 2007; Hayes et al., 1999; Heim, 2002; Keetch and Byram, 1968;
Palmer, 1965; Vicente-Serrano et al., 2010). None of the indices cover
simultaneously all the necessary areas, duration, intensity, frequency,
impacts, etc. However, the major shortcoming occurs when some vital
parameters are not included in the account (Yang et al., 2015). For
example, while many parameters are essential for a robust assessment,
some may be considered “leftover” when designing or using a

frontiersin.org


https://doi.org/10.3389/frwa.2025.1672070
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org

Hirwa

particular index, including solar radiation, relative humidity, wind
speed, cloud cover, barometric pressure, snowpack data, turbidity
(Dikici, 2020). In any region experiencing drought events, any
evaluation or monitoring practice without considering coupled
climatic features will yield defective outcomes and wrong decisions.
This is not limited to weather parameters only. Each region has a
unique scenario of drought experience, spatial and temporal
distribution, socioeconomic development, water scarcity concerns,
and adaptive capacity. Some countries (e.g., the United States of
America, Australia, and European Union countries) have developed
their specific indicators/indices for monitoring drought (Heim et al.,
2020). However, many indices, particularly classical, are unable to
reflect the cause-effect relationship of drought. Thus, in planning, it
would be wise not to use a single indicator because it will not lead to
consistent results or delusion of security. Artificial intelligence-derived
methods (e.g., machine learning, deep learning and among others)
have a high potential for prediction of extremes due to the ability of
machine learning methods to learn from past data, to handle large
numbers of input variables, to integrate physical understanding into
the models and to discover additional knowledge from the data.

4.5 Data, methodological and
technological challenges

One of the major issues influencing the adoption of indices,
causing shortcomings and restricting research and development, is
data challenge, leading to complications in the development and use
of indices. Many holistic indices have not been extensively employed
because the requisite data is not readily available. Assessment of
drought conditions requires a reasonably long time series at the
desired time phase. Different indices/indicators consider different
parameters. Hence, the data required for holistic indices is huge and
diverse. Many regions, especially in developing countries, lack
sufficient data collection and monitoring infrastructure (e.g., Long-
term Ecological Research) (Van Vanderbilt and Gaiser, 2017), leading
to data gaps and inaccuracies. Data collected at a regional or national
scale may not provide the necessary detail for local-level
drought assessments.

Moreover, remote sensing technologies, while valuable for
monitoring drought conditions, have limitations, including cloud
cover, instrument errors, and sensor calibration issues, lack of
integration tools and standardized data formats for main parameters
such as satellite-based precipitation, soil moisture, groundwater levels,
and among others (Hao et al.,, 2014; Hirwa et al., 2022b). While climate
models offer projections of future climate conditions, uncertainties in
these projections can limit their utility for long-term drought planning
and adaptation. Conspicuously, integrating socio-economic data, such
as agricultural statistics, demographic data, greenhouse gas emission,
and land use/land cover information is crucial for a holistic
understanding of drought impacts, but to such data may be restricted
or limited in many regions. Besides, there is a critical need of
considering the relationship between different systems, including
water-energy-food nexus (Muhirwa et al., 2021; Muhirwa et al.,, 2022),
climate change-drylands-food security (Hirwa et al., 2022a), water-
energy-food-biodiversity-health nexus (Hirwa et al., 2021). In some
regions, access to advanced technology and computing resources can
be limited, leading to the inability to develop and implement
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sophisticated drought monitoring and assessment tools. Similarly, data
privacy, security, and sovereignty concerns can hinder data sharing and
collaborative drought assessment across transboundary regions. There
is an urgent need to invest in data infrastructure, develop standardized
data-sharing protocols, and enhance technological capabilities. Lastly,
international cooperation is crucial for sharing data, methodological,
and technological advancement.

5 Conclusion

Drought is a creeping natural phenomenon with highly
destructive power, which unfolds their impacts on different temporal
and spatial scales. After reviewing 50 + drought indices/indicators,
this study presented descriptions of 12 indices/indicators in terms of
drought characterization, spatiotemporal scale suitability, calculation
methods, data requirements, level of complexity, strengths, and
weaknesses. Therefore, based on previous literature on drought
assessment and monitoring using different indices/indicators,
we compiled a global comparison. Based on this review, the following
conclusions can be drawn:

i) There is no single drought indicator, whether classical or
holistic, for all drought types in all specific regions and
climates, because all available drought indicators have their
limitation during development and application. Therefore,
drought indicator selection requires a thorough investigation
related to the type of drought and the respective drought
indicator based on the availability of data, ease of
communication, result implication, strength and limitations of
the indices, and the objective of the investigation. Drought
indices/indicators assimilate thousands of bits of data on
meteorological, agricultural, socioeconomic, and ecological
data into a comprehensive big picture. Due to a lack of large-
scale application, experts must make their own judgments
regarding holistic indicators’ pros and cons.

Holistic indices require huge amounts of data. The lack of
sufficient infrastructure for collecting and monitoring data in
many regions, particularly in developing countries, produces
gaps and inaccuracies in data. A regional or national drought
assessment may not be able to provide the necessary details
based on data collected at the local level. There is a need for
affordable geospatial infrastructures and technologies. The
development of new composite methods should be used as
building blocks and integrating remote sensing to support
multinational and disciplinary approaches with local
participation to attain sustainable drought monitoring.

ili) Various indices/indicators produce contradictory findings
regarding drought hotspots. For instance, the PDSI also tends
to underestimate runoff conditions whereas CMI is limited to
use only in the growing season; it cannot determine the long-
term period of drought. The meteorological drought indices
may not solely be appropriate and adequate to assess
agricultural drought due to the lag between agricultural and
meteorological drought. The main reason for these
controversial results can be the choice of drought indices/
indicators and the accuracy of satellite products used to derive
drought indices/indicators. Ultimately, the evaluation criteria
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should align with the objectives of the drought monitoring and

management efforts, and the chosen index should meet the

specific needs of the stakeholders and decision-makers.
iv) Future research studies should focus on novel geospatial
intelligence (Geo-AlI) based drought indices that could
facilitate in assessing, categorizing, and disclosing deep drought
conditions; utilization of earth observations that include
satellite, climate, oceanic, and biophysical data for efficient
drought analysis and improved seasonal prediction; combine
or integrate drought indices based on improved modelling
techniques; apply the data mining and GIS applications to
build Drought Early Warning Systems (DEWSs); and explore
the impact of drought on sustainable food systems.

In summary, both holistic and classical drought indices/indicators
play roles in monitoring and assessing drought conditions. In practice,
both types of indices/indicators are often used in combination to
provide a more comprehensive and well-rounded understanding of
drought events. Combining these tools with advancements in
technology, early warning systems, and international cooperation is
crucial for addressing the complex challenges posed by drought.
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