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Studies on sugar intake and its link to cardiometabolic risk show inconsistent results,

partly due to dietary misreporting. Cost-effective and easily measured nutritional

biomarkers that can complement dietary data are warranted. Measurement of 24-h

urinary sugars is a biomarker of sugar intake, but there are knowledge gaps regarding

the use of overnight urine samples. We aim to compare (1) overnight urinary sucrose

and fructose measured with liquid chromatography-tandem mass spectrometry, (2)

self-reported sugar intake measured with web-based 4-day food records, (3) their

composite measure, and (4) these different measures’ (1–3) cross-sectional associations

with cardiometabolic risk factors in 991 adults in the Malmö Offspring Study (18–69

years, 54% women). The correlations between the reported intakes of total sugar, added

sugar and sucrose was higher for urinary sucrose than fructose, and the correlations

for the sum or urinary sucrose and fructose (U-sugars) varied between r≈0.2–0.3 (P <

0.01) in men and women. Differences in the direction of associations were observed

for some cardiometabolic risk factors between U-sugars and reported added sugar

intake, as well as between the sexes. In women, U-sugars, but not reported added

sugar intake, were positively associated with systolic and diastolic blood pressure and

fasting glucose. Both U-sugars and added sugar were positively associated with BMI

and waist circumference in women, whereas among men, U-sugars were negatively

associated with BMI and waist circumference, and no association was observed for

added sugar. The composite measure of added sugars and U-sugars was positively

associated with BMI, waist circumference and systolic blood pressure and negatively

associated with HDL cholesterol in women (P < 0.05). Conclusively, we demonstrate

statistically significant, but not very high, correlations between reported sugar intakes and

U-sugars. Results indicate that overnight urinary sugars may be used as a complement
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to self-reported dietary data when investigating associations between sugar exposure

and cardiometabolic risk. However, future studies are highly needed to validate the

overnight urinary sugars as a biomarker because its use, instead of 24-h urine, facilitates

data collection.

Keywords: added sugar intake, nutritional biomarkers, urinary sucrose and fructose, overnight urinary sugars,

cardiometabolic risk factors

INTRODUCTION

Sugars have received increasing attention in recent decades and
have been linked to metabolic syndrome and related conditions
and diseases (obesity, type 2 diabetes and cardiovascular
disease) (1–3). However, the strength of the available evidence
is weak (4), and the inconsistent results might partly be
explained by difficulties in measuring sugar intake as an
exposure. Misreporting through self-reported dietary assessment
methods is a challenge that complicates the conclusions of
epidemiological investigations of health risks associated with
high sugar consumption. Hence, there is a need to identify
objective measurements of dietary intake in the form of
nutritional biomarkers to complement subjective self-reported
data (5). It should also be emphasized that with this need
for nutritional biomarkers follows an almost equally important
need for these biomarkers to be relatively cost-effective and
easily measured.

The measurement of 24-h urinary sucrose and fructose as a
predictive biomarker for sugar intake was first recognized after its
dose-response relationship was demonstrated through controlled
sugar intake and its validity to estimate sugar intake (after
ad libitum intake) was confirmed (6). Thereon, this biomarker
has been compared against several different dietary assessment
methods (7, 8), e.g., correlation of r = 0.21 with a 4-day
food record (8). As compared to the predictive 24-h urinary
sugar biomarker, the concentration biomarker from spot or
overnight urinary sugar samples (9, 10) is substantially easier to
collect but has only been compared with reported sugar intake
in three previous studies (two in the same cohort) (11–13).
Only one of these studies, which was performed in children,
reported correlation coefficients between the spot morning
urinary sugar levels and reported sugar intake (r = 0.25) (13).
In the other cohort, higher urinary sucrose levels (from any time
spot urine samples) were associated with an increased risk of
being overweight, whereas higher self-reported sugar intake was
associated with a decreased risk (12).

The principle behind this biomarker is based on the
understanding that very small amounts of sucrose can evade
hydrolysis by sucrase and be absorbed in the jejunum as a
disaccharide instead of being cleaved into glucose and fructose

Abbreviations: BMI, body mass index; BP, blood pressure; e-GFR, estimated

glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; LTPA, leisure-time physical activity; MDC-CC, malmö diet and

cancer-cardiovascular cohort; MOS, malmö offspring study; PC, principal

component; QC, quality control; SSB, sugar-sweetened beverage; U-fructose,

urinary fructose; U-osm, urine osmolality; U-sucrose, urinary sucrose; U-sugars,

sum of urinary sucrose and fructose.

(10, 14). Fructose, either directly from the diet or as hydrolyzed
sucrose, is transported to the liver and only small amounts can
evade the hepatic metabolism and remain in the circulation.
In the circulation, sucrose and fructose, unlike glucose, are not
hormonally regulated by insulin, and hence, non-metabolized
sucrose and fructose are excreted in the urine (15). At most,
∼0.05% of consumed sucrose and fructose is excreted in the urine
and detected in 24-h samples, but this small amount correlates
very well with sugar intake under controlled dietary intake and
urination conditions (r = 0.88) (6). This correlation exists even
though the dietary and urinary sugars reflect somewhat different
factors: consumed and absorbed sugars. However, there is a lack
of knowledge on the performance of this biomarker in free living
populations and in overnight urine instead of 24-h urine samples,
which means that both the biomarker and self-reported dietary
data in this study are subject to individual uncertainties.

This biomarker from non-24-h urine samples classifies as a
so-called concentration biomarker, and therefore lacks the ability
to predict true sugar intake and to use for regression calibration
(10, 16). However, Freedman et al. (17, 18) have proposed that
combining self-reported intake with concentration biomarkers
into composite measures is a way to improve investigation of
diet-disease relationships.

The objective of this study was to compare the measurement
of sucrose and fructose in overnight urine samples, self-reported
sugar intake and their combination, as well as to assess and
compare their associations with cardiometabolic risk factors.

MATERIALS AND METHODS

Study Design and Subjects
The Malmö Offspring Study (MOS) is a prospective cohort
comprised of adult children and grandchildren of participants
from theMalmöDiet and Cancer-Cardiovascular Cohort (MDC-
CC), which was conducted in the 1990s. The individuals
comprising MOS were recruited through invitation letters
beginning in 2013. The eligibility criteria were a minimum
of 18 years of age and at least one parent or grandparent
who participated in the MDC-CC. The participants visited the
research clinic twice (∼1 week apart) for clinical examinations,
collection of biological samples and instructions on how to fill
in a lifestyle questionnaire and maintain a 4-day web-based
food record at home (19). Participants started recording their
diet prospectively the day after their first visit and brought
their overnight urine samples on the morning of the second
visit. For the present cross-sectional study, from the first 1,532
urine samples collected in the MOS, we selected those from
all the non-diabetic participants with complete dietary data
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and a reported energy intake within the range of 500–6,000
kcal/d (Figure 1). The MOS received ethical approval from
the Regional Ethics Committee in Lund (Dnr.2012/594) and
all the participants signed a written informed consent form
prior to participation, all in accordance with the Declaration
of Helsinki.

Dietary Data
Dietary data were collected using the Riksmaten2010 method,
developed by the Swedish National Food Agency, which involves
an online 4-day web-based food record (20). Each participant
started recording their diet on the day after the first visit
to the research clinic to ensure representation of all days
of the week among the studied population. The participants
were instructed to record everything they consumed for
four consecutive days. The portion size was estimated using
photographs of different portion sizes, and the food record
was linked to the food database of the Swedish National
Food Agency.

Data on total mono- and disaccharides and sucrose were
obtained from the food database. Total sugars (g/d) were
calculated by summing all mono- and disaccharides (which
includes glucose, fructose, galactose, sucrose, lactose and
maltose), and the total sugar density (g/1,000 kcal) was calculated
by dividing the total sugar intake by the energy intake/1,000. The
level of added sugars, as defined by the European Food Safety
Authority and the Nordic Nutrition Recommendations: “The
term “added sugars” refers to sucrose, fructose, glucose, starch
hydrolysates (glucose syrup, high-fructose syrup) and other
isolated sugar preparations used as such or added during food
preparation and manufacturing.” (21, 22) (including isolated
sugar preparations such as honey and syrup), was estimated
by subtracting naturally occurring monosaccharides and sucrose
in fruits and berries (10 g/100 g), vegetables (3 g/100 g), and
juices (8 g/100 g) from the sum of the reported intake of
monosaccharides and sucrose (assuming that lactose andmaltose
are not added to foods). The following formula was used for
the estimation (all intake variables are expressed in g/day):
added sugar = monosaccharides + sucrose—(fruit and berries
× 0.1 + vegetables × 0.03 + juice × 0.08). The resulting value
was transformed into the percentage of non-alcoholic energy
intake (E%). The total sugar density is expressed in g/1,000
kcal, whereas the added sugar density is expressed in E% to
facilitate comparisons with previous studies. The investigated
sugar sources were desserts (desserts, cakes, cookies, pastries
and ice cream), sweets (sweets, chocolate and bars), toppings
expressed in servings/day (1 serving of table sugar, syrup or
honey = 10 g, 1 serving of jam, marmalade or jelly = 20 g),
sugar-sweetened beverages (SSBs; soft drinks, non-carbonated
sugar-sweetened drinks, chocolate drinks), fruits (fruits and
berries including dried and preserved) and juices (fruit and
vegetable juices). One subject outlier was excluded from the
statistical analysis due to an extremely high reported juice
intake, which resulted in an unreasonable estimation of added
sugar intake; and thus, the total study sample comprised 991
subjects (Figure 1). The added sugar intake (E%) was the dietary
variable primarily investigated in this study because that is what

FIGURE 1 | Flow chart of participants and urine samples in the Malmö

Offspring Study. U-sucrose, urinary sucrose; U-fructose, urinary fructose;

U-sugars, sum of urinary sucrose and fructose.

is of most interest in terms of cardiometabolic risk. This is
despite the fact that the measured urinary biomarker cannot
distinguish between naturally occurring and added sucrose
and fructose, but the alternative, i.e., investigation of the total
sugar intake, does not perfectly reflect the biomarker either
because both lactose and maltose form a substantial part of the
total sugars.

Urinary Data
Collection of Overnight Urine Samples
Comprehensive instructions to ensure a standardized urine
collection procedure were provided on the first visit to the
research clinic. Overnight urine was collected on the morning
of the second research visit. The instructions were to empty the
bladder before bedtime and collect all urine thereafter during
the night and all of the first morning urine in a plastic bottle
while fasting. At the clinic, the urine samples were stored in a
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refrigerator for a maximum of 4 h before being transferred to
the laboratory, where they were aliquoted and relocated to a
−80◦C freezer.

Preparation of Calibration Standards, Internal

Standards and Quality Control
Calibration standards of sucrose and fructose (Sigma Aldrich,
Gillingham, UK) were prepared ranging from 0.1 to 500 µmol/L.
Stable isotope-labeled internal standard solution was prepared
in acetonitrile containing 13C12-sucrose at 4µg/mL and 13C6-
fructose at 10µg/mL. Quality controls (QCs) of 1 µmol/L (low
QC), 7.5 µmol/L (medium QC), and 75 µmol/L (high QC)
were analyzed in duplicate throughout each batch of samples.
The precision and accuracy of the analysis were assessed by
determining the replicates of the low, medium and high QC
samples across all batches of samples.

Liquid Chromatography-Tandem Mass Spectrometry

(LC-MS/MS)
The urine samples were stored at−80◦C until, thawed at 4◦C
and diluted with the internal standard mix. LC-MS/MS analysis
was performed using an Acquity UPLC system (Waters, Milford,
MA, USA), coupled to a Quattro Ultima tandem quadrupole
mass spectrometer (Micromass, Manchester, UK). The mass
spectrometer was operated through electrospray ionization in
positive ion mode using multiple reaction monitoring mode.
In total, 226 samples were not successfully analyzed, and 81
samples were outside the calibration range and were thus
excluded from the analysis. Out of those 81 samples, those
above the calibration range (24 sucrose samples and 7 fructose
samples) were reanalyzed at a 4-fold-higher dilution and a
calibration range extending to 1,000 µmol/L. These re-analyses
were successfully performed and resulted in re-inclusion for the
sucrose samples (with the exception of 4 samples), but not with
fructose (Figure 1).

Adjustment for Urine Dilution
To adjust for urine dilution, the urinary sugars concentrations
were expressed as ratios to the urine osmolality (U-osm,
mOsm/kg H2O), i.e., in units of (µmol·L−1)/(mOsm·kg−1). U-
osm was selected for dilution adjustment over urinary creatinine
because the latter could be associated with body mass index
(BMI) and could consequently induce a false association between
urinary sugars and BMI. U-osm was measured using an i-
Osmometer basic (Löser, Germany). The osmolality-adjusted
urinary sucrose (U-sucrose) and fructose (U-fructose) were also
added together and investigated as their sum (U-sugars). U-
sugars was correlated (r = 0.95, P < 0.001) with the sum
of urinary sucrose and fructose adjusted for creatinine. The
osmolality-adjusted urinary sugar variables are used throughout
this paper unless stated otherwise.

Data on Cardiometabolic Risk Factors
During the visits to the research clinic, anthropometrics and
blood pressure were measured, and fasting blood samples were
collected by a research nurse. Weight was measured using
either a calibrated balance beam or a digital scale with the

participant wearing light clothing. Height was measured to the
nearest centimeter using a stadiometer. BMI was calculated
as weight (kg)/height (m)2 (19). Waist circumference was
measured between the lowest rib margin and the iliac crest
with the participant in a standing position. Resting blood
pressure (BP) was assessed while lying after 10min rest as
the mean from two measurements. Fasting blood samples
were drawn and plasma was analyzed directly for fasting
glucose using HemoCue Glucose 201+ (HemoCue AB, Sweden)
and within 4 h for total cholesterol, triglycerides and high-
density lipoprotein (HDL) cholesterol using the Cobas system
(Roche Diagnostics, Germany). Low-density lipoprotein (LDL)
cholesterol was calculated using the Friedewald equation.

Data on Confounding Factors
Data on potential confounders were collected via a lifestyle
questionnaire. Leisure-time physical activity (LTPA) was assessed
using a four-level scale ranging from sedentary to regular
activity (≥3 × 30 min/week). Smoking status was categorized as
never smoked, ex-smoker, irregular smoker, and regular smoker.
Alcohol consumption habits were assessed on a five-level scale
from never to ≥4 times/week, and their education level was
categorized as compulsory school, upper secondary school and
university degree. Data onmedication use were also self-reported
via the lifestyle questionnaire. The relative estimated glomerular
filtration rate (e-GFR) was estimated using the revised Lund-
Malmö equation (23).

Misreporting of energy intake was evaluated according
to Goldberg and Black’s cutoffs for misreporting of energy
intake based on a two-standard-deviations discrepancy between
individual physical activity levels and the ratio of energy intake
to the basal metabolic rate (24). Individual physical activity
levels were obtained from the Riksmaten2010 based on physical
activity at work and LTPA (both assessed using a four-level scale
ranging from sedentary to heavy manual labor/exercise ≥3 ×

30 min/week). To enable comparisons with the ratio of energy
intake to basal metabolic rate, basal metabolic rate was calculated
using the Oxford equations by taking sex, age, and weight into
account (22, 25).

Statistical Analysis
All statistical analyses were performed using Stata/SE (version 15;
StataCorp LLC, USA). The urinary sugar variables were skewed
even after adjustment for U-osm and were therefore log10-
transformed. Since sex differences were observed, the statistical
analyses were mainly performed divided by sex.

The baseline characteristics were evaluated separately for men
and women over quintiles of U-sugars and 6 categories of added
sugar intake, namely, ≤5E, >5-≤7.5E, >7.5-≤10E, >10-≤15E,
>15-≤20E, and >20E%, which were previously investigated
in relation to mortality in the Malmö Diet and Cancer Study
(26). Categorical variables were expressed as percentages and
continuous variables were expressed and mean (SD) or median
(IQR), dependent on their distribution.

Partial correlation analysis adjusting for energy intake, age,
sex, and BMI was performed between the different urinary sugar
variables and the reported dietary sugar variables to evaluate the
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agreement between the two measurement methods. An alluvial
plot was created to visualize the agreement between the 6 added
sugar intake categories and the quintiles of U-sugars. To assess
misclassification, equal groups are necessary and for this purpose
sex-specific quartiles were used for crosstabulation of the U-
sugars and reported added sugar intake.

We assume no mediation through the urinary sugar
biomarker in the potential association between sugar intake and
cardiometabolic disease. Therefore, according to reasoning by
Freedman et al. (17) the combination of U-sugars and reported
added sugar intake (E%) into one composite measure of exposure
was obtained using both the principal component (PC) method
and the Howe’s method. In the PCmethod, in the case of only two
variables that are positively correlated (such as in this situation),
the first PC is proportional to the sum of the two variables, each
divided by their own standard deviations. In Howe’s method,
all U-sugar values and added sugar values were ranked, and the
ranks were summed (17).

Linear regression was used to examine the associations of U-
sugars, reported added sugar intake (E%) and their composite
measures with cardiometabolic risk factors. In the regression
models, model 1 was adjusted for age and sex [and total
energy intake for the analyses of added sugar intake (E%) and
the composite measures, i.e., the multivariate nutrient density
model was used for energy adjustment (27)], and model 2
was additionally adjusted for educational level, LTPA, smoking
status, alcohol consumption habits and fiber density (g/1,000
kcal). The regressions with total cholesterol, triglycerides, HDL
and LDL cholesterol were also adjusted for the usage of lipid-
lowering drugs, and the regressions with systolic and diastolic
BP were also adjusted for the usage of antihypertensive drugs.
The interaction with sex was evaluated in all regression analyses.
In sex-specific analyses, interactions with obesity (BMI≥30 or
BMI<30) were evaluated for U-sugars, and interactions with
energy underreporting (yes or no) and obesity were evaluated for
added sugar intake.

To further understand the relationships, an attempt to identify
and map out all potential and measured predictors of U-
sugars was performed through partial correlation analyses for
men and women separately. The multivariate partial correlation
model was determined through stepwise backward linear
regression. All covariates were added simultaneously to the
linear regression model, and the covariate with the highest
P-value was excluded from the model in a stepwise manor
until all covariates were deemed statistically significant. The
investigated variables included added sugar intake; intake of
desserts, sweets, toppings, SSBs, fruit, and berries, and juice;
educational level; smoking status; alcohol consumption habits;
LTPA; BMI; waist circumference; systolic BP; fasting glucose; U-
osm; and e-GFR. We investigated U-sugars unadjusted for U-
osm. Instead, U-osm was included as a covariate. All of these sex-
specific partial correlations and multivariate linear regressions
were adjusted for energy intake and age. A significance level
of α = 0.05 was applied and corrections for multiple testing
were not performed. Therefore, the presented P-values should be
interpreted with caution.

RESULTS

Baseline Characteristics
Among the total study sample of 991 participants with complete
dietary data, we obtained valid measurements within the
calibration range for U-sucrose [median 32.7 µmol/L (12.6–
85.7)] from 889 participants and for U-fructose [median 18.0
µmol/L (7.4–44.0)] from 775 participants (not adjusted for U-
osm). In total, 763 participants presented valid measurements
for both U-sucrose and U-fructose (Figure 1). The mean age
of the cohort was 39 years (range 18–69). As observed in
Tables 1, 2, the lowest mean age was seen in the highest groups
of both added sugar and U-sugars. A higher percentage of
women were seen among the low groups of both added sugar
and U-sugars. Among those reporting high added sugar intake,
we observed lower proportions of energy underreporters, high
consumers of alcohol and individuals with regular LTPA ≥3 ×

30 min/week in both men and women. In those with high U-
sugars, the proportions with a university degree appeared to be
lower. High reported energy intake was observed among those
reporting high added sugar intake, but not in those with high
U-sugars. Higher U-osm was observed in women with higher U-
sugars. Intake of most sugar-rich foods and beverages appears to
increase with increasing U-sugars, while intake of fruit appears
to decrease. Although, a substantial part of zero-consumption
has been reported for some of the sugar-rich foods and beverages
(Table 2).

Correlations Between Urinary and Dietary
Sugars
The alluvial plot in Figure 2 displays the agreement between
the 6 categories of added sugar intake and quintiles of U-
sugars based on the proportion of participants belonging to
each category of the two different variables. In assessment
of misclassification, the percentage of gross misclassification
equaled 8% for women and 7% for men, while 32 and
34%, respectively, of the values were correctly classified
(Supplementary Figure 1).

Sucrose intake (g/d), total sugar intake (g/d), total sugar
density (g/1,000 kcal) and added sugar intake (E%) showed a
higher statistically significant correlation with both U-sucrose
and U-sugars (r≈0.20–0.30, P < 0.01), than with U-fructose
(r≈0.11–0.14, P < 0.03), after adjusting for energy intake, age,
sex and BMI (Table 3). Overall, the correlations were slightly
weaker with total sugar and total sugar density (r = 0.21, P <

0.01 and r= 0.20, P < 0.01 with U-sugars, respectively) than with
reported intake of sucrose and added sugar (both r = 0.24, P <

0.01 with U-sugars), and were weaker for women than for men
e.g., (r = 0.20, P < 0.01 and r = 0.27, P < 0.01 between added
sugar intake and U-sugars, respectively). U-sugars correlated
with intake of desserts, sweets and SSBs, but not with toppings,
juice and fruits. Additionally, among men but not women, SSB
intake correlated with all the different urinary sugars, and U-
fructose was positively correlated with juice intake and negatively
correlated with fruit intake.
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TABLE 1 | Baseline characteristics of women and men in the Malmö Offspring Study across 6 categories of added sugar intake, E%.

Added sugar intake, E% ≤5E% >5E% to ≤7.5E% >7.5E% to ≤10E% >10E% to ≤15E% >15E% to ≤20E% >20E%

Women (n = 533)

n (% women) 13 (34.2) 50 (53.2) 100 (56.5) 192 (52.3) 119 (58.1) 59 (53.6)

University degree, % 60.0 45.8 50.0 48.1 41.7 49.1

LTPA ≥3 × 30 min/wk, % 46.2 38.0 21.0 35.9 35.3 20.3

Current smokers, % 0.0 14.6 11.0 8.15 13.8 19.6

Alcohol consumed >twice/wk, % 40.0 41.7 47.8 26.1 22.9 8.93

Energy underreporters, % 69.2 36.0 31.0 30.2 20.2 28.8

Age, y 39.3 (15) 45.7 (13) 43.2 (12) 39.7 (13) 37.6 (14) 32.5 (11)

BMI, kg/m2 22.2 (1.8) 24.7 (3.2) 25.2 (5.0) 25.0 (4.9) 24.1 (4.3) 26.1 (6.8)

Energy intake, kcal/d 1348 (402) 1569 (398) 1782 (450) 1833 (486) 1894 (493) 1920 (564)

U-osm, mOsm/kg 556 (325) 535 (218) 563 (233) 578 (231) 597 (229) 675 (255)

Men (n = 458)

n (% men) 25 (65.8) 44 (46.8) 77 (43.5) 175 (47.7) 86 (42.0) 51 (43.4)

University degree, % 26.1 23.1 41.8 41.8 21.1 31.3

LTPA ≥3 × 30 min/wk, % 36.0 34.1 36.4 29.7 22.1 19.6

Current smokers, % 8.33 15.4 7.46 9.87 17.8 12.5

Alcohol consumed >twice/wk, % 25.0 53.9 46.3 39.7 28.8 21.7

Energy underreporters, % 64.0 45.5 46.8 30.3 24.4 25.5

Age, y 39.4 (11) 42.2 (15) 41.1 (13) 38.5 (13) 38.2 (13) 37.7 (13)

BMI, kg/m2 27.2 (4.1) 25.9 (3.3) 26.2 (2.9) 25.9 (4.2) 25.9 (4.3) 26.3 (4.1)

Energy intake, kcal/d 1991 (779) 2014 (532) 2127 (532) 2389 (672) 2440 (664) 2497 (669)

U-osm, mOsm/kg 695 (260) 660 (236) 683 (249) 737 (249) 689 (264) 764 (286)

The categorical variables are expressed as percentages. The continuous variables are expressed as the means (SDs).

LTPA, leisure-time physical activity; BMI, body mass index; U-osm, urine osmolality.

Cardiometabolic Risk Factors
Differences between men and women were observed in the
associations between sugar exposure (both added sugar intake
and U-sugars) and several cardiometabolic risk factors. U-
sugars, but not reported added sugar intake, were positively
associated with systolic BP, diastolic BP and fasting glucose
only in women. However, added sugar intake, but not U-
sugars, was negatively associated with fasting glucose in men.
Additionally, in women, both U-sugars and added sugar intake
associated positively with BMI and waist circumference, whereas
among men, U-sugars were negatively associated with BMI
and waist circumference, and no association was observed
for added sugar intake. Statistically significant interactions
with sex were found for the associations of both U-sugars
and added sugar intake with BMI and waist circumference.
Added sugar intake was negatively associated with HDL
cholesterol in both men and women. No associations were
found with total cholesterol, triglycerides or LDL cholesterol
(Table 4).

The combination of U-sugars and reported added sugars into
a composite measure of sugar exposure using the PC method
revealed statistically significant positive associations with BMI,
waist circumference and systolic BP, and a statistically significant
negative association with HDL cholesterol in women, whereas
none of the cardiometabolic risk factors were associated with
the PC of sugar exposure in men (Table 4). Combining by
Howe’s method (Supplementary Table 1) showed resembling

associations with the same cardiometabolic risk factors as when
using the PC method, but overall yielded lower coefficients and
only the associations with HDL were statistically significant.

Energy underreporting was identified as a statistically
significant effect modifier in the associations between reported
added sugar intake and BMI and waist circumference in women.
These positive associations were attenuated after the removal
of energy underreporters. A statistically significant interaction
between obesity andU-sugars was obtained in the regression with
systolic BP in women: obese individuals exhibited a markedly
stronger positive association than the non-obese individuals
(BMI≥30: β = 3.15, P = 0.03; BMI<30: β = 11.9, P < 0.01;
Supplementary Table 2).

Potential Predictors of Overnight Urinary
Sugars
We used stepwise backward linear regression in an attempt
to identify the major predictors of U-sugars (not adjusted
for U-osm) (Table 5). After taking possible and measured
predictors into account, the main predictors of the various
sugar intake variables were added sugar intake for men
(r = 0.31) and intake of desserts (r = 0.10) and sweets
(r = 0.21) for women. U-osm was found to be a strong
predictor in both women and men (r = 0.41 and r = 0.40,
respectively). Systolic BP and fasting glucose also exhibited
positive associations with U-sugars in women, whereas education
level and waist circumference showed negative associations
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TABLE 2 | Baseline characteristics of women and men in the Malmö Offspring Study across quintiles (Q1–Q5) of U-sugars, (µmol·L−1 )/(mOsm·kg−1 ).

Q1 Q2 Q3 Q4 Q5

U-sugars, mean 0.02 0.05 0.09 0.17 0.43

(range), (µmol·L−1)/(mOsm·kg−1) (0.01–0.04) (0.04–0.07) (0.07–0.12) (0.12–0.26) (0.26–3.85)

Women (n = 412)

n (% women) 75 (49.0) 76 (50.0) 70 (45.8) 96 (62.8) 95 (62.5)

University degree, % 50.7 60.0 44.8 50.0 36.0

LTPA≥3 × 30 min/wk, % 29.3 35.5 31.4 25.0 26.3

Current smokers, % 7.04 8.45 10.5 17.4 13.5

Alcohol consumed >twice/wk, % 29.6 32.4 32.8 39.5 21.4

Energy underreporters, % 32.0 25.0 22.9 25.0 27.4

Age, y 41.1 (14) 42.2 (12) 40.1 (13) 39.8 (13) 36.9 (13)

BMI, kg/m2 24.4 (4.17) 25.2 (4.76) 24.6 (4.18) 24.6 (4.27) 25.5 (5.63)

U-osm, mOsm/kg 540 (236) 568 (229) 636 (250) 592 (239) 653 (244)

Energy intake, kcal/d 1,782 (508) 1,869 (481) 1,840 (443) 1,835 (500) 1,864 (536)

Sucrose, g/d 33.0 (20.3) 38.2 (23.7) 35.7 (19.2) 41.2 (23.9) 45.9 (27.8)

Total sugar, g/d 73.7 (30.4) 83.1 (31.2) 76.2 (30.5) 84.3 (35.2) 90.5 (38.4)

Total sugar density, g/1,000 kcal 41.3 (11.3) 44.6 (12.4) 41.1 (12.8) 45.5 (14.5) 48.3 (14.6)

Added sugar, E% 11.6 (4.98) 12.8 (4.50) 12.1 (4.92) 13.6 (5.85) 15.0 (5.42)

Desserts, g/da 25.3 (10.0, 53.1) 28.1 (10.6, 69.8) 35.4 (21.3, 59.5) 38.1 (11.9, 73.1) 37.5 (12.8, 75.0)

Sweets, g/da 10.0 (0.5, 20.8) 13.4 (3.5, 28.9) 13.8 (3.5, 37.0) 15.5 (4.3, 35.9) 13.8 (0.0, 50.0)

Toppings, servings/da 0.24 (0.0, 0.54) 0.05 (0.0, 0.84) 0.0 (0.0, 0.59) 0.26 (0.0, 0.71) 0.0 (0.0, 0.54)

SSBs, g/da 0.0 (0.0, 50.0) 0.0 (0.0, 75.0) 0.0 (0.0, 125) 25.0 (0.0, 129) 0.0 (0.0, 150)

Juice, g/da 0.0 (0.0, 75.0) 0.0 (0.0, 90.6) 0.0 (0.0 (75.0) 0.0 (0.0, 87.5) 0.0, 0.0, 75.0)

Fruits, g/da 103 (39.0, 170) 95.1 (55.8, 169) 81.1 (47.2, 128) 82.3 (32.6, 152) 75.6 (24.5, 155)

Men (n = 351)

n (% men) 78 (51.0) 76 (50.0) 83 (54.3) 57 (37.3) 57 (37.5)

University degree, % 33.3 50.8 30.0 25.5 22.7

LTPA ≥3 × 30 min/wk, % 32.1 26.3 28.9 28.1 29.8

Current smokers, % 7.04 8.82 18.1 6.38 15.9

Alcohol consumed >twice/wk, % 40.3 48.5 40.9 36.2 27.3

Energy underreporters, % 39.7 36.8 33.7 31.6 21.1

Age, y 39.7 (11.0) 41.5 (12.8) 39.9 (14.5) 39.1 (13.7) 36.9 (14.3)

BMI, kg/m2 27.5 (4.52) 25.9 (3.53) 25.8 (3.61) 26.4 (3.98) 25.5 (4.23)

U-osm, mOsm/kg 740 (264) 698 (262) 692 (245) 689 (260) 781 (230)

Energy intake, kcal/d 2,278 (707) 2,297 (670) 2,370 (624) 2,285 (575) 2,479 (698)

Sucrose, g/d 36.6 (29.3) 47.4 (31.7) 47.0 (25.9) 50.3 (33.7) 66.8 (39.9)

Total sugar, g/d 79.9 (40.6) 93.7 (46.3) 96.7 (41.0) 97.7 (47.4) 113 (49.3)

Total sugar density, g/1,000 kcal 34.2 (12.0) 40.5 (13.6) 40.5 (12.9) 42.0 (16.3) 45.3 (14.5)

Added sugar, E% 10.6 (4.94) 12.5 (5.06) 13.0 (5.06) 13.8 (5.51) 15.4 (6.15)

Desserts, g/da 27.5 (0.0, 57.5) 30.0 (6.3, 63.5) 38.0 (10.0, 72.5) 33.8 (10.0, 72.5) 56.3 (15.0, 94,8)

Sweets, g/da 0.0 (0.0, 20.5) 7.8 (0.0, 20.8) 11.3 (0.0, 26.3) 9.0 (0.0, 35.0) 12.5 (0.0, 49.0)

Toppings, servings/da 0.0 (0.0, 0.39) 0.09 (0.0, 0.67) 0.31 (0.0, 0.89) 0.0 (0.0, 0.80) 0.0 (0.0, 0.76)

SSBs, g/da 0.0 (0.0, 100) 75.0 (0.0, 175) 75.0 (0.0, 200) 125 (0.0, 275) 200 (0.0, 375)

Juice, g/da 0.0 (0.0, 100) 0.0 (0.0, 150) 0.0 (0.0, 100) 0.0 (0.0, 150) 0.0 (0.0, 150)

Fruits, g/da 42.7 (5.7, 84.5) 57.1 (14.5, 103) 42.5 (12.5, 98.0) 31.7 (4.4, 100) 28.0 (2.0, 64.5)

The categorical variables are expressed as percentages. The continuous variables are expressed as the means (SDs) unless stated otherwise.
adata is expressed as median (IQR) due to skewed distribution.

U-sugars, sum of urinary sucrose and fructose; LTPA, leisure-time physical activity; BMI, body mass index; U-osm, urine osmolality, SSB, sugar-sweetened beverage.

with U-sugars in men. When examining osmolality-adjusted
U-sugars instead, excluding U-osm in the multivariate model,
the same predictors remained to a similar extent (data
not shown).

DISCUSSION

We showed statistically significant correlations of r≈0.20–0.30
between reported sugar intakes and overnight urinary sugars
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FIGURE 2 | Alluvial plot demonstrating the agreement based on

crosstabulation of the 6 categories of reported added sugar intake (≤5E,

>5-≤7.5E, >7.5-≤10E, >10-≤15E, >15-≤20E, and >20E%) and quintiles of

U-sugars (Q1–Q5). U-sugars, sum of urinary sucrose and fructose.

after adjusting for age, sex, energy intake, and BMI. The
relatively low coefficients of these correlations and the modest
agreement observed in the alluvial plot may reflect that both
these measures of sugar intake are subject to random variation
and measurement error. However, importantly, such possible
errors are completely unrelated (misreporting and potential
unknown determinants), which therefore indicates a potential
and need for the combination of these two measurements. As
discussed and shown in both data simulations and in real world
examples by Freedman et al. (17, 18), even when the correlation
between reported intakes and the biomarker is not very high,
combination of the twomeasurements is motivated. Hence, these
two measurements could potentially complement each other to

improve the assessment of the associations between added sugar
intake and cardiometabolic risk.

The observed correlation coefficients in this study agree with
the results of a previous study of spot morning urine samples
in children (r = 0.25) (13). This similarity was obtained even
though the collection of urinary and dietary data did not reflect
the exact same days in our study, which was the case in the
previous study. However, the previous study did not reveal large
differences in the comparison of the single 24-h recall from the
day before collection of the morning spot urine samples and
multiple 24-h recalls (13). The correlation coefficients obtained in
our study are also similar to previous findings obtained with the
validated predictive 24-h urinary sugar biomarker in free living
populations; in the Nutrition and Physical Activity Assessment
Study, the correlation with total sugar density from a 4-day food
record was r = 0.21 (8), which is comparable to that found
in our study between total sugar density and U-sugars (r =

0.20). Because we only can compare against self-reported sugar
intake and not true intake, it is not straightforward to compare
these correlations and the observed exact agreement of 32–34%
to warranted limits used in biomarker validation studies [r =

0.5–0.6 and quartile agreement of at least 50% (28, 29)].
In our study, the correlation of reported added sugar intake

with U-fructose was notably weaker than that with U-sucrose
(0.14 and 0.27, respectively), even though only monosaccharides,
in theory, should be absorbed in the jejunum. In addition,
total sugar (g/d) and total sugar density (g/1,000 kcal) were
not as strongly correlated with the urinary sugars as sucrose
intake (g/d) and added sugar intake (E%). Previous studies
have also revealed weaker correlations for intrinsic sugar
(included in total sugars) than for extrinsic sugars (mainly
added sugars) with the urinary sugar biomarker (13, 30). This
effect could be due to the rate of digestion and absorption
of the sugars, which is believed to be lower when the
sugars are naturally occurring in complex foods compared to
simple sugars added to foods (31). Additionally, the relatively
high intakes of sugars from dairy (lactose, included in total
sugars) in the Swedish diet might contribute to some of
these differences.

We observed slightly stronger correlations between dietary
sugars and urinary sugars in men than in women, which is
supported by the findings of previous studies (7, 12). In addition
to biological differences between men and women, another
plausible reason for the sex differences could be that women
generally tend to underreport their dietary intake more than
men (7, 32, 33). However, we do not know the degree of sugar
intake underreporting in our study, and energy misreporting
does not necessarily reflect misreporting of sugar. However, the
percentage of energy underreporters was lower among those
with higher added sugar intake and tended to be lower in
those with higher U-sugars. Furthermore, the high proportion
of zero-reporters of SSB intake among women (57%), might
contribute to why we only can see a statistically significant
correlation between SSB intake and U-sugars in men but not
in women.

No previous studies have evaluated urinary sugar biomarkers
in relation to cardiometabolic risk factors other than
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TABLE 3 | Partial correlations between U-sucrose, U-fructose and U-sugars and different measures and sources of dietary sugars in all, women and men in the Malmö

Offspring Study.

U-sucrose U-fructose U-sugars

n r P-value n r P-value n r P-value

All

Sucrose (g/d) 889 0.27 < 0.01 775 0.13 < 0.01 763 0.24 < 0.01

Total sugar (g/d) 889 0.22 < 0.01 775 0.12 < 0.01 763 0.21 < 0.01

Total sugar density (g/1,000 kcal) 889 0.22 < 0.01 775 0.13 < 0.01 763 0.20 < 0.01

Added sugar (E%) 889 0.27 < 0.01 775 0.14 < 0.01 763 0.24 < 0.01

Desserts (g/d) 889 0.09 < 0.01 775 0.05 0.14 763 0.11 < 0.01

Sweets (g/d) 889 0.20 < 0.01 775 0.07 0.04 763 0.18 < 0.01

Toppings (servings/d) 889 0.03 0.31 775 −0.01 0.78 763 0.02 0.67

SSBs (g/d) 889 0.18 < 0.01 775 0.09 0.01 763 0.16 < 0.01

Juice (g/d) 889 0.04 0.25 775 0.11 < 0.01 763 0.06 0.08

Fruits (g/d) 889 −0.04 0.21 775 −0.04 0.25 763 −0.05 0.15

Women

Sucrose (g/d) 467 0.23 < 0.01 421 0.11 0.03 412 0.19 < 0.01

Total sugar (g/d) 467 0.19 < 0.01 421 0.13 < 0.01 412 0.18 < 0.01

Total sugar density (g/1,000 kcal) 467 0.15 < 0.01 421 0.12 0.02 412 0.16 < 0.01

Added sugar (E%) 467 0.21 < 0.01 421 0.13 < 0.01 412 0.20 < 0.01

Desserts (g/d) 467 0.05 0.25 421 0.005 0.92 412 0.09 0.07

Sweets (g/d) 467 0.21 < 0.01 421 0.12 0.02 412 0.20 < 0.01

Toppings (servings/d) 467 −0.02 0.65 421 −0.05 0.33 412 −0.04 0.48

SSBs (g/d) 467 0.08 0.08 421 0.01 0.79 412 0.05 0.34

Juice (g/d) 467 0.02 0.71 421 0.05 0.27 412 0.03 0.48

Fruits (g/d) 467 −0.05 0.33 421 0.0007 0.99 412 −0.03 0.60

Men

Sucrose (g/d) 422 0.30 < 0.01 354 0.14 < 0.01 351 0.28 < 0.01

Total sugar (g/d) 422 0.25 < 0.01 354 0.11 0.03 351 0.22 < 0.01

Total sugar density (g/1,000 kcal) 422 0.27 < 0.01 354 0.12 0.02 351 0.23 < 0.01

Added sugar (E%) 422 0.31 < 0.01 354 0.13 0.01 351 0.27 < 0.01

Desserts (g/d) 422 0.13 < 0.01 354 0.11 0.05 351 0.12 0.02

Sweets (g/d) 422 0.18 < 0.01 354 0.01 0.83 351 0.16 < 0.01

Toppings (servings/d) 422 0.08 0.12 354 0.02 0.68 351 0.05 0.34

SSBs (g/d) 422 0.26 < 0.01 354 0.16 < 0.01 351 0.25 < 0.01

Juice (g/d) 422 0.05 0.33 354 0.15 < 0.01 351 0.09 0.11

Fruits (g/d) 422 −0.04 0.37 354 −0.12 0.03 351 −0.10 0.05

The partial correlations are adjusted for age, sex, energy intake and BMI (not adjusted for sex in sex-specific analyses). The urinary sugar variables are log10-transformed.

U-sucrose, urinary sucrose; U-fructose, urinary fructose; U-sugars, sum of urinary sucrose and fructose; SSB, Sugar-sweetened beverages; BMI, body mass index.

anthropometric measurements. The examination of spot
urinary sucrose (not morning urine) in relation to obesity
measures in the EPIC Norfolk cohort revealed a positive
association between the risk of being overweight and higher
spot urinary sucrose, whereas a negative association between
risk of being overweight and higher self-reported sugar intake
(12). Hence, it can be speculated that the lack of a positive
association between reported sugar intake and risk of being
overweight might be partly explained by a measurement error
bias in the dietary assessment, which is not an issue with
the objective measurement of sucrose in spot urine samples.
Similar patterns were observed in our study for systolic BP,
diastolic BP and fasting glucose in women; these parameters
were positively associated with U-sugars but not with reported

added sugar intake. However, such a pattern was not observed
for the other cardiometabolic risk factors. In fact, both U-
sugars and added sugar intake were positively associated
with BMI and waist circumference and negatively associated
with HDL cholesterol in women, indicating quite credible
associations, and the combination of the two measurements
strengthened the associations for these cardiometabolic risk
factors. In men, however, U-sugars were negatively associated
with BMI and waist circumference, while no association was
found with added sugar intake. Nevertheless, cross-sectional
examination of BMI and waist circumference in relation to
dietary intake is difficult because large body measurements
might affect one’s dietary awareness more than the “nonvisual”
cardiometabolic risk factors. Hence, the direction of the
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TABLE 4 | Linear regression of U-sugars, added sugar intake and their composite measure (PC) on cardiometabolic risk factors in the Malmö Offspring Study.

All Women Men

n ß 95% CI P-int sex n ß 95% CI n ß 95% CI

BMI (kg/m2)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 763 0.15 −0.45, 0.77 412 1.03 0.14, 1.92 351 −1.00 −1.84, −0.16

Model 2 677 0.08 −0.58, 0.74 <0.01 381 1.05 0.12, 1.97 296 −1.45 −2.40, −0.51

Added sugar (E%)

Model 1 991 0.08 0.02, 0.13 533 0.14 0.06, 0.22 458 0.01 −0.05, 0.08

Model 2 889 0.03 −0.03, 0.09 0.03 493 0.10 0.01, 0.19 396 −0.03 −0.10, 0.05

Composite measure

Model 1 763 0.35 0.15, 0.55 412 0.55 0.28, 0.82 351 −0.04 −0.35, 0.27

Model 2 677 0.26 0.04, 0.48 <0.01 381 0.50 0.22, 0.79 296 −0.24 −0.59, 0.11

Waist circumference (cm)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 763 −0.09 −1.68, 1.50 412 2.00 −0.21, 4.21 351 −2.94 −5.18, −0.70

Model 2 677 −0.20 −1.84, 1.45 <0.01 381 2.02 −0.23, 4.28 296 −3.79 −6.19, −1.39

Added sugar (E%)

Model 1 991 0.24 0.11, 0.37 533 0.34 0.14, 0.53 458 0.13 −0.05, 0.30

Model 2 889 0.15 0.01, 0.29 0.05 493 0.25 0.03, 0.46 396 0.05 −0.14, 0.24

Composite measure

Model 1 763 1.00 0.49, 1.51 412 1.34 0.68, 2.00 351 0.23 −0.60, 1.06

Model 2 677 0.76 0.22, 1.30 <0.01 381 1.19 0.51, 1.88 296 0.19 −1.09, 0.70

Total cholesterol (mmol/L)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 763 −0.08 −0.22, 0.05 412 −0.06 −0.23, 0.11 351 −0.11 −0.33, 0.11

Model 2 677 −0.14 −0.28, 0.01 0.91 381 −0.12 −0.30, 0.06 296 −0.15 −0.40, 0.10

Added sugar (E%)

Model 1 990 −0.006 −0.02, 0.01 532 −0.009 −0.02, 0.01 458 −0.002 −0.02, 0.02

Model 2 888 −0.009 −0.02, 0.004 0.41 492 −0.02 −0.03, 0.0003 396 −0.001 −0.02, 0.02

Composite measure

Model 1 763 −0.02 −0.06, 0.03 412 −0.02 −0.07, 0.04 351 −0.01 −0.09, 0.07

Model 2 677 −0.03 −0.07, 0.02 0.69 381 −0.03 −0.08, 0.03 296 −0.02 −0.11, 0.08

Triglycerides (mmol/L)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 757 0.04 −0.05, 0.13 409 0.02 −0.07, 0.11 348 0.06 −0.11, 0.23

Model 2 671 0.02 −0.08, 0.11 0.96 378 0.007 −0.09, 0.11 293 −0.01 −0.20, 0.18

Added sugar (E%)

Model 1 980 0.007 −0.001, 0.01 527 −0.00001 −0.01, 0.01 453 0.01 −0.001, 0.02

Model 2 878 0.003 −0.01, 0.01 0.49 487 −0.004 −0.01, 0.01 391 0.006 −0.01, 0.02

Composite measure

Model 1 757 0.03 −0.00001, 0.06 409 0.01 −0.02, 0.04 348 0.06 −0.01, 0.12

Model 2 671 0.02 −0.01, 0.05 0.49 378 0.003 −0.03, 0.03 293 0.03 −0.03, 0.10

HDL cholesterol (mmol/L)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 763 −0.06 −0.13, −0.003 412 −0.10 −0.19, −0.01 351 −0.02 −0.10, 0.06

Model 2 677 −0.04 −0.11, 0.02 0.16 381 −0.07 −0.17, 0.02 296 0.01 −0.07, 0.09

Added sugar (E%)

Model 1 990 −0.02 −0.02, −0.01 532 −0.02 −0.03, −0.01 458 −0.01 −0.02, −0.005

Model 2 888 −0.01 −0.02, −0.01 0.04 492 −0.02 −0.02, −0.01 396 −0.009 −0.02, −0.002

Composite measure

Model 1 763 −0.04 −0.06, −0.02 412 −0.05 −0.08, −0.02 351 −0.03 −0.06, −0.01

Model 2 677 −0.03 −0.05, −0.01 0.32 381 −0.03 −0.06, −0.001 296 −0.03 −0.06, 0.002

(Continued)
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TABLE 4 | Continued

All Women Men

n ß 95% CI P-int sex n ß 95% CI n ß 95% CI

LDL cholesterol (mmol/L)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 763 −0.06 −0.18, 0.06 412 −0.02 −0.17, 0.13 351 −0.11 −0.31, 0.09

Model 2 677 −0.13 −0.26, 0.01 0.66 381 −0.09 −0.26, 0.07 296 −0.16 −0.39, 0.07

Added sugar (E%)

Model 1 989 0.006 −0.004, 0.02 531 0.006 −0.01, 0.02 458 0.007 −0.01, 0.02

Model 2 887 0.002 −0.01, 0.01 0.68 491 −0.003 −0.02, 0.01 396 0.008 −0.01, 0.03

Composite measure

Model 1 763 0.01 −0.03, 0.05 412 0.02 −0.03, 0.06 351 0.006 −0.07, 0.08

Model 2 677 −0.006 −0.05, 0.04 0.90 381 −0.006 −0.06, 0.04 296 0.008 −0.07, 0.09

Systolic BP (mmHg)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 761 2.92 1.13, −4.70 410 4.22 1.74, 6.71 351 1.54 −0.98, 4.05

Model 2 675 2.95 0.99, 4.92 0.22 379 4.63 1.96, 7.30 296 1.30 −1.55, 4.16

Added sugar (E%)

Model 1 988 −0.09 −0.24, 0.05 530 −0.02 −0.23, 0.20 458 −0.12 −0.31, 0.07

Model 2 886 −0.09 −0.26, 0.08 0.87 490 −0.02 −0.27, 0.22 396 −0.09 −0.31, 0.13

Composite measure

Model 1 761 0.48 −0.11, 1.06 410 0.89 0.13, 1.66 351 0.13 −0.79, 1.06

Model 2 675 0.46 −0.19, 1.12 0.55 379 1.01 0.17, 1.85 296 −0.09 −1.13, 0.96

Diastolic BP (mmHg)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 761 1.10 −0.13, 2.33 410 1.80 0.16, 3.43 351 0.17 −1.71, 2.04

Model 2 675 1.30 −0.01, 2.62 0.43 379 1.81 0.07, 3.55 296 0.58 −1.48, 2.64

Added sugar (E%)

Model 1 988 0.03 −0.07, 0.13 530 0.008 −0.13, 0.15 458 0.05 −0.09, 0.20

Model 2 886 −0.01 −0.12, 0.10 0.98 490 −0.02 −0.18, 0.14 396 0.003 −0.15, 0.16

Composite measure

Model 1 761 0.54 0.14, 0.94 410 0.49 −0.01, 0.99 351 0.60 −0.08, 1.28

Model 2 675 0.45 0.02, 0.88 0.86 379 0.48 −0.06, 1.02 296 0.41 −0.34, 1.16

Fasting glucose (mmol/L)

U-sugars (µmol·L−1 )/(mOsm·kg−1 )

Model 1 762 0.09 −0.003, 0.19 412 0.14 0.04, 0.25 350 0.01 −0.15, 0.18

Model 2 677 0.10 0.0003, 0.20 0.22 381 0.16 0.05, 0.26 296 0.03 −0.17, 0.22

Added sugar (E%)

Model 1 990 −0.007 −0.01, 0.001 533 −0.003 −0.01, 0.01 457 −0.01 −0.02, −0.00001

Model 2 889 −0.008 −0.02, 0.001 0.04 493 −0.002 −0.01, 0.01 396 −0.01 −0.03, 0.001

Composite measure

Model 1 762 −0.0003 −0.03, 0.03 412 0.009 −0.02, 0.04 350 −0.03 −0.09, 0.03

Model 2 677 −0.0004 −0.03, 0.03 0.11 381 0.01 −0.02, 0.05 296 −0.03 −0.10, 0.04

Total cholesterol, triglycerides, HDL, and LDL cholesterol and fasting glucose are measured in plasma. U-sugars are log10-transformed. The composite measure is the first PC of the

two variables U-sugars and added sugars.

Model 1 is adjusted for age and sex (and energy intake for added sugar and the composite measure).

Model 2 is additionally adjusted for educational level, LTPA, smoking status, alcohol habits, and fiber density. Regressions with total cholesterol, triglycerides, HDL, and LDL cholesterol

are additionally adjusted for usage of lipid lowering drugs and regressions with systolic and diastolic BP are additionally adjusted for usage of antihypertensive drugs.

U-sugars, sum of urinary sucrose and fructose; PC, principal component; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; BP, blood pressure; LTPA,

leisure-time physical activity.

observed associations is uncertain. Furthermore, there may
exist sex differences in the effects on weight gain from a high
sugar diet as it has been observed that the inhibition of lipolysis
by insulin is more profound in women than men (34). Our

observed sex differences in the associations with cardiometabolic
risk factors were unexpected findings outside the scope of
our study objective, which futures studies are encouraged
to elucidate.
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TABLE 5 | Partial correlation coefficients between U-sugars (not adjusted for U-osm) and its potential predictors in women and men of the Malmö Offspring Study.

Women (n = 373) Men (n = 295)

Separate modelsa Multivariate modela, b Separate modelsa Multivariate modela, b

r P r P r P r P

Added sugar (E%) 0.23 < 0.01 0.27 < 0.01 0.31 < 0.01

Desserts (g/d) 0.09 0.08 0.10 0.04 0.14 < 0.01

Sweets (g/d) 0.22 < 0.01 0.21 < 0.01 0.16 < 0.01

Toppings (servings/d) −0.02 0.72 0.05 0.35

SSBs (g/d) 0.07 0.15 0.25 < 0.01

Fruits (g/d) −0.10 0.05 −0.14 0.01

Juice (g/d) 0.02 0.68 0.10 0.07

Education level −0.12 0.03 −0.12 0.05 −0.13 0.02

Smoking status 0.05 0.35 0.06 0.28

Alcohol habits −0.09 0.09 −0.005 0.93

LTPA −0.05 0.34 −0.03 0.56

BMI (kg/m2 ) 0.11 0.02 −0.08 0.12

Waist circumference (cm) 0.09 0.08 −0.08 0.12 −0.18 < 0.01

Systolic BP (mmHg) 0.18 < 0.01 0.17 < 0.01 0.08 0.13

Fasting glucose (mmol/L) 0.13 < 0.01 0.12 0.01 0.01 0.78

U-osm (mOsm/kg) 0.41 < 0.01 0.41 < 0.01 0.39 < 0.01 0.40 < 0.01

e-GFR (ml/min/1.73 m2) −0.05 0.33 −0.08 0.16

aAll partial correlations are adjusted for age and energy intake.
bThe multivariate partial correlation model was determined through stepwise backward linear regression. All covariates were added simultaneously to a linear regression model and the

covariate with the highest P-value was excluded in a stepwise manner from the model until all covariates were deemed significant.

U-sugars are log10-transformed. Fasting glucose is measured in plasma.

U-sugars, sum of urinary sucrose and fructose; U-osm, urine osmolality; SSB, sugar-sweetened beverages; LTPA, leisure-time physical activity; BMI, body mass index; BP, blood

pressure; e-GFR, estimated glomerular filtration rate.

Previous studies have discussed whether the amount of
urinary sucrose and fructose might differ between obese and
lean participants (11, 35) due to the potentially higher gut
permeability of obese individuals (36, 37). Therefore, the
associations between U-sugars and measures of obesity might be
due to other underlying causes in addition to the notion that a
high sugar intake would lead to weight gain. Nevertheless, no
difference in the 24-h urinary levels of either sucrose or fructose
in obese compared with normal weight subjects was observed in a
randomized controlled trial (35). In women, we observed positive
correlations between U-sugar and systolic BP and fasting glucose
and these parameters also fell out as predictors of U-sugars,
but one could discuss the putative causal direction of these
associations. In addition to the theory that a high sugar intake
would lead to an impaired metabolic status, both systolic BP and
fasting glucose are major risk factors for renal insufficiency and
it is possible that this could influence urinary excretion of sugars
(38). However, to our knowledge, no previous study has shown
that the amounts of sucrose and fructose excreted in the urine is
affected by insulin resistance. Because only glucose is regulated
by insulin in the circulation, the same principle as for urinary
excretion of glucose cannot be applied to sucrose and fructose.

The limitations of this study are the lack of longitudinal
data for the cardiometabolic risk factors and that urinary
sugar data is generated from overnight urine samples instead
of 24-h samples. We were therefore also bound to use

other methods than regression calibration for combining the
biomarker with reported intake (10). To date, the overnight
urine biomarker has only been compared to self-reported
sugar intake data, which cannot be used for validating a
nutritional biomarker (39), and no earlier study has ever
reported the correlation between the sugar concentrations in
overnight urine samples and 24-h urine samples. However,
the benefit of using overnight samples over any time spot
samples is that they are less affected by recent past meals (40).
Furthermore, residual confounding can almost be considered
indisputable, and future studies are needed to identify the
determinants of spot and overnight urinary sugars. Therefore,
the following important question remains: Which measurement
is most valid, the self-reported added sugar intake, which is
likely to be biased by misreporting, or the sum of sucrose
and fructose in overnight urine samples, which only reflects
a point measurement and for which determinants other
than sugar intake remain unknown? At this current state of
knowledge, we believe that they both contribute partly to
the truth and may complement each other. However, this
must be validated against true sugar intake or the 24-h
urinary sucrose and fructose biomarker in the future. Future
studies should also investigate potential sex differences to
improve the understanding of the urinary sugar biomarker,
as well as considering the use of repeated overnight or
spot urine samples to obtain improved precision, while
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still facilitating urine collection as compared with 24-h
urine sampling.

In summary, we found statistically significant correlations
at levels of r≈0.20–0.30 and demonstrated the potential for
using the sugar level in overnight urine samples to complement
self-reported dietary data in investigations of cardiometabolic
risk. The combination of U-sugars and added sugar intake
indicated that a higher sugar intake in women is associated with
higher BMI, waist circumference and systolic BP and lower HDL
cholesterol. Considering the potential gains from collecting only
overnight urine instead of 24-h urine in regard to participant
burden, drop-out rates, missing data and selective participation,
the overnight urinary sugar biomarker calls for further validation.
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Established methods for nutritional assessment suffer from a number of important

limitations. Diaries are burdensome to complete, food frequency questionnaires only

capture average food intake, and both suffer from difficulties in self estimation of portion

size and biases resulting from misreporting. Online and app versions of these methods

have been developed, but issues with misreporting and portion size estimation remain.

New methods utilizing passive data capture are required that address reporting bias,

extend timescales for data collection, and transform what is possible for measuring

habitual intakes. Digital and sensing technologies are enabling the development of

innovative and transformative new methods in this area that will provide a better

understanding of eating behavior and associations with health. In this article we describe

how wrist-worn wearables, on-body cameras, and body-mounted biosensors can be

used to capture data about when, what, and how much people eat and drink. We

illustrate how these new techniques can be integrated to provide complete solutions

for the passive, objective assessment of a wide range of traditional dietary factors, as

well as novel measures of eating architecture, within person variation in intakes, and

food/nutrient combinations within meals. We also discuss some of the challenges these

new approaches will bring.

Keywords: objective, assessment, eating, wearable, technology

INTRODUCTION

Non-communicable diseases now account for almost three quarters of global mortality, with
cardiovascular disease (CVD) being the leading cause of death. Diet is responsible for more than
half of CVDmortality worldwide (1). The proportion of diet-related deaths has remained relatively
stable since 1990 suggesting interventions to improve food intakes have had limited success (1). A
major issue in combatting diet-related disease is the way in which food intake and eating behavior
are assessed. Accurate measurement of eating is key to monitoring the status quo and responses to
individual or systems level interventions.

Recent years have seen a shift in nutritional science away from a focus on single nutrients
such as saturated fats, toward a recognition that the complexity in patterns of food intake (e.g.,
combinations of foods and nutrients throughout the day), is more important in determining health
(2–4). In addition to what we eat, we need to extend our understanding of eating architecture—the
structure within which food and drinks are consumed. Factors such as the size, timing, and
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frequency of eating are increasingly recognized as independent
determinants of health over and above what food is being eaten
(5, 6). For example, skipping breakfast is consistently associated
with higher body weight and poorer health outcomes (5, 7).
Breakfast tends to be a small meal eaten in the morning made
up of foods higher in fiber and micronutrients and it’s not clear
which of these features (meal size, timing, or food type), if any,
are causing the benefits to health (8).

Traditional methods of dietary assessment, such as food
diaries, 24-h recalls and food frequency questionnaires (FFQs),
are self-reported and prone to substantial error and bias (9–11),
which may distort diet and health associations (12). Misreporting
is one widely recognized limitation of self-reported dietary
assessment methods, with systematic under-reporting of energy
intake identified in upto 70% of adults of adults in the UK
National Diet and Nutrition Surveys (13, 14). Under-reporting
occurs for a range of reasons including; difficulties estimating
portion sizes for ingredients of complex meals, a desire to present
one’s diet positively (social desirability), and poor memory
(11). People tend to under-report between-meal snacks, possibly
because these snacks tend to be less socially desirable or because
they are more sporadic, easily forgotten events (15).

Multi-day food diaries or 24-h recalls compare best with “gold
standard” dietary biomarkers (16). But diaries or recalls are labor
intensive for researchers to interpret and code, and burdensome
for participants, whichmeans data capture is limited to short time
periods, (typically 3–7 days) and can take years to be available
after collection (17). In addition, accurate memory is essential for
24 h recalls and even with prospective methods like food diaries,
reactivity is a problem, where participants report accurately but
eat less than usual because their eating is being recorded (10).

FFQs, although simpler and quicker to use, only capture
average food intakes. Therefore, exposures increasingly
acknowledged as important like the timing of eating (6), the way
that foods are combined within a meal (18) and within person
variation throughout the day or day to day (17) are unmeasured.
With analyses of 4-day food diaries revealing that as much as
80% of food intake variation is within-person and only 20%
variation between people (19), there are many untapped avenues
for research into novel mechanisms relating diet to disease and
identifying opportunities for interventions.

Online versions of “traditional” dietary assessment methods
have been developed, but errors and biases remain. Validation
studies of a range of online 24-h recall and food diary
tools have shown the same problems as their paper-based
equivalents; misreporting, portion size estimation, accurately
matching foods consumed to foods in composition databases,
and high participant burden (16, 20, 21). With the best methods
currently available, on paper or online, a maximum of 80% of true
intake can be captured and there are systematic differences in the
20% of food intake missing (10, 15).

There is a clear need to enhance dietary assessment methods
to reduce error and bias, increase accuracy, and provide more
detail on food intake over longer periods so that truly causal
associations with health can be identified. A range of reviews
and surveys have provided insights into the use of technology to
advance dietary assessments (22–24). Recent reviews in particular

have highlighted the potential for hybrid approaches that use
multiple sensors and wearable devices to improve assessments
(25–27). We offer an overview of the state of the art in the use
of sensor and wearable technology for dietary assessment that
covers both established and emerging methods, and which has a
particular focus on passive methods—those that require little or
ideally no effort from participants. We illustrate how integrating
data from these methods and other sources could transform
diet-related health research and behaviors.

WHAT WE EAT

The most commonly used methods for objectively identifying
food and portion sizes are image-based. The widespread adoption
of smartphones (28) by most adults in high income countries
means individuals always have a camera to hand as they go about
their daily lives. Many smartphone apps exploring the use of
food photography for dietary assessment have been developed
and validated. Examples include the mobile food record (mFR)
(29) and Remote Food PhotographyMethod (RFPM) (30), where
participants capture images of everything they eat over a defined
time period by taking a photo before and after each meal.
Initial problems with these methods included ensuring all meals
were captured, and that photos captured all foods. There were
also issues in identifying food items, both automatically and
with manual coding systems. These apps were improved by
adding customized reminders [drawing on ecological momentary
assessment methods (31)], real-time monitoring of photos
by researchers to encourage compliance, prompts to improve
photo composition, and requests for supplementary information
alongside photos. For example, users can confirm or correct
tagged foods automatically identified in images (mFR) or add
extra text or voice descriptions (RFPM).

The mFR and RFPM systems have been validated in adults
using doubly labeled water (DLW) to assess the accuracy of
energy intake estimated from several days of food photographs
taken in free-living conditions. The mFR underestimated DLW
measured energy expenditure by 19% (579 kcal/day), while the
RFPM reported a mean underestimate of 3.7% (152 kcal/day),
which is similar, if not slightly better, agreement than seen in self-
reportedmethods (30). However, food photography currently has
considerable researcher and participant burden because of the
requirements for training, real-time monitoring, and provision
of supplementary information. Crucially, participants still have
to actively take photographs of everything they eat, and this may
be affected by issues with memory and social desirability (32).

The introduction of wearable camera systems recording point
of view images addresses some of these issues, by making the
capturing of images of meals largely passive. Among the first
wearable camera systems were those developed for life logging;
recording images of events and activities throughout the day in
order to aid recall for a variety of benefits (33, 34). Feasibility
testing of one such device, SenseCam, which was worn around
the neck and automatically took photographs approximately
every 30 s, indicated it was promising in enhancing the accuracy
of dietary assessment by identifying 41 food items across a
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range of food groups that were not recorded by self-report
methods (35). However, wearing the device around the neck
meant variations in body shape could alter the direction of the
lens, so for some individuals the device did not record images
of meals.

Another passive wearable camera system, e-Button, reduced
the size of the device so that it could be worn attached to the
chest (36). Chest mounting improved the ability of the device
to capture images of meals. However, the system was a bespoke
development, and the use of bespoke solutions produced in
limited numbers brings challenges, including potentially high
unit costs, limited availability of devices, and issues around
ongoing technical support.

Recent studies in other research domains have used mass-
market wearable cameras of a similar shape and size to e-Button.
For example, studies of infant interactions with environments
and parents have used pin-on camera devices that are widely
available online as novelty “spy badges” (37, 38). These devices
have many characteristics that make them ideal for capturing
images of meals; their small form and light weight mean they
can be easily worn on the body, and their low cost facilitates
use at scale. However, these devices typically capture individual
images or video sequences initiated by the user, so they lack the
passive operation of devices like eButton that capture images
automatically throughout the day.

If using camera devices that capture images throughout the
day, the first major challenge is to identify which images contain
food and drink. A camera taking photographs every 10 s and
worn for 12 h a day for a week will capture nearly 30,000 images,
of which perhaps only 5–10% contain eating events (39), so
identifying food-related photographs is a non-trivial first step.
Automatic detection of images containing food using artificial
intelligence shows promise for photos taken in ideal conditions
(achieving an accuracy of 98.7%) (39). However, photos taken
with a wearable camera are uncontrolled and more susceptible to
poor lighting and blurring, and the accuracy of identifying images
that depict food ranges from 95% for eating a meal to 50% for
snacks or drinks (39).

