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Editorial on the Research Topic
 Computational Learning Models and Methods Driven by Omics for Precision Medicine



Due to the high experimental cost and the exponential decline in the cost of high-throughput sequencing, computational models, and methods are preferred by scholars. The curse of dimensionality is the primary obstacle to dealing with the explosive growth of omics data. Machine learning methods are applied to reduce dimensionality and perform feature selection from massive data. Researchers meet the requirements of data sparsity by increasing the sparsity constraints of the computational models. The models combined with the deep learning method help to discover potential non-linear associations. Improving data representation or adding embedding layers could provide better performance of the models. Computational methods for biomarker discovery, sample classification, and disease process interpretation pave the way for precision medicine.

This topic includes 34 papers and a corrigendum. These papers introduce latest researches in the area of computational biology, catering for precision medicine and complex diseases. They include sequencing alignment, correlation detection between omics data and biological traits, prediction of biological functionality, computational methods for cancer subtyping, finding of pathogenic causes, repositions and targeting, and computational methods specially designed for biological knowledge mining.


SEQUENCE ALIGNMENT

The raw sequencing data is unstructured short sequences. The structured data can be generated from downstream analysis through filtering, quality control, and assembly of these unstructured data. Assembly reconciliation can generate high-quality assembly results. In Tang et al., using the consensus blocks between contigs to construct adjacency graphs to avoid varying sequencing depth and sequencing errors, the authors propose a scoring function to rank the input assembly sets. They use an adjacency algebra model for accurate fusion, which performs well on M. abscessus, B. fragilis, R. sphaeroides, and V. cholerae. Shi and Zhang apply the partition and recur platform to generate a high-level abstraction of the sequence alignments. The algorithm component library is verified by Apla language. The advantage of implementing the sequence assembly process through abstract components is that it can effectively improve stability and reduce the possibility of errors caused by manual selection.



ESTABLISHING OMICS—DISEASE ASSOCIATIONS

Four groups present research on RNA association prediction, including Long non-coding RNA(lncRNA)–protein interactions (LPI), LncRNA-Disease, microRNA(miRNA)-Disease, and Circular RNA(circRNA)-Disease. Peng et al. give us an overview of how to identify lncRNA–protein interactions(LPI), and they introduced 16 related repositories and methods. Among these network-based and deep learning-based methods for predicting LPI, the proposed SFPEL-LPI used assembly learning and achieved the best Area Under Curve(AUC) performance. Hu et al. combined the two methods of neural network and matrix factorization (MF) to predict lncRNA-disease associations. They achieved this combination by concatenating outputs and sharing inputs between the two methods. Both the MF and the neural network are trained simultaneously under the framework of TensorFlow. In Yu, Shen et al., prior information (lncRNA-miRNA and lncRNA-disease associations) and known miRNA-disease associations are integrated to construct a three-layer heterogeneous network of LncRNA, miRNA, and disease. In this three-layer network, the edges between the layers are filled with prior information. Random walk is applied to predict miRNA-disease associations. The proposed methods are evaluated using cancer data. Their results show that most potential miRNAs can be confirmed by databases. In Lei X. et al., the cirRNA similarity network and the disease similarity network are used as the input of the collaboration filtering recommendation system. Their experiments on predicting potential circRNA–disease associations indicate the effectiveness of the recommendation system algorithm.

Like RNA, microbes and pathogens are also the causes of diseases. In Li, Wang, Chen et al., a bipartite network is applied to avoid the omission of neighbor information for predicting Pathogen–Host associations. Among the top 20 pathogen-host pairs discovered, 16 pairs can be verified by biological experiments. In Ma et al., to explore the pathogenesis of complex diseases from the modular perspective, the similarity matrix is decomposed to generate microbe-disease co-modules by non-negative matrix tri-factorization. Their method achieves nice performance in the enrichment index and the number of significantly enriched taxon sets. In Li S. et al., on the strength of a matrix containing microbes similarity, disease similarity and a bipartite graph network of the two interactions, the potential microbe-disease associations are calculated by Katz centrality. The prediction performance was evaluated by the leave-one-out cross validation and reached an AUC of 0.9098. Zhu et al. use a deep feedforward network to identify microbial markers and realize graph embedding by replacing the first two layers of the network with a sparse graph. Experiments show that this Graph Embedding Deep Feedforward Network has the best performance, comparing deep forest, random forest and Support Vector Machine(SVM).



PREDICTION OF BIOLOGICAL FUNCTIONALITY

Identifying acetylation proteins is conducive to understanding the post-translational modification process. In Qiu et al., the authors first generate a k-nearest neighbors (KNN) score, and then use random forest to classify the acetylation proteins. The formation of KNN scores is based on domain annotation and subcellular localization. Five-fold cross-validation on the three data sets was performed, and finally, an average AUC of 0.8389 was obtained. In Miao et al., the authors aim to identify which proteins are endoplasmic reticulum-resident proteins, and they achieved accuracy over 86%. Such work allows us to understand the functionality of proteins, which may be potential points of drug design. The promoter drives the flow of genetic information from DNA to RNA, and its sequence information determines the strength of the promoter. In Le et al., the promoter sequence is divided into 10-gram levels and is used to form a 1,000-dimensional vector. The vector is input into a deep neural networks model to classify the promoter strength. Compared with other latest methods in the same test set, this method improves 1–4% on all indicators.



COMPUTATIONAL APPROACH FOR CANCER SUBTYPING

Cancer subtyping is fundamental for precision therapy. Accurately identifying cancer subtypes enables us to understand cancer evolution. In Lu et al., Laplacian score and low-rank representation methods are integrated to obtain a low-rank expression of cancer gene expression data. This low rank matrix is hoping to preserve subtype information. By sorting the obtained matrix, the feature genes are heuristically selected to comprise of a gene subset for accurate cancer subtyping. The method is tested on five cancer dataset and is shown to achieve superior performance over k-means, non-negative matrix factorization (NMF) and several other baseline methods. Aouiche et al. obtained the cancer stages on copy number variation(CNV) data. The positive significance of distinct stage division is dependent on not only a high cure rate after cancer been detected, but also on critical markers, which are potential therapeutic targets. Li, Wang, Wang et al. identify differentially expressed genes(DEGs) in tumor by analyzing the residues of each gene via a regression model and found potential biomarkers of the individual sample from DEGs. Survival analysis is performed on samples collected from human and mouse cancer data, and is shown to be statistically differently.



QUANTITATIVE UNDERSTANDING OF PATHOGENIC CAUSES

The goal of developing computational disease models is to find a therapeutic target. As the first step, computational tools are required to explain the cause of the disease. Regarding the identification of Schizophrenia (SZ), Xiang et al. construct a Brainnetome atlas based on resting-state functional magnetic resonance imaging. Brainnetome atlas is a weighted undirected graph constructed with brain regions as nodes and correlations as edges. The authors calculate the features from the altas and, then use least absolute shrinkage and selection operator(lasso) learning to prune the features. The classification is SZ is achieved by using SVM with an accuracy of 93.10%. In Li X. et al., each single sample is classified by a pathway-based approach, into Ulcerative colitis (UC) and Crohn's disease (CD). Even though UC and CD have common clinical characteristics, they have different responses to drugs. According to the gene expression data of the sample, the author scores each pathway to form a pathway activation for single sample matrix, which is classified by a random forest classifier. In Zhang S. et al., the authors aim to select CNV markers to distinguish between three different states of mono-ADP-ribosylhydrolase 2 (MACROD2). The frequent deletions of MACROD2 locus may lead to chromosomal instability of human colorectal cancer. The authors firstly select 17 important single nucleotide polymorphism(SNP) site via mutual information, and then uses bootstrapping scheme to train multiple classifiers. The trained classifiers are finally ensembled to effectively distinguish three types of MACROD2. In Lei W. et al., the effectiveness of lipoprotein 2 on Subarachnoid hemorrhage (SAH) intervention is revealed from the perspective of the cell signaling pathway. The authors discover five biomarkers, three of which have been verified by previous experimental evidence. Finally, the early SAH prediction is performed based on the assembly learning of logistic regression, SVM and Naive-Bayes, achieving an accuracy of 79%. Zhang P. et al. clarify a pathway of polycistronic mRNA ORF73 involved in host apoptosis through protein p53, supplementing the pathogenic process of Kaposi sarcoma-associated herpes virus. This work is mainly done through protein-protein interactions (PPI) analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. In Shao et al., 108 whole-non-structural protein 5 sequences are analyzed in Zika virus, and 35 potential glycosylation and phosphorylation sites have been discussed. Mutations in amino acid sites are found to be correlated with their pathogenicity and transmission efficiency. The relatively stable nucleic acid sequence is shown to be helpful for detection and vaccine development.

A meta-analysis can combine multiple studies, and the two groups apply meta-analysis methods. In Fukutani et al., after the analysis of Human T-lymphotropic virus 1 (HTLV-1)-infected patients, the authors find that gene CD40LG and gene GBP2 can be used as two phenotypic classifications of HTLV-1 infection, with accuracy rates of 0.88 and 1. In Jin and Shi, a meta-analysis is performed to test SNP-environment interaction. Based on meta-regression (MR), the author proposes overlapping MR combined with the method of processing overlapping data. This method can reduce type I error and is more robust than MR in dealing with the non-linear interaction effect.

Gao et al. screen 107 methylomic features in whole blood methylation samples and use Support Vector Regressor to predict age. What is interesting is that only gene CALB1 and gene KLF14 are both found in the male and female age prediction models.



DRUG REPOSITIONS AND TARGETING

Four works focus on drug repositions. In Manibalan et al., the authors focus on the S100A8 protein, which has a strong interaction with the prevalence of polycystic ovary syndrome biomarkers. Therefore, they design a series of RNA aptamers targeting the S100A8, and select the one with minimal binding energy as the targeted drug. Wound Scratch experiments confirm that the synthesized 18-mer oligo has a significant inhibition effect on tumor cell migration. Wu et al. hope to level the differences in chemotherapy prognosis through cisplatin resistance analysis of oral squamous cell carcinoma. Through the analysis of differentially expressed genes, PPI network and miRNA-mRNA targeted regulatory network, they find that five hub genes and the miR-200 family members that regulate hub genes may be potential drug targets. In Yu, Xu et al., new targeted drugs for hepatocellular carcinoma (HCC) are found by the drug repositioning bioinformatics method. Finding HCC's kernel genes is the first step in work. The next step is to combine the relationship between the drug and gene expression in the Connectivity Map database to score the relationship between the drug and HCC. Among the top ten drugs screened by this method, eight drugs have been supported by publications. In Emdadi and Eslahchi, cell line similarity, drug similarity and half maximal inhibitory concentration are combined to predict the drug sensitivity of cells, and logistic matrix factorization is applied to obtain latent vectors. For the drug sensitivity prediction of the new cell line, the k-nearest neighbors of the cell line are estimated through the decision tree to obtain the latent vectors of the cell line. Finally, a threshold based on the probability of the latent vector is used to predict whether the cell line is sensitive to drugs. The genomics of drug sensitivity on haematopoietic cell lines in cancer was tested for model performance, with an accuracy of 0.721.



BIOLOGY-ORIENTED LEARNING METHODS

Traditional learning methods have achieved tremendous success and have provided solutions to even some difficult biological problems. In Wang et al., Huber loss is applied to alleviate non-Gaussian noise contaminations. A sparsity penalty item is used to encourage the sparsity of representation of The Cancer Genome Atlas data, and a graph regularization is used to preserve the manifold structure. The clustering accuracy is improved by 5% compared with non-negative matrix factorization. Che et al. improve the traditional methods on the basis of Sparse Group Lasso (SGL) and proposed a weighted sparse group lasso (WSGL) by introducing prior constraint on the sparse term. Compared with lasso and SGL, the performance is significantly improved, indicating that prior biological knowledge carries on valuable message. Comparing the lasso and SGL methods, WSGL can screen less genes, and the ratio of candidate genes is higher using Arabidopsis flowering time data. In Lemaçon et al., a visualization method is proposed based on a scoring system for rating susceptibility loci. In general, this is a visualization method for searching for the best potential variants through aggregating prediction approaches. In Guo, Kullback-Leibler divergence is used to measure the distance between two SNPs, and these distances are used as k-means clustering. Then, statistical testing methods are applied to find epistatic interactions, and the time cost of this method is about one-tenth that of Bayesian inference-based method. Zheng et al. use sparse subspace clustering to perform single-cell clustering. This method assumes that the feature vector of a sample can be expressed as a linear combination of other samples in the same subspace. In the test of 10 single-cell datasets, this method maintains the leading position in normalized mutual information and adjusted rand index.

These teams work together to continuously improve model accuracy. Most articles related to computational methods are tailored from early established models for biology knowledge learning.
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With the development of high-throughput techniques, various biological molecules are discovered, which includes the circular RNAs (circRNAs). Circular RNA is a novel endogenous noncoding RNA that plays significant roles in regulating gene expression, moderating the microRNAs transcription as sponges, diagnosing diseases, and so on. Based on the circRNA particular molecular structures that are closed-loop structures with neither 5′-3′ polarities nor polyadenylated tails, circRNAs are more stable and conservative than the normal linear coding or noncoding RNAs, which makes circRNAs a biomarker of various diseases. Although some conventional experiments are used to identify the associations between circRNAs and diseases, almost the techniques and experiments are time-consuming and expensive. In this study, we propose a collaboration filtering recommendation system–based computational method, which handles the “cold start” problem to predict the potential circRNA–disease associations, which is named ICFCDA. All the known circRNA–disease associations data are downloaded from circR2Disease database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Based on these data, multiple data are extracted from different databases to calculate the circRNA similarity networks and the disease similarity networks. The collaboration filtering recommendation system algorithm is first employed to predict circRNA–disease associations. Then, the leave-one-out cross validation mechanism is adopted to measure the performance of our proposed computational method. ICFCDA achieves the areas under the curve of 0.946, which is better than other existing methods. In order to further illustrate the performance of ICFCDA, case studies of some common diseases are made, and the results are confirmed by other databases. The experimental results show that ICFCDA is competent in predicting the circRNA–disease associations.

Keywords: circRNA–disease association, collaboration filtering, multiple biological data, recommendation system, neighbor information



Introduction

Circular RNA (circRNA) is a relatively novel biological molecule compared with the usual linear RNAs. Circular RNAs were first discovered in the RNA viruses before 1970 (Sanger et al., 1976). It is said that circRNAs lack covalently closed-loop structures with neither 5′-3′ polarities nor polyadenylated tails (Chen and Yang, 2015), which causes that it is not easy to find circRNAs compared with linear RNAs. Because of circRNAs closed-loop structure, however, more and more circRNAs (Hsu and Coca-Prados, 1979; Arnberg et al., 1980; Pasman et al., 1996) are revealed based on the development of the RNA base sequence high-throughput techniques. In terms of recent researches, there are various kinds of circRNAs in the creatures, which include as follows: exonic circRNAs, which are mainly produced by back-spliced exons (Wilusz and Sharp, 2013), introns circRNAs extracted from introns (Lasda and Parker, 2014), exon–intron circRNAs that are analogous to ecircRNAs (Li et al., 2015), and integrated circRNAs discovered by a biological identifier, CIRI (Gao et al., 2015). Many recent evidences (Danan et al., 2011) show that circRNAs play significant roles in different biological processes and have multiple biological functions (Jeck and Sharpless, 2014; Qu et al., 2015). First, circRNA can be regarded as miRNA sponges (Hansen et al., 2013; Kulcheski et al., 2016), which could be adopted to be an identifier for diseases. Second, some evidences illustrate that circRNAs also can regulate some transcriptional processes (Chao et al., 1998). Simultaneously, circRNAs also have associations with RNA-binding proteins (RBPs) (Panda et al., 2017) bases on their stable circular structures. Circular RNA has different ways to bind with the RBPs compared with the linear RNA (Memczak et al., 2013), which indicates that circRNAs have potential to be disease biomarkers. Moreover, circRNAs have some translational functions (Chen and Sarnow, 1995) like common RNAs.

With the further study of circRNAs’ functions, increasing numbers of evidences point out that circRNAs have associations with complicated diseases (Xu et al., 2017) or have effects on the translation of some proteins (Bartsch et al., 2018). There are many previous searches revealing the associations between circRNAs and some cancers. Circular RNA circ-PVT1 has been discovered to upregulate the gene expression in the gastric cancer (GC) tissues and promotes the GC cells reproduction (Chen et al., 2017a). In contrast circRNA hsa_circ_0000190, it regulates the gene expression in GC tissues by downregulation (Chen et al., 2017b). CircRNA circTCF25 can upregulate the gene expression or cell proliferation of 13 target locus of miRNA miR-103a-3p/miR-107, which can be regarded as a biomarker of bladder cancer (BC) (Zhong et al., 2016). Circular RNA hsa_circRNA_105055 and hsa_circRNA_086376 are the potential biomarkers of colorectal cancer by working as sponges for miR-7 (Zeng et al., 2017). Moreover, circRNA hsa_circ_0054633 also has association with diabetes, especially for prediabetes and type 2 diabetes mellitus (Zhao et al., 2017).

Because of the development of RNA base sequence techniques, more and more circRNA-related information is excavated. Thus, many different kinds of circRNA-related databases are established for further researches of various diseases, biological molecules and pathways, etc. To create more convenience to the researchers, circBase database (Glazar et al., 2014) was developed to provide the evidence supporting their expression, and all the data can be accessed, downloaded, and browsed within the genomic context. Circular RNADb (Chen et al., 2016a) is a comprehensive circRNA database that collects human protein-coding annotations of circRNAs and includes some important information about exonic circRNAs such as genomic information, exon splicing, genome sequence, internal ribosome entry site, open reading frame, and cricRNA-related references. Furthermore, ExoRBase (Li et al., 2017) is an online accessible database that extracts data from RNA-seq data analyses of human blood exosomes. circNet (Lin et al., 2015) is also a circRNA-related database from which tissue-specific circRNA expression profiles and circRNA-miRNA-gene regulatory networks can be downloaded. Moreover, circ2Traits (Ghosal et al., 2013) is an overall circRNA–disease associations database, which obtains the associations as follows: one is identifying the interactions of circRNAs with disease-related miRNAs; the other is matching the diseases associated SNPs on circRNA loci. To obtain more reliable circRNA–disease associations, circR2Disaese (Fan et al., 2018) database (http://bioinfo.snnu.edu.cn/CircR2Disease/) was developed. The whole circRNA–disease associations are collected manually from relevant references and reviews, which provides more convenience and basics to infer novel circRNA–disease associations.

Although, there are many circRNA–disease associations discovered by biological experiments, whose experimental processes are extremely expensive and time-consuming. On the one hand, there are a limited number of computational methods existing to predict potential circRNA–disease associations. On the other hand, we lack comprehensive circRNA-related diseases databases, which are our main motivation to propose a new computational method based on circR2Disease database. In this study, we develop an improved collaboration filtering recommendation system (Pan et al., 2008) method to predict circRNA–disease associations, which is named ICFCDA. First, circRNAs target gene–related gene ontology (GO) terms, circRNAs base corresponding sequences data, and circRNA–disease associations are adopted to calculate the circRNA functional annotation semantic similarity, sequence similarity, and Gaussian interaction profile (GIP) kernel similarity. Second, disease-related genes and circRNA–disease associations are used to calculate the disease functional similarity and disease GIP kernel similarity. Furthermore, we also replace the disease names into disease ontology (DO) IDs to calculate the disease semantic similarity based on the DOSE (Yu et al., 2015) tool. Third, multiple disease similarities and circRNA similarities are combined with the final disease similarity matrix and circRNA similarity matrix, respectively. Finally, collaboration filtering method is adopted to calculate the score of each circRNA–disease pair. For the sake of evaluating the performance of method we proposed, leave-one-out cross validation (LOOCV) is used to calculate the area under receiver operating characteristic (ROC) curve (AUC) value. Moreover, several common diseases also are tested by the LOOCV mechanism. In addition, case studies of two common diseases are implemented to further illustrate the performance of ICFCDA.




Materials and Methods



Human circRNA–Disease Associations

To extract circRNA–disease associations, the initial circRNA–disease associations datasets are downloaded from circR2Disease database (Fan et al., 2018) (http://bioinfo.snnu.edu.cn/CircR2Disease/). In the original dataset, there are 725 circRNA–disease associations that have been verified by biological experiments. These 725 circRNA–disease associations contain 661 circRNA individuals and 100 disease individuals. In term of the initial dataset, 212 circRNA–disease associations are picked out as the known associations in this study, which are composed of 42 disease entities and 200 circRNA entities. The adjacency circRNA–disease association matrix is deciphered by matrix A. If there is an association between the disease i and circRNA j, A(i, j) is equal to 1 or A(i, j) is equal to 0.




circRNA Similarity



circRNA Functional Annotation Semantic Similarity

On the basis of the original circRNA–disease associations, 200 circRNA entities are screened out. Then human GO terms data are downloaded from human protein reference database (HPRD) database (Keshava Prasad et al., 2009). The initial circRNA–disease associations provide the circRNAs-related genes. Thus, the circRNA-related genes are utilized to match GO data extracted from HPRD database. In this study, an information content algorithm (Lin, 1998) is adopted to calculate the circRNA functional annotation semantic similarity. CFS is used to describe the circRNA functional annotation semantic similarity network. Moreover, the following equation is used to calculate the circRNA functional annotation semantic similarity:

	[image: ]	(1)

where CFS(i, j) denotes the functional annotation semantic similarity between circRNA Ci and Cj; P(Ci) and P(Cj) represent the probability between the number of Ci and Cj target gene–related GO terms and the number of the entire GO terms. [image: ] is the ratio of between the union of the number of circRNA Ci and Cj target gene–related GO terms and the number of the entire GO terms.




circRNA Sequence Similarity

For the sake of calculating the circRNA sequence similarity, the circRNA corresponding RNA base sequence data are downloaded from circBase database (Glazar et al., 2014) (http://www.circbase.org/). In our computational model, there are 200 circRNAs needing matching their related RNA base sequences. A base pairing algorithm named the Needleman-Wunsch pairwise alignment algorithm is used to calculate the circRNA sequence similarity, which is integrated into a python toolkit called Biopython (Cock et al., 2009). Therefore, there are some parameters needing setting up for obtaining a better result. The gap-open penalty is set as 2, and the gap-open extending penalty is set as −0.5 to −0.1. CSS is adopted to represent the circRNA sequence similarity matrix, and CSS(i, j) represents the similarity value between the circRNA Ci and Cj. Then, the Needleman-Wunsch score of each circRNA pair is normalized as follows:

 [image: ]	(2)

where NW(i, j) is the score of the Needleman-Wunsch algorithm between circRNA i and j.




circRNA GIP Kernel Similarity

Known circRNA–disease associations are adopted to calculate circRNA GIP kernel (Van Laarhoven et al., 2011) similarity marked as CGS. According to an assumption (Van Laarhoven et al., 2011) that the more similar the two circRNAs are, the more likely the disease associated with one of them is to be associated with another. Therefore, VCi is used to represent the interaction profile of circRNA C(i) with each disease, which means the ith row in the circRNA–disease association network. The GIP kernel similarity between circRNA C(i) and C(j) is calculated as follows:

	[image: ]	(3)

where CGS(i, j) is the GIP kernel similarity of circRNA i and j. γc is an adjusting parameter, which controls the bandwidth of each kernel, which can be initialized as follows:

	[image: ]	(4)

Where [image: ] is the initial value, which is set as 1 based on the previous study (Van Laarhoven et al., 2011). Nc is total number of circRNAs.




circRNA Similarity Integration

Finally, we obtain the circRNA functional annotation semantic similarity, sequence similarity, and GIP kernel similarity. In order to make full use of these three circRNA similarities, the following equation is adopted to integrate the circRNA similarities:

	[image: ]	(5)

where CS denotes the integrated circRNA similarity network; α is a harmonic mean factor to integrate the circRNA functional annotation semantic similarity CFS, and the circRNA sequences similarity CSS.





Disease Similarity



Disease Functional Similarity

Furthermore, disease-related genes are downloaded from DisGeNET (Pinero et al., 2017) database, which gathers more than 3,815,056 gene–disease associations between 16,666 gene individuals and 13,172 disease individuals. In order to obtain more reliable disease similarity, we also extract disease-related genes from Online Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2005) database. Based on the initial circRNA–disease associations, 42 independent disease entities are picked out as the experimental data. Then, those above disease entities are used to match the disease phenotype corresponding genes in the OMIM dataset manually. In this study, JACCARD algorithm, a statistic method, is used to calculate the disease functional similarity as follows:

	[image: ]	(6)

where DG(i) and DG(j) denote the subsets of the disease i and j related genes.




Disease GIP Kernel Similarity

GIP kernel similarity algorithm is also adopted to calculate the disease GIP kernel similarity between D(i) and D(j), which is similar to calculate circRNA GIP kernel similarities. The computing process is as follows:

	[image: ]	(7)

where DGS is the disease GIP kernel similarity network, and the DGS(i, j) is GIP kernel similarity score between disease i and j. γd is also a bandwidth adjustment parameter, which is defined as follows:

	[image: ]	(8)

where [image: ] is the initial value, which is set as 1 based on the previous study (Van Laarhoven et al., 2011). Nd is total number of diseases.




Disease Semantic Similarity

In order to calculate the semantic similarity between these 42 diseases, the disease-relevant DO IDs are extracted from the DO (Kibbe et al., 2015) database. Then all the 42 diseases’ names are replaced into the corresponding DO IDs, which are adopted to input into a R package named DOSE (Yu et al., 2015) to calculate the disease semantic similarity. After the semantic similarity score of each disease pair is obtained, DS2 can be used to represent the diseases semantic similarity matrix.




Disease Similarity Integration

Thus, the integrated disease similarity thereby can be accessed by combining the disease functional similarity, GIP kernel similarity, and semantic similarity. In this study, when we fuse different disease similarities, different weights are allocated to the disease functional similarity matrix, GIP kernel similarity matrix, and semantic similarity matrix based on the following formula:

	[image: ]	(9)

where DS denotes the integrated disease similarity network.





ICFCDA

With the increasing numbers of data in all aspects, it is important to predict or recommend some associations between the two different things. It is in this case that the recommendation system algorithm has attracted the attention of many experts. Collaborative filtering algorithm (Schafer et al., 2007; Zhou et al., 2015) is one of the recommendation system algorithms, which is applied to recommend movies (Zhou et al., 2008) or news (Das et al., 2007) for users. In this study, we first adopt the collaborative filtering recommendation system algorithms to predict the circRNA–disease associations, which is named as ICFCDA, and its flowchart is illustrated in Figure 1.



[image: ]

Figure 1 | The flowchart of the computational method ICFCDA.




For scoring each circRNA–disease association, there are five steps in our computational method as follows:

Step 1: Obtaining the top k similar neighbors of each circRNA based on circRNA similarity network CS.

Step 2: Obtaining the top k similar neighbors of each disease based on disease similarity network DS.

Step 3: Calculating the scores of circRNA–disease association by the collaborative filtering recommending based on circRNAs.

Step 4: Calculating the scores of circRNA–disease association by the collaborative filtering recommending based on diseases.

Step 5: Integrating the final recommendation scores based on Steps 3 and 4.

First, the similarity scores between circRNA j and other circRNAs in the circRNAs dataset are listed in descending order. Then, the most similar top k neighbors of each circRNA are picked out based on the final integrated circRNA similarity network CS. We conduct the same above processes for each circRNA. Therefore, we obtain the most similar top k neighbors of each circRNA. Furthermore, the value of k is set as the 4% of the number of the whole circRNAs, which can be described as nc*0.04.

Second, in terms of the most similar top k neighbors of cirRNA j and the associations between the disease i and the neighbors of the circRNA j, the most similar top k neighbors of the circRNA-based recommendation score between the disease i and the circRNA j can be calculated as follows:

	[image: ]	(10)

where CRS(i, j) is the recommendation score between the disease i and the circRNA j based on the top k most similar neighbors of circRNA j. A(i, n) is the association information of the nth most similar neighbor of circRNA j and the disease i. CS(n, j) is the similarity score of the nth most similar neighbor circRNA and circRNA j.

Third, the similarity scores between disease i and other diseases in the disease dataset are listed in descending order. Then, the most similar top k neighbors of each disease are screened out based on the final integrated disease similarity network DS. We also carry out the same processes for each disease. Therefore, the most similar top k neighbors of each disease are selected. Moreover, the value of k is set as the 4% of the number of the whole diseases, which can be described as nd * 0.04.

Fourth, based on the most similar top k neighbors of disease i and the associations between the neighbors of the disease i and the circRNA j, the most similar top k neighbors of the disease-based recommendation score between the disease i and the circRNA j can be calculated as follows:

	[image: ]	(11)

where DRS(i, j) is the recommendation score between the disease i and the circRNA j based on the top k most similar neighbors of disease i. A(m, j) is the association information of the mth most similar neighbor of disease i and the circRNA j. DS(i, m) is the similarity score of the mth most similar neighbor disease and disease i.

Finally, the circRNA-based recommendation scores and the disease-based recommendation scores are combined with the final recommendation scores as follows:

	[image: ]	(12)

where IRS(i, j) is the integrated recommendation scores between the disease i and the circRNA j. The parameter γ∈[0, 1.0] is a balance factor that can control the significance of the circRNA-based recommendation scores and the disease-based recommendation scores.

In order to solve the “cold start” problem in the collaborative filtering recommendation system, the importance of neighbors is taken into consideration. The more diseases/circRNAs are shared by two cicRNAs/diseases, the more significant it is. The importance of two diseases/circRNAs can be defined as follows:

	[image: ]	(13)

where IMP(C(i), C(j)) is the significance coefficient between circRNA i and j. IMP is divided into three parts, which include the circRNA C(i) related diseases fexp(C(i)), which can be calculated as the following equation:

	[image: ]	(14)

where D(C(i)) is circRNA i–related diseases, which means that circRNA i would provide more useful suggestion, if it is associated with fewer diseases. fns(C(j)) is the similarity if disease j based on the disease i, which is defined as follows:

	[image: ]	(15)

where I(C(i), C(j)) is intersection of the circRNA i and j–related disease dataset. fcod(C(k)) is the disease that is merely associated with circRNA i and j. Therefore, for those circRNAs that have only one relevant disease, the following equation is adopted to calculate the recommendation score:

	[image: ]	(16)




Performance Metric

In order to evaluate the performance of our proposed computational method, the AUC value that is the area of the ROC curve and the f-measure, which is a comprehensive metric using the precision and the recall, are the two main evaluation metrics in this study. The ROC curve consists of the true-positive rate (TPR) and the false-positive rate (FPR), which are calculated by the following equations:

	[image: ]	(17)
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where TP is the number of the positive samples that is the known circRNA–disease associations, which are predicted as the true circRNA–disease associations, and FN is the number of the negative samples predicted as the false circRNA–disease associations. FP is the number of the incorrectly predicted positive samples, and the TN is the number of the truly predicted negative samples. In addition, the precision is the true-positive samples in the dataset, which are predicted as positive samples dataset. The recall is the ratio between the samples that are predicted as positive samples and the whole positive samples. Thus, f-measure is illustrated as follows:

	[image: ]	(19)
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Results



Leave-One-Out Cross Validation

In this study, a cross validation mechanism, LOOCV, is adopted to test the performance of our proposed computational method, ICFCDA. For each given disease in the circRNA–disease association network, there could be one or several relevant circRNAs with each specific disease. First, for each given disease i, some circRNAs are confirmed that they are associated with the disease i, which are the known circRNA–disease associations. Each association between the disease i and one particular circRNA could be regarded as test data, and all the left circRNA–disease associations are seen as training dataset. During each LOOCV procedure, one circRNA–disease association potential score is generated. When all the scores of the test dataset are obtained, the remaining unknown circRNA–disease associations are treated as the test dataset. Finally, the predictive score of each circRNA–disease pair is obtained. Each circRNA–disease association score is a threshold after the final potential scores of the circRNA–disease associations are sorted in descending order. With the changing threshold, we can calculate the TPRs and the FPRs, which are adopted to draw the ROC curve and calculate the AUC value. In order to evaluate the performance of ICFCDA, the AUC value is compared with other seven state-of-the-art methods such as heterogeneous graph inference (HGI) method (Chen et al., 2016b), KATZ (Ganegoda et al., 2014), random walk restart (RWR) (Chen et al., 2012), and graph regularized nonnegative matrix factorization (NMF) (Liu et al., 2018), respectively. The result is shown in Figure 2, which illustrates that the performance of ICFCDA is better than others. According to Figure 2, we can find that ICFCDA achieves greater AUC value of 0.946 compared with HGI (0.821), KATZ (0.841), RWR (0.774), NMF (0.776), K-nearest neighbor regression (0.559), support vector regression with rbf kernel (0.497), and support vector regression with poly kernel (0.451), respectively. Moreover, the experiment of collaborative filtering without solving the “cold start” problem is supplemented to evaluate the performance of ICFCDA, which is presented in Figure 3. We also make the prediction of other nine common diseases including BC, breast cancer, colorectal cancer, and so on, which are represented in Figure 4. In order to illustrate the stability of our proposed computational method, the average AUC values based on the 42 diseases of other methods are shown in Table 1. Based on Figure 2 and Table 1, ICFCDA can obtain better and more stable performance than other computational methods. Furthermore, for the sake of obtaining more comprehensive and reliable results, f-measure is also treated as one of our evaluating metric, which is described in Figure 5. In addition, we also show the first k correct circRNA–disease relationships in the predicting results, which is described in Figure 6.
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Figure 2 | The AUC value of ICFCDA compared with other computational methods.
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Figure 3 | The AUC value of ICFCDA compared with CFCDA without solving the “cold start” problem.
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Figure 4 | The AUC values of nine kinds of specific diseases.







	
Table 1 | The average AUC values of 42 diseases.
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Figure 5 | Comparison of the precision, recall, accuracy, and f-measure with different methods.
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Figure 6 | The number of correct circRNA–disease association in top k predicting results.






Parameters Analysis

In this study, there are three main parameters that are the most similar top k neighbors of each circRNA/disease, the circRNA similarity integration adjustment factor α and the disease similarity integration adjustment factor β, respectively. Parameter k controls the selecting neighbors’ number of each circRNA/disease, which provides the recommendation information from neighbors. The parameter α determines the importance between the circRNA functional annotation semantic similarity and the circRNA sequence similarity, and its value is changed from 0.1 to 0.9. The third parameter β is a tradeoff between the disease functional similarity and the disease semantic similarity, whose value ranges from 0.1 to 0.9. At first, to avoid causing the bias between the circRNA and the disease recommendation scores, the recommendation integration factor γ is set as Nc/(Nd+Nc), where Nc is the number the circRNA entries, and the Nd is the number of the disease entries. At first, for testing the suitable value of the parameter k, the parameter α and the parameter β and γ are set up as 0.5, 0.5, and Nc/(Nd+Nc), which means that different disease similarity scores are treated equally. According to the above experiments, the parameter α, β, and γ are fixed. When k is set as 4%, ICFCDA can obtain the best AUC value (0.946), which is shown in Table 2. After that, we can find that the parameter α and β are not sensitive in our computational method according to Figure 7. Therefore, both the parameter α and β are set as 0.5.



Table 2 | AUC with different values for parameter k.
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Figure 7 | The AUC of the parameter α and β based on the fixed parameter γ and k.






Case Study

In order to further evaluate the performance of our proposed computational method ICFCDA, we also conduct case studies of two common diseases in the world, which are BC (Kaufman et al., 2009) and breast cancer (Veronesi et al., 2005). Bladder cancer is one of the most common genitourinary malignant diseases, which has caused hundreds of thousands of people’s death since it was discovered clinically. What’s worse, the risk of BC increases with the increasing age. Another case study is about the breast cancer, which is an important public healthy disease worldwide and is also hard to prevent. Breast cancer has a very high mortality rate. Therefore, some computational methods should be put forward to identify the potential biomarkers of these above two diseases. In this study, the prediction results of ICFCDA are validated by the other three circRNA–disease association–related databases, which are the circ2Disease (Yao et al., 2018), circRNADisease (Zhao et al., 2018), and LncRNADisease v2.0 (Bao et al., 2019), which are shown in Tables 3 and 4. Both Tables 3 and 4 are the predicting results of the top 10 BC- and breast cancer–relevant circRNAs. Circ2Disease, circRNADiseaes, and LncRNADisease are represented by *, #, and +, respectively.



Table 3 | The top 10 bladder cancer related candidates’ circRNAs.
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Table 4 | The top 10 breast cancer–related candidates’ circRNAs.
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Conclusion

With the discovery of an increasing numbers of disease-related circRNAs, more and more attention is paid by biologists. People might have lots of interests to explore the complicated associations between the various kinds of diseases and circRNAs. Simultaneously, because of the development of the RNA high-throughput techniques, it makes more convenience to find the potential associations of circRNAs and diseases. While the RNA high-throughput techniques can make this procedure easier than before, it is not only time consuming but also expensive, which becomes the main motivation to develop a computational method to predict the circRNA–disease associations. In this study, we propose a collaborative filtering recommendation system solving the “cold start” problem-based method to predict the circRNA–disease associations, which is named ICFCDA. For evaluating the performance of ICFCDA, LOOCV and f-measure show that ICFCDA can obtain better results than other novel computational methods. Moreover, case studies of BC and breast cancer also are adopted to test the performance of the ICFCDA. In terms of the different evaluations, we believe that our proposed computational method is a useful method to predict the associations of the circRNAs and the diseases.

ICFCDA can obtain better performance because of some following nonnegligible reasons. First, our proposed computational method is based on the recommendation system algorithm, collaborative filtering, which is suitable to be used to predict the circRNA–disease associations. Because circRNAs can be treated as the items, and the diseases can be regarded as the users, the different items (circRNAs) can be recommended to different users (diseases). Second, in order to solve the “cold start” problem, the circRNA similarity and the disease similarity are involved to figure out this problem. For obtaining more reliable recommendation information, various kinds of biological data are adopted to measure the circRNA and disease similarity. We download the circRNA-related gene annotation terms to calculate the circRNA functional annotation semantic similarity and the RNA base sequences to calculate the circRNA sequence similarity. Disease-related genes and phenotypes (DO ID) are used to calculate the disease functional and semantic similarity, respectively. Third, in order to screen out more informative information from the noise, we merely use the top 4% most similar neighbors of each circRNA and disease to obtain more reliable recommendation score.

For the future work, more biological data will be added to calculate the disease and the circRNA similarity for reducing the useless noisy information. Adding multiple data can enrich the information of the different biological network, such as circRNA-lncRNA, circRNA-miRNA, and so on.
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Many studies have suggested that lncRNAs are involved in distinct and diverse biological processes. The mutation of lncRNAs plays a major role in a wide range of diseases. A comprehensive information of lncRNA-disease associations would improve our understanding of the underlying molecular mechanism that can explain the development of disease. However, the discovery of the relationship between lncRNA and disease in biological experiment is costly and time-consuming. Although many computational algorithms have been proposed in the last decade, there still exists much room to improve because of diverse computational limitations. In this paper, we proposed a deep-learning framework, NNLDA, to predict potential lncRNA-disease associations. We compared it with other two widely-used algorithms on a network with 205,959 interactions between 19,166 lncRNAs and 529 diseases. Results show that NNLDA outperforms other existing algorithm in the prediction of lncRNA-disease association. Additionally, NNLDA can be easily applied to large-scale datasets using the technique of mini-batch stochastic gradient descent. To our best knowledge, NNLDA is the first algorithm that uses deep neural networks to predict lncRNA-disease association. The source code of NNLDA can be freely accessed at https://github.com/gao793583308/NNLDA.
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Introduction

There are about 30,000–40,000 protein-coding genes in the human genome, which are only about twice as many as in worm or fly (Lander et al., 2001). But the majority of the human genome transcripts are non-coding RNAs, in particular, long non-coding RNAs (lncRNAs) (Geng et al., 2013). Protein-coding genes account for only 1.5% of the human genome. However, researchers observed a total of 62.1% and 74.7% of the human genome to be covered by either processed or primary transcripts respectively (Djebali et al., 2012). This suggests that lncRNA also plays an important role in biological processes. Recent studies revealed that numerous sets of non-coding RNA involved in distinct and diverse biological processes, such as cell proliferation, RNA binding complexes, immune surveillance, ESC pluripotency, neuronal processes, morphogenesis, gametogenesis, and muscle development (Mitchell et al., 2009). Furthermore, some important lncRNA biomarkers were found in a wide range of human diseases. For example, the expression of HOTAIR would induce androgen-independent (AR) activation, which plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. It can also drive AR-mediated transcriptional programs in the absence of androgen (Zhang et al., 2015). So finding the relationship between lncRNA and disease can not only help us understand the mechanism of disease, but also accelerate the discovery of biomarker. However, discovering the potential relationship between lncRNA and disease by experimental ways are costly and time-consuming. Thus, many computational models have been proposed to predict potential connection patterns by utilizing existing data such as LncRNADisease (Geng et al., 2013), LncRNAdb (Cheng et al., 2015), and NONE-CODE (Cheng et al., 2015).

The existing computational models can be divided into two categories. The first class of methods make predictions based on the similarity of artificial definitions. It assumed that similar diseases or lncRNA have similar connection patterns. Take a simple example, if we know that disease(i) is related to lncRNA(i) and disease(i) and disease(j) are very similar. It’s obvious that we can infer that disease(j) and lncRNA(i) are also related. This algorithm needs to collect a lot of additional data to accurately define similarity. If the definition of similarity is accurate, the algorithm can achieve high performance. For example, LncRDNetFlow utilizes a flow propagation algorithm to integrate multiple networks based on a variety of biological information including lncRNA similarity, protein-protein interactions, disease similarity, and the associations between them to infer lncRNA-disease associations (Zhang et al., 2017a). IRWRLDA construct lncRNA expression similarity and lncRNA functional similarity to make prediction (Chen et al., 2016). RWRlncD infer potential human lncRNAdisease associations by implementing the random walk with restart method on a lncRNA functional similarity network (Sun et al., 2014). BiWalkLDA integrating interaction profiles and gene ontology information to construct similarity network. Such an algorithm also has KATZLGO (Zhang et al., 2017b) and IDHI-MIRW (Fan et al., 2019). It can be seen that this algorithm first constructs the similarity network based on the relevant data and then making prediction according to the constructed similarity. The second class of methods make predictions based on matrix factorization (MF). Their core idea is to learn a similarity rather than artificial definition similarity. This actually turns the prediction process into a classification question. For each lncRNA and disease, the aim of MF is to learn a latent factor to represent them and then make prediction based on learned latent factors. In this way, no additional knowledge is needed to define similarity. This method is widely used in prediction lncRNA-disease association. For example, the algorithm of MFLDA decomposes data matrices of heterogeneous data sources into low-rank matrices via matrix tri-factorization to explore and exploit their intrinsic and shared structure (Fu et al., 2017). SIMCLDA models the lncRNA-disease association prediction problem as a recommendation task and solves it with inductive matrix completion (IMC) (Lu et al., 2018).

The known lncRNA-disease association data used by current algorithms is derived from LncRNADisease (Geng et al., 2013). This database was proposed in 2013 and does not contain much lncRNA and disease (almost 300 lncRNA and 700 diseases). Because the data is relatively small, even though the existing prediction algorithms can achieve high accuracy, many results are repetitive and therefore cannot provide more valuable results. Fortunately, recently, a larger dataset LncRNADisease 2.0 can be used (Bao et al., 2019). LncRNADisease 2.0 curated 19,166 lncRNAs, 823 circRNAs, and 529 diseases from 3878 literatures. Although the form of data remains unchanged, only the increase in the amount of data makes previous algorithms not applicable to LncRNADisease 2.0. For methods that need to artificially define similarity, it is difficult to collect the additional information needed comprehensively in the face of such large data. So, it is difficult to define an appropriate similarity for prediction. For the method based on MF, the time cost of the algorithm is unacceptable with the increase of data. Besides, MF is actually a linear model of latent factors, so it cannot describe more complex relational patterns well (He et al., 2017). As we all know, deep learning can be applied to large-scale data and learn complex non-linear relationships by means of mini-batch stochastic gradient descentand and nonlinear activation function. In recent years, deep neural networks have yielded immense success on object detection (Ren et al., 2017), recommendation System (Zhou et al., 2017), single cell denoising (Eraslan and Simon, 2019; Peng et al., 2019), and many other fields. However, no deep learning-based algorithm has been proposed to predict potential lncRNA-disease association. In this article, we will introduce our proposed framework NNLDA which uses neural networks to predict lncRNA-disease association. To our best knowledge, NNLDA is the first algorithm that uses deep neural networks to predict lncRNA-disease association. Experiments show that NNLDA can be well applied to large data and to learn more complex non-linear relationships.




Method

Our prediction framework NNLDA is improved based on the MF method. In this section, I will first introduce the method of MF and point out its shortcomings. Then, we will explain how we solve these shortcomings and introduce the procedure of NNLDA in detail.



Matrix Factorization (MF)

MF is a frequently used method in the problem of predicting lncRNA-disease association (Fu et al., 2017; Lu et al., 2018). Its core idea is to learn a corresponding latent factor for each lncRNA and disease. The dot product of the latent factor was used to represent the possible score of corresponding lncRNA and disease. Take the prediction of lncRNA-disease association, for example. First, we should construct an adjacency matrix Anl×nd, where nl is the number of lncRNA and nd is the number of diseases. Aij = 1 represents that the ith lncRNA is associated with dj, otherwise, Aij = 0. Then, we assign a k-dimensional latent factor L(i) for each lncRNA(i) and a k-dimensional latent factor D(i) for each disease(i). These latent factors are usually randomly initialized at the beginning and then be adjusted by some optimization algorithm such as stochastic gradient descent. Now, we can use the dot product of the latent factor to re-estimate A. For each pair of lncRNA(i) and disease(j), we predict its association using [image: ]. Our objective funcition is to minimize the following loss function:

	[image: ]	

A new L and D can be learned by minimizing loss. This loss is actually equivalent to [image: ], which was frequently used in other literatures because the dot product of vectors can be seen as the angle of vectors in space (a⋅b = |a||b|cos(a,b)). So, matrix factorization actually maps each lncRNA and disease into k-dimensional space and then defines the relationship between lncRNA and disease by using the length and angle of the latent factor. However, there are several shortcomings in doing so: (1) There are limitations in utilizing the angle between latent factor to define the relationship between lncRNA and disease. Take two-dimensional space as an example, suppose we now learn three latent factors: a1(1,0), a2(0,1), a3(1,1), if we also have latent factor a4 and we want the angle between a4 and a1, a2 to be as small as possible, but the angle between a2 and a3 to be as large as possible. Obviously, no matter where a4 is, it can’t be satisfied. Of course, we can describe this relationship by adding spatial dimensions, but the increase of k actually increases the risk of over-fitting. It can be concluded that angle can’t actually describe some complex relationship patterns perfectly. (2) The time complexity of matrix decomposition is too high. When calculating the loss, it needs to calculate all possible connections between lncRNA and disease. As the amount of data increases, the time required is unacceptable. Besides directly optimizing, global loss is easy to fall into local minima.




Making Matrix Factorization Applicable to Large Data

In order to make the matrix factorization method suitable for large-scale data, we made some improvements to the original method and implemented the method with tensorflow. We named this method NNMF, which is different from the traditional MF method in two aspects:

(1) Unlike previous MF, full data is used to minimize loss. We adopt mini-batch stochastic gradient descent to train model. This means that we use only one batch data per round to minimize loss, which makes our algorithm suitable for large-scale data.

(2) The traditional matrix factorization uses mean square error or absolute value error to measure loss. Its goal is to [image: ]. In NNMF, we use cross-entropy as our loss function, which is proved to be more applicable to classification problems and easier to optimize.

With above two improvements, NNMF can be adapted to large-scale data. The structure of the network and an example of computational processes are shown in Figure 1. NNMF takes lncRNA(i) and disease(j) as its input and outputs the probability of the relationship between lncRNA(i) and disease(j). First, the network generates a dense latent factor for corresponding lncRNA(i) and disease(j). This operation is done by embedding lookup function in tensorflow. Then, the corresponding position elements of the two vectors are multiplied and summed. Sigmoid activation functions are added to limit output to between 0 and 1. With the predicted results, we can calculate the cross-entropy loss to adjust the corresponding latent factor. To avoid storing the whole data set into memory each time we take a batch data to train, the batch size is set to 1,024. This process is repeated until the loss is no longer reduced. NNMF changes the way of training and the loss function compared with the traditional matrix decomposition algorithm. With these small changes, NNMF can be adapted to large-scale data easily.



[image: ]

Figure 1 | (A) The structure of NNMF. Each lncRNA and disease is projected into a k-dimensional space. It means each lncRNA and disease would be represented by a corresponding k*1 eigenvector. The relationship between lncRNA and disease is measured by the dot product of their corresponding eigenvector. The activation function is sigmoid. (B) A toy example of the NNMF, where k is set to 3. 






Learning More Complex Relationships by Using Full Connectivity Layer

Matrix factorization actually maps lncRNA and disease into k-dimensional space, and then measures their relationship by using dot product of latent factors. This approach undoubtedly has its limitations. In order to learn more complex non-linear features, a natural idea is to use the full connection layer of the neural network to improve it. Similar to the NNMF process, we initialize a latent factor for each lncRNA and disease at the beginning. Then, we concatenated the latent factors and add full connection layers to learn more complex relationships. RelU activation function is used on each full connection layer to increase the non-linear description ability of the network. Sigmoid activation functions are added to limit output to between 0 and 1. Considering that using full connection layer alone may increase the risk of over-fitting. We adopt the following two strategies to prevent over-fitting:

(1) Add L2 regularization to latent factors and full connection layer to limit models from learning too complex features.

(2) The deep part is trained together with NNMF. In this way, we cannot only learn more diverse connection relationships, but also improve the generalization ability of the model.

We name this new model NNLDA. It means predicting lncRNA-disease association by means of neural networks. The overall structure of NNLDA is shown in Figure 2. First, for each lncRNA and disease, we will find their corresponding latent factors. MF part multiplies the corresponding elements of latent factors and deep part use several full-connection layers to learn the complex relationship between lncRNA and disease. Their results are concatenated together and connected to a full connection layer for final prediction. Sigmoid activation function is added to limit output to between 0 and 1. NNLDA learns more complex relational patterns by combining dot product of latent factors and full connectivity layer. Because NNLDA uses mini-batch stochastic gradient descent to minimize loss, it can also be well applied to large-scale data. We believe that NNLDA can perfectly solve the shortcomings of traditional MF methods.



[image: ]

Figure 2 | The structure of NNLDA. MF part is same as NNMF. Deep part use several full connection layers to learn complex association relationships. Their results are concatenated together to make final predictions.






Implementation

NNLDA is implemented in Python 3.5 and uses TensorFlow1.12.0. Length of latent factor is set to 32. Three full-connection layers with lengths of 32, 16 and 8 are added in deep part. L2 regulation is added in all full-connection layers and latent factors to prevent over-fitting and regulation rate is set to 0.01. We use adam for optimization with learning rate 0.01. Epoch is set to 100 and batch size is set to 1024.





Experiment



Dataset

Unlike previous algorithms which usually perform on small data sets such as LncRNADisease database, we use LncRNADisease 2.0 to measure the results of the algorithm. LncRNADisease 2.0 shows that there exists 205,959 interactions between 19,166 lncRNAs and 529 diseases. We believe that more valuable results can be found by using larger data. Such large-scale data also challenges previous algorithms. The experimental data can be downloaded from http://www.rnanut.net/lncrnadisease/. We remove all repeating records with the same lncRNA and disease, and all these non-human associations. Finally, we retained 187,55 lncRNA and 463 disease with 177,899 associations.




10-Fold Cross Validation

To test the algorithm performance, we employed a widely-used strategy, 10-fold cross validation. Known lncRNA and disease associations are divided into 10 copies. In each round, nine of them are used to train algorithms and the remaining one is used as a test set. Notice that we need negative samples to train the algorithm, but in fact we don’t know which lncRNAs are not associated with diseases. So, for each known LncRNA-disease, we will randomly sample four lncRNA that do not interact by this disease as negative samples. When predicting test sets, we no longer use AUC as an evaluation criterion. This is because AUC needs to compute all possible associations. This means that if there are n lncRNA and m disease, we need to calculate n*m possible cases and then generate a rank list. It’s obvious that it’s unrealistic when the data set is large. So we adopt a new evaluation strategy. For each test sample, we will sample 99 random lncRNA that not interact by this disease. The model scores 99 negative samples and one positive sample to generate the corresponding rank list. Then, we use Hit Ratio (HR) to assessment results. The HR intuitively measures whether the test item is present on the top-k rank list and we can interpret HR (K) as the probability of positive samples appearing in top-k rank list. If the test sample is in the first k of rank list, its value is plus one. The hit rate value can be obtained by dividing the final hit value by the number of test samples. The higher the hit rate, the higher the likelihood that true sample will appear in the top-k rank list.




The Effects of Parameters



Length of Latent Factors

In the first step of NNMF and NNLDA, both lncRNA and disease need to be mapped into a k-dimensional vector. This vector is called latent factors. Here, k is an artificially defined parameter and represents the dimension of feature space. If the value of k is very small, the model cannot learn complex relationships. If the value of k is big, the risk of over-fitting of the model increases. In order to test possible effects on the performance of the algorithm under different value of k, we changed the value of k in 8, 16, 32, 64, and 128 each time, and then calculated the HR 10. Because KNN does not use latent factors, we only compared NNMF and NNLDA here. The experimental results show in Figure 3. The result shows that the length of latent factors don’t actually have much impact on the hit ration. This is because we added L2 regularization to latent factors. Even if the length of latent factors increases, it will not be over-fitting data. If no regularization is added, the loss of the model decreases rapidly and over-fitting will occur soon.



[image: ]

Figure 3 | HR @ k Three Algorithms under Different value of k.






Number of Layers

We used several full-connection layers in deep part to learn more complex relationships. More layers can theoretically learn more complex models, which also increases the risk of over-fitting. In order to test the possible effect of number of layers on the performance of the algorithm. We changed the number of layers in 1-layer (32), two-layer (32 and 16), three-layer (32, 16, and 8) and four-layer (32, 16, 8, and 4), and calculate the hit ration value. The experimental results are shown in Figure 4. It can be seen that increasing the number of layers of the network will not greatly improve the effectiveness of the algorithm. Algorithm performance is poor when the number of layers is 4. This shows that even if we use L2 regularization to prevent over-fitting, the number of layers of the network should not be too big.



[image: ]

Figure 4 | Effects of lengths of latent factors.







Comparison With Other Algorithms

Because we use LncRNADisease 2.0 to compare the performance of our algorithm. Traditional algorithms cannot be applied to such large dataset. So, although many computational models have been proposed, they cannot be used for comparison. We have made some changes to the traditional algorithm. NNMF can be seen as a matrix factorization algorithm suitable for large-scale data. For algorithms that need to define similarity artificially, we implement an algorithm manually based on the idea of KNN. The specific process is as follows: First, we calculate the gauss similarity between diseases which is widely used in other papers. Then for each disease, we will find 40 diseases that are most similar to it and use their average interaction profile to make predictions.

We compare NNLDA with other two computational methods (NNMF and KNN) of lncRNA-disease association prediction in terms of HR. All algorithms use the same data to make predictions. The experimental results are shown in Figure 5. It can be seen that the performance of KNN is very poor. This is because similarity-based algorithms need to artificially define the similarity between diseases and then make predictions based on similarity. As the amount of data increases, additional data becomes more and more difficult to obtain. Because of this, it is difficult to define an accurate and reasonable similarity. So, the performance of this algorithm is limited by similarity. Comparing NNLDA and NNMF, we can find that NNLDA outperforms NNMF in all k values. In fact, NNLDA can be seen as model fusion of NNMF and full connectivity layer. This shows that more complex connection relationships can be learned by using the full-connection layer.
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Figure 5 | Effects of lengths of latent factors.







Conclusion

Many recent studies suggest that lncRNAs are strongly associated with various complex human diseases. Therefore, the discovery of the potential association between lncRNA and diseases helps to understand the biological processes and underlying mechanisms of diseases. Many prediction algorithms have been proposed to predict lncRNA-disease association. Although the algorithm can achieve high accuracy, traditional prediction algorithms can no longer be applied to more and more large-scale data. In this paper, we propose NNLDA to predict lncRNA-disease association. NNLDA uses mini-batch stochastic gradient descent and cross-entropy loss to enable the algorithm to be applied to large-data sets and use full-connection layer to make up for the deficiency of MF expression ability. Our contributions can be summarized as follows: 1) NNLDA is the first algorithm can predict lncRNA-disease association on large datasets. 2) NNLDA is the first algorithm to use neural network to predict potential lncRNA-disease association. Compared with traditional MF algorithm, NNMF can better describe their relationship by using full-connection layer. In the experimental part, we compare NNLDA, KNN, and NNMF. The experimental results show that NNLDA performs better in terms of hit rate on LncRNADisease 2.0 database. The experiment of parameter influence shows that NNLDA is robust to different parameter setting.
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A promoter is a short region of DNA (100–1,000 bp) where transcription of a gene by RNA polymerase begins. It is typically located directly upstream or at the 5′ end of the transcription initiation site. DNA promoter has been proven to be the primary cause of many human diseases, especially diabetes, cancer, or Huntington's disease. Therefore, classifying promoters has become an interesting problem and it has attracted the attention of a lot of researchers in the bioinformatics field. There were a variety of studies conducted to resolve this problem, however, their performance results still require further improvement. In this study, we will present an innovative approach by interpreting DNA sequences as a combination of continuous FastText N-grams, which are then fed into a deep neural network in order to classify them. Our approach is able to attain a cross-validation accuracy of 85.41 and 73.1% in the two layers, respectively. Our results outperformed the state-of-the-art methods on the same dataset, especially in the second layer (strength classification). Throughout this study, promoter regions could be identified with high accuracy and it provides analysis for further biological research as well as precision medicine. In addition, this study opens new paths for the natural language processing application in omics data in general and DNA sequences in particular.

Keywords: DNA promoter, transcription factor, word embedding, convolutional neural network, natural language processing, precision medicine


INTRODUCTION

A promoter is a region of DNA where RNA polymerase begins to transcribe a gene. Normally, promoter sequences are typically located directly upstream or at the 5′ end of the transcription initiation site (Lin et al., 2018). Both promoters and transcription initiation sites are bound by RNA polymerase and the necessary transcription factors. Promoter sequences describe the direction of transcription and point out which DNA strand will be transcribed (known as sense strand). The transcription process is shown in Figure 1, which contains two steps: turning on and turning off genes. In these two stages, promoters receive information from RNA polymerase to decide the manufacture of lactase. Promoters can be about 100–1,000 base pairs long. There are three elements of promoters in eukaryotic cells, such as core promoter, proximal promoter, and distal promoter. Each of them plays a different role in DNA transcription and RNA polymerase. Many recent studies suggested that DNA promoters may be the primary cause of many human diseases, especially diabetes (Döhr et al., 2005; Ionescu-Tîrgovişte et al., 2015) or Huntington's disease (Coles et al., 1998).


[image: Figure 1]
FIGURE 1. Process of promoters in transcription. (A) The gene is essentially turned off. The repressor is not inhibited by lactose and binds to operator, then promoter is bound to make lactase; (B) the gene is turned on. The repressor is inhibited by lactose, then the promoter is bound by the RNA polymerase and express the genes to synthesize lactase. Finally, the lactase will digest all of the lactose, until nothing binds to the repressor. The repressor will then bind to the operator, stopping the manufacture of lactase.


Owing to the huge importance of promoters in genetics and human diseases, the detection of them is an essential problem in genome research. A lot of efforts had been made to address this issue, from researchers with wet-lab, experimental, and computational techniques. One of the most important techniques is to detect the promoters based on TATA box, which is a motif that contains 24% of promoter genes in eukaryotes. Examples of this approach include: Promoter Scan (Prestridge, 1995) built a scoring profile by combining a weighted matrix for scoring a TATA box; Promoter2.0 (Knudsen, 1999) combined genetic algorithms and elements similar to neural networks to recognize promoter regions; Reese (2001) annotated promoters in the Drosophila melanogaster genome using a time-delay neural network; and (Down and Hubbard, 2002) combined TATA box with flanking regions of C-G enrichment. Later, some approaches focused on addressing this problem with spatial information of the base pairs in the sequences. There are some examples in this case: PromoterInspector identified promoters, based on the genetic context of promoters rather than their exact location; MCPromoter1.1 (Ohler et al., 1999) identified promoters based on three interpolated Markov chains (IMCs) of a different order. Moreover, the location of GpG islands had been used to predict the promoters region, as shown in Ioshikhes and Zhang (2000), Davuluri et al. (2001), and Ponger (2002).

Over the past decade, with the development of NGS technology, a large number of sequences was transcribed, which motivates researchers to build their predictors on sequence information. Similarly for promoters, it is necessary and urgent to develop highly efficient prediction techniques on it. Some notable research have been reported in the identification of promoters using sequence information. For instance (Li and Lin, 2006) recognized and predicted σ70 promoters in Escherichia coli K-12 by using position-correlation scoring matrix (PCSM) algorithm. This problem has been improved upon using variable-window Z-curve composition (Song, 2011) and six local DNA structural properties (Lin et al., 2018). Yang et al. (2017) exploited sex cell types and word embedding to identify enhancer–promoter interaction. Two types of promoters (σ54 and σ28) were identified by integrating DNA duplex stability into neural networks (de Avila e Silva et al., 2014). Later, (Lin et al., 2014) identified σ54 promoters using PseKNC, which is an advanced feature in bioinformatics fields. PseKNC had been used in the latter applications to classify promoter's types (Liu et al., 2017) and promoter's strength (Xiao et al., 2018). The promoter strength of Escherichia coli σ70 has been also predicted in Bharanikumar et al. (2018) with use of respective position weight matrices (PWM). Deep convolutional neural networks have been used to identify promoters using sequence information, such as recognition of prokaryotic and eukaryotic promoters (Umarov and Solovyev, 2017).

Identifying promoters, especially their strength, is an important problem in this aspect and latest research (Xiao et al., 2018) has achieved an accuracy of 83.13 and 71.20% for two layers, respectively. However, the performance results are not satisfactory and requires a lot of efforts from bioinformatics researchers to enhance the accuracy. A novel approach, proposed in this study, aims to address this problem. Our idea is based upon the natural language processing (NLP) field which classifies the text/sentence into its appropriate scenario. Therefore, we would like to apply it to bioinformatics to interpret the hidden information of DNA sequences (represented by promoters). Over the past decade, some researchers have successfully applied NLP techniques into biological sequences. One of the pioneering studies is from Asgari and Mofrad (2015) and it had been applied successfully in many later bioinformatics applications (Habibi et al., 2017; Hamid and Friedberg, 2018; Öztürk et al., 2018). However, most studies used the Word2Vec model or FastText model with a single level of N-gram. Here, a novel approach is presented, in which we used a combination of FastText N-grams to represent the DNA sequences. With this idea, we are able to take into account the sub-word information of DNA sequences as well as many N-gram levels in order to aid the increase in the predictive performance. Another point is the use of deep learning to take advantage of the numerous promoter sequences in this problem.

We listed some key contributions of this study which are as follows: (1) a computational model for classifying promoters which achieved better performance than the previous methods; (2) a novel method for generating hidden information of DNA sequences by incorporating a combination of FastText N-grams and deep learning; (3) a study that provides significant information for researchers and biologists to better understand the promoter's functions; and (4) a basis for further study that would apply the FastText model and deep learning architecture in solving the bioinformatics problem. Here we deal with these contributions clearly in the following sections.



METHODS

Under the operation of a specifically designed pipeline, an overall flowchart of our approach is presented in Figure 2. Each of the experimental steps of this proposed pipeline will be sequentially addressed in the following subsections.


[image: Figure 2]
FIGURE 2. Flowchart of this study. First, we used FastText to train model and extract features from benchmark dataset (Xiao et al., 2018), then combined 10-gram levels to a combination sets of vectors (1,000 dimensions). Deep neural network was then constructed to learn these vectors and classify the DNA sequences.



Benchmark Dataset

Collecting a high-quality dataset is one of the most important steps to address a bioinformatics problem. In this study, we re-used the benchmark dataset from Xiao et al. (2018) to objectively assess the difference in performance between our model and other existing ones. In this dataset, they collected all experimentally—confirmed promoter sequences from RegulonDB (Gama-Castro et al., 2015), which is a huge database of the regulatory network of gene expression. These sequences were categorized into two groups: strong and weak promoters based on their levels in transcription activation and expression. They also extracted non-promoter sequences by considering intron, exon, and intergenic sequences excluding the positive sequences. After that, the CD-HIT [26] was also used to exclude the pairwise sequences whose similarities were calculated to be more than 85%.

The benchmark dataset encompasses 3,382 promoter samples and 3,382 non-promoter samples. In 3,382 promoter samples, there are 1,591 strong promoter samples and 1,792 weak promoter samples for construction of second layer classification. It can be freely downloaded at http://www.jci-bioinfo.cn/iPSW(2L)-PseKNC/images/Supp.pdf. The whole dataset was randomly divided into five subsets to perform a 5-fold cross-validation. The training process was performed using a fixed ratio of the training set over the validation set of 4:1 with alternation.



DNA Representation With Language Model

A DNA sequence consists of four nucleotides: adenosine (A), cytidine (C), guanosine (G), and thymine (T). These nucleotides will combine together to form a definite sequence in the DNA sequence. Feature extraction is an important step in most of the bioinformatics problems, whereby the main features will help in discriminating DNA sequences. One of the most common methods is the use of k-mer. K-mers are described as all the possible subsequences (of length k) from a read accessed through DNA sequencing. The number of k-mers possible given a string of length L is L-k+1, whilst the number of possible k-mers given n possibilities (four in the case of DNA e.g., ATGC) is nk. K-mer has been used in a lot of bioinformatics problems and has achieved promising results. Next, Chou highlighted PseDNC which has extracted DNA sequences via different ways. PseDNC has helped to rectify numerous problems relating to bioinformatics, as compared to using k-mer. Another approach is the use of language model to represent the information of DNA sequences. In this approach, DNA sequence will be treated as a language sentence and then fed into supervised learning for classification. We can easily list the methods using this approach, from Word2Vector to FastText. In these approaches, FastText has been proven to achieve better performance as compared to Word2Vector or Glove.



FastText Implementation

In order to generate continuous N-grams, we made use of FastText (Bojanowski et al., 2017), which is a library from Facebook for representation and classification of text. In FastText, we can train different language models such as skip-gram or CBOW and apply a variety of parameters such as sampling or loss functions. There are a lot of improvements from Word2Vector to FastText as described in Bojanowski et al. (2017) and Le et al. (2019a). In this study, each DNA sequence was treated as a sentence with a lot of words. Moreover, each word contains a bag of character n-gram. As mentioned in FastText's document, they modified the algorithm of Word2Vector whereby special symbols “and” are added at the boundary of words, which helps to differentiate prefixes and suffixes from other character sequences. Moreover, the word itself has been also included in the n-gram set to learn a representation for each word (together with character n-grams). To explain the idea, we used our DNA word “ATGAC” as an example. If we would like to generate the representation of this word with 3-gram, they will be consequently: <AT, ATG, TGA, GAC, AC> and the special sequence <ATGAC>. Here, it is noteworthy that the representation <TGA>, corresponding to the word “TGA,” is different from the tri-gram “TGA,” derived from the word “ATGAC.” The reason is because of the potential of extracting sub-word information in word “TGA” of FastText and it could help generate more information for each word. The word generated by FastText could be considered as a continuous bag of words. In this study, we extracted all the n-grams from 1 to 10 to consider the optimal levels of them.

What makes FastText different from Word2Vector is the sub-word information, and it is proposed via a scoring function s as follows:
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where G is the size of n-grams, Gw ranges from 1 to G, w is a given word, zg is a vector representation to each n-gram g, vc is context vector. This simple modification allows objective representation of words, thus helping the model learn reliable representation for rare words.

Based on the recent successful applications of FastText model in representing biological sequence (Le, 2019; Le et al., 2019a), we introduced a more in-depth benchmark method using FastText to improve this representation. Here we take into account the combination of continuous N-gram levels, which was not considered by the previous studies. It means that instead of using only one level of N-gram and sub-word information, we used a lot of N-gram combinations and considered which was the best combination for this problem. A huge advantage of this approach is that we can have many features for learning. In addition, we can easily implement feature selection techniques and improve the performance results in the model.



1D Convolutional Neural Network

In general, CNN is a class of deep neural networks that has been demonstrated to be exceptionally successful in territories, such as picture acknowledgment and order. CNN has been fruitful in computer vision related issues such as face recognition, object detection, or self-driving cars. CNN appears ready to reproduce and upgrade these key strides in a bound together structure and learn various leveled portrayals specifically from crude images. If we take a convolutional neural organization that has been prepared to perceive protests inside pictures, then that system will have built up some inward autonomous portrayals of the substance and style contained inside a given picture. Since the input of this problem was a vector, therefore, we used 1D CNN. Similar to 2D CNN approaches which has been used in bioinformatics (Le and Nguyen, 2019; Le et al., 2019b; Nguyen et al., 2019), it consisted of the following layers:

(1) Input layer: The input of our model is a 1D vector, which is a vector of size 1 × 100 (created by FastText model).

(2) Convolutional layer: A 1D convolutional layer (e.g., temporal convolution) is used to construct a convolution kernel and then derive features encoded in the 1D input vector. The convolutional layer moves in stride over the input, transforming the values into representative values via a sliding window. This process helps conserve the dimensional relationship between numeric values in the vectors, by gaining beneficial features using small parts of input data. Since our input size was not big, a kernel size of 3 was applied to figure out more information.

(3) Rectified Linear Unit (ReLU): an additional non-linear operation is presented after every convolution operation. It aims to perform non-linear function in our CNN and help our model understand data better. The output function of ReLU is as follows:

[image: image]

where x is the number of inputs in a neural network.

(4) Pooling layer: It is normally added inside the convolutional layers to reduce the calculation of the next layers. Max pooling was selected in this step with stride of 2.

(5) Dropout layer: A technique which aims to prevent overfitting and also help to increase the model's performance (Srivastava et al., 2014).

(6) Flatten layer: a layer helps to transform the input matrix into a vector.

(7) Fully connected layer: is normally inserted by the last stage of the deep networks. The layer is fully-connected if each node is connected with all of the previous nodes in the network. Our problem is to identify between promoter and non-promoter (or classify strong and weak promoter), thus it was a binary classification. Therefore, the final number of nodes in our output is 2.

(8) Softmax is a logistic function defined by the formula:

[image: image]

where z is the input vector with K-dimensional vector, σ(z)i is real values in the range (0, 1) and ith class is the predicted probability from sample vector x. It was compulsory to insert Softmax, in order to determine the probability of each possible output.



Assessment of Predictive Ability

To evaluate the performance of the classifiers that were constructed by the aforementioned deep learning architecture, the 5-fold cross-validation technique was implemented. The average metrics among the five testing sets were determined in order to compare the performance when constructing the classifier. We follow Chou's evaluation criteria which is widely used in many bioinformatics studies (Chou, 2001; Xiao et al., 2018; Le et al., 2019a). The criteria includes sensitivity (Sens), specificity (Spec), accuracy (Acc), and Matthews Correlation Coefficient (MCC) which are defined as:

[image: image]

[image: image]

[image: image]

[image: image]

The relations between these symbols and the symbols in Equations (4, 5, 6, and 7) are given by:

[image: image]

True positive (TP) and true negative (TN) are the respective numbers of correctly predicted promoter and non-promoter, whereas false positive (FP) and false negative (FN) are the respective numbers of misclassified promoter and non-promoter.

Likewise, we also used Receiver Operating Characteristics (ROC) curve and Area Under Curve (AUC) (Bradley, 1997) as the additional metrics for performance evaluation. The AUC is a probability value ranging from 0 to 1 in which the greater AUC shows the better predictive performance.




RESULTS


Optimal Experimental Setup

In this analysis, we attempted to observe the optimal hyperparameters that were used in this study. Because we integrated FastText and deep learning model, we chose the best parameters for both methods. FastText has a lot of different parameters for training purpose. Many prior research on it determined that changing these parameters will help to change the model's accuracy drastically. Therefore, we would like to perform a one-by-one strategy to tune up the optimal parameters in FastText. There are a lot of parameters that may affect the performance results and we decided to adapt these parameters such as wordNgrams (max length of word n-gram), lr (learning rate), dim (size of word vectors), ws (size of context window), epoch (number of iterations), and loss (loss function). We used a basic setting on FastText classifier to perform supervised learning for text classification. The dataset used in this section helped distinguish between promoters and non-promoters. In the first experiment, we would like to examine the effect of different levels of N-grams (from 1 to 10) on the performance results. The important measurement metric used in this evaluation is ROC AUC value. As shown in Figure 3, our classifier could classify promoters with high performance (AUC ~ 0.9), especially in two levels: 4-gram and 5-gram. However, the differences were not significant and it indicates that we can select any level of N-gram to create a good model for promoter classification. Table 1 shows the hyperparameters used for tuning the model. After the tuning process, we also presented the best set of hyperparameters found: learning rate of 0.1, vector dimension of 100, context window size of 5, epoch of 100, and softmax loss function.


[image: Figure 3]
FIGURE 3. Performance results on identifying promoters using different levels of N-gram. Our classifier could classify promoters with high performance (AUC ~ 0.9), especially at 4-gram and 5-gram levels.



Table 1. Hyperparameters chosen for tuning FastText model.

[image: Table 1]

The next tuning is from deep learning architecture, in which we performed a grid search CV on a set of potential hyperparameters. All of the parameters selected for tuning in CNN include the number of layers, epochs, batch sizes, dropout values, weight constant as well as the optimizer and activation function. After this step, we identified a set of optimal hyperparameters in CNN as follows: 64 filter layers, batch size of 100, epoch of 100, dropout of 0.3, weight constraint of 4, adadelta optimizer, and linear activation. We then used all of the optimal parameters in the next experiments as well as the later comparisons.



Effects of Different Levels of N-Gram and Combination of Continuous N-Grams in Classifying Promoters

According to the previous section, changing the number of N-grams did not make significant effect on promoter classification. It has been also proven in some of the previous works which used the FastText model (Le, 2019; Le et al., 2019a). However, one novel idea implemented in this study was to increase the performance results by using a combination of N-grams. The idea was to combine all of the N-gram levels into a big set of features, which will then be fed into classifiers. As such, our classifier will take full advantage of important features for each specific N-gram level and remove some less important features inside all of the levels. The performance results were shown in detail in Table 2. It is noted that the 5-fold cross-validation has been performed for several independent iterations to give a confidence interval for the results. In these results, we fed all 1,000 features from 10 levels of N-gram into our CNN architecture. It is easy to say that the combination of N-grams outperforms the single level of N-gram. This method achieved a sensitivity of 82.76%, specificity of 88.05%, accuracy of 85.41% and MCC of 0.709, which is improved ~1–4% from single N-gram in term of specificity, accuracy, and MCC. To statistically compare between N-gram combination and N-gram single levels, we performed 10 times of one-sided Wilcoxon tests of the ROC AUC values between the combination model and each of the 1–10-gram model. After that, all of Wilcoxon tests showed a p-value of 0.0005 (less than significance level ∝ = 0.05) which could strongly conclude that the performance results of combination features were significantly better than the single ones at high confidence level.


Table 2. Comparison between single N-gram and combination of continuous N-grams.
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Since deep learning is a black-box manner, it automatically generated the hidden information from our feature sets. Therefore, it is challenging to understand which features have most contribution or play critical role for promoter distinction in our model. As a reference, we used a common technique namely Maximum-Relevance-Maximum-Distance (MRMD) (Zou et al., 2016a) to evaluate and extract the important features of our datasets. MRMD has been used a lot of works in bioinformatics with promising results (Zou et al., 2016b; Wei et al., 2017). According to the results, MRMD suggested that our model will reach the highest accuracy when we selected 835 top-ranked features (out of 1,000) to insert into our neural network. To detail, 10 features had the highest scores were shown in Table 3. These features, therefore, play an essential role in classifying promoter sequences using our model.


Table 3. Top-ranked features using MRMD feature selection technique.
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Next, we would like to compare our performance results with a baseline machine learning technique to check whether the deep CNN has generated more hidden information and given a significant performance. Since nearest neighbor (kNN) (Keller et al., 1985) has been used to represent for traditional machine learning classifiers in different problems, we implemented it in our study for comparison. We used hyperparameter optimization process and found that the model performed consistently at 10 neighbor trees. The optimal performance reached 78.8%, 86.8%, 82.8%, 0.66, and 0.885 for sensitivity, specificity, accuracy, MCC, and AUC, respectively. Compared with the performance from CNN, kNN was lower in term of sensitivity, accuracy, MCC, and AUC. It is enough evidence to say that the deep neural network could learn more features and produce a better performance than traditional neural networks.



Classifying Promoters' Strength

Since the combination of N-grams performed well in the first layer classification, we aimed to use the same experimental setups for the second layer (classifying promoter's strength). Our dataset includes 1591 strong promoters and 1792 weak promoters as collected from Xiao et al. (2018) and has been mentioned in the dataset section. The experiments show that our method, which used a combination of N-grams, could classify the promoter's strength with an accuracy of 73.1%, sensitivity of 69.4%, specificity of 76.4%, and MCC of 0.46. The performance was also better than the baseline models with single levels of N-grams. It means that we can use this setup for both layers with promising results.



Comparison the Performance Results Between Proposed Method and the Existing Methods

Our best model as mentioned in the previous sections is the combination of different N-gram levels and deep convolutional neural networks. To be fair, we have to compare our proposed method with the other previous works that regarding promoter classification. Also it is noted that we surely chose the previous works that used the same benchmark dataset. For the first layer, numerous studies had been done, including PCSF (Li and Lin, 2006), vw Z-curve (Song, 2011), Stability (de Avila e Silva et al., 2014), iPro54 (Lin et al., 2014), iPromoter-2L (Liu et al., 2017), and iPSW(2L)-PseKNC (Xiao et al., 2018). Among these studies, only the last one performed the classification of promoter's strength, thus we also compared with this predictor in our second layer. The results are shown in Table 4, and we highlighted the highest values to highlight the significance of each metrics. We then observed that our method outperforms other predictors in all metrics (sensitivity, specificity, accuracy, and MCC) in both layer classifications. Another improvement is that our approach could be applied to actual genome sequences (long fragments of bacterial genomes) rather only short sequences. All sequences with different length will be trained to become a vector with a fix-length. It helps to input any form of sequences flexibly.


Table 4. Comparison with previous predictors on the same benchmark dataset.
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DISCUSSIONS

Promoters play an important role in the transcription of genes affect numerous human diseases. Therefore, identification of promoters using their sequence information is one of the most important tasks in bioinformatics. Although few computational tools had already been presented, the performance results require improvements. This study presents a new hybrid system, from deep learning and a combination of FastText N-grams, to identify promoters and their respective strengths. To our knowledge, this is the first bioinformatics study which has applied this hybrid into biological sequences. By using this method, we are able to generate the hidden information of DNA sequences unlike other methods. Our performance results were evaluated via a 5-fold cross-validation test on a benchmark dataset. It was found that the proposed method could identify promoters and their strength, with an accuracy of 85.41 and 73.1%, respectively. The rest of the measurement metrics, such as sensitivity, specificity, and MCC, also attained superior performances. When compared to the other state-of-the-art predictors regarding the same problem and dataset, our proposed method has improved at about 1–4% in all of the metrics. Therefore, our model can be considered as a reliable method for identifying promoters and their strength, with use of sequence information. It can also act a basis for further study that aims to interpret the language context of DNA sequences.

Last but not least, scientists can use our approach to solve further bioinformatics problems on sequencing. Since most bioinformatics problems focused on sequencing data, their features could be extracted by using our combination (different levels of FastText N-grams). They then be fed into a supervised learning to perform the prediction or classification (e.g., using deep neural network as proposed in this work). It could also provide a new approach for the previous works that only used one level of FastText (Le, 2019; Le et al., 2019a). A combination of more levels could be a solution for boosting their predictive performances. We also provided our source codes at https://github.com/khanhlee/deepPromoter to help reproducing our method. Furthermore, since a lot of previous works on promoter classification extracted features by using PseKNC [such as (Liu et al., 2017; Lin et al., 2018; Xiao et al., 2018)], a hybrid of this feature and our features could be considered in the future works for the purpose of performance improvement.
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Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus. Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia (ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Each manifestation is associated with distinct characteristics, as ATLL presents as a leukemia-like disease, while HAM/TSP presents as severe inflammation in the central nervous system, leading to paraparesis. Previous studies have identified molecules associated with disease development, e.g., the downregulation of Foxp3 in Treg cells was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10, CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these molecules were only associated with specific patient groups or viral strains. Furthermore, the majority of studies did not jointly compare all clinical manifestations, and robust analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples also pose difficulties in conducting gene expression analysis to identify specific molecular relationships. To address these limitations and increase the power of manifestation-specific gene associations, meta-analysis was performed using publicly available gene expression data. The application of supervised learning techniques identified alterations in two genes observed to act in tandem as potential biomarkers: GBP2 was associated with HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with expression �correlated to these genes were identified, and we attempted to relate the enriched pathways identified with the characteristic of each clinical manifestation. The present findings contribute to knowledge surrounding viral progression and suggest a potentially powerful new tool for the molecular classification of HTLV-associated diseases.

Keywords: human T-lymphotropic virus 1, bioinformatics, biomarkers, adult T-cell lymphoma/leukemia, HTLV-1 associated myelopathy/tropical spastic paraparesis, meta-analysis



Introduction 

Human T-lymphotropic virus 1 (HTLV-1) belongs to the Retroviridae family and Deltaretrovirus genus, and presents tropism in the infection of T lymphocyte cells (Mirvish et al., 2011). Two diseases are mainly associated with this infection: adult T-cell lymphoma/leukemia (ATLL) and HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) (Gessain and Mahieux, 2012). Around 2–5% of HTLV-infected subjects develop ATLL (Uchiyama et al., 1977) and 0.25–3.8% develop HAM/TSP (Osame et al., 1986), while the majority of HTLV-infected subjects remain asymptomatic (Galvão-Castro et al., 1997). ATLL is a lymphoma-like disease classified into four subtypes: acute, chronic, smoldering, and lymphoma (Shimoyama and members of The Lymphoma Study Group (1984–87)*, 1991). Developing this symptomatology results in a life expectancy less than 1 year in around 65% of affected individuals (Matutes, 2007), in addition to low documented chemotherapeutic response (Yamada et al., 2001). HAM/TSP is characterized as an inflammatory disease of the central nervous system (CNS), can progressively evolve to spastic paraparesis, and results in sensory disturbance in the lower extremities and bladder/bowel dysfunction (Nakagawa et al., 1995).

Currently, ATLL can be diagnosed by integrating cytology and lymphocyte immunophenotyping with HTLV-1 serology (Matutes, 2007). The diagnosis of HAM/TSP is based on clinical evaluation and the exclusion of other disorders and molecular and serological diagnosis, including HTLV-1 serology, Western blotting, and PCR analysis (Yamano and Sato, 2012). In this complex scenario, the identification of biomarkers of this disease is crucial for improving patient care and treatment. With the goal of furthering the understanding surrounding the mechanisms related to disease manifestation, some studies employing gene expression have been conducted. For instance, the downregulation of the FOXP3 gene in T-reg cells was reported to be induced by the HBZ viral protein from HTLV-1. Accordingly, the stimulated proinflammatory response was found to be associated with HAM/TSP development (Yamamoto-Taguchi et  al., 2013). Furthermore, other molecules in cerebrospinal fluid, such as CXCL10, CXCL9, and neopterin, have been proposed as promising candidates for prognostic biomarkers of HAM/TSP, offering improved predictive values in comparison to proviral load (Sato et al., 2013).

On the other hand, CAN2 and SPTA2 proteins have been proposed as biomarkers capable of classifying ATLL patients. CAN2 activity was found to induce ATLL cell death and the corresponding gene was downregulated in these cells. In addition, 17 proteins were proposed as capable of classifying healthy controls from asymptomatic carriers (ACs), HAM/TSP, and ATLL patients (Ishihara et al., 2013). Several alterations in anti-inflammatory cytokine levels in infected T cells, e.g., increased IL-10 and suppressed pro-inflammatory cytokines, were also associated with this disease (Kagdi et al., 2018). Another study suggested diagnosing patients by measuring antibody responses to HTLV-1 gag, Env, and Tax proteins (Enose-Akahata et al., 2012); however, this is akin to an immunological diagnosis. Despite the identification of biomarker candidates, various limitations have prevented adoption, as some markers were only identified in specific populations (Yasuma et al., 2016), small sample sizes were used (Ishihara et al., 2013), and the identification was performed only in specific clinical manifestations without appropriate confirmation for use as a general biomarker (Sato et al., 2013; Yamamoto-Taguchi et al., 2013).

To mitigate the impact of low sample sizes, which have limited the interpretation of individual studies, meta-analysis approaches have been employed in the field of gene/marker identification. This approach was used to highlight important genes and molecular pathways in endometrioid endometrial cancer (O’Mara et al., 2016), for the identification of programmed death-ligand 1 as a potential biomarker in glioblastoma (Xue et al., 2017), to identify a set of candidate genes, pathways, and transcription factors not previously associated with the pathogenesis of sickle cell disease (Hounkpe et al., 2015), and to disclose a novel set of candidate genetic markers, pathways, and transcription factors common to both thrombosis and myeloproliferative disorders (Jha et al., 2016). Meta-analysis, in combination with classical approaches and machine learning, has also been applied to identify biomarkers of viral infection in the Aedes aegypti mosquito (Fukutani et al., 2017). This methodology has proven powerful in discriminatory classification using gene expression data and was recently highlighted as a potentially useful method for discovering new evidences (Debray et al., 2017); Sweeney et al., 2017). Given the need to identify biomarkers associated with HTLV-1 infection, and considering the abundance of individual studies that resulted in the generation of gene expression datasets, we performed meta-analysis in an attempt to identify candidate transcriptional biomarkers that could offer improved predictive power in the classification of clinical manifestations in HTLV-1, a novelty in this field that has never been done before.




Methodology



Description of Datasets Comprising the Discovery Dataset

To identify published datasets relevant to HTLV infection, the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) was searched filtering Homo sapiens as the organism of interest and “HTLV” as the keyword. This query returned a total of 41 datasets (search performed in September 2017). After manual evaluation, 32 datasets were excluded due to methodological incompatibility (non-blood cell tissues and absence of symptomatologic information). Of the remaining datasets, three with detailed gene expression by peripheral blood mononuclear cells (PBMCs) were selected to build the Discovery dataset: GSE55851 (Kobayashi et al., 2014), GSE29312, and GSE29332 (Tattermusch et al., 2012). All of the studies that produced these datasets were performed in PBMCs and included at least two different clinical forms of infection, as well as controls (healthy individuals). When combined, the three datasets included 20 controls, 43 AC, 12 ATLL, and 20 HAM/TSP samples (Table 1). For our analysis, the AC samples were discarded to avoid possible classification bias, since this form can evolve to another clinical manifestation at some point during the patient’s life, and no information regarding disease progression was provided. The remaining six datasets performed in other tissue types were used for in silico validation.



Table 1 | Description of the datasets used as the Discovery set.
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Data Retrieval, Pre-Processing, and Batch Correction

Raw expression data were downloaded from GEO/NCBI using the GEOquery package (Davis and Meltzer, 2007). Next, the collapseRows R function in the WGCNA package (Miller et al., 2011) was used to collapse the data, and only probes mapping to genes common to all datasets were maintained. Log transformation was applied to the expression data using the preProcessCore package (Bolstad, 2018), and outlier samples were identified and removed by the ArrayQualityMetrics package for R (Kauffmann et al., 2008). The plyr package was subsequently used to merge all data (Wickham, 2011). Following pre-processing, the combined dataset was submitted to a batch correction procedure using an empirical Bayes framework implemented in the ComBat function of the sva package (Leek et al., 2013), with clinical manifestations and original datasets as covariates. This allowed us to account for known or unknown sources of variation in the datasets, enabling the use of samples from different datasets in the integrated dataset (i.e., Discovery dataset). This method allowed for the inclusion of the maximum number of samples for analysis, in addition to more robust data interpretation, leading to the identification of consistent insights regarding biological phenomena. ComBat has been used in other studies and was shown to outperform other similar tools designed for this purpose (Chen et al., 2011). The final dataset consisted of 94 samples, with expression data pertaining to 10,533 genes in total.




Classification of HTLV Patient Clinical Manifestation via Decision Tree

A decision tree classification procedure was performed in the Discovery dataset to identify the key genes related to HTLV patient clinical manifestation (ATLL or HAM/TSP). Decision trees were constructed using the rpart package Therneau et al. (2015), which screens for the key factors that allow for the separation of the groups with maximum accuracy. To measure the performance of the classification model, areas under receiver operating characteristic (ROC) curves were calculated to determine a given model’s sensitivity and specificity. The overall accuracy of a model is calculated by estimating the area under the curve (AUC), permitting measurements of the degree of class separability in a given model. Values approximating 1.0 indicate that the model is suitably capable of distinguishing among different classes. Finally, scatterplots were generated to visualize the dispersion of samples according to the model threshold in order to verify the accuracy estimated by ROC curve analysis.




Co-Expression and Enrichment Analysis of Genes Related to CD40LG and GBP2

A correlation matrix between the genes CD40LG and GBP2 (identified as best classifiers) and all the genes within the Discovery dataset was constructed. Correlation was calculated separately for each group (control, ATLL, and HAM/TSP) using gene expression values measured as biweight midcorrelation coefficients, which function similarly to Pearson’s r, except this technique is more robust with regard to data outliers (Langfelder and Horvath, 2012). Correlations were considered significant using a threshold of |r| ≥0.7 and p-value ≤0.05. Next, correlated genes were clustered according to the functional terms of the REACTOME pathway database (https://reactome.org/). This enrichment analysis was performed using clusterProfiler Yu et al. (2012) with the following parameters: p-value threshold = 0.05, Q-value threshold = 0.05, minimum number of genes to cluster  = 20, maximum number of genes to cluster = 500.




Description of Datasets Used for Validation

Six microarray expression datasets were retrieved from GEO: GSE17718 (Kress et al., 2010), GSE6034 (Hamamura et al., 2007), GSE38537 (Pinto et al., 2014), GSE33615 (Fujikawa et al., 2016), GSE57259 (Araya et al., 2014), and GSE19080 (no citation available at GEO/NCBI). To confirm the gene signature performance, we performed the gene model comparison in the validation dataset independently, without using the thresholds yielded by the decision tree model estimated during the discovery phase. The model comparison in each different dataset was obtained by applying a logistic regression fitting, which estimated the variable accuracy (CD40LG and GBP2), according to the response variable [determined by dataset metadata (HTLV status)]. Then, the ROC curve and the AUC were measured, which allows the comparison of the gene signature classification power across the validation datasets. A full description of the selected datasets is available in Table S1.





Results



Gene Expression of CD40LG and GBP2 Permits Accurate Discrimination of ATLL and HAM/TSP Patients

The decision tree algorithm identified two genes, CD40LG and GBP2, as the most informative in differentiating between the clinical manifestations of HTLV-infected samples and controls. The expression of CD40LG allowed for the discrimination of individuals with ATLL with 100% accuracy. To correctly classify the remaining samples (HAM/TSP and controls), a second gene (GBP2) was required. Expression levels of GBP2 were able to discriminate HAM/TSP samples with 84.2% classification accuracy, and controls with 100% accuracy, with a 15.8% misclassification rate occurring between HAM/TSP and controls (Figure 1A). In addition, sample dispersion was visually checked by scatterplot using the log expression cutoffs returned by the decision tree algorithm: 6.30 for CD40LG and 12.05 for GBP2 (Figure 1B). Finally, sensitivity and specificity were measured using ROC curve analysis, revealing high accuracy in discriminating among samples using genes CD40LG and GBP2: AUC of 0.90 for controls, 0.88 for HAM/TSP, and 1.00 for ATLL (Figure 1C).
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Figure 1 | (A) Decision tree classification of three different symptomatologies using CD40LG to separate all ATLL samples from the others, and GBP2 to separate 84.2% of the HAM/TSP samples from controls. (B) Scatterplot of CD40LG (Y axis) and GBP2 (X axis) gene expression detailing the dispersion of the analyzed samples. Red lines represent the thresholds suggested by decision tree analysis. (C) ROC curve representing accuracy. An AUC of 0.9016 was found for the control group, 0.8898 for the HAM/TSP group, and 1.000 for ATLL. The red line represents the ATLL group, blue indicates HAM/TSP, and green is indicative of controls.






Gene Expression of CD40LG and GBP2 Correlate With Various Immune and Metabolic Pathways That Could Impact the Course of HTLV Infection

After evaluating the high predictive power of CD40LG and GBP2 in discriminating HTLV clinical status, the roles played by these genes were investigated. Correlation analysis was performed considering global expression for each clinical manifestation (HAM/TSP or ATLL) and controls. Our results showed that 208 genes were significantly positively (r > 0.7 and p-value < 0.05) and 13 genes were significantly negatively (r > 0.7 and p-value < 0.05) correlated with CD40LG. Also, 84 genes were significantly positively and 1 gene was significantly negatively correlated with GBP2. In contrast, in the ATLL samples, 399 genes were significantly negatively correlated with CD40LG and 743 genes were significantly positively correlated with GBP2. A total of 12 genes were found to be correlated with both CD40LG and GBP2 (OAZ1, SLC39A11, NADK, TMED2, SLC38A5, P4HA1, HM13, MGAT2, HIST1H2BG, UQCRFS1, PTDSS1, and TAP1B) (Figure S1A). In addition, the HAM/TSP samples presented 394 positive and 420 negative correlations, with three being associated with both CD40LG and GBP2 (PWP1, H3F3A, and GNE). In these samples, correlations with CD40LG were mostly positive, with 367 positive correlations, while those with GBP2 were mostly negative, with 230 negative correlations (Figure S1B). More comprehensive information regarding this correlation analysis and the commonly observed genes is available as supplementary material (Tables S2–S4). The gene set previously identified correlated with the biomarkers (CD40LG and GBP2) was analyzed in order to identify their enriched pathways. Thus, the top four pathways identified from being negatively correlated with the CD40LG gene set in the HAM/TSP were “Neutrophil degranulation,” “Signaling by interleukins,” “TRAF6-mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation,” and “Toll Like Receptor 7/8 (TLR7/8) Cascade.” The main pathways identified from the gene set that negatively correlated with GBP2 in the HAM/TSP were “SUMO E3 ligases SUMOylate target proteins,” “SUMOylation,” “rRNA processing,” and “tRNA processing” (Figure 2B). Only one pathway was identified from the gene set that positively correlated with CD40LG in HAM/TSP: “SUMOylation of DNA replication proteins.” Several pathways were identified from the genes that were positively correlated with GBP2 in HAM/TSP: “Interferon Signaling,” “Interferon alpha/beta signaling,” “Activation of G protein gated Potassium channels,” “G protein gated Potassium channels,” and “Interleukin-20 family signaling” (Figure 2A).
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Figure 2 | (A) Pathways associated with genes found to be positively correlated with CD40LG and GBP2, grouped according to symptomatology. (B) Pathways associated with genes found to be negatively correlated with CD40LG and GBP2, grouped according to symptomatology. Analysis performed using the following parameters: p-value = 0.05, q-value = 0.2, minimum number of genes to cluster = 20, maximum number of genes to cluster = 500.




The top 5 pathways identified from the gene set that negatively correlated with CD40LG in the ATLL were “MAPK family signaling cascades,” “MAPK1/MAPK3 signaling,” “RAF/MAP kinase cascade,” “Mitotic G1−G1/S phases,” and “G1/S Transition” (Figure 2B). Moreover, the associated pathways from the gene set that positively correlated with GBP2 in ATLL patients were “tRNA processing in the nucleus,” “tRNA processing,” “Viral Messenger RNA synthesis,” “Late Phase of HIV Life Cycle,” and “HIV Life Cycle” (Figure 2A).

By contrast, in the control group, the pathways identified from the gene set that correlated with CD40LG were “Processing of Capped Intron-Containing Pre-mRNA,” “tRNA processing in the nucleus,” “tRNA processing,” “Viral Messenger RNA Synthesis,” “Dual incision in TC-NER,” “Transcription-Coupled Nucleotide Excision Repair (TC-NER),” “Late Phase of HIV Life Cycle,” “mRNA Splicing—Major Pathway,” “HIV Life Cycle,” “Synthesis of DNA,” “SUMOylation of DNA replication proteins,” and “HIV infection.” With regard to GBP2’s positively correlated genes, the following pathways were found in the control group: “Neutrophil degranulation,” “Metabolism of water-soluble vitamins and cofactors,” “FCERI mediated MAPK activation,” “Toll-Like Receptors Cascades,” “TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation,” “Toll Like Receptor 7/8 (TLR7/8) Cascade,” “MyD88 dependent cascade initiated on endosome,” “Toll Like Receptor 9 (TLR9) Cascade,” “Signaling by Interleukins,” “Apoptotic execution phase,” and “Interferon signaling” (Figure 2A). Further information regarding the pathways associated with these genes (ENTREZ ID) is available as supplementary material, separated into negatively correlated (Table S5) and positively correlated categories (Table S6).




Validation of CD40LG and GBP2 in Independent Datasets Reveals Classification Robustness in Different Tissue Types

To validate the accuracy of our two-gene model in the discrimination of ATLL, HAM/TSP, and control samples, this model was applied to the other datasets not used in the discovery set: (Kress et al., 2010) (GSE17718), (Hamamura et al., 2007) (GSE6034), (Pinto et al., 2014) (GSE38537), (Yamagishi et al., 2012) (GSE33615), (Olière et al., 2010) (GSE57259), and GSE19080. After downloading and pre-processing these datasets, ROC curve analysis was applied to measure the discriminant power of CD40LG and GBP2 in classifying HLTV-1 clinical manifestations. The discriminant power of this two-gene signature was found to be very high, allowing for the discrimination of the HTLV-1 clinical status in five of the datasets with an AUC value of 1 (GSE17718, GSE6034, GSE38537, GSE33615, and GSE57259). The need to include both genes for accurate classification was evidenced in the GSE19080 dataset (in which the CD40LG gene is absent), yielding a much lower AUC (0.875) in the discrimination of control samples, compared to 0.666 for HAM/TSP samples and 0.5 when discriminating ATLL samples. These validation datasets were derived from a variety of tissues, such as cell lines (StEd, MT-2, Tay and MT-4), CD4 lymphocytes, and PBMCs. The overall accuracy of this two-gene signature model is delineated in Table 2. Also, the sample distribution using the two-gene expression in all validation dataset is summarized in Figure S2.



Table 2 | Performance of the two-gene signature classifying the samples from validation datasets.
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Discussion

To date, few studies have attempted to identify biomarkers capable of discriminating between ATLL and HAM/TSP in HTLV-1 infection. A previous report (Sato et al., 2013) suggested three potential prognostic biomarkers in cerebrospinal fluid for HAM/TSP disease progression: CXCL10, CXCL9, and neopterin. Another study (Baratella et al., 2017) stated that the HBZ protein, exclusively localized in the cytoplasm, could be a biomarker of HAM/TSP. In addition, CAN-2 and SPTA-2 were identified as biomarkers capable of discriminating ATLL (Ishihara et al., 2013). However, these biomarkers were found in a specific population and, to the best of our knowledge, the literature contains no sets of biomarkers offering sufficient accuracy to reliably identify both the ATLL and HAM/TSP phenotypes. With the objective of achieving accurate discrimination, we employed a robust bioinformatic approach to consolidate the available expression data using three different datasets combined into a single Discovery dataset. Three studies were selected for this analysis, one submitted by Kobayashi et al. (acc number: GSE55851) and two submitted by Tattermusch et al. (acc number: GSE29332 and GSE29312). The study by Kobayashi et al. compares gene expression levels in PBMCs from ATLL, asymptomatic, and control patients. The other studies submitted by Tattermusch et al. compared gene expression levels in PBMCs from HAM/TSP, asymptomatic, and control individuals. Next, a data mining technique was applied to the merged, batch-corrected Discovery dataset to identify which variables (genes) could effectively discriminate clinical status among the samples. Decision tree analysis revealed genes CD40LG and GBP2 as discriminators of ATLL and HAM/TSP, offering accuracy rates of 100% and 84.2%, respectively. A previous report identified lower CD40LG expression in cells expressing PTHrP and MIP-1α, two proteins associated with ATLL progression (Shu et al., 2012). The second marker identified herein, GBP2, was previously associated with tax protein activity in HTLV-1 (Arainga et al., 2012). Despite identifying these associations, no previous studies proposed either of these genes as biomarkers of ATLL or HAM/TSP symptomatology.

The CD40LG gene encodes a protein located on the surface of T cells and exerts the role of regulating B cell functions (Stelzer et al., 2016). GBP2 is a guanylate binding protein induced by IFN-γ and is considered as a control factor for tumor cell proliferation and spreading (Messmer-Blust et al., 2010). Our functional approach entailed the correlation of these biomarkers with the global expression of other genes, followed by enrichment analysis using the REACTOME database (Fabregat et al., 2018). This analysis showed that the genes positively correlated with CD40LG are associated with pathways mainly related to tRNA processing, viral replication, and mRNA splicing in the control group. However, in the HAM/TSP group, these genes were only found to be associated with the SUMOylation of DNA replication pathway, which is specifically associated with transcription and replication pathways. In addition, the genes negatively correlated with CD40LG were found to be associated primarily with neutrophil degranulation, signaling for interleukins and several cascades of Toll Like Receptors in HAM/TSP patients. These pathways may be associated with immune responses involving inflammation (Faurschou and Borregaard, 2003; Lacagnina et al., 2018; Weitzman, 2003), which is frequently observed in HAM/TSP patients (Nakagawa et al., 1995).

On the other hand, the genes negatively correlated with CD40LG were found to be associated with MAPK cascade-associated pathways and cell cycle-related pathways. MAPK cascade-related pathways are associated with a wide spectrum of metabolic pathways related to cell proliferation, differentiation, and apoptosis (Shaul and Seger, 2007). Cell cycle-related pathways, such as Mitotic G1-G1/S phases, G1/S Transition, G2/M Transition, and Mitotic G2-G2/M phases, are related to cell proliferation (Matson and Cook, 2017). These pathways are all related to cell proliferation, which is consistent with ATLL symptomatology and the uncontrolled proliferation of T cells (Shimoyama and members of The Lymphoma Study Group (1984–87)*, 1991).

The top pathways that positively correlated with GBP2 were mainly related to HIV infection, tRNA, and viral mRNA processing and synthesis, signaling by interleukins, and apoptosis regulation. The pathways observed to be related to HIV infection may be due to similarities between HTLV-1 and HIV, as both these retroviruses mainly infect T CD4+ lymphocytes. The tRNA and viral mRNA pathways are associated with the highly active processing of RNAs that occurs in ATLL cells. Furthermore, the regulation of apoptosis could be associated with the immortalization of T CD4+ cells that characterizes the leukemic aspect of ATLL (Bellon et al., 2010).

In order to evaluate the predictive power of the CD40LG/GBP2 two-gene signature in the accurate classification of HAM/TSP and ATLL samples, we conducted a validation step using independent datasets, which revealed excellent predictive values. The majority of datasets returned an AUC of 1.0, corresponding to an accuracy rate of 100% when classifying samples as ATLL, HAM/TSP, or controls. In one of six validation datasets (GSE19080), a poorer classification accuracy was found, which is likely due to the absence of the CD40LG in the array, indicating the requirement of both genes in order to maintain reliably consistent classification. Additionally, the selected validation datasets sampled not only PBMCs but also several transformed cell lines, including MT-2, MT-4, StEd, and TaY, as well as isolated CD4+ cells. These high rates of accuracy seen in a diverse range of tissue types serve to confirm the robustness of the two-gene signature identified herein, suggesting a conserved mechanism in the regulation of genes associated with each symptomatology. Despite some limitations such as the absence of available datasets studying HTLV-1 biomarkers in a transcriptional approach and the reduced sample numbers, our findings provide useful biomarkers to independently identify populations affected by HTLV-1.




Conclusion

Our meta-analysis of gene expression datasets in HTLV-1-infected patients with specific disease manifestations identified a two-gene signature (CD40LG/GBP2) allowing for excellent classification of the HAM/TSP and ATLL phenotypes. This signature was subsequently validated in six independent datasets. An exploratory functional enrichment analysis of the genes found to be positively and negatively correlated with this signature revealed diverse activation and repression of pathways relevant to this viral disease. Our findings add to the accumulation of knowledge surrounding HTLV-1 infection and may contribute to early diagnosis, as well as the treatment of related symptomatologies.
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Accumulating evidence indicates that the microbes colonizing human bodies have crucial effects on human health and the discovery of disease-related microbes will promote the discovery of biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis of diseases. However clinical experiments of disease-microbe associations are time-consuming, laborious and expensive, and there are few methods for predicting potential microbe-disease association. Therefore, developing effective computational models utilizing the accumulated public data of clinically validated microbe-disease associations to identify novel disease-microbe associations is of practical importance. We propose a novel method based on the KATZ model and Bipartite Network Recommendation Algorithm (KATZBNRA) to discover potential associations between microbes and diseases. We calculate the Gaussian interaction profile kernel similarity of diseases and microbes based on validated disease-microbe associations. Then, we construct a bipartite graph and execute a bipartite network recommendation algorithm. Finally, we integrate the disease similarity, microbe similarity and bipartite network recommendation score to obtain the final score, which is used to infer whether there are some novel disease-microbe interactions. To evaluate the predictive power of KATZBNRA, we tested it with the walk length 2 using global leave-one-out cross validation (LOOV), two-fold and five-fold cross validations, with AUCs of 0.9098, 0.8463 and 0.8969, respectively. The test results also show that KATZBNRA is more accurate than two recent similar methods KATZHMDA and BNPMDA.

Keywords: microbe, disease, KATZ model, bipartite network recommendation, Gaussian interaction profile kernel similarity



Introduction

A microbe is a microscopic organism, including bacteria, eukaryotes, archaea, and viruses (Wu et al., 2018). Various types of microbes live on or in different parts of a human body such as the skin, mouth, hair, stomach, and gastrointestinal tract. An adult human body contains a large number of bacterial cells, which is estimated to reach 1014 and much more than the total number of human cells, with more than 5 million microbe genes, outnumbering the human genes by more than 100 fold (Sommer and Backhed, 2013). Most microbes are harmless and some are beneficial to humans (Grice and Segre, 2011). Recently, accumulated experimental evidence shows that microbes have an important impact on human health, nutrient absorption, immune response, cancer control, and the prevention of pathogen colonization (Wu et al., 2018). For example, the gut microbiota could significantly contribute nutrition absorption by producing indispensable vitamins and decomposing indigestible polysaccharides, and it also has an important impact on the mucus layer, the balance of antimicrobial peptides, and immunoglobulin A, and the differentiation and activation of some lymphocyte populations (Sommer and Backhed, 2013). Therefore, the gut microbiota is thought to be an extra ‘organ’ of humans (Gill et al., 2006). But some microbes may contribute to disease, such as psoriasis and inflammatory bowel disease (IBD). There have been reports that psoriasis occurs after strep throat and could worsen due to the colonization of Candida albicans, Malassezia, and Staphylococcus aureus on the skin or in the gut (Fry and Baker, 2007). Aroniadis et. al. (Aroniadis and Brandt, 2013) indicated that the biodiversity of bacteria, such as Bacteroidetes and Firmicutes, colonizing in individuals affected by IBD has been found to be reduced by 30 to 50%. Wang et. al. (Wang and Jia, 2016) showed that the gut microbiota’s dysbiosis might be a key environmental risk factor of many human diseases, though it’s difficult to reveal the true causality.

To explore the relationship between microbes and their human hosts, scientists from many countries collaborated and launched the Human Microbiome Project (HMP) (Human Microbiome Project, 2012a). Recently, high-throughput sequencing techniques and corresponding software packages have been developed rapidly, and a growing number of research analyses have been carried out on the microbiome, such as whole-genome shotgun (WGS), 16S, and the taxonomic profiling (Human Microbiome Project, 2012b), and have demonstrated significant associations between microbes and complex human diseases such as rheumatoid arthritis, colorectal cancer, obesity, and type 2 diabetes (Wang and Jia, 2016). However, these studies involve time-consuming and expensive biological experiments. Therefore, it is necessary to utilize the known information to predict the unknown microbe-disease interactions. Identifying microbe-disease interactions could promote discovering biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis of diseases. Now, more and more computer algorithms (Chen and Zhang, 2013; Yang et al., 2014; Zhang et al., 2017; Zeng et al., 2018; Zhang et al., 2018a; Zhang et al., 2018b; Zhang et al., 2018c; Zhang et al., 2018d; Zeng et al., 2019) have been proposed for interaction prediction of miRNA-disease, lncRNA-disease, and drug-drug, and it is feasible to apply these methods to the microbe-disease association prediction field.

