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Diversity fluctuations of the
microbial community during
annual Microcystis blooms within
Lake Okeechobee, FL

Paisley S. Samuel* and Jose V. Lopez

Department of Biological Sciences, Nova Southeastern University, Guy Harvey Oceanographic
Center, Dania Beach, FL, United States

Lake Okeechobee, an essential Floridian freshwater ecosystem, has experienced
water quality decline due to nutrient pollution since the 19th century. In recent
decades, harmful cyanobacterial blooms (cyanoHABs), primarily caused by
Microcystis aeruginosa, have increased in frequency and intensity, threatening the
lake's ecosystem. This study investigates the impacts of annual cyanoHABs on the
microbial communities in Lake Okeechobee over 3 years by highlighting patterns
in the taxonomic dynamics and microbial diversity. From March 2019 to October
2021, 541 surface water samples and corresponding environmental variables were
collected and analyzed from 21 routinely monitored sites within Lake Okeechobee
using 16S V4 amplicon sequencing techniques. Dominant taxa remained consistent
throughout the sampling period, with noticeable fluctuations occurring primarily
in 2019 at the order and family levels. Significant spatial differences in microbial
composition across all 3 years suggest stable biogeographical patterns across
ecological zones within the lake. Microcystis relative abundance and microcystin
had the strongest environmental influence on microbial diversity. Microcystis
relative abundance was also found to negatively impact the microbial diversity of
the lake while strongly correlating with several environmental factors, including
temperature, total depth, and nitrate + nitrite concentrations. A co-occurrence
network suggested that over 20 microbial genera may influence commensal,
mutualistic, or antagonistic relationships with Microcystis. For example, predatory
Bradymondales sp. and Bdellovibrio sp. as well as microcystin-degrading Cupriavidus
sp. were detected. These findings highlight the importance of identifying and
monitoring specific bacterial populations to aid in the monitoring of Microcystis
cyanoHAB formation and ecosystem effects.
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1 Introduction

Cyanobacteria are photoautotrophic, gram-negative, prokaryotic bacteria that are found
globally within a variety of environments, including several species that inhabit extreme
environments (Gaysina et al., 2019; Mataloni and Komarek, 2004; Whitton and Potts, 2000a,
2000b). Despite being known colloquially as blue-green algae, cyanobacteria are classified as
true bacteria that perform photosynthesis using photosynthetic pigments like chlorophyll a.
Cyanobacteria can rapidly proliferate to form dense accumulations of biomass known as
blooms, and these blooms can be either harmless or harmful to their surrounding environment
(Larkin and Adams, 2007; Smayda, 1997). Cyanobacteria are primarily responsible for causing
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harmful blooms (cyanoHABs) in freshwater environments (Rosen
etal, 2017). CyanoHABs can result from water quality changes, such
as increased nutrient levels of nitrogen (N) and phosphorus (P).
Cyanobacteria utilize these elements along with carbon, potassium,
and iron during photosynthesis. However, these nutrients must
be present in certain quantities to promote cyanobacteria populations
to bloom; therefore, if there is a deficiency in any of these nutrients,
then a bloom cannot occur (Markou et al., 2014). Other environmental
factors that produce favorable conditions for the development of
cyanobacterial blooms include stagnant water and high temperatures
(Paerl and Huisman, 2008).

CyanoHABs decrease water quality through the production of
cyanotoxins—water-soluble chemical metabolites that are toxic to the
environment. Cyanotoxins can threaten the health of an ecosystem
and the organisms in and around those ecosystems. These toxins can
affect organisms in various ways, from minor skin irritation to more
serious effects such as multiple organ damage, gastroenteritis, and
paralysis (Huisman et al., 2018; Williams et al., 2007; Wiegand and
Pflugmacher, 2005). There have been numerous incidents where
cyanotoxins from cyanoHABs have caused rapid animal and human
deaths after a short exposure time (Huisman et al., 2018; Blaha et al.,
2009). These blooms also produce thick, dense mats formed at the
surface of the water, preventing sunlight from penetrating the water
column, decreasing the light needed for photosynthetic organisms
residing deeper in the water column. Additionally, when blooms
decay, an anoxic environment develops in the water column
(Anderson, 2009). Anoxic conditions negatively impact ecosystem
functioning by disrupting essential cellular functions and prolonging
the duration of anoxia through a positive feedback loop between the
additional growth and decomposition of phytoplankton (Zamora-
Barrios et al., 2019; McQuaid, 2019; Bléha et al., 2009). Despite
immense research on cyanobacterial blooms and their associated
factors, cyanoHABs remain difficult to predict and mitigate (Facey
etal., 2019).

Lake Okeechobee (Lake O) is the largest lake in the southeastern
United States. Lake O has a total shoreline of 220 km and an area of
14,000 sq. km, and it is located at the center of Florida’s Everglades
ecosystem (Lecher, 2021). Lake O was once larger and deeper with a
north-to-south flow, providing a constant water source for the
Everglades ecosystem that dominated the southern region of Florida.
However, beginning in the late 19th century, the size, depth, and
direction of flow of the lake were permanently altered as a series of
major drainage projects (the channelization of the Kissimmee River,
dredging of numerous canals, and construction of Hoover Dike)
transformed the land around the lake to become a foundation for
urban communities and agriculture (Lecher, 2021; U.S. Army Corps
of Engineers, J. D, 2021). Throughout the 1950s and 1960s, the water
quality of Lake O began to decline rapidly as nutrient levels, primarily
from phosphorus, continually increased due to nearby agricultural
land use (Canfield and Hoyer, 1988). This continuous influx of
nutrients worsened the nutrient levels of an already eutrophic
environment, one that was initially limited in nitrogen rather than
phosphorus (Missimer et al., 2021).

CyanoHABs are a common occurrence in Lake O, with the first
bloom events recorded in the early 1980s (Havens et al., 1995a, 1995b).
Over the past two decades, Cooper et al. (2024) found that the total
phosphorus and total nitrogen input into the lake have remained
elevated or increased, which is driven by nutrient pools from soil
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run-off and other nonpoint sources. These sustained high-nutrient
levels have since recently been linked to the increase in the prevalence
and severity of these cyanoHAB events in Lake O (Paerl et al., 2020;
Rosen et al., 2017). The freshwater cyanoHABs that occur in Florida
are primarily caused by the genus Microcystis, but these events can
also be caused by other cyanobacterial genera such as Dolichospermum
and Cylindrospermopsis (Rosen et al., 2017). The toxins produced
during blooms caused by these genera include microcystins,
anatoxin-a, saxitoxins, and cylindrospermopsin (Myer et al., 2020). In
2018, Metcalf et al. (2018) found that the dominant species of
cyanobacteria causing cyanoHABs in Lake O was Microcystis
aeruginosa, a prevailing bloom-forming and microcystin-producing
cyanobacterium also producing cyanoHABs in freshwater ecosystems
worldwide (Harke et al., 2016).

Traditionally, cyanoHABs are predominantly driven by abiotic
factors (Rollwagen-Bollens et al., 2018; Visser et al., 2016; Paerl and
Scott, 2010). However, Shen et al. (2011) documented that some
heterotrophic bacterioplankton coexist with these bloom-forming
cyanobacteria, which has led to speculation that the microbial
community may also play a role during these cyanoHAB events (Croci
et al., 2025; Wang et al., 2021; Van Wichelen et al., 2016). During
in-vitro studies, Synechococcus (Zheng et al., 2018) and Microcystis (Tu
etal., 2019; Van Wichelen et al., 2016) colonies frequently contained
heterotrophic bacteria, and the colonies obtained from nature
contained heterotrophic bacteria communities as well. The
interactions between photoautotrophic and heterotrophic bacteria
play a fundamental role in aquatic ecosystems as heterotrophs utilize
fixed carbon and other nutrients supplied by photoautotrophs and, in
turn, provide these photoautotrophs with essential vitamins and
amino acids (Zheng et al., 2018).

