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consumption as a function of 
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As accurate monitoring and mitigation of water leakage are essential in the context 
of smart and resilient cities, this paper proposes a novel methodology for modelling 
users’ minimum night consumption (MNC), a key parameter in the estimation 
of district leakage levels. Unlike traditional models, which relate MNC to the 
number of users supplied by the network district, a new model with a bounded 
and more interpretable coefficient is conceived to introduce and evaluate the 
dependence of MNC on the yearly average user outflow, which can be evaluated 
based on long-run aggregate billed consumption. A methodology is proposed 
to characterize MNC starting from smart metering data of hourly user water 
consumption, which are progressively aggregated and analysed at the hour of 
minimum consumption for the district. Applications to three case studies in Italy, 
each with distinct characteristics, demonstrate that the novel methodology is 
beneficial. In fact, the results show that the linear model expressing MNC as a 
function of the yearly average user outflow fits data better than the traditional 
model, at increasing aggregation levels.
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1 Introduction

Water Distribution Networks (WDNs) are critical infrastructures, ensuring continuous 
supply of safe and adequate water to users, and drinking water availability is nowadays 
considered both a global development goal and a human right (Jeandron et al., 2019). However, 
due to aging infrastructure and external stressors (i.e., increasing water demands due to urban 
population growth, financial constraints, low maintenance conditions), WDNs are facing 
frequent component failures (Diao et  al., 2016; Mottahedin et  al., 2024a), which pose 
increasing challenges for a sustainable water management (Straus et al., 2016). These challenges 
include water leakage, which adds up to more than 30% of water withdrawn from sources, 
with peaks of roughly 60% in critically aged and/or poorly maintained systems. It is estimated 
that approximately 240,000 water main breaks occur each year in the United States, resulting 
in the loss of over 2 million gallons of drinking water per day (ASCE, 2017). The global volume 
of non-revenue water is estimated to be 126 billion cubic meters per year, with a water loss 
cost adding up to USD 39 billion annually (Liemberger and Wyatt, 2019). Accordingly, water 
leakage represents a global concern and a crucial aspect to address, since its negative effects 
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are manifold, ranging from the impact on public health to the growth 
of management cost and end-users’ dissatisfaction due to supply 
disruption (Lo Presti et al., 2024). As a result, the issue of leakage in 
WDNs is a priority objective and its reliable estimation is accordingly 
of paramount importance for prioritizing maintenance and 
rehabilitation activities, improving allocation of economic resources 
(Boatwright et al., 2023; Mottahedin et al., 2024b) and selecting the 
most suitable solution/technology to apply under budget constraints 
(García et al., 2006).

Various methods are typically adopted for leakage estimation 
(Amoatey et al., 2018) at the level of district metered area (DMA), 
which is a hydraulically discrete area within a zone of the WDN for 
facilitating management. The first and more conventional method is 
typically applied on long time horizons, one or more years (Marzola 
et  al., 2022). It is based on the comparison between total water 
volume input into the DMA and billed water volume at DMA users. 
More modern methods exist, which are capable of identifying leakage 
based on shorter time horizons, such as days. As an example, the 
principal component analysis (Duzinkiewicz et al., 2008; Niu et al., 
2017; Park et al., 2019; Fezai et al., 2021) can be applied to analyse 
inflows of DMAs for the identification of outliers, potentially 
associated with the presence of leakage. Alternatively, leakage can 
be estimated based on the comparison between minimum night flow 
(MNF) and minimum night consumption (MNC) in the DMA, both 
of which typically occur at nighttime between 2:00 and 5:00 a.m. In 
this time window, users’ activity and water consumption are generally 
limited, therefore leaving the larger share of the water inflow into the 
DMA to leakage. Whereas MNF is measured by data derived from 
flow meters installed at DMA boundary pipes, MNC is usually 
evaluated by using a simple linear model, expressing this variable as 
a function of the number of users supplied by the DMA. As MNC is 
highly dependent on socio-demographic (e.g., property type, 
household size, daily habits, etc.), technical (e.g., pressure) and 
climatic (Loureiro et al., 2009; Amoatey et al., 2018; Cominola et al., 
2023) factors, the scientific literature reports various values for the 
coefficient of this linear model, representing the MNC for the single 
DMA user: 1.7 L/user/h in the UK (Butler, 2009), 3 L/user/h for 
Canada, 5 L/user/h for Malaysia (Fantozzi and Lambert, 2012), 2.8 L/
user/h or 4 L/user/h in Italy, while excluding or including the post-
meter leakage, respectively, (Alassio et  al., 2024), 1 L/user/h for 
Germany and 2 L/user/h for Austria (Fantozzi and Lambert, 2012). 
As to non-residential users, Fantozzi and Lambert (2012) suggest a 
simplified value of 8 L/user/h for all activities, though Butler (2009) 
reports specific values ranging between 0.9 and 20.5 L/user/h, 
depending on the kind of commercial activity.