Recently, Ma et al. (2017) collected microbe-disease association data from previous published studies and constructed the Human Microbe-Disease Association Database (HMDAD). Based on the data from HMDAD, some microbe-disease association prediction methods have been proposed. Chen et al. (2017) used a KATZ measure to predict human microbe-disease association, and proposed an algorithm named KATZHMDA. KATZHMDA can predict new microbe-disease associations at a large scale. Bao et al. (2017) used network consistency projection and introduced an algorithm NCPHMD to predict human microbe-disease association. NCPHMD deals with unknown diseases or microbes that are not present in the disease-microbe databases. He et al. (He et al., 2018) presented an algorithm GRNMFHMDA. GRNMFHMDA assigns likelihood scores to unknown microbe-disease pairs by calculating weighted K nearest neighbor profiles of microbes and diseases, and then adapts the standard non-negative matrix factorization by integrating graph Laplacian and Tikhonov (L2) regularization to obtain a microbe-disease association prediction score matrix. Zou et al. (2017) designed an approach BiRWHMDA. BiRWHMDA constructs a heterogeneous network by connecting the microbe similarity network and the disease similarity network based on known microbe-disease associations, and then uses a bi-random walk to predict microbe-disease association.

In the paper, we propose a novel approach to predict potential micro-disease association based on the KATZ measure and bipartite network recommendation algorithm (KATZBNRA), which is an improvement on KATZHMDA (Chen et al., 2017). Similar to KATZHMDA, KATZBNRA uses the KATZ measure and the similarity of diseases and microbes according to the Gaussian interaction profile kernel to predict novel microbe-disease associations based on the known microbe-disease associations. Furthermore, in order to improve the predicting accuracy, KATZBNRA uses a bipartite network recommendation algorithm.




Materials and Methods



Known Disease-Microbe Associations

HMDAD (Human Microbe-Disease Association Database, http://www.cuilab.cn/hmdad) collected the curated human microbe-disease association data from microbiota studies where the microbes were determined by 16s RNA sequencing on the genus level (Ma et al., 2017). HMDAD provides public access to the data, and our known microbe-disease association data were downloaded from HMDAD. The data contains 450 distinct confirmed associations between 39 diseases and 292 microbes and is coded in an adjacency matrix [image: ], where nd (or nm) is the number of diseases (or microbes). If there has been an experiment confirming that microbe mj relates to disease di,A(i,j) is set to 1, otherwise A(i,j) is set to 0.




Disease Gaussian Interaction Profile Kernel Similarity

According to (Chen et al., 2017), there is a generally accepted assumption that similar diseases show an interaction tendency to similar microbes. Similar to (Chen and Yan, 2013) and (Chen et al., 2017), we compute the disease network topologic similarity based on the Gaussian interaction profile kernel. For a disease-microbe association adjacent matrix A, the binary element A(i,j) at row i and column j encodes whether there is a confirmed association between disease d(i) and microbe m(j). The ith row of A is denoted by IP(d(i)). IP(d(i)) can be regarded a binary vector and is called the interaction profile of d(i) since it provides the association information of disease d(i) with all microbes. For two diseases, their similarity KD(di,dj), based on the Gaussian interaction profile kernel, is calculated from their interaction profiles according to the following equations.

	[image: ]	(1)

	[image: ]	(2)

KD(di,dj) is adjusted by the norm kernel bandwidth γd, which is controlled by the bandwidth parameter [image: ]. It is obvious that KD(di,di) = 1 and 0 < KD(di,dj)≤1. According to (Vanunu et al., 2010), KD values in (0, 0.3] may be not informative, while KD values in [0.6, 1] may show significant similarity. Therefore, a logistic function transformation from KD(x, y) to KD'(x, y) in Equation (3) is utilized in order to measure the similarity of diseases x and y more appropriately.

	[image: ]	(3)

The parameters [image: ] and c could be set with cross-validation, but to simplify the calculation, we set [image: ] = 1 as in van Laarhoven et al., 2011, c = -15 as in (Vanunu et al., 2010). According to (Vanunu et al., 2010), we set d = log(9999) such that KD′(di,dj) = 0.0001 when KD(di,dj) = 0.




Microbe Gaussian Interaction Profile Kernel Similarity

As mentioned before, similar diseases show an association tendency with similar microbes. To measure the similarity of microbes, we also used the Gaussian interaction profile kernel as before. It could be calculated in a similar way as follows.

	[image: ]	(4)
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where [image: ] is also set to 1, and IP(mi) is the ith column of matrix A. Similarly, KM'(mi, mj) could be calculated as Equation (3). It should be noted that in each cross-validation experiment, the similarities of diseases and microbes will be recalculated (Sun et al., 2018).




Bipartite Network Recommendation

The bipartite network recommendation is a two-step resource allocation process (Chen et al., 2018b), which is based on a bipartite graph G(D, M, E), where D represents disease nodes, M microbe nodes, E the edges corresponding to the known microbe-disease associations. Let f0,i(mj) denote the initial resource allocated to a microbe node mj when considering disease di, k(mj) be the number of adjacent disease nodes of microbe mj, and let k(di) be the number of adjacent microbe nodes of disease di in graph G.

When focusing on disease di, each disease di related microbe node is initially allocated with a resource value of 1, i.e. if there is an edge between the disease node di and a microbe node mj in G, allocate an initial resource of 1 to mj. The first step of the bipartite network recommendation is to transfer the resource from microbe nodes to disease nodes according to Equation (6), and the second step is to transfer the resource of the disease nodes back to microbe nodes according to Equation (8).

	[image: ]	(6)

where alj is an element of matrix A, i.e. alj = A(l, j) and

	[image: ]	(7)

In fact, f0,i(mj) is also equal to A(i, j).

	[image: ]	(8)

Equations (6) and (8) are integrated into Equation (9).

	[image: ]	(9)
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Please see an example of the process of the bipartite network recommendation focusing on disease d1 in Figure 1. After the process, we obtain the recommendation scores (1, 0, 1/4, 3/4, 0) of the microbes for disease d1, which suggests that besides m1 and m4, m3 may also be related to the disease.





[image: ]

Figure 1 | Illustration of the two-step resource-allocation process in a bipartite graph.






The matrix form of Equation (9) is as follows.

	[image: ]	(11)

where [image: ], and B is a matrix with nm rows and nd columns. The ith column of B is the recommend scores of bipartite network recommendation regarding disease di




KATZBNRA

KATZBNRA uses the KATZ model to compute the associations between diseases and microbes and is illustrated in Figure 2. As a network-based computation method, the KATZ model (Chen, 2015) had been used in the problem of link prediction in the heterogenous network to calculate the similarity of nodes. There are two factors that have been regarded as effective similarity metrics in the KATZ model, the walk steps (length, i.e. the number of edges of the walk) and the number of walks from one node to another. We use the KATZ model to calculate similarities between the nodes of the microbe and disease by counting the number of walks between them. Here Al(i,j), the element of the l-th power of A, is the number of l-length walks between disease node di and microbe node mj. Due to the limited data from HMDAD, matrix A is sparse. In order to use more information, we integrated the matrices KM, KD, B into a matrix B* as Equation (12) and replace A by B* in the KATZ model to calculate similarities between microbes and diseases.






[image: ]

Figure 2 | The diagram of KATZBNRA.




	[image: ]	(12)

Since walks between nodes of microbe and disease with different lengths have different contributions to similarities of node pairs, in order to dampen longer walks’ contribution, we introduced a parameter βl which is no smaller than 0, and if l1> l2, then [image: ]. The potential association between diseases di and microbe mj can be calculated as follows.

	[image: ]	(13)

If [image: ], replace βl with βl (0<β <1) (Qu et al., 2018) and the matrix form of Equation (13) is as follows.

	[image: ]	(14)

S is a matrix of size (nd + nm)×(nd + nm), and could be partitioned into four sub-matrices as shown in Equation (12).

	[image: ]	(15)

where the rows of S1,1 and S1,2 are nd, the rows of S2,1 and S2,2 are nm, the columns of S1,1 and S2,1 are nd, and the columns of S1,2 and S2,2 are nm. The element S1,2(i, j) of S1,2 provides the possibility that an association between disease di and the microbe mj exists, and our prediction result can be obtained from S1,2.

Considering that the walks of long lengths may be meaningless, we limit k in Equation (13) to be 2, 3 and 4, and the expression can be as follows. 

	[image: ]	(16)
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Results



Performance Evaluation

The test dataset of microbe-disease association was downloaded from HMDAD. We used LOOCV (leave-one-out cross validation), two-fold cross validation and five-fold cross validation to test the prediction performance of KATZBNRA on the HMDAD data.

In LOOCV, each known microbe-disease association takes turns to be picked out as the testing case and the other known associations are regarded as training data. We then obtained the prediction score of the test case output by KATZBNRA and ranked of the test case in the sorted list of all predicted microbe-disease associations in descending order of their scores. We used different thresholds to determine the correct predictions and wrong predictions and calculated corresponding FPR (false positive rate) and TPR (true positive rate) according to Equation (19). Finally, the results were presented in the ROC (receiver operating characteristics) curve plot of TPR against FPR.

	[image: ]	(19)

where FN is the number of false negative predictions (i.e. the cases whose prediction scores below the threshold), and TP is the number of true positive predictions (i.e. the cases whose prediction scores are not smaller than the threshold). FP is the number of the predicted associations that are not in the HMDAD dataset with scores not smaller than the threshold, and TN is the number of predicted associations that are not in the HMDAD dataset with scores smaller than the threshold. The area under a ROC curve is called AUC, and AUC is generally utilized to compare the power of predictive models. AUC of 0.5 indicates an entirely random prediction while AUC = 1 means a completely correct prediction.

In order to further test the prediction power of KATZBNRA, we also adopted 5-fold cross validation and 2-fold cross validation besides LOOCV. 5-fold (or 2-fold) cross validation randomly divides the microbe-disease associations equally into five (or two) parts and one of the five (or two) parts is reserved as the verification data while the remaining is used as training data. Considering the potential random sampling bias, we repeated each LOOCV, 2-fold and 5-fold cross validation test 100 times, and all ROC curves and AUCs are the average results of the 100 repeated tests. Meanwhile, we compared KATZBNRA with several state-of-the-art predictive methods using these validations.

For our method KATZBNRA, the walk length k plays a critical role. To test the effect of k, we changed the value of k, and carried out a series of LOOCV experiments. As shown in Figure 3, when k is set to 2, 3 and 4, the AUCs of each walk lengths are 0.9098, 0.8968, and 0.8827, respectively. Obviously, when parameter k = 2, KATZBNRA achieved the best prediction performance and walks of longer lengths may make the association prediction worse. Therefore, in the following experiments, we set k = 2. KATZBNRA has two more parameters, γ′ and β. The test in a previous work (Chen et al., 2016) showed AUC tended to decrease when γ′ was increased from 1.0 to 1.5, 2.0 and 2.5, and β was increased from 0.01 to 0.05 and 0.1. We also evaluated the AUC of KATZBNRA with different values of parameter γ′ and c in Equation (2) and Equation (3), and the test results are shown in Tables 1 and 2, showing similar results as Chen et al., 2016. Therefore, we set γ′=1.0 and β=0.01.







[image: ]

Figure 3 | The predictive performances of KATZBNRA with different ks.








Table 1 | The AUC of KATZBNRA with γ′set different values.
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Table 2 | The AUC of KATZBNRA with c set different values.
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We compared KATZBNRA with another three prediction methods, the native bipartite network recommendation (BNR) (Zhou et al., 2007), KATZHMDA (Chen et al., 2017), and IMCMDA (Chen et al., 2018a) using LOOCV, 5-fold cross validation and 2-fold cross validation. The global LOOCV showed that the AUCs of KATZBNRA, KATZHMDA, IMCMDA and BNR were 0.9098, 0.8382, 0.7786, and 0.4113, respectively, as shown in Figure 4−6 show the 5-fold cross validation experimental results and the 2-fold cross validation experimental results, respectively. In 5-fold cross validation KATZBNRA, KATZHMDA, IMCMDA, and BNR obtained AUCs of 0.8972, 0.8330, 0.8041, and 0.5645, respectively, and in 2-fold cross validation, their AUCs were 0.8463, 0.8190, 0.7988 and 0.5434, respectively. In all the above experiments, the curves of KATZBNRA are above those of the other methods, which means that among the four methods, KATZBNRA achieved the best prediction performance.





[image: ]

Figure 4 | The LOOCV experimental results of KAZTBNRA, KATZHMDA, IMCMDA, and the native bipartite network recommendation.
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Figure 5 | The 5-fold cross validation experimental results of KAZTBNRA, KATZHMDA, IMCMDA, and the native bipartite network recommendation.








[image: ]

Figure 6 | The 2-fold cross validation experimental results of KAZTBNRA, KATZHMDA, IMCMDA, and the native bipartite network recommendation.








Case Studies

We studied asthma and inflammatory bowel disease (IBD) of microbe-related diseases of human beings based on recent published clinical and biological reports to further evaluate the ability of our method. The predicted disease-microbe associations which are contained in the HMDAD dataset are sorted according to their prediction scores in descending order. For asthma and IBD, we observed the microbes in the top 10 associations of the lists. This guarantees absolute independence between the verification candidate and the known association for model training.

As a common chronic lung inflammatory disease, asthma causes difficulty in breathing (Martinez, 2007). It is believed that asthma is caused by the environment and a combination of genes. For severe asthma, one of the leading causes is a microbe (Huang et al., 2011). All of top predicted 10 candidate microbes of KATZBNRA (Table 3) have been verified by recent studies.




Table 3 | The Asthma-related microbe prediction of KATZBNRA. All of top 10 microbes were confirmed by recent studies.

[image: ]





As a typical chronic GI (gastrointestinal) tract inflammatory bowel disease, IBD includes ulcerative colitis and Crohn’s disease (Lomax et al., 2006). We listed the top 10 IBD-related candidate microbes predicted by KATZBNRA in Table 4, among which eight microbes have been previously validated.





Table 4 | Top 10 potential IBD-related microbes predicted by KATZBNRA

[image: ]








Discussion

Based on the bipartite network recommendation and the KATZ model, the paper introduced a novel disease-microbe association prediction method called KATZBNRA. KATZBNRA uses the Gaussian interaction profile kernel to calculate the similarity of diseases and microbes in the bipartite network containing the known microbe-disease associations from the HMDAD database, and the bipartite network recommendation score on the KATZ model enables KATZBNRA to predict potential disease-microbe associations with high accuracy. The experimental results of LOOCV, 5-fold cross validation, 2-fold cross validation and the IBD and asthma case studies have demonstrated the excellent and reliable prediction ability of KATZBNRA. With regard to similar prediction problems such as predicting lncRNA-disease, drug-target, gene-disease, miRNA-disease, and other biological associations, this model can be applied with small modifications.
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Non-negative matrix factorization (NMF) is a matrix decomposition method based on the square loss function. To exploit cancer information, cancer gene expression data often uses the NMF method to reduce dimensionality. Gene expression data usually have some noise and outliers, while the original NMF loss function is very sensitive to non-Gaussian noise. To improve the robustness and clustering performance of the algorithm, we propose a sparse graph regularization NMF based on Huber loss model for cancer data analysis (Huber-SGNMF). Huber loss is a function between L1-norm and L2-norm that can effectively handle non-Gaussian noise and outliers. Taking into account the sparsity matrix and data geometry information, sparse penalty and graph regularization terms are introduced into the model to enhance matrix sparsity and capture data manifold structure. Before the experiment, we first analyzed the robustness of Huber-SGNMF and other models. Experiments on The Cancer Genome Atlas (TCGA) data have shown that Huber-SGNMF performs better than other most advanced methods in sample clustering and differentially expressed gene selection.
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Introduction

Cancer is considered to be the number one killer of human health. The development of high-throughput sequencing technology has enabled researchers to obtain more comprehensive information about cancer patients (Chen et al., 2019). The gene expression data of cancer patients can be more used for effective data mining through computational methods (Chen et al., 2018). In general, cancer gene expression data are characterized by high dimensionality, which is extremely difficult for data analysis. How to effectively reduce the dimensionality of data is the key to analyzing cancer data. Principal component analysis (PCA) (Feng et al., 2019), locally linear embedding (LLE) (Roweis and Saul, 2000), and non-negative matrix factorization (NMF) (Yu et al., 2017) are common methods for reducing the data dimensionality. Unlike several other methods, NMF can find two non-negative matrices and its product can effectively restore the original matrix. The non-negative constraint guarantees additive combinations between different elements. NMF demonstrates its advantages in facial recognition, speech processing, document clustering, and recommendation systems (Guillamet and Vitrià, 2002; Xu et al., 2003; Schmidt and Olsson, 2006; Luo et al., 2014).

NMF has developed rapidly in recent years, and several variants of NMF have been proposed to improve the effectiveness of the decomposition. Cai et al. proposed graph regularized NMF (GNMF) for data representation (Cai et al., 2011). GNMF considers the association between points to preserve the internal structure of the data. Kim et al. applied the L1-norm constraint on the coefficient matrix to introduce sparse NMF for clustering (SNMF) (Kim and Park, 2007). Sparseness is more likely to remove redundant features of data. The most of cancer data have noise and outliers, and the original NMF cannot solve this. Wang et al. introduced Characteristic Gene Selection Based on Robust GNMF (RGNMF) (Wang et al., 2016a) to improve the robustness of the algorithm. RGNMF assumes that the loss follows Laplacian distribution and uses the loss function of the L2,1-norm (Kong et al., 2011) constraint. The L2,1-norm combines the advantages of the L2-norm and the L1-norm, which impose an L2-norm constraint on the entire data space and an L1-norm constraint on the sum of the different data points (Ding et al., 2006).

The original NMF model is simple to understand and computationally fast, but the squared loss function is too sensitive to outliers and noise. Mao et al. proposed the correntropy induced metric based GNMF (CGNMF) (Mao et al., 2014) that changed the original loss function. The correntropy uses L0-norm approximation for large outliers and noise through kernel function filtering, and the normal data is constrained by the L2-norm (Liu et al., 2007), so it is not sensitive to outliers and noise. Du et al. proposed Huber-NMF (Du et al., 2012), which is also a loss function that is insensitive to outliers and noise. It uses approximate L1-norm processing for outliers and noise, and L2-norm for valuable data. Correntropy uses kernel functions to control weights, and Huber loss uses a different function approximation for different data through threshold adjustment. The robustness analysis of these several non-square loss models is given in the experimental part. To compare the performance of the NMF algorithm, the robust PCA (RPCA) based method for discovering differentially expressed genes proposed by Liu et al. (2013) is added to the experiment.

In this paper, we propose a model called sparse graph regularization NMF based on Huber Loss Model for Cancer Data Analysis (Huber-SGNMF). It effectively combines Huber loss, manifold structure, and sparse constraint. Huber loss is based on the relationship between L1-norm and L2-norm to approximate different data. In detail, Huber loss adjusts the square loss or linear loss to the data according to the threshold to enhance the robustness of the model to outliers. Geometric information in high-dimensional data should remain locally constant in low-dimensional representations (Cai et al., 2011), so graph regularization is added to preserve the manifold structure of the data. Sparse constraints in the model can remove redundant features contained in the data to reduce the amount of model calculations and improve clustering performance (Kim and Park, 2007).

The contributions of this article are as follows:

1.	 The squared loss of the original NMF is too sensitive to outliers and noise; so, we use a more robust Huber loss combined with NMF. The Huber loss considers the relationship between the L1-norm and the L2-norm to effectively handle non-Gaussian noise and large outliers. For the update rules of Huber loss, we use the multiplicative iterative algorithm based on semi-quadratic optimization to find the optimal solution.

2.	The NMF model fits the data in Euclidean space but does not consider the intrinsic geometry of the data space. If the data is related in high-dimensional space, then we believe that the data represented by the low-dimensional should also be closely related. Considering the manifolds embedded in the high-dimensional environment space, we add graph Laplacian as a regularization term to the model. Graph regularization takes into account the impact of recent neighbors on data, and retaining graph structure can make NMF more distinguishable.

3.	Sparse matrices can remove redundant data, reducing data complexity and model computational difficulty. In data analysis, sparsity can improve clustering performance by reducing the difficulty of feature selection. The L2,1-norm as a sparse constraint is added to the model because the L2,1-norm is robust and can achieve row sparse effect.

The remainder of this paper is organized as follows. The introduction of related work is shown in Section 2. Models and solution optimization are presented in Section 3. The experiment and analysis are arranged in Section 4. Section 5 summarizes the entire paper.




Related Work



Non-Negative Matrix Factorization

NMF is a dimensionality reduction method based on partial representation. For a given dataset [image: ], NMF can decompose it into the basic matrix [image: ] and the coefficient matrix [image: ], with the purpose of approximating the original matrix by two matrix products. In general, the rank of matrix factorization k is selected by the number of larger singular values.

For gene expression data matrix [image: ], each row represents a gene corresponding to n samples, and each column represents a sample composed of m genes. Moreover, U contains m rows of metagene and V contains n rows of metapattern (Liu et al., 2018). Each column of V is a projection of a corresponding sample vector in X according to the basic matrix U (Li et al., 2017). NMF is visualized on gene expression data as shown in Figure 1.

The NMF loss function is minimized as follows:

	[image: ]	(1)

where [image: ] represents the application of the Frobenius norm to the matrix.

Lee and Seung proposed the use of multiplicative iterative update rules to solve the optimal solution of NMF (Lee and Seung, 1999). Its update formula is as follows:

	[image: ]	(2)

	[image: ]	(3)

where uik and vkj are elements belonging to U and V, respectively. The non-negative constraints of U and V only allow additive combinations between different elements, so NMF can learn part-based representations (Cai et al., 2011).



[image: ]

Figure 1 | The gene expression data matrix [image: ] is decomposed into a low-dimensional basic matrix [image: ] and a low-dimensional coefficient matrix [image: ]. The product of two low-dimensional matrices can approximate the original matrix.






Huber Loss

Data usually contain a small amount of outliers and noise, which can have a worse effect on model reconstruction. For noise and outliers in the dataset, Huber loss uses weighted L1-norm processing because the L1-norm is robust and can effectively handle outliers and noise (Guofa et al., 2011; Yu et al., 2016). For other valuable data in the dataset, Huber losses still use L2-norm loss to fit the data. Huber loss function δ(·) is defined as follows:

	[image: ]	(4)

where c represents the threshold parameter of the data using the L1-norm or the L2-norm. This function is a bounded and convex function that minimizes the effects of a single anomaly point (Chreiky et al., 2016). Huber losses often apply to the insensitive outliers and noise contained in the data, which are often difficult to find using the squared loss function (Du et al., 2012).




Manifold Regularization

The manifold learning theory (Belkin and Niyogi, 2001) shows that the internal manifold structure of the data can be effectively simulated by the nearest neighbor of the data points. Each data point finds its nearest p neighbors and connects the data points to the neighbors with edges. There are many ways to define the weight of an edge, most commonly 0–1 weighted: Wij=1, if and only if nodes i and j are connected by edges. The advantage of this weighting method is that it is easy to calculate.

Weight matrix Wij is only used to measure the intimacy between data points. For the low-dimensional representation sj of the high dimensional data xj, the Euclidean distance [image: ] is typically used to measure the similarity between two low-dimensional data points. According to the intimacy weight W, the smoothness of the two low-dimensional vectors can be measured as follows:

	[image: ]	(5)

where tr(·) denotes the trace of a matrix. The matrix D is defined as a diagonal matrix with diagonal elements [image: ] The graph Laplacian (Liu et al., 2014) matrix L is defined as L=D-W.

We hope that if the high-dimensional data xj and xl are very intimate, then sj and sl should be close enough in low-dimensional representations (Cai et al., 2011). Therefore, minimizing R is added to our model to encode the internal geometry of the data.





Method



The Huber-Sgnmf Model

Based on the Huber loss function, we proposed a novel model that preserves the manifold structure and sparsity simultaneously. The Huber loss is combined with NMF to enhance NMF robustness. To further optimize the model, the graph regularization term and the L2,1-norm are added to the loss function as constraints. L2,1-norm mathematical expression is as follows:

	[image: ]	(6)

The Huber-SGNMF final model OHuber−SGNMF is as follows:

	[image: ]	(7)

where tr(·), α, and β represent the trace of the matrix, the regularization term parameters, and the sparse constraint parameters, respectively. In the experiment, the basic matrix U and the coefficient matrix V are used for differential gene selection and cluster analysis, respectively.




Optimization

Obviously, the loss function is a non-quadratic optimization problem, and finding the optimal solution is not simple. Fortunately, the semi-quadratic optimization technique that has been proposed can effectively optimize the loss function. The loss function can be reconstructed to find the optimal solution by introducing auxiliary variables. According to the conjugate function and the semi-quadratic technique (Nikolova and Chan, 2007), the fixed loss function σ(Z) can be constructed as follows:

	[image: ]	(8)

where [image: ] represents the difference between the NMF predicted value and the actual value. σ(·) indicates the noise or normal data, which is processed using different loss functions. [image: ] is the introduced auxiliary variable. ϕ(Wij) is the conjugate function of Zij. [image: ] is a quadratic term for Zij and Wij. The NMF model only needs to consider the quadratic term of the multiplication form:

	[image: ]	(9)

Combine Equation (8) and Equation (9) with the loss function (7):

[image: ]	(10)

where ⊗ represents the Hadamard product, which is the product between two matrices’ elements. Operator ⊗ takes precedence over other matrices operators. Its Lagrangian function expansion is expressed as follows:

	[image: ]				(11)

and

	[image: ]				(12)

where Qi and Rj are defined as Qi=diag(Wi*) and R=diag(W*j), respectively. [image: ] and [image: ] are Lagrangian multipliers of non-negative constraints U 0 and V 0, respectively. G is a diagonal matrix with diagonal elements, which is given by:

	[image: ]	(13)

where ω is a number that is very close but not equal to zero.

Let ψU=0 and φV=0 by using Karush–Kuhn–Tucher (KKT) (Qi and Jiang, 1997) conditions. The loss function (10) can be iteratively optimized by the following schemes:

Update W when U and V are fixed. The weight matrix W according to equation (8) is defined as follows:

	[image: ]	(14)

where the elements of weight matrix is wij ϵ W Combine the loss function (7) with the equation (14) are as follows:

	[image: ]	(15)

Update U and V when W is fixed. The update rules for U and Vare as follows:

	[image: ]	(16)

	[image: ]	(17)

The threshold parameter c is set to the median of the reconstruction error,

	[image: ]	(18)

The corresponding algorithm is shown in Algorithm 1.






	
Algorithm 1 | Huber-SGNMF.





	
Data input: [image: ]





	
Data output: [image: ] [image: ] and weight matrix [image: ]





	
Parameters: α,β





	
Data initialize: U≥0, V≥0





	
Repeat

Update G by (13);

Update W by (15);





	
Update uik by (16);

Update vjk by (17);

Update c by (18);





	
End convergence










Convergence Analysis

According to the update rules of Huber-SGNMF, the loss function OHuber-SGNMF can converge to the local optimum through theorem 1.

Theorem 1. The loss function (7) is guaranteed to be non-increasing under the update rules (16) and (17). The loss function is constant when the elements uik and vkj have fixed values.

To prove theorem 1, we introduce the auxiliary function H in Algorithm.

Lemma 1. Suppose H (r, r′) is an auxiliary function of F (r). If the conditions H (r,r′) F(r) and H (r,r)=F(r) are satisfied, then it can be concluded that F(r) is non-increasing from iteration t to t+1:

	[image: ]	(19)

Proof:

	[image: ]	(20)

Suppose loss function OHuber-SGNMF has a suitable auxiliary function HHuber If the minimum updates rule for HHuber is equal to (16) and (17), then the convergence of OHuber-SGNMF can be proved. Furthermore, the parts of the loss function OHuber-SGNMF associated with the elements uik ϵ U and vkj ϵ V are represented by Fik and Fkj, respectively. The partial derivative equation of OHuber-SGNMF can be derived as follows:

	[image: ]	(21)

	[image: ]	(22)

	[image: ]	(23)

	[image: ]				(24)

Essentially, the algorithm updates each element, which means that if the elements Fik and Fkj are non-increasing, then OHuber-SGNMF is also non-increasing.

Lemma 2. Define [image: ] and [image: ] as auxiliary functions for uik and vkj, respectively. The expansion items are as follows:

	[image: ]	(25)

	[image: ]	(26)

Proof:

According to the lemma 1, HHuber (u,u)=Fik(u) and HHuber (v,v)=Fkj(v) can be obtained. We have the following formulas through the Taylor series expansion of the auxiliary function.

	[image: ]	(27)
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Next, [image: ] and [image: ] need to be guaranteed.

According to (25) and (27), expand [image: ] is as follows:

	[image: ]	(29)

since

	[image: ]	(30)

According to (26) and (28), expand [image: ] is as follows:

	[image: ]				(31)

since

	[image: ]	(32)

	[image: ]	(33)

and

	[image: ]	(34)

So, [image: ] and [image: ] can be obtained. In other words, the auxiliary functions Fik (u) and Fkj (v) of the updated rules (16) and (17) are non-increasing, and the derivation of theorem 1 is completed. Finally, the convergence of the loss function OHuber-SGNMF is proved.

The corresponding convergence analysis curve is shown in Figure 2.



[image: ]

Figure 2 | Convergence analysis curve of Huber-SGNMF model. Each curve represents a dataset. PHD and PHDEC are the datasets used in the experiment.







Results and Discussion



Datasets

Five gene expression datasets downloaded from TCGA are used in the experiment. TCGA is a gene data sharing system that contains information on thousands of cancer patients and has made great contributions to the path of human exploration of cancer genomics. The experiment used five datasets including cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), pancreatic cancer (PAAD), and esophageal cancer (ESCA).

To explore the association between genes and multiple cancers, diseased samples from multiple datasets are integrated into one dataset. In detail, the detesteds PAAD, HNSC, and COAD  are integrated into one dataset, which is represented as PHD. The detesteds PAAD, HNSC, and COAD are integrated into one dataset, which is represented as PHD. These two integrated datasets contain only diseased samples of different diseases. Datasets are standardized before using, and the data normalization scales data to specific time intervals. Pre-processing data speeds up searching for the best solution and optimizes convergence speed. Since high-dimensional gene expression data contains a large amount of redundant information, PCA (Wu et al., 2017) is used to reduce the dimensions to 2,000 genes in the pre-processing.




Model Robustness

To analyze the robustness of RGNMF, CGNMF, and Huber-SGNMF, we apply these methods to a composite dataset consisting of 200 two-dimensional data points (Figure 3A). All data points are distributed in one dimensional space. In Figure 3A, there is only one contaminated point, and each model can restore the original data normally. The contaminated points in Figures 3B–D are 50 points, 100 points, and 150 points, respectively. In the case where a part of the data is contaminated, only Huber-SGNMF successfully restores the original data. CGNMF and RGNMF are affected by some noise or outliers when restoring data, while NMF is most affected by noise or outliers.



[image: ]

Figure 3 | In the case of different data points are contaminated, NMF, RGNMF, CGNMF, and Huber-SGNMF restore 200 synthetic two-dimensional data points: (A) the data contains 1 noise or outlier, (B) the data contains 50 noise or outliers, (C) the data contains 100 noise or outliers, (D) the data contains 150 noise or outliers.






Parameter Selection

In the experiment, we consider the effect of each parameter on the solution model. A grid search method is used to find the optimal parameters of the model. The grid search range is [10-2~102]. As shown in Figure 4, the PHD dataset is used as an example to find the optimal parameters of the Huber-SGNMF model. Specifically, the two datasets are set to the same parameters α = 100 and β = 0.01 Other methods in the experiment are set up with prior parameters or grid searches to find the optimal parameters.



[image: ]

Figure 4 | Optimal parameter selection for the Huber-SGNMF model on the PHD dataset. Huber-SGNMF is set with parameters α = 100 and β = 0.01.






Performance Evaluation and Comparisons

To prove the validity of the performance of the model, six states of the art methods including RPCA (Liu et al., 2013), NMF (Lee and Seung, 1999), SNMF (Kim and Park, 2007), GNMF (Cai et al., 2011), RGNMF (Wang et al., 2016a), CGNMF (Mao et al., 2014), and Huber-NMF (Du et al., 2012) are compared with Huber-SGNMF. In the experiment, the basic matrix and the coefficient matrix are used to differentially gene selection and cluster analysis, respectively.



Feature Selection Results and Analysis

Feature selection is the selection of representative features from multiple feature values (Yu and Liu, 2003). In the analysis of cancer data, the feature selection is to find differentially expressed genes for cancer (that is, pathogenic genes). This is of great significance in exploring the link between cancer and genes (Chen et al., 2017). For each method, the top 500 genes with the greatest differential expression are analyzed.

The GeneCards (https://www.genecards.org/) system is used to download all gene libraries associated with the disease. The selected genes are compared with the gene bank to select overlapping genes and obtain a corresponding relevance score. The relevance score is the indicator that GeneCards assesses the association between the gene and the disease. The higher the relevance score is, the greater the intimacy of the gene and the disease. The average relevance score (ARS) and the maximum relevance score (MRS) are used to evaluate the performance of the model.

The specific experimental results of the seven methods are listed in Table 1. The results show that the genes selected by Huber-SGNMF model have higher ARS and MRS. This means that the model can effectively find the genes associated with cancer. Table 2 lists the genes for the top 10 largest relevance scores selected by the Huber-SGNMF model on the PHD dataset. The detailed genetic analysis is as follows. 



Table 1 | Relevance scores for seven methods.

[image: ]





Table 2 | Detailed analysis of the differentially expressed genes in PHD dataset.

[image: ]




CTNNB1 is a protein-coding gene from which the protein encoded by the gene forms part of an adhesion-linked protein complex. Mutations in the CTNNB1 proto-oncogene are associated with most human colorectal epithelial tumors, and a significant increase in expression in the same tumor may indirectly or directly lead to intestinal adenocarcinoma (Wang et al., 2011). Moreover, deep sequencing of patients with pancreatic ductal adenocarcinoma also found CTNNB1 mutations (Honda et al., 2013; Javadinia et al., 2019). Multiple studies have shown that CTNNB1 mutation analysis is important for PAAD and COAD (Kubota et al., 2015).

ERBB2, commonly referred to as HER2, may be critical for enhancing the synergistic effect of PI3K inhibitors in HNSC patients (Michmerhuizen et al., 2019). It is generally believed that dysregulated ERBB2 signaling plays a key role in the development of pancreatic cancer (Lin et al., 2019). For the treatment of intestinal adenocarcinoma, ERBB2 mutations and amplification in small intestinal adenocarcinoma patients also make a great contribution (Adam et al., 2019). Recent studies have shown that HER2 targeted therapy has significantly improved outcomes in patients with breast and stomach problems with ERBB2 mutation/amplification (Meric-Bernstam et al., 2019).

The CDH1 gene plays a regulatory role in cell growth (Nagai et al., 2018), and the CDH1 gene located on chromosome 16q22.1 is considered to be a tumor suppressor of diffuse gastric cancer. By measuring the methylation profile of gastric cancer and breast cancer patients, it is found that CDH1 is closely related to low protein expression (Wang et al., 2016b; Wang et al., 2016c). Studies have shown that abnormal expression of CDH1 gene leads to uncontrolled growth of tumor cells (Dial et al., 2007; Chen et al., 2012).

The above experimental results show that Huber-SGNMF model can find pathogenic genes more effectively. Although some genes have not been confirmed, they may be a key part of solving cancer problems in the future.




Clustering Results and Analysis

After the Huber-SGNMF model reduces the dimensions of the data, the coefficient matrix is used for k-means clustering. Sample clustering is a common analytical method for cancer diagnosis and molecular subtype discrimination (Xu et al., 2019). Moreover, multiple evaluation criteria accuracy (ACC), recall (R), precision (P), and F-measure (F) are adopted to judge the model to be feasible and effective. ACC is an evaluation standard that can visually reflect the clustering of samples. It is defined as follows:
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Where δ (•) and map (•) represent function permutation and delta mapping function, respectively. The actual sample label, the predicted sample label, and the total number of samples are denoted by a, b and n, respectively.

Considering clustering accuracy alone does not fully demonstrate clustering performance, and more evaluation criteria need to be introduced. The clustering results can be divided into true positive (TP), true negative (TN), false positive (FP) cases, and false negative (FN) according to real and predictive labels. These four measures are listed in Table 3. The detailed evaluation criteria are as follows.
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Since R, P, and F can only reflect the clustering performance of a certain sample categories, for multi-category problems, the average of each category of indicators is usually used as the evaluation criterions:

	[image: ]	(39)

	[image: ]	(40)

	[image: ]	(41)

where n represents the number of sample categories.



Table 3 | Clustering result confusion matrix.
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According to the above evaluation criterions, each algorithm is performed 50 times to get an average result. Since the initialization matrix is random, the average value can reduce the chance of the algorithm. Table 4 lists the comparative experiments of seven methods based on four evaluation criterions. Compared with the other six methods, our proposed model has the excellent clustering performance under the four evaluation criterions. The specific analysis of the clustering results is as follows:

1.	Since the squared loss of the original NMF is sensitive to noise and outliers, the squared loss is replaced by Huber loss to improve the robustness of the algorithm. The experimental results show that the clustering performance of RPCA, CGNMF, RGNMF, Huber-NMF, and Huber-SGNMF is higher than standard NMF and GNMF. The reason is that both NMF and GNMF use square loss while other methods use more robust loss function. Moreover, the experimental results show that the robustness of the Huber loss model is higher than the L2,1 -norm loss and correntropy loss. The RPCA model has higher performance as a state-of-the-art algorithm and is still lower than Huber-SGNMF. The Huber loss use L1 -norm or L2 -norm to different data, which can effectively reduce the influence of noise and outliers and enhance the robustness of the algorithm. Compared with NMF, the clustering accuracy of Huber-SGNMF model on the two datasets increased by 4.90 and 5.68%, respectively.

2.	Assuming that data points are related in a high-dimensional state, they should also be relevant in low-dimensional representations. However, the association between data points is difficult to preserve when the data is mapped to low-dimensions. The manifold structure preserves the spatial structure of high-dimensional data in low-dimensional representations, enhancing the correlation between data points. Constructing a sample association graph of gene expression data to preserve the relationship between the samples. The experimental results of several models (NMF and GNMF, Huber-NMF, and Huber-SGNMF) show that the clustering performance of the model with the addition of graph regularity constraints is improved. Compared with Huber-NMF, Huber-SGNMF has improved clustering accuracy by 1.73 and 2.99% in the two datasets, respectively.

3.	Matrix sparseness removes redundant data and simplifies model calculations. The sparsity constraint of the coefficient matrix removes redundant features and improves clustering performance. The experimental results of SNMF and Huber-SGNMF prove this. Compared with SNMF, since Huber-SGNMF improves the loss function and manifold structure, the clustering accuracy in the two datasets is increased by 1.35 and 4.02%, respectively.

In summary, the experimental results based on the four evaluation indicators demonstrate the excellent clustering performance of the Huber-SGNMF model. Compared with NMF, the clustering performance of Huber-SGNMF has improved 5.30 and 4.49% on average in PHD dataset and PHDEC dataset, respectively. Huber-SGNMF clustering performance improves 1.93 and 2.07% on average compared to Huber-NMF. The above experimental results strongly prove the effectiveness of Huber-SGNMF in clustering performance.



Table 4 | Clustering effect for seven methods.
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Conclusion

In this paper, we propose a novel model based on Huber loss: Huber-SGNMF, which is dedicated to samples clustering and differentially expressed gene selection. On the one hand, the squared loss is replaced by Huber loss to enhance algorithm robustness. On the other hand, sparse penalty and graph regularization terms are added to the model to enhance the sparsity of the matrix and preserve data geometry information. Numerous experimental results confirm that the Huber-SGNMF method is more effective. In the future work, we will actively explore more effective constraints based on the traditional NMF method to improve the robustness and sparsity of the method.
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The microbiome-wide association studies are to figure out the relationship between microorganisms and humans, with the goal of discovering relevant biomarkers to guide disease diagnosis. However, the microbiome data is complex, with high noise and dimensions. Traditional machine learning methods are limited by the models' representation ability and cannot learn complex patterns from the data. Recently, deep learning has been widely applied to fields ranging from text processing to image recognition due to its efficient flexibility and high capacity. But the deep learning models must be trained with enough data in order to achieve good performance, which is impractical in reality. In addition, deep learning is considered as black box and hard to interpret. These factors make deep learning not widely used in microbiome-wide association studies. In this work, we construct a sparse microbial interaction network and embed this graph into deep model to alleviate the risk of overfitting and improve the performance. Further, we explore a Graph Embedding Deep Feedforward Network (GEDFN) to conduct feature selection and guide meaningful microbial markers' identification. Based on the experimental results, we verify the feasibility of combining the microbial graph model with the deep learning model, and demonstrate the feasibility of applying deep learning and feature selection on microbial data. Our main contributions are: firstly, we utilize different methods to construct a variety of microbial interaction networks and combine the network via graph embedding deep learning. Secondly, we introduce a feature selection method based on graph embedding and validate the biological meaning of microbial markers. The code is available at https://github.com/MicroAVA/GEDFN.git.
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Introduction

A large number of microorganisms are parasite on various parts of the human body, mainly concentrated in the intestine, oral cavity, reproductive tract, epidermis and skin. The microbial communities existing in different parts of the body or in different host environments are very different (Turnbaugh et al., 2007; Lloyd-Price et al., 2017). These microorganisms include bacteria, fungi, viruses and protozoa. All genetic material in the particular microbial community is called the microbiome. Recent studies have shown that microorganisms are directly or indirectly related to many diseases. For example, the gut microbiome may be closely related to irritable bowel syndrome and its imbalance may lead to chronic kidney diseases. Microorganisms may also be closely related to digestive tract diseases, endocrine diseases, circulatory diseases, reproductive system diseases, respiratory and psychiatric diseases (Kho and Lal, 2018). Since the microbiome plays a central role in the hosts' health, understanding the distribution and composition of microbial communities in humans, especially under different diseases or physiological conditions, is of great significance for disease diagnosis, prevention and treatment. The microbiome-wide association studies are to find disease-associated microbial markers to guide disease diagnosis and treatment (Gilbert et al., 2016; Wang and Jia, 2016). Compared with the human genome, the microbiome is an ideal target and more convenient to regulate. Therefore, the microbiome is often named “the second human genome” (Brüls and Weissenbach, 2011). However, there are many types of microorganisms and most of them cannot be cultured. Therefore, a high-throughput sequencing method is a feasible means of understanding microbial communities. Through high-throughput sequencing, we can understand the types of microorganisms and even their functions in the community (Ranjan et al., 2016).

The microbiome data is from high-throughput sequencing methods such as 16s or shotgun sequencing, which is often with high dimensions with noise. As a result, it is difficult to mine microbial signatures from these data. Traditionally, statistical-based methods identify markers mainly through microbial abundance differential expression (Paulson et al., 2013). However, the statistical approaches often have strong assumptions and the real data often do not satisfy these assumptions (Hawinkel et al., 2017; Weiss et al., 2017). Other machine learning methods are widely explored (Pasolli et al., 2016). Recently, deep learning has received great attention, especially its end-to-end automatic learning ability. At present, deep learning is widely used in automatic driving, image recognition and text processing, which has received exciting results (LeCun et al., 2015). The deep models can learn specific patterns directly from the data, thus avoiding the artificial feature engineering (Goodfellow et al., 2016; Kong and Yu, 2018). In the analysis of biomedical data, especially the analysis of various omics data, deep learning has achieved good improvement, but still faces many problems and challenges (Angermueller et al., 2016; Camacho et al., 2018; Eraslan et al., 2019). First, deep learning requires a large amount of training data to learn useful information while the biological sample size is often limited and cannot fully utilize its capabilities. Second, the training process is often considered a black box and people can only control the input and models' parameters. More specifically, deep learning involves complex network structures and nonlinear transformations, as well as a large number of hyperparameters, which hinder people from understanding how deep neural networks are making predictions. Although deep neural networks perform well on some classification tasks, biological problems should be paid more attention to which features lead to better classification (Ching et al., 2018).

In this paper, we propose a feature selection method based on Graph Embedding Deep Feedforward Network (GEDFN) to conduct microbiome-wide association studies. Firstly, we construct three different microbial co-occurrence interaction networks. We utilize a graph embedding method to embed the network as a priori knowledge into Deep Feedforward Neural Network to reduce parameters, alleviate the overfitting problem and improve the models' performance. Secondly, we propose a feature selection approach based on GEDFN. Experiments show the microbial feature markers obtained via this method have biological significance. In other words, our results demonstrate graph embedding deep learning could guide feature selection.




Related Work



Microbial Interaction Network

Because of the various relationships between microorganisms, such as symbiosis, competition and so on, as well as the complex structure and function of microorganisms due to their dynamic properties, the network is a good way to represent complex relationships. Understanding microbial interaction can help us understand microbial functions. System-oriented graph theory can facilitate microbial analysis and enhance our understanding of complex ecosystems and evolutionary processes (Faust et al., 2012; Layeghifard et al., 2017). However, most microorganisms are uncultured, we can only construct microbial interaction networks from high-throughput sequencing data. At present, there are many computational methods to construct microbial interaction networks. In theory, any method of calculating features' relationships can be used. For example, Bray–Curtis can be used to measure species abundance similarity (Bray and Curtis, 1957). The Pearson correlation coefficient is used to evaluate the linear relationship and the Spearman correlation coefficient can measure the rank relationship (Mukaka, 2012). CoNet uses an ensemble approach and combines with different comparison metrics to detect different relationships (Faust and Raes, 2016). Maximum mutual information is designed to capture broader relationships, not limited to specific function families (Reshef et al., 2011). MENA applies random matrix theory to conduct microbial analysis and experiments show it is robust to the noise and threshold (Deng et al., 2012). Sparse Correlations for Compositional data (SparCC) is a tool based on Aitchison's log ratio transformation to conduct microbial composition analysis (Friedman and Alm, 2012). SParse InversE Covariance Estimation for Ecological Association Inference (SPIEC-EASI) combines data logarithmic transformation with graph model inference framework to build a correlation network (Kurtz et al., 2015).




Feature Selection

Real biomedical data, especially various omics data with high dimensions and noise, often has feature redundancy problem. Feature selection is a step of data preprocessing, which involves selecting related features from a large number of features to improve subsequent learning tasks (Li et al., 2017).

There are mainly three kinds of feature selection methods, including filter, wrapper and embedded method. The filter approach selects subset features and then trains the learner. The feature selection process is independent of the subsequent learner. This is equivalent to filter the initial feature with the feature selection process and train the model with the filtered features. However, filter methods often ignore some features that are helpful for classification. At the same time, many filter methods are based on a single-featured greedy algorithm. The assumption is that each feature is independent while this is often not the case in microbiological data. The wrapper feature selection directly takes the performance of the learner to be used as the evaluation criterion of the feature subset. In other words, the purpose of the wrapper feature selection is to select a feature subset that is most efficient in its performance for a given learner. Compared to the filter method, the wrapper method can evaluate the result of feature selection to improve the classification performance; however, the feature selection process requires to train the learner iteratively and the calculation is huge (Li et al., 2017). The embedded feature selection combines the feature selection in the learning and training process, both of which are completed in the same optimization. In other words, the feature selection is automatically performed during the training.

Feature selection is a traditional machine learning research field with many methods. For more information, please refer to the literature (Li et al., 2017). The previous work proposed a feature selection method based on Deep Forest (Zhu et al., 2018); however, there is less work on microbiome-wide association studies via Deep Neural Network and less research is done from the perspective of embedding approach for feature selection. The challenge of feature selection based on microbial network is that there is no microbial network available at present. The commonly used statistical-based interaction network methods may lead to high false positive rate due to the compositional bias (Gloor et al., 2017).





Materials and Methods

We mainly explain the feature selection method based on GEDFN from the following three aspects (Figure 1). First, we will introduce the construction method of microbial interaction network, including sparcc, SPIEC-EASI and Maximal Information Coefficient (MIC) then, we will introduce a deep embedding structure to embed the graph into Deep Feedforward Network. Finally, we will propose a feature selection approach for GEDFN.



[image: ]

Figure 1 | The workflow of graph embedding deep network to conduct feature selection. 1. Construct microbial interaction network. The input is Operational Taxonomic Unit (OTU) abundance. Different approaches are adopted to obtain different interaction networks. The vertexes are species and the edges are correlation coefficient. 2. Graph embedding and model training. The feature graph is embedded into the first hidden layer in order to achieve sparse connection instead of fully-connected between the input layer and the first hidden layer. The first hidden layer (graph embedding layer) has the same neurons as the input layer. 3. Feature selection. The neurons (features) are ranked according to their importance score which is calculated via each neuron's connection weights.





Microbial Correlation Network

The total amount of genetic material extracted from the microbial community and the sequencing depth will affect the whole reads. It is often necessary to normalize the reads in the sample. As a result, the microbial abundance obtained by 16s sequencing is relative rather than absolute, which is not independent. The traditional statistical measures for detecting microbial interactions, for example, Pearson correlation, will lead to false positives (Gloor et al., 2017).



Sparcc

Assuming that the network is sparse, sparcc constructs the association network by using standard logarithmic ratio transformation and iteratively calculates the variance matrix of compositional dependence. For details of the algorithm, please refer to the literature (Friedman and Alm, 2012).




SPIEC-EASI

SPIEC-EASI assumes the network is sparse and combines logarithmic transformation of compositional data with graph inference framework to construct the network. It consists of two steps: first, logarithmic ratio transforms the data; then, SPIEC-EASI uses the neighborhood selection and sparse inverse covariance selection to infer the interaction graph from the transformed data (Kurtz et al., 2015).




Maximal Information Coefficient

The maximal information coefficient (MIC) is used to measure the degree of linear and nonlinear correlation between two variables (Reshef et al., 2011). The main idea of the MIC method is based on the recognition that if there is some correlation between two variables, the distribution of the data in the grid can be reflected after meshing the scatter plots formed by the two variables. The MIC divides the scatter plot of the variable pair (x, y) and uses dynamic programming to calculate and search for the maximum mutual information value that can be achieved under different split modes. Finally, the maximum mutual information value is normalized and the result is MIC.





The Framework of Graph Embedding Deep Feedforward Network



Deep Feedforward Neural Network

Deep Feedforward Network, also known as feedforward neural network or multilayer perceptron, is a typical deep learning model. In this model, the information moves only in one direction from the input nodes to the output nodes through the hidden nodes. There is no loop in the network. A feedforward neural network structure with l hidden layers is:
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where X∈Rnxp is an input matrix with n samples and p features, y∈Rn is the output label for the classification task. In this work, it is a binary classification. The label for each sample is normal or disease. Zout and Zk,(k=1,…,l-1) are the neurons in the hidden layer. Wk is the weight matrix. bk is the bias. θ is the parameters. σ(·)is the activation function(such as, sigmoid, tanh, rectifiers). F(·) is a softmax function which is used to convert the output layer value into the predicted probability.

The model uses a stochastic gradient descent (SGD) algorithm to minimize the cross entropy loss function to update the parameter θ. When a feedforward neural network is used to receive input x and produce an output [image: ]. During training, forward propagation can continue until it produces a scalar cost function J(θ). The backpropagation algorithm runs information from the cost function and flow backward through the network to calculate the gradient in order to update the weight parameters (Goodfellow et al., 2016).

	[image: ]	(5)




Graph Embedding Deep Feedforward Network

The fully connected deep feedforward neural network has many parameters and requires a large number of training data, but often the biological sample size is limited, which often leads to overfitting. Therefore, we construct a microbial sparse network and embed this graph network into the model. There are two main advantages. First, the sparse graph embedding will greatly reduce the parameters of deep feedforward network and mitigate the overfitting risk. Second, the sparse graph structure is derived from existing prior information and combining the priori information into the network can improve the reliability of the model. The main idea of graph embedding is to replace the full connections between the input layer and the first hidden layer with a sparse graph (Figure 2).



[image: ]

Figure 2 | Graph embedding deep feedforward network (GEDFN). The graph embedding layer (first hidden layer) has same neurons with the input layer. The sparse connect between the input layer and the first hidden layer is marked as black. Other hidden layers are fully-connected.




Consider a graph G=(V,E), V is the vertical set with p features. E is a collection of all edges. A common way of representing a graph is to use an adjacency matrix. Given a graph G with p vertices, a pxp adjacency matrix A is:

	[image: ]	

G is an undirected graph and A is a symmetric matrix. At the same time, we consider Aii=1 which indicates that the vertex itself is connected. We construct a feedforward neural network in which the first hidden layer has the same dimensions as the input layer, hin=p, similarly,Win is a pxp matrix. The input X is sparsely connected with Z1 (Figure 2). In other words, the original fully connected layer:
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is changed to:
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Where [image: ] is element-wise product. Therefore, the connection between the input and first hidden layer of the feedforward network is filtered by the graph adjacency matrix. Each feature is corresponding to a hidden neuron. All features have corresponding hidden neurons in the first hidden layer. The feature can only provide information to the connected graph. In this way, the graph helps to achieve the sparsity of the connection between the input layer and the first hidden layer (Kong and Yu, 2018).





Feature Selection Based on GEDFN

In addition to improving classification, it is also meaningful to find features that contribute significantly to classification because they reveal potential biological mechanisms. However, Deep neural network is a “black box”, the interpretability of deep learning hasn't been well-defined (Guidotti et al., 2019). In our experiment, we focus on how the input features influence the prediction and we borrow the idea from Olden and Jackson (2002), Kong and Yu (2018). The feature importance score is the quantification values of the contributions of features to a model prediction, which links the input features and output prediction. They highlight the parts of a given input that are most influential for the model prediction and thereby help to explain why such a prediction was made. The feature selection is based on feature score, which means the score is high if the feature is important. As a result, we develop a feature ranking method based on the feature relative importance score, similar to the connection weights method introduced by Olden and Jackson (2002), Kong and Yu (2018). What is learned by neural networks is contained in the connection weights. Based on idea of connection weight, we propose a graphical connect weight method that emphasizes the importance of the features of our proposed neural network architecture.

The main idea of a graphical connect weight is: the contribution of a particular variable directly reflects the magnitude of the connection weights associated with the corresponding hidden neurons in the graph embedding layer. The sum of the absolute values of the directly related weights for a neuron (or feature) gives its relative importance:
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Where sj is importance score of the feature j w(in) indicates the weights between the input layer and the first hidden layer, while w(1) indicates the weights between the first and second hidden layer. The constant c is to penalize vertices with too many connections so that they don’t over impact the result. In the following experiments, we set the parameter c = 50.





Experiments and Results



Data Set

Inflammatory bowel diseases (IBD) are a group of specific chronic intestinal diseases, mainly including Crohn's disease and ulcerative colitis. The occurrence and development of IBD are closely related to intestinal microorganisms (Gevers et al., 2014). In our experiment, OTU BIOM files and metadata were downloaded from the QIITA (https://qiita.ucsd.edu/) database (study id: 1939). The detailed experiment was described in Gevers et al., 2014. The IBD data set consists of 1,359 metagenomic samples, including rectal, ileal biopsy and fecal samples (Gevers et al., 2014). We retained samples of mucosal tissue biopsies (terminal ileum and rectum) samples under the age of 18. The control group were without inflammatory conditions, such as abdominal pain and diarrhea. The final data set consisted of 657 IBD samples and 316 normal samples, respectively. We used QIIME's taxa collapse to filter the strain's species, limiting features at genus level.




Results



The Hyperparameters of Graph Embedding Deep Feedforward Neural Network

The structure of the graph embedding deep feedforward neural network (GEDFN) is shown in Figure 2. The most important part of GEDFN is that the number of neurons in the first hidden layer is the same as the number of neurons in the input layer and they are sparsely connected, which is different with normal fully connected feed forward neural network. The second layer, third and fourth hidden layers are consisting of 128, 64 and 16 neurons respectively and they are fully connected.

We use three different methods to construct a microbial co-occurrence interaction network from microbial abundance data. When the sparcc method is used to build the network, we reserve the vertexes if the correlation of two vertexes is larger than 0.3. We get an adjacency network with 63 vertexes and 315 edges. We adopt the mictools (Albanese et al., 2018) to build the MIC relevant network and we get 279 vertexes and 3230 edges when the correlation threshold is 0.2. The network constructed by sparcc and SPEC-EASI methods is sparse while MIC gets relatively a dense network. Different methods get different interaction networks. We find the higher the threshold, the more reliable is the network. However, the high threshold will make the network too sparse. As a result, we combine three kinds of networks to get a larger network with 736 vertexes and 18,034 edges. In this way, the connections between the input layer and the first hidden layer are more reliable and less dense than the fully connected approach.

Other hyperparameters of GEDFN are as follows: the learning rate is 0.0001, the activation function is Rectified Linear Unit (ReLU) and the weight initializer is he_uniform, the drop out is 0.2. the code is implemented in keras and available at https://github.com/MicroAVA/GEDFN.git.




The Evaluation of Classification

Traditional classification methods such as Random Forest has been shown to be the best performers in omics data classification tasks and the results show that Random Forest has achieved the best performance on microbial classification (Pasolli et al., 2016). Therefore, we compare GEDFN with Deep Forest (DF), Random Forest (RF) and Support Vector Machines (SVM). For the binary classification, we calculate the Area Under the Receiver Operating Characteristics (AUROC) and classification accuracy for each method (Figure 3).



[image: ]

Figure 3 | The Area Under Receiver Operating Characteristic curve (left) and accuracy of classification (right) for GEDFN, Deep Forest (DF), Random Forest (RF) and Support Vector Machines (SVM). Left: the grey dash line is the chance discrimination that located on diagonal line (AUC = 0.5). The maximum AUC = 1 means the classifier could discriminate the diseased and non-diseased perfectly while AUC = 0 means the classifier incorrectly classified all subjects with diseased as negative and all subjects with non-diseased as positive. The AUC is averaged through a five-fold cross validation. Right: the boxplot for classifiers’ classification accuracy.




AUROC curve is a performance measurement for classification problem at various thresholds settings, which can evaluate classifiers considering all true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). Receiver Operating Characteristics (ROC) is a probability curve and Area Under the Curve (AUC) represents degree or measure of separability. It tells how much a model is capable of distinguishing between classes. The higher the AUC, the better the model is at predicting 0s as 0s and 1s as 1s. By analogy, the higher the AUC, the better the model is at distinguishing between patients with disease and no disease. The ROC curve is plotted with true positive rate (TPR) against the false positive rate (FPR) where TPR is on the y-axis and FPR is on the x-axis.

	[image: ]	

The classification accuracy means the percentage of correct predictions from the total number of predictions made.

				[image: ]	

Where [image: ] is the predicted label and yi is the true label for the sample i. The m means the sample size and I(·)is the indicator function.

In this experiment, we adopt a five-fold cross-validation. We use the implementation of Random Forest in python's scikit-learn package. We set the estimator parameter to 300. The Deep Forest is based on the work (Zhu et al., 2018). From the AUC value, we find that the Graph Embedding Deep Feedforward Network (GEDFN) is much better than SVM (AUC = 0.663). Compared with Deep Forest and Random Forest, GEDFN is also very competitive. GEDFN achieves an AUC value of 0.843, which is slightly better than Deep Forest (AUC = 0.834) and Random Forest (AUC = 0.823). In terms of classification accuracy, GEDFN achieves an average accuracy of 79.52%, Deep Forest achieves 76.6% and Random Forest achieves 75.16%. GEDFN outperforms 2–4% than Deep Forest and Random Forest. These methods are much better than SVM (67.5%).




The Evaluation of Feature Selection

In our experiment, we compare GEDFN with traditional feature selection methods, such as minimum redundancy and maximum Relevance (mRMR) (Ding and Peng, 2005), Random Forest and Deep Forest respectively. Each method selects 50 features. We want to know if the features obtained by the traditional machine learning feature selection method can also be selected by GEDFN. As can be seen from the Venn diagram (Figure 4), most of the features selected by the mRMR are different from those selected by the other three methods. Among these 50 features selected by GEDFN, there are 25 and 21 features which are consistent with the Random Forest and Deep Forest respectively.



[image: ]

Figure 4 | The feature selection based on Graph Embedding Deep Feedforward Network (GEDFN). The Venn diagram for top the 50 features selected via minimum Redundancy and Maximum Relevance (mRMR), Random Forest (RF), Deep Forest (DF) and GEDFN.




In addition, we compare the performance of GEDFN + SVM, RF + SVM, RF + SVM and RF + DF. Our approach is to select top 10, top 15, top 20,…, top 50 feature subsets from GEDFN and RF respectively, and test them on SVM and Deep Forest (DF) classifiers with five-fold cross-validation (Table 1). GEDFN + SVM, means GEDFN is utilized to conduct feature selection and SVM is the classifier. RF + SVM, means RF is utilized to conduct feature selection and SVM is the classifier. GEDFN + DF, means GEDFN is utilized to conduct feature selection and DF is the classifier. RF + DF, means RF is utilized to conduct feature selection and DF is the classifier.



Table 1 | The performance among GEDFN + SVM, RF + SVM, GEDFN + DF and RF + DF.

[image: ]




From Table 1, the combination of GEDFN and SVM achieves the best f1 score, while RF + SVM gets the worst performance. Meanwhile, GEDFN + SVM and GEDFN + DF have consistent performance. We find GEDFN prefers the sparse features while RF prefers the dense features. In other words, RF has a bias in the feature selection process where multivalued features are favored (Nguyen et al., 2015). In addition, RF is biased in the presence of correlation and often identifies non-predictive features that are independent from each other (Nicodemus and Malley, 2009). Actually, the microbial data is sparse and the features are dependent, which makes RF not the best choice to conduct feature selection in microbiome. However, GEDFN is to embed the priori sparse correlation network and find biomarkers as a whole, which makes it more suitable for microbiome-wide association studies than RF-based models.

The cophenetic similarity or cophenetic distance of two objects is a measure of how similar those two objects have to be in order to be grouped into the same cluster (Sokal and Rohlf, 1962; Saraçli et al., 2013). We calculate the cophenetic distance of the feature subsets. The specific process is as follows: we select different feature subsets obtained by Random Forest, Deep Forest and GEDFN, such as top 10–50 features, and then calculate node-node pairwise distance. The distance is characterized by the leaf nodes of the phylogenetic tree. We use the cophenetic method of the ape package in R to calculate the node-node pairwise cophenetic distance. The value in the matrix is the sum of the branch lengths separating each pair of species. We compare the top 50 features of Random Forest, Deep Forest and GEDFN respectively. We find the feature subsets of GEDFN has smallest cophenetic distances among these methods, which means that the subset of these features is better cohesive and we speculate that this cohesion may be functional meaningful (Figure 5). Deep Forest and Random Forest have similar cophenetic distance because Deep Forest is a cascade structure based on Random Forest.



[image: ]

Figure 5 | The cophenetic distance for top 50 features selected via Random Forest (RF), Deep Forest (DF) and Graph Embedding Deep Feedforward Network (GEDFN) respectively (The cophenetic distance is the sum of the features' pair-wise distance.). The cophenetic distance of two objects is a measure of how similar those two objects have to be in order to be grouped into the same cluster.




In addition, we utilize interactive Tree Of Life (iTOL) (Letunic and Bork, 2016) to visualize the top 20 features selected by GEDFN (Figure 6). The features are ranked according to their importance score. We average each species' relative abundance for diseased and normal groups respectively. We find that Neisseria, Pasteurellaceae, Bamesiellaceae, S24-7, Fusobacterium, Anaeroplasma and Gemellaceae had high abundance compared to the normal group, while other microorganisms are lowly expressed in the disease group. The Neisseria, Pasteurellaceae, Fusobacterium and Gemellaceae increased in Crohn's disease, which was reported in the research (Gevers et al., 2014). The Clostridiales, Eubacterium, Erysipelotrichaceae and Peptostreptococcaceae, Christensenellaceae were found in lower relative abundance in Crohn's disease (Gevers et al., 2014; Matsuoka and Kanai, 2015; Pascal et al., 2017). However, there is no unified option on the Crohn's disease-related microbial biomarkers. As a result, our findings must need further experiments to explore and verify.



[image: ]

Figure 6 | The top 20 species selected via Graph Embedding Deep Feedforward Network (GEDFN). The species in red circle are higher relative abundance while species in blue star are lower relative abundance in diseased group. These species are visualized on the phylogenetic tree.








Conclusions

In this work, we propose a method of embedding a microbial graph into a Deep Feedforward Network to achieve feature selection purpose. We have verified the feasibility of this method through experiments. The main contributions of our work are as follows: Firstly, the feasibility of this method is verified through combining microbial interaction structure and deep learning, and a sparse network structure is proposed. Secondly, the feature selection method is introduced into the microbial sparse network and the reliability of the feature selection results is verified, indicating that deep neural networks can also conduct feature selection. We hope our work will bring another perspective to the interpretability of deep learning.

The problems still exist in the research work. First of all, our work does not compare the influence of various methods of constructing microbial networks on feature selection (Weiss et al., 2016). The networks constructed by various methods are varying. We found that the reliability of the microbial network directly affected the subsequent results. Secondly, the threshold of association network was traded off and there was no relevant guidance suggestion. In general, the higher the threshold, the more reliable the network, but it would make the network too sparse. It would be required to balance the threshold and the network's sparseness. Finally, we only consider the influence of the weight parameters of the Deep Neural Network on the feature selection without considering the threshold of the neuron. Because it would involve the nonlinear transformation which could make the problem complicated and difficult. Therefore, our future work will focus on how to build a more reliable microbial interaction network and get more meaningful microbial markers.
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A Corrigendum on
 Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification

by Zhu, Q., Jiang, X., Zhu, Q., Pan, M., and He, T. (2019). Front. Genet. 10:1182. doi: 10.3389/fgene.2019.01182



Although in the original article although we have cited the work (Kong and Yu, 2018) in the Introduction section, we did not cite the work in the Materials and Methods section. Our approach to embedding deep learning for identifying microbial biomarkers is based on their methods and thus contributed a lot to our article. Therefore, this citation has been added to the following sections.

In order to avoid misinterpretation, we would like to add the reference in the following places which were highlighted in RED:

The Materials and Methods section, subsection The Framework of Graph Embedding Deep Feedforward Network, sub-subsection Graph Embedding Deep Feedforward Network, paragraph 4:

“Where ⊙ is element-wise product. Therefore, the connection between the input and first hidden layer of the feedforward network is filtered by the graph adjacency matrix. Each feature is corresponding to a hidden neuron. All features have corresponding hidden neurons in the first hidden layer. The feature can only provide information to the connected graph. In this way, the graph helps to achieve the sparsity of the connection between the input layer and the first hidden layer (Kong and Yu, 2018).”

The Materials and Methods section, subsection Feature Selection Based on GEDFN, paragraph 1:

“In addition to improving classification, it is also meaningful to find features that contribute significantly to classification because they reveal potential biological mechanisms. However, Deep neural network is a “black box”, the interpretability of deep learning hasn't been well-defined (Guidotti et al., 2019). In our experiment, we focus on how the input features influence the prediction and we borrow the idea from Olden and Jackson (2002) and Kong and Yu (2018). The feature importance score is the quantification values of the contributions of features to a model prediction, which links the input features and output prediction. They highlight the parts of a given input that are most influential for the model prediction and thereby help to explain why such a prediction was made. The feature selection is based on feature score, which means the score is high if the feature is important. As a result, we develop a feature ranking method based on the feature relative importance score, similar to the connection weights method introduced by Olden and Jackson (2002) and Kong and Yu (2018). What is learned by neural networks is contained in the connection weights. Based on idea of connection weight, we propose a graphical connect weight method that emphasizes the importance of the features of our proposed neural network architecture.”

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
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Individual patient biomarkers have an important role in personalized treatment. Although various high-throughput sequencing technologies are widely used in biological experiments, these are usually conducted only once or a few times for each patient, which makes it a challenging problem to identify biomarkers in individual patients. At present, there is a lack of effective methods to identify biomarkers in individual sample data. Here, we propose a novel method, IBI, to identify biomarkers in individual tumor samples. Experimental results from several tumor data sets showed that the proposed method could effectively find biomarker genes for individual patients, including common biomarkers related to the mechanisms of the development of cancer, which can be used to predict survival and drug response in patients. In summary, these results demonstrate that the proposed method offers a new perspective for analyzing individual samples.

Keywords: biomarker, individual sample, tumor, regression model, gene expression data



Introduction

Biomarker discovery is critical for cancer diagnostics, prognosis, and monitoring of therapy in clinical trials. With the development of high-throughput biochip technologies such as next-generation sequencing, massive quantities of cancer genomic data are being generated in the healthcare field, which offers an opportunity to identify high-quality cancer biomarkers for use in personalized medicine. Therefore, various computational methods have been proposed to identify cancer biomarkers. At present, the most commonly used methods are statistical tests, such as t-test, KS-test, and Wilcoxon’s rank sum test (Li et al., 2007; Dembélé and Kastner, 2014; Love et al., 2014; Moore et al., 2016; Wang et al., 2018), which identify differentially expressed genes (DEGs) from two types of samples and choose the group of genes with the lower p-value as potential biomarkers. However, the method often ignores and misses information between genes (Lewis-Wambi et al., 2008). Machine learning algorithms and statistical models also are widely used to identify cancer biomarkers. For example, the 70-gene biomarkers (Van’t Veer et al., 2002), wound-response gene biomarkers (Chang et al., 2005), and several of our gene biomarkers (Li et al., 2008; Li et al., 2010; Zhang et al., 2017) are all identified using machine learning algorithms. The 21-gene biomarkers (Van’t Veer and Bernards, 2008) and immunotherapy response biomarkers (Ock et al., 2017; Jiang et al., 2018) are based on statistical models.

However, the above methods are only able to identify biomarkers in two groups of samples, not in an individual sample. As cancer is a complex and heterogeneous disease, different patients have differences in pathogenesis and need different treatments. Thus, there is a need for biomarkers for individual patients that reflect their status. Currently, high-throughput biological experiments are usually conducted once or a few times for a single patient, which makes it a challenging problem to analyze single samples and, in particular, to identify biomarkers in individual patients. Some algorithms have been developed to analyze single samples. Rezwan et al. (2015) used the Crawford-Howell t-test to analyze methylation data of single samples and identified hypomethylation at different sites. However, this method could only detect differences in a single molecular element among different samples and may ignore the relationships of different molecular elements in the same sample. Liu et al. (2017) proposed the sDNB (single-sample dynamic network biomarkers) method to detect early-warning signals or critical states in individual patients using gene expression data. sDNB detects changes in gene expression levels of a pair of genes relative to reference samples and considers the local information of a gene in network. Drier et al. (2013) proposed an algorithm to analyze single tumor samples using pathway-level information instead of gene-level information. Pathways were detected that were significantly associated with survival of glioblastoma and colorectal cancer patients. However, a set of genes in the same pathway have similar functions; this means that models based on redundant features (biomarkers) are usually more complex.

Here, we propose a novel method, IBI (identification of biomarker genes in individual tumor samples), to identify biomarker genes in individual tumor samples using gene expression data. An overview of the IBI method is given in Figure 1. First, DEGs in tumor and normal samples are identified. Then, regression models are constructed using the selected DEGs, and residuals of each gene in different samples are analyzed using the kernel density estimation (KDE). Finally, we assess the degree of change of each gene according to the credibility interval (CI) of its residuals to decide which genes are biomarkers of the individual sample.



[image: ]

Figure 1 | Overview of IBI method.






Materials and Methods



Data Collection and Preprocessing

The proposed method was used to analyze three gene expression data sets: TCGA-BRCA (Tomczak et al., 2015), GSE63557 (Lesterhuis et al., 2015), and GSE35640 (Ulloa-Montoya et al., 2013). TCGA-BRCA consists of 1,090 breast cancer samples and 113 normal tissue samples. GSE63557 contains AB1-HA tumor data from mice during immunotherapy with 10 anti-CTLA-4 immunotherapeutic response samples and 10 non-response samples, and GSE35640 consists of advanced melanoma data with 22 MAGE−A3 immunotherapeutic response and 34 non-response samples. The first data set contains RNA-seq data, which was preprocessed using DESeq2 (Love et al., 2014), and the latter two data sets were preprocessed using the z-score.




Identification of Differentially Expression Genes

Assuming we have gene expression data with two types of samples and genes, let each sample be labeled with either “+” or “−”; n1 and n2 are the number of samples with label “+” and “−”, respectively (n = n1+ n2). yji is the expression value of the jth gene of the ith sample with label “+”, and xji is the expression value of the jth gene of the ith sample with label “−”. q DEGs are obtained using the robust algorithm (Love et al., 2014) or GEO2R (Smyth, 2004).




Average Sample

Let average samples with label “+” and “−” be[image: ], respectively.
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Regression Model Based on Average and Single Samples

Let [image: ] be the expression value of the jth DEG of the ith sample with label “+” and [image: ] the expression value of the jth DEG of the ith sample with label “−.” For the ith sample with label “+,”[image: ], [image: ] can be predicted using the following regression model according to [image: ]:

	[image: ]	(3)

where [image: ] and [image: ] are the regression coefficients estimated according to a set of data [image: ],[image: ], …, [image: ], using the least squares method.

Similarity, for the ith sample with label “−”[image: ][image: ]can be predicted using the following regression model according to [image: ]:

	[image: ]	(4)

where [image: ] and [image: ] are the regression coefficients estimated according to a set of data [image: ], [image: ], …, [image: ] using the least squares method.




Algorithm for Identifying Biomarker Genes of a Single Sample

Among q DEGs, expression values of some genes of a single sample may undergo very significant changes compared with their average values, i.e., the observed values of these genes are far from regression line. These genes are called biomarker genes of the single sample. The degree of the significant difference can be calculated using the residual value between the predicted value and observed value.

For the ith sample with label “+,” the residual value of its the jth DEG is:

	[image: ]	(5)

Similarity, for the ith sample with label “−”, the residual value of it’s the jth DEG is:

	[image: ]	(6)

To obtain biomarker genes of the ith sample with label “+”, the KDE is introduced to estimate the probability density function[image: ] of residual values: [image: ]. Its kernel density estimator with Gaussian kernel K is as follows:

	[image: ]	(7)
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where h is a smoothing parameter called the bandwidth (h > 0). Let Φ be the cumulative distribution function of the kernel density estimator; then, the CI at confidence level α is

	[image: ]	(9)

The jth gene is considered a biomarker gene of the ith sample with label “+” (n1 ≥ i≥ 1) if [image: ]. Similarity, we can obtain the biomarker gene of the ith sample with label “−”(n2 ≥i ≥1).





Results



Performance Evaluation

It was somewhat difficult to directly evaluate the performance of the proposed method. Three methods were employed to evaluate the power of the method.

	1)	Statistical test: The biomarker genes of each sample should be specific, that is, their expression values in the sample should be significantly different from those of other samples. We designed a method to test such differences, as follows. First, biomarker genes of sample Si are selected and their expression values extracted from all samples. Then, the expression values of each biomarker gene in different samples are sorted respectively and used to construct a rank matrix. The ith row vector, Ri, of the matrix denotes orders of biomarker genes of Si. Finally, the Kolmogorov-Smirnov test is performed to determine whether there is a significant difference between Ri and Rj (j≠i).

	2)	Survival analysis: The biomarker genes of each tumor sample should reflect its characteristics, namely, it should be possible to use biomarker genes to classify tumor samples into high- and low-risk groups and predict the survival risk of tumor patients.

	3)	Validation via biological evidence: The biomarker genes of each tumor sample should reflect the pathogenesis of cancer, that is, they should have been reported to be associated with tumor development in the published literature.




Experimental Results for TCGA-BRCA

The experiments on TCGA-BRCA were performed as follows. First, 6120 DEGs in two groups of samples were identified using DESeq2 (Love et al., 2014) at a 95% confidence level and absolute value of log fold change > 1. Next, average tumor and normal samples based on 6120 DEGs were obtained using Equations. (1) and (2). Then, 1,090 (113) regression models were constructed based on average tumor (normal) samples and 1,090 tumor (113 normal) samples, respectively; an example is shown in Figure 2. The residuals of the genes of each sample were calculated using Equations (5) and (6); Figure 3 shows residual values of biomarker genes from two samples. Finally, biomarker genes for each sample were identified using Equations (7), (8), and (9). The distribution of the number of biomarker genes in the 1,090 (113) tumor (normal) samples is shown in Figure 4.



[image: ]

Figure 2 | Regression model based on tumor sample TCGA-Z7-A8R6-01A-11R-A41B-07 and average tumor sample. The points in the upper-left (lower-right) partition are two biomarker genes with the highest (lowest) expression levels.
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Figure 3 | Residuals of genes of a single sample. (A) Breast tumor sample TCGA-A2-A0D2-01A-21R-A034-07; (B) normal tissue sample: TCGA-A7-A0D9-11A-53R-A089-07. The green points denote the two biomarker genes with the highest/lowest expression levels in the two samples.




[image: ]

Figure 4 | Distribution of the number of biomarker genes in (A) 1090 breast tumor samples and (B) 113 normal tissue samples.




As shown clearly in Figures 2 and 3, genes were distributed in two main areas. The genes scattered in the upper-left of the plots are those with higher expression levels, whereas genes in the lower-right portion have lower expression values, in the single tumor/normal sample. In Figure 2, there are several spots that are distant from the regression lines. These spots represent biomarker genes of the single sample. Figure 3 shows more clearly which genes had very significant variation in expression. For example, the residuals of CLEC3A and CCNO were 4.92 and 3.83, respectively, significantly higher than the values for other genes; while the residuals of HIST3H2A and TNNT1 were −3.33 and −2.95, respectively, significantly lower than those of other genes.

It can also be seen from Figure 4 that the number of biomarker genes varied among different samples. Some tumor samples had more than 315 biomarker genes, while others had about 290. The mean numbers of biomarker genes in the tumor samples and normal samples were 304.9 and 305, respectively. In addition, the biomarker genes of different samples were also different. In 1090 tumor samples and 113 normal samples, the biomarker genes had different frequencies (a biomarker gene has higher frequency if it is found in more samples). The top 15 biomarker genes with significantly different frequencies in tumor and normal samples are listed in Supplementary Table 1. These genes were common biomarkers of most tumor samples, and they had higher frequency in tumor samples than in normal samples. Therefore, these genes were likely to be related to the development of breast cancer. To test our hypothesis, we searched the literature using public databases and found that 14 of the 15 genes were indeed related to the development of breast cancer. The top gene was S100A7, which has been found to be expressed in several tissues including breast adenocarcinomas and squamous carcinomas of the head and neck, the cervix, and the lung (Emberley et al., 2004); S100A7 is also related survival of breast cancer patients (Emberley, 2003). CLEC3A had the highest frequency in tumor samples; its overexpression promotes tumor progression and poor prognosis in breast invasive ductal cancer (IDC) and is related to higher lymph node and poorer overall survival (OS) of breast IDC (Ni et al., 2018). PRAME has a tumor-promoting role in triple-negative breast cancer, increasing cancer cell motility through the epithelial-to-mesenchymal transition (EMT) gene reprogramming. Therefore, PRAME could serve as a prognostic biomarker and/or therapeutic target in triple-negative breast cancer (Al-Khadairi et al., 2019). Kammerer et al. (2016) suggested that patients with estrogen receptor-positive breast cancer might be stratified into high- and low-risk groups based on the KCNJ3 levels in the tumor. CST1 was found to be generally upregulated in breast cancer at both the mRNA and the protein level. Furthermore, OS and disease-free survival in the low CST1 expression subgroup were significantly superior to those in the high CST1 expression subgroup, indicating that CST1 could be a prognostic indicator and a potential therapeutic target for breast cancer (Dai et al., 2017). Xuan et al. (2015) reported that higher expression of MMP1 in breast cancer might play a crucial part in promoting breast cancer metastasis. Powell et al. (2018) demonstrated that CEACAM5 was a clinically relevant driver of breast cancer metastasis. NKAIN1 is associated with OS in breast cancer (Su et al., 2019). DSCAM-AS1 promotes tumor growth in breast cancer by reducing miR-204-5p and upregulating RRM2 (Liang et al., 2019). Overexpression of CEACAM6 promotes migration and invasion of estrogen-deprived breast cancer cells (Lewis-Wambi et al., 2008). Bhakta et al. (2018) suggested that anti-GFRA1-vcMMAE ADC might provide a targeted therapeutic opportunity for luminal A breast cancer patients. BMPR1B is related to proliferation of breast cancer cells (Bokobza et al., 2009). Jia et al. (2016) identified COL11A1 as a highly specific biomarker of activated cancer-associated fibroblasts (CAFs), which could promote breast cancer and inhibit pancreatic cancer. In summary, 14 of the top 15 biomarker genes have been reported to be associated with breast cancer. Therefore, these results demonstrate that the proposed method can effectively identify biomarkers related to cancer.

Statistical tests were performed to evaluate whether expression levels of biomarker genes of a sample were significantly different compared with those of other samples. As the biomarker gene set of each sample was represented by a p-value vector with dimension n, 1,090*1,089 [n(n−1)], where n is the number of samples) p-values were obtained for the 1090 tumor samples, and 113*112 p-values for the 113 normal samples; 1,186,999 (99.99%) and 12,626 (99.76%) of these p-values were less than 0.05 for the tumor samples and normal samples, respectively. These results indicate that there were significant differences between the expression levels of the identified biomarker genes of a sample and those of other samples, that is, the proposed method can effectively identify the biomarker genes of a single sample.

The frequencies of biomarker genes in tumor and normal samples were different. Here, we mainly analyzed biomarker genes whose frequency was higher in tumor samples than in normal samples, to explore which genes might have important roles in survival prediction and development of breast cancer. We selected 305 biomarker genes with higher frequency in tumor samples, and clustered the tumor samples into two groups using the multiple survival screening (MSS) algorithm (Li et al., 2010). Survival was significantly different between the two groups (p-value = 0.0089) (Figure 5). This means these biomarker genes are important features of breast cancer and can be used to distinguish tumor patients into high- and low-risk groups (here, we removed two samples with the negative follow-up-time, so there were 1,088 samples participating in survival analysis).



[image: ]

Figure 5 | Kaplan-Meier survival curves based on 305 tumor biomarker genes. In the high-risk group (red line), there are 329 tumor samples. In the low-risk group (blue line), there are 759 tumor samples.






Experimental Results for Immunotherapeutic Response Samples

The proposed method was also used to analyze mouse AB1-HA tumor data: GSE63557. A total of 8,042 DEGs in two groups of samples were identified using GEO2R (Smyth, 2004) at a 95% confidence level. Regression models of 10 anti-CTLA-4 immunotherapeutic response samples and 10 non-response samples were constructed; one of these is shown in Figure 6. Figure 7 shows residual values of biomarker genes from two samples. The number of biomarker genes of 10 response samples and 10 non-response samples is shown in Figure 8. In Figures 6 and 7, there are several genes that are far from the regression lines. For example, the residuals of Krt6b and Stfa3 were 2.07 and 2.26, respectively, significantly higher than those of other genes; the residuals of Chil3 and Igkv2-109 were −1.82 and −2.10, respectively, significantly lower than those of other genes.



[image: ]

Figure 6 | Regression model based on response sample GSM1552230 and the average response sample.
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Figure 7 | Residuals of biomarker genes (A) GSM1552230, (B) GSM1552221.
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Figure 8 | Number of biomarker genes in (A) response samples and (B) non-response samples.




The number of biomarker genes of different samples is shown in Figure 8, illustrating the variation between samples. The biomarker genes from different samples were also different. For 10 response samples and 10 non-response samples, the top 15 genes with the most significant differences in frequency are shown in Supplementary Table 2. Four of these genes, Gzme, CD38, CD3D, and Chil3, appeared in the important cancer modules identified by Lesterhuis et al. (2015) However, the top gene, Jchain, had not been identified as a member of these important cancer modules; notably, Jchain was also found to be the most important of the anti-CTLA-4 immunotherapeutic response biomarker genes in our study, with frequencies in response and non-response samples of 80% and 0%, respectively. This suggests that Jchain is related to immunotherapeutic response. GeneCards (https://www.genecards.org/) indeed confirms that Jchain has an important role in immune response. Moreover, Iglj1, Cd38, and Cd3d are also immune response related. This demonstrates that the IBI method can detect important genes contributing to the immunotherapeutic response mechanism.

According to the statistical tests, 100% of p-values were less than 0.05 in both response and non-response samples. The rank matrix of each response sample is shown in Figure 9A. These results indicate that there are significant differences between the identified response biomarker genes of a sample and those of other samples, that is, the proposed method also can effectively identify biomarker genes of individual samples even when fewer samples are used. We wanted to analyze biomarker genes whose frequency was higher in response samples than in non-response samples, and estimate their ability to predict survival in AB1-HA tumor samples. However, there was no follow-up information for AB1-HA mice. The selected 392 biomarker genes with higher frequency were tested against a human mesothelioma data set (TCGA-MESO, https://portal.gdc.cancer.gov). Notably, these biomarker genes could still effectively distinguish all patients into high- and low-risk groups (Figure 9B) with a p-value of 1.57×10-5. These results further support the validity of the proposed method.



[image: ]

Figure 9 | (A) Rank matrix of each response sample. (B) Kaplan-Meier survival curves for human mesothelioma tumor samples based on biomarker genes from mouse AB1-HA tumor samples; p-value=1.57×10-5. High-risk group includes 44 samples; low-risk group consists of 40 samples.






Experimental Results for Advanced Melanoma Data

The proposed method was used to analyze advanced melanoma data: GSE35640. A total of 1420 DEGs were identified in 22 MAGE−A3 immunotherapeutic response and 34 non-response samples using GEO2R (Smyth, 2004) at a 95% confidence level. Regression models of 22 MAGE−A3 immunotherapeutic response and 34 non-response samples were constructed; one of these is shown in Figure 10. Figure 11 shows residual values of biomarker genes from two samples. The number of biomarker genes of 22 response samples and 34 non-response samples is shown in Figure 12.



[image: ]

Figure 10 | Regression model based on response sample GSM872356 and the average response sample from GSE35640 gene expression data.




[image: ]

Figure 11 | Residuals of biomarker genes. (A) GSM872356, (B) GSM872328.
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Figure 12 | Number of biomarker genes in (A) response samples and (B) non-response samples.




As shown in Figure 12, there were small differences in the number of biomarkers from different samples. The mean number of biomarker genes in response samples was 70. The top 15 genes with the most significant difference of frequency in 22 response samples and 34 non-response samples are shown in Supplementary Table 3. We proposed that these genes were likely to be mainly immune or tumor related. To test our hypothesis, we searched GeneCards for these genes and found that some of them play important roles in the development of immune-related cells. For example, MS4A1 is associated with the development of B-cells into plasma cells; CD37 may play a part in T-cell–B-cell interactions; CD5L participates in obesity-associated autoimmunity; MMP8, IRF5, and RHOF are related to innate immune pathways; MMP9 has a role in tumor-associated tissue remodeling; and TRAM1L1 is related to the well-known cancer-related NF-kB pathway. This demonstrated that the IBI method could detect important genes contributing drug response mechanisms and help to elucidate immunotherapeutic response mechanisms. In the statistical tests, 96.96 and 95.72% of p-values were less than 0.05 in the response and non-response samples, respectively. These results also indicate that biomarker genes of a sample show significant differences compared with those of other samples, that is, the proposed method can also effectively identify MAGE−A3 immunotherapeutic response biomarker genes in individual advanced melanoma samples even with fewer samples.

We wanted to analyze biomarker genes whose frequency was higher in response samples than in non-response samples, and estimate their ability to predict survival in advanced melanoma. However, there was no follow-up information in GSE35640, so we used skin cutaneous melanoma gene expression data (TCGA-SKCM) for the survival analysis. The selected 70 biomarker genes were tested against TCGA-SKCM, showing that these biomarker genes could effectively distinguish skin cutaneous melanoma patients into high- and low-risk groups (Figure 13), with a p-value of 0.016. These results indicate that the proposed method performs well. In their original paper, Ulloa-Montoya et al. (2013) identified 84 gene expression signatures associated with response to MAGE-A3 immunotherapy in metastatic melanoma and non-small-cell lung cancer, whereas 61 of the 84 genes were chosen as biomarker genes by our proposed method (e.g., CD86, CCL5, and IRF1). These genes were mainly immune related and were involved in interferon gamma pathways and specific chemokines. Experimental results showed that pretreatment MAGE-A3 immunotherapy in metastatic melanoma influenced the tumor’s immune microenvironment and the patient’s clinical response. The proposed method could be used to identify these biomarker genes and predict the influence of MAGE-A3 immunotherapy on survival in metastatic melanoma (Figure 13).
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Figure 13 | Kaplan-Meier survival curves for TCGA-SKCM based on biomarker genes from GSE35640; p-value = 0.016. There were 281 and 166 samples in the high-risk and low-risk groups, respectively.






Experimental Results for the Simulated Data

In order to further test the performance of the proposed method, we added a supplemental experiment on the simulated gene expression data. First, the simulated gene expression data with 10 samples 1000 genes is generated using simulateGEdata function in the RUVcorr (Freytag et al., 2015) package. Then, 1,000 genes are divided into 10 groups, we increase/decrease gene expression value of the ith group of genes in the ith sample by an up or down perturbation value. The range of perturbation value is from 0 to mean value of the corresponding gene in 10 samples. Thus, the ith group of genes can be considered as biomarker genes of the ith sample. Finally, experiment is performed on the simulated data to observe whether the proposed method can find these markers. We repeated the above steps ten times and experimental results shown that the proposed method can effectively identify the biomarker genes of 10 samples. The 99% biomarker genes identified by the proposed method are the predefined biomarkers when the perturbation value is twice (see Supplementary Figure 1).





Discussion

Precision medicine is an active area of cancer research. The key to cancer precision medicine is to find biomarker genes with high performance, and various approaches to identify such genes have been developed. However, identification of biomarker genes for individual tumor samples remains a challenging problem; for many reasons, there is a lack of effective approaches to identify biomarkers in individual patients. Here, we developed a novel approach to address this issue. Experimental results based on several different data sets show that the proposed method can effectively identify biomarker genes of individual human tumor samples, not only from several hundred samples but also from a few samples without clinical information, and even from mouse samples.
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Acetylation is one of post-translational modification (PTM), which often reacts with acetic acid and brings an acetyl radical to an organic compound. It is helpful to identify acetylation protein correctly for understanding the mechanism of acetylation in biological systems. Although many acetylation sites have been identified by high throughput experimental studies via mass spectrometry, there still are lots of acetylation sites need to be discovered. Computational methods have showed their power for identifying acetylation sites with informatics techniques which usually reduce experiment cost and improve the effectiveness and efficiency. In fact, if there is an approach can distinguish the acetylated proteins from the non-acetylated ones, it is no doubt a very meaningful and effective method for this issue. Here, we proposed a novel computational method for identifying acetylation proteins by extracting features from the conservation information of sequence via gray system model and KNN scores based on the information of functional domain annotation and subcellular localization. The authors have performed the 5-fold cross-validation on three datasets along with much analysis of features and the Relief feature selection algorithm. The obtained accuracies are all satisfactory, as the mean performance, the accuracy is 77.10%, the Matthew's correlation coefficient is 0.5457, and the AUC value is 0.8389. These works might provide useful insights for the related experimental validation, and further studies of other PTM process. For the convenience of related researchers, the web-server named “iACetyP” was established and is accessible at http://www.jci-bioinfo.cn/iAcetyP.

Keywords: acetylation, Random Forest, family and domain databases localization, post-translational modification, identification


INTRODUCTION

To date, more than 450 unique protein modifications have been identified (Han et al., 2018), including phosphorylation, acetylation, ubiquitination, and sumoylation, which are regulatory mechanisms of cellular proteins with a number of biological functions, and also are very important for regulating the function of many prokaryotic and eukaryotic proteins (Yang et al., 2017). Among these post-translational modification (PTM), acetylation is a dynamic and highly conserved PTM (Figure 1) that plays a vital role in the regulating processes of diverse cellular. The role of acetylation in histones were first discovered in histones (Allfrey et al., 1964), and the first deacetylase activity was identified back in 1969 (Inoue and Fujimoto, 1969). Owing to its important involvement in some relevant biological processes, acetylation becomes one of the most important reversible protein posttranslational modifications, hence, more and more acetylated proteins are discovered with the help of high-throughput technologies. Thus, it is a piece of very interesting work to identify the potential acetylation sites for finding the underlying molecular mechanisms, and is helpful for basic bioresearch and drug development.


[image: Figure 1]
FIGURE 1. An illustration to show the acetylation protein.


However, due to the importance and complexity of acetylation, identifying acetylation sites is a great challenge to fully understand the regulatory roles and the molecular mechanism of acetylation regulation. Actually, it is a time-consuming, expensive and labor-intensive process for purifying acetylation sites due to that the acetylation process is dynamic, rapid and reversible (Li et al., 2017; Yang et al., 2017). Fortunately, some studies had showed that experimental methods and computational models can be used to identify underlying PTMs sites (Hershko and Ciechanover, 1998; Haglund and Dikic, 2005; Tung and Ho, 2008; Radivojac et al., 2010), such as ubiquitination model of Radivojac et al. (2010); Zhao et al. (2011), and Cai et al. (2012), phosphorylation model of Ingrell et al. (2007); Yao et al. (2012, 2015); Chen et al. (2015); Li et al. (2015); Trost et al. (2015), and Xu et al. (2015), sumoylation model of Beauclair et al. (2015); Xu et al. (2016), and Han et al. (2018), acetylation model of Zhao et al. (2010); Wang et al. (2012); Hou et al. (2014), and Wuyun et al. (2016), and so on. Although these researchers did make much contribution to this issue, there is still a lot of room for improving the prediction quality. However, most of these efforts are on identifying some determinate PTMs sites for a given protein sequence, and few of computational method was proposed for distinguishing the acetylated proteins from the non-acetylated ones. This study was an attempt for the issue.

For a given protein represented with amino acid sequence, how to identify whether it may be one of some certain PTM proteins or may not? This may be the first step for identifying PTM sites and then is helpful and meaningful for basic research and drug development. In fact, we have made some preliminary exploration and attempt on identifying phosphorylated proteins. In Qiu et al. (2017a,b), we presented a method for identifying human phosphorylated proteins and a multi-label classifying model for different type of phosphorylated proteins with the help of the General PseAAC concept and gray system theory. Although the results are not so perfect, we still argue that the formulations and models can be applied to this issue, and it may be more powerful when some structure, function or localization information of proteins were added into the model. This site may be a fruitful opportunity for bioinformatics. For example, Gene Ontology (GO) (Ashburner et al., 2000) was proposed by Ashburner to reposit the concepts denoted as GO Terms that are associated to other gene products, and it has been widely used in describing the attributes for gene products (Agapito et al., 2016; Peng et al., 2016).

The dataset we used here was fully extracted from Uniprot (The UniProt, 2017). The present study tried to construct a classifying model for potential acetylation proteins by fusing the digital features which are come from its evolution information, Subcellular localization (noted as SL) (Nakai and Horton, 1999) information and functional domain annotation (noted as FDA) databases including GO (Harris et al., 2004), Pfam (Bateman et al., 1999), Smart (Letunic et al., 2004), InterPro (Hunter et al., 2009), PRINTS (Attwood et al., 2012), PROSITE (Sigrist et al., 2010), SUPFAM (Pandit et al., 2004). As for subcellular localization (Du et al., 2012), it was retrieved from the original UniProt database, which was reorganized by UniProt build-in hierarchical subcellular localization table. This paper proposed a new computational model for identifying potential acetylation proteins only on the basis of a query amino acid sequence by using its evolution information obtained with gray system model (Gray-PSSM) (Kaur and Raghava, 2004; Jones, 2007) and KNN scores calculated with the fuzzy distance by using its FDA and subcellular localization information. There are 80 amino acid sequence features extracted by incorporating the sequence evolution information were fused into PseAAC feature set and KNN scores, all of these features are combined according to different coefficients on the basis of its importance. To highlight the advantages of the proposed model, the model was trained and tested with three sub-datasets and cross-validations methods. In addition to some discussion of protein abovementioned features, some hypotheses for distinguishing acetylation proteins from non-acetylation ones were also depicted with the aid of training dataset.



MATERIALS AND METHODS


Benchmark Dataset

It is fundamental and important that a stringent benchmark dataset be stablished for testing the proposed statistical predictor. Luckily, the UniProtKB/Swiss-Prot database is accepted by most of bioinformatics researchers, and has been using more and more widely. The data used in the current study to support this work are established on the basis of web http://www.uniprot.org.

In this study, we assume that our work is to identify whether an uncharacterized amino acid sequence is acetylation protein. As we known, the input sequence is comprised by amino acids and can be expressed as

[image: image]

where Pi represents the i-th residue of amino acids sequence P, L is the length of P.

Here, we separate a benchmark dataset into a training dataset noted as S. Thus, the datasets can be formulated as:

[image: image]

where Sposi is composed of the acetylation proteins, Snega is composed of the non-acetylation proteins, [image: image]. ∪ and ∩ represent the symbol for “set union” and “set intersection,” respectively.

The version of protein data used in the current study was released in May 2017. The positive dataset was generated according to the following criteria: (1) The potential acetylated proteins should be noted by anyone keyword of the set, i.e. {N_acetylcysteine, N_acetylserine, N_acetylglutamate, N_acetylglycine, N_acetylproline, N_acetylthreonine, N_acetylvaline, N_acetylmethionine, N_acetyltyrosine, N2_acetylarginine, N6_acetyllysine, O_acetylserine, O_acetylthreonine}. (2) The collected proteins are labeled by “Evidence” for the item of “Any assertion method.” (3) Only the proteins which consisting of 30 and more amino acid residues can be included, and the redundant proteins were removed with the threshold of 50% by using CD-HIT software.

The negative dataset was generated similar to the positive one except that those proteins should not be labeled none member of the mentioned above keyword-set. Since there are mass number of candidates here, we randomly collected negative datasets which have the balance samples size with positives.

Under the aforementioned standards, we obtained 2,925 protein samples, of which, the numbers of positive and negative samples are 725 and 2,175, respectively. In terms of Equation (2), we have 725 positive samples in Sposi and 2,175 negative samples in Snega. Here, we test the models with cross-validation on the three datasets with 1,450 samples, i.e., [image: image]and [image: image], of which, the positive and negative ones are equal, i.e., 725 samples.



Feature Construction
 
General Pseudo Amino Acid Composition (PseAAC)

Most of traditional machine-learning algorithms, such as Random Forest, SVM, and K nearest Neighbor, are not so powerful, the input should be vectors instead of sequence samples for biological issue. To overcome this problem, the researchers trying their best to improve the discrete or vector model by formulating the amino acids sequence into all kinds of pseudo amino acid composition (PseAAC), encoding method (Zhang et al., 2006; Chen et al., 2011; Shi et al., 2012; Jiao and Du, 2017) or other approaches.

Here, the proposed model followed the idea of PseAAC (Chou, 2011), and formulated an amino acids sequence P as:

[image: image]

Here, the symbol T means the transpose operator for a matrix, N is an integer representing the number of features which depend on the method(s) used for extracting information from protein P (cf. Equation 1). P is a vector for representing amino acids sequence P and pi (i = 1, 2, ⋯ , N) is the ith element of the vector. Below, we will describe how to extract functional domain annotation and subcellular localization information as well as pseudo amino acid composition, which are used in this study, from a query sequence to define the components for amino acids sequence P.



Protein Sample Formulation With KNN Score Based on FDA and Subcellular Localization (SL)

In addition to GO database, “Pfam,” “Smart,” “PROSITE,” “SUPFAM,” “InterPro,” and “PRINTS” are established according to cellular component, molecular function, biological process or some other characteristics. For example, the Pfam database is a large collected protein families generated by using hidden Markov models. SMART is abbreviation of Simple Modular Architecture Research Tool which can be used for research on the protein domains and architectures. PROSITE consists of entries describing the protein families, domains and functional sites as well as amino acid patterns and profiles. InterPro provides a functional analysis of protein sequences, and PRINTS also is a resource of detailed annotation for protein families in addition to a diagnostic tool for newly determined sequences. Subcellular localization feature is a key functional characteristic of potential gene products such as proteins, especially for plant.

Actually, in the GO database, proteins are clustered in a way in which their subcellular locations can be reflected fully. To incorporate more information, most of the approaches need to formulate a long list of the GO numbers, and a great part of the GO numbers make meaningless as a whole. In literatures (Gao et al., 2010; Yao et al., 2012), the authors show us that local sequence clusters often appear in the neighborhood of PTM sites for the reason that the same PTM family generally have some similarities in local sequences. As a better choice for depicting the character, K nearest neighbor score was proposed. To take advantage of such cluster information of GO and other FDA databases as well as subcellular localization for predicting acetylation proteins, for a given potential acetylation protein, we took the characteristics around the query neighborhood and extracted the KNN scores features from the training dataset containing both positive and negative samples. The algorithm is listed as follows.

Step 1. For a query protein sequence find its k nearest neighbors, which can be positive or negative samples, in the whole set according to local sequence similarity. For a given protein p, [image: image] represents the keywords set of the jth FDA. The j (= 1, 2, …, 7, 8) represents “GO,” “Pfam,” “Smart,” “PROSITE,” “SUPFAM,” “InterPro,” “PRINTS,” or “subcellular localization,” respectively), [image: image] is the similar mean for protein q. The similarity distance Distj (p, q) between p and q can be defined as follows:

[image: image]

Where ⋂, ⋃ and || are the operators “union,” “intersection,” and “norm” of the set theory, respectively. Here, || is defined as the number of its elements. dist(p, q) is the Euclidean distance on the basis of PseAAC. w1 and w2 are the weights of the two distances.

Step 2. A corresponding KNN feature is then extracted by calculating the KNN score, noted it as the percentage of acetylation proteins in its k nearest neighbors.

Step 3. To obtain diverse and enough properties of neighbors with KNN scores, the above two steps were repeated for different k values. For the jth member of FDA, the protein P can be formulated as:

[image: image]

In this paper, the number of features is 50 and k was defined to be 0.1, 0.4, 0.7, …, 14.5 and 14.8 percent of the size of the involved dataset. In this way, 50 KNN scores were extracted as features for identifying acetylation proteins. To be more precisely, φ1(j) is the ratio of positive neighbors to whole concerned samples, i.e., 0.1 percent of the size of the training data set, φ2(j) is the ratio of positive neighbors to whole concerned samples whose value is the product of 0.004 and the size of the training data set, and so forth, when K = 50, φ50(j) is the ratio of positive neighbors to 14.8 percent of the size of the training data set.

In a word, a query protein sequence can be formulated with seven 50-Dimension vectors, i.e., PFDA = [PFDA1, PFDA2, …, PFDA7], by using FDA database. Since Chou's pseudo amino acid composition (PseAAC) (Chou, 2001; Mondal and Pai, 2014) have showing so great powerful for identifying structure and function of protein, the proposed method took it into account according to the style of reference (Shen and Chou, 2008) (we select type 1 and let λ = 5). Thus, a given protein sequence can be expressed as 375-dimension vector, and these digital representations served as the input of the query protein for the prediction model.




Operation Engine and Evaluation
 
Algorithms

Here we choose Random Forest as the operation engine as the predictor, and named the final predictor as “iAcet-PseFDA.” This name is an acronym created from its description, and Figure 2 would show how iAcet-PseFDA working.


[image: Figure 2]
FIGURE 2. Flowchart of the proposed predictor.


As shown in Figure 2, the first step is to input the query amino acid sequence P. And then, the PSI-BLAST software was used to find the most similar protein to P, which is used to determine the most likely GO or other information of FDA set and generate the KNN scores with it. With the descriptor of P, the desired result can be obtained with the framework of Random Forest classifier trained on the benchmark.



Metrics and Test Method

The predictor iAcet-PseFDA was evaluated with cross-validation tests in the terms of following seven widely-accepted measurements: accuracy (or Acc, for short), Mathew's correlation coefficient abbreviated as Mcc, sensitivity (abbreviated as Sn, i.e., the fraction of the relevant documents that are successfully retrieved), specificity (i.e., Sep), Precision (i.e., Pre, a description of random errors), F-measure (or F-m, the harmonic mean of precision and recall), and G-mean. Since the area under the receiver operating characteristic curve (auROC, for short) is another important measurement of the performance of a given model, it was also calculated and plotted in this study. In view of the traits of validation method trait, cross-validation method was applied on three datasets for evaluating the proposed predictor.





RESULTS AND DISCUSSION


Investigating the Performances of KNN Score of FDA Represent

Figure 3 depicted the comparisons of the KNN scores of acetylation and non-acetylation proteins on all of the FDA features, and there really are some differences between the positive and negative samples. Figure 3A showed the comparison of PAAC represents between acetylation proteins and non-acetylation proteins, Figure 3B showed those of KNNScore-GO, and so forth, Figure 3I showed those of Subcellular localization. Overall, acetylation proteins gained obvious larger KNN scores than non-acetylation proteins on GO and Subcellular localization, and a little larger gap between the KNNScores of positive and negative datasets, all of the average KNN scores are nearly merged in 0.5 with the growth of features.


[image: Figure 3]
Figure 3. (A) Comparison of KNNScore-PAAC represents between acetylation proteins and non-acetylation proteins. (B) Comparison of KNNScore-GO represents between acetylation proteins and non-acetylation proteins. (C) Comparison of KNNScore-Pfam represents between acetylation proteins and non-acetylation proteins. (D) Comparison of KNNScore-Smart represents between acetylation proteins and non-acetylation proteins. (E) Comparison of KNNScore-Prosite represents between acetylation proteins and non-acetylation proteins. (F) Comparison of KNNScore-Supfam represents between acetylation proteins and non-acetylation proteins. (G) Comparison of KNNScore-InterPro represents between acetylation proteins and non-acetylation proteins. (H) Comparison of KNNScore-PRINTS represents between acetylation proteins and non-acetylation proteins. (I) Comparison of KNNScore-SL represents between acetylation proteins and non-acetylation proteins.


Specifically, for acetylation proteins with the view of GO evaluated on different sizes of nearest neighbors, the average values shown in Figure 3B are within 0.6–0.8, however, the average digits are within 0.2–0.4 for non-acetylation proteins. From the view of Subcellular localization as showed in Figure 3I, most of the average KNN scores of acetylation proteins are waved within 0.5–0.7 while those of non-acetylation proteins fluctuating around 0.4. From the view of Smart, Supfam, InterPro Pfam, Prosite and PRINTS as showed in Figures 3C–H, there are clearly gaps between the acetylation proteins and non-acetylation proteins, and the gaps are narrowing with the growth of KNNScores number.

We tested the eight kinds of features on the three datasets with RF, and the mean performances are depicted in the first 11th lines of Table 1, while the compared measurements obtained from the proposed model, in which the features were selected with Relief, are attached in the last line. As showed in the table, the features of Subcellular localization reached the best results with Acc is 73.95%, Mcc is 0.4843, Sn is 81.24%, Recall is 81.24%, F-measure is 75.72%, and G-mean is 73.59%. As regards for Sp and Precison, GO gained the best result which are 68.37 and 71.39%, respectively. Thus, the features of GO gained the second place. The other six performances are not satisfactory and worse than those of GO and Subcellular localization, all Accs of them are <0.7 except for GO and Subcellular localization. The results obtained with the enhanced model are discussed below.


Table 1. Mean performance comparison with different KNN score feature tested with RF.

[image: Table 1]



Performance of Proposed Model

Based on the above discussions, we argue that the local amino acids surrounding acetylation sites, which have been verified, would share in similar pattern(s) with positive set on average as expected. These findings confirm that there are some acetylation-related clusters in acetylated proteins and hence may be used to distinguish them from the non-acetylation protein. Accordingly, the KNN scores were used to encode query sequence for predicting acetylation proteins in this study.

As we known, the Relief algorithm as a feature weighting algorithm was first proposed by Kira and Rendell (1992). In the algorithm, the features were allocated different weights in light of the relevance of characteristics and categories. The feature will be removed when its weight less than a threshold by this method. Since the combined features generated a high-dimensional vector, and the Relief method can rank the values of features, this work thus used Relief to reduce feature redundancy. With the help of Relief, we tested the predictor on different features sets and listed the mean performances in the last line of Table 1. The Acc is 77.55% which is better than 74.64%, the result obtained by using all of the eight features, and better than that of subcellular localization. The Relief model gained the better results according to the other seven measurements. Figure 4 depicted the selected features by Relief algorithm which containing 156 potential features (of which, there are 8 PSSM-gray features, 13 GO KNNScores, 27 for PFAM, 41 for SMART, 15 for PROSITE, 2 for SUPFAM, 3 for INTEPRO, 19 for PRINTS, and 28 for Subcellular localization KNNScores). From the figure, we can see that the importance of PAAC, SMART and PRINTS are obvious since a lot of features are noted as blue which means their rank in the selected feature set. The predictor obtains the best result at 156, which means there are 156 features were selected here, with Acc is 77.55%, Mcc is 0.5883, Sn is 96.41%, Sp is 71.26%, Precision is 52.79% which isn't the best performance unfortunately, Recall is 96.41%, F-measure is 68.23% and G-mean is 82.89%. These obtained results are better than anyone of Table 1.