Like other natural ecosystems, Lake O contains a diverse microbial
community, yet few studies have begun to characterize this diversity
until recently (Krausfeldt et al., 2024; Lefler et al., 2023). Shifts in
microbial diversity could underlie or facilitate bloom formation by
changing the microhabitats of cyanobacteria before, during, and after
cyanoHAB events within Lake Okeechobee. Some studies investigated
potential supportive roles that a microbial community may play in the
development and maintenance of cyanoHABs and the overall growth
and stability of cyanobacterial populations (Jackrel et al., 2021; Sigee,
2005; Eiler and Bertilsson, 2004). Heterotrophic microbes that
compose the community can also aid in the degradation of the organic
material produced by the bloom, which contributes to the anoxic
conditions that follow bloom degradation (Cai et al., 2024; Zhang
et al.,, 2020; Anderson, 2009). However, the knowledge of how these
cyanoHABs is affecting microbial community structure or how these
other microbes could potentially be influencing the blooms specifically
in Lake O has yet to be studied. A better understanding of the
interactions between the potential bloom-forming cyanobacterial
species and the wider microbial community may provide scientists
with the knowledge of key factors driving or sustaining blooms, serve
as biological indicators for future cyanoHABs, and may aid in the
ongoing efforts to reduce or mitigate the occurrences of these blooms
within Lake Okeechobee.

In this study, we used 16S rRNA high throughput sequencing to
investigate the structure of microbial communities within Lake O and
how it is affected by recurring annual cyanoHABs over several years.
A detailed taxonomic characterization of the microbial community of
Lake O was conducted to investigate the dynamics of microbial taxa
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inhabiting the lake. Afterwards, diversity indices were used, along
with Microcystis relative abundance, microcystin concentration, and
chlorophyll a concentration, to give preliminary insight as to whether
the cyanoHABs occurring in Lake O alter the microbial community
composition of Lake O. Environmental data was also analyzed to
discover any patterns that may further influence the microbial
community composition of Lake O. We hypothesize that the microbial
community of Lake O will remain consistent across the sampling years
but vary between sampling stations. We also hypothesize that
recurring cyanoHABs will lower the microbial community diversity
of the lake.

2 Materials and methods

2.1 Environmental data and sample
collection and processing

Beginning in March 2019, surface water samples were collected
monthly by the South Florida Water Management District (SFWMD)
at 21 routinely sampled stations, completely overlapping the collection
sites mentioned in Krausfeldt et al. (2024). These stations included 19
stations dispersed within Lake Okeechobee (CLV10A, KISR0.0, L001,
L004, L005, L006, L007, L008, LZ2, LZ25A, LZ30, LZ40, PALMOUT,
PELBAY3, POLE3S, POLESOUT, RITTAE2, S308), one station

10.3389/frwa.2025.1678547

located near the W. P. Franklin Lock along the Caloosahatchee River
(S79), and another station located near the St. Lucie River lock along
the St. Lucie River (S80) (Figure 1). After collection, water samples
were kept on ice and shipped overnight to the USGS Water Science
Center in Orlando, Florida, where each sample was filtered through
two 0.22 pm Sterivex filters (Millipore, SVGP01050). The filters were
then stored at —20 °C and transported on ice to the Molecular
Microbiology and Genomics Lab (MMG) at Nova Southeastern
University (NSU) for further sample processing. This workflow of
sample collection and processing was repeated monthly until
October 2021.

Once the collected samples were received in the MMG lab, DNA
was extracted from the filters using the Qiagen® DNeasy®
PowerLyzer® PowerSoil® kit (Qiagen, 12,855-100) by following the
manufacturer’s protocol. Negative controls in the form of blank
‘reagent-only’ extractions were also included to detect any DNA
contamination within the reagents. Following successful DNA
extractions, the samples underwent 1.5% agarose gel electrophoresis
to confirm the presence of intact DNA in each sample.

Following the confirmation of intact DNA, a test polymerase
chain reaction (PCR) was performed on each sample to confirm the
successful amplification of PCR products using the desired primers.
In short, a master mix was made using Invitrogen Platinum Hot Start
PCR Master Mix (2X, ThermoFisher, 13000014), nuclease-free water,
and universal primers 515F and 806R. DNA was then added and
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Map of sampling stations found within and connected to Lake Okeechobee. Nineteen stations are located within the lake while one station is located
within the Caloosahatchee River (S79), and another station located within the St. Lucie River (S80).
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underwent amplification in a thermal cycler following a modified
Earth Microbiome Project (EMP) 16S Illumina Amplicon protocol
(Caporaso et al., 2018). The 515F and 806R primers were used to
target and amplify the V4 region of the 16S rRNA gene. A 1.5%
agarose gel electrophoresis was performed to confirm the production
of successful PCR products. It is important to mention that if the test
PCR was unsuccessful, which is evidence that the concentration of
extracted DNA was low, the sample was concentrated using a
CentriVap DNA Vacuum Concentrator (©Labconco, Cat. No.
7970010) and re-amplified with test PCR. With the successful
production of PCR products, barcoded 515F and 806R primers were
used, with each sample receiving identical barcoded 515F primer
sequences and unique barcoded 806R primer sequences. A final 1.5%
agarose gel was run to confirm the successful barcoding of the
samples. The samples were then cleaned using a modified AMPure XP
beads protocol (PCR Purification with Beckman Coulter AMPure XP
Magnetic Beads and the VIAFLO 96, 2020), quantified using Qubit
3.0 and Qubit 4.0 Fluorometers (Life Technologies), and diluted to
4 nM using nuclease-free water. The now-diluted barcoded samples
were pooled together, checked for quality and contamination using
the Agilent TapeStation 4,150 (Product #G2992AA), and loaded into
the Illumina MiSeq system (Product #SY-410-1003) using the MiSeq
Reagent Kit v3 at 600 cycles (Product #MS-102-3003) following a
custom protocol.

The following 20 environmental data variables were collected and
analyzed throughout the 3 years sampling period from the SFWMD
environmental database, DBHYDRO": chlorophyll a (chl a, pg/L),
pheophytin a (ug/L), secchi disk depth (m), silica (mg/L), turbidity
(NTU), sulfate (mg/L), alkalinity (as total CaCO3, mg/L), ammonia
(NH4, mg/L), total depth (m), pH, dissolved oxygen (mg/L),
nitrate+nitrite (NO3 + NO2, mg/L), total phosphate (PO4, mg/L),
temperature (°Celsius), total nitrogen (TN, mg/L), total phosphorus
(TP, mg/L), TN and TP ratio, and three toxins associated with
cyanoHABs, Anatoxin-a (pg/L), Cylindrospermopsin (pg/L), and
Microcystin (pg/L). Additional variables were also considered for each
sample, including station location, month (1-12), season (wet or dry),
year (1-3), and ecological zone (inflow, nearshore, pelagic, or S79).
After retrieval, the environmental data was then corresponded to the
collected samples for DNA extraction and sequencing.

2.2 16S rRNA sequence analysis and
statistics

Raw DNA sequence data generated from the Illumina MiSeq
system underwent initial bioinformatic analyses within QIIME2
(Quantitative Insights into Microbial Ecology, version 2022.2) (Bolyen
et al., 2019). Within the QIIME2 environment, the forward and
reverse read sequence data were paired and demultiplexed to produce
the sequence reads for each sample. Sample sequences were then
trimmed, quality filtered (Q-scores > 29) and checked for chimeras
using the DADA?2 software package built into the QIIME2 program.
There was a total of 11 sequencing runs conducted within this study,
therefore the raw sequence data for each run underwent

1 https://insights.sfwmd.gov/#/homepage
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demultiplexing, trimming, and quality filtering separately before being
merged into one dataset. Lastly, the merged sequencing dataset was
assigned taxonomy using the SILVA database SILVA138 classifier
(silva-138-99-515-806-nb-classifier.qza) (Quast et al., 2013). A
rarefaction curve was created to determine the sequence read cut-off
point for any samples that were not fully sequenced. The resulting
dataset was then cleaned to ensure it did not contain any unwanted
ASVs. Any ASVs that were found in the negative controls were
removed, and the negative control samples were also removed from
the sample pool. Any duplicate samples were removed by only
retaining the replicate that obtained the most sequence reads. ASV's
that represented chloroplast or mitochondrial DNA were also
removed to ensure that the dataset contained no eukaryotic sequences.
Final data cleaning and normalization were performed using the
‘vegan’ package (Oksanen et al., 2022) using R (version 4.2.0; R Core
Team, 2022), where singletons, doubletons, and ASVs occurring less
than 1% of total ASV abundance were removed.