Once meal images have been identified, the next step is
to code food content and portion size. Expert analysis of
photographs by nutritionists is currently the most common
method but requires trained staff, is time-consuming (typically
months to return a dataset), and expensive (>$10 per image).
Alternatively, automated food identification and portion size
assessment, using machine learning (ML) methods, is complex
and computationally intensive. The latest approaches using
convolutional neural networks appear promising, with accuracy
ranging from 0.92 to 0.98 and recall from 0.86 to 0.93 (40)
when classifying images from a food image database (41)
into 16 food groups. However, identification of individual
food items remains limited (42). ML methods require large
databases of annotated food photos to train their algorithms,
which are time-consuming to create. With more than 50,000
foods in supermarkets (21) and product innovation changing
the landscape constantly, considerable challenges remain for
ML approaches.

Humans, on the other hand, have life-long experience
visually analyzing food, and are excellent at food recognition.
Crowdsourcing approaches, in which untrained groups of people
perform a short, simple (usually Internet-based) task for a
small fee, might therefore offer a rapid low-cost alternative to
expensive experts while ML methods develop. Platemate is one
dietary assessment app that employs this approach (43). It is an
end-to-end system, incorporating all stages from photographic
capture of meals through to crowd-based identification of all
foods and their portion sizes and nutrient content. The system
is complex, however, and by involving crowds of up to 20
people per photo it results in an average processing time of
90min and cost of $5 per image. To be feasible for use in
large-scale longitudinal studies or public health interventions,
crowdsourcing of food data from photographs needs to be
fast and low cost. We developed and piloted a novel system,
FoodFinder (44), and found that small (n= 5) untrained crowds
could rapidly classify foods and estimate meal weight in 3min
for £3.35 per photo. Crowds underestimated measured meal
weight by 15% compared with 9% overestimation by an expert.
A crowd’s ability to identify foods correctly was highly specific
(98%—foods not present in the photo were rarely reported)
but less sensitive (64%—certain foods present were missed by
the crowd). With further development crowdsourcing could
be an important stepping-stone to the automated coding of
meal images as ML methods mature. Crowdsourcing could
also play an important role in this development, by creating
annotated databases of meal photographs to facilitate training of
ML algorithms.

In addition to image based methods for assessing meals,
more recent developments in body-worn sensor technology have
aimed to passivelymeasure the consumption of specific nutrients.
Small, tooth mounted sensors in which the properties of reflected
radio frequency (RF) waves are modulated by the presence of
certain chemicals in saliva can detect the consumption of salt and
alcohol in real time (45). Similarly, tattoo like epidermal sensors
that attach to, and stretch and flex with the skin can detect a
variety of metabolites in an individual’s perspiration that relate
directly to their diet (46). For these devices, it is important that
metabolites detected are specific to food intake, and not conflated
with endogenous metabolites produced by the body as a result
of eating.

To date these new oral and epidermal sensors have largely
been tested in laboratory settings and are some way from
becoming widely available. There are clearly compelling uses
for these, for example accurate measurement of salt intake in
patients with high blood pressure and sugar intakes in patients
with diabetes, as well as enhancing food photography methods
by providing non-visual nutritional composition information
(e.g. sugar in tea or salt added in cooking). However, it is
worth noting that these methods alone are not able to identify
the food that contained these nutrients. For some dietary
interests (e.g., changing dietary behaviors), food items need
to be assessed rather than the nutrients they contain, and
in these cases image-based methods for assessing meals will
be required.

Frontiers in Nutrition | www.frontiersin.org 3 July 2020 | Volume 7 | Article 8021

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Skinner et al. Future Directions Objective Assessment Eating

WHEN WE EAT

To advance our understanding of the effects of diet, we require
objective assessments of not just what we eat, but when we
eat too. A variety of approaches for the passive detection of
eating events have been proposed, including; acoustic methods
using ear-mounted microphones to detect chewing (47), throat
microphones to detect swallowing (48) and detection of jaw
movements using different sensor types attached to the head or
neck (49–52).

Although these methods are capable of detecting eating events
passively, they need the individual to wear bespoke sensing
devices attached around the head and neck, and when used on a
daily basis this inevitably introduces a considerable level of device
burden. To address this, one approach is to use sensors that are
embedded in or attached to items that are already part of people’s
daily lives.

One method explored has been the use of sensors that are part
of spectacles. Some approaches to this have used piezoelectric
strain sensors on the arms of glasses that are attached to the
side of the head to measure movements from the temporalis
muscle when chewing (53, 54). High levels of performance have
been reported with this approach, with one study reporting an
area under the curve for chewing detection (in a combination
of laboratory and free-living tests) of 0.97 (55). However, it does
require the sensors be manually attached to the head every time
the glasses are worn. Others have used electromyography, in
which the electrical activity associated with temporalis muscle
contraction is detected using sensors imbedded in the arms of 3D
printed eyeglass frames (56). This also gives good performance,
with recall and precision for chewing bout detection above 77%
in free-living conditions. This approach does not need manual
attachment of sensors, but it does require individually tailored
glass frames to ensure sufficiently good contact of the built-in
sensors with the head. More broadly, not everyone wears glasses,
so there is also the issue of how these approaches would work for
those who do not.

Another method is to use wrist-worn devices equipped with
motion sensors to automatically detect eating events. Data from
gyroscope and accelerometer motion sensors can be used to
identify the signature hand gestures of certain modes of eating
(57, 58). Early adopters of this approach strapped smartphones
to the wrist (59). This functionality is now more conveniently
available in the form of off-the-shelf activity monitors and
smartwatches. These devices can be highly effective in detecting
eating events, with recent reports of 90.1% precision and 88.7%
recall (60). However, building recognition models that can
generalize well in free-living conditions where unstructured
eating activities occur alongside confounding activities can be
challenging, and can result in reduced precision in detection (61).

Recent reviews concluded that smartwatches are of particular
interest for eating as they represent an unobtrusive solution for
both the tracking of eating behavior (62), and the delivery of
targeted, context-sensitive recommendations promoting positive
health outcomes (63), such as Just-in-Time interventions (64).

The latest ML techniques are enabling researchers to go
beyond detection of eating events using wrist-worn wearables,

to also measure within meal eating parameters such as eating
speed. In a recent example, convolutional neural networks
and long short-term memory ML methods were applied to
data from the motion sensors in off-the-shelf smartwatches
worn by 12 participants eating a variety of meal types in a
restaurant (65). Sequences of bites were first detected, which
were then classified into food intake cycles (starting from
picking up food from the plate until wrist moves away from
the mouth).

The ability to passively detect meal onset is an essential
aspect of other healthcare systems too. One example is closed-
loop artificial pancreas systems for the management of blood
glucose in patients with type 1 diabetes. Such systems rely on
detecting a rise in interstitial fluid glucose concentrations (a
proxy for blood glucose) using continuous glucose monitors
(CGM). Meal detection can be challenging as interstitial glucose
rises well after a meal has begun, limiting the current use of
CGM in real-time monitoring systems. However, meal detection
models using CGM have developed from being purely computer-
based simulations to now showing promise when fitted to real-
world data. The mean delay in detecting the start of a meal
has reduced from 45 to 25min (66). CGM could therefore be
another method for the passive, objective detection of meal
timings in future, although further research, particularly in
populations without diabetes, is required. Encouragingly pilot
work in the US indicates that wearing a CGM for up to a
week is as acceptable as wearing accelerometer-based sensors
for 7 days (67). Furthermore, our own pilot work in the
UK ALSPAC-G2 cohort demonstrated that using the latest
CGM devices, which no longer require finger prick tests for
calibration, improves uptake of 6 days of monitoring (68).
This reflects a growing demand for non-invasive methods
for CGM.

Photoplethysmography (PPG) is a technique that detects
changes in levels of reflected light as a result of variation in
properties of venous blood, and which is routinely included
in off-the-shelf smartwatches and activity monitors for the
measurement of heart rate. This same technique can also be
used to non-invasively measure glucose levels, and the latest
enhancements give measurement performance approaching that
of reference blood glucose measurement devices (69). This
opens the possibility that non-invasive CGM using commercially
available smartwatches and activity monitors may be widely
available in the near future, and theoretically devices of this kind
could detect glucose patterns associated with meal start and end
times. Once again though, the latency between start of meal
and detection would need to be determined, and meal detection
algorithms evaluated.

INTEGRATING METHODS

The methods outlined above individually provide objective
measurements of when, what and how much someone is eating.
Integrating these methods offers the possibility of objectively
capturing more complete and detailed pictures of dietary intake,
while minimizing participant burden.
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FIGURE 1 | Integrating methods for objective assessment of diet using digital and sensing technologies.

One previous proposal for an integrated system for objective
dietary assessment involves combining smartwatch motion
sensors with a camera built into the smartwatch (70). The motion
sensors detect the start and stop of an eating event, and this
triggers the camera to take an image of the meal for subsequent
offline analysis. While this is a compact solution minimizing
device burden, it does need the individual to direct the watch
camera toward the meal to capture an image. More importantly,
trends in smartwatch design have changed, and smartwatches
typically no longer come equipped with built in cameras.

A more recent proposal again had a wrist-worn activity
monitor to detect eating events, but this time combined with on-
body sensors for detecting chewing and swallowing to capture
more detailed information on bite count and bite rate within
a meal (22). An interesting aspect of this system was the use
of the individual’s smartphone as the basis of a Wireless Body
Area Network (WBAN) (71) to link up the activity monitor
and different sensors. This enabled local communication between
sensors via the smartphone, without the need to connect the
sensors to a static wireless network or a cellular data connection.

In Figure 1 we propose a new architecture for an integrated
system for objective assessment of diet. We draw on some
elements of these previous proposals, but also incorporate new

and future developments in wearable sensing technology for

objective dietary assessment. The operation of the system can be
conceptualized as follows:

1. The individual wears a smartwatch containing accelerometer
and gyroscope motion sensors. Classification algorithms
applied to the motion data in real time on the watch can detect
the beginning and end of an eating event, the mode of eating,
and provide “within meal” metrics such as speed of eating. In
the future the smartwatch may also have PPG-based CGM,
which provides additional data on meal timing and size.

2. The individual is also wearing a chest-mounted camera
capturing images from their viewpoint. To keep battery
consumption and data storage requirements low (minimizing
device size and maximizing time between charges), the camera
takes still images at short intervals (e.g., every 10 s) and stores
them for a brief period (e.g., for 5min). Images are then
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deleted unless the smartwatch detects the start of an eating
event, in which case images before, during and after eating
are stored as a complete visual record of the meal. Saving
multiple photos maximizes the chances of capturing high
quality images unaffected by temporary issues with lighting,
camera angle, blur, etc.

3. On-body sensors including oral tooth-mounted sensors and
epidermal tattoos could be added to provide more detailed
nutritional assessments for monitoring of specific nutrients or
calibrate estimates from other tools.

4. The individual’s smartphone forms the basis of a WBAN
around their body. Most devices (e.g., activity monitors,
cameras) will communicate with the smartphone using a
Bluetooth connection. Oral and epidermal sensing devices
that do not currently have power supplies or data storage
or transfer capabilities could use Near Field Communication
(NFC) as a power source and to transfer data from the sensor
to the smartphone.

5. Segmentation, food item recognition, and volumetric
estimates of portion sizes are initially computed locally on the
smartphone using data from sensors and images, and these
may be used to support Just-in-Time type eating behavior
change interventions.

6. The smartphone also provides a secure connection to a
cloud-based central dietary profile for the individual. Data
captured by sensors is processed on the smartphone and
the processed data are regularly uploaded to the central
profile, perhaps when the individual is at home and
their smartphone connects to their home wireless network.
Processed data can then, at the individual’s discretion, be
linked to other sources of their own health data, including
omics, clinical, and imaging data. Raw data from sensors
are not uploaded to reduce privacy concerns and data
transfer requirements.

7. Depending on the needs of the particular scenario, and
balancing speed, accuracy, and cost, data from the central
profile may be sent for further analysis. For example, images
of meals may be sent to a crowd-based application (44),
or a dietician to refine food item identification and portion
sizes (72).

The resultant cloud-based central dietary profile represents a
detailed view of a person’s food intake and eating behavior that
will provide the following benefits:

A) Summaries of the individual’s data for their personal use.
B) Dietary data that is stored and made available for future

research on eating [for example prospective cohort studies like
Children of the 90s (73)].

C) Information that can be automatically analyzed within
computer-based personalized nutrition behavior change
interventions involving monitoring progress in achieving
changes in diet-related goals [e.g., see (74)].

D) Information that feeds into health professional consultations
[e.g., enabling a dietician to get a better picture of an
individual’s overall intake and eating behavior so they can
spend more time on behavior change techniques rather than

having to assess diet as part of the appointment—for example
see (75)].

DISCUSSION

In this article we briefly looked at how emerging digital and
sensing technologies are enabling new objective assessments
of dietary intake. These new methods have the potential to
address many of the issues associated with current paper and
online dietary assessment tools around bias, errors, misreporting,
and high levels of participant or researcher burden. They
do so by automating the detection and measurement of
eating events, food items and portion sizes, and by providing
detailed information on specific nutrients and within meal
eating behaviors.

Image-based methods remain the most popular approach
for objective assessment of food items and portion size. The
use of on-body cameras to passively capture images of meals
for subsequent processing has a number of advantages. As the
individual does not have to manually initiate the capture, this
helps mitigate issues such as the stigma of photographing their
meals. The reliance on an individual’s memory or willingness
to self-report is also removed, therefore burden and bias are
reduced. However, having to wear the camera device does
represent a different burden, and there are issues around privacy,
for example concerns from others that they may be inadvertently
recorded. For nutritional assessment, image capture could be
limited to eating occasions, so while concerns remain, they would
hopefully be reduced.

In terms of camera devices, future developments should
combine the passive operation and ease of use of a system like
e-Button (36), with the low weight, size and cost, and broad
availability of commercially available products. If such a device
was of utility to multiple research domains (following the model
of e-Button), and particularly if it had compelling mass market
health or dietary use cases, demand could be sufficient for
commercial production. Integration of such a device into other
items already accepted for daily use (clothing, jewelery, etc.)
could possibly increase acceptability further.

The emergence of sensors that attach directly to teeth or to
the skin holds the promise of real time measurement of specific
nutrients. These devices are at the proof of concept stage, and
there are important considerations to address around durability,
and how to power and read data from these devices. However,
many of the mobile and wearable devices we currently use have
capabilities that could possibly be adapted to work with these
new sensors. For example, the near field communication wireless
technology now included in most smartphones to make wireless
card payments uses high frequency radio signals that could
potentially be adapted to power and communicate with oral and
dermal sensors (76).

In terms of detecting when people are eating, smart glasses
could potentially detect the movement of, or electrical signals
from the muscles used to chew, although there are the issues
of sensor attachment and positioning, and how this approach
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would work for people who do not normally wear glasses. Wrist-
worn wearables such as smartwatches have the ability to detect
the signature hand movements unique to eating. Consumer
demand for these devices continues to grow, with worldwide
shipments predicted to exceed 300 million by 2023 (from under
30 million in 2014) (77). Smartwatches are worn by individuals
as part of their daily routine so they do not represent additional
device burden. In addition, such devices have the capability
to run 3rd party applications providing the opportunity for
delivering just-in-time behavior change interventions based on
the eating behaviors detected. However, battery life continues to
be an issue, with smartwatches typically needing to be charged
daily. Continuous monitoring of eating behaviors will exacerbate
this. Also, the detection of eating behaviors from motion data
often use computationally intense machine learning algorithms
(e.g., convolutional neural networks) that cannot currently be
used on wearable devices to detect eating in real time. This
may change in the future as the processing power and battery
life of smartwatches and other wearables improve and more
sophisticated classification algorithms can run on these devices.

In the current review, we have proposed an architecture for an
integrated system for the objective assessment of diet. Integrating
methods will enable researchers to build a more detailed and
complete picture of an individual’s diet, and to link this with a
wide range of related health data (e.g., omics, clinical, imaging).
Storing this information in a central location will enable
healthcare professionals, researchers and other collaborators the
individual wishes to interact with to have controlled access to
their detailed dietary data. However, this raises a number of
important questions. Should cloud-based storage be used and
where this would be hosted? What format to use for the stored
data to maximize utility across applications? What model should
be used for making the data available, given the rise of new
models in which individuals can monetise their own data? (78).

Another key issue for new methods will be that they need
to be financially sustainable over time. For integrated systems,
architectures are required that minimize the time and cost of
maintaining operation of the system when one component (e.g.,
a sensor) changes. For example, systems arranged with central
hubs to which each sensor/device connects and communicates

reduce the impact of a change in one component compared
with fully connected architectures in which each sensor/device
communicates to many others.

For all of these new techniques for passive measurement of
dietary intake, it will be important to understand if they introduce
unexpected measurement errors and biases. New methods for
estimating multiple sources of error in data captured using the
latest technologies could help in this respect. These are able, for
example, to separate out the effects of factors such as coverage
(access to the technology), non-response and measurement
error (79).

Finally, whether these methods, individually or integrated,
become widely adopted will rest largely with the individuals that
use them. Extensive feasibility testing will be required to explore
which of these new methods people are happy to use, and which
ones they are not.

AUTHOR CONTRIBUTIONS

AS, ZT, CS, and LJ contributed to conceptualizing and writing
the article.

FUNDING

AS was funded by a UKRI Innovation Fellowship from Health
Data Research UK (MR/S003894/1). LJ, AS, and CS were
funded by MR/T018984/1. LJ and AS were affiliated with,
and CS was a member of a UK Medical Research Council
Unit, supported by the University of Bristol and the Medical
Research Council (MC_UU_00011/6). ZT was funded by the
Jean Golding Institute at the University of Bristol for research
unrelated to this review. Some of the work presented here was
funded by a catalyst award from the Elizabeth Blackwell Institute
for Health Research a Wellcome Trust Institutional Strategic
Support fund.

ACKNOWLEDGMENTS

The authors would like to acknowledge Ben Kirkpatrick for
the illustration.

REFERENCES

1. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries,

1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

Lancet. (2019) 393:1958–72. doi: 10.1016/S0140-6736(19)30041-8

2. Mozaffarian D, Rosenberg I, Uauy R. History of modern nutrition science—

implications for current research, dietary guidelines, and food policy. BMJ.

(2018) 361:k2392. doi: 10.1136/bmj.k2392

3. Leech RM, Worsley A, Timperio A, McNaughton SA. Understanding meal

patterns: definitions, methodology and impact on nutrient intake and diet

quality. Nutr Res Rev. (2015) 28:1–21. doi: 10.1017/S0954422414000262

4. Willett WC. Nature of variation in diet. In: Willett WC, editor. Nutritional

Epidemiology. 3rd ed. Oxford: Oxford University Press (2013). p. 34−48.

5. Smith KJ, Gall SL, McNaughton SA, Blizzard L, Dwyer T, Venn AJ. Skipping

breakfast: longitudinal associations with cardiometabolic risk factors in the

Childhood Determinants of Adult Health Study. Am J Clin Nutr. (2010)

92:1316–25. doi: 10.3945/ajcn.2010.30101

6. Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, et al.

Meal frequency and timing in health and disease. Proc Natl Acad Sci USA.

(2014) 111:16647–53. doi: 10.1073/pnas.1413965111

7. Monzani, A, Ricotti R, Caputo M, Solito A, Archero F, Bellone S,

et al. A systematic review of the association of skipping breakfast with

weight and cardiometabolic risk factors in children and adolescents. What

should we better investigate in the future? Nutrients. (2019) 11:387.

doi: 10.3390/nu11020387

8. Betts JA, Chowdhury EA, Gonzalez JT, Richardson JD, Tsintzas K, Thompson

D. Is breakfast the most important meal of the day? Proc Nutr Soc. (2016)

75:464–74. doi: 10.1017/S0029665116000318

9. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D,

Sørensen TIA, et al. Energy balance measurement: when something is not

better than nothing. Int J Obes. (2015) 39:1109–13. doi: 10.1038/ijo.20

14.199

10. Stubbs RJ, O’Reilly LM, Whybrow S, Fuller Z, Johnstone AM, Livingstone

MBE, et al. Measuring the difference between actual and reported food intakes

Frontiers in Nutrition | www.frontiersin.org 7 July 2020 | Volume 7 | Article 8025

https://doi.org/10.1016/S0140-6736(19)30041-8
https://doi.org/10.1136/bmj.k2392
https://doi.org/10.1017/S0954422414000262
https://doi.org/10.3945/ajcn.2010.30101
https://doi.org/10.1073/pnas.1413965111
https://doi.org/10.3390/nu11020387
https://doi.org/10.1017/S0029665116000318
https://doi.org/10.1038/ijo.2014.199
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Skinner et al. Future Directions Objective Assessment Eating

in the context of energy balance under laboratory conditions. Br J Nutr. (2014)

111:2032–43. doi: 10.1017/S0007114514000154

11. Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML,

et al. Addressing current criticism regarding the value of self-report dietary

data. J Nutr. (2015) 145:2639–45. doi: 10.3945/jn.115.219634

12. Reedy J, Krebs-Smith SM, Miller PE, Liese AD, Kahle LL, Park Y, et al. Higher

diet quality is associated with decreased risk of all-cause, cardiovascular

disease, and cancer mortality among older adults. J Nutr. (2014) 144:881–9.

doi: 10.3945/jn.113.189407

13. Johnson L, Toumpakari Z, Papadaki A. Social gradients and physical activity

trends in an obesogenic dietary pattern: cross-sectional analysis of the UK

National Diet and Nutrition Survey 2008–2014. Nutrients. (2018) 10:388.

doi: 10.3390/nu10040388

14. Rennie K, Coward A, Jebb S. Estimating under-reporting of energy intake in

dietary surveys using an individualised method. Br J Nutr. (2007) 97:1169–76.

doi: 10.1017/S0007114507433086

15. Poppitt SD, Swann D, Black AE, Prentice AM. Assessment of selective

under-reporting of food intake by both obese and non-obese women in

a metabolic facility. Int J Obes Relat Metab Disord. (1998) 22:303–11.

doi: 10.1038/sj.ijo.0800584

16. Park Y, Dodd KW, Kipnis V, Thompson FE, Potischman N, Schoeller

DA, et al. Comparison of self-reported dietary intakes from the automated

self-administered 24-h recall, 4-d food records, and food-frequency

questionnaires against recovery biomarkers. Am J Clin Nutr. (2018) 107:80–

93. doi: 10.1093/ajcn/nqx002

17. Thompson FE, Subar AF. Dietary assessment methodology. In: Coulston AM,

Boushey CJ, Ferruzzi G, editors. Nutrition in the Prevention and Treatment of

Disease. 3rd ed. Cambridge, CA: Academic Press; Elsevier (2013). p. 5–48.

18. Woolhead C, Gibney M, Walsh M, Brennan L, Gibney E. A generic coding

approach for the examination of meal patterns. Am J Clin Nutr. (2015)

102:316–23. doi: 10.3945/ajcn.114.106112

19. Toumpakari Z, Tilling K, Haase AM, Johnson L. High-risk environments for

eating foods surplus to requirements: a multilevel analysis of adolescents’ non-

core food intake in the National Diet and Nutrition Survey (NDNS). Publ

Health Nutr. (2019) 22:74–84. doi: 10.1017/S1368980018002860

20. GreenwoodDC, Hardie LJ, Frost GS, AlwanNA, Bradbury KE, CarterM, et al.

Validation of the Oxford WebQ online 24-hour dietary questionnaire using

biomarkers. Am J Epidemiol. (2019) 188:1858–67. doi: 10.1093/aje/kwz165

21. Wark PA, Hardie LJ, Frost GS, Alwan NA, Carter M, Elliott P, et al. Validity of

an online 24-h recall tool (myfood24) for dietary assessment in population

studies: comparison with biomarkers and standard interviews. BMC Med.

(2018) 16:136. doi: 10.1186/s12916-018-1113-8

22. Schoeller D, Westerp-Plantenga M. Advances in the Assessment of Dietary

Intake. Boca Raton, FL: CRC Press (2017).

23. Selamat N, Ali S. Automatic Food Intake Monitoring Based on Chewing

Activity: A Survey. IEEE Access (2020). p. 1.

24. Magrini M, Minto C, Lazzarini F, Martinato M, Gregori D. Wearable devices

for caloric intake assessment: state of art and future developments. Open Nurs

J. (2017) 11:232–40. doi: 10.2174/1874434601711010232

25. Bell B, Alam R, Alshurafa N, Thomaz E, Mondol A, de la Haye K,

et al. Automatic, wearable-based, in-field eating detection approaches

for public health research: a scoping review. Dig Med. (2020) 3:38.

doi: 10.1038/s41746-020-0246-2

26. Hassannejad H, Matrella G, Ciampolini P, De Munari I, Mordonini M,

Cagnoni, S. Automatic diet monitoring: a review of computer vision

and wearable sensor-based methods. Int J Food Sci Nutr. (2017) 68:1–15.

doi: 10.1080/09637486.2017.1283683

27. Vu T, Lin F, Alshurafa N, Xu W. Wearable food intake monitoring

technologies: a comprehensive review. Computers. (2017) 6:4.

doi: 10.3390/computers6010004

28. Statista. Smartphone Ownership Penetration in the United Kingdom (UK) in

2012-2019, by Age. Available online at: https://www.statista.com/statistics/

271851/smartphone-owners-in-the-united-kingdom-uk-by-age/ (accessed

January 6, 2020).

29. Boushey C, Spoden M, Delp E, Zhu F, Bosch M, Ahmad Z, et al. Reported

energy intake accuracy compared to doubly labeled water and usability of

the mobile food record among community dwelling adults. Nutrients. (2017)

9:312. doi: 10.3390/nu9030312

30. Martin C, Correa J, Han H, Allen H, Rood J, Champagne C, et al.

Validity of the Remote Food Photography Method (RFPM) for estimating

energy and nutrient intake in near real-time. Obesity. (2011) 20:891–9.

doi: 10.1038/oby.2011.344

31. Maugeri A, Barchitta M. A systematic review of ecological momentary

assessment of diet: implications and perspectives for nutritional epidemiology.

Nutrients. (2109) 11:2696. doi: 10.3390/nu11112696

32. McClung H, Ptomey L, Shook R, Aggarwal A, Gorczyca A, Sazonov E, et al.

Dietary intake and physical activity assessment: current tools, techniques, and

technologies for use in adult populations. Am J Prev Med. (2018) 55:e93–e104.

doi: 10.1016/j.amepre.2018.06.011

33. Gemmell J, Williams L, Wood K, Lueder R, Brown G. editors. Passive capture

and ensuing issues for a personal lifetime store. In: Proceedings of the 1st ACM

Workshop on Continuous Archival and Retrieval of Personal Experiences. New

York, NY: Microsoft (2004).

34. Hodges S, Berry E, Wood K. SenseCam: a wearable camera which stimulates

and rehabilitates autobiographical memory. Memory. (2011) 19:685–96.

doi: 10.1080/09658211.2011.605591

35. Gemming L, Doherty A, Kelly P, Utter J, Mhurchu, C. Feasibility of a

SenseCam-assisted 24-h recall to reduce under-reporting of energy intake. Eur

J Clin Nutr. (2013) 67:1095–9. doi: 10.1038/ejcn.2013.156

36. Sun M, Burke L, Mao Z, Chen Y, Chen H, Bai Y, et al. eButton: a

wearable computer for health monitoring and personal assistance. In:

Proceedings/Design Automation Conference. San Francisco, CA (2014).

37. Sugden N, Mohamed-Ali M, Moulson M. I spy with my little eye: typical,

daily exposure to faces documented from a first-person infant perspective. Dev

Psychobiol. (2014) 56:249–61. doi: 10.1002/dev.21183

38. Lee R, Skinner A, Bornstein MH, Radford A, Campbell A, Graham

K, et al. Through babies’ eyes: Practical and theoretical considerations

of using wearable technology to measure parent–infant behaviour from

the mothers’ and infants’ viewpoints. Infant Behav Dev. (2017) 47:62–71.

doi: 10.1016/j.infbeh.2017.02.006

39. Jia W, Li Y, Qu R, Baranowski T, Burke L, Zhang H, et al. Automatic food

detection in egocentric images using artificial intelligence technology.

Public Health Nutr. (2018) 22:1–12. doi: 10.1017/S13689800180

00538

40. Caldeira M, Martins P, Costa RL, Furtado P. Image classification benchmark

(ICB). Expert Syst Appl. (2020) 142:112998. doi: 10.1016/j.eswa.2019.

112998

41. Kawano Y, Yanai K. FoodCam: a real-time food recognition system on a

smartphone.Multimedia Tools Appl. (2014) 74:5263–87. doi: 10.1007/s11042-

014-2000-8

42. Ahmad Z, Bosch M, Khanna N, Kerr D, Boushey C, Zhu F, et al. A mobile

food record for integrated dietary assessment. MADiMa. (2016) 16:53–62.

doi: 10.1145/2986035.2986038

43. Noronha J, Hysen E, Zhang H, Gajos K. PlateMate: crowdsourcing nutrition

analysis from food photographs. In: UIST’11 - Proceedings of the 24th Annual

ACM Symposium on User Interface Software and Technology. Santa Barbara,

CA (2011). p. 1–12.

44. Johnson L, England C, Laskowski P, Woznowski PR, Birch L, Shield J,

et al. FoodFinder: developing a rapid low-cost crowdsourcing approach for

obtaining data on meal size from meal photos. Proc Nutr Soc. (2016) 75.

doi: 10.1017/S0029665116002342

45. Tseng P, Napier B, Garbarini L, Kaplan D, Omenetto F. Functional, RF-trilayer

sensors for tooth-mounted, wireless monitoring of the oral cavity and food

consumption. Adv Mater. (2018) 30:1703257. doi: 10.1002/adma.201703257

46. Piro B, Mattana G, Vincent N. Recent advances in skin chemical sensors.

Sensors. (2019) 19:4376. doi: 10.3390/s19204376

47. Amft O. A wearable earpad sensor for chewing monitoring. In: Proceedings

of IEEE Sensors Conference 2010. Piscataway, NJ: Institute of Electrical and

Electronics Engineers. (2010). p. 222–7. doi: 10.1109/ICSENS.2010.5690449

48. Sazonov E, Schuckers S, Lopez-Meyer P, Makeyev O, Sazonova N, Melanson

E, et al. Non-invasive monitoring of chewing and swallowing for objective

quantification of ingestive behavior. Physiol Measure. (2008) 29:525–41.

doi: 10.1088/0967-3334/29/5/001

49. Sazonov E, Fontana J. A sensor system for automatic detection of food intake

through non-invasive monitoring of chewing. IEEE Sens. (2012) 12:1340–8.

doi: 10.1109/JSEN.2011.2172411

Frontiers in Nutrition | www.frontiersin.org 8 July 2020 | Volume 7 | Article 8026

https://doi.org/10.1017/S0007114514000154
https://doi.org/10.3945/jn.115.219634
https://doi.org/10.3945/jn.113.189407
https://doi.org/10.3390/nu10040388
https://doi.org/10.1017/S0007114507433086
https://doi.org/10.1038/sj.ijo.0800584
https://doi.org/10.1093/ajcn/nqx002
https://doi.org/10.3945/ajcn.114.106112
https://doi.org/10.1017/S1368980018002860
https://doi.org/10.1093/aje/kwz165
https://doi.org/10.1186/s12916-018-1113-8
https://doi.org/10.2174/1874434601711010232
https://doi.org/10.1038/s41746-020-0246-2
https://doi.org/10.1080/09637486.2017.1283683
https://doi.org/10.3390/computers6010004
https://www.statista.com/statistics/271851/smartphone-owners-in-the-united-kingdom-uk-by-age/
https://www.statista.com/statistics/271851/smartphone-owners-in-the-united-kingdom-uk-by-age/
https://doi.org/10.3390/nu9030312
https://doi.org/10.1038/oby.2011.344
https://doi.org/10.3390/nu11112696
https://doi.org/10.1016/j.amepre.2018.06.011
https://doi.org/10.1080/09658211.2011.605591
https://doi.org/10.1038/ejcn.2013.156
https://doi.org/10.1002/dev.21183
https://doi.org/10.1016/j.infbeh.2017.02.006
https://doi.org/10.1017/S1368980018000538
https://doi.org/10.1016/j.eswa.2019.112998
https://doi.org/10.1145/2986035.2986038
https://doi.org/10.1017/S0029665116002342
https://doi.org/10.1002/adma.201703257
https://doi.org/10.3390/s19204376
https://doi.org/10.1109/ICSENS.2010.5690449
https://doi.org/10.1088/0967-3334/29/5/001
https://doi.org/10.1109/JSEN.2011.2172411
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Skinner et al. Future Directions Objective Assessment Eating

50. Farooq M, Fontana J, Sazonov E. A novel approach for food intake

detection using electroglottography. Physiol Measure. (2014) 35:739–51.

doi: 10.1088/0967-3334/35/5/739

51. Kohyama K, Nakayama Y, Yamaguchi I, Yamaguchi M, Hayakawa F, Sasaki T.

Mastication efforts on block and finely cut foods studied by electromyography.

Food Qual Prefer. (2007) 18:313–20. doi: 10.1016/j.foodqual.2006.

02.006

52. Kalantarian H, Alshurafa N, Sarrafzadeh M. A wearable nutrition monitoring

system. In: Proceedings - 11th International Conference on Wearable and

Implantable Body Sensor Networks. Zurich (2014). p. 75–80.

53. Farooq M, Sazonov E. Detection of chewing from piezoelectric film sensor

signals using ensemble classifiers. In: Annual International Conference of

the IEEE Engineering in Medicine and Biology Society. Florida, FL (2016).

p. 4929–32.

54. Farooq M, Sazonov E. A novel wearable device for food intake and

physical activity recognition. Sensors. (2016) 16:1067. doi: 10.3390/s160

71067

55. Farooq M, Sazonov E. Segmentation and characterization of chewing

bouts by monitoring temporalis muscle using smart glasses with

piezoelectric sensor. IEEE J Biomed Health Inform. (2016) 21:1495–503.

doi: 10.1109/JBHI.2016.2640142

56. Zhang R, Amft O. Monitoring chewing and eating in free-living using

smart eyeglasses. IEEE J Biomed Health Inform. (2017) 22:23–32.

doi: 10.1109/JBHI.2017.2698523

57. Dong Y, Hoover A, Scisco J, Muth E. A newmethod for measuringmeal intake

in humans via automated wrist motion tracking. Appl Psychophysiol. (2012)

37:205–15. doi: 10.1007/s10484-012-9194-1

58. Thomaz E, Essa I, Abowd G. A practical approach for recognizing eating

moments with wrist-mounted inertial sensing. In: ACM International

Conference on Ubiquitous Computing. Osaka (2015). p. 1029–40.

59. Dong Y, Scisco J, Wilson M, Muth E, Hoover A. Detecting periods of eating

during free-living by tracking wrist motion. IEEE J Biomed Health Inform.

(2013) 18:1253–60. doi: 10.1109/JBHI.2013.2282471

60. Kyritsis K, Diou C, Delopoulos A. food intake detection from inertial sensors

using LSTM networks. In: New Trends in Image Analysis and Processing.

(2017). p. 411–8.

61. Zhang S, Alharbi R, Nicholson M, Alshurafa N. When generalized eating

detection machine learning models fail in the field. In: Proceedings of the 2017

ACM International Joint Conference on Pervasive and Ubiquitous Computing

and Wearable Computers.Maui, HI (2017). p. 613–22.

62. Heydarian H, Adam M, Burrows T, Collins C, Rollo M. Assessing eating

behaviour using upper limb mounted motion sensors: a systematic review.

Nutrients. (2019) 11:1168. doi: 10.3390/nu11051168

63. Noorbergen T, Adam M, Attia J, Cornforth D, Minichiello M. Exploring

the design of mHealth systems for health behavior change using

mobile biosensors. Commun Assoc Inform Syst. (2019) 44:944–81.

doi: 10.17705/1CAIS.04444

64. Schembre S, Liao Y, Robertson M, Dunton G, Kerr J, Haffey M, et al.

Just-in-time feedback in diet and physical activity interventions: systematic

review and practical design framework. J Med Internet Res. (2018) 20:e106.

doi: 10.2196/jmir.8701

65. Kyritsis K, Diou C, Delopoulos A. Modeling wrist micromovements

to measure in-meal eating behavior from inertial sensor data. IEEE

J Biomed Health Inform. (2019) 23:2325–34. doi: 10.1109/JBHI.2019.

2892011

66. Zheng M, Ni B, Kleinberg S. Automated meal detection from continuous

glucose monitor data through simulation and explanation. J Am Med Inform

Assoc. (2019) 26:1592–9. doi: 10.1093/jamia/ocz159

67. Liao Y, Schembre S. Acceptability of continuous glucose monitoring in free-

living healthy individuals: implications for the use of wearable biosensors

in diet and physical activity research. JMIR. (2018) 6:e11181. doi: 10.2196/

11181

68. Lawlor DA, Lewcock M, Rena-Jones L, Rollings C, Yip V, Smith D,

et al. The second generation of the Avon longitudinal study of parents

and children (ALSPAC-G2): a cohort profile [version 2; peer review: 2

approved]. Wellcome Open Res. (2019) 4:36. doi: 10.12688/wellcomeopenres.

15087.2

69. Rodin D, Kirby M, Sedogin N, Shapiro Y, Pinhasov A, Kreinin

A. Comparative accuracy of optical sensor-based wearable system

for non-invasive measurement of blood glucose concentration.

Clin Biochem. (2019) 65:15–20. doi: 10.1016/j.clinbiochem.2018.

12.014

70. Sen S, Subbaraju V, Misra A, Balan RK, Lee Y. The case for smart watch-based

diet monitoring. In: Proceedings of the 2015 IEEE International Conference on

Pervasive Computing and Communication Workshops (PerCom Workshops).

St. Louis, MI (2015). p. 585–90.

71. Movassaghi S, AbolhasanM, Lipman J, Smith D, Jamalipour, A. Wireless body

area networks: a survey. IEEE Commun. Surveys Tutor. (2014) 16:1658–86.

doi: 10.1109/SURV.2013.121313.00064

72. Beltran A, Dadabhoy H, Ryan C, Dholakia R, Jia W, Baranowski J, et al.

Dietary assessment with a wearable camera among children: feasibility

and intercoder reliability. J Acad Nutr Dietetics. (2018) 118:2144–53.

doi: 10.1016/j.jand.2018.05.013

73. Golding J, Pembrey M, Jones R, ALSPAC Study Team. ALSPAC–The Avon

longitudinal study of parents and children. Paediatr Perinat Epidemiol. (2001)

15:74–87. doi: 10.1046/j.1365-3016.2001.00325.x

74. Forster H, Walsh M, O’Donovan C, Woolhead C, McGirr C, Daly EJ, et al.

A dietary feedback system for the delivery of consistent personalized dietary

advice in the web-based multicenter Food4Me study. J Med Internet Res.

(2016) 18:e150. doi: 10.2196/jmir.5620

75. Shoneye C, Dhaliwal S, Pollard C, Boushey C, Delp E, Harray A, et al. Image-

based dietary assessment and tailored feedback using mobile technology:

mediating behavior change in young adults. Nutrients. (2019) 11:435.

doi: 10.3390/nu11020435

76. Cao Z, Chen P, Ma Z, Li S, Gao X, Wu R, et al. Near-field

communication sensors. Sensors. (2019) 19:3947. doi: 10.3390/s191

83947

77. Statista. Total Wearable Unit Shipments Worldwide 2014-2023. Available

online at: https://www.statista.com/statistics/437871/wearables-worldwide-

shipments/ (accessed January 6, 2020).

78. Batineh A, Mizouni R, El Barachi M, Bentahar J. Monetizing personal

data: a two-sided market approach. Procedia Comput Sci. (2016) 83:472–9.

doi: 10.1016/j.procs.2016.04.211

79. Antoun C, Conrad F, Couper MP, West BT. Simultaneous estimation of

multiple sources of error in a smartphone-based survey. J Survey Stat

Methodol. (2019) 7:93–117. doi: 10.1093/jssam/smy002

Conflict of Interest: AS and CS are listed as inventors on patent applications

1601342.7 (UK) and PCT/GB2017/050110 (International), Method and Device

for Detecting a Smoking Gesture. LJ has received funding from Danone Baby

Nutrition, the Alpro foundation and Kellogg Europe for research unrelated to

this review.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Skinner, Toumpakari, Stone and Johnson. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Nutrition | www.frontiersin.org 9 July 2020 | Volume 7 | Article 8027

https://doi.org/10.1088/0967-3334/35/5/739
https://doi.org/10.1016/j.foodqual.2006.02.006
https://doi.org/10.3390/s16071067
https://doi.org/10.1109/JBHI.2016.2640142
https://doi.org/10.1109/JBHI.2017.2698523
https://doi.org/10.1007/s10484-012-9194-1
https://doi.org/10.1109/JBHI.2013.2282471
https://doi.org/10.3390/nu11051168
https://doi.org/10.17705/1CAIS.04444
https://doi.org/10.2196/jmir.8701
https://doi.org/10.1109/JBHI.2019.2892011
https://doi.org/10.1093/jamia/ocz159
https://doi.org/10.2196/11181
https://doi.org/10.12688/wellcomeopenres.15087.2
https://doi.org/10.1016/j.clinbiochem.2018.12.014
https://doi.org/10.1109/SURV.2013.121313.00064
https://doi.org/10.1016/j.jand.2018.05.013
https://doi.org/10.1046/j.1365-3016.2001.00325.x
https://doi.org/10.2196/jmir.5620
https://doi.org/10.3390/nu11020435
https://doi.org/10.3390/s19183947
https://www.statista.com/statistics/437871/wearables-worldwide-shipments/
https://www.statista.com/statistics/437871/wearables-worldwide-shipments/
https://doi.org/10.1016/j.procs.2016.04.211
https://doi.org/10.1093/jssam/smy002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


MINI REVIEW
published: 03 July 2020

doi: 10.3389/fnut.2020.00090

Frontiers in Nutrition | www.frontiersin.org 1 July 2020 | Volume 7 | Article 90

Edited by:

Natasha Tasevska,

Arizona State University Downtown

Phoenix Campus, United States

Reviewed by:

Robin M. Tucker,

Michigan State University,

United States

José María Huerta,

Instituto de Salud Carlos III, Spain

*Correspondence:

Dale A. Schoeller

dschoell@nutrisci.wisc.edu

Specialty section:

This article was submitted to

Nutritional Epidemiology,

a section of the journal

Frontiers in Nutrition

Received: 28 February 2020

Accepted: 15 May 2020

Published: 03 July 2020

Citation:

Ravelli MN and Schoeller DA (2020)

Traditional Self-Reported Dietary

Instruments Are Prone to Inaccuracies

and New Approaches Are Needed.

Front. Nutr. 7:90.

doi: 10.3389/fnut.2020.00090

Traditional Self-Reported Dietary
Instruments Are Prone to
Inaccuracies and New Approaches
Are Needed
Michele N. Ravelli 1 and Dale A. Schoeller 2*

1Department of Neurology, University of Wisconsin, Madison, WI, United States, 2Nutritional Sciences and Biotechnology

Center, University of Wisconsin, Madison, WI, United States

Background:Diet is a modifiable behavior that influences an individual’s health. Because

of this, diet assessment is an important component of public health surveillance,

evaluating response to community health interventions, and monitoring individual

compliance to medical interventions. Diet assessments are usually performed using

one of three basic methods: diet recall, diet diaries, or food frequency questionnaires.

Although these three assessment instruments have displayed a strong agreement

between themselves, when reported intake is compared with intake measured using

quantitative nutrient biomarkers, investigators have identified systematic misreporting

errors for all three of these self-reported dietary instruments.

Aims: This work aims to summarize the state of knowledge regarding misreporting and

why it impedes diet–health research and to introduce advances in the collection and the

treatment of dietary data.

Methods: This work reviews and summarizes published data on misreporting and the

recent efforts to reduce such errors.

Results: The evidence demonstrates a strong and consistent systematic underreporting

of energy intake (EIn) across adults and children studies. Underreporting of EIn has

been found to increase with body mass index (BMI), and the differences between

macronutrient reports indicate that not all foods are underreported equally. Protein is least

underreported, but which specific foods are commonly underreported are not known.

Conclusions: Because energy underreporting varies as a function of BMI, self-reported

EIn should not be used for the study of energy balance in the study of obesity. The

between-individual variability in the underreporting of self-reported intake of energy

and other nutrients attenuates diet–disease relationships. Recent efforts to correct

for underreporting have reduced misreporting of diet outcomes, but improvements

have been incremental in nature and more research is needed to validate and extend

these efforts.
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Ravelli and Schoeller Measuring Diet, a Difficult Necessity

INTRODUCTION

Investigations into the role of diet in the development of disease
in humans are viewed as difficult but important because diet is
one of the behaviors that individuals may employ to maintain
or improve health (1). For example, human feeding studies
performed or dictated by external disruptions of food supplies
have clearly demonstrated that diet plays a central role in the
negative impacts on health resulting from energy, vitamin, and
mineral deficiencies in controlled studies conducted for at least
75 years (2). At the same time, the Minnesota Semi-starvation
Study demonstrated the difficulty and the ethical issues of
performing month-long feeding trials in order to investigate the
quantitative nature of diet–disease relationships using only an
inpatient paradigm (3).

A major source of difficulty has been documenting what
individuals consume as their typical diet due to dietary
measurement error (4). Because controlled and thus more
accurate feeding studies are costly and difficult to perform, a
far more common approach to the study of the relationship
between diet and disease has been to perform studies of free-
living participants. These studies usually rely on assessing diet
using self-report instruments to access diet and this introduces
diet measurement error into the study (5). The most common
dietary assessment instruments are diet recall surveys, in
which the participants report from memory each item of food
consumed for the previous day, weeks, ormonths; food frequency
questionnaires (FFQ), which have the aim of assessing the food
consumption during some specified period of time or over a
period such as adolescence; and diet diary methods where the
subjects record dietary intake for each eating event for a period
of days or weeks.

Perhaps the best documented evidence of dietary instrument
measurement error is that of self-reported energy intake (EIn)
being often less than that of the individual’s measured energy
expenditure. The aim of this short review is to summarize the
development of that evidence and how misreporting impedes
diet—health research. Because of the evidence, there has been
a renewal of efforts to improve or develop alternatives to these
instruments. These recent advances are introduced here as part
of a series of reviews in this issue.

DIETARY MISREPORTING

Over the past 50 years, many traditional diet assessment
instruments have undergone modification of content or
structure, sometimes to the degree of being considered a new
instrument, and then were validated by comparison against
an older version or previously evaluated instrument. In most
instances, these comparisons demonstrated a moderate or
strong agreement between the basic types of dietary assessment
instruments and the tool was considered to be of reasonable
accuracy and precision (6). A few investigators, however,
performed studies comparing self-reported dietary intake
against a biomarker of dietary intake, such as urinary nitrogen,
which provides an objective measure of dietary protein intake
(7). Such comparisons against a biomarker often did not find

these self-report instruments to be accurate. For example,
Warnold et al. (8) reported that self-reported protein intake
underestimated protein consumption by 47% compared to
protein intake measured using urinary nitrogen outputs among
women undergoing a weight loss treatment. Studies comparing
self-report against biomarkers to test the accuracy of traditional
diet instruments, however, were infrequent and had only a
modest influence on the growth of the use of self-report dietary
assessments in the study of diet–disease relationships.

The number of dietary instrument validations against a
biomarker increased dramatically following the development of
the doubly labeled water (DLW) method to measure total energy
expenditure (TEE) in humans (9). This method, developed by
Lifson, is based on the difference in the elimination kinetics
of two stable isotopes in water, namely, deuterium (2H) and
18O (10). The difference in the elimination rate of 2H and
18O is proportional to carbon dioxide production (10). The
latter is the end-product of oxidative phosphorylation, and TEE
can be calculated using standard indirect calorimetric equations
(11). The human validations that included conditions of weight
stability, overfeeding, underfeeding, intravenous feeding, and
heavy exercise have been summarized by Speakman et al. (12–15).
These validations have displayed an average accuracy of TEE of 1
to 2% and an individual precision of 7%, which support its use as
a biomarker for use in a criterion method against which one may
test the accuracy and the precision of self-reported energy intake.

The development of the DLW method for the measurement
of TEE created an opportunity to validate diet assessment
instruments against an objective energy expenditure based on the
first law of thermodynamics. The first law of thermodynamics
states that energy cannot be created nor destroyed, and thus EIn
equals energy expenditure plus or minus the change in body
energy stores during the measurement interval. Moreover, when
body energy stores are unchanged over time, the energy storage
term falls to zero and then EIn equals energy expenditure. Among
pregnant women, infants, and children, change in energy stores
over time is expected. At 1 month of age, the average daily
energy storage is about 40% of EIn, but this decreases to 3% by
1 year of age and continues to decrease to 1% at 10 years of
age (16). Among pregnant women, the average increase in body
energy stores is about 190 kcal/day or 8% of EIn during the 3rd
trimester (17). Among most non-pregnant adults, weight gain is
not recommended, but it is common. The rate of weight gain
is 0.2–0.7 kg/year or about 1–2 g/day (18). Assuming that the
gain is adipose tissue with 20% fat-free mass and 80% fat mass,
this stores only about 8 to 16 kcal/day or about 0.3–0.6% of EIn
(19) and thus energy expenditure almost equals EIn, and TEE
is an excellent biomarker of EIn. There are exceptions to this
essential near-equality assumption in adulthood. These include
periods of voluntary weight loss, loss of appetite during illness,
or periods of holiday feasts when energy intake can be quite
different from expenditure and TEE will fail to be a quantitative
biomarker of actual EIn. Under habitual conditions outside of
these short periods, EIn roughly equals TEE. Thus, TEE is termed
as a biomarker of habitual dietary energy intake rather than one
of actual EIn. This is an important distinction because while TEE
is generally a goodmeasure of habitual energy intake for the study
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of diet and health, it fails as a measure of actual energy intake
under the above mentioned short-term conditions.

Another consideration in using TEE as a biomarker of
habitual EIn is that energy intake can be expressed in one of three
ways. The first is gross energy. This is the total energy available
when foods are combusted to dioxide carbon, water, and nitrogen
gas using bomb calorimetry (20). Not all the gross energy,
however, is available to the body for metabolism. About 8% of the
gross energy is not absorbed and thus lost from the body as waste
products in feces (21, 22). The second expression is the absorbed
energy. Finally, not all the absorbed energy is available to the body
for energy production because some compounds that still contain
chemical energy are lost as waste products in urine. The third
expression is the portion of absorbed energy retained by the body
that is available for energy production, which is the metabolizable
energy. Metabolizable energy, as the name implies, is available for
use in oxidative phosphorylation. This is the energy value listed
in the food handbooks and tables. Metabolizable energy is thus
the energy value used for calculating the dietary EIn by dietary
assessment instruments.

Many of the human studies using DLW performed during
the 10 years between 1982 and 1992 included an assessment of
dietary EIn using traditional instruments. One of the first studies
was conducted by Prentice et al. (23), in which it was observed
that EIn, assessed using a 7-days food diary, was 34% (P < 0.05)
less than TEE measured by DLW in young adult obese women
(32.9± 4.6 kg/m2), but there was no difference detected between
EIn and TEE (2%, NS) in lean women. The authors also found
that half of the EIn vs. TEE difference was due to underrating
as assessed by weight loss during the dietary diary period. These
findings of low self-reported EIn were confirmed in a later review
(24), which included papers which found that underreporting of
dietary EIn was observed in women with anorexia nervosa, who
perceive that they have excess body fat, and also in individuals
with measured excess body weight, who are concerned about
actual excess fat. Thus, underreporting was associated with
individuals likely to be concerned about excess weight and not
just with actual weight status (body mass index, BMI) itself
(24). Thus, as early as 1990, it was found that underreporting of
dietary EIn was common among adults and linked to concerns
regarding excess body weight or fat (24). Even these early studies
found that the degree of underreporting was of similarmagnitude
regardless of whether intake was assessed using retrospective
instruments such as diet recalls or histories or with instruments
such as food diaries (24). Based on these observations, it was
concluded that dietary assessment instruments were subject to
errors that increased with the individual’s concern regarding
their relative weight, which would result in a correlation of
increased underreporting with increased BMI (24). Because of
this, it was strongly recommended that self-reported EIn should
not be used as a primary assessment instrument to measure EIn
in investigations into the role of EIn in weight regulation as early
as 1990 (24).

Most of these early studies employing DLW as a quantitative
biomarker of dietary EIn were conducted in cohorts with sample
sizes categorized as small to medium and, in many cases, by
investigators without extensive experience on the use of dietary

assessment instruments. Based on anecdotal evidence provided
by questions from the audience following oral presentations,
some investigators in the audience suggested that the finding
of underreporting may have been an artifact and that it might
not occur if experienced investigators performed studies in
large cohorts. This hypothesis, however, was not supported by
the results from one study and soon thereafter by four more
studies that were performed by investigators who had extensive
experience on the use of dietary assessment instruments and
which included cohorts with several hundreds of adult subjects
each as summarized by Freedman et al. (25). The combined
results of these studies confirmed that underreporting of habitual
EIn in the United States was common as it was observed in
each of the five studies which, when combined, involved over
2,000 participants (25). The 24-h recall (24HR) exhibited an
EIn underreporting compared to the DLW-measured TEE which
averaged −16% (range, −10 to −28%), and the FFQ was subject
to an even larger reporting error than was 24HR (range, −26
to −32%) (25). The combined number of participants in these
five studies (n= 2,265) permitted sub-analyses, and it was found
that those having a BMI of >30 kg/m2 underreported EIn by 7%
more than those of a BMI in the healthy range, but there was no
difference between men and women or adult age groups when
centered on ages 50–59 years (25). One of these five studies (26)
found that the administration of up to eight 24HRs on different
days of the week did not eliminate the average reporting error,
thus demonstrating that the underreporting was not simply due
to day-to-day variation in actual EIn. The underreporting did
decrease when two 24HRs were averaged (−11%) relative to that
when only one 24HR was employed (−15%), but the percent
error changed only a little when more than two 24HRs were
averaged. Even when six 24HR data were collected and averaged,
the bias dropped to only −9%. Thus, dietary data were more
consistent when two recalls were employed in each participant,
but little was gained by further replication.

The findings from the combination of the five large studies
discussed above have been confirmed and extended through
a systematic review conducted by Burrows et al. (27). The
review identified an additional 59 studies that included 6,298
adults, including the abovementioned five studies and the 2,265
participants in the abovementioned summary by Freedman
(25). The studies employed a mixture of diet instruments,
including 24HR; the food diaries include weighed food records
and FFQs. The degree of underreporting relative to habitual
EIn as measured by DLW varied over a wide range. This
included two studies that reported group averages displaying
over-reporting (7 and 8%), but the vast majority identified
cohort average underreporting by between 1 and 38%, and the
plurality of studies found an average under-reporting between
20 and 30%. A comparison of methods indicated that the most
misreporting was observed for the FFQ and the least for 24HR,
but all three methods displayed underreporting errors. Studies
that included advanced technology such as photography, hand-
held personal digital assistants, or oral recordings did reduce
the underreporting slightly compared to non-technology-assisted
instruments but were still found to be subject to underreporting.
Included in that review were studies conducted in countries
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other than the United States, including Australia, Brazil, Canada,
Finland, Germany, Japan, New Zeeland, Norway, Sweden, and
the United Kingdom, demonstrating that underreporting with
regard to EIn was a global problem.

Two systematic reviews concluded that underreporting of EIn
was also an issue among children (28, 29). There have not been
as many studies performed in children (aged 3–18 years) as
have been performed in adults, but the results were similar with
those in adults. Underreporting was common in children, and
children with excess weight (overweight or obese) underreported
more than those having a BMI in the healthy weight range.
It was found that underreporting was reduced when parents
assisted their children for ages <11 years. Unlike what was
observed in adults, age was a significant modifier of misreporting,
and underreporting was greater in adolescents than it was in
younger children.

Because of the significant underreporting of EIn observed in
the studies discussed above, one of the vital next steps for research
directed at studying the phenomenon of EIn underreporting is
to identify whether underreporting of EIn is due to a failure to
accurately report specific foods or is a general underreporting
of all foods. Addressing this issue is difficult because it means
one has to measure something that is not reported rather than
what is reported. We speculate that one means of accomplishing
this would be to include multiple biomarkers in a study of self-
reported dietary intake. As evidence, studies that have included
DLW as a biomarker for EIn and urinary nitrogen as a biomarker
for protein intake have shown that energy is underreported by a
larger percentage than protein. For example, the abovementioned
study combining the results from five large dietary intake studies
(25) found that while energy was misreported by −16% (range,
−6 to −28% using 24HR), protein was misreported by only
−5% (range, −21 to +20%), indicating that protein was not
as underreported as carbohydrate and/or fat. We speculate
that a cluster analysis using multiple quantitative and possibly
semi-quantitative biomarkers will provide vital insight into the
foods that are misreported. The value of identifying what foods
were being underreported as well as the difficulty of doing so
without using biomarkers is illustrated by a Brazilian study
performed in obese women prior to bariatric surgery (30). The
study found that the under-reporters reported lower intakes
of foods with high energy density but with similar intakes
of calories provided by healthy foods (fruits, leafy vegetables,
and vegetables) compared to those of plausible reporters. This
reporting behavior influenced the determination of dietary
patterns by exploratory factor analysis, in which the principal
component analysis with VARIMAX rotation was applied for the
selection of food groups that composed the matrix and then used
for dietary pattern interpretation (30). By combining diet factor
analysis with biomarker data on energy, protein, sugar, sodium,
and potassium, it should be possible to infer if these differences
were due to actual dietary intake differences.

Misreporting of energy and protein intake when assessing
diet by self-report is well-documented and recognized by many
as a major limitation to the investigation of the effects of diet
on health. The problem of underreporting, particularly because
of the inter-individual variation in misreporting, dramatically

attenuates diet–disease relationships. Kipnis et al. (31) modeled
the effects of misreporting of protein and EIn in the OPEN study
and concluded that the variation in the degree of misreporting
using an FFQ would severely attenuate the relative risk between
true protein or EIn and disease from a true value of 2.0 to
an apparent relative risk of <1.1. Even worse, it may even
reverse the association between diet and disease as had occurred
in an analysis of energy balance using self-reported EIn and
physical activity by Kromhout et al. (32). The data from
these investigators indicated that energy balance and BMI were
negative and becoming more negative with increasing BMI, a
result that they considered implausible and a possible artifact of
underreporting EIn.

In summary, the problem of misreporting of dietary intake
is limiting the ability of investigators to study diet–disease
relationships (31). Investigators are, therefore, performing
studies of novel approaches that may either reduce misreporting
or adjust the self-reported data using post hoc techniques that
may reduce the effect of such misreporting on study outcomes
(33). These include the development of advanced technology to
reduce the reporting errors themselves, adjustment of reported
nutrient intake using calibration against a nutrient biomarker,
statistical approaches that provide novel analyses of data from
traditional self-reported dietary instruments, or direct use of
dietary biomarkers to assess intake (34).

APPROACHES TO REDUCE
MISREPORTING

Advanced technological tools include digital photography with
on-line submission, movement monitors on the wrist or eating
utensils to detect feeding, microphones to detect chewing, and
scales to monitor the disappearance of food from a plate.
Photographic methods provide the most detailed information
about foods consumed, but they are still prone to underreporting
(27) and they require a large amount of technical support
(35). The other methods listed above have demonstrated the
ability to detect eating events, but they provide only partial
quantitative and qualitative information regarding the foods
being consumed (34).

In addition, post hoc approaches that reduced the influence
of misreporting have been presented. For example, Mozaffarian
et al. (36) analyzed diet data obtained using an FFQ administered
at 4-year intervals in a large longitudinal study. They used
dietary change scores from the bracketing FFQs in place of
raw intake scores from a single FFQ to identify foods that
were associated with 4-years changes in body weight. This
approach of using diet change and subsequent weight change is
difficult to validate for dietary reporting accuracy, but the foods
identified in this study as being associated with weight gain or
loss were in general agreement with small, shorter intervention
studies and thus extended the findings from the short-term
interventions to the population level. Additionally, it provided
high statistical power, but it did require a study design where the
diet was assessed multiple times over a period of years in a large
cohort and an outcome that was continuous. A second post hoc
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data analysis approach was employed by Freedman et al. (37).
They combined multiple 24HRs with an FFQ in order to use
the quantitative information from 24HR along with the larger
list of foods consumed from the FFQ against true intake as
measured by dietary biomarkers. They reported an improvement
in the correlation coefficients between reported and biomarker-
measured true dietary intake of energy, protein, potassium, and
sodium compared to the use of single 24HR by an average of
0.14. The highest correlation coefficient, however, was 0.64 for
potassium in women, and thus the variance explained was<40%.

As an alternative to the above-discussed methods to reduce
problems arising from misreporting, Prentice and Huang (38)
have proposed and tested the use of a post hoc calibration
to adjust reported intakes for misreporting identified by the
use of a quantitative biomarker in the entire study cohort
or a subsample of that cohort. Tasevska et al. (39) applied
this approach to an analysis of self-reported sugar intake and
the likelihood of developing type II diabetes or cardiovascular
disease. They found that correcting reported sugar intake based
on the calibration eliminated what appeared to be an implausible
inverse relationship, thus avoided a false finding. The resulting
positive correlation, however, was small and did not result in
a significant increase in the odds ratio for disease development
with increasing sugar intake during the 16-years follow-up in
the Women’s Health Initiative cohort of older women, thus not
ending the controversy around sugar consumption and type
II diabetes.

The final approach to be discussed in this review is that of
Goldberg et al. (40, 41). This approach involved characterizing
a self-reported intake as plausible or implausible. During a

period of bodyweight stability, the ratio of
energy intake reported

resting metabolic rate

should correspond to the ratio of
total energy expenditure
resting metabolic rate

, which

is identified as physical activity level (PAL). Considering
the biological variability of the components of the equation,
confidence limits (cutoffs) are calculated to classify the probable

accuracy of the reported EIn, and its sensibility improves
when individual PAL classification is used in the cutoff points
(42). A not dissimilar approach is to calculate the ratio of
reported EIn to TEE from DLW (24). As an alternative to
the DLW method, it may be possible to use a predicted TEE
based on weight, height, age, sex and physical activity (18).
The optimal method for defining the cutoff for excluding
implausible reported intakes is still under debate, but the value is
recognized (43).

SUMMARY AND CONCLUSION

Dietary assessment is central to the study of diet–health
relationships. The most common assessment instruments are
diet recalls, diet diaries, and food frequency questionnaires,
and all are dependent on self-reported data. Self-reported
Ein, using all of these instruments, has been shown to yield
reproducible intake results. They have also been shown to yield
good to strong correlations between foods consumed when
compared against one another. Comparisons against quantitative
biomarkers of dietary intake, however, have clearly demonstrated
that self-report is prone to misreporting errors for EIn and
other nutrients and that inter-individual variability in the
degree of underreporting attenuates the strength of diet–disease
relationships and raises questions regarding what foods are being
misreported. Recent research has identified several methods for
reducingmany of these reporting errors. There remains, however,
a need for further research to optimize the accuracy or correct
for inaccuracies in self-reported dietary data because of the
importance of dietary data in the prevention and the treatment
of diet-induced diseases.
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Objective: No data currently exist on the reproducibility of photographic food records

compared to diet diaries, two commonly used methods to measure dietary intake. Our

aim was to examine the reproducibility of diet diaries, photographic food records, and

a novel electronic sensor, consisting of counts of chews and swallows using wearable

sensors and video analysis, for estimating energy intake.

Method: This was a retrospective analysis of data from a previous study, in which 30

participants (15 female), aged 29± 12 y and having a BMI of 27.9± 5.5, consumed three

identical meals on different days. Four different methods were used to estimate total mass

and energy intake on each day: (1) weighed food record; (2) photographic food record;

(3) diet diary; and (4) novel mathematical model based on counts of chews and swallows

(CCS models) obtained via the use of electronic sensors and video monitoring system.

The study staff conducted weighed food records for all meals, took pre- and post-meal

photographs, and ensured that diet diaries were completed by participants at the end

of each meal. All methods were compared against the weighed food record, which was

used as the reference method.

Results: Reproducibility was significantly different between the diet diary and

photographic food record for total energy intake (p = 0.004). The photographic record

had greater reproducibility vs. the diet diary for all parameters measured. For total energy

intake, the novel sensor method exhibited good reproducibility (repeatability coefficient

(RC) of 59.9 (45.9, 70.4), which was better than that for the diet diary [RC = 79.6 (55.5,

103.3)] but not as repeatable as the photographic method [RC = 43.4 (32.1, 53.9)].

Conclusion: Photographic food records offer superior precision to the diet diary and,

therefore, would be valuable for longitudinal studies with repeated measures of dietary

intake. A novel electronic sensor also shows promise for the collection of longitudinal

dietary intake data.

Keywords: dietary intake, diet diary, food record, photograph, sensor, precision, reproducibility
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INTRODUCTION

Measurement of dietary intake is a necessary but difficult
undertaking in clinical and research settings. Common
methods used to measure dietary intake include 24-h
diet recalls, diet diaries, photographic food records, and
food frequency questionnaires (1). There are advantages
and disadvantages to each method in terms of cost and
participant burden, but all methods share the limitations
of self-report. Studies using doubly labeled water have
shown that underreporting of food intake is a common
problem for self-report methods (2–6). Despite the
limitations of these self-report methods, they remain the
only validated methods available for measuring dietary intake in
free-living situations.