[image: Figure 4]
FIGURE 4. Features selected by Relief.


The performance of iAcet-PseFDA was also depicted with ROC curves shown in Figure 5 in which the graphic lines are represent for GO, Subcellular localization and other Domain notations' KNNScores along with PseAAC's. As shown in first subfigure of Figure 5, the proposed model's AUC value is 0.8280 while those of PseAAC, GO, PFAM are 0.7521, 0.8146, 0.7548, respectively. Thus the proposed model obtained best result of the four methods. With similar analysis depicted in the last two subfigures of Figure 5, the AUC values of SMART, PROSITE, SUPFAM, INTERPRO, PRINTS, and Subcellular localization KNNScores are 0.7453, 0.7538, 0.7614, 0.7611, 0.7144, and 0.8087, respectively. In conclusion, all of the values are <0.8280, and there still are gaps between them and that of the proposed model. It shows that the feature set enhanced with Relief would obtain more satisfactory results than those of the independent FDA features.
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FIGURE 5. The ROC curves of predictor with different features.





CONCLUSION

In order to detect acetylation proteins, this study developed a method on the basis of Random Forest algorithm and Relief. Our approach considered information of sequence conservation extracted by PSI-BLAST besides with PseACC. The involved features are extracted from the sequence conservation information and “GO,” “Pfam,” “Smart,” “PROSITE,” “SUPFAM,” “InterPro,” “PRINTS” and Subcellular localization information of the given query amino acid sequence. This work may cope with the expensive and time-consuming process of identifying acetylation proteins because that the features only incorporated the sequence conservation via gray system model and Knn scores based on FDA databases. All of these processes only need computational model instead of any physical chemistry experiment.

Also, our result manifested that it appears that using FDAs is essential for the prediction of acetylation functional class, which had been reported in previous research (Qiu et al., 2016a,b, 2017b), and the information related to subcellular is also important for identifying the PTM proteins. As the growing demand of verification of acetylation sites, we argue that more effort should be input in developing organism-specific predictors for this issue. The reason for presenting the model here then is for the improving the predictor used in similar research, and it may be helpful for those researchers who would like to deal with bioinformatics problems with computational models. In addition, the involved features may provide important clues of the acetylation mechanism and guide the related experimental validations.

Additionally, a web-server has been established at http://www.jci-bioinfo.cn/iAcetyP which is user-friendly and convenient for the researchers who are working in distinguishing acetylated proteins from non-acetylated proteins.
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Copy number variation (CNV) is a common structural variation pattern of DNA, and it features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects a larger fragment of genomes. CNV is related with the genesis of complex diseases and can thus be used as a strategy to identify novel cancer-predisposing markers or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2 (MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity to DNA damage and results in chromosomal instability. The relationship between CNV and cancer has not been explained. In this study, on the basis of the genome variation profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed the CNV data to select crucial SNP sites with the most relevance to three different states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state), suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study can shed new insights into the genesis of cancer based on CNV, providing reference for clinical diagnosis, and treatment prognosis of CRC.

Keywords: copy number variation, MACROD2, colorectal cancer, subtype, classification


INTRODUCTION

Copy number variation (CNV) is a common structural variation pattern of DNA; it is defined as a >1 kb genomic segment with a different copy number compared with the reference genome, leading to gains, or losses of multiple DNA sites that are either microscopic or submicroscopic (Redon et al., 2006). CNV features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects a larger fragment of genomes (Zhang et al., 2009). For a large number of CNVs generated in the human genome, one of the known mechanisms is DNA recombination, which includes non-allelic homologous recombination and non-homologous end-joining. Recently, a new mechanism based on DNA error replication has been discovered. Named the “Fork stalling and switching” model, this mechanism can explain complex-structure CNVs that do not conform to non-allelic homologous recombination or non-homologous end-joining.

With the development of high-resolution SNP arrays, identifying large-scale CNVs in thousands of samples has been possible (Beroukhim et al., 2010). Studies have demonstrated that CNV is related to the genesis of Mendelian diseases, sporadic diseases, and susceptibility to complex diseases (Yang et al., 2008; De Cid et al., 2009; Willer et al., 2009; Sato et al., 2014; Zhang et al., 2014). CNVs also play a potential role in cancer risk, and the genome-wide copy number analysis can be used as a strategy to identify novel cancer-predisposing markers or mechanisms (Kuiper et al., 2010). Ding et al. (2010) reported that the genome of primary tumors is diverse and frequently includes gene rearrangements and copy number variations. Shlien et al. (2008) used high-density oligonucleotide arrays to compare the genomes of healthy population and a Li–Fraumeni cancer predisposition disorder (LFS) cohort and observed that CNV in the cell adhesion gene mixed-lineage leukemia translocated 4 (MLLT4) is associated with LFS, in which patients always harbor a germline heterozygous mutation of the tumor suppressor gene TP53 and experience a high probability of developing early-stage breast, sarcoma, brain, and other tumors. Scrima et al. (2012) revealed that 24, 31, and 26% of patients with lung adenocarcinoma achieved a copy number gain in adenylate kinase (AK) 1, AK2, and phosphoinositide-3-kinase, catalytic, alpha polypeptide (PI3KCA), respectively, via fluorescence in situ hybridization.

Evidence has recognized CNV as one of the most important genomic alterations affecting cancer pathogenesis (Hermsen et al., 2002), whereas chromosomal instability and allelic imbalance at certain chromosomal loci play crucial roles in most sporadic cases of colorectal cancer (CRC) (Zanke et al., 2007). CRC is the fourth most common cancer and the second leading cause of cancer death worldwide, with over 1.1 million new cancer cases and 880,000 deaths estimated in 2018 (Bray et al., 2018). For better assessment of the progression of CRC, the Dukes staging system was proposed as a common classification system for CRC (Dukes, 1932). Four stages of CRC are defined by such system depended on the degree of colorectal pathology. Dukes A represents the invasion of tumor cells into but not through the bowel wall. Patients in Dukes A stage usually have better outcomes with over 90% 5-year survival. When tumor grows through the muscle layer of the bowel but not infiltrate into lymph nodes, it will be identified as Dukes B stage. Dukes C refers to the spread of cancer to at least one lymph node close to the bowel. And lastly, widespread metastases of tumor cells in CRC, also called advanced CRC, indicate the stage of Dukes D. The clear stage of CRC contributes to the decision making in clinical treatment, and also provides a detailed description for the pathology research.

Frequent deletions of the mono-ADP-ribosylhydrolase 2 (MACROD2) locus in human CRC alter DNA repair and sensitivity to DNA damage and result in chromosomal instability (Sakthianandeswaren et al., 2018). In addition, MACROD2 deletion in CRC is significantly associated with the extent of malignancy, indicating that MACROD2 acts as a haploin-sufficient tumor suppressor, with the loss of function promoting chromosome instability and thereby driving cancer evolution.

In this study, based on the genomic variation profiling by SNP array from 651 CRC primary tumors (Sakthianandeswaren et al., 2018), the log R ratio (LRR) and B allele frequency data (BAF) of each SNP site were exported using two types of hybridization probes specific to two types of known alleles (Wang et al., 2007), and the SNP genotype also can be determined by the ratios of the hybridization intensities of two types of probes. The genotype of SNPs located in the region of MACROD2 was used to represent the genotype state of MACROD2, which means that the individuals with the loss of both alleles in at least one SNP site in MACROD2 will be classified into the state of homozygous deletion, and the deletion of only one allele indicates the heterozygous deletion status. A wild-type stage or normal stage refers to no deletion happened in MACROD2. Following that, each patient was classified into one of the three states: heterozygous deletion, homozygous deletion, and normal state in our study. We computationally analyzed the CNV data to select the crucial SNP sites showing the most relevance to the four Dukes stages of CRC (A, B, C, and D) and three different states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state), suggesting that these CNVs may play functional roles in CRC tumorigenesis. We constructed a classifier with high accuracy to group individuals into the corresponding state categories. This classification model also provides a meaningful list of genomic loci that perform important functions in the development and progression of cancers. To date, the relationship between CNV and cancer has not been exactly explained. Our study can shed new light on the genesis of cancer based on CNV, providing reference for the clinical diagnosis and treatment prognosis of CRC.



MATERIALS AND METHODS

In this study, we first used the minimum redundancy and maximum relevance (mRMR) method (Peng et al., 2005) to analyze all features. Irrelevant features were discarded and the rest features were ranked in a feature list, which was further fed into the incremental feature selection (IFS) (Liu and Setiono, 1998) to obtain the optimum features and extract the classification rules for readable explanation. We adopted the same computational pipeline to separately analyze four kinds of carefully organized datasets, including the CRC stage with LRR or BAF and the MACROD2 status with LRR or BAF.


Datasets

The LRR and BAF data on 651 CRC primary tumors obtained using the Illumina Human610-Quad v1.0 BeadChip were downloaded from Gene Expression Omnibus under the accession number GSE115145 (Sakthianandeswaren et al., 2018). The LRR and BAF were calculated with GenomeStudio (Illumina). The 651 CRC samples can be divided into four stages: 60 stage A samples, 208 stage B samples, 297 stage C samples, and 86 stage D samples. Based on MACROD2 status, 441 wild-type samples, 137 heterozygous deletion samples, and 73 homozygous deletion samples were obtained. Each sample was represented by 620,901 SNP features.



Feature Selection

As mentioned above, each sample was represented by lots of SNP features. Clearly, not all of them were highly related to classification of these samples. Thus, we employed some powerful feature selection methods to analyze all features. The analysis procedures included three stages. The first stage was to exclude irrelevant features; the second one was to sort rest features; the last stage was to construct optimal classifier with optimum features and classification rules with the help of IFS method, support vector machine (SVM) (Corinna Cortes, 1995), and repeated incremental pruning to produce error reduction (RIPPER) (Cohen, 1995).

The purpose of the first stage was to exclude irrelevant features. To this end, all features were evaluated by the mRMR method. The mRMR method was a mutual information (MI)-based feature selection method (Peng et al., 2005; Li et al., 2019). The importance of each feature was evaluated by its MI to class labels. It is clear that the higher the MI values were, the more important the features were. After a threshold for MI value was set, irrelevant features can be excluded.

After irrelevant features were excluded, rest features were assessed by mRMR method in another way in the second stage. In detail, rest features were ranked in a feature list in terms of their relevance to class labels and redundancies to other features. The feature subset consisting of some top features in the list can be deemed to be the optimal feature combination with highest relevance to class labels and lowest redundancies among these features, which can provide a powerful discrimination. In this study, we used the mRMR program downloaded from http://home.penglab.com/proj/mRMR/index.htm. Default parameters were adopted.

In the third stage, we ran a two-stage IFS with a classification algorithm to select the optimum features for building the optimal classifier or construct classification rules. In the first stage, a series of feature subsets with a step 10 was generated, where feature subset 1 consists of the top 10 features, feature subset 2 consists of the top 20 features, and so on. Then, for each feature subset, a classifier was trained on the samples consisting of the features from the feature subset, and this classifier was evaluated using 10-fold cross-validation (Kohavi, 1995). An interval [min, max] with a good performance was determined. In the second stage, a series of feature subsets within the interval [min, max] was generated to further select the final optimum features or construct classification rules. Based on these optimum features, an optimal classifier can be built.



SVM

SVM attempts to identify a hyper plane with a maximum margin between two groups of samples, and it has been widely used in biological data studies (Pan and Shen, 2009; Mirza et al., 2015; Cai et al., 2018; Chen et al., 2018, 2019; Zhou et al., 2019). In this work, we used a multi-class SVM with a one vs. rest strategy. The multi-class SVM consists of multiple binary SVMs, and each SVM classifies the samples of one class from the rest of the classes. When predicting the class for a new sample, the SVM predicts the sample's label corresponding to the class with the highest probability. This study adopted the SVM implemented by a tool “SMO” in Weka.



Rule Learning

To understand how a classification model makes a prediction, we used rule learning to extract the readable classification rules. A rule consists of an IF-THEN relationship between features and output labels, such as IF SNP1 <= 0.7 AND SNP2 >= 1.02; THEN stage = “A.” In this study, we applied RIPPER (Cohen, 1995), which is implemented by a tool “JRip” in Weka. RIPPER consists of two stages, including the rule building stage and rule optimization stage.



SMOTE

As mentioned in the Datasets section, 651 CRC samples were classified into three or four classes. The sizes of classes varied a lot. Thus, investigated datasets were imbalanced. For this type of dataset, the performance of an ordinary classifier is dependent on the biggest class. To tackle this problem, Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002; Wang et al., 2018; Zhang et al., 2019) was employed in this study, which is a oversampling method. This method can produce some new samples and pour into minority class, thereby making all classes having equal sizes. In this study, for the BAF/LRR dataset of CRC stage, new samples were generated by SMOTE for classes of stages A, B, and D, while new samples were yielded by SMOTE for classes of heterozygous deletion and homozygous deletion for BAF/LRR dataset of MACROD2 status.

In this study, we adopted the SMOTE program implemented by python, which was downloaded at https://github.com/scikit-learn-contrib/imbalanced-learn.




RESULTS

In this study, we separately analyzed the four kinds of carefully organized datasets with a three-stage feature selection method. Whole procedures are illustrated in Figure 1.


[image: Figure 1]
FIGURE 1. Entire procedures to analyze the log R ratio (LRR) and B allele frequency (BAF) data on colorectal cancer (CRC) primary tumor samples. CRC samples are classified into four stages; at the same time, they can also be classified into three classes according to their MACROD2 status. For each classification, two datasets with LRR and BAF, respectively, were constructed. Four datasets were obtained in total, in which single-nucleotide polymorphism (SNP) features were used to represent each CRC sample. A feature selection procedure, including three stages, was adopted to analyze all SNP features. Finally, an optimal classifier and several classification rules were accessed for each dataset.


For the first stage, we set the threshold of MI values to be 0.01; i.e., features receiving the MI values larger than 0.01 were kept. The number of remaining features for BAF/LRR dataset of CRC stage was 47515/44931, while it was 20839/20973 for BAF/LRR dataset of MACROD2 status. Then, in the second stage, remaining features in each dataset were ranked by the mRMR method. Obtained feature lists are provided in Tables S1–S4. The third stage employed the IFS method and classification algorithms to extract optimum features and construct classification rules. The key results are provided in Tables 1–4.


Table 1. Performance of classification models on BAF dataset of CRC stage with IFS method.
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Results on BAF Dataset of CRC Stage

We first ran the computational pipeline on the first BAF dataset of CRC stage. Key results are provided in Table 1 and Figure 2. For the first stage of IFS with a step 10, results are provided in Table S5 and a curve with Matthews correlation coefficient (MCC) (Matthews, 1975; Gorodkin, 2004; Zhao et al., 2018, 2019; Cui and Chen, 2019) as Y-axis and number of features as X-axis was plot, as shown in Figure 3A. The SVM yielded the highest MCC value of 0.9653 (Table 1) when the top 35,440 features were used. Considering this extremely large number, we used another turning point (top 8,790 features), which still yielded a high MCC value of 0.9007. Thus, in the second IFS stage, we ran the same pipeline with the interval [1, 8800] with a step 1. Results are collected in Table S6, and a curve was also plotted, as shown in Figure 3B. The best MCC value was 0.9008 when the top 8,797 features were used. Accordingly, we built an optimal SVM classifier with the top 8,797 features.


[image: Figure 2]
FIGURE 2. Bar chart to show accuracies on four CRC stages yielded by key support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER) classifiers on BAF data of CRC stage.
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FIGURE 3. Incremental feature selection (IFS) results on BAF data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on BAF data of CRC stage yielded by SVM. (B) Second-stage IFS results on BAF data of CRC stage yielded by SVM. (C) First-stage IFS results on BAF data of CRC stage yielded by RIPPER. (D) Second-stage IFS results on BAF data of CRC stage yielded by RIPPER.


In addition to SVM, we applied the interpretable rule learning method RIPPER to evaluate the selected features' performance in a rule manner. After running RIPPER on the samples consisting of features from individual feature subsets with a step 10, we obtained the performance of RIPPER on different feature subsets, as shown in Table S5 and Figure 3C. We obtained the best MCC value of 0.2932 when the top 8,500 features were used. A turning point was observed (top 2,170 features), yielding an MCC value of 0.2692. To further select the optimum features, we ran the IFS with RIPPER within the interval [1, 2,200]. Results are available in Table S6 and displayed in Figure 3D. We obtained the best MCC value of 0.2745 when the top 2,075 features were used.

Although RIPPER showed a poorer performance than SVM in this case, one advantage of RIPPER is that it can generate classification rules, which help us understand how the model makes a prediction on a subgroup of samples. Considering these data, the RIPPER produced 30 classification rules, which are given in Table S7.



Results on LRR Dataset of CRC Stage

We ran the above same pipeline on the second dataset. Key results are provided in Table 2 and Figure 4. When running the IFS with an SVM on the samples consisting of features from individual feature subsets, we obtained the best MCC value of 0.7542 when the top 20,400 features were used. We adopted a smaller turning value (top 3,960 features), which yielded an MCC value of 0.7143. Then, we ran the second stage of IFS on the interval [1, 4000] and obtained the best MCC value of 0.7231 when the top 3,967 features were used. These results are given in Tables S8, S9 and illustrated in Figures 5A,B. Accordingly, an optimal SVM classifier was built based on the top 3,967 features.


Table 2. Performance of classification models on LRR dataset of CRC stage with IFS method.
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FIGURE 4. Bar chart to show accuracies on four CRC stages yielded by key SVM and RIPPER classifiers on LRR data of CRC stage.



[image: Figure 5]
FIGURE 5. IFS results on LRR data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of CRC stage yielded by SVM. (B) Second-stage IFS results on LRR data of CRC stage yielded by SVM. (C) First-stage IFS results on LRR data of CRC stage yielded by RIPPER. (D) Second-stage IFS results on LRR data of CRC stage yielded by RIPPER.


Similarly, IFS with RIPPER was also used on this dataset. All results are provided in Tables S8, S9 and displayed in Figures 5C,D. We obtained the best MCC value of 0.3420 when using the top 18,530 features. Of note, when 3,040 features were used, the performance showed a notable change as a performance turning point. Thus, in the second stage of IFS, we ran the RIPPER on the interval [1, 3100] and obtained the best MCC value of 0.3490 when using the top 2,841 features. The 32 learned classification rules are given in Table S10.



Results on BAF Dataset of MACROD2 Status

Instead of analyzing the association between the CRC stages and CNV states, we used the same pipeline to analyze the MACROD2 status associated with particular CNV types. For the BAF dataset of MACROD2 status, key results are provided in Table 3 and Figure 6. Results of the first stage of IFS with SVM are available in Table S11, and a curve was plotted in Figure 7A. We obtained the best MCC value of 0.9683 when the top 5,610 features were used. We detected the turning point 2,080, which yielded an MCC value of 0.9406. In the second stage of IFS, we ran the SVM on the interval [1, 2080]. Results are collected in Table S12, and a curve was plotted in Figure 7B. The best MCC value was 0.9436 when the top 2,064 features were used, which can be used to build an optimal SVM classifier.


Table 3. Performance of classification models on BAF dataset of MACROD2 status with IFS method.
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[image: Figure 6]
FIGURE 6. Bar chart to show accuracies on three MACROD2 status yielded by key SVM and RIPPER classifiers on BAF data of MACROD2 status.



[image: Figure 7]
FIGURE 7. IFS results on BAF data of MACROD2 status yielded by SVM and RIPPER. (A) First-stage IFS results on BAF data of MACROD2 status yielded by SVM. (B) Second-stage IFS results on BAF data of MACROD2 status yielded by SVM. (C) First-stage IFS results on BAF data of MACROD2 status yielded by RIPPER. (D) Second-stage IFS results on BAF data of MACROD2 status yielded by RIPPER.


We also ran the IFS with RIPPER on this dataset. The first-stage results are provided in Table S11. A curve was plotted in Figure 7C. RIPPER yielded the best MCC value of 0.3923 when the top 18,460 features were used. We also selected the turning point 5530 for the second stage of IFS, which yielded an MCC value of 0.3677. For the second stage of IFS within the interval [1, 5530], results are available in Table S12 and a curve was shown in Figure 7D. We still obtained the best MCC value of 0.3677 when the top 5,530 features were used. The 23 classification rules generated by RIPPER are listed in Table S13.



Results on LRR Dataset of MACROD2 Status

We did the similar procedures for the LRR dataset of MACROD2 status. Key results are provided in Table 4 and Figure 8. For the first stage of IFS with SVM, results are provided in Table S14 and a curve was plotted in Figure 9A. We obtained the best MCC value of 0.9069 when using the top 5,540 features. Similarly, a smaller turning point 1,030 was used for the second stage of IFS, because it still yielded a satisfactory MCC value of 0.8759. In the second stage of IFS, we set the interval [1, 1,100]. Results are collected in Table S15, and a curve was plotted in Figure 9B. We obtained the best MCC value of 0.8785 when the top 1,022 features were adopted. The optimal SVM classifier was built using the top 1,022 features.


Table 4. Performance of classification models on LRR dataset of MACROD2 status with IFS method.
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[image: Figure 8]
FIGURE 8. Bar chart to show accuracies on three MACROD2 status yielded by key SVM and RIPPER classifiers on LRR data of MACROD2 status.



[image: Figure 9]
FIGURE 9. IFS results on LRR data of MACROD2 status yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of MACROD2 status yielded by SVM. (B) Second-stage IFS results on LRR data of MACROD2 status yielded by SVM. (C) First-stage IFS results on LRR data of MACROD2 status yielded by RIPPER. (D) Second-stage IFS results on LRR data of MACROD2 status yielded by RIPPER.


We ran the IFS with RIPPER again. Results are provided in Table S14. A curve was plotted in Figure 9C, from which we can see that the best MCC value was 0.6953 when the top 410 features were used. Then, we ran the second stage of IFS within the interval [1, 410]. Results are available in Table S15. A curve was plotted in Figure 9D. It can be seen that the best MCC value was 0.7385 when using the top 306 features. Table 5 lists the 17 classification rules generated by RIPPER.


Table 5. Classification rules on dataset of MACROD2 status with LRR.
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DISCUSSION

On each of four datasets, a group classification rules were generated by RIPPER. According to the performance of RIPPER listed in Table 4, rules on the LRR data of MACROD2 status were with the highest performance (MCC = 0.7385). Thus, we mainly discussed these rules, which are listed in Table 5. Each rule can cover some CRC samples and give high accuracies.

Given that the status of MACROD2 is significantly relevant to the intestinal tumorigenesis and plays a crucial role in cancer development (Sakthianandeswaren et al., 2018), our classifiers are expected to be prognostic indicators for evaluating the malignancy of intestinal tumor. On LRR data, 17 decision rules were generated by RIPPER, which can distinguish the three status of MACROD2 with LRR with a classification accuracy of 0.7385. Depending on the CNV profiles of selected loci, predicting whether a heterozygous, or homozygous depletion of MACROD2 exists in CRC patients is possible. To validate the reliability of these rules, we examined existing experimental evidence through a literature review.

We focused on the 17 decision rules and a few top-ranked features on data of MACROD2 status with LRR. Such rules and features described specific CNV characteristics contributing to the identification of MACROD2 status and CRC classification, indicating their crucial roles in cancer development. Especially, several top-ranked features showed strong biological and biomedical relevance with MACROD2, indicating that they also play relevant functions in cancer progression.

Among the 17 rules, 8 rules could identify the homozygous deletion of MACROD2, and the other 8 decision rules can identify the normal non-depletion status of MACROD2. The last one indicates the heterozygous deletion, which means that if the CNV profiles in patients failed to meet any criteria of the other 16 rules, they were predicted to carry the heterozygous deletion of MACROD2.


Rules for Homozygous Deletion

In the eight rules identifying the homozygous deletion of MACROD2 (see first eight rules in Table 5), 21 criteria involving 20 SNP sites were located in different regions of six genes. Notably, 12 of these SNP sites were located in the genomic regions of MACROD2, and the LRR of specific regions near these SNP sites featured a low value, which is naturally and logically consistent given that the CNV loss in MACROD2 leads to homozygous deletion. Thus, our analysis actually highlights the potential core roles of specific SNP sites, suggesting its capability to identify the overall state of MACROD2 based on the CNV conditions of a few loci. In detail, the 12 SNPs (rs353149, rs6034087, rs445945, rs377954, rs6135314, rs6135362, rs6110500, rs6079537, rs6043173, rs11905979, rs199305, and rs377201) were distributed in different locations of the intron regions of MACROD2 and displayed strong relevance to the overall status of MACROD2. By the detection of CNV in these selected loci markers, we can identify the deletion state of MACROD2 in patients. We will find the corresponding therapy methods for the treatment targets in the future. Further research about these incompletely elucidated SNP sites may reveal the mechanisms of tumor development at the genomic level. The biological and biomedical significance of several SNPs is summarized below.

The SNP site rs6685801 located in chr1:3547887 required a low value of LRR to identify the homozygous deletion of MACROD2 in our decision rules. This position is in the intron region of multiple EGF-like-domains 6 (MEGF6) gene, which was reported to play a critical role in cell adhesion and involved in many disorders of neural system development (Sunnerhagen et al., 1993). Recent publications have confirmed that MEFG6 can promote the epithelia-to-mesenchymal transition in CRC metastasis (Hu et al., 2018). This gene is also significantly upregulated in tumor tissue and results in the poor survival of a colon adenocarcinoma cohort. MEGF6 can also accelerate the cell growth and inhibit apoptosis in CRC as demonstrated by the experiment in vitro. All these results suggest that MEGF6 may serve as an oncogene, and its overexpression may contribute to the tumorigenesis in CRC patients. We inferred that the copy number loss in this specific intron region caused the upregulated expression of MEGF6 as it may perform inhibitory effects on transcription. Thus, the low LRR of the SNP site rs6685801 can indicate the severe extent of CRC, consistent with the homozygous deletion state of MACROD2.

Another important SNP site rs9444675, which displayed strong relevance to the status of MACROD2 in our classifier, is located in the intron region of gamma-aminobutyric acid receptor subunit rho-1 (GABRR1). GABRR1, also called GABA(A) receptor, is a member of the rho subunit family and acts as the receptor of major inhibitory neurotransmitters in the mammalian brain (Cutting et al., 1992). A recent study has shown that GABRR1 is significantly upregulated by the transcriptome of chemokine (C-X-C motif) ligand 1-(CXCL1) treated colon cancer cells (Hsu et al., 2018). Further analysis via bioinformatics methods reported that high expression of GABRR1 showed a significant correlation with reduced overall survival rates, suggesting the crucial role of GABRR1 in the progression of colon cancer. In addition, another research reported the upregulation of GABRR1 in cancer cohorts compared with the controls with regard to gene expression profiles of medullary thyroid carcinoma (Oczko-Wojciechowska et al., 2006). These pieces of evidences support the decision rule that copy number loss of specific region located in GABRR1 will lead to the upregulation of GABRR1 and contribute to the carcinogenesis of CRC, resulting in the similar consequence as the homozygous deletion state of MACROD2.

One important criterion identified in the decision rules suggests the high value of LRR near the specific SNP site rs2100272. This site is located in the intron regions of VWA3B, which showed a tendency toward malignancy development. VWA3B encodes an intracellular protein thought to function in transcription, DNA repair, and membrane transport (Kawarai et al., 2016; Huttlin et al., 2017), playing a role similar to MACROD2, which was reported to influence DNA repair and sensitivity to DNA damage and result in chromosome instability (Sakthianandeswaren et al., 2018). In the patients of bladder urothelial carcinoma, evident copy number alterations were observed in the 2q12 regions in which the VWA3B was mapped (E. Pontes et al., 2013), in line with the suggestion that VWA3B plays a crucial role in bladder carcinogenesis. In addition, VWA3B is significantly differentially expressed in tongue squamous cell carcinoma samples at the transcriptome level (Song et al., 2019). These results confirm our decision rules, which indicate that the copy number gain of the specific regions near rs2100272 will alter the expression of VWA3B and contribute to the development of certain cancers including CRC.

Another criterion was found in the experimental findings, and it required a low LRR near the SNP site rs700029 to identify the homozygous deletion state of MACROD2. This SNP site is located in chr1:81805339 and was mapped in the intron region of adhesion G protein-coupled receptor L2 (ADGRL2), which encodes a member of the latrophilin subfamily of G-protein coupled receptors. ADGRL2 functions as a p53 target gene and regulator of neuronal exocytosis (Hamann et al., 2015). Recent research has shown the low expression level of ADGRL2 in genomic sequencing analyses of both gastric cancer and colon cancer cell lines due to the hypermethylation of CpG islands within the gene (Jeon et al., 2016). ADGRL2 is also associated with lung squamous cell carcinoma and may serve as the diagnostic marker for small cell lung cancer (Huang et al., 2018). The rules that require the copy number loss of specific intron region in ADGRL2 may result in the alteration of expression profile and lead to the development of CRC.

We also identified a critical SNP site rs9355387 located in the intron region of gene Parkin RBR E3 ubiquitin protein ligase (PRKN), which according to the rules indicates the homozygous deletion state of MACROD2. The gene PRKN, best known as PARK2, is a key component of a multiprotein E3 ubiquitin ligase complex, which mediates the targeting of substrate proteins for proteasomal degradation. Mutations occurring in this gene cause Parkinson's disease (Oczkowska et al., 2013). The loss of PRKN at both the DNA copy number and mRNA expression levels contributes to cancer progression via redox-mediated inactivation of phosphatase and tensin homolog (PTEN) (Gupta et al., 2017). The depletion of PRKN also enhanced pancreatic tumorigenesis in KRAS-driven engineered mouse models based on its role in mediating the degradation of mitochondrial iron importers (Kang et al., 2019), implying that PRKN can be a potential target for pancreatic cancer therapy. These results highlight the crucial role of PRKN in cancer progression and confirm our predicted rules, indicating that the loss of copy number near rs9355387 would be an indicator of severe status of cancer.



Rules for Wild-Type

The eight rules for identifying the non-deletion or wild-type status of MACROD2 included 21 criteria with 19 SNP sites, 15 of which are located in the intron regions of MACROD2. The LRR of these specific regions requires a high value opposite that of the homozygous deletion state. Among the 15 SNP sites located in MACROD2 and with built non-deletion status, 4 SNPs (rs6135314, rs353149, rs445945, and rs6043173) have been applied in the identification of the homozygous deletion state of MACROD2 with relatively low values as mentioned before. The other 11 SNP sites (rs1998086, rs381053, rs1475531, rs365516, rs2423866, rs385770, rs449849, rs716316, rs6135269, rs6034046, and rs6034011) showed different distributions in varying locations in the intron regions of MACROD2, displaying a significant correlation with the overall state of MACROD2 and implying that these selected loci may play unexplained functional roles in regulating DNA replication. The candidate SNP sites identified by our prediction model can be applied as biomarkers for the pathologic evaluation of CRC, given that the state of MACROD2 has been confirmed to be a significant signal in intestinal cancers.

The copy number loss of the regions near the SNP site rs1327323 can indicate the non-deletion state of MACROD2 in one decision rule. This site is located in chr13:52296316 and mapped in the intron regions of transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 2 (TPTE2P2), which is considered a putative promoter in human genome (Kimura et al., 2006). By the whole-exome sequencing analysis of 42 tumor–normal paired samples, highly frequent sites of increased copy number were found in the specific position of chromosome arm 13q (Corraliza Márquez, 2014), the gains in which have been associated with a poor prognosis and metastasis in CRC (Leary et al., 2008). TPTE2P2 is present in the segments with copy number loss, suggesting that it probably facilitates defect in tumorigenesis. Another publication also reported TPTE2P2 as one of the key genes identified in gastric cancers (Zeng et al., 2018), implying its crucial role in certain cancers. We inferred that the copy number gain in the specific intron region of TPTE2P2 results in the progression of CRC, and the loss of copy number in our decision rules identifies the normal status of MACROD2 and the absence of CRC.

Some SNP sites (rs5904713 and rs13011654) are located in the intron regions of the non-coding RNA gene or the intergenic regions in our decision rules. They have not been reported in current research literature but show strong relevance to the progression of CRC at the CNV level, implying their potential roles in the regulation of oncogenes.

Numerous top-ranked features display the significant relevance to the classification of three status of MACROD2, most of which are located in the intron regions of MACROD2. Coincident with the relevant information and our inferred decision rules, the CNVs in MACROD2 resulted in the direct altered states (e.g., cancer). In addition, our approach provides an effective method to evaluate the malignancy extent by detecting a few biomarkers (e.g., SNP sites) rather than conducting an overall detailed analysis of the large gene MACROD2, which is more than two million base pairs in size. In summary, our study has proposed for the first time that specific SNP sites can be applied as biomarkers in cancer diagnosis, and further research on these sites will shed light on the molecular mechanism on how these specific DNA regions contribute to the progression of CRC.
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Background: The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells. It is involved in many important biological processes, such as cell metabolism, protein synthesis, and post-translational modification. The proteins that reside within the ER are called ER-resident proteins. These proteins are closely related to the biological functions of the ER. The difference between the ER-resident proteins and other non-resident proteins should be carefully studied.

Methods: We developed a support vector machine (SVM)-based method. We developed a U-shaped weight-transfer function and used it, along with the positional-specific physiochemical properties (PSPCP), to integrate together sequence order information, signaling peptides information, and evolutionary information.

Result: Our method achieved over 86% accuracy in a jackknife test. We also achieved roughly 86% sensitivity and 67% specificity in an independent dataset test. Our method is capable of identifying ER-resident proteins.


Keywords: pseudo-amino acid composition, support vector machine, endoplasmic reticulum resident protein, leave-one-out cross-validation, weight transfer



Introduction

The endoplasmic reticulum (ER) is an important subcellular organelle in eukaryotic cells. Two major functions are usually recognized for ER. One is that it selectively transports secreted proteins and membrane proteins. The other is that it retains some proteins to maintain its own structure and function (Lavoie and Paiement, 2008). The ER proteins are sorted precisely with quality controls (Ellgaard and Helenius, 2003; Araki and Nagata, 2011). An understanding of these processes contributes to the elucidation of endoplasmic reticulum function and the pathogenesis of many diseases (Paschen and Frandsen, 2001; Verkhratsky, 2002).

ER-resident proteins are an important topic in ER-related studies. Some of the ER-resident proteins possess sorting signals, such as KDEL or KXXX, while some others do not (Stornaiuolo et al., 2003). Over the last two decades, several efforts have been made to determine the ER sorting signals experimentally. For example, Teasdale and Jackson (1996) found that UGT2 localizes to the endoplasmic reticulum when they studied the UDP-galactosyl transporter (UGT). They also reported that the C-terminal sequence “LLTKVKGS” of the UGT2 is useful in the sorting process. Kabuss et al. (2005) proved that mutating this part of the sequence will result in re-localization of UGT2 to the Golgi apparatus. Although wet experiments for detecting protein localization signals can provide clear evidence and distinguish between maintenance and return signals, performing these experiments is always costly and time-consuming. Therefore, computational predictions are recognized as an alternative approach that provides useful and informative guidance to the experimental methods.

Computational predictions of protein subcellular localizations have been heavily studied in bioinformatics. In the early 1990s, computational systems were developed to recognize the sorting signals from the primary sequences of proteins (Nakai and Kanehisa, 1991; Nakai and Horton, 1999; Wang et al., 2014). When statistical sequence features were introduced to represent protein sequences, machine learning-based algorithms were employed to predict protein sorting destinations. Many studies have tried to apply various algorithms to predict protein subcellular localizations at different levels in different contexts. Several online services have proved useful in this regard. These services include ProLoc-GO (Huang et al., 2007; Huang et al., 2008), KnowPredsite (Lin et al., 2009), SlocX (Ryngajllo et al., 2011), iLoc-Animal (Lin et al., 2013), iLoc-Euk (Chou et al., 2011), Cello v-2.5 (Yu et al., 2006), HybridGO-Loc (Wan et al., 2014), mGOASVM (Wan et al., 2012), Hum-mPloc (Shen and Chou, 2007; Shen and Chou, 2009; Zhou et al., 2017), Euk-mPloc (Chou and Shen, 2007; Chou and Shen, 2010), HPSLPred (Wan et al., 2017), and many others (Chou and Shen, 2008; Briesemeister et al., 2010; Du et al., 2011; Du and Xu, 2013; Almagro Armenteros et al., 2017; Wei et al., 2018; Chen et al., 2019).

The general-purpose protein subcellular location predictors take ER as only one of many subcellular locations. The dataset used for training and testing these methods does not distinguish between ER-resident proteins and non-ER-resident proteins. Since both of these types of proteins may be annotated with subcellular localization ER, constructing a high-quality dataset that is capable of separating them is important. Kumar et al. (2017) proposed the ERPred method, using a carefully curated dataset to distinguish the ER-resident proteins from the non-ER-resident proteins. By using split amino acid compositions (SAAC), they achieved a very promising result. Their results confirmed that the peptide sequences at the terminals of proteins are very informative in guiding the protein sorting process in the ER. Moreover, their results revealed that even if no known sorting signals were found on the sequence, the terminal peptides were still very useful in identifying ER-resident proteins (Kumar et al., 2017).

Pseudo-amino acid composition, which was proposed by Chou (2001), has been widely applied in representing protein sequences for predicting various attributes of proteins. By coupling this with many different machine-learning algorithms, a series of consecutive successes have been achieved. These successful efforts provide consolidated evidence that the pseudo-amino acid compositions are capable of representing protein sequences of various lengths using a fixed-length numerical vector without losing much of the sequential information (Chou, 2011; Chou, 2013; Chou, 2015).

In this study, we introduced a U-shaped weight-adjustment function to improve the pseudo-amino acid compositions. The U-shaped weight-adjustment function transfers weights from the middle-positioned residues to those at the terminals. Besides the weight-adjustment function, we have made two more augmentations to the original pseudo-amino acid compositions. One is to introduce the auto-cross covariance pseudo-factor form, which has been applied in finding protein folding patterns (Dong et al., 2009). The other is to incorporate positional-specific physicochemical properties, which have been applied in predicting protein submitochondrial locations and sub-Golgi locations (Du and Yu, 2013; Jiao and Du, 2017; Zhao et al., 2019).

Our method actually emphasizes the terminal signaling peptide information in pseudo-amino acid compositions. We expect that our approach can be applied not only in predicting ER-resident proteins but also in other topics associated with analyzing protein sorting and localization processes.



Materials and Methods


Benchmarking Datasets

In this study, we took the ERPred dataset as our benchmarking dataset. Kumar et al. (2017) released this dataset along with their ERPred study. The ERPred dataset contains two parts: the training set and the independent testing set. Table 1 gives a breakdown of the entire ERPred dataset. The training set contains 124 ER-resident proteins and 1200 non-ER-resident proteins. The independent testing set contains 65 ER-resident proteins and 2900 non-ER-resident proteins. It is obvious that this dataset is highly imbalanced. The number of non-ER-resident proteins is about 10 times that of the ER-resident proteins in the training set and over 40 times that in the independent testing set. The identifiers of the proteins in the benchmarking dataset are listed in the supplementary materials(Tables S1–S3).


Table 1 | Breakdown of the dataset.





Sequence Representations

The ERPred study applied SAAC sequence representations. The result of ERPred implied that the terminal peptides contain more information for sorting proteins to ER (Kumar et al., 2017). Therefore, we introduced a U-shaped weight-adjustment function to transfer weights from those residues in the middle part of the sequence to those at the terminals of the sequence. Besides this improvement, we incorporated the sequential evolution information using the positional-specific physicochemical properties (PSPCP) (Du and Yu, 2013; Jiao and Du, 2017), as well as the auto-cross covariance form pseudo-factors (Dong et al., 2009).

In order to explain our method properly, we developed a new set of matrix-based notations to describe the Type-II classic pseudo-amino acid compositions, also known as the amphiphilic pseudo-amino acid compositions (Chou, 2005). These new formulations, in mathematics, equal the original ones but with a much simpler appearance. We first give the definitions of the all-ones vector and the shifting matrix.

An n-D all-ones vector is defined as follows:




	(1)



where δi = 1 (i = 1, 2, …, n).

An n-sized shifting matrix is defined as:




	(2)



where




	(3)



A given protein sequence p with length l can be represented as a string:




	(4)



where rj (j = 1, 2, …, l) is the j-th residue on the protein sequence. Every residue represents one of twenty different kinds of amino acids. We use a 20-D binary vector Aj to represent rj (j = 1, 2,…, l):




	(5)



where




	(6)



The whole sequence can be represented using a matrix, as follows:




	(7)



where A(p) is a matrix-based sequence representation, and Aj (j = 1, 2, …, l) as in Eq. (5).

When the PSSM can be created using the PSI-BLAST program for protein p, we can obtain a normalized PSSM scoring matrix for p, as elaborated in (Du and Yu, 2013). The normalized PSSM scoring matrix is denoted as follows:




	(8)



where the following normalization condition is satisfied:




	(9)



We define the following matrix to combine matrix B(p) and matrix A(p):




	(10)



where matrix E is a weight-adjustment matrix. It can be defined as a diagonal matrix, as follows:




	(11)



where εj (j = 1, 2,…, l) is a weight-adjustment factor for the j-th residue on the sequence. It is computed by a U-shaped function, as follows:




	(12)



where k is a weight distribution parameter, exp(.) is the exponential function, l is the length of the sequence, and j is the j-th residue.

Given a type of physicochemical property H, the values for 20 different types of amino acids can be represented using a 20-D vector.




	(13)



where hi (i = 1, 2,…, 20) is the physicochemical property value of the i-th type amino acid. We use the following method to standardize the physicochemical property vector:




	(14)



where J20 is a 20-D all-ones vector,




	(15)



and




	(16)



In this study, we took two different kinds of physicochemical properties into consideration: the hydrophobicity and hydrophilicity of amino acids. We denote them as H1 and H2, respectively. We define the sequence auto-cross covariance matrix of physicochemical properties as:




	(17)



where u, v ∈{1,2}.

The k-th order covariance factor can be defined as:




	(18)



where tr(.) computes the trace of a matrix, Ml the l-sized shifting matrix, and u, v as in Eq. (17). For every given value of k, a 4-D covariance vector can be generated as:




	(19)



By setting the maximum value of k, which is denoted as λ, we can use a 4λ-D vector to contain all covariance factors as:




	(20)



Considering the weight-adjustment factors, the 20-D conventional amino acid composition vector can be constructed as follows:




	(21)



We can combine the Vλ(p) and the C(p) to create a (20 + 4λ)-D vector to represent the protein sequence p, as follows:




	(22)



where ω is a balancing parameter between 0 and 1. We use F(p) to represent protein p in this study.



Prediction Algorithm

We employed a support vector machine (SVM) as the prediction algorithm. The SVM searches for an optimal separating hyper-plane in the high-dimensional feature space, which is widely used in bioinformatics problems (Liao et al., 2018; Meng et al., 2019a; Meng et al., 2019b). The hyper-plane can maximize the margin in the feature space. We applied the radial basis function (RBF) as the kernel function in SVM, because the RBF kernel function is the most flexible and the most widely used of such functions. It can be defined as follows:




	(23)



where p and q are two proteins, and |.| is the operator that computes the Euclidean length of a vector.

Due to the dataset imbalance, we developed a voting scheme to use all samples in the dataset. We partitioned the negative samples into m subsets. The first m - 1 subsets have an equal number of negative samples as that of all the positive samples. The remaining subset contains all the remaining negative samples. For each of these m subsets, all the positive samples were replicated to compose a training subset. We trained the SVM classifier on each of these training subsets. The final prediction result is the majority result of these m classifiers. Figure 1 is a flowchart of the entire algorithm.




Figure 1 | Flowchart of the algorithm. The input sequence will be first converted to matrix-based notations. These notations will be converted into fixed-length numerical vectors, which can represent the sequence order information, the evolutionary information, and the importance of the terminal signaling peptides.





Evaluation Method

Three validation methods are commonly applied in evaluating a bioinformatics predictor. They are known as the self-consistency test, jackknife test, and independent dataset test (Jiao and Du, 2016). Of them, the jackknife test is usually considered as the most objective and rigorous (Chou and Zhang, 1995). However, some recent studies have shown that the independent dataset test can provide even better estimation to the true performance if a sufficiently large testing dataset can be given (Jiao and Du, 2016). Due to the limited size of the training dataset and the fact that our training dataset is highly imbalanced, we applied the jackknife test to estimate the prediction performance of our method. We also evaluated our method using the independent testing dataset, which allowed us to compare our method to the state-of-the-art methods in a fair manner.

Four statistics were applied to measure the prediction performances of our method quantitatively. They are the sensitivity, specificity, overall accuracy, and the Matthew’s Correlation Coefficient (MCC). They are defined as follows:




	(24)
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where Sen is the sensitivity, Spe the specificity, Acc the overall accuracy, MCC the Matthew’s Correlation Coefficient, and TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and false negatives, respectively.



Parameter Calibrations

Several parameters can be adjusted in our method. The values of these parameters affect the prediction performances. We applied a grid-search strategy to optimize the jackknife test performance by scanning different combinations of the values of k, λ, and ω. The parameter k was scanned in the set {0, 0.01, 0.1, 1, 1.5}, the parameters λ from 2 to 20 with a step of 1, and the parameter ω from 0.05 to 0.95 with a step of 0.05. For each parameter combination, we use another grid-search to find the best values of c, γ, and w, where c is the cost parameter of SVM, γ is the parameter in the RBF kernel, and w is the class weight ratio between two classes. In this study, we applied the SVM functions in the scikit-learn python package. The grid search of SVM parameters was conducted automatically with a python script.




Results and Discussion


Performance Analysis and Comparison

We obtained the optimized combination of parameters when k = 0.1, λ = 16, ω = 0.55, c = 1000, γ = 0.01, and w = 1.2. The PSSM matrix was created using the PSI-BLAST program with three iterations and 0.001 as the threshold of e-values.

In the jackknife test, our method can correctly identify 111 out of all 124 ER-resident proteins. The prediction performance values are recorded in Table 2, with comparison to the ERPred method.


Table 2 | Prediction performance estimations using a jackknife test.



According to these performance values, our method performed better than the ERPred method. Our method achieved a sensitivity of 83.06% and a specificity of 86.38%, which are both higher than the values for ERPred on the same dataset.



Independent Dataset Test

The training dataset of our work is identical to that used for ERPred. This dataset is highly imbalanced. To further eliminate the concern of over-estimated performances, we performed testing with an independent dataset. We took the same independent testing dataset as used in the ERPred method. The independent testing dataset was processed by the predictor that was trained with the training dataset. The prediction performances of our method are recorded in Table 3. Although the specificity is lower than that from the jackknife test, the sensitivity value remains almost unchanged. Therefore, we think the prediction performance is not over-estimated.


Table 3 | Prediction performance comparison using the independent dataset.



We also entered the same testing dataset into several other predictors for comparison. The compared predictors include ERPred (Kumar et al., 2017), Cello v2.5 (Yu et al., 2006), iLoc-Euk (Chou et al., 2011) and Euk-mPLoc 2.0 (Chou and Shen, 2007; Chou and Shen, 2010), which all provide the option to identify ER proteins. According to the prediction performance values, our method has the best sensitivity. However, the specificity of our method is lower. The results indicate that Cello and iLoc-Euk tend to assign non-ER locations to an ER-resident protein. They increase the specificity by severely sacrificing the sensitivity. As the nature of the ER-resident proteins is that the number of non-ER resident proteins is much larger than the resident ones, we think it is acceptable to sacrifice some specificity for the balance to the sensitivity. The ERPred method, Euk-mPLoc 2.0, and our method have a better balance between sensitivity and specificity. Particularly, it seems that the Euk-mPLoc 2.0 method has the best performance, as it achieves over 66% sensitivity while maintaining over 99% specificity. However, it should be noted that Euk-mPLoc 2.0 is not specifically designed to identify ER-resident proteins. Some of the proteins in the testing dataset may have already been used as training samples when Euk-mPLoc 2.0 was developed. This may result in an over-estimated performance value in the comparison. Another factor that should be noticed for Euk-mPLoc 2.0 is that it relies on GO annotations, which makes it not an ab initio predictor. Although using GO annotations is common in developing this kind of predictor (Du and Xu, 2013), comparing an ab initio predictor with a homology search-based method is not a fair comparison. Therefore, we believe that our method has, at least, comparable prediction performance to other existing methods. Especially in identifying ER-resident proteins, our method should be considered with a higher priority than general-purpose subcellular location predictors.



Effects of the Residue Weight-Transfer Function

The ER-resident proteins can be roughly divided into two different types. One type is proteins with a specific C-terminal tetra-peptide signal, which usually has a form like KDEL or HDEL. The other type is proteins without this kind of signaling peptide on either its C-terminal or N-terminal. The latter types of proteins usually have an N-glycan modification or similar modifications like cereal prolamin storage proteins (Stornaiuolo et al., 2003). In our training dataset, we searched for the tetra-peptide signals by using ProSite. We found only 41 signaling peptides in all of the 124 ER-resident proteins. In our testing dataset, we performed the same search. We found only 11 singling peptides in all of the 65 non-ER-resident proteins. Therefore, it is not practical to identify ER-resident proteins using only the signaling peptide information. This observation is consistent with the motivation of the ERPred study.

ERPred is a very powerful and useful computational method. It introduces SAAC sequence representations, which successfully emphasize the terminal signaling sequence information. However, the sequence order information is lost in the amino acid composition representations. Although the pseudo-amino acid composition representation can preserve the sequence order information, it cannot emphasize the terminal signaling peptides in the protein sequence. Therefore, we introduced a U-shaped weight-transfer function into the pseudo-amino acid composition in this study. The purpose of this weight-transfer function is to emphasize the terminal signaling information and also to incorporate the sequence order information. However, it is difficult to decide how many weights should be transferred to the terminals from the middle part of a sequence. We formulate this factor as a parameter k in Eq. (12). Figure 2 illustrates the shape of the function with different k values. Figure 2 enables an intuitive understanding of this U-shaped weighting function. The larger the value of k, the more weights are transferred to the terminals of a sequence. Please also note that Figure 2 is only an intuitive illustration of the U-shaped function when the length of a protein is 100. The crossing point under this condition cannot be extended to other cases.




Figure 2 | Illustration of the U-shaped weight-transfer function with various k values. The U-shaped function transfers weights from the middle part of a sequence to its terminals. The total weight of a sequence does not change after applying the U-shaped weight-transfer function. When the parameter k is 0, every residue on the sequence has equal weights, which will produce identical results as where there is no weight-transfer function. When the value of k increases, more and more weights are transferred from the residues in the middle part of a sequence to the residues on its terminals.



To find an optimized k value, we trained and tested predictors with different k values. Figure 3 plots the performance values with different k. The sensitivity increases slightly with an increase in k. The specificity peaks when k = 0.1. Therefore, at least for predicting ER-resident proteins, k = 0.1 creates a good weight-transfer function.




Figure 3 | Performance analysis with different weight-transfer functions. Prediction performance varies with the value of parameter k in the weight-transfer function. When k = 0.1, the performance value peaks. This means that the residues on the terminals are slightly more important than those in the middle part in predicting ER-resident proteins.



The choice of using a U-shaped function rather than another shape is not easy. Since we do not know how much weight should be transferred, this must be an adjustable parameter in the function. Besides, we need to make the function satisfy the following conditions at the same time: (1) all weights are positive; (2) the sum of all weights equals the sequence length; (3) the portion of the weight-increased part and weight-decreased part remains almost unchanged when we adjust the amount of weight that is transferred. This will make the function only transfer weights among residues, not create or remove total weight. The U-shaped function not only satisfies all these conditions but also provides us with a simple way to implement it.



Sequence Representation Augments

Besides the U-shaped weight-transfer function, we augmented the classic amphiphilic pseudo-amino acid compositions in two ways. One is to use auto-cross correlation to replace the auto-correlation in the classic amphiphilic pseudo-amino acid compositions, while the other is to use matrix-based notations to represent the sequence itself.

The advantage of using auto-cross correlation over auto-correlation has been proved in predicting protein folding patterns (Dong et al., 2009). The matrix-based sequence notations see each residue on the sequence as a 20-D composition vector. The original sequence can then be represented using the one-hot encoding scheme, which can be unified with the normalized PSSM. Since PSI-BLAST cannot generate PSSM for every protein sequence, the matrix-based notation actually provides a mathematically compatible way to compensate for the missing PSSM using the one-hot encodings. As elaborated in Du and Yu (2013), when the PSSM is available for a protein sequence, this matrix-based notation also adjusts the weights of residues according to the evolutionary information.

Therefore, our sequence representation actually encoded the sequence order information and the evolutionary information with emphasis on the terminal signaling peptides in a (20 + 4λ)-D numerical vector. Compared to other studies, our sequence representation has a much lower number of dimensions. On a dataset with limited samples, the risk of over-estimated performance increases with the number of dimensions of the representation. Our method should be a better choice when the number of samples is limited.




Conclusions

Many existing methods can predict protein subcellular locations. However, only the ERPred method can specifically identify ER-resident proteins. The ER may be the most important type of subcellular organelle, linking all the major subcellular structures, including the nucleus, cytoplasm, and cell membrane. In this study, we present a new method for predicting ER-resident proteins. Although establishing a web server for a predictive method is good practice, it is not easy for us to do so due to the limitations of our resources and the complexity of this new method. We will establish a web server for this method in the future. The most important part of this work is to introduce a U-shaped weight-transfer function into the pseudo-amino acid compositions. Since the signaling peptide information is useful in analyzing many different subcellular processes and this is the first time that the signaling peptide information has been emphasized in pseudo-amino acid composition representations, we believe that our method has great potential for application in predicting various attributes of proteins.
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Zika virus was first discovered in 1947. For a long time afterward, no large-scale outbreaks occurred. However, more recently, in 2007 and 2016, there were two episodes of ZIKV outbreak that have produced serious public health problems. By analyzing the evolution of the viral genome, we can understand the potential for its outbreak. In this study, we constructed a maximum clade credibility (MCC) tree for the ZIKV non-structural protein 5 (NS5) gene using the Bayesian method. A total of 108 whole-NS5 sequences were retrieved from the GeneBank. We carried out an analysis of potential glycosylation and phosphorylation sites of the ZIKV virus NS5 gene and dynamic analysis of the evolutionary characteristics of the gene. Phylogenetic analysis revealed the presence of two sequence lineages: African and Asian. The sequence of the strains obtained from GeneBank has high homology of 85% to 100%. There are 35 potential phosphorylation sites and glycosylation sites in the ZIKV-NS5 sequences. This article analyzes the possible causes of ZIKV virus outbreaks from the perspective of genetic evolution and analyzes the dynamic trends of virus outbreaks to provide a theoretical basis for predicting the outbreak of the virus.
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Introduction

In 1947, Zika virus (ZIKV) was first isolated from a monkey in Zika forest, Uganda. (Dick et al., 1952). ZIKV is a member of the virus family Flaviviridae and genus Flavivirus and is a mosquito-transmitted virus. The virus particles are spherical, with diameters of about 40 ~ 70 nm. Zika virus is a type of single-stranded, positive-sense RNA virus. The whole-genome length is about 10.8 kb, and its single ORF encodes three structural proteins and seven non-structural proteins (NS1, NS2A, NS2A, NS4A, NS4A, NS4B, and NS5) (Kuno and Chang, 2007). The nonstructural protein 5 (NS5) is necessary for genomic replication of zika virus. The N-terminal of NS5 contains methyltransferase (MT), followed by the RNA-dependent RNA polymerase (RdRp). The methyltransferase domain at the N-terminal stabilizes the viral RNA genome through 5' capping, while the RdRp domain at the end of C-terminal is very important for the RNA replication of the virus (Decroly et al., 2011; Lu and Gong, 2013; Zhao et al., 2015).

The main means of transmission of ZIKV is through Aedes mosquito bites, perinatal transmission, sexual contact, and blood transfusion (Besnard et al., 2014; Musso et al., 2014; Franchini and Velati, 2016). Since the first discovery of Zika virus in 1947, it has gradually spread to become a large-scale problem in the world. The first strain isolated from Asia was named “P6–740” and was isolated from Aededon in Malaysia in 1966 (Haddow et al., 2012). Molecular biology and bioinformatics analysis showed that there are two subtypes of ZIKV, the African and Asian lineages. However, from 1966 to 2007, confirmed cases were scarce, and there was no associated sequence data regarding the Asian linkage. That was until 2007, when 49 cases of ZIKV infection were confirmed in Yip Island and became the first large-scale human infection event in history (Duffy et al., 2009). Now, more than 30 countries have reported ZIKV infections, and these infections have led to multiple imported cases. The ZIKV epidemic has become an important public issue of concern to the whole world (Gong et al., 2016). Base variation, including base recombination, conversion and deletion, will affect the codon usage pattern of the virus, and changes in the codon usage pattern will affect the encoded protein. It is reported that there are potential mutation sites associated with microcephaly (Wang et al., 2017). Studies have shown that envelope protein and NS1 protein of zika virus are predicted to have glycosylation modification sites (Lanciotti et al., 2008; Haddow et al., 2012; Faye et al., 2014). Recently, it has been suggested that correlation between the polymorphism of glycosylation sites and vectors has caused the evolution of Zika virus (Faye et al., 2014). The prediction of viral mutation sites and glycosylation sites is of great significance for understanding the evolution of the virus and the spread of the disease.

Bayesian Inference (BI) is based on using the evolutionary model of sequence evolution to reconstruct the statistical method of the system tree. The resulting tree not only reflects the best estimate of the phylogenetic relationship but also provides the exact support for the branch (Battaglia et al., 2016). Because of the important function of the NS5 gene and the previous construction of an evolutionary tree using the NS5 gene (Gong et al., 2016; Shen et al., 2016), this article uses the Bayesian method to analyze the evolution of the Zika virus NS5 protein, with simultaneous analysis of possible mutation sites. The research result provides a significant theoretical guide to the prevention and treatment of the disease.



Materials and Methods


Sequence Collection

The total of 108 NS5 gene sequences that had been added to GenBank before October 2017 were downloaded for Bayesian analysis. These gene sequences are the complete NS5 sequences. The detailed sequence information is listed in Additional  Table S1.



Sequence Analysis and Comparisons of NS5

The nucleotide sequences of Zika virus NS5 were analyzed using DNASTAR Lasergen 7.0 software to compare their homology.



Analysis of Potential Protein Modification Sites

We used the NetOGlyc 4.0 Server (http://www.cbs.dtu.dk/services/NetOGlyc/) (Steentoft et al., 2013) to estimate the O-glycosylation status of these NS5 sequences (Boon et al., 2016). GlycoMine was used to predict the C-linked and N-linked glycosylation (http://glycomine.erc.monash.edu/Lab/GlycoMine/).



Analysis of the Obtained Viral Genome Data by the Bayesian Method

The Bayesian analysis method was used to study the present evolution rate and evolution model of the epidemic ZIKV strain. The complete NS5 sequence alignment of the ZIKV was disposed carefully with the Clustal W program in MEGA. The RDP3 recombination package was used to detect the recombination of all the sequences. The saturation monitoring was also tested by screening sequences with DAMBE software. If ISS < ISS.c, it means that the sequence substitution is not saturated and meets the requirements for building a phylogenetic tree using Bayesian methods. Finally, the best evolution model was selected with jModelTest software. BEAST v1.8.0 was employed under the GTR+I+G model of nucleotide substitutions and with the Relaxed clock:Uncorrelated Log-normal setting to perform 80 million MCMC runs to construct a maximum clade credibility tree (effective sampling size >200). The analysis was sampled at every 8000 states. Posterior probabilities were calculated with a burn-in of 8 million states. The analysis of the sampling data was output by Tracer v1.6, and the Tree Annotator program was employed to output the results of the MCC tree model. FigTree program was then used to plot the MCC molecular evolutionary tree.




Results


Homologous Comparison of Zika Virus Sequences

Zika virus is a member of the family Flaviviridae and genus Flavivirus and is a mosquito-transmitted virus. In the phylogenetic tree, it is close to Dengue virus, Japanese encephalitis virus, and West Nile virus;, the closest virus is Spondweni (Figure 1). The Zika virus strains used in this study were 108 strains collected from 20 districts. The results showed that the nucleotide homology of the 108 strains of Zika virus was between 85.4% and 100% and that some of them were 100% homologous. Twenty-four strains from the United States (Figure 2A) and seventeen strains from Brazil are compared respectively (Figures 2B). We can see the homogeneity of the twenty-four strains of the NS5 gene from the United States is 96.3%~100%, and there are many sequences of the strains of the NS5 amino acid that have a homology of 100%. The same result was found in the Brazil strains. The nucleotide homology of the Brazil strains is 99.4%~100%. This result shows that the mutation rate in the 108 strains is low and that the NS5 gene is relatively conservative.




Figure 1 | Phylogenetic analysis of Zika virus, Dengue virus, Spondweni virus, West Nile virus, Yellow fever virus and Chikungunya virus based on NS5 gene.






Figure 2 | Homologous comparison. (A) Homology alignment analysis of 24 Zika strains from the United States using the DNASTAR software package. (B) Homology alignment analysis of 17 Zika strains from Brazil using the DNASTAR software package.





Prediction of Glycosylation Sites

We performed three types of glycosylation site prediction for NS5 sequences of 100 strains. We used GlycoMine to predict C-linked and N-linked glycosylation sites and NetOGlyc to predict O-glycosylation. It can be seen from the results that there are 10 sites that are potentially modified by O-glycosylation (Figure 3), and the number of sites of N-linked and C-linked glycosylation that may occur in different strains is not much different (Figure 3). For example, comparing one strain of KY014296 from Brazil with other strains from Brazil that lack a C-linked site 654 (Figure 3), we can see in the sequence alignment that the amino acid of the strain at this position is arginine, whereas the amino acid of the other strains at this position is tryptophan.




Figure 3 | Functional site prediction. (A) Prediction of O-glycosylation site of Zika virus from Brazil using the NetOGlyc website. (B) Heat map of predicted N-linked and C-linked glycosylation sites. The ordinate of the heat map represents the sequence of different strains; the abscissa represents all amino acid sites of the NS5 gene. Glycosylation predictions are performed on 100 sequences. The darker the red color, the higher the score. (C) Sequence alignment result.





Recombinant Analysis of Virus Strains

In order to identify whether recombination occurs between different strains in the same region, we used SimPlot to analyze the sequences of different strains in the same region. As shown in Figure 4, there is no recombination in the strains of Brazil. The sequences of all of the NS5 genes were then grouped by region, with the strains from the same region grouped together. SimPlot was then used to verify the occurrence of recombination events further. From Figure 4, we can see that there is no recombination event in any of the sequences. The above results indicate that no recombination occurred in the selected strain sequences.




Figure 4 | Recombination analysis of Zika virus. Plots of the similarity (generated by SimPlot) of a set of reference sequences. (A) Sequences of Zika virus from Brazil. (B) Comparison after grouping the Zika virus into different regions.





Evolutionary Tree Construction Based on the Bayesian-Markov Chain Method

A total of 108 complete NS5 gene sequences were used in the phylogenetic analysis. Samples were collected from 20 regions. Although these strains were from 20 different regions, they were eventually divided into two groups, the African lineage and the Asian lineage. After 2015, the isolated strains were very close to each other and the new outbreak strains selected in this study are all Asian-type. Indicating that during this time, the NS5 gene sequence of ZIKV was conservative. There is no extra genotype from after the outbreak of the ZIKV epidemics in 2015 and 2016. The recent outbreak was predominantly in Asia, and the contemporary epidemics are dominantly evolved from Asian strains. Neither the American strains nor the Brazilian strains have a very specific genotype (Figure 5C). Moreover, among these strains, there is no clear dividing line between the strains of each country. As can be seen from Figure 5, strains from the United States, Brazil, and the Dominican Republic are cross-distributed in the phylogenetic tree, with the closest ancestor being a tree root. Strains from Honduras, Nicaragua, and Mexico are closely spaced, and these are the strains most distant from the Africa linkage. From a temporal perspective, the kinship strains we collected at different times from the same area were the most recent. This shows that the strains in each region are from local ancestors, and there is no cross-infection with other regions.




Figure 5 | Phylogenetic analysis of Zika virus. (A) Evolutionary development of 24 strains of Zika virus NS5 genes from the United States. (B) Evolutionary development of 17 strains of Zika virus NS5 genes from Brazil. (C) Evolutionary development of 108 strains of Zika virus NS5 genes.



The Bayesian-Markov chain method was used to determine the codon mutation rate of the Zika NS5 gene, and the BEAST results were analyzed by Trace. The results showed that the codon mutation rates of the amino acids encoded of ZIKV NS5 were different, and, respectively, the mutation rates of the three codons were 0.3695, 0.1596, and 2.4709 (Figures 6A). Thus, the mutation rate of the third codon was the highest. Since the mutation rate of the third codon is the highest and the codon has degeneracy, some mutations do not change the amino acids of the encoded protein, which makes the homology between the Zika virus strains very high. These values indicate that during this period, there was a base mutation of the NS5 gene, and this may be associated with the recent outbreak of the Zika virus. The geographical distribution of Zika viruses is steadily growing. As can be seen from the skyline plot (Figure 6), the effective size of the Zika virus has decreased since its discovery, but it also increased somewhat in 2015, coinciding with the Zika virus outbreak.




Figure 6 | Zika virus NS5 codon mutation rate and skyline plot (A, B). The codon mutation rate of the Zika virus NS5 gene was estimated by the Bayes-Markov chain method. The codon mutation rate is the result of a BEAST run using Trace analysis. (C) Dynamic study of Zika virus NS5 gene genetic diversity by Bayesian skyline plot. The thick solid line is the median estimate, and the dotted line shows the 95% confidence interval. The abscissa is time, and the ordinate is the effective population size. The curve shows that the Zika virus NS5 gene has been in a stable state and the population gradually began to grow in 2015.






Discussion

The Zika virus, which was discovered in 1947, returned 70 years after its discovery, unexpectedly appearing in the Pacific Islands and Latin America. Pathogenic changes, including microcephaly and Guillain-Barre syndrome, have caused widespread concern. One possible reason for this is the objective environmental conditions of an increased global population and an increased mosquito vector population (Pettersson et al., 2016; Shi et al., 2018). Another possibility is that amino acid substitution occurs that affects the rate of transmission and the pathogenicity of the virus. The effect of amino acid substitution on pathogenicity has been reported previously. For example, it was found that there was a substitution from S to N at position 139 of the prM protein before the French Polynesian outbreak of 2013 and that the subsequent strains in the Americas were all 139N. In vitro experiments showed that amino acid substitution enhanced infectivity and induced more severe microcephaly. Interaction between the virus and the host can lead to different infection outcomes (Yuan et al., 2017). Yang Liu et al. showed that spontaneous mutations on NS1 proteins increase their own antigenemia (Liu et al., 2017). Hongjie Xia et al. believe that mutations in Zika NS1 protein increase the body's ability to evade the immune response and increase the possibility of infection and epidemic (Xia et al., 2018). The replacement of one amino acid site has the potential to improve pathogenicity and transmission efficiency, which may explain why Zika virus has re-emerged after so many years. This is of great significance to study this mutation.

Compared with other gene fragments, NS5 and envelope gene fragments still had higher variability, although the non-structural proteins NS3 and NS5 were relatively conserved compared with other gene fragments according to homologous modeling analysis (Koh, 2014; Mazeaud et al., 2018), which in turn affects the genetic stability of the protein, making it easier for the virus to invade the human body (Yuan et al., 2015). We can observe an obvious cluster of NS5 genes consisting of only Chinese strains (Figure 4 red), and the genetic distance between Chinese strains and French Polynesian strain is small. In 2013, a study showed that this strain from China and the Latin American strains have a common ancestor. (Faria et al., 2016). This suggests that this Chinese lineage may have evolved from an ancestor that erupted in the Pacific islands in 2013. Asian strains form an independent cluster, and the recent outbreaks of the Zika virus are of Asian lineage, indicating that Asian strains are more diversified than African Zika virus strains. There is a certain degree of mutation in the NS5 genes of Zika virus strains collected from Brazil and the United States. However, these mutations did not alter the glycosylation and phosphorylation sites of the NS5-encoded protein, suggesting that though there are mutations in the NS5 gene, these mutations did not impair the stability of the virus, and the protein structure, which plays an important role in the protein structure, remained stable. From Figure 5, we can see that the mutation rate of the third codon is the highest. Because of the degeneracy of the codon, mutations that occur on the third codon may not cause amino acid changes, which could explain why the various glycosylation and phosphorylation sites did not change after mutation. Glycosylation sites in the Zika virus genome display polymorphisms and may have adaptive value in evolutionary processes (Singh et al., 2016). It has been reported that Zika virus has a loss of glycosylation sites (Hanna et al., 2005; Lee et al., 2010). Mutations at amino acid sites play an important role in the pathogenicity of Zika virus, so analysis of the virus evolution is critical to better understand the pathogenesis of viral infection and the variability of its clinical phenotype.

The data we selected included the NS5 protein sequence of the Zika virus that broke out in 2016 and previously. The relatively stable NS5 gene nucleotide sequence will provide a great opportunity to develop a vaccine for this disease. We predicted the dynamic phylogenetic trends, which indicate the outbreak trends of ZIKV and provide theoretical foundations for clinical prevention. The potential glycosylation and phosphorylation sites of the NS5 gene were predicted and discussed in conjunction with existing functional assays.
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miRNA plays an important role in many biological processes, and increasing evidence shows that miRNAs are closely related to human diseases. Most existing miRNA-disease association prediction methods were only based on data related to miRNAs and diseases and failed to effectively use other existing biological data. However, experimentally verified miRNA-disease associations are limited, there are complex correlations between biological data. Therefore, we propose a novel Three-layer heterogeneous network Combined with unbalanced Random Walk for MiRNA-Disease Association prediction algorithm (TCRWMDA), which can effectively integrate multi-source association data. TCRWMDA based not only on the known miRNA—disease associations, also add the new priori information (lncRNA–miRNA and lncRNA–disease associations) to build a three-layer heterogeneous network, lncRNA was added as the transition path of the intermediate point to mine more effective information between networks. The AUC value obtained by the TCRWMDA algorithm on 5-fold cross validation is 0.9209, compared with other models based on the same similarity calculation method, TCRWMDA obtained better results. TCRWMDA was applied to the analysis of four types of cancer, the results proved that TCRWMDA is an effective tool to predict the potential miRNA-disease association. The source code and dataset of TCRWMDA are available at: https://github.com/ylm0505/TCRWMDA.
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Introduction

MiRNAs are widely found in eukaryotes and regulate the expression of other genes. miRNA is very important for the control of animal development and physiology (Victor, 2004). miRNA is involved in regulating cell differentiation (Lee et al., 1993)and plays an important role in many biological processes, including cell cycle progression and apoptosis (Brennecke et al., 2003). Mutations and biogenic dysfunction of miRNA and disorders of miRNA and its targets may lead to a variety of diseases. Calin et al. published the first study that microRNAs linked to cancer in 2002, there was a significant association between decreased levels of both miRNAs and chronic lymphoblastic leukemia, suggesting a potential relationship between miRNA and cancer (Calin et al., 2002). miRNA is an important factor in tumorigenesis, and the artificial regulation of some miRNAs may lead to the occurrence or apoptosis of tumors, which depends on the regulation of miRNA (Yang et al., 2009). With the development of miRNA research, the association between miRNA and disease has been extended to many types of cancer, including leukemia and lung cancer (Johnson et al., 2005; Bandyopadhyay et al., 2010), breast cancer, and colon cancer (Michael et al., 2003), and so on, exploring the relationship between miRNA and disease has become the subject of many kinds of cancer research. More and more evidence proving that miRNA is closely related to diseases, understanding relationships between miRNA and disease is conducive to understanding the pathogenesis of diseases at the molecular level, but more importantly is conducive to prognosis, diagnosis, evaluation, treatment, and prevention of diseases and the promotion of human medical progress. Traditional experiments are costly, time consuming, and only suitable for small-scale data, with the development of biology, mass biological data about miRNA have been generated. There is an urgent need to develop a powerful computational method to predict the potential disease-related miRNAs, possible candidate miRNAs with higher prediction score were obtained by computational methods can reduce the time and cost of biological experiment.

In the early research methods of miRNA-disease association prediction, under the assumption that functionally related miRNAs are often related to diseases with similar phenotypes (Lu et al., 2008), A computational model based on hypergeometric distribution to predict the miRNA-disease association was proposed (Jiang et al., 2010), and constructed a heterogeneous phenome-microRNAome network for human phenome-microRNAome by combining the miRNA functional similarity network and the disease phenotype similarity network with the known miRNA-disease association, However, this method relies on the neighbor point information of the predicted miRNA, and the false positive and false negative rates are relatively high, so the prediction accuracy of this method is not high. With the development of miRNA-disease research, the restart random walk algorithm was used to predict the miRNA-disease association (RWRMDA) based on the similarity model, which is the first to use the global network to predict miRNA-disease association (Chen et al., 2012b). A restart random walk was performed on the MiRNA functional similarity network to predict potential MiRNA disease interactions, but RWRMDA did not work on any known related MiRNA disease. A semi-supervised classification method RLSMDA to predict the potential miRNA-disease association based on regularized least squares is proposed (Chen and Yan, 2015), RLSMDA is a semi-supervised model that does not require negative samples and a global approach that prioritizing the association of all diseases at the same time. Combined Within-Score with Between-Score for miRNA-disease association prediction (WBSMDA) was proposed (Chen et al., 2016), WBSMDA based on the basis of known miRNA-disease association data and assuming that miRNAs with similar functions are more likely to be associated with diseases with similar phenotypes may lead to bias (preference) on miRNAs with more known diseases, In addition, the accuracy of the model is still not very high. Then, a KNN model based on rank to predict potential related miRNAs for diseases (RKNNMDA) was proposed (Chen et al., 2017), which based on miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity and known miRNA-disease association. In RKNNMDA, k-nearest neighbor algorithm was used to search k-nearest neighbor of miRNA and disease, and these k-nearest neighbors were reordered and reweighted according to the support vector machine model to obtain the final predicted results. Random walk has also been further developed in the prediction of miRNA-disease association. The random walk technique has also been developed in association prediction, unbalanced bi-random walk on the heterogeneous networks (BRWH) based on RWR was proposed (Luo and Xiao, 2017) to predict the miRNA-disease Association. From the matrix, making use of matrix completion algorithm (MCMDA) to update the adjacency matrix based on the known miRNA-disease association data to predict its potential association proposed in (Li et al., 2017). In 2018, there is a KATZMDA model for miRNA-disease association prediction (Qu et al., 2018), which based on KATZ model to calculate miRNA similarity and disease similarity to predict the association between miRNA and disease, and KATZMDA yields better results than the previous algorithms mentioned. Based on the idea of MCMDA, a new induction matrix completion model (IMCMDA) for MiRNA-Disease Association prediction was proposed (Chen et al., 2018). Different from MCMDA, IMCMDA uses disease similarity and miRNA similarity as the characteristics of disease and miRNA to complete the missing miRNA-disease association. Recently, a kernel-based soft-neighborhood similarity model combined with similar network fusion for miRNA-disease association prediction was proposed (Ma et al., 2018a). The improvement of the similarity model improves the accuracy of predicting miRNA-disease. Ha et al. predict miRNA and disease associations based on matrix decomposition, which has been widely used in recommendation systems (Ha et al., 2019). Based on the heterogeneous network of miRNA and disease, structural perturbation method is also applied to the prediction of miRNA-disease correlation, and the final perturbed matrix represents the correlation score between the two (Zeng et al., 2018). However, these methods mentioned above only considered the miRNA-disease association data sets and functional similarity, without extracting more information from other data sets related to them to improve the accuracy and reliability of the model.

With the development of biomedicine, the number of biological databases increases, and the association between biological data is gradually excavated, which enables us to combine different information from different databases to reliably predict the miRNA-disease association. In view of the limitations of the above methods, in this paper, we put forward a novel prediction model of three-layer network combining unbalanced random walk for miRNA-disease association prediction (TCRWMDA). Based on the known associated data of miRNA-disease, lncRNA–miRNA and lncRNA-disease, TCRWMDA build a three-layer heterogeneous network and performs unbalanced random walk between networks and on heterogeneous networks to obtain the final prediction results.

To evaluate the effectiveness of the TCRWMDA, we compared it with other classical and advanced algorithms based on the same similarity measure on 5-fold cross-validation. In addition, compared with the latest model based on the kernel-based soft neighborhood network fusion similarity model. In order to verify the applicability of TCRWMDA algorithm, four diseases were studied by TCRWMDA algorithm. Experimental results and case studies show that this method can be effectively used to predict the potential association between miRNA and disease.



Materials and Methods


The Dataset

The associated data sets used in this article are from (Chen, 2015). The dataset mainly consists of three association data sets. First, miRNA-disease association data set is from HMDDV2.0 (Li et al., 2013), finally, 5,430 miRNA-disease associations were obtained, including 383 diseases and 495 miRNAs. A represents the known association between miRNA and disease, A(i,j)=1. denotes miRNA m(i) is related to disease d(j), otherwise, A(i,j)=0.




	



Second, the lncRNA–miRNA association dataset was derived from the star-base v2.0 database (Yang et al., 2011). Repeated associations of different evidences were deleted, as well as the lncRNA–miRNA associations that did not exist in 5,430 known miRNA-disease associations and their corresponding lncRNA–miRNA associations in the lncRNA-disease association. Finally, 704 lncRNA–miRNA associations were obtained. B represents the known relationship between lncRNA–miRNA, B(i,j)=1 represents miRNA m(i) is related to lncRNA l(j),otherwise, B(i,j)=0.

	

Third, the lncRNA-disease association data set in the lncRNA Disease database (Geng Chen et al., 2012a) was downloaded, and the repeated association of different evidences and the association of lncRNA-disease related to the disease or lncRNA were removed. After removing the data of diseases not shown in the above data set, 182 lncRNA-disease associations of 34 lncRNAs were finally obtained. C represents association matrix between lncRNA and disease, C(i,j)=1 denotes lncRNA l(i) is related to disease d(j), otherwise, C(i,j)=0.




	





TCRWMDA

Based on the idea of unbalanced bi-random walk, we proposed three-layer heterogeneous network combined with unbalanced random walk for miRNA-disease association prediction algorithm. TCRWMDA algorithm includes three random walks, including the random walk on miRNA–miRNA network, disease similarity network, and the mapping relationship of miRNA–lncRNA-disease. Figure 1 shows the flow chart of TCRWMDA algorithm to predict miRNA-disease association. In the dotted black box above Figure 1, blue dots represent miRNA, yellow dots represent disease, and red dots represent lncRNA. A three-layer heterogeneous network consist of the similar networks formed by same color nodes with straight lines and the heterogeneous networks formed by nodes of different colors with dotted lines. The similarity measure can be obtained by calculating the similarity of association data, the similarity measure was use to obtain the transition probability matrix by Laplace normalization, finally, TCRWMDA algorithm using the transition probability matrix to unbalanced random walk on heterogeneous network to get the potential association scores between the disease and its associated miRNAs and sorting. The feasibility and effectiveness of the algorithm is verified by whether the predicted results already exist in the existing database.




Figure 1 | Flow chart of TCRWMDA algorithm. The steps of TCRWMDA for the association prediction between miRNA and disease are divided into four stages: the construction of similarity network, the calculation of transition probability matrix and the random walk on the three-layer heterogeneous network. Finally, the final prediction score is obtained to analyze the association probability of a certain disease and a certain miRNA. In the black dotted box is the construction of similarity network, which are based on association data and related data from the available database. The red dotted line shows that an unbalanced random walk on a three-layer heterogeneous network.




Construction of Similarity Networks

The similarity networks in this paper consist of lncRNA similarity network, Disease similarity network, miRNA similarity network.


lncRNA Similarity Network

Genes can be mutated, inserted and deleted, it is difficult to achieve a complete match of two sequences, so we use sequence information as its feature. We extract the sequence features by considering sequence composition (Zhang et al., 2018). For lncRNA sequences, we calculated the proportion of four nucleotide types (A, C, G, T) and 16 dinucleotide types (AA, AG, AC…) in each lncRNA sequence, every lncRNA l(i) can get a 20−dimensional eigenvector, where (i) is its component, named as lncRNA sequence composition. The sequence data of 34 selected lncRNA were downloaded from LNCipedia5 (Volders et al., 2019). Use cosine similarity method to calculate the lncRNA similarity sl, the formula of lncRNA similarity is as follows:




	





Disease Similarity Network

In this paper, we used the same method as in literature (Wang et al., 2010) to calculate the disease similarity.

Disease semantic similarity model 1: Directed acyclic graph (DAG) was constructed to describe the disease based on MeSH descriptor downloaded from national library of medicine (Lipscomb, 2000) (http://www.nlm.nih). According to DAG, the contribution of disease d to the semantic value of disease d DAG (d) is expressed as:




	



∆ denotes attenuation coefficient of semantic contribution. The self-semantic value of disease D was defined as follows:




	



Where T(D) represents all ancestor nodes of D and D itself. Based on the assumption that the two diseases share a large part of DAG and their semantic similarity is large, the semantic similarity between disease d(i). and disease d(j) can be defined as:




	



Disease semantic similarity model 2: It is unreasonable to give the same contribution value for diseases in the same layer of DAG (D). Therefore, according to the model proposed by Xuan et al., we define the contribution of disease d to the semantic value of disease d in DAG (d) as follows:




	



We define the semantic similarity of diseases d(i),d(j) as the ratio of share ancestor node contributions to all ancestor node contributions. The semantic similarity model 2 is calculated as follows:




	



Among them,




	





miRNA Similarity Network

Wang et al. (2010) proposed the method of MISIM and miRNA functional similarity based on the hypothesis that miRNAs with similar functions are more likely to be associated with diseases with similar characteristics. The miRNA function similarity data downloaded from http://www.cuilab.cn/files/images/cuilab/misim.zip. We use FS(m(i),m(j)) to represent association score between miRNA m(i) and miRNA m(j)



Gaussian Kernel Similarity

Based on the basic assumption that similar diseases are often associated with miRNAs with similar functions (Wang et al., 2010), we calculated the Gaussian kernel similarity for miRNA and disease to obtain the miRNA similarity and disease similarity. First, we use vector IP(d(i)) to represent there is or is not an association between each miRNA and disease d(i) and regard IP(d(i)) as interaction profile of the disease d(i), then, the gaussian interaction profile kernel similarity between disease d(i) and d(j) was calculated:




	






	



γd controls kernel bandwidth. Similarly, the Gaussian kernel similarity between disease m(i) and disease m(j) can be obtained as follows:




	






	





Integrated Similarity for Diseases and miRNAs

We could not obtain the DAGs of all diseases, that is, for a specific disease without DAG, we could not calculate the semantic similarity score of this disease with other diseases. Therefore, for the disease pairs with semantic similarity score, we used the semantic similarity score to express the disease similarity, and for other disease pairs, we used the gaussian kernel interaction profile similarity to represent the disease similarity. The disease similarity matrix of disease d(i) and disease d(j) was constructed as follows:




	



Similarly, the similarity matrix of miRNA can be obtained:




	



The similarity between the two miRNAs is the weight of edge in the miRNA similarity network, in the same way, the similarity between the two diseases is the weight of edge in the disease similarity network.




Calculation of Transition Probability Matrix

To perform a random walk on three-layer heterogeneous networks, the state transition between networks must be considered and transition probability matrix needs to be created. To calculate the transition probability in the miRNA similarity network, we make use of the Laplace normalization (Zhao et al., 2015) to calculate transition probability matrix in the miRNA similarity network, and the exit degree of nodes and the entry degree of nodes were taken into account.

Laplace normalization: Assuming that Z=[(i,j)],i,j=1,2,…,N is a symmetric matrix, Y is a diagonal matrix, defined as: Y (i,i) is the sum of the i row of Z, When i is not equal to j,Y (i,j)=0. Matrix normalization: ℤ=Y-1/2AY-1/2 also a symmetric matrix, The elements in can be defined as:




	



Then the transition probability matrix M in the miRNA similarity network can be expressed as:




	



Similarly, we can obtain the transition probability matrix D and L in the disease similarity network and lncRNA similarity network as follows:




	






	





TCRWMDA Algorithm Process

Specifically, TCRWMDA algorithm can be divided into two parts: one is random walk on heterogeneous networks, and the other is random walk between networks. Table 1 introduces the process of TCRWMDA algorithm in predicting miRNA-disease association, and Table 2 introduces the process of unbalanced random walk between networks.


Table 1 | The description of the TCRWMDA algorithm.




Table 2 | The description of the BNetWalk algorithm.




Random Walk on Three-Layer Heterogeneous Networks

Where MD represents the predicted correlation matrix between miRNA and disease, MDt represents t-step random walk were performed MD, A、 B、 C denotes matrix of prior knowledge. TCRWMDA algorithm has six parameters: α, β, l, r, s. l, r. s represents the number of steps random walk on miRNA-miRNA network, disease-disease network and networks respectively. α controls network walk or return to the proportion of prior knowledge; The function of λ is to provide a new priori knowledge, there is a linearly combination of the new state form by a random walk between networks and the known initial state by λ. That is, if the current particle is in the miRNA network, then the particle has probability of α to perform the l-step random walk in the miRNA network, to perform the l-step random walk (1-α)×λ perform the s-step random walk into disease network, and has probability of (1-)×(1-λ) to return the start node. If the current particle is in the disease network, then the particle has probability of α to perform the r-step random walk in the disease network, has probability of (1-α)×λ perform the s-step random walk into miRNA network.



Random Walk Between Networks

ML represents the predicted association score between miRNA and lncRNA, while LD represents the probability matrix of disease generation on lncRNA. β notes the probability of controlling the random walk on the lncRNA network or returning to prior knowledge during random walk among networks. R represents the miRNA-disease association matrix formed through Random Walk between networks.

MLt and LDt represents t-step random walks were performed ML and LD, respectively. In equation (18), the association matrix between miRNA and lncRNA is multiplied by the right transition probability matrix L on the lncRNA network, which represents a random walk on lncRNA network to update ML. Similarly, the left multiplication probability transition matrix L represents a random walk on lncRNA network to update LD, finally, we can obtain association between miRNA and disease.






Results and Analysis


Parameter Analysis

Receiver operating characteristic curve (ROC curve) takes true positive rate (sensitivity) as the vertical coordinate and false positive rate (1-specificity) as the horizontal coordinate. The area under the ROC curve is the AUC value, which can be used as the evaluation index to intuitively evaluate the classifier. The higher the AUC value, the better the performance of the algorithm. In the process of parameter selection, AUC value is selected as the index to evaluate the influence of parameters. For an algorithm, if the parameters are set with different values, it corresponds to different models. For which model to choose, the best way is to use the model with the minimum generalization error. However, it is generally impossible to directly obtain the generalization error of the model, we select the model parameter when the AUC value is the largest.

TCRWMDA has six parameters, set step size of α, β and λ is 0.1, with values ranging from 0 to 1. For l, r and s, set the step size to 1 and the value range to 1–5. The known association between 495 miRNAs and 383 diseases verified by 5-fold cross validation. First, fix some parameters, change the value of a parameter, and then the influence of parameters on the model performance was determined according to the change of AUC value. In the process of parameter selection, the value of s was changed in the experiment, and the AUC value did not change much. The increase in the number of steps in the network could not provide us with more information, and the information that could be mined was limited. Moreover, the larger s was, the higher the algorithm complexity, and the performance of the model barely changed as s increased, so we set s = 1 in this paper, which also indicates that the data volume in the lncRNA data set is too small to provide more network structure information.

Change the values of l and s and fix other parameters. The change result of AUC is shown in Figure 2. For parameters l and r, the results are significantly better when l ≥ r than when l < r. Fixed l, with the increase of r, the AUC value decreased significantly, which indicated that excessive walking on the disease network would lead to a certain false positive, and the overall performance decreased. According to the results of parameter analysis, we set l = 1 and r = 1.




Figure 2 | Effects of parameters l and r on the result of 5-fold cross validation. (α=0.1, β=0.1, s=1, λ=0.9). When the value of α, β, s, and λ are fixed, the AUC value is maximized when l and r are both equal to 1.



Next, fix l = 1, r = 1, s = 1, Change the values of α, β, and λ, the experimental results are shown in Figure 3. α denotes restart probability, when α = 0, only random walk between networks played a role, ignoring the random walk between the miRNA network itself and the heterogeneous network on the disease network. Therefore, the results of the model were not ideal, but the remaining values of AUC were 0.9205~0.9209, with no significant fluctuation. When β = 0.1, the AUC value is the maximum and the model performance is the best. When the parameter β is larger, the probability of prior knowledge is reduced. The known association information is gradually ignored, and the results presented are reduced, which indicates that the known association information plays an important role in the algorithm itself and cannot be ignored. Parameter λ has little influence on the model, when λ = 0.9, AUC is the largest. From what has been discussed above, we select l = 1, r = 1, s = 1, α = 0.1, β = 0.1, λ = 0.9.




Figure 3 | Effects of parameters α, β and λ on the result of 5-fold cross validation. (l=1, r=1, s=1). When α=0, AUC value is the lowest. In this case, only the random walk between the networks is at work. AUC is relatively stable with the variation of parameters β and λ.





Algorithm Performance Comparison

In this paper, we take the AUC (Area under Curve) value as the evaluation index, all known miRNA-disease associations were divided into five groups of the same size, four of which were used as training set for model learning, then, the similarity calculation method mentioned above was used to calculate miRNA and disease similarity, we compare TCRWMDA with IMCMDA(Chen et al., 2018), RWRMDA(Xing Chen et al., 2012), KATZMDA (Qu et al., 2018), BRWH (Luo and Xiao, 2017) for 5-fold cross validation. The results of TCRWMDA and other methods for 5-fold cross validation are shown in Figure 4. True positive rate (sensitivity) is the percentage of a test sample ranked above a given threshold. False positive rate (1-specificity) is the percentage of samples below the threshold. In this paper, for the specified threshold, the true positive rate is the percentage that accurately predicts the miRNA associated with a known disease, and the false positive rate is the percentage that predicts the miRNA unrelated to the disease. When AUC = 1, the performance of the model is the best. When AUC = 0.5, it indicates that the classification method is completely ineffective and has no classification value.




Figure 4 | The AUC value of TCRWMDA and other methods for 5-fold cross validation.



It can be seen from Figure 4, the area under the ROC curve of TCRWMDA algorithm is the largest, that is, the prediction performance of this algorithm is better than other methods. The AUC values obtained by IMCMDA (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018), RWRMDA, KATZMDA, BRWH, and TCRWMDA on 5-fold cross validation are respectively 0.8351、0.8676、0.9088、0.9106、0.9209. The AUC value of the TCRWMDA algorithm was 1.3% higher than that of the BRWH, which indicates add new related dataset and perform a random walk on constructed multi-layer network and then is effective. TCRWMDA is 10.3% better than IMCMDA, 6.1% better than RWRMDA, and 1.1% better than KATZMDA.



Based on Kernel-Based Soft-Neighborhood Network Fusion Similarity Model

Ma et al. considered the distance factor and the reconstruction relationship between samples to establish the nuclear soft neighborhood similarity model (Ma et al., 2018b), and combined the nuclear soft neighborhood similarity matrix of miRNA (disease) with the functional similarity (disease semantic similarity) of miRNA using similarity network fusion (SNF) (Wang et al., 2014), proposed kernel-based soft-neighborhood network fusion similarity model, and obtained good results. The following analysis based on kernel-based soft-neighborhood network fusion similarity model. After parameter analysis, the final selection is l = 1, r = 1, s = 1, α = 0.2, β = 0.1, λ = 0.9.

Figure 5 shows the results of TCRWMDA and LKSNF soft neighborhood network of nuclear fusion based similarity model on 5-fold cross validation. In Figure 5, the red solid line represents the result of TCRWMDA algorithm for 5-fold cross validation, the green dotted line represents the result of TCRWMDA algorithm based on kernel-based soft-neighborhood network fusion similarity model, and the black dotted line represents the result of the LKSNF algorithm on 5-fold cross-validation. Based on kernel-based soft-neighborhood network fusion similarity model, the AUC value of the TCRWMDA algorithm is improved by 0.99%. However, the association data of lncRNA-miRNA and lncRNA-disease are sparse, the number of lncRNAs that can be considered is also small, resulting in a certain deviation in the prediction results, the AUC value obtained by TCRWMDA algorithm is almost the same as that obtained by LKSNF algorithm.




Figure 5 | The AUC value of TCRWMDA and LKSNF for 5-fold cross validation based on kernel-based soft-neighborhood network fusion similarity model.





Case Study

Globally, breast cancer is the most common cancer in women, accounting for 25% of all cancers in women. In 2012, there were 1.68 million cases of breast cancer and 520,000 deaths due to breast cancer. Mir-200c inhibits the growth and differentiation of cancer cells, and strongly inhibits the ability of normal breast stem cells to form mammary ducts and human breast cancer-driven tumorigenesis in vivo (Shimono et al., 2009). In addition, miRNA may be abnormally downregulated or upregulated in colon cancer tissues. In 2003, the first study on miRNAs was published in colon cancer (Michael et al., 2003), identifying mir-143 and mir-145 as new misaligned miRNAs in colon cancer.

In order to further prove the predictive performance of TCRWMDA in predicting miRNA-disease association, we used TCRWMDA algorithm to carry out analysis of breast cancer and colon cancer, as shown in Tables 3 and 4.


Table 3 | The top 50 potential miRNAs predicted by TCRWMDA for breast neoplasms and their associations confirmed by database (column 1: top 1–25; Column 3: top 26–50).




Table 4 | The top 50 potential miRNAs predicted by TCRWMDA for colon cancer (colon neoplasms) and confirmed by database (column 1: top 1–25; Column 3: top 26–50).



The predicted results were verified by dbDEMC database (Yang et al., 2017) and HMDD (Li et al., 2013), for breast tumor diseases, 44 of the first 50 predicted miRNAs were verified in dbDEMC and 45 of the top 50 predicted colon tumor diseases were verified by dbDEMC. In order to enhance the persuasion, we also listed two other cases (lung neoplasms and lymphoma), whose prediction results were verified as shown in the Supplementary Tables 1 and 2.




Conclusion

With the development of bioinformatics, more and more experiments and evidence show that miRNA is closely related to the generation and development of human diseases, and the discovery of miRNA that may be related to diseases has attracted much attention. The experiment is time-consuming and costly, the new and effective miRNA-disease association prediction algorithm can effectively provide research directions and reduce the cost and time of biological experiments.

In this paper, we propose a novel TCRWMDA algorithm, which is different from the traditional prediction methods based on heterogeneous network and incorporates new prior knowledge (lncRNA information related to miRNA and disease) to effectively make the best use of the information that we have. TCRWMDA is a framework for integrating multiple sources of information, which may yield better results when the data set is large. TCRWMDA is applied to miRNA-disease association prediction, which implements unbalanced random walk on three-layer heterogeneous networks and integrate the related similarity information to predict disease-related miRNAs. TCRWMDA is efficient because it makes use of multi-source information from reliable data sources. Considering the association between lncRNA and disease and the association between miRNA and disease, TCRWMDA mines the association information on between data and topological information in the network to improve the prediction accuracy. Experimental results and case studies prove that the TCRWMDA algorithm is an effective tool for predicting the potential miRNA-disease association. If more data sets are added, the increase and optimization of parameters is a problem worth thinking about. In the future, we hope to conduct more stable data integration and seek methods for optimizing parameter selection.
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Schizophrenia (SZ) is a functional mental disorder that seriously affects the social life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention of researchers. At present, study of brain network based on resting-state functional magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification by studying functional network alteration. However, previous studies based on brain network analysis are not very effective for SZ identification. Therefore, we propose an improved SZ identification method using multi-view graph measures of functional brain networks. Firstly, we construct an individual functional connectivity network based on Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by the brain network analysis method as feature representations. Next, in order to consider the relationships between measures within the same brain region in feature selection, multi-view measures are grouped according to the corresponding regions and Sparse Group Lasso is applied to identify discriminative features based on this feature grouping structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ identification task. To evaluate our proposed method, computational experiments are conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed method can obtain an accuracy of 93.10% for SZ identification. By comparison, our method is more effective for SZ identification than some existing methods.

Keywords: Schizophrenia identification, fMRI, functional brain networks, multi-view graph measures, SVM


1. INTRODUCTION

Schizophrenia (SZ) is a functional mental disorder which caused by genetic factors and environmental effects. Patients with SZ (SZs) share some common symptoms which include depression, hallucinations, cognitive dysfunction and disorganized thinking (Marín, 2012). Impairments of this disorder cover multiple cognitive areas, including memory (He et al., 2012), attention and executive function (Heinrichs and Zakzanis, 1998). One percent of the population is affected by the serious psychiatric disease worldwide (Ripke et al., 2013). The clinical diagnosis of SZ relies mainly on mental state examination rather than any biomarker (Arbabshirani et al., 2013; Liu et al., 2017d) since the cause and mechanism of the disease are not clearly revealed. However, this diagnosis method is usually subjective and not completely effective. Therefore, it is urgent to find an objective method to realize the automatic diagnosis of SZ and improve the accuracy of recognition.

Nowadays, Magnetic resonance imaging technology has been widely used in various studies related to brain disease diagnosis (Nieuwenhuis et al., 2012; Liu et al., 2016, 2017b,c, 2018a; Yang and Wang, 2018). Since SZ is reported to be a functional disease, functional magnetic resonance imaging (fMRI) is increasingly used to study brain dysfunction in patients with mental illness (Castro et al., 2011; Huang et al., 2018; Liu et al., 2018b; Moghimi et al., 2018; Chen et al., 2019). In addition, fMRI provides a database for functional analysis of these brain diseases owing to it's massive spatial and temporal information.

In recent years, the number of neurobiological literatures using fMRI to study SZ disease has increased significantly. fMRI is usually applied to discover anomalous patterns present in activation maps [i.e., Regional Homogeneity (REHO), Amplitude of Low Frequency Fluctuations (ALFF), fractional Amplitude of Low Frequency Fluctuations (FALFF)] (Guo et al., 2014; Chyzhyk et al., 2015; Huang et al., 2018) of SZ. These activation maps are widely used as potential clinical biomarkers for the diagnosis of SZ. For example, Huang et al. (2018) used tree-guided group sparse learning method to perform feature selection on fALFF data in multi-frequency bands, and then used multi-kernel learning (MKL) method to achieve an accuracy of 91.10% on 34 subjects. Chyzhyk et al. (2015) combined these activation maps by using extreme learning machines and successfully distinguished SZs from healthy controls (HCs). However, these methods focus on the voxel-wise information in these maps rather than the connectivity between regions of interest (ROIs).

Functional connectivity has been reported to analyze the differences in the functional organization of brain networks between patients and HCs (Lynall et al., 2010; Pettersson-Yeo et al., 2011). Functional connectivity networks are usually derived from fMRI data (Van Den Heuvel and Pol, 2010; Craddock et al., 2013). Nodes of a functional brain network could be the voxels of fMRI data, ROIs defined by brain atlas or the discrete regions with similar size by randomly parcellating the brain (Fornito et al., 2013). Links of a functional brain network could be determined by the correlations estimated from time courses between pairs of nodes (Liu et al., 2017a). For example, Yu et al. (2015) created functional brain network using group ICA and Pearson correlation coefficient, and they found the new evidence about altered dynamic brain graphs in SZ. Abraham et al. (2017) investigated the most predictive biomarkers for Autism spectrum disorders (ASD) by building participant-specific connectomes from functionally-defined brain areas. For these methods, the connections between all pairs of nodes in a brain network are employed as features, but the topological measures of connectivity networks are not considered.

To quantitatively analyze functional brain networks, graph theoretical analysis is employed for investigating the topological organization of functional connectivity (Anderson and Cohen, 2013; Brier et al., 2014). The most commonly used graph measures include betweenness centrality, degree, local efficiency, participation coefficient, average clustering coefficient, average path length, global efficiency, and small-worldness (Liu et al., 2017a). These topological measures have been applied in the brain disease classifications (Cheng et al., 2015; Khazaee et al., 2015, 2017; Moghimi et al., 2018). For example, Moghimi et al. (2018) calculated a set of 25 graph measures including global and local measures for each subject and obtained a classification accuracy of 80% with a double-cross validation scheme. Cheng et al. (2015) achieved an accuracy of 79% by using betweenness centrality measure in SZ identification, and they found that changes in functional hubs were associated with SZ. Overall, these methods using graph measures for SZ identification have not achieved a good classification performance.

In this paper, we propose an improved method based on multi-view graph measures to identify SZs from HCs. Functional brain networks are constructed based on fMRI scans. Nodes of functional brain network are brain regions parcellated with the Brainnetome atlas (Fan et al., 2016), and edges of functional brain networks are determined by Pearson's correlation coefficients. Five local graph measures are calculated from functional brain networks by graph theoretical approach as features. The five local graph measures include betweenness centrality, nodal clustering coefficient, local efficiency, degree and participation coefficient. In order to consider the relationship of features within the same region, firstly we need to group graph measures according to brain regions defined by Brainnetome atlas. Then Sparse Group Lasso feature selection method is employed to select the most important regions as well as discriminative features within the selected regions. Finally, support vector machine (SVM) is trained for SZ identification. Our experiments are conducted on 145 samples with fMRI data, including 74 HCs and 71 SZs. Our proposed method achieves a mean classification accuracy of 93.10% using a leave-one-out cross-validation (LOOCV) scheme. The overall framework of our proposed method is shown in Figure 1, which consists of four main components include image preprocessing, feature representation, feature selection, and classification with SVM classifier. The code for this classification framework is available for download at https://github.com/xyzxzj/SZClassification.


[image: Figure 1]
FIGURE 1. The overall framework of our proposed method using multi-view graph measures of functional brain network for SZ/HC classification.




2. MATERIALS AND METHODS


2.1. Subject Description and Image Preprocessing

The data involved in this study is collected by the Center for Biomedical Research Excellence (COBRE). COBRE1 dataset consists of 148 subjects with functional and anatomical MRI data. 74 HCs and 71 SZs of the dataset are employed for our subsequent experiments owing to the class labels of the other three subjects are not given. During the scan, all participants are asked to remain relaxed and keep their eyes open. A brief summary of demographic information of subjects is listed in Table 1.


Table 1. Demographic information of 145 subjects from COBRE dataset.

[image: Table 1]

All of the fMRI images are preprocessed by using Data Processing & Analysis for Brain Imaging (DPABI) (Yan et al., 2016). The preprocessing procedure is as follows: the first 10 volumes of functional runs are removed owing to the fMRI signal instability. Then, the rest volumes are performed slice time correction, head-motion correction, and co-registration of T1-weighted MRI images and fMRI images. After that, the fMRI images are normalized to Montreal Neurological Institute (MNI) space and resampled to 3 × 3 × 3mm3 voxels. Smooth (4-mm FWHM) and band-pass filter (0.01–0.1Hz) are applied to the images which are transformed to MNI space.

In order to construct time series matrices for all subjects, first all brain images are parcellated into 246 regions by registering images to the Brainnetome atlas after fMRI data preprocessing. Then we extract the averaged time series for each of 246 brain regions for each subject. The time series of each brain region is derived from averaging fMRI signals of all voxels within the region. Finally, a time series matrix consists of 246 regional time series.



2.2. Feature Representation
 
2.2.1. Brain Network Construction

A network is composed of a collection of nodes and links. It can be described as a graph G = (V, E), where V denotes the set of nodes and E is the set of links. There are four types of network topology, including weighted undirected, weighted directed, binary undirected and binary directed. In this study, the functional connectivity network is represented by an weighted undirected graph. The nodes in functional connectivity network usually are defined by brain regions, and links can represent temporal correlation in activity between pairs of nodes. Given a time series matrix, we can construct a functional connectivity network by calculating Pearson correlation coefficients (Pedersen et al., 2018) between signals of all pairs of regions. The generated functional brain network has 246 × (246 − 1)/2 = 30, 315 weighted edges under the condition of 246 brain regions and the strength of each edge is the Pearson correlation coefficient between a pair of connected nodes.



2.2.2. Brain Network Analysis

A great deal of functional connections in the network may lead to feature redundancy. A threshold t is employed in the dense network to keep a certain proportion of edges with the highest correlation. Graph-theoretic measures can quantify topological organization of network. Thus, we can extract some measures which can characterize the global or local functional connectivity from the threshold network. We compute 5 local graph measures using brain network analysis as feature representations, including degree, betweenness centrality, nodal clustering coefficient, local efficiency, and participation coefficient.

Degree is the most fundamental and important measure to characterize the centrality of nodes. In general, nodes with a higher degree are more important in networks. Betweenness centrality can also reflect the centrality of nodes. The betweenness centrality of a brain region can measure its ability on information transmission. Nodal clustering coefficient represents the possibility that any two neighbors of a given node are also neighbors of each other. It measures the ability of the node on functional segregation. Local efficiency measures the efficiency of a subnetwork formed by a given node and all its direct neighbors to transfer information. Local efficiency is related to the shortest path length of the node, the shorter the shortest path length, the greater the local efficiency of the node, the faster the information transmission in the subnetwork. Participation coefficient of a node measures its diversity of intermodular interconnections. The nodes with low participation coefficient but high degree in the module are regarded as provincial hubs, it indicates that the hubs are likely to have a great impact on the modular segregation. These five local measures play an important role in information exchange of functional networks. They can be calculated as follow:
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where K(i), B(i), C(i), Eloc(i), and PC(i) are the degree, betweenness centrality, clustering coefficient, local efficiency, and participation coefficient of node i, respectively. N is the number of nodes in a network, aij = 1 if node i and node j are connected, aij = 0 otherwise; nmj(i) is the number of shortest paths between m and j that pass through node i, and nmj is the number of shortest paths between m and j; swi is the sum of the weights of all the connected edges between the neighbors of node i; Gi is the subnetwork that contains node i and its all direct neighbors, NGi is the number of nodes in the subnetwork Gi, ljh is the length of shortest path between node j and node h in the subgraph; M denotes the set of modules, ki is determined as the number of links between i and the nodes within module m.

In this study, we adopt the Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net) (Rubinov and Sporns, 2010) to calculate these five local graph measures. For each local graph measure (gm), we compute 246 values corresponding to the 246 brain regions. Therefore, the dimension of the final feature vector for each subject is 1,230.




2.3. Feature Selection

The raw feature matrices have high dimension, multiple redundancy and multi-noise characteristics. Thus, applying a suitable feature selection algorithm to identify features related to SZ/HC identification and remove unnecessary information appears especially important. Least absolute shrinkage and selection operator (Lasso) (Chan et al., 2015) is widely used in various areas due to the very low data requirements. In addition, lasso can filter variables and reduce the complexity of the model. It aims to select the most important features from dense data matrix by using l1 norm constraint. The optimization problem can be formulated as follow:

[image: image]

where X denotes an n × p feature matrix, and n is the number of subjects, p represents the dimension of a feature vector. y is defined as a class label, α is a coefficient vector, and λ1 is a regularization parameter.

Graph measures within the same region usually have a certain correlation. However, Lasso has not consider the relationship between graph measures derived in the same brain region. Hence we use the priori information of brain regions to group measures and then perform feature selection based on this feature grouping structure. Group Lasso (GLasso) (Yuan and Lin, 2006), a group variable selection method, is the extension of Lasso. It can select the most important groups by grouping all the variables and penalizing the l2 norm of each group. The effect is that we can eliminate the entire set of coefficients into zero at the same time and then this set of features are excluded. The objective function of GLasso is as follow:

[image: image]

where αGj denotes the set of coefficients of all features in the group Gj, wj is a weight for group Gj.

Actually, there are also many redundant features in the important groups selected by GLasso. It is necessary to perform another feature selection to choose the most important features from these selected groups. Sparse Group Lasso (SGLasso) (Liu et al., 2009) is introduced to select the most significant groups as well as the discriminative features within the selected groups by adding l1 and l2 penalties. The objective function of the SGLasso can be written as:

[image: image]

Before performing SGLasso, 1230-dimensional feature vector for each subject is grouped as G = {G1, …, Gj, …, GM} according the brain regions defined by Brainnetome atlas. M is the number of groups. Gj = {gmj_1, gmj_2, gmj_3, gmj_4, gmj_5} is a group consists of 5 local graph measures calculated for j_th region. The grouping structure is shown in Figure 2. In addition, z-score transformation is used to normalize the feature matrix before feature selection. It is worth noting that, after feature selection, those features are kept with corresponding regression coefficients greater than the mean value of absolute values of all elements in coefficient vectors.