2.3 Batch correction

Due to the large-scale nature of this study, the hundreds of
samples that were sequenced could be affected by differences in
sample preparation and data acquisition conditions, such as, different
individuals working on the sample preparation, different reagent
batches, and even changes in instrumentation (Cuklina et al., 2021).
This is known as the “batch effect,” and it can introduce noise that
would, in turn, reduce the statistical power of the analyses (Cuklina
etal,, 2021). Considering this, the data was assessed for any significant
batch effects before moving on to further downstream analyses. Batch
correction was performed using the MMUPHin" (Ma, 2023) and
‘vegan’ (Oksanen et al.,, 2022) packages in R. An ANOSIM was
performed to determine if the variation in the data caused by batch
was significant (p < 0.05). After conducting the ANOSIM, significant
differences were found, and a batch correction was conducted on the
entire dataset using the MMUPHin’ package in R (Ma, 2023).

2.4 Bacterial taxonomy and visualization

Taxonomic and corresponding statistical analyses were performed
on the cleaned, normalized, and batch-corrected dataset using R. The
‘phyloseq’ package (Mcmurdie and Holmes, 2013) determined the
minimum, maximum, and average number of sequencing reads, as
well as the total number of unique ASVs in the dataset. The top taxa
were calculated using packages ‘phyloseq’ (Mcmurdie and Holmes,
2013) and ‘microbiome’ (Lahti and Shetty, 2012) and visualized using
stacked bar charts made using the ‘ggplot2’ package (Wickham, 2016)
for each year and station. Since chl a is a pigment found in both
cyanoHAB-forming and non-cyanoHAB-forming cyanobacteria,
additional stacked bar charts were created to visualize the top phyla,
families, and genera present across increasing chl a concentration to
visualize the changes in the cyanobacteria population during higher
chl a concentration. Higher taxonomic resolutions, such as orders and
families, were investigated across the entire sampling period between
the ecological zones of the lake. QGIS (version 3.22.5), an analytical
mapping software, visualized the microbial community taxonomic
distributions and patterns within Lake Okeechobee across the entire
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sampling period at the various sampling stations. An aerial satellite
image of Lake Okeechobee was retrieved from Google Earth via the
QGIS software and utilized as the raster layer. Point layers were
created using the latitude and longitude coordinates retrieved from
DBHYDRO for each station. Pie charts of the top 10 phyla within each
station were created for the entire sampling period.

2.5 Diversity, Venn diagram, and
co-occurrence network analyses

Alpha and beta diversity were assessed using the ‘vegan’ package
(Oksanen et al., 2022) and visualized using the ‘base’ (R Core Team,
2022) and ‘ggplot2’ (Wickham, 2016) packages in R. Alpha diversity
was measured by calculating the total number of species (species
richness), species evenness (also known as Pielou’s evenness index)
(J), Shannon diversity index (H), and inverse Simpson’s diversity index
(inv. D). Differences between these alpha diversity indices were
analyzed between samples using a Kruskal-Wallis test. A pairwise
Wilcoxon test was used as a post-hoc comparison test to determine
where the differences lie. Additional analyses were conducted to
investigate the changes in alpha diversity measures across various
concentrations of chl a and microcystin. Beta diversity was measured
by calculating Bray-Curtis dissimilarity between sites. These distance
matrices were then used to produce non-metric multidimensional
scaling (nMDS) plots in R to further visualize the distances between
sites. To create the nMDS plots, the relative abundance data was
transformed using the “total” method found within the ‘decostand’
function in ‘vegan’ (Oksanen et al., 2022). Functions ‘betadisper’ and
‘permutest’ in the ‘vegan’ package (Oksanen et al., 2022), were used to
calculate variances within each group and to determine if the variances
differ by group. If the variances between groups were not significant,
a permutational multivariate ANOVA (PERMANOVA) with 999
permutations was performed using the ‘adonis2’ function in the vegan
package (Oksanen et al., 2022). If the variances between groups were
significant, an analysis of similarity (ANOSIM) with 999 permutations
was performed using the ‘anosim’ function in the vegan package
(Oksanen et al., 2022). Canonical correspondence analysis (CCA) was
performed using the ‘cca’ function in the ‘vegan’ package (Oksanen
et al, 2022) to detect the interactions between the selected
environmental variables and ASV abundance. The function ‘envfit’
was then used to retrieve the p-value of the correlation of each variable
with overall bacterial community composition and the p-value of each
correlation between each ASV and all variables. Only significant
(p < 0.05) environmental variables with R? values higher than 0.3 were
plotted as vectors overlaying the CCA plot.

A Venn diagram was made to identify and compare core taxa that
appeared across the years (1, 2, and 3) using the ‘eulerr’ package in R
(Larsson, 2022). We defined core taxa as any ASVs that were detected
at a relative abundance of at least 1% and within at least 75% of the
samples. This definition aligns with previous studies that focused on
dominant, consistently detected taxa that likely played key roles in
microbe interactions in the microbiome (Vestergaard et al., 2024; Xue
etal,, 2023; Mo et al., 2021; Xue et al., 2018; Magurran and Henderson,
2003). Afterwards, a co-occurrence network was created to further
investigate what taxa could possibly be co-occurring with the genus
Microcystis. Using the ‘Hmisc” package in R (Harrell, 2023), a Pearson
correlation matrix was created using the sample count data and
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making pairs of all 8,340 ASVs from the entire sampling period. The
correlation matrix was then converted into a table that shows the
individual R* values and their associated p-values. Only significant
interactions (p <0.05) and strongest correlations (R*>0.7 OR
R?>< —0.7) were extracted from the table to create a correlation
network in Cytoscape (version 3.9.1) (Shannon et al., 2003). These
thresholds align with the rationale Xue et al. (2018) used to ensure that
the network only reflects the strongest and most likely meaningful
associations between microbes. The network was filtered further to
only include the network nodes and edges that interact
with Microcystis.

3 Results
3.1 16S rRNA sequencing statistics

Across the sampling period (March 2019 to October 2021), there
was a total of 59,862,979 sequencing reads and 70,605 ASVs generated
across all samples. To determine the sequencing depth, the total
number of usable sequencing reads, that best represented the
microbial communities of Lake O, total sequence reads were calculated
for each sample and a rarefaction curve (Supplementary Figure S1)
was generated to aid in determining the minimum sequence read
cut-off point. The resulting rarefaction curve reached an inflection
point at relatively 10,000 reads, thus, any samples that were below this
number of reads were removed. As a result, 65,294 ASVs and 541
samples, with an average of 44,535 reads per sample, were used for
further analysis (Supplementary Table S1). Additional filtering for
singletons, doubletons, and exceptionally low abundance ASVs
(occurring less than 1%) was completed, resulting in 8,340 ASVs being
utilized for further diversity analyses.

3.2 Dominant taxa

The top ten phyla found in Lake O over the entire sampling period
were Proteobacteria, Bacteroidota, Cyanobacteria, Actinobacteriota,
Verrucomicrobiota, Planctomycetota, Bdellovibrionota,
Acidobacteriota, Chloroflexi, and Gemmatimonadota. However, these
top ten phyla varied in abundance and presence within each year, with
year 3 being the only year containing phylum Gemmatimonadota as
one of the top phyla (Supplementary Figure S2). These phyla can also
be seen within each station, with Proteobacteria, Bacteroidota, and
Cyanobacteria being the top three phyla found at each station across
the entire sampling period (Supplementary Figure S3). The top ten
phyla also differed between the individual sampling stations across all
3years (Supplementary Figure S4) and between each year
(Supplementary Figure S5). Year 1 was the only year that included the
phylum SAR324_ clade (marine group B) within the top ten phyla of
only two stations, POLESOUT and S79 (Supplementary Figure S5A).
Year 2 had 13 unique phyla appear within the top ten phyla of each
station—one phylum short of years 1 and 3, both of which had 14
unique phyla each in their top ten phyla across each station.
Furthermore, year 2 was the only year that included the phylum
Armatimonadota within the top ten phyla occurring at only one
station, KISSR0.0. Year 2 also was the only year that did not have the
phylum Myxococcota within the top ten phyla of any station
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(Supplementary Figure S5B). Year 3 was the only year that included

the phylum Patescibacteria within the top ten phyla of only two
stations, L004 and L006 (Supplementary Figure S5C). The top 20
orders and families both appeared to vary in presence and abundance

across all three years and across the four ecological zones (Figure 2).