Proper research practice requires that methods be validated
against a standard: a previously validated method and/or a
biomarker, such as doubly labeled water for energy expenditure
(5). Validity refers to the accuracy of any measure; that is, how
close the measured value is to the actual value. An equally
important, and often overlooked, feature of a method is its
reproducibility or precision. Reproducibility or precision is
the extent to which a measure yields the same results under
similar conditions.

The reproducibility of an instrument is especially important
when dietary intake will be recorded longitudinally to assess
habitual intake or changes over time. A study using repeated 24-
h recalls showed total energy correlation of r = 0.59 between
measurements (7). Reproducibility research conducted with
food frequency questionnaires at two time points has shown
that total energy correlations between repeat administrations of
questionnaires range from r = 0.30–0.92 (7–13). Watson et al.
(9) cited under- or over-reporting as a likely contributor to
the low reproducibility for the food frequency questionnaire.
This concept of systematic under- or over-reporting in
dietary assessment was examined by Black and Cole (3).
Their review of seven studies with repeated measurements
of dietary intake revealed that some persons are more likely
to underreport dietary intake than others, regardless of the
assessment method used. This personal reporting bias is an
issue that should not be ignored when examining dietary intake
data and considering the necessity of repeated measures in
such research.

Although two previous studies have looked at the reliability
of diet diaries, neither used a gold standard reference method,
such as a weighed food record, during the same period as the
diet diary was recorded, thus limiting the general applicability
of the data (14, 15). To our knowledge, no previous study has
rigorously examined the reproducibility of the diet diary, which
is one of the most commonly used methods to measure free-
living dietary intake, or the photographic food record. Both
instruments have been studied for accuracy, but there exists
no data on their precision. The aim of this study was to
examine the reproducibility of diet diaries, photographic food
records, and a novel electronic sensor from three separate,
identical meals using weighed food records as the gold standard
reference method.

METHODS

Participants
Thirty participants (15 females and 15 males) with a mean (±SD)
age of 29 ± 12 y (range: 19–58 y) and body mass index (BMI)
of 27.9 ± 5.5 kg/m2 (range: 20.5–41.7) were recruited at the
ClarksonUniversity campus to participate in the study. The study
was approved by the Institutional Review Board at Clarkson
University, Potsdam, NY and all participants read and signed
an informed consent form before participation. Participants with
temporo-mandibular joint disease, dysphagia or other difficulties
for chewing and/or swallowing were excluded from the study.

Each participant consumed three full meals at three different
visits in the laboratory, ∼1–4 weeks apart and at the same clock
time at each visit. At the first visit, each participant was asked to
select foods according to their own preferences (content and size)
from the menu offered by one of the Clarkson University food
courts. Any foods or amounts could be chosen by participants,
with no restrictions. The initial meal selection was documented
so that the selected meal was identical for all three study visits.
Participants had no limitations on the quantity of consumed
foods or order in which the foods had to be consumed.

Energy Intake Measurements
Four different methods were used to estimate total mass and
energy intake: (1) weighed food record; (2) photographic food
record; (3) diet diary; and (4) mathematical models based on
counts of chews and swallows (CCS models) obtained via the use
of electronic sensors (16).

To obtain the nutritional intake data frommeals, records were
deidentified and sent to the Colorado Clinical and Translational
Sciences Institute’s (CCTSI) Nutrition Core. A single operator
assessed all deidentified photographic food records and logged
consumed food amounts in a standard diet dairy format. A
second blinded, independent operator entered all converted
photo and original participant food diaries into the nutritional
analysis program Nutrient Data System for Research (NDS-R;
University of Minnesota, Minneapolis, MN). None of the data
entry operators at the CCTSI Nutrition Core were involved in
data collection. Using a single, trained operator at each step is
the current operating procedure for all CCTSI protocols and
reduces variation due to inter-operator differences in data entry.
All weighed food records, photographic food records, and diet
diaries were de-identified before operator entered nutritional
intake into NDS-R. The novel method of using models to count
chews and swallows to determine total mass and energy intake
was blinded so that operator processing the data was not involved
in the post-ingestion annotation of chews and swallow from the
original videos.

Weighed Food Records
Before and after each meal, food was weighed by a trained
member of the research team to calculate the total amount
consumed. Each meal was documented and logged into a chart
containing detailed information of each food item such as food
name and description, mass at beginning and end of the meal,
and total mass consumed. For items that could be deconstructed
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(e.g., a sandwich), each food item was weighed separately
before and after consumption. The item was reassembled before
being served to the participant. For items that could not be
deconstructed (e.g., pizza or cookies) total energy intake was
estimated using total weight consumed multiplied by the caloric
density of the item. Weighed food records were used as the
reference method for actual dietary intake. All other methods
were compared to actual dietary intake measured by the weighed
food records.

Photographic Records
Pre- and post-meal photographs were taken by study staff using a
digital camera. The serving plate occupied the entire field of view,
and photographs were taken at a 45◦ angle so that the depth of
foods could be estimated (17). A picture of the selected meal was
taken before serving and another picture was taken at the end of
the eating period. A trained, validated CCTSI nutritionist used
these pictures to estimate portion sizes, using the Portion Photos
of Popular Foods guide (18) and entered consumed amounts into
the food analysis program, NDS-R.

Diet Diary
At the beginning of the first visit, participants were trained to
complete a diet diary. Oral and written instructions were given to
participants for estimating portion sizes and recording foods in
sufficient detail to obtain an accurate estimate of dietary intake.
Examples of both fully complete and incomplete diaries were
explained to demonstrate how to appropriately record intake.
Participants also received a portion estimation guide that was
used as a reference, but only during the first visit. All materials
were supplied by the CCTSI Nutrition Core.

TABLE 1 | Repeatability coefficients (95% confidence interval) between

measurement methods for percent deviation from weighed measurement.

Outcome Assessment

method

RC for percent deviation

from weighed

measurementa

Total energy (kcal) Diary 79.6 (55.5, 103.3)

Photo 43.3 (32.1, 53.9)*

Sensor 59.9 (45.9, 7.4)

Carbohydrate (g) Diary 84.1 (56.8, 109.1)

Photo 42.2 (23.5, 59.0)

Fat (g) Diary 96.5 (59.4, 136.4)

Photo 80.6 (48.1, 116.4)

Protein (g) Diary 99.3 (64.7, 131.2)

Photo 55.0 (38.3, 70.8)

Fiber (g) Diary 96.1 (65.9, 123.1)

Photo 45.2 (28.8, 61.3)*

Calcium (mg) Diary 93.2 (62.1, 125.2)

Photo 47.0 (37.8, 55.9)*

Iron (mg) Diary 188.6 (61.0, 300.2)

Photo 61.1 (40.8, 79.6)

Sodium (mg) Diary 224.9 (78.4, 363.3)

Photo 88.8 (44.2, 134.0)

a{[Weighed-Diary (or photo)]/weight} × 100.

*Statistically significant difference in RCs from diet method at a 5% significant level.

After each meal was finished, participants recorded the food
items they just consumed in a blank food diary. Each food
item was recorded on a single line indicating the type of food,
preparation style, and amount consumed. Participants did not
receive any help during this stage; however, the diet diary was
reviewed to ensure that it was completed appropriately (i.e.,
all foods listed had a portion size and description assigned).
Participants were not prompted to add any food items they had
forgotten to record. Participants only filled out diet diaries for
research meals, and no other meals consumed during the 3 days
of the study.

Models Based on Counts of Chews and Swallows
Estimation of the mass and energy consumed during each meal
was computed using participant-dependent models based on
counts of chews and swallows. Before starting the experiments,
participants were instrumented with a sensor system for
monitoring ingestive behavior (19). The system consisted of: (1)
a jaw motion sensor placed below the ear to capture chewing
events; (2) a miniature microphone placed on the throat to
capture swallowing sounds; and (3) a digital camera for video
monitoring. Sensor data and video footage were used to compute
the number of chews and swallows associated to each meal
as previously described (16). The total mass and energy for
a given meal was estimated using a counts of chews and
swallows model created with the counts of chews and swallows
observed in the remaining two meals consumed by the same
participant (16).

Statistical Analysis
This was a retrospective data analysis of a previous study (16).
The sensor method was only analyzed for total energy as this
is an exploratory method, still under development and the
form described in (16) was only able to estimate mass and
energy intake during a meal. When the sensor method is further
developed, it will be used to estimate energy, macronutrient, and
micronutrient intakes.

Because the actual amount of food consumed varied between
study visits, the percent difference from that assessed by the
weighed food method serves as the outcome to compare
reproducibility across diary, photographic, and sensor methods.
The repeatability coefficient (RC) defined as RC = 1.96 ×
√
2× SDwithinsubject was used to assess the extent of

reproducibility for each method. Within-participant variability
(SDwithinsubject) of the outcome across three time points was
assessed using the with-subject variance from a linear mixed
effects model, where the fixed effect consists of intercept only and
had a compound symmetry covariance structure. Five thousand
Bootstrap samples were based to calculate the 95% confidence
intervals for RC for each method and the difference in RC
between methods as well as the p-values. SAS 9.4 software (SAS
Institute Inc.) were used for all the analyses.

RESULTS

Comparison of the weighed intake data from the three meals
indicated that there were no differences in energy or macro-

Frontiers in Nutrition | www.frontiersin.org 3 July 2020 | Volume 7 | Article 9936

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Fontana et al. Reproducibility of Dietary Intake Measurement

FIGURE 1 | RC and 95% CI of percent difference from weighed method for energy measurements over three time points. The photographic food record and sensor

methods had greater reproducibility (lower RC values) than the diet diary for overall energy intake over three time points.

TABLE 2 | Difference in repeatability coefficient between methods over three time points.

Outcome Comparisons Difference in repeatability coefficient

(95%) CL between two methods

pa

Total energy (kcal) Photo vs. Diary −36.2 (−63.7, −10.1) 0.004*

Sensor vs. Diary −19.6 (−50.7, 8.0) 0.19

Sensor vs. Photo 16.6 (−2.9, 34.2) >0.99

Carbohydrate (g) Photo vs. Diary −41.9 (−74.7, −8.4) 0.01*

Fat (g) Photo vs. Diary −15.9 (−75.0, 39.4) 0.62

Protein (g) Photo vs. Diary −44.3 (−83.0, −5.0) 0.02*

Fiber (g) Photo vs. Diary −50.9 (−85.6, −15.3) 0.36

Calcium (mg) Photo vs. Diary −46.2 (−78.2, −14.3) 0.004*

Iron (mg) Photo vs. Diary −127.5 (−230.4, −6.9) 0.02*

Sodium (mg) Photo vs. Diary −136.0 (298.3, 6.3) 0.1

a95% CL and 2-tailed p-values are based on 5,000 bootstrap samples. *P < 0.05.

or micro-nutrient intake between the three meals (data not
shown). The RC values for the percent difference from the
weighed food records revealed that the photographic food record
and sensor methods had greater reproducibility [RC = 43.4
(32.1, 53.9) and 59.9 (45.9, 70.4), respectively] than the diet
diary [RC = 79.6 (55.5, 103.3)] for total energy intake over
three separate meals (Table 1 and Figure 1). Differences in RC
values between photographic food records and diet dairies were
significantly different for total energy (p = 0.004), carbohydrate
(p= 0.01), protein (p= 0.02), calcium (0.004) and iron (p= 0.02)
intake (Table 2), with photographic food records having greater
reproducibility for all nutrients measured (Table 1).

DISCUSSION

Participants completed diet diaries immediately following each
meal under supervised conditions. The method of completing

the diary immediately post-meal under controlled conditions,
as in this study, gives the greatest chance for this method to
perform at its best. However, the diet diary method displayed
the lowest reproducibility of the three methods tested for total
energy intake, and it was inferior to the photographic food record
for macronutrients and micronutrients examined. It should be
noted that the food photographs were taken by study staff, so this
method was also performed under optimal conditions that are
not normally present when photographic food records are used.

Reproducibility is an important factor to consider when
designing longitudinal studies in which dietary intake is to be
measured repeatedly. Under these circumstances, a tool that is
more reproducible will decrease the variance in the data collected
over time, thereby simplifying data interpretation. Considering
the cost and time spent on such studies, as well as participant
burden, any instrument which is highly reproducible would
add value. Indeed, previous work showed that the photographic
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food record is as accurate as the diet diary in both energy
intake and macronutrient composition but decreases participant
burden (17). With the added benefit of higher reproducibility,
the photographic food record offers increased utility over the
traditional diet diary.

Although two previous studies have looked at the reliability
of food records, both compared diet diaries recorded at
different times, with no consistency of foods eaten during each
recording period (14, 15). Therefore, any differences noted could
have reflected actual differences in dietary intake rather than
methodological issues. Putz et al. compared two diet diaries to
a weighed food record as a reference method (15). However,
the weighed food record was completed at separate time from
the diet diaries so it is unclear if the dietary intake was similar
across occasions and therefore, if the differences measured were
due to the method used or actual differences in dietary intake
on the different recording occasions. In these previous studies,
for estimating total energy intake, the reproducibility of the diet
diary was low to moderate [ICC of 0.49 and 0.69 for (14, 15),
respectively], which compares well with our estimate of low
reproducibility (RC = 43.4). Conversely, we found that the
reproducibility for the sensor and photographic record methods
was moderate to high, respectively.

Limitations of this study include small sample size, limited
age range of participants, that energy intake was not matched
between meals for each participant, and photographs in the
photographic food records were taken by study staff and not
participants. Whereas weighed food records are considered the
gold standard and this method was used in our laboratory setting,
in a free living situation doubly labeled water could be used
to compare reported intake to total energy expenditure, albeit
at greater expense. With regard to expense, studies have shown
photographic food records to be similar in cost or less costly
than self-report methods such as diet diaries and 24-h recalls
(20–23). However, when compared to written diet diaries, it does
take ∼20 more mins per day of intake recording to analyze
photos and convert the visual information to amounts for data
entry, which is likely irrelevant for smaller studies but could
create higher cost overall for large studies. This study had several
strengths, however, including the use of a within subject repeated
measures design, the large variety of foods for participants to
choose from, the use of more than two repeated measures, and
that the study took place in a controlled laboratory setting where
the researchers had the ability to accurately determine energy
intake using weighed food records, considered the gold-standard
(24–26).

An interesting finding from this study is that the photographic
food record was more precise/reproducible than the sensor
method, even though previous work showed that the sensor was
more accurate than photographic food records (19). Accuracy
may be of greater concern when working with understudied or
vulnerable populations where little data currently exist, or in
studies that measure dietary intake at a single point. Under these
circumstances, the sensor method displays promise, particularly
for vulnerable populations such as children with developmental
delay or the elderly who may not be able to complete any other
method for the estimation of dietary intake. As the sensor can be
placed on the participant’s jaw and behind the ear, unobtrusively

estimating energy intake via measurement of chewing, the
need for participant literacy or cognizance of food choices is
abolished. In all populations, this method would significantly
reduce participant burden and negate some of the pitfalls of
self-report. Our future work aims to combine the strengths of
the photographic and sensor methods by enabling the sensor to
automatically take images of food ingested during the day.

CONCLUSION

The higher reproducibility of the photographic food record
warrants its use over the diet diary in longitudinal studies which
aim to measure dietary intake repeatedly. The novel sensor
method for estimating energy intake also shows promise as a
dietary intake assessment tool for the future.
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Isabel Garcia-Perez 3, Edward S. Chambers 3, Manfred Beckmann 2, John Draper 2 and

John C. Mathers 1*

1Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle-upon-Tyne,

United Kingdom, 2 Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth,

United Kingdom, 3Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department

of Medicine, Imperial College London, London, United Kingdom

Poor dietary choices are major risk factors for obesity and non-communicable diseases,

which places an increasing burden on healthcare systems worldwide. To monitor the

effectiveness of healthy eating guidelines and strategies, there is a need for objective

measures of dietary intake in community settings. Metabolites derived from specific foods

present in urine samples can provide objective biomarkers of food intake (BFIs). Whilst the

majority of biomarker discovery/validation studies have investigated potential biomarkers

for single foods only, this study considered the whole diet by using menus that delivered

a wide range of foods in meals that emulated conventional UK eating patterns. Fifty-one

healthy participants (range 19–77 years; 57% female) followed a uniquely designed,

randomized controlled dietary intervention, and provided spot urine samples suitable

for discovery of BFIs within a real-world context. Free-living participants prepared and

consumed all foods and drinks in their own homes and were asked to follow the protocols

for meal consumption and home urine sample collection. This study also assessed the

robustness, and impact on data quality, of a minimally invasive urine collection protocol.

Overall the study design was well-accepted by participants and concluded successfully

without any drop outs. Compliance for urine collection, adherence to menu plans, and

observance of recommended meal timings, was shown to be very high. Metabolome

analysis using mass spectrometry coupled with data mining demonstrated that the study

protocol was well-suited for BFI discovery and validation. Novel, putative biomarkers for

an extended range of foods were identified including legumes, curry, strongly-heated

products, and artificially sweetened, low calorie beverages. In conclusion, aspects of this

study design would help to overcome several current challenges in the development of
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BFI technology. One specific attribute was the examination of BFI generalizability across

related food groups and across different preparations and cooking methods of foods.

Furthermore, the collection of urine samples at multiple time points helped to determine

which spot sample was optimal for identification and validation of BFIs in free-living

individuals. A further valuable design feature centered on the comprehensiveness of

the menu design which allowed the testing of biomarker specificity within a biobank of

urine samples.

Keywords: dietary intake, metabolomics, free-living participants, biomarkers, radomized control trial

INTRODUCTION

The amount and pattern of foods and beverages consumed
influence gene expression (1) and are major determinants of
multiple health outcomes (2). Despite this centrality in the
atiology of health and disease, the estimation of habitual
dietary intake remains difficult (3). Conventional tools based
on dietary self-report are tedious and time-consuming for
both study participants and researchers. Dietary misreporting is
common and substantial (4) and is exacerbated in those who
are overweight or obese (5). Whilst the development of digital
tools to assist with dietary recording may reduce the workload
for respondents and researchers (6), use of such tools does not
eliminate the subjectivity and biases inherent in approaches based
on self-report. To improve measurements of dietary intake, there
is a need to develop strategies for the objective identification,
validation and deployment of suitable biomarkers (7).

Biomarkers of food intake (BFIs) assessed in body fluids
or easily-accessible tissues offer potential alternative, objective
routes to estimating dietary exposure (8). Measurement of BFIs
(9, 10) could overcome some of the limitations of traditional
dietary assessment methodologies by providing additional
objective estimates of food exposure (11). Such biomarkers
are of two main types: (i) those biomarkers which attempt
to estimate a major class of nutrients e.g., urinary nitrogen
excretion as an index of dietary protein consumption (12) and
(ii) biomarkers which attempt to estimate intake of specific foods
or food constituents (13). Most foods contain large numbers
of characteristic metabolites many of which are cataloged in
comprehensive databases of food composition, e.g., FoodB
(developed by the University of Alberta, Canada: www.foodb.
ca) and of selected food components, e.g., Phenol Explorer

Abbreviations: AGC, Automatic gain control; AUC, area under the Receiver

Operator Characteristic curve; BFI, biomarker of food intake; BMI, Body

Mass Index; CRN, Clinical Research Network; EPIC, European Prospective

Investigation into Cancer and Nutrition; FFQ, food frequency questionnaire; FIE-

HRMS, flow infusion electrospray ionization—high resolution mass spectrometry;

FMV, first morning void; HCD, Higher-energy collision dissociation; IPAQ,

International Physical Activity Questionnaire; ISRCTN, International Standard

Randomized Controlled Trial Number; MAIN, Metabolomics at Aberystwyth,

Imperial andNewcastle; MDS,Multi-dimensional scaling;MRC,Medical Research

Council; MS, mass spectrometry; MSI, Metabolomics Standards Initiative; MSn,

Tandem mass spectrometry; NDNS, National Diet and Nutrition Survey; PA,

physical activity; RF, Random Forest; ROC, Receiver Operator Characteristic;

SD, Standard deviation; TMAO, Trimethylamine-N-oxide; UHPLC-HRMS, Ultra

High Performance Liquid Chromatography-High Resolution MS.

(developed by INRA: www.phenol-explorer.eu). However, when
foods are consumed, they undergo metabolic transformation
during digestion and absorption by enterocytes and colonocytes,
by bacteria within the gut lumen and by Phase 1 and Phase
2 enzymes within the liver. Therefore, although the patterns
of metabolites present in blood or urine reflect what has been
consumed, the specific metabolites in such body fluids may differ
substantially from those ingested (14).

We, and others, have applied metabolomics approaches to
blood, saliva and urine in human studies to discover novel BFIs
(8, 15–22). We have focused on urine as the body fluid of choice
because of the ease of collection and the fact that, in contrast
with blood, it provides an integrated estimate of exposure over
several hours and because of technical advantages in sample
preparation for metabolomics assay (8). This has led to the
identification of a substantial number of putative biomarkers
of individual foods (23) and to potential biomarkers of the
overall healthfulness of the diet (24). Consensus guidelines for the
critical assessment of candidate BFIs have been proposed recently
(10). Although valuable, these guidelines focused on qualifying
the utility of individual BFIs to monitor exposure to specific
foods/food groups. Food intervention studies to determine the
impact of individual dietary components on health form a
large component of nutrition research but equally important
is the need for approaches to assess overall dietary exposure
in epidemiological studies and clinical trials (24). Whilst these
discoveries and developments are encouraging, several challenges
remain, associated particularly with the deployment of BFI
technology in real world settings (Table 1).

The MAIN (Metabolomics at Aberystwyth, Imperial and
Newcastle) Study was designed to address these challenges by
investigating biomarkers of food intake under conditions in
which study participants consumed well-characterized foods
within conventional diets with respect to meal design, cooking
and eating patterns and collected urine samples at home without
changing their usual behavior. This provided an opportunity to
expand biomarker coverage to include a more comprehensive
range of foods and beverages that are highly consumed in the UK
and considered important for the UK government healthy eating
policy (25). Our primary aim was to develop protocols which
could be applied in large-scale epidemiological studies, clinical
trials and in public health surveys. We focused on approaches
that would be acceptable to the public, easy to follow and to
adhere to, and which would be of modest cost. In this paper,
we report the detailed design and protocol of the MAIN Study
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TABLE 1 | Challenges associated with the design of a food intervention study to develop and assess deployment of BFI technology to monitor overall dietary exposure.

(1) Providing opportunity to expand the discovery of biomarkers to include as many commonly-consumed foods as possible

(2) Ensuring structured exposure to a sufficiently comprehensive range of foods to mimic diets typical of a specific population

(3) Validating biomarker specificity in real world settings using conventional eating patterns where a whole diet is consumed rather than focusing on single food items

(4) Evaluating the impact of food preparation/processing/formulation and cooking method on the behavior of biomarkers of specific foods

(5) Developing a urine sampling strategy that enables collection of samples with minimal burden on free-living participants and without adversely affecting the quality

and comprehensiveness of biomarker measurement

conducted at Newcastle University (MAIN Study Newcastle) as
well as baseline characteristics of participants recruited to the
study. Elsewhere we have reported the validation of the urine
sampling methodology for free-living study participants showing
it was non-intrusive, imposed low participant burden, and
delivered samples with high quality metabolome content assessed
using metabolite fingerprinting (26, 27). Here, we include a
summary of novel biomarkers discovered using samples from the
MAIN Study with the aim of extending the BFI coverage to a
wider range of commonly consumed foods.

MATERIALS AND METHODS

Ethics Approval and Consent to Participate
The studies involving human participants were approved
by East Midlands—Nottingham 1 National Research Ethics
Committee (14/EM/0040) following Proportionate Review.
Caldicott approval for storage of data and data protection was
granted by Newcastle-upon-Tyne Hospitals NHS Foundation
Trust [6896(3109)]. The trial was adopted into the UK Clinical
Research Network (CRN) Portfolio (16037) and was registered
with International Standard Randomized Controlled Trial
Number (ISRCTN), 88921234.

A study information sheet was given to all potential
participants in advance of their first visit to the research
unit. The participants provided written informed consent to
participate in each study, taken by an appropriately trained
researcher. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.

Participant Recruitment
Participants were recruited using the inclusion criteria in
Supplementary Table 1 through poster and leaflet campaigns
around Newcastle University campus and in local public
buildings e.g., libraries. In addition, invitation letters were
sent to potential participants who had registered their interest
with Newcastle University in being contacted about upcoming
nutrition-related studies. An advertisement for the study was also
placed in a local newspaper. Some participants were recruited by
word of mouth.

Based on data from our earlier studies (28), we aimed for a
sample size of 15 participants for Study 1 (which incorporated
experimental period 1 menu plans) and 30 participants for Study

2 (which incorporated experimental period 2 menu plans)—
this allowed for a 20% drop out. To minimize the risk that
current disease ormedications used for their management altered
metabolism and, therefore, compromised the normal behavior
of food-related biomarkers detected in urine, we implemented
an a priori exclusion list (Supplementary Table 1). For similar
reasons, we excluded potential participants who reported that
they had had a cholecystectomy or who undertook a high level of
exercise such as a professional athlete or body builder. Vegetarian
recruits had to be willing to eat meat and fish during the studies.

Intervention Design and Randomisation
The MAIN Study Newcastle was built around six daily menu
plans, delivered in two separate, 3-day experimental periods.
Menu plans 1–3 constituted experimental period 1; menu
plans 4–6 constituted experimental period 2. Menu plans were
designed to emulate real world conditions and to reflect the whole
diet by including many commonly-eaten foods in the context of a
typical UK diet. All foods and drinks were provided to free-living
individuals who prepared and consumed the meals in their own
homes/places of work and were responsible for collecting urine
samples while carrying out their normal daily activities.

Experimental period 1 menus were based largely on foods
for which a significant amount of metabolite-based biomarker
research has been published. The menus permitted the provision
of 4–5 target foods each day, providing opportunity for
biomarker validation as described in Lloyd et al. (27). On the
first experimental day, participants consumed test foods for
which there were some previously published urinary metabolite
biomarkers while, on the two subsequent experimental days,
they consumed foods for which putative biomarkers have been
proposed but for which further validation and/or discovery is
necessary. This first experimental period allowed the refinement
of a spot urine sampling protocol for use in real world settings.
Participants collected a range of post-prandial spot urines,
which were compared for chemical richness and evaluated
for the presence of known and putative dietary biomarkers.
The overarching aims of this part of the study were to: (i)
identify the urine collection times which provided the most
data-rich spot urine for accurate capture of biomarker behavior
relating to recent dietary intake and (ii) develop acceptable, non-
onerous and easy-to-implement urine sampling protocols for the
future identification and validation of novel biomarkers of foods
included within the menus [see Lloyd et al. (27) andWilson et al.
(29) for further detail].

To assess whether use of a standardized evening meal
[as employed in our earlier studies (30)] was advantageous
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for “normalizing” urines prior to biomarker validation and
discovery, participants followed these menus in the same order
on 2 separate weeks. Participants were randomized to either a
standardized evening meal (chicken casserole ready meal and
chocolate éclair) or a low polyphenol evening meal of their
choice, to be eaten immediately before the experimental period.
Participants were provided with a guide to high polyphenol
foods/drinks that they should not eat/avoid and a list of low
polyphenol foods/drinks which they should select from during
the “Pre” day (see Figure 1). A cross-over design was employed
so that all participants underwent both dietary interventions
i.e., standardized evening meal and own choice low polyphenol
evening meal.

Experimental period 2 menu plans were designed to
identify novel biomarkers of food intake and to investigate
whether the putative urinary biomarkers for specific foods were
influenced by food preparation, processing, quality, formulation,
complexity, and cooking method. Menus were created to deliver
foods for which there were few, uncertain or no published
biomarkers. In addition, we expanded the range of food
formulations investigated in experimental period 1. For example,
red and white grapes were included in the following forms:
whole grapes, raisins (dried), wine (fermented), grape juice
(pasteurized/heat-treated/concentrated), sparkling grape juice
(carbonated drink), and a fruit smoothie (complex beverage).
Whole grains were delivered across both experimental periods
in the form of rye bread (with and without a sourdough
starter, toasted and untoasted), wholemeal bread (toasted and
untoasted), wholegrain breakfast cereal (Weetabix R©), porridge
oats (boiled/microwaved with milk) and wholemeal pasta
(extruded). Participants consumed a range of commonly eaten
foods in three different daily menu plans, which were presented
in a different order in each of three experimental weeks. This
design facilitated the search for novel biomarkers of specific
foods, but also provided the potential to characterize the kinetics
of biomarker appearance and decay and to investigate the
longevity of biomarker signals in urine.

Each daily menu plan was designed to emulate conventional
UK eating patterns with a breakfast, lunch, afternoon snack
and dinner. All foods and drinks for the whole intervention
were provided to participants in appropriate portion sizes and
with cooking instructions, where necessary. Participants were
encouraged to consume these items to the exclusion of any
other foods or beverages, but had the freedom to eat or not the
meals and to interpret the cooking instructions as they wished.
During each experimental week, the allocated menu plans were
followed from Tuesday to Thursday, as shown in Figure 1.
Experimental period 1 menu plans were eaten in the same order
on 2 consecutive weeks (Study 1); experimental period 2 menu
plans were eaten in pre-determined orders over a 3-week period
(Study 2). In each experimental week, the “Pre” day was the day
before starting the experimental period and was always aMonday
and included a pre-determined evening meal (Dinner). The
“Post” day was the day following completion of the experimental
period when the last biological samples were collected and was
always a Friday. Participants visited the Clinical Aging Research
Unit, Newcastle University on these 2 days only. This design

minimized the number of trips the participants had to make to
the University and also enabled participants to take a break from
the studies at weekends, so reducing the burden of compliance.

During the “Pre” day, participants were asked to restrict, as far
as possible, their polyphenol intake. In practical terms, this meant
reducing their intake of brightly colored fruits and vegetables,
chocolate, tea, herbal teas and coffee. Participants were asked to
abstain from alcohol and stop taking any dietary supplements
for the duration of the studies. In Study 1, dinner on the “Pre”
day was either a standardized evening meal or a low polyphenol
meal of the participant’s choice whilst in Study 2 it consisted of
one of three meals designed to capture biomarkers of relatively
unhealthy food choices, particularly poorer-quality meats and
breaded and battered foods.

Menu plans were developed using Public Health England
policy advice from The Eatwell Plate which has been revised as
The Eatwell Guide (25) and information on the eating habits
of the British population which were collected and collated in
the National Diet and Nutrition Survey (NDNS), years 1–3 (31).
The process of menu plan design has been described in detail
in a recent publication (27). Briefly, this involved analysis of
each food grouping described in the Eatwell Plate (e.g., fruit
& vegetables) and investigating the disaggregated food groups
that contribute to that food grouping in the NDNS (e.g., fresh
& canned fruit; fruit juice; dried fruit etc.). We then identified
the most commonly eaten foods within each disaggregated
food group and incorporated as many as possible of the most
commonly consumed foods into the menu plans using the most
commonly reportedmethod of preparation (e.g., raw/boiled/with
or without skin). To assess biomarker robustness, multiple
forms of similar foods using different processing methods and
formulations were delivered as discrete meal components and
incorporated within complex meals, and using different cooking
methods. Foods and portion sizes were compatible with normal
eating behavior and were provided according to conventional UK
daily meal patterns using commercially available foods. We used
average (medium) portions of each food as determined by the
Food Standards Agency “Food Portion Sizes” Guide (32). Exact
amounts of each food provided has been described elsewhere
(26, 27). An example daily menu plan from experimental period
2 is shown in Supplementary Table 2.

To identify the easiest to collect and most informative spot
urine sample, participants were asked to collect several spot
urine samples each day. These included their first morning
void (FMV) before breakfast; a fasting sample, defined as a
sample collected after the FMV but before breakfast, following
an overnight fast of at least 12 h; a sample collected any time
between finishing breakfast and eating lunch and a sample
collected any time between finishing lunch and eating their
afternoon snack. Each urination between dinner and the FMV
the following day was also collected. To reduce variation in
timing of urine sample collection, participants were encouraged
to consume meals within a 2 h time slot (breakfast, lunch and
dinner) or 30min time slot (afternoon snack) as illustrated in
Figure 1. However, the participants were free to ignore this
advice and to provide a urine sample at the time most convenient
for them.
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FIGURE 1 | The MAIN Study timeline. Participants were asked to follow a low polyphenol diet prior to starting the experimental period. Where applicable, dinner was

provided on the “Pre” day (Monday). All foods and drinks for 3 consecutive experimental days (Tuesday, Wednesday, and Thursday) were provided. Participants

collected first morning void (FMV), fasting urines and spot urines post-breakfast and post-lunch each day during the experimental period, and a FMV and fasting urine

on the “Post” day. Any urination between finishing dinner and providing the FMV the following day was also collected. A fasting blood sample was taken on the “Post”

day only. Figure adapted from Lloyd et al. (27).

Participants were encouraged to keep hydrated and to drink
water ad libitum. To help maintain good hydration, participants
were given eight 500ml bottles of water per experimental week,
one to be drunk with/after each dinner, one to be drunk during
each experimental day and one to be drunk on the morning of
the “Post” day, prior to venipuncture.

Participants in Study 1 were randomized (random.org) at
enrolment to one of two dinner options on the “Pre” day. In Study
2, participants were randomized to one of 12 3× 3 Latin squares
(3 daily menu plans × 3 experimental weeks) at enrolment. The
order in which these participants consumed the three less healthy
dinners on the “Pre” day in each of the three experimental weeks
was randomized independently.

Compliance
Dietary compliance was assessed by participant self-report. They
were asked to record how much of each food/drink item they
ate. If some food was uneaten, the participant recorded the
amount eaten as 75, 50, 25% or 0, as appropriate. Dietary
substitutions, intrusions and protocol deviations were also
recorded. Participants recorded if they substituted any foods or
drinks of their own choosing for those provided by the research
team, ate or drank any additional items or prepared any of the
meals differently from that instructed.

A 1-day food diary was used to record all foods and drinks
consumed from 8pm on the evening before and throughout the
“Pre” day. This was used to check participant compliance with the

low polyphenol diet prior to commencement of the experimental
period each week.

To monitor compliance with both the urine collection
protocol and suggested meal times, participants completed a
Urine sample collection record and a Meal time record—
the latter asked specifically at what time they finished eating
each meal. This acted as a check on the accuracy of the
FMV and fasting urine samples collected. In addition, this
information allowed calculation of the time interval between
meal consumption and subsequent urine collections.

Study Measures
Information on participant socio-demographics (age, sex,
smoking status, and alcohol consumption), medical history,
current medications, and use of dietary supplements was
collected at enrolment.

In Study 1, weight, height and waist circumference were
measured on “Pre” and “Post” days of each experimental week.
In Study 2, height and waist circumference were recorded in
week 1 only, whilst weight was recorded weekly, pre- and post-
the experimental period. All anthropometric measurements were
made at the research unit by the same researcher.

Body weight was measured to the nearest 0.1 kg using a Tanita
body composition analyzer (TBF-300MA; Tanita Corporation,
Tokyo, Japan); height was measured to the nearest 0.1 cm using
a Leicester portable height measure (Chasmors Ltd, London,
UK). Waist circumference (at the point equidistant between
the costal margin and the iliac crest) was measured to the
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nearest 0.1 cm using a non-stretch tape measure over bare skin,
whenever possible. Waist circumference measurements were
taken in duplicate, or repeated until two measurements agreed
within 1 cm. Participants were asked to wear lightweight clothing
and removed their shoes for all measurements.

Habitual dietary intake was assessed at the beginning of each
study using a locally adapted version of the validated food
frequency questionnaire (FFQ) used in the European Prospective
Investigation into Cancer and Nutrition (EPIC) (33).

Tomonitor their physical activity (PA), each week participants
were asked to complete the International Physical Activity
Questionnaire (IPAQ) short form (34).

Blood and Urine Sample Collection
Participants collected urine samples at suggested times (Figure 1)
in a calibrated plastic jug and recorded the date, time and total
volume of collection. A 20ml aliquot from each urination was
retained and the rest discarded. If not at home, participants
kept urine samples in a cool bag containing a frozen cool block,
otherwise they stored them in a refrigerator before returning
them to the research team at the end of each experimental week.
It has been reported that no major changes in urinary metabolite
fingerprints occur when samples are stored in tubes held at+4◦C
for up to 72 h (35). We have shown recently that the metabolome
of spot urine samples collected, stored and transported as
described in this manuscript is stable with negligible microbial
growth at 4◦C and, specifically, that inclusion of preservatives
has no impact on data quality (36). For long-term storage,
urine samples were divided into 10 × 1ml aliquots [2ml screw-
cap microtubes (Starstedt, Germany)] which were free from
plasticisers (in house tests; data not shown)] and 1 × 5–10ml
aliquot (25ml Universal tubes; Starstedt) and stored at−80◦C.

Whole blood, serum and plasma were archived at −80◦C
for future lipidomic analysis and associated metabolite
fingerprinting. Venipuncture was performed on the “Post”
day of each week after a minimum 12 h overnight fast. After
filling, blood tubes were inverted several times, kept flat on ice
and processed within 2 h. Before processing, the height of the
blood in each tube was recorded to assess filling. Plasma was
separated from anti-coagulated blood collected in 1× EDTA and
2× lithium/heparin Vacutainer R© blood collection tubes (Becton
Dickinson, Oxford, UK) by centrifugation at 3,100 × g for 5min
at 4◦C in a Jouan CR3i centrifuge (Saint-Herblain, France).
Plasma was stored at −80◦C in 1ml aliquots in plasticiser-free
microtubes as described above. Serum was separated from
coagulated blood collected in 2 × gel Vacutainer R© tubes at least
30min after collection, aliquoted and stored as for plasma. One
tube of unprocessed whole blood, collected in an EDTA-coated
tube, was also stored at−80◦C.

A summary of the time points at which key data,
measurements and biological samples were collected is given in
Table 2 (Study 2) and Supplementary Table 3 (Study 1).

Metabolomic Analysis
The metabolomics methods implemented for biomarker
discovery have been published elsewhere (26, 27). All urine
samples were normalized by refractive index prior to analysis

to ensure all MS measurements were made within a similar
dynamic range. Essentially, urine samples were analysed by non-
targeted metabolite fingerprinting using high resolution (HR)
flow infusion electrospray (FIE) ionization mass spectrometry
(MS), acquired on an Exactive Orbitrap (ThermoFinnigan,
San Jose, CA) mass spectrometer coupled to an Accela
(ThermoFinnigan) ultra-performance liquid chromatography
system. Supervised Random Forest (RF) classification was
implemented to investigate the presence of distinctive urine
composition changes following consumption of specific meals.
A combination of accuracy, margins of classification and
area under the ROC (Receiver Operator Characteristic) curve
(AUC) were used to evaluate the performance of classification
models (37). To reveal potential explanatory signals responsible
for discriminating between baseline and post-prandial urine
samples, a combination of RF, AUC and Student’s t-test was
employed for feature selection (37).

The methodology used for biomarker identification has been
described in detail elsewhere (26, 27). For metabolite signal
annotation, accurate m/z values were extracted for high-ranked
explanatory signals and queried using MZedDB, an interactive
accurate mass annotation tool (38). Ultra High Performance
Liquid Chromatography-High Resolution MS (UHPLC-HRMS)
and Tandemmass spectrometry (MSn) allowed further structural
identification of putative biomarkers as previously described
(39). Refractive index adjusted urine samples were diluted with
100% MeOH (1:1, v:v) and centrifuged at 1,400 × g for 5
mins at 4◦C. Samples were analysed on an Orbitrap Fusion
Tribrid mass spectrometer (Thermo Scientific, Waltham, MA)
coupled to a Dionex Ultimate 3000 Ultra High Performance
Liquid Chromatography (UHPLC) system (Thermo Scientific).
Chromatographic separation was performed on a reverse phase
(RP) Hypersil Gold 1.9µm, 2.1 × 150mm column (Thermo
Scientific) using 0.1% formic acid in H2O (mobile phase A) and
0.1% formic acid in MeOH (mobile phase B) at a flow rate of 0.6
ml/min and column oven temperature at 60◦C. Each sample (5
µl) was analysed by following a gradient after 0.5min isocratic
A to 40 % B in 3.5min and subsequently to 100% in 5min. The
column was washed with 100% B for 2.5min and re-equilibrated
for 2.5min. Data were acquired in two runs using respective
positive and negative ESI mode. Each experiment consisted
of a full scan [110–1,100 m/z at 120,000 resolution and MS2

scans (ddMS2 OT HCD event, stepped Higher-energy collision
energies of 45, 60, 75%) and 15,000 Orbitrap mass resolution]
within a 1 s cycle time using selected targeted mass properties
for either positive or negative ionization mode between 1 and
12min runtime. The maximum injection time was 22ms and
the Automatic Gain Control (AGC) target of 1 × 104 was set
to be exceeded if there is parallelisable time. The spray voltage
was 3.5 kV for positive and 2.5 kV for negative ionization modes.
The temperatures of the ion transfer capillary and vaporiser were,
respectively, 342◦ and 258◦C with sheath and auxiliary gas set at
45 and 13 arbitrary units, respectively. The data were acquired
using Thermo Scientific Xcalibur version 4.2.28.14.

Metabolites were annotated to Metabolomics Standards
Initiative (MSI) level 1 (40) by matching masses, MSn and
retention times with authentic standards or with the respective
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TABLE 2 | Summary of data and biological samples collected during Study 2.

Data collected/measures Study time point

Experimental week 1 Experimental week 2 Experimental week 3
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Demographics (age, sex) & self-reported

anthropometrics

X

Eligibility criteria (medical history,

medications, supplements, diet & lifestyle)

X

Written consent X

Randomisation X

One day food diary X X X

Height & waist circumference X

Weight X X X X X X

Food frequency questionnaire X

IPAQ Physical activity questionnaire X X X

Dietary compliance record X X X

Meal time record X X X

Urine samples X X X X X X

Urine sample collection record X X X X X X

Blood sample (plasma, serum & whole

blood)

X X X

IPAQ, International Physical Activity Questionnaire.

aglycone (if the biotransformation product was unavailable). MSI
level 2 structural assignment was achieved by putativelymatching
signal behavior with that of authentic standards reported
in the literature (based upon physicochemical properties,
retention times and spectral similarity) or fragmentation pattern
alignment with data in public/commercial spectral libraries
[Lipid Maps, HMDB, Metlin, and Massbank (41–44)]. MSI level
3 structural identification indicated a putatively characterized
compound class.

RESULTS

Recruitment
As shown in Figure 2, 150 people expressed an interest, or
were invited to participate, in the studies over a 10 month
period: 40 people for entry into Study 1 and 116 people for
entry into Study 2 (six people took part in both studies).
Personal details, self-reported anthropometrics, medical history
and lifestyle information (smoking, alcohol consumption, dietary
supplementation) were provided by 70% people (n= 105). More
than 70% of those invited to participate in Study 1 had taken
part in earlier nutrition research studies at Newcastle University
and six were subsequently recruited. A further nine participants
learned about the study through word of mouth. The majority
(85%) of those who expressed an interest in Study 2 and were

screened for eligibility (69%) had learned about it through local
community and internal university advertising and contributed
66% of enrolled participants. The remaining participants had
either taken part in Study 1 (17%) or heard about the study
through word of mouth (17%). The desired sample size (n =

15) was met in Study 1 and the target recruitment (n = 30) was
exceeded by 20% in Study 2.

Baseline Characteristics of Participants
Participants aged 19–77 years (mean 46 years), of whom
57% were female, took part in the studies (Table 3). The
participants were generally healthy: arthritis, previous cancer
and hypertension were the most commonly reported medical
history. Smokers were excluded from the study and while 78%
participants were alcohol consumers, weekly consumption
(median 4.5 units) was well below the recommended maximum
levels. Mean BMI (24.1) was within the normal range but
almost 20% of participants had central obesity. Twenty-five
percent of participants reported taking dietary supplements with
fish oils/cod liver oil being the most commonly consumed
supplement. Self-reported physical activity levels were
relatively high−59% of participants were categorized as
highly physically active according to the IPAQ guidelines
(45). Self-reported sitting time, measured by the IPAQ, was
also high with participants reporting, on average, 6 h sitting

Frontiers in Nutrition | www.frontiersin.org 7 October 2020 | Volume 7 | Article 56101046

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Willis et al. Dietary Intervention for Biomarker Discovery

FIGURE 2 | Flow of participants during recruitment to the MAIN Study. Study 1 preceded Study 2; six participants took part in both studies.

time/day. This exceeds the 4 h sitting time/day cut-off point
considered a proxy for sedentary behavior detrimental to
health (46).

Participant characteristics were similar in both studies
but those recruited to Study 2 were slightly older (mean
1.4 years) and had a lower BMI. They were less likely to
report consuming alcohol, although weekly consumption
amongst those who did was higher (based on self-reported
weekly alcohol intake). Ten percent more participants
were categorized as having central obesity in Study 1 than
in Study 2.

Validation of Study Design for Discovery of
Novel Biomarkers of Dietary Exposure
In recent publications, we have reported that dietary exposure
biomarker discovery was possible within the context of the
present comprehensive food intervention mimicking a typical
UK diet in free-living individuals with minimal intrusion on
normal daily activities (26, 27). Validation of the overall MAIN
Study Newcastle design for efficient biomarker discovery was

assessed initially by confirming the presence of expected BFIs in
urine samples collected during and following experimental day
1 in Study 1 (26). Biomarker performance was further tested
using different food formulations and processing methods with
several types of meat, wholegrains, fruit and vegetables (26).
Additionally it was shown that the urine sampling methodology
for free-living study participants was non-intrusive and delivered
samples with high quality metabolome content using metabolite
fingerprinting (27).

Against this background, we now demonstrate that the MAIN
Study Newcastle design, coupled with metabolomic techniques,
made possible the discovery of new BFIs for use in monitoring
dietary intake in free-living individuals eating conventional diets.
As an example, the schematic of the dietary exposure biomarker
discovery strategy using BFIs of legumes is shown in Figure 3.
Participants were exposed to an evening meal (Figure 3A)
containing a typically consumed legume (garden peas). Random
Forest modeling of metabolite fingerprints representing urines
collected at bed-time following this meal and FMV urine
samples acquired earlier in the day showed that the urine
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TABLE 3 | Characteristics of the MAIN Study participants at baseline.

Study 1 Study 2 Total

Variable Mean (SD) Mean (SD) Mean (SD)

Demographics

Total [n] 15 36 51

Sex

Female [%] 53 58 57

Age [years] 45.3 (14.8) 46.7 (18.7) 46.3 (17.5)

Age range (min-max) [years] 22–63 19–77 19–77

Health Conditions [n]

Arthritis 0 4 4

History of cancer 1 3 4

Hypercholesterolemia 0 1 1

Hypertension 0 4 4

Irritable bowel syndrome 1 0 1

Osteoporosis 0 1 1

Stomach/bowel problems 0 1 1

Diet [n]

Vegetarian 0 1 1

Pescatarian 1 1 2

Food Allergies# 0 2 2

Did not eat pork for religious

reasons

0 1 1

Supplement use 4 9 13

Sport supplementU 1 0 1

Vitabiotics Osteocare6= 1 0 1

Guarana 1 0 1

Ginkgo Biloba 1 0 1

Aloe Vera 0 1 1

Garlic 1 1 2

Evening Primrose oil 1 1 2

Fish oils/cod liver oil 1 6 7

Glucosamine 0 2 2

Chondroitin 0 1 1

Zinc 0 1 1

Cranberry extract 0 1 1

Vitamin D 0 1 1

Vitamin C 0 1 1

Multivitamins 0 1 1

Lifestylea

Alcohol

Consumers [%] 87 75 78

Consumption [units/wk]b 4 (2.5–9) 6.5

(2–13.5)

4.5 (2–11)

Anthropometrics

Weight [kg] 71.9 (13.5) 66.8 (10.4) 68.3 (11.5)

Height [cm] 169.5 (9.0) 167.6 (7.7) 168.2 (8.0)

Waist circumference [cm] 84.5 (11.3) 82.5 (9.1) 83.1 (9.7)

BMI [kg m−²]c 24.9 (3.7) 23.7 (3.1) 24.1 (3.3)

Weight Status [%]

Normal 60.0 66.7 64.7

Overweight 33.3 27.8 29.4

Obese 6.7 5.6 5.9

Central Obesityd 26.7 16.7 19.6

(Continued)

TABLE 3 | Continued

Physical Activitye

Total PA [MET-mins/week] 2,747

(1,969–

5,058)

2,994

(1,866–

4,878)

2,937

(1,894–

4,878)

Activity Level [%]

High 69.2 54.8 59.1

Moderate 30.8 29.0 29.5

Low 0 16.1 11.4

Sitting time [mins/day]f 390

(285–480)

360

(240–435)

360

(255–480)

In this table data are presented as mean (standard deviation, SD) for continuous variables

and as number of participants or percentage (%) for categorical variables, except for

alcohol consumption, total physical activity (PA), and sitting time, which are given as

median (interquartile range). MET, metabolic equivalent of task.
asmokers were excluded from the study.
bparticipants who reported no alcohol consumption were excluded from this analysis.
cbody Mass Index (BMI) was calculated as [weight(kg)/height(m)2]. BMI cut-off points

for determination of weight status were: normal weight 18.5–24.9 kgm−2, overweight

25.0–29.9 kgm−2, obese 29.9–39.9 kgm−2.
dcentral obesity was determined using waist circumference as a proxy, with sex-specific

cut-off points (females ≥ 88 cm, males ≥ 102 cm).
eto classify individuals according to their self-reported PA, MET-minutes per week were

calculated and participants were grouped into three activity levels (high, moderate, low)

according to the cut-points defined in the International Physical Activity Questionnaire

(IPAQ) guidelines (45). Outliers were excluded along with datasets of individuals containing

missing values (n = 2). Reported duration of activity was truncated to 180min, where

necessary, according to the IPAQ data processing rules.
f sitting time is defined as a sedentary-related behavior (47) and spending 4 h or more

(≥240min) a day sitting is a proxy measure of sedentary behavior detrimental to

health (46).
#food allergies were to shellfish (1 person) and whole egg/milk (1 person).
Ueach serving contains 150mg of caffeine and 1.7 g creatine monohydrate, plus specific

amino acids, vitamins, fruit extracts, and black pepper extracts.
6=contains calcium, vitamin D, zinc, and magnesium.

samples had very distinctive compositions (Figure 3B). Feature
selection identified several metabolite signals that were strongly
explanatory of compositional differences between these two urine
classes. Further analysis of urine composition after consumption
of a range of legumes (beans, soy and peanuts) in other
MAIN Study Newcastle menu plans revealed several explanatory
metabolites in common, including m/z 204.98143. Detailed
structural analysis indicated that this particular compound is
pyrogallol sulpate (Figure 3C). The large relative increase in the
pyrogallol sulpate signal after consumption of peas in shown in
Figure 3D.

Following an identical rationale, a selection of potential
biomarkers of an extended range of foods is summarized in
Table 4. In addition to pyrogallol sulfate, pyrogallol glucuronide
and trigonelline emerged as generic biomarkers of legume
consumption (beans, peanuts, peas and soy). Eugenol
glucuronide and eugenol sulfate were elevated in urine
after consumption of curry and are potential biomarkers of
this food group. The metabolite, 2-furoylglycine, appeared
discriminatory for high temperature baked foods (e.g.,
pies) and toasted grain products (e.g., toasted bread). We
identified furaneol (sulfate and glucuronide) and mesifurane
after the consumption of strawberries and tomato products.
Higher concentrations of Maillard reaction intermediates
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2,4-dihydroxy-2,5-dimethyl-3(2H)-furanone (acetylformoine)
in both its sulfate and glucuronide forms and norfuraneol
sulfate (4-hydroxy-5-methyl-3(2H)-furanone) were observed in
urine following consumption of both high temperature-baked
and toasted grain products as well as strawberries, berries
and tomato. After the consumption of a low-calorie beverage,
urinary concentration of the sweetener acesulfame potassium
was elevated for up to 12 h (Table 4).

DISCUSSION

Success of Free-Living Study Design
Our aim was to design and implement a prolonged dietary
intervention study which would allow the collection of urine
samples for biomarker studies in a home or work environment.
Study recruitment achieved (Study 1) or surpassed (Study 2)
original expectations with 51 healthy adults consuming specific
foods and beverages, provided in toto by the research team.
Apart from a visit to the research unit to pick up food at the
beginning, and to deliver urine samples at the end, of each
experimental week, participants were free-living and had the
freedom to eat or not the meals and to interpret the cooking
instructions as they wished. A combination of no drop outs
and high compliance rates with regard to meal consumption (>
80%), suggests that this food intervention strategy was highly
acceptable to participants [see Lloyd et al. (27) for details
on compliance].

Participants collected urine samples within pre-specified time
frames each day and fasting blood samples were collected in
the morning of the final (“Post”) day of each experimental
week. This aspect of the study was designed to be as minimally
intrusive as possible to investigate the potential for such
urine collections to be incorporated into future larger-scale
epidemiological studies and surveys. Data associated with urine
collection has been described in a recent publication (27) and
indicated that the most successful urine type collected within this
cohort was the FMV and the post-dinner spot sample (both at
99% compliance). The fasting sample was the least successfully
collected sample. Evidence that the urine sampling methodology
imposed low burden on participants and delivered samples with
high quality metabolome content has been published (27). From
a metabolomics perspective, the overall experimental design was
validated by confirming the presence of known BFIs in urine
samples after exposure to menu plan 1 (26).

Discovery of Novel Exposure Biomarkers
For BFIs to have utility in assessing dietary intake as a
whole, it is essential that the dietary exposure biomarker
panel is as comprehensive as possible. To date, the focus on
BFI discovery has centered largely on healthy foods of high
public health significance (50, 51) rather than more unhealthy
foods containing high levels of fat, sugar and salt (52–54).
We used our intervention design in a free-living population
to aid the discovery of novel biomarkers to help complete
coverage of the UK Eatwell Guide (25) whilst aiming to monitor
comprehensively both the whole diet and the range of cooking
methods used in populations.

UK government policy recommends the consumption
of more beans and pulses and less red and processed meat
(25). However, there is very limited data on potential
urinary biomarkers for non-meat protein-rich foods, such
as beans, lentils, and other pulses (55, 56). Here we propose
pyrogallol sulfate and glucuronide as potential markers of overall
legume consumption (beans, peanuts, peas, soy). Additionally,
trigonelline, despite being well-documented as a coffee (57) and
pea consumption biomarker (58), and most recently, a novel
candidate marker for soy (59), is, in fact, a general legume BFI.
However, whilst potential BFIs for legumes, these markers are
not exclusive to pulses. Pyrogallol is present in low quantities
in beer (60), cocoa and coffee and is excreted as a sulfate after
green tea and nut consumption (61, 62). These findings illustrate
the need to utilize urine samples from a comprehensive food
intervention to investigate specificity to individual foods or
food groups. If the dietary source(s) of trigonelline needed to be
identified further, then the relative contribution of coffee and soy
consumption could be estimated using additional discriminatory
biomarkers such as caffeine and daidzein sulfate, respectively
(57, 63). These biomarkers could be added to a panel of BFIs
to monitor protein-rich food intake, together with anserine
and TMAO (Trimethylamine-N-oxide) to indicate poultry and
fish intake and carnitine and carnosine to indicate red meat
consumption (16, 64).

It still remains challenging to assess the overall “quality”
of meat products that are consumed since processed meat
products have very variable levels of striated muscle content
(19, 65). However, it is possible that BFIs of meal components
strongly associated with generally unhealthy diet patterns (66)
such as a deep fried-potato (22) or mechanically recovered
meat could be highly informative (19, 65). These issues will
need to be addressed in the future to provide a comprehensive
panel of biomarkers that can characterize and quantify eating
habits in toto.

Concentrations of eugenol glucuronide and eugenol sulfate
in urine increased after the consumption of curry possibly
because clove (a common component of curry) is rich in
eugenol (67). Having biomarkers that provide information
about the cooking and processing methods used with foods
would be an important addition to biomarkers that reflect
the raw ingredients of the dish/meal because different cooking
methods can change the quality and therefore healthiness of
a food. Obtaining this level of information can be difficult
using self-reported dietary assessment instruments, especially
widely-used food frequency questionnaires. To date, a few
such biomarkers of high-temperature cooked meats have
been described (68). In the present study, the marker 2-
furoylglycine appeared discriminatory for thermally treated
foods including pies, grains and toasted wheat products
(e.g., toasted bread). This marker has been described as
an acute coffee consumption biomarker (69) which results
from furan metabolites that arise through roasting of coffee
beans via the Maillard reaction. Our metabolomics approach
identified several other thermally treated/heated food Maillard
products—furanones—including 2,4-dihydroxy-2,5-dimethyl-3-
furanone sulfate and glucuronide and norfuraneol sulfate,
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FIGURE 3 | Schematic of the dietary exposure biomarker discovery strategy within the context of a comprehensive food intervention mimicking a typical UK diet in

free-living individuals. (A) Meal items consumed at Dinner time on Menu plan 3 [details in Lloyd et al. (27)]; (B) Multi-dimensional scaling (MDS) of Random Forest (RF)

proximity values of the FIE-HRMS urinary fingerprint data of first morning void and bed-time urines from the same day that Menu plan 3 was consumed; (C)

Annotation of a metabolite signal highly explanatory of legume exposure on several experimental days when legumes were included on the menu; (D) Box-plots

showing the association between pea consumption and the relative intensity of the pyrogallol sulfate signal [M-H]1− in urine samples taken throughout the day that

Menu plan 3 was eaten.

which have been detected as aglycones in bread crust and
popcorn, respectively (70, 71), but not reported previously in
urine samples. 2,4-dihydroxy-2,5-dimethyl-3-furanone sulfate
and glucuronide have been reported as markers for the intake
of deep-fried potatoes, but, due to their presence in other
foods, these compounds are not likely to be specific (22).
Although furanones are formed by the Maillard reaction
during the thermal treatment of food, they can also be
biosynthesized by plants, microorganisms, and insects [as
reviewed by Slaughter (72)]. Other metabolites structurally
identical to Maillard products, including furaneol and its methyl-
ether derivative mesifurane, are well-documented natural aroma
components in fruits such as pineapple, raspberry, mango,
grapefruit, tomato, and strawberry (73) and the glucuronide

and sulfate of these compounds have been reported in urine
after strawberry consumption (48, 74). In the current study,
we confirmed this observation and suggest that furaneol
glucuronide and sulfate, and mesifurane sulfate, are generic
biomarkers of berry and tomato consumption (Table 4).
Assessment of the relative concentrations of some of these
chemicals and strawberry/berry/tomato specific compounds
{i.e., pelargonidin [strawberry], hydroxyphenylvalerolactone
[procyanidin-rich food (75)] and lycopene in plasma for tomato
(76)}, could provide rich information on cooking methods
and could, potentially, distinguish between berry fruit and
tomato consumption.

Foods high in added sugar are not needed in the diet
and should only be consumed in very small amounts (25).
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TABLE 4 | Discovery of novel biomarkers for foods where biomarkers have yet to be discovered in relation to UK Public health policies.

Food exposure source Biomarker Ionization products MSI level

Legumes Pyrogallol (1,2,3-Trihydroxybenzene)

glucuronide

[M-H]1− 1

Pyrogallol (1,2,3-Trihydroxybenzene) sulfate [M-H]1−, [M-H]1− 13C, [M-H]1− 34S 1

Trigonelline [M+H]1+13C, [M+Na]1+, [M+Na]1+ 13C,

[M+K]1+, [M+K]1+13C, [M+K]1+41K

1

Curry (clove) Eugenol glucuronide [M-H]1−, [M-H-gluc]1−, [M-H-gluc]1−13C 1

Eugenol sulfate [M-H]1−, [M-H]1−34S 1

High temperature baked and toasted grain products 2-Furoylglycine [M+Na]1+, [M+K]1+, [M+2Na-H]1+,

[M+KNa-H]1+, [M-H]1−
1

Strawberry, berries, and tomato Furaneol sulfate [M-H]1−, [M-H]1−13C, [M-H]1−34S 1

Furaneol glucuronide [M-H]1− 1

Mesifurane

(2,5-Dimethyl-4-methoxy-3(2H)-furanone)

sulfate

[M-H]1− 2 (48, 49)

High temperature baked and toasted grain products

and strawberry, berries, and tomato

Norfuraneol sulfate

(4-hydroxy-5-methyl-3(2H)-furanone)

[M-H]1−, [M-H]1−34S 1

2,4-Dihydroxy-2,5-dimethyl-3(2H)-furanone

sulfate

[M-H]1− 3

2,4-Dihydroxy-2,5-dimethyl-3(2H)-furanone

glucuronide

[M-H]1−, [M-H]1−13C 3

Low calorie drinks Acesulfame potassium [M-K]1−, [M-K]1−13C, [M-K]1−34S 1

MSI level 1, matching masses, MSn and retention times with authentic standards or with the respective aglycone; MSI level 2, structural assignment achieved by putatively matching

signal behavior with that of authentic standards reported in the literature or fragmentation pattern alignment with data in public/commercial spectral libraries; MSI level 3, structural

identification indicated a putatively characterized compound class.

Urinary sucrose has previously been shown to be a marker
of acute sugar exposure (53) and appeared discriminatory of
the consumption of high sugar products, such as sweetened
breakfast cereals, in the present study (26). Many food
manufacturers are now substituting sugars in traditionally
sugar-sweetened beverages with low-calorie sweeteners, to help
combat risks associated with high sugar intake (77). The
urinary concentration of the sweetener acesulfame potassium
was elevated after the consumption of a low-calorie beverage
and remained so for up to 12 h after consumption (Table 4).
This low-calorie sweetener is a known component of the
chosen beverage and, in addition to other commonly consumed
sweeteners, is a potential biomarker of recent low-calorie
beverage intake (78).

Strengths and Limitations of Study Design
The MAIN Study Newcastle is one of the largest food
interventions reported to date using metabolomics approaches
to discover new, and to help validate existing, biomarkers of
foods frequently consumed in the UK. A key objective was
to design an efficient and acceptable intervention strategy that
would expose study participants to foods encountered commonly
in the UK diet. We established a successful food exposure
strategy using information on consumption frequencies, food
groupings and eating habits from the UK NDNS data (31)
together with Public Health England policy advice (25) using
standard portion sizes (32). We demonstrated that it is possible
to design menus that mimic major features of a typical UK
diet and are suitable for short-term randomized controlled

dietary interventions “experimental periods” lasting only 3 days.
Importantly each experimental period contained menu plans
organized to emulate conventional UK eating patterns with
a breakfast, lunch, afternoon snack and dinner that differed
each day. This intervention strategy may be of value for the
design of future studies of BFI discovery and validation in
other populations globally. This design differs from many other
reported biomarker discovery studies that utilized either single
meals/ingredients in isolation (15, 30, 79, 80) or repeated menus
(81) or depended on supplementation of the habitual diet
(82, 83). Additionally, the overall menu design ensured that
participants were exposed to several formulations of individual
foods. In other work within the MAIN project, we have
demonstrated the value of spot urines for assessing dietary
intake (29). The present protocol required all study participants
to store 20ml urine samples in their home fridges for up
to 5 days before transporting them to the research unit at
the end of each experimental week. We have checked that
urine samples collected at home and stored at 4◦C are stable
and not subject to microbial degradation (36). When outside
the home, small cool bags were supplied for temporary urine
storage. All urine spot samples were collected with success rates
exceeding 90% showing that this approach to urine sampling
for biomarker studies is highly acceptable. Additionally, the
collection of multiple spot urines allowed us to investigate
systematically the utility of home collected spot urine samples

taken at various times in the diurnal feeding and fasting cycle
for BFI discovery [see Lloyd et al. (27)]. Based on these
observations we suggest that the protocols used in the MAIN
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study have overcome many of the design challenges summarized
in Table 1.

From a biomarker discovery perspective, an important finding
from Study 1 was that the consumption of a standardized
evening meal prior to the experimental period had little impact
on the ability to discover BFIs [see Lloyd et al. (26)]. This
finding simplified the design of the wider food intervention
in Study 2 and reduced the burden on the study participants
by requiring only a limit on the consumption of polyphenol-
rich foods prior to each experimental period. Furthermore,
the characteristics of the MAIN study participants (Table 3)
in respect of sex, age, adiposity, physical activity and general
health indicate that BFIs discovered in this study are likely to
be generalizable to the wider population. Importantly, in the
MAIN Study Newcastle, all foods and beverages were prepared
and consumed by free-living participants in their own homes
rather than in a controlled clinical facility (24). This strategy
ensured that metabolomic analyses were undertaken within
the context of normal eating behaviors and in real world
meal patterns, rather than following consumption of discrete
items in isolation. In addition, this study design took into
account the inherent variability associated with unsupervised
individuals preparing meals and eating them in their own
homes and collecting urine samples within flexible time ranges.
Importantly, the comprehensiveness of this food intervention
provides opportunity to examine the specificity of putative
biomarkers in relation to exposure to a wide range of foods within
the same biobank of samples.