[image: Figure 2]
FIGURE 2. The grouping structure: the nodes in the third layer represent local graph measures and the blocks in the second layer represent brain regions; Gj = {gmj_1, …, gmj_5} is a group set which consists of 5 local graph measures calculated for j_th region.




2.4. Classification

SVM (Chang and Lin, 2011) is widely applied in various fields such as natural language processing, target detection, pattern classification due to its good performance as a supervised machine learning approach. The choice of SVM kernel functions is critical to their performance. In this study, we choose the linear kernel SVM (LSVM) to identify SZs from HCs. Linear kernel is mainly used in linear separability cases, and the dimension of the feature space and input space is the same. It performs good classification in most linear separable problems owing to the less parameters and fast calculation. The formulation of SVM model and linear kernel function are as follows:
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where λ is the Lagrange multiplier, N is the number of samples, xi represents the feature vector of the i-th sample, and yi is the label corresponding to xi, K(., .) denotes the kernel function, C is determined as the soft margin parameter.

After feature selection, the optimal feature set X = {x1, …, xi, …, xn} is used as the input to SVM classifier, i = 1,…, n. Giving a test subject x, the trained SVM will predict its label based on a decision function P(x) as follows:

[image: image]




3. EXPERIMENTS AND RESULTS


3.1. Experiment Settings

In our study, the classification performance of our proposed method is estimated by adopting LOOCV scheme. LOOCV scheme is not affected by the random sample partitioning because n samples are only divided into n subsets in a unique way, each subset contains one sample. Each subset will be tested as a test data in turn while remaining subjects as the training data. In addition, we usually adopt the LIBSVM library (Chang and Lin, 2011) to solve SVM classification. We further calculate classification accuracy (ACC), sensitivity (SEN), specificity (SPE) to measure the performance of the method. These three metrics can be written as follows:

[image: image]

[image: image]

[image: image]

where true positive (TP), true negative (TN), false negative (FN), and false positive (FP) are defined as the number of correctly classified SZs, HCs and misidentified SZs, HCs, respectively. In addition, the area under receiver operating characteristic (ROC) curve (AUC) is also used to evaluate overall classification performance of our method.

At the stage of feature representation, we set t = [0.1, 0.12, …, 0.48, 0.5] to represent a collection of threshold values from 0.1 to 0.5 by the step of 0.02, and then calculate the 5 local graph measures at these 21 thresholds. The two regularization parameters for SGLasso are set as λ1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and λ2 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], which are optimized with the grid search algorithm.



3.2. Identification Performance for SZ

We use LSVM to perform SZ/HC classification on the optimal feature set obtained from feature selection of SGLasso at each of 21 thresholds. The classification results corresponding to 21 thresholds are showed in Figure 3.


[image: Figure 3]
FIGURE 3. Classification accuracies for SZ identification based on different network thresholds.


According to Figure 3, we can see that the best accuracy (93.10%) is achieved at t = 0.30. Furthermore, the classification accuracies at these 21 thresholds are all higher than 70%. In addition, the number of selected features is 55 and SEN, SPE, AUC values are 92.96%, 93.24%, 0.950, respectively. The experimental results indicate that the feature combination of five local measures extracted at t = 0.30 has a relatively strong correlation with SZ identification.




4. DISCUSSION


4.1. Comparison With Different Feature Selection Methods

In order to demonstrate the SGLasso method is more effective than the common feature selection methods based on these five local measures for SZ classification, we compare four feature selection methods. The first one is t-test which is the one of the most basic feature selection method and the most critical part of this method is selecting features based on the p-value (i.e., 0.05). The rest methods are Lasso, GLasso and Elastic Net (Enet). These three methods are based on linear sparse models. GLasso and Enet are the extension of Lasso. GLasso is used to solve l1/lq-norm regularized problem. Enet is used for the situations where features are related to each other and always produce valid solution.

These four feature selection methods perform the same experimental procedure as SGLasso for the sake of fairness. It's worth noting that the five local graph measures are extracted at the threshold of 0.30. Table 2 shows the experimental results of the above mentioned four methods and SGLasso feature selection method. As we can see that SGLasso method selects the least features (55) but achieves the best ACC (93.10%), SEN (92.96%), SPE (93.24%). The ROC curves for SZ/HC classification for different feature selection methods as shown in Figure 4. We notice that SGLasso achieves the highest AUC (0.950) than other four feature selection methods. Experimental result shows that considering within- and between- group sparsity is likely helpful for selecting significant features that are effective for SZ identification.


Table 2. Classification with different feature selection methods.
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[image: Figure 4]
FIGURE 4. ROC curves for SZ/HC classification for different feature selection methods.




4.2. Comparison With Different Classifiers

In order to prove that LSVM is optimal to conduct classification in this context, a series of comparative experiments using several SVMs with different kernels including Radial Basis Function kernel (RBF), Ploynomial kernel (Poly), Sigmoid kernel (Sigm) under the same condition as the LSVM have been performed. These SVMs are denoted as RBF-SVM, Poly-SVM, Sigm-SVM, respectively. The experimental results of SVMs with different kernels are shown in Table 3. It is worth mentioning that bold text indicates that the best result is obtained on a certain evaluation metric.


Table 3. Comparison with other SVMs using different kernels.
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In addition, we also compare four commonly used classifiers, such as k-nearest neighbors (KNN), Random Forest (RForest), NaiveBayes (NBayes), and Linear Discriminant Analysis (LDA). These classifiers are all implemented on the platform of Matlab2016a. We evaluate the performance of the above four classifiers under the same conditions as LSVM. The experimental results of these five classifiers are shown in Table 4. As can be seen from Tables 3, 4, LSVM can achieve the best classification performance than other classifiers.


Table 4. Comparison with other commonly used classifiers.
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4.3. Regularization Parameter Selection

The regularization parameters of SGLasso have a great influence on the results of feature selection. Using different regularization parameters, the selected features are also different. It affects not only the feature dimension, but also the final classification performance. Therefore, selecting the appropriate regularization parameters can improve the efficiency of SGLasso method and obtain more effective features associated with the labels.

The two regularization parameters of SGLasso are λ1 and λ2. λ1 is used to control the model sparseness, and λ2 can control the sparse constraint of each feature group. We use the grid search algorithm to find the optimal combination of regularization parameters. Figure 5 shows the classification results using different combination of λ1, λ2. According to Figure 5, when the parameter combination is (λ1=9, λ2=0.1), the features obtained from SGLasso feature selection method are the most effective for SZ/HC classification.


[image: Figure 5]
FIGURE 5. Classification results using different combination of λ1,λ2.




4.4. Regression Coefficient Selection

In general, the non-zero elements in the coefficient vector α generated from the SGLasso feature selection algorithm indicate that the corresponding features are selected. In order to retain the least but most informative features according to α, we test the impact of the three coefficient selection strategies on classification performance. We named these three strategies as SGLasso_absZ, SGLasso_absM, and SGLasso_absMS. The description of these three strategies is as follows:

• SGLasso_absZ is a common strategy to retain non-zero coefficients of α.

• SGLasso_absM strategy is to retain those coefficients which are greater than the mean value of absolute values of all elements in α.

• SGLasso_absMS strategy is more strict for selecting coefficients, since it retains the coefficients which are larger than the mean value of absolute values of all non-zero coefficients in α.

We apply the above mentioned three strategies to feature selection, and then select the corresponding features according to the retained coefficients in α. SVM performs SZ identification using these selected features. The classification results using three different regression coefficient selection strategies are shown in Figure 6. According to Figure 6, the classification accuracy is the best when using SGLasso_absM strategy. Experimental result indicates that using SGLasso_absM strategy in feature selection can select the most effective features for SZ/HC classification. Therefore, we finally choose the SGLasso_absM strategy to select the regression coefficients.


[image: Figure 6]
FIGURE 6. Classification results using three different regression coefficient selection strategies.




4.5. Classification Comparison Using Different Feature Combinations

In order to explore the impact of different feature combinations on SZ/HC identification, we combine these five local measures extracted at the threshold of 0.30 in [image: image] ways. Furthermore, we don't consider individual graph measure because we only investigate multiple measures in this study. We evaluate these 26 feature sets under the same experimental settings. The classification results are shown in Figure 7.


[image: Figure 7]
FIGURE 7. Classification result for different feature combinations. A: betweenness centrality, B: nodal clustering coefficient, C: local efficiency, D: degree, E: participation coefficient.


As can be seen from Figure 7, the combination of 5 local graph measures achieves the best classification performance compared to other feature sets. At the same time, we also find that the classification accuracies obtained by using feature sets including two measures are lower than the classification accuracies obtained by using feature sets including three measures, four measures and five measures. It indicates that using fewer measures may not be enough to characterize brain network alternation, and we find that the combination of five local measures can provide more useful information for SZ identification.



4.6. Comparison With Existing Classification Methods

To verify the effectiveness of our proposed classification method, we compare some recently proposed methods for SZ classification using fMRI in the literature. Huang et al. (2018) proposed a tree-guided group sparse learning method to select the most important information from FALFF data in four frequency bands and get a classification accuracy of 91.1% by using multi-kernel SVM. Cheng et al. (2015) calculated only betweenness centrality measure to characterize the network. They used the rank of betweenness centrality of all nodes as feature representations and used SVM to classify SZs from HCs.

The two above mentioned methods are performed on the COBRE dataset. The classification results and ROC curves for SZ/HC classification of the two methods and our proposed method are shown in Table 5 and in Figure 8, respectively. According to Table 5 and Figure 8, Our proposed method gets the best ACC (93.10%), SEN (92.96%), SPE (93.24%), and AUC (0.950) values. The experimental result illustrates that our proposed method has made a significant improvement in classification performance on the COBRE dataset.


Table 5. Comparison with some existing methods for SZ/HC classification.
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[image: Figure 8]
FIGURE 8. ROC curves for SZ/HC classification for different classification methods.




4.7. Analysis of Discriminative Graph Measures and Corresponding Regions

The graph measures selected in the feature selection stage are considered to be related to their corresponding brain regions. Our method can select the most discriminative brain regions as the biomarkers to guide the disease-induced interpretation. There is a total of 145 experiments in the LOOCV scheme due to 145 subjects. And the number of feature occurrence in 145 experiments is introduced to indicate the contribution of the feature to classification. We assume that if the occurrence number of a local graph measure extracted from a certain brain region is greater than 140 in a total of 145 experiments, the brain region is considered to have the most discriminative power to distinguish between SZs and HCs. Based on this hypothesis, 21 salient brain regions have been found. These significant brain regions are shown in Table 6. Five brain regions include left superior frontal gyrus (SFG_L_7_2), right inferior temporal gyrus (ITG_R_7_7), right inferior parietal lobule (IPL_R_6_4), right postcentral gyrus (PoG_R_4_1), and right thalamus (Tha_R_8_7) are related to more than one local graph measure.


Table 6. The most discriminative graph measures and corresponding Brainnetome regions.

[image: Table 6]

These findings on discriminative brain regions are in agreement with the following studies: superior frontal gyrus, cingulate gyrus, postcentral gyrus (Szeszko et al., 1999; Gur et al., 2000; Arbabshirani et al., 2013; Chyzhyk et al., 2015), parahippocampal gyrus (Shenton et al., 1992; Chyzhyk et al., 2015), middle temporal gyrus, fusiform gyrus and thalamus (Chyzhyk et al., 2015; Li et al., 2019), inferior parietal lobule, inferior temporal gyrus (Peng et al., 1994; Goldstein et al., 1999; Li et al., 2019). However, we cannot report agreement with these regions:inferior frontal gyrus, orbital gyrus, precentral gyrus, precuneus, lateral occipital cortex and basal ganglia.




5. CONCLUSION

In this paper, we propose a method to classify SZs from HCs using multi-view graph measures of functional brain networks. We get five local network measures using graph theoretical approach from multiple views. These measures paly an important role in the information exchange of brain networks. Our proposed method achieves a good classification performance on the COBRE dataset. Experimental results demonstrate that this approach is efficient for the clinical diagnosis of SZ. Furthermore, multiple measures have the potential to be used as clinical biomarkers to differentiate SZs from HCs.
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One of the most challenging tasks of the post-genome-wide association studies (GWAS) research era is the identification of functional variants among those associated with a trait for an observed GWAS signal. Several methods have been developed to evaluate the potential functional implications of genetic variants. Each of these tools has its own scoring system, which forces users to become acquainted with each approach to interpret their results. From an awareness of the amount of work needed to analyze and integrate results for a single locus, we proposed a flexible and versatile approach designed to help the prioritization of variants by aggregating the predictions of their potential functional implications. This approach has been made available through a graphical user interface called DSNetwork, which acts as a single point of entry to almost 60 reference predictors for both coding and non-coding variants and displays predictions in an easy-to-interpret visualization. We confirmed the usefulness of our methodology by successfully identifying functional variants in four breast cancer and nine schizophrenia susceptibility loci.
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Introduction

Since 2006, thousands of susceptibility loci have been identified through Genome-Wide Association Studies (GWAS) for numerous traits and complex diseases, including breast cancer (MacArthur et al., 2017). GWAS build on the concept of linkage disequilibrium (LD) to identify statistical associations between genetic variants and diseases (Visscher et al., 2017). While this approach is powerful for locus discovery, it cannot distinguish between truly causal variants and non-functional highly correlated neighboring variants. Thus, for the vast majority of these loci, the causal variant(s) and their functional mechanisms have not yet been elucidated.

Statistical fine-mapping analyses combined with the functional annotation of genetic variants can help pinpoint the genetic variant (or variants) responsible for complex traits, or at least narrow down the number of variants underlying the observed association for further functional studies. In this regard, tremendous efforts have been put forth to assist the functional assessment of variants at risk loci and numerous scoring methods and tools have been developed to predict the deleteriousness of variants based on a number of characteristics such as sequence conservation, characteristics of amino acid substitution, and location of the variant within protein domains or three-dimensional protein structure.

In recent years, efforts have been made towards the aggregation of many different functional annotations resulting from these scoring methods in a single integrative value called metascore (Ionita-Laza et al., 2016; Feng, 2017), an approach that seems to yield better performances than any predictor individually (Dong et al., 2015). Although these methods demonstrate themselves to be useful, they have some limitations, notably not being directly comparable to one another due to integration of different sets of annotations or different weighting of these annotations, and sometimes having contradictory results.

In order to allow a quick survey of a wide range of predictors for a given list of variants and assist in the interpretation of the resulting prediction scores, we propose a flexible and integrative method capable of gathering information from multiple sources in an easy-to-interpret representation rather than a static new metascore. For this purpose, we created a single point of entry fetching predictors for coding and non-coding variants and presenting them as a network, where the nodes illustrate the scores of each predictor for a given variant and the edges the LD between variants. The network is built with the aim of rendering the predictor results easier to peruse during analyses involving multiple variants, and therefore, assist in the variant prioritization process in the context of fine-mapping analyses.

This approach has been made available through a graphical user interface (GUI) stand-alone application called DSNetwork. The tool is freely available via bitbucket repository and is also accessible through our portal for demonstration purpose at: http://romix.genome.ulaval.ca/dsnetwork/.



Materials and Methods


Annotations Retrieval

Variant annotations and scoring data are fetched on-the-fly from MyVariant.info high-performance web services (Xin et al., 2016) using their third-party R package. SNPnexus (Dayem Ullah et al., 2018) scorings are fetched upon request through a Python script kindly provided by the SNPnexus team. Due to their novelty and relevance for our purpose, three complementary whole genome resources are included: LINSIGHT (Huang et al., 2017), BayesDel (Feng, 2017), and predictions and sequence constraint data (di Iulio et al., 2018), which can be used as a proxy to score functionality and the consequences of mutations. BayesDel, LINSIGHT, and Context-Dependent Tolerance scores were extracted from a local copy. A description of the integrated predictors is available in the Supplementary Material.

LD data are computed from 1000 Genomes Phase 3 (1000 Genomes Project Consortium et al., 2015).



Visual Integration

Prediction result for variants of interest are displayed as a network, whose components, namely, the edges and nodes, are used to convey different types of information in an easy-to-comprehend way.

The following paragraphs describe DSNetwork’s approach through the hypothetical analysis of a loci containing five variants rs4233486, rs35054111, rs11808410, rs11804913, and rs7554973 using the deleteriousness scores of five distinct fictive predictors A, B, C, D, and E. Table 1 summarizes the scores generated by these five predictors, reflecting their predictions regarding the functional impacts of the candidate variants.


Table 1 | Deleterious scores generated by five different approaches.



DSNetwork integrates the characteristics of the different predictors and creates a reference frame containing the lower and upper boundaries as well as the direction [ascending (ASC) or descending (DESC)] of their prediction scores (Figure 1A). The direction is used to rank variants from the most deleterious to the least deleterious on the basis of their respective scores. The boundaries are used to establish the absolute deleteriousness level of each variant. Once the different reference frames are integrated, they can be used to prioritize the variants according to three types of representations: the intra-predictor relative ranks, the intra-predictor absolute scores, and the global ranks.




Figure 1 | DSNetwork visual approach. (A) Representation of predictors reference frames illustrating each approach boundaries and direction. (B) Representation of intra-predictors ranking based on the predictors reference frame. (C) Representation of intra-predictors absolute score intervals based on the predictors reference frame. (D) Representation of the global mean rank. (E) The edges between the nodes can be used to map Linkage Disequilibrium (LD) levels between two variants.




Intra-Predictor Ranks

Intra-predictor ranks allow the prioritization of a list of variants relative to one another. According to the reference frames illustrated in Figure 1A, the five predictors produce scores ranging from 0 to 1. We can classify the five variants of interest from the most deleterious (rank 1) to the least deleterious (rank 5) with each predictor. In order to summarize this information in an easy-to-interpret representation, each variant is depicted as a pie chart where each slice represents the rank of the variant for one of the predictors. Thus, in the current analysis, five pie charts are generated and each pie chart is divided by five slices of the same size. We used a color gradient ranging from red to green, where red corresponds to the most deleterious variant (rank 1) among the candidates for a given predictor. The gray color represents missing data. Figure 1B depicts the pie charts generated for the five candidate variants. The slices can be ordered by color to allow easy identification of variants that appear the most deleterious across predictors.



Intra-Predictor Absolute Scores

Intra-predictor absolute scores allow prediction of variant deleteriousness in reference to the thresholds established for a particular predictor. Given these boundaries, we can determine where each variant is located on the deleteriousness spectrum for each predictor. We chose to divide the score range of each approach into 20 equal intervals. This number of intervals was chosen as a compromise between granularity and readability. The first interval contains the most deleterious scores and the 20th, the least deleterious. Thus, the annotation scores obtained for each variant are translated into their corresponding intervals. This allows the user to know if a variant is predicted as deleterious by a particular approach without having to know the implementation details of this approach. For clarity purposes, in this example the range of scores has been divided into four intervals (instead of 20) (Figure 1C).

As for intra-predictor ranks, each variant is depicted as a pie chart where each slice represents the score interval of the variant for a particular predictor. We used a color gradient ranging from red to blue. The red color represents the most deleterious interval for a given predictor. The gray color represents missing data. Figure 1C depicts the pie charts generated for the five candidate variants. The slices can be ordered by color to easily identify variants with the most predictions of deleteriousness.



Global Ranking

In order to further facilitate the prioritization, we propose to summarize the information regarding the relative ranks in an overall rank for each variant. To do so, we calculate the average rank of each variant based on its intra-predictor ranks. Then, we order the variants according to their average rank. Variants with the lowest average ranks are considered as the best candidates for being deleterious. Because in some cases there may be missing values for some of the predictors when analyzing a specific set of variants, we propose three strategies for calculating a consistent average rank, which will be comparable between variants and which will take into account these missing values: 1) replace missing values with the median value (default one); 2) replace missing values with the average value; or 3) systematically attribute missing values the “worst” rank. Once the necessary substitutions are made, the average ranks can be calculated and the global ranks generated. As for the intra-predictor scores and ranks, the global ranks are made available for each variant under the form of a pie chart where the rank is represented by a color gradient ranging from red to green. The color red represents the most deleterious variant among the candidates for all approaches (Figure 1D).



Variants Network

DSNetwork offers the possibility to simply visualize scores and LD between variants in order to identify potential haplotypes through an interactive interface. Users can interact with the network using the mouse by scrolling in and out to zoom, or double-click on a variant node to display variant annotation details among other features. They can also update the predictors used to prioritize the variants. As displayed in Figure 1E, edges between nodes can be used to map LD levels between two variants. LD (squared correlation r2) is based on a user-chosen 1000 genomes population and is represented by an absolute color gradient ranging from yellow to red. Red indicates a high disequilibrium. The gray color represents the missing information. By default, no LD data are shown. To map LD on the network edges, users have to choose a population from 1000 Genomes and can restrict the LD range to display for a particular variant.




Implementation

DSNetwork was created using the Shiny framework (Chang et al., 2017). This tool provides users with deleteriousness predictions for a selected set of coding and non-coding human Single Nucleotide Variants (SNVs) and short inserts and deletions (InDels) (hg19 build) and generates a set of prioritized results for further analysis. These prediction scores are recovered from several trusted sources and presented in a cross-platform, user-friendly web interface. The interface is organized in three sections, namely, Input, Selection, and Visualization, as illustrated and described in Figure 2. For complete usage guide, see the Supplementary Material. DSNetwork is encapsulated using Docker platform to guarantee the cross-platform compatibility. The source code and installation procedure are available at https://bitbucket.org/vmtrap/dsnetwork_deploy/src/master/. The tool can be installed on all operating systems supporting Docker Engine (see supported platforms at https://docs.docker.com/install/) and is also accessible through our portal for demonstration purpose at: http://romix.genome.ulaval.ca/dsnetwork/.




Figure 2 | Architecture overview. The first section is dedicated to user input and parameters for data retrieval. The middle panel presents a relevant subset of annotations for each submitted variant and enables the selection of variants to be integrated in the final visualization. The bottom part on the interface is dedicated to the integrated visualization of the deleteriousness predictions displayed as a network.





Case Studies

We chose to demonstrate the utility of DSNetwork in the context of the functional analysis of four breast cancer susceptibility loci identified through the latest published breast cancer association study (full description in Michailidou et al., 2017) and nine loci reported in the latest published study on schizophrenia susceptibility (full description in Huo et al., 2019). Michailidou et al. (2017) report the discovery of 65 new breast cancer risk loci and deepens the functional characterization for four regions, namely, 1p36, 1p34, 7q22, and 11p15. For each of these regions, the authors defined sets of credible risk variants (CRVs) and investigated their impact through functional assays in order to identify the functional variants. Huo et al. (2019) investigated over 180 loci reported to be associated with schizophrenia in several GWA studies and prioritized regulatory single-nucleotide polymorphisms (SNPs) at these risk loci. They deepen the functional validation of 10 variants from nine different loci.




Results and Discussion


Prioritization of Four Breast Cancer Susceptibility Loci

The original study by Michailidou et al. (2017) reported 65 novel breast cancer susceptibility loci. For each of these regions, they defined a set of CRV containing variants with P-values within two orders of magnitude of the most significant SNPs in this region. They then selected four loci for further evaluation, namely, 1p36, 1p34, 7q22, and 11p15. Initially, these four regions contained, respectively, 54, 13, 19, and 85 significantly associated variants. The p-value cutoff enabled them to reduce the number of variants to, respectively, 1, 4, 6, and 19 CRVs. The list of variants for these loci was extracted from the original paper’s Supplementary Tables 8 and 13 in the context of the current analysis. Following data extraction, the analysis procedure was: 1) upload the variants of interest on the web tool, 2) fetch the annotations, 3) visualize the variants through the overview plot, 4) visualize the available deleteriousness scores through the relative ranking in the decision network, 5) use absolute interval visualizations to identify the best candidates, and finally 6) conclude.


Locus 1p36

This region contains a single CRV, rs2992756 (P = 1.6×10−15). For demonstration purposes, we selected the 30 most associated variants in this region to put to the test. Among these 30 variants, 2 variants (rs200439143, rs71018084) weren’t annotated by DSNetwork because of their absence from MyVariant.info service, and 24 were identified as regulatory variants and 4 as non-synonymous variants. For the purposes of our analysis, we focused on the regulatory variants.

Based on the deleteriousness scores available for this subset of variants, a quick overview of variant nodes has allowed to easily identify rs2992756 as the best candidate. Indeed, the node for this variant contained the largest proportion of red, indicating a high ranking for most of the scoring approaches (Figure 3A). To confirm this observation, we used the relative rank visualization (Figure 3B). The mean rankings of variants, clearly materialized by both the color code and the values, enabled the confirmation of rs2992756 as the best candidate among the 30 most breast cancer-associated variants at the 1p36 locus. Using reporter assays, Michailidou et al. (2017) demonstrated that the presence of the risk T-allele of this variant within KLHDC7A promoter significantly lowers its activity.




Figure 3 | Networks representing the 30 most significant variants associated with breast cancer at the 1p36 locus. (A) All available predictions represented under the form of relative rank grouped by color. (B) Global ranking representing the mean relative ranks with missing values substituted by the median value. Based on the deleteriousness scores available for this subset of variants, a quick overview of variant nodes has allowed to easily identify rs2992756 as the best candidate.





Locus 1p34

This region contains four CRVs among 13 significantly associated variants. All the variants were found by DSNetwork and identified as regulatory variants.

Based on the deleteriousness scores available for this subset of variants, a quick overview of variant nodes has allowed to easily identify two variants, rs42334486 and rs7554973, as the best candidates. Indeed, the nodes for these variants contained the largest proportion of red and orange indicating a good ranking of these variants for most of the scoring approaches (Figure 4A). The sorting by color (Figure 4B) facilitated the prioritization of these two variants, which initially seemed to present the same proportion of high ranks. The visualization of the mean ranking confirms rs4233486 as the most credible candidate among the CRVs (Figure 4C). This observation is in accordance with results from Michailidou et al. (2017), which demonstrated, using reporter assays, that the presence of the risk T-allele of this variant within a putative regulatory element (PRE) reduced CITED4 promoter activity.




Figure 4 | Networks representing the four CRVs associated variants with breast cancer at the 1p34 locus. (A) All available predictions represented under the form of relative rank ordered by predictors. (B) All available predictions represented under the form of relative rank grouped by color. (C) Global ranking representing the mean relative ranks with missing values substituted by the median value. Based on the deleteriousness scores available for this subset of variants, a quick overview of variant nodes has allowed to easily identify two variants, rs42334486 and rs7554973, as the best candidates.





Locus 7q22

This region contains six CRVs among 19 significantly associated variants. All the variants were found by DSNetwork and identified as regulatory variants.

Based on the deleteriousness scores available for this subset of variants, a quick overview of variant nodes has allowed to easily identify two variants, rs6961094 and rs71559437, as the best candidates. Indeed, the nodes for these variants contained the largest proportion of red, indicating a good ranking for most of the scoring approaches (Figure 5A). The visualization of the mean ranking confirms rs6961094 and rs71559437 as the most credible candidates among the CRVs (Figure 5B). These observations are supported by the functional experiments performed by Michailidou et al. (2017), which demonstrated, using allele-specific Chromatin Conformation Capture (3C) assays, that the presence of the risk haplotype (rs6961094 combined with rs71559437) is associated with chromatin looping between CUX1, RASA4, and PRKRIP1 promoters suggesting that the protective alleles abrogate this phenomenon.




Figure 5 | Networks representing the six CRVs associated variants with breast cancer at the 7q22 locus. (A) All available predictions represented under the form of relative rank grouped by color. (B) Global ranking representing the mean relative ranks with missing values substituted by the median value. Based on the deleteriousness scores available for this subset of variants, a quick overview of variant nodes has allowed to easily identify two variants, rs6961094 and rs71559437, as the best candidates.





Locus 11p15

This region contains 19 CRVs among 85 candidate variants. Among the 19 CRVs, five variants, located in the proximal promoter of PIDD1 (a gene implicated in DNA-damage-induced apoptosis and tumorigenesis; Lin et al., 2000), namely, rs7484123, rs7484068, rs11246313, rs11246314, and rs11246316, were further analyzed by Michailidou et al. (2017). They demonstrated, using reporter assays, that these variants, incorporated in a construct, significantly increased PIDD1 promoter activity.

A quick overview of the relative and absolute metascores visualization allowed to easily prioritize the 19 CRVs (Figures 6A and B). First, the prioritized list based on the metascores confirms the selection of these five variants as functional credible SNPs. Indeed they are ranked at the first, second, third, fifth, and eighth place out of 19. Moreover, we notice that variants rs7484123 and rs11246314 demonstrate a higher level of coloration, confirming them as the best candidates among the variants located in the proximal promoter of PIDD1. The variant rs7484123 particularly stands out as a very promising candidate for subsequent experiments.




Figure 6 | Networks representing the 19 CRVs associated variants with breast cancer at the 11p15 locus. (A) Global ranking representing the mean relative ranks with missing values substituted by the median value. The purple arrows highlight the five credible causal variants identified by Michailidou et al. (B) The absolute intervals show rs7484123 and rs11246314 as the best candidates with regard to deleteriousness predictions. The best candidate variant rs7484123 sports a high level of linkage disequilibrium (depicted by the red links emanating from rs7484123’s node) with the other candidate variants in the European population.






Prioritization of Nine Schizophrenia Susceptibility Loci

As a second example, we have applied DSNetwork to data from an extensive study by Huo et al. (2019) investigating over 180 loci reported to be associated with schizophrenia in several GWAS. This study has prioritized regulatory SNPs at these risk loci using five annotation methods (CADD, Eigen, LINSIGHT, GWAVA, and RegulomeDB) and expression quantitative loci (eQTL) annotation. Potentially causal SNPs have further been identified using functional genomics data such as CHIP-Seq experiments performed on brain tissues. Doing so and using reporter gene assays, they have validated the regulatory effect of nine transcription factor binding-disrupting SNPs from nine different loci.

The list of credible causal variants (CCV) for these nine loci was downloaded from the Psychiatric Genomics Consortium portal (https://www.med.unc.edu/pgc/results-and-downloads/scz/). These regions contained, respectively, 37 CCV on chromosome 1, 73 CCV on chromosome 3, 51 CCV on chromosome 6, 55 CCV on chromosome 7, 32 CCV on chromosome 12, 14 and 5 CCV on chromosome 15, 75 CCV on chromosome 16, and 128 CCV on chromosome 17.

The list of CCV for each locus was uploaded on the DSNetwork tool to identify the best functional candidates. Table 2 presents, for each of the nine loci, the SNP that was prioritized in the original paper and in the DSNetwork analysis. In cases where results diverged, we also present the ranking provided by DSNetwork for the SNP prioritized in the original paper. From these analyses, we can conclude that DSNetwork found the same top SNP in the majority of cases (five SNPs ranked first and two SNPS ranked in the top 3). Two SNPs ranked in the top 10 but one of them rs696520 was not functionally validated in the original paper. Finally, rs17821573 on the chromosome 16 locus ranked 22nd with DSNetwork. It is important to note that fine-mapping analyses aim at reducing the list of candidate variants and not identifying the causal variant (Cannon and Mohlke, 2018). Furthermore, there is a difference between causal and functional variants: a variant showing a regulatory effect in functional assays does not confirm its implication in a phenotypic variation. Therefore, it would be interesting to test if the top SNP identified by DSNetwork (rs17854029) could also be functional.


Table 2 | Summarized results from DSNetwork analysis for the nine schizophrenia susceptibility loci.



These examples demonstrate the ability of DSNetwork to effectively reduce the amount of CCV despite a large number of candidate variants.

Furthermore, compared to other existing methods for prioritization, DSNetwork has the advantage of being scalable and flexible. Indeed, as a majority voting based approach where each predictor is a crowdsourcing annotator proposing its prioritized list, DSNetwork enables the addition of an infinite number of annotators. However, in practice, one drawback of usual crowdsourcing systems is that the annotators are anonymous. Therefore, their expertise levels are often unknown and uneven, which makes it difficult for the end-user to trust the final vote. In DSNetwork, the annotations are derived from several databases and their reliability level can be estimated through their performance reported in the literature. By default, all the available predictors are used to produce an optimal decision. However, we enable users to adjust the list of predictors used according to their preferences and expertise. As explained in Ribeiro et al. (2016), “explaining the rationale behind individual predictions would make us better positioned to trust or mistrust the prediction, or the classifier as a whole.” For this reason, in order to assist the users in their decision, we provide a short description of each predictor and the list of the annotations they use. Another way to take into account annotator reputation is to add a weight to each vote, the weights representing the competence levels (Tao et al., 2019). This explicit way to incorporate weight in the voting process could be included in further development.




Conclusion

We analyzed four breast cancer risk loci through DSNetwork and were able to pinpoint the same most plausible causal variants than those proposed in the original paper. In a similar way, we were able to efficiently circumscribe the number of credible candidate variants throughout the prioritization of nine schizophrenia susceptibility loci. DSNetwork provides a user-friendly interface integrating predictors for both coding and non-coding variants in an easy-to-interpret visualization to assist the prioritization process. The use of DSNetwork greatly facilitates the selection process of potentially deleterious variants by aggregating the results of nearly 60 prediction approaches and easily highlighting the best candidate variants for further functional analysis.
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As an important approach to cancer classification, cancer sample clustering is of particular importance for cancer research. For high dimensional gene expression data, examining approaches to selecting characteristic genes with high identification for cancer sample clustering is an important research area in the bioinformatics field. In this paper, we propose a novel integrated framework for cancer clustering known as the non-negative symmetric low-rank representation with graph regularization based on score function (NSLRG-S). First, a lowest rank matrix is obtained after NSLRG decomposition. The lowest rank matrix preserves the local data manifold information and the global data structure information of the gene expression data. Second, we construct the Score function based on the lowest rank matrix to weight all of the features of the gene expression data and calculate the score of each feature. Third, we rank the features according to their scores and select the feature genes for cancer sample clustering. Finally, based on selected feature genes, we use the K-means method to cluster the cancer samples. The experiments are conducted on The Cancer Genome Atlas (TCGA) data. Comparative experiments demonstrate that the NSLRG-S framework can significantly improve the clustering performance.
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Introduction

High-throughput DNA microarray technology has long been used to collect biomedical cancer gene expression data (Russo et al., 2003). In general, gene expression data contain a notably large number of genes (high dimension), a small number of samples (low sample size), irrelevant genes and noisy genes caused by complex processing (Mohamad et al., 2010). Therefore, it is necessary to select feature genes or informative genes that contribute to identifying different cancers and the cancerous state (Mohamad et al., 2013; Ge and Hu, 2014; Tang et al., 2014). The selected genes have potential for use in developing cancer treatment strategies (Rappoport and Shamir, 2018). However, the high-dimensional and low-sample-size characteristics of the cancer gene expression dataset present a challenge for researchers in terms of data mining. To mitigate this problem, researchers have proposed many methods (Cui et al., 2013; Ge and Hu, 2014; Wang et al., 2016; Wang et al., 2018; Xu et al., 2019). Among the existing methods, feature selection is a reasonable method that has achieved great success.

Feature selection is an important data processing method that can select the most important feature subset from a set of features and reduce the dimension of the feature space. The existing feature selection methods can be divided into two groups: “wrapper” methods and “filter” methods (Kohavi and John, 1997). Wrapper methods use the learning algorithm to evaluate the candidate features. However, because wrapper methods are highly complex with a large amount of calculation, they are not suitable for large-scale datasets (Langley, 1994). Filter methods select a feature subset via the evaluation function. Construction of an evaluation function is based on the correlations between the features and properties of the raw data, such as the distance measures, information measures, dependence measures or others (Dash and Liu, 1997; Talavera, 2005; He et al., 2006). Among the existing evaluation functions, as a criterion, the data variance might be the simplest evaluation for feature selection. The main idea of the data-variance-based approach is to capture the directions of the maximum variance in the data, which reflects the major power of the data. The Principal Component Analysis (PCA) method and its variants belong to the filter methods and are used to find features that are useful for recovering data. However, there is no reason to confirm that selected features can effectively discriminate between data points in different classes. He et al. proposed the Laplacian Score (LS) method to select features with high identification, and the LS method is a “filter” method that is independent of other methods (He et al., 2006). The LS method constructs a nearest neighbour graph to preserve the local geometric structure. The selected features can reflect the local structure of the data space.

As we know, the global structure plays an important role in clustering when the data contain multiple subspaces (Liu et al., 2010). The LS method focuses excess attention on the relationships between local data points but ignores the influence of global data structures. This drawback might lead to reduced discrimination effects of the selected feature when the given data contain multiple subspaces. For the feature selection method, it is a challenge to satisfactorily characterize and represent global data structures from a dataset with multiple subspaces. Fortunately, the Low-Rank Representation (LRR) method solves this issue nicely. The LRR method can find a low-rank matrix to capture and represent the global structure of the raw dataset (Liu et al., 2010). The key to the LRR method is that the high-dimensional data can be represented by potential low-dimensional subspaces (You et al., 2016). In bioinformatics, LRR has achieved great success in gene expression data mining. For example, Cui et al. used the LRR method to identify subspace gene clusters and obtained good results (Cui et al., 2013). To preserve the intrinsic geometric structures of gene expression data, Wang et al. introduced graph regularization into LRR and proposed the Laplacian regularized LRR (LLRR) method (Wang et al., 2016). Recently, LLRR was applied to cancer sample clustering (Wang et al., 2019a). Furthermore, Wang et al. introduced the mixed-norm to increase the robustness of the LLRR method and proposed the mixed-norm Laplacian regularized LRR (MLLRR) method for tumour sample clustering based on penalized matrix decomposition (Wang et al., 2018). However, cancer sample clustering is processed on the obtained low-rank matrix, which is the global structural representation of the raw data. These LRR-based approaches mainly consider the global structure of data, but sometimes they ignore the single feature gene.

Motivated by the above insights, we propose a novel framework that integrates the advantages of the LRR and LS methods. Based on the multi-cancer gene expression dataset, the proposed framework is used to select the feature gene for cancer sample clustering.

First, we incorporate the constraints of the non-negative symmetric low-rank matrix and graph regularization in the LRR method and propose a non-negative symmetric low-rank representation graph regularized method, or NSLRG method for short. The NSLRG method considers the property and structure of the gene expression data. The NSLRG method obtains the lowest rank matrix, which preserves the local data manifold information and the global data structure information of the raw data.

Second, according to the lowest rank matrix, we construct a Score function to evaluate each gene for selection of the feature genes. The importance level of a gene depends on its significance for the global and local structures of the raw data. We integrate the NSLRG method with the Score function to achieve the aim of evaluating and selecting feature genes, and we refer to it as the NSLRG-S framework.

Finally, we apply the K-means method to cluster cancer samples based on the selected feature genes. Based on the different multi-cancer gene expression data, the experimental results suggest that the performance of the NSLRG-S framework is better than that of other methods.

In summary, the contributions of this paper include the following main aspects:

	We propose a novel data mining method known as the NSLRG method. The NSLRG method operates under graph regularization and non-negative symmetric low-rank matrix constraints. The NSLRG method can learn the lowest rank matrix to satisfactorily represent the gene expression data and can capture the global structures and local geometric structures of the raw data. Non-negativity is more consistent with biological modelling. The symmetric constraint improves the interpretability of the lowest rank matrix. The constraints of non-negativity and symmetry facilitate the lowest rank matrix to learn the structure of the gene expression data.


	Based on the lowest rank matrix, we propose a Score function to select the feature genes for cancer sample clustering. The selected feature genes have important significance to the raw data. In the clustering of cancer samples, the selected genes have strong discriminability to realize the classification of different samples.


	We present a novel feature selection framework, known as NSLRG-S, that is designed to evaluate and select the feature genes for cancer sample clustering. Based on this framework, the selected result of the gene expression dataset has lower dimensionality. In multi-cancer sample clustering, this method has a high recognition rate to find subsets using the selected result as experimental data. We conduct extensive experiments to demonstrate that the feature gene subset selected by NSLRG-S has good performance in cancer sample clustering.




The remainder of this paper is organized as follows. In section Related Work, we briefly review the original LRR and several related variants as well as the LS method. In section Method, we first present the NSLRG method and its optimal solution, and based on the Score function, the NSLRG-S framework is clearly given for modelling of multi-cancer gene expression data. Section Experiments analyses and discusses the NSLRG method based on multiple evaluation indicators and convergence analysis. The performance of the NSLRG-S framework is validated by experiments based on synthetic data and multi-cancer gene expression data. Section Conclusions Work presents the conclusion of our work.



Related Work

In this section, we briefly introduce the original Low-Rank Representation (LRR) (Liu et al., 2010), the related variants based on the original LRR method, and the Laplacian Score method (He et al., 2006).


Low-Rank Representation


Original LRR Method

The Low-Rank Representation (LRR) method is an efficient method for exploring observed data and subspace clustering. The main idea is that each data sample can be represented as a linear combination of the dictionary data. In general, the matrix X = [x1,x2,…,xn]∈ℝm×n represents the observed data, of which each column is a data sample. Therefore, the matrix X contains n data samples drawn from independent subspaces. The matrix D = [d1,d2,…,dk]∈ℝm×k represents the dictionary data and is overcomplete. The general model of the LRR method is formulated as follows.



where the matrix Z∈ℝk×n is the coefficient matrix. The aim of this model is to learn a lowest rank matrix Z* to represent the observed data X. In the actual application, the matrix X always replaces D as the dictionary data (Liu et al., 2010; Liu et al., 2013). Therefore, Z becomes a square matrix and Z∈ℝn×n. The element   can denote the confidence of sample i and j in the same subspace (Wang et al., 2019b). Hence, the matrix Z* can be used in subspace clustering that clusters data samples into several sets, with each set corresponding to a subspace.

The problem of   is a rank function, which is difficult to optimize with an NP-hard nature. To mitigate this problem, the best alternative is convex relaxation on problem (1), and it is written as follows.



where ∥⋅∥* is the nuclear norm, and ∥Z∥* is defined as  , where δi is the singular value of matrix Z∈ℝn×n. It has been confirmed in the literature (Cai et al., 2010) that matrix Z of the LRR can capture the global structure of the raw data using the nuclear norm item. Furthermore, to address the real data under the noise and outliers, a more reasonable formula is applied after adjustment, and it is expressed as follows.



where ∥E∥P is the error term, and it selects a different P to model special noise or outliers based on error prior information, such as l1-norm (∥E∥1) and l2,1- norm (∥E∥2,1) (Chen and Yang, 2014), and λ > 0 is the parameter that trades off the effect of the error item.

Many researchers have attempted and proposed variants based on the original LRR method. The main idea is to introduce constraint items to optimize or improve existing methods. For example, the original LRR method is improved by considering the geometric structures within the data, including the graph regularization method (Lu et al., 2013) and k-nearest neighbour graph method (Yin et al., 2016). The different norm items are used to improve the robustness of the original LRR method (Wang et al., 2018) and others.



LRR With Graph Regularization

Under certain conditions, the geometric structure within the data  is crucial for the result that we desire. To address this issue, researchers introduced graph regularization into the LRR method to create the graph-regularized low-rank representation (GLRR) method (Lu et al., 2013). The equation of GLRR is written as follows.



where the error item uses the l2,1-norm and  , tr(⋅) is the trace of the matrix, L is the graph Laplacian, and λ1 and λ2 are two parameters used to balance the graph-regularized item and the error item. Based on manifold learning, the graph-regularized item achieves the aim that representative data points zi and zj can hold the property of the data points xi and xj of X, which are closed in the intrinsic manifold. Therefore, the inherent geometric structure in the raw data is preserved in the low-rank matrix Z.



Non-Negative LRR With Sparsity

The non-negativity constraint ensures that every data point is in the convex hull of its neighbours. The sparse constraint ensures that each sample is associated with only a few samples. The non-negative and sparse low-rank matrix supplies a well discriminated weight for the subspace and information group.

Inspired by the above insights, Zhuang et al. proposed the non-negative low rank and sparse graph (NNLRS) method (Zhuang et al., 2012). The formula is given as follows.



where ∥Z∥1 is the l1-norm to guarantee the sparsity of coefficient matrix. In real-world applications, the sparsity and non-negativity matrix Z obtained by the NNLRS method can offer a basis for semi-supervised learning by constructing the discriminative and informative graph (You et al., 2016).




Laplacian Score Method

According to the Laplacian eigenmaps (Belkin and Niyogi, 2001) and the locality preserving projection (He and Niyogi, 2005), the aim of the Laplacian Score (LS) method is to evaluate features based on their locality preserving power (He et al., 2006). The LS is defined as follows.



where the heat kernel function   is used to obtain weight matrix S, and t is a suitable constant, which is set empirically. The matrix S is used to model the local structure of the raw data space. Additionally, Var(xr,:) is the estimated variance of the r-th feature in all data points, and the larger the Var(xr,:), the more information held by the r-th feature. The   is the sum of differences in the expression of r-th feature between all samples. For larger values of Sij and the smaller values of  , the value of LS(r) tends to be smaller, meaning that the importance level of the feature is higher. Therefore, the important features are selected according to LS(r).




Method

In this section, we propose a novel feature selection framework to select the feature genes for cancer clustering. This framework is set up based on the NSLRG method and the Score function. We refer to this approach as the NSLRG-S Subsection NSLRG Method presents the NSLRG method and its optimization algorithm. In subsection NSLRG With Score Function, we introduce the NSLRG method with the Score function. The last subsection Framework of NSLRG-S is devoted to clustering of cancer samples based on NSLRG-S modelling of gene expression data.


NSLRG Method


Graph Regularization

Because graph regularization can preserve the intrinsic local geometric structure in the original data, it has received much attention from researchers. The theory of graph regularization is based on the principle that the representation of the intrinsic local geometric structure that is distributed in the original data is inherited by a graph under the new basis mapping. In the graph, the vertices correspond to the data points, and the edge weights represent the relationships between the data points (Du et al., 2017). Thus far, graph theory has been widely applied and developed (Chen et al., 2018).

For this paper, in the step of graph construction, we assume that if data points xi and xj are “close”, an edge exists between xi and xj. In this work, we use the K-nearest neighbour method to find the connection of xi and xj. In other words, if xi or xj is among the K-nearest neighbours of each other, the data points xi and xj are located on the same edge. This construction strategy is simpler for determination of connected edges, which tends to lead to a connected graph. In the next step, the edge weights are defined to represent the affinity between the data points. In current study, we define a symmetric weighting matrix W by the heat kernel weighting function (Cai et al., 2005). The weighting formula is defined as follows.



where the parameter t is defined as the mean value of the Euclidean distance for all data points, which can be automatically adjusted based on the different dataset. Therefore, the degree matrix D is defined as  , which is a diagonal matrix. Finally, based on the connected graph, we obtain the graph Laplacian matrix L, which is defined as follows.



Accordingly, a reasonable minimize objective function exists to satisfy our assumption, and it is defined as follows.



where zi and zj are mappings of xi and xj under the new basis, which are also close to each other if xi and xj are close. The objective function is known as the graph regularization item.



Objective Function

We introduce graph regularization and sparse items into the original LRR. Furthermore, we impose the non-negative and symmetric constraints on the low-rank matrix Z. This method is known as the non-negative symmetric low-rank representation graph regularized (NSLRG) method, and its objective function is written as follows.



In the NSLRG method, we represent a given set of data points as a linear combination of other points using a low-rank matrix Z. The low-rank matrix should be sparse to improve the recognition ability. Therefore, the matrix Z with a sparse constraint could make the result of the representation more discriminative. However, the ∥Z∥0 item of problem (10) is NP-hard. Thus, as suggested by matrix completion methods (Candès et al., 2011), we use ∥Z∥1, a proper relaxed convex item, to replace ∥Z∥0, and the objective function of NSLRG can be rewritten as follows.



The matrix Z* is learned by the NSLRG method, and matrix Z* is a non-negative symmetric lowest rank matrix. The element zij of Z* can be treated as the degree of similarity between the data points xi and xj. In addition, the obtained matrix Z* has good interpretability, for which the element of matrix Z* can be directly converted to similar-degree weights. The symmetry constraint can strictly guarantee the consistency of similarity of data pairs. The similarity of data points i and j corresponding to the similar-degree weights elements zij and zji is equal, as shown as Figure 1. The non-negative constraint is more adaptive for the property of the gene expression data. In other words, the NSLRG method avoids the situation in which the lowest rank matrix might be negative and asymmetric, and it also avoids symmetrization of itself, as suggested in (Liu et al., 2010), i.e.,  . Therefore, we refer to the matrix Z* as the similar-degree matrix.




Figure 1 | The matrix Z with the symmetry constraint.





Optimization

As we know, many algorithms are based on convex relaxation to solve the high-dimension optimization problem, such as Singular Value Thresholding (SVT) (Cai et al., 2010), Accelerated Proximal Gradient (APG) (Toh and Yun, 2010), Alternating Direction Method (ADM) (Lin et al., 2009) and Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) (Lin et al., 2011). As an extended ADM, the LADMAP algorithm adds the quadratic penalty term linearization and the penalty self-adaption change, which leads to use of fewer auxiliary variables and avoids matrix inversions to solve the problem. Specifically, LADMAP reduces the complexity of the LRR from O(n3) to O(rn3), where r is the rank of low-rank matrix Z. This algorithm makes it possible for LRR to be applied on large-scale dataset, such as video surveillance, digital images, and gene expression data. Therefore, the LADMAP algorithm has been recognized as the most efficient algorithm for solving the problem of convex relaxation of low-rank and sparse matrices. Similarly, we also adopt LADMAP to solve (11).

First, to easily and effectively obtain matrix Z, we use an auxiliary variable Q to separate the variables, i.e., nuclear norm (∥Z∥*) and l1-norm (∥Z∥1). The objective function can be rewritten as equation (12) using the Augmented Lagrange Multiplier method (Lin et al., 2010).



where λ1, λ2, and λ3 are positive weighting parameters; μ > 0 is the penalty parameter; Y1,Y2 are Lagrangian multipliers; A,B=tr(ATB) is the Euclidean inner product between the matrices A and B; and ∥⋅∥F is the Frobenius-norm. Mathematically, equation (12) is equivalent to equation (13) after applying a small transformation. Equation (13) facilitates processing of the next step.



Hence, .

We divide equation (13) into three subproblems and solve it in three steps. The three subproblems are written as follows.







Finally, we solve the above subproblems to find the optimal solution. The specific steps are given as follows.

Step 1. Update Z: The matrix Z can be obtained by solving subproblem ℓ1 while keeping E and Q fixed. First, we define the following formula (17) based on ℓ1.



By setting the first derivative of   with respect to Zk, we can obtain the following formula (18).



According to LADMAP, subproblem ℓ1 can be replaced by solving the following problem (19).



where  .

Equation (19) can be transformed into the following formula (20).



To solve the symmetric and non-negative constraints of low-rank matrix Z, we adopt Lemma 1 of (Chen et al., 2017) and the non-negative operator, i.e., equation (24), respectively. Lemma 1 is defined as follows, and the detailed proofs have been given in the literature (Chen et al., 2017).

Lemma 1: If there is an expression similar to equation (21), its closed solution is equation (22).





In this work, Ur, ∑r and Vr are the members of the skinny singular value decomposition (SVD) of the matrix  ; Σr = diag(δ1,δ2,…,δr); δr is the singular value for which the positive singular values are greater than  , i.e.,  ;   is defined as  ; and Ir is an identity matrix with size r × r.

Based on Lemma 1, we make  . We solve the Zk+1 using the singular value thresholding operator  , where Sϵ = sgn(x)max(| x |−ϵ,0). The iterative formula is written as follows.



where  . After obtaining matrix Zk+1 by equation (23), the non-negative constraint is imposed on matrix Zk+1 through a non-negative operator. The non-negative operator is defined as follows.



Finally, the non-negative symmetric low-rank matrix   is obtained.

Step 2. Update E: The matrix E can be obtained by solving subproblem ℓ2 while keeping Z and Q fixed. Analogously, following equation (18), the first derivative of ℓ2 is set with respect to Ek, i.e.,  , and set  . Thus, we obtain equation (25).



According to the NSHLRR method (Yin et al., 2016), the iterative formula of E is given as follows.



Step 3. Update Q: The matrix Q can be obtained by solving subproblem ℓ3 while keeping Z and E fixed. Similar to Step 2, we set the first derivative of ℓ3 with respect to Qk, i.e., , and set  . Thus, we obtain the following equation.



According to the NSHLRR method (Yin et al., 2016), the iterative formula of Q is written as follows.



Algorithm 1 clearly summarizes the above solution steps. The initialization parameter values are set based on experimental experience and the existing relevant research recommendations (Yin et al., 2016).


Algorithm 1 | The NSLRG method.






NSLRG With Score Function

It is known that both local structure and global structure can influence the importance of features in raw data. However, the LS method primarily focuses on the locality preserving power of data to evaluate the features. Inspired by the lowest rank matrix Z* of the NSLRG method, which can capture the global and local structure of the raw data, we believe that the important feature of high-dimension data can be extracted based on the matrix Z*. Therefore, we propose a Score function that is established on the lowest rank matrix Z* for selection of the important feature. The formula is defined as follows.



where the Zij-NSLRG is the element of Z* obtained by the NSLRG method, and Zij-NSLRG denotes the similarity degree of the i-th and j-th samples and is used to measure the r-th feature between two samples. The property of the global and local structure captured by the lowest rank matrix can be used as a constraint for feature selection. The selected feature results are quite useful for capturing the subspace structures of raw data. In different classes, this constraint can guarantee the selected feature with high discrimination.

Based on the result of the Score function, all features are arranged in ascending order to form a score curve. The number of selected features is τ (τ <m), which occurs before the first inflection point of the score curve. Thus, we cluster the cancer samples based on the selected feature genes.

We refer to the NSLRG method with the Score function as the NSLRG-S framework for short. In a nutshell, the NSLRG-S framework can be divided into four steps. In the first step, the lowest rank matrix is obtained by the NSLRG method. In the second step, the Score function is used to evaluate and rank features based on the lowest-rank matrix of the first steps. In the third step, the feature genes are selected according to the results of the Score function. In the fourth step, cancer sample clustering is processed based on the selected feature genes. This novel framework delivers better reliability in selection of the most important feature for cancer sample clustering according to the global and local structure of the raw data.



Framework of NSLRG-S

Based on the proposed NSLRG-S framework, our goal is to model the gene expression data and cluster the cancer samples according to the selected feature genes.

The modelling process is shown in Figure 2. At the start, the matrix Xm×n represents the gene expression data with size m × n, and one row represents the expression level of a same gene in different samples. The totals of genes and samples are m and n, respectively. Usually, m is notably large and n is rather small. The matrix   is the lowest-rank matrix obtained by the NSLRG method as the basis for the Score function. Second, according to the score result, all of the genes are ranked in ascending order. The total number of τ (τ <m) feature genes are selected based on the first inflection point of the score curve. Finally, we cluster the cancer samples based on the selected feature genes to demonstrate the selected genes with efficient discrimination. The result is compared with those of different methods, including the K-means, Graph Regularized Nonnegative Matrix Factorization (GNMF) (Cai et al., 2011), Robust Principal Component analysis (RPCA) (Candès et al., 2011), Sparse Principal Component Analysis (SPCA) (Journée et al., 2010), Graph-Laplacian PCA (GLPCA) (Jiang et al., 2013), LS (He et al., 2006), and LLRR (Wang et al., 2016) methods. The details of the experimental result are described in subsection Experiments on Gene Expression Data. Algorithm 2 is the framework of the NSLRG-S for clustering of gene expression data.




Figure 2 | Framework of NSLRG-S for clustering gene expression data.




Algorithm 2 | Framework of NSLRG-S for clustering gene expression data.






Experiments

To evaluate the performance of the NSLRG-S framework, we compare the NSLRG-S framework with multiple typical methods, including the K-means, GNMF (Cai et al., 2011), RPCA (Candès et al., 2011), SPCA (Journée et al., 2010), GLPCA (Jiang et al., 2013), LS (He et al., 2006), and LLRR (Wang et al., 2016) methods. In subsection Evaluation and Quantitative Benchmarks, we select three quantitative benchmarks to evaluate the experimental results. In subsection Experiments on Synthetic Data and subsection Experiments on Gene Expression Data, comparative experiments are conducted on synthetic data and cancer gene expression data, respectively.


Evaluation and Quantitative Benchmarks

To evaluate the performance of the clustering results based on comparison methods, we select three quantitative benchmarks: the clustering accuracy rate (Acc) (Cui et al., 2013), F1 measurement (F1) (Rijsbergen, 1979), and Rand Index (RI) (Rand, 1971).


Clustering Accuracy Rate

The Acc is defined as follows.



where N is the total number of samples, and Ξ(ξi,map(ri)) is used to identify whether ξi and ri are matched. The ξi and ri are the actual label and clustering label of the i-th sample, respectively, and if they are matched, the value of Ξ(ξi,map(ri)) is equal to one; otherwise, its value is equal to zero. The map(ri) is the mapping function based on the Kuhn-Munkres method (Lovász and Plummer, 1986).



F1 Measurement

The F1 measurement is a special form of the F-Measure under a certain parameter. The F-Measure is also referred to as the F-Score and is the weighted harmonic mean of the Precision rate and Recall rate of the result of clustering. The F-Measure, Precision rate, and Recall rate are defined as follows.







where F is the F-Measure, P is the Precision rate and R is the Recall rate. The tp (true positives) is the item that records the number of positive samples that are clustered into their own positive class, fp (false positives) is the item that records the number of negative samples that are clustered into the positive class, and fn (false negatives) is the item that records the number of positive samples that are clustered into negative class. Figure 3 clearly shows tp, fp and fn. The F-Measure can balance the contribution of fn by weighting Recall through the parameter ϕ > 0. When the parameter ϕ = 1, F-Measure becomes the most common form, i.e., F1 measurement, and equation (31) is rewritten as follows.




Figure 3 | The tp, fp, and fn of the clustering result.





F1 measurement reaches its best value at 1 and its worst score at 0. The relative contributions of the Precision rate and Recall rate to the F1 measurement are equal.



Rand Index

The given data have two partitions: one is the actual classification, and the other is the clustered result (returned by our Algorithm 2). The Rand Index (RI) is used to compute how similar the result of clustering is to the actual classification. The RI is defined as follows.



where a indicates the number of pairs of data points belonging to the same class in both the actual classification and the clustered result, b indicates the number of pairs of data points belonging to the different class in both the actual classification and the clustered result, and   represents the total number of data pairs obtained from the given data. The range of RI is [0,1], and the larger the value, the more the clustering results are in accordance with reality.




Experiments on Synthetic Data

In this subsection, comparison experiments are conducted on synthetic data. In subsection Synthetic Data, we construct the synthetic data. In subsection Convergence Analysis, we perform convergence analysis to compare the NSLRG-S framework and other methods. In subsection Clustering Results, we analyze the performance of comparison methods on clustering data samples.


Synthetic Data

The synthetic data are constructed by the following steps (1) and (2). These synthetic data contain ten independent subspaces.

	Construction of 10 original databases by Oi+1 = TOi, 1 ≤ i ≤ 9. The value of the database ranges from 0 to 1, T is the transform random rotation matrix, and O1 is a random orthogonal matrix of 1000×100. The rank of each original database is 100.


	We extract 10 data vectors from each original database by Xi = OiQi,1 ≤ i ≤ 10, where the matrix   is an independent identical distribution matrix N(0,1), and its size is 100×10. All extracted data vectors are combined in synthetic data  .






Convergence Analysis

We define an Error-Values function FE-V(k) based on the loss function value to calculate the convergence rate. In the same iterations, the smaller the value of the Error-Values, the faster the convergence rate. The formula is given as follows.



where the minimum value of FE-V(k) is equal to zero. To clearly characterize the convergence rate, Figures 4A, B show the convergence trends of the NSLRG-S and the compared methods GNMF, RPCA, SPCA, and LLRR in 100 iterations. In Figure 4B, we find that the convergence rate of the NSLRG method is faster than those of the other methods.




Figure 4 | (A and B): The convergence analysis of different methods in 100 iterations.





Clustering Results

Table 1 lists the results of the GNMF, RPCA, SPCA, GLPCA, LS, LLRR, and NSLRG-S methods on the three quantitative benchmarks as Acc, F1, and RI. The results show that the performance of NSLRG-S is better than those of other methods.


Table 1 | The clustering results of compared methods and NSLRG-S method on synthetic data.






Experiments on Gene Expression Data

In this subsection, we conduct experiments on gene expression datasets. The experimental datasets are downloaded from the famous gene expression database The Cancer Genome Atlas (TCGA). We cluster the cancer samples based on the feature genes obtained by the NSLRG-S framework. The experimental results demonstrate that we can improve the performance in cancer samples clustering by applying the selected feature genes.


Gene Expression Datasets

The TCGA database is a source of experimental data and is an important project for accelerating and comprehensively understanding cancer genetics using innovative genome analysis technologies (Tomczak et al., 2015). This database is one of the invaluable sources for gene expression datasets. Therefore, we select the TCGA database as the data source to research the clustering performance of the NSLRG-S framework.

We downloaded five cancer gene expression datasets, namely, esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD) and pancreatic adenocarcinoma (PAAD). Each type of gene expression dataset contains cancer tissue samples and normal tissue samples. There are 20,502 genes in each tissue sample. The distribution of each gene expression dataset is listed in Table 2.


Table 2 | The distribution of five gene expression datasets.



In addition, to find the feature gene with a high recognition rate between different cancers for cancer sample clustering, we construct seven mixed datasets. The mixed datasets are HN-PA, ES-PA, CO-ES and HN-CH; HN-PA-CH, ES-PA-CH, and CO-PA-CH. The construction rule combines tumour tissue samples that come from different gene expression data, and the combined datasets contain two or three types of cancers. For example, in the HN-PA data, HN represents all of the cancer tissue samples of the HNSC data, and PA represents the total of the cancer tissue samples of the PAAD data. The cancer tissue samples of HN and PA are combined to construct the new mixed data, i.e., HN-PA, which contain two types of cancers and have 574 cancer tissue samples. For the other mixed datasets, the distributions are listed in Table 3.


Table 3 | The distribution of mixed datasets.



The five original datasets and seven mixed datasets are used in experiments. We classify all datasets into three categories according to the number of cancers they contain. The datasets that contain one type of cancer belong to Category I. Thus, Category I contains PAAD, HNSC, ESCA, COAD, and CHOL. Datasets that contain two types of cancers belong to Category II, and they are HN-PA, ES-PA, CO-ES, and HN-CH. The datasets that contain three types of cancers belong to Category III, and the names of these datasets are HN-PA-CH, ES-PA-CH, and CO-PA-CH. Table 4 clearly lists the category results.


Table 4 | The category result of experimental datasets.





Parameter Selection

In the experiments, we need to select the optimal parameters of the different datasets. For the three parameters (λ1, λ2, λ3) of the NSLRG method, we assume that the optimal value of each parameter exists within an estimation range of 10t(t = { −5,−4,−3,−2,−1,0,1,2,3,4,5 }). We study the influence of each parameter on feature selection and select the optimal parameters according to the different datasets. First, our main task is to determine the sensitivity of each parameter to the different datasets. We change one parameter within the candidate interval while holding the other two parameters fixed to explore the influence degree of this parameter on the dataset. We find that the parameter λ3 is insensitive for all datasets. Therefore, the NSLRG method is robust for the parameter λ3, and we select the λ3 = 10-3 according to experimental experience. The details of selection of the other two parameters are listed in Table 5.


Table 5 | The parameter selection.





Results and Discussion

In this subsection, based on the datasets of subsection Gene Expression Datasets, we apply the NSLRG-S to cluster the cancer samples. We adopt seven clustering methods, including K-means, GNMF, RPCA, SPCA, GLPCA, LS, and LLRR, for comparison with NSLRG-S.

Typically, gene expression data mining can be recognized as addressing a small sample size and high-dimensional problem. The applied methods must face and suffer from what is known as the curse of dimensionality. This situation occurs because the more dimensions contained in the data (20,502 in our case), the more unstable the result. Therefore, in our experiments, we improve the reasonableness of the result by running the experiment 50 times. The mean of the results is taken as the measurement of the clustering results.

Table 6 clearly lists the experimental results of all methods. Based on Table 6, we obtain the mean metrics of each category dataset, and they are listed in Table 7. Furthermore, to clearly show the experimental results on different categories of dataset and different methods, Figure 5 presents a broken-line graph for the three category datasets corresponding to different methods. Figure 6 presents a histogram for the different methods corresponding to the three category datasets.


Table 6 | The result of comparison experiment.




Table 7 | The mean metrics of result for all methods on Category dataset I, II, III.






Figure 5 | The mean metrics of experimental result for Category I, II, and III.  (A) Accuracy-Category (B) F1-Category (C) Rand Index-Category.






Figure 6 | The mean metrics of experimental result for all methods. (A) Accuracy-Method (B) F1-Method (C) Rand Index-Method.



By comparing the clustering results of NSLRG-S and other methods, we find that the results of the NSLRG-S method are the best of all methods in most datasets. According to Table 6, for the Category I dataset, the clustering performance of NSLRG-S for the HNSC and ESCA datasets is higher than that of other methods. In the COAD and CHOL dataset, NSLRG-S achieves the same best results as the other methods. For the Category II dataset, the clustering performance of NSLRG-S is the best of all methods. For the Category III dataset, except for the metrics of Acc and F1 on HN-PA-CH and Acc on CO-PA-CH, which are obtained by GNMF, and F1 on HN-PA-CH obtained by LLRR, the clustering performance of NSLRG-S is better than that of other methods.

In addition to the numerical comparison, we also find that the NSLRG-S method has different advantages after comparing it with different comparison methods. In the next section, we conduct a more detailed comparison and analysis between NSLRG-S and the other comparison methods.

In the seven comparison methods (K-means, GNMF, RPCA, SPCA, GLPCA, LS, and LLRR), K-means is the traditional clustering method; GNMF belongs to matrix factorization techniques, which extend the nonnegative matrix factorization with preservation of the intrinsic geometric structure (Cai et al., 2011); RPCA, SPCA, and GLPCA are variant methods of principal component analysis, which is a well-established descending dimension method for mining high dimensional data (Journée et al., 2010); LS is the feature selection method; and the LLRR is the subspace clustering method. In addition, the NSLRG-S framework combines the NSLRG method and Score function. Therefore, this framework belongs to a mixed method that combines the advantage of both sides.

First, we compare the NSLRG-S framework with K-means. Based on Table 6, we find that a higher clustering result is obtained by NSLRG-S. This comparison result shows that the proposed NSLRG-S framework is better than the traditional clustering method in cancer sample clustering. This result occurs because the NSLRG-S considers the local and global structure of the raw data. This framework can select feature genes with a high recognition rate for cancer sample clustering. In addition, the K-means method performs cancer sample clustering based on the raw data, which ignores the contents considered in NSLRG-S. Figure 5 clearly shows that the NSLRG-S is superior to the K-means method.

Second, we compare the NSLRG-S with the GNMF method. In GNMF, a nearest neighbour graph is constructed by encoding the geometrical information of the data space. The method seeks matrix factorization, which incorporates the graph structure (Cai et al., 2011). Based on Table 5, the GNMF method obtains good results, and a subset of them are even better than those of NSLRG-S method. For most of the datasets, the results of NSLRG-S are still better than those of GNMF. The reason for this result is that the NSLRG-S method can obtain the characteristics of the subspace structure of the raw data, and the corresponding subspace of different types of cancer can be satisfactorily distinguished.

Third, we compare the NSLRG-S with the RPCA, SPCA, and GLPCA methods. RPCA, SPCA, and GLPCA belong to principal component analysis methods and are suitable for processing high-dimensional gene expression data by learning a low-dimensional representation. The results of NSLRG-S are better than those of three methods, except for the CHOL dataset. We can conclude that the NSLRG-S method is better than the variant methods of principal component analysis in clustering of multiple cancer samples.

Fourth, we compare the NSLRG-S with the LS method. Based on Figure 5, we find that the performance of LS decreases gradually on the Category I, Category II and Category III datasets, and this trend is different with other methods. The reason for this result is that the feature genes selected by the LS method have locality-preserving power attributes but do not have good multi-subspace separation attributes. In the framework of the NSLRG-S, feature genes are obtained under the Score function based on the low-rank matrix obtained by the NSLRG method. This low-rank matrix can preserve the global and local structure of the raw data, and after further processing the low-rank matrix through the Score function, the selected genes have a strong discrimination in multi-subspace clustering. Therefore, the performance of NSLRG-S is better than that of LS.

Finally, we compare the NSLRG-S with the LLRR method. Based on Figure 5, the broken line of the NSLRG-S is always above that of the LLRR method except for F1 on the Category III dataset. The comparison results show that the Score function plays an important role in further mining of the low-rank matrix of the NSLRG method.

Furthermore, we note an interesting trend in the results of three categories of datasets for each method, as shown in Figure 6. Other than the LS method, which shows a downward trend, the other methods show an upward trend first followed by a downward trend. In other words, except for the LS method, after comparing all of the results of the other methods, we note that the experimental results of the Category II datasets are the best, followed by the Category III datasets or the Category I datasets, and this trend occurs in all metrics. According to Tables 2–4, the distributions of sample size in the Category II datasets are more balanced than those in Category I and Category III. Therefore, the result of the Category II dataset is more reasonable and stable than the results of Category I and Category III. However, with an increasing number of subspaces, the structure of the data is more complex, and the global and local structures of raw data are more difficult to capture. Therefore, compared with the experimental results of the Category II datasets, the experimental results of the Category III datasets decrease. Fortunately, according to Table 7, the NSLRG-S is still better than other methods. This observation demonstrates that the NSLRG-S framework has better advantages in cancer sample clustering than other methods when working with unbalanced and multi-subspace datasets. Based on the above discussion and analysis, we conclude that the NSLRG-S framework has a good effect for cancer sample clustering based on a gene expression dataset.





Conclusions Work

In this paper, we cluster the cancer samples of multi-cancer gene expression datasets based on select feature genes obtained by the NSLRG-S framework. In addition, NSLRG-S simultaneously considers the local and global structure of the raw gene expression dataset. The selected feature genes have a high recognition rate in subspace clustering. The comparison experimental results suggest that the NSLRG-S framework can significantly improve the cancer samples clustering performance.
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Background

Oral squamous cell carcinoma (OSCC) is a solid tumor, which originates from squamous epithelium, with about 400,000 new-cases/year worldwidely. Presently, chemoradiotherapy is the most important adjuvant treatment for OSCC, mostly in advanced tumors. However, clinical resistance to chemotherapy still leads to poor prognosis of OSCC patients. Via high-throughput analysis of gene expression database of OSCC, we investigated the molecular mechanisms underlying cisplatin resistance in OSCC, analyzing the differentially expressed genes (DEGs) and their regulatory relationship, to clarify the molecular basis of OSCC chemotherapy resistance and provide a theoretical foundation for the treatment of patients with OSCC and individualized therapeutic targets accurately.



Methods

Datasets related to “OSCC” and “cisplatin resistance” (GSE111585 and GSE115119) were downloaded from the GEO database and analyzed by GEO2R. Venn diagram was used to obtain drug-resistance-related DEGs. Functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed on DEGs using The Database for Annotation, Visualization and Integrated Discovery (DAVID) software. Protein–protein interaction (PPI) network was constructed by STRING (search tool for recurring instances of neighbouring genes) database. Potential target genes of miRNA were predicted via miRDB, and cBioportal was used to analyze the function and survival of the potential functional genes.



Results

Forty-eight upregulated DEGs and 49 downregulated DEGs were obtained from the datasets, with cutoff as p < 0.01 and |log FC| > 1. The DEGs in OSCC mainly enriched in cell proliferation regulation, and chemokine activity. In PPI network with hub score > 300, the hub genes were identified as NOTCH1, JUN, CTNNB1, CEBPA, and ETS1. Among miRNA–mRNA targeting regulatory network, hsa-mir-200c-3p, hsa-mir-200b-3p, hsa-mir-429, and hsa-mir-139-5p were found to simultaneously regulate multiple hub genes. Survival analysis showed that patients with high CTNNB1 or low CEBPA expression had poor outcome.



Conclusions

In the OSCC cisplatin-resistant cell lines, NOTCH1, JUN, CTNNB1, CEBPA, and ETS1 were found as the hub genes involved in regulating the cisplatin resistance of OSCC. Members of the miR-200 family may reverse drug resistance of OSCC cells by regulating the hub genes, which can act as potential targets for the treatment of OSCC patients with cisplatin resistance.
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Introduction

Head and neck squamous cell carcinoma (HNSCC), the sixth most common malignant tumor in the world (Kim et al., 2011a), is an important public health issue worldwide. Among the total HNSCC cases, 30% are oral squamous cell carcinoma (OSCC) cases (World Health, 2003; Petersen, 2003a; Petersen, 2003b). In 2012, about 145,000 patients with OSCC died worldwide, with a mortality rate of 1.8% (Petersen, 2005; Kim et al., 2011a; Ong et al., 2016). Interestingly, OSCC is one of the three most common malignancies in Central and South Asia. In India, the age-standardized incidence of OSCC is 12.6 per 100,000 people (Petersen, 2005). According to statistics, the incidence of OSCC has increased sharply in several countries and regions, including Denmark, France, Germany, Scotland, and Central and Eastern Europe (Petersen, 2005).

OSCC can occur in different areas of the mouth and tongue, including lips, alveolar ridge, oral floor, oral tongue, hard palate, posterior molars triangle, and buccal mucosa, lined by squamous epithelium and scattered in smaller salivary glands and lymphatic drainage pathways. OSCC is common in the elder people with a history of tobacco and alcohol usage, with malignant tumors or somatic cell mutation by inducing DNA damage (Leemans et al., 2011). Although surgery is the main treatment strategy for OSCC, chemoradiotherapy is also an effective method, especially for advanced tumors. However, drug resistance due to unraveled molecular mechanisms significantly reduces the survival of OSCC patients.

Since the first miRNA— lin-4 was identified in 1993, miRNAs have attracted the attention of researchers in the field of gene expression regulation and gene therapy (Liang et al., 2014). By inhibition of RNA translation or degradation of target mRNA, miRNAs act as negative gene regulators at the post-transcriptional level (Sakai et al., 2013). Importantly, miRNAs can simultaneously modulate many target genes, such as tumor suppressors or oncogenes, widely influencing the phenotype of malignant tumors. Since miRNAs have been found to have important role in various aspects of malignant tumors, including oncogenesis, proliferation, metastasis, multidrug resistance, self-renewal, and differentiation of malignant stem cells (Wu et al., 2014), they may represent a new set of therapeutic target biomarkers for finding multidrug resistance in malignant tumors (Hong et al., 2013).

In this study, the potential molecular mechanisms of cisplatin resistance of OSCC were studied by using high-throughput gene expression database. The differentially expressed genes (DEGs) in OSCC and their regulatory relationships were analyzed, in order to elucidate the molecular basis of OSCC chemotherapy resistance, and to provide theoretical basis and individualized precise therapeutic targets for the treatment of OSCC patients.



Materials and Methods


Microarray Datasets

“OSCC” and “cisplatin resistance” were used as the keywords for searching the GEO database, and GSE111585 and GSE115119 were downloaded as the gene expression data sets for cisplatin resistance in OSCC; the platforms used were GPL14715 and GPL16955.

GSE111585 included six samples of SCC9 cells and was divided into normal group and drug resistance group (Lin et al., 2018). GSE115119 contained four samples of CAL-27 cells, with normal group and drug resistant group. Both SCC9 and CAL-27 are human OSCC cell lines.



Data Analysis and Differential Expressed Gene Acquisition

Limma package of R software (GEO2R) was used for analysis of the original datasets. |log FC| > 1 and p value < 0.01 were defined as the cutoff values for further analysis of DEGs. Volcano maps were constructed by SangerBox software.

Furthermore, the list of oncogenes (http://ongene.bioinfo-minzhao.org/) (Liu et al., 2017) and tumor-suppressor genes (https://bioinfo.uth.edu/TSGene/index.html) (Zhao et al., 2016) provided potential functional roles of genes in cancer process. To obtain DEGs in cisplatin-resistant OSCC cells, Venn package (http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to draw the intersection of the up-regulated or down-regulated genes in the datasets with oncogenes or tumor-suppressor genes, respectively.



Functional Enrichment Analysis of DEGs

Gene Ontology (GO) provides a computational model of biological systems, from the molecular to the organism level, across different species in the following three categories: biological process (BP), molecular function (MF), and cellular component (CC) (Thomas, 2017). Kyoto encyclopedia of genes and genomes (KEGG) is a database for high-level functions and utilities of the biological systems, based on molecular-level information of genome sequencing and other high-throughput experimental technologies (Kanehisa et al., 2017). DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/) comprises a comprehensive set of functional annotation tools for functional enrichment analysis of gene groups (Huang da et al., 2009). To identify the biological significance of DEGs in cisplatin-resistant OSCC cells, DAVID 6.8 was used to analyze GO function and KEGG pathway enrichment, with the enrichment standard as p < 0.05.



Protein–Protein Interaction Network of DEGs

Protein–protein interaction (PPI) network analysis is helpful to investigate the molecular mechanisms of diseases and discover new drug targets from a systematic perspective. STRING 11.0 (https://string-db.org/), covering more than 5,000 organisms with known and predicted protein–protein interactions, provides direct (physical) and indirect (functional) association (Szklarczyk et al., 2019). The PPI analysis of DEGs was performed by STRING 11.0, and the results were analyzed by Cytoscape 3.7.1. Furthermore, the cytoHubba plug in was used to calculate the interaction coefficient score between the DEGs. The top genes with hub score > 300 were identified as the hub genes with high connectivity in the PPI network.



Predicting Hub Gene-Related miRNAs

MicroRNAs (miRNAs), small non-coding RNA molecules with highly conserved regions, regulate the expression of target genes by binding to the 3’-untranslated regions (3’-UTR) of specific mRNAs, involved in many physiological and disease processes. Each miRNA is thought to regulate multiple genes with enormous potential regulatory circuitry afforded by miRNA (Lim et al., 2003). To identify the potential miRNA–mRNA interaction in the network of the hub genes, miRDB (http://mirdb.org/), an online resource for miRNA target prediction and functional annotation (Wong and Wang, 2015), was used to predict the hub gene-related miRNAs, and the miRNA–mRNA regulatory network was constructed by Cytoscape 3.7.1.



Expression and Survival Analysis of Hub Genes

The Oncomine database (https://www.oncomine.org/resource/login.html), an online cancer microarray database-mining platform (Rhodes et al., 2004), was used to investigate the difference in transcriptional levels of the hub genes in HNSCC and normal tissues.

As mutations of oncogenes and/or tumor-suppressor genes are frequent in tumor tissues, the Human Protein Atlas (http://www.proteinatlas.org/) was analyzed for the prognostic values of the hub genes (Uhlen et al., 2017), and cBioportal database (http://www.cbioportal.org/), an open-access online resource for multi-dimension analysis of data from The Cancer Genome Atlas (TCGA) (Gao et al., 2013), was used to analyze the effects of mutations in hub genes on the survival of patients with OSCC (MD Anderson, Cancer Discov, 2013).




Results


Difference of Gene Expression Between Parental and Cisplatin-Resistant OSCC Cells

The gene expression microarray datasets, GSE111585 and GSE115119 were downloaded from GEO datasets with paired parental and cisplatin-resistant OSCC cells. As shown in Figure 1, the expression of most genes in cisplatin-resistant OSCC cells was similar to that of the parental OSCC cells. Cluster analysis by R software (|log FC| > 1 and p value < 0.01 as the cutoff) revealed 1,386 up-regulated genes and 643 down-regulated genes in cisplatin-resistant OSCC cells compared with parental OSCC cells in GSE111585 (Figure 1A), and 757 up-regulated genes and 625 down-regulated genes in cisplatin-resistant OSCC cells compared with parental OSCC cells in GSE115119 (Figure 1B).




Figure 1 | Identification of cisplatin-resistant DEGs in OSCC. (A) Volcano map of GSE111585. (B) Volcano map of GSE115119. (C) 48 up-regulated DEGs was selected based on the intersection between up-regulated gene in GSE111585/GSE115119 and oncogenes. (D) Forty-nine down-regulated DEGs was selected based on the intersection between down-regulated gene in GSE111585/GSE115119 and tumor-suppressor genes.



The intersection between DEGs and the list of oncogenes drawn by Venn software showed 48 up-regulated DEGs (Figure 1C), and 49 down-regulated DEGs were obtained via intersection between down-regulated genes and the list of tumor-suppressor genes (Figure 1D).



Close Association of the DEGs With the Regulation of Transcription and microRNAs in Cancers

Using the DAVID analysis software, functional enrichment analyses (BP, MF, and CC) of the DEGs were done. BP enrichment showed that the up-regulated DEGs were mainly enriched in cell proliferation regulation, inflammatory reaction, lipopolysaccharide, cells in response to growth factors to stimulate, neuronal migration, transmembrane receptor protein tyrosine kinase signaling pathway, and transcription of RNA polymerase II promoter (Figure 2A), whereas down-regulated DEGs were significantly enriched mainly in the following GO terms: response to X-ray, RNA polymerase II promoter negative transcription regulation, and DNA damage response (Figure 2B).




Figure 2 | Functional enrichment analysis of cisplatin-resistant DEGs in OSCC. (A) BP analysis of up-regulated DEGs. (B) BP analysis of down-regulated DEGs. (C) MF analysis of up-regulated DEGs. (D) MF analysis of down-regulated DEGs. (E) CC analysis of up-regulated DEGs. (F) CC analysis of down-regulated DEGs.



MF enrichment showed that the up-regulated DEGs were significantly enriched in chemokine activity, transcription factor activity, sequence specific DNA binding, non-membrane crossing protein tyrosine kinase activity, and sequence specific DNA binding (Figure 2C), and the down-regulated DEGs were enriched in p53 binding, sequence specific DNA binding, transcriptional activator activity, and RNA polymerase II hub promoter proximal region sequence specific binding (Figure 2D).

CC analysis predicted close association between the up-regulated DEGs and the following GO terms: mRNA cutting, polyadenylation specific factor complex, extracellular space, promyelocytic leukemia proteome, and transcription factor complex (Figure 2E), and significant relation was found between the down-regulated DEGs and the following GO terms: junction complex, desmosomes, ciliated tips, cytoplasm, nuclear cytoplasm, and plasma membrane (Figure 2F).

KEGG pathway analysis provided the potential function cluster of DEGs, showing that the up-regulated DEGs were clustered in malaria, human T-cell leukemia virus type I, the way of malignant tumor, legionella infection disease, TNF signaling pathways, and T-cell receptors signaling pathways (Figure 3A), whereas the down-regulated DEGs were significantly concentrated in axon guidance and microRNAs in cancers (Figure 3B).




Figure 3 | KEGG pathway analysis of cisplatin-resistant DEGs in OSCC. (A) KEGG of up-regulated DEGs. (B) KEGG of down-regulated DEGs.





Identification of Hub Genes Through PPI Network of DEGs

To further analyze the correlation between DEGs in cisplatin-resistant OSCC cells, STRING was used to construct PPI network showing close relationship between the DEGs (Supplemental Figure 1), and their hub score was calculated. The genes with high hub score were predicted to have a strong association with other genes (shown in dark color in the figures). As shown in Figure 4, based on the cutoff hub score > 300, the following five genes were selected as the hub genes: NOTCH1, JUN, CTNNB1, CEBPA, and ETS1.




Figure 4 | The PPI network of DEGs with Hub score. The dark color indicates high hub score, and the light color predicts low hub score.





Construction of miRNA–mRNA Network Based on Predicting miRNA-Target Genes

As the DEGs in cisplatin-resistant OSCC cells were closely related to tumor-related miRNA, miRDB database was used to predict potential miRNAs that might participate in the transcriptional regulation of the hub genes in this process. The prediction scores were also collected from the miRDB database, and the miRNA–mRNA with high score meant close potential function of miRNA in regulation of the target mRNA. After setting cutoff > 80, Cytoscape software was used to construct the miRNA–mRNA network (Figure 5). Interestingly, hsa-miR-200c-3p, hsa-miR-200b-3p, hsa-miR-429, and hsa-miR-139-5p could simultaneously regulate multiple hub genes, which may be the key miRNAs involved in this process. Interestingly, hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-miR-429 belong to miR-200 family members, with similar functions; suppression of ZEB1/2, followed by inhibition of epithelial–mesenchymal transition (EMT).




Figure 5 | The construction of miRNA–mRNA network of hub genes in OSCC. The red circles predicted the potential miRNAs that can regulate multiple hub genes in OCSS.





The Expression Pattern of Hub Genes in OSCC

To investigate the potential function of the hub genes in OSCC, Oncomine database was used to analyze the difference in the expression levels of the hub genes. However, due to limited research on OSCC, only one study revealed that the expression of CTNNB1 and ETS1 in tumor tissues was higher than that in normal tissues, with 2.285 and 2.111 fold change, respectively, while no difference was found in the expression of NOTCH1 and JUN genes in the two tissues (Figure 6).




Figure 6 | The mRNA expression pattern of hub genes in OSCC. (A) The expression of CTNNB1 was increased in OSCC tissues, compared with normal tissues. (B) The expression of ETS1 was increased in OSCC tissues, compared with normal tissues.





Survival Value of Hub Genes in OSCC

For survival analysis, cBioportal based on TCGA database was used, which revealed that low expression of CTNNB1 in patients with OSCC showed better overall survival (p = 0.01) (Figure 7C), and low expression of CEBPA predicted poor overall survival in OSCC patients (p = 0.04) (Figure 7D). Although the expression of other hub genes did not show a significant relationship with the survival status of OSCC patients (p > 0.05), the OSCC patients with high expression of NOTCH1 (Figure 7A) and ETS1 (Figure 7E) or low expression of JUN (Figure 7B) tended to have long lifespans.




Figure 7 | The survival value of the expression of hub genes in cisplatin-resistant OSCC. (A) NOTCH1. (B) JUN. (C) CTNNB1. (D) CEBPA. (E) ETS1.



The dataset obtained from MD Anderson, Cancer Discov 2013, showed that the median overall survival of all OSCC patients was 78.8 months. Except for NOTCH1, no mutation was found in the other hub genes in the OSCC patients. And the mutations in NOTCH1 showed no significant association with the overall survival of patients with OSCC (Figure 8), suggesting that the regulation, without mutation of the hub genes was the main mechanism of cisplatin resistance in OSCC.




Figure 8 | The survival value of the mutations of hub genes in cisplatin-resistant OSCC. (A) NOTCH1. (B) JUN. (C) CTNNB1. (D) CEBPA. (E) ETS1.






Discussion

Worldwide, OSCC is an important public health issue with limited therapy strategies and researches; systemic drug resistance has aggravated this situation. In this study, high-throughput screening was used to explore the potential genes involved in cisplatin resistance of OSCC, and NOTCH1, JUN, CTNNB1, CEBPA, and ETS1 were identified as the hub genes in the occurrence of cisplatin resistance. These genes were found to be regulated by the members of the miR-200 family. Regulation of the corresponding hub genes by miRNAs may reverse cisplatin resistance of OSCC, and the sensitivity of tumor cells to cisplatin maybe restored; thus, providing a novel potential target for anticancer therapy.

Studies have shown that changes in NOTCH signaling pathway are associated with many human cancers (Villanueva et al., 2012). NOTCH1 is reported to be both a tumor suppressor gene and a tumor oncogene. The tumorigenic or anti-tumor activity of NOTCH family members in different types of tumors displays its role in promoting or inhibiting the undifferentiated state of stem cells in the corresponding tissues (Wang et al., 2012). Carcinogenic action of NOTCH has been found in many cancers, including non-small cell lung cancer (Lenhart et al., 2015), acute T lymphoblastic leukemia (Weng et al., 2004), and malignant gliomas (Purow et al., 2005). In contrast, NOTCH1 signaling is inhibited in neuroendocrine tumor cells, including small cell lung cancer (Platta et al., 2008). This suggests that induction of NOTCH1 expression is an effective strategy for treating these tumors. NOTCH signaling pathway is also involved in chemotherapy resistance. For example, NOTCH1 plays an important role in cisplatin resistance mechanism of head and neck squamous cell tumor, colorectal tumor, ovarian cancer (Wang et al., 2010), and other malignant tumors. In this study also, expression of NOTCH1 gene was found to be significantly inhibited in cisplatin-resistant OSCC cell lines as compared to that in normal or tumor tissues, but no effect was observed on the overall survival of patients. These results suggest that NOTCH1 signaling molecules may be involved in different biological processes of malignant tumor development through different molecular pathways, and could play an important role in resistance of OSCC against cisplatin and other chemotherapy drugs.

JUN is a protein-coding gene and has no introns; it is located in 1p32-p31: a chromosomal region involved in human malignant translocations and deletions (Fazal et al., 2017) JUN-related diseases, include sarcomas and whooping cough (Syc-Mazurek et al., 2017). JUN is involved in the following pathways: apoptosis regulation, signal transduction, tacrolimus/cyclosporine pathway, and pharmacodynamics. JUN is also associated with sequence-specific DNA binding (GO annotation). In this study, although JUN molecular expression was significantly changed, its correlation with malignant tumor tissues and its influence on patient survival were not found. Therefore, its function and molecular mechanism will be explored in future studies.

The protein encoded by CTNNB1 is a part of the protein complex that forms the adhesive junctions. Adhesion is necessary to create and maintain the epithelial layer (Li et al., 2017a). The coding proteins, which also include the actin cytoskeleton, are responsible for signaling contact inhibition, and once the upper cortex completes signaling, the cell stops dividing. Finally, the protein binds to the product of the APC gene, which is mutated in colorectal adenomatous polyposis. The mutation is a cause of colorectal cancer, hairy tumors, medulloblastoma, and ovarian cancer (Li et al., 2017b). Selective splicing of CTNNB1 RNA leads to multiple transcript variants. Diseases associated with CTNNB1, include hairy tumors and intellectual disability, both being 19 autosomal dominant (Lee et al., 2018). The pathways associated with CTNNB1 are beta-adrenergic signaling and blood-brain barrier pathways. Because it inhibits the expression of downstream signals, GO annotations associated with it, include DNA-binding transcription factor activity and binding. In this study, it was found that the expression of CTNNB1 in tumor tissues was significantly higher than that in normal tissues, and the survival period of patients with high expression of CTNNB1 was significantly shortened. These results suggest that CTNNB1 also plays an important role in the occurrence and development of OSCC, but the mechanism of its influence on cisplatin chemotherapy resistance needs to be further studied and explored.

CEBPA is an intron-free transcription factor that contains a basic leucine zipper domain and recognizes the CCAAT motif in the target gene promoter (Mannelli et al., 2017). The coding proteins act in homodimers and heterodimers with CCAAT or enhancer binding proteins, beta and gamma. The activity of CEBPA protein regulates the expression of genes, which are involved in cell cycle regulation and weight balance. Mutation in the CEBPA gene has been linked to acute myeloid leukemia (Avellino et al., 2016). CEBPA mutations are particularly associated with cytogenetically-normal AML (Taskesen et al., 2011). CEBPA is necessary for granulocyte formation in mice. Mutations in CEBPA are associated with longer survival of OSCC patients. CEBPA-related diseases, include leukemia, acute myeloid leukemia, and myeloid leukemia. The pathways associated with CEBPA are adenoid cystic carcinoma and the adipogenesis pathway. CEBPA has important DNA binding transcription factor activity and can bind to sequence specific DNA. However, there are no relevant studies on CEBPA and cisplatin resistance of OSCC at present. In the current study, we found that high expression of CEBPA is closely related to the prognosis of OSCC patients.

ETS1 is a member of the encoding transcription factor ETS family, which has a conserved DNA binding domain of ETS that recognizes the hub consistent DNA sequence GGAA/T in the target gene (Poon and Kim, 2017). These proteins act as transcriptional activators or inhibitors of many genes and are involved in stem cell development, cell aging and death, and tumorigenesis. Splicing transcriptional variants encoding different subtypes have also been previously described. Jacobsen syndrome and estrogen receptor negative breast cancer are the diseases associated with ETS1 (Carpinelli et al., 2015). The pathways involving ETS1 include focal adhesion and focal adhesion kinase mediated signal transduction events. The gene also has important DNA-binding transcription factor activity and transcription factor binding. We found that ETS1 is an important cisplatin resistant gene based on high-throughput data analysis, PPI network, and expression verification. Studies have shown that overexpression of ETS1 induces IKK alpha mRNA and protein expression as well as IKK alpha activity (Gu et al., 2004). In a previous study, ETS1 protein expression and IKK alpha were significantly upregulated in 231 cisplatin-resistant cell lines. Inhibition of ETS1 expression has been reported to enhance cisplatin sensitivity of resistant cell lines. ETS1 knockout increases the stability of cisplatin in mouse xenograft models (Zhang et al., 2018). These results are similar to the results obtained in the current study. ETS1 was highly expressed in cisplatin-resistant OSCC cell lines as compared to that in the normal tissues; ETS1 was highly expressed in tumor tissues, suggesting that it is an important molecule in this process.

Based on previous studies on hub genes and members of the miR-200 family, miR-200b/a/429 transcription is known to be regulated by different transcriptional factors in tissue-specific manner (Kim et al., 2011b). ZEB1/2 is the classical target gene of miR-200s, and many other potential factors have also been reported as the genes regulated by miR-200s (Nagalla et al., 2011). In the current study, new potential target genes were reported as the hub genes in cisplatin-resistant OSCC cells. In 2018, Liu et al. reported a smart miRNA-reporter gene for in vitro and in vivo imaging of biogenesis of miRNA and their related functions (Liu et al., 2018). Further study involving the reporter system could be helpful in investigation of the relationship between miR-200s and the hub genes in OSCC. And as the researches related to OSCC are limited, the relationship between the expression of hub genes and clinicopathological parameters in OSCC patients will be collected and analyzed in the further, to confirm their roles in the occurrence of cisplatin resistance in OSCC.



Conclusion

We found that NOTCH1, JUN, CTNNB1, CEBPA, and ETS1 were the key genes regulating cisplatin resistance in OSCC drug-resistant cell lines, and the miR-200 family may be capable of reversing OSCC cell resistance by regulating NOTCH1, JUN, and ETS1, which could also act as potential targets for treating cisplatin resistant OSCC patients.
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Background: Kaposi sarcoma-associated herpes virus (KSHV) is one of the most common causal agents of Kaposi Sarcoma (KS) in individuals with HIV-infections. The virus has gained attention over the past few decades due to its remarkable pathogenic mechanisms. A group of genes, ORF71, ORF72, and ORF73, are expressed as polycistronic mRNAs and the functions of ORF71 and ORF72 in KSHV are already reported in the literature. However, the function of ORF73 has remained a mystery. The aim of this study is to conduct comprehensive exploratory experiments to clarify the role of ORF73 in KSHV pathology and discover markers of AIDS-associated KSHV-induced KS by bioinformatic approaches.

Methods and Results: We searched for homologues of ORF-73 and attempted to predict protein-protein interactions (PPI) based on GeneCards and UniProtKB, utilizing Position-Specific Iterated BLAST (PSI-BLAST). We applied Gene Ontology (GO) and KEGG pathway analyses to identify highly conserved regions between ORF-73 and p53to help us identify potential markers with predominant hits and interactions in the KEGG pathway associated with host apoptosis and cell arrest. The protein p53 is selected because it is an important tumor suppressor antigen. To identify the potential roles of the candidate markers at the molecular level, we used PSIPRED keeping the conserved domains as the major parameters to predict secondary structures. We based the FUGE interpretation consolidations of the sequence-structure comparisons on distance homology, where the score for the amino acids matching the insertion/deletion (indels) detected were based on structures compared to the FUGE database of structural profiles. We also calculated the compatibility scores of sequence alignments accordingly. Based on the PSI-BLAST homologues, we checked the disordered structures predicted using PSI-Pred and DISO-Pred for developing a hidden Markov model (HMM). We further applied these HMMs models based on the alignment of constructed 3D models between the known structure and the HMM of our sequence. Moreover, stable homology and structurally conserved domains confirmed that ORF-73 maybe an important prognostic marker for AIDS-associated KS.

Conclusion: Collectively, similar variants of ORF-73 markers involved in the immune response may interact with targeted host proteins as predicted by our computational analysis. This work also suggests the existence of potential conformational changes that need to be further explored to help elucidate the role of immune signaling during KS towards the development of therapeutic applications.
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Introduction

Pre-existing human immunodeficiency virus (HIV) infections affect the immune system increasing the risk for development of Kaposi sarcoma (KS). Since the discovery of Kaposi sarcoma-associated herpesvirus (KSHV), also termed human herpesvirus 8 (HHV8), the tumor development and oncogenesis were associated with co-expression of different genes (Barré-Sinoussi et al., 1983; Gelmann et al., 1983). KS is a common type of cancer associated with blood vessels and lymph nodes. Soon after the discovery of HIV-1, scientists discovered γ-herpesvirus in KS lesions (Chang et al., 1994). Now that the full KSHV genome has been sequenced, it fulfils Koch's modern postulates linking the KS cancer initiation to the oncogenic virus (Russo et al., 1996; zur Hausen, 2001). KSHV is a key viral pathogen in cancer biology affecting humans and its discovery promoted clinical and epidemiological research into viral oncology (Chang et al., 1994). However, many questions remain unanswered due to the significant mortality and rapid morbidity of those affected by HIV-1 and KSHV (Parkin, 2006; Sinfield et al., 2007; Dittmer and Damania, 2019; Gaur et al., 2019).

In fact, KS was named after Dr. Moritz Kaposi, a prominent Hungarian dermatologist, who described KS as an ‘idiopathic pigmented sarcoma of the skin' in 1872 (Kaposi, 1872). The evolved gamma-herpesviruses have been classified into many subfamilies (Roizman et al., 1981) and produce many viral gene products capable of subverting the normal cellular machinery through processes involving apoptosis, cell cycle progression, antiviral responses, and immune surveillance resulting in alterations in master cell signaling pathways to establish a persistent host infection. The double-stranded KSHV genome (124–174 kb) is enclosed in an icosahedral capsid composed of 162 capsomeres with many of its ORFs being conserved in alpha- and beta-herpesviruses, but absent from other herpesviruses.

The KSHV is closely related to the subfamily Rhadinoviridae (gamma-2-herpesviruses), which is also close to the Herpes virus saimiri (HVS); therefore, similarities between ORFs of KSHV and HVS may influence the pathogenesis of KS (Schäfer et al., 2003). The HVS genome exists as a stable non-integrated circular episome in altered human and simian T cells. A group of genes, ORF71, ORF72, and ORF73, are located at the right end of the L-DNA and are expressed as polycistronic mRNAs (Fickenscher et al., 1996). Initial studies discerned that both KSHV and HVS ORF71 encode the anti-apoptotic FLICE inhibitory protein (vFLIP) (Thome et al., 1997), although HVS ORF71 is not mandatory for viral replication, transformation, or pathogenicity (Glykofrydes et al., 2000). ORF72 produces a v-Cyclin D homolog which is important for transformation of human T lymphocytes (Ensser et al., 2001). However, the function of ORF73 has remained a mystery. Therefore, developing and conducting comprehensive exploratory experiments to clarify the role of ORF73 in KSHV pathology is important.

Typically, the phenotypic features of KS initially appear on the face, legs, or feet as painless red spots but, in severe cases, the lesions also appear in the lungs and digestive tract (Bhutani et al., 2015; Yarchoan et al., 2015). KSHV is considered an oncogenic human virus (Martin et al., 1998). People with weak immune systems are more susceptible to HHV-8 infection (triggering KS development). Even with the availability of the anti-retroviral treatment [HAART], the prevalence of AIDS-associated KS has not declined significantly (Nguyen et al., 2008). Although KSHV infection is important for the onset of KS, additional factors must be present to allow the establishment of the lesions. The chance of infection is one in 100,000 among the general population, but only around one in 20 among HIV-infected individuals (La Ferla et al., 2013). The chance of acquiring the infection was one in three among HIV-infected individuals before the introduction of HAART (Beral et al., 1990; Gallo, 1998). Epidemiological observations from incidence rates in endemic areas suggest that HIV-negative individuals with KSHV infections never develop KS due to the role of immunological host factors including immune-response genes and genetic polymorphisms of the inflammatory modulators (Cottoni et al., 2004; Gazouli et al., 2004; Dorak et al., 2005).

KSHV infection of endothelial and/or hematopoietic progenitors (Della Bella et al., 2008) alter their morphology (Moses et al., 1999), growth rate, gene expression (Flore et al., 1998; Ciufo et al., 2001), and glucose metabolism (Delgado et al., 2010), leading to development of KS. Antibody titers specific for KSHV correlate with its viral load. Among individuals with low viral load, antibody titer concentrations may be too low for current serological assays to identify them. Identification of circulating biomarkers in KSHV-associated disease may help in predicting clinical outcomes (Aka et al., 2015). Immune modulatory and evasion proteins of KSHV modulate cellular responses associated with complement activation, autophagy, IFN family signaling, chemokines, natural killer cells, and apoptosis (Liang et al., 2008). They are located in a region of the viral capsid that is rich in a protein known as tegument. Six tegument proteins have been identified: ORF21, ORF33, ORF45, ORF63, ORF64, ORF73 and ORF75. Among these, the roles of ORF63 and ORF64 in immune evasion have been elucidated (Zhu et al., 2005; Gregory et al., 2011). We focused on the identification of the role of ORF73 in KSHV. The ORF73 gene encodes the HHV-LANA1 viral proteins that have been linked with AIDS-associated KS, indicating an association between HIV and ORF73. For our computational study, we hypothesized that ORF-73 is a viral proliferation factor based on studies on KS and on its interactions with the host gene p53 (Woodberry et al., 2005). The importance of ORF-73 for cellular host apoptosis through the p53 signaling pathway and p53 is in order of ORF-73 which illustrates the molecular mechanism of this key biomarker associated with KS (Duus et al., 2004).

The variability in KS lesions observed in histopathological assays include spindle cell hemangiomas, cutaneous angiosarcomas, vascular leiomyomas, and fibrous histiocytomas (Hunt et al., 2004). Endothelial biomarkers, such as CD31 and CD34, bcl-2, c-kit, Ki-67, and p53, have been used to distinguish nonvascular spindle sarcomas from angiosarcomas (Weeden, 2002; Fukunaga, 2005). Hence, investigating the HHV-latent associated nuclear antigen-1 (LANA-1) viral protein encoded by ORF-73 is important to identify markers for AIDS-associated KS. Also, studying its interactions may help in the development of preventive strategies and therapeutic options against KS. In this study, we used advanced bioinformatics tools and approaches to identify KS markers Supplementary Figure 1.



Materials and Methods


Selection of Markers

We used publicly available databases including the National Centre for Biotechnology Information (NCBI), GeneCards (Hou et al., 2017) and UniProtKB (Tang et al., 2013) to identify potential markers of KS and selected the most specific ones using “Kaposi's sarcoma” as a keyword. Human protein markers were further ran through a BLAST search for homology sequences. We extracted ORF-73 sequences from the NCBI database search using the accession number AAC57158.1. These are the exact URLs of the searched databases we used to identify markers associated with KS : GeneCards https://genecards.weizmann.ac.il/v3/index.php?path=/Search/keyword/kaposi%20sarcoma%20markers/0/20; UniPortKB https://www.uniprot.org/uniprot/?query=kaposi+sarcoma&sort=score; and NCBI https://www.ncbi.nlm.nih.gov/protein/?term=ORF-73%20kaposi%20sarcoma).



Bioinformatics: Sequence Computational Analysis

We used publicly available internet-based protein search tools and bioinformatics programs with default settings, unless otherwise stated in the text, for the analysis. We tested selected protein sequences to identify conserved domains from NCBI and BLAST algorithms, and we used the PSIPRED program to predict the secondary structure of proteins based on the conserved domain sequences. We further executed a position specific iterative BLAST (PSI-BLAST) search to build a PSSMs (position specific score matrix), which could predict the secondary structure of the input sequences (Majerciak et al., 2015) to predict secondary structures of the selected conserved domains based on multiple sequence alignment related proteins spanning a variety of organisms to reveal sequence regions containing the same, or similar, patterns of amino acids. We submitted the primary sequence of ORF-73 to FUGUE to show the sequence-structural homology by identifying distant sequence-structure homologues and alignments comparing amino acid insertions/deletions (Shi et al., 2001). We used BLASTp and PSI-BLAST (non-redundant protein databases) for pattern specific profiling (Bujnicki and Rychlewski, 2001).



Gene Ontology and Pathway Enrichment Analysis

We chose the ORF-73 target effector to perform a Gene Ontology (GO) search, is a hierarchical graph-based annotation system where the terms closer to the root describe more general information while those away from the root provide more specific information about a given GO category and all the GO terms associated with a protein sequence were obtained from the GO database. The KEGG network pathway enrichment analysis by collecting data of related genomes and their pathways associated with diseases (Yan et al., 2013) and we set a P value <0.05 as the cut-off criterion.



Protein–Protein Interaction (PPI) Network Analysis

We used the online Search Tool for the Retrieval of Interacting Genes (STRING) (Franceschini et al., 2013) and GeneMania (https://genemania.org/) to analyze interactions associated with KS among the proteins encoded by the DEGs. The two parts of GeneMania algorithm consists of an algorithm based on linear regression to calculate functional association from multiple networks from different data sources; and a label predicting gene function of composite network. We employed keywords such as—ORF73 to determine interacting partners. This was pursued using downstream regulator p53 as an apoptosis marker during pathogenesis in the host. Moreover, the marker protein was used for transient interaction study.



PPI Biochemical Analysis

We immobilized His-tag, GST-tag, or biotin-tag bait proteins to an affinity resin and incubated them with solution expressed proteins as prey proteins. We then captured the bound bait and pulled down the cell lysate flow through. Subsequently, we used mass spectrometry (MS) or Western blots to confirm interactions. Using this technique, we determined interacting protein partners of relevant proteins (Einarson, 2001; Arifuzzaman et al., 2006).




Results


Homology Search and KS Marker Identification

Annotations used to search for the KS-associated markers in the UniProtKB database quoted about 137 entries, which we then screened to find those with computationally annotated data. Search engine GeneCards reported about 369 KS markers with a relevance score. Table 1 lists the markers with the top ten scores.


Table 1 | GeneCards and UniPortKB databases used to choose the top-most scored identities of markers associated with KS.



We found61 ORF-73 marker homologous hits related to the family of human gamma herpes virus 8 with varied E-values. Out of these, we used only the most identical sequence (based on sequence identity was measured by matched by dividing the length of region aligned match), AAC57158.1, for our computational analyses. A search for proteins similar to the selected marker ORF-73 resulted in8 protein accessions (ORF21, ORF33, ORF45, ORF63, ORF64, and ORF75), and 2 CDS regions (accession numbers AAC57158.1 and AAC55944.1).



Domain Prediction and Structural Profile

We looked for conserved domains in the marker protein ORF-73 based on hypothetical domain sequences using literature recapitulation NCBI's Conserve Domain Database (CDD). To identify potential marker roles at the molecular level, we focused on its predicted secondary structure. Therefore, we searched for hypothetical protein having conserved domain and used accession number AAC5744 of gi.1633572 in an NCBI domain search and found only one significant hypothetical conserved domain (PHA03169) with the same accessison number (Figure 1). We then used PSIPRED to predict the secondary structure, noted the conserved domains (Figure 2) and highlighted the regions with different markers to predict the secondary structures. FUGE interpretation consolidations of the sequence-structure comparison were based on distance homology, where the score for the amino acids matching the insertion/deletion (indels) detected were based on structures compared to the FUGE database of structural profiles and we calculated the compatibility scores of sequence alignment accordingly (Table 2).




Figure 1 | Conserved hypothetical protein domain of PHA03169 in reference to the ORF-73 of Human gamma herpesvirus 8,E-value 38e−18.






Figure 2 | Overview of the ORF-73 secondary structure prediction. The predicted structural positions incorporate two feed-forward neural networks obtained from PSI-BLAST.




Table 2 | Structure of Kaposi sarcoma marker ORF-73 predicted based on an environmental-specific substitution table and its structure-dependent gap penalties.



Using PSI-BLAST, we confined the search of HHV-latency-associated nuclear antigen homology to ORF-73 homologs. The DNA binding of viral protein associated with HHV-8 LANA sheltered 134 residues covering 12% of the sequence with 100% confidence based on the single highest scoring template of c4k2jB (Figures 3 and 4). 598 residues covering 51% could be modelled at >90% confidence using multiple-templates. We submitted the top-ranking model of the protein (c4k2jB, 100.0% confidence) to the 3DLigandSite (Wass et al., 2010) server to predict potential binding sites. Based on PSI-BLAST homologues, the predicted disordered structures were checked using PSI-Pred (Jones, 1999) and DISO-Pred (Jones and Cozzetto, 2015) for generating a hidden Markov model (HMM). The models were based on the alignment of the constructed 3D models between the known structure and the HMM of our sequence predicting the3-states—α-helix, β-strand or coil (“SS” indicates the predicted confidence; middle orange, yellow, and green indicate the confidence of prediction).




Figure 3 | Highest scored template c4k2jB chain B structure.