Despite the various worthy scientific contributions listed above, the 
issue of MNC assessment is far from being fully understood, calling for 
new experimental and numerical works. In fact, the large variability in 
the MNC observed so far in the scientific literature gives water utility 
managers great uncertainty in the application of the MNC method in 
different contexts from those analysed in the past. Therefore, new 
experiments can help mitigate this uncertainty and give the MNC 
method more trustworthiness for leakage estimation. On the other 
hand, the question arises if other models can be  used for MNC 
estimation in a more reliable way as opposed to the conventional 
models relating MNC to the number of users.

This paper aims to bridge the two research gaps mentioned above. 
From an experimental standpoint, it enriches the available database 

with two additional case studies from Italy, by analysing both 
residential and non-residential users (the available studies for the 
latter are very limited in literature). In this context, it makes use of 
data derived from smart metering technology, which is spreading and 
offering numerous benefits in WDN management (e.g., see Cominola 
et al., 2015; Fiorillo et al., 2020; Mazzoni et al., 2023) and modelling 
(Cardell-Oliver, 2013; Clifford et  al., 2018; Cominola et  al., 2019; 
Giudicianni et al., 2022). From a numerical standpoint, it proposes an 
entirely new modelling paradigm, in which MNC is no longer 
evaluated as a function of the number of DMA users, but rather as a 
function of the long-run average of the aggregate user outflow, which 
can be evaluated based on users’ billed consumption.

The remainder of the paper is organized as follows. The next 
section presents the methodology adopted, followed by applications 
(case studies and results) and conclusions, highlighting the advantages 
of the novel approach and presenting prospects of future work.

2 Materials and methods

The methodology used in this work is based on the exploitation of 
the hourly series of consumption of DMA users, hereinafter indicated 
as outflow to users. Preliminarily to the application of the methodology, 
users are subdivided into two categories, namely residential and 
non-residential, and the respective average daily patterns of hourly 
consumption are investigated. At this stage, no treatment of outliers is 
performed and hourly series are analysed on a yearly basis, without 
delving into the effects of seasonality within the single year. Overall, the 
methodology develops in the following steps:

	 1	 Identification of the minimum consumption time (MCT, i.e., 
the hour at which consumption is lowest) for the whole DMA.

	 2	 Characterization of each user in terms of MNC (L/h) at the 
MCT, for both user categories.

	 3	 Aggregation of the users in either category, and determination 
of the aggregate value of MNC, i.e., MNCagg (L/h), at the MCT 
and at increasing aggregation steps (obtained by adding one 
user at a time).

	 4	 Construction of the linear model expressing MNCagg as a function 
of the aggregate number of users Nu (−), or of the yearly average 
aggregate consumption Qagg (L/h), i.e., the sum of the yearly 
average outflow to users, obtained as is shown in Equation 1:

	 =
=∑ uN

agg ii 1Q Q 	 (1)

in which Qi (L/h) is the hourly average outflow Q to the i-th user.
The conventional linear model relating MNCagg to Nu takes on the 

form shown in Equation 2:

	
= αagg uMNC N

	 (2)

with α being the coefficient of the model with units of 
measurement L/h.
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The novel linear model relating MNCagg to Qagg takes on the form 
shown in Equation 3:

	
=βagg aggMNC Q

	 (3)

with β being the dimensionless coefficient of the model.
More specifically, the linear structure was selected for the novel 

model in Equation 3 because it has been widely used in the scientific 
literature to represent the relationship between MNC and Nu shown 
in Equation 2 (e.g., see Butler, 2009; Fantozzi and Lambert, 2012; 
Alassio et al., 2024). Furthermore, this simple structure facilitates 
practical applications by water utilities.