Although the MAIN study had great value for the discovery
of putative BFIs, some sources of variability were not considered.
For example, the study employed relatively healthy individuals
and we excluded those with current disease or disease treatment
which might have altered the metabolism of ingested foods. As
a consequence, future studies should explore the robustness of
biomarkers of food intake in population groups with poorer
health, particularly those who are taking prescribed medications
that affect the P450 enzyme consortium or the gut microbiome.
Our cohort of participants included one individual with irritable
bowel syndrome (IBS)—contrary to the study inclusion criteria—
but it seems unlikely that this would have had a major effect
on the overall findings. Similarly, our cohort included three
participants who were slightly obese (BMI 32.2–33.0 kg/m2)
and, again, it is unlikely that this infringement of the exclusion
criteria will have affected the findings. It is possible also
that participant genotype will alter the pattern of metabolites
produced from a given food constituent and so for this reason
further work should investigate the impact of common variants
in the genes encoding Phase 1 and Phase 2 enzyme systems,
an example being the P450 consortium (14), on urinary BFIs.
It should be noted that several of the putative BFI reported
here are biotransformation products (sulfates and glucuronides)
that could be identified to the level of the aglycone only (i.e.,
pyrogallol, eugenol, furaneol), because chemical standards for
the biotransformed products are not available commercially at a
reasonable cost.

Future Work
In previous publications, we have shown that when using a
combination of non-targeted metabolite profiles and targeted
BFIs for assessment of dietary patterns, spot samples are suitable
replacements for 24-h urine samples (29). The collection of
multiple spot urine samples throughout the day using a home
urine sample collection method will enable us to determine
which samples (e.g., FMV or bed-time) or combinations thereof,
and how many samples, are optimal for assessment of eating
behavior using BFIs. It is anticipated that multiple, well-
spaced spot samples collected over several weeks would be
able to capture biomarker data accurately, reflecting habitual
exposure to a wide range of food groups in a similar way
to that achieved using multiple 24 h recall methods. The
ultimate aim of our studies is to deploy a comprehensive
BFI panel to aid in monitoring habitual dietary exposure
in clinical trials or population surveys at a range of scales.
With this aim in mind, we have developed methodology for
urine collection using vacuum transfer technology which is
suitable for routine use and may provide a scalable, cost-
effective means to collect urine samples and to assess dietary
intake in large-scale epidemiological studies and in public health
surveys (36).
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Background: Household food purchasing behavior has gained interest as an

intervention to improve nutrition and nutrition-associated outcomes. However, evaluating

food expenditures is challenging in epidemiological studies. Assessment methods that

are both valid and feasible for use among diverse, low-income populations are needed.

We therefore developed a novel simple annotated receipt method to assess household

food purchasing. First, we describe and evaluate the extent to which themethod captures

food purchasing information. We then evaluate within- and between-household variation

in weekly food purchasing to determine sample sizes and the number of weeks of data

needed to measure household food purchasing with adequate precision.

Methods: Four weeks of food purchase receipt data were collected from 260

low-income households in the Minneapolis-St. Paul metropolitan area. The proportion

of receipt line items that could not be coded into one of 11 food categories (unidentified)

was calculated, and a zero-inflated negative binomial regression was used to evaluate

the association between unidentified receipt items and participant characteristics and

store type. Within- and between-household coefficients of variation were calculated for

total food expenditures and several food categories.

Results: A low proportion of receipt line items (1.6%) could not be coded into a

food category and the incidence of unidentified items did not appreciably vary by

participant characteristics. Weekly expenditures on foods high in added sugar had higher

within- and between-household coefficients of variation than weekly fruit and vegetable

expenditures. To estimate mean weekly food expenditures within 20% of the group’s

usual (“true”) expenditures, 72 households were required. Nine weeks of data were

required to achieve an r = 0.90 between observed and usual weekly food expenditures.

Conclusions: The simple annotated receipt method may be a feasible tool for

use in assessing food expenditures of low-income, diverse populations. Within- and
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between-household coefficients of variation suggest that the number of weeks of data

or group sizes required to precisely estimate usual household expenditures is higher for

foods high in added sugar compared to fruits and vegetables.

Keywords: nutrition methodologies, household food purchasing, food receipt method, within-household variation,

between-household variation, epidemiology

BACKGROUND

Food purchasing behavior has gained interest as an intervention
target to improve nutrition and nutrition-associated health
outcomes in the United States (1–4). Evidence that the nutritional
quality of food purchases corresponds with dietary quality
(5, 6) has prompted numerous interventions targeting food
purchasing behavior (3, 4). Low-income populations have
generated particular attention due to socioeconomic differences
in diet quality (7, 8). However, valid and feasible methods
for measuring food purchasing among low-income households
are limited.

Existing methods to evaluate household food purchasing
behavior—including home food inventories (9–12), bar code
scanners (13, 14), point of sale data (15–17), food purchase
records (18–21), and food receipts (22–25)—have unique
strengths, but their weaknesses present noteworthy challenges
for implementation, validity, and capturing the full range
of purchase information (Table 1) (12). Furthermore, there
are important differences in food purchasing by household
socioeconomic status (7, 8). Assessments methods therefore
need to be evaluated among low-income households to ensure
that the detail and variation in household expenditures is fully
captured (12).

Food receipt methods are appealing because they can be used
to assess food expenditures from a variety of retailers and for
all types of foods (12, 22–25). In the annotated food receipt
method, participants collect receipts and transcribe information
onto forms to clarify missing details and unclear abbreviations
(e.g., items described as “dairy” rather than “skim milk,” or
“Pillsbury white cake mix” listed as “pills white”) (24, 25).
However, participant burden is high and literacy is required. In
contrast, participants submit receipts without transcription or
annotation in the food receipt collection method (22). Although
this method substantially lowers participant burden, many details
that receipts generally lack may not be captured.

To capitalize on the detailed information possible using
the annotated food receipt method while reducing participant
burden, a simple version of the annotated food receipt method
(the “simple annotated receipt method”) was developed for use in
a prospective trial (26). Participants are not required to transcribe
all purchase information using this newly developed method;
instead, they annotate items with vague or unclear descriptions
directly on the receipts.

This study has two primary aims. First, we describe and
evaluate the simple annotated receipt method using data from
the aforementioned trial. We illustrate the food purchasing
information that may be captured using this method. We
also evaluate the extent to which receipt items could not be

identified due to inadequate annotation and whether this varies
by participant characteristic and store type. To date, this is the
first study to describe and evaluate this method.

Second, we evaluate sources of variation in household
food purchasing to help guide study designs using this
method. Household food purchasing behavior is often evaluated
for one of three research objectives: (1) to compare mean
household expenditures between different groups (e.g., control
vs. intervention groups), (2) to rank households by expenditures
(e.g., into quartiles), (3) or to assess an individual household’s
expenditures (e.g., change in expenditures before and after
intervention) (27, 28). Thus, this paper addresses practical and
essential questions: How many households are needed in a
study group to assess the group’s usual (“true”) food expenditure
pattern or to rank households with reasonable precision? How
many weeks of data are needed to precisely evaluate a household’s
usual food expenditure?

Evaluating a household’s usual expenditures requires an
understanding of the sources of variation in week-to-week
spending. Similar to dietary intake—which varies daily
and requires multiple days of assessment—household food
expenditures likely vary from week to week, necessitating
multiple weeks and adequate sample sizes to ascertain usual food
expenditures (28, 29). Group sizes and data collection periods
may also vary by food group, analogous to the differing number
of dietary assessments needed to evaluate intake of specific
nutrients (28).

We quantify within- and between-household variation in
weekly expenditures for all foods and beverages and for two
specific categories of food: fruits and vegetables, and foods high
in added sugar (sugar-sweetened beverages [SSBs], candy, and
sweet baked goods). Using these values, we estimate the group
size needed to estimate a group’s average food expenditures.
We also estimate the number of weeks of data needed to rank
household expenditures or estimate a household’s usual food
expenditures with adequate precision. Results from this paper
can help researchers design efficient studies of food purchasing
behavior (27–29). To our knowledge, this is the first study to
provide these important metrics.

MATERIALS AND METHODS

Study Population
This paper is a secondary analysis of data from a prospective
trial (26, 30, 31). Briefly, low-income households in the
Minneapolis-St. Paul, Minnesota, metropolitan area were
recruited between August 2013 and May 2015. Eligibility
criteria included: (1) not currently enrolled in the Supplemental
Nutrition Assistance Program (SNAP) or planning to enroll
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TABLE 1 | Description and summary of strengths and weaknesses of existing methods to assess household food purchasing.

Method Description Strengths Limitations

Home food inventories

(9–12)

Collected by study staff or

participants. Catalogs foods available

in the home at the time inventory is

completed

• Low participant burden

• Relatively easy to complete

• Multiple administrations of the inventory

required for accurate assessment of usual

household food available

• Foods purchased and consumed outside

home are not ascertained

• Captures types of food (e.g., soft drinks) but

not quantity (e.g., fluid ounces)

Bar code scanners

(12–14)

Participants scan bar codes for all

foods purchased. Researchers

provide codes to participants for

unpackaged items.

• Does not require participant literacy

• Can provide rich data on types and

quantities of packaged foods

• Scanners can be expensive, susceptible to

hardware malfunctioning, and rely on external

database of codes to match bar codes to

food items.

• May not capture foods that typically lack bar

codes such as bulk items, fresh produce and

meats in grocery stores, and food purchased

at restaurants.

Point of sale data

(12, 15–17)

Uses data available from food retailers

on customer food purchasing

• Minimal participant burden

• Can provide rich data on types and

quantities of foods

• Linking data from vendors with individual

shoppers can be challenging due to

proprietary nature of data, privacy concerns,

and technological issues

• Unable to capture comprehensive

assessment of household food purchases

since it is generally limited to one retailer

Food purchase record

(12, 17–21)

Participants keep a written record of

all foods purchased, including

description of each item and quantity.

• Offers detailed and comprehensive

information about types and quantities of

food purchased over time

• Requires participant literacy

• High participant burden

Food receipt collection

(12, 22, 23)

Participants collect and mail all

receipts for food purchases. Receipt

purchases are coded by study staff.

• Offers details about expenditures over time

• Low participant burden

• May not be able to code purchases with

insufficient detail on receipt, including

specific types of food (e.g., “produce” vs.

“tomatoes”) and quantities (e.g., fluid ounces)

Annotated food receipt

(12, 24, 25)

Participants collect receipts for food

purchases and transcribe receipt

information onto a form to provide

details not available on receipts

• Offers detailed information about all food

and beverage purchases

• Requires participant literacy

• High participant burden

during the study; (2) household income < 200% the federal
poverty rate or participating in a government program
that automatically qualifies households for SNAP (e.g., the
Diversionary Work Program in Minnesota); (3) adult in
the household primarily responsible for food shopping
is able to read and speak English and participate in the
study. Some SNAP eligibility criteria, such as citizenship
status, were not applied. The University of Minnesota
Institutional Review Board approved all aspects of the study
(ClinicalTrials.gov: NCT02643576).

Participants were asked to annotate and submit all household
food purchase receipts throughout the study using the
protocol described in greater detail below. At the baseline
visit, participants completed a survey to assess demographic
characteristics. Household food security was evaluated using
the US Household Food Security Survey Module: 6 Item Short
Form (32).

Participants who completed baseline measures and submitted
at least 2 weeks of receipts received a study debit card with
monthly benefits for 12 weeks. Households were randomized into
one of four study arms, which varied with respect to whether a
financial incentive was provided for fruit and vegetable purchases
and whether foods high in added sugars could be purchased with

benefits. Analyses for this paper are limited to the baseline period
of the trial.

Simple Annotated Receipt Method
Receipt Collection
Research staff met participants in-person to provide verbal
and written instructions, and materials necessary for receipt
collection. Participants were instructed to collect all food
purchase receipts and to query other household members for
receipts. Receipts were requested from both restaurants (retailers
that serve or sell ready-to-consume food) and food retailers
(retailers that primarily sell unprepared food). This paper focuses
on receipts from food retailers.

Participants were instructed to annotate food retailer receipts
if the item description was vague or unclear. To annotate receipts,
participants were instructed to write details directly on the receipt
next to the item lacking information. For example, an item
described as “produce” would need annotation to specify the type
of produce (e.g., “tomatoes”). Annotation was not requested for
quantities of food purchased. Missing food receipt forms were
requested for purchases without receipts, such as purchases made
at retailers that do not provide receipts (e.g., farmer’s market)
or lost receipts. The missing receipt form included details such
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as the store name, date of purchase, food items purchased,
quantity purchased, price per item, and total price. As part of
the instruction process, study staff reviewed a sample annotated
receipt and missing receipt form with participants.

All receipts were to be mailed to study staff on a weekly basis
using pre-addressed, postage-paid envelopes, which were pre-
labeled with the participant ID number, dates comprising the
week of receipt collection, and the target mailing date to facilitate
tracking by staff. Participants were mailed a gift card as a reward
for receipt collection every month. The reward amount was pro-
rated, with $30 provided if 4 weeks of receipts were submitted,
and lesser amounts for three ($15), two ($10), and one ($5) week.
Research staff contacted participants to encourage submission if
receipts were not received.

Food Retailer Receipt Coding
Receipts were first sorted into two categories: restaurant
purchases and food retailer purchases. Restaurants were classified
as full-service, limited-service, or unable to determine restaurant
type. This study focuses on food retailers, which were further
classified as supermarket/market (e.g., Cub, Aldi, farmers
market), natural food store (e.g., co-ops), warehouse store (e.g.,
Costco, Sam’s Club), drug store (Walgreens, CVS), convenience
store/gas station (including dollar stores), superstore (e.g., Target,
Walmart), or other (e.g., Home Depot, Menards) (24). Each
receipt was then assigned a unique identifier to specify the
participant, week, and receipt number.

Items on food retailer receipts were classified into one of
11 food categories. The choice of food categories reflects the
primary aims of the original trial, which was to evaluate two
food categories: fruits and vegetables, and foods high in added
sugars (sugar-sweetened beverages [SSBs], sweet baked goods,
and candies). Items with potential substitution effects (e.g., milk,
savory snacks) weremeasured, while items of lesser interest to the
trial (e.g., diet sodas) were categorized as “other food” purchases.

Food items that lacked sufficient detail to code into one of
the 11 food categories were coded as having “insufficient detail
to code” (unidentified). Before coding an item as unidentified,
study staff followed a series of procedures to obtain missing
information. First, an online search was conducted using the
store name, item, code, and/or abbreviation. When available,
the item’s Universal Product Codes was searched (http://www.
upcdatabase.org). Stores were contacted to verify the item for
successful online searches. If these procedures failed to provide
necessary details, items were coded as unidentified.

For each receipt, the total number of line items and
expenditures were calculated for overall food and beverages,
and for each of the food categories. Totals for each category
were determined by summing across line items classified
into the category. Quantities or weight of foods purchased
was not considered in the tabulation. For example, a line
item of “apples” would count as a frequency of one in
the tally for receipt items for fruits, and total expenditure
amounts are reported rather than per unit prices. The first
10 receipts coded were reviewed for accuracy by a second
staff member. Errors identified were reviewed and corrected.

Spot checks of coded receipts were conducted throughout for
quality assurance.

Statistical Analysis
Analyses for this paper are restricted to participants who
submitted at least 3 weeks of food retailer receipts during
the 4-week baseline period. First, we described the food
purchasing information captured by the method using
total number of receipt line items and expenditures for
overall food expenditures, each of the 11 food categories,
and items categorized as having insufficient detail to code
(unidentified). Food purchasing data was also evaluated
by store, which was collapsed into four types based on
previous literature and low frequency of receipts in some
categories: Grocery stores, Convenience stores/Gas Stations,
Drug stores, and Superstores/Mass merchandiser/Warehouse
club store.

Second, we used a zero-inflated negative binomial model
to evaluate whether unidentified line items on receipts were
associated with participant characteristic or store type. This
model was used because the distribution of unidentifed items
was heavily skewed, with 94% of receipts submitted without
any unidentified items. Likelihood ratio tests confirmed zero-
inflation and overdispersion, supporting the model choice.
The model simultaneously evaluates two processes. The logit
portion of the model evaluates participant characteristics
and store types associated with submitting receipts with
unidentified items, yielding odds ratios (OR). The negative
binomial model evaluates the incident rate ratios (IRR) of
unidentified items by participant characteristics and store
types among those who submitted at least one receipt with
an unidentified item. Participant characteristics of interest
were age, gender, race/ethnicity, marital status, household
size, education level, annual household income, and food
security. A dummy variable was used to indicate the store
type. The model was adjusted for the total number of line
items per receipt. A p < 0.05 was the criterion for claiming
statistical significance.

Third, a mixed effects regression model with an unstructured
covariance and restricted maximum likelihood estimator
was used to estimate the mean, within-household variance
(σ 2

w), and between-household (σ 2
b
) variance for overall food

expenditures, fruits and vegetables, and foods high in added
sugar. We calculated within- and between-household coefficients
of variation (CVw and CVb, respectively) as percentages using
the following equations (29): CVw = (σw/mean) x 100;
CVb = (σb/mean) x 100. The ratio of within- to between-
household variation, the variance ratios, were calculated as σ 2

w

/σ 2
b
(which is equivalent to [CVw/CVb]

2).
Using these values, we calculated the group size or weeks

of data needed to estimate usual (or “true”) food expenditures
with adequate precision. The usual household food expenditures
refers to the hypothetical “true” average of the study sample
about which a household’s expenditures vary during the period of
data collection. We assume that within- and between-household
variation observed in our sample is due to random variation
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TABLE 2 | Baseline characteristics of households using the simple annotated

receipt method as part of a trial evaluating food purchasing behavior (n = 260).

Characteristic N (%)

AGE, YEARS

Under 25 14 (5.4)

25–44 115 (44.2)

45–64 113 (43.5)

Over 65 18 (6.9)

GENDER

Male 48 (18.5)

Female 212 (81.5)

RACE/ETHNICITY

White, Non-Hispanic 77 (29.6)

Black, Non-Hispanic 131 (50.4)

Other, Hispanic 52 (20.0)

MARITAL STATUS

Single, never married 117 (45.2)

Married or partnered 72 (27.8)

Separated/divorced/widowed 70 (27.0)

HOUSEHOLD SIZE

1 person 58 (22.3)

2 people 58 (22.3)

3 people 61 (23.5)

4 or more people 83 (31.9)

EDUCATION LEVEL

High school graduate or less 75 (28.9)

Some college/associates degree 138 (53.1)

College graduate or higher 47 (18.1)

ANNUAL HOUSEHOLD INCOME

$14,999 or less 79 (33.2)

$15,000—$34,999 114 (47.9)

$35,000 or more 45 (18.9)

HOUSEHOLD FOOD SECURITY STATUS

High or marginal 53 (19.3)

Low 96 (34.9)

Very low 126 (45.8)

about the hypothetical average, and not due to a changes in
habitual spending patterns (33).

The number of households in a group (ng) required
to estimate group mean expenditure using a single
week of expenditure data was calculated as follows:
ng = Z2

α x [(CV2
b

+ CV2
w)/D

2
0], where D0 is a specified

percentage deviation of the group’s usual expenditure, and Zα

is the normal deviate for the percentage of times the measured
expenditure should be within a specified limit (29). For the
purposes of this study, we evaluated estimates with 95% CIs
(i.e., Zα = 1.96), with D0 varying between 10 and 50%. The
number of weeks of expenditure data (nr) needed to obtain a
given Pearson correlation coefficient, r, between observed and
unobserved usual expenditures was also calculated (27, 33). The
equation is as follows: nr = r2/(1 − r2) x (σ 2

w /σ 2
b
), where

r varied between 0.75 and 0.95. Finally, the number of weeks

of expenditure data (nw) required to estimate mean household
expenditures within the specified percentage deviation (D0)
from the household’s usual (“true”) expenditure was calculated
as follows (29): nw = (Zα x CVw/D0)

2. D0 varied between 10
and 50% and Zα was fixed at 1.96 to derive 95% CIs.

RESULTS

Of the 279 participants enrolled in the study, 260 submitted at
least 3 weeks of food receipts during the baseline period and were
included in the analyses. Participant characteristics are presented
in Table 2. To summarize, most participants were female, over
half were African-American, and most reported low or very low
food security.

Food Purchase Information
Over a 4-week period, households included in the analyses
submitted a total of 5,635 receipts. Of these, 2,094 receipts
from restaurants and 11 receipts for non-food purchases were
excluded from analyses. Over 98% of the receipts were submitted
as original receipts; 1.5% (n = 52) were submitted as missing
receipt forms. Over the 4-week data collection period, households
submitted on average 13.6 receipts (95% CI: 12.5, 14.7). This
translates to 3.4 receipts per week (95% CI: 3.1, 3.7), with an
average of 8.3 (95%CI: 7.6, 9.0) line items per receipt. On average,
households spent $23.30 (95% CI: $21.00, $25.51) per receipt.

Figure 1 shows the average household food expenditures
over a 4-week period for selected food categories. On average,
unidentified items accounted for $5.81 (95% CI: $4.25, $7.37)
of household food expenditures over the 4-week period.
Fruit and vegetable expenditures accounted for $15.41 (95%
CI: $13.04, $17.77) and $16.34 ($13.90, $18.78), respectively.
Households spent an average of $13.45 (95% CI: $11.45,
$15.45) on sugar-sweetened beverages (SSBs) over the 4-week
period. Table 3 presents average household food expenditures
and line items submitted over a 4-week period for all
categories of food. Foods coded as “other” –food and beverages
that did not fit into the 11 food categories of interest—
comprised the largest share of expenditures, accounting for
$180.00 (95% CI: $162.52, $197.47) of food expenditures
and 58.7 (95% CI: 53.2, 64.2) receipt line items over a 4-
week period.

Figure 2 shows the average household food expenditures over
a four-week period by store type. Households spent the most
money at grocery stores ($169.34, 95% CI: $150.37, $188.30) and
superstores/mass merchandisers/warehouse club stores ($115.68,
95% CI: $98.89, $132.46). Table 3 presents average household
food expenditures and receipt line items submitted over a 4-week
period by different store types. Grocery stores and superstores
accounted for the greatest number of line items submitted over
the 4-week period, accounting for 62.4 (95% CI: 55.5, 69.3) and
36.9 (95% CI: 31.7, 42.1) receipt line items, respectively.

Supplemental Tables 1, 2 describe the total volume of
food expenditure information captured over the 4-week
data collection period. The 3,530 food retailer receipts
submitted by the study sample represented $70,822.21 in
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FIGURE 1 | Average household expenditures submitted over a 4-week period by low-income households using a simple annotated receipt method, for selected food

categories (n = 260).

FIGURE 2 | Average household expenditures submitted over a 4-week period by low-income households using a simple annotated receipt method, by store

type (n = 260).

total food expenditures and contained over 25,000 line items.
Food purchases coded as “other” —food and beverages that
do not fit into the 11 coded food categories of interest—
comprised the largest share of expenditures at food retailers
(66.0%), followed by vegetables (6.0%), fruits (5.7%), sugar
sweetened beverages (4.9%), and savory snacks (4.7%).

With respect to findings for the number of receipt line
items, “other” composed the largest number of line items
(59.4%) followed by vegetables (9.1%), sugar sweetened
beverages (7.2%), fruits (5.7%), and savory snacks (5.5%).
“Unsure fruit beverages” (fruit beverages for which it could
not be determined whether the beverage was 100% fruit
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TABLE 3 | Average household food expenditures and receipt line items submitted

over a 4-week period by low-income households using a simple annotated receipt

method, by food category and store type (n = 260).

Expenditures

USD (95% CI)

Receipt line items

number (95% CI)

Total 272.62 (247.13, 298.11) 98.8 (90.1, 107.6)

FOOD CATEGORY

Fruits 15.41 (13.05, 17.77) 5.6 (4.9, 6.3)

Vegetables 16.34 (13.90, 17.78) 9.0 (7.7, 10.2)

Sweet baked goods 9.39 (7.94, 10.85) 3.6 (3.1, 4.1)

Candy 5.70 (4.75, 6.65) 3.36 (2.8, 3. 9)

Savory snacks 12.72 (11.15, 14.29) 5.4 (4.8, 6.0)

Regular, unflavored milk 8.07 (6.59, 9.55) 2.5 (2.1, 2.9)

Flavored milk 0.47 (0.23, 0.71) 0.2 (0.1, 0.3)

100% Juice 4.21 (3.33, 5.10) 1.5 (1.2, 1.8)

Sugar-sweetened beverages 13.45 (11.44, 15.45) 7.1 (6.1, 8.2)

Fruit beverage, unknown type 1.04 (0.62, 1.46) 0.4 (0.3, 0.5)

Other foods 180.00 (162.52, 197.47) 58.7 (53.2, 64.2)

Unidentified 5.81 (4.25, 7.37) 1.6 (1.2, 2.0)

STORE TYPE

Grocery stores 169.34 (150.37, 188.30) 62.4 (55.5, 69.3)

Superstores/Mass merchandisers 115.68 (98.89, 132.46) 36.9 (31.7, 42.0)

Convenience stores/Gas stations 18.30 (15.02, 24.57) 11.7 (9.7, 11.6)

Drug stores 10.38 (7.82, 12.94) 5.0 (3.9, 6.1)

juice or a fruit drink that should be classified as a sugar
sweetened beverage) comprised <1 percent of both the
total food spending (0.4%) and the proportion of total
line items (0.4%) (Supplemental Table 1). Nearly 60% of
total food retailer expenditures ($41,826.57) was spent in
supermarkets/markets, and $24,985.98 (35.8%) was spent
in superstores/mass merchandisers/warehouse club stores
(Supplemental Table 2).

Unidentified Food Expenditures
Unidentified food expenditures comprised 2.1% of total spending
and 1.6% of total line items submitted by 260 households over a
4-week period (Supplemental Table 1). Table 4 presents results
from the zero-inflated negative binomial model to evaluate the
association between unidentified receipt items and participant
characteristic and store type. Drugs stores had a lower rate
of unidentified line items compared to supermarkets (p =

0.04). There were no significant differences in the rate of
occurrence of unidentified receipt line items by the participant
characteristics examined.

Within- and Between-Household Variation
Table 5 shows the means, within-household coefficient of
variation (CVw), between-household coefficient of variation
(CVb), and ratios for weekly household expenditures for total
food expenditures and selected food categories. On average,
households spent $85.65 per week (standard error of the
mean [SE] $5.38) on total food expenditures. Mean household
expenditures on fruits and vegetables was $11.05 per week (SE

TABLE 4 | Adjusted* incidence rate ratios of unidentified items in receipts

submitted over a 4-week baseline period by 260 low-income households using a

simple annotated receipt method (n = 3,530 food retailer receipts).

Unidentified receipt line items

IRR (95% CI)

STORE TYPE

Supermarket (ref) 1.00

Convenience store/Gas station 1.03 (0.58, 1.82)

Drug store 0.11 (0.01, 0.99)

Superstore/Mass merchandiser/Warehouse

club store

0.92 (0.47, 1.80)

AGE, YEARS

<25 1.40 (0.67, 2.91)

25–44 (ref) 1.00

45–64 1.56 (0.67, 3.66)

Over 65 1.04 (1.90, 5.70)

GENDER

Female (ref) 1.00

Male 1.11 (0.70, 1.82)

RACE/ETHNICITY

White, Non-Hispanic (ref) 1.00

Black, Non-Hispanic 0.65 (0.37, 1.13)

Other, Hispanic 1.40 (0.71, 2.62)

MARITAL STATUS

Single, never married (ref) 1.00

Married or partnered 0.76 (0.37, 1.13)

Separated/divorced/widowed 1.37 (0.71, 2.62)

HOUSEHOLD SIZE

1 person (ref) 0.40 (0.19, 0.84)

2 people 0.68 (0.30, 1.60)

3 people 0.68 (0.41, 1.12)

4 or more 1.00 (ref)

EDUCATION LEVEL

High school graduate or less 1.00

Some college/associates degree (ref) 0.78 (0.50, 1.23)

College graduate or higher 1.14 (0.58, 2.23)

ANNUAL HOUSEHOLD INCOME

$14,999 or less 1.00

$15,000–$34,999 (ref) 0.79 (0.50, 1.26)

$35,000 or more 0.87 (0.46, 1.64)

FOOD SECURITY

Very low (ref) 1.00

Low 0.67 (0.44, 1.04)

High or marginal 0.65 (0.33, 1.27)

*Model adjusted for the total number of line items per receipt.

$0.90), with comparable amounts spent on fruits and vegetables
individually. Households spent an average of $7.95 (SE $0.78)
per week on foods high in added sugar, with varying amounts
spent on individual food categories. Regardless of food category,
CVw was larger than CVb, and both values were higher when
evaluating individual food categories for foods high in added
sugar. The CV ratio was above 1 for all categories of food, ranging
from 1.44 for fruits and vegetables to 6.44 for candy.
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TABLE 5 | Mean weekly expenditures (USD), within-household coefficients of

variation (CVw), between-household coefficients of variation (CVb), and variance

ratios for food expenditures of low-income households using the simple annotated

receipt method (n = 260).

Mean (SE)

Dollars (USD)/week

CVw CVb Variance

Ratio

Total food expenditures 85.65 (5.38) 70.8 49.8 2.02

Fruits and vegetables 11.05 (0.90) 85.5 71.3 1.44

Fruits 5.67 (0.53) 100.5 75.6 1.77

Vegetables 5.38 (0.52) 104.4 81.3 1.65

Foods high in added sugar 7.95 (0.78) 105.6 79.0 1.78

Sugar-sweetened beverages 3.57 (0.45) 138.3 95.5 2.10

Sweet baked goods 2.70 (0.37) 161.9 80.3 4.07

Candy 1.70 (0.26) 184.5 72.7 6.44

CVw, Within-household coefficient of variation; CVb, Between-household coefficient of

variation; Variance ratio, σ 2
w /σ 2

b = (CVw/CVb)
2.

Table 6 shows the number of households in a group required
to estimate the group mean weekly expenditure with 95% CIs
within 10–50% deviation of the group’s observed mean from the
group’s usual (“true”) mean. To maintain precision of ±20% of
the group’s true total food expenditures, at least 72 households
are required. Larger group sizes are required to estimate specific
food categories, with the highest requirements for evaluating
individual categories of food high in added sugar.

Table 7 shows the number of weeks of food expenditure
data required to ensure a correlation coefficient, r, between
observed and true expenditures. As the variance ratio decreased,
fewer weeks of observation were needed to rank households by
expenditure and distinguish households with low expenditures
from those with high expenditures. Assuming r = 0.90, a
minimum of 9 weeks of data are required for total food
expenditures, 6 weeks of data for fruits and vegetables, and
8 weeks of data for foods high in added sugar. Compared to
evaluating fruits and vegetables as individual food categories, a
greater number of weeks are required for evaluating individual
categories of food high in added sugar to rank households with a
given r.

Table 8 shows the number of weeks of food expenditure
data required to estimate mean weekly household expenditures
with 95% CIs within 10–50% deviation from the usual (“true”)
household expenditure. To maintain precision of 20% within
the household’s true expenditures, 48 weeks are required to
estimate total food expenditures with 95% CIs. Greater number
of replicate weeks of data are required to estimate individual food
categories, with the highest number of weeks for categories of
foods high in added sugar.

DISCUSSION

This paper describes and evaluates a simple annotated receipt
method for assessing household food purchasing. Results show
that the method can capture food purchasing information for

TABLE 6 | Number of households in a group needed to estimate weekly

expenditures with 95% CIs within 10–50% deviation of the observed group mean

from the group’s usual (“true”) mean using a single week of expenditure data.

Specified % of true mean

10% 20% 30% 40% 50%

Total food expenditures 288 72 32 18 12

Fruits and vegetables 477 119 53 30 19

Fruits 609 152 68 38 24

Vegetables 674 168 75 42 27

Foods high in added sugar 669 167 74 42 27

Sugar-sweetened beverages 1087 272 121 68 43

Sweet baked goods 1256 314 140 79 50

Candy 1514 379 168 95 61

TABLE 7 | Number of weeks of data needed to ensure a given correlation

coefficient, r, between observed and usual (“true”) weekly household expenditures.

r-value

0.75 0.80 0.85 0.90 0.95

Total food expenditures 3 4 5 9 19

Fruits and vegetables 2 3 4 6 13

Fruits 2 3 5 8 16

Vegetables 2 3 4 7 15

Foods high in added sugar 2 3 5 8 17

Sugar-sweetened beverages 3 4 5 9 19

Sweet baked goods 5 7 11 17 38

Candy 8 11 17 27 60

TABLE 8 | Number of weeks of data needed to estimate mean household

expenditures with 95% CIs within 10–50% of the usual (“true”) household mean.

Specified % of usual (true) mean

10% 20% 30% 40% 50%

Total food expenditures 192 48 21 12 8

Fruits and vegetables 281 70 31 18 11

Fruits 388 97 43 24 16

Vegetables 419 105 47 26 17

Foods high in added sugar 428 107 48 27 17

Sugar-sweetened beverages 734 184 82 46 29

Sweet baked goods 1006 252 112 63 40

Candy 1308 327 145 82 52

various food categories in a variety of store types, and may be
a feasible tool for use among diverse, low-income populations.

Most food items on the receipts could be coded into one
of the 11 food categories of interest in the study. Only 1.6%
of line items—comprising 2.1% of total spending—could not
be categorized because of insufficient detail. Importantly,
unidentified line items did not vary by demographic
characteristics, which suggests that the tool is applicable to
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diverse, low-income populations. Compared to supermarkets,
drug stores had a lower rate of unidentified items. This may be
because drugs stores tend to sell less produce, fresh meats, and
bulk items, which often lack detail on receipts and require less
annotation by the participant.

Findings also suggest that the simple annotated receipt
methodmay be adapted for specific research questions.While the
majority of food items were coded as “other,” this is a result of a
priori food category definitions outlined in the study protocol.
The experimental trial for which this method was developed
assessed policy changes to SNAP. As a result, the focus was
on policy-specific food categories—specifically, fruits, vegetables,
sweet baked goods, sugary sweetened beverages, and candies. The
“other” category captured foods that were of lesser interest to the
study aims, such as diet sodas and water. However, this category
is adaptable to various study-specific questions. For example,
sugar-sweetened beverages (SSBs) and fruit juices were of interest
in the study. To ensure comprehensive and precise evaluation
of beverage expenditures, multiple categories of beverages were
specified, including a “fruit beverage, unknown type” category
for fruit beverages that could not be identified as either 100%
fruit juice or a sugar-sweetened fruit drink. Items labeled “fruit
beverage, unknown type” comprised only 0.4% of receipt line
items in comparison to 7.2% of line items for SSB and 1.5% of
line items for fruit juices, suggesting that the present method can
differentiate food and beverage categories as required by study-
specific aims. Researchers interested in capturing different food
or beverage categories can therefore adapt the method to study-
specific needs using different coding protocols (e.g., “diet sodas”
were included in the “other” category in the present study, but
can be coded).

To our knowledge, this is the first study to apply established
methods of evaluating within- and between-individual variations
to a food expenditure assessment tool (27–29). The results
have implications for the design of studies evaluating household
food expenditures in lower-income households. CVw and CVb

values were lowest for total food expenditures and largest for
individual categories of foods high in added sugar. Larger CVw

values for foods high in added sugar values had the greatest
impact on the number of replicate weeks required to assess a
household’s usual food expenditures. For example, candy had the
highest CVw value of the food categories evaluated, requiring
52 to 1,307 weeks to estimate the household mean weekly
expenditure within 10–50% deviation of the true values. Future
researchers should consider alternative or additional tools to
evaluate expenditures of foods such as SSBs, candies, and sweet
baked goods that are highly variably purchased week to week
by households.

Our findings also suggest that the simplified annotated
food receipt method is most appropriate for comparing mean
expenditures of different study groups or ranking household
expenditures (e.g., into quartiles). For example, a group size of
at least 119 households is required to estimate the mean group
expenditure on fruits and vegetables within 20% of the truemean.
Similarly, at least 6 weeks of data are required to rank households
by weekly fruit and vegetable expenditure level with a precision
of r = 0.90.

Strengths and Limitations
Food purchasing behavior is strongly patterned by
socioeconomic status (7, 8), but few food receipt methods
have been evaluated in low-income households (12). This
study addresses the need for feasible methods to evaluate
food purchasing. Importantly, this novel method was
evaluated in a sample of diverse, low-income households.
This study also has a relatively large sample size and
prolonged duration of receipt collection for evaluation of a
measurement method.

There are several limitations worth noting. This study
did not assess the completeness of receipt submission, the
accuracy of receipt annotation, or the reliability of coding.
It is possible that receipts were not submitted for some
food purchases, resulting incomplete assessment of food
purchasing. Future evaluations of this methodology should
evaluate completeness of receipt submission and evaluate inter-
rater reliability of receipt coding. Furthermore, this receipt
method does not provide information on food quantities.
Expenditure data may suffice if change in food purchasing is
the primary outcome of interest (e.g., to evaluate whether an
intervention decreases purchasing of SSBs). Previous studies
also suggest that food expenditure data may be a reasonable
approximation of intake (17, 19, 21). Evaluating the association
of expenditure data with food quantities and dietary intake
is an area for further method development. The present
analyses also relies on a sample of lower-income households
in one metropolitan area. The levels of variation in food
expenditures may differ for other population groups and requires
further research.

Finally, the present method was not directly compared
to other receipt methods. A qualitative review of previously
published studies shows that results are somewhat comparable.
This suggests that the present method may be able to capture
details similar to previous receipt methods—while potentially
reducing the burden for participants (compared to the
annotated receipt method) and minimizing the number of
unidentified food expenditures (compared to the receipt
collection method). A study using the annotated receipt
collection method, which requires transcription of all receipt
information, collected an average of 3.1 receipts from food
retailers per household per week (24). This is comparable
to an average of 3.3 receipts per household per week in the
present study. The annotated receipt method also yielded
an average of 25.8 line items per household per week for
both food retailers and restaurant receipts (24)—compared
to 24.7 line items per household per week in the present
study, which included only food retailers. Results for specific
beverage categories across receipt methods also suggests
similarities. Sugar-sweetened beverages accounted for 9.1% of
all line items using the annotated receipt method, compared
to 7.2% in the present study (24). In a study using the receipt
collection method—which involves neither annotation or
transcription-−100% fruit juices comprised 1.6% of total
grocery expenditures, similar to 1.6% of total expenditures in
the present study (22). Importantly, the present method may
have a lower rate of “missing/unclassified” items compared
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to the receipt collection method, which was previously
reported as having 7.7% “missing classified/unclassified”
expenditures (22).

However, it is worth noting that the annotated receipt
method and receipt collection methods discussed above
were deployed in different populations and studies. The
annotated receipt method followed 90 participants who were
predominantly white women in Minneapolis, Minnesota,
for 4 weeks. In contrast, the receipt collection method was
used for a sample of 107 diverse, low-income households in
Houston, Texas over a 6-weeks period. The present study
is specific to ethnically and racially diverse households
in the Minneapolis-St. Paul, Minnesota, metropolitan
area. Future studies are needed to formally compare
different methods.

CONCLUSIONS

The simple annotated food purchase receipt method is a
promising approach for assessing food purchasing behavior.
Our findings suggest that this method is able to capture a
wide range of food purchasing information from a variety
of store types. Unidentified items were limited and did not
vary by participant characteristic or stores, suggesting that the
present method is broadly applicable among diverse, low-income
households. This paper is also the first to quantify within-
and between-household variation in food expenditures using a
receipt method, which is crucial information for determining
sample sizes, estimating data collection periods, and interpreting
findings. Research is needed to further evaluate the method
and compare it to alternative receipt methods to assess food
purchasing behavior.
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Improvement of diet at the population level is a cornerstone of national and international

strategies for reducing chronic disease burden. A critical challenge in generating

robust data on habitual dietary intake is accurate exposure assessment. Self-reporting

instruments (e.g., food frequency questionnaires, dietary recall) are subject to reporting

bias and serving size perceptions, while weighed dietary assessments are unfeasible in

large-scale studies. However, secondary metabolites derived from individual foods/food

groups and present in urine provide an opportunity to develop potential biomarkers

of food intake (BFIs). Habitual dietary intake assessment in population surveys using

biomarkers presents several challenges, including the need to develop affordable

biofluid collection methods, acceptable to participants that allow collection of informative

samples. Monitoring diet comprehensively using biomarkers requires analytical methods

to quantify the structurally diverse mixture of target biomarkers, at a range of

concentrations within urine. The present article provides a perspective on the challenges

associated with the development of urine biomarker technology for monitoring diet

exposure in free-living individuals with a view to its future deployment in “real world”

situations. An observational study (n = 95), as part of a national survey on eating habits,

provided an opportunity to explore biomarker measurement in a free-living population.

In a second food intervention study (n = 15), individuals consumed a wide range

of foods as a series of menus designed specifically to achieve exposure reflecting a

diversity of foods commonly consumed in the UK, emulating normal eating patterns. First

Morning Void urines were shown to be suitable samples for biomarker measurement.

Triple quadrupole mass spectrometry, coupled with liquid chromatography, was used

to assess simultaneously the behavior of a panel of 54 potential BFIs. This panel of

chemically diverse biomarkers, reporting intake of a wide range of commonly-consumed

foods, can be extended successfully as new biomarker leads are discovered. Towards
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validation, we demonstrate excellent discrimination of eating patterns and quantitative

relationships between biomarker concentrations in urine and the intake of several foods.

In conclusion, we believe that the integration of information from BFI technology and

dietary self-reporting tools will expedite research on the complex interactions between

dietary choices and health.

Keywords: dietary intake, metabolomics, biomarker of food intake (BFI), urinary biomarkers, habitual diet

INTRODUCTION

There is a rich history of nutrition research spanning many
decades, much of which has had at its core a need for accurate
information on dietary intake for investigation of the links
between exposure to individual food/food groups and specific
health outcomes. Food intervention projects commonly rely on
participants collecting pre-prepared foods from research centres
for consumption at home and then confirming compliance at
a later date (1, 2). On the other hand, large-scale nutritional
epidemiological projects and nutrition surveys involving free-
living individuals consuming their habitual diet rely almost
totally on self-reporting of dietary exposure. Long-established
tools to collect self-reported quantitative dietary information
include Food Frequency Questionnaires (FFQs), diet diaries,
and dietary recall methodology (3). However, because of the
complexity of eating patterns and the conceptual and practical
difficulties in recording or recalling the types and amounts
of foods and beverages consumed, errors in self-reporting of
dietary intakes by cognitively-able individuals is commonplace
and substantial (4, 5) and can be exacerbated in those who are
overweight or obese (6, 7).

Secondary metabolites derived from individual foods or
food groups present in human biofluids can provide potential
biomarkers of food intake, for reviews see (8–18). The inclusion
of biomarker technology in dietary assessment could help
to overcome some of the limitations of traditional dietary
methodologies by providing additional objective estimates of
food exposure (19). Unlike blood, urine is easy to collect and
it provides an integrated estimate of exposure over several
hours. For a panel of dietary biomarkers to have any significant
utility, it is essential that its coverage is as comprehensive as

Abbreviations: AUC, area under the ROC (Receiver Operator Characteristic)

curve; BFI, biomarker of food intake; CRN, Clinical Research Network; FFQ,

Food Frequency Questionnaire; FMV, First Morning Void; HESI, heated

electrospray ionisation; HILIC, Hydrophilic Interaction Liquid Chromatography;

HPLC, high-performance liquid chromatography; IAN-AF, Portuguese National

Food, Nutrition and Physical Activity Survey; ISRCTN, International Standard

Randomised Controlled Trials Number; LC-QQQ-MS, liquid chromatography

triple quadrupole mass spectrometry; LoD, limit of detection; logP, partition

coefficients; LoQ, limit of quantification; MACCS, Molecular ACCess System;

MAIN, Metabolomics at Aberystwyth, Imperial and Newcastle; MDS, multi-

dimensional scaling; MRC, Medical Research Council; MRM, multiple reaction

monitoring; MS, Mass Spectrometry; NDNS, National Diet and Nutrition Survey;

PCA, Principal Components Analysis; QC, Quality Control; RF, Random Forest;

RI, refractive index; ROC, Receiver Operator Characteristic; RP, reverse phase;

RSD, relative standard deviation; SG, specific gravity; SRM, Selected Reaction

Monitoring; UHPLC, Ultra High Performance Liquid Chromatography.

possible. Using data-driven approaches, we have shown that the
potential utility of a biomarker is dependent on the type, portion
size, and frequency of consumption of individual foods (20).
Data concerning nationally-representative estimates of intakes of
foods by the UK population are collected by the UK National
Diet and Nutrition Survey (NDNS) (21) and this database can
be explored to identify foods and food groups for which dietary
exposure biomarker discovery might be feasible and relevant
(1, 2, 22).

Over the past decade, our collaborative research projects and
those of other teams (see Supporting Data 1 for a comprehensive
list) have contributed to the discovery of putative dietary intake
urinary biomarkers of specific foods including poultry and red
meat (23–28) citrus fruits (29, 30), crucifers (31, 32), oily fish
(26, 27, 32), red berries/strawberries (2, 32–34), wholegrain/rye
(35–37), sugary drinks (38, 39), artificial sweeteners (2, 40),
peas/beans/legumes (2, 41, 42), grapes (41, 43–45), apples (41,
46, 47), and potatoes (48). In addition, consensus guidelines for
the critical assessment of candidate BFIs has been established
(49). These BFI candidate guidelines have focused generally on
qualifying the utility of individual BFIs for monitoring exposure
to specific foods/food groups. However, because effects on health
are a consequence of the whole diet, it is equally important to
develop approaches to assess overall dietary exposure in nutrition
surveys, epidemiological studies, and clinical trials (45).

The ideal biomarker is highly specific for one food item or
food group, is not detected in the biological sample of interest
when the specific food item is not ingested, and shows a distinct
dose- and time-dependent response following consumption (50).
Althoughmetabolites distinctive of dietary exposure to particular
foods have been described, it is not uncommon to discover
subsequently that putative biomarkers are not necessarily specific
for individual foods and therefore much rigour needs to be
applied during validation of their utility to monitor habitual
dietary intake (51). For application in the real world, the use
of multi-metabolite biomarker panels may provide more reliable
estimation of dietary exposure than a single-biomarker approach
[reviewed by (52)]; such panels need to have comprehensive
coverage and to be extendable (53). For this reason, in the future
it will be important to evaluate biomarker performance in the
context of complex exposures to multiple foods, with different
food formulations, cooking, and processing methods and within
complex meals, in eating patterns the target study population is
likely to experience (2).

Optimal sampling requirements for urine biomarker analysis
will be dependent largely on the study design and objectives
(Table 1). For example, a food intervention study with free-living
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TABLE 1 | Study objectives and biomarker of food intake (BFI) requirements.

Example study

objectives

Typical sampling requirements Biomarker requirements Data requirements Study example and

reference
Single

sample only

Multiple

samples

Biomarker(s) of

only one

food/food group

Comprehensive

biomarker

panel

Quantitative or

semi-quantitative

measurement

Exposure

range

assignment

A Confirmation of participant

compliance in a food

intervention study or

validation of a proposed

biomarker focusing on a

single food/food group,

short term or long term

Y Y Y A validation trial: (54)

A compliance trial:

(55, 56)

B Biomarker discovery and/or

validation in a free-living

population following a meal

plan emulating normal

eating patterns

Y Y Y MAIN study: (1, 2, 22)

C Investigation of individual

“metabotype” in relation to

interaction with specific

dietary chemicals

? ? Y Y Food4me study: (57)

D Assessment of habitual

(e.g., weekly, monthly, and

annual) eating behavior of

individuals

Y Y ? ? PREDIMED trial:

(58, 59)

E Observational

epidemiological survey of

eating habits in a large

population

Y Y Y ? IAN-AF: (60); EPIC:

(27, 61)

F Cohort stratification by

dietary exposure levels to

specific foods/food groups

in a small clinical trial

Y Y Y MAIN study: (45)

participants lasting several weeks investigating links between
a health outcome and a specific food/food group will require
appropriate samples on multiple days taken at random to
assess compliance with dietary intake targets (1, 2). In contrast,
assessing the general eating habits of a large population in an
epidemiological survey may only require sampling of a large
number of people on a single random day or multiple days (60).
Any urine sampling procedure would need to be (i) acceptable
for volunteers to provide samples repeatedly, (ii) require minimal
researcher time and cost, and (iii) deliver samples with high
quality information content. The theoretical optimal types of
urine(s) to be sampled [e.g., spot, cumulative (i.e., “phase”
of day) or 24 h] will also depend on study objectives (62)
and, in many instances, the sampling strategy will be limited
by cost constraints or the practicalities of collection. Twenty-
four hour urine samples and single spot urine samples taken
at random times during the day are commonly collected to
monitor discrete aspects of human physiology, metabolism, or
“exposome” in clinical trials and surveys (63–65). Unfortunately,
such samples provide information only in relation to very recent
eating behaviour andmay be of limited utility in nutrition studies
where the focus is on the whole diet or on the intakes of foods
that are not eaten frequently. Additionally, eating behaviour
and hydration levels can be very different between individuals

in free-living populations and the fact that excretion half-lives
of specific metabolites can vary enormously (49), means that
research protocols must be in place to manage adequately these
sources of variability in any biomarker discovery and validation
strategy (62, 66).

Where the aim is to estimate absolute intake of specific
foods, or the frequency of exposure, it will be desirable
to generate quantitative or semi-quantitative data on BFI
concentrations in urine. However, for other studies, it may
be sufficient to be able to assign each individual into an
exposure range (e.g., high-medium-low), typical of a specific
reference population. Urine collection(s), sample processing,
and the analytical methodology can be optimised for a
target metabolite when using a single biomarker to monitor
exposure to a single food/food group. In contrast, the desire
to monitor habitual diet comprehensively using a panel of
biomarkers requires the analytical approach to manage the
complex physio-chemical attributes of the diverse range of
putative biomarkers currently described, as well as coping with
metabolites exhibiting differential stability during collection,
transport, and storage. Other practical issues such as the
commercial availability, costs, solubility, and stability of pure
chemicals in mixtures as quantitation standards will also
impact on the design of analytical solution likely to offer
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scope for simultaneous measurement of a large number of
metabolite targets.

The assessment of eating behaviour in free-living individuals is
important in a wide range of types of nutrition research (Table 1),
ranging from clinical trials investigating the mode of action of
potentially beneficial “bioactive” compounds in individuals, to
general surveys of national eating habits in large populations.
Although considerable effort is being expended on BFI discovery
and validation, there is an equally urgent need to consider
the future challenges for effective deployment of dietary intake
biomarker technology to assess habitual diet within populations.
To summarise, these major challenges include:

• Strategies for validation of food intake biomarkers suitable for
assessment of habitual dietary exposure;

• Standardised urine sampling approaches, including collection,
temporary storage, transport, and long term biobanking;

• Development of biomarker analytical methodology, using
a multi-panel of biomarkers, that is able to integrate new
markers as they become validated;

• Algorithms to convert raw biomarker data into meaningful
estimates of food intake and/or overall diet quality.

The present article aims to provide a perspective on some of these
challenges associated with the development of urine biomarker
technology to monitor recent or habitual dietary intake in free-
living individuals with a view to its future deployment in “real
world” situations. For example the UK government’s “Better
Health” campaign, a 12 week fitness and healthy eating plan
announced in July 2020 to help Briton’s lose weight and reduce
their risk of serious complications should they contract COVID-
19 (https://www.nhs.uk/better-health/). One of the key aims of
the plan is to encourage people to make healthier food choices.
We believe that the BFI technology we have been developing over
the past 10 years, alongside the low-effort, minimally intrusive
urine sampling strategies (62, 67) will soon be validated to the
point that they can be used to reproducibly and objectively
monitor the effectiveness of such plans at a population level.
A workflow summarising the overall experimental strategy is
illustrated in Figure 1.

MATERIALS AND METHODS

Ethics Approval and Consent to Participate
For Study 1, ethical approval was obtained from the National
Commission for Data Protection, the Ethical Committee of
the Institute of Public Health of the University of Porto
and from the Ethical Commissions of each one of the
Regional Administrations of Health. All participants gave
written informed consent, and the study was carried out
in accordance with the Declaration of Helsinki. The MAIN
(Metabolomics at Aberystwyth, Imperial, and Newcastle) food
intervention trial at Newcastle (Study 2) was approved by
the East Midlands—Nottingham 1 National Research Ethics
Committee (14/EM/0040). Caldicott approval for storage of
data and data protection was granted by Newcastle-upon-Tyne
Hospitals NHS Foundation Trust [6896(3109)]. The MAIN food
intervention trial in Newcastle was adopted into the UK Clinical

Research Network (CRN) Portfolio (16037) and is registered with
International Standard Randomised Controlled Trials Number
(ISRCTN), 88921234.

The participants provided written informed consent to
participate in each study, taken by an appropriately trained
researcher. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.

Epidemiological Study and Urine Sampling
Study 1 involved community-living individuals consuming a
freely-chosen diet. The participants (n = 95) were volunteers
who participated in the Portuguese National Food, Nutrition,
and Physical Activity Survey (IAN-AF), whose aims andmethods
have been described previously (60). A 24 h dietary record was
collected by trained nutritionists using the “eAT24” Software
(68) which facilitates the assessment of dietary data using an
automatedmultiple-pass method (5 steps) (69). Participants were
asked to collect urine samples on the day before the second 24 h
dietary record. Urine samples were collected in two separate
containers. The first one (a 2,700mL container identified as
container A) was used to collect all urine passed during the
day before the interview, except the first void of that morning.
A second one (a 500mL container identified as container B)
was used to collect just the First Morning Void (FMV) on
the day of the second interview. No preservatives were added
to the urine containers, and the participants were asked to
keep the samples refrigerated (4◦C) throughout the collection
period. Participants were asked to fill in a questionnaire with
the time of the beginning and the end of collections, details of
any medication, and whether or not they had any problems or
missed urine collections. At the laboratory, urine samples were
weighed and mixed. The weights of urine from containers A and
B were quantified separately and a proportionally pooled 24 h
urine sample (identified as “24 h urine”) was prepared by using
samples A and B. From each participant, both urine samples were
aliquoted: 1 × 45mL (in 50mL Falcon pre-labelled tube) + 10
× 1.5mL (in 2mL pre-labelled microtubes). These aliquots were
refrigerated immediately before being moved to −80◦C storage,
within 24 h, for further analysis.

Food Intervention Study Design and Urine
Sampling
The MAIN project at Newcastle included two controlled food
intervention studies in free-living people who consumed the test
foods as part of two 3day menu plans, designed to generate six
distinctive “Menu Days” (1, 22). Participants were provided with
all the foods and ingredients to prepare and consume meals at
home, following the prescribed menus. Within this manuscript
(Study 2) we have used data from 15 of the individuals from
the second 3-day menu plan (8 male, 7 female; non-smokers;
age: 21–74). We implemented urine sampling methods based on
our previous studies (23, 70) and asked participants to collect
a series of urine samples including the FMV the day after each
menu plan. Participants collected urine samples in a plastic jug
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FIGURE 1 | Workflow for biomarker panel development. Where: MAIN, Metabolomics at Aberystwyth, Imperial and Newcastle; RP, reverse phase; HILIC, Hydrophilic

Interaction Liquid Chromatography; LoD, limit of detection; LoQ, limit of quantification.

and transferred aliquots into labelled sterile 25mL Universal
tubes. Six of these 15 participants (2 female, non-smokers, age
range 22–59) also collected FMV urine samples at home using
the vacuum transfer system (67). All samples were placed in
an opaque cool bag and stored at home in a fridge at 4◦C
for up to 4 days and then brought to the research facility in
Newcastle at the end of the study week. Universal tubes were
stored immediately at −80◦C and the vacuum tubes remained at

4◦C for a further 2 weeks before storage at−80◦C. Samples were
then transported to the analytical facility in Aberystwyth on dry
ice for metabolite analysis.

Urine Sample Preparation
Urine samples were prepared and adjusted as reported previously
(1, 22). In brief, all urine samples were normalised by refractive
index (RI) prior to analysis to account for differences in fluid
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intake by participants and to ensure that all Mass Spectrometry
(MS) measurements were made within a similar dynamic range
within the linear range of the instrument. Samples were defrosted
overnight at 4◦C, centrifuged (1,600 × g for 5 mins at 4◦C),
placed on ice and aliquots of thawed urine (1,000 µL) were
transferred into labelled 2mL Eppendorf tubes. The remaining
sample were returned to a −20◦C freezer. An OPTI Hand Held
Refractometer (Bellingham StanleyTM Brix 54 Model) was used
to record the specific gravity (SG). Using these data, aliquots of
the required amounts of urine from centrifuged 2ml Eppendorf
tubes and ultra-pure (18.2�) H2O were transferred into new
tubes for extraction; this ensured that all samples had the same RI.

Strategy for Selection of Candidate Dietary
Exposure Biomarkers
The selection of biomarkers was initiated with a literature search
to generate an initial “long list” of food-related metabolites with
potential for inclusion in a panel of biomarkers that would
provide comprehensive coverage of food items consumed in
the MAIN Study (see Supporting Data 2 for a summary of
the foods). The search was carried out using Google Scholar
and Web of Knowledge using the following search terms in a
range of combinations “biomarkers + urine + food + dietary
+ BFI” and ended on 22/06/2020. Publications were screened
and information was added to the database if they contained
data relating to potential dietary exposure biomarkers measured
in urine samples (see Supporting Data 3). Specific details on
metabolite excretion profile were recorded and the availability of
a commercial supply of a pure chemical standard was investigated
(see Supporting Data 3).

Evaluation of Chemical Diversity of
Biomarkers
Biomarkers were assigned to chemical class and superclass
using the ClassyFire application (71). Classifications for each
biomarker were retrieved using the R package classyfireR Version
0.3.3. Pairwise similarity of biomarkers was measured using the
Tanimoto Distance after converting structural representations
of each biomarker to its MACCS (Molecular ACCess System)
fingerprint. Fingerprints were generated using the get.fingerprint
function from the R package rcdk (Version 3.5) and distances
computed using the fp.sim.matrix function from the R package
fingerprint. The resultant matrix of fingerprint distances,
was then reduced to two dimensions using the cmdscale
function. Chemical descriptors (–logP) were calculated using the
rcdk package.

Sample Analysis by Liquid
Chromatography Triple Quadrupole Mass
Spectrometry (LC-QQQ-MS)
Methanol (primer trace analysis grade, Fisher Scientific, UK) was
used for urine extraction and standards preparation. Acetonitrile
(Optima R© LC-MS grade, Fisher Scientific, UK), methanol
(HPLC grade, Fisher Scientific, UK), and Ammonium acetate
(Optima R© LC-MS grade, Fisher Scientific, Belgium) were used
for preparing the LC mobile phase. Water was ultra-pure water

(18.2�) drawn from an Elga Purelab R© flex water purifier system
(Taiwan). The suppliers of chemical standards are given in
Supporting Data 4.

Sample analysis was performed on a TSQ Quantum
Ultra EMR QQQ mass spectrometer (Thermo Scientific)
equipped with a heated electrospray ionisation (HESI) source.
Samples were delivered using an Accela ultra-high-performance
liquid chromatography (UHPLC) system (Thermo Scientific)
consisting of autosampler, column heater, and quaternary
UHPLC-pump. For HILIC (Hydrophilic Interaction Liquid
Chromatography) analysis, chromatographic separation was
performed on a ZIC-pHILIC (polymeric 5µm, 150 × 4.6mm)
column (Merck). The mobile phase consisted of 10mM
ammonium acetate in water: acetonitrile (95:5) (A) and 10mM
ammonium acetate in water: acetonitrile (5:95) (B). The gradient
program used was as follows: 0min, 95% B (400 µL min−1);
15min, 20% B (400 µL min−1); 15.01min, 20% B (500 µL
min−1); 20min, 20 % B (500 µL min−1); 20.01min, 95 % B
(500 µL min−1); 25min, 95% B (500 µL min−1). The HPLC
was carried out in low pressure (∼0–7,000 psi) operating mode
with 0 psi and 650 psi as minimum and maximum pressures,
respectively. For Reverse Phase (RP) analysis, chromatographic
separation was performed on a Hypersil Gold (1.9µm, 200
× 2.1mm) RP-column (Thermo Scientific). The mobile phase
consisted of 0.1% formic acid in H2O (A) and 0.1% formic
acid in MeOH (B). The gradient program used was as follows:
0min, 0% B; 0.5min, 0% B; 5min, 60% B; 11min, 100%
B; 13min, 100% B; 13.01min, 0% B; 19min, 0% B. For
RP analysis, the flow rate was maintained at 400 µL/min−1.
The UHPLC was carried out in high pressure (∼7,000–15,000
psi) operating mode with 0 and 1,000 psi as minimum and
maximum pressures, respectively. For both chromatographic
analyses, column oven and autosampler tray were maintained at
60 and 14◦C, respectively. To ensure consistent sample delivery,
20 µL were injected using a 20 µL loop and partial loop
injection mode. After each injection, syringe, and injector were
cleaned using a 10 % HPLC grade MeOH solution in ultra-pure
water (1mL flush volume; 100 µL/s−1 flush speed, 2mL wash
volume) to avoid sample carryover. Mass spectra were acquired
in multiple reaction monitoring (MRM) mode, in positive and
negative ionisation polarities simultaneously using optimised
values of collision energy and tube lens for each MRM transition
(Supporting Data 4). Spectra were collected at a scan speed of
0.010 and 0.003 s for HILIC and RP analysis, respectively. A scan
width of 0.010 m/z units and peak width (Q1, Q3) of 0.7 FWHM
were used for both HILIC and RP analyses.

Raw files (ThermoFisher) were converted to mzML (72)
using msconvert in the ProteoWizard tool kit (73). All further
processing of mzML files was performed using the R Statistical
Programming Language (74). Selected Reaction Monitoring
(SRM) chromatograms were extracted from mzML files using
the R library, mzR and peaks areas were calculated by extracting
pre-defined chromatographic windows (based on calibration
standards) around each peak apex. Absolute concentrations were
calculated using a nine-point calibration curve (0.006561–100µg
mL−1). The limit of detection (LoD) and limit of quantification
(LoQ) of all chemical standards were calculated as the lowest
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concentration of each biomarker giving a signal-to-noise ratio
of 3:1 and 10:1, respectively within the linear range of each
calibration curve.

Quality Control (QC) Strategy for Target
Biomarkers
Reproducibility of the mixture of chemical standards was
determined using the relative standard deviation (RSD) of a
multi component calibration standard and an external urine QC
sample using a “master mix” of pooled samples. The external
urine QC sample was used to determine the effect of the resultant
urine matrix on the reproducibility of selected biomarkers across
multiple experiments. The external QC (as distinct from an
experimental QC) allowed for longitudinal monitoring of RSD
without intra-experimental bias.

Data Analysis
Principal Components Analysis (PCA) was performed using the
prcomp function in R, with variables scaled to unit variance.
Supervised classification of quantitative metabolite data was
performed using Random Forest (RF) classification using the
randomForest package (75) in R (74). For all RF models,
the number of trees (ntree) used was 500 and the number
of variables considered at each internal node (mtry) was the
square root of the total number of variables. Accuracy, margins
of classification and area under the ROC (Receiver Operator
Characteristic) curve (AUC) were all used to evaluate the
performance of classification models, as described previously
(76). RF classification models were plotted following multi-
dimensional scaling (MDS). Proximity measures for each
individual observation were extracted fromRFmodels and scaled
coordinates produced using cmdscale on 1—proximity.

Spearman rank correlations of biomarker concentrations in
24 h vs. FMV urine were produced using the rcorr function
from the R (Version 4.0.3) package Hmisc (Version 4.4.0).
Reported P-values are the asymptotic p-values from the rank
correlation. Quantile–Quantile plots were produced using the
qqnorm function in R.

RESULTS

Selection of Target Foods and Design of a
Food Intervention Study for Preliminary
Survey of the Potential Utility of Urine
Biomarker Technology
A major component of our strategy to develop urine biomarker
technology to monitor habitual diet was the need for a biobank of
urine samples from a food intervention trial that was designed to
provide comprehensive exposure to foods commonly consumed
in the UK. Key food groups were identified initially from
The Eatwell Guide (77); the most commonly eaten foods were
identified within each disaggregated food group using estimates
of intakes of foods by the UK population from the UK National
Diet and Nutrition Survey (NDNS) (21). Supporting Data 2

describes the representative foods that were incorporated into
a six-menu design as part of the MAIN food intervention

trial at Newcastle [see Lloyd et al. (1) and Willis et al. (2)
for full details]. The menu plans aimed to deliver foods for
BFI discovery and validation, including the assessment of BFI
specificity and sensitivity within the context of the whole diet.
Particularly important was consideration of the impact of the
likely major sources of variance on biomarker monitoring
procedures including:

• The impact of exposure to targeted foods as part of complex
and mixed meals, rather than foods consumed in isolation;

• The use of average portion sizes and normal eating patterns
rather than exposure to huge, unrealistic portions consumed
in a fasted state;

• The impact of different food formulations, processing, and
cooking methods representing the range of ways in which
foods are processed and eaten;

• The dynamics of putative BFI retention in the body (to
inform development of biomarkers of both acute or habitual
food consumption).