Figure 4 | Decameric ring structure of KSHV HHV-LANA DNA binding domain with dimensions (X:40.909, Y:43.389, and Z:44.674).





Gene Expression and Pathway Prediction

The exclusive over-expression of HHV-8 LANA-1 in KS confirms significant sensitivity and specificity. The domain is conserved in the HHV-8 and ORF-73, suggesting its expression during viral latency and allowing it to interact with p53, thereby inducing the apoptosis pathway. The evidence from another study indicates abnormal expression of p53 in the nodular region and metastatic lesion of angiosarcomas (rather than in the primary lesion) (Yee-Lin et al., 2018). To account for this, the lead p53 in KS was taken with reference to the database for a herpes virus-associated infection model so as to understand the immune evasion with a detailed pathway demonstrating the dominant role of a p53 oncogene in KSHV- (Figure 5). The tumor suppressor antigen p53 depends on cellular conditions inducing arrest of the cell growth and controlling cell division. This process inhibits cyclin-dependent kinases mediated by the expression of BAX and FAS antigens or by the repression of the Bcl-2expression (Kanashiro et al., 2003). Addressing the markers involved in the cell-cycle arrest is important to understand the molecular evolution of KS and for work towards its eradication. We examined PPIs to explore the complex biochemical interactions and molecular functions of proteins of interest with cellular components, as reported in Table 3. Table 3 also presents the functional enrichment of p53 including its biological process, molecular functions, and cellular components. The effector p53 is directly involved in the arrest of the G1/S cell-cycle progression from normal to cancerous cells (Chen, 2016). Analysis of PPI with STRING showed an enriched p-value of 1.31e−05 with respect to the network having significantly more interactions than expected with 11 nodes, 47 edges, an average node degree of 8.55 and an average local cluster coefficient of 0.919 (Figure 6). The functions of the protein p53, a tumor protein, are associated with various expression levels during oncogenesis. GeneMania predicted various valuable functions of the query protein and interacting partners associated with it (Figure 7).




Figure 5 | The Kaposi sarcoma-associated herpesvirus infection pathway from KEGG. Reference pathway highlighted using red box shows that LANA is associated with p53 signaling pathway which confirms the predictable role of the ORF-73 protein in the KS associate marker protein.




Table 3 | Functional enrichment of p53.







Figure 6 | Protein–protein interactions (PPI) between cell arrest marker p53 of cancer cell and Ubiquitin Specific Peptidase 2 (USP2). TNF receptor-associated factor 2 (TRAF2), tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), polyubiquitin-C (UBC), protein Mdm4, E3 ubiquitin-protein ligase Mdm2, ubiquitin-40S ribosomal protein S27a, polyubiquitin-B (UBB), NF-kappa-B essential modulator (IKBKG), receptor-interacting serine/threonine–protein kinase 1 (RIPK1), and Ubiquitin-60S ribosomal protein L40 (UBA52) play important roles in the regulation of cell survival and apoptosis.






Figure 7 | (A) Tumor protein 53 (TP53) network analysis and (B) members of the complex pathway and genes with co-expression, co-localization, genetic interactions and specific functions.





Pulldown Strategy and Protein Interaction Prediction for Biomarker Selection

Pull-down assays serve as a complementary method to further validate the predicted interactions in a quantitative manner towards understanding their dissociation constants and relative bindings of proteins and their direct binding sites. However, this is beyond the scope of this study. We believe the following recommendations should be followed by researchers investigating transient protein interactions: First, determining the protein solubility is essential. If the prey protein is at a too-high concentration, it will not be sufficiently soluble. Second, shortening the time and adjusting buffer conditions of incubation help prevent prey protein degradation. Third, checking the prey protein with beads if bait protein is not bound should be done as a control. Fourth, conducting all assays at a constant temperature of 4 °C should be considered if a variation in Kd is found between repeated experiments.

The tumor suppressor antigen p53 depends on specific cellular conditions to induce arrest of cell growth and to control cell division (Pucci et al., 2000; Chen, 2016).

Our network analysis (entry N00170, class nt06164) showed involvement of LANA and other effector markers in KS conditions and helped elucidate their mechanisms of action (Figure 8, Table 4). Therefore, we suggest that ORF-73 is an important protein that may be a useful biomarker for AIDS-related KS. Studies have suggested a linkage between ORF-73 and host apoptosis through p53 signaling pathways (Tornesello et al., 2018), that could represent a molecular mechanism for the predicted markers associated with KS. Our study discovered KS-associated markers which trigger cancer. ORF-73 encodes LANA-1 virtual proteins of KSHV, linking them with AIDS-associated KS, by their interaction with several cellular processes which include cell apoptosis (through p53) and inhibition of downstream transcriptomic performance. The association between HIV and ORF73 can be inferred by these findings.




Figure 8 | Network map of KEGG for the selected KS protein marker LANA. Protein downstream effect in the cell cycle of disease progression with pooled effectors in cell cycle arrest at G1/S and KS activating mechanisms.




Table 4 | Identities of associated markers, downstream signaling candidates, and linked pathways during Kaposi sarcoma pathogenesis.






Discussion

Many viral genes are homologous to host cellular genes in KSHV (Swanton et al., 1997). The PubMed, Google Scholar, and Scopus searches confirmed the key diagnostic markers for KS based on the available literature. Our computational study on them revealed their importance and evolutionary role in human cancer biology. LANA-1 imparts important immunogenic effects to KSHV, and it specifically interacts with many cellular pathways, including that of cell apoptosis (through its interaction with p53, and repression of downstream transcripts; see Table 4). This induces oncogenesis by targeting the protein-E2F transcriptional regulatory pathway (Radkov et al., 2000). The protein homologues identified through our search were structurally different from each other. Therefore, we analyzed selected proteins and compared them using homology searches for the selected domains to prove interactions with other host proteins that trigger and induce cancer in individuals with immunosuppression (Kersse et al., 2011). Hyper mutation and conserved structural sequence similarities help to maintain key aspects of secondary and tertiary structures, which were consistent with the computational analyses in our study (Huang et al., 2002). Figure 5 shows the KSHV infection pathway from KEGG. We highlighted the reference pathway using a red box that shows that LANA is associated with the p53 signaling pathway. A BLAST homology search confirmed an ORF-73 marker interaction during herpesvirus pathogenesis. The results of STRING and KEGG searches suggested ORF-73 interacts with the host p53.

ORF-73 is not the only protein marker implicated in KS pathology, but much about it remains unknown. It is used as a marker for KSHV; especially, its protein folding and motifs are important for the marker assessment observed in the pattern of structural domains in the selected sequence analyzed with PSI-PRED. The pathogenic interactions in the network-based analysis between LANA and the host p53 suggest that LANA was confirmed by STRING and FUGUE tools. The predicted sequence motifs give detailed interactions that are conserved in the subfamilies of the herpesviruses as discussed in detail on the KEGG pathway with notable mechanisms described in the literature (Schulz, 2000; Direkze and Laman, 2004; Sharma-Walia et al., 2004; Mesri et al., 2010). However, the markers associated with KS need to be incorporated into comprehensive clinical cohort studies, designed using differential protein purification techniques and evidence-based knowledge on protein interactions with bait proteins to develop practical medical applications in the future.

Many PPIs have been elucidated using pull-down assays to map the genomes of many organisms, such as yeast (Valente et al., 2009), Escherichia coli (Arifuzzaman et al., 2006) Caenorhabditis elegans (Remmelzwaal and Boxem, 2019).

Like all other herpesviruses, KSHV displays latency and a lytic life cycle replication that are characteristic of some viral gene expressions. The genes LANA, v-FLIP, v-cyclin, and Kaposins A, B, and C for latency facilitate the establishment of life in its host and survival against host immune mechanisms. During latency, proteins expressed as K1, K15, vIL6, vGPCR, vIRFs, and vCCLs participate in inflammatory and angiogenic processes evident in KS lesions. Many other lytic and latent viral proteins are involved in the transformation of KSHV host cells into malignant cells. Also, Bcl-2 is one of the major KS progression factors, and TP53 and c-myc have a role in the progression of disease. KS pathology is interconnected with immune modulation effects such as cell cycle arrest in the host cell, which is required for pathogenic conditions and is mitigated by modulating key factors such as LANA.

Likewise, measuring the expression level and identifying the function of the encoded protein products is important to understand the pathogenesis of KS. We used a methodology similar to that in co-immunoprecipitation (Co-IP) experiments because of our ligand's affinity to capture the strongest interacting proteins (Lapetina and Gil-Henn, 2017). MS identifies subunits and helps explore the structural information associated with the protein of interest (Byrum et al., 2012). Dynamic PPI machines assemble or disassemble the ever-changing inter-, intra-, and extracellular influx cues as a preliminary step towards understanding the structure of proteins and to determine their functions to identify the relevant pathways of interacting proteins (Einarson, 2001; Vikis and Guan, 2004; Einarson et al., 2007). The role and important reason to select ORF-73 in the study is that encoding LANA protein distinct domain induces a putative nuclear localization signal (NLS), which product shown interacting with many co-cellular p53, pRb, and ATF4/CREB2. LANA also modulates transcriptional activity of HIV-1 long terminal repeat and to understand the how ORF-73 appears to prevent activity of KS-associated genes was new to know to make preventive strategy (Schäfer et al., 2003). Our findings may help researchers planning cancer prevention strategies, but we used common computational analyses alone, and future studies with expression and interaction analyses should be used to confirm our results and generate treatment options for KS.



Conclusion

Our computational studies found that ORF-73 is involved in host apoptosis through p53 signaling pathways and is a key marker associated for Kaposi Sarcoma. This study also identified potential KS-associated genes which are reported to trigger cancer and suggested mechanisms of interaction that may help researcher developing prevention strategies.
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Pathogen–host interactions play an important role in understanding the mechanism by which a pathogen can infect its host. Some approaches for predicting pathogen–host association have been developed, but prediction accuracy is still low. In this paper, we propose a bipartite network module-based approach to improve prediction accuracy. First, a bipartite network with pathogens and hosts is constructed. Next, pathogens and hosts are divided into different modules respectively. Then, modular information on the pathogens and hosts is added into a bipartite network projection model and the association scores between pathogens and hosts are calculated. Finally, leave-one-out cross-validation is used to estimate the performance of the proposed method. Experimental results show that the proposed method performs better in predicting pathogen–host association than other methods, and some potential pathogen–host associations with higher prediction scores are also confirmed by the results of biological experiments in the publically available literature.
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Introduction

Pathogen–host interactions (PHIs) play a crucial role in understanding the mechanisms of infections and identifying potential targets for infection therapeutics. Therefore, various biological experimental or computing methods have been developed to test and predict the interactions between pathogens and hosts. However, it is not only time-consuming and laborious to test PHIs through biological experimentation but also costs a lot of money. Computing methods such as biological reasoning and machine learning are considered as another important approach for predicting PHIs. Three main approaches can be used to predict PHIs: biological reasoning homology-based, structure-based, and domain/motif interaction-based (Nourani et al., 2015). The basis of homology-based prediction is that the interaction between conserved homologous organisms would also be conserved. Lee et al. inferred more than 3000 H. sapiens–P. falciparum protein–protein interactions (PPIs) based on orthologous pairs, revealing that Plasmodium falciparum can utilize calcium regulatory proteins in host cells to maintain Ca2+ levels (Lee et al., 2008). Wuchty et al. used the random forest method to evaluate and filter homology-based prediction results, which further improved prediction accuracy (Stefan, 2011). Structure-based prediction assumes that a pair of proteins with similar protein structures that are known to interact may interact in the same manner. Davis et al. proposed an algorithm for predicting possible interactions based on the physical structure of the protein by scanning the genome of the pathogen and host to find structurally similar proteins (Davis et al., 2010). Aloy and Russell also proposed a method for inferring the molecular details of interactions that might occur by evaluating a pair of potentially interacting proteins on a complex of known 3D structures (Patrick and Russell, 2002). Doolittle et al. used this method to predict the interaction between HIV and human proteins, providing assistance for further trials and therapeutic intervention targets (Doolittle and Gomez, 2010). Domain/motif interaction-based prediction combines the known intraspecific PPI with the protein domain spectrum to predict the PPI between host and pathogen proteins (Dyer et al., 2007). Evans et al. used the method to predict the interaction between HIV-1 and human proteins, confirming that the linear binding motif shared by the virus and the host protein was an important part of the crosstalk between the virus and the host (Evans et al., 2009). Machine learning methods are widely used in the prediction of pathogen–host interaction relationships. Ahmed et al. used a comparison of a neural network model versus SVM for the prediction of host-pathogen PPI based on a combination of features including amino acid quadruplets, pairwise sequence similarity, and human interactome properties; they found that the neural network achieved a significant improvement in overall performance compared to a predictor using the triplets feature and that it achieved good accuracy in predicting B.anthracis–human interaction (Ahmed et al., 2018). Mei et al. proposed the AdaBoost approach to predict proteome-wide interactions between Salmonella and human proteins based on multi-instance transfer learning (Mei and Zhu, 2014). Subsequently, a new negative data sampling method based on single-class SVM was proposed to predict the protein interaction between HTLV retrovirus and Homo sapiens. Use of this method provided valuable cues for the pathogenesis of HTLV retrovirus (Mei and Zhu, 2015).

Predicting unknown relations between pathogens and hosts in advance is of great significance for detecting changes in their relations and preventing the spread of infectious diseases in hosts. The above methods are used to predict protein–protein interactions of pathogens and hosts based on protein-related information. However, in cases where protein information or other molecular information is unavailable and we only know the relations between pathogens and hosts, we need to develop a new method to predict the potential relations between pathogens and hosts based only on the relations of pathogens and hosts. Zhang et al. developed a bipartite network project (BNP) (Zhou et al., 2007) to predict the relations between an X set and Y set (two sets included in the bipartite network). The experimental results on personal recommendation shown that BNP performed much better than the most commonly used global ranking method. Chen et al. proposed a novel computational model of Bipartite Network Projection for MiRNA–Disease Association prediction (BNPMDA) (Chen et al., 2018) based on the known miRNA–disease associations, integrated miRNA similarity, and integrated disease similarity. BNPMDA could effectively predict the potential miRNA–disease associations with a high accuracy level. Sun et al. developed the NTSMDA method to predict miRNA–disease associations by integrating network topological similarity (Sun et al., 2016). NTSMDA demonstrates excellent predictive performance. Tad et al. developed an algorithm to predict missing links based on conditional probability estimation and associated, node-level features (Dallas et al., 2017). They validated this algorithm on simulated data and then applied it to a desert small mammal host-parasite network. The approach achieved high accuracy on simulated and observed data, providing a simple method for accurately predicting missing links in networks without relying on prior knowledge about the network structure. These methods are based on bipartite network models and are widely used in different fields. However, these methods not only ignore the relations of elements in the X set but also the relations of elements in the Y set, though these relations are important to predict the relations of the X set and Y set. Zhang et al. proposed a weight-based model (Zhang et al., 2015) in a dual-layer network, using the cell line similarity network, drug similarity network, and drug-cell line response network. WBSMDA (Chen et al., 2016a) employed the concepts of within-score and between-score to predict the association score in the association network. These methods consider the relations of elements in the X and Y sets from a global perspective, and collecting the information from a local perspective and then integrating them from the global perspective can detect the information in the network more comprehensively. Based on this idea, we proposed a bipartite network module-based project (BNMP) to predict pathogen–host associations by adding modular information into a bipartite network projection. Firstly, a pathogen–host bipartite network is constructed, and the distances of pathogens and hosts are computed respectively on the basis of the topological structure. Pathogens are then divided into several modules, as are hosts. Finally, the module information of pathogens and hosts, respectively, is applied to BNP to calculate the prediction score.



Materials and Methods


Data Collection and Pre-Processing

First, the pathogen–host interaction data were downloaded from PHI-base (Urban et al., 2017) (http://www.PHI-base.org/index.jsp), HPIDB (Ammari et al., 2016) (https://hpidb.igbb.msstate.edu/index.html), and IntAct (Sandra et al., 2014) (https://www.ebi.ac.uk/intact/). These three databases are commonly used molecular interaction databases that cover most of the molecular interaction data in open data sources. We downloaded all of the entire datasets of these three databases on September 8, 2019. These three databases provide downloads of previous version data, and researchers can select the related version for replication. Then, based on the taxonomy ID, we selected bacteria–host interaction data and deleted duplicate data from the data sets. The final dataset comprised data on 997 bacteria–host interactions, covering 243 hosts and 388 bacteria. The number of pathogens and hosts were s and t, respectively. We used them to generate the pathogen–host association matrix A. A[pi ][hj ]=1 means that there is a pathogen–host protein–protein interaction between the ith pathogen and the jth host, whereas A[pi ][hj ]=0 means there is no interaction between the ith pathogen and the jth host.



Bipartite Network Projection

Here, for a bipartite network G(P,H,E) where P={p1,p2,…,ps } and H={h1,h2,…,ht } are pathogen and host sets respectively, E⊆P×H is the edge set between pathogens and hosts, and the association scores between a host and all pathogens can be calculated using the bipartite network projection (Zhou et al., 2007) (BNP) method. If we let a host hseed be the seed vertex, the association scores between hseed and all pathogens are as follows.

	

	

	

where d(hj) and d(pi) are the degrees of the jth host and the ith pathogen, respectively. scp(pi) is the association score between hseed and the ith pathogen, which requires sch(h1), sch(h2), …, sch(ht) as the input.



Bipartite Network Module-Based Project

For G(P, H, E) with s pathogens and t hosts, BNMP comprises the following steps (Figure 1):




Figure 1 | Process of the bipartite network module-based project. (A) Construct the pathogen–host bipartite network and choose a host as the seed vertex. (B) Divide the pathogen set into several modules. (C) Calculate the association score between the seed and pathogens in each module. (D) Select each host as the seed vertex in turn and repeat process (A–C) then obtain the pathogen–host association score matrix Spathogen−host (E) Choose a pathogen as the seed vertex. (F) Divide the host set into several modules. (G) Calculate the association score between the seed and hosts in each module. (H) Select each pathogen as the seed vertex in turn and repeat process (E–G) then obtain the host–pathogen association score matrix Shost−pathogen. (I) Integrate matrix Spathogen−host and Shost−pathogen as the association score matrix between all pathogens and hosts.



1) Let a host hseed be the seed vertex. Calculate the distance between two pathogens. Dis(pi,pj) is the distance between pathogen pi and pj in the following formula (Figure 1A), where A[pi ] is the binary vector in the ith row in association matrix A.

	

2) Divide pathogen set P={p1,p2,…,ps } into m modules {M1,M2,…,Mm} with s1,s2,…, and sm pathogens, respectively (Figure 1B) where m is the degree of hseed, namely the number of pathogens associated with hseed, as expressed in the following formula. The intersection between two modules is empty. So  , 

	

The process of generating m modules is as follows: (1) m pathogens associated with hseed are divided into m modules respectively and marked as the core vertexes of the corresponding m modules; (2) pi (i=1,2,…,s) is added to the module whose core vertex has the shortest distance from it; (3) In order to keep a balance of resources received by the hseed from different modules, select sl−⌈s/m⌉ (⌈s/m⌉ means the rounded-up value of the result of s/m) pathogens with the furthest distance from the core vertex of Ml if sl is larger than ⌈s/m⌉ and reassign them to other modules in which the number of pathogens is less than ⌈s/m⌉. (4) Repeat (3) until the number of pathogens in each module does not exceed ⌈s/m⌉.

3) Calculate the association score set   between hseed and Ml(l=1, 2,…,m) (Figure 1C).

	

where

	

	

	

	

	

w(Ml,Mj) is the weight coefficient of resources that Ml receive from Mj (j≠l).   is the association score set obtained by running the BNP algorithm on  , which includes two sets:   and  .   and   are the association score sets of pathogens in   and  , respectively.

Finally, the association score set   between hseed and all pathogens is obtained.

4) Select each host as the seed vertex in turn, and repeat the process above. Obtain r association score sets, and combine them to form a pathogen and host association score matrix Spathogen−host (Figure 1D). Each element of Spathogen−host is an association score of a pathogen and a host. Similarly, chose a pathogen as the seed vertex in turn, and obtain another association score matrix, Shost−pathogen (Figures 1E–H).

5) Finally, take the integrated value of the two matrices, Spathogen−host and  , as the association score matrix between pathogens and hosts, where x is a parameter to balance Spathogen−host and   (Figure 1I):

	




Results


Performance Evaluation

Leave-one-out cross-validation (Kohavi, 1995) (LOOCV) is used to evaluate the performance of BNMP relative to previous evaluation methods (Geeleher et al., 2014; Zhang et al., 2015; Chen et al., 2016b; Sun et al., 2016 Fei et al., 2018; Le and Pham, 2018). Specifically, each known pathogen–host interaction is chosen as a test data set in turn, the remaining known interactions are chosen as the training set, and the pathogen–host association score in the training set is calculated using BNMP. After the LOOCV test process is completed, we plot the receiver operating characteristic (ROC) curve and precision recall (PR) curve and use the area under the ROC curve (AUROC) and the area under the PR curve (AUPR) to evaluate the performance of BNMP.



Performance Analysis of BNMP

We constructed the pathogen–host association network, namely network 1, which consists of 388 pathogens, 243 hosts, and 997 associations, as shown in Table 1. To clarify the influence of the balance parameter x, AUROC and AUPR values were calculated with different values of x, as shown in Figures 2A and B. It can be found that the prediction performance with x, ∈ (0, 1) is better than with x = 0 or x = 1, demonstrating the effectiveness of the integrated association score matrix. When x = 0.575, BNMP acquires the highest AUROC and AUPR values. We plotted the ROC and PR curves when x = 0,0.575, and 1, as shown in Figures 2C and D. It is noteworthy that the ROC curves take the form of an oblique upward-sloping straight line. We analyzed the results and found that more than half of the hosts are related to only one pathogen. As a result, the association scores between these hosts and pathogens are predicted to be zero in the LOOCV experiment, which has little worth for our prediction and results in the oblique upward-sloping straight line rather than a smooth ROC curve. To evaluate the prediction accuracy of BNMP on hosts (pathogens) that have more than one association with pathogens (hosts), the rows or columns with only one “1” are removed from the pathogen–host association matrix. After processing, 167 pathogens, 96 hosts, and 653 associations remained, namely network 2, and this was used to evaluate the performance of BNMP, as shown in Table 1. The analysis regarding x is shown in Figures 3A and B. When x = 0.675, BNMP achieves the highest AUROC value of 0.8656. When x = 0.825, BNMP achieves the highest AUPR value of 0.4318.


Table 1 | The constructed network 1 and network 2.






Figure 2 | Prediction performance of BNMP with network 1. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values by different balance parameter values. (C) ROC curves of BNMP with the different balance parameter values. (D) PR curves of BNMP with the different balance parameter values.






Figure 3 | Prediction performance of BNMP with network 2. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values by different balance parameter values.





Comparison With Existing Methods

In order to further prove the effectiveness of the proposed method, BNMP is compared with four other methods : Zhang's method (Zhang et al., 2015), NTSMDA (Sun et al., 2016), WBSMDA (Chen et al., 2016a), and BNP (Zhou et al., 2007). BNMP has different prediction performance when x is different (see Figure 3). To ensure the fairness of the comparison, we did not select the best prediction performance of BNMP for comparison with the other four methods. Instead, we ranked the AUROC values in Figure 3A in descending order and selected the upper quartile (the corresponding x value is 0.8) for comparison with other methods. LOOCV experiments were performed with BNMP, Zhang's method, NTSMDA, WBSMDA, and BNP, and the resulting ROC and PR curves are shown in Figure 4. BNMP acquires an AUROC value of 0.8645, exceeding those of NTSMDA (0.8376), BNP (0.8352), Zhang's method (0.7807), and WBSMDA (0.7592). Meanwhile, BNMP obtains an AUPR value of 0.4315, exceeding those of NTSMDA (0.3729), WBSMDA (0.3254), Zhang's method (0.2644), and BNP (0.201). We also calculated the AUROC and AUPR values for each pathogen by these methods, and performed a paired t-test (Demišar and Schuurmans, 2006) between BNMP and the other methods (see Figure 5). The result is that all the p-values are less than 0.05, indicating that the proposed approach is a significant advance over the previous approaches and has better prediction ability.




Figure 4 | Comparison of five methods. (A) ROC curves. (B) PR curves.






Figure 5 | Paired t-test for the AUROC and AUPR values of pathogens between BNMP and other methods. (A) Box-and-whisker plot of AUROC values with p-values. (B) Box-and-whisker plot of AUPR values with p-values.





Validation via Biological Evidence

Most data sources use text mining algorithms to obtain the original interaction data. Due to the limitation of the development of pathogen–host interaction text mining algorithms, the existing open data sources can only cover a part of pathogen–host interaction data. To further test the ability of BNMP to predict potential pathogen–host associations, we rank pathogen–host pairs without relations in existing data sets according to association scores and search the public literature to see whether there is evidence that pathogens and hosts with higher association scores have relations. It is found that among the top 20 pathogen–host pairs without relations in the existing data set, biological experiments have verified that 16 pairs have associations (Table 2); these 16 pairs are ranked lower by the other four methods. The pair of pathogen Serratia marcescens and host Mus musculus ranks 1st. Iwaya A et al. studied the clinical application and evaluation of rapid and quantitative detection of blood Serratia marcescens by a real-time PCR assay in a mouse infection model (Iwaya et al., 2005). The pair of pathogen Cronobacter turicensis and host Mus musculus ranks 3rd. Tóthová Ľ et al. used Cronobacter turicensis to infect female mice to prove the effects of isolated Cronobacter-specific phages on renal colonization in a model of urinary tract infection in mice (Tóthová et al., 2011). The pair of pathogen Escherichia coli O157:H7 and host Mus musculus ranks 4th. Tanji Y et al. found that repeated oral administration of SP15-21-22 can effectively treat mice infected with Escherichia coli O157:H7 (Tanji et al., 2005). The pair of pathogen Acinetobacter nosocomialis and host Homo sapiens ranks 5th. Visca P et al. discussed the infection mechanism and threats of Acinetobacter nosocomialis and other Acinetobacter species to humans (Visca et al., 2011). The pair of pathogen Stenotrophomonas maltophilia and host Mus musculus ranks 6th. Bacterial adhesion to mouse tracheal mucus as the role of flagella in the adhesion process were investigated using clinical isolates of Stenotrophomonas maltophilia (Zgair and Chhibber, 2011). The pair of pathogen Sclerotinia sclerotiorum and host Nicotiana tabacum ranks 7th. Researchers carried out a preliminary evaluation of the potential of polyamine biosynthesis inhibition a strategy for the control of plant diseases initiated by S. sclerotiorum ascospores, using tobacco (Nicotiana tabacum) leaf discs as an experimental system (Garriz et al., 2010). The 8th-ranking confirmed pair is pathogen Pseudomonas aeruginosa and host Oryctolagus cuniculus. Researchers have determined the pharmacokinetics and adverse effects following SC administration of ceftiofur crystalline free acid (CCFA) in Oryctolagus cuniculus by using Pseudomonas aeruginosa and other bacterium (Gardhouse et al., 2017). The 9th-ranking confirmed pair is pathogen Enterococcus faecalis and host Homo sapiens. A study showed that an 88-kDa secreted protein, endoglycosidase (Endo) E, which is most likely responsible for the activity of the human pathogen Enterococcus faecalis, degrades the N-linked glycans of human RNase B to acquire nutrients (Mattias and Fischetti, 2004). The pair of pathogen Alternaria citri and host Citrus reticulate ranks 10th. Reasearchers found that the phytopathogenic fungus, Alternaria citri (Alternaria alternata pathotype citri), produces a complex of analogous toxins (ACTG-toxin) that selectively damages Dancy tangerine (Citrus reticulata) and other mandarin cultivars (Kohmoto et al., 1979). The pair of pathogen Mycobacterium marinum and host Homo sapiens ranks 12th. Flowers found that a person was infected with Mycobacterium marinum by being bitten by a dolphin and thus associated human mycobacterial infection with an aquatic mammal (Flowers, 1970). The 14th score is the pair of pathogen Mycobacteroides abscessus and host Homo sapiens. Mycobacterium abscessus is one of the common species that causes disseminated infections in patients with cystic fibrosis. It has been reported that NLRP3 inflammasome activation contributed to antimicrobial responses against M. abscessus in human macrophages and that its activation was dependent on dectin-1/Syk signaling (Hye-Mi et al., 2012). The pair of pathogen Alternaria alternata and host Solanum lycopersicum ranks 15th. A study evaluated whether 1-MCP treatment could affect postharvest decay caused by A. alternata, B. cinerea, and Fusarium spp. in Solanum lycopersicum (Hai and Gubler, 2012). The 16th-ranking association is the pair of pathogen Enterococcus faecium and host Homo sapiens. A previous study was performed to determine whether resistance genes from an E. faecium isolate of animal origin could be transferred to a human E. faecium isolate in the intestines of human volunteers without any selective antimicrobial pressure (Lester et al., 2006). The 17th pair of pathogen and host is Fusarium oxysporum and Nicotiana tabacum. Jennings et al. found that protein Nep1 from Fusarium oxysporum inducted defense responses in tobacco (Jennings et al., 2001). The 19th potential link is Pectobacterium carotovorum and Arabidopsis thaliana. The study indicated that Arabidopsis thaliana were infected with Pectobacterium carotovorum (Lee et al., 2012). The 20th potential link is pathogen Mycoplasma agalactiae and host Mus musculus. Smith G R. et al. used Mycoplasma agalactiae to infect mice to verify the toxicity of the Mycoplasma agalactiae (Smith, 1967). Based on the above findings, one can argue that BNMP is very efficient in predicting associations between pathogens and hosts.


Table 2 | Pathogen–host pairs predicted using BNMP and their rank according to five methods.






Discussion

In this study, we focus on the problem of pathogen–host association prediction. To consider the relations of pathogens and hosts comprehensively, we adopt the pattern of local before global, proposing a novel approach, BNMP. The method is based on bipartite network modules and integrates module information of pathogens and hosts, respectively, into a bipartite network projection model to improve prediction performance. Where the host is the seed, the time complexity of acquiring the association score vector between the seed and all pathogens is O(ms3t), where m is the degree of the seed. Hence, the time complexity of acquiring Spathogen−host is O(es3t), where e is the number of associations in the host-pathogen association network. Similarly, the time complexity of acquiring   is O(et3s). BNMP has a time complexity of O(est(s2+t2)), namely O(es3t) when s>t and O(et3s) when t>s. Experimental results show that BNMP achieved better prediction performance compared with other efficient methods.

Although BNMP is used here in pathogen–host association prediction, it can also be applied to association analysis in other fields, such as miRNA–disease association prediction, drug–target interaction prediction, and drug–cell line response prediction. Hence, our study has a wide range of uses. Module-based information can help improve the score in the bipartite network because more information related to the nodes in a network is included in the predictive model, which avoid missing the information of neighbors. Although BNMP performs well on the existing data set, the number of associations between pathogens and hosts in the data set is insufficient, which affects the performance of the proposed method. As more association relationships are found or added into databases and more information about regulatory modules (Chen et al., 2019a; Chen et al., 2019b) is employed in the future, the prediction performance of BNMP should further improve.
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Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and is an important medical problem worldwide. However, the use of current therapies for HCC is no possible to be cured, and despite numerous attempts and clinical trials, there are not so many approved targeted treatments for HCC. So, it is necessary to identify additional treatment strategies to prevent the growth of HCC tumors. We are looking for a systematic drug repositioning bioinformatics method to identify new drug candidates for the treatment of HCC, which considers not only aberrant genomic information, but also the changes of transcriptional landscapes. First, we screen the collection of HCC feature genes, i.e., kernel genes, which frequently mutated in most samples of HCC based on human mutation data. Then, the gene expression data of HCC in TCGA are combined to classify the kernel genes of HCC. Finally, the therapeutic score (TS) of each drug is calculated based on the kolmogorov-smirnov statistical method. Using this strategy, we identify five drugs that associated with HCC, including three drugs that could treat HCC and two drugs that might have side-effect on HCC. In addition, we also make Connectivity Map (CMap) profiles similarity analysis and KEGG enrichment analysis on drug targets. All these findings suggest that our approach is effective for accurate predicting novel therapeutic options for HCC and easily to be extended to other tumors.

Keywords: hepatocellular carcinoma (HCC), drug repositioning, mutated genes, kernel genes, gene expression


INTRODUCTION

Identifying a cure for cancer is a difficult, costly and often inefficient process (Adams and Brantner, 2006). Drug repositioning, i.e., the discovery of new indications of existing drugs, beyond their original indications, is an increasingly attractive new-use discovery model. In addition to saving time and money, one advantage of the drug reuse approach is that existing drugs have been reviewed for safety, dose and toxicity (Ashburn and Thor, 2004; Fathima et al., 2018; Su et al., 2019; Yu et al., 2019). As a result, repurposed drugs usually go into clinical trials faster than newly developed drugs (Yu et al., 2017a, 2018). The rapid development of genomics has resulted in the generation of genomic and transcription group data from disease samples, normal tissue samples, animal models and cell lines. Transcriptomic profiles, such as gene expression data, are most widely used for drug repositioning (Yu et al., 2016). A key data source behind several re-use efforts is the Connectivity Map (CMap) (Lamb et al., 2006), which generated large-scale gene expression profiles in human cancer cell lines treated with different drug compounds under different conditions. The CMap method attempts to provide a more comprehensive view of this transcription data and use them to connect expression profiles across conditions (Lamb et al., 2006). In particular, it suggests that if there is a strong negative correlation between disease characteristics and drug expression characteristics, the drug may have a therapeutic effect on the disease. For example, by systematically comparing the gene expression characteristics of GEO-derived inflammatory bowel disease (IBD) with the gene expression characteristics of a group of 164 drug compounds from CMap, Dudley et al. (2011) predicted several interesting new drug-disease pairs and, in the IBD preclinical model, validated one pair. Yu et al. (2015) proposed a method that discovered the drug-disease association based on protein complexes. In another case, Jahchan et al. (2013) applied a drug repurposing bioinformatics method to identifying antidepressant drugs for the treatment of small cell lung cancer through querying a large compendium of gene expression profiles. Although many machine learning-based methods have been developed by using features (Zhang et al., 2017, 2018a,b, 2019), more and more literature supports the usage of CMap for drug repositioning; despite this, there are still problems. A candidate can often be strengthened using independent disease signatures. But disease signatures are often selected by statistical methods, they are lack of biological information.

Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and is an important medical problem worldwide (El-Serag and Mason, 1999; Yu et al., 2017b). HCC is usually caused by infection with hepatitis B virus (HBV) (Chang and Liu, 2016) and hepatitis C (HCV) (Lingala and Ghany, 2015), exposure to aflatoxin B1 from Aspergillus (Kew, 2013), alcohol abuse (Abenavoli et al., 2016), or non-alcoholic fatty hepatitis (Charrez et al., 2016). However, the use of current therapies for HCC is no possible to be cured, and despite numerous attempts and clinical trials, there are not so many approved targeted treatments for HCC. So, it is necessary to identify additional treatment strategies to prevent the growth of HCC tumors.

Many diseases, but especially cancer, are related with abnormal genomes and transcription landscapes (Chakravarthi et al., 2016; Tang et al., 2018). In this study, we seek to use systematic drug repositioning bioinformatics to identify new drug candidates for the treatment of HCC. First, we screen the collection of HCC feature genes that frequently mutated in most samples of HCC based on human mutation data. Then, the gene expression data of HCC in TCGA are combined to classify the gene set of HCC. Finally, the therapeutic score (TS) of each drug is calculated based on the kolmogorov-smirnov statistical method. Using this strategy, we identified five drugs that associated with HCC, including three drugs that could cure HCC and two drugs that might have bad effect on HCC. In addition, we also make CMap (Lamb et al., 2006) profiles similarity analysis and KEGG enrichment analysis on drug targets. All these findings suggest that our approach is effective for accurate discovering novel therapeutic options for HCC and easily to be extended to other tumors.



MATERIALS AND METHODS


Datasets
 
HCC Gene Expression Data

The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer by applying genomic analysis techniques, including large-scale genome sequencing. TCGA researchers aim to catalog and discover major changes to the cancer-causing genome to create a comprehensive “atlas” of cancer genomes. So far, the project analyzed groups of more than 30 human tumors through large-scale genome sequencing and integrated multidimensional analysis.

We download the gene expression profiles of HCC from TCGA, and there are 423 samples in the data set. The type of a sample is distinguished by the barcode provided by TCGA. If the fourth part of the barcode of one sample is in the range from 01 to 09, the sample is a cancer sample. If the fourth part of the barcode in the range from 10 to 19, the sample is a normal sample. The specific introduction to the barcode can be found in TCGA help file. First, we obtain gene expression matrix data (20,501 × 423), which contains 373 cancer samples, 50 normal samples, and 20,501 genes. Then, we standardize the expression values of all genes as follows:
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where gij represents the expression value of gene i in sample j, and mean (gi) and std (gi), respectively represent mean and standard deviation of the expression vector for gene i across all samples. Finally, we use Limma (Ritchie et al., 2015) to analyze cancer and normal samples and get the log FC value of each gene. The definition of log FC is as follows:
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where log FCi is the log FC value of gene i; zik is the normalized expression of gene i in sample k [see formula (1)]; T is the set of cancer samples (|T| = 373); N is the set of normal samples (|N| = 50).

For a gene, if its |log FC| ≥ 1 and p− > value ≤ 0.02, it is a differentially expressed gene. The thresholds of log FC and p− > value refer to Dalman et al. (2012).



Gene Expression Data Related to Drugs

The gene expression data related to drugs is downloaded from the CMap (http://www.broadinstitute.org/cmap/) database. It contains 6,100 instances which cover 1,309 drugs. These instances are measured on five types of human cancer cell lines, including the breast cancer epithelial cell lines MCF7 and ssMCF7, the prostate cancer epithelial cell line PC3, the nonepithelial lines HL60 (leukemia) and SKMEL5 (melanoma).



SNP Mutation Data of HCC

We download the single nucleotide polymorphism (SNP) gene mutation data of HCC from TCGA database. The SNP mutation data contains 373 cancer patient sample files, and each sample file contains the detailed descriptions of all the mutated genes. Since the mutation frequency of each gene across all samples is different, we select genes with relatively high mutation frequency for further analysis. Here, the mutation frequency is set to be no less than 11 (11 = 373 × 3%), that is a gene mutated in at least three percent of all samples. These genes are defined as frequently mutated genes. Finally, we find 406 frequently mutated genes.




Methods
 
Defining the Feature Gene Set of HCC

According to the data analysis we have done in section Datasets, we can divide the 20,501 genes into three classes based on their mutation frequency and differential expression value. One category is the kernel genes, which mutate frequently. The second category is the secondary genes, which do not mutate frequently but differentially express. The third category is the marginal genes, which neither mutate frequently nor differentially express.

In our work, we take the 406 kernel genes, i.e., frequently mutated gene, as the feature gene set of HCC.



Calculating the Therapeutic Scores of Drugs

We select kernel genes as the feature genes of HCC and rank them in descending order based on their differential expressions. For a gene, if its log FC value is >0, it is stored in up-regulated gene set. Otherwise, it is stored in down-regulated gene set. Finally, we get two ordered gene lists for HCC: the up-regulated gene list (Gup) and the down-regulated gene list (Gdown).

We get 6,100 gene expression instances covered 1,309 drugs from CMap database. In other words, a drug may correspond to multiple instances. We rank the genes in each instance by their differential expression values between drug-treated and drug-untreated cell lines. In this way, we get 6,100 drug-related gene lists. Therefore, based on kernel genes and 6,100 drug-related gene expression instances, we use a non-parameter, ranking-based pattern matching strategy that was originally introduced by Lamb et al. (2006) to evaluate the relationship between drugs and HCC.

We take each ranked drug expression profile as reference signature and assess their similarity to HCC. We compute a connectivity score separately for the set of up- or down-regulated genes: ESup or ESdown. The computational formulas as follows (Lamb et al., 2006):
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Where n represents the total number of genes in the reference drug expression profile; m represents the size of Gup or the size of Gdown; p represents the position of the input set (p = 1…m); V(p) is the position of the pth input gene in the gene list of drug expression profile.

The therapeutic score (TS) of a drug is calculated as follows:
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If the up-regulated genes are near the top (up-regulated) of the rank-ordered drug gene lists and the down-regulated genes are near the bottom (down-regulated) of the rank-ordered drug gene lists, we can get high positive therapeutic scores (TS), which indicate the drugs and HCC have similar expression profiles and the drugs might aggravate HCC. On the other hand, if the up-regulated pathway genes are near the bottom of the rank-ordered drug gene lists and the down-regulated pathway genes are near the top of the rank-ordered drug gene lists, we can get negative therapeutic scores (TS), which imply the given drugs and HCC have adverse expression profiles and the drugs could be treatment candidates for HCC.





RESULTS


Analysis of Disease Characteristics of HCC

We characterize the kernel, secondary, and marginal genes in the context of protein interaction (PPIs) network, PubMed (www.ncbi.nlm.nih.gov/pubmed), and Gene Ontology (Ashburner et al., 2000) term annotation. The Human Protein Reference Database (HPRD) (Prasad et al., 2009) is a protein database for experimentally derived information about human proteomics, including protein and protein interactions (Ding et al., 2016; Wei et al., 2017a), post-translational modifications (PTMs) (Wei et al., 2017b) and other information. We download all human PPIs from this database, containing 15,231 proteins and 38,167 interactions. Interestingly, we find that all three gene types had heterogeneous degree distribution, and that the kernel genes tend to have higher degrees than those of secondary and marginal genes (Figure 1A). Similarly, kernel genes are related with more PubMed records and Gene Ontology term annotation than secondary and marginal genes (Figures 1B,C).


[image: Figure 1]
FIGURE 1. Characteristics of the three gene types. (A) Average degree for three different gene types. (B) Average PubMed records associated for each gene type. (C) Gene Ontology terms annotated for each gene type. (A–C) The red rectangle represents kernel genes, the blue rectangle represents secondary genes, the gray rectangle represents marginal genes. (D) Type distribution of five kernel genes' direct neighbor genes. Green rectangle represents differentially expressed genes in HCC, and yellow rectangle represents frequently mutated genes in patients with HCC.


In order to analyze biological functions of kernel genes, we analysis the nine HCC pathogenic genes obtained from Online Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2005) from two aspects of gene mutation and expression level change. These eight HCC pathogenic genes (Table 1) are IGF2R, CASP8, MET, PDGFRL, TP53, PIK3CA, CTNNB1, and AXIN1. We find that five (IGF2R, TP53, PIK3CA, CTNNB1, AXIN1) of these genes are belong to kernel genes, these genes are frequent mutations, but their expression level don't change significantly. For direct neighbors in PPIs of these five genes, we find that there are frequently mutated or differentially expressed genes (see Figure 1D) among their direct neighbors. TP53 is a quite important tumor suppressor gene, which can translate and synthesize protein P53. P53 protein is a vital regulator for cell growth, proliferation and injury repair. For the direct neighbors of TP53, there are 27 frequently mutated genes, and 11 differentially expressed genes. CTNNB1 gene can encode β-catenin, a dual function protein that involves in regulation and coordination of cell–cell adhesion and gene transcription (Nollet et al., 1996). Recent study of HCC has shown that CTNNB1 gene mutations and overexpression of its encoded protein are closely related to occurrence, progression and prognosis of tumor (Kitao et al., 2015). CTNNB1 has 7 frequently mutated direct neighbors, and 9 differentially expressed direct neighbors. The above analysis results show that the kernel genes selected by mutation and expression information contain more comprehensive biological knowledge and to some extent, the characteristics of HCC can be depicted.


Table 1. HCC related genes extracted from OMIM.
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Choosing Potential HCC Drugs Through CTD Benchmark

To find most likely HCC-related drugs, we need evaluate the precision of our method firstly. We take Comparative Toxicogenomics Database (CTD) (Davis et al., 2015) as benchmark. CTD supplies manual collated information about drug-gene, drug-disease, and gene-disease interactions. Curated chemical-disease relationships are obtained from the published literature by CTD biocurators and inferred relationships are set up via CTD curated chemical-gene associations.

For a drug in CMap, if it cannot find corresponding chemical name in CTD, we will not calculate its therapeutic score (defined in section “Methods”). In this way, we finally get 1168 scored drugs. Because most drug-disease associations in CTD are not marked as positive or negative, we rank the 1168 drugs in descending order by the absolute values of their therapeutic scores. We know the top drugs imply stronger connections with HCC. And then we calculate the precisions of our approach at different top-x drugs, which are shown in Figure 2. The precision is calculated as follows:

[image: image]

where P represents the number of top-x drugs, i.e., P = x; PCTD represents the number of drugs in the top-x drugs, which can be found related with HCC in CTD database.


[image: Figure 2]
FIGURE 2. The precision of our approach at different top-x drugs.


We find in the top-10 drugs (x = 10), there are 9 drugs associated with HCC in CTD. That is to say, the precision is 0.9. For the top-20 drugs (x = 20), the precision is 0.85 and there are three potentially HCC-related drugs. When x is 30, its precision is 0.83 and we get five potential drugs with HCC. From the Figure 2, we notice that with the increase of x, the precision declines and the number of potential drugs increases. We aim to predict relatively more HCC-related drugs with high precision. Then, we choose top-30 (x = 30) drugs for further analysis.



Validating Potentially HCC-Related Drugs Through Pubmed Literature

In the above section, we choose the top-30 drugs (precision = 0.83) for further analysis. There are 19 therapeutic drugs with negative TS values in the top-30 drugs, shown in Table 2. Sixteen of them can be found having connections with HCC in CTD (Davis et al., 2015). Three of the 16 drugs are marked as therapeutic drug (Rank = 1, Rank = 9, Rank = 11, and Evidence = “T” in Table 2) for HCC. Meanwhile, one drug is marked as marker/mechanism drug (Rank = 15, Evidence = “M” in Table 2) for HCC and the other 12 inferred drugs are unmarked in CTD. Here, we can indicate these 12 unmarked drugs are possibly therapeutic drugs for HCC. The rest three drugs (Securinine, Mercaptopurine, and Reserpine) are newly predicted ones by our method, which are marked as bold in Table 2. Based on PubMed, we analyze the three drugs further. PubMed, a free resource, is developed and maintained by the National Center for Biotechnology Information (NCBI) at the National Library of Medicine (NLM). PubMed comprises more than 26 million inferrederences and abstracts on life sciences and biomedical topics.


Table 2. Nineteen therapeutic drugs for HCC in the Top-30 drugs.

[image: Table 2]

Securinine (Rank = 4 in Table 2), a quinolizine pseudoalkaloid (not from amino acid) from securinega suffurutiosa or securinini nitras, is one of central nervous stimulants and clinically applied to treat amyotrophic lateral sclerosis (ALS) (Buravtseva, 1958), poliomyelitis (Copperman et al., 1973) and multiple sclerosis (Copperman et al., 1974). It is found to be active as a gamma-aminobutyric acid (GABA) receptor antagonist (Perez et al., 2016). GABA is the main inhibitory neurotransmitter of the central nervous system and plays an important role in reducing neuronal excitability throughout the nervous system. Studies show that GABA stimulates HCC cell line HepG2 growth (Lu et al., 2015). Consequently, it means that securinine is a promising agent with therapeutic potential for HCC through inhibiting GABA receptor. Figure 3A gives a diagram of the possible mechanism of the treatment of HCC by securinine.


[image: Figure 3]
FIGURE 3. Diagrams of the possible mechanism of between HCC and two drugs. (A) A possible mechanism of securinine treating HCC. Securinine has been found to be active as a γ-amino butyric acid (GABA) receptor antagonist. GABA stimulates HCC cell line HepG2 growth. Consequently, it means that securinine is a promising agent with therapeutic effect on HCC patients through inhibiting GABA receptor. (B) A possible mechanism of thioguanine aggravating HCC. Thioguanine is a guanine analogs and it can decrease the expression of CDKN3. But, CDKN3 gene inhibits tumor growth by controlling mitosis. Hence, thioguanine may get aggravating effect on HCC patients.


Mercaptopurine(6-MP, Rank = 10 in Table 2) is a drug for cancer and autoimmune diseases (Sahasranaman et al., 2008). As a purine analog, mercaptopurine belongs to purine antagonist anti-metabolic drugs (Thackery, 2002). 6-MP nucleotides inhibit the synthesis and metabolism of pure nucleotides by inhibiting an enzyme called phosphoribosyl pyrophosphate (PRPP) amidotransferase PRPP Amidotransferase is a rate-limiting enzyme for pure synthesis (Zollner, 1982). This changes the synthesis and function of RNA and DNA. Mercaptopurine interferes with nucleotide conversion and glycoprotein synthesis. This makes the mercaptopurine can effectively inhibit the synthesis of DNA, thereby inhibiting the growth of tumor cells (Cara et al., 2004). At present, although there is no direct experiment that mercaptopurine can inhibit the growth of HCC cells, it is used to treat acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), Crohn's disease and ulcerative colitis (Joint Formulary Committee, 2011). In summary, mercaptopurine is likely to achieve a certain effect on HCC.

Reserpine (Rank = 17 in Table 2) is an antipsychotic and antihypertensive drug (Bridgwater and Sherwood, 1960) used to control hypertension and relieve psychotic symptoms (Arnt et al., 1985). The results of Gwak et al. (2009) showed that reserpine could reduce the expression level of CCND1 gene and its encoded protein. The CCND1 gene encodes the cyclin D1 protein. Cyclin D1 protein is a member of the circulatory protein family, involved in regulating cell cycle progression. This protein plays a key role during the transition from the G1 phase, in which the cell grows, to the S phase, during which DNA is replicated. Overexpression of this protein allows cells to be easily crossed G1/S checkpoint that limits the growth of cells, which promotes tumor hyperplasia and is therefore considered to be an oncoprotein (Donnellan and Chetty, 1998). Some studies have found that CCND1 gene is over-expressed in HCC (Xu et al., 2004). Thus, reserpine can potentially be used as an agent against HCC.

The other 11 drugs with negative TS values are shown in Table 3. They are possible to aggravate HCC. Nine of them have been found having relationships with HCC in CTD database and we can infer these relationships are possibly negative. The remaining 2 drugs (Tioguanine, Rifabutin) are newly potential drugs for aggravating HCC marked as bold in Table 3. We will investigate the two drugs (Tioguanine, Rifabutin) based on PubMed.


Table 3. Eleven aggravating drugs for HCC in the Top-30 drugs.

[image: Table 3]

Tioguanine, also known as thioguanine, (Rank = 6 in Table 3) is a guanine analogs, with cell cycle specificity, for the S cycle of the strongest cell sensitivity. In addition, thioguanine can inhibit the synthesis of guanosine nucleoside, by inhibiting the biological activity of guanylate kinase, the drug can inhibit the guanosine monophosphate (GMP) phosphoric acid to guanosine bisphosphate (GDP) transformation process (Golan, 2011). Thibird is a drug used to treat acute myeloid leukemia (AML) (Gill et al., 1982), acute lymphoblastic leukemia (ALL) (Marmont and Damasio, 1973) and chronic myeloid leukemia (CML) (Yang et al., 2006). In 2005, Ganter et al. showed that CDKN3 expression was significantly decreased after a period of administration of thioguanine (Ganter et al., 2005). The CDKN3 gene inhibits tumor growth by controlling mitosis, which is a tumor suppressor gene (Nalepa et al., 2013). Dai et al. found that CDKN3 expression in patients with HCC was significantly lower than that in normal humans. CDKN3 knockout experiments indicated that CDKN3 could inhibit tumor growth (Dai et al., 2016). A possible mechanism of thioguanine aggravating HCC is shown in Figure 3B. Therefore, in order to ensure the effectiveness of the treatment, clinical patients should avoid HCC patients taking thioguanine.

Rifabutin (Rank = 7 in Table 3) is a piperazine-containing rifamycin derivative, the drug has a broad spectrum of antibacterial activity. It can able to bind to the β-subunit of RNA polymerase and inhibit RNA polymerase activity, thereby reducing the number of RNA synthesis of bacterial (Beard, 2001). Rifabutin has been approved to prevent and treat disseminated infections of mycobacterium mycobacterium complex (MAC) carried by HIV-infected persons (Arevalo et al., 1997), and it is also used to treat multidrug-resistant tuberculosis (Skolik et al., 2005). Kobayashi et al. find that rifabutine will lead to an increase in the expression of cytochrome P450 3A4 (CYP3A4) in liver tissue (Nakajima et al., 2011). CYP3A4 is an important metabolic enzyme, belongs to the cytochrome P450 family. It is also the most important component of adult liver microsomes CYP450, this gene is expressed in the intestinal, liver and kidney (Hashimoto et al., 1993). However, Fanni et al. find a significant increase of expression of CYP3A4 in HCC patients and overexpression of CYP3A4 gene could result in drug degradation or even a decreased therapeutic effect (Fanni et al., 2016). Therefore, for both suffering from HCC and tuberculosis patients, doctors should avoid using rifabutin to treat tuberculosis.



Analyzing Potentially HCC-Related Drugs Through CMap Database

The CMap database can not only be applied to calculate drug-disease correlations, but also can be used to identify connections between two drugs. In particular, for a same disease, if two drugs have strongly positive relationship, they may have similar effects on this disease. On the contrary, if their relationship is negative, they may have opposite effects. In this section, we further analyze the five predicted drugs (three therapeutic drugs shown in Table 2: securinine, mercaptopurine and reserpine; two aggravating drugs shown in Table 3: tioguanine and rifabutin) based on CMap and estimate their correlations [evaluated by formula (6)] with known HCC drugs marked as “therapeutic” in CTD database. The results are shown in Table 4.


Table 4. The relationships of five predicted drugs with known HCC therapeutic drugs in CTD.

[image: Table 4]

For the three potentially therapeutic drugs (securinine, mercaptopurine and reserpine) marked as bold in Table 4, we find that they all have strong positive correlation with known drugs for HCC. Securinine yields highly positive connectivity score [calculated by formula (6)] with drugs daunorubicin, troglitazone and paclitaxel. Mercaptopurine is found having strongly positive relationships with drugs estradiol, dexamethasone, sirolimus, and troglitazone. Reserpine gets high positive connectivity scores with drugs roxithromycin and resveratrol. For the two potentially aggravating drugs (tioguanine and rifabutin) in Table 4, they all have negative relationship with known HCC drugs. Tioguanine has high negative connectivity scores with drugs genistein, sirolimus, indomethacin, and paclitaxel. Rifabutin have clear negative connection scores with drugs calcium folinate and estradiol.



Overlap Between Pathways Associated With Predicted Drugs and HCC-Related Tissue-Specific Pathways

In this part, we further analyze the relationship between these five drugs (three therapeutic drugs: securinine, mercaptopurine and reserpine; two aggravating drugs: tioguanine and rifabutin) and HCC from the point of view of drug targets. First, we get the target set of drugs from DrugBank (Law et al., 2014) because DrugBank contains the most complete information on drug and drug targets. Then, we use DAVID (Huang et al., 2009) to obtain all the KEGG (Kanehisa et al., 2010) pathways of the drug target. The p-value is set to be less than or equal to 0.05. The results are shown in Table 6.

From Table 5, it can be seen that securinine and tioguanine have no corresponding target information in the DrugBank database. So we can't enrich their associated pathways. Mercaptopurine has two drug targets, and we find five KEGG pathways related to them. Reserpine has two drug targets, which are included in seven KEGG pathways. Rifabutine has five drug targets, and nine KEGG pathways are enriched to them.


Table 5. Pathway enrichment analysis result of five selected drugs.
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In order to obtain the tissue-specific KEGG pathways of HCC, firstly, the eight genes (see Table 1) related to HCC are extended through obtaining their direct neighbors in liver-specific protein-protein interaction (PPI) network got from GIANT (Greene et al., 2015). Then, we obtain a subnetwork from the liver PPI network, which contains 57 genes and 838 edges with weight ≥ 0.1. Finally, by using DAVID tool, we obtain 12 KEGG pathways related to the 57 genes (see Table 6). The parameters of DAVID are fixed as: p-value = 0.001 and count = 5.


Table 6. Twelve enriched tissue-specific KEGG pathways with HCC.
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We find that there are four pathways related to mercaptopurine have common genes with the 12 tissue-specific KEGG pathway of HCC. The interactions between the four pathways and the 12 tissue-specific KEGG pathway of HCC is shown in Figure 4. The gray edges indicate that there are common genes between two pathways, and the more genes there are, the wider the edges in the network. “Metabolic pathways” have common genes with seven tissue-specific KEGG pathways of HCC. Though there is only one edge between “purine metabolism” and HCC related pathway, the edge is very wide, indicating that there are a lot of common genes. These overlap genes between the pathways of mercaptopurine and HCC tissue-specific KEGG pathways show that mercaptopurine has a potential effect on treating HCC.


[image: Figure 4]
FIGURE 4. Pathway analysis of mercaptopurine. The purple circles represent pathways related to mercaptopurine, and the green circles represent the tissue-specific KEGG pathways of HCC. The gray edges indicate that there are common genes between two pathways, and the more genes there are, the wider the edges in the network.


For drug reserpine, there are six pathways have common genes with the 12 tissue-specific KEGG pathway of HCC. Their relationships are shown Figure 5. For example, “serotonergic synapse” has common genes with ten pathways of HCC. “Dopaminergic synapse” has common genes with nine pathways of HCC. Overall, drug reserpine has more overlapping pathways with HCC, and more genes overlap between pathways. The results indicate that drug reserpine is likely to become the treatment of HCC.


[image: Figure 5]
FIGURE 5. Pathway analysis of reserpine. The purple circles represent pathways of reserpine, and the green circles represent the tissue-specific KEGG pathways of HCC. The gray edges indicate that there are common genes between two pathways, and the more genes there are, the wider the edges in the network.


For the potential aggravating drug rifabutine, we also analyze its pathway overlap with HCC. We try to explain the possible reasons for its aggravating HCC in terms of pathway overlap. Two pathways of rifabutine (“Pathways in cancer” and “Prostate cancer”) are overlapped with pathways of HCC highlighted in Table 6. The interactions between the pathways and the 12 tissue-specific pathways of HCC is shown in Figure 6. Two overlapping pathway nodes are colored in two colors (purple and green) in Figure 6. We find the pathways of rifabutine have a very large number of overlapping genes with the pathways of HCC. This shows a strong correlation between rifabutine and HCC, confirming our prediction on the other hand.


[image: Figure 6]
FIGURE 6. Pathway analysis of rifabutine. The purple circles represent pathways of the rifabutine, and the green circles represent tissue-specific KEGG pathways of HCC. Nodes with two colors represent overlapping pathways for rifabutine and HCC. The gray edges indicate that there are common genes between two pathways, and the more genes there are, the wider the edges in the network.





DISCUSSIONS

We propose a method based on the combination of gene mutation data and differential expression data. First, we select the feature genes of hepatocellular carcinoma (HCC) that frequently mutated in most samples of HCC based on human somatic mutation data. Then, the gene expression data of HCC in TCGA are combined to classify the genes related to HCC. Finally, the therapeutic score (TS) of each drug is calculated based on the kolmogorov-smirnov statistical method. By this method, five drugs associated with HCC are obtained, including three drugs that could be the potential treatment for HCC and two drugs that might have side effect on HCC. There are advantages in our method. First, we take into account the essential impact of genetic changes on HCC. Secondly, we integrate multiple data to define the type of a gene. Finally, our method can clearly distinguish positive and negative relationships between drugs and HCC.

In the future, as more and more drug-related data continues to be generated, such as cell lines, gene expression and mutation data, we will further improve our computational model and predict more accurate potential drugs for the treatment of HCC.
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Meta-analysis, which combines the results of multiple studies, is an important analytical method in genome-wide association studies. In genome-wide association studies practice, studies employing meta-analysis may have overlapping data, which could yield false positive results. Recent studies have proposed models to handle the issue of overlapping data when testing the genetic main effect of single nucleotide polymorphism. However, there is still no meta-analysis method for testing gene-environment interaction when overlapping data exist. Inspired by the methods of testing the main effect of gene with overlapping data, we proposed an overlapping meta-regulation method to address the issue in testing the gene-environment interaction. We generalized the covariance matrices of the regular meta-regression model by employing Lin’s and Han’s correlation structures to incorporate the correlations introduced by the overlapping data. Based on our proposed models, we further provided statistical significance tests of the gene-environment interaction as well as joint effects of the gene main effect and the interaction. Through simulations, we examined type I errors and statistical powers of our proposed methods at different levels of data overlap among studies. We demonstrated that our method well controls the type I error and simultaneously achieves statistical power comparable with the method that removes overlapping samples a priori before the meta-analysis, i.e., the splitting method. On the other hand, ignoring overlapping data will inflate the type I error. Unlike the splitting method that requires individual-level genotype and phenotype data, our proposed method for testing gene-environment interaction handles the issue of overlapping data effectively and statistically efficiently at the meta-analysis level.
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Introduction

Numerous associations between human traits or diseases and single nucleotide polymorphisms (SNPs) have been identified by genome-wide association studies (GWAS) (Manolio, 2010). Meta-analysis combines the results from multiple studies to increase the effective sample size and statistical power of the association test (Fleiss, 1993; Borenstein et al., 2009). It has played an important role in finding the genetic architectures of complex traits and diseases.

Many meta-analysis methods are used in GWAS (Eleftheria and John, 2009). The fixed effect model is a commonly used method. It assumes that there are the same effect sizes across different studies. This method is effective if the heterogeneity among studies is small (Pfeiffer et al., 2009). Other methods, such as random effect models, are used in GWAS as well. They assume that the effect sizes of the studies follow a probability distribution due to the heterogeneity (Pereira et al., 2009). Recently, we proposed a new random effect method for testing the interaction between SNP and environment factor, which provides a higher power than the fixed effect methods when heterogeneity is large (Jin and Shi, 2019). The P-value based method (Fisher, 1967) was widely used earlier and has been abandoned because it does not include directions of effects under test; thus, it cannot provide an overall estimation of the effect size. The application of this method may lead to false positive results (Evangelou and Ioannidis, 2013). The Z scores method considers the direction of effect and its weight is estimated as the square root of the sample size of each study (Evangelou and Ioannidis, 2013). Bayesian methods (Kraft and Haiman, 2010) depend on the assumption of the prior distribution of the parameters and are usually computationally intensive. The subset method (Morris, 2011; Wen and Stephens, 2014) is similar to the fixed effect methods; however, it assumes that the effect exists only in a subset of the studies. All these classical methods assume that the studies have no overlapping samples, thus helping maintain independence among the summary statistics of the studies.

However, in GWAS practice, overlapping data between studies may occur. This may be caused inadvertently or intentionally by researchers. Spurious association may be achieved if overlapping data exist and are ignored in the meta-analysis (Lin and Sullivan, 2009; Han et al., 2016). Recently, meta-analysis methods, such as the P-value based method (Zaykin and Kozbur, 2010), subset method (Bhattacharjee et al., 2012), Bayesian method (Wen, 2014), fixed effect method (Lin and Sullivan, 2009), and random effect methods (Han and Eskin, 2011; Han et al., 2016) have been proposed for handling the overlapping data issue. All existing methods are for testing the SNP main effect. Lin’s method (Lin and Sullivan, 2009) is proposed for combining the results of case-control studies. It has been shown to yield higher and more robust power than the splitting method that removes the overlapped data in studies before calculating the study-level summary statistics. Han’s method (Han et al., 2016) involves modeling the covariance matrix of the estimated effects due to the overlapping data in fixed or random effect models and transforming the covariance matrix to be diagonal. The transformed matrix can then be synthesized by regular methods that assume independent data among studies.

Meta-regression (MR) (Xu et al., 2013) is an efficient meta-analysis method for testing SNP-environment interaction assuming independent data among studies. In MR, subjects in each study are divided into groups by the distribution of an environment variable. Then, the SNP main effects, standard errors, and the average environmental variables in each group are estimated using linear or logistic regressions. The SNP main effects and environmental variables across all groups are then collected and synthesized by MR. The overall main effect of the SNP, the effect of SNP-environment interaction, and the corresponding standard errors can be derived. The MR method is also shown to be robust when confounding effects exist (Shi and Nehorai, 2017).

Many complex diseases or traits are owing to the combination of effects of genetic factors, environment factors, and gene-environment interactions and involve in complex regulatory networks (Chen et al., 2019; Chen et al., 2019). Consider CDKN2A/B-rs10811661 as an example, which is associated with dyslipidemia. Researchers used CC/CT genotypes with a low-energy diet and a high frequency of exercise as the control group to study the effect of the interaction between rs10811661 gene polymorphism and energy intake and exercise on the level of blood lipid. The study found that the incidence of hypercholesterolemia was approximately 2 times higher in the TT genotype than in the control group and 1.5 times higher in the CC/CT genotype than in the control group (Mehramiz et al., 2018). The analysis of the genes and environment interactions can provide new insight into complex traits or disease mechanisms. However, a meta-analysis of SNP-environment interaction method with overlapping data does not exist currently. Data have to be split in studies such that every study contributes non-overlapped samples, i.e., the so-called splitting method. The splitting method requires the study-level genotype and phenotype data, which is usually unavailable for the meta-analysis. In addition, different ways of splitting samples may lead to different results.

In this paper, inspired by Lin’s method (Lin and Sullivan, 2009) and Han’s decoupling method (Han et al., 2016) for testing the SNP main effect, and based on MR, we propose the overlapping MR (OMR) method, which is a fixed effect MR model designed especially for handling overlapping data. The remainder of this paper is organized as follows: In the materials and methods section, we present the correlation matrices for the OMR method and then the method for testing the SNP-environment interaction. We also provide the relationship between MR and OMR. In the Results section, we simulate numerical examples and use them to examine the type I error and power of our method and the splitting method. We also show that the type I error is inflated with regular MR without considering overlapping samples. In the discussion and conclusion sections, we discuss the results and conclude the paper.



Materials and Methods

Based on Lin’s and Han’s correlation structures (Lin and Sullivan, 2009; Han et al., 2016), we generalized regular MR model for independent studies to consider studies with correlated summary statistics due to overlapping data. To describe our method clearly, we first briefly introduce the regular MR method.


Regular MR Method

Before the MR analysis, individuals in each study are first stratified into several groups according to their environmental measurements. The main effects of SNP at the group level can be estimated via linear regression as follows:

	

where Y is a quantitative phenotype, G is the code of the SNP, and E is the environmental measurement.

Assume that   is the estimate of the SNP main effect, and  is the estimate of the SNP main effect for the i-th study and the j-th group where i= 1,2,…,n, j=1,2,…,ni, The symbol n is the number of studies and ni denotes the number of groups in the i-th study, and  denotes the standard error in the j-th group of the i-th study. The mean environmental measurement in the j-th group of the i-th study is Eij. α is the regression coefficient vector of interest. The symbol X is the interest matrix and Xi is the interest matrix for the i-th study. ε is the standard error matrix and the εi is the standard error matrix for i-th study. In MR, the SNP effect is regressed on the environmental factor as follows:



where

	

and  .

α and Cov(α) are estimated by (Xu et al., 2013; Shi and Nehorai, 2017).



Under the null hypothesis H0:α2=0, Wald statistic for testing the SNP-environment interaction effect is  , which follows a 1 degree of freedom (df) χ2 distribution. Under the null hypothesis of H0:α=0, the Wald statistic for testing joint effects of the SNP and the interaction is  , which follows a 2 df χ2 distribution.

The model (1) can be specified as any nonlinear function of the environmental variable as necessary. For example, to test quadratic SNP-environment interaction, the model can be formulated as



where

	

The Wald statistic then follows a 2 df χ2 distribution when testing the two interaction effects simultaneously. The Wald statistic follows a 3 df χ2 distribution for testing the SNP main and interactions jointly (Xu et al., 2013).



Overlapping MR Method

Inspired by the methods for testing the SNP main effect with overlapping data (Lin and Sullivan, 2009), based on regular MR, we propose the OMR model for testing the SNP-environment interaction when data among studies are overlapped.

We consider the kernel process for modeling the correlations due to the overlapping data. Following Lin’s recommendation, the covariance matrix under the correlated studies can be modeled as follows (Lin and Sullivan, 2009):



where C is the correlation matrix. The dimensions of this matrix C are related to the number of studies and the group number of each study. The details of the correlation matrix will be presented in the next section.

Alternatively, the variance covariance matrix can be generalized according to Han’s suggestion as follows (Han et al., 2016):



where e is a vector of ones whose length is the sum of the number of groups among all studies. After this modification, the correlation matrix becomes a diagonal matrix. This matrix is highly likely to be positive semi-definite and the analysis of the positive semi-definite matrix is similar to the condition of case-control studies (Han et al., 2016).

Lin’s variance covariance matrix is equivalent to Han’s (Han et al., 2016). The variance covariance matrix based on Han’s formula (5) is more flexible. However, it is more computationally intensive. The method of Lin is simple in its mathematical form and calculation. In cases analyzing with existing programs that require studies to be independent, Han’s method can be applied.



Correlation Matrices

Lin and Sullivan (2009) developed a correlation matrix C for incorporating correlations among summary statistics of studies due to the overlapping data. The correlation of studies i and j is given as follows:



where ni and nj are the numbers of studies i and jrespectively, and nij is the number of overlapped individuals between the i-th and j-th studies.

When considering the MR method, this correlation can be modeled as follows:



where   and   are the sample sizes of the h-th group of study i and the k-th group of study j, and   is the number of overlapping samples between them. In this correlation structure, the block matrix that corresponds to each study is an identity matrix; that is, the diagonal block matrices of the correlation matrix are all identity matrices.



Hypothesis Testing

With the introduced correlation matrix, linear unbiased estimates   and   can be found as follows (Becker and Wu, 2007):



Under the null hypothesis α2=0, the Wald statistic for testing the SNP-environment interaction effect is given as follows:



This statistic follows a 1 df χ2distribution.

Under null distribution α=0 the Wald statistics for testing the SNP and the interaction joint effects are given as follows:



which follows a 2 df χ2 distribution.

OMR method can also be extended to test nonlinear SNP-environment interaction for overlapping method. This process is similar with model (1), the Wald statistic for the test of SNP-environment interaction and quadratic SNP-environment interaction follows a 2 df χ2 distribution. The Wald statistic for testing the SNP, SNP-environment interaction, and quadratic SNP-environment interaction interactions jointly follows a 3 df χ2 distribution.

As can be seen, our models are generalized versions of the regular MR. When the data of studies are independent, correlation matrix C is an identity matrix, and the two covariance matrices become



and



In this case, the covariance matrix is identical to that of the regular MR.




Results

We evaluated the type I error to ensure that the false positive rate is appropriately controlled by our proposed OMR method when overlapping data exist, that is, whether the empirical type I error rate is close to the specified level. We compared our method with the splitting method and regular MR method, which did not consider overlapping data. The power was then compared at different levels of sample overlap. We considered two scenarios where there were 100 and 400 overlapping subjects between every two studies.


Simulation

The quantitative phenotype Y was simulated as being related to G and E, which were the genotypes of the SNP and environment variables, respectively. The simulation model representing this relationship is given as follows:

	

Here, the SNP was assumed to have an additive genetic effect; the minor allele frequency was 0.3, and G was the code of SNP, which was the number of minor alleles. We generated random numbers by the runif function in R, then the values of G are determined by which intervals the random numbers fall into, and the intervals are determined by genotype frequency. Variable E was normally distributed, E~N(0,1). 10% of the variation in Y was explained by βEE. The fixed effects βG and βG×E varied in our simulated datasets. The random error ε was normally distributed with zero mean and its variance was chosen such that phenotypic variance is unit. The environment variable and error term were generated by the rnorm function in R. In all our numerical experiments, we considered meta-analyses of data from 2, 3, 4, 5, and 6 studies, each of which had 1,000 unrelated individuals. In each study, we simulated three variables: the phenotype Y, environmental E, and genotype SNP. Across studies, there were 100 or 400 overlapping samples between any two studies. Under each simulation setup, data were generated with 1,000 replicates.

We divided 1,000 unrelated individuals in each study into five groups according to the distribution of E, before meta-analyses. In each group, we applied linear regression to estimate the main effects βG, its corresponding error ε, and the mean environment variable E. Meta-analysis were performed with 2, 3, 4, 5, and 6 studies.


Type I Error

To obtain the type I error of the interaction test, the effect of the SNP-environment interaction was set to be zero and the SNP main effect explained 0.5% variance of the trait variance. The empirical type I error of our method was calculated by transforming the covariance matrix with overlapping data into a diagonal matrix and then using regular MR. Under this simulation, the test of empirical type I error of our method followed a 1 df distribution. The empirical type I error of the splitting method with two studies was estimated by removing 100 or 400 overlapping subjects of study 1, and the data in study 2 were left unchanged. The empirical type I error of the splitting data method with 3, 4, 5, and 6 studies was estimated by discarding 100 or 400 overlapped subjects from each study. Figures 1A, B show the type I error rates of 2, 3, 4, 5, and 6 studies in the test of SNP-environment interaction with 100 and 400 overlapping subjects, respectively. We can see that both our method and the splitting data method yielded type I error results close to the specified 0.05 level. The regular MR method, which did not consider overlapping data, yielded inflated type I error rates. The greater the overlap, the more the inflation was.




Figure 1 | Type I error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are type I errors of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are type I errors of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is type I errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is type I errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line with filled triangles is type I errors of the regular MR with 2, 3, 4, 5, and 6 studies when overlapping data is ignored.



To calculate the type I error rates of the joint test of the SNP main effect and the interaction, we set both the SNP and the SNP-environment interaction effects to be zeros. The Wald test statistics followed a 2 df χ2distribution. Figures 1C, D show the type I errors of the joint test under the null hypotheses. We can also see that the results of the two methods were around 0.05 as well; thus, both our OMR method and splitting method treated the overlapping data appropriately. The regular MR method in the joint test yielded a higher type I error than in the interaction test because it included more information on overlapping data.

In real meta-analysis, sample sizes of studies vary and percentages of overlapping may be different for studies. Here, we set the sample sizes of the 6 studies as (1,000, 1,200, 1,400, 1,600, 1,800, 2,000). Let the effect of the SNP-environment interaction to be zero and the SNP main effect explained 0.5% of trait variance. Type I errors of testing the SNP-environment interaction are shown in Figures 2A, B, which represent results of testing the interaction with 100 and 400 overlapping individuals in each study, respectively. Setting both the SNP and the SNP-environment interaction effects to be zeros, we conducted joint tests for SNP and SNP-environment interaction. Figures 2C, D show type I errors of the joint test with 100 and 400 overlapping individuals, respectively. As the results in Figure 1, OMR and the splitting method control type I errors as expected, while inflated type I errors can be observed for the regular MR.




Figure 2 | Type I error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400, 1,600, 1,800, 2,000 individuals, respectively. (A, B) are type I errors of the interaction test with100 and 400 overlapping data, respectively. (C, D) are type I errors of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is type I errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is type I errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line with filled triangles is type I errors of the regular MR with 2, 3, 4, 5, and 6 studies when overlapping data is ignored.





Power

To compare the statistical power of testing the SNP-environment interaction, both SNP-environment and SNP effects explained 0.5% variance of the trait variance. In this simulation, statistical significance was determined by the P values of the tests, which were smaller than 0.05. The empirical power was obtained by calculating the proportion of the significant results in 1,000 replicates. The P values were calculated using the Wald test (9), which followed a 1 df χ2 distribution. Figures 3A, B show the power of the SNP-environment interaction with overlapping data of 100 and 400, respectively. We can see that our method yields similar results to those of the splitting method. Note that our method does not require the study-level genotype or phenotype data, which is its major advantage.




Figure 3 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.



In the joint test of the SNP main effect and the SNP-environment interaction effect, both SNP-environment and SNP effects explained 0.5% variance of the trait variance. In this simulation, the P values were again calculated using the Wald test (10) following a 2 df χ2 distribution. Figures 3C, D show the powers of the joint test with 100 and 400 overlapping samples, respectively. We compared our method with the splitting method. These results are similar to those from the SNP-environment interaction test; however, the joint test yielded higher power than the interaction test. This is because the joint test included more effects than the SNP-environment interaction test (Kraft et al., 2007).

For studies with unequal sample sizes (1,000, 1,200, 1,400, 1,600, 1,800, 2,000), power of testing the SNP-environment interaction and power of the joint test for the SNP and the interaction are presented in Figure 4. Effects of the SNP and the interaction are the same as those in previous example. We can see that powers in Figure 4 demonstrate similar patterns as those in Figure 3, whereas the former are in general larger than the latter. This is because that total sample size employed in Figure 4 is larger than that in Figure 3.




Figure 4 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400, 1,600, 1,800, 2,000 individuals, respectively. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.



In GWAS, it is a common phenomenon that effects of the SNP and SNP-environment interaction may have different directions. Here, we consider the scenario that both the SNP and the interaction explained 0.5% variance of the trait variance but the directions of their effects are opposite. As in the previous example, we tested the SNP-environment interaction as well as joint effects of the SNP and the interaction. Figures 5A, B show powers of the interaction test with 100 and 400 overlapping samples. Figures 5C, D present powers of joint test with 100 and 400 overlapping samples. Compared with the results in Figure 3, whose effects of the SNP and interaction have the same direction, we can see that the powers of the two tests are about the same in the two scenarios.




Figure 5 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with opposite directions for the effects of the SNP and the SNP-environment interaction. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.



Finally, we added simulation for nonlinear SNP-environment interaction when testing the effect of SNP-environment interaction and the joint effects of SNP and SNP-environment. Both the effect of SNP and the effect of SNP-environment interaction explained 0.5% variance of the trait variance, the effect of nonlinear SNP-environment interaction explained 0.05% variance of the trait variance. We compared the model considering nonlinear SNP-environment as in (Xu et al., 2013). with the model not considering nonlinear SNP-environment. Figures 6A, B show the results of this comparison with 100 and 400 overlapping individuals for the test of interaction respectively, in each of the two figures, we can see that the two lines we compared present similar results. From Figures 6C, D we can see that the powers under the model considering nonlinear SNP-environment are lower than that not considering with 100 and 400 overlapping individuals for the joint test respectively. That is because the column variables in X are not an orthonormal basis when considering nonlinear interaction. The nonlinear interaction enters the model as part of the SNP main effect (Xu et al., 2013).




Figure 6 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with nonlinear SNP-environment interaction effect. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with filled squares shows powers of OMR when nonlinear interaction effect was considered in the model. Solid line with filled triangles is powers of the OMR when nonlinear interaction effect was not considered in the model.







Discussion

SNP may indeed interact with E nonlinearly in real biological process. In this case, regressing the main effect of SNP on E linearly involved model mis-specification. On the other hand, such linear regression can hopefully capture a portion of the main effect. In this case, we can employ Hermite polynomials to the nonlinear interaction model to avoid this phenomenon (Xu et al., 2013).

The sample sizes of studies vary in real meta-analysis. As explained in the reference (Manning et al., 2011), there are 561 individuals in the FamHS Study, 1,661 in the HealthABC Study, 2,854 in the CHS Study, 8,367 in the ARIC Study, 6,023 in the FHS Study, which gives a total sample size of 19,946. For methodological evaluations, the authors of (Manning et al., 2011) chose to simulate five studies each of 1,000 individuals. In our work, we also adopted a relatively moderate sample size 1,000 to verify the effectiveness of our method. In the revised manuscript, we conducted additional simulations to have studies with different sample sizes to evaluate the sensitivity to the unbalanced sample sizes among studies.

When testing the SNP main effect, the splitting method for case-control studies was reported to yield a lower power than Lin’s method, which is because the studies share common controls (Lin and Sullivan, 2009). Splitting these studies such that every subject contributes only once leads to a dramatic decrease in the effective sample size. Our simulation examples based on cohort studies yielded slightly less power than the splitting method because the overlapping structure in our examples differed from that in the case-control studies. The splitting method in the cohort studies drops less data than in case-control studies, so the power loss due to splitting the data is smaller.

Our method is based on the MR in which one divides the studies into several groups according to the environmental variable. Thus, when calculating the correlation matrix, we must consider both the number of overlapping data among studies and the number of overlapping data among groups. When the overlaps among groups are unavailable and the data overlap is independent of the environment variable, the overlaps between two groups can be estimated by the overlaps between their studies and the sample proportions of the groups in the two studies. In either case, our method does not require individual-level data as the splitting method does.

To the best of our knowledge, there is still no meta-analysis method for testing SNP-environment interaction with overlapping data among studies. Our OMR method was generalized from regular MR. When evaluating our proposed OMR method, we compared our method with the splitting method and regular MR. Figure 1 indicates that regular MR yielded inflated type I error rates; the more the amount of overlapping data, the higher the amount of inflation. On the other hand, our OMR method controlled the type I error rates appropriately. Therefore, regular MR is unsuitable for studies that have overlapping data.



Conclusion

In this paper, we generalized the regular MR model to OMR by incorporating correlations among studies due to the overlapping data. We proposed a test for the SNP-environment interaction as well as a joint test for the SNP and the interaction under the OMR framework. The two test were compared with the splitting method in terms of their type I error rate and statistical power. Through simulation, we demonstrated that our method yielded comparative power with respect to the splitting method and the type I error rate of the regular MR is inflated when overlapping data are ignored. We also evaluated our OMR method with unequal sample sizes among studies, opposite directions of the SNP effect and the interaction effect, and assessed the robustness of our method when nonlinear interaction effect exists. Our method does not require individual-level genotype and phenotype data, which overcomes the major limitation of the splitting method. In GWAS practice, our OMR method can be used to control false positive results when the studies with overlapping individuals are included in the meta-analysis, thus improve the probability of finding genuine associations.
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With the generation of a large amount of sequencing data, different assemblers have emerged to perform de novo genome assembly. As a single strategy is hard to fit various biases of datasets, none of these tools outperforms the others on all species. The process of assembly reconciliation is to merge multiple assemblies and generate a high-quality consensus assembly. Several assembly reconciliation tools have been proposed. However, the existing reconciliation tools cannot produce a merged assembly which has better contiguity and contains less errors simultaneously, and the results of these tools usually depend on the ranking of input assemblies. In this study, we propose a novel assembly reconciliation tool MAC, which merges assemblies by using the adjacency algebraic model and classification. In order to solve the problem of uneven sequencing depth and sequencing errors, MAC identifies consensus blocks between contig sets to construct an adjacency graph. To solve the problem of repetitive region, MAC employs classification to optimize the adjacency algebraic model. What’s more, MAC designs an overall scoring function to solve the problem of unknown ranking of input assembly sets. The experimental results from four species of GAGE-B demonstrate that MAC outperforms other assembly reconciliation tools.
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Introduction

Next-generation sequencing technologies (NGS) offer a large volume of short sequences with relatively short insert size compared to the traditional Sanger sequencing technology and the third generation sequencing technologies, e.g., Pacific Biosciences (Eid et al., 2009) and Oxford Nanopore (Clarke et al., 2009). Although considerable third generation sequencing data has been produced, due to the higher cost per base and higher sequencing errors, NGS sequencing data still plays an important role in tackling an increasing list of biological problems. The de novo genome assembly is a fundamental process for computational biology (Schatz et al., 2010), which drives the generation of many assemblers to complete the construction of genome sequences, such as Velvet (Zerbino and Birney, 2008), ABySS (Simpson et al., 2009), ALLPATHS- LG (Gnerre and Jaffe, 2011), SOAPdenovo (Li et al., 2010), EPGA2(Luo et al., 2015), Miniasm (Li, 2015), BOSS (Luo et al., 2017), SCOP (Li et al., 2018a), ARC (Liao et al., 2018), iLSLS (Li et al., 2018b), MEC (Wu et al., 2017), EPGA-SC (Liao et al., 2019a), PE-Trimmer (Liao et al., 2019b), and so on.

However, there is no single assembler that could perform optimally in every quality metric, which has been demonstrated repeatedly (Earl et al., 2011; Salzberg et al., 2012; Bradnam et al., 2013). The situation is caused by various factors: (1) Assembly algorithms are mainly based on overlap-layout-consensus graphs or de Bruijn graphs, these two types of algorithms use different strategies to deal with errors, inconsistencies, and ambiguities; (2) NGS genome assemblies suffer from long repeats and duplications, which is the primary reason why some assemblers outperform others in specific regions and specific species (Alkan et al., 2010); (3) the uneven sequencing coverage of NGS data increases the complexity of assembly, which makes the parameters having great influence on the assembly results, such as k-mer size; (4) the sequencing errors and chimeric reads cause direct assembly mistakes. Besides, different sequencing platforms usually introduce different bias (Harismendy et al., 2009), so the assemblies generated by various platforms may present different features, and there is usually complementarity between them (Diguistini et al., 2009). Thus, it is appealing merging different assemblies to generate a high-quality assembly by using complementary, which is first proposed by Zimin et al., called assembly reconciliation. The main goal of assembly reconciliation is to increase the contiguity of assembly results while reducing (or at least not increasing) the errors in assembly.

Many assembly reconciliation algorithms have been proposed, for some earlier ones, such as Reconciliator (Zimin et al., 2005) and GAM (Casagrande et al., 2009). Reconciliator detects apparent errors in the assembly, and then the error regions are modified by using the alternative draft assembly, through which the gaps between sequences are reduced. GAM defined supercontig to facilitate the integration, which takes two assemblies as input, and regards the former one as reference. For some reference-based algorithms, such as eRGA (Francesco et al., 2011), RAGOUT (Kolmogorov et al., 2014), and MAIA (Nijkamp et al., 2010), if there is no corresponding reference or relative reference genome, they cannot work properly, so we don’t discuss these methods here. The algorithm CISA is used to integrate the assemblies of bacterial genome in the four major phases (Lin and Liao, 2013). Firstly, CISA extracts the largest contig as a representative contig, and aligns the remaining contigs to the representative coting, then conducts extension with the contig whose alignment rate is more than 80%. This step is repeated iteratively until there is no representative contig found. Secondly, CISA identifies two types of misassemble contigs: for the misjoined error, CISA removes the contig; for the insertion error, CISA splits the contig. Thirdly, CISA merges contigs which have at least 30% overlap, and also estimates the size of repeats. Finally, if the overlap between two contigs is greater than the maximum size of repeats, CISA merges the contigs. CISA could be used to merge more than two assemblies.

The objective of GAA is to generate an accordance assembly from two or more large genome assemblies (Yao et al., 2012). GAA takes a target assembly and a query assembly as input, then uses BLAT aligner (Kent, 2002) to align the query assembly to target assembly. The high scoring matches are used to construct the accordance graph, GAA finds the maximal sub-paths from the graph, and the gaps can be divided into two types, between contigs and inside contigs. For the gaps between contigs, GAA compares the observed value and expected value of gap size, then decides whether to merge two contigs. For the gaps inside contigs, a compression-expansion(CE) statistic module (Zimin et al., 2005) is used to evaluate the gap regions. The 454 and Illumina de novo assemblies are used to examine the performance of GAA.

GAM-NGS (Vicedomini et al., 2013) is the updated version of GAM, GAM-NGS can be used on all NGS-based assemblies, especially for eukaryote genomes. Two assemblies and a SAM alignment file are taken as input, GAM-NGS first searches the mapping file to identify highly similar fragments between two assemblies, which is called “blocks”, then a graph is used to record and weight the information of blocks, and the conflicts are resolved in the graph. A semi-global alignment between contigs is computed by GAM-NGS, and two contigs are merged if the identity between them is larger than 95%. The CE statistic module (Zimin et al., 2005) is used to choose which assembly can be merged.

The main purpose of MIX (Soueidan et al., 2013) is to reduce both the fragmentation of contig sets and reduce the time consumption of genome finishing. MIX builds an extension graph where vertices represent the terminals of contigs, and the edges represent the alignment situation between contigs. MIX attempts to solve the maximal independent longest path set, which is NP-hard. The performance of algorithm is evaluated on the GAGE-B (Tanja et al., 2013) bacterial dataset.

Metassembly (Wences and Schatz, 2015) merges all the input assemblies into a final one, which is better than or as good as the original assemblies. Metassembly regards one of the inputs as a “primary” assembly, then the others are “secondary” assemblies, the secondary assemblies are used to add useful information to the primary assembly. A pairwise algorithm is used to merge multiple assemblies, the primary assembly is aligned to the secondary assembly, and the best aligned position can be evaluated by LIS (longest increasing subsequence) function. The CE statistic (Zimin et al., 2005) is used to assess the conflicts and select the locally best sequence.

In general, most of the methods described above are based on the CE statistic (Zimin et al., 2005), which is used to detect compression or expansion misassemblies between two input assemblies. However, the CE statistic is obtained by aligning paired-end or mate-pair reads to the assembly, which is impacted by the alignment quality and the false positive within error detection leads to the misassembly directly. In addition, most of the current reconciliation tools are designed for merging short sequences (<100bp), like CISA and GAM-NGS, which performed poorly in merging longer sequences (>200bp). Therefore, there is an urgent require for the robust reconciliation tool to increase the length and quality of assembly, as well as adapt to longer sequencing data.

In this study, we propose a novel assembly reconciliation tool, named MAC, which uses alignment information and GC-content of paired-end reads to classify all the contigs into two types. Then, consensus blocks between contig sets are identified, and the unreliable fragments caused by uneven sequencing depth or sequencing errors could be filtered out. In addition, MAC utilizes the adjacency algebraic model to facilitate the merging process, in which the adjacent graph is used to fulfill accurate fusions between consensus blocks. The classification result of contigs is used to optimize the model, and the repetitive regions could be eliminated by splitting contigs and reconstructing the adjacent graph. What’s more, an overall scoring function is proposed to solve the problem of unknown ranking of input assemblies, the scoring function evaluates the overall quality of assembly sets by alignment quality and coverage information. The experimental results from the datasets of GAGE-B demonstrate that MAC performs better than other reconciliation tools.



Method

MAC employs the adjacency algebraic model (Sankoff et al., 2000) and the classification to merge assemblies. The identification of consensus blocks is to filter out the unreliable fragments caused by uneven sequencing depth and sequencing errors; the addition of classification is to optimize the adjacency algebraic model and eliminate the influence of repetitive regions. The outline for the whole algorithm is as follows: (1) Preprocessing: MAC aligns paired-end/mate-pair reads to contig sets, and filters out the low-quality alignment; (2) Ranking input assemblies: MAC designs an overall scoring function to rank the input assemblies; (3) Classifying contigs: MAC utilizes the alignment results and GC-content of paired reads to classify contigs; (4) Adopting the adjacent algebraic model: MAC constructs an adjacent graph to fulfill some accurate fusions of consensus blocks, then uses classification results of contigs to optimize the remaining processing steps. The flowchart of MAC algorithm is shown in Figure 1.




Figure 1 | Flowchart of MAC algorithm.




Preprocessing

MAC takes multiple contig sets and paired-end/mate-pair reads as input, the aligner Bowtie2 needs to be installed in advance. The input reads are aligned to each contig set, respectively. For reads aligning to multiple positions, MAC only maintains the highest score alignment for each read, and removes the redundant alignments. According to the paper of Luo et al., the length of insert size follows a normal distribution N (μis, σis), so the distance between two paired reads, which align to the same contig, should be in the range of [μis– 3*σis, μis+ 3*σis]. For the reads which violate this rule, MAC removes the corresponding alignment. To reduce the impact of sequencing errors, MAC extracts the sequencing quality of every base in reads, and calculates the average and standard deviation of sequencing quality for the remaining alignment, denoted by Mq and σra, respectively. Let Qi represent the mean value of sequencing quality for the i-th alignment. If Qi < Mq- 3*σra, MAC removes the alignment information.



Ranking Input Assemblies

As most existing assembly reconciliation tools depend on the ranking of input, and the results usually change when the order of input assemblies change. To achieve better results, users have to evaluate the contiguity and correctness of every input assembly by taking the reference into Quast (Gurevich et al., 2013) or other evaluation tools. In the study, MAC utilizes the mapping quality and read coverage to rank the input assemblies. The compact idiosyncratic gapped alignment report (CIGAR) can be obtained from files in the SAM format, in which “M” represents match/mismatch, “I” represents insertion, “D” represents deletion, and the number before a character represents its corresponding quantity. Assume that the length of contig C is L, j (1≤j≤L) is the position at C, qj represents the CIGAR of position j, which is calculated as follows.



where M denotes match and M* denotes mismatch. In fact, we cannot distinguish match and mismatch from a single character “M”, so MAC calculates the average mapping score of the SAM file. If the mapping score of the corresponding read is larger than or equal to the average mapping score, the character “M” is thought to be match, otherwise, “M” is thought to be mismatch.

To take the coverage into consideration, MAC extracts the alignment of contig C, to calculate the average rc, and standard deviation σrc of read coverage. Assume that rci is the read coverage of the spanning region of read i, RC is used to indicate whether the coverage of the region deviates too much, which is computed as follows.

	

In order to comprehensively consider the mapping quality and read coverage, MAC employs an overall scoring function to rank the input assemblies, which is calculated as follows.

	



Classifying Contigs

In this step, MAC evaluates the quality of contigs by using the alignment result and GC-content, and then classifies all the contigs into two types. Due to the problems of sequencing errors, uneven depth, existence of repetitive regions and the bias of algorithm strategy, contigs often contain misassemblies, which influence the subsequent assemblies directly. Therefore, MAC estimates the correctness of contigs, and marks the type for every contig, and records the potential error positions.

For a contig C, whose length is L, the coordinate of position j is in the range of [1, L]. The fragment coverage fc(j) could be defined as the number of reads with the high alignment scores which span the position j. Because low coverage regions more likely contain error joints, MAC employs a cutoff fc* to identify the potential error positions, fc* can be calculated by the average of fragment coverage for all the positions of contig C as follows (Wu et al., 2017).



The parameter α can be set by users. If the fragment coverage of position j is less than the cutoff, that is fc(j) ≤ fc*, the position j is regarded as a potential error position. If there are multiple continuous potential error positions, the region covering these positions can be group into a region set T (T = {[m, n] | n ≥ m, ∀ j∈ [m, n], fc(j) ≤ fc*}). For every region in set T, MAC chooses the position whose fragment coverage is the lowest as the breakpoint, Bp (m≤ Bp≤ n).

Owing to the uneven sequencing depth, some low-depth regions may be mistakenly categorized as containing error positions. Therefore, MAC estimates the coverage condition of the neighbor flanking regions for breakpoint Bp to reduce false positives. Ms is the number of paired reads whose left mate maps to the left flanking region of Bp, and right mate maps to other contigs. Mp is the number of paired reads whose right mate maps to the right flanking region of Bp, and left mate maps to other contigs. Then two rates: Pcs and Pcp, are calculated as follows (Wu et al., 2017).



	

Pcs and Pcp are used to estimate whether the region [m, n] is low-depth or not. If Pcs>β or Pcp>β, the region is thought to be a low-depth region, and should be removed from the potential set.

Owing to the GC-content bias, some regions may cover less reads or even no reads, and these regions are mistakenly categorized as containing error positions. Therefore, MAC evaluates whether the GC-content of the neighbor flanking regions for Bp is too high or too low. PGC is the GC-content rate of the potential error region which contains Bp, and Pg is the GC-content of the whole genome, Pg is calculated as follows (Wu et al., 2017).



where N represents the number of contigs, Li is the length of the i-th contig, Ij is an indicator variable, when the base at position i is G or C, Ij equals to 1, otherwise, Ij equals to 0. If PGC ≥ Pg + 1, the region is thought to be GC-rich, otherwise, the region is thought to be GC-poor. Both GC-rich and GC-poor regions are removed from the potential set.

After removing the low-depth regions and GC-bias regions, the remaining single potential positions and potential regions are certainly false. which satisfy the following conditions at the same time:


	① fc(j) ≤ fc*;


	② Pcs ≤ β and Pcp ≤ β;


	③ PGC < Pg + 1 and PGC > Pg + 1.





The regions estimated as low-depth or GC-bias are thought to be uncertain regions, and the positions in these regions satisfy the following conditions simultaneously:

	① fc(j) ≤ fc*;


	② Pcs > β or Pcp > β;


	③ PGC ≥ Pg + 1 or PGC ≤ Pg + 1.





After excluding the above two types of positions, the rest positions are certainly true. For the certainly false positions/regions, MAC breaks the corresponding contigs at the false position or the Bp position of the false region, and eliminate certainly false positions. Based on the above evaluation, all the input contigs can be divided into two types: Uncertain (U) and True (T). If the contig contains one or more uncertain regions, the contig is classified as U contig, while the contig only containing true positions is classified as T contig.



Adopting Adjacency Algebraic Model

The order of merging is determined by the ranking of overall scores, which are calculated in the previous step. MAC merges two assemblies at a time, the next assembly and the resultant assembly are merged iteratively. In the merging process, MAC utilizes an adjacency algebraic model (Sankoff et al., 2000) to find the conjunctions between contigs. The adjacency algebraic model was introduced by Feijã£O and Meidanis to find a permutation to minimize the algebraic rearrangement distance (Feijã£O and Meidanis, 2013), and the adjacency algebraic model was proved to be efficient on the problem of contig ordering (Chen et al., 2018). In this study, MAC uses the adjacent graph to represent the adjacency algebraic model and utilizes the classification of contigs to optimize the model, the pseudo-code of adopting the adjacency algebraic model is as shown in Algorithm 1 of Supplementary Material.


Constructing Adjacent Graph

Given two input contig sets O and R, MAC utilizes the NUCmer package from MUMmer (Kurtz et al., 2004) to identify the high similarity fragments between O and R, which are called “consensus blocks”, and numbers these consensus blocks. Two consensus blocks are thought to be adjacent, if they are next to each other, or if they overlap each other end-to-end with the overlapping length of l (l ≤ lcmin* 0.01), where lcmin is the smaller one between the lengths of two consensus blocks, l is called the adjacent region. In general, there are two or more consensus blocks in one contig, and the consensus blocks may connect with each other, or maybe contain intervals between them. As described above, every contig can be divided into two types: “U” and “T”. For the “U” type of contigs, if potential error positions locate at the adjacent regions of consensus blocks, the position information is retained. Otherwise, if potential error positions locate at the center region of consensus blocks, these positions are thought to be reliable, and could be removed form the potential error set. For the “T” type of contigs, MAC retains its state. MAC distributes the orientation for every consensus block, and uses tail(“t”) to denote the starting position, head(“h”) to denote the ending position. As shown in the example of Figure 2, 9 consensus blocks are found between two contig sets O and R, the adjacent relationships are enclosed in brackets, so O and R can be represented by O = {[1, 5], [9], [8, 2], [-3, 7], [6, 4]}, R = {[1, 6, 5], [4, 3], [2, 7, 8]}, respectively. As the orientation of consensus block “3” in O is reversed (from 3h to 3t), we use “-3” to represent this consensus block in O. In Figure 2, we suppose that there were uncertain positions between [1,5] in the first contig of O and [7,8] in the third contig of R, so these two contigs were regarded as “U” type, which are marked by red cycles on the contigs, and the corresponding consensus blocks are also marked with underlines in Figure 2, the detail classification strategy has been described above.




Figure 2 | An example for constructing adjacent graph.



Then the adjacent graph G = <V, E > is constructed, V is the vertices set of the adjacent graph, the single terminals or conjunctions of consensus blocks are regarded as vertices, in the example of Figure 2, 1t, 9t, 9h, 6t, and so on are the single terminals of O set, 1h5t, 6h4t, and so on are the conjunctions of O set. E is the edges set of the adjacent graph, an edge is added between O and R if two vertices have a terminal in common, such as 1h5t of O and 1h6t of R both have 1h, so there is an edge between 1h5t and 1h6t.



Extracting Good Paths

The major objective of the adjacent algebraic model is to minimize the algebraic distance between two contig sets, which can be denoted by   (Feijã£O and Meidanis, 2013), where N represents the number of contigs, C represents the number of cycles, P represents the number of paths in the adjacent graph G.

Through the demonstration of Lu et al., getting the minimum algebraic distance is equivalent to obtaining the maximum number of cycles, and the term of “good path” is defined for the cycle (closing path), which can connect multiple consensus blocks to generate a longer assembly. Here we define the conjunctions between two consensus blocks as adjacency, which are enclosed in square brackets in Figure 2. The paths in adjacent graph can be summarized according to the length, whether two ends of the path in the same set or in the same adjacency or not. We list all the possible combinations of the features mentioned above, as shown in Table 1 there are 9 types of combinations in total. In the adjacent graph, two ends of the path appear in the same contig only if they appear in the same contig set, so if two ends of the path cannot be found in the same contig set, they cannot be found in the same contig or adjacency, thus for the types of No.3 and 7 in Table 1, two ends of the paths are in different contig sets, they cannot in the same adjacency, here we use “-” to represent the type is absent. If the length of path is odd, two ends should be found in different contig sets, so types of No.1 and 2 are absent. If the length of path is even, two terminals should be found in the same set, so type of No.8 is absent. However, there is an exceptional case, when two terminals form a circle, they can be found in different sets and different adjacencies.


Table 1 | Nine types of paths in the adjacent graph.



From Table 1, four types are absent, and the type of No.6 is regarded as a good path, whose length is even, both of the ends are in the same set but in different adjacencies. There are two kinds of poor paths: No.4 and No.5. As the example in Figure 2 shows, the paths of {4h, 4h3t, 3t7t, 2h7t, 2h}, {9t, 3h9t, 3h}, {7h, 7h8t, 8t} are good, which can form the cycles of [4h, 2h], [9t, 3h], and [7h, 8t]. Through the fusion of [4h, 2h], adjacencies [8, 2] and [6, 4] can be joined into [8, 2, -4, -6]. Through the fusion of [9t, 3h], adjacencies [9] and [-3, 7] can be joined into [-9, -3, 7]. Through the fusion of [7h, 8t], adjacencies [8, 2] and [-3, 7] can be joined into [-3, 7, 8, 2], and these two newly generated results can be further merged into [-9, -3, 7, 8, 2, -4, -6], equals to [6, 4, -2, -8, -7, 3, 9].



Optimizing the Adjacency Algebraic Model

In the study of Lu et al., two odd paths (No.4 in Table 1) are chosen to join into a cycle repeatedly, until the odd path graph becomes an alternating cycle with the length of two. The remaining No.4 and No.5 paths can be arbitrarily joined together into two longer paths. However, in the actual implementation process, they found the fusion of these two types of paths resulting in error joints. In this study, MAC utilizes the classification of contigs to optimize the processing of poor paths in the adjacency algebraic model. Due to the circle paths in the graph represent the same adjacencies between two sets, so MAC maintains these paths without any process.

As described above, all the input contigs are divided into two types: Uncertain (“U”) and True (“T”), the classification result is stored in the form of a label for every contig together with the potential error positions. After extracting good paths from the adjacent graph, the poor-1 type of paths can be further divided into two sub-types: single path and non-single path. The length of single path is 1, and two terminals are the same, for example, {1t, 1t}, {5h, 5h} and {3h, 3h} in Figure 2 are single paths, {6t, 1h6t, 1h5t, 6h5t, 6h4t, 4t} is a non-single path. MAC uses the following steps to process poor paths:

	For non-single paths, MAC extracts the adjacencies which are included in the path, then checks the classification of contigs where the adjacencies are located. If contig is “U”, and there is potential error position locating at adjacent region l, MAC splits the contig at the potential error position, and then reconstructs the sub-graph to extract good paths again.


	For single paths, MAC does not take any treatment, because during the process of graph reconstruction, some single paths would be eliminated automatically.


	For poor-2 type of paths, if both terminals of a poor-2 path appears in any good path, then the poor-2 path is thought to be spurious, and MAC removes this path along with the contig contained in the path. Otherwise, the poor-2 path can be retained temporarily.





MAC repeats these processing steps iteratively until there is no good path added, and single paths are merged into good paths to generate new adjacencies. For the new adjacencies, if there are overlapping blocks, the shorter adjacency is merged into a longer one. Here we use the same example as Figure 2 to explain the optimization process, and the detail procedure is as shown in Figure 2.

After extracting good paths for the first time, the remaining are two types of poor paths. For non-single path {6t, 1h6t, 1h5t, 6h5t, 6h4t, 4t}, the adjacency included in the path are: [1, 5], [6, 4] in set O and contig [1, 6, 5] in set R, according to the processing steps, the error position of adjacency [1, 5] locates at the adjacent region, so the first contig of O should be split at the position. In fact, the head of block 1 and the head of block 6 contain the same repetitive sequences, which cause a misjoin between 1 and 5, as shown in the dashed line box of Figure 3. As such MAC could solve the problem of repetitive regions. Then the sub-graph is reconstructed, two more good paths are extracted, and there are four single paths remaining. After merging these single paths into good paths, the final contigs can be represented by the adjacencies: [1, 6, 4, -2, -8, -7, 3, 9] and [1, 6, 5]. MAC identifies there is an overlapping region between two adjacencies, and thus merges [1, 6, 5] into [1, 6, 4, -2, -8, -7, 3, 9] to get the final adjacency [1, 6, 5, 6, 4, -2, -8, -7, 3, 9].




Figure 3 | Detail of optimization process.







Experimental Results and Discussion


Datasets and Evaluation Metrics

In this study, we perform the experiments on four real bacterial genomes: M.abscessus, B.fragilis, R.sphaeroides and V.cholerae from GAGE-B (Genome Assembly Gold-standard Evaluation for Bacteria) (Tanja et al., 2013), GAGE-B evaluates the performance of multiple genome assemblers on a spectrum of bacterial genomes sequenced by the sequencing technologies of MiSeq and HiSeq. Here, we use the sequences generated by MiSeq technology, the average read length of these four species is 250 bp, the coverage is 100x, and the genome sizes are 5.1 Mb, 5.4 MB, 4.6 Mb, and 4.0 Mb, respectively. The insert sizes are 335 bp, 600 bp, 540 bp, and 335 bp, respectively. The detail information of raw data is listed in Table S1 of Supplementary Material. All the assemblies and paired-end reads are available at the website of GAGE-B (http://ccb.jhu.edu/gage_b/).

The evaluation tool Quast (Gurevich et al., 2013) is used to estimate the contiguity and correctness of assemblies. For the metrics provided by Quast, N50 is the metric to evaluate contiguity without reference, and NGA50 could compare the assemblies to a reference genome to get more accurate and comprehensive evaluation. The number of misassemblies is an important metric to measure the correctness of assemblies. In most cases, the increase of N50 and NGA50 inevitably leads to more misassemblies. The contig sets generated by different tools are evaluated in Tables S2–S5 of Supplementary Material. The major objective of MAC is to increase the contiguity of assemblies, at the same time make sure the number of misassemblies reducing or at least not increasing.



Experimental Results

Although lots of assembly reconciliation tools have been developed, some of the tools have stopped updating, some need the reference of relative species, and some tools don’t fit for merging relatively longer next-generation sequences which are in ~250bp. Therefore, we exclude these unsuitable tools, and only compare MAC with three assembly reconciliation tools: GAA, MIX and Metassembler. The assemblies are generated by Velvet, ABySS and SOAPdenovo. The contigs generated by Velvet are fragmental and with poor contiguity. ABySS could provide more reliable contigs which have less misassemblies. SOAPdenovo is a powerful tool which produces higher contiguity and correctness contigs. In the experiment, we test the merging performance of four reconciliation tools on the assemblies which have different features. The experiment results are shown in Tables 2–5. For each dataset, we take the experiments on two assemblies as input (Velvet+ABySS), and multiple assemblies as input (Velvet+ABySS+SOAPdenovo). “MA” in tables represent the numbers of misassemblies.


Table 2 | The experimental results of M. abscessus.




Table 3 | The experimental results of B. fragilis.




Table 4 | The experimental results of R. sphaeroides The highest value of N50 or NGA50 within each comparison.




Table 5 | The experimental results of V. cholerae.



For the case of two assemblies as input, the number of misassemblies of four reconciliation tools have increased somewhat because the quality of input assemblies is relatively low. Even the metrics of N50/NGA50 have remained static or decreased for some tools, such as GAA and Metassembler. By comparison, MAC achieves significant growth in N50 and NGA50 compared to the original input assemblies and the merging results of other reconciliation tools in four datasets, although the number of misassemblies is basically flat.

For the case of three assemblies as input, the metrics of N50/NGA50 of four reconciliation tools have increased in various degrees, due to the addition of high quality assemblies generated by SOAPdenovo, while there is no obvious change in the number of misassemblies for GAA, MIX, and Metassembler. However, MAC not only achieves the obvious increase of N50 and NGA50, but also greatly reduces the number of misassemblies. Especially in the dataset of B.fragilis, the N50 and NAG50 of MAC are 485219 and 455989, which have the growth rate of 79.6% and 214.5%, respectively, compared to the case of two assemblies as input of MAC, and the growth rate of 96.9% and 81.7%, respectively, compared to the high quality input of SOAPdenovo. What’s more, the number of misassemblies has decreased from 9 to 2, which is less than the number of velvet and equals to the number of ABySS.