10.3389/frwa.2025.1678547

Compared to years 2 and 3, the order Cyanobacteriales was not

present as one of the top 20 orders of year 1, but instead, the

Silvanigrellales was present (Figure 2A). The other 19 orders remained

present in the top 20 orders across the entire sampling period and

ecological zones. Year 1 was the only year that did not include the
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insufficient classification confidence or sequence data limitations.
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family Microcystaceae in its top families (Figure 2B). Microcystaceae
was of highest abundance in the Nearshore and Pelagic zones across
years 2 and 3 (Figures 2D,F). As also seen in the orders,
Silvanigrellaceae only appeared in the top families of Year 1 and no
other year (Figure 2B). Between years 2 and 3, Year 2 did not include
the OM190 in its top families while Year 3 did (Figures 2D,F).

In the analysis of relative taxonomic abundances between ranges
of chl a concentration across the entire sampling period, only the top
phyla, families, and genera were included (Figure 3). Within the top
ten phyla, only Planctomycetota appeared to slightly increase in
abundance with increasing chl a concentration (Figure 3A).
Acidobacteriota, Actinobacteriota, Crenarchaeota, and
Gemmatimonadota appeared to decrease in abundance as chl a
concentration increases (Figure 3A). A similar trend was observed
within the abundances of the families Gemmatimonadaceae,
Ilumatobacteraceae, and Nitrosopumilaceae as they decrease in
abundance with increasing chl a concentration (Figure 3B). The only
genera that decreased with increasing chl a concentration was
Candidatus_Nitrosotenuis (Figure 3C). There were also some patterns
seen between the abundance of the cyanobacterial taxa (including the
family Cyanobiaceae and genus Cyanobium_PCC-6307) and
Microcystis. For both the cyanobacteria taxa and Microcystis, their
abundance increased with increasing chl a concentration; however,
the abundance of the cyanobacterial taxa appeared to fluctuate
according to the abundance of Microcystis present (Figure 3C).

Each sampling year shared unique core taxa within the Lake O
ecosystem. Core taxa are defined as any ASVs that were detected at a
relative abundance of at least 0.1% and found in at least 75% of the
samples. A Venn diagram was created between each year, and it
showed that all years shared 12 core taxa (Supplementary Figure S8).
Years 1 and 2 did not have any core taxa that was unique to them, nor
did they share any core taxa. Year 3, however, had 14 unique core taxa,
shared four core taxa with year 2, and two core taxa with year 1
(Supplementary Figure S8). The taxonomic information for each
in the

Supplementary Table S4. The phylum Cyanobacteria was only found

taxon placed Venn diagram can be found in
in the core taxa shared between years 2 and 3 and within the unique
core taxa of year 3 (Supplementary Table 54). Verrucomicrobiota was
the only phylum of heterotrophic bacteria found within the shared
taxa between year 2 and year 3 (Supplementary Figure S8;

Supplementary Table S4).

3.3 Co-occurrence network with
Microcystis

A total of 22 bacterial genera appeared to co-occur with
Microcystis (Figure 4). The network consisted of two clusters around
Microcystis. Most of the bacteria fall under the phylum Proteobacteria
with some occurring in other phyla such as Bacteroidota and
Gemmatimonadota. The three strongest relationships shared with
Microcystis were between uncultured bacteria belonging to the family
Sutterallaceae (Pearson R =0.836), the cyanobacterial genus
Pseudanabaena_PCC-7429 (Pearson R=0.811), and the genus
Silanimonas (Pearson R =0.807). Genus Microcystis co-occurs
primarily with heterotrophic bacterial taxa, with only two relationships
with other cyanobacterial taxa, Pseudanabaena_PCC-7429 and
Snowella_OTU37504 (Figure 4).
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3.4 Alpha diversity analyses

Alpha diversity was calculated using the Shannon diversity index,
species evenness, species richness, and inverse Simpson diversity
index. Fluctuations in alpha diversity appeared to be affected both
temporally and spatially. Year 3 (2021) exhibited significantly higher
species richness than the previous 2 years (2019 and 2020, respectively)
(year 1 vs. year 3, p=0.0006; year 2 vs. year 3, p=0.0098)
(Supplementary Figure S6). Year 1 showed significantly higher species
evenness throughout the microbial community compared to years 2
and 3, but year 2 was similar in species evenness compared to both
years 1 and 3 (year 1 vs. year 2, p = 0.042; year 1 vs. year 3, p = 0.00013;
year 2 vs. year 3, p = 0.028) (Supplementary Figure S6). Within each
year, alpha diversity also differed by month (Supplementary Table S2).
These trends appeared to be seasonal with the analysis comparing
seasons within each year showing that species evenness specifically
differed in year 2 (p = 0.00084) and year 3 (p = 0.037). Spatially, alpha
diversity differed between zones across years 1 and 3, with year 2
showing no significant differences across all alpha diversity measures
(Supplementary Figure S7). Alpha diversity differed by station within
each year as well, with year 1 showing no significant differences in
species evenness, year 2 only showing differences in species evenness,
and year 3 showing differences in all the alpha diversity measures
(Supplementary Table S3).

Few environmental variables strongly correlated (Pearson R* > 0.5
or Pearson R? < —0.5) to the alpha diversity in Lake O (Figure 5).
Microcystis relative abundance showed the strongest correlation to
species evenness out of all the environmental variables measured
(Pearson R? = —0.72), with microcystin concentration trailing behind
(Pearson R*=—0.49). Species evenness also showed significant
differences across ranges of microcystin concentration (p = 0.0006)
(Figure 6), with these differences found between samples with less
than O pg/L microcystin and samples with more than 50 pg/L
microcystin (p =0.0062), and between samples with more than
50 pg/L microcystin and samples with microcystin concentrations
between 0 and 20 pg/L (p = 0.015). Inverse Simpson diversity index
also exhibited a similar trend (p = 4.74x10A-5), with differences found
between samples with less than 0 pg/L microcystin and samples with
more than 50 pg/L microcystin (p = 0.001), and between samples with
more than 50 pg/L microcystin and samples with microcystin
concentrations between 0 and 20 pg/L (p = 0.0005) (Figure 6). Other
environmental variables that correlated to species evenness included
ammonia (Pearson R? = 0.11), nitrate + nitrite (Pearson R* = —0.10),
and total phosphate (Pearson R* = —0.11) (Figure 5). Environmental
variables that correlated to species richness include total nitrogen
(Pearson R?>=0.17), TN: TP ratio (Pearson R*>=—0.13), and total
phosphorus (Pearson R?=0.18) (Figure 5). The environmental
variables that correlated to the diversity indices, Shannon and inverse
Simpson, included microcystin (Pearson R? Shannon = —0.23; inv.
Simpson = —0.20), nitrate + nitrite (Pearson R inv. Simpson = —0.10),
total nitrogen (Pearson R? Shannon = 0.13; inv. Simpson = 0.17), total
phosphorus (Pearson R?, Shannon = 0.06; inv. Simpson = 0.10) and
total phosphate (Pearson R? inv. Simpson = —0.12). Microcystis
relative abundance had a strong, negative correlation with species
evenness (Pearson R*> = —0.72), with additional negative correlations
with Shannon diversity index (Pearson R*=—0.23), and inverse
Simpson diversity index (Pearson R®=—0.22). There were no
correlations between any of the alpha diversity measures and chl g4,
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Top phyla (A), families (B), and genera (C) across chlorophyll a concentration range during the entire sampling period (2019-2021). Taxa marked as
“N/A" occur when taxonomic resolution was not achieved due to insufficient classification confidence or sequence data limitations.
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temperature, nor pH (Figure 5). However, there were significant
differences found in species evenness (p = 1.998x10A-6) and inverse
Simpson diversity index (p=0.0062) across range of chl a
concentration (Figure 7). Differences in species evenness were found
between samples with chl a concentration ranging between 0 to
10 pg/L and 10 to 20 pg/L (p = 0.006), 0 to 10 pg/L and 20 to 30 pg/L
(p=0.0003), and 0 to 10pg/L and 30 to 40 pg/L (p=0.003).
Differences in inverse Simpson diversity index were found between
samples with chl a concentration ranging between 0 to 10 pg/L and 20
to 30 pg/L (p = 0.003) (Figure 7).