The selection of biomarkers was initiated with a preliminary
literature search to identify putative urinary biomarkers
that would provide comprehensive coverage of each specific
food/food group consumed within the six menus. This database
(Supporting Data 1) suggested that 765 urinary metabolites
were potential dietary exposure biomarker candidates as
summarised in Supporting Data 2. It is clear from these
data that there is considerable choice in terms of potential
biomarkers and considerable overlap of metabolites between
some foods/food groups.

Evaluation of Approaches for Urine
Collection and Storage for Monitoring
Habitual Dietary Exposure
Using LC-MS fingerprinting methodology, we have shown
previously that the metabolome of spot urine samples taken just
before bed time on the study day is compositionally very similar
to the corresponding 24 h urine samples (62). In the present
study, RI measurements revealed that FMV spot urine samples
from a national dietary intake survey (Study 1) also had an almost
identical overall solute concentration range to that of 24 h urines
(Figure 2A). Since creatinine concentrations are often used as a
reference for normalisation in urine samples, we evaluated the
relationship between creatinine concentration and RI in both
FMV spot and 24 h urines. Creatinine concentrations were within
the same range in FMV spot and 24 h urines and exhibited a
strong linear relationship (R2

= 0.65 and 0.68, respectively) with
RI (Figure 2B), supporting the concept of sample normalisation
to the same RI. The value of FMV spot urine samples
for assessment of dietary exposure was explored further by
examining the correspondence between the concentration of
putative biomarkers in 24 h urine and spot urine samples using
targeted, quantitative measurements of individual biomarkers.
Figure 2C shows scatter plots of metabolite concentration
in FMV urine vs. 24 h urine for eight example biomarkers
from samples derived from Study 1. Although the actual
biomarker levels varied between the two urine types there was
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FIGURE 2 | Screening biomarkers to detect those with concentrations in spot urine that reflect levels found in 24 h urine from Study 1. (A) Boxplot of total creatinine

content and refractive index (RI) in First Morning Void (FMV) and 24 h urine samples. (B) Scatter plot showing the linear association between creatinine concentration

and RI in FMV and 24 h urine samples. (C) Scatter plots showing the linear association of selected biomarker concentrations between FMV and 24 h urine samples.

Where: Biomarker 7,7-Methyl xanthine; Biomarker 8, Acesulphame-K; Biomarker 12, Calystegine A3; Biomarker 19, D,L-Sulphoraphane-N-acetyl-L-cysteine;

Biomarker 23, DHPPA [3-(3,5-Dihydroxyphenyl)-1-propanoic acid]; Biomarker 42, Proline betaine; Biomarker 50, Tartarate; Biomarker 53, Trimethylamine-N-oxide (Full

list of number codes for biomarkers is in Supporting Data 4).

a strong linear relationship between concentrations in 24 h and
FMV urine (Figure 2C). More than 50% of the biomarkers
demonstrated a very strong correlation (>0.6). Further potential
biomarkers exhibited a weaker correlation in concentration
(Supporting Data 4) and it is suggested that that r > 0.2 (with a p
< 0.05 from a rank correlation test) may be considered adequate.
The Quantile–Quantile plot in Supporting Data 5 shows the
comparable distribution of biomarker concentrations measured
in FMV and 24 h urine samples.

We have shown recently that vacuum tube technology has
considerable value for spot urine sampling and that, even in
the absence of preservatives, urine composition is stable for
several days at 4◦C (67) and under different temperature regimes.
To explore further the utility of vacuum tube technology for
large-scale urine sampling in community settings, we evaluated
the compositional stability of FMV spot urine at 4◦C for 2
weeks, to mimic longer term storage in a domestic fridge. A
selection of biomarkers useful for assessment of exposure tomeat,
fish, wholegrain, fruit, and vegetable components of meals were
targeted for analysis. Metabolite concentrations after storage in
vacuum tubes at 4◦C were very similar to those of the same urine
samples after being frozen at−80◦C (Figure 3).

Literature Analysis to Select Biomarker
Leads for Inclusion in a Panel That Will
Provide a Comprehensive Survey of
Dietary Exposure
A comprehensive list of potential urinary BFIs based on a

literature analysis (53) of putative dietary exposure biomarkers in
various human biofluids is presented in Supporting Data 2. The
present biomarker panel strategy aimed to assess habitual diet in
individuals and populations; key to this objective was the need

to use spot urine samples, specifically urine samples collected

just before bedtime and FMV urines, that would be informative

of overall food consumption (1, 62). A detailed examination of

the dietary exposure biomarker literature was undertaken with

particular emphasis on the identification of biomarker candidates
present in spot urine samples > 12 h after food consumption
(Table 2 and described in further detail in Supporting Data 3).
A shortlist of candidate biomarkers for initial biomarker panel
development was generated, focusing largely on metabolites that
were available from commercial providers (Supporting Data 3).
For 28 out 54 putative biomarkers there was already evidence
in the literature of their presence in FMV urine. The majority
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FIGURE 3 | Comparison of stability of example biomarkers in First Morning Void (FMV) urine collected in vacuum tubes stored at 4◦C for 2 weeks (Vacuum transfer

method) or Universal tubes (Standard Universal collection) stored at −80◦C. Where: Biomarker 1, 1-Methyl histidine; Biomarker 3, 3-Methyl histidine; Biomarker 15,

Carnosine; Biomarker 17, Creatinine; Biomarker 18, D,L-Sulphoraphane L-cysteine; Biomarker 23, DHPPA [3-(3,5-Dihydroxyphenyl)-1-propanoic acid]; Biomarker 31,

Ferulic acid-4-O-sulphate; Biomarker 37, L-Anserine; Biomarker 50, Tartarate; Biomarker 53, Trimethylamine-N-oxide (Full list of number codes for biomarkers is in

Supporting Data 4).

of the remaining dietary exposure biomarker leads selected had
been shown to be present in 24 h urine samples and so it
was reasonable to expect their presence in FMV urine samples
collected the day after a specific food intervention.

Examination of Biomarker Behaviour
During LC-MS and Development of a
Biomarker Panel Strategy
Previous analysis of published literature revealed that the
great majority of dietary exposure biomarker candidates
were detected and quantified using LC-MS technology (53).
Chemical classification of putative biomarkers showed great
structural diversity that included metabolites from 17 Chemical
Classes representative of 7 Chemical Super-Classes (Figure 4A).
In silico multi-dimensional scaling of structural attribute
fingerprint distances shows the large diversity in chemical
structure across biomarker candidates, highlighting the necessity
for employing multiple chromatography systems (Figure 4B).
Focusing specifically on partition coefficients (logP) and
molecular weight attributes, it is clear from the scatterplot shown

in Figure 4C that a large percentage of biomarker candidates
were quite strongly hydrophilic. Based on this distribution a
decision was made to develop an analytical strategy based
largely on the use of a HILIC column to measure strongly
polar chemicals and a RP (C18) column to quantify less
polar metabolites.

LC-QQQ-MS/MS technology is used widely for measuring,
with high sensitivity, the concentration of target chemicals in
complex biological samples. Quantification of pre-determined
fragmentation products of targeted metabolites in expected
retention time windows using MRM approaches allows the
investigator to obtain data on large numbers of individual
metabolites in short (10–15min) HPLC runs. Chemical mixtures
designed as calibration standards for either HILIC or RP (C18)
chromatography were used to optimise metabolite separation
and detection conditions on a Thermo QQQ instrument
(see Supporting Data 4). Serial dilutions of the two standard
chemical mixtures (30–0.00197 µg ml−1) were used to establish
LoD and LoQ and to examine analytical reproducibility over
several months. The reproducibility of measurement of chemical
standard mixtures was determined at nine concentration levels.
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TABLE 2 | Selection of biomarkers for panel development.

Dietary component Putative urine biomarker Potential use as a habitual

dietary exposure biomarker?

Key reference in relation to

habitual dietary exposure

biomarker potential

Alcohol Ethyl-beta-D-glucuronide ** (78)

Wine Resveratrol * (59)

Coffee Chlorogenic acid * (79)

Coffee Dihydrocaffeic acid# * (80)

Coffee Ferulic acid-4-O-sulphate * (80)

Coffee Feruloylglycine ** (1)

Coffee m-Coumaric acid# * (46)

Cocoa 3-Methyl-xanthine ** (81)

Cocoa 7-Methyl-xanthine ** (81)

Cocoa/Tea Caffeic acid# * (80)

Coffee/Cocoa Caffeine * (81)

Cocoa Vanillic acid ** (46)

Sweetener Acesulphame-K ** (2)

Sugary Foods and Drinks Sucrose ** (39)

Fruit and Vegetables 3-Hydroxyhippuric acid ** (82)

Fruit and Vegetables 4-Hydroxyhippuric acid ** (82)

Fruit and Vegetables Hippuric acid * (83)

Citrus 4-Hydroxyproline-betaine ** (30)

Banana Dopamine-3-O-sulphate# ** (84)

Banana Dopamine-4-O-sulphate# ** (84)

Strawberries/red berries Furaneol ** (2)

Citrus (grapefruit) Naringenin * (85)

Grapes/wine/red berries p-Coumaric acid ** (86)

Citrus Proline betaine ** (30)

Apple Rhamnitol ** (22)

Grapes Tartarate ** (87)

Onion and tomato Quercetin * (11)

Onion and tomato Quercetin-3-O-b-D-glucuronide ** (88)

Cruciferous Vegetables D,L-Sulphoraphane L-cysteine ** (89)

Cruciferous Vegetables D,L-Sulphoraphane-N-acetyl-L-cysteine ** (1)

Wholegrain/Rye BOA (1,3-Benzoxazol-2-one) * (35)

Wholegrain DHBA (3,5-Dihydroxybenzoic acid) * (90)

Wholegrain DHBA-3-O-sulphate * (91)

Wholegrain DHPPA (3-(3,5-Dihydroxyphenyl)-1-propanoic

acid)

* (90)

Wholegrain DHPPA-3-sulphate * (91)

Meat (general) 1-Methyl histidine * (92)

Poultry/Fish 3-Methyl histidine * (27)

Meat (processed) Carnitine * (93)

Red meat Carnosine * (24)

Meat (general) Creatinine * (25)

Chicken L-Anserine ** (1)

Meat (general) Taurine * (25)

Fish/Shellfish Trimethylamine-N-oxide ** (1)

Potatoes Calystegine A3 ** (48)

Potatoes Calystegine B2/B1 ** (48)

Soy products Daidzein ** (94)

Legumes Pyrogallol ** (2)

Legumes Trigonelline ** (2)

(Continued)
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TABLE 2 | Continued

Dietary component Putative urine biomarker Potential use as a habitual

dietary exposure biomarker?

Key reference in relation to

habitual dietary exposure

biomarker potential

Strongly Heated Foods N-(2-Furoyl)glycine ** (2)

Polyphenol rich foods Epicatechin(-) * (79)

Polyphenol rich foods Ferulic acid * (95)

Polyphenol/Anthocyanin

rich foods

Ferulic acid-4-O-b-D-glucuronide * (96)

Fruit/Grapes/Tea/wine Gallic acid * (86)

Anthocyanin rich foods Protocatechuic acid ** (97)

#Normally the conjugated forms detected; the impact/use of the selected metabolite as a potential biomarker of habitual dietary exposure where *Possible and **Likely.

FIGURE 4 | In silico overview of the chemical diversity of candidate biomarkers. (A) Chemical class and Superclass classifications of 54 biomarkers using ClassyFire.

(B) Multi-dimensional scaling of Tanimoto Distances between MACCS (Molecular ACCess System) fingerprints of biomarkers. (C). Visualisation of biomarkers in

chemical space. Where: logP, partition coefficients [Full list of number codes for biomarkers in panels (B,C) is in Supporting Data 4].

RSDdata for biomarkers used tomonitor exposure to six example
foods/food groups are illustrated in Figure 5 and in all cases,
reproducibility gradually worsened as biomarker concentration

dropped. Median concentrations of the same biomarkers were
measured in FMV urine taken from 95 free-living participants
from Study 1. For each metabolite the median concentration was
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substantially greater than the level at which RSD approached 20%
(see dotted boxes in Figure 5) and usually an order of magnitude
greater than the LoQ (see Supporting Data 4).

Demonstration of Biomarker Panel Utility
to Examine Eating Behaviour in the MAIN
Study
The utility of the biomarker panel to characterise eating
habits within populations was explored by measuring the
concentrations of 54 BFIs in FMV urine samples obtained on
days following consumption of three distinctive meal plans (see
text box in Figure 6) from 15 individuals in the Newcastle MAIN
food intervention study (Study 2). The data were subjected
to PCA which showed distinctive clustering of urine samples
by Menu Day (colour coded) in relation to the zero position
in PC1 and PC2 (indicated by dotted red grid lines in the
scores plot shown in Figure 6A). Menu Day 1 and Menu
Day 2 samples separated strongly in PC1, whereas Menu Day
3 samples clustered away from samples representative of the
other 2 Menu Days in the PC2 dimension. Biomarkers that
are strongly explanatory of differences in the composition of
urines collected the morning after individual Menus Days are
shown in Figure 6B. Examination of the 4 sectors delineated
by the zero grid lines of the loadings plot revealed a strong
association between specific biomarkers and particular foods
consumed on each menu day. For example, TMAO (60) was
strongly associated with cod fish fingers consumed on Menu Day
2, 3-Methyl histidine (3) was linked to chicken consumption on
Menu Day 1 and carnosine (15) was indicative of exposure to a
100% beef burger on Menu Day 3. 1- and 3-Methyl-xanthine (4
and 7) and Epicatechin(–) (28; a marker for general polyphenol-
rich foods) detected exposure to cocoa products on Menu Day
1, whilst Acesulphame-K (8) was associated with exposure to a
diet soft drink on the same day. Sulphoraphane derivatives (18
and 19; D,L-Sulphoraphane L-cysteine and D,L-Sulphoraphane-
N-acetyl-L-cysteine) were highly explanatory of exposure to
coleslaw (containing cabbage) onMenuDay 3, whilst trigonelline
(53) and N-(2-Furoyl)glycine (39; a strongly heated food marker)
reflected exposure to coffee on the same day. Tartrate (51) and the
calystegines (12 and 13; A3 and B2/B1) contributed strongly to the
clustering of urine samples from Menu Days 2 and 3 away from
Menu Day 1 samples when grape products and potato products
were not consumed. The example box plots (colour coded by
Menu day) in Figure 6C demonstrate a clear increase in the
concentration in urine of the selected biomarkers the day after
the consumption of a specific food.

An important feature of any biomarker strategy designed to
monitor habitual diet in both individuals and populations is
the ability to add in new biomarkers as they are discovered
and validated. RF can be used to assess the stringency of
sample classification based on modelling output measures such
as accuracy, AUC, and margins (76). Figure 7 shows a MDS of
proximity scores extracted from a RF classification model of the
same 15 individuals consuming three unique menus, and panels
of 38 dietary biomarkers used in 2018 (Figure 7A) and extended
to 54 biomarkers in 2020 (Figure 7B). In both models, sample

clustering by Menu Day is very similar and modelling output
measures are still excellent, despite the challenge of measuring
many more biomarkers in each MRM experiment in the more
complex panel utilising 54 biomarkers.

DISCUSSION

More than a decade of intensive research to discover putative
BFIs has yielded a wealth of information highlighting specific
metabolites that appear in urine following consumption
of individual foods/food groups. A large number of such
metabolites have great potential as biomarker leads for particular
foods/food groups when validated in isolation (49). However,
their deployment in any cost-effective strategy aimed at
comprehensive monitoring of habitual diet imposes a substantial
number of further challenges that require both definition
and investigation (1, 22). Preliminary investigation of the
performance of any specific biomarker in the context of a
complex biomarker panel requires urine samples from complex
food intervention studies designed specifically to emulate
habitual eating patterns. The MAIN Study at Newcastle was
designed with this specific objective in mind (1, 2, 22). By
validating biomarkers in urine samples from studies researching
eating behaviour in free-living populations (62, 67) it is
anticipated that BFI technology will mature rapidly over the next
few years.

It is particularly important to consider carefully urine
sampling approaches when deploying BFI technology to help
monitor diet and to adopt a methodology that is appropriate
for the study objectives (see Table 1). Twenty-four hour urine
samples, which include the FMV after the study day, provide
an ideal type of sample to assess food intake on a single day
with the caveat that their collection imposes considerable burden
on study participants. To assess habitual diet using BFI data
would demand the collection 24 h urine samples onmultiple days
which can have a substantial influence on the acceptability of
the study requirements and compliance by participants, as well
as impacting greatly on study logistics and overall costs (1, 62,
67). Consequently, spot urine samples are becoming the urine
samples of choice for studying BFIs of a single food/food group
when compared with 24 h collections [e.g., (89, 98)] because
their collection has little impact on normal daily activities of
study participants.

Nutrikinetic studies of potential BFIs have shown that diet-
derived metabolites from individual foods reach peak levels in
urine at different times post-prandially (49). Thus, choosing an
appropriately-timed spot urine sample is clearly problematical
when considering the effective deployment of a comprehensive
biomarker panel covering the whole of diet. Our recent studies
have shown that spot urine samples are generally adequate
substitutes for 24 h urine samples for measurement of BFIs (22,
62); particularly post-evening meal (i.e., just before bed time)
and FMV urines were collected with a high degree of success
(22). In the present paper, we describe a strategy to select urinary
biomarkers for inclusion in a comprehensive and extendable
panel to monitor habitual dietary exposure that focuses on the
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FIGURE 5 | Relationship between relative standard deviation (RSD), biomarker concentration in calibration standard mixtures, and median concentration in First

Morning Void (FMV) urines from Study 1. RSD data of biomarkers used to monitor exposure to six example foods/food groups when measured at nine concentration

levels over a 6-month period. The concentration range within which the median concentration of the same biomarkers was measured in FMV urine taken from 95

free-living participants are highlighted by dotted boxes.

use of FMV urine samples. From an analytical perspective,
sampling FMV urines after a substantial overnight sleep period
allows sufficient time to elapse for any gut microbiome and
liver P450 bio-transformations of targeted metabolites to be
completed, thus extending the availability of characteristic
biomarkers and increasing their concentrations in the collected
urine. It has been shown previously that the distributions of
biomarker concentrations are comparable between post-dinner
spot samples, overnight cumulative samples, and 24 h urines
(62). We demonstrated recently (53) that more than 50 different
potential BFIs were detectable in FMV urine the day after the
consumption of targeted foods. In the present study, we show
that for many, but not all, BFIs there is a relatively linear
correlation between concentration in 24 h and FMV urine and
suggest that only those with an R2 approaching 0.2 may be
suitable for accurate quantification when using a comprehensive
biomarker panel to monitor habitual diet. Although this is
clearly a limitation for accurate quantification of food intake
it is very likely that the presence in FMV urine of BFIs with
lower correlation coefficients will still provide a useful qualitative
indication of recent exposure to their target foods.

Our recent collaborations have highlighted the importance of
understanding metabolic biotypes (metabotypes) in populations
that may impact on nutritional status (41, 45, 99). As many
dietary exposure biomarkers are derived from food chemicals
that are metabolised and/or biotransformed before excretion,
it is possible that chemical “signatures” reflective of common

metabotype groupings in any population can be visualised using
a biomarker panel. Differential metabolism of any particular BFI
by metabotype sub-groups in any population would provide an
additional limitation on its utility for quantitative assessment
of dietary intake. The hydration levels of study participants
can vary considerably and has to be adjusted for in any BFI
deployment strategy. The use of 24 h urine samples for biomarker
quantification demands the accurate measurement of the total
volume of urine produced during any 24 h period and then the
concentration and extraction of a specific aliquot before analysis
in order to calculate the overall daily excretion rate.

Logistics, the analytical and computational skills required,
and costs will also impact on the wider acceptance and adoption
of dietary exposure biomarker technology by the nutrition
research community. In the methodology we describe, urine
processing is limited to a simple dilution with ultra-pure water
as QQQ instruments operating in MRM mode are extremely
sensitive and thus there is a need to collect only small volumes
of urine for analysis (e.g., 0.5–3ml). With this objective in
mind, we have shown that spot samples can be collected in
the home with high collection compliance using vacuum tube
technology (67). Importantly, urine samples collected by this
method are compositionally stable at room temperature for
several days without preservatives (67). This feature of vacuum
tube collection methodology allows transport by domestic
mail without dry ice offering the opportunity to scale up
dietary exposure studies in community settings. A commercial

Frontiers in Nutrition | www.frontiersin.org 13 November 2020 | Volume 7 | Article 60251579

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Beckmann et al. Dietary Urine Biomarker Technology Challenges

FIGURE 6 | Biomarker panel to characterise eating behaviour on individual Menu Days in Study 2. (A) Principal Components Analysis (PCA) scores plot of biomarker

panel measurements in First Morning Void (FMV) urine of 15 individuals across three Menu Days in Study 2. (B) PCA variable loadings plot showing the variance

contributions of biomarkers on each Menu Day (Full list of number codes for biomarkers in panel B is in Supporting Data 4). (C) Boxplots illustrating the

concentration in FMV urine of top ranked biomarkers discriminating Menu Days following Random Forest classification. Text box provide details of meals consumed

on each Menu Day. Where: Biomarker 3,3-Methyl histidine; Biomarker 7,7-Methyl xanthine; Biomarker 19, D,L-Sulphoraphane-N-acetyl-L-cysteine; Biomarker 22,

DHBA-3-O-sulphate; Biomarker 50, Tartarate; Biomarker 53, Trimethylamine-N-oxide.
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FIGURE 7 | Demonstration that biomarker panel can be extended without any loss of classification power. Multi-dimensional scaling (MDS) of Random Forest

proximity extracted from a classification model of 15 individuals consuming three unique menus in Study 2. (A) MDS using a panel of 38 biomarkers of food intake

(BFIs) which was extended to 54 BFIs and (B) 2 years later.

product for spot urine collection (Supporting data 6) is
now on the market (https://www.co-vertec.co.uk/) and is
currently under evaluation in several clinical trials interested in
monitoring vulnerable populations in community environments
to study malnutrition (https://www.hra.nhs.uk/planning-
and-improving-research/application-summaries/research-
summaries/stream-feasibility-study/), impact of homelessness
on diet (100) and evaluating the eating behaviours in pre-diabetic
individuals (https://waru.org.uk/cms/waru_news/targeting-pre-
diabetes-through-primary-care/).

Targeted profiling of urine using high resolution hybrid
quadrupole/ion trap technology, coupled with RP C18 UHPLC,
can capture information about the relative concentrations
of a substantial number of metabolites in a sample when
combined with urine concentration by solid phase extraction
methodology [e.g., (101)]. However, sample processing can
add significant time and cost to any analytical process and
in our experience differential metabolite recovery from ion
exchange cartridges can add a significant degree of uncertainty
and variance in metabolite measurement. In the present study,
we have described a fully quantitative approach using QQQ-
MS/MS to measure biomarker abundance. This methodology
uses complex mixtures of chemicals standards for quantitation
and utilises two HPLC columns solutions to provide optimal
resolution of a structurally diverse range of chemicals using short
chromatography runs.

As outlined in Table 1 the utility of any biomarker panel
will depend on the study objectives. The biomarker panel
described in the present study was optimised specifically to
investigate eating behaviour in free-living populations and was
targeted towards frequently consumed foods of high public
health importance in the UK (2). One limitation of the
present study is that only relatively small populations have
been used in these initial validation studies and in future BFI
technology will need to be tested rigorously in multiple larger
populations. We have shown that the biomarker panel can be
extended incrementally as new biomarker leads are evaluated
and current evidence suggests that it should be straightforward
to adapt our strategy to develop biomarker panels that provide
comprehensive coverage of foods consumed frequently in other

populations. Combined with existing bespoke software for
data extraction, it is expected that the development of high
throughput, automated biomarker measurement procedures to
assess dietary intake is within scope in the near future. In
addition, the routine generation of quantitative BFI data will
offer further opportunities to develop novel “healthy eating
indices” to summarise and “score” eating habits for use in
personalised nutrition applications (26, 45). In conclusion,
we believe that the integration of information from BFI
technology and dietary self-reporting tools, combined with
a deeper understanding of nutritional metabolic biotypes in
populations, will help to provide more robust understanding
of the complex interactions between dietary behaviour and
human health.
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Background: Previous measurement error work that investigates the relationship

between a nutritional biomarker and self-reported intake levels has typically been at

a single time point, in a single treatment group, or with respect to basic patient

demographics. Few studies have examined the measurement error structure in

longitudinal randomized trials, and whether the error varies across time or group.

This structure is crucial to understand, however, in order to correct for measurement

error in self-reported outcomes and properly interpret the longitudinal effects of

dietary interventions.

Methods: Using two longitudinal randomized controlled trials with internal longitudinal

validation data (urinary biomarkers and self-reported values), we examine the relationship

between urinary sodium and self-reported sodium and whether this relationship changes

as a function of time and/or treatment condition. We do this by building a mixed effects

regression model, allowing for a flexible error variance-covariance structure, and testing

all possible interactions between time, treatment condition, and self-reported intake.

Results: Using a backward selection approach, we arrived at the same final model for

both validation data sets. We found no evidence that measurement error changes as a

function of self-reported sodium. However, we did find evidence that urinary sodium can

differ by time or treatment condition even when conditioning on self-reported values.

Conclusion: In longitudinal nutritional intervention trials it is possible that measurement

error differs across time and treatment groups. It is important for researchers to consider

this possibility and not just assume non-differential measurement error. Future studies

should consider data collection strategies to account for the potential dynamic nature of

measurement error, such as collecting internal validation data across time and treatment

groups when possible.

Keywords: lifestyle intervention, measurement error, nutrition, sodium intake, biomarkers, self-reporting habits

INTRODUCTION

Dietary interventions seek to change dietary behaviors – either to affect some clinical outcome or
to change the behavior itself. These studies might use only one time point after baseline to assess
participant outcomes, or they may be longitudinal, in which participant outcomes are measured
several times over the course of months or years after initial group assignment.
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Dietary intervention studies usually require investigators to
collect nutrient intake data— such as sodium consumption in
study participants—to estimate the effect of the intervention on
diet. Yet properly measuring dietary intake, especially over time,
with high accuracy can be difficult. Direct nutrient intake is
rarely observed, and in dietary studies, researchers frequently
resort to two methods to measure nutrient intake: self-report or
biomarkers (1).

Self-reported measures generally rely on participants
reporting their dietary intake over some period of time, such
as the past 24 h or 7 days. This often takes the form of a food
frequency questionnaire (FFQ), where participants fill out a
survey about their eating habits or a 24-h dietary recall, where
participants report everything consumed over the previous day.
That is then used to extract information about the nutrients in
the food reported as having been consumed. Biomarkers are
biologic components from participants, such as blood, urine,
or hair, which contain information about a person’s nutrient
levels. Biomarkers are useful because they objectively measure
intake and some provide unbiased estimates of intake. Therefore,
biomarkers may be closer to the “truth” than self-reported
methods (but still subject to measurement error), and hence
provide a better estimate of a person’s nutrient intake (2, 3).

Unfortunately, biomarkers are often expensive, invasive,
and/or difficult to implement in a study (4). They place
potentially greater burden on study participants than self-report
measures; this burden may discourage participants from taking
part in a longitudinal study. Thus, there are concerns that
biomarkers can contribute to poor study adherence and missing
data problems (i.e., that participants will drop out of the study
because of the hassle or invasiveness of the biomarker collection)
(5). For these reasons, in many studies, it is often infeasible to
capture biomarker data over time. Self-reported methods are
more frequently implemented than biomarker measurements
since they are likely easier, cheaper, and more convenient for the
participant (4).

Both of these methods (biomarkers and self-report) act as
“proxy” measurements of true intake, because they can be
representative, but are potentially imprecise versions of the truth.
They are potentially subject to twomain types of error: systematic
and random. Systematic error, or bias, means that a measure
consistently departs from the truth in the same direction (i.e.,
always higher or lower), and can be hard to detect and analyze
statistically (6). Systematic errors can decrease the accuracy
of measurements and create potentially erroneous conclusions
about the relationship between food intake or nutrients and
nutrition-related diseases (7). Random error can create variability
in the measurements, which may reduce precision, resulting in a
loss of statistical power. However, random errors can be more
easily corrected with statistical methodology (8). These errors
together help create measurement error, the difference between
“true” and “observed” intake.

If researchers are concerned with measurement error, they
may have a slight preference for biomarker collection methods
because the objective nature of biomarkers leads to less
systematic error, but they are still subject to potential random
errors such as daily variation in diet (3, 8–10). Self-reported

measures can be more susceptible to systematic measurement
errors due to the many complexities of properly reporting food
intake (8, 11, 12). Even with the best due diligence, factors such
as social desirability or recall problems influence final results.
Examples include constant over or under-reporting (systematic
error) or daily fluctuations in food consumption (random error).

Given these measurement challenges in nutrition (and many
other fields), researchers have developed statistical methods
such as regression calibration (13) and Simulation Extrapolation
(SIMEX) (14) to deal with measurement error in settings where
the variable measured with error is a covariate in an outcome
model. To implement these methods, it is necessary to have
information on the relationship between the variable measured
with error and its true value.

The existing measurement error literature in dietary studies,
and their respective correction methods, typically examine
measurement error at one specific time point and/or in
a single observational cohort. However, these measurement
error patterns may not remain constant in longitudinal
lifestyle interventions.

In addition, in randomized controlled trials (RCTs), where
individuals are randomly assigned to treatment conditions
and the intervention and comparison groups have different
experiences, self-reporting behaviors could change over time
and/or by treatment assignment. Those in the treatment group
may become more cognizant of nutrition intake through
intervention exposure, leading to increased reporting accuracy.
Participants may also modify their self-reported values (even
if not necessarily their true intake) to appear compliant
with intervention recommendations, which decreases their
accuracy (12).

Self-reported precision could also wane over time as
participants experience fatigue with repeated reporting (15). This
fatigue could lead them to be more carefree and less rigorous,
introducing uncertainty into measurements. Conversely, as
people repeatedly monitor sodium intake over time, they may
become more accurate with increased repetitions. Thus, the
structure of themeasurement error could be differential, meaning
the amount of error may differ across treatment groups and
could change over time differently for each treatment group.
However, to this point there has been little empirical investigation
of these patterns.

As a case study, we examined sodium intake in two
longitudinal intervention trials, Trials of Hypertension
Prevention (TOHP) (16) and PREMIER: Lifestyle Interventions
for Blood Pressure Control (17). These data sets are particularly
useful for examining measurement error over time because they,
unlike most dietary intervention trials, contain both self-reported
sodium intake via 24-h recall and a sodium biomarker−24-h
urine—for each participant at every time point. With this
information, we compare the participants’ self-reported values
with their directly measured urinary sodium to characterize the
measurement error, and assess whether the error varies across
treatment group and time. Our analyses could be helpful to
learn about potential measurement error in other settings, and
to help researchers understand when it is important to consider
differential measurement error by time or treatment condition.
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MATERIALS AND METHODS

Trials of Hypertension Prevention
TOHP was a U.S. based, multicenter, randomized trial of
2,182 participants testing the efficacy of a lifestyle intervention
aimed at lowering diastolic blood pressure (DBP) from the
high normal range (80–89 mmHg) (16) to a lower range.
Participants were assigned to one of four treatment groups:
sodium reduction, weight reduction, stress management, or
control. The sodium reduction group received counseling on
how to reduce sodium consumption in everyday life. The weight
reduction group received guidance on weight-loss techniques.
The stressmanagement group were provided copingmechanisms
to handle stressful situations. The weight loss and stress
management groups did not receive any counseling specifically
on sodium intake. The control group did not receive any
particular intervention or information; in this sense it was similar
to a “usual care” condition.

Participants were considered eligible if they were healthy
men and women, aged 30 through 54 years, who had high
normal DBP and were not taking antihypertensive drugs for
the prior 2 months (16). All participants were screened three
times prior to enrollment to check eligibility requirements and
then randomized to one of the four treatment groups. On
the third screening, a 24-h dietary recall was conducted, and
participants provided a 24-h urine sample; this served as their
“baseline” measurement. All participants were contacted again—
at an unannounced point in time— ∼6 and 18 months after
enrollment to again provide 24-h dietary recall and 24-h urine
biomarker for sodium consumption at each respective time point
(Table 1). The 24-h recall data on individual foods was converted
into nutrients using the Tufts Nutrient Data Bank based on the
US Department of Agriculture Standard Reference (Release 9) in
combination with extensive manufacturers’ data and published
nutrient data on currently consumed food products (16, 18, 19).

PREMIER: Lifestyle Interventions for Blood
Pressure Control
PREMIER was also a U.S. based, multicenter randomized trial
testing the effects of various lifestyle intervention on blood
pressure outcomes in 810 adults with above optimal DBP
(80–95 mmHg) and who were not taking antihypertensive
medications (17).

Participants were randomly assigned to one of three treatment
groups: Established, Established Plus Dash, or Advice Only. The
Established group received guidance on improving their dietary
habits (including reducing sodium consumption) and increasing
physical activity. Established Plus Dash received an intervention
similar to Established but also received education on the DASH
diet, a diet high in fruits, vegetables and low-fat dairy products.
Finally, Advice Only received general healthy behavior advice,
but no specific counseling on sodium intake or physical activity.

All eligible participants attended a randomization visit, where
researchers randomized them to a group and then collected
baseline measurements including two 24-h dietary recalls, and
a 24-h urine sample. Trial researchers contacted all participants
unannounced at 6 and 18 months after enrollment, at which

TABLE 1 | Study characteristics and participant demographics in TOPH and

PREMIER studies.

TOHP† PREMIER

N 751 818

Enrollment dates 1988–1990 1999–2001

Timing of sodium

assessment

Baseline Baseline

6 months 6 months

18 months 18 months

Assessment method 24-h recall Two 24-h recalls

24-h urine 24-h urine

Treatment categories

(N in group)

Sodium reduction* (329)

Control‘ (422)

Established* (271)

Established plus DASH*

(272)

Advice only‘ (275)

Male N (%) 534 (71) 310 (38)

Mean baseline BMI

(SD)

27.3 (3.6) 33.2 (5.7)

Mean baseline age (SD) 43 (6.4) 50 (8.9)

†
Some cohorts in the original TOHP study were outside the scope of our analysis and

therefore were excluded from the final models. N = 751 reflects a subset of TOHP

we used for this study, and subsequent BMI and age calculations are derived from the

subsetted population.

*Categorized as “treatment” for our purposes.

‘Categorized as “control” for our purposes.

point individuals again provided two 24-h dietary recalls and
24-h urine samples (Table 1).

Intake of nutrients and food groups was assessed from
unannounced 24-h dietary recalls conducted by telephone
interviewers. Two recalls (one obtained on a weekday and the
other on a weekend day) were obtained at baseline, 6-, and 18-
months by the Diet Assessment Center of Pennsylvania State
University. The Nutrition Data System (NDS) developed and
maintained by the Nutrition Coding Center of the University
of Minnesota was used to generate the estimates of individual
nutrient intake from the recalls (17).

We obtained the datasets for TOHP and PREMIER through
an online request from the National Heart, Lung, and Blood
Institute BioLINCC data repository after receiving IRB approval
through Johns Hopkins Bloomberg School of Public Health and
Northwestern University.

For both datasets we consolidated the original treatment and
control groups into new ones for our purposes. In TOHP, only
the sodium reduction group received counseling on sodium
management. Hence, we discarded the stress management and
weight reduction groups and only use the original control
group in the control arm. For the PREMIER study we
considered both behavioral intervention groups (Established,
Established plus DASH) as the “treatment” condition, and
used the advice only condition as the control condition.
We are interested in whether participants in the sodium
reduction interventions, more (or less) accurately report their
actual sodium intake compared to those in the advice only
group, and whether the pattern of measurement error varies
over time.

Frontiers in Nutrition | www.frontiersin.org 3 November 2020 | Volume 7 | Article 58143988

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Pittman et al. Measurement Error in Dietary Sodium

The same data cleaning procedures were used for both
studies prior to analysis. First, the biomarker sodium values
were converted to dietary sodium values by dividing urine
sodium values by 0.86, as only 86% of sodium intake appears
in urine (1, 20). The dietary sodium and self-reported sodium
values were both natural log-transformed to make the respective
distributions approximately normal. In PREMIER, the two
self-reported sodium values at each time point were averaged
after log transformation. We centered log self-report (log
self-report – mean log self-report at baseline) to help with the
interpretability of regression coefficients.

Our model of interest is a calibration model in which a
reference measure (urinary sodium) is regressed on its self-
reported version (21). This relationship is used for missing data
approaches (22) for handling measurement error where the
variable measured without error is treated as missing data and
imputation is used to fill in the unobserved data (23–26).

We began by plotting the data in order to visualize the
relationship between urinary sodium and self-reported sodium
and help inform our modeling efforts. We used scatterplots of
urinary sodium against self-reported sodium, grouped by time,
with an overlapping linear predicted regression line for each
condition at each time point.

Mixed effects linear regression was used (27) to estimate the
relationship between log measured urinary sodium and log self-
reported sodium over time, and by treatment group, while taking
into account the correlation ofmeasures within a participant over
time. To estimate these models, we used the lme4 and lmerTest
packages in R version 3.5.1 (28–30).

For each trial, we started with an initial model that included
main effects for follow-up time (indicators for 6- and 18-months),
subjects’ self-reported intake, as well as two-way interactions
between self-reported intake and time, time and treatment
assignment, and a three-way interaction between self-reported
intake, time, and treatment. We allow each individual to have a
random intercept, and the (log centered) self-reported values to
have a random slope, and used an unstructured covariancematrix
to model the random effects.

For each person i (i = 1,. . . , N), at time j (j = baseline,
6 months, 18 months; coded categorically), in our defined
treatment group (TX; 0 = control, 1 = treatment) their urine
measured sodium intake is represented by Uij and self-reported
intake is represented by selfij. Our model can be written as:

Uij = β0 + β1∗selfij + β2I(timej = 6)+ β3I
(

timej = 18
)

+ β4I
(

timej = 6
)

∗TXi + β5I
(

timej = 18
)

∗TXi + β6∗selfijI
(

timej = 6
)

+ β7∗selfijI
(

timej = 18
)

+ β8∗selfijI
(

timej = 6
)

∗TXi + β9∗selfijI
(

timej = 18
)

∗TXi + b0i + b1i∗selfij + eij (1)

In Equation (1) I() is an indicator function which takes on either
0 or 1. b0i is the random intercept and b1i is the random slope
for each person’s centered self-reported values, respectively. We
assume correlated random effects where b0i ∼ N (0, τ 20 ), b1i ∼ N

(0, τ 21 ), and residual error terms eij ∼ N(0, σ 2), independent of
the random effects

We excluded a main effect for treatment (TX) from the model
because the coefficient was ∼0. This is expected because we
assume treatment and control groups have similar sodium levels
at baseline, at least in expectation (because of randomization) and
thus reduces an extra parameter.

Including the three-way (self-reported intake by time
by treatment) interactions in this initial model allows the
relationship between urinary sodium and self-reported sodium
to vary over time and across the treatment and control groups.
We include a time by treatment interaction to examine whether
average levels of urinary sodium differ by time and treatment
condition at a fixed level of self-report.

A backwards variable selection approach was used to obtain
a final analysis model. First, the initial saturated model with
the three-way interaction shown in Equation (1) was fit. We
used a significance level of 0.2 to decide whether a variable
should remain in the model. We first tested the two three-way
interactions self-report∗time∗treatment. If at least one coefficient
had a p-value < 0.2, we kept both interaction terms in the model
(i.e., for both time points). If both coefficients had p-value > 0.2,
we dropped them from the model and refit our second-stage
model which omits the 3-way interaction.

In our second-stage model, we tested the significance of the
self-report∗time terms (β6, β7), which measure whether the
relationship between urinary sodium and self-reported sodium
changes over time, assuming any change is constant across the
treatment and control groups. Once again, if both coefficients had
p-values > 0.2, we dropped them from the model and fitted our
final model.

Our final model allows urinary sodium levels to change
across time and treatment status. In this model we test the
time∗treatment interactions (β4,β5). If both coefficients had p-
values > 0.2, we dropped them from the model.

After selecting our final model we then standardized
the regression coefficients. To standardize the exposure—
self-reported intake—we subtracted the pooled (control and
treatment) mean self-reported intake at baseline from all self-
reported values and then divided that result by the standard
deviation of self-reported intake at baseline. The outcome—
urinary sodium—was similarly standardized, using the pooled
mean and standard deviation of urinary sodium at baseline.

RESULTS

Both datasets include people who over and under report by
time and treatment status (Figures 1, 2). The 45-degree line in
each graph represents “perfect” reporting, where measured urine
biomarker equals self-reported sodium. Those who fall above
the line under report, meaning their measured urine sodium
levels were higher than self-reported intake. Conversely, those
below the line over report, meaning their measured urine sodium
levels were lower than their self-reported amounts. The wide
scattering of points suggests a high degree of variability in
reported sodium levels.
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FIGURE 1 | Scatterplots of log urinary sodium vs. log self-reported sodium by time and treatment conditions in TOHP. The solid orange (control) and dashed blue

lines (treatment) are linear smoothers of urinary sodium as a function of self-reported sodium in each treatment condition. 45-degree line represents where urinary

sodium equals self-reported sodium. Units are on the natural log scale.

We overlapped a linear smoother on top of the scatterplot
to highlight some reporting differences between the treatment
and control conditions. These lines should be considered as
preliminary models, as they fit the models separately by time
and group, and thus do not allow formal model comparisons
across time or group, but the relationships between self-
reported and biomarker values appear broadly similar. In both
studies at baseline, the two study conditions are approximately
equal in urinary vs. dietary sodium levels, as expected from
the randomization.

Regression Results
Using the stepwise procedure described above, neither the three-
way interactions in model (1), nor the interactions between self-
reported sodium levels and time in the second-stage model met
the criteria for inclusion in either study. As such, the final model
for both studies only includes the interaction between treatment
and time. This final model is shown in Equation (2).

Uij = β0 + β1∗selfij + β2I(timej = 6)+ β3I
(

timej = 18
)

+ β4I
(

timej = 6
)

∗TXi + β5I
(

timej = 18
)

∗TXi

+ b0i + b1i∗selfij + eij (2)

This model implies that average measured urinary sodium
changes over time (β2,β3), and at different rates in the treatment
group vs. control group (β4,β5) but that there is no differential
change in the slope of self-reported sodium across groups over
time. It is interesting to note that the final regression results in
both datasets were very similar to one another.

In TOHP (Table 2), there was a small but significant decrease
in urinary sodium between baseline and 18 months in the control
group. The control group at 18 months has 0.19 SD lower urinary
sodium than the control group at baseline on the log scale
(β3 =−0.19). There was, on average, a much larger significant
decrease in measured urine sodium between baseline and each
follow up time for the treatment group, for a given level of self-
reported sodium. At 6 months, the treatment group has 0.81 SD
lower urinary sodium than control group (β4 =−0.81), and 0.65
SD lower at 18 months on the log scale (β4 =−0.81).

In PREMIER (Table 2), there was a significant decrease in
average measured urine sodium at 6 months compared to
baseline. Both groups at 6 months had 0.24 SD lower urinary
sodium at baseline on the log scale (β2 = −0.24). However, this
difference was no longer there at 18 months. There were no
significant difference between treatment and control groups at
any point in PREMIER.
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FIGURE 2 | Scatterplots of log urinary sodium vs. log self-reported sodium data time and treatment conditions in PREMIER. The solid orange (control) and dashed

blue lines (treatment) are linear smoothers of urinary sodium as a function of self-reported sodium in each treatment condition. 45-degree line represents where urinary

sodium equals self-reported sodium. Units are on the natural log scale.

TABLE 2 | Standardized regression output from the final regression model.

Parameter from model (2) TOHP PREMIER

Estimate (95%CI) p-value Estimate (95%CI) p-value

Centered self-report β1 0.29 (0.23, 0.34) <0.001 0.21 (0.17, 0.26) <0.001

Month 6 control β2 0.03 (−0.10, 0.16) 0.68 −0.24 (−0.37, −0.10) <0.001

Month 18 control β3 −0.19 (−0.32, −0.06) 0.005 −0.08 (−0.21, 0.05) 0.23

Month 6 Trt. β4 −0.81 (−1.0, −0.63) <0.001 -0.1 (−0.26, 0.06) 0.20

Month 18 Trt. β5 −0.65 (−0.84, −0.47) <0.001 −0.15 (−0.30, 0.0) 0.06

β1: Change in average log urinary sodium (in SD units) due to a 1 SD unit change in log self-reported sodium at baseline for treatment and control (assumed to be same across groups

at baseline because of randomization).

β2: Among the control group members, difference in average urinary sodium (in SD units) between baseline and 6 months on the log scale.

β3: Among the control group members, difference in average urinary sodium (in SD units) between baseline and 18 months on the log scale.

β4: Difference in average urinary sodium (in SD units) between treatment and control groups at 6 months on the log scale.

β5: Difference in average urinary sodium (in SD units) between treatment and control groups at 18 months on the log scale.

If the relationship between urinary sodium and self-reported
sodium did not change over time and by treatment condition,
we would expect β2, β3, β4, β5 = 0. Instead, we find that β2,
β3, β4, β5 < 0, an indication that the relationship between
urinary sodium and self-reported sodium does in fact change
over time and by treatment status. In general, for a given level
of self-report, urinary sodium is lower at follow-up than it is
at baseline.

DISCUSSION

We expand on the current nutrition literature by focusing on the
differential measurement error structure of self-reported intake
which may arise when the treatment group self-reports their
sodium intake with increased or decreased accuracy (31). We
do this by modeling the relationship of urinary sodium as a
function of self-reported sodium, time, treatment condition and
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all possible interactions. This information is important when
designing studies where self-reported intake is a longitudinal
outcome variable, and can help inform measurement error
correction methods that use missing data approaches to correct
for measurement error.

The final models for TOHP and PREMIER look very similar
to one another, with slightly different coefficient values. The
slopes of self-reported sodium did not change as a function of
time or by treatment condition. The lack of significance in the
three-way self-report∗time∗treatment interaction and the two-
way self-report∗time interaction indicates a lack of significant
difference in systematic error in terms of the relationship
between self-reported sodium and urinary sodium between
the treatment arms across all three time points. However,
the intercepts do change by time and/or treatment condition
indicating that measurement error is affected by time and/or
treatment condition. Further, our final models were much
more parsimonious than our initial, fully saturated model.
This result suggests that relatively simple measurement error
correction models that involve only shifts in the intercept of
the calibration model are sufficient to appropriately correct for
measurement error.

In PREMIER, we see a decrease in measured urine sodium—
conditioning on self-report—at 6 months in the control group,
whereas in TOHP we see a much stronger decrease in the
treatment group at 6 and 18 months. These results suggest that
the relationship between biomarker and self-report can differ by
treatment group and/or time, however, these differences may be
study specific.

A failure to take into account differential measurement error
could result in biased estimates of the treatment effect. For
example, in TOHP at 6-months, for a given level of self-reported
sodium, participants in the treatment condition had lower
urinary sodium than did control participants. A measurement
error correction model that did not take this difference into
account would result in an attenuated treatment effect because
this difference in reporting would not be incorporated into the
difference between groups.

Discrepancies in the literature still exist about the relationship
between treatment and self-reporting error. Other studies
have found evidence for a relationship between treatment
assignment and self-report bias, similar to the results of
TOHP. In the Women’s Health Eating and Living Study,
a longitudinal randomized intervention trial with validation
data (32), researchers found dietary intervention affected
measurement error in self-reported outcomes using plasma
carotenoid biomarkers. In the Women’s Health Initiative Dietary
Modification Trial, another dietary intervention trial (33),
participants in the control group under-reported protein intake
at greater amounts compared to the treatment arm. There is thus
evidence that there may be differential measurement error across
time and treatment group, and that this may vary depending on
the dietary component being measured.

One possible solution to examine and address measurement
error across time and treatment groups would be internal
validation datasets with longitudinal intervention aspects. While
this route is resource intensive, it may be worthwhile if it

allows researchers to estimate treatment effects with less bias
and greater power to detect significant effects. A cheaper or
less invasive biomarker would make creating this dataset more
feasible. Another option would be more measurement error
correction methods, which is why it is important to study
how measurement error structures change over time and by
treatment status. Siddique et al. (25) performed sensitivity
analyses to the assumption that measurement error structure
is time invariant, treatment invariant, and time and treatment
invariant. Understanding how measurement error changes over
time and by treatment condition in validation datasets can help
encourage the implementation of these methods and improve the
accuracy of self-reported measures in longitudinal intervention
trials without available biomarker data.

Limitations
One limitation of this study is the amount of missing data, with
the highest being 29% at 18 months in TOHP and the lowest
being 1% at baseline in both studies. The regression models
were fit assuming that the missing data was “missing at random”
(MAR). This means we assume participants with unobserved
dietary sodium information at a given time point will have similar
intake values as the observed participants at the same time after
conditioning on other observed values (34). This assumption
may not hold in all circumstances however, and if violated could
imply differences between the observed and unobserved groups.
Future work could examine how the patterns of missingness may
interact with measurement error structures.

In both studies, the 24-h recalls and the 24-urine samples
were not required to capture the same day of measurement. We
assume that these two measures are capturing estimates of short-
term intake. Even so, the limited number of measurements at
each time point is likely not adequate to capture usual intake.
Estimates from both the biomarker and self-reported data are
therefore subject to additional variability due to day-to-day
variation in diet (1).

The biomarker sodium levels—measured through urine—are
also subject to additional sources of variability. Urinary sodium
excretion may reflect more than 1 day of intake (35). Further, we
divided urinary sodium values by 0.86 under the assumption that
86% of consumed sodium is available in urine (1, 20), this value is
likely to differ by participant, introducing additional uncertainty
in our estimates (36). These sources of variability in 24-h recalls
and urinary sodium would have the result of attenuating the
relationship between self-reported sodium and urinary sodium
in our models.

Conclusion
We found that the measurement error structure in longitudinal
studies can differ by time and treatment condition. When
correcting for measurement error, intervention researchers need
to take these differences into account, either by designing
internal validation studies that are also longitudinal or by
implementing measurement error correction methods that are
explicitly designed to account for these changes in measurement
error. Lifestyle intervention trials that fail to do this may draw
erroneous conclusions of their results.
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Recent advances in the field of nutrigenetics have provided evidence on how genetic

variations can impact the individuals’ response to dietary intakes. An objective and

reliable assessment of dietary exposures should rely on combinations of methodologies

including frequency questionnaires, short-term recalls or records, together with biological

samples to evaluate markers of intake or status and to identify genetic susceptibilities.

In an attempt to present current knowledge on how genetic fingerprints contribute to

an individual’s nutritional status, we present a review of current literature describing

associations between genetic variants and levels of well-established biomarkers of

vitamin status in free-living and generally healthy individuals. Based on the outcomes

of candidate gene, genome-wide-association studies and meta-analyses thereof, we

have identified several single nucleotide polymorphisms (SNPs) involved in the vitamins’

metabolic pathways. Polymorphisms in genes encoding proteins involved in vitamin

metabolism and transport are reported to have an impact on vitamin D status; while

genetic variants of vitamin D receptor were most frequently associated with health

outcomes. Genetic variations that can influence vitamin E status include SNPs involved

in its uptake and transport, such as in SCAR-B1 gene, and in lipoprotein metabolism.

Variants of the genes encoding the sodium-dependent vitamin C transport proteins

are greatly associated with the body’s status on vitamin C. Regarding the vitamins of

the B-complex, special reference is made to the widely studied variant in the MTHFR

gene. Methodological attributes of genetic studies that may limit the comparability

and interpretability of the findings are also discussed. Our understanding of how

genes affect our responses to nutritional triggers will enhance our capacity to evaluate

dietary exposure and design personalized nutrition programs to sustain health and

prevent disease.

Keywords: genes, diet, nutrigenetics, nutritional status, SNPs, genetic variants, vitamins
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INTRODUCTION

The assessment of the population’s nutritional status lies in the
heart of health monitoring surveys and epidemiological studies
aiming to elucidate diet-disease associations. Methods employed
have traditionally relied on questionnaires, food diaries as well as
markers assessed in biological samples (1). The thus accumulated
evidence has enriched our understanding of the complex
interplay among nutrients and other food substances; patterns
of dietary intake; and, lifestyle and environmental exposures that
shape an individual’s nutritional status. Furthermore, advances
in the field of nutrigenetics illustrate how genetic variations
can impact on an individual’s response to a nutritional trigger
(i.e., a dietary intake) and, possibly, on the risk of nutrition-
related diseases (2). It has now been generally recognized that
objective dietary assessment should not solely rely on one
method, but should employ combinations of methodologies
including participants’ self-reporting, as well as biological
samples to assess established biomarkers and to identify routes
of genetic susceptibilities.

In an attempt to present current knowledge on how genetic
fingerprints participate in shaping the body’s vitamin status,
we have conducted a narrative review of studies evaluating
associations between genetic variants and levels of well-
established biomarkers of status of vitamin D, tocopherols and
tocotrienols (vitamin E), vitamin C and vitamins of the B-
complex, namely folic acid (B9) and cobalamin (B12), for which
there is adequate evidence relating genetic variants and body
status in free-living and generally healthy individuals.

METHODS

Studies Identification and Selection
We performed an online literature search in PubMed until March
2020. The search terms used included one term related to the
vitamins under study (i.e., vitamin D; tocopherol, vitamin E;
ascorbic acid, vitamin C; folic acid, folate, vitamin B9; and
cobalamin, vitamin B12) followed by the term “status” and
combined with either “nutrigenetics” or “polymorphisms.” A
study was considered if: (a) it was conducted among free-living
healthy individuals and (b) was available in English. Original
research papers, systematic reviews, and meta-analysis were all
combined. In addition, reference lists of identified publications
were further screened to identify additional literature, with the
application of citation chasing techniques including reference list
scanning of included studies and previous reviews, as well as
backward and forward references of included studies. No limits
on geographical location were applied.

Based on the search criteria and keywords used, 848 articles
were identified. Among these, 817 articles were excluded after
either title/abstract or full text screening since they did not
address the aim of the present review, i.e., to collectively report
on evidence regarding genetic variants that could impair the
body’s vitamin status. Finally, 31 articles were initially considered
and through reference screening, we identified 30 additional
publications. Overall, 60 articles have been considered in this
review (Table 1).

VITAMIN D

Vitamin D is a fat-soluble vitamin that regulates bone growth
and health through promotion of calcium absorption and
maintenance of adequate calcium and phosphate concentrations.
Vitamin D is further involved in the cell growth process and
neuromuscular and immune activities (63, 64).

Vitamin D exists in two main forms: ergocalciferol (D2) and
cholecalciferol (D3). Vitamin D3 is naturally present in animal
foods (e.g., fatty fish, fish liver oils, dairy, egg yolk) and vitamin
D2 is naturally present in some higher fungi. Vitamin D3 can also
be synthesized endogenously in the skin from its provitamin 7-
dehydrocholesterol, following exposure to UV-B radiation and
subsequent thermal isomerization. The cutaneous synthesis in
the human body is the main source of vitamin D3 and varies
depending on the individual’s exposure to sun, age, skin color,
time spent outdoors, use of sunscreen, as well as the season of the
year (64).

Vitamin D Metabolism
In the body, dietary or endogenous vitamin D (D2 and
D3) is either converted into its biologically active metabolite,
following two hydroxylations, or transferred to the storage
tissues. Activation of vitamin D involves two steps. The first
occurs in the liver, where vitamin D is hydroxylated to 25-
hydroxyvitamin D, 25(OH)D, also known as calcidiol. The
25(OH)D attaches to the vitamin D binding protein (DBP) and
is transported to the kidneys where it is hydroxylated to form the
1,25-dihydroxyvitamin D, 1,25(OH)2D, also known as calcitriol.
A mitochondrial enzyme (CYP27A1) and several microsomal
enzymes (including CYP2R1) play an important role in the
process of the 25-hydroxylation of vitamin D in the liver. Vitamin
D, in the form of either 1,25(OH)2D or 25(OH)D, is transported
in the blood primarily bound to the DBP. Upon its release, the
biologically active form 1,25(OH)2D reaches the main target
tissues including the intestine, the kidneys, and the bone, where
it binds to the intracellular vitamin D receptor (VDR). After
hydroxylation of vitamin D in the liver, serum 25(OH)D is also
delivered to the adipose tissue, muscle, and liver for long-term
storage (65). Metabolites of both 25(OH)D and 1,25(OH)2D are
degraded in an oxidative pathway mediated by the CYP24A1
inactivation protein (24-hydroxylase) (64, 66).

Biomarkers of Vitamin D Status
The intake through diet and the level of exposure to sun are
the most important determinants of vitamin D status. Serum
concentration of 25(OH)D indicates the overall vitamin D levels
derived from both cutaneous synthesis and dietary sources. It
is considered a reliable marker of vitamin D status with a half-
life of ∼13 to 15 days because of its strong affinity for DBP
(63, 67). In populations with low exposure to UV-B radiation,
serum 25(OH)D can also be used as a biomarker of intake (68).
However, the individual variability observed in vitamin D status
could be attributed to different analytical methods, the use of
distinct reference values to assess the body status and to genetic
factors (28). Thus, assessments of vitamin D status in population
studies should be interpreted with caution (64).
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TABLE 1 | Characteristics of the publications included in the review (n = 60).

References Type of study Reference to vitamin Study participants (original research articles) or

number of publications in meta-analyses

Ahn et al. (3) GWAS Vitamin D Five cohorts of 4,501 persons of European ancestry

Andrew et al. (4) Cross-sectional (Twin Study) Vitamin B12 n = 2,110 female twins of women of North European descent

(Caucasian), 18–79 y

Bahrami et al. (5) Review Vitamin D

Batai et al. (6) Cross-sectional Vitamin D n = 1,057 (n = 652 African Americans, n = 405 European

Americans), US

Bendik et al. (7) Review Vitamin D

Block et al. (8) Cross-sectional Vitamin C n = 383 non-smokers Caucasians 18–85 y (participants in

previous RCT)

Bhan (9) Review Vitamin D

Borel et al. (10) Cross-sectional Vitamin E n = 128, Caucasians 18–70 y (participants enrolled in the

Medi-RIVAGE study)

Borel Desmarchelier (11) Review Vitamin E

Bu et al. (12) Cross-sectional (CGAS) Vitamin D n = 496, non-Hispanics

Bueno et al. (13) Cross-sectional Folate n = 726, Spanish adults 18–75 y

Cahill et al. (14) Cross-sectional Vitamin C n = 905 non-smoking subjects, 20–29 y (participants in the

Toronto Nutrigenomics and Health Study)

Cahill and El Solemy (15) Cross-sectional Vitamin C n = 1.277 non-smoking subjects, 20–29 y (participants in the

Toronto Nutrigenomics and Health Study)

Cahill and El Solemy (16) Cross-sectional Vitamin C n = 1,046 non-smoking subjects, 20–29 y (participants in the

Toronto Nutrigenomics and Health Study)

Castro et al. (17) Cross-sectional Vitamin B12 n = 122 Portuguese individuals (mean age 46 y)

de Batlle et al. (18) Cross-sectional Folate n = 988 French women 40–65 y (participants in French

E3N-EPIC cohort)

Duan et al. (19) Systematic Review and meta-analysis Vitamin D Sixteen publications with a total of 52,417 participants of

Asian and Caucasian origin

Duarte et al. (20) Cross-sectional Vitamin C n = 80 Brazilian subjects

Duell et al. (21) Case-control (nested within EPIC Cohort) Vitamin C n = 1,649 subjects, 57–70 y

Galmés et al. (22) Review Vitamin E

Grarup et al. (23) GWAS Vitamin B12 n = 45,574 Icelandic and Danish individuals

Engelman et al. (24) Cross-sectional Vitamin D n = 1,379 participants of 40 y mean age (from IRAS Family

Study), Hispanics and African Americans

Ferrucci et al. (25) GWAS Vitamin E n = 3,941 Caucasians (participants in InCHIANTI, WHAS,

and ATBC studies)

Hansen et al. (26) Cross-sectional Vitamin D n = 989, African Americans, 70–79 y

Hazra et al. (27) Meta-analysis Vitamin B12 n = 4,763, Caucasians (from three GWA scans)

Herrmann et al. (28) Review Vitamin D

Hiraoka and Kagawa (29) Review Folate

Horska et al. (30) Cross-sectional Vitamin C n = 388 Slovakian factory workers

Hustad et al. (31) Cross-sectional Folate n = 10,601 adults 50–64 y (from the Norwegian Colorectal

Cancer Prevention cohort)

Jolliffe et al. (32) Review Vitamin D

Kwak et al. (33) Cross-sectional Vitamin D n = 2,264, Korean adults >20 y

Lauridsen et al. (34) Cross-sectional Vitamin D n = 595 Danish Caucasian postmenopausal women

(participants in DOPS Study)

LeCompte et al. (35) Cross-sectional Vitamin E n = 1,614 Caucasian adults (participants in SU.VI.MAX and

HELENA studies)

Major et al. (36) GWAS Vitamin E n = 5,006 men of European descent (in two adult cohorts)

Major et al. (37) GWAS Vitamin E n = 2,112, Finnish male smokers, 50–69 y (participants in the

ATBC trial)

McGrath et al. (38) Review Vitamin D

McNulty et al. (39) Cross-sectional Folate n = 123, Irish individuals, 19–63 y

McNulty et al. (40) RCT Folate n = 89 Irish individuals, 18–65 y

(Continued)
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TABLE 1 | Continued

References Type of study Reference to vitamin Study participants (original research articles) or

number of publications in meta-analyses

Michels et al. (41) Review Vitamin C

Molloy (42) Review Folate

Na et al. (43) Cross-sectional Vitamin C n = 110 Chinese individuals, 18–50 y

Orton et al. (44) Longitudinal population-based twin study Vitamin D n = 178 Canadian twins,34–78 y

Robien et al. (45) Cross-sectional Vitamin D n = 504, Singapore Chinese men and women, 45–74 y

Schwartz (46) Review Vitamin C, Folate

Shane (47) Review Folate

Shane et al. (48) GWAS analysis Folate n = 2,232 Irish subjects, 18–28 y

Signorello et al. (49) Cross-sectional Vitamin D n = 758 (n = 379 African Americans, n = 379 Caucasians),

40–79 y

Stanislawska-Sachadyn et al.

(50)

Cross-sectional Vitamin B12 n = 613 Northern Irish Men (Caucasians) 30–49 y

Surendran et al. (51) Review Vitamin B12

Thuesen et al. (52) Cross-sectional Vitamin B12

Folate

n = 6,784 Danish, 30–60 y

Timpson et al. (53) Meta-analysis Vitamin C Five cohorts with a total of 15.087 Caucasians

Tsang et al. (54) Systematic Review and meta-analysis Folate Forty publications with non-pregnant, non-lactating females

12–49 y across various population groups

Touvier et al. (55) Cross-sectional Vitamin D n = 1,828, Caucasian adults, <65 y

Voipio et al. (56) Cross-sectional Vitamin D n = 2,204, Finnish subjects, 30–45 y (participants in

prospective Cardiovascular Risk in Young Finns Study)

von Castel-Dunwood et al. (57) Cross-Sectional Vitamin B12 n = 344 non-pregnant women, 20–30 y, non-Hispanic white

(93%), non-Hispanic black (7%)

Wang et al. (58) GWAS Vitamin D ∼30,000 (n = 33.869) Individuals of European descent from

15 cohorts.

Wright et al. (59) Case-control (nested within the ATBC Trial) Vitamin E n = 1,833 (982 cases, 851 controls), Finnish male smokers,

50–69 y

Xu et al. (60) Cross-sectional Vitamin D n = 1,873 (n = 945 Uygur/n = 928 Kazak ethnic)

Zanon-Moreno et al. (61) Case-control study Vitamin C n = 300 (150 cases, 150 controls) Caucasian participants,

50–80 y

Zinck et al. (62) Cross-sectional Vitamin B12 n = 3,114 Canadians (85% Caucasians, 15%

non-Caucasians) 20–79 y

Vitamin D Deficiency
Taking into account risk for rickets or symptomatic osteomalacia,
serum 25(OH)D levels below 25 nmol/L have been suggested
as an indicator of vitamin D deficiency in Europe (64).
The Institute of Medicine concluded that people with serum
concentrations below 30 nmol/L and between 30 and 50
nmol/L are susceptible to vitamin D deficiency and inadequacy,
respectively (63). The Endocrine Society Task Force suggests
that 25(OH)D concentration below 50 nmol/L indicates vitamin
D deficiency (69). In general, a threshold of less than 25–30
nmol/L characterizes vitamin D deficiency, but to date a standard
definition regarding the “optimal” 25(OH)D levels is still lacking
(70). Recently, a target population value of 50 nmol/L for serum
25(OH)D concentration is proposed by EFSA (64).