From the results of Tables 2–5, MAC outperforms the other reconciliation tools, MAC is not only adapted to merge low quality assemblies to generate a more continuous one, but is also good at fusing different features between assemblies to further improve the contiguity of high quality assemblies, at the same time maintaining the correctness. In addition, we evaluated the computational costs of four tools, as shown in Table S6 of supplementary material.




Conclusion

In this study, we have proposed a novel assembly reconciliation tool MAC. MAC classifies all the contigs into “U” and “T” by using alignment results and GC-content of paired-end reads, then identifies consensus blocks between assembly sets, through which unreliable fragments caused by uneven sequencing depth or sequencing errors could be filtered out. In addition, MAC utilizes adjacency algebraic model to fulfill the merging process. The adjacent graph is employed to identify good paths between consensus blocks, which could be used to generate some accurate fusions. Secondly, the classification result of contigs is used to optimize the processing steps of poor paths, through which repetitive regions could be eliminated by splitting contigs and reconstructing the adjacent graph. What’s more, to solve the problem of unknown ranking of input assemblies, MAC designs a scoring function to evaluate the overall quality of assembly sets. The experimental results from four real species of GAGE-B illustrate that MAC performs better than other reconciliation tools.
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Identifying lncRNA–protein interactions (LPIs) is vital to understanding various key biological processes. Wet experiments found a few LPIs, but experimental methods are costly and time-consuming. Therefore, computational methods are increasingly exploited to capture LPI candidates. We introduced relevant data repositories, focused on two types of LPI prediction models: network-based methods and machine learning-based methods. Machine learning-based methods contain matrix factorization-based techniques and ensemble learning-based techniques. To detect the performance of computational methods, we compared parts of LPI prediction models on Leave-One-Out cross-validation (LOOCV) and fivefold cross-validation. The results show that SFPEL-LPI obtained the best performance of AUC. Although computational models have efficiently unraveled some LPI candidates, there are many limitations involved. We discussed future directions to further boost LPI predictive performance.
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Introduction

Long non-coding RNAs (lncRNAs) are transcripts with greater than 200 nucleotides but lack protein coding capacity (Sanchez Calle et al., 2018). lncRNAs are closely associated with various key biological processes, such as cell cycle regulation, immune response, and embryonic stem cell pluripotency (Liu et al., 2018; Agirre et al., 2019; Li et al., 2019b). More importantly, lncRNAs play an important role in understanding pathogenesis of various diseases, especially tumors (Chen et al., 2016a; Fu et al., 2017; Jiang et al., 2018; He et al., 2018a; Dallner et al., 2019). Although lncRNAs play a spectrum of regulatory roles across different cellular pathways, understanding about their regulatory mechanisms is very limited (Munschauer et al., 2018).

Recently, one broad theme is that lncRNAs can drive the assembly of RNA–protein complexes by facilitating the regulation of gene expression (Rinn and Chang, 2012; Chen and Yan, 2013; Hentze et al., 2018; Munschauer et al., 2018; Nozawa and Gilbert, 2019). lncRNAs achieve their specific functions by interacting with multiple proteins and thus regulating multiple cellular processes (Zhang et al., 2018c; Pyfrom et al., 2019). Studies reported that lncRNAs can activate post-transcriptional gene regulation, splicing, and translation by binding to proteins (Zhang et al,. 2018c; Li et al., 2019a) Therefore, identifying possible lncRNA–protein interactions (LPIs) is essential for unraveling lncRNA-related activities (Qian et al., 2018; Zhang et al., 2018c; Zhao et al., 2018c). Wet experiments validated parts of LPIs, but experimental methods remain costly and time-consuming. Therefore, different computational models are explored to infer potential LPIs (Pan et al., 2016; Cheng et al., 2018; Zhang et al., 2018c; Zhao et al., 2018c). There exist numerous unexplored lncRNAs and proteins in public databases, which makes it possible to efficiently identify their underlying associations.

In this study, we introduced relevant repositories, summarized computational models and algorithms for LPI prediction, discussed their advantages and weaknesses by comparison, and presented further directions for boosting LPI prediction performance. We focused on two categories of computational models: network-based methods and machine learning-based methods. The machine learning-based methods contain matrix factorization-based methods and ensemble learning-based methods.



Relevant Repositories

There are abundant repositories related to LPI prediction. These repositories provide diverse information for efficiently uncovering potential LPIs.


Noncode

The NONCODE database (Zhao et al., 2015) (http://www.noncode.org/) is an interactive database aiming to collect the most complete annotation for ncRNAs, especially lncRNAs. The latest NONCODE database (current version v5.0) contains lncRNA information from 17 species including human, mouse, cow, rat, chimp, gorilla, orangutan, rhesus, opossum, platypus, chicken, zebrafish, fruit fly, Caenorhabditis elegans, yeast, Arabidopsis, and pig. There are 548,640 lncRNAs in the latest version. There are 172,216 and 131,697 lncRNAs from human and mouse, respectively. More importantly, NONCODE has introduced some important features including conservation annotation, lncRNA–disease associations, and an interface to select credible datasets.



NPInter

The NPInter database (Hao et al., 2016) (http://www.bioinfo.org.cn/NPInter/contact.htm) provides abundant association data that are experimentally verified. For example, the database contains information on interactions between noncoding RNAs (ncRNAs) and biomolecules including proteins, mRNAs, miRNAs, and genomic DNAs. The database contains 491,416 interactions in 188 tissues/cell lines from 68 types of experimental technology.



RAID

The RAID database (Yi et al., 2016) (http://www.rna-society.org/raid/) includes more than 40,668 lncRNA-associated RNA–protein interactions and more than 34,790 lncRNA-associated RNA–RNA interactions.



starBase

The starBase database (Li et al., 2013) (http://starbase.sysu.edu.cn/) contains more than 1,100,000 miRNA–ncRNA (CLIP) interactions, 117,000 RNA-binding protein (RBP)–ncRNA interactions, and 32,000 miRNA–ncRNA interactions. In addition, it provides more than 10,800 RNA-seq data and 10,500 miRNA-seq data from 32 cancer types and 3,236,000 mutations from 366 disease types.



VirBase

The ViRBase database (Li et al., 2014) (http://www.rna-society.org/virbase) integrates experimental and predictive association information from manual literature curation and other resources based on one common framework from 119 species, especially ncRNA-associated virus–virus, host–host, host–virus, and virus–host interactions.



POSTAR2

The POSTAR2 database (Zhu et al., 2018) (http://lulab.life.tsinghua.edu.cn/postar2/index.php) provides various post-transcriptional regulation data based on CLIP-seq, Ribo-seq, RNA-seq, and other high-throughput sequencing information from six species: yeast, Arabidopsis, fly, worm, mouse, and human. It hosts about 40 million RBP binding sites validated by CLIP-seq experiments. It provides three modules: the “RBP” module, “RNA” module, and “Translatome” module. The “RBP” module contains RBP binding sites and their annotations and functions. The “RNA” module is composed of a few sub-modules, including “disease,” “variation,” “crosstalk,” and “binding sites,” and is applied to annotate the RBP binding sites.



ChIPBase

The ChIPBase database (Zhou et al., 2016) (http://rna.sysu.edu.cn/chipbase/) is used to identify transcription factor binding sites and motifs, and decode transcriptional regulatory networks of miRNA, lncRNAs, and other ncRNAs from ChIP-seq data. It provides about 10,200 curated peak datasets from 10 species: human, mouse, fruit fly, worm, Arabidopsis thaliana, yeast, rat, zebrafish, Xenopus tropicalis, and chicken.



LNCipedia

The LNCipedia database (Volders et al., 2018) (https://lncipedia.org) is a comprehensive database. Its central work is to merge redundant transcripts from different data sources and group the transcripts into genes, thus producing a highly consistent database. The latest update of lncRNA (LNCipedia 5) contains information about annotation and sequence for 1,555 human lncRNAs from 2,482 lncRNA publications. This information originates from Ensembl (Cunningham et al., 2018), RefSeq (Rajput et al., 2018), and FANTOM CAT (Hon et al., 2017).



lncRNA2target

The lncRNA2Target database (Cheng et al., 2018) (http://123.59.132.21/lncrna2target) contains a comprehensive repository of lncRNA target genes to provide information about target genes regulated by lncRNAs. The latest version provides a special web interface in which users can search the targets for a particular lncRNA or the lncRNAs for a particular gene.



lncRNAdb

The lncRNAdb database (Quek et al., 2014) (http://lncrnadb.org) is a comprehensive database in compliance with the International Nucleotide Sequence Database Collaboration. It provides 287 eukaryotic lncRNAs and an interface enabling users to access sequence data, expression information, and the literature. The latest update of lncRNAdb integrated nucleotide sequence information, Illumina Body Atlas expression profiles, and a BLAST search tool.



lncRNASNP2

The lncRNASNP2 database (Miao et al., 2017) (http://bioinfo.life.hust.edu.cn/lncRNASNP2) provides 7,260,238 single nucleotide polymorphisms (SNPs) on 141,353 human lncRNA transcripts, and 3,921,448 SNPs on 117,405 mouse lncRNA transcripts. More importantly, it contains abundant information about mutations in lncRNAs and their impacts on lncRNA structure and function. It also provides online tools for analyzing new variants in lncRNA.



LbcRNAwiki

The lncRNAWiki database (Ma et al., 2014) (http://lncrna.big.ac.cn) integrated various human lncRNAs from different resources. It makes existing lncRNAs able to be updated, edited, and curated by diverse users. More importantly, any user can add newly uncovered lncRNAs.



Lnc2Cancer

The Lnc2Cancer database (Gao et al., 2018) (http://www.bio-bigdata.net/lnc2cancer) provides lncRNA–cancer associations supported by experiments. It contains 4,989 associations between 165 human cancer subtypes and 1,614 human lncRNAs, 366 experimentally validated circulating-related lncRNA-cancer associations, 593 drug-resistance-related lncRNA-cancer associations, and 1,928 prognosis-related lncRNA–cancer associations, and abundant lncRNA regulatory mechanisms in cancers including 211, 1139, 225, and 319 lncRNAs regulated by variant, miRNA, transcription factor, and methylation, respectively.



LncRNAdisease

The lncRNADisease database (Bao et al., 2018) (http://www.rnanut.net/lncrnadisease/) integrated experimentally validated circular RNA–disease associations, and regulatory mechanisms among mRNA, miRNA, and ncRNA. Particularly, it contains more than 200, 000 lncRNA–disease associations. In addition, it gives confidence scores for all ncRNA–disease associations and maps each disease to disease ontology and medical subject headings.



MNDR

The MNDR database (Cui et al., 2017) (http://www.rna-society.org/mndr/) integrates more than 260,000 ncRNA–disease associations. These associations are supported by 10 experiments and 4 predictive algorithms. The experimental repositories include Lnc2Cancer (Gao et al., 2018), dbDEMC (Yang et al,. 2016), LncRNADisease (Bao et al., 2018), MNDR (Wang et al., 2013), HMDD (Huang et al., 2018b), NSDNA (Wang et al., 2016a), LincSNP (Ning et al., 2016), miRCancer (Xie et al., 2013), PhenomiR (Ruepp et al., 2012), and miR2Disease (Jiang et al., 2008). The four prediction algorithms are LDAP (Lan et al., 2016), miRDP (Mørk et al., 2013) LncDisease (Wang et al., 2016b), and PBMDA (You et al., 2017). It provides 8,824 experimental lncRNA–disease, 70,381 experimental miRNA–disease, 118 experimental piRNA–disease, and 67 experimental snoRNA–disease associations across 6 mammalsix (Homo sapiens, Macaca mulatta, Mus musculus, Pan troglodyte, Rattus norvegicus, and Sus scrofa). In addition, it provides 153,508 predicted lncRNA–disease associations and 28,144 predicted miRNA–disease associations for H. sapiens. MNDR contains 19,575, 110, 4,150, and 23 non-redundant lncRNA–disease, piRNA–disease, miRNA–disease, and snoRNA–disease interactions, respectively, associated with 1,416 disease.



UniProt

The UniProt database (Consortium et al., 2018) (http://www.uniprot.org/) is an important database providing protein sequences and annotations. It provides 80 million sequences and is a useful tool. Users can calculate a new proteome identifier to find a particular assembly for a species or subspecies. It also provides an effective measurement for computing an annotation score for all entries.




Methods

Most computational methods contain two procedures: data extraction and model selection. In the first part, computational methods usually extract LPIs related to human lncRNA, lncRNA sequences, and protein sequences from NPInter (Hao et al., 2016), NONCODE (Zhao et al., 2015), and UniProt (Consortium et al., 2018), respectively. Computational methods filter LPIs by removing lncRNAs/proteins only interacting with one protein/lncRNA. In the second procedure, computational methods design various models to uncover potential LPIs. These models can be roughly classified into two categories: network-based methods and machine learning-based methods.


Data Representation

Computational methods utilize an lncRNA set l = {l1, l2, l3 …. ln}, a protein set, P = {p1, p2, p3 …. pm}, and an LPI matrix Yn×m, where yij = 1 if there is an association between an lncRNA li and a protein pj; otherwise, yij = 0.



Network-Based Methods

Network-based methods obtain better performance by effectively integrating related biological information and network propagation algorithms into a unified framework.


LPIHN

Li et al. (2015) developed an LPI prediction method combing a heterogeneous network model and random walk with restart, LPIHN. LPIHN can be broken down into four steps:

Step 1 Extracting known ncRNA–protein associations from the Npinter 2.0 database (Hao et al., 2016) and filtering the ncRNAs and their associated proteins based on organism and type of ncRNAs. LPIHN then selects lncRNAs from filtered ncRNAs based on the human lncRNA dataset provided by the NONCODE database (Zhao et al., 2015).

Step 2 Obtaining lncRNA expression profiles from the NONOCODE 4.0 database (Zhao et al., 2015). Given the expression profiles of two lncRNAs E1 and E2, LPIHN calculates lncRNA expression similarity based on the Pearson correlation coefficient:



where cov(E1, E2) is the covariance of E1 and E2, and   and   are the standard deviations of E1 and E2, respectively.

Step 3 Extracting protein–protein interactions (PPIs) from STRING 9.1 (Szklarczyk et al., 2016) and obtaining 804 PPIs and the corresponding score matrix SP. SP is normalized as follows:



where M is a diagonal matrix, and M(i, i) is the sum of row i in SP.

Step 4 Propagating the random walk to score for unknown lncRNA–protein pairs based on the following iterative equation:



The details are shown as Figure 1.




Figure 1 | Flowchart of LPI prediction method based on heterogeneous network model and random walk with restart.





LPLNP

Zhang et al. (2018b) proposed a linear neighborhood propagation-based method, LPLNP, to probe potential LPIs. LPLNP found novel LPIs through the following steps.

Step 1 Extracting 4,158 LPIs between 27 proteins and 990 lncRNAs from NPInter (Hao et al., 2016) and NONCODE (Zhao et al., 2015) by filtering unreliable lncRNA sequences and removing lncRNAs/proteins only interacting with one protein/lncRNA.

Step 2 Obtaining three types of features for lncRNAs (interaction profile, expression profile, and sequence composition) and two types of features for proteins [interaction profile and CTD (composition, transition, and destruction)].

Step 3 Computing linear neighborhood similarity and regularized linear neighborhood similarity between lncRNA/proteins by Eqs. (4) and (5), respectively:



where Xi denoted the feature vector of the ith lncRNA, and N(Xi) is K nearest neighbors of Xi.



where  .

Step 4 Computing the interaction probabilities for unobserved lncRNA–protein pairs:



The details are shown in Figure 2.




Figure 2 | Flowchart of linear neighborhood propagation-based LPI prediction method.





LPI-BNPRA

Zhao et al. (2018a) developed a novel LPI prediction model based on a bipartite network projection recommended technique, LPI-BNPRA. LPI-BNPRA can be broken down into five steps.

Step 1 Extracting 4,158 high-confidence LPIs between 990 lncRNAs and 27 proteins from NPInter (Hao et al., 2016) and NONCODE (Zhao et al., 2015) by filtering unreliable lncRNA sequences and removing lncRNAs/proteins only associated with one protein/lncRNA.

Step 2 Calculating lncRNA–lncRNA similarity based on the Smith–Waterman technique:



where sw(li, lj) denotes the Smith–Waterman score between two lncRNAs li and lj.

Step 3 Calculating the protein–protein similarity matrix based on the Smith–Waterman technique:



where sw(pi, pj) denotes the Smith–Waterman score between two proteins pi and pj.

Step 4 For a given lncRNA lj, computing its bias ratings of lncRNAs for a protein pi with the agglomerative hierarchical clustering and associated measurement of minimum variance method:



where ncr is the number of lncRNAs in the cluster cr including lj, and Tpi is the number of all lncRNAs interacting with pi.

Step 5 Finding LPI candidates based on the recommended bipartite network projection technique and bias ratings of every lncRNA for proteins:



where















The details are shown in Figure 3.




Figure 3 | Flowchart of LPI prediction model based on the recommended bipartite network projection technique.





LPISNFHS

Zheng et al. (2017) presented a new LPI identification method, LPISNFH. LPISNFHS fused multiple protein–protein similarity networks, the similarity network fusion (SNF) technique, HeteSim algorithm, and known LPI network into a unified framework. LPISNFH can be broken down into three steps.

Step 1 Obtaining 4,467 LPIs between 1,050 unique lncRNAs and 84 unique proteins from NPInter (Hao et al., 2016) and NONCODE (Zhao et al., 2015) by manually filtering LPIs not involving lncRNAs and removing the lncRNAs only associated with one protein.

Step 2 Constructing a protein–protein similarity network. LPISNFHS fused the sequence similarity, functional annotation semantic similarity (Go), domain similarity, and STRING similarity into a unified protein–protein similarity network based on the SNF technique.

Step 3 Inferring novel LPIs by combining the HeteSim algorithm and heterogeneous LPI network.



LPI-IBNRA

Xie et al. (2019) developed a LPI prediction model, LPI-IBNRA. LPI-IBNRA integrated lncRNA–protein interactions, protein–protein interactions, and similarity matrix for proteins and lncRNAs, and improved bipartite network recommender algorithm. LPI-IBNRA can be broken down into seven steps.

Step 1 Obtaining 4,796 LPIs between 1,105 lncRNAs and 26 proteins from NPInter (Hao et al., 2016) and NONCODE (Zhao et al., 2015) after filtering lncRNAs and proteins that have only one association.

Step 2 Computing lncRNA similarity matrix simL based on lncRNA expression similarity and Gaussian interaction profile (GIP) kernel similarity, and protein similarity matrix simP based on protein interaction similarity and GIP kernel similarity.

Step 3 Computing the score between protein pi and lncRNA lj based on protein similarity and lncRNA similarity by Eqs. (18) and (19), respectively.





Step 4 Obtaining the initialized association score matrix as follows:



Step 5 Computing the first-round scores of the lncRNA lk over all proteins:



Step 6 Computing the second-round scores of the protein pi over all lncRNAs:



Step 7 Computing the final association score matrix:



where W′ = W + αW2 and α ∈ (−1,0).

The details are shown in Figure 4.




Figure 4 | Flowchart of LPI prediction method based on improved bipartite network recommender algorithm.





LPBNI

Ge et al. (2016) proposed an lncRNA–protein bipartite network inference method, LPBNI, to find potential LPIs. LPBNI can be broken down into five steps.

Step 1 Extracting data. LPBNI first downloads 7,576 ncRNA–protein associations from NPInter 2.0 (Hao et al., 2016) with the restricted type of “NONCODE” and organism “Homo sapiens.” LPBNI then selects 2,380 lncRNAs based on a human lncRNA dataset provided by the NONCODE database (Zhao et al., 2015). Finally, LPBNI extracts 4,870 LPIs between 2,380 lncRNAs and 106 proteins.

Step 2 Utilizing the LPI network to construct a bipartite graph G (L, P, Y).

Step 3 Propagating known biological information in G. For a lncRNA lj, SL (lj) denotes the score on lj after the first step of propagation:



where S0 (i) = sij, i ∈ {i, 2,…, m} denotes the original information of P for a given lncRNA lj. sij = 1 if pi associates with lj; otherwise, sij = 0.   denotes the number of lncRNAs associated with pi.

Step 4 Propagating all information in L back to P. SF(pi) represents the final information on protein pi to denote the associated score between pi and lj:



where   is the number of proteins interacting with lj.

Step 5 Computing the final associated score SF after the above two-step information propagation yields



where   denotes the column vector of S0,  , where  .

The details are shown in Figure 5.




Figure 5 | Flowchart of lncRNA–protein bipartite network inference method.





ACCBN

Zhu et al. (2019) exploited an ant-colony-clustering-based bipartite network method for revealing potential LPIs, ACCBN. The model can be roughly broken down into three steps.

Step 1 Describing lncRNA interaction profiles and protein interaction profiles as row vectors and column vectors based on the LPI network, respectively.

Step 2 Calculating the probability that two entities xi and xj belong to the same cluster based on the ant colony clustering method:



where











where r is the cluster radius, cj is the cluster center of the jth cluster, and α ∈ (0, 5), β ∈ (0, 5), ρ ∈ (0.1, 0.99), and Q ∈ (1, 10000).

Step 3 Applying lncRNA–protein bipartite network to identify LPI candidates. Given a protein pk, its association scores with all lncRNAs at the tth iteration   can be computed as follows:



where W is a similarity matrix.

The association scores for all proteins {p1, p2,…, pm} can be represented as follows:






Machine Learning-Based Methods

Machine learning-based LPI prediction methods utilize machine learning-based models and algorithms to uncover potential LPIs. This type of method can be roughly classified into two categories: matrix factorization-based methods and ensemble learning-based methods.


Matrix Factorization-Based Models

Matrix factorization is exploited in recommendation systems and has been widely applied to bioinformatics (Shi et al., 2018; Zhang et al., 2018a; Zhao et al., 2018b; Cantini et al., 2019). Matrix factorization-based LPI prediction techniques transformed the problem of LPI identification into a recommender task, and adopted the matrix factorization model to capture unobserved LPIs. Given an LPI matrix Y and two nonnegative matrices W ∈ ℜk x n and H ∈ ℜk x m the problem of predicting LPIs can be formulated as the following objective function:



A few LPI identification methods have been designed based on matrix factorization method.


LPGNMF

Zhang et al. (2018a) designed a graph regularized nonnegative matrix factorization-based (NMF) method to predict potential LPIs, LPGNMF. LPGNMF consists of three steps.

Step 1 Extracting LPI information based on data provided by NONCODE (Zhao et al., 2015), NPInter (Hao et al., 2016), and UniProt (Consortium et al., 2018). Obtaining 9,484 LPIs between 50 proteins and 2,190 lncRNAs after filtering and removing lncRNAs/proteins only interacting with one protein/lncRNA.

Step 2 Computing lncRNA similarity and protein similarity.

LPGNMF computes the lncRNA expression profile similarity Sl (i, j):

Given the expression profiles of two lncRNAs E1 and E2, LPIHN calculates lncRNA expression similarity based on the Pearson correlation coefficient:



where cov(E1, E2) is the covariance of E1 and E2, and   and   are the standard deviations of E1 and E2, respectively.

LPGNMF computes the weight matrix based on lncRNA similarity:



Here, N(li) and N(lj) denote the p nearest neighbors of li and lj.

LPGNMF then calculates the sparse similarity matrix of lncRNAs Sl*:



Similarly, LPGNMF calculates the sparse similarity matrix of proteins Sp*.

Step 3 Building the following optimization model based on the graph regularized nonnegative matrix factorization method:



The details are shown in Figure 6.




Figure 6 | Flowchart of LPI prediction method based on graph regularized nonnegative matrix factorization.





LPI-NRLMF

Liu et al. (2017) designed a novel LPI identification model based on neighborhood regularized logistic matrix factorization, LPI-NRLMF. LPI-NRLMF can be roughly broken down into three steps.

Step 1 Extracting the lncRNA sequence, protein sequence, and LPIs based on data provided by NONCODE (Zhao et al., 2015), NPInter (Hao et al., 2016), and UniProt (Consortium et al., 2018); and obtaining 4,158 LPIs between 27 proteins and 990 lncRNAs.

Step 2 Computing lncRNA sequence similarity matrix LSM and protein sequence similarity matrix PSM based on the Smith–Waterman algorithm:





Step 3 Defining neighborhood information for lncRNAs and obtaining the adjacency matrix A of lncRNAs:



Similarly, LPI-NRLMF computes the adjacency matrix B of proteins.

Step 4 Computing associated scores SN for unknown lncRNA–protein pairs based on the neighborhood regularized logistic matrix factorization model:



Here, ui ∈ ℜ1xr and vj ∈ ℜ1xr can be computed by the following neighborhood regularized logistic matrix factorization model:



where  ,  . Similarly, LP can be computed. U ∈ ℜm x r and V ∈ ℜ1 x r can be calculated by dividing L.

The details are shown in Figure 7.




Figure 7 | Flowchart of LPI prediction model based on neighborhood regularized logistic matrix factorization.





IRWNRLPI

Zhao et al. (2018b) fused the random walk into LPI-NRLMF and exploited a novel LPI prediction model based on LPI-NRLMF, IRWNRLPI. IRWNRLPI is a semi-supervised learning-based model and does not require negative samples. IRWNRLPI contains the following five steps.

Step 1 Extracting the lncRNA sequence, protein sequence, and LPIs from NONCODE (Zhao et al., 2015), NPInter (Hao et al., 2016), and UniProt (Consortium et al., 2018); and obtaining 4,158 LPIs between 27 proteins and 990 lncRNAs.

Step 2 Computing the lncRNA sequence similarity matrix LS and protein sequence similarity matrix PS based on the Smith–Waterman algorithm:





Step 3 Building a random walk model to compute associated scores SR for unknown lncRNA–protein pairs:



where rij represents the extent of association between a neighbor vj and a protein p for a given node vi. L(lij)M x M is computed by  . IRWNRLPI divides L into two arrays of LU and LQ.

Step 4 Computing associated scores SN for unknown lncRNA–protein pairs based on the neighborhood regularized logistic matrix factorization model:



ui ∈ ℜ1 x r and vj ∈ ℜ1 x r can be computed by the following neighborhood regularized logistic matrix factorization model:



where U ∈ ℜm x r and V ∈ ℜn x r.

Step 5 Computing the final associated scores for unknown lncRNA–protein pairs:



The details are shown in Figure 8.




Figure 8 | Flowchart of LPI prediction model based on the random walk and neighborhood regularized logistic matrix factorization.





LPI-KTASLP

Shen et al. (2019) designed a kernel target alignment-based semi-supervised model, LPI-KTASLP, to find novel LPIs. LPI-KTASLP utilizes matrix factorization and an approximation technique. LPI-KTASLP can be roughly broken down into three steps.

Step 1 Computing lncRNA kernels and protein kernels from four levels.

Level 1 GIP kernel:

The GIP kernels between two lncRNAs and two proteins are defined as follows, respectively:





Level 2 Sequence kernel:

The sequence kernels of two lncRNAs and two proteins are defined as follows, respectively:





where SW(.,.) is the Smith–Waterman score, and S represents the sequence information of a lncRNA/protein.

Level 3 Sequence feature kernel:

Constructing radial basis function kernels   and   for lncRNAs and proteins based on the conjoint triad and pseudo position-specific score matrix, respectively.

Level 4 lncRNA expression kernel:

Calculating the expression kernel of lncRNA   based on the expression profiles of lncRNAs provided by the NONCODE database (Zhao et al., 2015).

Step 2 Fusing the above kernels to generate the optimal kernel based on kernel target alignment:





Step 3 Constructing the following model to compute interaction probabilities for unobserved lncRNA–protein pairs based on matrix factorization, low-rank approximation, and eigen decomposition:



The details are shown in Figure 9.




Figure 9 | Flowchart of kernel target alignment-based semi-supervised model for LPI prediction.






Ensemble-Based Methods

Ensemble learning methods are widely applied to LPI prediction. HLPI-Ensemble (Hu et al., 2018) and SFPEL-LPI (Zhang et al., 2018c) are two state-of-the-art ensemble-based LPI prediction methods.


HLPI-Ensemble

Hu et al. (2018) developed the HLPI-Ensemble method for human LPI identification. HLPI-Ensemble consists of two major processes: benchmark dataset construction and HLPI-Ensemble model construction.

In the first process, HLPI-Ensemble downloads lncRNA sequences, protein sequences, and LPIs from NONCODE (Zhao et al., 2015), UniProt (Consortium et al., 2018), and NPinter (Hao et al., 2016). HLPI-Ensemble then extracts 82 features of lncRNAs and 1,516 features of proteins based on Kmer, DAC, and PC-PseDNC-General.

In the second process, HLPI-Ensemble utilizes the ensemble technique and generates three ensemble learning frameworks, HLPI-SVM, HLPI-XGB, and HLPI-RF. These three frameworks are based on support vector machines (SVMs), extreme gradient boosting (XGB), and random forests (RFs), respectively. The details are shown in Figure 10.




Figure 10 | Flowchart of ensemble-based LPI identification method.





SFPEL-LPI

Zhang et al. (2018c) exploited a sequence-based feature projection ensemble learning framework, SFPEL-LPI, to uncover novel LPIs. SFPEL-LPI integrated ℓ1,2-norm regularization, ensemble graph Laplacian regularization, and various biological information into a unified framework. It can be roughly broken down into five steps.

Step 1 Downloading LPIs, lncRNA sequences, and protein sequences from NPInter (Hao et al., 2016), NONCODE (Zhao et al., 2015), and SUMPERFAMILY (Pandurangan et al., 2018), respectively.

Step 2 Describing lncRNA and protein features based on sequence information and known LPIs.

SFPEL-LPI describes lncRNA features based on parallel correlation pseudo dinucleotide composition (PSEDNC). Given the occurrence frequency of different dinucleotides and the physicochemical properties of every dinucleotide, the PseDNC feature vector for an RNA sequence L can be represented as



where



In addition, SFPEL-LPI represents the interaction profile of an lncRNA as a row vector of the LPI matrix Y:  .

SFPEL-LPI describes protein features based on the parallel correlation pseudo amino acid composition (PseAAC):



where



Similarly, the interaction profile of a protein can be defined as a column vector of the LPI matrix Y:  .

Therefore, a features for lncRNAs/proteins can be represented as feature matrix:  .

Step 4 Computing lncRNA similarity and protein similarity.

SFPEL-LPI first computes the linear neighborhood similarity of lncRNAs based on PseDNC and IP.

SFPEL-LPI then computes the Smith–Waterman subgraph similarity (SWSS) of lncRNAs:



Similarly, the PseAAC similarity, IP similarity, and SWSS similarity of proteins can be computed.

Therefore, b types of similarities of lncRNAs/proteins can be represented as b similarity matrices  .

Step 5 Computing the association scores for novel lncRNAs/proteins based on Eqs. (63) and (64).





Gi, R, and θ can be obtained by solving the following optimization model:



The details are shown in Figure 11.




Figure 11 | Flowchart of LPI prediction method based on sequence feature projection ensemble learning framework.





Other Methods

There are several methods used to predict possible LPIs except for matrix factorization-based methods and ensemble learning-based methods, for example, Fisher's linear discriminant-based LPI prediction method (IncPro) (Lu et al., 2013), eigenvalue transformation-based semi-supervised model (LPI-ETSLP) (Hu et al., 2017), and kernel ridge regression model based on fast kernel learning(LPI-FKLKRR) (Shen et al., 2018).



lncPRO

Lu et al. (2013) explored a Fisher's linear discriminant-based LPI prediction method, lncPro. lncPro found new LPI through executing the following four steps.

Step 1 Downloading complexes data from the PDB database.

Step 2 Encoding sequence information into numerical feature vectors for lncRNAs and proteins based on the secondary structure, the Van der Waals' propensities, and the hydrogen-bonding propensities.

Step 3 Transforming the feature vectors to unify the dimension based on the Fourier series:



where L is the length of feature vector of lncRNAs/proteins.

Step 4 Calculating the final score matrix < p|M|r> for the RNA feature vector r and a protein feature vector p based on Fisher's linear discriminant method:





LPI-ETSLP

Hu et al. (2017) presented an eigenvalue transformation-based semi-supervised model, LPI-ESTLP, to uncover the underlying LPIs. LPI-ESTLP can be broken down into three steps.

Step 1 Downloading lncRNA sequences, protein sequences, and LPIs from NONCODE (Zhao et al., 2015), UniProt (Consortium et al., 2018), and NPInter (Hao et al., 2016); and extracting 4,158 LPIs between 27 proteins and 990 lncRNAs after preprocessing.

Step 2 Computing the lncRNA sequence similarity matrix LSM and protein sequence similarity matrix PSM based on the Smith–Waterman algorithm:





Step 3 Calculating the score matrix based on the following objective function:



where



and Ll = I – LSM and Lp = I – PSM denote the Laplacian matrices of lncRNAs and proteins, respectively.

LPI-ETSLP can obtain the final scores between unobserved lncRNA–protein pairs by integrating eigenvalue transformation into Eq. 70:



where Ūl is a diagonal matrix with  . Ll = I – Dl –0.5 Kl Dl–0.5 and the eigen decomposition of Kl can be expressed as  . Similarly,   and   can be defined.

The details are shown in Figure 12.




Figure 12 | Flowchart of eigenvalue transformation-based semi-supervised model.





LPI-FKLKRR

Shen et al. (2018) developed an LPI prediction algorithm, LPI-FKLKRR, combining a kernel ridge regression model based on fast kernel learning. LPI-FKLKRR can be broken into six steps:

Step 1 Computing lncRNA GIP, sequence feature, sequence similarity, and lncRNA expression kernels  ,  ,  , and  .

Step 2 Computing protein GIP, sequence features, protein sequence similarity, and protein GO kernel  ,  ,  ,  .

Step 3 Generating the optimal lncRNA and protein kernels with fast kernel learning:



	

where   and   represent each element in wlnc and wpro, respectively;   and   denote the corresponding normalized similarity matrices in lncRNA and protein spaces, respectively.

Step 4 Constructing the optimization model to compute the optimal solution for wlnc or wpro:



where w denotes the optimal solution wlnc or wpro, Ku and Kv denote two different kernel matrices, and tr(·) denotes the trace function.

Step 5 Computing lncRNA–protein association score matrix:



Step 6 Producing the optimal F* by adjusting the parameters λℓ and λp.

The details are shown in Figure 13.




Figure 13 | Flowchart of LPI prediction method based on fast kernel learning with kernel ridge regression.








Discussion

lncRNAs play important regulatory roles in diverse biological processes, such as protein modification, DNA methylation, and chromosome (Weber et al., 2018; Huang et al., 2018a; He et al., 2018b; Zhao et al., 2018c). However, the regulatory mechanism remains unknown (Esteller, 2011; Jiang et al., 2018; Agirre et al., 2019). Studies reported that identifying protein molecules binding specific lncRNAs help to probe the mechanism of lncRNAs (Lu et al., 2013; Ge et al., 2016; Chen et al., 2018). Therefore, identifying possible LPIs has an important role in understanding lncRNA-related activities (Lu et al., 2013; Pan et al., 2016; Peng et al., 2017; Zhang et al., 2018c).

However, experimental methods are expensive and time-consuming. For limited existing knowledge, computational methods become vital as a silver-bullet solution to capture LPIs on a large scale, which contributes to prioritize LPI candidates and deploys further experimental validation (Chen et al., 2018).

In this study, databases involved in LPI identification are summarized. More importantly, the components of state-of-the-art computational models for LPI prediction, such as network-based methods and machine learning-based methods, are introduced. Particularly, machine learning-based models can be broken into matrix factorization-based methods and ensemble learning-based methods. To consider the performance of LPI prediction methods, we compared nine models (IRWNRLPI, LPBNI, LPGNMF, LPI-BNPRA, LPI-ETSLP, LPIHN, LPI-NRLMF, LPLNP, and SFPEL-LPI) on leave-one-out cross-validation (LOOCV). These nine models are conducted on the datasets provided by the corresponding papers. Parameters are set as the values recommended by the corresponding studies. Table 1 shows the comparison results based on AUC, precision, accuracy, and F1. In Table 1, SFPEL-LPI obtained the best performances of AUC and accuracy; LPGNMF obtained the best performances of precision and F1. The results demonstrated that SFPEL-LPI can correctly predict LPIs with a relative high proportion. LPGNMF can better identify potential LPIs when taking into account the proportion of correctly predicted LPIs and successfully predicted LPIs.


Table 1 | Performance of LPI prediction methods on LOOCV.



To further detect the performance of SFPEL-LPI, we compared it with four representative LPI prediction methods, LPBNI, LPI-ETSLP, LPIHN, and LPLNP, on fivefold cross-validation. The experiments were conducted on the same dataset, i.e., LPIs, lncRNA sequences, and protein sequences are from NPInter (Hao et al., 2016), NONCODE (Zhao et al., 2015), and SUMPERFAMILY (Pandurangan et al., 2018), respectively. The details are shown in Table 2. The results demonstrate that SFPEL-LPI obtained the best performance of AUC and can better identify possible LPIs.


Table 2 | Performance of LPI prediction methods on fivefold cross-validation.



In general, network-based methods have become one type of effective tool in possible LPI identification by utilizing LPI network, lncRNA similarity network, and protein similarity matrix. Although network-based methods efficiently discovered unknown LPIs and obtained promising results from the perspective of propagation (Li et al., 2015; Ge et al., 2016; Zheng et al., 2017; Zhao et al., 2018b), this type of method has some weaknesses.

	Parts of computational methods tested their performances only on one database, which may result in biased predictions because of the sparse nature of LPI data (Li et al., 2015). More importantly, the lack of known LPIs limits the further research of LPI prediction in a larger network (Ge et al., 2016).


	It is important to unravel potential LPIs for lncRNAs/proteins without any associated information (we represent these lncRNAs/proteins as new lncRNAs/proteins); however, most network-based models fail to capture LPI candidates (Zhang et al., 2018b).


	Current network-based methods tend to be biased to the lncRNAs/proteins with more known associated proteins. Some lncRNAs/proteins interact with multiple proteins/lncRNAs and others interact with a few or even only one protein/lncRNA in an LPI network. The unbalanced nature of degree distributions in the LPI network may affect prediction performance. Increasing resistance based on the random walk may improve predictive accuracy for LPI prediction models (Li et al., 2015).


	Parts of methods compute lncRNA similarities based on the expression profile and may produce incomplete coverage of the lncRNA similarity network when adding LPI datasets. This problem may be solved by increasing appropriate data including LPIs (Li et al., 2015).


	Network-based methods can be applied to an LPI network in which there exists at least one link between two nodes. Especially for a bipartite network, network-based methods require that each node in the network has at least two linkages. However, the LPI network is usually composed of a few isolated subnetworks, and most of the existing network-based models fail to identify the LPIs between the lncRNAs in one subnetwork and the proteins in another (Ge et al., 2016).


	Most current network-based methods utilized local network information and showed better performance; however, many previous computational biology studies showed that global network information contributes to capturing the associations between two entities, such as LPIs (Karuza et al., 2016; Meng et al., 2016; Shi et al., 2017).


	Biology finally aims at providing personalized medicine for cancer patients, and it is a key issue to predict relevant drugs/targets for a certain disease by integrating multiple heterogeneous networks and constructing multiple-partite biological networks, such as protein–lncRNA–disease association networks and drug–protein–lncRNA–disease networks. However, current network-based methods are still not applied to this type of prediction (Yao et al., 2016; Yang et al., 2017; Bester et al., 2018; Lu et al., 2018; Ping et al., 2018; Fan et al., 2019).




In summary, machine learning-based LPI prediction methods have some limitations.

	There are no non-LPIs (negative samples) with experimental validation; therefore, most supervised learning-based LPI prediction models can only randomly select unknown lncRNA–protein pairs as negative LPIs. However, this part of randomly selected negative LPIs may contain true LPIs (positive samples) as well, which significantly influences the predictive performance (Liu et al., 2017; Zhao et al., 2018a; Zhao et al., 2018b; Zhang et al., 2018c; Shen et al., 2019). Although semi-supervised learning-based models utilized unlabeled information to decrease the limitations of negative LPI selection, it still has the same disadvantage as classifier combination (Liu et al., 2017; Zhang et al., 2018a; Shen et al., 2019).


	Some machine learning-based methods constructed two different classifiers, based on lncRNAs and proteins, respectively. The final results are an average of the performances of two predictive models. This type of model will produce biased results (Zhao et al., 2018b).


	Many lncRNAs/proteins do not have known association information with any proteins/lncRNAs, and we represent them as new lncRNAs/proteins. Most current predictive models are unable to capture possible proteins/lncRNAs for new lncRNAs/proteins (Zhang et al., 2018c).


	The proposed methods rely heavily on known LPI data; however, the current number of known LPIs is still very low. Therefore, most machine learning-based models are trained using RNA–protein interaction information instead of LPI data. This results in limited predictive performances (Liu et al., 2017; Zhao et al., 2018a). With the increase in experimentally validated LPIs, the prediction performances of models will improve (Zhao et al., 2018b).


	The better performances of existing machine learning methods rely severely on data called features (Goodfellow et al., 2016). Current computational methods utilize various lncRNA features and protein features. However, identifying more appropriate features for a given task is still a challenge (Liu et al., 2017; Min et al., 2017). More importantly, these features are not available for all proteins or lncRNAs (Liu et al., 2017; Zhang et al., 2018c).


	Most experimental data are provided by the NPInter database. NPInter is a relatively abundant database for lncRNA and protein data, but it only provides gene–protein interaction data corresponding to relevant lncRNAs instead of direct LPIs. Gene–protein interactions were directly applied to machine learning-based methods to find possible ncRNA–protein associations and did not discover true LPIs (Liu et al., 2017; Zhao et al., 2018a; Zhao et al., 2018b).


	Most current computational models for LPI interaction prediction are measured based on cross-validation. Park and Marcotte (2012) used a proteochemometrics model (Wikberg and Mutulis, 2008) for drug–protein interaction prediction and observed that the paired nature of input samples has significant implications on the cross-validation of these pair-input methods. That is to say, there are significant cross-validation differences between input sample and out-of-sample interactions (Park and Marcotte, 2012). For drug–target interaction identification problems, the paired feature of input samples may produce a natural partition of test pairs, and thus the pair-input methods may obtain significantly distinct prediction accuracies for different test classes (Chen et al., 2015). The same situation applies to LPI prediction, which is still a pair-input computational identification problem.






Conclusion and Further Research

There are a few LPIs and numerous unknown lncRNA–protein pairs not validated by experimental methods in the existing databases. In addition, similar lncRNAs tend to interact with similar proteins, and vice versa (Xiao et al., 2017; Zhang et al., 2018a). Therefore, LPI data have a sparse, low-rank, and unbalanced nature (Li et al., 2015; Zhang et al., 2018a; Shen et al., 2019). With the development of experimental technology, more LPIs will be confirmed, and thus the prediction accuracy of computational models will increase. In this section, we present some suggestions for further research based on the nature of LPI data.


Fusing Comprehensive LPI Datasets

Parts of computational methods tested their performances only on one database, which may result in biased predictions because of the sparse nature of LPI data (Li et al., 2015). More importantly, existing computational models utilize various biological information from proteins and lncRNAs, for example, physicochemical properties including hydrogen bonding, secondary structure, and van der Waals propensities (Belluci et al., 2011; Xiao et al., 2017). It is important to utilize diverse biological features to improve the performances of LPI prediction models. However, these features are not available for all proteins or lncRNAs, and thus computational methods cannot capture LPI candidates when information is unavailable (Zhang et al., 2018c). Therefore, exploring advanced data fusion methods to integrate more available data sources may further boost the performance of LPI identification.

Focusing on the drawbacks of current network-based LPI identification methods, future research can begin with integrating more heterogeneous networks, such as protein–protein interaction network (Zhang et al., 2019a), lncRNA–miRNA interaction network (Zeng et al., 2016; Huang et al., 2018c; Zhao et al., 2019), lncRNA–mRNA interaction network (Alaei et al., 2019), lncRNA–disease association network (Fu et al., 2017; Wang et al., 2019), and lncRNA–miRNA–mRNA regulatory network (Chen et al., 2018; Zhang et al., 2019b). However, how to address the data conflict problems while integrating diverse LPI data from different repositories is a challenge.

Although there are not currently data conflict solutions for LPI prediction, we can find some clues by other problems in the area of bioinformatics. For example, Liu et al. (2015) set a confidence level for each DTI and gave a higher score to a DTI from a more reliable data repository. For example, the STITCH database assigns a score with a range [0, 1,000] to each DTI based on four types of different sources: model prediction, text mining, manually curated databases, and experimental validation. Particularly, Liu et al. (2015) gave DTIs from Matador and DrugBank the highest values (1,000) because DTIs from these two databases are reported by biochemical experiments and relevant studies. Lou et al. (2017) exploited another type of data fusion from a multiple-views perspective. This involved five steps: screening relevant information from different data sources; removing isolated nodes without edges in the networks; fusing various types of nodes and edges and building a heterogeneous network; constructing multiple similarity networks to boost the network heterogeneity; and excluding homologous nodes from the constructed heterogeneous networks to further reduce the possible redundancy of associated information. Inspired by these two methods, we can fuse diverse heterogeneous data to improve performance in future research. More importantly, new exploited network-based methods should be implemented on a constructed heterogeneous network rather than a single network.



Screening Credible Negative Samples

There are some known LPIs (positive samples) and abundant unknown lncRNA–protein pairs in existing LPI data resources. More importantly, there are no experimentally validated non-LPIs, and thus most supervised learning-based models have no other choice but to randomly screen negative LPIs from unlabeled lncRNA–protein pairs or even regarded all unlabeled lncRNA–protein pairs as negative samples (Liu et al., 2017; Zhao et al., 2018b). However, the randomly screened negative LPIs may contain positive LPIs as well, and thus there are severe biases in supervised learning-based techniques. Therefore, exploiting an efficient model to select high-quality negative samples is a challenging task for boosting LPI prediction accuracy.

Cheng et al. (2017) designed a FInding Reliable nEgative samples method (FIRE) to select negative RNA–protein interactions. FIRE was based on the following assumption: given a known RNA–protein interaction between an RNA i and a protein j, for an RNA k, the more differences between i and k, the less possibility that k interacts with j, and vice versa. FIRE screened negative RNA–protein interactions through the following steps: computing the protein similarity matrix, building a positive sample set based on known interaction information, scoring an unknown RNA–protein pair not included in positive sample set based on protein similarities, generating m negative samples by sorting these RNA–protein pairs via their scores in increasing order, and selecting the top-m RNA–protein pairs. Similarly, we may generate negative LPIs based on lncRNA–lncRNA similarities, protein–protein similarities, and the above assumption.

Positive-unlabeled (PU) learning (de Campos et al., 2018; Sansone et al., 2018; Yang et al., 2018) is applied to various situations. In PU learning, a supervised learning-based method is designed to learn a classification model from a positive sample set and an unlabeled dataset from an unknown class. Yang et al. (2018) designed an adaptive sampling framework with class label noise based on PU learning and introduced two new bioinformatic applications: identifying kinase-substrates and identifying transcription factor target genes. Therefore, PU learning may be one strong way to solve the problem of lacking negative LPIs.



Deep Learning

Existing computational methods have utilized different lncRNA features and protein features. For example, Bellucci et al. (2011) integrated three types of physicochemical properties, including hydrogen bonding, secondary structure, and van der Waals propensities; meanwhile, Lu et al. (2013) used six types of RNA secondary structures (besides physicochemical properties), which were provided by Bellucci et al. (2011). Therefore, designing more powerful models to integrate relevant biological features is a key issue. However, features are typically exploited by human biomedical engineers, and determining which features are more suitable for LPI prediction remains difficult. More importantly, encoding vectors that are too short may restrict the prediction accuracy of classification model. More importantly, most computational models only used sequence information but did not consider structure information (Peng et al., 2019).

Deep learning-based computational models composed of multiple processing layers require very little engineering knowledge and can efficiently extract features from raw data and construct high-level representations (Wei et al., 2018; Peng et al., 2019). These types of models have been applied to diverse analysis problems, and have obtained better performance due to the excellent power of feature learning (Jurtz et al., 2017; Min et al., 2017; Peng et al., 2019). Therefore, it is valuable and feasible to exploit deep learning-based methods to highly and effectively represent biological features for relevant entities in bioinformatics (Min et al., 2017; Zhang et al., 2018d; Peng et al., 2019; Zeng et al., 2019), such as information relevant to LPI prediction (Xiao et al., 2017; Shen et al., 2019; Zhu et al., 2019). More importantly, although deep learning demonstrated promising performance, it is not a silver bullet in LPI prediction. There still exist many challenges in LPI identification, such as the imbalanced nature of LPI data, limited LPI data, appropriate architecture selection, hyper parameter selection, and interpretation of learning results (Min et al., 2017). Therefore, solving these problems is the key to promoting deep learning-based LPI prediction models in future research.

Particularly, deep learning can be combined with PU learning and improve the performance of computational models (Bepler et al., 2018; Pati et al., 2018). For example, Bepler et al., 2018 designed the first particle-picking framework, Topaz. Topaz combined a convolutional neural network with a generalized-expectation-binomial-based objective function. The convolutional neural network was used to train classification models using only positive and unlabeled samples. Meanwhile, the generalized-expectation-binomial-based objective function was used to learn model parameters based on positive and unlabeled samples. Topaz utilized convolutional neural network classifiers to fit labeled particles (samples) and the remaining unlabeled samples based on the minibatched stochastic gradient decent method. Deep learning methods based on PU learning provide valuable insight and may be a starting point for deep learning applied to LPI prediction in future research.



Capturing LPI Candidates for New LncRNAs/Proteins

Network-based methods can be applied to an LPI network that has least one link between two nodes. For a bipartite network especially, network-based methods require that each node in the network has at least two linkages. That is to say, network-based methods cannot discover possible proteins for any lncRNA–protein pair without any known reachable paths in the LPI network (Ge et al., 2016; Zhang et al., 2018c). These lncRNAs/proteins without any interaction information are regarded as new lncRNAs/proteins (Zhang et al,. 2018c).

Given a known LPI dataset, we aim to predict (S1) LPIs between known lncRNAs and known proteins; (S2) LPIs between new lncRNAs and known proteins; (S3) LPIs between known lncRNAs and new proteins; and (S4) LPIs between new lncRNAs and new proteins. S1 has the most abundant association information, S2 and S3 have less data, and S4 has the least data. Computational models appropriate for S2 can still be applied to S3, and vice versa.

To the best of our knowledge, SFPEL-LPI provided by Zhang et al. (2018c) may be one of the rare computational methods for predicting possible LPIs for new lncRNAs/proteins. Although few computational models can be applied to the last three situations, some methods have been designed to solve similar problems in other areas in bioinformatics, and thus provide some clues for LPI prediction. For example, Shi et al. (2015) enhanced the similarity measures and introduced the concept of a “super-target” to capture the missing interactions for new drugs/targets. Furthermore, Chen et al. (2016b) exploited a miRNA–disease association prediction model based on within and between scores (WBSMDA) to uncover possible miRNA–disease associations for new miRNAs/diseases. These solutions provide clues for capturing LPI candidates for new lncRNAs/proteins.



Cross-Validation

Inspired by the evaluation methods proposed by Park and Marcotte (2012) and Chen et al. (2015), the test samples of LPIs could be categorized into four different groups: C1 is composed of the test samples sharing both lncRNAs and proteins with the training samples; C2 is composed of the test samples sharing only lncRNA with the training samples; C3 is composed of the test samples sharing only proteins with the training samples; and C4 is composed of the test samples sharing neither lncRNAs nor proteins with the training samples (Chen et al. (2015)). Therefore, it is vital to give cross-validation results under the above four independent test classes for LPI prediction.
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Since similar complex diseases are much alike in clinical symptoms, patients are easily misdiagnosed and mistreated. It is crucial to accurately predict the disease status and identify markers with high sensitivity and specificity for classifying similar complex diseases. Many approaches incorporating network information have been put forward to predict outcomes, but they are not robust because of their low reproducibility. Several pathway-based methods are robust and functionally interpretable. However, few methods characterize the disease-specific states of single samples from the perspective of pathways. In this study, we propose a novel framework, Pathway Activation for Single Sample (PASS), which utilizes the pathway information in a single sample way to better recognize the differences between two similar complex diseases. PASS can mainly be divided into two parts: for each pathway, the extent of perturbation of edges and the statistic difference of genes caused by a single disease sample are quantified; then, a novel method, named as an AUCpath, is applied to evaluate the pathway activation for single samples from the perspective of genes and their interactions. We have applied PASS to two main types of inflammatory bowel disease (IBD) and widely verified the characteristics of PASS. For a new patient, PASS features can be used as the indicators or potential pathway biomarkers to precisely diagnose complex diseases, discover significant features with interpretability and explore changes in the biological mechanisms of diseases.
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Introduction

Complex diseases threaten human health and life quality. Similar complex diseases make the early diagnosis of patients more difficult due to similar clinical symptoms. Therefore, mining effective biological information to accurately discriminate between similar complex diseases has become the most important research area of biomedicine. In the previous research, several methods based on a single biological network, such as the metabolic network, regulatory network, or protein–protein interaction (PPI) network, have been put forward to aid in disease prediction, diagnosis, prognosis, and so on (Winter et al., 2012; Cun and Fröhlich, 2013). Nevertheless, these methods are not robust because of the low reproducibility (Yousefi and Dougherty, 2012; Amar et al., 2015; Choi et al., 2017) that results from the cellular heterogeneity within tissues, the heterogeneity of samples, and errors of measuring technologies.

Since genes generally take effect synergistically by forming functional modules, inferring features related to disease classification at the functional level can effectively ameliorate the adverse effects of heterogeneity and obtain more reproducible markers. Some methods utilize Gene Ontology (Ashburner et al., 2000) to differentiate disease states (Zhang et al., 2017) while others integrate pathway information. Pathways reflect biological processes within cells, such as metabolism, signaling, and growth cycles, and markers identified based on pathway information can thus maintain functional interpretability (Haider et al., 2018). Moreover, the occurrence and progression of complex diseases, such as inflammatory bowel disease (IBD), are often related to the dysregulation of significant pathways. Discovering the involved pathways and quantifying their disorders are of great significance in understanding complex diseases (Bild et al., 2006; Thomas et al., 2008; Markert et al., 2011; Drier et al., 2013).

A series of methods for disease classification integrate pathway information from the Molecular Signatures Database (MSigDB) (Subramanian et al., 2005) or Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). Several works extract significant features from the genes along pathways to distinguish diseases (Huang et al., 2003; Bild et al., 2006; Lee et al., 2008a; Young and Craft, 2016). Although these works can combine pathway information to classify diseases effectively, they only regard a pathway as a set of genes and ignore the edge information between genes, which may lead to the loss of important information related to diseases. To overcome this problem, some methods for analyzing the intrinsic structures of pathways and integrating topological characteristics of pathways have been proposed (Liu et al., 2013; Han et al., 2017). These existing algorithms can effectively utilize the topological information of pathways to predict disease status. Nevertheless, none of them assesses condition-specific states for each patient from a pathway perspective, but this is essential to revealing the molecular mechanisms of complex diseases at the system level.

By analyzing the high-dimensional information of expression data and the differential distribution (i.e., volcano distribution) of a single patient against a given number of normal samples (Liu et al., 2016), we propose a novel framework to classify two similar complex diseases by evaluating the pathway activation based on single sample analysis. Our method consists of two steps: (1) a fully connected network for each pathway is constructed and the perturbation of each edge in the network caused by the introduction of each disease sample is evaluated. For all genes in the pathways, the statistical difference of gene expression between a single disease sample and normal samples is evaluated; (2) a novel method named as AUCpath is introduced to evaluate the pathway activation for single sample (PASS) of each pathway from both node and edge aspects, which converts the high-dimensional, small-sample gene expression matrix into a PASS matrix. Finally, a random forest classifier based on PASS features is built to examine the classification performance.

We applied PASS to classify ulcerative colitis (UC) and Crohn's disease (CD) (Ananthakrishnan, 2015). UC and CD have many common clinical features, such as abdominal pain, diarrhea, recurrent episodes, and so on. They are therefore collectively referred to as IBD. IBD is a special kind of intestinal inflammatory disease caused by common factors such as genetics, environmental triggers, immunoregulatory defects, and microbial exposure (Hanauer, 2006). Currently, there is no gold standard for discriminating UC and CD, but the responses and effects after medication of these two complex diseases are not the same (Akobeng et al., 2016; Baumgart and Sandborn, 2007), and this has motivated many attempts to understand the differences in the molecular characteristics between these two similar complex diseases at the tissue level (Lawrance et al., 2001; Burczynski et al., 2006; Wu et al., 2007). The improved understanding of the differential mechanisms of UC and CD from a molecular perspective can improve the diagnostic accuracy and have the potential to improve the therapeutic effect and the success rate of clinical trials.

We compare our method with seven network-based, GO-based, and pathway-based methods, respectively, and obtain prominent performance against these methods. In addition, our experimental results showed that our method can elucidate the molecular mechanism of UC and CD and has the potential to identify biomarkers with functional interpretability.



Materials and Methods


Dataset and Preprocessing

We downloaded two pediatric datasets and three adult datasets from the Gene Expression Omnibus (GEO) (Edgar et al., 2002), namely GSE9686 (Carey et al., 2007), GSE3365 (Burczynski et al., 2006), GSE36807 (Montero-Meléndez et al., 2013), GSE71730 (Gurram et al., 2016), and GSE16879 (Arijs et al., 2009). All of them contain UC, DC, and normal samples.

In order to maintain the consistency of data and reduce the impact of noise, we selected data from the same anatomical site and patients under the same conditions. We excluded samples of CD patients during treatment for GSE9686 and samples of Crohn's ileitis for GSE16879. We mapped probes to gene ID using files provided by the corresponding platforms, discarded probes corresponding to multiple genes, and chose the median when multiple probes were mapped to the same gene to eliminate the influence of measurement errors. Only genes detected in all datasets can be used for the downstream analysis. As a result, there were 11242 genes included in all five datasets. Table 1 summarizes the above datasets.


Table 1 | Summary of the gene expression datasets.



From the KEGG database, all human pathways were downloaded using the KEGGgraph package (Zhang and Wiemann, 2009). A total of 294 pathways were extracted. Each pathway consisted of a set of genes and their interactions; genes were represented by nodes, and interactions were edges in the KEGG human pathways. Genes that were not present in the expression profiles and their corresponding interactions were discarded. Considering the following analysis, pathways containing only one edge were not included. Finally, 291 pathways were retained, and these contained 3926 genes in total.



Pathway Activation for Single Sample

Pathway-based features are more robust while maintaining biological interpretability and tend to be small in number, which can prevent overfitting. In this study, we introduced a new method, called PASS, to evaluate the state of each known pathway. PASS defined the state of a pathway from the aspect of genes and regulatory links. Although it was difficult to analyze the regulatory links in the pathway for each patient, the sample-specific network (SSN) analysis provided a feasible and effective way to mine the different regulatory patterns for each patient.

In this study, we first constructed a fully connected network for each pathway. For each dataset, we analyzed the condition-specific state for each disease sample based on the pathway and thus assessed the PASS features. The schematic diagram of our framework is shown in Figure 1.




Figure 1 | Schematic diagram of the framework. (A) Fully connected networks are derived from pathways. The colored edges represent the real interactions in pathways and are regarded as attention sets, and the black edges are artificially added to construct fully connected networks and regarded as the background sets. (B) Single sample theory for the evaluation of differential value of each edge in fully connected networks. (C) Obtaining all genes in pathways. For a pathway, genes on this pathway are considered as the attention set and others are treated as the background set. The fold change value of each gene in each disease sample relative to the normal sample is evaluated for subsequent analysis. (D) PASS expression matrix. For each pathway, the AUCpath is used to evaluate the enrichment of edges in a pathway as an AUC according to the ranking of all edges in a fully connected network, whereby all edges were ranked according to their Z-scores. For each pathway, the AUCpath is used to assess the enrichment of genes in the pathway as an AUC based on the ranking of all pathway genes, whereby all genes were ranked according to the gene expression data.




Statistical Difference of Edges Between Single Disease Sample and Normal Samples

For each fully connected network, we used a group of n healthy samples to calculate the Pearson correlation coefficient (PCC) of each pair of genes as background value of the corresponding edge, denoted as PCCn. PCCn is defined as follows:



where x1 and x2 are the expression profiles of a pair of genes that correspond to an edge, and E represents the operator of mathematical expectation.

Next, a single disease sample was added to the set of the normal samples, and the new PCC was calculated and denoted as PCCn+1. After that, the difference between background and interference values for the edges in each fully connected network could be quantified, which is represented as ΔPCCn (equal to PCCn+1−PCCn). The difference was derived from the influence of the newly added disease sample, thus it can reflect the specific characteristics of this single sample. Statistically, ΔPCCn obeys the volcano distribution. Therefore, the significance of ΔPCCn can be estimated by the hypothesis test Z-test. Z-value is calculated as follows:





Statistical Difference of Gene Expressions Between Single Disease Sample and Normal Samples

The statistical difference of genes between single disease sample and normal samples in the expression level was calculated by fold change:



where b represents the expression value of gene xi in the individual disease sample and   is the mean of expression values of gene xi over the n healthy samples.



Pathway Activation for a Single Sample

Based on the single sample analysis, we used AUCpath to estimate the activation of a pathway, which can evaluate the enrichment of an attention set as an area under the receiving operating characteristic curve (AUC) according to the ranking of all objects in a fully connected network. There were two sets, called the attention set and the background set. The attention set contained the subset of objects we considered as important, while the background set contained all the possible objects except important objects. We described the states of pathways from the aspect of genes and regulatory links.

From the perspective of edges, the input was the Z-value of all edges in each fully connected network, and the output was the activation of each pathway. The scoring approach was divided into two steps. First, the edges that exist in the pathway were regarded as an attention set (i.e., positive label), and the artificially added edges (in the step of the construction of fully connected network) were considered as the background set (i.e., negative label). Then, all edges in each fully connected network were ranked in ascending order of their Z-values. Second, AUC was applied to evaluate whether edges in a pathway are enriched in the top ranking, and we thus regarded the AUC value as the quantitative indicator of pathway activation. It is defined as follows:



where ranki represents the ranked position of the i-th edge of the attention set, m represents the number of edges in the attention set, and n is the number of edges in the background set.

Besides, considering that genes were also critical for mining effective information, we calculated the pathway activation from the perspective of genes. We first obtained all genes in pathways. For each pathway, genes on it were regarded as an attention set, and other genes were considered as the background set. Then, we assessed the enrichment of genes in the attention set as AUC based on the ranking of all genes, whereby all genes were ranked in ascending order according to their fold change between a single disease sample and normal samples.

After the evaluation of pathway activation from both nodes and edges, we obtained a matrix with PASS scores for pathways and patients.





Results and Discussion


Stronger Effectiveness of PASS Compared to the Representative Feature Engineering Methods

We built a comprehensive scheme to demonstrate the performance of our approach for distinguishing two similar diseases as well as compare them with other state-of-the-art feature engineering methods. We selected seven representative methods from three aspects: network-based, GO-based and pathway-based methods, that is, NetRank (Winter et al., 2012), stSVM (Cun and Fröhlich, 2013), comparative network stratification (CNS) (Zhang et al., 2017), principal component analysis (PCA) (Young and Craft, 2016), normal tissue centroid (NTC) (Young and Craft, 2016), gene expression deviation (GED) (Young and Craft, 2016), and probabilistic pathway score (PROPS) (Han et al., 2017). For a better comparison, we downloaded the PPI network from STRING database (http://string-db.org/) for NetRank, stSVM and CNS, and collected biological processes (BP) terms of Gene Ontology (GO) (http://www.geneontology.org/) for CNS.

NetRank (Winter et al., 2012) is a modification of PageRank. For a given gene, NetRank identifies the rank of a gene according to the rank of its neighbors in a PPI network. stSVM (Cun and Fröhlich, 2013) is a feature selection method which smooths the marginal statistic for differential expression genes by random walk kernel.

CNS (Zhang et al., 2017) is a framework that captures functional features for discriminating the disease states. Genes that are enriched by the same function (GO term) are aggregated through a flux balance model, and functional modules that maximize the distinction between UC and CD are then obtained.

For genes on each pathway, PCA (Young and Craft, 2016) compresses gene expression data and extracts principal components for the classification of disease status. For the hyperspace formed by genes on a particular pathway, NTC (Young and Craft, 2016) treats each disease sample as a point in the hyperspace and computes the Euclidean distance between the coordinates of disease samples and healthy samples. GED (Young and Craft, 2016) firstly uses the Kolmogorov–Smirnov test to capture genes that have the different distribution in normal and disease samples, and scores of those genes are then calculated based on the expression deviation in normal and disease samples. According to the scores, GED gives two features to each pathway, one for over-expression and one for under-expression. PROPS (Han et al., 2017) regards each pathway as a Gaussian Bayesian model. For each gene, after calculating the parameters in the model through normal samples, probabilistic pathway scores can be obtained using the loglikelihood values.



Improved Discrimination of PASS Evaluated by Classification Performance Analysis

We used the random forest classifier to verify the classification results and applied three-fold cross-validation considering the small sample size of several datasets. For unbiased evaluation, we repeated these experiments for a total of 500 times for the entire datasets. The results of eight methods are shown as ROC curves and AUC corresponding to the ROC in Figure 2 and Table 2, respectively. Although the AUC of PROPS on GSE3365 somewhat exceeded PASS, and the AUC of PCA on GSE16879 was equal to PASS, our method was more stable and more prominent than the other seven methods on the five datasets.




Figure 2 | Aggregate ROC curves.




Table 2 | Classification performance comparison on independent datasets.





Analysis of Differential Pathways With Significance According to PASS

In order to validate the effectiveness of PASS features, we analyzed the differential pathways according to the PASS index. The p-value was calculated using two-sample t-test for the five datasets. Supplementary Figure S1 shows the quantitative distribution of p-value of differential pathways based on the PASS scores for the five datasets. The pathway activation we defined can acquire lots of differential features with significance in two similar diseases, which indicates that the PASS index can widen the gap between UC and CD.

We analyzed pathways that were differentially expressed (p-value < 0.05) on all the datasets (Supplementary Table S1). The majority of differential pathways have been shown to be related to IBD as reported in the literature (Table 3). These pathways not only demonstrate the metabolic and immune abnormalities of IBD, but they also reveal the pathogenesis of IBD from specific perspectives. Furthermore, the expression of genes in differential pathways related to IBD can reflect the changes in the course of disease. For the differential pathways associated with IBD, we analyzed the up-regulation and down-regulation of differentially expressed genes with significance in UC and normal samples, CD and normal samples. Figure 3 shows the Venn diagrams of Epstein-Barr virus infection pathway, and others are shown in Supplementary Figures S2–S10. Most genes have the same regulatory relationship in UC and CD, but a small number of genes have different expressions. This also verifies that these two types of diseases are very similar, but there are differences between them.


Table 3 | Differential pathways related to IBD.






Figure 3 | Expression of genes in Epstein-Barr virus infection pathway. (A)GSE9686,(B)GSE3365, (C)GSE36807, (D)GSE71730, (E)GSE16879.



Furthermore, we have visualized samples using the two principal components of our PASS features and overlaid the classification results from PASS model (Figure 4). The CD samples misclassified as UC and the UC samples misclassified as CD are mainly concentrated in the overlapping regions of the two types of diseases. However, some UC samples are more like CD samples, while some CD samples resemble UC samples, which leads to the misclassification of samples.




Figure 4 | Visualization of classification results using the two principal components of PASS features.





Enrichment of Known Disease-Associated Genes

After choosing a p-value < 0.01 as the threshold of statistical significance, we obtained the significant differential pathways. Next, we analyzed the enrichment of the known disease-associated genes (DAGs) in differential expression pathways. DAGs relevant to UC and CD were collected from DisGeNET (Piñero et al., 2016), and a hypergeometric test was used to calculate the p-value of the enrichment of DAGs:



where N is the number of genes in all pathways, M is the number of DAGs, n is the number of genes in the differential pathways, and m is the number of DAGs enriched in the differential pathways.

For convenience, we transformed p-value to −log10(p−value). We compared the statistical significance of the enrichment of DAGs in the significant differential pathways identified by PASS index with other pathway-based indexes (Figure 5). It shows that, with the exception of being outperformed by PROPS in GSE36807, the differential pathways obtained from PASS values have the statistical significance of the enrichment of DAGs and have lower p-values than other methods in all datasets. This indicates that the PASS index has the ability to identify differential features enriched by DAGs.




Figure 5 | Enrichment of known disease-associated genes in the significant differential pathways.






Conclusion

Complex diseases are not determined by a single gene, but by the combination of multiple genes, multiple factors, genetics, and the environment, similar complex diseases are more difficult to diagnose due to similar symptoms. In this study, we have presented PASS as a novel framework for classifying two main types of IBD from a single disease sample rather than a population of patients. For each pathway, we evaluated the difference between each patient and healthy sample from the perspective of genes and their interactions and calculated the pathway activation of individual samples. From the edge aspect, we constructed a fully connected network for each pathway, where edges in the pathway were regarded as the attention sets and artificially added edges were used as the background sets. Subsequently, we calculated the extent of perturbation of each edge based on single sample theory. From the node perspective, we collected all genes on all pathways. For each pathway, nodes on it were the attention set and others were the background set. Then, we evaluated the statistic difference of each node between single patient and healthy samples. Hereafter, we evaluated the pathway activation of each patient by computing the enrichment of attention set as an AUC according to the ranking of all genes or edges in the fully connected network.

We applied our method to UC and CD, which are two similar complex diseases of IBD. We compared PASS with seven state-of-the-art approaches (NetRank, stSVM, CNS, PCA, NTC, GED, and PROPS) on five IBD datasets. The results show that our PASS had the more discriminative power and was more stable than other seven methods. Besides, the PASS index can capture more differential expressed pathways with biological interpretability, which indicates that our PASS feature can widen the gap between UC and CD and aid researchers in comprehending the pathogenesis of these two similar complex diseases.

Our method can be applied to the classification of two similar diseases and has improved classification accuracy compared to seven state-of-the-art methods. However, due to the complexity and difficulty of similar complex diseases, there is still a space for improvement in the discriminative power. The performance of the PASS method relies on the all human pathway data and the topology of pathways, and more complete pathway information can better reveal the biological processes within cells and the statistic difference between a single disease sample and healthy samples calculated by our method can be also more accurate. With the rapid development of human interaction databases, we believe that the completer and more accurate pathway information could help to further improve the diagnosis of UC and CD.



Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found at Gene Expression Omnibus (GSE9686, GSE3365, GSE36807, GSE71730, GSE16879).



Author Contributions

XL and RZ conceived and designed the experiments. XL and XC performed the experiments and analyzed the data. XL wrote the paper. ML, JX, F-XW, and JW supervised the experiments and reviewed the manuscript.



Funding

This work was supported in part by the National Natural Science Foundation of China (61832019, 61702054), the 111 Project (No. B18059), the Hunan Provincial Innovation Foundation For Postgraduate (CX20190123), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ3568).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2019.01401/full#supplementary-material



References

 Akobeng, A. K., Zhang, D., Gordon, M., and MacDonald, J. K. (2016). Oral 5-aminosalicylic acid for maintenance of medically-induced remission in Crohn’s disease. Cochrane Database Syst. Rev. 9, CD003715. doi: 10.1002/14651858.CD003715.pub3

 Amar, D., Hait, T., Izraeli, S., and Shamir, R. (2015). Integrated analysis of numerous heterogeneous gene expression profiles for detecting robust disease-specific biomarkers and proposing drug targets. Nucleic Acids Res. 43, 7779–7789. doi: 10.1093/nar/gkv810

 Ananthakrishnan, A. N. (2015). Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205. doi: 10.1038/nrgastro.2015.34

 Ando, Y., Yang, G.-X., Kenny, T. P., Kawata, K., Zhang, W., Huang, W., et al. (2013). Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse. J. Autoimmun. 41, 111–119. doi: 10.1016/j.jaut.2012.12.013

 Arijs, I., De Hertogh, G., Lemaire, K., Quintens, R., Van Lommel, L., Van Steen, K., et al. (2009). Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PloS One 4, e7984. doi: 10.1371/journal.pone.0007984

 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25. doi: 10.1038/75556

 Baumgart, D. C., and Sandborn, W. J. (2007). Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641–1657. doi: 10.1016/S0140-6736(07)60751-X

 Belluzzi, A., Boschi, S., Brignola, C., Munarini, A., Cariani, G., and Miglio, F. (2000). Polyunsaturated fatty acids and inflammatory bowel disease. Am. J. Clin. Nutr. 71, 339s–342s. doi: 10.1093/ajcn/71.1.339s

 Bild, A. H., Yao, G., Chang, J. T., Wang, Q., Potti, A., Chasse, D., et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353. doi: 10.1038/nature04296

 Burczynski, M. E., Peterson, R. L., Twine, N. C., Zuberek, K. A., Brodeur, B. J., Casciotti, L., et al. (2006). Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J. Mol. Diagn. 8, 51–61. doi: 10.2353/jmoldx.2006.050079

 Carey, R., Jurickova, I., Ballard, E., Bonkowski, E., Han, X., Xu, H., et al. (2007). Activation of an IL-6: STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm. Bowel Dis. 14, 446–457. doi: 10.1002/ibd.20342

 Choi, J., Park, S., Yoon, Y., and Ahn, J. (2017). Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers. Bioinformatics 33, 3619–3626. doi: 10.1093/bioinformatics/btx487

 Cun, Y., and Fröhlich, H. (2013). Network and data integration for biomarker signature discovery via network smoothed t-statistics. PloS One 8, e73074. doi: 10.1371/journal.pone.0073074

 Drier, Y., Sheffer, M., and Domany, E. (2013). Pathway-based personalized analysis of cancer. Proc. Natl. Acad. Sci. 110, 6388–6393. doi: 10.1073/pnas.1219651110

 Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210. doi: 10.1093/nar/30.1.207

 Ghorpade, D. S., Sinha, A. Y., Holla, S., Singh, V., and Balaji, K. N. (2013). NOD2-nitric oxide-responsive microRNA-146a activates Sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J. Biol. Chem. 288, 33037–33048. doi: 10.1074/jbc.M113.492496

 Gurram, B., Salzman, N., Kaldunski, M., Jia, S., Li, B., Stephens, M., et al. (2016). Plasma-induced signatures reveal an extracellular milieu possessing an immunoregulatory bias in treatment-naive paediatric inflammatory bowel disease. Clin. Exp. Immunol. 184, 36–49. doi: 10.1111/cei.12753

 Haider, S., Yao, C. Q., Sabine, V. S., Grzadkowski, M., Stimper, V., Starmans, M. H., et al. (2018). Pathway-based subnetworks enable cross-disease biomarker discovery. Nat. Commun. 9, 4746. doi: 10.1038/s41467-018-07021-3

 Han, L., Maciejewski, M., Brockel, C., Gordon, W., Snapper, S. B., Korzenik, J. R., et al. (2017). A probabilistic pathway score (PROPS) for classification with applications to inflammatory bowel disease. Bioinformatics 34, 985–993. doi: 10.1093/bioinformatics/btx651

 Hanauer, S. B. (2006). Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel Dis. 12, S3–S9. doi: 10.1097/01.MIB.0000195385.19268.68

 Huang, E., Ishida, S., Pittman, J., Dressman, H., Bild, A., Kloos, M., et al. (2003). Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat. Genet. 34, 226. doi: 10.1038/ng1167

 Jansson, J., Willing, B., Lucio, M., Fekete, A., Dicksved, J., Halfvarson, J., et al. (2009). Metabolomics reveals metabolic biomarkers of Crohn's disease. PloS One 4, e6386. doi: 10.1371/journal.pone.0006386

 Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/28.1.27

 Karmiris, K., Koutroubakis, I. E., Xidakis, C., Polychronaki, M., Voudouri, T., and Kouroumalis, E. A. (2006). Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm. Bowel Dis. 12, 100–105. doi: 10.1097/01.MIB.0000200345.38837.46

 Lawrance, I. C., Fiocchi, C., and Chakravarti, S. (2001). Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum. Mol. Genet. 10, 445–456. doi: 10.1093/hmg/10.5.445

 Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T., and Lee, D. (2008a). Inferring pathway activity toward precise disease classification. PloS Comput. Biol. 4, e1000217. doi: 10.1371/journal.pcbi.1000217

 Lee, H.-S., Han, S.-Y., Bae, E.-A., Huh, C.-S., Ahn, Y.-T., Lee, J.-H., et al. (2008b). Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. Int. Immunopharmacol. 8, 574–580. doi: 10.1016/j.intimp.2008.01.009

 Liu, W., Li, C., Xu, Y., Yang, H., Yao, Q., Han, J., et al. (2013). Topologically inferring risk-active pathways toward precise cancer classification by directed random walk. Bioinformatics 29, 2169–2177. doi: 10.1093/bioinformatics/btt373

 Liu, X., Wang, Y., Ji, H., Aihara, K., and Chen, L. (2016). Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 44, e164–e164. doi: 10.1093/nar/gkw772

 Markert, E. K., Mizuno, H., Vazquez, A., and Levine, A. J. (2011). Molecular classification of prostate cancer using curated expression signatures. Proc. Natl. Acad. Sci. 108, 21276–21281. doi: 10.1073/pnas.1117029108

 Mehanna, H. M., Moledina, J., and Travis, J. (2008). Refeeding syndrome: what it is, and how to prevent and treat it. Bmj 336, 1495–1498. doi: 10.1136/bmj.a301

 Montero-Meléndez, T., Llor, X., García-Planella, E., Perretti, M., and Suárez, A. (2013). Identification of novel predictor classifiers for inflammatory bowel disease by gene expression profiling. PloS One 8, e76235. doi: 10.1371/journal.pone.0076235

 Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., et al. (2016). DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839. doi: 10.1093/nar/gkw943

 Söderholm, J. D., Olaison, G., Peterson, K., Franzen, L., Lindmark, T., Wirén, M., et al. (2002). Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50, 307–313. doi: 10.1136/gut.50.3.307

 Schicho, R., Shaykhutdinov, R., Ngo, J., Nazyrova, A., Schneider, C., Panaccione, R., et al. (2012). Quantitative metabolomic profiling of serum, plasma, and urine by 1H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. J. Proteome Res. 11, 3344–3357. doi: 10.1021/pr300139q

 Soderholm, J. D., Wiren, M., Franzen, L. E., Perdue, M. H., and Olaison, G. (2000). Topical phase effects of acetylsalicylic acid on human small bowel epithelium: Inhibition of oxidative phosphorylation and increased tight junction permeability. Gastroenterology 118, A811. doi: 10.1016/S0016-5085(00)85386-X

 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550. doi: 10.1073/pnas.0506580102

 Thomas, D. C., Baurley, J. W., Brown, E. E., Figueiredo, J. C., Goldstein, A., Hazra, A., et al. (2008). Approaches to complex pathways in molecular epidemiology: summary of a special conference of the American Association for Cancer Research. Cancer Res. 68, 10028–10030. doi: 10.1158/0008-5472.CAN-08-1690

 Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., et al. (2012). Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PloS Comput. Biol. 8, e1002511. doi: 10.1371/journal.pcbi.1002511

 Wu, F., Dassopoulos, T., Cope, L., Maitra, A., Brant, S. R., Harris, M. L., et al. (2007). Genome-wide gene expression differences in Crohn's disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm. Bowel Dis. 13, 807–821. doi: 10.1002/ibd.20110

 Yanai, H., Shimizu, N., Nagasaki, S., Mitani, N., and Okita, K. (1999). Epstein-Barr virus infection of the colon with inflammatory bowel disease. Am. J. Gastroenterol. 94, 1582. doi: 10.1111/j.1572-0241.1999.01148.x

 Young, M. R., and Craft, D. L. (2016). Pathway-informed classification system (PICS) for cancer analysis using gene expression data. Cancer Inf. 15, 151–161. CIN.S40088. doi: 10.4137/CIN.S40088

 Yousefi, M. R., and Dougherty, E. R. (2012). Performance reproducibility index for classification. Bioinformatics 28, 2824–2833. doi: 10.1093/bioinformatics/bts509

 Zhang, J. D., and Wiemann, S. (2009). KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 25, 1470–1471. doi: 10.1093/bioinformatics/btp167

 Zhang, C., Liu, J., Shi, Q., Zeng, T., and Chen, L. (2017). Comparative network stratification analysis for identifying functional interpretable network biomarkers. BMC Bioinf. 18, 48. doi: 10.1186/s12859-017-1462-x



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Li, Li, Zheng, Chen, Xiang, Wu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 21 February 2020

doi: 10.3389/fgene.2020.00083

[image: image2]


Integrative Analysis for Identifying Co-Modules of Microbe-Disease Data by Matrix Tri-Factorization With Phylogenetic Information


Yuanyuan Ma 1*, Guoying Liu 1, Yingjun Ma 2 and Qianjun Chen 2,3


1 School of Computer and Information Engineering, Anyang Normal University, Anyang, China, 2 School of Computer, Central China Normal University, Wuhan, China, 3 School of Life Science, Hubei University, Wuhan, China




Edited by: 
Hongmin Cai, South China University of Technology, China

Reviewed by: 
Wei-Hua Chen, Huazhong University of Science and Technology, China

Wen Zhang, Huazhong Agricultural University, China

*Correspondence: 
Yuanyuan Ma
 chonghua_1983@126.com

Specialty section: 
 This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics


Received: 22 August 2019

Accepted: 24 January 2020

Published: 21 February 2020

Citation:
 Ma Y, Liu G, Ma Y and Chen Q (2020) Integrative Analysis for Identifying Co-Modules of Microbe-Disease Data by Matrix Tri-Factorization With Phylogenetic Information. Front. Genet. 11:83. doi: 10.3389/fgene.2020.00083



Microbe-disease association relationship mining is drawing more and more attention due to its potential in capturing disease-related microbes. Hence, it is essential to develop new tools or algorithms to study the complex pathogenic mechanism of microbe-related diseases. However, previous research studies mainly focused on the paradigm of “one disease, one microbe,” rarely investigated the cooperation and associations between microbes, diseases or microbe-disease co-modules from system level. In this study, we propose a novel two-level module identifying algorithm (MDNMF) based on nonnegative matrix tri-factorization which integrates two similarity matrices (disease and microbe similarity matrices) and one microbe-disease association matrix into the objective of MDNMF. MDNMF can identify the modules from different levels and reveal the connections between these modules. In order to improve the efficiency and effectiveness of MDNMF, we also introduce human symptoms-disease network and microbial phylogenetic distance into this model. Furthermore, we applied it to HMDAD dataset and compared it with two NMF-based methods to demonstrate its effectiveness. The experimental results show that MDNMF can obtain better performance in terms of enrichment index (EI) and the number of significantly enriched taxon sets. This demonstrates the potential of MDNMF in capturing microbial modules that have significantly biological function implications.
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Introduction

With the development of high-throughput sequencing technology, such as 16S ribosomal RNA (16S rRNA), more and more microbes were identified. Nearly 1014 bacterial cells are existed in human internal gut and provide a wide variety of gene products which induce diverse metabolic activities (Micah et al., 2007; Shah et al., 2016). The dynamic balance of human microbiome composition is essential to maintain good health. Once such balance is broken, many closely related human disease and disorders may be caused (Medzhitov, 2007; Thiele et al., 2013), such as colorectal cancer (CRC) (Boleij et al., 2014), obesity (Turnbaugh et al., 2009), inflammatory bowel disease (IBD) (Qin et al., 2010), bacterial vaginosis (Fredricks et al., 2005), and so on. For example, Jorth et al. have reported that gene expression profiles of periodontitis-related microbial communities have highly conserved changes, relative to healthy samples (Jorth et al., 2014). It means that microbiome composition changes in oral cavity could be associated with pathogenesis of periodontitis. Furthermore, Socransky et al. have found that subgingival plaque is connected with several major microbial taxon including Fusobacterium, Prevotella, and so on (Socransky et al., 1998). Chen et al. have observed that the colonization with Helicobacter pylori has negative correlation with the symptom of allergy (pollens and molds), especially in the childhood (Chen and Blaser, 2007; Blaser, 2014). All these reveal the potential association between pathogenic microorganisms and complex human diseases.

Considering the key role of microbes in health, many important projects including the Human Microbiome Plan (HMP) (Gevers et al., 2012), the Earth Microbiome Project (EMP) (Gilbert et al., 2010), Metagenomics of the Human Intestinal Tract (MetaHIT) (Ehrlich and Consortium, 2011) were launched to investigate the relationships between microbiota and diseases. Moreover, some related databases and tools have been developed to analyze the increasing information for disease-related microbes. A human microbe-disease association database, called HMDAD (Ma et al., 2016a), manually collected 483 microbe-disease association entries from previously published literatures. These databases provide a possibility for microbe-disease association relationship prediction by computational approaches. Zhang et al. proposed bidirection similarity integration method (BDSILP) for predicting microbe-disease associations by integrating the disease-disease semantic similarity and the microbe-microbe functional similarity. Wang et al. proposed a semisupervised computational model called LRLSHMDA to predict large-scale microbe-disease association (Wang et al., 2017). Huang et al. combined neighbor-based collaborative filtering and graph-based model into a unified objective function to predict microbe-disease relationship (Huang et al., 2017). He et al. integrated symptom-based disease similarity network into graph regularized nonnegative matrix factorization models (GRNMF), meanwhile utilizing neighbor information to boost the performance of GRNMF (He et al., 2018). Zhang et al. utilized the advantages of ensemble learning to improve the performance of association prediction, which provided a new way for mining microbe-disease relationship (Zhang et al., 2018a; Zhang et al., 2019). All these efforts pave the way for further understanding complex regulatory mechanisms by means of which disease-related microbiota get involved.

However, cellular system is complicatedly organized and biological functions are mainly performed in a highly modular manner (Barabasi and Oltvai, 2004; Chen and Zhang, 2018). In microbial ecosystems, microbes often cooperate with each other to finish some biochemical activities. For example, ammonifiers decompose nitrogen-containing organic compounds to release ammonia. Nitrous acid bacteria (also known as ammonia oxidizing bacteria) oxidize ammonia to nitrous acid. Then, nitric acid bacteria (also known as nitrous acid oxidizing bacteria) oxidize nitrous acid to nitric acid. These two types of bacteria can obtain the energy needed for growth from the above oxidation process. Therefore, the mutualism relationship among ammonifier, nitrous acid bacteria, and nitric acid bacteria forces them to form a tight biological community. Guo et al. studied the contributions of high-order metabolic interactions to the activity of four-species microbial community and demonstrated that the interactions between pairwise species play an important role in predicting the complex cellular network behavior (Guo and Boedicker, 2016). Although knowledge about microbe-disease associations could provide helpful insights into understanding complex disease mechanisms (Huang et al., 2017; He et al., 2018), the “one-disease, many microbes” models ignore interactions within microbial community composed of several species.

Recently, multilayer interaction and modular organization have attracted more and more attentions. Several studies proposed co-module discovery methods to identify combinatorial patterns using pairwise gene expression and drug response data (Kutalik et al., 2008; Chen and Zhang, 2016). In addition, Chen et al. proposed a new method based nonnegative matrix factorization (NMF) to reveal drug-gene module connections from different molecular levels (Chen and Zhang, 2018). Cai et al. proposed a new network-guided sparse binary matching model to jointly analyze the gene-drug patterns hidden in the pharmacological and genomic datasets with the additional prior information of genes and drugs (Cai et al., 2018). Chen et al. also proposed a higher order graph matching with multiple network constraints (gene network and drug network) to identify co-modules from different multiple data sources (Chen et al., 2018).

All these have made great progresses to study the coordinate regulatory mechanisms between two or more biological molecular networks from a systematic view. However, as far as we know, less work focuses on microbe-disease co-modules discovering. Previous studies mainly aimed to microbe-disease association prediction, and did not reveal within-module interactions (microbe-microbe, disease-disease) from the same level and cross-module interactions (microbe-disease) from multiple molecular levels.

To this end, we design a new algorithm based on NMF to construct the two-level microbe-disease module network by Gaussian profile kernel similarity (MDNMF). In order to improve efficiency and effectiveness of the proposed algorithm, we introduce human symptoms-disease network (Zhou et al., 2014) and microbial phylogenetic distance into this model, which makes functionally similar microbes (diseases with similar symptoms) tend to appear in the same microbial module (disease module). We applied MDNMF to HMDAD dataset and compared it with two classical NMF methods to demonstrate its effectiveness. The experimental results show that the majority of identified microbial modules have significant functional implications [significantly enriched in taxon sets that refer to groups of microbes that has something in common (Dhariwal et al., 2017)]. Figure 1 gives the illustrative example of MDNMF.




Figure 1 | Illustrative example of MDNMF. First, based on Gaussian kernel function we can obtain microbe and disease similarity matrices from the original microbe-disease association matrix. Then, these three matrices are served as the input of MDNMF. Simultaneously, in order to improve the accuracy of module finding and biological interpretability of modules identified by MDNMF, human symptoms-disease network and microbial phylogenetic distance are also introduced into the model. At last, microbe-disease co-modules from different levels can be obtained.



The contribution of this paper lies in (1) an efficient two-level module discovering algorithm (MDNMF) has been proposed to reveal microbe-microbe, disease-disease and microbe-disease modules association. (2) The phylogenetic distance of disease-related microbes is introduced into the proposed MDNMF model to make phylogenetically close microbes tend to intertwine in the development of similar disease. To our knowledge, this is the first attempt to link microbial phylogenetic relatedness to NMF-based module identification. (3) The proposed MDNMF algorithm is easily extended to other multiple-level molecular network application, for example, virus-host co-modules, microbe-drug co-modules discovering, and so on. The rest of this paper is organized as: in the next section, we give a brief overview of NMF and MDNMF. And then, followed by the experimental results and the conclusions are provided in the last section.



Materials and Methods


Dataset

The dataset is downloaded from the Human Microbe-Disease Association Database (HMDAD, http://www.cuilab.cn/hmdad) (Ma et al., 2016a). It contains 483 microbe-disease associations, which cover 292 microbes and 39 diseases. By 16S RNA sequencing techniques, most microbe names was recorded at the genus level. Based on these known microbe-disease relation, an adjacency matrix X∈ℝ292×39 can be constructed where Xij=1 if microbe i is related to disease j, and vice versa.



The NMF Model

NMF and its variants have been widely applied to various fields including bioinformatics (Ma et al., 2016b; Ma et al., 2017; Chen and Zhang, 2018). In NMF, given an original data matrix X∈ℝn×m, we seek to find two low-rank matrices W∈ℝn×k (also called basis matrix) and H∈ℝk×m (coefficient matrix) to approximate X, such that X≈WH, where k<<min(m,n). Here, data X can be represented as the linear additional combination of basis vectors. We can obtain such a decomposition by solving the following least squares problem:



where ||•||F denotes Frobenius norm.



Gaussian Interaction Profile Kernel Similarity for Microbes

Based on the hypothesis that functionally similar microbes could be associated with more common human diseases, Gaussian kernel interaction profiles can be used to calculate the inferred microbe similarity (Wang et al., 2017; He et al., 2018). Given microbe-disease association matrix X, the ith row of X indicates the interaction profiles between microbe mi and all the diseases. For any two microbes mi and mj, their similarity can be computed as follows:



where Xi,* denotes the ith row of matrix X. γm is bandwidth parameter that needs to be normalized based on a novel bandwidth parameter γ′m and the interaction profile for each microbe, i.e., the ith row of X:



Here, nm is the number of microbes related to all diseases (here, nm=292). γ′m was set as 1 according to the previous study (Wang et al., 2017). In this way, microbe similarity matrix MS can be constructed, the element of MS indicates the similarity score between two arbitrary microbes.



Gaussian Interaction Profile Kernel Similarity for Diseases

Similarly, Gaussian kernel based disease similarity matrix can be inferred as follows:





where X*,i denotes the ith column of X, nd is the number of diseases related to all microbes (nd=39), γ′d was also assigned to 1.



Phylogenetic Distance for Disease-Related Microbes

Gaussian interaction profiles kernel similarity reflects the intertwining between microbes in term of microbe-disease association relationship. However, functionally similarity could not be explained only by disease relatedness, homology and phylogenetic correlation should be considered as side information to make the connected microbes in the microbe-disease association matrix likely to be placed in the same co-modules.

We searched 91 nucleotide sequences of disease-related microbes from NCBI, and imported them into MEGA to compute the phylogenetic distance between pairwise sequences by Kimura 2-parameter model. Other parameters are set in default. Thus, we can obtain the final microbial phylogenetic distance matrix M phy which is used to enforce microbe members within identified modules likely to be near in phylogeny.

In order to demonstrate the role of phylogenetic information in identifying disease-related microbe modules, we extract the top 10 largest and smallest phylogenetic distance pairs as illustrative examples to further analyze whether closely related taxa tend to associate with the same disease, or similar diseases. For each microbe-microbe phylogenetic distance pair, we compute the Jaccard coefficient (JC) between two microbe-related disease profiles (rows of microbe-disease association matrix). The results shows that top 10 microbe pairs which are closely related in genetic have the largest JCs in terms of disease profile similarities. Similarly, we also compute the disease similarities between phylogenetically distant microbes and find that 9 in 10 microbe pairs have the smallest JCs. This suggests that closely related taxa tend to associate with the same disease or similar diseases, and phylogenetically distant taxa usually have distinct disease profiles.



The MDNMF Algorithm

Besides the typical NMF as Dataset described, tri-factor NMF (tri-NMF, X≈FSG) is also an important matrix factorization method for clustering (Ding et al., 2006). In tri-NMF, factorized matrices F,G provide an approach to perform biclustering of X, respectively. Factorized matrix s not only provides an additional degree of freedom to enforce the reconstruct error tiny, but also implicitly denotes the relationship between clusters (Ding et al., 2005). In particular, given the symmetric similarity matrix A, we can decompose it into A≈HSHT. The similarity matrix reflects the intrinsic connection patterns within its original data matrix (Van Dam et al., 2017). In this paper, we propose a novel algorithm MDNMF to simultaneously factorize two similarity matrices (microbe similarity matrix MS, disease similarity matrix DS) and one microbe-disease association matrix X. The objective function is formulated as follows:



where MS ∈ℝnm×nm, DS∈ℝnd×nd are microbe-microbe and disease-disease similarity matrices, respectively. H1∈ℝnm×k, H2∈ℝnd×k are cluster indication matrices, S1∈ℝk×k, S2∈ℝk×k are the symmetric matrices. Here, k is the number of clusters, and λ1, λ2 are the parameters to balance the weights of three terms in Eq.6. The second term  establishes the one-to-one relationships between identified microbe modules and disease modules. Moreover, it can be regarded as a tri-NMF, here I is the identity matrix which enforce the ith module identified by microbe clustering indication matrix H1 is only bound up with the ith module by H2. The other two terms respectively identify one type of modules at individual levels and reveal the module associations within them via S1 and S2.

In order to further improve the performance of the proposed algorithm, we introduce symptoms-based disease similarity network and microbial phylogenetic distance into MDNMF. The symptoms-based disease similarity was previously studied based on co-occurrence of disease/symptom terms (Zhou et al., 2014). Here, we use DSsym to denote symptoms-based disease similarity matrix. The objective function of MDNMF (Eq.6) can be rewritten as follows:



Where L1=D1-MSphy, L2=D2-DSsymp are Laplacian matrices, ,  are degree matrices, respectively. MSphy=1-Mphyμ is the regularization parameter and the whole last term in Eq.7 is used to exert a penalty for violating the prior cognition about microbial phylogeny and disease phenotype associations.

Note that disease symptoms dataset collected from PubMed literatures contains diseases and symptoms terms. The association between symptoms and diseases are quantified using term co-occurrence (just like in the field of information retrieval, if the document and keyword simultaneously appear, the corresponding position of the word-document matrix is set to the frequency of co-occurrence). And then, each disease can be represented by a vector of symptoms. At last, the cosine similarity function is used to quantify the similarity between two diseases. The link weight between two diseases quantifies the similarity of their respective symptoms. Thus, these two disease similarities based on microbes and human symptoms are different essentially in that HMDAD dataset describes the binary relationships between microbes and diseases, however, disease symptoms dataset describes the co-occurrence relationships between symptoms and diseases. Integrating them into the objective of MDNMF will simultaneously take account of the diffusion and propagation of the information from different source.

We used the multiplicative update rules to solve MDNMF problem and can find a local minimal solution by alternately updating matrices H1, H2, S1, S2.

(1) Fix H1,H2, S2 and update S1 with



(2) Fix H1, H2, S1 and update S2 with



(3) Fix S1, S2, H2 and update H1 with



(4) Fix S1, S2, H1 and update H2 with





Determination of Modules

In fact, the same microbe may play different roles in the development of diseases. Therefore, the idea of soft clustering is more suitable to model the function associations among microbes. The factorized matrices H1, H2 can be used to identify two types of modules, respectively. The elements with relatively large values of each column of H1 (H2) is assigned to the members of corresponding module. We calculate the threshold for each feature (each row of H1 ( of H2)) with



where , , t is a given threshold. Based on this rule, we determined the ith module members if the entries of   are larger than Th (f). In Experimental Results and Discussion section, we set t=1.5 for two clustering indication matrices H1 and H2 to identify modules with proper resolution.



Determination of Module Links

Given the symmetric similarity matrix A, tri-NMF factorizes it to be . Here, hi denotes the ith column of H, sij is the corresponding element of s. The latent clustering indication vector hi can reconstruct the original similarity matrix A, and sij can be viewed as the weight of . It means that the larger sij is, the stronger the connection between the modules identified by hi and hj is. Therefore, the diagonal elements of s can be used to evaluate the quality of clustering, and the off-diagonal elements can be used to establish the possible connections between different modules.



Functional Enrichment Analysis for Co-Modules

We use MicrobiomeAnalyst (Dhariwal et al., 2017) tools to conduct functional enrichment analysis for microbe modules, and select the significantly enriched taxon set terms if P-value < 0.005 and FDR < 0.05 (hypergeometric tests). Because MicrobiomeAnalyst provides 229 taxon sets associated with host-intrinsic factors such as diseases. For microbe-disease co-modules we define the enrichment indices between significantly enriched taxon set terms and diseases within the same co-module to evaluate the performance of different algorithms. The enrichment index (EI) is formulated as follows:



where |{significantly enriched taxon set}| denotes the number of significantly enriched taxon sets, |{diseases}| denotes the number of diseases which is related to microbes within the same co-module. Generally speaking, higher EIs indicates good clustering quality of identified co-modules.




Experimental Results and Discussion


Results and Comparison

We compared MDNMF with typical NMF and NetNMF (Chen and Zhang, 2018) (without considering microbial phylogenetic information and symptoms-based disease similarity) by applying them to HMDAD dataset. Since NMF-based algorithms cannot guarantee a global optimal solution, we run 50 times with different initializations and selected the factorization with minimal objective function value as the downstream analysis.

We adopted EI (as described in Functional Enrichment Analysis for Co-Modules) and the number of significantly enriched microbe taxon set (TSsig) as metrics to evaluate the performance of different algorithms. Other taxon sets (OTS=|{significantly enriched taxon set}|=|identified disease-related taxon sets|) indicate the significantly enriched taxon sets that are not considered by EI. To some extent, the number of other taxon sets reflects the identified ability of different methods in potential microbe function modules discovering. Extensive comparison experiments are conducted and the results are shown in Table 1.


Table 1 | The performance of three co-model discovering algorithms in term of EI and TSsig.



As Table 1 shown, compared with other two NMF-based algorithms, MDNMF achieves the best performance in terms of EI and TSsig, indicating that MDNMF could potentially discover the meaningful function modules as much as possible by introducing symptoms-based disease network and microbe phylogenetic distance.



Comparison of All the Significantly Enriched Taxon Sets of Modules Identified by MDNMF, NMF, and NetNMF

To demonstrate the effectiveness of MDNMF, we compared the microbe modules identified by these three approaches in terms of biologically functional enrichment. We performed microbe taxon set enrichment analysis for these three groups of modules and reserved the taxon set (TS) terms (FDR < 0.05, hypergeometric test) which are significantly enriched by two modules derived of MDNMF and NetNMF (or NMF). Then, for each TS term, we calculated enrichment scores (-log10(p-value)) and took the highest scores among all modules as the final score of this TS for each method. Note that the co-modules identified by MDNMF cover about 20 microbes and 3 diseases on average. There is only one co-module which contains no diseases. This is consistent with the average size of each microbe or disease module (see Parameter Analysis).

Applying MDNMF to HMDAD dataset, many TS terms are above the diagonal line (see Figure 2). Specifically, the enriched TS terms obtained by MDNMF have more significant Q-value (FDR < 0.05) than those of NMF and NetNMF. For microbe modules, 58.33% (MDNMF versus NMF, P < 0.005 and FDR < 0.05, hypergeometric test) and 47.06% (MDNMF versus NetNMF, P < 0.005 and FDR < 0.05, hypergeometric test) TS terms are above the central diagonal line, respectively.




Figure 2 | Comparison of all the enriched TS terms of microbe modules detected by MDNMF, NMF, and NetNMF using HMDAD dataset.



As Figure 2 shown, compared to NetNMF, microbe modules identified by MDNMF had lower significance for 52.94% modules. One of the possible reasons is that when selecting microbes, NetNMF just concerns the relationships among microbes from the original microbe-disease association matrix, whereas MDNMF has to take their phylogenetic relationships into account. This kind of extra constrains of MDNMF might affect the selected microbe subsets and their enriched functions. Despite that, MDNMF still identified more significantly enriched taxon sets than NetNMF (62 vs. 49, Table 1).



Parameter Analysis

In MDNMF, there are three parameters:λ1, λ2, and µ. We set ,   according to the previous study (Chen and Zhang, 2018). When applying these three NMF-based algorithms to HMDAD data, the reduced dimension k is needed to be pre-determined. Here, we selected k=15 from the candidate set {10,15,20}, and µ=0.001 from {0.001,0.01,0.1}, respectively. Under this setting, the number of identified microbe modules with significantly enriched taxon sets terms is highest (hypergeometric tests, P-value < 0.005 and FDR < 0.05). Mode selection is demonstrated in Figure 3.




Figure 3 | Model selection of parameters: μ and k.





Case Studies

To further validate the performance of MDNMF, we select several microbe-disease co-modules identified by MDNMF to analyze their biological functions and inner connections. In total, 60% microbe modules are enriched in at least one TS term. In these identified microbe-disease co-modules, the diseases caused by microbes also exist in their matched disease modules. Tables 2 and 3 show two of the identified microbe-disease co-modules and the associations between different disease (microbe) modules (according to S2). As The MDNMF Algorithm shown, in tri-factor NMF X≈HSHT, the matrix S has a special meaning. To see this, let us assume that HTH=I. Setting the derivative   to be 0, we can obtain:


Table 2 | The identified microbe-disease co-modules by MDNMF.




Table 3 | The detailed information of identified microbe-disease co-module 4.





S indicates proper normalized within-cluster sum of weights (l = k) and between-cluster sum of weights (l ≠ k). Therefore, S provides a good representation for the clustering quality. If the clusters are separated well, respectively the diagonal elements of S will be much larger than the off-diagonal elements. We conduct extensive experiments, and find that some off-diagonal elements are large, for example co-modules 4 and 9. According to Eq.14, this case may reflect a close connection between these two modules. The connections can provide some insights to further understand the relationships between microbe and disease, disease and disease, and microbe and microbe.

As Table 2 shown, in co-module 9, 5 of 8 diseases (62.5%, same color from disease module and taxon sets columns indicates matched or associated disease) are in accord with significantly enriched microbe TS terms (FDR < 0.05). Besides, several TS such as “Chronic Obstructive Pulmonary Disease,” “Asthma,” “Colorectal Carcinoma,” “Resistance to Immune Checkpoint Inhibitors (increase)” which have no matched diseases are also identified. This could provide potential associations among diseases or microbes. Figure 4 shows top biological terms enriched in the microbe module 9.




Figure 4 | Top enriched biological terms in microbe module 9.



In order to demonstrate that MDNMF can indeed cluster similar diseases to the same co-module, we retrieval each disease existed in co-module 9 from the MeSH website (https://meshb.nlm.nih.gov) and find that most of the diseases belong to the same MeSH disease category. For example, Ileal Crohn's disease (CD), Irritable bowel syndrome (IBS), Liver cirrhosis and Necrotizing enterocolitis are clustered together and they are all divided into the same MeSH disease category C06 (Digestive System Diseases). Interestingly, Clostridium infections and Bacterial vaginosis which belong to C01 (Bacterial Infections and Mycoses) are also divided into the co-module. A detailed analysis of these related diseases may yield novel insights into the more and more widely recognized the associations between microbes and human diseases.

Based on the factorized matrix s2, we identified the connections among microbe modules 9 and 4, 7, 10. For example, microbe modules 9 and 4 share the “Crohn's Disease” and “Head and neck squamous cell carcinoma” microbe sets, but focus opposite aspects. In microbe module 9, the enriched microbe TS term “Crohn's Disease” is decreased, but is increased in module 4. These two microbe modules may afford us an opportunity to further investigate the complicated pathogenic mechanism in system level.

Without loss of generality, we also analyzed another microbe-disease co-module 4, the detailed information is shown in Table 3.

From Table 3, we can see that 7 of 10 diseases (70%, same color from the “disease module” and “taxon sets” columns indicates matched or associated disease) are in accord with significantly enriched microbe TS terms (FDR < 0.05). Especially, for enriched microbe TS term “Atopic dermatitis,” three diseases (“Allergic sensitization,” “Eczema,” and “Psoriasis”) in matched disease module are associated with it. This demonstrates the ability of the proposed MDNMF algorithm in finding correlation among diseases and microbes. Figure 5 shows top biological terms enriched in microbe module 4.




Figure 5 | Top enriched biological terms in microbe module 4.



Similarly, we retrieval each disease member in co-module 4 from the MeSH website and find that a few similar diseases belong to the same MeSH disease category. For example, Eczema, Psoriasis, Rheumatoid arthritis, and New-onset untreated rheumatoid arthritis are all from the same MeSH disease category C17 (Skin and Connective Tissue Diseases). In addition, we also find that Chronic Obstructive Pulmonary Disease (COPD), Cystic Fibrosis, Allergic sensitization, and Intestinal diseases (IBS, Irritable bowel disease, and Ulcerative colitis) have also been clustered together. Several diseases belong to two or more MeSH categories, which indicates the pathological connections between the human genetic susceptibility to infectious diseases and inflammatory diseases.

Based on factorized matrix s2, we can find that co-module 4 has more links to co-module 7(s4.7=2.72). Matched disease modules 4 and 7 own the similar disease members, such as “Allergic sensitization” (from module 4) and “Asthma” (from module 7) induced by “Atopic dermatitis.” Besides, two corresponding microbe modules 4 and 7 share TS term “Aging.”

Note that in Tables 2 and 3 some related diseases and microbes are divided into different co-modules. One possible of reasons is that the connection weight between these co-modules is large, MDNMF as a soft clustering approach, cannot well separately these related microbes or disease. In the future, we will design more robust threshold selecting method to assign each diseases or microbes to accurate modules.

In summary, for the identified module pairs by MDNMF, especially for microbe modules, some of them share a few biological functions (TS), but also have their special roles. Simultaneously, some associations between microbe modules, disease modules can be also detected by MDNMF.




Conclusions

The association between microbes and human diseases has been verified by more and more researches. However, previous studies mainly focused on detecting the relationship such as “one microbe, one disease,” rarely analyzed the pathogenesis of microbial-related complex diseases from a modular perspective. In this paper, we propose a novel microbe-disease co-module detecting algorithm MDNMF to construct a two-level module network by integrating two similarity matrices (microbe-microbe, disease-disease similarity matrices) and one microbe-disease bipartite network. Using the identified individual modules from different levels (microbe, disease levels) and their links, we are able to find a few disease-related microbes (taxon sets) which provide an opportunity to further understand the microbe high-order relationship and their potential functions.

Meanwhile, in order to improve the accuracy of module finding and biological interpretability of modules identified by MDNMF, we introduce human symptoms-disease network and microbial phylogenetic distance into the model. Compared with other two NMF-based approaches, MDNMF can achieve better performance in terms of EI and the number of significantly enriched taxon sets. The proposed MDNMF is also easily extended to other multiple-level molecular network application, for example, virus-host co-modules, microbe-drug co-modules discovering, and so on.
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Exploring the evolution process of cancers and its related complex molecular mechanisms at the genomic level through pathological staging angle is particularly important for providing novel therapeutic strategies most relevant to every cancer patient diagnosed at each stage. This is because the genomic level involving copy number variation (CNV) has been recognized as a critical genetic variation, which has a large influence on the progression of a variety of complex diseases. Great efforts have been devoted to the identification of recurrent aberrations, single genes and individual static pathways related to cancer progression. However, we still have little knowledge about the most important aberrant genes related to the pathology stages and their interconnected pathways from genomic profiles. In this study, we propose an identification framework that allows determining cancer-stages specific patterns dynamically. Firstly, a two-stage GAIA method is employed to identify stage-specific aberrant copy number variants segments. Secondly, stage-specific cancer genes fully located within the aberrant segments are then identified according to the reference annotation dataset. Thirdly, a pathway evolution network is constructed based on the impacted pathways functions and their overlapped genes. The involved significant functions and evolution paths uncovered by this network enabled investigation of the real progression of cancers, and thus facilitated the determination of appropriate clinical settings that will help to assess risk in cancer patients. Those findings at individual levels can be integrated to identify robust biomarkers in cancer progressions.