3.5 Beta diversity analyses

Following ANOSIM and PERMANOVA analyses, significant
differences in beta diversity appeared between stations (ANOSIM
R =0.1967; p = 0.01) across all sampling years. However, no significant
differences were found for year (p = 0.75), season (p = 0.78), month
(p=0.91), or zone (p = 0.19) across the sampling years. Within each
year, significant differences did appear by station across each year
(year 1, p = 0.001; year 2, p = 0.001; year 3, p = 0.001) and there were
significant differences by zone within year 1 (p = 0.001) and year 3
(p = 0.001).

Environmental variables were fitted onto a CCA plot through
vectors to show which environmental variables may be driving the
differences in the microbial community within the lake or across
sampling times and within each year (Figure 8). Across all 3 years, the
environmental variables accounted for about 14.47% (adjusted
R?=0.1447) of the variation within the microbial communities in
Lake O and these variables included TN:TP ratio (Pearson R> = 0.57),
pH (Pearson R* = 0.34), nitrate + nitrite (Pearson R* = 0.55), dissolved
oxygen (Pearson R®=0.43), turbidity (Pearson R®=0.42), total
phosphate (“phosphate.ortho”; Pearson R*=0.48), and ammonia
(Pearson R* = 0.34). In year 1, the environmental variables accounted
for about 17.44% (adjusted R* = 0.1744) of the variation within the
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microbial communities in Lake O and these variables included TN:TP
0.65), pH (Pearson R* = 0.51), nitrate + nitrite
0.46), dissolved oxygen (Pearson R* = 0.49), turbidity
0.31), secchi disk depth (Pearson R*=0.30), and
ammonia (Pearson R = 0.60). In year 2, the environmental variables
accounted for about 17.26% (adjusted R* = 0.1726) of the variation
within the microbial communities in Lake O and these variables
included TN:TP ratio (Pearson R* = 0.62), pH (Pearson R*> = 0.69),
nitrate + nitrite (Pearson R*=0.55), dissolved oxygen (Pearson
R?=0.51), turbidity (Pearson R* = 0.52), total phosphate (“phosphate.
ortho”; Pearson R = 0.35), and chl a
0.35). In year 3, the environmental variables accounted

ratio (Pearson R* =
(Pearson R* =
(Pearson R*=

0.35), ammonia (Pearson R* =
(Pearson R* =
for the most variation within the microbial communities in Lake O,
about 20.69% (adjusted R*=0.2069), and these variables included
TN:TP ratio (Pearson R? = 0.36), nitrate + nitrite (Pearson R> = 0.67),
dissolved oxygen (Pearson R* = 0.30), alkalinity (Pearson R* = 0.31),
0.36), total phosphate (“phosphate.ortho’;

0.55),
0.39). Year 1 was the only instance when

temperature (Pearson R* =
Pearson R* = 0.44), Microcystis relative abundance (Pearson R* =
and chl a (Pearson R =
secchi disk depth influenced microbial community composition
(Figure 8B). Total phosphate concentration and chl a concentration
were environmental variables shared between year 2 and year 3 that
were not included in year 1 that drove microbial community
composition (Figures 8C,D, respectively). The environmental variables
unique to year 3 in driving the microbial community composition
included alkalinity, temperature, and Microcystis abundance
(Figure 8D).

The microbial community composition of samples collected
during year 3 was closely associated with total phosphate (“phosphate.
Ortho”), nitrate + nitrite, and turbidity (Figure 8A). In year 1 and year
3, nearshore and pelagic zones were similar in microbial community
composition while inflow and S79 zones were similar in microbial
community composition (Figures 8B,D, respectively). In year 1, the
microbial community composition of the nearshore and pelagic zones
appears influenced mostly by nitrate + nitrite, turbidity, and TN:TP
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ratio, while the communities of the inflow and S79 zones were driven
mostly by ammonia (Figure 8B). In year 3, the microbial community
composition of the nearshore and pelagic zones was driven by nitrate
+ nitrite, total phosphate, Microcystis abundance, chl a, and
temperature. The microbial community composition of the inflow and
S79, however, does not seem to be driven primarily by any of the
environmental factors shown in the plot (Figure 8D). Year 2 had
significant differences between stations and no significant differences
between zones. However, each station is located within a certain
ecological zone in the lake. Thus, to better interpret the station plot,
the zone plot will be used. The stations located in the nearshore and
pelagic zones were clustered together and mostly driven by nitrate +
nitrite concentrations, turbidity, with TN:TP ratio also driving
microbial community within the nearshore zone (Figure 8C). Stations
located in the inflow and S79 zones were also clustered together, but
there were some stations from the pelagic and inflow zones that were
driven by the same environmental variables (chl a, TN:TP ratio, and
ammonia) (Figure 8C).
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3.6 Environmental variables over the
sampling period

To provide context for microbial community analyses, selected
environmental variables were plotted against the sampling period by
month (Figures 9-12). The only environmental variable that
remained relatively constant with minor changes across the sampling
period was pH (Figures 10A-C). However, several instances of lower
pH occurred within year 2 and year 3 during the late summer to
winter months (7-12) (Figures 10B,C). TN:TP ratio and nitrate +
nitrite concentration showed some seasonal changes (Figures 11D-F,
12G-1, respectively). TN:TP ratio showed a decrease during spring
months (3-5) and began to increase into the summer months (6-7)
across all 3 years. Year 1 experienced instances of the highest TN:
TP ratio compared to year 2 and year 3 (Figures 12G-I). Nitrate +
nitrite concentrations showed an overall decrease in concentration
during the summer months into early fall months (6-9)
(Figures 11D-F). Year 2 experienced several instances of the highest
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concentration of nitrate + nitrite compared to year 1 and year 3
(Figure 11E).

Most of the remaining selected environmental variables displayed
changes from year-to-year. The total depth of Lake O was lower in year
1 while year 2 and year 3 experienced increasing average depths
(Figures 10D-F). Year 1 and year 3 experienced warmer average
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surface water temperatures for a longer period compared to year 2,
which exhibited a smoother transition between water temperature
gradients across months (Figures 10G-I). Ammonia concentrations
remained constant in year 1, with only three instances being
substantially higher than average (Figure 11A). Year 3 also portrayed
the same pattern; however, there was only one instance where the
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concentration was substantially above average (Figure 11C). Year 2
showed the most instances that were above average concentrations
compared to the other two years (Figure 11B). Both Microcystis
relative abundance and microcystin concentration were higher during
year 2 and year 3 and lowest during year 1 (Figures 9D-I). Chl a
concentration exhibited the same pattern—with year 1 exhibiting
lower concentrations than year 2 and year 3 (Figures 9A-C). Year 1
and year 3 exhibited an unstable increase-decrease cycle in total
nitrogen concentration across the monthly averages, while year 2
experienced only two increase averages during March and November
(Figures 12A-C). Total phosphorus also experienced this pattern in
concentration (Figures 12D-F). The average concentration of total
phosphate stayed within the same range across the years until it began
to decrease during July of year 3 (Figures 11G-I).

4 Discussion
Most of the cyanoHAB research conducted on Lake Okeechobee

(Lake O) primarily focuses on bloom management via the control of
nutrients going into the lake. However, a growing amount of research

Frontiers in Water

12

suggests that nutrient levels may not be the only factor influencing
these blooms to occur so frequently (Wilhelm et al., 2020). There have
not been many studies done on Lake O that assess how these
cyanoHABs are affecting the other microbial communities within the
lake during these blooms or how these other microbes could
be influencing the blooms.