As to step  3, it is worth noting that users’ aggregation can 
be  carried out with different sorting criteria, leading to different 
sequences of MNCagg, with only the first and last elements being the 
same. In fact, the first and last elements are equal to 0 (no users) and 
to the MNCagg value for the full group of users in the DMA, 
respectively. Then, a graph like the one in Figure 1 can be constructed, 
in which MNCagg is plotted against the aggregate number of users Nu 
or the aggregate consumption Qagg. In this graph, various MNCagg(Nu), 
or MNCagg(Qagg) patterns can be considered, including those obtained 
from random aggregation samples. The envelope including all the 
potential MNCagg(Nu), or MNCagg(Qagg) patterns is delimited by two 
boundary lines. The lower line is obtained by considering the 
aggregation of users sorted based on increasing values of MNC, or 
MNC/Q. The upper line is obtained by considering the aggregation of 
users sorted based on decreasing values of MNC, or MNC/Q. Finally, 
the trend of the linear model (constructed in step  4 based on 
Equation 2 or Equation 3), associated with the straight line connecting 
the first and last dots, which are the same for all aggregation sequences, 
can be plotted on the graph.

Graphs like that in Figure  1 enable analysing and comparing 
MNCagg(Nu) and MNCagg(Qagg) patterns for both residential and 
non-residential users.

The goodness-of-fit of the models in Equations 2 and 3 is assessed 
by means of the average envelope width W (L/h), calculated by 

dividing the envelope area by the maximum value of the abscissa 
associated with the envelope. The smaller W, the better the model 
capability of representing MNCagg. Additionally, to better evaluate the 
goodness-of-fit, the R2 is also calculated as the square of the correlation 
coefficient between the pattern of the lower (or upper) boundary line 
of the envelope and the straight line pattern of either model. The 
minimum of these two R2 values is the lowest value obtainable in the 
aggregation of users. The closer R2 to 1, the better the model capability 
of representing MNCagg.

3 Applications

3.1 Case studies

In this section, the residential and non-residential users’ water 
consumption data are described for three Italian case studies (see the 
general view in Figure 2), indicated as Case Study A (CSA), Case Study 
B (CSB) and Case Study C (CSC), respectively. In all the case studies, 
both kinds of users belong to the urban context. More specifically, 
residential users include domestic water consumers, whereas 
non-residential users include typical urban non-domestic contexts (e.g., 
restaurants, shops, commercial activities, small factories, and so forth).

CSA is a typical urban district, located in the suburb of a medium-
sized city in Northern Italy. It includes 273 residential users and 21 
non-residential users (i.e., small commercial establishments and 
catering services). Almost 2 years of data concerning consumption at 
hourly resolution is available for CSA from May 2019 to March 2021. 
For the purposes of this work, the data sample of non-residential users 
was reduced to the pre-COVID period from June 2019 to February 
2020. In greater detail, the removal of data from March 2020 to March 
2021 enables discarding all data potentially affected by the effects of 
the pandemic, the outburst of which in Italy was in March 2020, 
following the first case reported at the end of February 2020. Data 
were also corrected to exclude post-meter leakages by applying the 
sliding-window-based approach of Alassio et al. (2024), consisting in 
the identification of long periods of continuous consumption (i.e., 
longer than 72 h). Specifically, all residential users and 10 out of 21 
non-residential users were finally selected.

CSB is a seaside district with a touristic component in Northern 
Italy. It includes 199 residential users and 17 non-residential users 
(mainly related to commercial and catering facilities, as is the case 
with CSA). Two years of data concerning consumption data at hourly 
resolution is available for CSB from September 2016 to August 2018. 
For the purposes of this work, the data sample was reduced to the 
period from January 2017 to January 2018 and was corrected to 
exclude post-meter leakage. All residential users and 11 out of 17 
non-residential users were finally selected.

CSC is urban district covering the suburban area of a large seaside 
city in Southern Italy. In this DMA, most traditional water meters (i.e., 
4,989 out of 5,380) have recently been replaced with smart meters. 
One year of data from March 2017 to March 2018 concerning hourly 
consumption was made available by the water utility for CSC. For the 
purposes of this work, 928 residential and 272 non-residential users 
were selected, with no cases of data removal from the data sample due 
to post-meter leakages.

In all case studies, users included in the analysis were required to 
have non-zero daily consumption for more than half of the yearly 

FIGURE 1

Aggregate MNCagg as a function of Nu or Qagg. See section 2 for the 
description.
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period considered. This ensured the exclusion of fully (or partially) 
inactive users, as well as those affected by data transmission errors. As 
a result, purely seasonal users (active only in summer) were excluded 
from CSB, thereby ensuring the consistency of CSB with the two other 
case studies.