Genetic Variations and Vitamin D Status
Genetic variants of proteins participating in the vitamin D
metabolism, its binding to receptors and transport can have
an impact on vitamin D availability and status (5, 7). Several

single nucleotide polymorphisms (SNPs) related with serum
25(OH)D that have been detected in candidate gene studies and
genome-wide association studies (GWAS) have enhanced our
understanding of vitamin D balance; the detection of individuals
more vulnerable to deficiency; as well as those who could benefit
more than others from supplementation (5).

The Study of Underlying Genetic Determinants of Vitamin
D and Highly Related Traits (the SUNLIGHT study) is the
largest GWAS published to date that identified significant genetic
determinants of 25(OH)D levels. The study involved individuals
of European descent from 15 cohorts (n = 33,996) and reported
variants at three loci reaching genome-wide significance in both
discovery and replication cohorts for association with 25(OH)D
concentrations. The genetic variants identified in this large
study belong to the genes encoding DBP (GC gene), enzyme
7-dehydrocholesterol reductase (DHCR7 gene), vitamin D 25-
hydroxylase (cytochrome P450, family2, subfamily R, member
1, CYP2R1 gene), and vitamin D 24-hydroxylase (cytochrome
P450, family 24, subfamily A, member 1 CYP24A1 gene) (58)
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and confirm the results of previous smaller-scale studies (12).
With respect to variants of the gene encoding the intracellular
VDR, there are no consistent findings relating to vitamin D
status. In a recent systematic review, Jolliffe et al. (32) reported
that polymorphisms in DBP, CYP2R1, and DHCR7 are the ones
most frequently associated with 25(OH)D blood concentrations,
while variants in the VDR gene have mostly been reported
as determinants of phenotypes. Genes implicated in vitamin
D metabolism and signaling pathways have been schematically
presented by Jolliffe et al. (32).

Vitamin D Binding Protein Related Variants
(DBP)
The DBP initially known as Gc-globulin (group-specific
component of serum), is a circulating alpha globulin produced
primarily by the liver at relatively stable levels throughout life,
except from conditions of high estrogen levels (e.g., during
pregnancy, when production is increased) The DBP is a
multi-functional compound that is involved in the binding of
the majority (>85%) of circulating 25(OH) D, and also of
extracellular actin and in the transport of fatty acids (71). The
DBP has the highest affinity for 25(OH)D-lactones, followed
by 25(OH)D and 1,25(OH)2D (72) and binds more effectively
to vitamin D3 and its metabolites than vitamin D2 and its
metabolites (73). Variants of the DBP gene have been widely
investigated as sources of variation in the circulating levels of
vitamin D (5, 32).

The GC gene encodes the DBP and is located on chromosome
4q12-q13. The two most frequently investigated variants in
the GC gene that modify the amino acid sequence of the
protein are the SNPs found in exon 11. The rs4588 DBP SNP
causes an amino acid change from lysine to threonine in codon
420 (substituting A for C, ACG→AAG, Thr→Lys) resulting
in a Gc-2 protein. In addition, the rs7041 SNP leads to a
change of aspartate to glutamate in codon 416 (substituting
G for T, GAT→GAG, Asp→Glu) resulting in a Gc-1s protein
(9). Although over 120 variants in the DBP gene have been
recognized, three main phenotypic alleles-GC haplotypes (Gc1S,
Gc1F, and Gc2) have been identified. Regarding electrophoretic
migration, the slowest is Gc2, followed by Gc1S (slow) and
Gc1F (fast) (74). The associated serum concentration of DBP
and its affinity toward 25(OH)D differ among the phenotypic
alleles (75, 76). The median concentration of 25(OH)D is the
highest in Gc1s-1s (CC rs4588; GG rs7041), intermediate in Gc1-
2 (Gc1F) (CC rs4588; TT rs7041), and lowest in Gc2-2 (AA
rs4588; TT rs7041) (28, 34). These haplotypes further exhibit an
important racial and geographic variation, since GC1F is more
prevalent among dark-skinned individuals (particularly those of
African descent), while Gc1S and Gc2 are more common in
Caucasians (77, 78). The association between the rs4588/rs7041
SNPs with serum 25(OH)D levels has been confirmed in studies
including different ethnic populations (32). Minor A allele of
rs4588 is consistently associated with lower 25(OH)D levels,
while minor G allele of rs7041 with higher 25(OH)D levels
(32). In Caucasian adults, these associations were found to
be significant after adjustment for vitamin D dietary intake,

sun exposure, socio-demographic, anthropometric, and lifestyle
factors (P < 0.0001) (55). Furthermore, in a recent study
among African Americans the T allele of rs7041 was associated
with lower serum 25(OH)D (b = −0.93, SE = 0.53, close to
significance thresholds, P = 0.08) (26). Individuals with the Gc2-
2 haplotype (AA rs4588 /TT rs7041) have significantly lower
25(OH)D concentrations compared to all other Gc haplotypes (p-
trend < 0.001). In addition, individuals with Gc1s-1s haplotype
(CC rs4588/GG rs7041) are characterized by higher 25(OH)D
status (45). These findings confirm earlier observations between
plasma 25(OH)D concentrations and Gc phenotypes reported by
Lauridsen et al. (34).

Two GWAS meta-analyses identified another polymorphism
in the GC gene (the rs2282679) which is located within intron 12
(A>C) and is in a high linkage disequilibriumwith rs4588 (3, 58).
In the Ahn et al. (3) meta-analysis of five cohorts of individuals
with European ancestry, the (minor) risk C allele has been found
to be inversely associated with circulating vitamin D levels (b
= −0.36, SE: 0.05). Per copy of the minor allele of this variant,
individuals have 49% higher risk of vitamin D insufficiency [<50
nmol/L OR = 1.49, 95% CI = 1.40–1.59, P = 7.5 × 10−33],
after adjusting for age, sex, BMI, and season (58). A stronger
association between the risk allele and vitamin D insufficiency
has also been reported by Voipio et al. (56) in a study among
Finish adults (OR= 2.08, 95% CI= 1.66–2.60). In a study among
European Americans, the C allele of rs2282679 was associated
with lower circulating 25(OH)D levels (b = −0.05, p = 0.001)
(6). In studies among Koreans (33) and African-Americans (49)
individuals carrying the G minor allele had lower 25(OH)D
concentrations, as compared to those carrying the T allele.

7-Dehydrocholesterol Reductase Related
Variants
Cholecalciferol and cholesterol are synthesized through the skin
formation of 7-dehydrocholesterol (7-DHC). The DHCR7 gene
on chromosome 11 encodes the enzyme 7-dehydrocholesterol
reductase, which converts 7-DHC to cholesterol, reducing thus
the availability of this precursor (7-DHC) for the synthesis of
vitamin D (5). The UV-B radiation and the enzyme possibly
antagonize in the conversion of 7-DHC and as a result, 25(OH)D
has been reported to have a varying association with serum HDL
or skin cholesterol levels shaped by the interrelation between the
DHCR7 enzyme in serum and the amount of sun exposure (79).

Several studies have shown that the DHCR7 variant
(rs12785878) is associated with 25(OH)D concentrations (overall
p = 2.1 × 10−27, combined discovery and replication samples)
(58) The rs12785878 variant is located in an intron of a different
gene known as NADSYN1 and as a result this SNP is often
indicated as the NADSYN1/DHCR7 locus. Homozygotes (GG)
have lower mean 25(OH)D levels than heterozygotes (GT), who
in turn on average have lower mean 25(OH)D levels than major
homozygotes TT (58). A study among 2.204 Finnish individuals
confirmed the association of the G minor allele of rs12785878
with lower 25(OH)D concentrations (b = −2.10, SE = 1.01)
and the increased risk of vitamin D insufficiency (<50 nmol/L,
OR = 1.31, 95% CI = 1.00–1.70) compared to the T allele
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and after adjusting for vitamin D intake, nutrient supplement
use, body mass index, physical activity, and lifestyle factors
(56). In a multi-center study including individuals of Kazak
ethnicity, the DHCR7/NADSYN1(rs12785878) has also been
significantly associated with vitamin D deficiency (25(OH)D
levels <20 ng/mL) (OR = 2.44, 95% CI = 1.22–4.87), adjusted
for sex, age, BMI, and study center (60). The negative association
between G allele of rs12785878 (DHCR7) and 25(OH)D levels
was also reported in a study of healthy Korean adults (33).

CYP2R1 & CYP24A1 Related Variants
The human CYP2R1 gene (on chromosome 11p15.2) encodes
a member of the cytochrome P450 superfamily of enzymes,
the microsomal vitamin D 25-hydroxylase, involved in
vitamin D activation through hydroxylation, to the vitamin
D receptor ligand. The CYP24A1 (on chromosome 20q13.2)
encodes the vitamin D 24-hydroxylase, participating in the
inactivation process of vitamin D metabolites. Several GWAS
have identified SNPs in the CYP2R1 and CYP24A1 genes
associated with 25(OH)D concentrations (i.e., rs10741657,
rs1993116, rs12794714, and rs10766197 for CYP2R1 and
rs6013897 for CYP24A1) (32).

The rs10741657 (G>A) SNP is located in the non-coding
region 5′-UTR, which may regulate gene expression and
therefore modulate the expression and activity of 25-hydroxylase.
In a large GWAS, Wang et al. (58) reported an association
between the rs10741657 polymorphism and the 25(OH)D
levels (overall p = 3.3 × 10−20, combined discovery and
replication samples). In their recent meta-analysis, Duan et al.
(19) confirmed this association and further reported that the
GG genotype was associated with lower 25(OH)D levels when
compared with the AA (reference) genotype [standardized mean
difference SMD = −2.31, 95% CI = (−4.42, −0.20) overall and
SMD = −3.46, 95% CI = (−6.60, −0.33) and SMD = −0.24,
95% CI = (−0.51, −0.03) for Caucasian and Asian groups,
respectively]. Consequently, the risk G allele has been associated
with an increased risk of vitamin D deficiency (<20 ng/mL or
50 nmol/L) compared to no-risk allele A in both Caucasian and
Asian populations (OR = 1.09; 95% CI = 1.03–1.15). Under the
dominant model (GG+AG vs. AA), Duan et al. (19) reported a
42% higher risk of vitamin D deficiency (95% CI = 11–83%);
nevertheless, under the recessive model (GG vs. AG+AA), the
positive association remained but lost significance (OR = 1.28;
95% CI= 0.89–1.84).

Among African-Americans, the strongest association with
25(OH)D levels has been observed for the CYP2R1 rs12794714
variant located in exon 1 (G>A). The minor (A) allele has been
significantly associated with lower 25(OH)D levels (b = −0.4, p
= 0.01) (6), a finding also reported by Wang et al. (58) (overall
p = 2.7 x 10−9). Among European-Americans the most relevant
determinant of vitamin status was the CYP2R1 rs1993116 SNP,
located in intron 1 (C>T) with the minor A allele was found to
be associated with higher serum 25(OH)D levels (b = 0.04, p =

0.0006) (6). This association has also been observed in two large
GWAS by Wang et al. (58) (overall p = 6.3 x 10−11) and Ahn
et al. (3) (risk A allele b = 0.25, p = 2.9 x 10−17). Associations
of CYP2R1 rs12794714 and rs1993116 variants with vitamin D

status have also been found significant in Chinese subjects (45).
Furthermore, the rs10766197 variant, located in the promoter of
the CYP2R1 gene has been associated with the 25(OH)D levels in
the discovery cohort of healthy Caucasian subjects and remained
significant after further replication and analysis of the pooled
dataset and after adjusting for age, sex, BMI, habitual vitamin D
supplementation and season. The minor A allele of rs10766197
has been inversely associated with serum 25(OH)D levels (b =

−4.53, adjusted empirical P-value = 0.002, based on the pooled
dataset analysis) (12).

A genetic risk score (GRS) was calculated by Wang et al.
(58) combining three confirmed genetic variants related to
circulating vitamin D levels (i.e., DHCR7 rs12785878; the
CYP2R1 rs10741657; and, the GC rs2282679). Individuals with
a “genotype score” in the top quartile had a 2-fold higher odds
of vitamin D insufficiency (25(OH)D levels below 50 nmol/L)
in comparison to the lowest quartile (OR = 1.92, 95% CI =

1.70–2.16, P ≤ 1 × 10−26)]. After adjusting for age, sex, body
mass index, and season, the odds of vitamin D deficiency (i.e.,
25(OH)D levels below 20 nmol/L) increased by 43% (adjusted
OR = 1.43, 95% CI = 1.13–1.79) among individuals in the
top quartile of this score in comparison to those in the lowest
quartile. In the same study, Wang et al. (58) further reported
that the rs6013897 SNP was also associated with serum 25(OH)D
concentrations (overall p = 6 x 10−10 combined discovery and
replication samples).

The VDR Related Variants
Two VDR SNPs—the rs2228570 and rs10783219—have been
associated with serum 25(OH)D concentrations. Both the
rs2228570 and the rs10783219 SNPs have been associated with
lower 25(OH)D levels in a longitudinal population-based twin
study and in a sub-population of a cross sectional family study,
respectively (24, 44). In general, the way in which the VDR gene
variants could influence the 25(OH)D concentrations (38) has
not yet been elucidated; in their review of genetic association
studies, Jolliffe et al. (32) suggested that genetic variation in
VDR is strongly related to the phenotype rather than circulating
25(OH)D concentrations.

VITAMIN E

Vitamin E is a fat-soluble vitamin, existing in biologically
different forms, the tocopherols (α, β, γ, δ) and the tocotrienols
(α, β, γ, δ), that possess different antioxidant activity. In humans,
α-tocopherol is the most abundant and physiologically active
form of vitamin E. Since the food content of tocopherols and
tocotrienols is converted to α-tocopherol equivalents, the terms
“vitamin E” and “α-tocopherol” are used interchangeably. The α-
tocopherol, acting as a free radical scavenger preventing DNA
oxidative damage, belongs to the antioxidant defense system.
It notably protects polyunsaturated fatty acids (PUFAs) within
plasma lipoproteins and membrane phospholipids, preserving
thus the cellular membrane integrity (e.g., of erythrocytes, central
and peripheral nerves). The α-Tocopherol has also been linked
to cancer prevention through inhibiting cell proliferation and
angiogenesis. The main dietary sources of α-tocopherol include
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vegetable oils and derivatives, some fatty fish, egg yolk, nuts,
seeds, and whole grain cereals. The more abundant form in food
are the α and γ-tocopherols (80).

Metabolism of Vitamin E
As a lipid-soluble vitamin, upon intake, vitamin E follows
intestinal absorption, hepatic and cellular uptake similar to
those of lipids and other lipophilic components (81). About
75% of a usual α-tocopherol intake is absorbed by the human
body and efficient absorption requires the presence of fat (80).
Proteins involved in the vitamin E uptake (in the enterocyte)
include the scavenger receptor class B member 1 (SCAR-
BI), the Niemann–Pick disease type C1 protein (NPC1) and
the cluster determinant 36 (CD36) molecule, also known as
scavenger receptor class B member 3 (SRB3). All these also
participate to the transmembrane transport of cholesterol and
other lipophilic components (10, 22). Scavenger receptor class
B member 1 (SCAR-B1) is a multi-ligand membrane receptor
expressed in many cell types. It is not only involved in α-
tocopherol uptake by enterocytes, but also in its transport from
enterocytes to the blood, transfer of α-tocopherol from high-
density lipoprotein (HDL) cholesterol to tissues and in the biliary
excretion of α-tocopherol. The SCAR-B1 also acts as a plasma
membrane receptor for HDL and mediates cholesterol transfer
to and from HDL (11). The CD36 is a membrane glycoprotein
involved in the uptake of fatty acids and in binding native and
oxidized lipoproteins contributing thus directly or indirectly to
the transport of vitamin E (22).

After a-tocopherol is absorbed in the intestine, it is integrated
into chylomicrons and along the lymphatic system chylomicrons
are secreted into circulation. Part of the a-tocopherol in
chylomicrons is incorporated into tissues by lipoprotein lipase
(LPL), while the remaining is transferred to the liver. In
the liver, the α-tocopherol transfer protein (α-TTP) binds a-
tocopherol with the highest affinity. The a-TTP is responsible
for a-tocopherol incorporation into the preliminary very low
density lipoproteins (VLDLs) which are secreted by the liver
into the circulation and then distributed to body tissues. VLDLs
are converted into intermediate-density lipoproteins (IDLs) and
low-density lipoproteins (LDLs) by the action of LPL, and to
HDLs (81). Plasma lipoproteins (VLDL, LDL, and HDL) are
the major carriers of vitamin E. Thus, proteins involved in
lipoprotein synthesis and metabolism play a crucial role in
forming lipoproteins for vitamin E transport. In particular, apo-
lipoproteins, LPL, hepatic lipase, phospholipid transfer protein
(PLTP), cholesteryl ester transfer protein (CETP), and lecithin
cholesterol acyltransferase are indirectly involved in vitamin E
metabolism. Among the main apo-lipoproteins involved are apo
A-IV and apo AV (10). Amounts of α-tocopherol not bound to α-
TTP is catabolized in the liver by the hepatic enzyme cytochrome
P (CYP)4F2ω-hydroxylase. Both α-TTP andω-hydroxylase have
a significant contribution to α-tocopherol metabolism, especially
to the liver balance (storage vs. catabolism) and to vitamin E
systemic level (82).

Biomarkers of Vitamin E Status
Fasting plasma or serum α-tocopherol concentration has been
commonly used to assess vitamin E status. Since there is no
precise cut-off value above which adequate status is characterized,
plasma/serum α-tocopherol levels below 12µmol/L may indicate
deficiency. In α-tocopherol deficiency, oxidative stress can
damage red blood cells (RBCs) (80).

a-Tocopherol concentrations within the range of 2.5–
12 µmol/L have been described in primary or secondary
deficiency (83, 84). Mutations in the a-TTP gene result in
primary α-tocopherol deficiency and related neurological
symptoms, including ataxia (85). Secondary a-tocopherol
deficiency is present in individuals suffering from conditions
including abetalipoproteinaemia, cholestatic liver diseases, severe
malnutrition, or fat malabsorption (83, 86). Low a-tocopherol
dietary intake has not been reported to cause deficiency with
clinical manifestations in healthy individuals (80).

Genetic Variations and Vitamin E Status
Vitamin E status is known to be affected by factors such
as age, eating habits, oxidative stress (e.g., through smoking),
absorption efficiency, and catabolism (10, 11). Genome-wide
and candidate gene association studies have identified genetic
variations that can influence vitamin E status, impairing its
metabolism, absorption/uptake, transport and liver storage, or
catabolism balance (11, 22). Borel and Desmarchelier (11)
provide a comprehensive diagram illustrating the majority of
genes encoding key players in the vitamin E status.

Vitamin E Uptake Related Variants
There is strong evidence that SNPs in SCAR-B1 gene on
chromosome 12q24.31 affect vitamin E metabolism and α-
tocopherol levels (10, 11). Rs5888, which is also known as A350A,
is a variant located on exon 8 of the SCAR-B1 gene including
an exchange of the minor allele (C) for (T). TT carriers have
the lowest plasma α-tocopherol levels as compared to CC or
CT carriers and CT have shown the highest levels compared to
the other two counterparts; these associations were significant
(p < 0.05) in men after adjustment for cholesterol levels [mean
a-tocopherol levels µmol/L (SD) per pair of alleles; TT: 23.47
(6.99)<CC: 26.14 (6.22)<CT: 28.07 (6.87)] (10). The Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study
was a randomized, double-blind, placebo-controlled intervention
trial and evaluated cancer prevention after supplementation with
either alpha-tocopherol, or beta carotene or both among male
smokers (37). In a GWAS of serum α-tocopherol concentrations
within the ATBC cohort, Major et al. (36) reported that the
presence of the minor (A) variant allele of another SCAR-B1
SNP (rs11057830) was significantly associated with plasma α-
tocopherol concentration (b = 0.04, p = 2.0 × 10−8) in male
smokers independent of their age, BMI, cholesterol levels, and
cancer status and with high response in serum concentrations to
long-term a-tocopherol supplementation in the same population
(b= 0.03, p= 2.9 x 10−3).

The CD36 SNPs might also influence plasma α-tocopherol
concentrations. So far, two relevant SNPs (rs1761667 and
rs1527479) have been identified and are found in high linkage
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disequilibrium. Individuals homozygous for the minor allele of
rs1761667 (G) or rs1527479 (A) have lower plasma α-tocopherol
concentrations than do carriers of the major allele (A of
rs1761667, G of rs1527479) at about 22.9%, p= 0.046, and 23.7%
p = 0.0061, respectively, especially among men after adjustment
for age and BMI. The relationship between rs1527479 and a-
tocopherol levels maintained its significance even after correction
formultiple testing (p threshold< 0.0071). Furthermore, lower a-
tocopherol levels were observed particularly among individuals
carrying the A minor allele of rs1527479 with low triglyceride
(p for trend = 0.013) or PUFA concentrations (p for trend
= 0.005) than their corresponding GG individuals. The lower
plasma a-tocopherol levels detected in individuals homozygous
for the minor alleles may be related to a higher CD36 expression
and a subsequent higher vitamin E and fatty acid transport.
Dietary recommendations for higher vitamin E intakes among
these individuals may be relevant to counteract the CD36 protein
excess (35).

Vitamin E Transport Related Variants
Apo-AV is a minor apo-lipoprotein almost exclusively expressed
in liver that plays a significant role in the regulation of plasma
triglycerides. The most studied SNP located on the Apo-AV
promotor is rs662799 (1131T>C) in which the minor variant
(C) has been associated with both higher plasma vitamin E
and VLDL-TGs levels in diabetic patients. In particular, among
TT carriers the mean (SD) vitamin E levels in blood were
40.32 mmol/L (10.47), whereas in TC carriers were 45.48
mmol/L (8.20) (p = 0.02). Moreover, plasma triglyceride (TG)
concentration was 21% higher in carriers of the TC genotype (p
= 0.04), because of higher TG in VLDL [mean TG (SD); 0.96
mmol/L (0.78) for TT carriers and 1.33 mmol/L (1.11) for TC
carriers, p = 0.043] and in HDL [mean TG mmol/l (SD); 0.14
mmol/L (0.05) for TT carriers and 0.17 mmol/L (0.03) for TC
carriers, p= 0.017) (87).

In a GWAS investigating the circulating α-tocopherol
phenotype, Ferrucci et al. (25) reported that the rs12272004
SNP, close to the apo-AV gene, was associated with higher
plasma α-tocopherol concentrations. In particular, the A allele of
rs12272004 was associated with a 0.07 SD higher vitamin (95%
CI = 0.05–0.10). When analysis was adjusted for TG levels, the
strength of the association was reduced (b = 0.055, 95% CI =
0.020–0.091). Major et al. (36) identified a significant association
between serum α-tocopherol and rs964184 on chromosome
11q23.3, within or near the gene cluster Apo-AI/CIII/AIV/AV.
The rs964184 minor G variant allele was associated with
increased a-tocopherol levels (b = 0.04, SE = 0.01, p = 2.7
x 10−10) after adjustment for age, BMI, non-HDL cholesterol
concentrations, and cancer status (36) and with high serum
response to long term vitamin E supplementation (b = 0.07, SE
= 0.01, p= 2.6 x 10−12) (37).

Based on findings from a candidate gene association study,
a variant of the apo A-IV was also found to be associated
with vitamin E status. ApoA-IV is secreted in the intestine and
is associated with chylomicrons. A polymorphism in the gene
located on chromosome 11 result to an A to T substitution
that changes the threonine residue at position 347 to serine

ApoIVSer-347 (rs675). Women carrying the A allele (AT+AA)
of rs675 were found to have significantly (p < 0.05) lower
plasma concentrations of a-tocopherol than women homozygous
for the T allele. [(mean a-tocopherol (SD) levels TT 34.12
µmol/L (8.68) > AA+AT 26.40 µmol/L (6.59)]. However, this
association did not remain significant after adjustment for blood
cholesterol levels (10). The same study confirmed the previously
described association between plasma a-tocopherol and Apo-
E variants. The human ApoE gene is polymorphic (derived
from the combination of polymorphisms rs429358 and rs7412),
which results in three major isoforms/alleles (ε2, ε3, and ε4),
particularly the ApoE-ε2 (Cys112, Cys158), ApoE-ε3 (Cys112,
Arg158), and ApoE-ε4 (Arg112, Arg158) alleles. Apo-lipoprotein
E is a multifunctional protein involved in the catabolism of
lipoprotein particles. In humans, the lowest plasma vitamin E
concentrations were found in ApoE-ε2/ε2 genotype [mean a-
tocopherol (SD); 18.68 µmol/L (8.45), p < 0.05], whereas the
presence of the ε4 allele was associated with the highest vitamin
E levels in plasma (ApoE-ε4/ε2 genotype) [mean (SD); 32.81
µmol/L (10.54) p < 0.05] (10).

Rare mutations in the a-TTP gene on chromosome 8q13 have
been linked with severe vitamin E deficiency which cause an
autosomal recessive neurologic disorder and ataxia in humans,
also known as ataxia with isolated vitamin E deficiency (AVED)
(85). Furthermore, the presence of the TT genotype of the
rs6994076 TTPA polymorphism (980A/T) has been found to be
associated with decreased protein activity and ∼3% lower α-
tocopherol levels (p = 0.03) compared to AA genotypes based
on data collected among the control group of the ATBC trial
(59). A lower (25%) response to vitamin E supplementation was
observed in serum a-tocopherol concentration (p = 0.002, in
multivariate model) in individuals (males) with the TT genotype
compared to those homozygous for the major A allele, AA
genotype (59).

As previously indicated, CYP4F2 encodes for cytochrome
P450 4F2, which is involved in the vitamin E catabolism.
The SNP rs2108622 on CYP4F2 gene results in a valine
for methionine substitution. Subjects homozygous for minor
T allele (TT genotype) were found to have reduced ω-
hydroxylation activity and increased serum α-tocopherol (36).
The TT genotype has also been significantly associated with
increased serum response (b = 0.04, p = 2.2 x 10−7) to
long-term (3 years) α-tocopherol supplementation, adjusted
for age, BMI, non-HDL cholesterol concentrations, and cancer
status (37).

VITAMIN C

Vitamin C or ascorbic acid is a water-soluble vitamin. Vitamin
C acts as a free radical scavenger and operates as an enzyme
cofactor for various biochemical reactions. Vitamin C is also
involved in the biosynthesis of collagen, synthesis of carnitine
and catecholamines and in the metabolism of cholesterol to bile
acids. Vitamin C is naturally present mainly in fruit, vegetables,
and potatoes. Exposition to oxygen or high temperatures affects
its stability and results in vitamin C oxidation (88).
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Vitamin C Metabolism
Ascorbic acid (ascorbate) is the functional form of vitamin
C. Two transporter proteins (SVCT1 and SVCT2) encoded by
the sodium-dependent vitamin C transporter genes, SLC23A1
and SLC23A2, respectively, are responsible for vitamin’s
absorption by the gastrointestinal tract and reabsorption by renal
system through active transport across membranes. Vitamin C
concentrations and body homeostasis are regulated primarily
by SVCT1 (89). The expression of SVCT1 in the kidney is
important for the regulation of vitamin C status (41). The SVCT2
regulates vitamin C levels within specific metabolically active
tissues (89). It promotes the accumulation of vitamin C into
brain, eyes, and adrenals as it binds ascorbate with high-affinity
(41). Dehydroascorbate, DHA, the oxidized form of ascorbate, is
transferred into the cell by some glucose transporters, including
GLUT1, GLUT3, and GLUT4.Within cells, DHA is recycled back
to ascorbate, sustaining the intracellular ascorbate uptake (41). In
plasma, the free anion of vitamin C is distributed to tissues. The
body’s absorption efficiency depends on the level of vitamin C
intake. Vitamin C is excreted in urine, which is the main route of
elimination, at an approximate proportion of 25% of the ingested
amount for an intake of 100 mg/day (88).

Biomarkers of Vitamin C Status
Ascorbate concentrations in plasma and leukocytes are
considered suitable biomarkers of body stores and status, within
the usual range of intakes and independently of recent vitamin C
intake (88, 90).

A plasma ascorbic acid value of 50 µmol/L is indicative of
an adequate status and values below 11 µmol/L indicate severe
deficiency (biochemical and/or clinical symptoms including
those related to connective tissue defects; scurvy). Plasma levels
between 11 and 23 µmol/L (0.2–0.4 mg/100mL) reflect marginal
status, thus moderate risk of developing deficiency. The vitamin
C physiological levels largely depend on the analytical methods
used, limiting comparisons among laboratories. For instance,
the interpretation of leukocyte vitamin C concentrations is
complicated by the different concentrations of vitamin C in
various leukocyte cell fractions—mononuclear contain up to
2- or 3-fold higher concentrations than polymorphonuclear
cells (91).

Genetic Variations and Vitamin C Status
Polymorphisms in the genes encoding sodium-dependent SVCTs
of the SLC23 family are strongly associated with vitamin C
status due to their roles in direct transport, absorption, and
vitamin accumulation in tissues (41, 92). Genetic variants
in protein-coding genes known to play a role in oxidative
stress, including haptoglobin, glutathione-S-transferases, and
manganese superoxide dismutase, may also influence vitamin C
status, but they have not been a priori associated with ascorbic
acid (41). A diagram outlining vitamin C metabolism and related
genes is provided by Michels et al. (41).

In a cross-sectional study of 1.046 volunteers including
Caucasian and East Asian populations, Cahill and El-Sohemy
(15) reported that individuals may differ in their blood vitamin C
levels, regardless of their dietary intake, due to genetic variation

in SVCT1 (rs4257763). Overall, average serum vitamin C levels
were lower in individuals with the GG genotype than the AA;
with the GA genotype being intermediate (p = 0.002). In a sub-
population analysis, differences remained but were significant
only among Caucasian subjects (p = 0.02) and not among East
Asians (p= 0.14).

Timpson et al. (53) performed a large-scale analysis (using
a discovery cohort, the British Women’s Heart and Health
Study BWHHS and a series of follow-up cohorts and meta-
analysis) to assess the relationship between variation at SLC23A1
(rs33972313) and circulating levels of L-ascorbic acid in over
15,000 Caucasian participants from five longitudinal studies. A
pooled analysis of the relationship between rs33972313 (C/T) and
vitamin C status across all (discovery and replication) studies
showed that each additional minor allele (T) was associated
with a reduction in plasma levels by 5.98 µmol/L (95%CI
= −8.23, −3.73) per minor allele. The rs33972313 variant
in SLC23A1 results in a valine to methionine substitution at
position 264 of SVCT1 and in decreased transport activity. In
the discovery cohort, two SNPs showed positive association
with vitamin C status. For each additional minor allele of SNPs
rs10063949 (T/C) and rs6596473 (G/C), there was an increase
in circulating ascorbic acid levels [b = 1.91 µmol/L, 95% CI
= 0.47–3.34 and b = 2.86 µmol/L, 95% CI = 1.39–4.33 per
minor allele (C), respectively]. In the first stage replication study
[the European Prospective Investigation of Cancer Norfolk Study
(EPIC-Norfolk)], results were consistent with those found in
the discovery cohort regarding the rs6596473 variant (mean
difference in L-ascorbic acid= 1.01µmol/L, 95%CI= 0.14–1.87,
p = 0.02, per minor allele) but there was no association between
rs10063949 and vitamin C status [mean difference in L-ascorbic
acid=−0.05µmol/L, 95% CI= (−0.90, 0.80), p= 0.9 per minor
allele]. Among the polymorphisms examined, rs6596471 (A/G)
in BWHHS showed a notable, albeit not significant, increase in
plasma vitamin C levels [b = 0.95, 95% CI = (−0.63, 2.53) per
minor G allele] (53).

In a case–control study, nested within the European
Prospective Investigation into Cancer and Nutrition (EPIC)
cohort of vitamin C transporter gene variants and gastric
cancer risk (21), authors evaluated genetic variants of SVCT as
predictors of vitamin C plasma concentrations in a subsample of
participants. Authors applied a multiple linear regression model
to assess associations between the SLC23A1 and SLC23A2 SNPs
and the log-transformed plasma levels of vitamin C, adjusting
for age, sex, country, smoking status, H. pylori infection, and
season of blood collection. Two SNPs in SLC23A1 (rs33972313,
rs11950646) and two SNPs in SLC23A2 (rs6053005, rs6133175)
were statistically significantly associated with plasma vitamin C.
In agreement with the findings of Timpson et al. (53), being
a heterozygote (GA) in the rs33972313 SNP in this study was
associated with lower plasma vitamin C levels, (GA vs. GG or
AA in a codominant model, b = −0.28, 95% CI = −0.54,
−0.016). Variant rs11950646 was also associated with lower
plasma vitamin C, in a dominant model [GG or AG vs. AA, b
=−0.14, 95% CI= (−0.26,−0.011)] and per G allele in an allelic
or log-additive model [b = −0.11, 95% CI = (−0.20, −0.017)].
In the case of the SLC23A2 gene, higher plasma vitamin C
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concentrations were associated with rs6053005 TT homozygotes
b= (0.21, 95%CI= 0.058–0.37) and rs6133175 GG homozygotes
(b= 0.22, 95% CI= 0.029–0.40) in a recessive model (21).

Another SNP in SLC23A2 gene (rs1279683, A>G) was
found to be significantly associated with plasma concentrations
of vitamin C. In a case-control study including patients of
primary open-angle glaucoma (POAG), homozygous subjects
for the G allele (GG) had significantly lower plasma vitamin
C levels than the other genotypes (AA + AG) (9.0 ± 1.4
vs. 10.9 ± 1.6µg/mL, p < 0.001 in cases and 10.9 ± 1.6 vs.
12.1 ± 1.8µg/mL, p < 0.001 in controls) even after multi-
variate adjustment for sex, age, BMI, smoking and alcohol, and
after applying Bonferroni corrections for multiple comparisons
(61). Unlike SLC23A1, genetic variation in SLC23A2 has little
influence on vitamin C homeostasis and status, but controls the
accumulation in tissues. Furthermore, studies are also lacking
since most of the SNPs studied to date are located in intronic or
untranslated regions and do not directly affect the SVCT2 protein
coding (41).

Haptoglobin is a hemoglobin-binding protein, participating
in iron metabolism and encoded by a polymorphic gene
(haptoglobin gene, Hp) located on chromosome 16. In humans,
Hp is characterized by a polymorphism with two alleles (Hp1
and Hp2) forming three main phenotypes: homozygous for
the Hp1 allele (Hp 1-1 phenotype), heterozygous (Hp 2-1)
and homozygous for the Hp2 allele (Hp2-2). Unlike Hp1, the
hemoglobin protein derived from Hp2 binds insufficiently to
hemoglobin and individuals expressing the Hp2-2 phenotype
(Hp2-2 homozygotes) produce a less active protein and have
increased circulating levels of iron compared to Hp1-1 (41). As
a result, Hp 2-2 individuals are more susceptible to vitamin
C deficiency since their plasma ascorbate is less stable (93).
Na et al. (43) investigated the relation between haptoglobin
genetic variants, vitamin C, and iron status in 110 Chinese
subjects and reported that serum vitamin C was lower in Hp2-
2 healthy Chinese male participants compared to both Hp2-1
and Hp1-1 individuals (p = 0.028). In the same study, vitamin
C was also affected by iron status (ferritin levels) (43). It is
however uncertain whether variations in vitamin C status related
to haptoglobin polymorphism associate with iron dysregulation
(affected by low dietary iron intake or anemia) especially among
Hp2-2 individuals (41).

According to Cahill and Sohemy (16) individuals homozygous
for the Hp2 allele had lower vitamin C concentrations compared
to those with the Hp1 allele when their dietary vitamin C
intake was low. In a cross-sectional examination of free-living
adults enrolled in the Toronto Nutrigenomics and Health Study,
individuals with the Hp2–2 genotype who did not meet the
US Recommended Dietary Allowance for vitamin C had a
significantly increased risk of ascorbic acid deficiency <11
µmol/L (adjusted OR = 4.77, 95% CI = 2.36–9.65) compared
to those who did. Conversely, the risk of deficiency for carriers
of the Hp1 allele (Hp2-1 + Hp1-1 phenotype) was lower
and not significant (OR = 1.69, 95% CI = 0.80–3.63) after
adjusting for BMI, sex, energy intake, use of oral contraceptives,
C-reactive protein levels, plasma α-tocopherol, ethnicity, and
season (16). Based on this evidence, Schwartz (46) concluded that

the required daily vitamin C intake in Hp 2-2 individuals should
be higher than other Hp phenotypes.

The glutathione S-transferases (GSTs) are partof a large
family of enzymes involved in the detoxification of detrimental
compounds. Genetic variations in GST may affect vitamin C
status through their impact on reactive oxygen species and
glutathione status. Deletion polymorphisms in the GSTM1 and
GSTT1 genes, found on chromosome 1 and chromosome 22,
respectively, are generally present in Caucasian populations and
result in absence of enzyme function (41) Subjects with the
GSTM1-null genotype appeared to have increased vitamin C
concentrations compared with carriers of the functional gene
variant (8). Horska et al. (30) reported lower plasma vitamin
C levels in subjects with deletion of GSTM1 compared with
subjects carrying the functional gene variant (p = 0.042). In
the cross sectional evaluation of participants in the Toronto
Nutrigenomics and Health Study, however no differences in
vitamin C status were observed (14). GSTM1 genotype and
vitamin C status may be characterized by a more complex
relation, taking into account dietary vitamin C intake and other
environmental exposures such as smoking (41).

Dietary intake, GST genetic variants and serum ascorbic acid
concentrations were determined for about 900 non-smoking
men and women. When compared to individuals who met the
Recommended Dietary Allowance for vitamin C, individuals
who did not adhere to vitamin C recommendations and
possessed the GST null genotypes had an increased risk of
vitamin C deficiency. The odds ratio (95% CI) for deficiency
among individuals with the GSTM1 null (0/0) genotypes and
functional GSTM1 (1/1+1/0) not meeting the RDA values
for vitamin C were 4.03 (2.01, 8.09) and 2.29 (0.96, 5.45),
respectively as compared to those with intakes in accordance
to recommended levels. For GSTT1 variant, the odds ratio
(95% CI) for deficiency were 2.17 (1.10, 4.28) for functional
and 12.28 (4.26, 33.42) for null genotypes who did not comply
with recommendations as compared to those who did (14).
Individuals with GSTM1/GSTT1 deletion (null genotypes) and
low intake of vitamin C from their diet had lower plasma vitamin
C concentrations than those with functional enzymes at the same
level of intake. This may suggest that these enzymes protect
against deficiency when the vitamin C intake is insufficient
(14, 30). Cahill et al. (14) also reported that subjects with the
GSTT1-null genotype had decreased serum ascorbate. However,
these findings were not confirmed by Block et al. (8), in which
no statistically significant association was observed (p > 0.05).
A loss of GSTT1 function appears to affect cellular ascorbate
levels but not plasma concentrations compared to other GSTs
(41). In general, associations between vitamin C and glutathione
S-transferases are complex and not well-understood yet.

The superoxide dismutase (SOD) is considered a significant
antioxidant enzyme in the body and exists in three SOD isoforms
including the mitochondrial SOD manganese dependent
(MnSOD), encoded by the gene SOD2 located on chromosome
6q25, in humans. A common SOD2 polymorphism, the Ala16Val
(rs4880) results in a mutation at codon 16 and an alanine-
to-valine substitution (GCT->GTT). The Val variant may be
present at a lower concentration in the mitochondria and
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individuals homozygous (Val/Val) may have decreased resistance
to oxidative stress (41). Duarte et al. (20) have studied the
association of MnSOD variants with plasma vitamin C levels.
Healthy homozygous for the valine variant individuals have
higher levels of serum vitamin C (p < 0.05). In contrast, subjects
with hypercholesterolemia and at least one copy of the val variant
had lower serum vitamin C concentrations compared to subjects
homozygous for the alanine variant, indicating an increase in the
oxidative stress in subjects with the VV genotype for MnSOD
and hypercholesterolemia (20).

FOLATE AND VITAMIN B12

From the group of B vitamins, folate (vitamin B9) and cobalamin
(vitamin B12) have been primarily studied in relation to
genetic variants affecting their body status. Therefore, this
section focuses on the presentation of evidence related to
these two B-vitamins. Folate is used to collectively describe
a family of water-soluble compounds which are included in
the B-complex vitamins. They are essential co-factors in one-
carbon metabolism pathway (94), which involves three major
interrelated metabolic cycles in the cells’ cytosol and is essential
in multiple biochemical processes, including: (a) amino acid
metabolism and homeostasis, (b) de novo nucleotide synthesis
(purines and thymidine; precursors for DNA and RNA), and (c)
the process of methylation. Furthermore, the folate pathway is
closely related to homocysteine metabolism (95, 96). Vitamins
B12 and B6 (pyridoxine) are also important enzyme cofactors or
substrates in one carbon metabolism (94).

Folate is present in high amounts in dark green leafy
vegetables, legumes, orange and grapefruit (juice), and nuts
(peanuts, almonds). Although folate in meat is generally found in
low amounts, liver and kidney are particularly rich sources. Dairy
products, fish, eggs, and potatoes are also sources of folate intake
(96). Principal sources of cobalamin include products of animal
origin (meat, fish, dairies, eggs, and liver) and it can also be added
to foods and food supplements (97).

Metabolism and Functions of Folate and
Vitamin B12
Dietary folate mainly exists as polyglutamates, which are
hydrolyzed to monoglutamates by folyl poly-γ-glutamate
carboxypeptidase (FGCP) found in the intestinal mucosa. In
the intestinal cells, folate is usually reduced and methylated
to be absorbed in the small intestine by the high-affinity
proton-coupled folate transporter (PCFT1). In the circulation,
the prominent form of folate is 5-Methyl-tetrahydrofolate
(5-methyl-THF) monoglutamate. About 50% of folate is bound
to albumin, in plasma about one-third is in a free form and
a small proportion is bound to the plasma folate receptor.
Folate molecules enter the cell through folate receptors (FRs)
via endocytosis, with FR-α having a high affinity for the
monoglutamate 5-methylTHF (42).

The 5,10-methylenetetrahydrofolate (5,10 methyl-THF), one
of the one-carbon substituted forms of tetrahydrofolate present
in the cell, plays a central role in the folate and methionine cycles,

as it can be used for thymidylate synthesis, or converted to 5-
methyl-THF in the methionine synthesis cycle, or oxidized to
10-formyl-tetrahydrofolate for purine synthesis. The reduction
of 5,10 methyl-THF to 5-methyl-THF is achieved by the
methylenetetrahydrofolate reductase (MTHFR), which is a
riboflavin-dependent enzyme. In themethionine cycle, 5-methyl-
THF is used by methionine synthase (MTR) for the vitamin
B12-dependent conversion of homocysteine to methionine and
the formation of tetrahydrofolate (THF). Methionine synthase
reductase encoded by MTRR gene is required for the reactivation
and proper function of MTR (47).

Vitamin B12 in food is bound to proteins and is released in
the stomach under the influence of hydrochloric acid and pepsin.
The thus released vitamin initially binds to dietary proteins,
including haptocorrin (transcobalamin I, TC-I). Cobalamin is
released from its complex with TC-I by pancreatic enzymes in
the duodenum and then free vitamin binds to gastric intrinsic
factor (IF), a glycoprotein produced in the stomach. After
IF-cobalamin complex is absorbed through receptor-mediated
endocytosis in the lower part of small intestine, cobalamin is
released into the blood stream primarily in the form of methyl-
cobalamin and the IF is degraded in lysosomes. A protein called
transcobalamin II (TC-II) combines with cobalamin to form
holotranscobalamin-holoTC (metabolic active cobalamin) and
the complex is transferred to the cells after binding to the
transcobalamin receptor TC-R. The vitamin’s dietary source,
its ability to be released from food and bind appropriately
to IF determine cobalamin’s absorption. The main fraction of
plasma cobalamin (70–90%) binds to haptocorrin, while holoTC
accounts for 10–30% of total plasma levels (47, 97).

Vitamin B12 is involved in the cytosolic transmethylation
of homocysteine to methionine by the enzyme methionine
synthase. Cobalamin is also required as coenzyme to form
succinyl coenzyme A (CoA) from methylmalonyl CoA in
propionate metabolism by methylmalonylCoA mutase in
mitochondria (97).

Biomarkers of Status
A sensitive and short-term indicator of folate dietary intake
is serum or plasma folate concentration (98), while red blood
cell (RBC) folate concentration is a marker of long-term
intake responding gently to changes—and the most reliable
biomarker of status, as it indicates tissue folate stores (96).
The assessment of folate status should include either multiple
measurements of serum/plasma folate over several weeks or a
single measurement combined with other biomarkers of status
(RBC folate). This combination is recommended by a World
Health Organization (WHO) Technical Consultation on folate
and cobalamin deficiencies, at the population level (96, 99).

Folate adequacy is described by serum/plasma and red
blood cell folate concentrations of higher than 10 nmol/L
(4.4 ng/mL) and 340 nmol/L (150 ng/mL), respectively. Serum
folate and RBC concentrations of less than 6.8 and 317
nmol/L, respectively, are indicative of folate deficiency. Folate
deficiency adversely affects DNA replication and synthesis and
thus cell division. As a result, bone marrow may produce
uncommonly large cells with abnormal maturation of nuclei and
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development of megaloblastic anemia (96). Furthermore, folate
deficiency impairs the methionine cycle functions, resulting
in elevated plasma homocysteine and insufficient production
of the S-adenosylmethionine (SAM) which is extensively used
in methylation reactions (100). The association of folate
status during pre-conceptional period and appearance of
developmental anomalies, including neural tube defects (NTD),
has long been established (101).

Serum cobalamin is the most widely used biomarker of
vitamin B12 status, reflecting both the metabolically active
cobalamin bound to TCII and the inert fraction bound to
haptocorrin. However, since its concentration associates weakly
with the biomarkers of cobalamin function, serum holoTC is
the most specific biomarker for assessment of adequate vitamin
B12 status. Other biomarkers studied (e.g., methylmalonic acid
and homocysteine) are elevated in cobalamin deficiency but are
influenced by numerous dietary and lifestyle factors or conditions
(in poor renal function, for instance) (99, 102). Thus, their
interpretation requires a more complete assessment of the body
nutritional status (99).

In clinical settings, serum total vitamin B12 is used to assess
adequacy, with serum total B12 concentrations below 148 pmol/L
indicating deficiency. Notwithstanding the limitations indicated
in the previous section, the concentrations of homocysteine
and methylmalonic acid in blood have also been used to assess
vitamin B12 status, with homocysteine levels above 15 µmol/L
and methylmalonic acid above 750 nmol/L frequently used in
adults to diagnose cobalamin deficiency. Clinical cobalamin
deficiency is most frequently associated with megaloblastic
anemia, as well as with neurological symptoms (97).

Genetic Variations and Folate Status
Several polymorphisms in genes encoding enzymes and transport
proteins of folate metabolism are reported to affect folate status,
homocysteine levels, and health outcomes. Folate-mediated one-
carbon metabolism and related genes have been illustrated (101).
To date, most studies have reported that the MTHFR C677T
(rs1801133) SNP is related to both biomarkers of status and
disease risk (54, 103–105). Together with rs1801131, they are
the most well-known genetic factors influencing folate status
that have been studied in great detail in terms of molecular
mechanism and impact on disease risk (29, 42). However,
the 1298A-C MTHFR variant (rs1801131), which is in strong
linkage disequilibrium with the 677C-T variant, has no effect
on biomarkers of folate status (42, 48). The distribution of
the polymorphism shows a substantial variation worldwide and
across ethnic groups. The frequency of the MTHFRrs1801133
TT SNP is described to be high in Europeans, Asians, Central,
and South Americans (10–32%) and low in several African
populations (0–3%) (106). Binia et al. (107) reported that the TT
genotype presents at about 25 and 57% in Mexican Mestizo and
American-Indian populations, respectively.

The common rs1801133 variant is a C to T transition
at position 677, resulting in substitution of alanine with
valine. MTHFR is a flavoprotein incorporating loosely bound
flavin adenine dinucleotide (FAD). This substitution results in
weaker binding affinity for the riboflavin (vitamin B2) cofactor

and increased loss of the FAD cofactor, creating a mildly
dysfunctional thermolabile protein (108). Homozygosity for
the T allele (TT genotype) is associated with reduced enzyme
activity (109), lower serum and RBC folate and higher plasma
homocysteine levels compared with the 677CC (31, 110, 111).
The well-documented association between MTHFR rs1801133
and folate status has also been evaluated in more recent studies
(13, 18, 48).

In their meta-analysis of the association between the MTHFR
rs1801133 polymorphism and blood folate concentrations
(plasma/serum, RBC), Tsang et al. (54) reported a steady
difference in serum/plasma and RBC folate concentrations across
MTHFR rs1801133 genotypes showing a distinct pattern of CC
> CT> TT. The percentage difference was highest for the CC vs.
the TT genotype [S/P= 13%, 95% credible interval (CrI) derived
from Bayesian statistics = 7–18%] [RBC = 16%; 95% CrI = 12–
20%] followed by CC vs. CT (S/P= 7%; 95% CrI= 1–12%] [RBC
= 8%; 95% CrI = 4–12%) and CT vs. TT (S/P = 6%; 95% CrI =
1–11%] [RBC = 9%; 95% CrI = 5–13%]. The inheritance of one
recessive allele (i.e., the CT genotype) is related to concentrations
intermediate to the CC and TT genotypes, as described by the
additive model (54).

Hyperhomocysteinemia is known to be most pronounced if
the TT genotype occurs in combination with low nutritional
status of either folate (110) or riboflavin (31, 39). Several
studies have reported that individuals with the homozygous
TT genotype exhibit decreased response of folate biomarkers to
folate intervention compared to those with the homozygous CC
genotype, suggesting a higher requirement for folate (29). The
EFSA NDA Panel has taken this polymorphism into account
in setting the dietary reference values for folate, applying a
coefficient of variation of 15% to address additional variability
(96). Moreover, genetically at-risk adults (TT homozygotes)
also have higher riboflavin requirements in order to maintain
adequate enzyme function (39, 40). Among TT genotypes,
riboflavin supplementation results in decreased homocysteine
concentrations by 22% overall (p = 0.03) and 40% among
individuals with lower riboflavin status at baseline (p =

0.010) (40).

Genetic Variations and Vitamin B12 Status
In a recent publication, Surendran et al. (51) reviewed candidate
gene studies andGWAS published until May 2017 and conducted
primarily among Caucasian populations, in order to identify
associations between SNPs in genes related to vitamin B12
pathway and their impact on the circulating cobalamin levels.
Authors present a comprehensive description together with
schematic presentations of SNPs in genes related to co-factors,
regulators of the vitamin transport, membrane cobalamin
transporters or factors involved in enzymatic reactions of the
one-carbon cycle (e.g., MTHFR and MTRR).

In their review, Surendran et al. (51) present, among others,
the fucosyltranferase 2 gene. The FUT2 or secretor (Se) gene is
located on chromosome 19 coding the a(1,2) fucosyltransferase
enzyme that is involved in the production of H antigens
(common precursors for the blood group A and B antigens
expressed on secretory glands and digestive mucosal surfaces)
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and may also influence B12 absorption at the gastric level. In
a meta-analysis of studies among US Caucasian populations
Hazra et al. (27) concluded that the SNP rs601338, also known
as 428 G/A non-secretor variant, was significantly associated
with plasma vitamin B12 concentrations. In particular, the A
allele was positively associated with circulating vitamin B12
levels (β = 0.06 pg/mL, SE = 0.01). There is a heterogeneity
in associations between FUT2 polymorphism and cobalamin
concentrations, as the distribution of the minor allele of rs601338
considerably varies among ethnicities. Hazra et al. (27) reported
that the rs492602 SNP is in complete linkage disequilibrium
with rs601338. The G allele of the SNP rs492602 variant was
associated with lower vitamin B12 levels (β = 0.06 pg/mL, SE
= 0.01) Interestingly, in another study among 3114 Canadian
adults, the G allele of the same SNP was found to be associated
with a lower risk (OR = 0.60, 95% CI = 0.54–0.70) of
vitamin B12 deficiency (<148 pmol/L), compared to A allele
(62). The most commonly studied FUT2 variant however is
the rs602662 SNP, which is also reported to be in linkage
disequilibrium with the rs601338 SNP. Carriers of the A allele
in the rs602662 variant are at lower risk (OR = 0.61, 95%
CI = 0.47–0.80) of vitamin B12 deficiency (<148 pmol/L),
compared to those carrying the G allele (62). Genetic variations
in the FUT2 gene have also been implicated in alterations of
the composition of the gut microbiome and individuals with the
non-functional FUT2 phenotype (non-secretors) are susceptible
to Helicobacter pylori infection and subsequent vitamin B12
malabsorption (51).

Another variant described in the Surendran et al. (51) review
is the transcobalamin 2 (TCN2) gene, located on chromosome
22, which encodes transcobalamin II (vitamin B12 binding
protein). The most commonly reported association between
TCN2 polymorphism and vitamin B12 levels in Caucasians is
the SNP rs1801198, characterized by C to G substitution at
nucleotide 776 (TCN2 776C>G) and an exchange of proline to
arginine at codon 259. In a candidate gene association study
among 613 Irish men (50), individuals with the TCN2 776CC
genotype were associated with lower serum vitamin B12 levels
compared to those with 776 CG (adjusted P = 0.03) and 776GG
genotypes (adjusted P = 0.045). In contrast, in a cross-sectional
study of 122 individuals from Portugal, holotranscobalamin
(Holo-TC) levels were significantly associated with the SNP
rs1801198; carriers of the G allele had lower Holo-TC
concentrations than C carriers (P < 0.05) (17), a finding
which has also been reported in an earlier cross-sectional
study (57).

Cubulin (CUBN), CD320 and methionine synthase reductase
(MTRR) genes are also vitamin B12 related genes described in
the Surendran et al. (51) review. CUBN is known as the intrinsic
factor-cobalamin (IF-B12) receptor located on chromosome 10
and variants within this gene have been associated with B12
status, but results are often conflicting. Hazra et al. (27) reported
that the A allele of the rs1801222 (Ser253Phe) variant was
associated with lower cobalamin status (β = −0.05 pg/mL, SE
= 0.01) in 4763 US individuals, while subjects homozygous for
the rs1801222G allele had higher vitamin B12 concentrations.
In contrast, Zinck et al. (62) described that the G allele of the

rs1801222 was associated with an increased risk of cobalamin
deficiency (OR= 1.61, 95% CI= 1.24–2.09).

The CD320 or “CD320 molecule” gene encodes the
transcobalamin receptor (TCblR) and is located on chromosome
19. The most commonly studied variant is the rs2336573 variant
characterized by a glycine to arginine change, at codon position
220. Zinck et al. (62) reported that the C allele of this variant was
associated with a lower risk (OR = 0.62, 95% CI = 0.45–0.86)
of inadequate vitamin B12 levels (<220 pmol/L). An earlier
study among Icelandic and Danish individuals (n = 45,571
adults), however, reported that the “T” allele was associated
with increased vitamin B12 concentrations (effect β = 0.22–0.32
pmol/L; P = 8.4× 10−59) (23).

Genetic variants in methionine synthase reductase (MTRR)
gene, located on chromosome 5, have also been associated
with vitamin B12 levels in healthy individuals. Among them,
SNP MTRR rs162036 (Lys350Arg) was found to be associated
with vitamin B12 levels in a study of 2424 twins of North
European descent (Caucasians) (p = 0.04) (4).While the
majority of candidate gene association studies did not provide
evidence (P > 0.05) for an association between the MTHFR
gene polymorphisms (rs1801131 and rs1801133) and cobalamin
concentrations, Thuesen et al. reported that the TT genotype of
the rs1801133 variant was associated with a higher risk of vitamin
B12 concentrations below 148 pmol/L compared with the CC
genotype (OR = 1.78, 95% CI = 1.25–2.54) in a study among
Danish participants (52).

DISCUSSION

We have undertaken a comprehensive narrative review of the
literature available until March 2020 in order to identify genetic
variants extensively studied that could impair the body’s vitamin
status. The fat-soluble vitamins D and E and the water-soluble
vitamins C, B9 (folate), and B12 (cobalamin) prevail in the
corresponding literature and have therefore been presented
in this review. Based on the outcomes of candidate gene
studies, GWAS and the meta-analysis thereof, several SNPs
have been identified to impair enzymes, carrier proteins, cell
membrane channels and similar routes and substances that can
subsequently affect the absorption, release in the blood stream
and cell uptake of the vitamins under study. Therefore, through
possible impacts on the vitamins’ physiology, metabolism, and
functionality, several of these genetic variants could determine
the individual’s vitamin status following an intake through the
diet. Evidence is however not always consistent and we opted
for the presentation of both converging and diverging results
which could be attributed to either the heterogeneity among the
populations studied, lack of comparability between methods and
different biomarkers of vitamin status or a combination of all.

Furthermore, for the vast majority of these polymorphisms,
prevalence rates in the general population are not known and
cannot be used for setting advice on dietary requirements at the
population level or design public health actions. An exception,
however, holds for the European dietary reference values for
folate in which the MTHFR genotype (rs1801133) has been
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taken into consideration. In particular, after setting the Average
Requirement for folate, the EFSA Panel of Nutrition, Novel Foods
and Food Allergens (96) considered evidence on the prevalence
of the various genotypes in the European population and on the
higher folate requirements among individuals with the MTHFR
677TT, compared to those with the MTHFR 677CC genotype,
and selected a larger coefficient of variation to be applied in
setting the Population Reference Intake.

Next to their impact on vitamin status, several of the
polymorphisms presented have also been associated with
disease risk. Variants in the vitamin D-related VDR gene
have commonly been associated with the risk of a range of
skeletal and non-skeletal health outcomes, including infections
from the respiratory syncytial virus, the hepatitis B virus;
tuberculosis; cancer, and autoimmune diseases such as systematic
lupus erythematosus and rheumatoid arthritis (32, 112).
Polymorphisms in the SLC23A1 and SLC23A2 genes as well as
in other genes encoding the vitamin C transporter have also been
associated with the risk of chronic diseases, including cancer,
inflammatory bowel disease, preterm delivery, coronary heart
disease, and glaucoma (113).

Several studies indicated gene-diet interactions between folate
intake, MTHFR C677T genotype and risk of breast, colorectal,
and lung cancer (114). With respect to colorectal cancer, meta-
analyses of case-control studies provided evidence that the 677TT
genotype is associated with a lower risk of colorectal cancer
when compared to the CC genotype (105, 115). In another
meta-analysis of case-control studies including CHD patients,
individuals with the 677TT genotype had a significantly higher
risk of CHD (OR = 1.16, 95% CI = 1.05–1.28) compared to
the CC genotype, particularly when combined with low folate
status (OR = 1.44, 95% CI = 1.12–1.83) (116). Cronin et al.
(104) reported a dose-response association between the MTHFR
677T allele and the risk of ischemic stroke (T allele pooled OR
= 1.17, 95% CI = 1.09–1.26 and TT genotype pooled OR =

1.37, 95% CI = 1.15–1.64, respectively). Homozygosity for the
MTHFR C677T polymorphism (TT genotype) has also been
associated with an increased risk for NTD-affected pregnancies
(103), which provides additional support to the well-reported
link between folate status and NTD risk. The presentation of
such gene-disease associations were out of the scope of the
present manuscript.

Variants related to vitamin E transport have also been
associated with disease risk. Apo-AV is a minor apo-lipoprotein
almost exclusively expressed in liver that plays a significant
role in the regulation of plasma triglycerides. The most studied
SNP in Apo-AV is rs662799 where the minor variant (C) has
been associated with both higher plasma vitamin E and VLDL-
TGs levels in diabetic patients. Guardiola and Ribalta (117)
reported that in patients with metabolic syndrome or type 2
diabetes, apo-AV variants increase TG levels and minor allele
carriers present an altered lipoprotein profile including large
VLDL and small LDL and HDL particles that characterize
atherogenic dyslipidemia.

Some considerations are crucial when reporting and
interpreting genetic studies in relation to vitamin status.
Confounding generated through the use of less appropriate

comparators can lead researchers to spurious findings. Ethnicity
and race are for instance important characteristics that can
confound the associations observed (118). In our review,
we generally selected to present studies that controlled for
self-reported ethnicity. Misclassification due to either the
biomarker of vitamin status used or the analytic validity
of genetic markers is an additional issue to consider. As
regards the vitamin-related biomarker, we have solely relied
on studies presenting associations between genetic variants
and conventional biomarkers of vitamin status that have been
widely used by national and international scientific bodies
(64, 68, 80, 88, 90, 96, 97). With respect to the validity of the
genetic markers used in the studies we report in this review,
unless errors are systematic, any misclassification would have
probably attenuated the association between a dichotomous
biomarker and the risk of low vitamin status, but it would
probably not generate an association when in reality this
does not exist. Studies of genetic epidemiology making use of
numerous gene variants suffer from an increased possibility
for Type I and Type II errors, particularly when authors
overemphasize on statistical testing. In our presentation of
results, we selectively described the outcome of methods that
addressed the problem of false positive associations resulting
from multiple comparisons (e.g., p-values after the application
of Bonferroni correction or Bayesian methods, when available).
Next to statistical significance, biological relevance needs to be
also taken into account in combination or as a separate criterion
to establish causality.

The strengths of our narrative review lie in the provision of
a collective description of converging and diverging evidence
regarding genetic variants that influence vitamin status in
response to dietary intake. Furthermore, our review summarizes
studies among individuals from the general population, free
of prevalent diseases that could affect their nutritional status
addressing thus issues related to the public health. Our review is
limited by the fact it focuses on vitamin deficiencies. However, it
should be pointed out that the excess of water-soluble vitamins is
physiologically controlled through homeostatic mechanisms and
health professionals are primarily concerned with the deficiency
rather than the excess of lipo-soluble vitamins (vitamins D and E,
in our case).

The ongoing miRNA research is providing additional
evidence on gene expression, body function and many other
biological processes. miRNAs have been reported to target
vitamin-related genes and human circulating vitamin levels
(119). Nevertheless, the currently published research primarily
explores such associations among patients of degenerative
diseases/conditions. The demonstration of possible interactions
among free-living, generally healthy individuals is yet to be
accumulated and will substantially enhance our knowledge on
disease progression.

In conclusion, our review summarizes current findings on
how genetic variants could shape inter-individual differences
in response to dietary intakes. Capturing these differences
in intakes and mitigate sources of bias that could confound
any association observed has traditionally been the goal
of objective dietary assessment studies. The consideration
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of genetic variants has its own share in improving our
understanding of the diet-disease inter-relationship. The
individual genetic profile could add an extra layer of
personalization in nutritional evaluation and offer a more
comprehensive dietary assessment. Next to their association
with vitamin status, genetic variants have also been implicated
in underlying needs for differential vitamin intake to prevent
chronic, diet-related diseases. The early knowledge of those
needs could drive personalized nutritional advice favoring
prevention. Well-designed studies addressing biological
relevance next to statistical significance are however needed if
the identification of genetic variants it to be included in future
dietary assessments.
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Dietary and food intake biomarkers offer the potential of improving the accuracy of

dietary assessment. An extensive range of putative intake biomarkers of commonly

consumed foods have been identified to date. As the field of food intake biomarkers

progresses toward solving the complexities of dietary habits, combining biomarkers

associated with single foods or food groups may be required. The objective of this

work was to examine the ability of a multi-biomarker panel to classify individuals into

categories of fruit intake. Biomarker data was measured using 1H NMR spectroscopy in

two studies: (1) An intervention study where varying amounts of fruit was consumed

and (2) the National Adult Nutrition Survey (NANS). Using data from an intervention

study a biomarker panel (Proline betaine, Hippurate, and Xylose) was constructed from

three urinary biomarker concentrations. Biomarker cut-off values for three categories of

fruit intake were developed. The biomarker sum cut-offs were ≤4.766, 4.766–5.976,

>5.976 µM/mOsm/kg for <100, 101–160, and >160 g fruit intake. The ability of the

biomarker sum to classify individuals into categories of fruit intake was examined in the

cross-sectional study (NANS) (N = 565). Examination of results in the cross-sectional

study revealed excellent agreement with self-reported intake: a similar number of

participants were ranked into each category of fruit intake. The work illustrates the

potential of multi-biomarker panels and paves the way forward for further development in

the field. The use of such panels may be key to distinguishing foods and adding specificity

to the predictions of food intake.

Keywords: dietary biomarkers, nutrition, dietary assessment, food intake, metabolomics, multi-biomarker panel

INTRODUCTION

Dietary assessment is important for the elucidation of diet-disease relationships; however,
traditional dietary assessment techniques are subject to some well-documented limitations (1). The
identification of dietary and food intake biomarkers offers the potential of accurate and objective
measure of food intake (2, 3). Food intake biomarkers are single metabolites, or a combination
of metabolites, reflecting the consumption of either a specific food or food group, displaying a
clear time- and dose-response after intake (4). An extensive range of putative intake biomarkers
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of commonly consumed foods have been identified to date
(5) but more work is needed toward confirming the utility of
such biomarkers. To be efficient indicators of dietary intake,
biomarkers need to be validated including analysis of sensitivity,
specificity, and dose-response (6). Selecting a single intake
biomarker to represent exact dietary intake is difficult due to
the overlapping range of nutrients, non-nutrients, and bioactives
present in foods. However, previously investigated food intake
biomarkers have proven to be good predictors of consumption
for classes within food groups, such as fruits and vegetables (7).
As the field of food intake biomarkers progresses, and the need
to elucidate the complexities of dietary habits arises, combining
biomarkers associated with single foods or food groups may
be required (8). It is possible that by combining two or more
biomarkers together into multi-biomarker panels could result in
more sensitive and specific estimates of intake.