4.1 Microbial community diversity patterns

This study has found that the diversity of microbial communities in
Lake O is affected by the occurrence of Microcystis, one of the main
cyanobacteria genera causing cyanoHABs both in Lake O and around
the world. Both species evenness and alpha diversity metrics (Shannon
and inverse Simpson) were found to decrease as microcystin
concentrations and Microcystis relative abundance increase, especially
during cyanoHAB events. This result was expected as cyanoHAB
conditions typically lead to a dominance of the blooming cyanobacteria
and correlating species, thus reducing the overall diversity and evenness
of species in the affected area. Additionally, the rise in microcystin
concentrations acts as a selective pressure on the microbes that are in the

frontiersin.org


https://doi.org/10.3389/frwa.2025.1678547
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org

Samuel and Lopez

10.3389/frwa.2025.1678547

A Year 1-2019

Chlorophyll a (ug/L)
L3

’ °

..l

3456 7 8 9 101112
Month
Year 1-2019

=)

0.100-

°
=}
\,
o
]

5 0.050-

Microcystis Relative Abundance
o
N
g

g
o
S
=}
;

3456 7 8 9101112
Month
G Year 1-2019

40-

20-

Microcystin (ug/L)

3456 7 8 9 101112
Month

FIGURE 9

B Year 2 - 2020
150-

100-

12345678 9101112
Month
E Year 2 - 2020
0.100-
0.075- -
0.050-
0.025-

L] L] ° °
0.000- M

12345678 9101112

Month
H Year 2 - 2020
40- 1
20-
LY

34567 8 9101112
Month

Scatterplot of total chlorophyll a concentration (ug/L) (A—C), Microcystis relative abundance (D—F), and microcystin concentration (ug/L) (G-I) over
the sampling period. The black line depicts the averages per month across the years.

c Year 3 - 2021
150-
100- =

123 456 7 8 910

Month
F Year 3 - 2021
0.100-
0.075-
0.050- -
0.025- .

0.000- W

12345678910

Month
Year 3 - 2021
40-
20-
L] L ]
(Y L] L] B O
0 | =
1 2 3 4 5 6 7 8 9 10
Month

Frontiers in Water

13

frontiersin.org


https://doi.org/10.3389/frwa.2025.1678547
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org

Samuel and Lopez

10.3389/frwa.2025.1678547

A Year 1-2019 B Year 2 - 2020 c Year 3 - 2021
9.
b
S
3 3 3-
0 0 0-
3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10
Month Month Month
D Year 1-2019 E Year 2 - 2020 F Year 3 - 2021
6 6 6-
E4 4
£
Q.
[]
(=}
s
Q0 2- 2-
0 e o o o o . 0 o o o e o . 0 . o o o o0 o oo o oo
3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10
Month Month Month
G Year 1-2019 H Year 2 - 2020 l Year 3 - 2021
30- 30-
3
gzo— 20-
o
[3
o
£
(]
= 10 10 10-
0 0 0-
3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10
Month Month Month
FIGURE 10
Scatterplot of surface water pH (A—-C), total depth (m) (D—F), and surface water temperature (°C) (G-1) of the lake over the sampling period. The black
line depicts the averages per month across the years.

vicinity of the bloom, shifting the microbial community composition
toward bacterial taxa that are resistant to the toxins. These resistant
bacterial communities contain certain functional pathways that allow
them to outcompete other microbes during a bloom event including
nitrogen cycling, phosphorus cycling, carbon cycling, and sulfur cycling,
fatty acid metabolism, and vitamin biosynthesis (Krausfeldt et al., 2024).
Although there were both temporal and spatial differences in microbial
community diversity, more significant differences were found spatially
between monitoring stations and ecological zones within all 3 years and
between each year. There was obvious grouping among samples based
on the ecological zones of the lake: the inflow zone samples were always

Frontiers in Water

coupled with the zone S79 samples, and the pelagic zone samples were
always coupled with the nearshore zone samples, suggesting that these
couples have similar microbial community composition. Although these
zones exhibit differing physiochemical properties, these zones do not
have clearly defined physical borders between them, resulting in dynamic
spatial ranges (Krausfeldt et al., 2024). Within this study, year 2 showed
no significant differences between zones when year 1 and year 3 showed
significant differences. To further explore this, meteorological, nutrient
load, and discharge data would need to be collected and analyzed to
explore the potential microbial community homogenization that could
be occurring within the lake. Due to absence of this data during this
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Scatterplot of ammonia (A—C), nitrate + nitrite (D—F), and total phosphate concentration (mg/L) (G-1), over the sampling period. The black line depicts
the averages per month across the years.

study, further exploration would need to be conducted to support this
claim during the time of this study.

4.2 Microbial taxa outliers in Lake
Okeechobee

The taxonomic make-up of Lake O was dominated primarily by four
common bacterial phyla: Proteobacteria, Bacteroidota, Cyanobacteria,
and Actinobacteriota (Supplementary Figure S2). These phyla appeared
to change in distribution, along with the less-dominant taxa present,

Frontiers in Water 15

both temporally and spatially. However, there were some phyla that were
irregular in both their distribution around the lake and their presence
across the years. In year 1, phylum SAR324 (marine_clade group B)
appeared in the top phyla of only two stations within Lake O and was
found in no other year. SAR324 is a novel phylum that has been recently
classified as its own phylum after initially being classified as “marine_
clade group B” under the phylum Deltaproteobacteria (Malfertheiner
etal., 2022; Parks et al., 2018; Pommier et al., 2005). SAR324 is known to
be present only in marine environments; however, Malfertheiner et al.
(2022) discovered that this phylum can also be found in terrestrial
aquifers. Lake O is subjected to the risk of saltwater intrusion (Prinos,
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2016; Barlow and Reichard, 2010)—the movement of seawater into
freshwater aquifers—due to the water level being heavily managed. The
SFWMD stated that saltwater intrusion is at a higher risk of occurring in
Lake O starting at a depth of 10% feet (or 3.2 meters) and compromising
the Caloosahatchee lock at a starting depth of 9 feet (or 2.9 meters)
(SFWMD, “Impacts of Operating Lake Okeechobee at Lower Water
Levels™). Yet, throughout the majority of 2019, the total depth of Lake O
was sustained between about 1 and 3 meters (3.3 feet and 9.8 feet). These
conditions put Lake O in the position of a sustained high risk of saltwater
intrusion, especially at the Caloosahatchee River lock (station S79) where
SAR324 appears as one of the dominant taxa (Supplementary Figure S5A).
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Phylum Armatimonadota appeared in year 2 as part of the top
phyla at station KISSR0.0, which is located in the inflow zone and the
mouth of the Kissimmee River (Supplementary Figure S4B).
Genomic sequences of Armatimonadota were isolated from a variety
of environments such as aerobic and anaerobic wastewater treatment
processes, contaminated and uncontaminated soil and sediments (Im
et al,, 2012). Lake O and its connecting rivers—including St. Lucie,
Kissimmee, and Caloosahatchee—are experiencing nutrient
pollution due to agricultural and urban land runoff. Between 2019
and 2020, there was an increase in the average concentrations of total
phosphate, total nitrogen, nitrate + nitrite, and total phosphorus
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(Figures 11, 12). Thus, the presence of this phylum may reflect the
shift in nutrient loads from runoff into the lake.

An additional phylum, Patescibacteria, appeared only in 2021 at two
stations, L004 and L006, within the lake (Supplementary Figure S4C).
Patescibacteria inhabit a range of environments including groundwater
and other aquifer environments, freshwater sediments, and deep-sea
sediments (Herrmann et al., 2019; Proctor et al., 2018; Léon-Zayas et al.,
2017; Luef et al., 2015; Brown et al., 2015). In Lake O, Patescibacteria
were found only at two stations, L004 and L006, both of which are in the
pelagic zone of the lake. The pelagic zone is the deepest part of the lake
but also experiences the most turbidity due to sediment resuspension
(Krausfeldt et al., 2024). Tt is this sediment resuspension that could allow
this phylum to be collected in surface waters. The phylum Myxococcota
was the only phylum that did not appear the top phylum in year 2 but
appeared in years 1 and 3 (Supplementary Figure S5). Once classified
within Deltaproteobacteria, Myxococcota became its own phylum in
2020 when Waite et al. (2020) acknowledged that it should be recognized
as its own phylum due to its distinct phylogenetic and functional
characteristics. These bacteria are known to be predatory bacteria that
use a combination of epibiotic strategies and secondary metabolites to
lyse the cells of their prey (Murphy et al., 2021). Majority of the species
found within Myxococcota are associated with soil formation (Murphy
et al., 2021). However, recent studies have found that this bacterial
phylum provides a wide range of ecosystem roles such as stabilizing
microbial ecosystems, carbon and sulfur cycling, and metabolite
biosynthesis, especially in mangrove and wetland ecosystems (Zou et al.,
2024; Kurashita et al., 2024; Padfield et al., 2024).