The graphs in Figure 3 provide insights into the average daily 
pattern of hourly consumption for residential and non-residential 
users across the three case studies. The analysis of graphs (a) reveals 
that the profiles of the mean values for residential users are similar 
across the three case studies. A typical bimodal pattern is observed, 
with peaks occurring in the morning and evening. Additionally, CSA 
and CSB feature a third and less pronounced peak at midday. Overall, 
consumption variability is higher during periods of increased demand. 
At each hour, the mean always lies inside the whiskers and is 
consistently slightly higher than the median, indicating a slight 
positive skewness.

In contrast, the analysis of graphs (b) shows that non-residential 
users display markedly different patterns, with greater variability 
across the case studies. The profile of mean values is jagged in CSA 
and CSB, while it is smoother in CSC, likely due to the larger number 
of users in this case study. In addition, the distance between the mean 
and median is more pronounced than in the residential case, revealing 
a stronger positive skewness. Furthermore, in CSA and CSC, the mean 
lies outside the whiskers during nighttime hours, influenced by a small 
number of high-consumption users, representing distribution outliers.

Figure 4 shows the (normalized) daily average aggregate profiles. 
In all case studies, aggregate daily consumption is heavily dominated 
by residential users, who represent the primary source of consumption. 

As a result, the overall profile shapes are similar to the residential 
patterns observed in panel (a) of Figure 3. Overall, CSA and CSB 
present similar profiles, with three distinct peaks. Conversely, the 
profile for CSC shows only two peaks—the former in the morning and 
the latter, less pronounced, in the evening—alongside a generally 
declining trend from morning to evening. This divergence between 
CSA/CSB and CSC may reflect different user habits between Northern 
and Southern Italy.

3.2 Results

The methodology described in section 2 was applied to the three 
case studies. Calculations were carried out and graphs were 
constructed by using Matlab® 2024b (The MathWorks Inc, 2024). The 
MCT was remarked from 2 to 3 a.m. in all the case studies, consistently 
with the scientific literature (e.g., the night period occurring from 2 to 
4 a.m. according to Liemberger and Farley, 2004). The application of 
the methodology yielded the results shown in Figures 5–7, respectively.

For CSA, Figure 5a shows MNCagg as a function of Nu for 10 
samples adopted of residential users’ aggregation. It is worth noting 
that these 10 samples were generated through a random process, that 
is by randomly selecting the first and all the subsequent elements. At 
the first step of aggregation, one user is randomly selected among 
Nu,tot = 273 users; at the second step, the selection is performed from 
the remaining (Nu,tot-1) users, and so forth; at the i-th step, a user is 
chosen among the remaining (Nu,tot+1-i) candidates. At the final step, 
a single remaining user can be selected. Therefore, each generated 

FIGURE 2

General satellite view of the three (two in Northern Italy and one in Southern Italy) case studies and corresponding number of users analysed.
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FIGURE 3

CSA, CSB and CSC. Box-plot graphs showing the daily average pattern of hourly water consumption for (a) residential and (b) non-residential users.
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FIGURE 5

CSA: patterns (a) MNCagg(Nu) and (b) MNCagg(Qagg) for residential users; patterns (c) MNCagg(Nu) and (d) MNCagg(Qagg) for non-residential users.

sample corresponds to one possible of Nu,tot! = 273! permutations. The 
graph also shows the envelope including all the potential MNCagg(Nu) 
patterns obtained by aggregating the residential users in CSA and the 

trend of the model MNCagg = 1.7 × Nu, corresponding to the straight 
line connecting the first and last dots in the aggregation process 
(model coefficient α = 1.7 considering model structure in Equation 2). 
Figure 5b shows MNCagg as a function of Qagg for the same 10 samples 
as in Figure 5a, the envelope including all the potential MNCagg(Qagg) 
patterns and the trend of the model MNCagg = 0.14 × Qagg, 
corresponding to the straight line connecting the first and last dots in 
the aggregation process (model coefficient β = 0.14 considering model 
structure in Equation 3). The comparison of graphs points out that the 
envelope is narrower in Figure 5b than in Figure 5a. By calculating the 
average envelope width W (as explained in section 2), it emerges that 
W = 253 L/h in Figure 5b is smaller than W = 284 L/h in Figure 5a. 
This attests to the better regularity of pattern MNCagg(Qagg), which 
results closer to the linear model than pattern MNCagg(Nu) for the 
aggregated users. Figures 5c,d extend the same kind of analysis and 
comparison to non-residential users. For this category, the linear 
models described in Equations 2 and 3 yield coefficients α and β equal 
to 4.4 and 0.43, respectively. The better regularity and closeness of 
pattern MNCagg(Qagg) to the linear model is much more evident for the 
non-residential users, as the envelope average width W = 16 L/h in 
Figure 5d is much smaller than W = 40 L/h in Figure 5c.