Keywords: cancer evolution, somatic copy number alteration, aberrant genes, pathological stages, pathway interaction network


1. INTRODUCTION

Somatic copy number alterations (SCNAs) are one of the prevalent forms of genetic variations which play important roles in the progression of numerous diseases, such as cancers (Zack et al., 2013; Heitzer et al., 2016). SCNAs have much clinical relevance compared to other genetic alterations, and they can be good markers of cancer genome aggressiveness (Heitzer et al., 2016). Hence, the identification of specific signatures from CNAs will shed light on elucidating the complex mechanisms behind cancers evolution, and therefore lead to a promotive development in cancer treatment strategies (Lowe et al., 1994; Tsao et al., 2005; Kim et al., 2008; Cheang et al., 2009).

The evolution of cancers involves many complex and dynamic cellular processes that can be precisely described through pathological stages, which are often divided into several stages, from the initial stage to the later deleterious stage. Where cancers at early appearance (stage I or II) are typically viewed as treatable; however, many more aggressive and active therapies would be needed as they developed to harmful stages (stage III or IV). Thus, there was a critical need toward the extraction of reliable biomarkers characterizing the dynamics associated with these stages, including (1) stage-specific recurrent SCNAs, (2) their related aberrant genes, and (3) their enriched dysfunctional pathways (Chen et al., 2009, 2010; Lee et al., 2016; Liang et al., 2016; Wang et al., 2016; Nibourel et al., 2017; Zhu et al., 2017).

Recent developments on high-throughput genomic technologies have generated diverse tumor datasets with various clinical/pathological stages, conditions or tissues, for which CNAs and other omics-data have been collected. They provide effective ways to identify different biological patterns including individual genes, pathways, specific loci and individual chromosomal regions. However, the majority of these proposed ways completely ignore the topology and the interaction between these patterns, as well as their specificity along with the pathology stages. Since specific genes and pathways extracted from these stages across different regions will often act together in complex systems (Karczewski and Snyder, 2018; Ma et al., 2018), whose dynamic events are the results of multiple complex interactions that help to extract useful dynamic cellular functions, and that can well illustrate the progression and metastasis of cancers.

Fortunately, the usage of biological networks/pathways has turned out to be an effective method to describe the details of the dynamic changes and functional mechanisms associated with the individual stages of cancers, where individual nodes represent biological entities, i.e., genes or pathways, and each edge corresponds to an interaction between a pair of nodes. Those biological networks include but not limited to cellular pathways, gene regulation networks (Vaquerizas et al., 2009), protein-protein interaction networks (Schwikowski et al., 2000), and many disease related networks (Menche et al., 2015). Such networks can be efficiently used to investigate the dynamic biological activity behind cancers evolution.

A suite of well-established algorithms has also been proposed at the chromosome level to accurately detect recurrent SCNAs (Morganella et al., 2011), to investigate multiple cancer stages (Xia et al., 2004), or to use gene expressions to analyze the evolution processes of cancers.

To further extend the study to individual cancer stages, we propose an analysis framework to elucidate the dynamic evolution processes of cancers. Firstly, the recurrent aberrations associated with cancer-specific stages were discerned through (a) the identification of occurring sequential changes moving from stage I to stage IV and (b) the determination of correlations between higher frequency of CNA and the higher aggressive stage. Secondly, the stage-specific cancer related genes were carefully detected via the obtained CNV information. Thirdly, the stage-specific pathways were extracted and a pathway interaction network was generated by connecting functional pathways in adjacent stages. The remainder of the paper includes three sections: section 2 discusses the data sources and the methodology used in the identification framework, section 3 reports the results, and section 4 provides the conclusion of the study.



2. MATERIALS AND METHODS

2.1. Data Collection and Grouping

Clinical and Somatic copy number alteration (by SNP 6.0 array) datasets on Level3 colorectal cancer (COADREAD) were downloaded from the Broad GDAC Firehose1.

Somatic copy number alteration (SCNA) minus germline SCNA was produced using GISTIC 2.0 and then divided into four groups based on the available clinical information of the same group of clinical patients. From clinical data, we take only the patients with available “pathology t stage” information, which defines the diagnosis stage of individual samples (t1, t2, t3, and t4). For the sample collection, we count the number of patients in the four t stages. Those individual samples with pathological information were aligned to the corresponding SCNA samples to get their copy number information for our following analysis.

Finally, 219 samples (t1 = 9, t2 = 46, t3 = 145, and t4 = 19) retained from clinical data were mapped to 47,140 samples from SCNA data (t1 = 1,255, t2 = 9,232, t3 = 32,293, and t4 = 4,360), respectively, and used to conduct our subsequent analysis. These details are shown in Table 1.


Table 1. The clinical and CNV datasets information from Broad Firehose TCGA project.
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In addition, for recurrent CNAs identification from pre-computed GISTIC 2.0 SCNA data, GAIA (Morganella et al., 2011) with FDR Q < 0.10 was applied separately for each pathology stage using ten iterations. For genomic SCNA gains and losses plotting, an R script was used with a cut-off also specified at FDR Q < 0.10. For the genes annotation of the recurrent SCNA regions, the biomaRt (Durinck et al., 2005) and GenomicRanges (Lawrence et al., 2013) packages available through Bioconductor of R Studio were considered.

For the network construction, pathways were extracted from the Reactome database2. Since pathways with a smaller number of genes may lack significant biological knowledge, we collected, in this study, a set of pathways by filtering those with five genes. We ended up with 447 impacted pathways.



2.2. Stage-Specific Related Recurrent Somatic Copy Number Alteration Regions Identification

To identify the recurrent SCNA for the series of the pathological stages separately, a two-stage GAIA (genomic analysis of important aberrations) method (Morganella et al., 2011) was performed to determine the most significant recurrent CNA for the four pathology stages. In particular, this method follows two main steps: Significance testing and Homogeneous peel-off, to identify the most significant independent regions where a discrete representation of data is mainly considered.

Based on that, we first build a CNV matrix of regions using probes meta file from GISTIC 2.0 (available at3). Then, we define the recurrent CNA by FDR Q < 0.10 using ten iterations. Finally, we generate the genomic plots of the four stages using a GAIA plot function in R Studio, with the cut-off set also to FDR Q < 0.10.

Suppose there is a set of N samples (patients) and M observed probes, the data can be arranged as an N × M dimension matrix A. As an illustrative example (Figure 1), A can represent a chromosome of seven observed probes and three samples. The matrix A can be split into two matrices AL and AD where each element a_ij ∈ AL(AD) i = 1, …, N and j = 1, …, M can be denoted either by 1 as a gain (or loss) found in the j_th marker of the i_th sample, or by 0 otherwise as shown in Figures 1B,C, which represents the matrices AL and AD determined from the matrix A reported in Figure 1A. Three major steps can be applied to this matrix (gain or loss interest) to identify the significant peaks and omit the spurious peaks in a region based on q-values configuration, h-values calculation and multiple iterations. More details are described here and depicted in Figure 2.


[image: Figure 1]
FIGURE 1. GAIA illustrative example. (A) Represent an example of matrix A, where + denotes gain, − denotes loss and 0 denotes no alteration. (A) Contain two homogeneous regions from probes P4 to P6 for samples S1 and S2 and from probes P5 to P7 for samples S2 and S3. (B,C) Show the matrices AL and AD determined of the matrix in (A).



[image: Figure 2]
FIGURE 2. The flow chart of the GAIA method implementation steps.


First, a permutation test is performed on every individual marker to compute the probability distribution, so that we can estimate the statistical significance of the observed data.

Second, in order to define the homogeneous regions, we focus on the state of every paired adjacent markers (j and j + 1) rather than a single marker, and we calculate the degree of homogeneity between them. Given a matrix H of size (N × M − 1), with an element Hij that has the value of 0 for maximum homogeneity, or the value of 0.5 for a medium homogeneity, or the value of 1 for a minimum homogeneity. From this matrix, we can obtain overall information on the homogeneity of the dataset based on the (h-value) that can be computed as follow:

[image: image]

Third, an iterative peel-off procedure is carried out on the matrix H by expanding the left and right boundaries of the region until the following conditions are satisfied. The left boundary expanded if:

[image: image]

and the right boundary expanded if:

[image: image]

where l and r denote the left and the right boundary of the peak with minimum q-value, with 1 ≤ l, r ≤ M, while h_thr represents a significance threshold value for homogeneity measurement. This value can take 0, 1, or values between 0 and 1.

Remarkably, large recurrent SCNAs have been produced in this study at different chromosome positions moving from pathology_t1 to pathology_t4. More details are shown in Figures 3–6, respectively, which summarize the frequencies of the four pathology stages.


[image: Figure 3]
FIGURE 3. Recurrent genome-wide SCNAs in stage 1. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 1.



[image: Figure 4]
FIGURE 4. Recurrent genome-wide SCNAs in stage 2. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 2.



[image: Figure 5]
FIGURE 5. Recurrent genome-wide SCNAs in stage 3. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 3.



[image: Figure 6]
FIGURE 6. Recurrent genome-wide SCNAs in stage 4. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 4.




2.3. Stage-Specific Related Aberrant Genes Identification

The second essential step allowing a comprehensive elucidation of the cancer evolution process after SCNA regions identification is to identify the corresponding signature genes for individual stages. Therefore, the aberrant recurrent regions obtained previously at every pathology stage were then annotated to retrieve the genes that were significantly amplified or deleted. Using the reference annotation dataset of genes of biomaRt (Durinck et al., 2005), the final set of genes at cut-off = 0.10 with the precise co-ordinates regions from human genes in which it was found to have CNA, have been obtained. Further details are shown in Table 2, which lists the total number of genes selected in the four pathology stages.


Table 2. The number of aberrant genes and enriched pathways detected at each pathology stage.
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2.4. Stage-Related Pathways Extraction

After obtaining the deviant amplified or deleted genes at every pathology stage, the given genes were aligned to pathways on the basis of the biological pathways in the Reactome database from which a total of 3,305 was collected. The pathways found include clusters of pathways from different pathologies: 396 pathways from pathology_t1, 895 pathways from pathology_t2, 1,218 pathways from pathology_t3, and 796 pathways from pathology_t4.

As long as a single gene can be assigned to different pathways, and the latter would consist of a different number of genes, we set the study sample to every pathology's pathways consisting of genes whose size is >5. This is due to the fact that pathways with fewer genes would have limited biological content (Ahn et al., 2014). Therefore, a total of 656 pathways (t1 = 5, t2 = 110, t3 = 447, t4 = 94) was collected (Table 2). Finally, duplicated pathways were omitted, and only pathways that occurred in at least two pathological stages were extracted and considered as our stage-specific pathways to be further analyzed.



2.5. Pathway Evolution Network Construction

After identifying the signature genes for each stage and after extracting and integrating their specific Reactome pathways, they are pooled together, their terms are unified, and their official annotated pathway descriptions are obtained from the database. Next, a pathway interaction network related to SCNA is constructed where each node represents a biological specific pathway, and if the two pathways share common genes, then they are connected.

To clearly illustrate the dynamic evolution process through this pathway network, specific colors were used to evince the pathways that get evolved between the four individual stages, and the width of edges is applied to indicate the strength of associations between them. The width was calculated using an overlap score defined as:

[image: image]

where k represents the number of the overlapping genes between a pair of pathway Pi and pathway Pj, p and q stand for the total numbers of genes in Pi and Pj, respectively.




3. RESULTS AND DISCUSSIONS

3.1. Stage-Related Recurrent Genome-Wide SCNAs Frequencies

The recurrent CNAs from four pathology stages were identified by investigating the sequential changes from pathology_t1 to pathology_t4 according to their different frequencies. This is based on the assumption that higher frequency of CNA will correlate with higher cancer stages. In fact, large genomic differences in recurrent SCNAs were observed in each pathology stage. Figures 3–6 represent the genome-wide amplifications and deletions of the four pathology stages, which generated with cut-off defined at FDR Q < 0.10. To be more specific, there were no significant segments in stage 1, but for stage 2, stage 3, and stage 4, the most of their regions were significantly amplified or deleted.

Moreover, more aberrant chromosomes get involved in these three stages. The frequency of aberrant segments were higher in stage 2 than in stage 1, and it kept increasing in stage 3. For example, stage 1 involved only three abnormal chromosomes with very low frequency. However, stage 2 and stage 3 involved more abnormal chromosomes segments with higher frequencies of amplifications or deletions. A clear evolution process of cancer could be observed by connecting those major chromosomal abnormalities stage-by-stage.



3.2. The Number of Stage-Specific Related Genes

The amplified and deleted genes which fully located within the aberrant regions of the four pathological stages were detected by using the biomaRt and the GenomicRanges packages in R (Table 2), wherein a total of 423, 3,265, 8,500, and 2,244 genes were identified as representative signature genes in stage 1, 2, 3, and 4, respectively. All of these potential candidate genes were carried out for pathway network generation and functions interpretation, due to their ability to effectively explore cancer progression.



3.3. Dynamic Pathway Interaction Network Generation and Visualization

The evolution network was generated by considering the enriched pathways as nodes, and the overlapping genes in two corresponding pathways as edges. The network contains 50 nodes and 339 edges. Different colors (pink, orange, green, yellow) were used to showcase how these pathways evolved across the four pathologies adjacent stages, whereas the width of edges indicated the strength of their connections. The network was then visualized by Cytoscape software, where the different significant evolution paths are shown. These further details are depicted in Figure 7.


[image: Figure 7]
FIGURE 7. Pathway functions interaction network. Node illustrate the biological pathways function. Edges illustrate the relationships between the functions at the adjacent stages. The size of the node is proportional to the number of genes in the pathway, The thicker the edges, the more overlapped genes between pathways of the adjacent stages. The color of pink, orange, green, and yellow inside the nodes indicate the pathways functions belongs to the four stages.




3.4. Stage-Related SCNAs Pathways Specific Functions Interpretation

The substantial analysis in this study confirmed the efficacy of the proposed framework. The detected genes were first enriched in many important pathways and these pathways, in turn, were strongly related to many critical cellular functions, such as cell cycle, disease, gene expression (Transcription), immune system, neuronal system, signal transduction, and metabolism of proteins and RNA. Some extra extremely enriched pathways obtained from both the amplified genes and deleted genes are shown in Table 3.


Table 3. The pathway enrichment of both the amplified and deleted genes from each pathology stage.
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Interestingly, most of these functions were related to the immune system. This preliminary investigation can be clearly seen from the evolution network depicted in Figure 7. In this network, most of the pathways-related immune system were strongly related to each other with thicker edges. Furthermore, since the pathways enriched from the deleted genes (2,630 pathways) were higher than those of the amplified genes (2,069), the genes annotated in them were probably dynamically changed with the four pathological stages as can be observed from the evolution paths of the constructed evolution network. This dynamic change may lead to decrease the immunity in colorectal cancer and thus to homeostasis perturbance. Therefore, increasing the immunity activities across the stages will be effective and beneficial for many cancer types.

Moreover, signal transduction and cell cycle were also highlighted here. These functions are invariably perturbed in cancer since they are essential in regulating, activating multiple cellular process and signaling molecules. They can induce cell proliferation, differentiation, and survival of various cancers (Cao et al., 2014).

These functions were also involved in diverse human and animal diseases, and they provide useful information to understand the initiation and progression of many complex diseases.




4. CONCLUSION

Complex diseases evolution process is too difficult to be inferred by single genes, individual pathways or even a type of genomic data. However, understanding this evolution mechanism at a single level can be leveraged to identify more robust biomarkers and valid biological functions when integrating it with other genomic levels.

CNAs hold a very important role in cancers. Therefore, finding the recurrent CNA from cancer specific stages is a promising task for identifying their essential driver events. We have proposed to investigate the key indicators associated with cancer progressions by: (1) identifying the sequential changes/chromosomal abnormalities related to these stages, (2) defining their significant key genes, and (3) generating an evolution network rather than gene networks.

We have also used an interesting rCNA-algorithm that has the ability to identify many significant recurrent regions, due to its powerful homogeneous peel-off and its parameter setting that is very straightforward.

These critical factors identified from this valid alternative method enabled us to identify the differences between the molecular portraits of the different pathological stages, and improved our understanding of the pathogenesis and underlying molecular mechanism related to cancer initiation and progression. Moreover, the aberrant candidate genes and pathways characterized every pathology stage identified here could give us a clue to specific therapeutic targets for treatment of cancers.

In summary, such findings at a single level will help decide which types of omics data and methodologies will be better integrated to improve clinical research endpoints, and therefore get insights into the serious issues driving complex diseases. Furthermore, an interesting work would be to not only compare CNA events between cancer stages, but to also link these to somatic mutations in CIN (chromosomal instability) signature genes.
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In recent years, there has been an explosive increase in the amount of bioinformatics data produced, but data are not information. The purpose of bioinformatics research is to obtain information with biological significance from large amounts of data. Multiple sequence alignment is widely used in sequence homology detection, protein secondary and tertiary structure prediction, phylogenetic tree analysis, and other fields. Existing research mainly focuses on the specific steps of the algorithm or on specific problems, and there is a lack of high-level abstract domain algorithm frameworks. As a result, multiple sequence alignment algorithms are complex, redundant, and difficult to understand, and it is not easy for users to select the appropriate algorithm, which may lead to computing errors. Here, through in-depth study and analysis of the heuristic multiple sequence alignment algorithm (HMSAA) domain, a domain-feature model and an interactive model of HMSAA components have been established according to the generative programming method. With the support of the PAR (partition and recur) platform, the HMSAA algorithm component library is formalized and a specific alignment algorithm is assembled, thus improving the reliability of algorithm assembly. This work provides a valuable theoretical reference for the applications of other biological sequence analysis algorithms.
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Introduction

Since the beginning of the 21st century, with the development of high-throughput sequencing technology, gene sequencing has become much cheaper and more efficient, enabling the development of various genome projects. Since the implementation of the Human Genome Project (Collins et al., 1998), the amount of bioinformatics data being produced has grown explosively, with genome sequencing data doubling every 4–5 months. At the same time, bioinformatics (Zhang, 2000), a new interdisciplinary subject, has developed rapidly. Bioinformatics covers all aspects of the acquisition, processing, storage, distribution, analysis, and interpretation of biological information. It integrates tools from mathematics, computer science, and biology to clarify and understand the biological significance of large amounts of data (Hogeweg and Searls, 2011). One of the major problems faced by bioinformatics today is how to process the data generated by genetic engineering. Data are not information; data need to be mined using systematic scientific methods to find biologically relevant information.

Sequence alignment is a fundamental method to study biological sequence data in bioinformatics (Mount, 2005). The theoretical basis of sequence alignment is the chemistry in biology, that is, if the similarity between two biological sequences reaches a threshold, it is considered that they have similar functions and structures as well as evolutionary relationships. By comparing an unknown biological sequence with a known functional structure, and identifying similar regions between them, the homology between the species can be judged, and the biological information contained in the unknown sequence can be revealed. According to the number of sequences to be aligned, sequence alignment can be divided into pairwise and multiple sequence alignment. The standard solution for pairwise sequence alignment is to use a dynamic programming algorithm to find the optimal solution. The classical algorithm is the Needleman-Wunsch (Needleman and Wunsch, 1970) algorithm, which is used to solve the global pairwise sequence alignment problem; the more biologically significant local alignment problem can be solved by the Smith-Waterman (Smith and Waterman, 1981) algorithm. Also, the heuristic-based BLAST (Altschul et al., 1990) algorithm is widely used in similarity sequence searches of gene databases. Theoretically, the dynamic programming approach to pairwise sequence alignment can be used for multiple sequence alignment problems. A two-dimensional dynamic programming matrix is extended to the three-dimensional or multi-dimensional case, where the dimension of the matrix reflects the number of sequences to be compared. This method is only suitable for multiple sequence alignments with few dimensions, otherwise it will be a great challenge with respect to computer resources. It has been proved that the multiple sequence alignment problem based on the SP (sum of pairs) metric is NP (Wang and Jiang, 1994), and multiple sequence alignment uses a heuristic algorithm. Here, we mainly focus on the heuristic multiple sequence alignment algorithm (HMSAA) domain.

HMSAAs include progressive alignment (Feng and Doolittle, 1987) and iterative alignment (Wang and Li, 2004); this paper mainly considers the progressive alignment method. The progressive multiple sequence alignment algorithm was proposed by Feng and Doolittle in 1987. Thompson and Higgins implemented the progressive multiple sequence alignment algorithm and proposed the ClustalW (Thompson et al., 1994) algorithm. Subsequently, Notredame et al. (2000) proposed the T-Coffee (tree-based consistency objective function for alignment evaluation) algorithm; the latter two algorithms are the most commonly used progressive multiple sequence alignment algorithms. The HAlign (Zou et al., 2015) algorithm is a progressive alignment algorithm based on central star alignment. Clustal Omega (Sievers et al., 2011) is a completely rewritten and revised version of the widely used Clustal series of programs for multiple sequence alignment. The main improvement over ClustalW algorithm is the use of the mBed algorithm to generate guide trees of any size and the use of HHalign Package based on the idea of hidden Markov model in the last step of Profile alignment. The main disadvantage of the progressive multiple sequence alignment algorithm is its principle of “once vacant, always vacant.” The errors generated in the alignment will always affect the sequence alignment process, which may lead to a suboptimal result and reduce the accuracy of the algorithm. The basic idea of the progressive alignment algorithm is that there is an evolutionary relationship between the multiple sequences that are aligned; after determining the evolutionary order of the sequences, they are gradually aligned along the evolutionary order until all sequences are aligned. This means that before proceeding to the progressive alignment, it is necessary to find the evolutionary relationship between the sequences. At present, optimization of the progressive alignment algorithm usually focuses on the step of confirming the evolutionary relationship (Zhang et al., 2005; Huo and Xiao, 2007). In order to speed up sequence alignment when the scale of the alignment is large, parallel computing may be combined with progressive alignment (Hung et al., 2015). The basic idea of iterative alignment is first to improve the multiple sequence alignment based on an algorithm that can generate alignments, through a series of iterations, until the alignment results no longer improve or have reached the maximum number of iterations. This paper mainly considers the combination of iterative alignment and progressive alignment. Such algorithms, which include MultAlin (Corpet, 1988) and Muscle (Edgar, 2004), have improved robustness and wider application scope.

At present, most research on sequence alignment algorithms focuses on the optimization of specific steps of a particular algorithm. The optimization effect on different sequences will be different, and the diversity and complexity of sequence alignment algorithms may make it difficult for users to select an algorithm appropriate to the characteristics of a given sequence, resulting in unnecessary computing errors in practice. On the other hand, it may be difficult for users to understand the structure of a sequence alignment algorithm, which may affect its correct use and to some extent affect the accuracy of the sequence analysis. The specificity and low abstraction of a sequence alignment algorithm reduce its reusability and maintainability. Therefore, it is necessary to study sequence alignment algorithms at the domain level. Concerns on algorithm families will be helpful for extracting the commonality and variability of different algorithms and for the formal development of sequence alignment algorithms.

In this work, the generative programming method is used to design an abstract generic algorithm component library, after which a specific alignment algorithm for the HMSAA domain is assembled, thus improving the reliability and reusability of the algorithms. First, domain analysis of HMSAA is carried out, the common domain features and variability features are identified, and a domain feature model of HMSAA is established. Furthermore, relationships among features are analyzed and an interaction model of algorithm components is designed and constructed. Finally, using a generic abstract programming language, Apla, the domain components are formally implemented and a high abstract component library is built on top of Apla.



Related Methodology and Technology


Generative Programming

Software reuse is considered to be one of the solutions to the “software crisis.” High-quality software reuse can improve the efficiency and quality of software development and ultimately result in the construction of an industrialization pipeline to develop software. Generative programming (Czarnecki and Eisenecker, 2000) is the use of components and the creation of software products in an automated manner. Implementation consists of two steps. First, the current software development model is transformed into the development of the software system family. Then, a generator is used to automatically assemble the components. Through domain analysis of the software system family, generative programming constructs a domain model of the system family and further develops the domain design and domain based on this model. New software development in the same field is based on the established domain model, and the reusable components are selected for assembly and implementation. It is not the development of software.

A domain model based on generative programming includes a problem space, a solution space, and domain-specific configuration knowledge for mapping between the two. The problem space is used to represent the requirements of the customization system, and is mainly for use by application programmers and customers. The solution space includes the implementation components required for the system family implementation and the combination, dependencies, and interactions among implementation components. Domain-specific configuration knowledge is mainly used to separate the problem space and solution space, which not only reduces the redundancy and coupling of the implementation components but also improves their composability and reusability. The composition of such a generative domain model is shown in Figure 1.




Figure 1 | Composition of generative domain model.





Domain Modeling

Domain modeling requires the identification and modeling of key concepts (Lee et al., 2002). Feature engineering (Turner et al., 1998) considers features to be first-order entities that traverse the software life cycle and span the problem space and solution space, and reduce the difference in demand awareness between users and software developers through features. Features in FODA (feature-oriented domain analysis) (Kang et al., 1990) are considered to be user-visible, significant, and distinctive aspects, qualities, characteristics, etc., in a software system. Features are the domain knowledge accumulated by users and experts from long-term practice in a domain. Feature modeling is an activity that models the commonality and variability of features and the relationships among them. Zhang and Mei (2003) proposed a feature-oriented domain modeling (FODM) method that considered the features of services, functions, behavioral characteristics, etc. This was based on service analysis activities, functional analysis activities, and behavioral characteristics analysis in combination with domain terminology analysis, commonality and variability analysis, interactive process analysis, and quality demand analysis concurrently, with continuous retrospective refinement to finally obtain the feature model. The domain modeling process is illustrated in Figure 2.




Figure 2 | Feature modeling process.





Partition and Recur Method

PAR (Xue, 1993; Xue, 1997; Xue, 1998; Shi and Xue, 2009; Xue, 2016) (partition and recur) is a formal development method based on partition and recursion, containing an algorithm design language (Radl; recurrence-based algorithm design language), an abstract generic programming language (Apla), and a unified algorithm design and proof method, as well as a series of generation systems (the PAR platform).

The Apla language can be used to directly write programs using abstract data types and abstract procedures. It has the advantages of concise and rigorous mathematical language, and its high level of abstraction makes it suitable for describing abstract algorithmic programs.

The generic programming mechanisms supported by Apla include type parameterization, subroutine parameterization, and user-defined generic abstract data types (ADT). 1) Apla introduces the keyword sometype to define the type variable, the type parameter, the parameter return value type of the procedure function, and the basic type of the combined data type. The type is used as a parameter to implement the generalization of the program. 2) Apla subroutine parameterization includes procedure parameterization and function parameterization. In a subroutine, the keywords proc and func are used to declare procedure parameters and function parameters, and the procedure or function is used as a parameter list. 3) As well as the predefined ADT in Apla, users can create custom ADT to make the language more flexible and the program description more powerful. These custom operations include the definition and the implementation of ADT. The ADT definition contains the operation name, the operation type, the parameters of the operation, etc. The ADT implementation gives the specific implementation methods of these operations, and define, ADT, enddef, implement, endimp, and other keywords are used to describe the custom ADT. In addition, the PAR platform supports the transformation of Apla into an executable high-level programming language such as C++ or Java.




Heuristic Multiple Sequence Alignment Algorithm Modeling

In this section, the FODM method is used to construct the feature model according to the service, function, and behavior characteristics in the HMSAA domain. Heuristic multiple sequence alignment operations are core services in the domain. The sequence legality check (seq_check), heuristic alignment mode selection (heur_mode), pairwise sequence alignment operation (psa), distance matrix (dist_matrix), result output (result_op), progressive alignment (prog_align), and iterative alignment (iter_align) are the main functions in the domain. Progressive alignment and iterative alignment are sub-functions of heuristic alignment mode selection. Sequence legality check, heuristic alignment mode selection, and alignment result output are mandatory, where as function, pairwise sequence alignment operation, and distance matrix are optional. For progressive alignments, the progressive alignment mode (prog_align_mode) is a behavioral feature that has the following three values: the phylogenetic tree (phy_tree), the extended library (expan_lib), and the center alignment. For pairwise sequence alignment operations, the pairwise sequence alignment mode (psa_mode) is a behavioral feature that has two values, fast alignment (k-mer) and dynamic programming alignment (dp). According to the above analysis, a feature model was constructed for the domain, as shown in Figure 3.




Figure 3 | Feature model of heuristic multiple sequence alignment algorithm (HMSAA).





Design and Implementation of Heuristic Multiple Sequence Alignment Algorithm Components


Interaction of Algorithm Components in Heuristic Multiple Sequence Alignment Algorithm Domain

According to the feature model described in the previous section, in order to achieve a complete library of algorithm components, it is necessary to further analyze the interaction modes among different algorithm components. The interactions of algorithm components involve constraints and dependencies between features. Therefore, this section describes an interaction model of algorithm components in the HMSAA domain according to their interaction modes.

Through the establishment of the HMSAA feature model, it can be concluded that the algorithm consists of four main process features, i.e., heuristic alignment mode selection, progressive alignment, iterative alignment, and result output. In addition, the input of the algorithms in this domain consists of sequences of biological information, including DNA, RNA, and protein sequences. Before the implementation of the algorithm, the legality of the sequence information needs to be checked, for example, a DNA sequence can only contain four letters, A, T, C, and G. The main components in this domain are sequence legality checking, heuristic alignment mode selection, progressive alignment, iterative alignment, and result output. Other features and data structures in the feature model are used as auxiliary components, and the interaction model of components is established according to the dependencies between them, as shown in Figure 4.




Figure 4 | Algorithm components interaction model.



The nodes connected by solid lines are the basic components that must be included in the HMSAA domain, namely, the three mandatory features and two sub-features selected by the heuristic mode. The solid line arrow denotes the execution priority of the component from high to low along the direction of the arrow.

Dotted and underlined arrows represent the data, structures, and associated operations required in the assembly of the algorithm components. For example, the establishment of an extended library requires the information of alignment in psa. The dotted arrow indicates the interaction between the two components during the execution of the algorithm. For example, before an iterative alignment, a progressive alignment should be carried out. By setting the number of iterations and the iterative method, the result of the progressive alignment is iterated until there is no further change or the maximum number of iterations has been reached.

In summary, the above interaction model includes most mainstream HMSAAs, including the progressive alignment algorithm based on tree and central alignment, the progressive alignment algorithm based on a compatible optimization objective function to form an expanded library, and the multiple sequence alignment algorithm combining iteration and progress. Here we just outline simple formal specification description of two components below for examples.

1 seq_check component

|[in a[][]: Array[][]; out bl: Boolean]|
AQ: bio-sequences.
AR: if bl is true, the legality check is passed; false is the opposite.

2 prog_align component

|[in heur_mode: ADT; phy_tree: ADT; a[][]: Array[][] out b[][]: Array[][]]|
AQ: phy_tree component, the sequence to be aligned, heur_mode component.
AR: alignment of multiple sequences.

Here in and out in the front of pre-condition AQ are two key words defined in PAR platform and are used to denote the input and output respectively; array, Boolean, etc., are the predefined types in PAR platform, and AR stands for post-condition of algorithm.



Apla Formal Implementation

In this section, we make use of the advantages of Apla, including high-level abstraction, strong support for ADT, and easy correctness verification, and formally implement the HMSAA model. Here, only the implementation of the tree-based progressive alignment algorithm is illustrated.

1 seq_check component

Check whether the sequence group meets the biological definition. For example, the character set of the DNA sequence is {A, T, C, G}.





  procedure seq_check(a[]:array[String]);

2 Penalty component

We designed the penalty model as an ADT, using an affine penalty model, where sometype is a keyword in the Apla language that defines the type variable. GapOpen, GapExtend, and score represent the penalty points of open vacancy, extended vacancy, and non-vacancy, respectively.





  define ADT penaltyMatrix(sometypeelem);
  GapOpen : Integer;
  GapExtend : Integer;
  score:array[array[Integer]];
  enddef.

3 heur_mode component

The Heur_mode component is defined as an ADT that selects the operation mode of multiple sequence alignment and defines the data structure and information required for alignment. The setPenaltyMatrix, setGapOpen, and setGapExtend functions are to set penalty matrix, open vacancy penalty, and extend vacancy penalty, respectively. The generic procedure tree_prog_align sets the alignment mode to one designated by the user. The useLib means to select the expan-lib component, useFullPW denotes the use of the conventional dynamic programming pairwise sequence alignment algorithm, useIter represents the iteration, and treeAlgorithm is the algorithm to generate the phylogenetic tree.




define ADTheur_mode(sometypeelem);
function setPenaltyMatrix(pm: penaltyMatrix):Array[Array[Integer]];
functionsetGapOpen(gapOpen: Integer): Integer;
function setGapExtend(gapExtend:   Integer): Integer;
procedureprog_align(useLib: bool; useFullPW: bool; useIter: bool; treeAlgorithm : String)
enddef.

4 dist_matrix component

The dist_matrix is defined as an ADT that calculates the distance matrix element and returns it using the score of the pairwise alignment, and the pairwise sequence alignment operation is defined as the generic parameter. The function getDist is used to get the data from the distance matrix. Proc psa is described in detail in reference (Shi and Zhou, 2019).




define ADT dist_matrix (sometypeelem);
  function calDistMat (proc psa(…):Array[Array[Integer]];//.
  function getDist (ii: Integer; jj: Integer): Integer;
······
enddef;

5 phy_tree component

Phylotree data structure is defined as an ADT, facilitating subsequent operations on the tree. The parameters treeMess, left, and right, respectively, represent the information of the tree node and the left and right subtrees. The phylotree component is defined as an ADT that generates a phylogenetic tree using the data in the distance matrix. The ADT contains the generic procedure generateTree and takes selAlgorithm as its generic parameter. The generic procedure can generate phylogenetic trees through different algorithms. The function calWeight calculates the weight of each sequence when calculating the score of multiple sequences alignment, the generic procedure getStepsForMSA is used to generate the sequence of subsequent multiple sequence alignments, and the generic procedure readTree is used to read information from the generated phylogenetic tree.




define ADT phyloTree (sometypeelem);
  treeMess: Array[Array[Integer]];
  left: Integer[];
  right: Integer[];
enddef.
define ADT phy_tree (sometypeelemMatrix);
  procedure generateTree(distMat: elemMatrix; seqName: String[]; funcselAlgorithm():String;treeName : String; result: Boolean);
  function calWeight (firstSeq: Integer; lastSeq: Integer; seqsW: Array[Integer]): Array[Integer];
  procedure readTree (seqName: String[]; treeName: String; firstSeq: Integer; lastSeq: Integer);
  procedure getStepsForMSA (procreadTree; distMat: elemMatrix; result: Boolean);
······
enddef.

6 prog_align component

The prog_align component is defined as an ADT that includes the generic procedure multiSeqAlign, which performs progressive alignment according to the alignment order obtained from the phylogenetic tree and the sequence weight.




define ADT prog_align (sometypeelem);
 procedure multiSeqAlign (seqs: Array[String]; steps: elem; seqName: String[]; seqW:Array[Integer]; start: Integer);
 ······
enddef.

7 result_op component

The result_op component is defined as an ADT. It is composed of two generic procedures, multiAlign_op and phyloTree_op. The multiAlign_op procedure annotates the results of multiple sequence alignments and outputs them; pathAlignOutput is the path of the output file. The phyloTree_op procedure outputs the phylogenetic tree; here, pathTreeOutput is the path of the output file.




define ADT result_op(sometypeelem)
 procedure multiAlign_op (pathAlignOutput: String; seqs: Array[String]; seqName: String[]; sometypeprog_align);
 procedure phyloTree_op (pathTreeOutput: String; seqName: String[]; sometypephyTree; sometypedistMat);
enddef.



Assembly of Clustal Algorithm

In this section, a phylogenetic tree-based progressive alignment algorithm, clustalW, is assembled on top of the HMSAA component library introduced in previous section. The Apla program is as follows.




program clustalW;
const/* input sequences*/
var
seqs, seqsName: Array[String];//Seqs is the sequence to be aligned
  //seqsName is the identification name of the sequence
const pathTreeOutput, pathAlignOutput: String;
/*omit the initialization of pairwise sequence alignment*/
ADT pm: new penaltyMatrix ();
ADT psa: new psa (……);
ADT distM: new dist_matrix (psa);
ADT phyloTree: new phylotree ();
ADT tree: new phy_tree (phyloTree; distM);
ADT msa: new prog_align (tree);
ADT mode: new heur_mode (pm);
var
clustalw: mode; gapOpen, gapExtend: Integer; penalty: Array[Array[Integer]];
begin
clustalw.setPenaltyMatrix (penalty);
clustalw.setGapOpen (gapOpen);
clustalw.setGapExtend (gapExtend);
end;
ADT resultOp: new result_op ();//instantiate and initialize the required components
procedure heur_multiple_sequence_align (clustalw; psa; distM; tree; msa; resultOp);
//heuristic multiple sequence alignment operations
var
NJTree: String; result: Boolean
begin
 check (seqs);
clustalw.prog_align (false; true; false; “NJTree”);
if(clustalw.getUseLib = false)→
if(clustalw.getUseFullPW = true) →
distM.calDistMat (psa);
tree.generateTree (clustalw.getTreeAlgorithm; seqsName; clustalw; distM;
result);
msa.multiSeqAlign (seqs; seqsName; tree; 0);
resultOp (msa; tree; pathTreeOutput; pathAlignOutput);
end.




Experiments

As the Apla language cannot run directly, in this section we make use of the PAR platform to transform the Apla algorithm components into the corresponding C++ components.

ADT algorithm components in Apla containing only data members are transformed into struct data types in C++, such as penaltyMatrix and phyloTree. The results are as follows.




struct penaltyMatrix
{
  int gapOpen;
  int gapExtend;
  vector < vector < int>> score;
};
struct phyloTree
{
  vector < vector < int> > treeMess;
  vector < double > leftBranch;
  vector < double > rightBranch;
};

ADT components containing data members and member functions are transformed into classes in C++, such as dist_matrix and phy_tree. The function body code is long, and so part of it is omitted here. The partial result of the transformation is shown in Figure 5.




Figure 5 | Result of ADT transformation.



Generic procedures and functions defined in Apla are converted into separate class member functions in C++ to reduce coupling between components. In particular, the calling functions are converted into indicator functions in C++, and the generic parameter is converted into the pointer parameter to implement the polymorphism of the Apla program. After converting each component into C++, the Apla code for the heuristic multiple sequence alignment operation is converted into the main function executed in C++; finally, the clustalW algorithm program is run through manual assembly of the components, as shown in Figure 6.




Figure 6 | C++ assembly process of clustalW.



To test the program, we used four pieces of DNA data, Cyprinus carpio (common carp) alpha-globin, Homo sapiens (human) alpha globin, Mus musculus (house mouse) alpha-globin, Capra hircus (goat) alpha-globin. The alignment results between our algorithm and the other two Clustal algorithms are shown in Figure 7. Due to the different selected pairwise alignment parameters and types, the structure of the phylogenetic tree is different from that of the ClutsalW algorithm, and the sequence of alignment has also changed, but the results remain biologically significant.




Figure 7 | Alignment results.





Summary and Future Work

As a key topic in bioinformatics research, sequence alignment algorithm and its applications have attracted extensive research attention. However, there has been no work considering it as a domain for high-level abstraction to improve the reliability and the productivity of the algorithms, and to reduce the probability of suboptimal solutions, errors of the algorithm, etc.

Generative programming and the composition of a generative domain model are first briefly presented in the paper, and the FODM method is described. The feature model can be obtained by taking the characteristics of the service, function, and behavior characteristics of the domain into account, and carrying out a series of feature analysis activities.

By using generative programming and feature modeling, the HMSAA domain has been analyzed, resulting in the following three algorithm classes: progressive alignment algorithms based on tree and central alignment; progressive alignment algorithms based on the compatible optimization objective function to form an expansion library; and multiple sequence alignment algorithms based on a combination of iteration and increment. Through analysis of this domain, general and variable features have been extracted and mapped to components, and an HMSAA feature model has been established. Moreover, an interaction model of HMSAA domain components has been designed based on the relationships among features and formally implemented using the generic abstract programming language Apla in support of the PAR platform. An HMSAA component library has been established, the reliability of which can be guaranteed owing to the ease of verification with the Apla language.

It is expected that the formal components could be automatically or semi-automatically assembled to generate a specific problem-solving algorithm, thus reducing the errors resulting from manual algorithm selection for multiple sequence alignment, and improving the algorithm efficiency, which will enable assembly of a new, more efficient, multiple sequence alignment algorithm. Furthermore, the high-level abstraction of generic components, such as generateTree, provides a diversity of algorithm components assembly as well as a good demonstration of the connections between algorithm features, thus improving the understandability and ease-of-use of algorithms.

Next, we will release our codes in GitHub. Future work also include developing a user-friendly visual interface to facilitate component assembly. Users will be able to generate different sequence alignment algorithms by selecting different components via the interface and use XML files to describe the composition and constraint relations among components, without any change to the component library. We are encouraged by the success of algorithm assembly on the PAR platform.

The methodology and techniques for HMSAA are not only applicable to multiple sequence alignment algorithms but also have theoretical reference significance and practical application value for other biological sequence analysis algorithms, such as the assembly algorithm based on DeBruijn graph structure used in the process of gene assembly (Li et al., 2010; Peng et al., 2012).We are currently applying some of these ideas to more problems in the domain of biological sequence analysis, to implement automatic or semi-automatic assembly of an algorithm component library based on the PAR platform. We hope to report on this work in the near future.
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The ability to predict the drug response for cancer disease based on genomics information is an essential problem in modern oncology, leading to personalized treatment. By predicting accurate anticancer responses, oncologists achieve a complete understanding of the effective treatment for each patient. In this paper, we present DSPLMF (Drug Sensitivity Prediction using Logistic Matrix Factorization) approach based on Recommender Systems. DSPLMF focuses on discovering effective features of cell lines and drugs for computing the probability of the cell lines are sensitive to drugs by logistic matrix factorization approach. Since similar cell lines and similar drugs may have similar drug responses and incorporating similarities between cell lines and drugs can potentially improve the drug response prediction, gene expression profile, copy number alteration, and single-nucleotide mutation information are used for cell line similarity and chemical structures of drugs are used for drug similarity. Evaluation of the proposed method on CCLE and GDSC datasets and comparison with some of the state-of-the-art methods indicates that the result of DSPLMF is significantly more accurate and more efficient than these methods. To demonstrate the ability of the proposed method, the obtained latent vectors are used to identify subtypes of cancer of the cell line and the predicted IC50 values are used to depict drug-pathway associations. The source code of DSPLMF method is available in https://github.com/emdadi/DSPLMF.
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Introduction

Cancer is a genetic disease that results when cellular changes and accumulation of different types of mutations cause the uncontrolled growth and division of cells. There are more than 200 different types of cancer, having a significant global impact on public health. Since cancer is a disease of genetic complexity and diversity, the drug response for different patients can be different. The main reason for this occurrence is the difference in the molecular and genetic information of individuals, such as gene expression data, the type of mutation in the genome and copy number alteration information. These findings and achievements have recently made a significant challenge in the prediction of drug response for an individual patient in the research of precision medicine.

High-throughput drug screening technologies on several panels of cancer cell lines have been provided. For instance, two recent consortiums Genomics of Drug Sensitivity in Cancer (GDSC) Yang et al. (2012) and Cancer Cell Line Encyclopedia (CCLE) Barretina et al. (2012) have collected around 1,000 cell lines and their pharmacological profiles for several cancer drugs. The IC50 measure (minimal concentration of drug that induced 50% cell line death) is usually used as a sensitivity measure. To facilitate and speed up drug discovery and prediction process, many methods have been developed in these fields by researches from numerous domains such as computational biology, machine learning, and data mining approaches.

In the challenge of the DREAM project, the performance of 44 drug response prediction algorithms was considered for breast cancer cell lines. The introduced algorithms were evaluated using the weighted probabilistic c-index (WPC-index) and resampled Spearman correlation Costello et al. (2014). Various machine learning methods have been proposed in this area. Barretina et al. proposed a method for predicting drug response based on naive Bayes classifier that selected importance features by two steps. First, they used Wilcoxon Sum Rank Test and Fisher Exact Test to select the 30 top features and then they applied naive Bayes classifier for drug response prediction Barretina et al. (2012). SVM-RFE method is a wrapper that used SVM classifier and recursive feature selection method Dong et al. (2015). FSelector method used k-nearest neighbor (KNN) algorithm based on selected features that are achieved by information entropy Soufan et al. (2015). Suphavilai et al. (2018) proposed the CaDRReS method as a predictor cancer drug response model based on the recommender system and learning projections for drugs and cell lines into a latent space. AutoBorutaRF was presented by Xu et al., based on feature selection for classification of anticancer drug responses. The method first built a subset of essential features, then used Boruta algorithms Kursa et al. (2010) to select some features for applying Random-Forest classifier to predict drug response Lu et al. (2019).

In this paper, we modeled the cancer drug sensitivity problem based on “Recommender Systems” approach. A logistic matrix factorization algorithm was used for predicting drug cancer response. By applying the proposed model to GDSC and CCLE datasets, we proved that DSPLMF is of excellent prediction accuracy.



Materials and Method


Datasets

The performance of drug response prediction algorithms was evaluated on two benchmark datasets, including GDSC and CCLE. The datasets were downloaded by using R package PharmacoGx Smirnov et al. (2015). In these datasets, there are several types of information such as IC50 values according to the set of cell lines and drugs and some other information such as gene expression profile, copy number alteration, and single-nucleotide mutation that used in the model designing for more efficiency. Since in these datasets some of the above information is missing, the method of compensating for missing values given by Lu et al. (2019) is used. The missing value for a cell line can belong to response value, copy number alteration, and single-nucleotide mutation features. The cell lines with more than 50% missing value were removed from the dataset and for remaining, the missing values were predicted from the known values of k-nearest cell lines. At the end, 555 cell lines and 98 drugs remain without any missing value for GDSC and 363 cell lines and 24 drugs for CCLE datasets.



Method

The main idea of the model DSPLMF is to construct a classification model for predicting how a cell line responds to a drug. Since drug response can be divided into two classes “sensitivity” and “resistance,” there are many ways for the purpose of classification based on IC50 values. By considering the histograms of IC50, we observed some histograms are normal-like, and others have skewness. Also, it can be supposed that the labels of classes should be determined by the data of individual drugs. For normal-like histograms, median, and mean are the same. If the histogram is skewed right, the mean is greater than the median, and if the histogram is skewed left, the mean is smaller than the median. We chose medium because we wanted to set a single, universal standard threshold for all drugs. So, the strategy introduced by Li et al. (2015) was used and the median of IC50 values were applied as a threshold for classification. The "sensitivity" or class with label 1 was assigned to a cell line if its IC50 is smaller than the median of cell lines for an individual drug and "resistance" or class with label 0 to a cell line was assigned, otherwise. DSPLMF method has four main steps as follows.

In the first step, by converting the model to a classification problem, a 0,1 observation matrix was achieved, as cell lines and drugs are rows and columns of the matrix, respectively. Then, a logistic matrix factorization method for constructing the latent vectors for each cell line and drug is applied. In the second step, for improving the prediction accuracy of the model, the similarity information for cell lines and drugs are used. In the third step, a model is applied to learn to predict the probability that a new cell line would sensitive to a drug. Subsequently, with applying the threshold to predicted probabilities of the cell line-drug pairs, we classified each pair to sensitive or resistance class. In the next section, first the similarity matrices used in the model, were introduced and then the details of each step are explained in the following steps. The main scheme of DSPLMF algorithm is represented in Figure 1.




Figure 1 | Scheme of DSPLMF algorithm. First, similarities between each pair of cell lines are constructed based on the information of gene expression, single-nucleotide mutation, copy number alteration, and IC50 values. Also, similarity between each pair of drugs is defined based on chemical substructure and the median of IC50 values are applied as a threshold for classification. Using DSPLMF model, the latent vectors for each cell line and drug are achieved. For each new cell line, decision tree classifier is applied to find its t-most nearest neighbors and the probabilities that this cell line is sensitive to drugs are estimated based on the latent vectors of its neighbors. Eventually, a threshold is applied on probabilities to assign sensitive or resistance class to each new cell line-drug pair.




Similarity Matrix


Cell Line Similarity

In this part, the four similarities between each pair of cell lines based on the information of gene expression, single-nucleotide mutation, copy number alteration, and IC50 values were defined.

	Gene expression Similarity, Simexp Gene expression information is an auxiliary feature for similarity between cell lines. Let ei denoted the gene expression vector of cell line ci in cancerous conditions. For pair of cell lines ci and cj, Simexp(ci, cj) is defined as the Pearson correlation between the vectors ei and ej and the gene expression similarity matrix between cell lines considered as Simexp = [Simexp(ci, cj)]n × n, where n is the numbers of cell lines. Each entry of these metrics is in [−1,1]. The numbers of considered genes for two datasets GDSC and CCLE for similarity measure are 11,712 and 19,389, respectively. So the length of vector ei is 11,712 and 19,389 for GDSC and CCLE dataset, respectively.Q[SpecialChar] Verify that all the equations and special characters are displayed correctly.


	Single-nucleotide mutation Similarity, Simmut Let zero-one vectors mi indicate that whether a mutation occurred in the set of genes for cell line ci or not. Simmut(ci, cj) is defined as the Jaccard similarity between the vectors mj and mj and the single-nucleotide mutation similarity matrix between cell lines considered as Simmut = [Simmut(ci, cj)]n × n. Each entry of these metrics is in [0, 1]. The mutation information of 54 genes are accessible for cell lines in GDSC dataset and 1667 genes for cell lines in CCLE dataset, respectively.


	Copy number alteration Similarity, Simcnv Let vi denoted the copy number alteration vector for cell line ci. Simcnv(ci, cj) is defined as the Pearson correlation between the vectors vi and vj and the copy number alteration similarity matrix between cell lines considered as Simcnv = [Simcnv(ci, cj)]n × n. Each entry of these metrics is in [−1, 1]. The information of copy number alteration of 24,959 and 24,960 genes for two GDSC and CCLE datasets are accessible, respectively.


	IC50 value Similarity, SimIC50 Moreover, the similarity between cell lines proposed by Liu et al. (2018) based on the correlation between their response IC50 values was used. Let ICi denoted the vector of IC50 values of drugs in cell line ci. SimIC50(ci, cj) is defined as the Pearson correlation between the vectors ICi and ICj and the similarity based on IC50 matrix between cell lines considered as SimIC50 = [SimIC50(ci, cj)]n × n and each element of these metrics in [−1, 1].




To aggregate these similarities to a single matrix, Simtotal = [SCij]n × n, the following formula is used:



where γ, λ, ϕ and ψ are parameters that represent the importance of each of the matrix and tuned in the model. The numbers of considered genes for two datasets GDSC and CCLE for Simexp are 11,712 and 19,389, respectively. The mutation information of 54 genes is accessible for cell lines in GDSC dataset and 1,667 genes for cell lines in CCLE dataset. The information of copy number alteration of 24,959 and 24,960 genes for two GDSC and CCLE datasets are accessible, respectively. Since three matrices Simexp, Simcnv, and Simmut have been constructed by different sets of genes (the number of common genes between them is about 50%), there is not an additive relation between them. In general, an absolute correlation coefficient of >0.7 among two or more predictors indicates the presence of collinearity. But as Table 1 shows, all correlation coefficients between similarity matrices are very low, so there is not collinearity between matrices and they can be linearly combined.


Table 1 | Correlation coefficient between four matrices Simexp, Simcnv, Simmut, and SimIC50.





Drug Similarity, Simdrug

Since it is expected that similar drugs have the same effect on cell lines, drug similarity information for predicting drug response was used in the proposed method. A drug can be represented as a binary feature vector, by using drug substructures, drug transporters, drug targets, drug enzymes, drug pathways, drug indications, or drug side effects information. Since there is only information about chemical substructures, for each drug we have a zero-one vector of size 881, where 881 is the number of known chemical substructures of a drug. In this vector one indicates the presence of a substructure of drug and zero otherwise. We downloaded the substructure for each drug from PubChem. The PubChem system generates a binary substructure fingerprint for chemical structures. These fingerprints are used by PubChem for similarity neighboring and similarity searching. Let   and   are the vectors correspond to the drugs di and dj. Similarity (di, dj) is considered as Jaccard similarity between these two vectors. We construct the matrix Simdrug = [SDij]m × m as similarity matrix between each pair of drugs.




Logistic Matrix Factorization

Assume the set of cell lines is denoted by C = {c1, c2, …, cn } and the set of drugs is denoted by D = {d1, d2, …, dm }, where n and m are the numbers of cell lines and the numbers of drugs, respectively. The relationship between cell lines and drugs are represented by a binary matrix Q = [qij]n × m, where each element qij ∈ {0, 1}. If a cell line is ci sensitive to a drug dj, qij = 1 and otherwise qij = 0. The probability of sensitivity of a cell line to a drug is defined by a logistic function as follows:

	

where ui nd vj are the latent vectors of size L corresponding to i-th cell line and j-th drug, respectively and the latent vectors of all cell lines and all drugs are denoted by U and V, respectively. On the other hands, the non-negative values   and   are the bias parameters according to cell line i and drug j, respectively. Moreover, we denoted βc ∈ ℝn × 1 and βd ∈ ℝm × 1 as bias vectors for cell lines and drugs, respectively. Bias parameters are considered because some cell lines respond significantly to many drugs and there are cell lines that respond to few drugs. Similarly for some drugs, there are many cell lines that respond to them, and there are drugs that most cell lines do not respond to significantly. Thus, by applying these parameters, we try to reduce bias. The vectors  and   considered as bias vector of the model.

In this model, all the data in the training set are assumed to be independent. So the probability that matrix Q occurred, considering the latent and bias vectors, can be computed as:

	

When qij = 1 then both r (1 – qij) and 1 – qij are zero. Similarly, when qij = 0, rqij = qij = 0. So, formula 3 is rewritten as follows:

	

Finally, the above probability is shown as follows:

	

Where (r ≧̸ 1) is used to control the importance levels of observed interactions. In some classification problems with two classes (0 and 1), lack of information make us to assign label zero to some objects. But, it may be that the real label of these objects are one. So, the members of class one are highly trusted, while some members assign to class zero because of lack of information. As an example, in drug-target prediction or drug-drug interaction prediction models, the observed interacting drug-target pairs or drug-drug pairs have been experimentally verified; thus, they are more trustworthy and important than the unknown pairs. Toward more accurate modeling for these prediction models, the authors can assign higher importance levels to the interaction pairs than unknown pairs. This importance weighting strategy (considering r > 1) has been demonstrated to be effective for personalized recommendations. On the other hand, in DSPLMF model, both classes (sensitivity and resistance) have the same importance and validity. So, we set r to be one.

We also deposited zero-mean spherical Gaussian priors on latent vectors of cell lines and drugs as:

	

	

where I denotes the identity matrix and   and   are parameters for controlling the variances of prior distributions of cell lines and drugs. Based on Bayesian theorem we have:

	

Since U, V, βc, βd are the parameters in the model M, Bayesian theorem is as follows:

	

So we can conclude the following relation:



According to the Bayesian theorem and equations 5, 6, and 7, the log of the posterior distribution is estimated as follows:



In formula 11, regarding how Bayesian theorem is applied to classification problems, we could convert the direct proportional relation between the left hand side and the numerator of the fraction of equation 10 to equalized, by adding constant term T to the formula. Where T is independent of the model parameters Hand et al. (1999).  ,  . The parameters of the model can be learned by maximizing the above formula, which is equivalent to minimizing the following objective function:



where ‖·‖F denotes the Frobenius norm of matrix.

For regularization the objective function 12, for each cell line ci, we choose the set Nk(ci) that denotes the k-most similar cell lines to c (except ci) using Simtotal matrix. We constructed adjacency matrix A= [aij]nxn that represents cell line neighborhood information as follow:



A is an n × n matrix, which for the row corresponding to cell line ci, the entries of columns corresponding to the k-most similar cell lines of ci are obtained from their similarities, Simtotal matrix, and the other elements of this row are zero.

Similarly, for a drug di, the set Nk(di) denotes the k-most similar drugs to di (except di) using Simdrug matrix. The adjacency matrix B to describe the drug neighborhood information is denoted by B = [bij]m×m, where;



B is an m × m matrix, which for the row corresponding to drug di, the entries of columns corresponding to the k-most similar drugs of di are obtained from their similarities, Simdrug matrix, and the other elements of this row are zero.

To illustrate the data structure of these similarity matrices, as an example, for k = 5 and 24 drugs in CCLE dataset, the similarity matrix B is denoted in Figure 2A. Figure 2B, shows the graph corresponding to this matrix. As it can be seen from Figure 2A, each row i of the matrix has five nonzero elements corresponding to the five-most similar drugs of di in Simdrug matrix, and the other elements are zero. In Figure 2B, the degree of each node is five and the red edges denote the neighbors of the nutlin-3. 5-most similar drugs to Nutlin-3 based on sim drug matrix are AEW541, AZD0530, Lapatinib, crizotinib, and sorafenib.




Figure 2 | Data structure of the similarity matrix for 24 drugs in Cancer Cell Line Encyclopedia (CCLE) dataset. (A) The similarity matrix B24 × 24. (B) The graph corresponding to the similarity matrix B24 × 24.



To minimize the distance between feature vector corresponding to cell line i and vectors of its nearest neighbors in latent space, we minimize two objective functions in formulas 15, 16 as follows:





Where tr(.) is the trace of a matrix,  , Ec and   are two diagonal matrices and their diagonal elements are   and  ,  . Ed and   are two diagonal matrices and their diagonal elements are   and  . α and β are two parameters for weighting the similarity between cell lines and drugs, respectively.

The values of two matrices A and B show the similarity of the cell lines to each other and the similarity of the drugs to each other, respectively. Using the calculation of Frobenius norm multiplied by the elements in A and B is because of we would like more similar cell lines (drugs), have closer latent vectors in the latent space. But, the parameters α and β determine the effectiveness of these two matrices A and B in the objective function. By these strategies and tuning the parameters α and β, we determine the impact of cell line similarity and drug similarity in DSPLMF method.

By plugging two equations 15, 16 into formula 12, we will have the following:



Finally, we upgrade the formula 17 as follows:



By this function, we try to predict the latent vectors of cell lines and drugs, where the similar cell lines or drugs have closer latent vectors to their KNNs.

For optimization the above function, the alternating gradient descent method was used. In each iteration of this algorithm, first U and   are fixed to compute V and   and then V and   are fixed to compute U and  . Besides, to accelerate the convergence, the AdaGrad algorithm was applied and the details of this algorithm are deposited in the Supplementary File 3 (Data Sheet 3). The objective function in formula 18 is denoted by Y and the partial gradients of biases and latent vectors are calculated as follow:



Once the latent matrices U and V and the biases   and   have been learned, the probability of sensitivity cell line i to drug j can be estimated by logistic function in formula 2. Since in our model, the importance of the positive observations and negative observations are the same, we set r = 1 in this logistic function.



Prediction

When a new cell line is given, its information of IC50 of the drugs is unknown and SimIC50 matrix values cannot be calculated, while it must be calculated to predict the latent vectors of this new cell line. In this section, we introduced a classification model for predicting t-most nearest neighbors by using the similarity values between cell lines which are obtained from gene expression profile, copy number alteration and single-nucleotide mutation information. The purpose of this model is to find t-most nearest neighbors for the new cell line and then to estimate the latent vector for this new cell line based on average of latent vectors of its neighbors. After obtaining the latent vector, we can predict the IC50 values across all drugs for the new cell line. For training the model, 10-fold cross validation technique is used on cell line dataset, so the dataset was partitioned into 10 equal-sized subsets, nine subsets were used as the train set for learning this classification model. A single subset was used as the test set to predict the t-most nearest neighbors for each cell line of this set.

In this classification model, the amounts of SimIC50 matrix of train set were converted to 0 or 1. To do this, the values of each row of the matrix are sorted in descending order and then t-largest values are set to 1 and remaining values are set to 0. Among the methods available for classification, we chose “Decision Tree Classifier” method. It is one of the predictive modeling approaches that used tree models to predict the value of a target variable based on several input features. Where leaves represent class labels and branches denote conjunctions of features that lead to those class labels. Learned trees can be represented as sets of if-then rules. Decision tree classifier is a heuristic and nonbacktracking search through the space of all possible decision trees. The main idea of decision tree classification is recursively partition data into subgroups. The functionality of decision tree classification is as follows: Polat and Güneş (2007)

	Choosing an attribute and formulating a logical attribute test.


	Branching on each test result, transferring subset of examples (training information) to the appropriate child node to satisfy that result.


	Running each child’s node recursively.


	The end rule indicates when a leaf node is to be declared.




For decision tree classifier, the three features of train set, Simexp, Simcnv, and Simmut, are considered as input and 0 or 1 value of each pair (ci,cj) are considered as output and then as the classifier train. If the number of predicted nearest neighbors for a cell line was less than t, we considered them as nearest neighbors for this cell line. If this number was greater than t, t neighbors were selected randomly. Finally, ui was estimated as the average of latent vectors of neighbors of the new cell line ci.

When the latent vector of the new cell line is predicted, the probabilities that this cell line is sensitive to drugs are estimated. Eventually, a threshold on probabilities to assign sensitive or resistance class to each cell line-drug pair is applied. So if the predicted value is lower than this threshold for a cell line-drug pair, the resistance class is assigned to it; otherwise, it is labeled as a sensitive class.





Result

We empirically evaluate our proposed approach and compare it against some of the state-of-the-art methods. This section first describe evaluation criteria and then demonstrate the performance of DSPLMF method.


Evaluation Criteria

To evaluation the performance of DSPLMF method, the 10-fold cross-validation Was performed and this process was repeated 30 times. The mean of following criteria was obtained in the 30 times and it was used as the final criteria to evaluate the predictive performance of the methods.



where TP or true positive prediction is the number of cell lines labeled with sensitivity and predicted as sensitivity. TN or true negative is the number of cell lines labeled with resistance and predicted as resistance. FP or false positive is the number of cell lines labeled with resistance and predicted as sensitivity. FN or false negative is the number of cell lines labeled with sensitivity and predicted as resistance.

In addition to the above metrics, we used area under the receiver operating characteristic curve (AUC), which is one of the most important evaluation metrics for checking the performance of any classification model. This metric was calculated for the methods.



Comparison With the State-of-the-Art-Methods

To demonstrate the effectiveness of our method, we compared the predictive performance of the proposed model against the state-of-the-art-methods such as naive Bayes Barretina et al. (2012), SVM-RFE Dong et al. (2015), FSelector Soufan et al. (2015), CaDRReS Suphavilai et al. (2018), AutoBorutaRF Lu et al. (2019), and the AutoHidden method, which is constructed based on the hidden layer of the autoencoder in AutoBorutaRF method as features Lu et al. (2019).

All the methods mentioned above are classification models except the CaDRReS, since this method predicted IC50 values as output, a threshold was applied for its output. So if the value predicted for a cell line-drug pair is smaller than this threshold, the resistance class was assigned to it; otherwise, it was labeled with sensitive class. The median of the IC50 values was chosen as the best threshold for this algorithm. The results of the mentioned methods on two datasets GDSC and CCLE are shown in Tables 2 and 3, and the bold number represents the best result. The results of Table 2 show that the value of Accuracy criterion by DSPLMF has increased by 0.03 compared to the result of the best algorithm, AutoBorutaRF. Furthermore, the value of Recall, F1Score, MCC, and AUC criteria have increased by 0.10, 0.05, 0.06, and 0.05 compared to the best algorithm. Only in the case of the Specificity criterion, the naive Bayes method performs significantly better than the other methods. The reason is that this method has predicted zero class data for most of the data, and by looking at the result of other criteria, such as Accuracy, Recall, and F1Score for this method, we can see that this method does not predict sensitive class data very well. The results of Table 3 are the same as those in the previous table, except that the best result for the AUC criterion belongs to the AutoBorutaRF method, demonstrating the effectiveness of this method. The best result for the Specificity criterion belongs to the AutoHidden method; the low performance of other criteria indicates that this method is weak in predicting sensitive data. In general, the results of these two tables show that the DSPLMF significantly outperforms other methods. Thus, it is evident our method able to find much more useful features for drug response prediction rather than other methods. Overall, DSPLMF improvement on the GDSC dataset is stronger.


Table 2 | Prediction performance of the different algorithms based on seven criteria on Genomics of Drug Sensitivity in Cancer (GDSC) dataset.




Table 3 | Prediction performance of the different algorithms based on seven criteria on Cancer Cell Line Encyclopedia (CCLE) dataset.





Performance of the Novel Regularization Approach

To evaluate the improvement of the logistic matrix factorization method by applying the novel regularization approach, we compared the predictive performance of the DSPLMF model against the logistic matrix factorization method without the novel regularization approach. In this model, the classification method for predicting t-most nearest neighbors for each new cell line by using the similarity values between cell lines which are obtained from gene expression profile, copy number alteration and single-nucleotide mutation information, is not applied. The result of the above algorithm based on seven criteria on GDSC and CCLE datasets is calculated, and the 10-fold cross-validation is applied on the evaluation metrics, and the mean value of them is used as criteria for comparison. The results of Tables 2 and 4 show that the value of Accuracy criterion by DSPLMF on GDSC dataset has increased by 0.10 compared to the result of the logistic matrix factorization method without the novel regularization approach. Furthermore, the value of Recall, Precision, Specificity, F1Score, MCC, and AUC criteria have increased by 0.04, 0.10, 0.17, 0.07, 0.21, and 0.14 compared to this algorithm. The results of Tables 3 and 4 show that the value of Accuracy criterion by DSPLMF on CCLE dataset has increased by 0.10 compared to the result of the logistic matrix factorization method without the novel regularization approach. Furthermore, the value of Recall, Precision, Specificity, F1Score, MCC, and AUC criteria has increased by 0.05, 0.11, 0.10, 0.09, 0.16, and 0.10 compared to this algorithm. So, using of the classification method for predicting t-most nearest neighbors of each new cell line in logistic matrix factorization algorithm, will increase the performance by 10%.


Table 4 | Prediction performance of the logistic matrix factorization method without the novel regularization approach based on seven criteria on Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) datasets.





Specific Tissue of Cell Line Type

The data in the GDSC dataset is related to different cancers. To demonstrate the performance of DSPLMF method on cancer tissue type, 73 hematopoietic cell lines and 98 drugs from GDSC dataset are considered. This specific type of cell lines are used to train the proposed model and predicted responses for the drugs based on this tissue type. Figure 3 shows the results of all mentioned criteria on these cell lines for the DSPLMF method using 30 times 10-fold cross-validation. The mean of these values are shown in Table 5. As the table shows, if the algorithm is specifically run on a particular type of cancer, it would be expected to yield better results than when considering different types of cancer. These results indicate that DSPLMF can also achieve consistent performance on a specific type of cancer.




Figure 3 | Box Plots of seven criteria on haematopoietic cell lines in Genomics of Drug Sensitivity in Cancer (GDSC) dataset to show the prediction performance of DSPLMF method.




Table 5 | Prediction performance of DSPLMF method on haematopoietic cell lines based on seven criteria on Genomics of Drug Sensitivity in Cancer (GDSC) dataset.





Correlation Between Predicted and Observed Responses Values

For further evaluation and to demonstrate the performance of the proposed algorithm, the scatter plots of observed versus predicted responses values for four drugs in CCLE are illustrated in Figure 4. The values predicted by our model are probabilities that cell lines are sensitive to the drugs. For calculation correlation between predicted and observed responses values, the values   in Formula 2 as the predicted IC50 values for cell line ci and drug dj were used. As the plots indicate, there is a high correlation between observed and predicted response values. The scatter plots of all 24 drugs in the CCLE dataset are illustrated in the Supplementary File 2 (Data Sheet 2: Figures S1–S4).




Figure 4 | Correlations between observed and predicted activity areas using DSPLMF method for CCLE cell lines across four drugs. (A) shows the scatter plot of observed and predicted drug responses for Topotecan with 0.71 as Pearson Correlation. (B) shows the scatter plot of observed and predicted drug responses for 17-AAG with 0.60 as Pearson Correlation. (C) shows the scatter plot of observed and predicted drug responses for AZD6244 with 0.68 as Pearson Correlation. (D) shows the scatter plot of observed and predicted drug responses for PD-032590 with 0.79 as Pearson Correlation.





Learning Hyperparameters

For tuning hyperparameters, GDSC dataset has been used, and the obtained hyperparameters are considered for both datasets. The 10-fold cross-validation procedure is applied on GDSC and hyperparameters are chosen empirically by maximizing the summing up of the Accuracy, Recall, Precision, Specificity, F1Score, and MCC criteria. For each set of hyperparameters, the whole 10-fold process is repeated 30 times and the average value of the above summing has been calculated. Since the search space of hyperparameters values is large, a grid-search procedure for choosing the hyperparameters was applied.

The dimension of latent space, L, was selected between 1 and 98, the number of drugs. The number of KNNs for building Nk(ci) in equation 13 and the number of t-nearest neighbors in prediction section, were selected from 1 to 50 by step 2. The impact factors of nearest neighbors α and β in equations 15 and 16 were picked from {2–5, 2–4,…, 22} and the variance controlling parameters, λc and λd, were chosen from{2–5, 2–4,…, 21}. The γ, λ, ϕ and ψ parameters represent the importance of each similarity measure between cell lines in formula 1 and were selected from 1 to 10. Threshold parameter applied on equation 2 for determining the label of the class for each new cell line ci, and was picked from 0.1 to 1 by step 0.1, and the best accuracy of the result is obtained by threshold=0.6.

In Table 6, the learned hyperparameters using GDSC dataset is shown. For both datasets, these tuned hyperparameters are used to design the model, except to L, that is calculated for CCLE dataset separately and for this dataset it is set as 23.


Table 6 | Learned hyperparameters of DSPLMF method based on Genomics of Drug Sensitivity in Cancer (GDSC) dataset.






Discussion


Cell Line Subtypes in Latent Space

We used 555 cell lines from different cancerous tissue types in GDSC dataset. For representing the higher similarity between latent vectors   of the cell lines from the same tissue type rather than the cell lines from different tissue types, the t-SNE plot for some tissue types of cancer cell lines is shown in Figure 5. Top five most frequent tissue types including, breast, central nervous system, hematopoietic and lymphoid tissue, COREAD, and lung cancer were considered. As it can be seen from Figure 5 (A), the embedded latent vectors of the cell lines with the same tissue type are located closer than the cell lines with diverse tissue types. This suggests that the proposed method assigned more similar latent vector to cell lines with the same tissue type. In the following, we consider an example of some latent vectors and the similarities between them: Let v1, v2 and v3 are three latent vectors obtained DSPLMF method of length 95 corresponding to Breast cancer cell line BT − 20, Breast cancer cell line BT − 549 and hematopoietic cancer cell line CA46, respectively. v1 = [0.01, 0.23, −0.14,…, 0.12]1x95, v2 = [0.17,0.67, −0.1,…,0.34]1x95 and v3 = [0.89, −0.9, 0.55,…, −0.17]1x95. Similarity (v1,v2) = 0.78, Similarity (v1,v2) = 0.13 and Similarity(v2,v3) = 0.04. As the results show, two vectors belonging to the same tissue types are more similar than two vectors that belong to two different tissue types. Also, in the t-SNE plot, these two vectors belonging to the same tissue types are closer than two vectors that belong to two different tissue types.




Figure 5 | (A) shows the t-SNE plot of latent space corresponding to four different cancer subtypes in GDSC dataset. In this figure, red points show the latent vectors of breast cancer and green, dark blue, and light blue points show the latent vectors of COREAD, central nervous system, and haematopoietic and lymphiod tissue, respectively. (B) shows the t-SNE plot of latent space corresponding to different lung cancer subtypes in Genomics of Drug Sensitivity in Cancer (GDSC) dataset. In this figure, purple points show the latent vectors of adenocarcinoma and light green, black and orange points show the latent vectors of large cell, squamous cell, and small cell carcinoma, respectively.



In Figure 5B, the latent vectors of different subtypes of lung cancer were considered. These different subtypes are: adenocarcinoma, large cell, squamous cell, and small cell carcinoma. In this figure, the closeness of vectors corresponding to cell line of the same subtype in this cancer justifies the efficiency of obtained latent vectors.



Investigation Drug-Pathway Association

For inferring drug-pathway associations, the heatmap of Pearson correlation between predicted drug responses and pathway activity scores similar to Suphavilai et al. (2018) is used. We considered 50 Biocarta pathway gene sets from MSigDB Liberzon et al. (2011), and pathway activity scores for CCLE cell lines were calculated as follows:

Let PW is a pathway and G(PW) = {g1,g2,…, gr} is the set of genes corresponding to pathway PW. Let fold-change value of gi in cell line cj is xij, which is obtained by:



Pathway activity score of pathway PW for cell line cj, PASj(PW) was calculated by formula 22.



Pathway activity score of PW for all cell line, PAS(PW), are considered as the vector PAS(PW) = [PAS1(PW), PAS2(PW),…, PASn(PW)], where n is the numbers of cell lines. Also, the predicted drug responses by DSPLMF for each drug were considered as the vector IC50predicted = [IC1, IC2,…,ICn].

Then, the association between drug dj and pathway PW is computed by the Pearson correlation between IC50predicted for drug dj and PAS(PW). A positive correlation indicates that a pathway plays a role in drug resistance and negative correlation demonstrated that a pathway is important in drug sensitivity. The result of the Pearson correlation of 30 pathway gene sets and 24 drugs of CCLE dataset is shown in Figure 6 and the result of 20 other pathways is represented in the Supplementary File 1 (Data Sheet 1). In this figure, the blue is represented the assistance and the red is represented the resistance case. Below, we investigated several instances that indicates consistency between the result of calculated Pearson correlation and previous studies and researches.

	The activation score of the HDAC (Histone deacetylases) pathway is negatively correlated (assistant association) with predicted IC50 value of some drugs such as Panobinostat. These observations were consistent with two studies, showing that the Panobinostat can inactive HDAC pathway De Marinis et al. (2013); Yee and Raje (2018).


	We observed the RELA (Acetylation and Deacetylation of RelA in The Nucleus) pathway had an assistant association with the 17-AAG (HSP90 inhibitor) drug. The RELA gene is one member of the NF-kB family and two important roles of the RELA are the transcriptional regulation and NF-kB signed transduction. Since the 17-AAG drug affects the NF-kB activity, it also affects the RELA gene and RELA pathway Thangjam et al. (2014).


	The activation score of the EGFR − SMRTE pathway was negatively correlated with predicted IC50 value of four EGFR inhibitors drugs, namely, Lapatinib, Erlotinib, Vandetanib, and AZD0530. These observations matched the previous study that denoted the amplification of the EGFR gene is correlated with a high response to EGFR inhibitors Normanno et al. (2006). Moreover, the predicted IC50 values of the Crizotinib (ALK-inhibitor) were positively correlated with the activity score of this pathway and this issue was confirmed in the previous studies Sasaki et al. (2011).


	The MTA3 (Downregulated of MTA-3 in ER-negative Breast Tumors) pathway was associated (positively correlated) with two predicted IC50 vectors belong to L-685458(gamma-secretase) and PD-0332991(CDK4/6) drugs. Therefore, the cell lines with inactivated MTA3 pathway tend to sensitive to these two drugs Suphavilai et al. (2018).


	The VEGF-Hypoxia-Angiogenesis (VEGF) pathway was assistance associated with two RAF inhibitors drugs, namely, PLX4720 and RAF265 drugs that were verified in the previous researches. One of these studies considered inducing the VEGF expression by Raf promotes angiogenesis and blocking RAF/MEK/ERK pathway by RAF inhibitors McCubrey et al. (2007). Moreover, the activity score of the VEGF pathway was negatively correlated with Sorafenib drug Liu et al. (2006).


	The activity score of the mTOR Signaling Pathway that is a central regulator of metabolism and physiology was negatively correlated with predicted Ic50 vector of some drugs such as Panobinostat. Various preclinical studies have been performed to combine panobinostat with several drugs as mTOR inhibitor Singh et al. (2016).


	It has been shown that c-met inhibitor drugs such as PHA-665752 and Crizotinib can inhibit WNT pathway activity in tumour cells. We observed the activity score of this pathway was negatively correlated with predicted IC50 vectors of these drugs Tuynman et al. (2008); Zhang et al. (2018).


	The assistant association was observed between L − 685458 drug and IGF-1 MTOR pathways. These observations were also reported by Shih et al Shih and Wang (2007).


	We observed that the MEK inhibitors such as AZD6244 and PD − 0325901 were positively correlated with activity scores for the EIF2 pathway. Therefore, as mentioned in the previous researches, the cell lines with inactivated EIF2 p athway were sensitive to these drugs Quevedo et al. (2000); Liberzon et al. (2011).







Figure 6 | Drug-pathway association based on Cancer Cell Line Encyclopedia (CCLE) dataset. For visualization, 30 Biocarta pathways across 24 drugs were selected. Negative and positive correlations between pathway activity and drug sensitivity scores are denoted as being “assistant” and “resistant” associations, respectively. The blue color is represented the assistance and the red color is represented the resistance.





Conclusion

In this work, we introduce a novel method for cancer drug sensitivity prediction based on a recommender system approach. A logistic matrix factorization is applied to predict the extent to which a cell line is sensitive to a drug. The advantage of this method is to obtain latent features of cell lines and drugs for better prediction performance. Since the similarity information of cell lines and drugs can improve higher predictive power, some information such as gene expression profile, copy number alteration and single-nucleotide mutation data for cell lines and Chemical structures of drugs are used.

To demonstrate the validity of DSPLMF method for identifying drug response 10-fold cross validation on CCLE and GDSC datasets are performed. The comparison of DSPLMF with six other the state-of-the-art prediction methods showed that DSPLMF outperformed other methods. The results indicated that the proposed method was able to uncover much more effective features than the other methods for drug response prediction.
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Identification of genetic variants associated with complex traits is a critical step for improving plant resistance and breeding. Although the majority of existing methods for variants detection have good predictive performance in the average case, they can not precisely identify the variants present in a small number of target genes. In this paper, we propose a weighted sparse group lasso (WSGL) method to select both common and low-frequency variants in groups. Under the biologically realistic assumption that complex traits are influenced by a few single loci in a small number of genes, our method involves a sparse group lasso approach to simultaneously select associated groups along with the loci within each group. To increase the probability of selecting out low-frequency variants, biological prior information is introduced in the model by re-weighting lasso regularization based on weights calculated from input data. Experimental results from both simulation and real data of single nucleotide polymorphisms (SNPs) associated with Arabidopsis flowering traits demonstrate the superiority of WSGL over other competitive approaches for genetic variants detection.




Keywords: genome-wide association studies, genetic variants, single nucleotide polymorphisms, minimum allele frequency, sparse group lasso



Introduction

Since completion of the sequencing-based structural genome project, the focus of life science research has gradually shifted from determining the composition of DNA sequences to elucidating the function of identified genes. However, the greatest challenge of functional genomics is to determine the risk genes associated with complex diseases or traits among the huge amount of DNA sequences. Approximately, 90% of all gene fragments in any two individuals of almost all organisms are identical; thus, the fragments affecting individual characteristics, diseases, or traits only appear in a small range of sequences (Tenaillon et al., 2001; Reich et al., 2002). Polygenic recombination or mutation can cause individual differences in genome sequences, resulting in genetic polymorphism. Single nucleotide polymorphisms (SNPs) are the most common form of such genetic variation. Therefore, identification and characterization of SNPs help to discover the underlying causes of various diseases or variable traits and to develop new therapeutic strategies and targets for drug development or crop improvement.

The goal of genome-wide association studies (GWAS) is to elucidate the relationship between millions of SNPs and complex traits (Klein et al., 2005). A single-locus association approach is typically used in GWAS; however, the “polygenic theory” proposes that complex traits are controlled by the action of multiple SNPs together rather than by individual genes or variants (Dudbridge, 2016). Since the number of SNPs far exceeds the number of samples in a multi-loci association study, the “curse of dimensionality” becomes the main challenge of this type of analysis (Waddell et al., 2005). Many machine-learning algorithms have been widely used to overcome this limitation and facilitate investigating the association between traits with SNPs. Based on current approaches, association studies can be divided into two main categories: one based on feature selection (FS) and the other based on statistical machine learning with regularizing penalty.

FS is the process of selecting the most effective features among a set of original features so as to reduce the dimensionality of the dataset. There are two types of FS methods: the wrapper method as a dependent classifier (Hall and Smith, 1999), and the filter method as an independent classifier (Liu and Setiono, 1996). Typically, the wrapper and filter approaches are combined as the final selected method. When applying FS methods to GWAS, the SNPs are treated as the features, phenotypes are the labels, and the candidate SNPs are then selected according to their associations with phenotypes. Numerous FS methods have been applied in genetic association studies (Evans, 2010; Batnyam et al., 2013; Anekboon et al., 2014; Alzubi et al., 2017; An et al., 2017; Setiawan et al., 2018; Tsamardinos et al., 2019). For example, Evans (2010) combined two filter FS methods with classification methods in a machine-learning approach, and obtained strong association results. To further improve the accuracy of the selected SNPs,  Batnyam et al. (2013) applied four popular FS approaches (Robnik-Šikonja and Kononenko, 2003; Liang et al., 2008; Seo and Oh, 2012; Lee et al., 2013) to select novel SNPs, which were then used to generate artificial features by applying a feature fusion method. Finally, the artificial features were classified by traditional classifiers. As an alternative combinational algorithm, Anekboon et al. (2014) proposed a correlation-based FS method as a filter to first select a portion of the SNPs, followed by a wrapper phase to sequentially feed each of these SNPs into k-nearest neighbor, artificial neural network, and Ridge regression classifiers. Alzubi et al. (2017) developed a hybrid FS method by combining conditional mutual information maximization and support vector machine-recursive feature elimination (SVM-RFE). An et al. (2017) used a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps to improve the classifier learning. Setiawan et al. (2018) firstly employed random forest algorithm to reduce the search space, then selected associated SNPs by sequential forward floating selection. Tsamardinos et al. (2019) applied p-values of conditional independence tests and meta-analysis techniques to select features, and made use of parallel techonology to increase the computing speed. Current methods based on FS have sufficient ability for selecting a candidate feature set. Nevertheless, it is important to use available biological information as prior knowledge in biocomputing. Since FS methods can only reflect the dataset itself, they are not suitable to screen features based on prior biological knowledge.

Regression models with penalty can also be used for GWAS. With this approach, the SNPs correspond to the independent variables, and phenotypes are mapped to dependent variables in the regression model. Since the number of SNPs typically far exceeds the number of samples, it is necessary to regularize the sparsity of coefficients in the regression model. As a representative example, the well-established lasso method proposed by Tibshirani (1996) can learn a sparse weight vector by penalizing the weight vector with a 1-norm loss while shrinking less important coefficients to zeros. Owing to this property, lasso and its extensions have been widely applied in the detection of genetic variants (Cao et al., 2014; Arbet et al., 2017; Tamba et al., 2017; Cherlin et al., 2018; Wang et al., 2019). For example, Cao et al. (2014) incorporated prior information in lasso to further increase the selection accuracy. Arbet et al. (2017) imposed a permutation method on lasso to improve the performance of the algorithm. Tamba et al. (2017) first reduced the number of SNPs to a moderate size, then used expectation maximization Bayesian lasso to detect the quantitative trait nucleotide (QTN). Cherlin et al. (2018) used lasso to explore the association between phenotype and SNP data and achieved good prediction. Wang et al. (2019) promoted a precision lasso that utilized regularization governed by the covariance and inverse covariance matrices of explanatory variables to increase sparse variable selection. However, SNPs (features) are generally found in groups, whereas lasso does not encourage sparsity between groups. Yuan and Lin, (2006) proposed the group lasso (GL) method, which sets a regularization of the sum of the ℓ2 norm onto groups that encourages only a few groups to be selected. The GL approach has also been successfully applied in GWAS (Li et al., 2015; Lim and Hastie, 2015; Gossmann et al., 2017; Du et al., 2018). Gossmann et al. (2017) extended sorted L1 penalized estimation (SLOPE) in the spirit of Group LASSO to handle group structures between the predictor variables. Du et al. (2018) proposed the SCCA with truncated L1 penalized and GL to improve the performance and effectiveness of discovering SNPs or QTs in imaging genetics. However, once a group is chosen, all of its comprising features are also selected, which is not compliant with the actual biological situation in which SNPs are distributed sparsely across the genome in only a few groups. Simon et al. (2013) developed sparse GL (SGL) that uses the ℓ2 penalty to select only a subset of the groups and the ℓ1 penalty to select only a subset of the variables within the group. Indeed, SGL has been widely applied in detecting genetic variants (Rao et al., 2015; Li et al., 2017; Samal et al., 2017; Guo et al., 2019). Samal et al. (2017) proposed a method based on SGL to identify phenotype associated extreme currents decomposed from metabolic networks data. Combined SGL with group-level graph structure, which takes advantages of gene-level priors to penalty the nucleotide-level sparsity to identify the risk SNPs. Guo et al. (2019) proposed a method that combined SGL and linear mixed model (LMM) for multivariate associations of quantitative traits, and it obtained a good power. Despite this improvement, the limitation of this method is that SGL selects sparse features within a group, but gives the same penalty for all features within the group. Consequently, this approach can easily result in swiping out low-frequency features that may play an important role in influencing phenotypes. To overcome this obstacle, it is important to assign different penalties to different features. Ideally, candidate SNPs should have a smaller penalty weight while others would have a larger penalty weight. In this way, candidate SNPs will stand out among the data more readily. To achieve this goal, we here propose a novel approach termed weighted SGL (WSGL) by introducing biological prior information for more accurate genetic variants detection. Specifically, we compute the minimum allele frequency (MAF) among a dataset of SNPs and use those values to reweight as the ℓ1 penalty of each SNP site, which can increase the chance of retaining low-frequency variants without loss of information. To validate this approach, we compared the performance of our model with simulation and real data against the three mainstream models discussed above.



Materials and Methods


Materials


Simulation Data

We used Arabidopsis thaliana data from Atwell et al. (2010), downloaded from https://github.com/Gregor-Mendel-Institute/atpolydb for the simulation. We used a quality control protocol on the original data. The SNPs are eliminated by the standard that Minor Allele Frequency (MAF) is < 0.01, the missing rate is > 0.05, or the allele frequencies are not in Hardy-Weinberg (P < 0.0001). After data preprocessing, we chose 200 genes on chromosome 1 covering a total of 1,993 SNPs. Twenty of these SNPs were chosen as the associated variants.



Real Data

The genotype information was the same as that obtained from the simulation data. Ten phenotypes were selected among the 107 reported. First, from chromosome 1 to 5, we chose the first 1,000 genes, which were sorted according to sequence length, including 49,962 SNPs. Second, we selected 19 genes containing 367 SNPs, which have been verified to be associated with flowering time in Arabidopsis. Thus, a total of 50,329 SNPs were analyzed in our experiments.




Statistical Model and Methods

We first give a problem statement, followed by a brief overview of lasso and its extension for application in a genetic association study. Finally, we describe our new WSGL method.

Let X = (x1, x2,…, xn)T denote the n × p genotype matrix, where n is the number of samples and p is the number of genotypes. Let Y = (y1, y2,…, yn)T represent the n × 1 phenotype vector, containing the phenotype values of the n samples. We then establish a linear model between X and y:



where β = (β 1, β 2,…, β n)T is a p × 1 regression coefficients vector, and ϵ ∼N(0, 1).


Lasso and Its Extension for Association Mapping

Tibshirani (1996) proposed the popular lasso estimator,



where β is the regression coefficients vector, and x, corresponding to the nonzero estimated coefficients in β, represents the candidate SNPs. ||β||1 is the ℓ1 penalty item. λ is a regularization parameter, and its size determines the sparsity. When λ = 0, the lasso estimator is equivalent to ordinary least-squares regression.

However, the lasso applies to the situation in which the variables are independent of each other. For the situation in which the variables can be divided into m groups, Yuan and Lin (2006) proposed the GL estimator,



where m is the group of variables, the first part is OLS, the second part is the sum of the ℓ2 penalty of the coefficients of each group, and λ is the regularization parameter. If the size of the group is 1, it will degenerate to the standard lasso.

The GL can generate a sparse in groups; however, the variables in a group are not sparse. To solve this problem, Simon et al. (2013) proposed the SGL,



where λ still controls the overall penalty and α determines the ratio between ℓ1 and ℓ2. When α = 1, it will be transformed into lasso, whereas when α = 0, it will be GL. SGL can either select the variables in a group-by-group manner, or screen the individual variables in the remaining groups.




Our Method

With respect to the genetic association problem, the variables in a group have different effects on the independent variable. However, the SGL uses the same penalty coefficients for all variables, regardless of the relative importance among SNPs in the screened groups.

To tackle this problem, we introduce the prior information ω in the model to improve the statistical power, and propose the WSGL,



The objective function in (5) is clearly convex; therefore, the optimal solution can be achieved by subgradient equations. Let be the optimal solution of WSGL. For group k = (1, 2,…, m), the solution   satisfies



where µ(k) and v(k) are subgradients of   and  , respectively. According to Simon et al. (2013),   if β(k) ≠ 0; otherwise, || µ(k) ||2 ≤ 1.   when  ; otherwise,  .

Following the analysis in Simon et al. (2013), the condition for   is



where  is the partial residual of y, and S is defined as  .

If  , the subgradient condition for   becomes



This is satisfied for  , if  , where   is the partial residual of y.

When  , we can get



For each locus, MAF indicates, to some degree, its rareness. The MAF of low-frequency variants is usually small, so the associated low-frequency variants are more susceptible to sparsity regularization than other common variants. With normal sparse group lasso, the pressure of being zeroed out on each locus within the same group is equally high. In this case, those low-frequency variants are more likely to be excluded during the process. So selection of an appropriate weight can help to filter out more accurate candidate low-frequency variants.

There are several approaches for deciding the weights. For example, a small penalty can be assigned to the loci in known susceptibility genes to ensure including them into the model. Alternatively, the weights can be dependent on the MAF. For a dataset including both low-frequency and common variants, low-frequency markers are assigned smaller weights to compensate for their low frequencies. Here, we assign each locus a weight as follows:  . Each weight ωi is calculated in advance, which contains genotypes and biological explanations. The importance of the ith variable can be adjusted by the weight ωi. Thus, to choose a locus, we can give it a relatively small penalty weight. Conversely, a larger weight can be assigned to exclude a locus. If ωi = 1, our model will be transformed to the SGL. Moreover, it is important to select an optimal regularization parameter λ, as a larger λ will generate a sparser result. For the present model, we chose cross-validation to select the optimal λ.

A brief algorithmic description of our method is shown in Algorithm 1. Let n represent the number of samples and p be the number of genotypes. The time complexity of subgradient step in each iteration is O(np). In real data, p is usually supposed to be large, resulting in comparatively high time complexity. Therefore, in genome-wide association analysis, we suggest to analyze chromosomes individually for huge genome.


Algorithm 1  | Parameter estimation for weighted sparse group lasso.





Performance Measurements

For performance evaluation of the new model, we treat the loci detection as a binary classification under class imbalance, in which associated loci are assigned the label 1, and all others are assigned the label 0. The testing frequency of each locus is then regarded as the predicted probability for label 1. The receiver operating characteristic (ROC) curve and the area under the precision-recall curve (AUPR) are typically used for performance assessments. The ROC curve is plotted based on the sensitivity and specificity, whereas AUPR is generated based on the precision and recall. In our problem, the number of variants is significantly lower than the number of all loci, resulting in an imbalanced dataset. In the ROC curve, the false positive rate cannot descend greatly when the true negative is huge. However, the AUPR is sensitive to false positive. Considering these factors, we chose the AUPR as the performance metric for this purpose.




Results and Discussion


Experiments on Simulation Data

For assessing the performance of WSGL in selecting candidate SNPs associated with a trait of interest, its performance was compared with lasso, GL, and SGL. Two parameters needed to be controlled in this experiment: α, which is the proportion of ℓ1 and ℓ2 loss in SGL, and λ, which is the coefficient of the entire regularization term and influences the sparsity. We set α to 0.95. Based on the results of cross-validation, λ was set to 0.09.

Figure 1 shows the results of the four methods with the simulation data, which clearly exhibits the superior performance of WSGL. The AUPR of WSGL is 0.652, which outperformed lasso by 23.6%, GL by 50.8%, and SGL by 24.4%. Lasso uses ℓ1 to guarantee the sparsity of selected SNPs, but does not consider the group information; therefore, the candidate SNPs may be selected from all groups equally. Although GL imposes group information on the model, it still lacks sparsity constraint within the group, which does not correspond with the biological assumption that only a small number of candidate SNPs are contained in a small number of groups. SGL considers the sparsity between and within groups, but can still easily exclude important SNPs with a lower MAF. By introducing biological information to adjust the penalty of SNPs in the selected groups, WGSL places less weight on the low-frequency variants and thus increases their chance of being kept out. Despite its simplicity, the simulation results demonstrated the effectiveness of this approach for screening out important SNPs.




Figure 1 | Precision-recall (PR) curves of WSGL and the other methods.



To further compare the performance of the four algorithms, we computed their AUPR values by fixing α at 0.95 and varying λ from 0.01 to 0.1 by steps of 0.01. As shown in Figure 2, with smaller λ, the model shows lower sparsity. When λ is 0.01 or 0.02, the model will include more SNPs, which may include more non-candidate SNPs that would cause a high false positive rate. Conversely, as λ increases, the number of selected SNPs decreases, which might result in the loss of some candidate SNPs, leading to a low TP rate. However, WSGL will include more candidate low-frequency loci by introducing prior knowledge to adjust the weight. Accordingly, WSGL keeps the highest position starting from λ = 0.03. When λ increases from 0.02 to 0.05, the AUPR of WSGL increases significantly from 58% to 64.5%, whereas the AUPR of lasso decreases from 59.2% to 53.2%, and that of SGL decreases from 59.9% to 56.1%. Surprisingly, the AUPR of GL decreases even more sharply from 51.1% to 34.1%. When λ reaches 0.05, the AUPR of WSGL tends to be stable, and the peak of 65.2% occurs at λ = 0.09. The AUPR of both lasso and SGL gradually decreases, and finally drops to around 40%. When λ is 0.1, the AUPR of GL drops to 13.3%. These results were consistent with our expectation that the performance of WSGL would be the best, SGL would perform better than lasso, and GL would show the worst performance overall.




Figure 2 | Precision-recall (PR) curves of WSGL and the other methods for varying λ.





Experiments on Real Data

To verify the ability of WSGL to detect candidate SNPs, we compared the performance of the four models using Arabidopsis flowering time data with known genetic associations. The dataset included 10 different phenotypes, FT10, FT16, FT22, LD, LDV, SD, SDV, LN10, LN16, and LN22, and the descriptions of the 10 phenotypes are shown in Table 1. We analyzed the associated number of genes covered by 100 SNPs with top probabilities of being target loci.


Table 1 | Description of the 10 flowering related phenotypes in A.thaliana in real data application.



As shown in Table 2, WSGL could link more candidate genes with phenotypes FT10, FT16, FT22, LD, SD, and SDV. In particular, WSGL demonstrated excellent performance for FT10, not only by selecting less groups but also by including less SNPs within each group, and the ratio of candidate genes was 23.08%. By contrast, the ratios of candidate genes were 4.65%, 9.09%, and 5.13% for lasso, GL, and SGL, respectively. For phenotypes FT16, FT22, LD, SD, and SDV, WSGL still achieved the best detection performance. However, unexpectedly, the GL model obtained better results for the first four phenotypes. We consider that this may be due to the specific distribution of loci in the dataset. In cases for which most or all of the candidate objects are located in only one group, GL will apparently show a good result. By contrast, all four methods could link all six genes with LDV, LN10, LN16, and LN22. This surprising result may reflect the strong association between the selected SNPs and these phenotypes, which is highly discriminable. Nevertheless, this assessment demonstrated that our new weighted method achieves the best performance overall, highlighting the importance of considering prior biological information for selection of candidate SNPs.


Table 2 | Summary of four methods associations found in real data.






Conclusion

We proposed a method named weighted sparse group lasso (WSGL) to improve the detection of genetic variants. WSGL incorporates the ℓ1 penalty, ℓ2 penalty, and prior biological knowledge into a single linear regression model, and then uses SGL to either select or clear out all SNPs in a group potentially associated with a phenotype of interest. To screen candidate low-frequency variants, we introduced the MAF as the weight to re-scale each element for calculating ℓ1 loss. In addition, WSGL can detect meaningful associations with more accuracy compared to available methods, which conforms with the general assumption that complex traits are affected by a few SNPs in a few genes. Experiments with both simulation and real data of SNPs related to the flowering time of A. thaliana demonstrated the effectiveness of our approach.
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Aging was a biological process under regulations from both inherited genetic factors and various molecular modifications within cells during the lifespan. Multiple studies demonstrated that the chronological age may be accurately predicted using the methylomic data. This study proposed a three-step feature selection algorithm AgeGuess for the age regression problem. AgeGuess selected 107 methylomic features as the gender-independent age biomarkers and the Support Vector Regressor (SVR) model using these biomarkers achieved 2.0267 in the mean absolute deviation (MAD) compared with the real chronological ages. Another regression algorithm Ridge achieved a slightly better MAD 1.9859 using the same biomarkers. The gender-independent age prediction models may be further improved by establishing two gender-specific models. And it's interesting to observe that there were only two methylation biomarkers shared by the two gender-specific biomarker sets and these two biomarkers were within the two known age-associated biomarker genes CALB1 and KLF14.
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INTRODUCTION

Aging is a ubiquitous phenomenon in almost all the multi-cellular organisms (Horn and Schweppe, 2015). It is also a challenging issue concerned by citizens in many countries (Baltes and Smith, 2003; Banister et al., 2012). Evidences were accumulating about that aging is a biological process strictly regulated by epigenetic modifications rather than random events (Fraga and Esteller, 2007; Martino et al., 2011; Schellenberg et al., 2011; Pal and Tyler, 2016). So it's technically reasonable to estimate an individual's biological age through the biomarkers like telomere length (Saeed et al., 2012; Barrett et al., 2013), age-dependent changes in T cell DNA (Zubakov et al., 2010; Ou et al., 2012), and RNA biomarkers (Alvarez and Ballantyne, 2006), etc. Recent studies also demonstrated that DNA methylation levels at certain CpG residues were linearly associated with the biological ages, and may serve well as age biomarkers (Zubakov et al., 2016).

DNA methylation has been implicated to be involved in various aging-associated biological processes (Jones et al., 2015; Field et al., 2018). DNA methylation is a biological process of selectively adding a methyl group to a cytosine to form 5-cytosine facilitated by a DNA methyltransferase (Moore et al., 2013). This epigenetic modification plays an essential role in transcriptional regulation and other biological processes (Vaillancourt et al., 2017; Suzuki et al., 2019). Quite a few age prediction models were proposed based on the methylation biomarkers. Besides clinical application, these models can also be used in forensic investigation (Vidaki and Kayser, 2018; Alsaleh and Haddrill, 2019). Blood and other liquids are one of the most important biological evidences found in the crime scene, so it's necessary to use the whole blood to establish an accurate age prediction model.

The major challenge is finding a subset of methylation features with a good age prediction performance using the methylomic datasets. About half a million methylation features may be generated for one sample by the popular array-based methylome profiling technologies like Illumina HumanMethylation450 BeadChip (450K) (Fernandez-Jimenez et al., 2019). The feature number is much larger than the sample number, and a step of feature selection has to be conducted to avoid the model over-fitting (Feng et al., 2018).

The existing methylome-based age prediction studies explored different feature selection algorithms to find the best age-associated biomarkers. Horvath used the elastic net algorithm to select 353 methylomic features to predict the human ages and the mean absolute error of the predicted age was about 3.6 years (Horvath, 2013). Yi et al. detected three age-related gene fragments from the blood samples of 40 volunteers and used the CpG locus of these fragments to train the age-regression model with a prediction difference of 4 years compared with the real ages (Yi et al., 2015). Hong et al. proposed a linear regression-based age prediction model, which achieved 94.5% in correlation and 3.13 years in the mean absolute deviation (Small et al., 2011) from the chronological ages (Hong et al., 2017). Another study investigated this forensic problem by selecting 23 methylomic features and established a multi-variate regression model with an age prediction deviation of about 4.6 years (Vidaki et al., 2017).

Feature selection algorithm has been utilized in many biomedical research areas. Various biomedical high-throughput data producing technologies were rapidly invented and developed and may produce as many as millions of features per sample (Diao and Vidyashankar, 2013; Ye et al., 2017; Ceglia et al., 2018). But the number of samples collected in a study was usually limited by the difficulty of patient recruitment and the cost of generating the data. So a biomedical big data project usually had a much larger number of features than the number of samples. A feature selection algorithm may significantly reduce the model complexity and the possibility of over-fitting (Le et al., 2017; Ma and Fan, 2017). Feature selection was not only widely used in the bioinformatics problems of genes (Tian et al., 2019), proteins (Liu et al., 2019), and metabolism system (Grissa et al., 2016), but also played an important role in the analysis of biomedical images (Pan et al., 2019) and time series data (Li et al., 2017).

This study proposed a three-step feature selection algorithm, AgeGuess, to find the best age prediction biomarkers using the methylomic profiles. The metrics Maximal Information Coefficient (MIC) was a sensitive correlation measurement (Reshef et al., 2011) and was utilized to remove those methylomic features with small MIC association with ages. The remaining features were recursively eliminated based on the evaluation of a support vector regressor. The last step removed the features iteratively based on an exhaustive screening. Our experimental data demonstrated an improved prediction performance of chronological ages. Gender information was also evaluated in further optimizing the age prediction models.



MATERIALS AND METHODS


Dataset Summary

This study used the methylomic dataset GSE40279, which was publicly available from the database Gene Expression Omnibus (GEO) (Clough and Barrett, 2016). The dataset GSE40279 was profiled using the methylomic platform Illumina HumanMethylation450 BeadChip (accession GPL13534) (Alsaleh and Haddrill, 2019). There were 656 samples with chronological ages in this dataset, and each sample was profiled for 485,577 methylomic resides (Alsaleh and Haddrill, 2019). The methylome was generated using the human whole blood samples, obtained from 426 Caucasians and 230 Hispanics individuals with chronological ages 19–101. As similar to the existing study (Hannum et al., 2013), sex chromosomes were excluded from analysis in this study. So there were 473,034 CpG features left for further analysis.



Feature Selection Algorithm AgeGuess

Not all of these half-million methylomic features were associated with the aging process and all the existing studies selected a subset of features for building their age prediction models (Horvath, 2013; Yi et al., 2015; Hong et al., 2017; Vidaki et al., 2017). So this study proposed a feature selection algorithm AgeGuess to find a feature subset with the best age prediction performance.

Single-step feature selection algorithm may be roughly grouped as two major types, i.e., filters and wrappers (Suto et al., 2016). A filter evaluated each feature's association with the class labels with the assumption of inter-feature independence and can be easily scaled to a large number of features (Guyon and Elisseeff, 2003; Solorio-Fernández et al., 2016). A wrapper screened a feature subset by a heuristic rule for its classification performance of a user-defined classifier. A wrapper usually outperforms a filter in accuracy with the cost of a high computational complexity (Guyon and Elisseeff, 2003; Solorio-Fernández et al., 2016). In order to fully utilize the advantages of both filters and wrappers, a multi-step feature selection algorithm may significantly reduce the number of features in the first step. Then more sophisticated and slow algorithms may be utilized. The following algorithm AgeGuess was designed based on this rule for the chronological ages.

Firstly, AgeGuess selected 10,000 methylomic features that were highly correlated with the sample label, i.e., chronological age. There were 473,034 methylomic features for each sample in this dataset, and not all these features contributed to the age prediction. The metrics Maximum Information Coefficient (MIC) demonstrated a very sensitive power in detecting linear and non-linear correlations between two variables (Reshef et al., 2011). This study calculated the MIC correlation of each methylated features with the chronological ages, and kept the 10,000 features with the largest MIC values for further analysis.

Then the Recursive Feature Elimination (RFE) strategy was utilized to remove un-related features. The RFE strategy relied on the feature ranking and iteratively removed the k least-ranked features. The investigated problem in this study was a regression model, and the Support Vector Regressor (SVR) was used to calculate the metrics to rank the features. The trained SVR model produced a weight vector Feature Importance, and the features were sorted by the descendent order of the weights. This procedure was conducted iteratively until all the features were removed. The feature subset with the best regression performance was returned.

One more redundancy-removal step was conducted to further refine the feature subset obtained in the above step. The iterative exclusion of the feature with the least performance decrease was carried out, which was the same as the backFS strategy in the other studies (Feng et al., 2019; Zhang et al., 2019). The performance was calculated by the 10-fold cross validation strategy.

A good feature selection algorithm tended to select fewer features and to achieve a higher prediction performance. But these two performance metrics usually cannot achieved simultaneously. So this study defined the integrated evaluation index (EI) as the optimization goal. EI was defined as (MAD+FNum/100), where MAD was the mean absolute deviation and FNum was the number of features selected by the feature selection algorithm. This regression performance metrics suggested one more selected feature increased the overall performance by 0.01. And the metrics EI was used to optimize the above-mentioned backFS strategy.



Performance Evaluation Metrics

This study investigated the age prediction problem using the 656 samples from the platform GEO. Multiple regression performance metrics were used to evaluate how the generated regression model performed. The metrics Mean Absolute Deviation (Small et al., 2011) was the averaged absolute error value between the predicted age and the chronological age (Pan et al., 2019). The Mean Squared Error (MSE) and the squared root version of MSE (RMSE) were another two widely used regression performance metrics (Liu et al., 2019; Thompson et al., 2019). The metrics Goodness of Fit (R2) quantitatively evaluated how well the regression model fitted the data (Chong et al., 2017). These regression metrics were implemented in the package scikit-learn version 0.19.1 of Python version 3.6.4.




RESULTS


Optimizing the Proposed Algorithm AgeGuess

The proposed feature selection algorithm AgeGuess selected 10,000 out of the 473,034 methylomic features with the largest MIC coefficients (Reshef et al., 2011) with the chronological ages. AgeGuess hypothesized that the contributions of the excluded features may be neglected since their MIC coefficients with the chronological ages were small.

The second step of AgeGuess utilized the RFE framework to iteratively remove the features, as shown in Figure 1. Due to the number of remaining features was still very large, this study set k = 50, i.e., 50 features with the least Feature Importance weights calculated by the trained SVR model were removed in each iteration. Figure 1A illustrated that the majority of the 10,000 methylation features didn't contribute to the age prediction performance. And there was a “valley” smaller than 1,500 features in the line plot in Figure 1A. So Figure 1B zoomed in the line plot within the range [2000, 50]. The data showed that the small MAD value was achieved between 900 and 500. And the minimum value MAD = 0.5809 was achieved with 750 features.


[image: Figure 1]
FIGURE 1. The line plot of the regression metrics MAD of AgeGuess. (A) RFE strategy to removed 50 features in each iteration on [10000, 50] and (B) The scale was zoomed to [2000, 50]. The horizontal axis was the number of features remained for building the classification model.


The proposed algorithm AgeGuess further removed the redundancies in the methylated features by the function backFS (Feng et al., 2019; Zhang et al., 2019). The 750 methylation features chosen in the above step was iteratively evaluated and one feature was removed per iteration if its removal generated the least contribution to the age prediction performance metrics EI. Figure 2A illustrated that the valley was around 100 features in the horizontal axis. The plot was further zoomed-in for the number of features between 50 and 150, as shown in Figure 2B. The age regression metrics EI reached the minimum 3.0316 when 107 features were selected.


[image: Figure 2]
FIGURE 2. Iterative elimination of redundant features by backFS. (A) The line plot for the numbers of features no more than 750 features. (B) The zoomed-in plot for the numbers of features between [50, 150]. The horizontal axis was the number of features. And the vertical axis was the regression performance metrics EI.


The SVR regression model was trained using the 107 methylation features, and was evaluated by the following regression performance metrics. Figure 3 illustrated that the RealAge and the PredAge were very close to each other. The prediction performance was averaged over the 10-fold cross validations, and 10 random rusns were averaged to generate the final results. The Mean Absolute Deviation (Small et al., 2011) was 2.0267 years. AgeGuess's model achieved the other two metrics RMSE and R2 were 1.6149 and 0.9672, respectively. The regression coefficients of the methylomic features were given in Supplementary Table 1.