Abundances of a few bacterial taxa appeared to change across
various chl a concentrations both temporally and spatially. As suspected,
there was an increase in the abundance of cyanobacterial populations,
including the genus Microcystis, as chl a concentration increased. Despite
both Microcystis and other cyanobacterial taxa abundances increasing
with increasing chl a concentration, there were fluctuations with the
abundance of other cyanobacterial taxa like Cyanobium species
according to the abundance of Microcystis. Within the heterotrophic
bacterial community, the abundance of families Gemmatimonadaceae,
Tlumatobacteraceae, and Nitrosopumilaceae appeared to decrease as chl
a concentration increased. CyanoHABs caused by Microcystis alter pH
and oxygen levels, as well as introduce toxins (i.e., microcystins) within
the water column. During cyanobacteria bloom decomposition, certain
taxon abundances can vary based on the fluctuating environmental
conditions (Wilhelm et al.,, 2020). For example, aerobic bacterial species,
like those found within the families Gemmatimonadaceae and
Mumatobacteraceae, would be negatively impacted by the decrease in
dissolved oxygen during bloom decomposition. Nitrosopumilaceae, an
ammonia-oxidizing bacterial family, would also decrease in abundance
as the Microcystis bloom outcompetes them for available ammonium in
the water column (Donald et al,, 2011). Additionally, the presence of
microcystins produced from these blooms inhibits the growth of
sensitive bacterial taxa, in turn, reducing their abundances as the bloom
decomposes (Gobler and Jankowiak, 2022; Paerl and Otten, 2013).

4.3 Bacterial co-occurrences with
Microcystis

Microcystis blooms can be influenced by abiotic factors such as
environmental variables and nutrient inputs of freshwater ecosystems.
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There has been increasing interest in the role of the heterotrophic
bacterial community in the aggregation and proliferation of the
cyanobacterial colonies and how they could be maintaining
cyanobacterial harmful algal blooms (cyanoHABs) created by
Microcystis. Studies have shown that there are heterotrophic bacteria
that live within and around Microcystis colonies, with either
mutualistic, commensal, or antagonistic effects (Tu et al., 2019; Shen
et al., 2011; Shi et al., 2009; Maruyama et al., 2003; Imamura et al.,
2001). As mentioned previously, several results in this study suggested
that Microcystis can alter the microbial community of Lake O through
cyanoHABs. Both Microcystis and its related toxin, microcystin,
showed strong negative correlations to species evenness and species
diversity (Figure 8). In year 3—the year with the most intense blooms
of the entire sampling period—Microcystis appeared as one of the
strongest correlated variables, along with other environmental
variables, which drove variation in the microbial communities in Lake
O (Figure 11D). After revealing that Microcystis can alter microbial
communities in the lake, a co-occurrence network was created to
determine what other bacteria appeared with Microcystis. The
co-occurrence network showed 22 significantly strong positive
correlations between Microcystis and other heterotrophic bacteria;
with two exceptions being cyanobacteria (Pseudanabaena_PCC-7429
and Snowella_OTU37504) (Figure 4). Although some negative
correlations did exist between Microcystis and other bacteria, their
relationships were not strong enough to consider them as strong
negative correlations (R* = —0.7 or less).

Bradymonadales belongs to phylum Desulfobacterota and are
predatory bacteria. Mu et al. (2020) found that Bradymonadales
displays unique living strategies that apply a novel method of predation:
a transition between obligate and facultative predation. Bradymonadales
primarily prey on bacteria from the phyla Bacteroidetes, Flavobacteria,
and Proteobacteria. Few prey species of Bradymonadales have been
discovered including the coral pathogen Vibrio harveyi (Welsh et al.,
2016), and various multi-drug-resistant pathogens such as Klebsiella
pneumoniae, Pseudamonas aeruginosa, and Vibrio vulnificus (Gong
et al., 2022). Interestingly, 11 of the 22 co-occurring bacteria with
Microcystis belong to the phylum Proteobacteria with an additional two
belonging to Bacteroidetes and Flavobacteria. Thus, Bradymonadales
may utilize Microcystis colonies during the blooms as a feeding ground
for its prey items. Bdellovibrio is another predatory bacterial genus that
was seen to co-exist with Microcystis in Lake O. The species of
Bdellovibrio found to cooccur with Microcystis in this study, Bdellovibrio
exovorus, belongs to a group of like predatory bacteria known as
Bdellovibrio and like organisms (BALOs) (Ezzedine et al., 2022).
BALOs were the first records of predatory bacteria and continue to
be used as a baseline for the discovery of novel predatory bacteria like
Bradymonadales. Similar to Bradymonadales, B. exovorus are also
obligatory predators that prey primarily on other Proteobacteria.
However, it is important to note that some species of BALOs have been
found to kill cyanobacterial cells. Caiola and Pellegrini (1984) found
that BALOs were able to lyse Microcystis aeruginosa cells via
penetration and proposed that these and other algicidal bacteria could
be the reason for the dying out of cyanobacteria bloom events.
Although not typically co-occurring with Microcystis, the order
Silvanigrellales (Phylum Bdellovibrionota) was found in the top 20
orders of only year 1 of this study. While majority of the species were
found to be uncultured under this order, the bacterial pathogen,
Spirobacillus cienkowskii should be noted. This species largely infects
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zooplankton in lakes and increases the chances for the infected
zooplankton to be eaten by predators due to their ability to change the
color of the infected zooplankton (Wale et al., 2024).

Another interesting set of taxa that was highly correlated with
Microcystis is the genera env.OP_17 and Silanimonas. env.OP_17 lacks
much basic information; however, it is part of the order
Sphingobacteriales and this order is known to be potential algicidal
bacteria that favors the uptake of cyanobacterial excretions and
decaying material (Mankiewicz-Boczek and Font-Najera, 2022).
Furthermore, Mankiewicz-Boczek and Font-Najera (2022) found that
env.OP_17 increased in abundance after a bloom, suggesting that this
taxon takes a “cleanup” role once a cyanoHAB dies out. Silanimonas,
one of the bacteria with the strongest correlation to Microcystis, is a
recently discovered genus that was isolated from natural Microcystis
colonies by Chun et al. (2017). A later study found that these bacteria
possess the mlr gene cluster, genes that are seen in microcystin-
degrading bacteria (Yancey et al., 2022; Mankiewicz-Boczek and
Font-Najera, 2022). Though this study presented results focused
primarily on the highly correlated relationships between other
bacteria and Microcystis in Lake O, there was another bacterial genus,
Streptomyces, that is known to exhibit algicidal activity toward
Microcystis that was present in microbial community of Lake O
(Zhang et al., 2023). On the contrary, the genus Phenylobacterium—
another taxon that was found with a high correlation with Microcystis
(Figure 4)—was found to aid in the growth and dominance of toxic
Microcystis strains during cyanoHAB events. As mentioned
previously, both toxic and non-toxic bloom-forming strains of
Microcystis exist, and a study conducted by Zuo et al. (2021) revealed
that Phenylobacterium was one of the few genera that strongly
positively co-existed with toxic strains of Microcystis. This
investigation found that there were three strains of Phenylobacterium
that promoted the growth of these toxic strains of Microcystis,
suggesting that Phenylobacterium may be a heterotrophic bacterium
that could be aiding in the longevity of these blooms (Zuo et al.,
2021). Unfortunately, there needs to be further investigation into the
mechanisms by which Phenylobacterium interact with these toxic
strains of Microcystis that allow Microcystis to remain dominant
throughout the cyanoHAB event.