Similar remarks can be made about CSB and CSC based on the 
results shown in Figures 6 and 7, respectively.

FIGURE 4

Aggregate water demand patterns in CSA, CSB and CSC.
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In all the graphs in Figures 5–7, the straight line associated with 
the linear model is well centred within the envelope of all potential 
user aggregations for both residential and non-residential users. 
Despite the variability of the model coefficient values across the three 
case studies, especially for non-residential users, this attests to the 
suitability of the linear model also in the cases where the envelope 
width is large.

The coefficients α and β of the linear models yielded for the 
residential and non-residential users in the three case studies are 
summarized in the following Tables 1 and 2, for the models MNCagg(Nu) 
and MNCagg(Qagg), respectively. The average envelope width W values 
are reported in Table  3 for both the models MNCagg(Nu) and 
MNCagg(Qagg). Overall, compared to the model MNCagg(Nu) shown in 
Equation 2, the model MNCagg(Qagg) shown in Equation 3 enables 
reducing the average envelope width by a percentage ranging from 7 to 
11% for residential users. The percentage reduction for non-residential 
users goes instead from 28 to 69%. Similar benefits were obtained also 
in terms of R2, as is shown in Table 4.

Some comparisons can be performed with studies available in the 
scientific literature in the context of the model MNCagg(Nu). First, it is 
worth noting that the results obtained for CSB are consistent with 
those reported by Alassio et al. (2024) for the same case study. In fact, 

in their work focussed only on residential users, the linear model 
MNCagg = 2.8 × Nu was obtained by considering a longer smart 
metering database. However, the coefficient α = 2.8 of this model is 
close to the value α = 2.5 obtained for residential users in the present 
study. In all case studies, the coefficient α of the model for residential 
users falls within the range between 1.7 and 2.5 (Table 1), which is 
consistent with values commonly reported in the scientific literature 
(Butler, 2009; Fantozzi and Lambert, 2012; Alassio et al., 2024). For 
non-residential users, the values of α observed in this study—ranging 
from 3.3 and 7.1— (Table 1) are consistent with the broader range 
reported in the literature, spanning from 0.9 to 20.5 (Butler, 2009; 
Fantozzi and Lambert, 2012).

Table  2 shows that the coefficient β of the linear model 
MNCagg(Qagg) (Equation 3) ranges between 0.09 and 0.14 and between 
0.17 and 0.47, for the residential and non-residential users, 
respectively, revealing higher values for the latter category in this case 
as well. It is worth noting that the coefficients for residential users are 
considerably close to each other, attesting to the homogenization 
capacity of the residential model MNCagg(Qagg).

The comparison of Tables 1 and 2 proves that, when expressing 
MNCagg as a function of Qagg, (Equation 3), the range of absolute 
variation for the coefficient of the linear model is drastically reduced 

FIGURE 6

CSB: patterns (a) MNCagg(Nu) and (b) MNCagg(Qagg) for residential users; patterns (c) MNCagg(Nu) and (d) MNCagg(Qagg) for non-residential users.
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FIGURE 7

CSC: patterns (a) MNCagg(Nu) and (b) MNCagg(Qagg) for residential users; patterns (c) MNCagg(Nu) and (d) MNCagg(Qagg) for non-residential users.

TABLE 1  Coefficient α for linear models MNCagg(Nu) (Equation 2) obtained 
in the three case studies, for residential and non-residential users.

Case study Residential users Non-residential 
users

CSA 1.7 4.4

CSB 2.5 3.3

CSC 1.3 7.1

TABLE 2  Coefficient β for linear models MNCagg(Qagg) (Equation 3) 
obtained in the three case studies, for residential and non-residential 
users.

Case study Residential users Non-residential 
users

CSA 0.14 0.43

CSB 0.14 0.17

CSC 0.09 0.47

compared to MNCagg(Nu) (Equation 2). Furthermore, the linear model 
MNCagg(Qagg) is advantageous due to its dimensionless formulation 
and the better predictability of its coefficient β. Playing the role of 
demand coefficient relating minimum demand at an hour to average 
demand, β is constrained to take on values lower than or equal to 1. 
Indeed, the value of 1 is achieved asymptotically in the theoretical case 
in which the aggregate user consumption is constant, resulting in the 
model MNCagg = Qagg. Otherwise, the larger the variability in the daily 
consumption, the farther the coefficient from 1. The bounded nature 
of the coefficient β of the model MNCagg(Qagg) marks a meaningful 
difference from the coefficient α of the linear model MNCagg(Nu), 
which is theoretically unbounded.

