Research Topic

Advanced Lithium-Ion and Lithium-Metal-Based Batteries with High Energy Densities

  • Submission closed.

About this Research Topic

Nowadays, lithium-ion batteries (LIBs) attract much attention as the dominant energy storage devices for markets which require high energy density. For example, electric vehicles (EV), portable electronic devices and so on. Both academic and industrial researchers put a lot of effort into optimizing each ...

Nowadays, lithium-ion batteries (LIBs) attract much attention as the dominant energy storage devices for markets which require high energy density. For example, electric vehicles (EV), portable electronic devices and so on. Both academic and industrial researchers put a lot of effort into optimizing each component of the batteries (electrode materials, separators, electrolyte, current collector, etc.) in order to pursue high energy density. One promising approach to boosting energy density is to develop cathode materials with increased capacity and output voltage, such as Ni-rich/Li-rich layered oxides, high-voltage spinel oxides and polyanionic compounds. Another approach is to increase the capacity of anode materials. Compared to a commercial graphite anode, Si, SiOx and other metal oxides, or their composites with graphite, exhibit a much larger capacity.

Lithium-oxygen/sulfur batteries are based on the oxygen/sulfur cathode and lithium anode, which have a high theoretical specific capacity and energy density due to the anion-redox reaction. Moreover, the oxygen/sulfur is cheap and environmentally friendly. Therefore, lithium-oxygen/sulfur batteries are two of the most promising next-generation batteries. Lithium metal is a promising anode due to its low potential, high theoretical specific capacity and low weight. Here, functional separators are highly important, which can not only improve the cycling performance, but also can increase the safety of the lithium metal anode.

Correspondingly, in order to accommodate these emerging materials, new electrolytes or additives which can support the aggressive chemistry of cathodes and improve the stability of the solid-electrolyte-interface (SEI) of anodes must become a focus.

It is critical to obtain further insight into smart material design and to better understand the mechanisms by which we can improve the energy density of lithium metal-based batteries. In this Research Topic, we sincerely encourage researchers to contribute their Original Research related to “Advanced Lithium-Ion and Lithium Metal-Based Batteries with High Energy Density”. Potential topics include, but are not limited to:

1) Cathode materials for LIBs, including traditional layered oxides, high-voltage spinel oxides, olivine or polyanionic compounds, as well as other multivalent cathode materials.

2) Anode materials for LIBs including Si, SiOx, metal oxides, and their composites.

3) Advanced cathode designs, catalysts and electrolytes for Li-O2 batteries.

4) Optimized designs for the cathode and separator of Li-S batteries.

5) Lithium anodes for high efficiency and safety of lithium metal batteries.

6) Electrolytes for efficient cycling and improved safety of lithium-ion and lithium metal batteries.


Keywords: energy storage, lithium ion batteries, lithium metal batteries, high energy density, long cycling life


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top