Two phototrophic cyanobacterial taxa shared strong positive
correlations with Microcystis, genera Pseudanabaena_PCC-7429 and
Snowella_OTU37S04. Pseudanabaena is an epiphytic cyanobacterium
that is commonly found embedded within or attached to the
mucilaginous sheath of Microcystis colonies (Li et al., 2020). Both taxa
are frequently observed to be highly correlated during cyanoHABs,
and this study also provides evidence of this pattern (Li et al., 2020;
Berry et al., 2017; Ilhe, 2008). In the 1980s, Pseudanabaena was
primarily described as a parasitic organism to Microcystis colonies
(Chang, 1985). In 2016, Agha et al. (2016) directly investigated these
interactions between Pseudanabaena and Microcystis and discovered
that Pseudanabaena is selective on the mucilage structure of
Microcystis species. They also discovered that Pseudanabaena is
detrimental to Microcystis colonies both directly via cell lysis and
indirectly via cell sedimentation. Thus, it may be possible that
Pseudanabaena may also contribute to the dying stage of cyanoHAB
events. Conversely, although the genus Snowella was also found to
be highly correlated to Microcystis in a previous study, not much is
known about their ecology and their interaction with Microcystis
(Mankiewicz-Boczek and Font-Najera, 2022).
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Over the last two decades, there has been increased interest as to
how the microbial community aids in the recovery of freshwater
environments from the toxic effects of cyanoHABs. One key role
microbes likely play in recovery is through the biodegradation of the
microcystins that are released in the water during bloom events. These
toxin degraders may be important regulators of microbial communities
and element cycling during and after bloom events (Lezcano et al.,
2017; Manage et al., 2009). Manage et al. (2009) found that, in addition
to the heterotrophic bacteria found in the phylum Proteobacteria
(Sphingomonas sp.), there are other heterotrophic bacterial taxa found
in the phylum Actinobacteria that degrade microcystins including
Arthrobacter sp., Brevibacterium sp., and Rhodococcus sp., all of which
were also found in low abundance in this study. Additionally, Massey
and Yang (2020) provided an overview of the various heterotrophic
bacterial taxa that may aid in the degradation of the numerous variants
of microcystins, most of which were also present in this study. Among
these taxa was the genus Cupriavidus sp. which was found to
be strongly associated with the presence of Microcystis in this study
(Figure 4). This evidence demonstrates the value of identifying and
characterizing the toxin-degrading bacteria that reside in Lake
Okeechobee, as it may provide new strategies for the biological
management of the cyanoHABs in this important freshwater ecosystem.

4.4 Abiotic factors influencing Microcystis
in Lake O

While it is important to investigate how biotic factors, such as the
interactions between the blooming cyanobacteria and other
microbes, influence cyanoHABs, there is substantial evidence that
show how abiotic factors influence cyanoHABs, and vice versa, from
blooms occurring worldwide. During this study, in addition to
characterizing the microbial community of the lake, certain
environmental variables were also collected to determine how these
variables could be influencing these blooms along with the microbial
community. Over the three sampling years of this study (2019-2021),
bloom intensity and longevity increased. The peak average relative
abundance of Microcystis and the average concentration of
microcystin could be seen increasing over the years, with year 3
(2021) experiencing the highest abundance and concentration
(Figures 9E], respectively). These changes were likely influenced by
environmental conditions within 2021 that may have contributed to
the increase in bloom intensity. For instance, 2021 had warmer
average temperatures and a lower TN:TP ratio during the months
(May to July) that blooms occurred (Figures 101, 121, respectively).
Xie et al. (2003) uncovered that when Microcystis populations were
exposed to sufficient amounts of nitrogen (N) but differing amounts
of phosphorus (P), Microcystis blooms occurred only in environments
with higher P concentrations. However, as these blooms progressed,
both N and P concentrations declined, hence resulting in lower
TN:TP ratios. Therefore, as an increase in temperature influences the
growth of Microcystis blooms, there is a decrease in TN:TP ratio due
to the increased use of the nutrients in the water column.

Numerous studies have shown that cyanobacteria favor higher
temperatures thus increasing their growth rates during warmer
periods of the year (Wilhelm et al., 2020; Paerl and Huisman, 2008;
Johnk et al., 2008; Reynolds, 2006). In general, higher temperatures,
those above 25 °C, promote the growth of cyanobacteria (Paerl and
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Huisman, 2008; Johnk et al., 2008; Reynolds, 2006). This relationship
was further demonstrated by the significant positive correlations
found between temperature and both Microcystis relative abundance
and microcystin concentration (Figure 5). When temperatures
increase, the water column becomes more stable and stratified since
the increase in temperature weakens the amount of vertical mixing in
the water column (Paer| and Huisman, 2008; Paerl and Fulton, 2006;
Reynolds, 2006; Huisman et al., 2005). Microcystis aeruginosa, the
dominant bloom-forming cyanobacteria species in Lake O, can take
advantage of these more stratified conditions using their gas vesicles.
The gas vesicles formed by M. aeruginosa give them the buoyancy they
need to effectively migrate through the water column during favorable
conditions, such as elevated temperatures and increased light
availability (Dick, 2021; Huisman et al., 2018; Komarek, 2003). This
buoyancy also provides M. aeruginosa the ability to form “mats” of
biomass at the surface of the water; hence, cyanoHAB events tend to
increase in frequency in the summer (You et al., 2017; Litchman et al.,
2010). In 2021, temperatures reached between 25 °C and 30 °C each
month from May through to September (Figure 3)—around the same
months where microcystin concentrations and Microcystis relative
abundances were the highest (Figure 2).

pH is also known to be a factor associated with Microcystis blooms.
The importance of pH was made evident when it was included as an
environmental factor driving differences in the microbial community
composition across the sampling period (Figure 11). Additionally, pH
demonstrated a significant positive correlation to microcystin
concentration (Figure 5). During a dense bloom, the cyanobacteria
rapidly consume inorganic carbon (in the form of dissolved CO,) that is
available in the upper water column, in turn increasing the pH of the
surface water to above 9 (Ji et al., 2020; Wilhelm et al., 2020). Across the
sampling period, there were an increasing number of instances where the
surface water pH was measured above 9 (Figure 3). With this increase in
pH, the equilibrium of carbon in the water is shifted from inorganic
carbon (dissolved CO,) to bicarbonate (HCO;~) and carbonate (CO;*")
(Jietal, 2020; Huisman et al., 2018). Microcystis, although also adaptive
to high concentrations of CO, concentrations, can utilize bicarbonate as
a carbon source through the use of carbonic anhydrase found in
cyanobacteria—further allowing these blooms to thrive during these
alkaline conditions (Ji et al., 2020; Wilhelm et al., 2020; Huisman et al.,
2018). Alkaline pH conditions also allow for the conversion of
ammonium ions (NH,") to ammonia (NHS), thus, a negative correlation
between ammonia and pH which was significant in this study (Figure 5).
Furthermore, an increase in ammonia was observed during the months
where microcystin concentrations and Microcystis relative abundances
were the highest (May to September) (Figures 9, 11).

5 Conclusion

This study provides a glimpse into the effects of cyanoHABs within
the microbial community of the freshwater lake, Lake Okeechobee. It
also provides an initial look into the taxonomic classification of the
dynamic microbial community of Lake O over several years and the
spatial changes that were seen within these communities.
We determined that the cyanoHABs that are a common occurrence in
Lake O do alter the microbial community composition of the lake.
Further investigation of these changes within the microbial community
composition yielded the identification of possible relationships
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between these microbial communities and Microcystis. With the
identification of these possible relationships, future investigation
should be conducted to see how the functions of these taxa are
incorporated into their interaction with Microcystis. With that,
we might be able to identify bacteria that may serve as possible
bioindicators for these cyanoHAB events and aid in preventing or
managing these recurring blooms in the lake.

The Lake Okeechobee watershed forms an essential part of South
Florida’s freshwater ecosystems, serving as a source of drinking water
for nearby towns, irrigation for the agricultural lands surrounding the
lake, a critical water supply for the environment, and a habitat for
various organisms in the water and on the land (South Florida Water
Management District, n.d.). With the degrading water quality of the
lake, concerns for life both within and around the lake continue to grow
(Lapointe et al., 2024). To date, numerous studies have been conducted
on reducing the nutrient loading into the lake (Canfield et al., 2021;
Schelske, 1989; Canfield and Hoyer, 1988) and investigating the
possible control of these recurring blooms (Pokrzywinski et al., 2022),
primarily focusing on the cyanobacteria involved in these blooms. Few
studies focusing on Lake Okeechobee explore the taxonomic structure
and the temporal and spatial distributions of the microbial communities
before, during, and after annual cyanoHABs. Furthermore, whether the
microbial community’s taxonomic structure and temporal and spatial
distributions rebound after a bloom event also have yet to be studied.

The conclusions reached in this study provide a glimpse into the
effects that cyanoHABs caused by Microcystis may have on the
microbial community composition within Lake O. To enable scientists
to enhance their comprehension of the ongoing cyanoHABs in Lake
Okeechobee and their interactions with the surrounding environment,
particularly the microbial community, it is essential to fill these
existing knowledge gaps. With that scientists will be able to examine
the variations in the diversity and trophic structure of the lake before,
during, and after the occurrence of these harmful blooms—bringing
scientists closer to fully understanding the impact of cyanoHABs on
Lake Okeechobee’s microbial communities.
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