Development of validated and comprehensive multi-
biomarker panels have the potential to add value to the
assessment of dietary intake by enabling the capture of a broad
range of dietary exposure including bioactive compounds, foods,
food groups, and complex dietary patterns (9). Multi-biomarker
panels have been previously used to classify individuals
into banana consumers and non-consumers more robustly
compared to individual biomarkers (10). In another example
a multi biomarker panel, composed of beer ingredient and
food processing biomarkers was capable of distinguishing
beer consumption from urine samples collected before and
up to 12 h after intake of beer with excellent specificity and
sensitivity (11). Other examples of successful use of multiple
biomarkers include the SU.VI.MAX study, where the sum of
urinary flavonoid biomarkers demonstrated higher correlations
with fruit and fruit juice consumption than any of the included
biomarkers individually (12). A biomarker panel containing the
wine biomarkers ethyl glucuronide and tartrate outperformed
individual markers when predicting wine consumers and
non-consumers [90.7% receiver operating characteristics (ROC)
curves area under the curve (AUC) compared to 86.3% for ethyl
glucuronide and 85.7% for tartrate]. This panel was validated
in an epidemiological study and was capable of estimating
whether or not participants had consumed wine in the previous
3 days (13).

Multi-biomarker panels can be applied to classify andmonitor
adherence to dietary patterns. This was recently illustrated in
post-menopausal women where a biomarker panel was capable
of discriminating between high and low quintiles of adherence
to four diet scores [the alternate Mediterranean diet score
(aMED), alternate Healthy Eating Index (AHEI)-2010, Dietary
Approaches to Stop Hypertension (DASH) diet, and the Healthy
Eating Index (HEI)-2015] (14). Another interesting application
of multiple biomarkers is the interrogation of the relationships
between food intake and diseases incidence. In this context
previous work has employed a biomarker score, derived from
multiple biomarkers of fruit and vegetable intake, as a proxy
for intake to examine the relationship with diabetes incidence
(15). This biomarker score demonstrated an inverse association
with diabetes incidence, with odds ratio (OR) of incidence
decreasing with increasing intake of fruit and vegetables (highest

quartile of intake compared to lowest OR: 0.13; 95% CI: 0.08,
0.21) (15). Collectively, these studies highlight the potential for
combinations of multiple biomarkers in determining intake of
foods or dietary patterns and assessment of relationships with
health outcomes.

Fruit is an important component of a healthy diet and
previous work has investigated biomarkers of various fruit. A
recent systematic review of the literature conclude that we have
limited knowledge for biomarkers of pome and stone fruit (16)
with many biomarkers requiring validation in terms of relating
to fruit intake. With respect to apple intake the most promising
biomarker identified was phloretin and phloretin glucuronide.
The biomarker arbutin is promising for pear intake but again
requires more validation. A review of biomarkers of tropical fruit
intake also highlighted a dearth of information (17), concluding
clearly that there is a need for further research in the area.
Proline betaine is a well-established biomarker of citrus intake
with previous work indicating that urinary proline betaine
concentrations can give quantitative food intake information (18,
19). However, as most consumers eat more than one fruit, there
is an interest to examine total fruit intake and thus combining
multiple biomarkers could be a useful approach to estimate total
fruit intake.

Although previous work has indicated the potential of
multiple biomarkers in the form of multi biomarker panels,
combining of biomarkers to give quantitative information on
food intake is not trivial. Previous studies have highlighted the
potential of multi biomarker panels in terms of classification
into consumers and non-consumers. However, more work is
needed in the field to examine the potential of such biomarker
combinations for use in assessment of consumption of different
quantities of food. Therefore, the objective of this work was
to examine the ability of a multi-biomarker panel to classify
individuals into categories of fruit intake.

MATERIALS AND METHODS

National Adult Nutrition Survey (NANS)
Study—Cross-Sectional Study
Details of the NANS study have been published elsewhere
(https://www.iuna.net/) (20). Ethical approval for this study
was granted by the University College Cork Clinical Research
Ethics Committee of the Cork Teaching Hospitals [ECM 3
(p) 4 September 2008] and recruitment began in May 2008.
Briefly, NANS collected data on habitual food and beverage
consumption, lifestyle, health indicators, and attitudes to food
and health in 1,500 adults, representative of the population
during 2008–2010 in Republic of Ireland. A subset of this
population (N = 565) was randomly selected, to ensure equal
numbers of men and women across the age ranges (18–90 years)
for metabolomics analysis as previously described (20). A 4 days
semi weighed dietary record was used to collect dietary data over
4 consecutive days. Detailed information on the type and amount
of all foods, drinks and nutritional supplements consumed
over the 4 days was recorded by participants. Where possible,
participants were asked to weigh foods and encouraged to retain
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food packaging for further information on foods consumed, but
where weights were not recorded a photographic food atlas was
used to estimate food weights (18). Dietary data was analyzed
using WISP software (Tinuviel Software, Anglesey, UK), which
uses data from McCance and Widdowson’s The Composition of
Foods, fifth and sixth editions and all supplementary editions to
generate nutrient data (21–24). Dietary data was coded into 2552
individual food codes and grouped into one of 68 food groups.
For the purpose of this analysis any fruit containing food groups
were collapsed into a single “Total Fruit Intake” group and the
mean daily fruit intake over the 4 days was calculated. Biological
samples were collected at the end, or as close to as possible, of
the dietary recording period, including a fasting first void urine
sample in a sterile 50mL tube which was chilled until processing.
All urine samples were centrifuged at 1,800× g for 10min at 4◦C.
Aliquots of 1mL were stored at−80◦C for later analysis.

A-Diet Validation Intervention Study
Ethical approval for this A-Diet study was granted by the
UCD Sciences Human Research Ethics Committee (LS-17-16-
Brennan). Recruitment commenced at the end of March 2017
via advertisement (posters, flyers, and emails) and finished
in November 2017. The recruitment process is outlined
in Supplementary Figure 1. Details of the study design are
published elsewhere (25). Briefly, inclusion criteria included
healthy, non-pregnant/lactating and non-smoking individuals,
between 18 and 60 years old, and with a body mass
index (BMI) between 18.5 and 30 kg/m2, without any
diagnosed health condition (chronic or infectious diseases), no
consumption of medications/nutritional supplements or any
allergies/intolerances to the test foods. Once informed consent
was acquired, participants were assigned to either a lunch (N =

27) or dinner (N = 34) test meal group and invited to partake
in a 5-weeks study. Each test week participants were provided
with four portions of a test meal and asked to consume this test
meal for 4 consecutive days. During these 4 days, participants
were also asked to avoid consuming any other foods related to
the test meal ingredients. Participants were also asked to record a
4 days dietary record for each test week, to ensure compliance.
The focus of this analysis is the amount of fruit consumed as
part of these test meals. The low, medium, and high portions of
fruit provided was 50, 100, 300 g and 80, 160, 320 g for apples and
oranges, respectively.

Fasting first void urine was collected after an overnight 12 h
fast at the end of each test week and chilled until processing. All
urine samples were centrifuged at 1,800 × g for 10min at 4◦C.
Aliquots of 1mL were stored at−80◦C for later analysis.

Metabolomic Analysis of Urine Samples
Metabolomic analysis was performed using nuclear magnetic
resonance (NMR) spectroscopy. Urine samples were first
defrosted and then prepared by addition of 250 µL phosphate
buffer (0.2mol KH2PO4/L, 0.8mol K2HPO4/L) to 500 µL urine.
After centrifugation at 5,360 × g for 5min at 4◦C, 10 µL
sodium trimethylsilyl [2,2,3,3-2H4] propionate (TSP) and 50 µL
deuterium oxide (D2O) were added to 540µL of the supernatant.
Spectra were acquired on a 600 MHZ Varian Spectrometer

(Varian Limited, Oxford, United Kingdom) by using the first
increment of a nuclear Overhauser enhancement spectroscopy
pulse sequence at 25◦C. Spectra were acquired with 16,384 data
points and 128 scans. Water suppression was achieved during
the relaxation delay (2.5 s) and the mixing time (100ms). All
1H NMR urine spectra were referenced to TSP at 0.0 parts per
million (ppm) and processed manually with the Chenomx NMR
Suite (version 7.7) by using a line broadening of 0.2Hz, followed
by phase and baseline correction. Three metabolites were
chosen to demonstrate the proof-of-concept that combinations
of biomarkers could be used to predict total fruit intake. The
biomarkers chosen were xylose, proline betaine, and hippurate.
Identification and quantification of metabolites was achieved
using the Chenomx library. To confirm correct assignment, a
urine sample was spiked with an analytical standard and a 1H
NMR spectrum acquired.

Osmolality was measured by using an Advanced Micro
Osmometer model 3300 (Advanced Instruments). Aliquots of
urine were measured for osmolality with the use of micro-
osmometry by freezing point depression, with values reported as
the number of solute particles, in moles, dissolved in a kilogram
of urine (mOSM). Metabolite concentrations were normalized
to osmolality for quantifying urinary concentrations of xylose,
proline betaine and hippurate.

Statistical Analysis
Statistical analysis was performed using IBM SPSS software
package version 24.0 for windows (SPSS Inc. Chicago, IL,
USA) and SIMCA-P software (version13; Umetrics). One-way
analysis of variance was performed to compare tertiles of self-
reported intake and urinary concentrations of three biomarkers.
Spearman’s correlations were used to assess association between
mean daily self-reported total fruit intake and biomarkers. The
urinary concentrations of each biomarker were summed together
to create a single combined biomarker value for each individual.
Using the intervention data cut-offs were developed for certain
fruit intake categories.

RESULTS

Examining Relationship Between
Biomarkers and Self-Reported Fruit Intake
Urinary biomarkers of interest were quantified by 1H NMR
analysis in the NANS cross-sectional study. The following
concentrations were obtained: xylose (range: 0.07–2.19mM),
proline betaine (range: 0.04–2.13mM), and hippurate (range:
0.13–15.87mM). Participants were grouped into tertiles based
on self-reported mean daily intake of total fruit from semi-
weighed food records (Table 1, Supplementary Table 1). All
three urinary biomarker concentrations increased as the intake
of fruit increased with significant increases observed for proline
betaine and hippurate. The urinary concentrations of all three
biomarkers were also significantly correlated with mean daily
intake of fruit. The main contributors to total fruit intake were
apples, bananas, oranges, pears, strawberries, and pineapple, all
of which increased significantly across tertiles of intake except
for pineapple.
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TABLE 1 | Urinary food intake biomarker concentrations across tertiles of fruit intake in cross-sectional study (NANS).

Tertile 1 (N = 180) Tertile 2 (N = 181) Tertile 3 (N = 185) Spearman’s correlation+

Mean SD Mean SD Mean SD p-value Rho p-value

Metabolite (µM/mOsm/kg)

Xylose 0.596 0.34 0.614 0.35 0.637 0.42 0.574 0.078 0.070

Proline betaine 0.285 0.22 0.415 0.34 0.569 0.44 <0.001 0.400 <0.001

Hippurate 3.600 2.78 3.991 2.87 4.727 3.20 0.001 0.181 <0.001

Mean daily intakes (g/d)

Total fruit 28.42 24.61 127.80 32.61 315.19 115.44 <0.001

Apples 4.94 13.50 23.93 30.76 58.15 65.78 <0.001

Banana 7.17 15.28 26.86 31.77 43.07 42.70 <0.001

Oranges 2.49 9.86 29.56 42.55 94.14 105.97 <0.001

Pears 0.52 3.70 4.46 15.61 22.18 47.46 <0.001

Strawberry 1.03 5.41 2.48 9.34 4.44 13.40 0.005

Pineapple 0.47 3.73 1.20 7.47 2.75 16.91 0.129

All values presented are mean and standard deviation (SD) unless stated otherwise. ANOVA, analysis of variance; MDI, Mean daily intake. N = 546.
+Spearman’s correlation between each biomarker and total mean daily fruit intake.

Further analysis was performed using total fruit consumers
only (N = 509) (Table 2). Similar trends were observed for the
urinary biomarker concentrations, increasing across of tertiles of
intake with significant values for proline betaine and hippurate.

Using Multiple Biomarkers to Classify
Individuals Into Categories of Intake
The multi-biomarker panel was used to create a combined
biomarker value by summing the individual biomarkers. In the
A-Diet validation dataset (N = 160) the combined biomarker
values were used to determine cut-offs for classification
of individuals into categories of intake. Participants were
categorized into one of three groups of intakes (0–100, 101–
160, and >160 g/d) based on the fruit consumed as part of the
intervention. The average sum of biomarkers for participants
who consumed ≤100 g/day of fruit (4.766 µM/mOsm/kg)
was set as cut-off point 1. Cut-off 3 was calculated as the
average biomarker sum (5.976 µM/mOsm/kg) of participants
who consumed >160 g of fruit in the A-diet study. The middle
cut-off was set at any value in between cut-off 1 and 3 (Table 3).

To examine the ability of these biomarker sum values to
categorize participants into categories of intake the method
was applied to NANS study. Using the NANS (N = 546)
self-reported dietary data participants were categorized into
three groups of fruit intake (Table 4). Independently using the
urinary biomarker concentrations, participants were assigned to
a category of intake using the biomarker sum cut-offs. Excellent
agreement between the two methods was observed with for
example, 97 participants self-reporting intakes between 101 and
160 g/d, and 86 participants assigned into this category based on
the biomarker panel data (Table 4 and Supplementary Table 2).
Assessment of the data split by gender revealed similar agreement
trends (Table 5).

In order to examine other biomarker combinations, the
biomarker values that increased across categories of intake
were selected (Supplementary Table 3). The ability to categorize

participants into categories of intake was examined with all
biomarkers and the sum of proline betaine and hippurate
providing the best agreement (Table 6).

DISCUSSION

This study developed a biomarker panel that was capable
of classifying individuals into categories of fruit intake.
Examination of the approach in a free-living cross-sectional study
revealed excellent agreement with self-reported intake. Similar
number of participants were ranked into each category of fruit
intake. The work illustrates the potential of multi-biomarker
panels and paves the way forward for further development in
the field.

The three biomarkers chosen to build the multi-metabolite
panel in this research have frequently been found in previous
research to be associated with fruit intake. Xylose was previously
identified as a food intake biomarker associated with apple intake
and capable of ranking participants in an observational study
by increasing intake (25). Proline betaine is a well-established,
robust, and quantitative biomarker of citrus intake (18, 26).
Proline betaine was previously included as part of a biomarker
panel for the investigation of orange juice intake and juice quality
(27). Hippurate, has often been associated with consumption
of polyphenol rich plant foods, such as citrus fruit, bananas,
and berries (10, 26, 28–30). This research combined these three
food intake biomarkers into a biomarker score for the successful
ranking of fruit intake. It is important to acknowledge that
there are other potential biomarkers of fruit intake; however,
examination of the full panel of potential biomarkers was beyond
the scope of the current work where the emphasis was on the
demonstration of the potential of combination of biomarkers.

Previous multi-metabolite panels have focused on associating
the panels with intake of certain foods or achieving a
dichotomous classification of consumers and non-consumers.
An example of previous work demonstrated good associations
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TABLE 2 | Urinary food intake biomarker concentrations across tertiles of fruit intake in cross-sectional study (NANS), total fruit consumers only.

Mean daily intakes (g/d) Tertile 1 (N = 168) Tertile 2 (N = 168) Tertile 3 (N = 173) One-way ANOVA Spearman’s correlation+

Mean SD Mean SD Mean SD p-value Rho p-value

Metabolite (µM/mOsm/kg)

Xylose 0.601 0.35 0.604 0.35 0.649 0.43 0.424 0.090 0.043

Proline betaine 0.298 0.24 0.425 0.33 0.581 0.45 <0.001 0.382 <0.001

Hippurate 3.622 2.63 3.957 2.82 4.771 3.24 0.001 0.187 <0.001

Mean daily intakes (g/d)

Total fruit 42.67 26.44 139.58 32.28 323.36 114.98 <0.001

Apples 8.66 18.54 25.60 33.86 59.09 66.35 <0.001

Banana 10.05 17.90 29.61 32.63 43.12 43.46 <0.001

Oranges 4.18 13.92 33.34 43.80 97.75 108.18 <0.001

Pears 1.11 6.39 4.24 15.46 23.71 48.71 <0.001

Strawberry 1.36 6.01 2.42 9.45 4.74 13.81 0.008

Pineapple 1.07 7.08 1.14 7.21 2.55 16.75 0.399

All values presented are mean and standard deviation (SD) unless stated otherwise. ANOVA, analysis of variance; MDI, Mean daily intake. N = 509.
+Spearman’s correlation between each biomarker and total mean daily fruit intake.

TABLE 3 | Cut-off points for each of the fruit intake categories derived from the

Intervention Study.

Fruit intake category (g/d) Biomarker cut-offs (µM/mOsm/kg)

0–100 <4.766

101–160 4.766–5.974

>160 ≥5.975

Cut-offs were calculated using sums of biomarker concentrations in each intake category

from the A-Diet intervention study.

between biomarkers of fruit and vegetables intake and self-
reported dietary records (12). When 24 h urinary concentrations
of isorhamnetin, hesperetin, naringenin, kaempferol, and
phloretin were combined in a panel they were correlated with
fruit intake (r = 0.27, p = 0.06), fruit juice intake (r = 0.28, p
= 0.04), and intake of total fruits and fruit juices (r = 0.38, p
= 0.006). The correlations for the fruit related panel improved
when examined in spot urine samples: fruit intake (r = 0.34, p
= 0.01), fruit juice intake (r = 0.44, p = 0.001), and total fruit
and juice intake (r = 0.47, p = 0.0004). The authors concluded
that this combination of flavonoids could be used as a reliable
biomarker of total fruit and juice intake, however, to the best of
our knowledge there is no demonstration that the biomarkers
could predict intake. Our work is an important advancement
as it clearly demonstrates that the multi-biomarker approach is
capable of a classification of intake into a range of categories.
However, it should be noted that the present work did not make
the distinction between whole fruit and fruit juices and the
biomarker panel classification was based on total fruit intake
including juices.

Our previous work identified four food intake biomarkers
of sugar sweetened beverages (formate, citrulline, taurine, and
isocitrate) using heat-map analysis of metabolomic urinary
profiles from the NANS study (31). These markers were

TABLE 4 | Classification into categories of fruit intake based on biomarker data or

based on self-reported intake data in the cross-sectional study (NANS).

Fruit intake category (g/d) Self-reported data (N) Biomarker data (N)

0–100 227 306

101–160 97 86

>160 222 154

Participants were classified into one of 3 categories based on either (1) Self-reported

dietary data or (2) biomarker data. The number of participants into each category is

reported, N = 546.

TABLE 5 | Distribution of participants classified into each category of intake

based on sum of urinary biomarker concentrations compared to reported intake

data in the cross-sectional study, split by gender.

NANS

Self-reported Predicted

Gender M F M F

N 278 268 278 268

Intake category

0–100 (g/d) 128 99 170 136

101–160 (g/d) 42 55 42 44

>160 (g/d) 108 114 66 88

Participants (N = 546) categories based on cut-offs were calculated using sums of

biomarker concentrations in each intake category from the A-Diet intervention study. ADV,

A-Diet Validation Study; NANS, National Adult Nutrition Survey; M, Male; F, Female; N,

Number of participants.

confirmed by food analysis of the sugar-sweetened beverage
and an acute intervention study. The markers were combined
in a panel and ROC curves demonstrated that the panel
could discriminate between consumers and non-consumers
of sugar-sweetened beverages (AUC = 0.8) and was more
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TABLE 6 | Urinary biomarker classification of fruit intake compared to reported intake in the cross-sectional study (NANS).

Classification method Self-reported intake Sum of proline betaine and hippurate Sum of xylose and proline betaine Sum of all biomarkers

Average fruit intake (g/d) N N N N

0–100 227 304 306 306

101–160 97 70 194 86

>160 222 172 46 154

Number of participants (N = 546) classified into each intake category was based self-reported intake and on combinations of urinary biomarker concentrations.

predictive of intake than the individual biomarkers themselves
(AUCs ranging from 0.5 to 0.7). A recently published study
used data from the KarMeN study to identify five metabolites
[methoxyeugenol glucuronide (MEUG-GLUC), dopamine
sulfate (DOP-S), salsolinol sulfate, 6-hydroxy-1-methyl-1,2,3,4-
tetrahydra-β-carboline sulfate, and xanthurenic acid] that were
discriminative between high and non-consumers of banana
(10). Individually, DOP-S had the best prediction ability [AUC
= 0.84, error rate (ER) = 0.25] for classifying high consumers
against non-consumers but was not as robust as a combination
of all five metabolites (AUC = 0.90, ER = 0.13). However, the
best predictive ability was a combined panel of MEUG-GLUC
and DOP-S with the lowest error rate of misclassification. This
research demonstrates how a panel of food intake biomarkers
which individually were not robust enough, when combined
can be used to classify recent banana intake. Our research takes
the application of biomarker panels a step further by classifying
participants into categories of fruit consumed and moves beyond
the dichotomous classification of consumer/non-consumer.

While the above work demonstrates the potential for multi-
biomarkers in terms of estimating food intake such panels
can also be used to assess the relationship between food
and diet-related diseases. A combined biomarker-score was
developed using the standardized plasma values of vitamin C,
β-carotene, and lutein, all of which were previously related
to fruit and vegetable intake (15). This score was inversely
associated with odds of incidence of type 2 diabetes (OR:
0.13; 95% CI: 0.08, 0.21) even after adjustment for lifestyle
factors and demographics. An identified plasma biomarker panel
representative of dietary habits consisted of β-alanine (beef
intake), alkylresourcinols (wholegrain/rye), eicosapentaenoic
acid and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid
(fish), lauric acid (saturated fats), linoleic acid (seeds, nuts,
and vegetable oils), oleic acid (olive and rapeseed oil), and
α and γ tocopherol (32). This combined panel was capable
of predicting new cases of type 2 diabetes over a 5-years
follow-up period with a specificity and sensitivity similar to
classic diabetes predictors (serum adiponectin, insulin resistance,
impaired glucose tolerance and impaired fasting glycaemia).
Collectively, these and other studies highlight the potential of
a multi-metabolite panel for the assessment of the relationship
between diet and health/disease.

If future studies develop comprehensive and validated multi-
biomarker panels, they could add value to the assessment
of dietary intake by enabling the capture of a broad range
of dietary exposures including bioactive compounds, foods,
food groups, and complex dietary patterns. Panels could

then be used in epidemiological research to elucidate the
mechanisms and metabolic pathways of diet-related diseases
and to validate self-reported dietary data. Further development
of more comprehensive panels could enable measurement of
adherence to specific dietary patterns, such as the Mediterranean
diet. Future challenges for the field will be finding the simplest
combination of metabolites to accurately determine exposures
as well as validating these panels to a standard where they can
be applied in nutritional research and public health surveys (9).
As the field develops further, there will be a need to develop
new statistical tools to integrate multiple biomarkers with self-
reported data. Our work has recently developed calibration
equations based on biomarker-predicted citrus intakes to gain
a more accurate and objective measure of true intake (33).
Using biomarker data to correct self-reported data for food
intake is a promising option and could be adapted to include a
biomarker panel. Further work is to develop the statistical tools
to achieve this.

This study has strengths and limitations. A limitation worth
noting is the fact that we examined the ability of the biomarker
panel to categorize fruit intake in a cross-sectional study where
intake was estimated with self-reported data. Future studies
where comparison is performed in large intervention studies
would be useful to examine relationships with true food intake.
On the other hand, including the development of a food intake
biomarker panel with testing in cross-sectional study is a strength
as it demonstrates that the panel was capable of ranking fruit
intake at a population level, against the background of exposure
to various other foods. This research did not examine the
potential impact of gut microbiome on the biomarker panel.
Future work is warranted to address this.

To conclude, this study successfully demonstrated the utility
of a panel of biomarkers for estimating fruit intake. The
identification of comprehensive and validated multi-biomarker
panels related to certain foods will be important as this field
develops. The use of such panels may be key to distinguishing
foods and adding specificity to the predictions of food intake.
Combining such panels with self-reported measures will be
important for increasing the accuracy of dietary assessment
methods. Furthermore, there is potential for the use of
such panels in large epidemiological studies to examine the
relationships between diet and disease.
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Despite the extreme importance of food intake in human health, it is currently difficult

to conduct an objective dietary assessment without individuals’ self-report. In recent

years, a passive method utilizing a wearable electronic device has emerged. This

device acquires food images automatically during the eating process. These images

are then analyzed to estimate intakes of calories and nutrients, assisted by advanced

computational algorithms. Although this passive method is highly desirable, it has been

thwarted by the requirement of a fiducial marker which must be present in the image for

a scale reference. The importance of this scale reference is analogous to the importance

of the scale bar in a map which determines distances or areas in any geological region

covered by the map. Likewise, the sizes or volumes of arbitrary foods on a dining table

covered by an image cannot be determined without the scale reference. Currently, the

fiducial marker (often a checkerboard card) serves as the scale reference which must be

present on the table before taking pictures, requiring human efforts to carry, place and

retrieve the fiducial marker manually. In this work, we demonstrate that the fiducial marker

can be eliminated if an individual’s dining location is fixed and a one-time calibration using

a circular plate of known size is performed.When the individual uses another circular plate

of an unknown size, our algorithm estimates its radius using the range of pre-calibrated

distances between the camera and the plate from which the desired scale reference is

determined automatically. Our comparative experiment indicates that the mean absolute

percentage error of the proposed estimation method is ∼10.73%. Although this error

is larger than that of the manual method of 6.68% using a fiducial marker on the table,

the new method has a distinctive advantage of eliminating the manual procedure and

automatically generating the scale reference.

Keywords: wearable device, fiducial marker, dining plate size, egocentric image, technology-based dietary

assessment

INTRODUCTION

Many chronic diseases, such as heart diseases, cancer and diabetes, are associated with unhealthy
diet. A recent study by the Global Burden of Disease found that poor diet accounted for ∼20% of
adult deaths in 2017 (1). As diet-related health risks are high, it is important to conduct dietary
assessment among individuals’ with, or in an emerging stage of, chronic diseases. Traditionally,
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this assessment depends on individuals’ self-report, which
is subjective and often inaccurate (2). In recent years, as
microelectronic and mobile technologies advance, image-based
dietary assessment has emerged (3, 4). The images of food are
acquired from an individual either actively or passively. In the
active approach, the individual takes pictures of his/her food
before and after each eating event (5). Although this method is
inexpensive (because of the wide availability of the smartphone)
and the image quality is high, picture-taking must be volitionally
initiated, which depends on the individual’s memory. In the
passive approach, the individual is provided with a small
electronic wearable device, such as the eButton in the form of
a chest pin [Figure 1A, (6, 7)]. This device is equipped with a
wide-angle camera aiming at the food on the table during the
eating process. Rather than taking pictures manually, a sequence
of images is acquired automatically at a pre-set rate (4–6 s
between images). For a complete dietary assessment, the device
can be activated for the entire day, producing a large amount
of data saved on the device. Once the data are uploaded to a
computer, they are first screened using the Artificial Intelligence
(AI) technology (8). This screening automatically filters out all
image segments not containing foods or beverages, both reducing
the burden of data examination by human experts and mitigating
the related privacy concerns. The AI approach also allows
objective studies of snacking and a wide range of other diet-
related activities, such as food shopping, storage, preparation,
cooking, and post-eating events. This work is in the domain of
the passive approach.

Although image-based dietary assessment has many
advantages over the traditional self-report method, it requires

FIGURE 1 | (A) A skeletal representation of a person wearing eButton during a meal; (B) Part of an egocentric image sequence acquired by the eButton showing

quasiperiodic variations of the ellipses of the plate; (C) Definition of Di ; (D) Parameters of an ellipse.

a scale reference within each image. The scale reference is
extremely important, analogous to the importance of the scale
bar in a map which enables the determination of the distance
between any two points on the map or the area of any geological
region covered by the map. Likewise, the volumes of foods and
beverages on a dining table in the scope of an image cannot
be determined without the scale reference. Currently, the scale
reference is provided by a fiducial marker which is an object of
known dimensions, such as a checkerboard or a business card
(2, 5, 9). This method requires the individual to physically carry
the card, place it on the dining table before the eating process
and retrieve it afterwards. Clearly, these tasks are inconvenient
and contradicts the goal of passive dietary assessment. In order
to eliminate these tasks, we previously developed a method
to use the dining plate itself as the scale reference (10, 11).
Since a circular plate appears in the image as an ellipse and
the eccentricity of the ellipse depends on the viewing angle of
the wearable device, the coordinate transformation between
the image pixel coordinates and the world coordinates can be
established, under the condition that the radius of the plate
is known. Although this method eliminates the need to carry,
place and retrieve the fiducial marker, it requires a measurement
of the plate radius, which is still a manual procedure and a
significant burden to the participant. Eliminating this manual
procedure would lead to a true passive dietary assessment,
removing the last bottleneck that undermines the passiveness.
Because of the high importance of this problem, considerable
effort has been spent by the research community, and several
approaches have been reported, such as using two cameras for a
stereo view (12), adopting a depth camera (13), and using a laser
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reference produced by an add-on device (14, 15). Although these
solutions are effective, the extra power consumption, enlarged
wearable device size and increased cost have hampered their
practical utility.

Unfortunately, elimination of the manual procedure and
automatic determinization of the scale reference based purely
on image contents represent an extremely difficult problem. The
theory of computer vision has indicated that it is impossible to
estimate the real size of an object in a single 2D image without
providing the scale information (16). However, we will show, in
this work, that this theoretical constraint can be circumvented if
we use a sequence of images as the input and meet the following
assumptions: (1) the heights of the dining table and chair at each
dining location are fixed, (2) a one-time calibration is performed
at each dining location using a circular plate of known size, (3) the
individual uses the same wearable device affixed at the same body
location to capture images, and (4) one of the food containers
on the dining table is a circular plate. Then, we show that the
desired scale reference can be determined automatically from the
circular plate. Here we point out that, as in the case of a map
where the scale bar is applicable to all geological regions covered
by the map, this scale reference, once obtained, is applicable to all
foods, beverages and other objects on the dining table. As a result,
their lengths and volumes can be estimated from the image.

The rest of the paper is organized as follows. Section Methods
presents the details of our method including the concepts
utilized, the formulation of the method, and the plate radius
estimation procedure. Section Experimental Results summarizes
the experimental data and analysis results. In section Discussion,
several issues of this method are discussed. Finally, limitations
and future work are described in section Limitation and Future
Work and conclusions are drawn in section Conclusion.

METHODS

System Design Concepts
In real life, most individuals follow a certain eating pattern. With
exceptions of traveling or “eating out,” they usually use fixed
locations to have meals, for example, the kitchen or dining room
at home for breakfast and dinner, and the office desk, a cafeteria,
or a favored restaurant for lunch. At each location, the heights of
the dining table and chair are usually fixed. Additionally, when a
wearable device is used for dietary assessment, the location of the
wearable device is usually fixed also, such as the chest location of
the eButton (Figure 1A). All these factors indicate that, during
eating events, the imaging environment of the individual at each
dining location does not change drastically regardless of the food
served and utensils utilized.

Although, as indicated previously, the theory of computer
vision prohibits the determination of plate radius from a single
image alone without the scale information, the estimation
becomes possible when a sequence of images is captured by a
wearable camera. Our key approach is to investigate the variation
in the size of the observed dining plate in the image sequence
(see an example in Figure 1B) as the result of the individual’s
repeated motion for reaching and fetching food. Although this
body motion is not truly periodic (hence we call it “quasiperiodic

motion”) involving considerable irregularities in the camera-
to-plate distance, it is reasonable to assume that the statistical
range of camera-to-plate distance variations remains the same
for all eating events if the eating environment is fixed. From our
previous studies (10), we know that the camera-to-plate distance
can be calculated when a circular plate presents in the image
and the plate size is known. If a one-time calibration with a
plate of known size is conducted for an individual, the range
of camera-to-plate distances during all future eating events of
this person can be considered known. Then, the radius of an
unknown plate can be estimated using this known range of the
distances if his/her eating happens at the same location. These
represent the key concepts of our method.

Our method, to be detailed below, for estimating the radius
of an unknown plate from the image sequence is highlighted as
follows. First, the relationship between the image of the plate
(i.e., an ellipse) and the camera-to-plate distance is investigated
and simplified. Then, a set of lines is generated to represent
such relationship for different plate sizes. Next, from these
lines, a particular line (i.e., the optimal line) is determined that
best-matches the known range of the camera-to-plate distances
obtained during the calibration process. The radius of the
unknown plate is determined to be the radius represented by
that line.

Modeling Camera-to-Plate Distance
Let Di be the distance (unit: mm) between the lens of the
wearable device to the center of the plate, where subscript i
denotes the ith image in the image sequence (Figure 1C). We
have previously shown (10) that Di can be determined from
the ellipse (representing the plate) in the image if the actual
radius of the plate is measured, and the intrinsic parameters
of the camera, including the focal length and pixel size of
the semiconductor chip, are provided. Figure 2A illustrates the
change of camera-to-plate distance (red dots) during an eating
episode. The mathematical expression for Di is derived based on
intersecting a cone (with its vertex located at the optical center
of the camera) by the surface of the tabletop, where the circular
plate (assuming that its height can be ignored) coincides with the
intersection contour (10, 17). While the mathematical details of
the expression are quite complex, here we write it as g, given by

Di = g
(

xi, yi, ai, bi, θi,R
)

, (1)

where (xi, yi) denote the coordinate of the center for the ellipse
in the image;

(

ai, bi, θi
)

represent the length of the semimajor
axis, the semiminor axis, and the major axis angle of the ellipse,
respectively (shown in Figure 1D); and R is the radius of the
plate (unit: mm). Among the six variables of g, R is the only one
that has a physical size in the world coordinates. With the ellipse
parameters, the orientation and location of the dining table where
the plate is placed on can be determined.

Model Simplification
To simplify Equation (1) and make the relationship between
D and

(

x, y, a, b, θ ,R
)

more intuitive, we start with a simple
case assuming that the optical axis of the camera goes through
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FIGURE 2 | (A) Plot of change of camera-to-plate distance (red dots) during an eating episode; (B) Simulated camera-to-plate distance vs. 1/a using Equation (3); (C)

A set of fitted curves for R = 60, 70, · · · , 150 mm; (D) Camera-to-plate distance D vs. 1/a plot for the real data in (A); (E) The two dotted blue lines represent the

distance range [Dl ,Du] obtained from calibrated data (red dots). The black lines represent the fitted lines for different plate radii. The green dots are the corresponding

Di to each 1/ai obtained from the image with unknown plate. (F) Plot of P and fitted Gaussian function.

the center of the plate and the camera is level (the bottom of
the camera is parallel to the horizon) but tilting downwards
by an angle γ to capture the food on table. Under these
assumptions, we explicitly derive function g based on a pin-hole
camera model. Even with these simplifications, the derivation
is still complex. It is thus not included here. Interested readers
are referred to the Supplementary Material (attached). The
final relationship between camera-to-plate distance D and the
reciprocal of semimajor axis a of the observed ellipse is given by:

1

a
=

1

f

√

(

D

R

)2

− cos2γ , (2)

where R is the plate radius, γ is the tilting angle, and f is the
camera’s focal length. The reason that the semiminor axis b is
not included is also discussed in the Supplementary Material.
Note that the unit of a is millimeter in the image plane (i.e., the
sensor chip) within the camera. The conversion between the pixel
coordinates in the image and the real-world coordinates in the
image plane can be made through the intrinsic parameters of the
camera (such as focal length, pixel size) (16).

With Equation (2), we can find the relationship between 1/a
and D when R and γ are given. In practice, angle γ changes
during eating due to human body’s movement for reaching,
fetching and delivering the food to the mouth (exemplified in
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Figure 1B as snapshots of this process). Thus, γ is set to a
uniformly distributed random number between 20 and 70◦. By
simulation, a large number of pairs of (1/ai,Di), i = 1, 2, · · · ,N,
using Equation (2) can be generated for different R values (see
examples in Figure 2B). The red dots represent the data points
for R = 150mm, green dots for R = 100mm and blue dots for
R = 60mm. It can be seen that the relationship between 1/a
and D can be approximated by a linear function. By least-square
fitting of the simulated data points for each Rt according to the
following criterion

min
m,n

N
∑

i=1

(

Di −
m

ai
− n

)2

, (3)

the fitting parameters m, n corresponding to the given radius Rt
(t = 1, . . . ,T) can be obtained, as shown in Figure 2B. Here T is
the total number of simulated fitting lines. Then, we have

Di ≈
m

ai
+ n (i = 1, . . . ,N) . (4)

Figure 2C illustrates a case for T = 10 where each line represents
a different value of R. Thus, for each R value, the ellipse
parameter 1/a can be calculated from camera-to-plate distance
D. Conversely, if D is known, we can determine R. Although D
varies during the eating process as stated previously, the range
of D is known from pre-calibration. If the calibrated range of D
is [Dl,Du] and the extracted ellipse parameters from the image
sequence are {1/ai}, for i = 1, . . . ,N, the problem of estimating
the unknown plate size becomes finding the optimal line among
all the simulated (or pre-tabulated) lines that best-maps the set of
{1/ai} into the range of [Dl,Du].

Although, in this simplification, the requirement that the
optical axis of the camera goes through the plate center cannot
be met normally, our data indicate that the approximate linear
relationship between 1/a and camera-to-plate distance D still
hold for real image sequences obtained during eating events
(exemplified in Figure 2D). This demonstrates that the simplified
model is generally acceptable. In some cases, however, the
quasiperiodic body movement of the individual during eating
is interrupted because of certain activities related or unrelated
to the eating process (e.g., reaching a can of drink far away
from the individual or operating a TV remote control). These
activities result in sudden large changes in the positions and/or
orientations in the observed sequence of ellipses. These changes
do not fit our model but can be easily identified from the image
sequence and discarded as data outliers.

System Calibration and Plate Radius
Estimation
In the following, we will first describe the calibration procedure.
Then, we will provide two different estimates for the camera-
to-plate distance, one by analytic calculation and the other
by simulation. Finally, these two estimates are combined
to estimate the unknown plate radius based on the result
of calibration.

Calibration Procedure
A one-time calibration is required for each subject at each
eating location. This calibration is nothing more than having
a meal by the individual at the location with a circular plate
of known radius R. From the calibration image sequence, the
ellipse parameters are extracted from the ith image and thus
the camera-to-plate distance can be computed using Equation
(1) which specifies the relationship between Di and ellipse
parameters. Although the mathematical expression for Equation
(1) is complex, an analytic solution has been reported and
can be computed using ellipse parameters (10, 17). From the
whole image sequence, we can obtain a set of {Di} and a set
of ellipse parameters

{

xi, yi, ai, bi, θi
}

. Thus, the range of Di,
defined as [Dl,Du], can be estimated from the distribution of
{Di}. Due to the limited number of images in a sequence and
the noisy nature of the experimental data, the minimum and
maximum value of Di, i = 1, 2, · · · ,N, may not reflect the
actual distance range. We thus manipulate the histogram of {Di}

to obtain the distance range, which will be described in section
Data Analysis.

Camera-to-Plate Distance by Simulation
For a new image sequence including an unknown plate,
the ellipse parameters

(

xi, yi, ai, bi, θi
)

can also be extracted
for each image in the sequence. Then, we set R to be a
variable and equally sample this variable to form Rt , t =

1, 2, · · · ,T with a sufficient range and resolution (e.g., from
R1 = 30mm to RT = 165mm with an increment of 1mm).
Next, the fitting parameters m,n corresponding to the given
radius Rt (t = 1, 2, . . . ,T) are obtained using Equation
(3) as illustrated in Figure 2B. By substituting ai to the
simplified form of Equation (1), i.e., Equation (4), the camera-
to-plate distances Di, i = 1, 2, · · · ,N, for each Rt , t =

1, 2, · · · ,T, can be simulated (i.e., pre-tabulated), defined
as

{

D1
i

}

.

Calculated Camera-to-Plate Distance
Since the available data obtained from an eating event are
usually limited (N is usually <100), we calculate another set
of {Di} called

{

D2
i

}

for the same values of Rt , t = 1, 2, · · · ,T,
using Equation (1) although the calculation is complicated (10,
17). The main reason of adding this part of calculation is to
double the number of data points that can be used to make the
estimation more reliable.

Plate Size Estimation
After combining the two sets of {Di} as {Di} =

{

D1
i

}

∪
{

D2
i

}

for each R, the number of {Di} that fall into the calibrated
range [Dl,Du] can be counted. An index representing
how close each R is to the actual radius can be calculated
as P = |{Di ∈ [Dl,Du]}| / |{Di}| (see Figure 2F for
an example), where the vertical bars “|·|” represent
the number of elements in a set. Finally, we fit the
curve with a Gaussian function, and the estimated R
corresponds to this maximum point (i.e., the mean of the
Gaussian distribution).
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EXPERIMENTAL RESULTS

To validate our plate radius estimation method, we conducted
experiments in real-world settings. In this section, we describe
the details of our experiments, including human subjects,
experimental procedure, data analysis, and experimental results.

Human Subjects
With an approval by the Institutional Review Board at the
University of Pittsburgh, three human subjects participated in the
experimental study. In order to satisfy the assumptions presented
in section Model Simplification, these subjects were selected
based on the following criteria: (1) they were healthy with normal
body posture at both sitting and standing positions; (2) they
followed a regular daily routine during the study (e.g., traveling
was excluded); and (3) their dining locations were mostly fixed.

Experimental Procedure
The subjects were first trained for using the eButton to record
their dining events. They were instructed to comply with the
following requirements: (1) using circular plates as the food
container for serving; (2) wearing the eButton at a fixed chest
location; and (3) keeping the heights of dining table and chair
at each dining location unchanged. The subjects were instructed
to follow their regular dietary patterns without restrictions on
types of food and activities while sitting at the table (e.g., listening
to music, watching TV, making a phone call, or interacting with
people). No limitation was imposed on food types and utensils.

In each meal during the experiment, the subject wore the
eButton and had meals normally using the pre-measured plate.
The measured values were used either for the calibration process
or as the gold standard for assessing the accuracy of our plate
radius estimation algorithm.

Data Analysis
After the study, the subjects returned the eButton to our
laboratory where the recorded data were read from the microSD
card within the device. The following data analysis steps
were implemented.

Image Screening and Ellipse Extraction
All the images in each eating event were visually examined by
a researcher. The images that contained no plate or a plate
with most of its boundary missing were regarded as outliers
and excluded from data analysis. For each image, the contour
of the plate edge, observed as an ellipse in the image, was first
extracted automatically using an automatic algorithm developed
by us previously (18). In some cases, the automatic method failed
due to occlusion or shadowing. In these cases, we used interactive
method in which six points on the ellipse were manually selected.
In either case, the parameters of each ellipse (e.g., semimajor axis
a) were extracted by a least-squares fitting of the ellipse boundary.

Distance Range From Calibrated Image Sequence
For each image in the calibrated image sequence, all
{

xi, yi, ai, bi, θi
}

, i = 1, 2, · · · ,N, where N is the number
of images in an eating event after eliminating outliers, were
extracted. Then, distance Di corresponding to each image was

obtained using Equation (1) with the pre-measured R. The red
dots in Figures 2D,E represent the pairs of {1/ai,Di} calculated
from the calibrated image sequence. To determine the range
of {Di} reliably, the histogram of {Di} was calculated and the
values in the two extreme bins were removed if the frequency in
either bin was small (i.e., less than half of the average frequency).
After that, the maximum and minimum values of the remaining
Di were set to [Dl,Du]. Examples are shown in Figure 2E.

Simulation of the Relationship Between Ellipse

Parameter and Camera-to-Plate Distance
The simulation was described in section System Calibration
and Plate Radius Estimation. Simulated lines represent the
relationship between D and 1/a, as shown in Figure 2C. In our
experiment, the range of was chosen from 30 to 165mm with an
increment of 1 mm.

Plate Radius Estimation From the Image Sequence

With Unknown Plate Size
For each human subject at each dining location, we collected data
containing different eating events using plates of different radii.
We call this collection of data “eating episodes” in which each
episode is a particular event in the collected dataset. We took
each plate as the calibration/reference plate sequentially from
the dataset and the radii of the remaining plates were estimated
using the procedure described in section System Calibration and
Plate Radius Estimation. Our experiment resulted in M (M − 1)
estimates of plate radii for each human subject where M is the
number of plates utilized by the subject during the experiment.

Statistical Analysis
To observe the estimation error statistically, we calculated the
percentage error for the estimated plate radius in each eating
episode using different plates for calibration. Then, we calculated
several statistical measures, including the mean Percentage Error
(mPE), mean absolute Percentage Error (maPE), mean relative
Root Mean Square Error (mrRMSE), defined as follows:

Percentage Error (PE) =
Rk,j − Rj

Rj

mean Percentage Error (mPE) =
1

M (M − 1)

∑

k

∑

j 6=k

Rk,j − Rj

Rj

mean absolute Percentage Error (maPE)

=
1

M (M − 1)

∑

k

∑

j 6=k

∣

∣

∣

∣

Rk,j − Rj

Rj

∣

∣

∣

∣

mean relative Root Mean Square Error (mrRMSE)

=

√

√

√

√

1

M (M − 1)

∑

k

∑

j 6=k

(

Rk,j − Rj

Rj

)2
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where Rj is the true radius of the plate in the jth episode, Rk,j
is the estimated radius of plate in the jth eating episode using
the plate in the kth episode as the reference plate for calibration,
and M is the total number of episodes. Note that each error
calculation is represented in the percentage value.

Results
In our experiments, a total of 37 eating episodes (15 for Subject 1,
12 for Subject 2, and 10 for Subject 3) were recorded, and the plate
radius used in each episode was measured as the ground truth.
One episode of Subject 3 was removed from further analysis
because the number of images in this episode was insufficient.
Thus, 36 episodes were analyzed, and 15 different circular plates
with different radii and heights were used in this study. Typical
images are illustrated in Figure 3A, where one image is shown
for each episode. In these eating episodes, the foods consumed
included beef, rice, noodle, dissert, bread, Chinese pancake, pasta,
and different kinds of vegetables. Chopsticks, forks, knifes, and
spoons were used as utensils.

While our results for all subjects are summarized in Figure 3,
specific values of estimated plate radii for Subject 3 are provided
in Table 1 as an example. Total nine tests were conducted for this
subject. In this table, the values in each row (denoted by “Test
#”) represent estimated radii of different plates using the same
reference, while the values in each column (denoted by “Plate
#”) represent estimated radii of the same plate using different
references. The boldfaced values along the diagonal lines are true
radii, which are actually measured values. The calculated mPE,
maPE, mrRMSE using the formula in section Data Analysis for
each subject are listed in Figure 3B. A set of statistical measures
is provided in Figure 3C, including distributions of percentage
errors for all subjects, 25th percentiles of errors, 75th percentiles
of errors, and median errors.

In order to compare the accuracies of our automatic and
the traditional manual methods, we conducted an additional
experiment using a fiducial marker, which was a rectangular
checkerboard of 6 × 7 cm. Ten circular plates with different
radii and heights were utilized in this comparative experiment.
The range of the plate radii was identical to that in the
previous experiment. The checkerboard card was manually
placed next to each plate before taking pictures with an eButton.
Since the thickness of checkerboard was small, its surface can
be considered as the same surface of the table. Due to the
plate height, the plane of table surface estimated from the
checkerboard in the image was different from the plane of the
plate border, causing a small amount of error in plate radius
estimation. For a fair comparison with our method, we assumed
that the plate height was standard, which was the height of the
reference plate, the same as the assumption made in our method.
Under this assumption, each of the ten plates was taken as the
reference plate and the remaining nine plates were estimated.
Thus, total 90 plate radius estimates were obtained. In each
estimate, five images in different viewing distances and angles
were processed, and the five results were averaged. Example
pictures, the data processing algorithm, estimated values and
estimation errors are included in the Supplementary Material.
Finally, the estimation errors were studied using the same

statistical measures (i.e., mPE, maPE, mrRMSE, and boxplot),
as in the previous experiment. The results of this comparative
experiment are summarized in Figures 3B,C. It can be observed
that our automatic method has a larger error than the manual
method using a fiducial marker (10.73% vs. 6.68% in terms of
the mean absolute percentage error). This is not surprising since
the fiducial marker provides a scale reference directly in the
image. Although a larger error is involved, the new method has
a distinctive advantage of eliminating the manual procedure and
automatically generating the scale reference.

DISCUSSIONS

In this work, we develop a new method to eliminate the
requirement for a fiducial marker in egocentric image based
dietary assessment. We take advantage of the fixed environment
at the dining location to model the eating behavior of an
individual. Our study yields a new method to estimate the dining
plate radius automatically. If there is only one plate of food in
the image, the plate radius (or diameter) is sufficient to serve
as the scale reference. In cases where the captured image shows
multiple foods on the table, we need to go only one step further.
Using this radius and the orientation information obtained from
the observed elliptic shape of the plate, a plane equation for the
tabletop can be determined which serves as the desired scale
reference. This plane equation is easy to obtain because the ellipse
in the image provides the orientation (or the norm vector) of
the plate, the circle of the plate is in or close to the plane of the
tabletop, and the radius provides the scale in a real-world unit
(e.g., mm). Analogous to a map where the sizes of all regions
in the map can be estimated using the scale bar, the sizes or
volumes of any foods (within containers of any forms or shapes
or even without containers) or beverages on the table can be
estimated using the scale reference. Compared with the existing
methods using additional sensors and laser emitters, our method
requires no added cost. A simple, once-for-all calibration is the
only requirement to implement our method.

Our method is built upon a number of assumptions: (1) it is
applicable only to each individual, (2) the heights of the dining
table and chair at the dining location are invariant, (3) the device-
wearing position on the body is fixed, and (4) the range of
body rotation during normal eating is invariant. Clearly, these
are strong assumptions which may not be met exactly in a real-
world setting. However, making such assumptions is a key step to
simplify the complex six-variable relationship (Equation 1) into
a single-variable linear equation (Equation 4). Our experimental
results have indicated that, even if the assumptions are not met
completely, the mean absolute percentage error of plate radius
estimation is <11%. Nevertheless, attention should be paid to
the validity of the data as we did in data analysis. It is strongly
recommended to exclude the images with a considerable portion
of the plate shifted out of the image frame. These cases can be
easily identified from the image data.

In our method, estimating the range of the distance from
the calibrated image sequence is an important step. However,
due to the limited data points in an image sequence (e.g., the
eButton acquires one image in every 4–6 s, preset by the user), the
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FIGURE 3 | (A) Illustrations of one typical image for each episode; (B) Calculated mPE, maPE, and mrRMSE for each subject and the fiducial marker method; (C)

Box-plot of percentage errors for each subject with extreme percentage errors, 25th percentiles of errors, median, and 75th percentiles of errors marked for the three

subjects and the fiducial marker method.

estimation of the distance range may not be sufficiently accurate.
Increasing the frame rate of the wearable camera to obtain more
images may improve the estimation.

We would also like to point out two main reasons of using a
circular plate to obtain the scale reference. First, it is a commonly
used utensil in most parts of the world. Second, if the plate is
shallow, its top surface is close and parallel to the table surface.
However, with exception of the disposable paper plate, most
plates have significant heights. In our algorithm, we implicitly
assume that the height of the reference plate is the height of
the unknown plate, and this “standard height” is used as an
offset to be considered in the plane equation for the tabletop.
Nevertheless, this method involves a certain error. In some

cultures, bowls are used more commonly than plates. We point
out that our method can still be used by changing the reference
plate to the reference bowl and use its height as the standard
height, with some tolerance of the height-related error. Finally,
since our method relies only one circular plate to estimate the
scale reference, in our experiments, each image contains only
a single plate. However, our method is applicable to images
containing multiple foods in any forms of containers as long as
one of them is a circular plate (or bowl if the reference is a bowl).

The result of the comparative experiment indicates that the
manual fiducial marker method is more accurate than our
automatic method. This is understandable because the marker
provides a scale reference directly while the automatic method
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TABLE 1 | Comparison of measured (ground truth) and estimated plate radii for Subject 3.

Plate#1 Plate#2 Plate#3 Plate#4 Plate#5 Plate#6 Plate#7 Plate#8 Plate#9

Test#1 130 131 107 120 97 100 133 104 98

Test#2 130 125 103 115 93 96 128 99 95

Test#3 121 117 95 108 88 90 120 93 89

Test#4 148 146 118 127 107 110 147 114 109

Test#5 141 135 111 124 100 103 139 107 102

Test#6 154 153 124 141 113 112 154 121 115

Test#7 139 135 109 123 100 102 130 106 101

Test#8 132 128 105 118 95 98 131 100 97

Test#9 130 126 103 116 94 96 129 100 95

The numbers in each row (Test #) represent estimated radii of different plates using the same reference, while the numbers in each column (Plate #) represent estimated radii of the

same plate using different references. The boldfaced numbers on the diagonal lines are true radii (actually measured values).

does not have such information. However, in the fiducial marker
method, a checkerboard card must be carried by the individual,
placed on the tabletop next to the food before eating, and
retrieved after eating for the next use. These procedures are
unwelcome and can be forgotten easily.

LIMITATIONS AND FUTURE WORK

Our method provides an automatic way to estimate the size of
a circular plate. Therefore, as long as there is a plate on the
table and the assumptions about the fixed eating environment
are satisfied, we will be able to obtain a scale reference for all
items on the table based on a one-time calibration procedure. If
there are bowls, glasses/cups and/or snacks placed on the same
table, in theory, their volumes can be estimated based on the scale
reference that our method provides. However, the estimation is
subject to various constraints, assumptions and, in some cases,
availability of a certain set of knowledge (e.g., the shape of a
bowl or a cup). In addition, the problem of 3D food volume
estimation from a single or a series of 2D images has not yet
been fully solved, and there is a strong demand to develop new
computational methods using advanced technologies, such as
artificial intelligence (AI). Even though this volume estimation
problem is fascinating, its discussion would be lengthy, beyond
the scope of this paper which is focused solely on automatic plate
radius estimation to generate a scale reference. We emphasize
again that this reference is a fundamental requirement regardless
the technologies to be utilized.

Our method is currently limited to the dining scenarios where
a circular plate or bowl is used as a food container. For the
cases where only non-circular plates or bowls are present in the
image, we have not found an effective method to estimate their
parameters without pre-measurements. These types of containers
are still the subjects of further investigation.

CONCLUSION

We have developed a new method to estimate the radius of
a dining plate in a sequence of egocentric images acquired
by a wearable device thus a scale reference can be obtained
automatically. This method is based on mathematical analysis of
the eating behavior of an individual and the invariance of the

eating environment (i.e., the heights of the table and chair are
fixed at each dining location). Unlike the traditional methods
that use a fiducial marker or require measurement of plate radius
for every meal, our method requires only a once-for-all radius
measurement of a single plate. After this calibration step, the
radius of arbitrary plate can be estimated. Due to the elimination
of a fiducial marker, our method greatly reduces the research
burden for research participants, making the dietary assessment
passive and objective.
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Background: Dietary components are known to affect chronic low-grade inflammation

status. The dietary inflammatory index (DII®) was developed to measure the potential

impact of a diet on an individual’s inflammatory status, and it has been validated mainly

in Western countries.

Objective: This study aimed to examine the validity of the energy-adjusted DII

(E-DIITM) using high-sensitivity C-reactive protein (hs-CRP) concentration in Japanese

men and women.

Methods: In total, 6,474 volunteers from a cancer-screening program (3,825 men

and 2,649 women) completed a food frequency questionnaire (FFQ) and their hs-CRP

concentrations were evaluated. E-DII scores were calculated on the basis of 30 food

parameters derived from the FFQ. Higher E-DII scores reflect a greater pro-inflammatory

potential of the diet. The associations between E-DII quartiles and hs-CRP concentration

were assessed using regression models adjusted for age, body mass index, smoking

status, and amount of physical activity.

Results: Mean E-DII in men and women was + 0.62 ± 1.93 and −1.01 ± 2.25,

respectively. The proportion of men andwomenwho had hs-CRP concentration>3mg/L

was 4.7 and 3.1%, respectively. A significant positive association was observed between

E-DII score and hs-CRP concentration in men; geometric mean of hs-CRP concentration

in the lowest and highest E-DII quartiles was 0.56 mg/L and 0.67 mg/L (Ptrend < 0.01),

respectively. The odds ratio (95% confidence interval) of having an elevated hs-CRP

concentration (>3 mg/L) was 1.72 (1.10–2.67) in the highest E-DII quartile (Ptrend = 0.03)

in men. However, no association was observed between E-DII score and hs-CRP

concentration in women, except in those not taking prescription medications.

Conclusions: DII was associated with inflammation status in Japanese men, but the

association was limited in Japanese women.

Keywords: dietary inflammatory index, food frequency questionnaire, inflammatory biomarker, high-sensitivity

C-reactive protein, Japanese
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INTRODUCTION

Low-grade chronic inflammation promotes the development
of lifestyle-related chronic diseases such as cancer (1–3),
cardiovascular disease (4), diabetes (5), and depression (6).
High-sensitivity C-reactive protein (hs-CRP) is a well-known
inflammatory biomarker, and previous studies have reported
that elevated concentrations of hs-CRP are associated with an
increased risk of cancer and the incidence of other chronic
diseases (1–3, 7, 8).

Dietary components are one of the key factors affecting an
individual’s inflammatory status (9). High intake of dietary fiber
has been shown to be associated with low hs-CRP concentrations,
whereas high intake of saturated fatty acids leads to elevation
in hs-CRP concentration (10). In addition, a healthy dietary
pattern, characterized by high intake of fruits, vegetables, and
fish, has been associated with lower hs-CRP concentrations
(11). Mediterranean diet also has been shown to reduce hs-
CRP concentrations in randomized controlled trials (12, 13).
In contrast, Western dietary patterns, characterized by high
intake of red and processed meat, is associated with high hs-
CRP concentrations (11). These reports suggest that dietary
components and dietary patterns may have a contrasting effect
on inflammatory status. Therefore, a comprehensive index is
required to understand the potential impact of whole diet on
inflammatory status.

The Dietary Inflammatory Index (DII R©) is a literature-based
dietary score that was developed to measure the potential impact
of a diet on the inflammatory status of an individual; a high
DII score reflects pro-inflammatory potential of the diet, whereas
a low DII score reflects the anti-inflammatory potential of the
diet (14, 15). To date, 30 validation studies have been performed
between DII and various inflammatory markers, mainly in
Western countries (15–18). In addition, the DII has also been
shown to be associated with an increased risk of many chronic
diseases including cancer (19–21). In Japan, one study reported
that a higher DII score increased the risk of upper aerodigestive
tract cancers (22). Among the 30 construct validations performed
throughout the world, two have been performed in Japan (18, 23),
the results of which are inconsistent with regard to sex-specific
analyses. Dietary habits and inflammatory status are considerably
different between Japanese and Western populations (23–26).
Therefore, it is important to determine the utility of the DII
to quantify the inflammatory potential of diet in Japanese men
and women.

Previously, we conducted a cross-sectional validation study
in a subsample from the Japan Public Health Center-based
prospective (JPHC) study but could not identify a positive
association between the DII and inflammatory status in women
(23). The underlying reasons for the null result could be the small
sample size of the study and the fact that women consume a

Abbreviations: BMI, body mass index; CI, confidence interval; CV, coefficient

of variation; DII, dietary inflammatory index; E-DII, energy-adjusted dietary

inflammatory index; FFQ, food frequency questionnaire; hs-CRP, high-sensitivity

C-reactive protein; MET, metabolic equivalent; OR, odds ratio; SD, standard

deviation.

more anti-inflammatory diet than do men (23). Therefore, the
present study aimed to assess the associations between DII scores
and hs-CRP concentrations in a large number of Japanese men
and women.

METHODS

Study Design and Participants
The National Cancer Center of Japan started a cancer-screening
program in February 2004. The total number of participants in
the present study was 7,919 healthy volunteers (4,664 men and
3,255 women) aged 40–69 years who had participated in the
cancer-screening program from May 2009 to December 2013.
The blood samples of participants were collected during cancer
screening. They also answered self-administered questionnaires
for demographic, lifestyle, and dietary information. This study
was approved by the Institutional Review Board of the National
Cancer Center, Tokyo, Japan (approval number G15-01 and
2016-165). The study aims and protocols were explained to all
participants, and each participant provided written informed
consent before enrolment in the study.

Self-Administered Questionnaire
The self-administered questionnaire was designed to obtain
participants’ demographic, lifestyle, and dietary information,
including information on height and weight at the time of
examination, smoking status, physical activity, and past medical
history of cancer, stroke, and myocardial infarction. Dietary
information was obtained using a validated food frequency
questionnaire (FFQ), which had questions on the consumption
of 188 food and beverage items other than supplements. Energy
and nutrient intakes were calculated by taking the sum of the
products of eating frequency, portion size, and energy and
nutrient content of each food, while referring to the Standard
Tables of Food Composition in Japan, Fifth Revised and Enlarged
Edition (27). A validation study for the energy and nutrient
intake had already been conducted in a subsample of the
examinees of the cancer screening program, wherein FFQ-
derived data were compared with the data derived from four-day
weighed dietary records. The correlation coefficients of energy
intake in men and women were 0.53 and 0.34, respectively, and
the median correlation coefficients of 45 nutrients were 0.57 and
0.47, respectively. More detailed information has been described
elsewhere (28).

Calculation of DII Score
The DII is a literature-based dietary index calculated from 45
nutrients and food components to assess the potential impact of
a diet on the inflammation status; a high score indicates pro-
inflammatory potential of the diet and a low score indicates
anti-inflammatory potential of the diet. The index was developed
by reviewing and scoring 1,943 peer-reviewed publications,
which included cell culture experiments, animal experiments,
and human studies, and examined the associations between
various dietary components and six inflammatory biomarkers
[interleukin (IL)-1β, IL-4, IL-6, IL-10, Tumor Necrosis Factor α,
and CRP] (14). Inflammatory effect scores for each of the DII
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components were determined by considering the direction of
the effect on inflammation, weight of study design, and number
of publications. The inflammatory effect scores are available
from the publication (14). To calculate an individual’s DII score,
dietary intake of the DII components was standardized as a
Z-score using global daily mean intake and converted into
proportion scores in the study population. The global daily mean
intake was calculated from a national database of dietary intake in
eleven countries including Japan (14). Then, the individual’s DII
score was calculated as the sum of the products of the centered
proportion score and the inflammatory effect score for each of
the DII components.

In the present study, we computed the energy-adjusted DII
(E-DIITM) using the energy-adjusted intake of the following
30 DII components (out of 45 possible components) (23):
protein, total fat, saturated fatty acid, monounsaturated fatty
acid, polyunsaturated fatty acid, n-3 fatty acid, n-6 fatty
acid, cholesterol, carbohydrate, magnesium, iron, zinc, retinol
equivalent, beta-carotene, vitamin D, alpha-tocopherol, vitamin
B1, vitamin B2, niacin, vitamin B6, vitamin B12, folate, vitamin C,
total dietary fiber, isoflavone, ethanol, onion, green or black tea,
and caffeine. Some of the components (such as thyme or oregano
and rosemary) are not commonly consumed by the Japanese (23).
Energy adjustment was done using the density method, and the
amount per 1,000 kcal was used for E-DII calculation.

Blood Sampling and Measurement of
Inflammatory Biomarkers
Fasting blood samples were collected along with the self-
administered questionnaire data before any cancer screening
procedures on the first day of screening. Venous blood was drawn
into a vacutainer tube without anticoagulant, and the samples
were centrifuged to obtain serum.

Serum hs-CRP concentrations were measured using a
commercial reagent kit (Nanopia CRP, Sekisui Medical Co., Ltd.,
Tokyo, Japan) with an automated analyzer JCA-BM6070 (Jeol
Ltd., Tokyo, Japan) at National Cancer Center, Tokyo, Japan. The
intra-assay coefficient of variation was 1.8% for 1 mg/L, 1.3% for
2 mg/L, and 0.7% for 82 mg/L of CRP concentration (n = 20
each) according to the manufacturer’s data (29). The detection
range of the kit was 0.2 mg/L−420 mg/L. In case the values were
lower than the lower limit of quantification, we assigned a value
of 0.1 mg/L.

Statistical Analysis
Among the 7,919 participants, 1,445 were excluded on the basis of
following criteria: BMI< 14 or >40 kg/m2 (n= 13); missing data
on smoking status (n= 1); missing data on metabolic equivalents
(n = 1); participants with a history of any cancer, stroke, and
myocardial infarction (n= 877); extreme energy intake identified
in the upper and lower 2.5%-tile (n = 349); missing data on
alcohol consumption (n = 120); and missing data on hs-CRP or
hs-CRP concentration >10 mg/L (n = 84). Therefore, data from
6,474 participants (3,825 men and 2,649 women) were included
in the statistical analysis. Cohen’s effect size f 2 and noncentral F
distribution F(dfReg , dfRes, λ) were used to calculate sample size

n for multiple regression analysis; where f 2 =
R2

1−R2
, R2 is the

coefficient of determination, dfReg is the degree of freedom for
regression (= k), dfRes is the degree of freedom for residual (= n
– k – 1), and the noncentral parameter λ is λ = f 2n (30). When
we set the effect size= 0.01, k= 12, power= 0.8, and significance
level= 0.05, the sample size n was calculated to be 1,745.