[image: Figure 3]
FIGURE 3. Dot plot between the real chronological age and the predicted age of these samples. The horizontal axis was the chronological age of a sample (RealAge) and the vertical axis was this sample's age averaged over the 10-fold cross validation (PredAge). The regressor was SVR. The perfect prediction of age was represented by the gapped line y=x.




Comparison With Other Commonly Used Feature Selection Algorithms

This study compared the proposed AgeGuess with the existing feature selection algorithms. Three filter algorithms were evaluated, i.e., the uni-variate F-Regression (FR), Mutual Information (MI), and Pearson Correlation Coefficient (PCC). Filter algorithms returned an ordered list of all the features and the same number of features as AgeGuess was used for a fair comparison. Three recursive feature elimination (RFE) algorithms were also compared with AgeGuess, i.e., L1-RFE, L2-RFE, and SVR-RFE. An RFE algorithm eliminated a feature if its removal induced the least regression performance loss. And the regression performances of the above three RFE algorithms were calculated by the L1-regularized, L2-regularized and Support-Vector-based regressors, respectively. The number of selected features was an importance factor of a feature selection algorithm. So we also set the number of features selected by these RFE algorithms to the same as AgeGuess.

Figure 4 demonstrated that AgeGuess outperformed the existing feature selection algorithms in all the three regression performance metrics. AgeGuess achieved 2.0267 in MAD, which was 2.1142 smaller than that of FR and 2.1603 smaller than that of MI. A larger R2 value suggested that a regressor performed better. AgeGuess achieved the best R2 and outperformed the next best algorithm L2-RFE by 0.0040 in R2. The smaller RMSE was the better. And AgeGuess outperformed the next best algorithm SVR-RFE by 0.0262 in RMSE.


[image: Figure 4]
FIGURE 4. Performance comparison of AgeGuess with six existing feature selection algorithms. The regression performance metrics MAD, RMSE, and R2 were Mean Absolute Error, squared root of mean squared error, and the Goodness of Fit (R2), respectively.


We also compared our best model with the existing age prediction models and AgeGuess performed the best on estimating the chronological ages. Weidner et al. used 102 methylation features from the same dataset as this study to establish their age predictor, which achieved 4.12 in MAD, 5.34 in RMSE and 0.87 in R2 (Weidner et al., 2014). Another study also used the same dataset as this study and detected 41 methylomic features as the age biomarkers. They built the age predictor achieving 10.69 in MAD (Sarac et al., 2017). The same features from the study (Shadrina et al., 2018) were used to train the regressor as in this study and the age predictor only achieved 9.9017 in MAD, 12.1120 in RMSE and 0.0521 in R2, respectively.



Gender Specificity of Age Prediction

The literature provided different ideas on the correlations between aging and gender variations. Hannum et al. proposed that aging was impacted by various factors and utilized the information of gender and body mass index (BMI) together with the methylomic features in building an age predictor (Hannum et al., 2013). Their model achieved 3.9 years in the age prediction errors and 96% in the correlations of the predicted ages with the chronological ages. Their data suggested that gender was a significant factor to the aging rate. But professor Steve Horvath hypothesized that an age-dependent CpG signatures may be defined independent of genders and his group built a gender-independent age predictor achieving 3.6 years in the metrics median error.

We evaluated this hypothesis with the gender-specific models using the same feature selection algorithm on the same dataset, as shown in Figure 5. The original dataset was split into the dsMale and dsFemale datasets, and the same feature selection procedure AgeGuess was carried out on these two datasets. Figure 5A suggested that AgeGuess achieved 0.5783 and 0.6287 in MAD for the datasets dsMale and dsFemale, respectively. Figure 5B demonstrated that the last step of AgeGuess further refined the gender-specific models to achieve 2.2954 and 2.2148 in EI, respectively. So the Male and Female models outperformed the model using the dataset dsMale∪dsFemale by at least 0.6605 in MAD. And the gender-specific models used the similar numbers of features compared with the original model using the dataset combined from both dsMale and dsFemale.


[image: Figure 5]
FIGURE 5. Line plots of AgeGuess's steps 2 and 3. (A) The second step of AgeGuess screened features using SVR-RFE. (B) The third step of AgeGuess further eliminated redundant features by backFS.


The SVR regression model trained on the dataset dsMale achieved 1.5072 in MAD, 1.3804 in RMSE and 0.9832 in R2. The three performance metrics of the model trained on dsFemale were 1.1669, 1.2112, and 0.9881, respectively. So both gender-specific models outperformed the best model trained over dsFemale∪dsMale, which achieved 2.0267 in MAD, 1.6149 in RMSE and 0.9672 in R2. The dot plots in Figure 6 illustrated how well gender-specific age prediction models achieved on estimating the chronological ages. The regression coefficients of the methylomic features for the two gender-specific models were given in Supplementary Tables 2, 3.


[image: Figure 6]
FIGURE 6. Gender-specific age prediction performances. (A) Dot plot for male samples. (B) Dot plot for female samples. (C) Dot plot for the dataset combined both male and female samples. The perfect prediction of age was represented by the gapped line y=x.




Evaluating AgeGuess on Another Methylomic Dataset on the EPIC BeadChip

A new methylation probing array, the Infinium MethylationEPIC (EPIC array), was recently launched and provided 868564 methylomic features, which was almost two times as that of the Illumina 450 k array. The EPIC array shared about 94% of the probes in the 450 k array (McEwen et al., 2018; Alsaleh and Haddrill, 2019).

AgeGuess was applied to an independent dataset GSE116339 generated on the EPIC arrays (Curtis et al., 2019). This dataset was publicly available from the database Gene Expression Omnibus (Clough and Barrett, 2016) and provided the methylomes of 679 whole blood samples with the chronological ages (Curtis et al., 2019). AgeGuess finally selected 388 CpG features to establish the age prediction model. Two hundred fourteen of these 388 features were shared with the 450 k array and the other 174 features were EPIC-specific. The Mean Absolute Deviation (MAD) of this model was 2.4780, while the other two metrics RMSE and R2 were 1.8101 and 0.9319, respectively. So the EPIC array-based model performed slightly worse in the metrics MAD than the model based on the 450 k array. And it also used more than three times of features than the 450 k array-based model. The experimental data suggested that the EPIC array may need the 6% of the 450 k array-specific methylomic features to precisely describe the aging process.



Impact of Training Dataset Sizes on Age Prediction Performances

An experiment series was carried out to evaluate how different numbers of training samples may impact the age prediction performances, as shown in Figure 7. Firstly, 30% of the whole dataset was randomly selected as the test dataset. Then we randomly selected 20, 40, 60, 80, and 100% of the remaining samples to train the regression models, and tested the model prediction performances on the test dataset. Figure 7A suggested that more training samples did improve the regression model's performances. The 40% model improved the 20% model by 33.94% in MAD, but the 60% model only achieved a 14.94% improvement in MAD compared with the 40% model. And even smaller improvements were achieved when more training samples were added. Similar patterns were observed for the other two regression performance metrics RMSE and R2.


[image: Figure 7]
FIGURE 7. The training dataset size was important for the age prediction performance. (A) The regression model was trained using the regressor SVR. (B) The regression model was trained using the regressor Ridge. (C) The performance metrics of SVR minus those of Ridge. The horizontal axis was the percentage of the training dataset used for training the model. The three regression performance metrics MAD, RMSE and R2 were calculated.


Another regression algorithm Ridge was evaluated for its age prediction performances using the same features, as shown in Figures 7B,C. The Ridge-based age prediction models also demonstrated a similar pattern on different numbers of training samples, as shown in Figure 7B. After 60% of samples in the training dataset was used to train the model, more training samples didn't facilitate a major model improvement. We calculated the metrics differences between SVR and Ridge, as shown in Figure 7C. A small value of MAD or RMSE suggested a good age prediction model, and Figure 7C illustrated that the MAD or RMSE values of Ridge were always smaller than those of SVR. And a large R2 value suggested a good regression model. Figure 7C illustrated that Ridge was always larger than SVR in the performance metrics R2. So the regression algorithm Ridge outperformed SVR in all the three regression performance metrics MAD, RMSE, and R2.



The Biological Relevance of Age Biomarkers to the Aging Process

Figure 8 illustrated that there were little overlaps between the gender-specific methylomic biomarkers, and there were no methylomic biomarkers shared among the three sets of biomarkers BothModel/MaleModel/FemaleModel. The data suggested that there existed differences in aging biomarkers between males and females. Even the aging biomarkers of the BothModel performed worse on the individual genders (datasets dsMale and dsFemale). And the cross-gender validation demonstrated much worse age regression performances, as shown in Figure 8B.


[image: Figure 8]
FIGURE 8. Gender-specific methylomic biomarkers for age prediction. (A) Venn plot of the three sets of methylomic biomarkers. The dataset “Both” included both male and female samples. The two datasets “Male” and “Female” consisted of male and female samples, respectively. (B) Each column gave the metrics MAD values of the age regression SVR model trained by the biomarker set denoted on the first row. BothModel, MaleModel and FemaleModel denoted the sets of biomarkers detected using the datasets Both, Male, and Female.


Some of the gender-specific age methylomic biomarkers were known to have gender-biased expression patterns (Gershoni and Pietrokovski, 2017). There were two female-biased age methylomic biomarkers were cg06419846 (gene CD248) and cg25371036 (gene AMOTL1), which were from the chromosome 11 (Gershoni and Pietrokovski, 2017). CD248 was observed to be hypermethylated during aging and suggested the impaired T cell functionality in the aged adults (Tserel et al., 2015). AMOTL1 (Angiomotin Like 1) was also differentially expressed in different age groups of females, which was verified by the quantitative real-time PCR (qRT-PCR) (Pelissier et al., 2014).

Some of the male-specific age methylomic biomarkers in this study were also supported by the literature. Both of the two biomarkers cg25478614 (gene SST) and cg04084157 (gene VGF) were observed to exhibit male-biased expression patterns (Gershoni and Pietrokovski, 2017). The gene SST received hypermethylation to decline its expressions gradually with age (McKinney et al., 2015). The SST+ neurons may also be impacted with chronic exposures to different photoperiods and resulted in behavioral alternations (Pritchard et al., 2019). The gene VGF encoded the Nerve Growth Factor Inducible protein and gradually increased its expressions in the T lymphocytes when the host age increases (Busse et al., 2014).

These gender-specific biomarker genes were screened by the online GO (Gene Ontology) analysis system DAVID version 6.8 (Huang da et al., 2009a,b). The biomarker genes were input as the foreground and the species Homo sapiens was chosen as the background. The enriched terms with P ≤ 0.05 in the functional annotation chart were collected for further analysis, as shown in Supplementary Table 4. Figure 8A suggested that the three datasets dsBoth, dsFemale and dsMale shared very few biomarkers. Supplementary Table 4 further supported the observation with that only one GO term (biological process “regulation of catalytic activity”) was shared by two datasets dsBoth and dsMale. The top two ranked terms in the female biomarkers were two molecular function terms “RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding” and “RNA polymerase II core promoter proximal region sequence-specific DNA binding.” The female-specific aging associated RNA polymerase II activities were supported by the experimental evidences observed from the female rat brain (Shults et al., 2015) and the female rat liver (Spindler et al., 1991). While we focused on the aging biomarkers from the dataset dsBoth, the top-ranked enriched GO term was the biological process “homophilic cell adhesion via plasma membrane adhesion molecules,” as shown in Supplementary Table 4. It is well-known that the growth hormone was actively involved in the aging process and some of the state-of-the-art results were reviewed in Allshouse et al. (2018) and Bartke (2019).




DISCUSSION

The aging process was impacted by both inherited genetic and environmental factors. Multiple studies demonstrated that the methylomic biomarkers served as a rich information source for predicting the chronological ages (Hong et al., 2017; Shadrina et al., 2018). Most of the existing studies selected their age biomarkers based on these biomarkers' biological relevance to the aging process (Zubakov et al., 2016) or statistically correlations with the chronological ages (Shadrina et al., 2018).

This study hypothesized that the chronological age may be more accurately predicted using delicately chosen methylomic biomarkers. A three-step feature selection algorithm AgeGuess was proposed and evaluated for the age regression problem based on the methylomic features. The SVR model using the AgeGuess-selected methylomic biomarkers outperformed the existing age prediction models. Our experimental data suggested that another regression algorithm Ridge achieved a slightly better age regression performance compared with the SVR model. So the AgeGuess-selected features represented important age biomarkers independent of regression algorithms.

This study further investigated whether the age process was gender-specific. The proposed algorithm AgeGuess selected 97 methylomic biomarkers for the male samples, and 110 biomarkers for the females. But there were only two methylomic biomarkers cg26290632 (gene CALB1) and cg07955995 (gene KLF14) selected by AgeGuess in both the male and females samples. Both CALB1 (Loerch et al., 2008) and KLF14 (Small et al., 2011) were known age-related biomarkers. CALB1 demonstrated robustly down-regulated expression across rhesus monkeys and humans (Loerch et al., 2008; Pabba et al., 2017). While KLF14 served as a master regulator of many genes and its altered methylation patterns were associated with the aging process (Spolnicka et al., 2018). But both of these two genes didn't demonstrate gender-specific patterns. So these two genes may be robust age biomarkers without gender-bias. Some of the gender-specific age methylomic biomarkers were also supported by the literature.

The age prediction models proposed in this study may need further validated by various tissue samples. Gene expression patterns differred across tissues, so did patterns of DNA methylation (Decato et al., 2017; Zhou et al., 2017; Slieker et al., 2018). Only whole blood methylation samples were used in this study. Considering the influence factors such as tissues and environments, the age prediction models in this study may have reduced prediction capabilities for forensic samples other than whole blood. In addition, Hannum et al., demonstrated that some electronic health record (EHR) data like BMI may be integrated with the methylomic data to achieve a better age prediction (Hannum et al., 2013). So more types of biomedical data of the participants may further improve the proposed models.
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Subarachnoid hemorrhage (SAH) is devastating disease with high mortality, high disability rate, and poor clinical prognosis. It has drawn great attentions in both basic and clinical medicine. Therefore, it is necessary to explore the therapeutic drugs and effective targets for early prediction of SAH. Firstly, we demonstrate that LCN2 can effectively intervene or treat SAH from the perspective of cell signaling pathway. Next, three potential genes that we explored have been validated by manually reviewed experimental evidences. Finally, we turn out that the SAH early ensemble learning predictive model performs better than the classical LR, SVM, and Naïve-Bayes models.

Keywords: bioinformatics, genomics, big data, artificial intelligence, genetics


INTRODUCTION

Subarachnoid hemorrhage (SAH) is the fastest developing and most critical hemorrhagic cerebrovascular disease, accounting for 5% of cerebrovascular diseases (Macdonald, 2014), and is associated with high rates of mortality and disability and poor clinical prognosis (Suarez et al., 2006). Although there have been significant advances in diagnostic methods, surgery, and endovascular techniques in recent years, the mortality rate of SAH remains as high as 15% (Macdonald et al., 2008).

Recent research has shown that early brain injury (EBI) may be the main cause of poor prognosis in SAH patients. Therefore, current SAH studies focus on exploring therapeutic drugs and targets for reduction of EBI after SAH and the early prediction of SAH (Sozen et al., 2011).

Lipocalin 2 (LCN2) is an acute secretory protein that regulates the pathophysiological processes of various organ systems in mammals and participates in the intrinsic immune protection of the central nervous system (CNS) (Flo et al., 2004; Ferreira et al., 2015). Studies of acute white matter injury in a mouse SAH model and the role of LCN2 in injury (Egashira et al., 2014) indicate that LCN2 plays an important part in SAH-induced white matter injury. Since above evidences suggest that LCN2 is closely related to SAH, we propose our first research question: is specific intervention for LCN2 (Warszawska et al., 2013) a promising SAH treatment strategy?

On the other hand, most previous studies (Chu et al., 2011; Ni et al., 2011; Zhang et al., 2017a) have only explored biomarkers for SAH prediction and treatment in a narrow molecular range, rather than taking a genome-wide approach. We propose our second research question: could we use a genome-wide approach to find potential biomarkers for SAH based on the effects of LCN2 treatment?

Previous studies have usually predicted SAH based on diagnostic imaging (Frontera et al., 2006; Ramos et al., 2019) and clinical automation data (Roederer et al., 2014), which may not provide enough predictive power. Thus, we propose our third research question: could we use key genes to build a more powerful early prediction model for SAH?

In this paper, we propose a new research plan to answer the above three research questions. First, we use SAH intervention experiments to screen out candidate genes that are susceptible to LCN2, then employ Fisher's exact test (Xie et al., 2011; Li et al., 2017; Xia et al., 2017; Zhang et al., 2019b) to choose signaling pathways from among the candidates under different experimental conditions. Second, we use E-Bayes (Carlin and Louis, 2010), SVM-RFE (Duan et al., 2005), SPCA (Zou et al., 2006), and statistical tests (Zhang et al., 2016, 2018, 2019b,d, 2020; Xiao et al., 2019) to investigate key genes from experimental data by considering both SAH and LCN2 as factors. Third, we integrate the logistic regression (LR), support vector machine (SVM), and Naive-Bayes algorithms (Xia et al., 2017; Zhang et al., 2017a, 2019a) into an ensemble learning model (Gao et al., 2017; Zhang et al., 2019b) to build a model for early SAH prediction.

First, manual review of the experimental evidence (Osuka et al., 2006; Majdalawieh et al., 2007; Hanafy et al., 2010; Hao et al., 2014; Kwon et al., 2015; Yu et al., 2018) demonstrates that we could intervene or treat SAH by targeting LCN2 from a cell signaling pathway perspective. Next, we explore three key genes that are sensitive to both SAH and LCN2 treatment, again using manual review of the experimental evidence (Huang et al., 2016; Sabo et al., 2017; Yu et al., 2018) to cross-validate the relationships between SAH and these key genes. Finally, we show that our SAH early prediction ensemble-learning model outperforms the classical LR, Naive-Bayes, and SVM models. In summary, we consider that this work provides a novel strategy for the future study of clinical treatment of SAH and related diseases.



MATERIALS AND METHODS


Experimental Configuration

All experimental procedures were approved by the Ethics Committee of Southwest Hospital and were performed in accordance with the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.


Intervention Experiment for SAH

The original chip data for this experiment were provided by the Department of Neurosurgery, Southwest Hospital, PLA Military Medical University. SAH and sham-operated models were established; details are given in the Supplementary Material. Each experimental group included five mice, and the white matter area of the cerebral cortex was taken for gene chip testing. A total of 10 original chip samples were obtained from the SAH intervention experiments; these were divided equally into two groups as follows.

(1) SAH disease group: brain tissue in the white matter region of the cerebral cortex of SAH mice.

(2) Control group normal-1: brain tissue in the white matter region of the cerebral cortex of normal mice.

The chip was an Affymetrix GeneChip Mouse Gene 1.0 ST Array. Raw data included sample RNA extraction (white matter brain cells from the SAH model and from normal mice), sample RNA quality detection (total RNA>1 ug), cDNA synthesis, sense strand cDNA fragmentation, biotin labeling, chip hybridization, chip elution, and chip scanning. The raw data are available at http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8407.

We then carried out mass analysis and used the R Bioconductor package to perform quality control for each original chip (the SAH disease group and the control group normal-1). In the output gray scale image (Figure S1) for each chip sample, each chip name and the four corner patterns were very clear, and the contrast between light and dark was moderate.

The right panel of Figure 1A shows the Relative Log Expression (RLE) boxplot for these 10 chips. The center of each sample was close to the position RLE = 0. This indicates that the expression levels of most genes in the sample were consistent. In addition, Figure S2 describes a normalized unscaled standard errors (NUSE) detection (Marta and Marc, 2014). Since Figure S2 shows that the center of each sample is close to the position NUSE = 1, we consider that the samples are too stable to have obvious batch effect. Then, we used Robust Multi-chip Analysis (RMA) (Irizarry et al., 2003) for data preprocessing, including background and perfect match probes (PM) correction, normalization, and summarization, to obtain the probe expression data matrix (Table S1). Finally, clustering analysis (Liu et al., 2019; Xiao et al., 2019; Zhang et al., 2019c; Wu and Zhang, 2020) (Figure S3) shows that the major differences between the chip of each group comes from SAH.
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FIGURE 1. Workflow of the study. (A) SAH intervention experimental chip RLE box line diagram; the abscissa is log_2 (Median value of sample expression) and the ordinate represents each chip; (B) The volcano map of the comparison group SAH-siRNA-NC (1 day) vs normal-2. The abscissa is log2(Fold change) and the ordinate is −log10(FDR); The red point is the up-regulated gene, the blue point is the down-regulated gene, and the non-dispersive point is the non-differentiated gene; (C) Key gene screening workflow; (D) The accuracy for ensemble learning, LR, SVM and Naive-Bayes.




Intervention Experiment for LCN2

Here, in order to interfere with the expression of LCN2, 2 μL of specific short interfering RNAs (siRNAs) was delivered into the lateral ventricle with a Hamilton syringe. The injection was performed 48 h before SAH and three groups were used, as described below. We detail the procedures in the Supplementary Material.

(1) SAH-siRNA-LCN2: the SAH model was established and treated with intrathecal injection of LCN2 siRNA, and two samples were taken on the first and third days after surgery.

(2) SAH-siRNA-NC: the SAH model was established and treated with intrathecal NC siRNA, and two samples were taken on the first and third days after surgery, which helped us to remove the interference factors associated with the siRNA vector.

(3) Control group normal-2: the brain tissue of the white matter region of the cerebral cortex without any treatment.

The total number of samples in all experiments was 25 (Table 1). RNA sequencing was performed on the samples and the raw data are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA575372.


Table 1. Experimental sample description after LCN2 intervention experiment.

[image: Table 1]




Workflow of the Study

The workflow of the study is illustrated in Figure 1. First, we designed the intervention experiment for SAH detailed in section “Intervention Experiment for SAH”, which allowed us to obtain the differential genes under different experimental conditions. Based on these differential genes, we could identify the key signaling pathways.

As targeting LCN2 could result in changes in these related signaling pathways (causing remission or promotion of SAH), we consider that LCN2 plays an important part in the entire biological cell process for SAH.

Next, we used an intervention experiment for LCN2 to obtain gene expression levels for diseased and normal mouse brain cells at different time points. Then, we employed commonly used dimensional reduction algorithms to explore three key genes under the impact of both SAH and LCN2 treatment.

Finally, we used these three key genes as classifiers to develop an ensemble learning model for early SAH prediction, the predictive power of which was much better than that of the classic LR, Naive-Bayes, and SVM models.




RESULTS


Signaling Pathway Analysis
 
Differentially Expressed Gene Selection

We used E-Bayes, one of the most commonly used methods for differential expression analysis (Edwards et al., 2005), to screen the differential genes by setting Fold change ≥ 1.5 and p-value < 0.05. Table S2 lists 2942 differentially expressed genes, accounting for 10.16% of the total number of genes (28,944). Among them, there were 1016 and 1926 genes with upregulated and downregulated expression (Figure S4), respectively.



Pathway Analysis

We used Equation 1 and the data in Table S3 to explore related signaling pathways by carrying out Fisher's exact test (Xia et al., 2017) using Kobas 3.0 (Wu et al., 2006; Xie et al., 2011; Ai and Kong, 2018) for the differentially expressed genes from Table S2.

[image: image]

Here, N is the number of genes in the sample and n is the number of genes contained in the pathway. Nf is the number of differentially expressed genes and nf is the number of differentially expressed genes included in the pathway.

The Fisher's exact test assumes H0:p1 = p2; the alternative hypothesis is H1:p1 ≠ p2. p1is the probability that the differentially expressed gene will fall in the pathway, and p2 is the probability that the non-differentiated gene does not fall in the pathway. The p-value (pF) of Fisher's exact test was obtained by Equation 1.

Table S2 lists 70 signaling pathways for which the p-value was less than 0.001. LCN2 is a protein involved in MAPK signaling pathways that protects the CNS as part of the innate immune system (Warszawska et al., 2013). Previous studies have shown that LCN2 activates phosphorylation of p38 MAPK, which phosphorylates the Ser168 and Ser170 sites of NFATc4 and inhibits nuclear translocation of NFATc4 (Olabisi et al., 2008). NFATc4 is a key factor in remyelination and closely related to SAH, indicating that white matter damage after SAH is associated with remyelination (Kao et al., 2009; Guo et al., 2017).

Therefore, we hypothesize that LCN2 could promote the phosphorylation of transcription factor NFATc4 and inhibit its nuclear transcription by activating p38 MAPK, thereby preventing remyelination and causing white matter damage after SAH.



LCN2 Intervention Experimental Results Analysis

To prove our hypothesis, we designed a LCN2 intervention experiment (Figure 1B) to test whether LCN2 could affect SAH from the perspective of the differential expressed genes and the related signaling pathways.

First, we used the DESeq2 (Varet et al., 2016) method to select differentially expressed genes from SAH-siRNA-LCN2 and normal-2, SAH-siRNA-NC and normal-2, and SAH-siRNA-LCN2 and SAH-siRNA-NC groups on days 1 and 3, respectively (Table 1). The results are shown in Table 2, Table S4, and Figure S5.


Table 2. Differential expressed genes for different experimental group.

[image: Table 2]

Next, we used Kobas 3.0 (Wu et al., 2006; Xie et al., 2011; Ai and Kong, 2018) to carry out Fisher's exact test for the differential genes in Table 2, to identify related signaling pathways (Table S5). Next, we used the manually reviewed evidence (Osuka et al., 2006; Majdalawieh et al., 2007; Hanafy et al., 2010; Hao et al., 2014; Kwon et al., 2015; Yu et al., 2018) to cross-validate the SAH-related signaling pathways in Table S5. Table 3 lists the cross-validated SAH-related signaling pathways.


Table 3. Cross-validated SAH related signaling pathway.
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As shown in Table 3, all the experimental groups had SAH-related signaling pathways except the transcriptional misregulation in cancer signaling pathway (Lee and Young, 2013) in the SAH-siRNA-LCN2 (3 day) vs. SAH-siRNA-NC (3 day) experimental group. However, as one of the proteins from this pathway, Gzmb (Table S5), is closely associated with post-ischemic brain cell death (Chaitanya et al., 2010), we consider that it could be a new target for secondary brain injury inhibition (Armstrong et al., 2017). Therefore, we conclude that specific intervention for LCN2 is a promising SAH treatment strategy.




Feature Selection

After demonstrating the impact of LCN2 on SAH, we chose potential biomarkers for SAH using a genome-wide approach. Figure 1C shows the workflow used to choose key genes that were not only related to both SAH and LCN2 but were also insensitive to treatment at different time points. Figure 1C shows the following three modules.

(1) SAH intervention experiment module

Owing to the large number of differential genes (Table S2), it was necessary to further narrow down the scope of the screening. First, we used the E-Bayes method (Edwards et al., 2005) to filter the probe expression data matrix (Table S1) by the E-Bayes function of R's limma package (Smyth et al., 2005). The differential probes were obtained by setting the filter parameters to Fold change ≥2 and p-value < 0.05.

Second, we used SVM-RFE (Duan et al., 2005) (Equation 2) to rank the genes in the probe expression data matrix, and then carried out the t-test and F-test (Zhang et al., 2017b) for the top 100 genes.
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where yi and yj represent the classification labels of probes xi and xj, respectively; K(xi, xj) is the kernel function, i, j = 1, 2, …, n; α is obtained by training the SVM classifier; DJ(i) is the sort function; and H is the matrix.

We then combined the results of these two methods to obtain the significant probes for both the E-Bayes and SVM-RFE methods.

Finally, we used the transcription cluster annotation file (version: MoGene-1_0-st-v1) downloaded from the Affy (Gautier et al., 2004) website to extract the gene ID for these probes, resulting in 47 key genes (Table S6).

(2) LCN2 intervention experiment module

We performed t-tests and F-tests (Zhang et al., 2017b) for the key genes (Table S6) in the SAH-siRNA-LCN2 (1 day) vs. normal-2 and SAH siRNA-LCN2 (3 day) vs. normal-2 groups (Table S4).

There were 15 and 13 statistically significantly differential genes for the SAH-siRNA-LCN2 (1 day) vs. normal-2 group (Table S7) and the SAH-siRNA-LCN2 (3 day) vs. normal-2 group (Table S8), respectively. Taking the intersection of the results from these two experimental groups gave nine key genes, Tk1, Cyr61, Nupr1, Dcn, Lum, Olig1, Pcolce2, Slc6a9, and Kcnt2, which were sensitive to both SAH and LCN2 intervention, regardless of treatment, at different time points.

(3) Dimensional reduction module

Next, we employed the SPCA algorithm (Zou et al., 2006; Li et al., 2017) to perform dimensional reduction for the nine key genes. This resulted in five candidate genes (Tk1, Cyr61, Olig1, Slc6a9, and Pcolce2). However, manual review of the experimental evidence indicated that only Cyr61 (Yu et al., 2018), Olig1 (Sabo et al., 2017), and Slc6a9 (Huang et al., 2016) were closely related to SAH, cerebral hemorrhage, and brain injury. Therefore, we considered these three genes (Figure 2, Table S9) to be potential biomarkers for SAH.


[image: Figure 2]
FIGURE 2. Venn plot for the key genes.




Ensemble Learning Model
 
Early SAH Prediction Model

This study used three classification algorithms, LR (Hosmer et al., 2013), SVM (Suykens and Vandewalle, 1999), and Naive-Bayes (Wang et al., 2007) to develop the SAH prediction model, using the selected key genes as the respective classifiers. These three classic methods were then integrated into a novel ensemble learning model to improve the predictive accuracy.

Figure 3 shows the workflow of the SAH prediction model, based on our previous studies (Li et al., 2017; Xia et al., 2017; Zhang et al., 2019b). The key equations of the model are as follows.
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Here, Dt(i) is the weight distribution, t is the iteration time, i is the index of the sample, and n is the number of the sample. εt and αt are the error rate and weight of each weak classifier ht, respectively. For a sample set S = { (x1, y1), (x2, y2), …, (xn, yn) }, xn are the samples and yn ∈ {0, 1} are the labels; yi=0 indicates that xi is not an SAH patient, and yi=1 indicates that xi is an SAH patient. Hm is the homomorphic integration for each weak classifier ht; m is the index of the weak classifier, m = 1, 2, 3; T is the threshold of the iteration time; PHm is the predictive probability of disease; and EHmis the estimated probability of the model Hm. Y (x) is the result of the final classifier obtained by a voting method (Dietterich, 2000).


[image: Figure 3]
FIGURE 3. SAH predictive ensemble learning model.




Predictive Performance Comparison

Figure 4A compares the classification performance for the LR, Naive-Bayes, SVM, and ensemble learning models, based on four commonly used classification measurements (Table S10) (Zhang et al., 2019b). The numerical values used in Figure 4A are listed in Table S11; these demonstrate that the ensemble learning method outperforms the other three methods with respect to accuracy, precision, sensitivity and specificity. The ROC chart plotted in Figure 4B compares the classification effects of LR, Naive-Bayes, SVM, and ensemble learning models. The classification effect of ensemble learning models is also superior to the other three.


[image: Figure 4]
FIGURE 4. Model performance. (A) Comparison of classification performance of LR, SVM, Naive-Bayes, and ensemble learning model; (B) ROC chart plotted for LR, SVM, Naive-Bayes, and ensemble learning model.






DISCUSSION

This study aimed to interrogate the potential therapeutic targets of SAH and use them as classifiers to develop a model for early prediction of SAH.

To achieve this aim, we proposed the following three scientific questions. First, is specific intervention involving LCN2 a promising SAH treatment strategy? Second, could we choose potential biomarkers for SAH at a genome-wide level by considering the effects of LCN2? Third, could we use key genes to build an SAH early prediction model with strong predictive power?

Regarding the first question, as the manually reviewed experimental evidence (Osuka et al., 2006; Majdalawieh et al., 2007; Hanafy et al., 2010; Hao et al., 2014; Kwon et al., 2015; Yu et al., 2018) and the results in Table 3 all indicate that LCN2-related signaling pathways play an important part in the pathogenesis SAH, we propose that LCN2 could promote or alleviate SAH-related diseases, and could also be used to treat SAH in the future.

To answer the second question, we used mathematical algorithms to explore five potential gene biomarkers (Tk1, Cyr61, Olig1, Slc6a9, and Pcolce2), considering the impact of both SAH and LCN2 treatment at different time points, and also used the manually reviewed experimental evidence to demonstrate that Cyr61 (Yu et al., 2018), Olig1 (Sabo et al., 2017), and Slc6a9 (Huang et al., 2016) were closely related to SAH. Although Tk1 and Pcolce2 have not been reported to be associated with SAH, we will investigate their connections in future work.

Regarding the third question, although this study represents significant progress in SAH prediction, it had several drawbacks. For example, the SAH intervention experiment sample size was too small for us to demonstrate high predictive accuracy for the model. In future work, we will integrate more recent bioinformatics research algorithms (Zhang et al., 2016, 2017a, 2018, 2019a,d; Gao et al., 2017; Zhang and Zhang, 2017) and data into the system to overcome the problems.

In summary, this study analyzed the impact of LCN2 on SAH and explored the key biomarkers of SAH under LCN2 treatment at different time points. An ensemble learning model was developed to predict SAH occurrence. The results demonstrate that LCN2 (Warszawska et al., 2013) can effectively intervene in or treat SAH from a cell signaling pathway perspective. Also, three key genes were identified and validated by manual review of the experimental evidence (Huang et al., 2016; Sabo et al., 2017; Yu et al., 2018). Finally, the results showed that the ensemble learning model performed better for early SAH prediction than the classical LR, SVM, and Naive-Bayes models.
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The rapid development of single-cell transcriptome sequencing technology has provided us with a cell-level perspective to study biological problems. Identification of cell types is one of the fundamental issues in computational analysis of single-cell data. Due to the large amount of noise from single-cell technologies and high dimension of expression profiles, traditional clustering methods are not so applicable to solve it. To address the problem, we have designed an adaptive sparse subspace clustering method, called AdaptiveSSC, to identify cell types. AdaptiveSSC is based on the assumption that the expression of cells with the same type lies in the same subspace; one cell can be expressed as a linear combination of the other cells. Moreover, it uses a data-driven adaptive sparse constraint to construct the similarity matrix. The comparison results of 10 scRNA-seq datasets show that AdaptiveSSC outperforms original subspace clustering and other state-of-art methods in most cases. Moreover, the learned similarity matrix can also be integrated with a modified t-SNE to obtain an improved visualization result.

Keywords: single cell RNA-seq, subspace clustering, adaptive sparse strategy, similarity learning, visualization


1. INTRODUCTION

Cells are the basic functional unit all organisms are made of and play significant roles in the different stages of life. Through various DNA and RNA sequencing data, researchers have a comprehensive and deep understanding of cell biology. However, traditional sequencing data is obtained from bulks of cells, and these are composed of the mixed effect of numerous cells and ignore cell heterogeneity. These bulk-seq data will lead to deviations in downstream analysis if a specific type of cell is expected. Recently, single-cell sequencing techniques have developed rapidly and make up the defect of bulk sequencing data. Although the single-cell sequencing technique cannot capture all cell information, it provides a great opportunity to reveal the characteristics of an individual cell.

The fundamental step of analyzing the single-cell data is to identify the cell types. Utilizing single-cell RNA-seq (scRNA-seq) data to obtain the cell clusters is one of the most efficient methods available. The amount of clustering methods on the basis of scRNA-seq data have been proposed. A group of methods are focused on calculating more accurate and robust similarity scores between cells. SNN-cliq (Xu and Su, 2015) constructed the distance matrix and counted the number of common neighbor cells for each pair of cells as the similarity scores and then incorporated these within a clique-based clustering method. Seurat (V3.0) was inspired by an SNN-cliq and applied the SNN graph with a louvain algorithm (Butler et al., 2018; Stuart et al., 2019). Seurat is one of the most widely used methods. SIMLR (Wang et al., 2017) and SC3 (Kiselev et al., 2017) adopted multiple similarity metrics from different aspects. In SIMILR, we could learn the inherent similarity matrix from a different resolution of Gaussian kernels, while SC3 combined multiple sub-clustering results together to build up a consensus matrix. Random forest (Pouyan and Kostka, 2018) was another way to calculate the similarity. The correlation coefficient has been proven to be effective when estimating the pairwise similarity of cells, and a high-order correlation coefficient was also applied in the scRNA-seq data analysis (Jiang et al., 2018; Tang et al., 2019). Compared to the methods based on pair-wise distance or correlation measurement, SinNLRR (Zheng et al., 2019b) considered the subspace characteristics of cells' expression and assumed the low rank and non-negative properties of the similarity matrix. Besides, several methods, including nonnegative matrix factorization (NMF) (Shao and Höfer, 2017; Zhu et al., 2017), imputation, and dimensionality reduction-based methods (Yau et al., 2016; Lin et al., 2017), have been used widely in assessing cellular heterogeneity. In the other aspect, the increasing number of well-learned scRNA-seq datasets also drives the appearance of supervised methods. These methods depended on labeled training datasets or some prior biological knowledge, such as gene markers (Wagner and Yanai, 2018; Pliner et al., 2019). According to the latest study (Abdelaal et al., 2019), most of the supervised methods are sensitive to prior knowledge, dataset complexity, or input features. Moreover, this kind of method has a fixed resolution and cannot find the detailed subtypes from a rough cell group. In this study, we have focused on the unsupervised clustering methods to identify the cell types. Inspired by previous methods, calculating the distance or similarity matrix of cells is a critical step. To recognize more accurate similarities of cells from high dimensional expression profiles, we have proposed an adaptive sparse subspace clustering method called AdaptiveSSC. AdaptiveSSC follows the subspace assumption and remains the nearest neighbors of a cell by a data-driven adaptive sparse constraint. The derived similarity matrix is used to obtain the clustering result and visualization. AdaptiveSSC obtains an improved performance on multiple experimental datasets.



2. MATERIALS AND METHODS

The pipeline of AdaptiveSSC is shown in Figure 1. Taking the scRNA-seq expression matrix as the input, AdaptiveSSC constructs the sparse cell-to-cell similarity matrix by keeping the most similar cells for each cell before then applying it to spectral clustering and modified t-distributed stochastic neighbor embedding (t-SNE) to obtain cell groups and the visualization result.


[image: Figure 1]
FIGURE 1. The pipeline of AdaptiveSSC to identify and visualize cell types from scRNA-seq data.



2.1. Data Pre-processing

The quantified scRNA-seq data contain thousands of genes, and the sparsity of gene expression is usually high. Therefore, AdaptiveSSC filters the genes expressed in <10% of the cells (the maximum number is 100), which are not regarded as informative genes. AdaptiveSSC investigates the linear effect of other cells on the target cell. To remove the scale of cells' expression, the L2 normalization is carried on the original gene expression matrix.

[image: image]

where G is the original expression matrix with M genes and N cells. The normalized matrix X is used in the following calculation.



2.2. Adaptive Sparse Subspace Clustering

Most clustering methods depend on the calculation of the similarity or distance matrix. The most popular similarity measurements include Euclidean distance, Pearson or Spearman correlations, and cosine similarity, which are all based on a pairwise estimation. The scRNA-seq data usually contains thousands of genes; however, only a part of a gene determines the cell type, which corresponds to a low-dimensional manifold surface. According to the common strategy in manifold learning, only the local measurement of similarity or distance is reliable, so previous scRNA-seq clustering methods (Xu and Su, 2015; Wang et al., 2017) usually apply k-nearest neighbors (KNN) to keep the locality. However, the KNN is used arbitrary to select the same number of neighbors for each cell, and the selection of k would have a great influence on the final result in some situations. In order to overcome these shortcomings, we propose an adaptive sparse subspace clustering method, which we have called AdaptiveSSC.

AdaptiveSSC is developed from sparse subspace clustering (SSC) methods. SSC is proposed to solve the motion segmentation and face clustering problems (Elhamifar and Vidal, 2013). SSC assumes that the feature vector of a sample can be expressed as the linear combination of other samples in the same subspace or type. Based on the assumption, the expression of a cell Xi = c1X1 + c2X2 + ⋯+ci−1Xi−1 + ci+1Xi+1 + ⋯+cNXN and ck is the subspace coefficient denoting the similarity score between cells. If the cell i and k are the same type, ck > 0, otherwise it is 0. By adding l1 term, the most similar cells lying in the same subspace are retained. Extending it to all cells, the calculation of the subspace coefficient matrix is defined as Equation (2):

[image: image]

where X is the normalized expression matrix. C is the coefficient matrix and Cij denotes similarity between cell i and j. |·|1 denotes l1 norm. The larger values in C mean the more similar cells. The relaxation formula of the optimization problem is shown:

[image: image]

where [image: image] means the Fresenius norm and λ is the l1 penalty factor, which controls the sparsity of the coefficient matrix. J is an auxiliary matrix.

In the Equation (3), the coefficient matrix C is sensitive to the selection of the l1 penalty factor. Another problem is that the same penalty factor for all coefficients will lead to the loss of consistency between estimation and variable selection (Zou, 2006). Therefore, we have introduced a data-driven adaptive strategy to solve these problems. As a Pearson correlation has been proven to be effective when measuring the similarity in previous studies (Kiselev et al., 2017; Wang et al., 2017), we utilized it to adjust the penalty factor for each coefficient. If the correlation of two cells is high, the penalty factor is decreased and vice versa. The modified optimization problem is therefore defined:

[image: image]

where [image: image] means element division of matrix J and W. We set the negative value of the Pearson correlation to 0. Because only the trend of the expression of two cells are positively correlated, we regard them as similar cells. Some zero values in W would lead to zero values in J during the optimization.

Alternating direction method of multipliers (ADMM) (Boyd et al., 2011) is an efficient method to solve Equation (4). According to ADMM, the augmented Lagrangian formula is defined:

[image: image]

where Y is a dual variable, γ is an augmented Lagrangian penalty parameter, and tr means the trace of the matrix. ADMM updates C, Y, or J by fixing others. In iteration k + 1, the optimized form of Ck+1, Jk+1, and Yk+1 is shown in Equations (6–8):
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where sign() means the sign function. The convergence of ADMM mainly includes primal residuals and dual residuals. On the basis of updating process, the penalty parameter γ affects the speed of convergence. In AdaptiveSSC, we apply a balance strategy (Boyd et al., 2011) between primal residuals and dual residuals to adjust γ. The setting of γ is shown:

[image: image]

where rk = Ck − Jk is the primal residual and [image: image] is the dual residual. The μ is set to 50 as default. To reduce the computational complexity, γ is updated by 10 iterations. When max(abs(C − J)) < 0.0001 or the number of iteration is larger than 200, this update process is finished. To keep the symmetry of the similarity matrix, the final similarity matrix S = CT + C.

Finally, the spectral clustering (SC) (Von Luxburg, 2007) is applied on the learned similarity matrix. The SC is based on the point of graph cut and utilizes the characteristic of the corresponding Laplacian matrix to divide the graph into several clusters. In AdaptiveSSC, we use the normalized Laplacian matrix [image: image], where D is the degree matrix, to obtain its k eigenvectors corresponding to the smallest k eigenvalues. Then, k-means is used to obtain the final clusters.




3. RESULTS AND DISCUSSION

3.1. scRNA-seq Datasets

We collected 10 scRNA-seq datasets to evaluate the performance of AdaptiveSSC. These datasets are based on different single-cell techniques or protocols, such as Smart-seq, SMARTer, and Drop-seq based methods. Meanwhile, the scale of these datasets ranges from the tens to the tens of thousands. The variety of the datasets could indicate the generalization ability of AdaptiveSSC comprehensively. The details of these datasets are shown in Table 1. All datasets contain the real cell types from the original researches.


Table 1. Single cell RNA-seq datasets.

[image: Table 1]



3.2. Evaluation Metrics

In order to compare the performance of different clustering methods, we selected two popular metrics: normalized mutual information (NMI) and adjusted rand index (ARI). Both NMI and ARI can quantify the consistency between the clustering results and the real labels. The definition of NMI and ARI is shown:
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Where T and P mean the real labels and clustering labels, respectively. In Equation (11), nij denotes the number of cells belonging to i group in real labels and j group in clustering labels; ni denotes the number of cells belonging to the i group in real labels, while nj denotes the number of cells belonging to the j group in clustering labels.



3.3. Parameter Analysis

Although the adaptive strategy is used in AdaptiveSSC, there are still some hyperparameters to be set. The most important hyperparameter is the l1 penalty factor λ. By the adaptive adjustment, the learned similarity matrix is not so sensitive to it. We evaluated the NMI and ARI of AdaptiveSSC on eight small datasets (smaller than 5,000 cells) with λ ranging from 0.01 to 0.19 and the interval set to 0.02. The results for eight small datasets are shown in Figure 2. Based on the result, when the λ was in the 0.01–0.05, both NMI and ARI were in the best range and were more stable. Therefore, we used λ = 0.03 as a default in AdaptiveSSC. During the experiment, we also found the optimal λ was not consistent for big datasets (in Baron is 0.01 and in Shekhar and Vento is 0.007). We recommend that users select the proper λ by grid searching with the following rule. If the corresponding sparsity of C is between 0.02 and 0.05, the λ should be selected. In Baron and Shekhar, we selected the corresponding λ with the sparsity of C is 0.03.


[image: Figure 2]
FIGURE 2. The corresponding NMI and ARI with different values of λ on eight datasets.




3.4. Comparison Analysis of Clustering Methods

To validate the effectiveness of AdaptiveSSC, we selected seven competitive methods, including SIMLR (Wang et al., 2017), MPSSC (Park and Zhao, 2018), SNN-cliq (Xu and Su, 2015), RAFSIL (Pouyan and Kostka, 2018), Seurat(V3.0) (Butler et al., 2018; Stuart et al., 2019), SinNLRR (Zheng et al., 2019b), and sparse subspace clustering (SSC) (Elhamifar and Vidal, 2013). All these methods are based on the construction of similarity matrix. SNN-cliq and Seurat recalculate the similarities based on their shared neighbors. SIMILR and MPSSC focus on the different resolution of Gaussian kernels, while RAFSIL applies random forest. SinNLRR is based on the subspace assumption with low rank constraint. The original SSC was selected as the baseline method. The results of NMI and ARI on 10 datasets are shown in Figure 3. Compared to SSC, AdaptiveSSC improved NMI and ARI in six datasets. Especially in Treutelin, Kumar, Vento, and Shekhar, AdaptiveSSC exhibited a significant improvement, more so than SSC, which means the adaptive penalty factor leads to the more accurate similarity matrix. In Kolod and Ting, AdaptiveSSC achieved the same performance with SSC. Overall, AdaptiveSCC exhibited a better performance than SSC in most cases. Besides, AdaptiveSSC achieved the best (or a tie for first place) performance in seven datasets upon NMI and eight datasets upon ARI compared with other six state-of-the-art methods. It is worth noting that only AdaptiveSSC obtains the perfect result on Treutelin. The results in Baron and Shekhar also verify AdaptiveSSC's effectiveness in large datasets. Estimation of the number of cell types is another important aspect in application. In AdaptiveSSC, we also used eigengap to determine the number of clusters, which was popular in previous studies. The results can be found in the Supplementary Material. As shown in the results, none of the methods predict the correct number of clusters in all datasets. However, AdaptiveSSC obtains the correct number of clusters in three datasets and gets the closest number in five datasets, which is a better selection overall. Moreover, we select five different scale datasets to evaluate the computational efficiency of these methods. The running time can be found in the Supplementary Material. AdaptiveSSC has a faster speed than SSC but is still time-consuming in large datasets compared with SIMLR and Seurat. All the experiments run on the server with 24 cores and 512 GB memory. The methods with running time more than 36 h are excluded, such as RAFSIL, SNN-cliq, and SinNLRR in large scale datasets, and MPSSC gets out of memory error on Shekhar.


[image: Figure 3]
FIGURE 3. The corresponding (A) NMI and (B) ARI of SIMLR, MPSSC, SNN-cliq, RAFSIL, Seurat, SinNLRR, SSC, and AdaptiveSSC on 10 datasets.




3.5. Comparison Analysis of Visualization

Visualization of scRNA-seq is another important issue. Previous study (Wang et al., 2017) proposed a modified t-distributed stochastic neighbor embedding (t-SNE) to validate the performance of learned similarity. We also adopted this evaluation to AdaptiveSSC and generate 2D-embedding images on Darmanis and Treutelin with the learned similarity matrix of t-SNE, SIMLR, MPSSC, and AdaptiveSSC, respectively. The result is shown in Figure 4. The points with the same color mean they have the same cell type. Compared to other methods, AdaptiveSSC could group the same cells together and exhibits good silhouettes. Although SIMILR and MPSSC contain more dense parts, they divide cells with same type into different cliques, which are usually far away from each other. This will give the researchers a misconception that they are belong to exactly different types. Therefore, AdaptiveSSC has a better performance and potential in the visualization of scRNA-seq data.


[image: Figure 4]
FIGURE 4. The visualization of t-SNE, SIMLR, MPSSC, and AdaptiveSSC on (A) Darmanis and (B) Treutelin.




3.6. Discussion and Conclusion

The identification of cell types is a fundamental problem is scRNA-seq data analysis. In recent years, a lot of clustering methods have been proposed to solve it. However, most of these methods do not exhibit a good generalization on different datasets. In this study, we proposed a subspace clustering with an adaptive sparse constraint, called AdaptiveSSC. AdaptiveSSC regards the expression of a cell can be expressed as a linear combination of other cell's expression from the same type. A data-driven adaptive sparse strategy is applied to keep the locality of cells in the original dimension and decrease the sensitivity to the penalty factor. Eight scRNA-seq datasets were used to evaluate the performance of AdaptiveSSC. By comparing with SSC, AdaptiveSSC improves the clustering results significantly in some cases, which indicates the effectiveness of our strategy. Moreover, six state-of-the-art methods were selected as comparison. From the NMI and ARI, AdaptiveSSC achieves the best performance in most of datasets. Finally, we integrated the learned similarity with modified t-SNE further, which also shows the powerful potential of AdaptiveSSC in visualization.

However, the computational efficiency of AdaptiveSSC is still low for large datasets and should be improved in the future. Some strategies used in the fast clustering method could be considered to make AdaptiveSSC more efficient (Ren et al., 2019). Moreover, AdaptiveSSC explores the cell heterogeneity from a gene level, but it is also important to study the different biological functions of cells. Regulatory modules (Aibar et al., 2017) have been proved effective when showing the functional heterogeneity of cells. It is possible to identify the cell type from the whole gene regulatory network perspective (Li et al., 2017; Zheng et al., 2018, 2019a). Besides, motivated by previous studies (Lan et al., 2018; Chen et al., 2019; Shi et al., 2019), multi-view learning and integrating with prior knowledge are promising directions to improve the accuracy of clustering and give a higher resolution of cell types.
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The prevalence of polycystic ovary syndrome (PCOS) has been gradually increasing among adult females worldwide. Laparoscopy drilling on ovary is the only available temporary solution with a high incidence of reoccurrence. S100A8 with S100A9 complex is believed to facilitate the cyst migration in PCOS condition. The high evident protein interaction network studies between PCOS biomarkers, cancer invasion markers, and the interactors of S100A8 confirm that this protein has strong interaction with other selective PCOS biomarkers, which may be associative in the immature cyst invasion process. Through the network studies, intensive structural and pathway analysis, S100A8 is identified as a targetable protein. In this research, the non-SELEX in silico method is adapted to construct RNA Library based on the consensus DNA sequence of Glucocorticoid Response Element (GRE) and screened the best nucleotide fragments which are bound within the active sites of the target protein. Selected sequences are joined as a single strand and screened the one which competitively binds with minimal energy. In vitro follow-up of this computational research, the designed RNA aptamer was used to infect the MCF7 cell line through Lipofectamine 2000 mediated delivery to study the anti-cell migration effect. Wound Scratch assay confirms that the synthesized 18-mer oligo has significant inhibition activity toward tumor cell migration at the cellular level.

Keywords: network analysis, druggability, RNA aptamer, lim method, pcos targets, protein network


INTRODUCTION

Nucleotide aptamers are successfully explored as better therapeutics to treat diseases and disorders. Time-consuming low-throughput procedures have been in practice to design the aptamers in vitro (Ghavami et al., 2009). Therefore, in silico non-SELEX approach is the better choice to perform the selection of aptamers, which involves the construction of an oligonucleotide library without amplification and binding them with suitable target protein unlike SELEX (Berezovski et al., 2006; Tseng et al., 2011). Designing the RNA aptamer for the validated biomarker helps us to normalize the disease state at the genetic level. Hence, delivering a well-designed aptamer against response elements (REs) can control the strange translation of the target gene. REs are the critical elements involved in the activation of target gene regulation. Inhibiting biomarkers of specific pathophysiological conditions at the molecular level is a better choice to oversee the disease (Strimbu and Tavel, 2010). Target validation is one of the necessary procedures in drug discovery protocol. Since the exact cause of polycystic ovary syndrome (PCOS) is imprecise (Sir-Petermann et al., 2002), it is tedious to identify the best target clinically. Assay on endometrial cell migration is one of the diagnostic tools to identify the complications of this syndrome, and metformin has a proven attenuating effect on the invasion of endometrial cells of diseased women (Tan et al., 2011). Previously, researchers have found that 500 biomarkers are prevalent in PCOS (Dai and Lu, 2012). In this research work, we focused on S100A8 protein which is one of the important biomarkers in PCOS. Protein–protein interaction network (PPIN) is used to identify the associative proteins and its pathways in PCOS. Additionally, druggable properties of S100A8 were studied through pocket analysis. Besides, the aptamer library for specific RE of S100A8 was constructed by a non-SELEX fragment approach. The best aptamer sequence was screened through quality assessments, such as affinity and stability parameters.



MATERIALS AND METHODS


Network Profile of S100A8 in Polycystic Ovary Syndrome and Enrichment Analysis

Interactors of S100A8 are obtained from BioGRID3.5, a dataset repository (Oughtred et al., 2019), and the molecular interaction network was constructed in STRING Database (Szklarczyk et al., 2019). Biomarkers specific to PCOS and cancer cell invasion are retrieved from the recent research articles (Daan et al., 2016; Lu et al., 2017; Gerashchenko et al., 2019) and are used to construct another network. Both the networks were merged to find the first shell interactors of S100A8. Cytoscape 3.7.2 is employed to merge the networks and find proteins which are associated with S100A8. Pathways of S100A8 and its clusters are identified by using ClueGO, a Cytoscape application for clustering the functional network by terms or pathways (Bindea et al., 2009). Molecular functions of Gene Ontology (GO), Reactome Pathway Database (Croft et al., 2011), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are used as resources for enrichment analysis. P-value 0.005 is set as a significance to select the clusters of S100A8.



Structure and Druggability Studies on S100A8

Druggability analysis is used to predict the receptiveness and stability of drug target. Physiochemical and geometric properties such as number of pockets, druggable score, and pocket volume determine the efficiency of the target candidate. DoGSite Scorer is used for binding site prediction analysis and druggability assessment, which is based on heavy-atom coordinates employing support vector machines (SVMs) (Volkamer et al., 2012). Pocket volume, lipophilic character, and pocket enclosures were accounted for simple score calculation to suggest the competence of targetability. Three-dimensional structure of the target was retrieved from PDB (ID: 5HLV) and used for the druggable screening.



Glucocorticoid Response Elements for S100A8

REs are the inducers of the receptor and ligand interaction which results in the expression or activation of a particular protein. Since the aptamers are crucial elements in the control of target expression so we decide to design RNA oligomer against specific PCOS targets. Glucocorticoid RE (GRE) (Hsu et al., 2005), hypoxia RE (HRE) (Rees et al., 2001), antioxidant RE (ARE) (Nioi et al., 2003), and interferon gamma (INF-γ) RE (IRE) (Yang et al., 1990) are identified as the influencing REs of the S100A8 gene. Specifically, GREs have the proficiency to inhibit S100A8 through the downregulation of leukocyte transmigration. Glucocorticoids also induce the expression of inhibition factor for macrophage migration, which ultimately downregulates the cyst inflammation. The earlier research report shows that GRE consists of two half-sites with three spacer bases; the consensus pseudo palindromic sequence of GRE is 5′ CAGAACATCATGTTCTGA 3′ (Weikum et al., 2017).



Nucleotide Fragment Library Construction

RNA Composer utilizes the Dot-Bracket format notation of the secondary structure sequence to model the RNA, and the 3D element of modeled RNA was chosen from RNA Frabase (Biesiada et al., 2016). RE is a sequence, which binds with the receptor and plays a crucial role in expression, so the RNA analog library of specific RE was created to mimic the inhibitory action. The consensus sequence was segregated as fragments in such a way that six nucleotides at a stretch were taken per fragment (Figure 4A) for analog library construction. Resulted library sequences were later utilized for binding studies with the target by RNA-Lim method and recognized the various conformations of fragments bound in the active sites of the protein (Hall et al., 2015). Fragments which bound on active sites are selected to design the high précised aptamer model. Diversity in the exhibited conformations of ssRNA–protein complexes was meticulously sampled to construct a fragment library. MC-Fold | MC-Sym pipeline was employed to obtain the secondary and tertiary structures of the constructed aptamer (Parisien and Major, 2008). The proposed mechanism for PCOS control through the aptamer binding on S100A8 is illustrated in Figure 2. Refinement on docking results of their chain-forming poses was done in Molecular Operating Environment (MOE) suit (Ahirwar et al., 2016). The fragment-based approach was adopted for competent docking with S100A8 (Ahirwar et al., 2016); this unusual method has numerous advantages over conventional rigid based docking.



Affinity and Stability Studies of the Designed Aptamer

PatchDock tool is efficiently used to study the binding properties of designed aptamers with target protein (Schneidman-Duhovny et al., 2005). Based on the global binding energy, FireDock is employed to decipher the docked result by flexible refinements rather than the rigidity of protein and also it optimizes the side-chain residues, which minimizes the rigid body conformation of the interactive protein (Mashiach et al., 2008). Previously, it was reported that the stability of RNA will be analyzed by the inverted repeats which form stable hairpin loops (Ahirwar et al., 2016). Oligoanalyzer is an inclusive oligonucleotide scrutinizer employed to check the hairpin loop and stability of the designed aptamer (Owczarzy et al., 2008).



Anti-migration by Scratch Wound Healing Assay on Cell Lines

MCF-7 cells were seeded into a 24-well tissue culture plate containing antibiotic-free minimal essential medium (MEM) and incubated for 24 h at 37°C with 5% CO2. Sterile microtip was used to a make scratch on the 80% confluence monolayer (Camorani et al., 2014). The culture medium was immediately replaced with fresh medium to remove the dislodged cells. Then, 20 nmol/l of the designed aptamer with the transfecting agent, Lipofectamine 2000 (Invitrogen), was dissolved in dimethyl sulfoxide (DMSO) for timeline studies (Zhou et al., 2008). Cell migration of both sample and control were monitored and compared to study the aptamer effect on cell migration.



RESULTS AND DISCUSSION


S100A8 Network With Polycystic Ovary Syndrome Biomarkers

S100A8 interacts with 74 proteins (Supplementary File S1). The high confidential STRING network of S100A8 interactors has 55 nodes with 181 edges. The second network with biomarkers has 98 nodes with 431 edges; among 98, two proteins (SLC35D2, MORC4) are unconnected with the main network. Interactor network and biomarker network details are given in Supplementary Material. Merged network with connected nodes of the interactors and the biomarkers shows 96 nodes with 430 edges (interactions) that are illustrated in Figure 1. Immediate interacting proteins with s100A8 are shown in yellow. By the network analysis, we found that S100A8 directly interact with 10 proteins (Table 1).


[image: image]

FIGURE 1. Merged network of Polycystic Ovary Syndrome (PCOS). Combined network of S100A8 integrators with PCOS biomarkers; yellow colored nodes are the first shell interacting proteins with S100A8 that are suspected for cyst migration activity.
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FIGURE 2. Proposed mechanism of aptamer inhibition. Aptamer binds to the S100A8 and prevents the intracellular initial complexation with S100A9. Due to aptamer binding, extracellular receptor of advanced glycation end products (RAGE) complexed inflammatory sequences are also prevented.



TABLE 1. Proteins associated with S100A8 in the network.

[image: Table 1]A total of 246 ontology processes were found within the given significant p-value, among them, S100A8 is found in 88 different processes. Particularly, 10 ovulation and maturation-related GO terms with 14 proteins are identified in the enrichment analysis and are listed in Table 2. Apart from S100A8, RETN and S100A9 are found in both networks and also in enriched biological terms with high distribution. ESR1, GDF9, PDGFRA, and LEP are the other proteins found in a greater number of pathways comparatively in the selected terms. Distribution of proteins is given in the graph of Figure 3A.


TABLE 2. Enriched terms of S100A8 in Polycystic Ovary Syndrome (PCOS).

[image: Table 2]
[image: image]

FIGURE 3. Gene ontology enrichment and structural properties of S100A8. (A) Distribution of proteins in polycystic ovary syndrome (PCOS)-related terms in enrichments. (B) Homo dimer crystal structure of S100A8—global symmetric view. (C) High druggable pockets of S100A8—shown in filled purple, sky blue, yellow, and orange colors. (D) Active sites of S100A8.




Target Compatibility Evaluation

S100A8 is involved in seven GO functions which are positively regulated cyst formation and cancer cell migration. Additionally, S100A8 poses 18 pockets, among them, nine are druggable (score > 0.3) and four shows better cutoff scores (Table 3). Targets with low specificity on small-molecule were identified as poorly druggable targets (Barelier et al., 2010). Here we have found four high scored druggable pockets in the selected S100A8 (Figure 3C). Structural features and active sites of S100A8 are shown in Figures 3B,D, respectively. Due to the positive druggable results, it is considered as a notable target to control PCOS. Considerably, calcium-binding protein (S100A8) acts as a ligand for receptor of advanced glycation end products (RAGE) which is involved in many inflammatory and oncogenic pathways. There is evidence that S100A8 has a growth-promoting effect, and it helps cells to acquire cell migration activity through the RAGE binding pathway (Ghavami et al., 2008). S100A8 causes uteroplacental perfusion deficiency which leads to embryo abortion that supports the competence of our target selection (Sir-Petermann et al., 2002). Structural analysis shows that S100A8 has two helix loop helix Ca2+ binding domains known as EF-hands and exists as a complex with S100A9. Calprotectin is present in 1q21 locus of chromosome 1 in humans and has a molecular weight of 10–12 kDa. During tumor development, chromosomal rearrangements take place in the locus of the S100A8 gene and majorly contribute to the cyst formation in PCOS. Also, serum calgranulin (S100A8 and S100A9) levels are higher in women with PCOS than normal women (Dai and Lu, 2012). This evidently shows that binding of S100A8 with RAGE facilitates the p38 mitogen-activated protein (MAP) kinase signaling through calcium phosphorylation which also governs cyst migration.


TABLE 3. Druggability assessment of S100A8 protein.
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Construction of RNA Analog Library Using Glucocorticoid Response Element

The fragment-based approach of aptamer docking yielded better interaction with S100A8. By the RNA-Lim method, 18 fragments with the consensus sequence of GRE were constructed and used for binding analysis (Figure 4A). Frag6, Frag9, and Frag10 showed better interaction (Table 4) in the active domain of target with minimal global binding energy. Among the three possible conformations, sequence 1 (Figure 4B) shows better thermal stability and lowest energy than the other two sequences. Optimal structure with a folding simulation at physiological pH shows there are three nucleotides at positions 4–7 that make intramolecular base pairing for loop structure (Figure 4C). Energy minimized aptamers are significantly stable, and the aptamers with a binding energy of ≥-40 are optimal in the therapeutical aspect (Pagano et al., 2008). Oligo fragments selected are by their binding ability on the active sites of the target. The compiled 18-mer binds effectively than the fragments. Stability comparison among the newly constructed aptamer sequences is stated in Table 5. Among the three, Apt1 has high stability with a melting temperature of 41.8°C, and also the simulation studies confirmed that it requires the minimum free energy (–27.93 kcal/mol) for hairpin loop formation. In addition, the Apt1 fragment poses low molecular weight (5,327.4 g/mol) comparatively. Aptamers in practice are available in the range of 15–81 nucleotide length with higher molecular weights (Shigdar et al., 2013), but here, the designed is 18-mer with lower molecular weight so the plasma clearance may be faster.
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FIGURE 4. RNA library and structures. (A) Library construction by RNA-Lim method using the consensus sequence of glucocorticoid response element (GRE). (B) 3D structure of potential aptamer candidate. (C) Sequence and physiological structure of aptamer after optimal simulation and folding, and the color of bases indicates their energy levels.



TABLE 4. Binding energies of RNA analog fragments with S100A8.
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TABLE 5. Aptamer stability comparison.
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Interaction, Inhibition, and Stability Studies

Primarily, RAGE being the receptor for S100A8 was docked to confirm for its binding ability in the domain, which may affect the binding of the designed aptamer. As a result of protein–protein docking analysis, Arg 114 residue at A domain of RAGE interacting with Gln 44 residue at H domain of S100A8 is found as the most active interaction. To test the comparison of binding interactions, RAGE was docked with GRE, which resulted in a binding energy of –24.38, comparatively higher than its binding with the designed aptamers (–46.33) that is shown in Table 6; this infers that the designed nucleotide aptamer also binds efficiently at the S100A8 binding domain of RAGE (Figures 5B,C). In parallel, interactions of S100A8 with GRE and S100A8 with the designed aptamer were inspected to find the competency, which was found as –22.11 and –45.32 energy levels, respectively. The designed aptamer binds efficiently in the active dimer of the target (Figure 5A).


TABLE 6. Docking results.
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FIGURE 5. Mechanism of inhibition and docking with RNA aptamer. (A) Aptamer bases binding at the active sites of S100A8. (B) Binding pose of aptamer on receptor of advanced glycation end products (RAGE) protein. (C) Optimal binding pose of aptamer on the S100A8.




Anti-cell Migration Assay on MCF-7 Cell Line

Within 4 h of scratch, development of closure was seen in the control (which does not have aptamer), the wounded area has turned into a normal layer when compared with the initial image of well. In the aptamer well, there is no cell migration observed even after the fourth hour of incubation, it was confirmed in the images of 0 and 4 h of wounded well (Figure 6).
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FIGURE 6. Wound scratch assay. Cell migration studies by wound healing assay on MCF7 cell line. Leitz labovert FS inverted microscope was used to view the cell migration. (A) A 4 mm scratch with a sterile tip at 0 h, and the wound is pointed at with an arrowhead in the 10 × magnified illustration. (B) Ten times magnified view of aptamer incubated (4 h) cell line. No cell migration was observed after 4 h of aptamer incubation. (C) Fifty times magnification of scratch in control plate (cell migration seen) after the fourth hour.




CONCLUSION

From the network analysis, S100A8 is identified as a targetable protein to control PCOS. The druggable property of the target was validated by topological measures. S100A8 acts as a ligand for RAGE to promote cell migration in cancers and PCOS conditions. GRE inhibits S100A8 by competitive binding at the minimal level through a feedback mechanism. Additionally, S100A9 and resistin were also found along with S100A8 as associative proteins. We adopted a computational method to develop an RNA aptamer and designed 18 oligos based on the consensus sequences of GRE, which binds to both RAGE and S100A8. In addition to the computational studies, the cell line studies proved the anti-migration activity of the designed aptamer at minimal dose delivery with Lipofectamine 2000. The newly designed 18mer effectively stopped the cancer cell migration through dual action, and it is identified as a potential therapeutic to control PCOS and cancers.
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Taking advantage of the high-throughput genotyping technology of Single Nucleotide Polymorphism (SNP), Genome-Wide Association Studies (GWASs) have been successfully implemented for defining the relative role of genes and the environment in disease risk, assisting in enabling preventative and precision medicine. However, current multi-locus-based methods are insufficient in terms of computational cost and discrimination power to detect statistically significant interactions with different genetic effects on multifarious diseases. Statistical tests for multi-locus interactions (≥2 SNPs) raise huge analytical challenges because computational cost increases exponentially as the growth of the cardinality of SNPs in an interaction module. In this paper, we develop a simple, fast, and powerful method, named JS-MA, based on Jensen-Shannon divergence and agglomerative hierarchical clustering, to detect the genome-wide multi-locus interactions associated with multiple diseases. From the systematical simulation, JS-MA is more powerful and efficient compared with the state-of-the-art association mapping tools. JS-MA was applied to the real GWAS datasets for two common diseases, i.e., Rheumatoid Arthritis and Type 1 Diabetes. The results showed that JS-MA not only confirmed recently reported, biologically meaningful associations, but also identified novel multi-locus interactions. Therefore, we believe that JS-MA is suitable and efficient for a full-scale analysis of multi-disease-related interactions in the large GWASs.

Keywords: GWAS, Jensen-Shannon divergence, clustering, epistasis, genetic factors


1. INTRODUCTION

Genome-wide association studies (GWASs) have been proved to be a powerful tool to identify the genetic susceptibility of associations between a trait of interests using statistical tests (Sabaa et al., 2013). Recent studies have confirmed that single nucleotide polymorphisms (SNPs) are associated with a variety of common diseases (Peter and Hunter, 2009). The current primary research paradigm in GWASs is dominated by analyzing the susceptibility of single SNP to one disease at a time. One SNP might only explain a small part of causal genetic effects for multiple complex diseases (He and Lin, 2011). The word, epistasis, is defined generally as the interaction among different genes (Cordell, 2002). Many studies have demonstrated that epistasis is an important contributor to genetic variation in complex diseases. Most common diseases, such as obesity (Cordell, 2009), cancer (Ritchie et al., 2001), diabetes (Wang et al., 2012), and heart disease (Nelson et al., 2001), are complex traits, which result from a joint effect of various genetic variants, environmental factors, or their interactions. It is of great interest for us to identify the genetic risk factors for complex diseases, so as to understand disease mechanisms, develop effective treatments, and improve public health. The cost of genomic technologies is falling exponentially over time. For instance, the Human Genome Project took 13 years and cost $2.7 billion in the early twenty-first century, whereas now we can sequence a genome with $1,000 and less than a week. The availability of large-scale genotyping technology with its rapid improvement makes the cost of genome-wide analyses widely decrease, and a great number of large-scale genetic association studies are initiated. Complex diseases do not show the “simple” inheritance pattern observed in Mendelian diseases, where alterations in a single gene or a unique locus are causal for a phenotype. In complex disease, multiple genes are involved, each with low-penetrance that each gene modestly increases the probability of disease and does not ultimately determine disease status. These factors often render the traditional genetic dissection approaches, such as linkage analysis, ineffective tools to study complex diseases. In this article, we consider epistatic interactions as the statistically significant associations of d-SNP modules (d ≥ 2) with multiple phenotypes (Wang et al., 2011).

The problem of detecting high-order genome-wide epistatic interaction for case-control data has attracted more research interests recently. Generally, there are two challenges in mapping genome-wide associations for multiple diseases on a large GWAS dataset (Guo et al., 2014a): the first is arose from the heavy computational burden, i.e., the number of association patterns increases exponentially as the order of interaction goes up. For example, there are around 6.25 × 1011 statistical tests required to detect pairwise interactions for a moderate dataset with ~500,000 SNPs. The second challenge is that existing approaches do not have enough statistical powers to report significant high-order multi-locus interaction on multiple diseases. Because of the huge number of hypotheses and the limited sample size, a large proportion of significant associations are expected to be false positives. In recent, many computational algorithms have been proposed to overcome the above difficulties. They can be broadly classified into three categories (Xie et al., 2012): exhaustive search, stepwise search, and heuristics approach. The naive solution to tack the problem is exhaustive search using statistical tests, like χ2 test, exact likelihood ratio test or entropy-based test, for all SNP modules (Wan et al., 2010c; Liu et al., 2011; Yung et al., 2011). In order to minimize the huge computation requests, stepwise search strategies select a subset of SNPs or their combinations based on some low-order measurement tests, then extend them to higher-order interactions if it is statistically possible (Marchini1 et al., 2005; Li, 2008). Heuristic methods adopt machine learning or stochastic procedures to search the space of interactions rather than explicitly enumerating all combinations of SNPs (Zhang and Liu, 2007; Wan et al., 2010b). More details about the popular GWAS mapping tools can be found in recent surveys (Guo et al., 2014b; Niel et al., 2015; Visscher et al., 2017; Wen et al., 2017).

To the best of our knowledge, most epistasis detecting tools are only capable of identifying interactions on the data of GWAS with two groups, i.e., case-control studies. These tools are incompetent to discover genetic factors with diverse effects on multiple diseases. Moreover, using a limited number of case samples may lose the benefit of alleviating deficiency of statistical powers by pooling different disease samples together. Recently, Guo et al. developed a Bayesian inference based method, named DAM, to detect multi-locus epistatic interactions on multiple diseases (Guo et al., 2015, 2017). From our experiments, DAM took 3 days to finish the analyzing a real GWAS dataset using a desktop computer and only reported a few significant epistatic interactions. In this manuscript, we present a heuristic method, named JS-AM, based on Jensen-Shannon divergence and agglomerative hierarchical clustering to select a set of candidate SNPs that potentially have effects on multiple phenotypic traits (Guo, 2015). A stepwise interaction evaluation is engaged in JS-MA to further determining the association types. Systematic experiments on both simulated and real GWAS datasets demonstrate that JS-AM is feasible for identifying multi-locus interaction using GWAS datasets and enriches some novel, significant high-order epistatic interactions with various effects on multiple diseases.



2. MATERIALS AND METHODS


2.1. Notation

For a GWAS dataset, let L denote the total number of groups, including L − 1 case groups and one control group. Each group has Nl samples with l ∈ {1, 2, …, L}. Let N be the total count of samples from these L groups, and M be the number of diallelic SNP markers. In general, the major alleles are represented by uppercase letters (e.g., A, B,.) and the minor alleles are represented by lowercase letters (e.g., a, b). We use {0, 1, 2} to represent {AA, Aa, aa}. We use X to indicate the SNP set, where xi indicates the i-th SNP. Let gxi, …, xj be the combination of genotypes giving a list of SNPs {xi, …, xj}. The probability distribution of gxi, …, xj is denoted as pgxi, …, xj, or pg for simplicity.

Different from the most existing methods that deal with one case and one control groups, we have two or more cases. The number of partitions of L groups is known as the Bell number (Guo et al., 2015). The SNPs can be assigned to be associated with one or more cases either with the same or different effects. Here, we call the assignment based on association as trait-association types, or AT in short. An example about five association types for a three-group dataset is shown in Figure 1. In this example, each AT includes 2 SNPs. There are three different probability distributions of genotype combinations, which are labeled by color white, gray, and black. SNPs 1 & 2 are related to case 1, and we call this type effect as AT1. Similarly, we call the trait-association types for SNPs 3 & 4 and SNPs 5 & 6 are AT2 and AT3, respectively. For SNPs 7 & 8, the genotype combinations display different effects on two cases, and we label it as AT4. For the last two SNPs, they are not related to any case, i.e., following the same probability distribution among three groups, and we call it AT5. In general, the number association types is increasing as the number of phenotype groups increases, which is controlled by the Bell number. We use Ψ to denote the set of association types that have different probability distribution between the case and control groups. Given L groups, we denote the number of all pairwise combinations as |H| = L(L − 1)/2 and the combination set as H = {h1, …, h|H|}. The probability distributions of genotype data in hi combination are denoted as [image: image] and [image: image] for the first and second groups, respectively.


[image: Figure 1]
FIGURE 1. The illustration for five association types by giving three groups. Ten SNPs of AT 1, 2, 3, 4, and 5 are associated with the phenotype traits with interactions between each pair of them.




2.2. Jensen-Shannon Divergence

We used a distance measurement based on the Jensen-Shannon divergence (JS) for measuring the similarity between two SNPs. JS is a popular distance measurement based on Kullback-Leibler divergence (Lin, 1991), which evaluates the similarity between two probability distributions. Given two distributions, p and q, both with g categories, the Kullback-Leibler divergence is defined as follows:

[image: image]

The KL divergence is not a distance because it is not symmetric. One symmetric version of KL divergence is JS, defined as:

[image: image]

where [image: image] is the pointwise mean of p and q. Here, for a genotype g, [image: image] is equal to the average of pg and qg. Given a pairwise group combination hk and two SNPs, xi and xj, we denote the probability distributions of the genotype combination of xi and xj as [image: image] for the first group and [image: image] for the second group. Based on JS, we define the distance between two SNPs, xi and xj as follows:

[image: image]

If these two SNPs are associated to any cases, the distribution of genotype combinations in case groups should be the same as the one in control. And Dist(xi, xj) should be a very small value toward 0; otherwise, Dist(xi, xj) is a large value toward 1.



2.3. Clustering

Our goal is to find a list of SNP modules containing d(d ≥ 2) SNPs, which have large JS dissimilarity between any two groups. It is computationally expensive to examine all d SNP combinations when d ≥ 3 given millions of SNPs in one dataset. In order to diminish the time complexity, we use agglomerative hierarchical clustering to group SNPs into clusters so that SNPs jointly affecting a trait go into separate clusters. More specifically, the complete-linkage clustering criterion was used to determine the distance between sets of SNPs. The distance from an SNP, xi, to a cluster, C, is defined as

[image: image]

The distance between two clusters is defined as

[image: image]

In the implementation of JS-MA, we used the nearest-neighbor chain algorithm (Murtagh, 1983; Müllner, 2011). Compared to the greedy algorithm that repeatedly forms a new cluster by merging the closest pair of clusters, the nearest-neighbor chain algorithm runs faster by merging pairs of clusters in a different order. In brief, the nearest neighbor chain algorithm grows a chain of clusters, where the newly added cluster is the nearest neighbor of the previous one, and stops growing when reaching a pair of clusters that are mutual nearest neighbors. For our complete-linkage clustering criterion, the nearest neighbor chain algorithm can be guaranteed to generate the same hierarchical clustering as the greedy algorithm (Murtagh, 1983; Müllner, 2011). The time complexity of the nearest-neighbor chain algorithm is O(M2), where M is the number of SNPs. In our setting, we will stop the chain growing once the number of clusters reaches the expected number. Here, the number of clusters is a user-defined parameter. It can be set to the largest, expected size of epistatic modules. In our simulation, we set the number of clusters to two and three for 2- and 3-locus models, respectively. In the real data experiments, we set the number of clusters to ten. Once the clustering is done, top f SNPs from every cluster are selected for further interaction testing. Here, f is a user-defined number. An SNP will be picked if it shows a high dissimilarity measured by JS with other SNPs between any two groups. Every SNP is ranked based on the following score.

[image: image]
 

2.4. Stepwise Evaluation of Interaction

We apply the χ2 statistic and the conditional χ2 test similar to the ones in (Guo et al., 2015) to measure the statistical significance for a SNP module. Let A = (x1, x2, …, xd:T) denote an SNP module A with d SNPs of association type T. We use [image: image] to denote the χ2 statistic of A and [image: image] as the conditional χ2 statistic given a subset [image: image] with d′ SNPs. The χ2 statistic is calculated as

[image: image]

where ni, s is the frequency of s-th genotype combination in i-th disjoint set for the association type T, ei, s is the corresponding expected frequency, and ST denotes all the disjoint sets for L groups. The degrees of freedom for Equation (7) is [image: image]. The conditional χ2 statistic is defined as follows

[image: image]

where we calculate χ2 statistic for 𝔸 − 𝔸′ separately for each genotype combination in 𝔸′. The degrees of freedom for Equation (8) is [image: image]. We treat SNPs as redundant SNPs when they are conditional independent given a subset of the SNP module. To avoid the redundant SNPs, we are looking for compact epistatic interactions, which is defined as follows:

Definition 1. An SNP module 𝔸 = (x1, x2, …, xd) is considered as a significant, compact interaction given a significant level αd, if it meets the following two conditions:
(1) The p-value of [image: image], where the p-value of [image: image];
(2) The p-value of [image: image], for [image: image], given the association type [image: image].

Based on the Definition 1, we develop a stepwise algorithm to search for d-locus significant compact interactions. We assume that one SNP can only participate in one significant interaction and is only associated with one association type. We first search all modules with only one SNP based on Definition 1. Then we recursively enlarge the SNP module size by one at a time until it reaches a user pre-set value d. We add all novel d-way interactions (i.e., none of the SNPs in the module has been reported earlier) that are significant to a list L after applying Bonferroni correction for [image: image] tests. For the interactions whose subsets have been reported as significant before, we use the conditional independent test, and put the interaction in 𝕃 if it is still significant after Bonferroni correction for [image: image] tests. We also apply a distance constraint that the physical distance between two SNPs in a multi-locus module should be at least 1Mb when analyzing real data. This constraint is used to avoid associations that might be due to the linkage disequilibrium effect (Cordell, 2002).



2.5. Algorithm

The details of the JS-MA algorithm are shown in Algorithm 1 consisting of three steps: clustering, SNP ranking, and stepwise evaluation. In clustering, the nearest neighbor chain algorithm repeatedly follows a chain of clusters, where each cluster is has the smallest distance to the previous one, until the number of clusters reaching user-defined parameter. In the second step, all SNPs are ranked based on Equation (6) and inserted into a size-limited descending list to select promising SNPs. In the last step, the χ2 and the conditional χ2 statistics are used to search for the significant, compact epistatic interactions.




3. EXPERIMENTAL DESIGN

In this section, we introduce the simulation design, including the definitions of 10 two-locus, 6 three-locus multi-disease models and the power metric. The other start-of-the-art methods we used to compared with JS-MA, including BOOST (Wan et al., 2010a), DAM (Guo et al., 2015), SEE (Sun et al., 2019), and SNPRuler (Wan et al., 2010b). Note that BOOST and SEE are designed for detecting gene-gene interactions, i.e., interactions between two loci.


3.1. Data Simulation

To evaluate the performance of JS-MA, we perform extensive simulation experiments using 10 two-locus disease models (Model 1–10) and 6 three-locus models (Model 11–16) with three groups, including 2 case and 1 control groups. Since there are three phenotype groups, we could have five different association types (ATs 1–5). Note that AT1 and AT2 are equivalent if case 1 and case 2 are interchangeable, which is the case in our simulation.

The odds tables describing these 16 models are in the Supplementary Material. For the two-locus models, models 1–4 are the base models, and the rest are derived from the base ones by combining two models or letting one case group follow the same distribution as the control group. For the four two-locus base models, we took the same parameters as in Wan et al. (2010a) and Guo et al. (2014a). More specifically, we have h2 = 0.03 for Model 1, h2 = 0.02 for Models 2, 3, and 4 and p(D) = 0.1 for all four models. Minor allele frequencies (maf) are set to three levels: {0.1, 0.2, 0.4}. For the three-locus models, models 11 to 13 are the base models, the rest are derived using the same way as for the two-locus models. We set h2 = 0.03 and p(D) = 0.1 for Model 11, 12, and 13. The solved parameters μ and θ under different settings are provided in the Supplementary Material. The genotypes of unassociated SNP are generated by the same procedure used in previous studies (Guo et al., 2014a) with mafs sampled from [0.05, 0.5].

As introduced in the section 2.1, AT1 indicates the loci having different effects on the first case group compared to the other groups. AT2 indicates the loci having different effects on the second case group compared to the other groups. AT3 indicates the loci showing an identical effect on both case groups but different from the control group. AT4 indicates the loci with distinct effects on each group. We generate 100 replicas for each model, as well as for each maf. Note that some models do not have mathematical solution for μ and θ when maf = 0.1 or = 0.2. In this case, the power metric value is missing for all methods. Each simulated replica contains M = 1, 000 SNPs. The sample sizes of two case groups and one control group are set to (500, 500, 1, 000) or (1, 000, 1, 000, 2, 000).



3.2. Statistical Power

The measure of discrimination power is defined as the fraction of 100 replicas on which the ground-truth associations are the top one signification epistatic interactions.




4. RESULTS AND DISCUSSION

In this section, we first present the type 1 error rate of JS-MA under the null model. And then we show the experimental results on the simulated datasets. We also present the results of JS-MA on two real GWAS datasets from WTCCC (Zeggini et al., 2007), i.e., Rheumatoid Arthritis (RA) and Type 1 Diabetes (T1D). Note that among these five approaches, only JS-MA and DAM are able to label the association types that we defined in section 2.1, and the rest methods can only report the interactions without information about the phenotype(s) on which they have genetic effects.


4.1. Null Simulation to Test Type I Errors

We examined the type I error rate for interactions with different number of SNPs, i.e., d = 2, 3, 4. We generated 1,000 null datasets for six settings, respectively. Specifically, we fixed the number of SNP to 1,000 and vary the number of samples in each group. The first four settings contained the following numbers of samples: N1 = {200, 200, 400}, N2 = {400, 400, 800}, N3 = {800, 800, 1, 600}, and N4 = {1, 600, 1, 600, 3, 200}, where the first two numbers indicated the sizes of two case groups, and the last number was the control group size. For the last two settings, using N4, we increased the number of SNP to 2,000 and 4,000. All SNPs were generated independently, with maf uniformly distributed in [0.05, 0.5]. Note that we set the significance level to 0.1 and applied the Bonferroni correction for multiple hypothesis testing. The degree of freedom for Pearson's χ2 test is df = (|T|−1)(|G|−1), where |T| denotes the number of disjoint set of groups for the association type |T|, and G is the set of genotypes given the SNP module. The degree of freedom for conditional χ2 test is |G′|(|T|−1)(|G/G′|−1), where G′ is the set of genotypes given a subset of the SNP module, and G/G′ denotes the set of genotypes for the rest SNPs. The results shown in Figure 2 demonstrated that JS-MA can well control the type I error rate.


[image: Figure 2]
FIGURE 2. False positive rates of JS-MA under null simulation. The plots in (A,B) show the false positive rates for different ds, sample sizes, and the numbers of SNP.




4.2. Simulation Experiments on Two-Locus Models

We tested the performance of JS-MA and four other methods on the datasets generated by two-locus models. The test results are illustrated in Figures 3, 4. As we expected, the powers of all methods increased when the sample size increased from (500, 500, 1,000) to (1,000, 1,000, 2,000). For all models, the powers of JS-MA and SEE increased when the maf increased from 0.1 to 0.4. We do not observe a similar trend for BOOST, DAM, and SNPRuler. All models were more powerful for AT3 than ATs 1 and 2 because ATs 1 and 2 have some cases similar to controls, which makes it hard to locate the embedded interactions. Overall, the powers of JS-MA are higher compared to other methods except in a few cases where the power is comparable with others. For a more intuitive comparison, we adopt a concept, overall quality q = 100 × ncorrect/ntotal from (Guo et al., 2014a), where ncorrect is the number of datasets from which the method successfully detected the ground-truth interaction, and ntotal is the total number of datasets. The overall quality of JS-MA, BOOST, DAM, SEE, and SNPRuler are 94, 50, 89, 51, and 11% for the sample size (500, 500, 1, 000), and 97, 78, 93, 71, and 13% for the sample size (1, 000, 1, 000, 2, 000), respectively. It showed that JS-MA achieved 3–5% better results than the second best.


[image: Figure 3]
FIGURE 3. Performance comparison between JS-AM, BOOST, DAM, SEE, and SNPRuler on the simulated two-locus models 1, 2, 3, and 4 for association types 1, 2, and 3.



[image: Figure 4]
FIGURE 4. Performance comparison between JS-AM, BOOST, DAM, SEE, and SNPRuler on the simulated two-locus models 5–10 for association type 4. Note that the models 5, 6, and 7 have no mathematical solution when maf = 0.1.




4.3. Simulation Experiments on Three-Locus Models

The experimental results on models 11–16 are shown in Figures 5, 6. In these experiments, BOOST and SEE were dropped because they cannot detect three-locus interactions. From Figures 5, 6 we can find that all three methods had nearly no power when the sample size is small. It is reasonable since a high-order interaction needs to have larger effect size for small sample size compared to large sample size. When the sample size was doubled, all three methods started to gain some power. Compared to the results from two-locus models, all the methods are not as powerful as before. In all settings, JS-MA is the most powerful approach. Using the same overall quality measurement introduced in the last section, JS-MA, DAM, and SNPRuler reached 4, 3, and 1% for sample size (500, 500, 1,000), and 77, 70, and 9% for sample size (1,000, 1,000, 2,000), respectively.


[image: Figure 5]
FIGURE 5. Performance comparison between JS-AM, DAM, and SNPRuler on the simulated three-locus models 11, 12, and 13 for association types 1, 2, and 3.



[image: Figure 6]
FIGURE 6. Performance comparison between JS-AM, DAM, and SNPRuler on the simulated three-locus models 14, 15, and 16 for association type 4. Note that the models 14 and 16 have no mathematical solution when maf = 0.2.




4.4. Computation Efficiency

From a practical point of view, a challenging bottleneck of mapping multi-locus epistatic interactions in GWASs is the computational efficiency. Traditional tools for two-locus epistatic interaction detection usually take several days for a dataset with millions of SNPs using a standard desktop (Wan et al., 2010a). We measured the running time of JS-MA, BOOST, DAM, SEE, and SNPRuler on one computing node of an HPC system with a UNIX operating system, Intel Xeon E5-2699v4 Broadwell, and 128 GB memory. The results are shown in Table 1. Here, we set the target number of SNPs in an epistatic interaction to be two, and the rest of the parameters for each tool were left unchanged with default values. Table 1 showed that JS-MA was faster than BOOST, DAM, and SNPRuler in most scenarios. The running time used by JS-MA did not increase as fast as SNPRuler and DAM did when the number of SNPs increased. Since SEE is a heuristic method, it used the least amount of time. However, its performance is not as good as the rest. We also measured the memory consumption for JS-MA. JS-MA used 10, 62, and 130 MB for 1,000, 5,000, and 10,000 SNPs, respectively. The majority of the consumed memory was used for storing the genotype data.


Table 1. Time comparison of JS-MA, BOOST, DAM, SEE, and SNPRuler (in seconds).

[image: Table 1]



4.5. Experiments on The WTCCC Data

We employed JS-MA to analyze real data from the WTCCC Zeggini et al. (2007) for two common human diseases, i.e., Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D). There are 3999 cases and 3004 shared controls. We constructed a dataset with RA as case 1 and T1D as case 2. The procedure of quality control is the same as presented in Guo et al. (2014a). After the SNP filtration, the dataset contains 333,739 high-quality SNPs. By setting f × k = 100 with k = 10 as the number of clusters, JS-MA finished the searching in 3 h using the same computing node, which was used in the computation time analysis. JS-MA reported some novel epistatic interactions. For example, (rs6679677, rs805301) was labeled as AT4, and its p-value is 6.2 × 10−120 from the χ2 test. For this interaction, rs6679677, located on Chromosome 1, has been reported to be associated with both RA and T1D (Burton et al., 2007). The association between rs6679677 and T1D is due to a closely linked, potentially causal variant identified as rs2476601, which is also known as Arg620Trp (Smyth et al., 2008). Whereas, rs805301 is located inside gene BAG6 on Chromosome 6. BAG6 encodes a nuclear protein that forms a complex with E1A binding protein p300 and is required for the response to DNA damage. The SNP module (rs6679677, rs805301) shows different association effects on RA and T1D compared to the control group. Another interesting interaction is (rs200991, rs11171739) labeled as AT2, and its p-value is 6.7 × 10−26 from the χ2 test. In this interaction, rs200991 is located on Chromosome 6 near the gene, HIST1H2BN, which encodes Histone H2B type 1-N. Histones play a central role in transcription regulation, DNA repair, DNA replication, and chromosomal stability. And rs11171739 has been reported to be associated with T1D (Burton et al., 2007). AT2 means the SNP module may not have a genetic effect on RA.


Algorithm 1. The JS-MA Algorithm.

[image: Algorithm 1]

JS-MA also reported some three-locus epistatic interactions. For instance, (rs6679677, rs377763, rs9273363) labeled as AT2 with p-value 1.3 × 10−116. Both rs377763 and rs9273363 are located on Chromosome 6. rs377763 is near the downstream of gene NOTCH4, which is found to be associated with multiple sclerosis, a chronic inflammatory disease. rs9273363 is inside the gene HLA-DQA1, which plays a critical role in the immune system. The protein produced from the HLA-DQA1 gene binds to the protein produced from the MHC class II gene, HLA-DQB2. Many studies have reported the MHC region on chromosome 6 with respect to infection, inflammation, autoimmunity, and transplant medicine (Lechler and Warrens, 2000; Wan et al., 2010a; Zhang et al., 2012). A four-locus interaction found by JS-MA is (rs10924239, rs17432869, rs7610077, rs11098422) labeled as AT4 with p-value 3.9 × 10−106. rs10924239 is an intron variant of the gene KIF26B on Chromosome 1. KIF26B is essential for embryonic kidney development. rs17432869 is located on Chromosome 2 and inside gene LOC105373439, which is an RNA Gene and is affiliated with the ncRNA class. rs7610077 is located on Chromosome 3 and inside gene SNX4, which encodes a member of the sorting nexin family. rs11098422 is located on Chromosome 4 and inside gene NDST3, whose expression impacts the cardiovascular system. Validating the relationship between these SNP modules and RA and T1D is beyond the scope of this work. The significant enrichment of some genotype combinations from these SNP modules in both cases implies that they might interact and/or be associated with these two diseases.




5. CONCLUSION

The enormous number of SNPs genotyped in genome-wide case-control studies poses a significant computational challenge in the identification of gene-gene interactions. During the last few years, many computational and statistical tools are developed to find gene-gene interactions for the data containing only two traits, i.e., case-control groups. Here, we present a novel method, named “JS-MA,” to address the computation and statistical power issues in multi-disease GWASs. We have successfully applied JS-MA to systematically simulated datasets and analyzed two real GWAS datasets. Our experimental results on both simulated and real data demonstrate that JS-MA is capable of detecting high-order epistatic interactions for multiple diseases at the genome-wide scale. It is worth mentioning that when JS-MA is used to analyze real data, quality control procedures are necessary because sequencing bias and genotyping bias could confound JS-MA by leading to false-positives. For example, the coverage bias caused by sequencing machines may have SNPs with low, uneven coverage. Thus, quality control is required to filter out unreliable SNPs.
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Pathogen Host BNMP  NTSMDA  BNP  Zhang'smethod  WBSMDA

Serratia marcesoans Mos muscus (waya ot a, 2005) 1 w 15 17 13
Cronobacter turcensis Mus muscuks (T6thovd ot . 2011) 3 10 2 2 109
Escherchia cok O157H7 Mos muscuks (T e a., 2006) a 3 2 o 10
Acinetobactor posocomalls Homo sapiens (Vsca 1 . 2011) 5 13 251 119 i
Stenotrophomonas maophifa  Mus musculs (Zgairand Crnbier, 2011) 6 w 120 21 13082
Sccoina sceotionm Neotiana tabacum (Gariz e . 2010) 7 61 aa 540 169
Pseudomonas aenuginosa Oryctolagus cunicus (Sarchouse et a, 2017) s 568 6 %0 55
Enterococcus foocals Homo sapiens (Mattas and Fischett, 2004) a7 £ 109 19
Avemaria ot Gitus rebcata (<ohroto ot a, 1979) 10 528 57 %021 a
Mycobacterum maroum Homo sapiens (Fones, 1970) 12 39 3 115 )
Mycobactorodes abscessus  Homo sapens (oMot al, 2012) 1 20 2 102 20
Atemada aernata ‘Solanum hoopersicu (3 and Gubser, 2012) 15 261 0 a7 05
Enterococcus faockum Homo sapiens (este et a, 2006) 16 o o 106 121
Fusarium oxysporum Neotiana tabacum (Jenrigs ot . 2001) ” 118 ) 537 1813
Pectobacterum caclovonum  Arabidopsis thakana (Lso of 8, 2012) 19 29 n 199 76
Mycopasma agelactiae Mus musculs (Smith, 1967) 20 2 201 101 211
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Network 1 288 243 907
Network 2 167 % 653
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Pathways Number of HCC-specific genes  P-values

Pathways in cancer 20 3.06E-13
Prostate cancer 10 1.41E-08
Adherens junction 8 1.44E-06
Endometrial cancer 7 215606
Colorectal cancer 8 262606
Apoptosis 8 3.326-06
Melanoma 7 1.36E-05
Wit signaling pathway 9 1.41E-05
Cell cydle 7 3.28E-04
Notch signaling pathway 5 4.16E-04
Basal cell carcinoma 5 7.61E-04
Melanogenesis 6 8.61E-04
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Drug name

Securinine
Mercaptopurine

Reserpine

Tioguanine
Rifabutin

Drug
targets

None

HPRT1,
PPAT

SLC18A2,
SLC18A1

None

PoA,
PoB,
1poC,
HSPI0AT,
HSPOOB1

KEGG pathways

None

Purine metabolism;

Metabolic pathways;

Drug metabolism other enzymes;
Alanine aspartate and glutamate
metabolism;

Biosynthesis of antibiotics
Gocaine addiction;

Synaptic vesicle cycle;
Amphetamine addiction;
Serotonergic synapse;
Dopaminergic synapse;
Parkinson's disease;

Alcoholism

None

NOD- ke receptor signaling pathway;
Prostate cancer;

Estrogen signaling pathway;
Protein processing in endoplasrmic
reticulum;

PI3K-Akt signaling pathway;
Pathways in cancer;

Antigen processing and presentation;
Thyroid hormone synthesis;
Progesterone-mediated occyte
maturation

The potentially therapeutic drugs of HCC are marked as bold. The other two drugs are
potentially aggravating drugs of HCC. “NULL" represents the diug has no fergets in
DrugBank at present. Thus, its corresponding KEGG pathway is “NULL” too.
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Predicteddrugs ~ Known HCC drugsinCTD  Connectivity scores

Securinine Daunorubicin 0916
Troglitazone 0902
Paciitaxel 0844
Mercaptopurine  Estradiol 0941
Dexamethasone 0.926
Sirolimus. 0845
Troglitazone 0833
Reserpine Roxithromycin 0922
Resveratrol 0.834
Tioguanine Genistein -0973
Sirolimus -0928
Indometacin ~0.891
Paclitaxel -0.872
Rifabutin Calcium Folinate -0878
Estradiol ~0.873

The potentialy therapeutic drugs of HCC are marked as bold. The other two drugs are
potentially aggravating drugs of HCC.
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Rank Drug name Evidence Inferred count

1 Cytochalasin B Inferred 5
2 Exemestane Inferred 2
3 Spiperone Inferred 2
4 Cinchonine Inferred 1
5 Mepacrine Inferred 8
6 Tioguanine NULL NULL
7 Rifabutin NULL NULL
8 N-Phenylanthranilic Acid Inferred 1
9 Valinomycin Inferred 1
10 Betulin Inferred 2
11 Puromycin Inferred 13
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Rank Drug name Evidence Inferred count

1 Daunorubicin T a2
2 Chrysin Inferred 34

3 Topiramate Inferred 8

+ Securinine NULL NULL
5 Piperlongumine Inferred 8

6 Luteolin Inferred 28

7 Apigenin Inferred 36

8 Celastrol Inferred 19

9 Sirolimus. T 68

10 Mercaptopurine NULL NULL
1 Genistein T <]

12 Irinotecan Inferred 46

13 Sanguinarine Inferred

14 Tyrphostin Ag-826 Inferred 7

15 Decitabine M 84

16 Camptothecin Inferred 28
17 Reserpine NULL NULL
18 Mycophenolic Acid Inferred 7

19 Tyrphostin Ag-1478 Inferred 35

Evidence represents a drug-cisease association is curated, inferred or not existed in
CTD database. Curated associations includi three types: marker/mechanism (Evidence
‘M), therepeuic (Evidence = “T"), marker/mechanism & therapeutic (Evidence = “M&T’).

If an association is inferred by CTD, Evidence = “inferred,” and/i it is not existed in CTD,
Evidence = “NULL': Infered Count represents the number of inferrederence (5) for the
curated and inferred associations. If an association is not existed in CTD, Inferred Count
SNULL".
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Gene names Gene entrez IDs

IGF2R 3482
CASP8 841

MET 4233
PDGFRL 5157
TPS3 7157
PIK3CA 5290
CTNNB1 1499

AXINT 8312
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Algorithm 1 TCRWMDA (Random Walk on three-layer heterogeneous
network)

Input: Transiton probabilty mati M, O, L I associaton matrx A, B, C:
Parameter . 1. B, .7, 5.

Output: Precicted miRNA-isease assocation matrix MO

1: MOP =A/sumip)

tomax(, 1)

D

i1 then

5: MDie = x M x MO+ (1 - ) [t x BNetWalkiB, CLBS) + (1 -7 x A]
5:endif ¢ < then

7: MDigpe = x MO x D+ (1 ~c) x [l x BNetWalkiB,C.LBS)+ (1 - ) x A]
BMD' = 51  MDiy + 8y % MOl

9: end for

10: retun MO

E is identity matrix, i <x & is 1, and 0 otherwise.
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Graph measures Hemisphere Brainnetome regions Occurrence

number
Nodal clustering coefficient SFG_L_7_2  Superior Frontal Gyrus 144
Degree SFG_L_7.2 Superior Frontal Gyrus 145
Nodal clustering coefficient SFG_R_7_2  Superior Frontal Gyrus 140
Participation coefiicient ~ SFG_R_7_7 Superior Frontal Gyrus 144
Betweenness centrality Inferior Frontal Gyrus 143
Betweenness centrality Orbital Gyrus 143
Betweenness centrality Orbital Gyrus 145
Betweenness centrality Procentral Gyrus. 142
Degree MTG_L_4_4 Middle Temporal Gyrus 145
Betweenness centrality ~ MTG_L_4_1 Middle Temporal Gyrus 141
Participation coefficient ITG_R_7_7  Inferior Temporal Gyrus 145
Betweenness centrality  [TG_R_7_7  Inferior Temporal Gyrus 145
Betweenness centrality  FuG_R_8_8 Fusiform Gyrus 145
Betweenness centralty  PhG_L_6.3 Parahippocampal Gyrus 144
Degree PhG_R_6.5 Parahippocampal Gyrus 145
Local efficiency IPL_R_6_4 Inferior Parietal Lobule 145
Participation coefficient IPL_R_6_4 Inferior Parietal Lobule 145
Degree IPL_LR_6_2 Inferior Parietal Lobule 145
Degree PCun_L_4_3 Precuneus 145
Nodal clustering coefficient PoG_R_4_1 Postcentral Gyrus 145
Betweenness centrality PoG_R_4_1 Postcentral Gyrus 145
Local efficiency POG_R_4_1 Postcentral Gyrus 143
Degree PoG_R_4_1 Postcentral Gyrus 145
Participation coefficient ~ CG_L_7_4  Cingulate Gyrus 145
Betweenness centralty ~ CG_R_7.8  Cingulate Gyrus 145
Participation coefficient  LOcG_L_4_3 lateral Occipital Cortex 145
Degree BG_R6.1 Basal Ganglia 145
Betweenness centrality Basal Ganglia 145
Participation coefficient Thalamus 145
Degree Thalamus 145
Degree Thalamus 145
Nodal clustering coefficient Tha_R_8_7  Thalamus 140
Local efficiency Thalamus 141
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Methods ACC (%) SEN (%) SPE (%) Auc
Huang et al. (2018) 77.24 77.46 7658 0815
Cheng et al. (2015) 74.48 7353 69.12 0.792
Proposed 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.
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Methods ACC (%) SEN (%) SPE (%) Auc
KNN 82,07 7465 89.19 07912
RForest 7798 7465 81.08 08378
NBayes 84.83 83.10 86.49 0.9069
LDA 90.34 87.32 93.24 09418
Lsv™ 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.
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Methods. ACC (%) SEN (%) SPE (%) Auc

RBF-SVM 80.00 76.06 83.78 0.8601
Poly-SVM 82,07 77.46 86.49 0.8506
Sigm-SVM 87.59 83.10 91.89 0.9393
LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.
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Darmaris (Darmanis et al., 2015) 420 22,085 SMARTer
Kolod (Kolodziejczyk et al., 2015) 704 10,685 Smart-Seq2
Treutlein (Treutlein et al., 2014) 80 959 SMARTer

Yan (Yan et al., 2013) 90 20,214 Tang et al., 2011
Ting (Ting et al., 2014) 114 14,405 Single CTC RNA-Seq
Engel (Engel et al., 2016) 203 23,337 Smart-seq2
Kumar (Kumr et al., 2014) 361 11,497 SMARTer
Vento (Vento-Tormo et al., 2018) 5418 33,693 Smart-seq2
Baron (Baron et al., 2016) 8569 20,125 inDrop

Shekhar (Shekhar et al., 2016) 26,830 13,166 Drop-seq
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P_4 180.41 168.05 0.6 0
pP_2 252.39 481.15 0.5 0.14
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P8 137.56 211.78 0.33 0
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P_12 117.99 208.39 0.25 0
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proteins
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Associated proteins found

EGFR, ESR1, GDF9, HAS2, LEP, PDGFRA, RETN, S100A8, S100A9

CTNNAT1, ESR1, GDF9, ICAM1, LEP, MYC, PDGFRA, RBP4, RETN, S100A8,
S100A9, VEGFA

CTNNAT1, ESR1, ICAM1, MYC, S100A8, S100A9, VEGFA
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ProteinID Name Polycystic Ovary Syndrome (PCOS)
relative function
MMP9 Matrix Proteolytic activity on the extracellular
Metallopeptidase 9 matrix (ECM) and involved in leukocyte
migration
RETN Resistin Promotes chemotaxis in myeloid cells
CTSS Cathepsin S Endo protease involved in the removal of
unwanted proteins
S100A9 S$100 Calcium Potent amplifier of inflammation as well as
Binding Protein A9 in cancer development and tumor spread
NCF2 Neutrophil Involved in superoxide generation
Cytosolic Factor 2
MPO Myeloperoxidase Produce hypochlorous acid and other toxic
intermediates which enhance PMN
microbicidal activity
ALB Albumin Regulates blood plasma colloid osmotic
pressure and acts as a carrier protein for
hormones, fatty acids, metabolites, and
exogenous drugs
BECN?1 Beclin 1 Mediates vesicle-trafficking processes,
tumorigenesis, neurodegeneration, and
apoptosis
TP53 Tumor Protein P53 Prevents CDK?7 kinase activity when
associated to CAK complex in response to
DNA damage, thus stopping cell cycle
progression
GRB2 Growth Factor Adapter protein involved in the Ras

Receptor Bound
Protein 2

signaling pathway
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69.07
68.01
69.14
69.44
69.22
67.21
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76.24
68.23

Gmean%

69.40
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68.14
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68.31
68.62
68.18
65.99
73.59
74.30
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Index Condition

1 rs363149 <= —0.3811
rs6034087 <= —0.2724
2 rs445945 <= —0.3040
rs6712905 >= 0.1367
rs377964 <= —0.3691
3 rs6135314
rs6685801
12900712
rs9444675
4 rs6135362
rs2100272 >=0.1398
rs700029 <= 0.0035
5 rs6110600 <:

rs11905979 <=
8 rs199305 <= —0.4455
rs377201 >= -0.2189
9 16135314 >= —0.0746
rs1998086 0.0340
rs381063 >= —0.0576
10 rs1475531 >= —0.0454
rs365516 >=0.0220
11 rs2423866 >= —0.1223
rs385770 >= —0.0670
7241111 >= ~0.1500
12 rs449849 >= —0.05569
rs716316 >= —0.0107
rs6904713 >= -0.1428
13 rs1327323 -0.2719
rs6135269 —0.1044
14 rs353149 >= —0.0059
513011654 >= 0.0742
rs445945 <= 0.067

15 rs6034046 >= —-0.015
rs6135314 -0.0323
rs6034011 0.0668

16 rs6043173 >= 0.131
rs449849 >= —0.0689

17 Others

“The support of a rule is the percentage of samples satisfying the rule.
bThe accuracy of a rule is the proportion of the corrected classified samples among

samples satisfying the rule.
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Wild-type
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Wild-type

Wild-type
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deletion

Support®% Accuracy®%
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Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9069 (5,540) 0.8759 (1,080) 0.8785 (1,022) -
RIPPER  0.6953 (410) - 0.7385 (306) 17

*These performances are measured by MCC; numbers of used features are listed
in brackets.
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Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9683 (6,610) 0.9406 (2,080) 0.9436 (2,064) -
RIPPER  0.3923 (18,460) 0.3677 (5,530) 0.3677 (5,530) 23

*These performances are measured by MCC; numbers of used features are listed
in brackets.
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Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.7542 (20,400) 0.7143(3,960) 0.7231(3,967) -
RIPPER  0.3420(18,530) 0.3417 (3,040) 0.3490 (2,841) 32
*These performances are measured by MCC; numbers of used features are listed

in brackets.
LRAR, log R ratio.
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Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9653 (35,440) 0.9007 (8,790) 0.9008 (8,797) =
RIPPER 0.2932 (8,500) 0.2692 (2,170) 0.2745 (2,075) 30

*These performances are measured by MCC; numbers of used features are listed
in brackets.

BAF, B allele frequency; CRC, colorectal cancer; IFS, incremental feature selection;
SVM, support vector machine; RIPPER, repeated incremental pruning to produce error
reduction; MCC, Matthews correlation coefficient.
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