4 Discussion and conclusions

In this work, the smart metering data from three Italian case 
studies with distinct characteristics were analysed and compared, and 
a novel assessment and characterization was presented for residential 
and non-residential MNC, to contribute to the existing body of 
knowledge in WDN demand characterization. Specifically, a 
methodology based on the statistical analysis of MNC at the hour of 
minimum consumption for the district at increasing levels of user 
aggregation was applied to characterize the dependence of MNC on 
the long-run average aggregate outflow to users, with advantages 
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compared to the conventional approaches expressing MNC as a 
function of the aggregate number of users. While both MNC and 
average user outflow were derived in this work from smart meter 
readings, the yearly average user outflows can be easily obtained from 
the billed water consumption even in the absence of smart meters.

The main conclusions of this work are the following:

	-	 The linear model for assessing MNC fits data better when it is 
expressed as a function of the average user outflow, instead of the 
number of users.

	-	 The benefits in terms of fit can reach values up to about 70%, 
based on the metric defined and considered for assessing model 
fit in the present work.

	-	 The novel linear model proposed is more meaningful and elegant, 
as it simply expresses a minimum value as a function of an 
average, therefore resulting in a dimensionless coefficient.

	-	 In the linear model based on the average user outflow as 
independent variable, the coefficient is more easily predictable than 
in the conventional model with the number of users as independent 
variable, as its upper bound equal to 1 is known a priori.

	-	 In the considered case studies, a quite small range of values 
around 0.1 was observed for the model coefficient in the case of 
residential users, as a result of the homogenization capacity of the 
novel model.

The better predictability of the coefficient of the novel linear 
model can provide water utilities with a more reliable estimation of 
MNC, resulting in the more reliable estimation of leakage as the 
difference between MNF and MNC in DMAs, and ultimately to 
achieve more informed budget allocation for leak repair.

The novel model proposed in this work is expected to find 
widespread applications in technical contexts, due to its advantages and 
ease of implementation. However, in light of the large variability in 
MNC estimation results reported in the scientific literature, caution is 
required when extending the models developed to case studies beyond 

those described in the present work. Specifically, the range of values 
obtained for the coefficient of the novel linear model MNCagg(Qagg) is 
relatively narrow in the case of residential users (between 0.09 and 
0.14), which may lead to only minor estimation errors when applied to 
different contexts. In contrast, the coefficient range is wider (between 
0.17 and 0.44) for non-residential users, highlighting the need for 
further investigations aimed at exploring the relationship between this 
coefficient and the specific type of non-residential activity. For both 
residential and non-residential users, future endeavours will 
be  necessary to assess the extent to which the coefficient values 
obtained in this work are valid in other countries than Italy. 
Acknowledging the uncertainty in non-residential MNC, the model 
coefficient for districts featuring both residential and non-residential 
users can be  estimated as a weighted average of the respective 
coefficients, with weights determined based on the daily average 
aggregate outflows to users. This approach would help mitigate the 
effects of the large uncertainty associated with non-residential MNC.
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TABLE 3  Average envelope width W values for linear models MNCagg(Nu) (Equation 2) and MNCagg(Qagg) (Equation 3) obtained in the three case studies, 
for residential and non-residential users.

Case study Residential users Non-residential users

W for MNCagg(Nu) W for MNCagg(Qagg) W for MNCagg(Nu) W for MNCagg(Qagg)

CSA 284 253 40 16

CSB 235 218 29 9

CSC 740 665 1,778 1,276

TABLE 4  R2 values as the squares of the correlations between lower/upper envelope boundary line and straight line associated with the model, 
evaluated for linear models MNCagg(Nu) (Equation 2) and MNCagg(Qagg) (Equation 3) in the three case studies, for residential and non-residential users.

Case study Residential users Non-residential users

R2 for MNCagg(Nu) R2 for MNCagg(Qagg) R2 for MNCagg(Nu) R2 for MNCagg(Qagg)

CSA [0.81 0.81] [0.86 0.86] [0.30 0.28] [0.83 0.80]

CSB [0.89 0.89] [0.91 0.91] [0.44 0.41] [0.98 0.97]

CSC [0.80 0.80] [0.84 0.84] [0.32 0.36] [0.64 0.67]

In bold, the lower R2 value between the lower and the upper boundary line.
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