Participants’ characteristics were summarized using
percentages for categorical variables; mean and standard
deviation (SD), as well as median and interquartile range for
continuous variables; and geometric mean and coefficient of
variation (CV) for log-transformed hs-CRP. The CV was also
calculated with the log-transformed value using the formula: CV
= (eSD−1)1/2 (31). Comparison of characteristics between men
and women was done using the chi-square test for categorical
variables. The Mann–Whitney U test was used for all continuous
variables, as the Kolmogorov–Smirnov test revealed non-normal
distribution of all variables except men’s height.

Multiple regression analyses were performed for the
associations between the E-DII score and food group intake.
Associations between the E-DII scores and hs-CRP concentration
were evaluated using multivariable linear regression models.
Linear trends across E-DII quartiles were calculated using
natural log-transformed hs-CRP concentration as a dependent
variable. To interpret a partial regression coefficient estimated
using this model, e (Euler’s number) should be exponentiated
with that coefficient. The models were adjusted for age (years;
continuous), BMI (kg/m2; continuous), smoking status (current,
past, and never), regular prescription medicine use (yes or no),
and daily total physical activity level (MET-h/d; continuous).
Sensitivity analyses were performed stratified by age, BMI, and
regular prescription medicine use. In addition, logistic regression
models were applied to estimate the odds ratio (OR) of having
elevated hs-CRP concentration (>3 mg/L) across quartiles of
E-DII score because this is a clinically relevant cut-off point for
chronic inflammation status (32). All statistical analyses were
performed using Statistical Analysis Systems software, version
9.3 (SAS Institute Inc., Cary, NC, USA), and the significance
level was set at p < 0.05.

RESULTS

Characteristics of the Participants
Table 1 shows the characteristics of the participants stratified by
sex. BMI and the proportion of smokers and regular prescription
medicine users were significantly higher in men than in women.
The amount of physical activity was significantly higher in
women than in men. The E-DII score was significantly higher in
men (+0.62 ± 1.93) than in women (−1.01 ± 2.25) (p < 0.001).
Hs-CRP concentrations also were significantly higher in men
than in women; mean (CV) was 0.58 mg/L (1.21) and 0.44 mg/L
(1.24), respectively (p < 0.001). The proportion of participants
who had hs-CRP concentration >3 mg/L was also significantly
higher in men than in women (4.7 and 3.1%, respectively; p <

0.001). The comparisons between the prescription medication
non-users and users are shown in Supplementary Table 1. In
both sexes, users were older and had higher BMI, lower DII, and
higher hs-CRP concentrations than non-users did.
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TABLE 1 | Characteristics of the volunteers of the cancer-screening program from May 2009 to December 2013 at National Cancer Center Japan.

Men Women

(n = 3825) (n = 2649) p-value

Mean (SD) Median (interquartile range) Mean (SD) Median (interquartile range)

Age (years) 56.7 ± 8.3 58 (50, 64) 56.5 ± 8.2 58 (50, 64) 0.45

Height (cm) 169.5 ± 5.9 169.6 (165.5, 173.4) 156.4 ± 5.5 156.4 (152.5, 160.0) <0.001

Weight (kg) 68.6 ± 9.5 67.6 (62.2, 74.2) 53.7 ± 8.1 52.7 (48.5, 57.8) <0.001

BMI (kg/m2 ) 23.9 ± 2.9 23.7 (21.9, 25.5) 21.9 ± 3.1 21.5 (19.9, 23.5) <0.001

Smoking status (%)

Current 15.4 5.5 <0.001

Former 52.1 15.2

Never 32.4 79.3

Regular prescription medicine user (%) 48.1 44.7 0.008

Physical activity (MET-h/d) 36.6 ± 3.2 35.9 (34.6, 37.6) 38.0 ± 3.7 37.1 (35.6, 39.3) <0.001

E-DII (/1000 kcal)a 0.62 ± 1.93 0.88 (−0.62, 2.07) −1.01 ± 2.25 −1.00 (−2.71, 0.63) <0.001

Crude hs-CRP (mg/L) 0.91 ± 1.14 0.5 (0.3, 1.0) 0.72 ± 1.04 0.4 (0.2, 0.8) <0.001

hs-CRP (mg/L)b 0.58 ± 1.21 — 0.44 ± 1.24 — <0.001

>3 mg/L of hs-CRP (%) 4.7 3.1 <0.001

Chi-square test and Mann–Whitney U test are used for statistical analyses.
aE-DII is calculated from dietary intake converted per 1000 kcal.
bGeometric mean and coefficient of variation were presented for log-transformed inflammatory biomarkers. Coefficient of variation is calculated using the formula: CV = (eSD−1)1/2.

BMI, body mass index; E-DII, energy-adjusted dietary inflammatory index; hs-CRP, high-sensitive C-reactive protein; MET, metabolic equivalent.

Associations Between Food Group Intake
and E-DII Score
Table 2 shows the results of multiple regression analyses between
E-DII score and food group intake, stratified by sex. The findings
suggest that a higher E-DII score was associated with a higher
intake of sugar, meat, and confectioneries in men, while a
higher E-DII score was associated only with higher sugar intake
in women.

Association Between E-DII Score and
hs-CRP Concentration
Table 3 shows the mean of E-DII score and the geometric
mean of hs-CRP concentration according to the E-DII quartiles.
The mean E-DII score increased from −2.04 to 2.85, and
the geometric mean of hs-CRP concentration increased from
0.56 mg/L to 0.67 mg/L in men, according to the E-DII
quartiles. For women, the mean E-DII score increased from
−3.93 to 1.88, but the geometric mean of hs-CRP concentration
remained unchanged across E-DII quartiles. A significant
positive association was observed between E-DII quartiles and
hs-CRP concentration in men (partial regression coefficient =
0.064, Ptrend < 0.01) but not in women (partial regression
coefficient = 0.012, Ptrend = 0.44). This means that for every
increase in E-DII quartiles in men, there was a 6.6% (e0.064 =

1.066) increase in the geometric mean concentration of hs-CRP.
In the sensitivity analysis stratified by age, although a positive

association was not observed in participants aged 40–49 years
(Ptrend = 0.31), significant positive associations were observed in
those aged 50–59 years (Ptrend = 0.01) and 60–69 years (Ptrend <

0.01) in men. Upon stratification by BMI, positive associations

were consistently observed in underweight (14 kg/m2
≤ BMI

< 18.5 kg/m2, Ptrend = 0.01), lower normal-weight (18.5 kg/m2

≤ BMI < 22 kg/m2, Ptrend = 0.01), higher normal-weight (22
kg/m2

≤ BMI <25 kg/m2, Ptrend < 0.01), and overweight and
obese (25 kg/m2

≤ BMI < 40 kg/m2, Ptrend = 0.08) men. Even
when stratified by medication status, a significant association was
observed in men (non-users, Ptrend < 0.01; users, Ptrend < 0.01).
In contrast, no significant associations were observed between
E-DII quartiles and hs-CRP concentration, stratified by age and
BMI, in women. Similarly, when stratified bymedication status in
women, no association was observed in users; however, there was
a significant positive association for women non-prescription-
drug users (non-users, Ptrend = 0.034; users, Ptrend = 0.267, see
the Supplementary Table 2).

Table 4 shows the association between E-DII quartiles and
higher hs-CRP (>3 mg/L) concentration. Men in the highest
quartile of E-DII had 72% higher odds of having CRP >3 mg/L
than men in the lowest quartile of E-DII did [OR: 1.72, 95%
confidence interval (CI): 1.10–2.67, Ptrend = 0.03]. In contrast,
no significant association was observed among women (OR for
the highest vs. lowest: 0.92, 95% CI: 0.47–1.82, Ptrend = 0.96).

DISCUSSION

The DII was developed to evaluate the inflammatory potential
of people’s diets. The present study was conducted to validate
the E-DII with a hs-CRP concentration in a large number of
Japanese participants. The findings of our study suggest that there
are significant positive associations in all men and only in women
who are prescription drug non-users.
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TABLE 2 | Standardized beta coefficient with 95% confidence interval between E-DII score and food groups’ intake by multiple regression analyses in Japanese men and

women aged 40–69 years.

Men Women

Standardized beta coefficienta (95% CI) Standardized beta coefficienta (95% CI)

Cereals (g/day) −0.056 (−0.076, −0.036) −0.112 (−0.144, −0.079)

Potatoes and starch (g/day) −0.075 (−0.091, −0.058) −0.137 (−0.154, −0.119)

Sugar and sweetener (g/day) 0.023 (0.011, 0.035) 0.042 (0.023, 0.061)

Pulses (g/day) −0.240 (−0.255, −0.224) −0.227 (−0.243, −0.210)

Nuts and seeds (g/day) −0.079 (−0.092, −0.065) −0.091 (−0.108, −0.074)

Vegetables (g/day) −0.386 (−0.404, −0.369) −0.394 (−0.414, −0.373)

Fruits (g/day) −0.194 (−0.210, −0.179) −0.220 (−0.239, −0.202)

Mushroom (g/day) −0.110 (−0.131, −0.090) −0.060 (−0.076, −0.044)

Algae (g/day) −0.079 (−0.095, −0.063) −0.089 (−0.106, −0.071)

Fish and Shellfish (g/day) −0.241 (−0.254, −0.227) −0.291 (−0.310, −0.273)

Meat (g/day) 0.020 (0.004, 0.035) −0.003 (−0.027, 0.021)

Egg (g/day) −0.030 (−0.043, −0.017) −0.042 (−0.059, −0.025)

Milk (g/day) −0.042 (−0.058, −0.025) −0.050 (−0.073, −0.027)

Fats and oil (g/day) −0.087 (−0.104, −0.070) −0.055 (−0.075, −0.034)

Confectioneries (g/day) 0.028 (0.011,0.045) −0.009 (−0.028, 0.010)

Alcoholic beverages (g/day) −0.085 (−0.102, −0.068) −0.100 (−0.134, −0.067)

Non-alcoholic beverages (g/day) −0.181 (−0.194, −0.167) −0.188 (−0.205, −0.172)

Seasoning (g/day) −0.087 (−0.100, −0.075) −0.103 (−0.122, −0.084)

Food groups’ intake adjusted by energy intake using the residual method.
aMultiple regression analysis is performed with energy-adjusted dietary inflammatory index value (continuous) as the dependent variable and energy-adjusted food groups’ intake as

the independent variable.

CI, confidence interval.

TABLE 3 | Adjusted geometric mean and 95% confidence interval of high-sensitivity C-reactive protein (hs-CRP) concentration in serum (mg/L) according to quartile of

energy-adjusted dietary inflammatory index (E-DII)a.

n E-DII hs-CRP Partial regression coefficient Ptrend

Mean ± SD GM (95% CI)b,c

Men

Q1 956 −2.04 ± 1.17 0.56 (0.53, 0.59) 0.064 <0.01

Q2 956 0.20 ± 0.42 0.57 (0.54, 0.60)

Q3 956 1.46 ± 0.34 0.62 (0.59, 0.66)

Q4 957 2.85 ±0.57 0.67 (0.63, 0.71)

Women

Q1 662 −3.93 ± 0.83 0.46 (0.43, 0.50) 0.012 0.44

Q2 662 −1.83 ± 0.48 0.45 (0.41, 0.48)

Q3 662 −0.16 ± 0.46 0.48 (0.44, 0.51)

Q4 663 1.88 ± 0.93 0.47 (0.44, 0.51)

aE-DII is calculated from dietary intake converted per 1000 kcal.
bThe quartile values of E-DII were entered as independent variables, and hs-CRP values were entered as dependent variables. Adjusted for age, body mass index (BMI), physical activity

(MET-h/d), smoking status, and regular prescription medicine use.
cGeometric mean is calculated by back transforming the arithmetic mean of the log-transformed values.

CI, confidence interval; GM, geometric mean; Q, quartile; SD, standard deviation.

The positive association in Japanese men observed in the
present study is consistent with the results of previous studies
from Western countries (15–17) and Japan (18, 23). The dietary
habits of the Japanese are different from those of the Western

people, and the CRP concentrations of the Japanese (0.6 mg/L
in the men of the present study) are considerably lower than
those of Westerners [typically, they are approximately 2–3 mg/L
(15, 17)]. Therefore, the positive association observed in Japanese
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TABLE 4 | Adjusted odds ratios and 95% confidence interval for the association between energy-adjusted dietary inflammatory index (E-DII) quartilea and >3 mg/L of

high-sensitivity C-reactive protein (hs-CRP).

Men Women

n (%) OR (95% CI)b Ptrend n (%) OR (95% CI)b Ptrend

Q1 38 (4.0) 1 0.03 22 (3.3) 1 0.96

Q2 45 (4.7) 1.21 (0.78, 1.89) 17 (2.6) 0.74 (0.38, 1.43)

Q3 40 (4.2) 1.15 (0.72, 1.83) 21 (3.2) 0.94 (0.50, 1.78)

Q4 57 (6.0) 1.72 (1.10, 2.67) 21 (3.2) 0.92 (0.47, 1.82)

aE-DII is calculated from dietary intake converted per 1,000 kcal.
bAdjusted for age, body mass index (BMI), physical activity (MET-h/d), smoking status, regular prescription medicine use.

Number of participants who had higher hs-CRP values (>3 mg/L) is expressed as n (%).

CI, confidence interval; CRP, C-reactive protein; E-DII, energy-adjusted dietary inflammatory index; OR, odds ratio; Q, quartile.

men in the present study suggests that DII may apply to a diverse
male population with considerably different dietary habits and a
different range of inflammatory status.

As in previous studies, inconsistent results were observed
between Japanese men and women in the present study. We
could not detect any associations between E-DII scores and
hs-CRP concentrations across women in this study. However,
we did observe a positive association when we restricted the
analyses to non-users of prescription medicine. The mean hs-
CRP concentration was significantly lower in women than in
men. In addition, the proportion of participants with hs-CRP
concentration >3.0 mg/L was significantly lower in women than
in men. Therefore, owing to the low concentration of hs-CRP
in Japanese women in this study, detection of the association
between E-DII score and hs-CRP concentration may be difficult.
This may have also been responsible for the limited positive
association between DII and hs-CRP concentration in non-
users of prescription drugs among women. In this study, we
excluded from the analysis subjects with a history of cancer,
stroke, or myocardial infarction, which could be confounding.
However, approximately half of the subjects were regular users
of some prescription medication. It has been reported that hs-
CRP concentrations are higher in hypertension patients than
in healthy subjects (33) and that hs-CRP concentrations are
higher in diabetes patients with high HbA1c concentrations (34).
Considering these previous studies, hs-CRP concentrations may
be high in populations with some disease taking prescribed
medication. In fact, in the current study, prescription drug users
of both sexes had higher hs-CRP concentrations than non-users
did. The difference in the percentage of people with high hs-
CRP concentration was particularly apparent in women (see
Supplementary Table 1). Therefore, we suggest that in women,
the association between DII and hs-CRP concentration may have
been more clearly demonstrated in non-drug users only. Of
note, studies in populations with low hs-CRP concentrations are
limited; therefore, further studies are needed to determine the
utility of DII in populations with low CRP concentrations, such
as Japanese women.

Another underlying reason for the null finding among
Japanese women may be the differences in dietary habits between
men and women. The women’s diets had significantly lower

inflammatory potential, indicated by the negative value of mean
E-DII score, than those of men, who showed a positive value of
mean E-DII score. This is in line with the results of our previous
study, wherein the E-DII scores of women were much lower than
those of men, and no associations were observed in women in
that study either (23). Further, similar results have been reported
in a previous study conducted in postmenopausal women from
USA, wherein mean E-DII score was a negative value (−0.62
± 2.69), and a null association was observed between E-DII
score and hs-CRP concentration despite having comparatively
higher hs-CRP concentration (mean 1.36 mg/L) (35). Taking into
consideration the aforementioned reports, it is possible that if the
target population eats a predominantly anti-inflammatory diet,
the association betweenDII score and hs-CRP concentrationmay
be difficult to detect.

The dietary patterns that constitute E-DII may vary among
populations. Among men with an association between E-DII
and inflammatory markers in this study, the food groups
positively associated with E-DII were meat and confectioneries.
Similarly, in NIPPON DATA, wherein the association with
inflammatory markers was confirmed, meat and confectioneries,
as well as cereals and fats, were positively associated with E-DII
(18). Contrastingly, in the male population of the JPHC-FFQ
validation study, meat and confectioneries were not associated
with E-DII. The higher the E-DII, the lower the intake of
potatoes, legumes, vegetables, and seaweed (23). The study period
of the current study (2009–2013) is similar to that of the NIPPON
DATA2010 study (18), but it differs from that of the JPHC-
FFQ validation study (1990–1993) (23). Thus, the differences in
the dietary habits due to cohort effects may contribute to the
differences in the dietary patterns involved in E-DII. Further
studies in various populations are needed to determine the types
of dietary patterns involved.

This study has several limitations. First, the participants of the
present study were individuals who had voluntarily undergone
cancer screening. These participants, especially women, may be
particularly health conscious as indicated by their smoking rate,
which was considerably lower than that observed in the National
Health and Nutrition Survey in Japan: approximately 15% men
and 5% women in the current study compared with 30% men
and 10% women in the national survey (36). This selection bias
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might have contributed to the null association between E-DII
score and hs-CRP concentration, observed in women. Second,
because this is a cross-sectional study, we could not account for
the temporality requirement for assessing causality. Despite these
limitations, the present study is a relatively large-scale study, and
the results indicated gender differences in E-DII validity and
reaffirmed validity in Japanese men. Thus, this justifies the use
of E-DII in Japanese men.

To conclude, we conducted a validation study of E-DII
using hs-CRP concentration in Japanese men and women and
observed a positive association between E-DII scores and hs-
CRP concentration in Japanese men, even after adjusting for
age, BMI, smoking status, regular prescription medicine use, and
physical activity. This indicates the utility of the E-DII in Japanese
men who have different dietary habits and considerably lower-
grade inflammation status than those of the Western population.
However, we could not detect any association between E-DII
scores and hs-CRP concentration in Japanese women, except for
prescription medication non-users. Therefore, further studies are
needed to clarify the utility of the E-DII in Japanese women.

DATA AVAILABILITY STATEMENT

We cannot publicly provide individual data due to participant
privacy, according to ethical guidelines in Japan. Additionally, the
informed consent we obtained does not include a provision for
publicly sharing data. Qualifying researchers may apply to access
a minimal dataset by contacting Dr. Shoichiro Tsugane, Principal
Investigator, Epidemiology and Prevention group, Center for
Public Health Sciences, National Cancer Center, Tokyo, Japan,
at stsugane@ncc.go.jp. Or, please contact the Office of the
Research Center for Cancer Prevention and Screening Program
at tyamaji@ncc.go.jp.

ETHICS STATEMENT

This study was approved by the Institutional Review Board of the
National Cancer Center, Tokyo, Japan (approval number G15-01

and 2016-165). The study aims and protocols were explained to
all participants, and each participant provided written informed
consent before enrolment in the study.

AUTHOR CONTRIBUTIONS

AK, NSa, MIw, JI, and MIn designed the study. ST, JI, NSa,
MIw, and MIn arranged the field survey. AK, NSa, MIw, and
TY contributed to the blood analysis. NSh and JH conducted
DII calculation and provided critical input to the manuscript.
AK performed statistical analysis, interpreted the results, and
drafted the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by the Ministry of Health, Labour and
Welfare of Japan (Grant-in-Aid for the 3rd Term Comprehensive
10-Year-Strategy for Cancer Control), the National Cancer
Center Research and Development Fund (23-A-1, 26-A-1,
29-A-1), Practical Research for Innovative Cancer Control
from Japan Agency for Medical Research and Development
(AMED; No. JP19ck0106266h003), and JSPS KAKENHI (Grant
Number: 20K15488).

ACKNOWLEDGMENTS

We are grateful to all the participants of the study and to the
doctors, nurses, and administrative staff at the Research Center
for Cancer Prevention and Screening who were involved in
the study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnut.2021.
604296/full#supplementary-material

REFERENCES

1. Guo YZ, Pan L, Du CJ, Ren DQ, Xie XM. Association between C-reactive

protein and risk of cancer: a meta-analysis of prospective cohort studies.Asian

Pac J Cancer Prev. (2013) 14:243–8. doi: 10.7314/APJCP.2013.14.1.243

2. Sasazuki S, Inoue M, Sawada N, Iwasaki M, Shimazu T, Yamaji T, et

al. Plasma levels of C-reactive protein and serum amyloid a and gastric

cancer in a nested case-control study: Japan public health center-based

prospective study. Carcinogenesis. (2010) 31:712–8. doi: 10.1093/carcin/

bgq010

3. Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S. Japan public health

center-based prospective study group. Plasma C-reactive protein and risk

of colorectal cancer in a nested case-control study: Japan public health

center-based prospective study. Cancer Epidemiol Biom Prev. (2006) 15:690–

5. doi: 10.1158/1055-9965.EPI-05-0708

4. Sarwar N, Thompson AJ, Di Angelantonio E. Markers of

inflammation and risk of coronary heart disease. Dis Markers. (2009)

26:217–25. doi: 10.1155/2009/851962

5. Black PH. The inflammatory response is an integral part of the stress

response: implications for atherosclerosis, insulin resistance, type II

diabetes and metabolic syndrome X. Brain Behav Immun. (2003) 17:350–

64. doi: 10.1016/S0889-1591(03)00048-5

6. Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans

the flames and feasts on the heat. Am J Psychiatry. (2015) 172:1075–

91. doi: 10.1176/appi.ajp.2015.15020152

7. Calabro P, Golia E, Yeh ET. CRP and the risk of atherosclerotic events. Semin

Immunopathol. (2009) 31:79–94. doi: 10.1007/s00281-009-0149-4

8. Mora S, Musunuru K, Blumenthal RS. The clinical utility of high-sensitivity

C-reactive protein in cardiovascular disease and the potential implication

of JUPITER on current practice guidelines. Clin Chem. (2009) 55:219–

28. doi: 10.1373/clinchem.2008.109728

9. Smidowicz A, Regula J. Effect of nutritional status and dietary patterns on

human serum C-reactive protein and interleukin-6 concentrations. Adv Nutr.

(2015) 6:738–47. doi: 10.3945/an.115.009415

10. King DE, Egan BM, Geesey ME. Relation of dietary fat and fiber

to elevation of C-reactive protein. Am J Cardiol. (2003) 92:1335–

9. doi: 10.1016/j.amjcard.2003.08.020

11. Wood AD, Strachan AA, Thies F, Aucott LS, Reid DM, Hardcastle AC,

et al. Patterns of dietary intake and serum carotenoid and tocopherol

status are associated with biomarkers of chronic low-grade systemic

Frontiers in Nutrition | www.frontiersin.org 7 April 2021 | Volume 8 | Article 604296137

mailto:stsugane@ncc.go.jp
mailto:tyamaji@ncc.go.jp
https://www.frontiersin.org/articles/10.3389/fnut.2021.604296/full#supplementary-material
https://doi.org/10.7314/APJCP.2013.14.1.243
https://doi.org/10.1093/carcin/bgq010
https://doi.org/10.1158/1055-9965.EPI-05-0708
https://doi.org/10.1155/2009/851962
https://doi.org/10.1016/S0889-1591(03)00048-5
https://doi.org/10.1176/appi.ajp.2015.15020152
https://doi.org/10.1007/s00281-009-0149-4
https://doi.org/10.1373/clinchem.2008.109728
https://doi.org/10.3945/an.115.009415
https://doi.org/10.1016/j.amjcard.2003.08.020
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Kotemori et al. DII Is Associated With Inflammation

inflammation and cardiovascular risk. Br J Nutr. (2014) 112:1341–

52. doi: 10.1017/S0007114514001962

12. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al.

Effect of a mediterranean-style diet on endothelial dysfunction andmarkers of

vascular inflammation in the metabolic syndrome: a randomized trial. JAMA.

(2004) 292:1440–6. doi: 10.1001/jama.292.12.1440

13. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C.

Adherence to the mediterranean diet attenuates inflammation and

coagulation process in healthy adults: the ATTICA study. J Am Coll

Cardiol. (2004) 44:152–8. doi: 10.1016/j.jacc.2004.03.039

14. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR.

Designing and developing a literature-derived, population-

based dietary inflammatory index. Public Health Nutr. (2014)

17:1689–96. doi: 10.1017/S1368980013002115

15. Shivappa N, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, et al. A

population-based dietary inflammatory index predicts levels of C-reactive

protein in the seasonal variation of blood cholesterol study (SEASONS). Public

Health Nutr. (2014) 17:1825–33. doi: 10.1017/S1368980013002565

16. Shivappa N, Wirth MD, Hurley TG, Hebert JR. Association between the

dietary inflammatory index (DII) and telomere length and C-reactive protein

from the national health and nutrition examination survey-1999-2002. Mol

Nutr Food Res. (2017) 61:1–7. doi: 10.1002/mnfr.201600630

17. Shivappa N, Bonaccio M, Hebert JR, Di Castelnuovo A, Costanzo S,

Ruggiero E, et al. Association of proinflammatory diet with low-grade

inflammation: results from the moli-sani study. Nutrition. (2018) 54:182–

8. doi: 10.1016/j.nut.2018.04.004

18. Yang Y, Hozawa A, Kogure M, Narita A, Hirata T, Nakamura T, et al.

Dietary inflammatory index positively associated with high-sensitivity C-

reactive protein level in Japanese from NIPPON DATA2010. J Epidemiol.

(2020) 30:98–107. doi: 10.2188/jea.JE20180156

19. Shivappa N, Godos J, Hebert JR,WirthMD, Piuri G, Speciani AF, et al. Dietary

inflammatory index and colorectal cancer risk—a meta-analysis. Nutrients.

(2017) 9:1–17. doi: 10.3390/nu9091043

20. Fowler ME, Akinyemiju TF. Meta-analysis of the association between

dietary inflammatory index (DII) and cancer outcomes. Int J Cancer. (2017)

141:2215–27. doi: 10.1002/ijc.30922

21. Phillips CM, Chen LW, Heude B, Bernard JY, Harvey NC, Duijts L, et al.

Dietary inflammatory index and non-communicable disease risk: a narrative

review. Nutrients. (2019) 11:1–32. doi: 10.3390/nu11081873

22. AbeM, Shivappa N, Ito H, Oze I, Abe T, Shimizu Y, et al. Dietary inflammatory

index and risk of upper aerodigestive tract cancer in Japanese adults.

Oncotarget. (2018) 9:24028–40. doi: 10.18632/oncotarget.25288

23. Kotemori A, Sawada N, Iwasaki M, Yamaji T, Shivappa N, Hebert JR, et al.

Validating the dietary inflammatory index using inflammatory biomarkers in

a Japanese population: a cross-sectional study of the JPHC-FFQ validation

study. Nutrition. (2020) 69:110569. doi: 10.1016/j.nut.2019.110569

24. Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the

Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. (2014)

136–137:148–62. doi: 10.1016/j.mad.2014.01.002

25. Oda E, Kawai R. Tentative cut point of high-sensitivity C-reactive protein

for a component of metabolic syndrome in Japanese. Circ J. (2009) 73:755–

9. doi: 10.1253/circj.CJ-08-0848

26. Kubota Y, Moriyama Y, Yamagishi K, Tanigawa T, Noda H, Yokota

K, et al. Serum vitamin C concentration and hs-CRP level in

middle-aged Japanese men and women. Atherosclerosis. (2010)

208:496–500. doi: 10.1016/j.atherosclerosis.2009.07.052

27. Standard Tables of Food Composition in Japan; Fifth Revised and Enlarged

Edition. Tokyo: Ministry of Education, Culture, Sports, Science and

Technology (2005).

28. Takachi R, Ishihara J, Iwasaki M, Hosoi S, Ishii Y, Sasazuki S, et al. Validity of a

self-administered food frequency questionnaire for middle-aged urban cancer

screenees: comparison with 4-day weighed dietary records. J Epidemiol. (2011)

21:447–58. doi: 10.2188/jea.JE20100173

29. Reference Data for C-Reactive Protein Kit; Nanopia CRP. Available online

at: https://www.sekisuimedical.jp/english/business/diagnostics/biochemistry/

crp/data.html (accessed April 14, 2020).

30. Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY:

Lawrence Erlbaum Associates (1988).

31. Quan H, Zhang J. Estimate of standard deviation for a log-transformed

variable using arithmetic means and standard deviations. Stat Med. (2003)

22:2723–36. doi: 10.1002/sim.1525

32. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO

3rd, Criqui M, et al. Markers of inflammation and cardiovascular

disease: application to clinical and public health practice: a

statement for healthcare professionals from the centers for disease

control and prevention and the american heart association.

Circulation. (2003) 107:499–511. doi: 10.1161/01.CIR.0000052939.

59093.45

33. Chrysohoou C, Pitsavos C, Panagiotakos DB, Skoumas J, Stefanadis

C. Association between prehypertension status and inflammatory

markers related to atherosclerotic disease: the ATTICA study.

Am J Hypertens. (2004) 17:568–73. doi: 10.1016/j.amjhyper.2004.

03.675

34. Seo YH, Shin HY. Relationship between hs-CRP and HbA1c

in diabetes mellitus patients: 2015-2017 korean national health

and nutrition examination survey. Chonnam Med J. (2021)

57:62–7. doi: 10.4068/cmj.2021.57.1.62

35. Tabung FK, Steck SE, Zhang J, Ma Y, Liese AD, Agalliu I, et al. Construct

validation of the dietary inflammatory index among postmenopausal women.

Ann Epidemiol. (2015) 25:398–405. doi: 10.1016/j.annepidem.2015.03.009

36. National Health and Nutrition Survey in 2013. Ministry of Health, Labour, and

Welfare, Japan. Available online at: https://www.mhlw.go.jp/bunya/kenkou/

eiyou/dl/h25-houkoku-06.pdf (accessed August 31, 2020).

Conflict of Interest: JH owns a controlling interest in Connecting Health

Innovations LLC (CHI), a company planning to license the right to his invention

of the dietary inflammatory index (DII), from the University of South Carolina,

to develop computer and smartphone applications for patient counseling and

dietary intervention in the clinical setting. NSh is an employee of CHI. The subject

matter of this paper will have no direct bearing on the work of CHI, nor has any

CHI-related activity exerted any influence on this project. MI was the beneficiary

of a financial contribution from the AXA Research Fund as a chair holder of the

AXA Department of Health and Human Security at The University of Tokyo.

The AXA Research Fund had no role in the design, data collection, analysis,

interpretation, manuscript drafting, or in the decision to submit the manuscript

for publication.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Kotemori, Sawada, Iwasaki, Yamaji, Shivappa, Hebert, Ishihara,

Inoue and Tsugane. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Nutrition | www.frontiersin.org 8 April 2021 | Volume 8 | Article 604296138

https://doi.org/10.1017/S0007114514001962
https://doi.org/10.1001/jama.292.12.1440
https://doi.org/10.1016/j.jacc.2004.03.039
https://doi.org/10.1017/S1368980013002115
https://doi.org/10.1017/S1368980013002565
https://doi.org/10.1002/mnfr.201600630
https://doi.org/10.1016/j.nut.2018.04.004
https://doi.org/10.2188/jea.JE20180156
https://doi.org/10.3390/nu9091043
https://doi.org/10.1002/ijc.30922
https://doi.org/10.3390/nu11081873
https://doi.org/10.18632/oncotarget.25288
https://doi.org/10.1016/j.nut.2019.110569
https://doi.org/10.1016/j.mad.2014.01.002
https://doi.org/10.1253/circj.CJ-08-0848
https://doi.org/10.1016/j.atherosclerosis.2009.07.052
https://doi.org/10.2188/jea.JE20100173
https://www.sekisuimedical.jp/english/business/diagnostics/biochemistry/crp/data.html
https://www.sekisuimedical.jp/english/business/diagnostics/biochemistry/crp/data.html
https://doi.org/10.1002/sim.1525
https://doi.org/10.1161/01.CIR.0000052939.59093.45
https://doi.org/10.1016/j.amjhyper.2004.03.675
https://doi.org/10.4068/cmj.2021.57.1.62
https://doi.org/10.1016/j.annepidem.2015.03.009
https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h25-houkoku-06.pdf
https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h25-houkoku-06.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


ORIGINAL RESEARCH
published: 14 June 2021

doi: 10.3389/fnut.2021.676697

Frontiers in Nutrition | www.frontiersin.org 1 June 2021 | Volume 8 | Article 676697

Edited by:

Megan A. McCrory,

Boston University, United States

Reviewed by:

Brenda Davy,

Virginia Tech, United States

Claudio Esteban Perez-Leighton,

Pontificia Universidad Católica de

Chile, Chile

*Correspondence:

Stavros A. Kavouras

stavros.kavouras@asu.edu

Specialty section:

This article was submitted to

Nutrition Methodology,

a section of the journal

Frontiers in Nutrition

Received: 05 March 2021

Accepted: 18 May 2021

Published: 14 June 2021

Citation:

Colburn AT, Johnson EC, Péronnet F,

Jansen LT, Capitan-Jimenez C,

Adams JD, Guelinckx I, Perrier ET,

Mauromoustakos A and Kavouras SA

(2021) Validity and Reliability of a

Water Frequency Questionnaire to

Estimate Daily Total Water Intake in

Adults. Front. Nutr. 8:676697.

doi: 10.3389/fnut.2021.676697

Validity and Reliability of a Water
Frequency Questionnaire to Estimate
Daily Total Water Intake in Adults
Abigail T. Colburn 1, Evan C. Johnson 2, François Péronnet 3, Lisa T. Jansen 4,5,

Catalina Capitan-Jimenez 6, J. D. Adams 7, Isabelle Guelinckx 8, Erica T. Perrier 8,
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Integrated Physiology Laboratory, University of Wyoming, Laramie, WY, United States, 3Department of Kinesiology, University

of Montreal, Montreal, QC, Canada, 4Division of Endocrinology, New Balance Foundation Obesity Prevention Center, Boston
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The purpose of this investigation was to assess the validity and reliability of a seven-day

water frequency questionnaire (TWI-FQ) to estimate daily total water intake (TWI) in

comparison to a water turnover objective reference value via deuterium oxide (D2O).

Data collection occurred over 3 weeks, with a wash-out period during week two. Healthy

adults (n = 98; 52% female; 41 ± 14 y; BMI, 26.4 ± 5.5 kg·m−2) retrospectively

self-reported consumption frequencies of 17 liquids and 35 foods with specified

volumes/amounts for weeks one and three via TWI-FQ. Standard water content values

were utilized to determine the volume of water consumed from each liquid and food

for calculation of mean daily TWI for each week. Diet records were completed daily

during week two to estimate metabolic water production. To assess validity of the

TWI-FQ, participants consumed D2O at the start of each week and provided urine

samples immediately before ingestion, the following day, and at the end of the week to

calculate water turnover. Metabolic water was subtracted fromwater turnover to estimate

TWI. TWI-FQ validity was assessed via Bland-Altman plot for multiple observations.

Reliability was assessed via intraclass correlation and Pearson’s correlation between

weeks. TWI-FQ significantly underestimated D2O TWI by −350 ± 1,431 mL·d−1 (95%

confidence interval (CI): −551, −149 mL·d−1). TWI-FQ TWI was significantly correlated

(r = 0.707, P < 0.01) and not different (198± 1,180 mL·d−1, 95% CI:−38, 435 mL·d−1)

between weeks. TWI-FQ intraclass correlation = 0.706 was significant [95% CI: 0.591,

0.793; F (97, 98) = 5.799], indicating moderate test-retest reliability. While this tool would

not be suitable for individual TWI assessment, the magnitude of bias may be acceptable

for assessment at the sample-level.

Keywords: dietary assessment, hydration, nutrition methodology, self-report, underhydration, water
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INTRODUCTION

A limited ability to accurately assess water intake at a population-
level has likely slowed progress in elucidating the impact
of water intake on health. Some evidence suggests that low
water consumption and underhydration are associated with
adverse health outcomes including chronic kidney disease and
diabetes (1–3). Similarly, the Institute of Medicine suggests
dehydration may be related to numerous detrimental health
outcomes including cardiovascular strain, urinary tract infection,
and diabetes dysregulation (4). Conversely, increased water
intake is associated with positive health outcomes including
reduced risk for kidney stones (4) and urinary tract infections
(5) as well as augmented glucose regulation (6) and adolescent
cognitive performance (7). Thus, there appears to be an inverse
relationship between water intake and health risk. However,
evidence supporting these associations is not sufficient to
establish total water intake (TWI) recommendations beyond an
Adequate Intake, the least specific recommendation included
in the Institute of Medicine’s dietary reference intakes (4). Due
to the wide range of TWI volumes that allowed individuals to
maintain adequate serum osmolality, the Adequate Intake is the
median value of the TWI volumes observed in the Third National
Health and Nutrition Examination Survey (4). These high
variations have largely been attributed to differences in culture,
climate, and/or physical activity (4). However, measurement
error in TWI assessment and lack of a standard assessment tool
could exacerbate these variations.

The TWI Adequate Intake recommendations encompass
water consumed from all foods (∼20% TWI) and liquids
(∼80% TWI) (4). The current recommendation is based upon
the National Health and Nutrition Examination Survey 24-
h diet recalls, which were conducted before utilization of the
United States Department of Agriculture’s Automated Multiple-
PassMethod, which is a validatedmethod for energy and nutrient
intake, but not TWI (8). Additionally, trained interviewers
prompt participants to choose an occasion for every food item
on the record, most of which are meals (9). However, beverage
intake occurs more continuously throughout the day. Individuals
have 0 – 19 drinking occasions per day (of water only), with an
average time of 3 h between drinking occasions (range 1–17 h)
(10). This has been observed when TWI was compared between
a fluid-specific tool and the United Kingdom’s National Diet
and Nutrition Survey, which utilizes food diaries (11). The fluid-
specific tool revealed that 70% of beverage consumption occurred
outside of meals. In Indonesian populations, TWI estimated
from a 7-day fluid diary was significantly greater than that from
the 24-h dietary recall, by 382mL (12). Additionally, the 24-
h dietary recall captured 2.2 fewer drinking occasions (6.7 vs.
8.9 occasions). Consequently, current dietary assessments which
have not been validated for water intake are not necessarily
suitable for drinking behavior.

To date, investigators have not been able to identify a method
to estimate TWI that is comparable to an objective reference
value, such as that obtained from water turnover by dilution
of deuterium oxide (D2O) (13) corrected for metabolic water,
which is costly and impractical for population-level use. Recently,

our group and others have begun to advance the field through
development and validation of fluid-specific assessment tools
(14–19). Compared to 24-h recalls, which are subject to bias from
day-to-day variation in consumption, frequency questionnaires
are more likely to capture usual intake (20). However, only
relative validation, via dual reporting, has been assessed for
prior beverage frequency questionnaires with comparison of
water intake estimates against self-reported 24-h records (14–
17). As the 24-h diet record and new questionnaires under
assessment for validation are both self-reporting instruments,
sources of error will overlap between the instruments and
be correlated. Additionally, validation through dual recording
will not distinguish inaccuracies if they are reported on both
assessments. Dual recording could also deceptively improve
accuracy of the new questionnaire, and therefore falsely show
validation, as recording intake in diet records in days leading up
to a frequency recall will likely improve recall accuracy.

We recently utilized D2O to validate Liq.In7, a 7-day fluid
diary, to record all beverage intake over seven-days. While it
has been shown to be an accurate recording instrument for TWI
volume, the seven-days of recording impose substantial subject
burden (18). Additionally, Liq.In7 only captures water from
liquids, and not TWI. However, there is limited evidence from the
US and Europe supporting the current belief that TWI is ∼80%
water from liquids. In fact, those with high and low TWI have
been observed to consume a similar amount of water from food
(∼0.6 L·d−1), resulting in substantially different contributions to
TWI. For instance, water from food comprised ∼23% of TWI
in those with high TWI, while ∼47% in those with low TWI
(21). Consequently, liquid-only assessments may be preferable in
studies where precise recording of fluid intake is important but
may elucidate misleading results in terms of TWI. To address this
gap, we developed a total water intake frequency questionnaire
(TWI-FQ) that prompts individuals to recall water intake from
food and beverages over a 7-day period. The purpose of this
investigation was to assess the reliability and validity of the TWI-
FQ to estimate TWI as compared to the value obtained with
dilution of D2O, corrected for metabolic water.

MATERIALS AND METHODS

Subjects
Potential healthy participants (n = 262, 18 – 65 y) were
recruited from Northwest Arkansas, and provided informed
consent acknowledging the risks and benefits of participating in
the study (Supplementary Figure 1). Following completion of a
medical history questionnaire, individuals were excluded if they
satisfied any of the following criteria: (1) unable to understand
and write English, (2) currently pregnant or breastfeeding,
(3) previous surgical operation on digestive tract (excluding
appendectomy), (4) drug treatment within 15-days prior to
the start of the study, (5) exercise > 4 h·week−1, (6) dietary
changes within the last month, or (7) changes in body weight
> 2.5 kg within the last month. Volunteers with clinically
relevant diseases that could alter fluid balance (i.e., relevant
metabolic, cardiovascular, hematologic, hepatic, gastrointestinal,
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renal, pulmonary, endocrine or psychiatric history of disease)
were not enrolled.

Ultimately, 103 individuals received medical clearance, met
all criteria, consented to voluntary participation, enrolled, and
completed the study protocol. Data from five participants were
excluded due to missing data that prevented calculation of
TWI through TWI-FQ or dilution of D2O during weeks one
or three. Participant demographics are presented in Table 1.
Data collection occurred May – December 2014 in Fayetteville,
Arkansas, USA (ambient temperature, 17.2 ± 8.4◦C). This
protocol was approved by the University’s institutional review
board and biosafety committee (protocol no. 14-03-555) and was
conducted in compliance with theHelsinki Declaration as revised
in 1983.

Questionnaire Development
The TWI-FQ is a 59-item water intake assessment that
quantitatively assesses frequency and volume of TWI within the
period of a week. The first and second page of the questionnaire
consisted of 24 and 35 items to assess water from liquid and food,
respectively. The TWI-FQ included 17 liquid types with specified
volumes (e.g., water [8 fl oz cup]). Water was further broken into
eight occasions of consumption to include periods that may be
forgotten in traditional meal- and snack-focused questionnaires
(e.g., before breakfast, between lunch & dinner, during your
sleep). Nine frequency options were included, ranging from
“Never or <1 per week” to “7+ per day.” The TWI-FQ also
includes four overarching food categories (vegetables; fruits;
cheese, egg, meats; & bread, cereal, starches). Within categories,
food types were listed with specified quantities (e.g., mango,
pineapple [1 cup], pizza [1 slice]). Eight frequency options were
included, ranging from “Never or <1 per week” to “6+ per
day.” The TWI-FQ has a Flesch-Kincaid grade level of 8.4 and
a completion time of∼5 min.

The TWI-FQ is visually similar to the validated Harvard
Willett Food Frequency Questionnaire (Harvard T.H. Chan
School of Public Health, Department of Nutrition) (22). While
this questionnaire includes a section on beverage intake,
reproducibility and validation have only been established
for dietary assessment of caloric intake and macro- and
micronutrient intake, but not for TWI. There is only one

question for plain water intake in the Harvard Willett Food
Frequency Questionnaire, which only allows individuals to
record a maximum of 1.5 L·d−1 with the allotted frequency
options. This is not adequate considering the median water
intake from liquids is 2.2 L for women and 3.0 L for men
(4). Additionally, as mentioned previously, water consumption
occurs throughout the day (10) and is often underreported on
self-report tools that are not specific to beverages (11, 12). The
eight occasions of consumption for plain water were included
in our TWI-WFQ to accommodate individuals who drink more
than 1.5 L·d−1 of plain water. These eight occasions also serve as
a reminder for individuals to report water consumed throughout
the day. Outside of plain water, all other beverages and foods
were selected from the U.S. Department of Agriculture What We
Eat in America Food Categories from NHANES 2009–2010 (23).
Within each food category, some items included multiple foods
with similar water content. For example, “mango, pineapple (1
cup)” was one item in the fruit category. The water content
of 1 cup of mango and 1 cup of pineapple are 138mL and
142mL, respectively.

Study Design
Participants visited the lab on nine separate occasions across
22 days with the second week serving as a wash-out period
(Supplementary Table 1). A TWI-FQ was completed on day 1 to
familiarize participants with the tool. Participants ingested D2O
at the start of weeks one and three for determination of total body
water and mean daily water turnover from the disappearance of
D2O in the body water pool via the slope-intercept method (13,
18). The days following completion of weeks one and three (days
8, 22), participants completed the TWI-FQ for the previous seven
days. Diet records (24) were completed daily during week two
and analyzed to determine metabolic water (25, 26). Estimates of
TWI from weeks one and three were compared between the D2O
method and TWI-FQ method to assess the validity of the TWI-
FQ. TWI estimates were compared between weeks one and three
to assess reliability.

Baseline characteristics were collected on day one. Body
mass was assessed with a scale, height was measured using
a wall-mounted stadiometer, and body fat was measured via

TABLE 1 | Baseline sample demographics by sex and age group.

Women Men All participants

Age range, y 18–29 30–49 50–65 18–29 30–49 50–65 41 ± 14

Participants, n 14 22 15 12 21 14 98

Heighta, m 1.66 ± 0.06 1.62 ± 0.06 1.64 ± 0.08 1.75 ± 0.04 1.75 ± 0.07 1.81 ± 0.07 1.70 ± 0.09

Weighta, kg 68.9 ± 19.9 75.4 ± 17.6 69.6 ± 11.7 74.1 ± 18.1 79.2 ± 13.3 89.0 ± 14.2 76.2 ± 16.8

BMIa, kg·m−2 25.0 ± 6.8 28.8 ± 6.7 25.8 ± 4.0 24.5 ± 6.5 25.7 ± 4.0 27.1 ± 3.7 26.4 ± 5.5

Total Body Watera,b, L 34.5 ± 6.9 33.1 ± 4.7 30.7 ± 3.3 39.6 ± 5.2 44.3 ± 6.4 46.2 ± 6.0 38.0 ± 8.0

Total Body Watera,b, %BM 51.1 ± 6.0 45.0 ± 7.0 44.6 ± 4.0 54.8 ± 7.6 56.4 ± 5.1 52.4 ± 4.8 50.5 ± 7.4

BMI, body mass index; %BM, total body water as a percentage of body mass.
aValues are presented as mean ± standard deviation.
bTotal body water is the average of values computed at weeks 1 and 3.
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FIGURE 1 | Estimation of total water intake using deuterium oxide dilution method and the total water intake frequency questionnaire. D2O, deuterium oxide; TWI-FQ,

total water intake frequency questionnaire.

dual X-ray absorptiometry scan (Lunar Prodigy, GE Healthcare,
Waukesha, WI).

Total Water Intake: Frequency
Questionnaire
TWI-FQ were completed on days 1, 8, and 22. Day 1 served
as a familiarization with the instrument, while participants
retrospectively recalled water from liquids and foods for weeks
1 and 3 using TWI-FQs on days 8 and 22, respectively. The types
and frequencies of liquids and foods consumed were entered
into a customized spreadsheet and converted to mL (27). The
volumes of liquids were converted to volumes of water based
on standard water contents (e.g., 100mL of milk = 89mL
water) (27). Reported volumes and frequencies were then used to
determine mean daily water from liquids. Researchers converted
reported quantities of foods to mL of water according to standard
food water content and determined mean daily water from food
based on calculated volumes and frequencies (Figure 1).

Water Production From Metabolism
Participants recorded all food and liquid intake in 24-h diet
records (24) every day of week 2 (days 8–14). For each item
consumed, participants were instructed to record timing, portion
size, method of preparation, number of servings, and any other
pertinent information (i.e., brand name, restaurant, nutrient

descriptors such as low-fat, condiments, etc.). Diet records
were completed in real time, in contrast to diet recalls which
can introduce error due to reliance on memory. Furthermore,
multiple diet records were completed to increase the likelihood
of capturing usual intake.

Diet records were analyzed with Nutrition Data System
for Research software to determine the total energy intake
and the proportions of energy that corresponded with each
macronutrient. These values were then used to determine the
volume of water generated through macronutrient oxidation
using the following formula (25, 26):

Metabolic water
(

mL · d−1
)

= total energy expenditure

x

(

1

105

)

x
[(

%fat x 0.119
)

+
(

%protein x 0.103
)

+
(

%carbohydrate x 0.150
)

+
(

%alcohol x 0.168
)]

Total energy expenditure was assumed to be equivalent to total
energy intake. Body weights measured on the first, second, and
fifth days of both weeks were assessed to confirm weight stability
and therefore confirm the aforementioned assumption was met.

Total Water Intake: D2O Dilution
Participants provided a urine sample on day 1 immediately before
D2O ingestion (0.1 g·kg−1 LBM, 99.9% deuterium, Cambridge
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TABLE 2 | Mean daily water turnover and mean daily water intake by week and method.

Week 1 Week 2 Week 3

D2O TWI-FQ Food diaries D2O TWI-FQ

Water turnovera, mL·d−1 3,680 ± 1,341 3,596 ± 1,275

Metabolic watera, mL·d−1 264 ± 104

Water from fooda, mL·d−1 508 ± 258 490 ± 242

Water from liquidsa, mL·d−1 2,624 ± 1,587 2,443 ± 1,358

Total water intakea, mL·d−1 3,405 ± 1,331b 3,132 ± 1,665c 3,356 ± 1,234b 2,933 ± 1,425c

D2O, deuterium oxide dilution method; TWI-FQ, total water intake frequency questionnaire.
aValues are presented as mean ± standard deviation.
bTotal Water Intake = Water Turnover – Metabolic Water.
cTotal Water Intake = Water from Food + Water from Liquids.

Isotope Laboratories, Inc., Tewksbury, MA). The dose of D2O
was added to a cup with 100mL of water. Participants consumed
the diluted tracer followed immediately by two additional 100mL
volumes of water ingested from the same cup to ensure tracer was
consumed and not left on the cup. Participants returned on days
2 and 8 to provide additional urine samples. This process was
repeated during week 3 on days 15, 16, and 22 with a D2O dose of
0.08 g·kg−1 LBM ingested at day 15 immediately after providing
the urine sample. Samples were then analyzed via isotope ratio
mass spectrometry (Micromass Isoprime DI, coupled with an
Aquaprep system; Isoprime Ltd., Cheadle Hulme, UK) using
the H2-water equilibration method to determine the ratio of
deuterium to hydrogen (13, 28). The slope intercept method
(29) was then used as previously described (13) to compute the
volumes of total body water for weeks one and three from the
dose ingested and the ratio of deuterium to hydrogen back-
extrapolated at the time of ingestion, as well as water turnover
from the disappearance of D2O from the body water pool.
Finally, D2O TWI was calculated by subtracting metabolic water
from water turnover.

Sample Size Estimation
An a priori sample size of n = 75 was determined based on the
desired accuracy of Bland-Altman limit of agreement estimates
(30). Accuracy of estimates is determined by the standard error
of 95% confidence intervals (CI) for the limits of agreement.

Standard error (SE) was determined by SE =
√
(3 x SD2

n ), where
SD is the standard deviation of the mean difference and n is the
sample size. The 95% CI = ± 1.96 x SE. A sample size of 75
allows for 95% CI = ± 0.39 x SD.

Statistical Analyses
Outcome variables were assessed for normality via Shapiro-Wilk
test of normality, visual examination of the data (e.g., Q-Q
plots, box plots, histograms), and skewness and kurtosis statistics.
Non-normal data were analyzed non-parametrically. Analyses
were conducted using commercial software (IBM SPSS Statistics
Version 25.0.0). A jack-knife approach was employed using JMP
Pro 15.2.0 (SAS Institute Inc.) to identify and examine the
influence of outliers in the sample. Outliers were classified asmild
(jack-knife distances > 2.5–≤ 4.0) or severe (jack-knife distances
> 4.0). A P < 0.05 was considered statistically significant for all
analyses. Data are presented as mean± standard deviation.

Correlation and t-test analyses alone are not sufficient to
assess validity between two measurement methods (31, 32).
Therefore, we used paired t-tests to assess mean differences
between measurements and a Bland-Altman plot to assess
agreement between D2O and TWI-FQ to estimate daily fluid
intake over weeks one and three. Bland-Altman analyses were
conducted in accordance with methodology specific to multiple
observations in which the true value of the primary outcome
variable (i.e., TWI) is expected to vary over the observation
period (33). This model accounts for mean difference (bias)
between methods (TWI-FQ – D2O TWI) as well as variance
in individual differences (between + within-subject variance).
Individual differences between methods were plotted against
the average of methods [(TWI-FQ – D2O TWI)/2], with
repeated measurements treated as independent measurements
(n = 196). Evaluation of the Bland-Altman plot within limits
of agreement allowed us to understand the significance of
bias of the TWI-FQ from the objective reference value D2O
TWI. Kendall’s tau was utilized to evaluate heteroscedasticity of
the plot.

Reliability of the TWI-FQ to estimate TWI was assessed
via related-samples Wilcoxon Signed Rank test, Spearman’s
correlation, and Intraclass correlation coefficient. Paired t-test
and Spearman’s correlation analyses were also conducted on D2O
TWI to provide an indication of weekly variation in true TWI.
To explore systematic bias in reliability, separate Bland-Altman
plots (31) were created for D2O and TWI-FQ estimates of TWI.
For each method, differences between repeated estimates of TWI
(week 1 TWI – week 3 TWI) were plotted against the average of
estimates from both weeks (n= 98).

RESULTS

Body mass was consistent within weeks (% of change in body
mass: week 1, 0.05 ± 0.99%; week 2, 0.35 ± 1.19%; week 3, 0.11
± 1.22%) with low coefficients of variance between the three
measurements during all weeks (week 1, 0.54 ± 0.36%; week 2,
0.62 ± 0.41%; week 3, 0.60 ± 0.50%). Mean daily water turnover
and the components that contribute to water turnover computed
using data from D2O dilution and the TWI-FQ are presented in
Table 2. Daily caloric intake during week 2 was 2,028 ± 523 kcal
(range: 911–3,430 kcal).
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FIGURE 2 | Bland-Altman plot of agreement between total water intake frequency questionnaire and deuterium oxide dilution method to estimate mean daily total

water intake during two, one-week periods (n = 196). TWI, mean daily total water intake; TWI-FQ, total water intake frequency questionnaire; D2O, deuterium oxide

dilution method; M, mean difference between methods (bias); SD, standard deviation of the mean difference.

The jack-knife analysis identified eight mild outliers and three
severe outliers across eight participants (63% male; age, 37 ± 13
y; BMI, 26.5 ± 5.9 kg·m−2) (Supplementary Table 2). All three
severe outliers were found in males in week 1, while four mild
cases were identified in each week. TWI was overestimated by the
TWI-FQ in five of the eleven cases, two of which were identified
as severe outliers. No outliers were excluded from validity or
reliability analyses.

Questionnaire Validity
TWI estimates were not different between methods during week
1 (t[97] = 1.60, mean difference = −269 mL·d−1, 95% CI:−603,
65 mL·d−1, P = 0.1133), but were significantly different during
week 3 (t[97] = 3.71, mean difference = −431 mL·d−1, 95%
CI: −661, −200 mL·d−1, P = 0.003). Combined TWI-FQ TWI
estimates from both weeks significantly underestimated D2O
estimates by −350 ± 1,431 mL·d−1 (95% CI: −551, −149
mL·d−1; Figure 2). Limits of agreement for the Bland-Altman
plot were −3,155 and 2,455 mL·d−1. Kendall’s tau was not
significant (r = 0.076, P = 0.112), which indicates the data were
not heteroscedastic.

Questionnaire Reliability
D2O TWI was significantly correlated (r = 0.856, P < 0.01) and
was not different (P = 0.805) between weeks. Similarly, TWI-FQ

TWI was significantly correlated (r = 0.707, P < 0.01) and was
not different (P = 0.115) between weeks 1 and 3. The Intraclass
correlation coefficient for TWI-FQ was significant [ICC= 0.706,
95% CI: 0.591, 0.793; F(97,98) = 5.799, P < 0.001], indicating
moderate test-retest reliability. Based on Bland-Altman plots, the
mean difference in D2O TWI estimates between weeks was 36 ±
593 mL·d−1 (95% CI: −83, 155 mL·d−1; Figure 3A). The mean
difference in TWI-FQ TWI estimates between weeks was 198 ±

1,180 mL·d−1 (95% CI:−38, 435 mL·d−1; Figure 3B). Systematic
bias in reliability was not observed for either method.

DISCUSSION

The purpose of this study was to assess the validity and reliability
of a TWI-FQ to estimate TWI as compared to the objective
reference value, D2O. The principle finding of this study is
that the TWI-FQ consistently underestimated TWI. While this
tool would not be suitable for individual assessment, the overall
magnitude of bias may be acceptable for assessment at the
sample-level. In this protocol, we utilized the isotopic tracer,
D2O, as the rate of disappearance of D2O following enrichment
is directly associated with water turnover and is not subject to
homeostatic or inter-individual variations in metabolism (34).
Accordingly, D2O is an unbiased measure of water turnover that
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FIGURE 3 | Bland-Altman plots of agreement between repeated estimates (week 1 and 3) of mean daily total water intake via (A) deuterium oxide dilution method

and (B) total water intake frequency questionnaire (n = 196). TWI, mean daily total water intake; TWI-FQ, total water intake frequency questionnaire; D2O, deuterium

oxide dilution method; M, mean difference between weeks (bias); SD, standard deviation of the mean difference.

is not subject to measurement error commonly seen in self-
report data. Furthermore, we utilized Bland-Altman statistical
analyses that accounted for variation between methods, between
individuals, and between occasions (33). Most prior studies
(14–17) have utilized correlation and t-test analyses, which are

not independently sufficient to assess agreement between two
methods for validity assessment (31, 32).

Due to the robustness of the D2O dilution method, we
observed total body water as a percentage of body mass estimates
within the ranges reported by the Institute of Medicine (43–73%,

Frontiers in Nutrition | www.frontiersin.org 7 June 2021 | Volume 8 | Article 676697145

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Colburn et al. Validation of Water Frequency Questionnaire

males 19–50 y; 41–60%, females 19–50 y) (4). Additionally, daily
metabolic water production has been estimated to be ∼250–350
mL·d−1 for sedentary individuals (4). Although metabolic water
(264 ± 107 mL·d−1) was determined from diet records during
the wash-out period in the current study, it still aligns with the
aforementioned estimates. Confirmation of body weight stability
for all participants across each week indicates that the assumption
that TEE was equivalent to total energy intake was met for
metabolic water calculations. Accordingly, we are confident the
D2O TWI estimates reflect actual TWI.

The TWI-FQ significantly underestimated TWI by −350 ±

1,431 mL·d−1 compared to D2O. While the mean difference
is clinically adequate, there is considerable variation in bias as
evidenced by the standard deviation of 1,431mL and limits
of agreement allowing for underestimation of −3,155 mL·d−1

and overestimation up to 2,455 mL·d−1. The magnitude of
these differences is substantial considering the Adequate Intake
for water is 2.7 L·d−1 for women and 3.7 L·d−1 for men
(4). Based on visual examination of Figure 3, these large
differences appear to be driven, in part, by individuals who
consume high amounts of TWI (≥4 L·d−1). In some cases,
high amounts of TWI were accurately reported in the TWI-
FQ (Supplementary Table 2). Large differences may in part be
related to a learning curve as all three severe outliers were
identified in the first week. Furthermore, most participants with
outliers appeared to improve by week 3 (i.e., reduced from severe
to mild outlier or no longer an outlier). Ultimately, outliers
were a mixture of overestimation and underestimation with no
clear association with subject characteristics (i.e., sex, age, BMI).
Despite large variances, the TWI-FQ was still determined to be
reliable due to moderate correlation between weeks (r = 0.725)
and moderate test-retest reliability (ICC = 0.706). Systematic
bias in TWI-FQ between weeks was not statistically significant
as evaluated via Bland-Altman plot, in which the mean difference
in TWI-FQ TWI estimates was 198± 1,180 mL·d−1.

The mean difference (36 ± 593 mL·d−1) between repeated
D2O TWI estimates was minimal and non-significant. However,
the acceptable limits of agreement (-1,149, 1,221 mL·d−1) are
still large clinically and indicate a considerable degree of within-
subject variance in week-to-week TWI. Additionally, mean D2O
TWI was distributed across a wide range of volumes, between
1,000 and 9,000 mL·d−1, with the majority of mean D2O TWI
falling between 1,000 and 4,500 mL·d−1. This indicates there
is also a considerable degree of between-subject variance in
D2O TWI, which was also captured by the TWI-FQ, as can
be seen in Figures 3A,B. This magnitude of variance in TWI
is not surprising as daily water needs can vary greatly between
and within individuals depending on age, sex, diet, physical
activity behaviors, climate, and culture (4). We purposefully
recruited participants who were well-distributed across sex and
age. Therefore, although the limits of agreement for the TWI-
FQ validity assessment were large, these data indicate that the
variance observed was compounded by within- and between-
subjects’ differences in water consumption habits.

Previous liquid questionnaires have been developed to assess
fluid intake but not TWI (14–17, 19). While this TWI-FQ was
designed specifically to assess water intake volume at population

levels, previous questionnaires were developed primarily to assess
energy intake from liquids (16, 17), grams or fluid ounces of
individual and total liquids consumed (16, 17, 19), water intake
and voiding habits for treatment of urinary tract symptoms (14),
and water balance (15). Additionally, validation protocols for
these questionnaires utilized imperfect reference instruments,
such as 24-h diet records, which are subject to intake-related
bias and correlated error (35). We used methods similar to the
previous study to assess validity and reliability of the Liq.in7,
which is a 7-day fluid record that required participants to
record liquids and foods with high water content as they were
consumed (18). Compared to D2O, the Liq.in7 underestimated
water from liquids by −131 ± 845 mL·d−1. However, this
assessment was based only on one week of data, the Bland
Altman statistical analysis utilized did not account for within
or between subject variation, and water from food was not
included in this analysis. TWI was also assessed between the
Liq.in7 and a 24-h dietary recall in Indonesian adolescents and
adults using a Bland Altman analysis (12). An overestimation of
382 mL·d−1 was observed compared to the 24-h dietary recall
with limits of agreement 1,600 and −2,300 mL·d−1. Although
the limits of agreement were narrower than those in the current
study, the difference was determined to be significant as 11%
of values fell outside of these limits. The mean difference
also increased with greater TWI, with underestimation of 139
mL·d−1 for the lowest quartile of TWI and overestimation of
1,265 mL·d−1 for the highest quartile of TWI. Thus, it appears
individuals are less able to recall fluid intake accurately with
greater consumption.

Our approach does not come without limitations. Metabolic
water production was determined through self-reported data in
24-h diet records. Self-report dietary assessments are subject
to error (e.g., difficulty interpreting handwriting, day-to-day
variation in consumption, or misreporting of consumption) and
can be burdensome to participants. However, metabolic water
is a small component of water turnover (250–350 mL·d−1) (4)
and over- or underestimation would not substantially impact the
outcomes of this investigation. Furthermore, a prominent study
in this field that determined water turnover in 458 adults (40–
79 y) estimated metabolic water from the average macronutrient
content of the diet based on a one-time 24-h recall in the general
population in the US (26). In contrast, participants in the present
investigation completed multiple 24-h diet recalls for metabolic
water estimates.

The accuracy of the TWI-FQ may vary day-to-day, with TWI
estimates that are more representative of days closer to the
day of questionnaire completion. However, we were not able to
evaluate this as participants are asked to recall consumption for
the entire week rather than for each day of the week. Similarly,
the D2O method utilizes three urine samples to determine an
average daily TWI for the 7-day period and does not allow
for estimation for each specific day. Furthermore, we were not
able to evaluate potential differences in validity or reliability
of the TWI-FQ by age or sex as this study was not powered
for these comparisons. Finally, we were not able to validate
whether the TWI-FQ is sensitive to change in TWI. Therefore,
this tool may not be suitable for use in intervention studies
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designed to change TWI, particularly if detection of small
changes is desired.

In conclusion, the TWI-FQ may be a useful tool to
assess population-level TWI behaviors. Due to the large
variances observed, the TWI-FQ should not be utilized
to assess individual-level TWI behaviors in which greater
accuracy may be needed. Utilization of the TWI-FQ to
assess population-level TWI may allow investigators to better
determine relationships between liquid intake, hydration,
and health. Moreover, the TWI-FQ could be utilized in
conjunction with multiple 24-h diet recalls/records to better
reflect water from food and subsequently TWI. Several studies
have successfully improved accuracy of self-report dietary data
through combining 24-h diet recall/records with food frequency
questionnaires (36). The findings of this study can only be
generalized to individuals 19–65 y. Further investigation is
needed to assess application of the TWI-FQ in different
geographical regions, climates, cultures, activity levels, and
age groups.
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