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Editorial on the Research Topic
Computational Learning Models and Methods Driven by Omics for Precision Medicine

Due to the high experimental cost and the exponential decline in the cost of high-throughput
sequencing, computational models, and methods are preferred by scholars. The curse of
dimensionality is the primary obstacle to dealing with the explosive growth of omics data. Machine
learning methods are applied to reduce dimensionality and perform feature selection from massive
data. Researchers meet the requirements of data sparsity by increasing the sparsity constraints of
the computational models. The models combined with the deep learning method help to discover
potential non-linear associations. Improving data representation or adding embedding layers could
provide better performance of the models. Computational methods for biomarker discovery,
sample classification, and disease process interpretation pave the way for precision medicine.

This topic includes 34 papers and a corrigendum. These papers introduce latest researches in the
area of computational biology, catering for precision medicine and complex diseases. They include
sequencing alignment, correlation detection between omics data and biological traits, prediction
of biological functionality, computational methods for cancer subtyping, finding of pathogenic
causes, repositions and targeting, and computational methods specially designed for biological
knowledge mining.

SEQUENCE ALIGNMENT

The raw sequencing data is unstructured short sequences. The structured data can be generated
from downstream analysis through filtering, quality control, and assembly of these unstructured
data. Assembly reconciliation can generate high-quality assembly results. In Tang et al., using the
consensus blocks between contigs to construct adjacency graphs to avoid varying sequencing depth
and sequencing errors, the authors propose a scoring function to rank the input assembly sets. They
use an adjacency algebra model for accurate fusion, which performs well on M. abscessus, B. fragilis,
R. sphaeroides, and V. cholerae. Shi and Zhang apply the partition and recur platform to generate
a high-level abstraction of the sequence alignments. The algorithm component library is verified
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by Apla language. The advantage of implementing the sequence
assembly process through abstract components is that it can
effectively improve stability and reduce the possibility of errors
caused by manual selection.

ESTABLISHING OMICS —DISEASE
ASSOCIATIONS

Four groups present research on RNA association prediction,
including Long non-coding RNA(IncRNA)-protein interactions
(LPI), LncRNA-Disease, microRNA(miRNA)-Disease, and
Circular RNA(circRNA)-Disease. Peng et al. give us an overview
of how to identify IncRNA-protein interactions(LPI), and they
introduced 16 related repositories and methods. Among these
network-based and deep learning-based methods for predicting
LPI, the proposed SFPEL-LPI used assembly learning and
achieved the best Area Under Curve(AUC) performance. Hu
et al. combined the two methods of neural network and matrix
factorization (MF) to predict IncRNA-disease associations.
They achieved this combination by concatenating outputs
and sharing inputs between the two methods. Both the MF
and the neural network are trained simultaneously under the
framework of TensorFlow. In Yu, Shen et al., prior information
(IncRNA-miRNA and IncRNA-disease associations) and known
miRNA-disease associations are integrated to construct a
three-layer heterogeneous network of LncRNA, miRNA, and
disease. In this three-layer network, the edges between the layers
are filled with prior information. Random walk is applied to
predict miRNA-disease associations. The proposed methods
are evaluated using cancer data. Their results show that most
potential miRNAs can be confirmed by databases. In Lei X.
et al., the cirRNA similarity network and the disease similarity
network are used as the input of the collaboration filtering
recommendation system. Their experiments on predicting
potential circRNA-disease associations indicate the effectiveness
of the recommendation system algorithm.

Like RNA, microbes and pathogens are also the causes
of diseases. In Li, Wang, Chen et al., a bipartite network
is applied to avoid the omission of neighbor information
for predicting Pathogen-Host associations. Among the top 20
pathogen-host pairs discovered, 16 pairs can be verified by
biological experiments. In Ma et al., to explore the pathogenesis
of complex diseases from the modular perspective, the similarity
matrix is decomposed to generate microbe-disease co-modules
by non-negative matrix tri-factorization. Their method achieves
nice performance in the enrichment index and the number of
significantly enriched taxon sets. In Li S. et al., on the strength
of a matrix containing microbes similarity, disease similarity and
a bipartite graph network of the two interactions, the potential
microbe-disease associations are calculated by Katz centrality.
The prediction performance was evaluated by the leave-one-
out cross validation and reached an AUC of 0.9098. Zhu et al.
use a deep feedforward network to identify microbial markers
and realize graph embedding by replacing the first two layers
of the network with a sparse graph. Experiments show that
this Graph Embedding Deep Feedforward Network has the best

performance, comparing deep forest, random forest and Support
Vector Machine(SVM).

PREDICTION OF BIOLOGICAL
FUNCTIONALITY

Identifying acetylation proteins is conducive to understanding
the post-translational modification process. In Qiu et al., the
authors first generate a k-nearest neighbors (KNN) score, and
then use random forest to classify the acetylation proteins. The
formation of KNN scores is based on domain annotation and
subcellular localization. Five-fold cross-validation on the three
data sets was performed, and finally, an average AUC of 0.8389
was obtained. In Miao et al., the authors aim to identify which
proteins are endoplasmic reticulum-resident proteins, and they
achieved accuracy over 86%. Such work allows us to understand
the functionality of proteins, which may be potential points of
drug design. The promoter drives the flow of genetic information
from DNA to RNA, and its sequence information determines the
strength of the promoter. In Le et al,, the promoter sequence
is divided into 10-gram levels and is used to form a 1,000-
dimensional vector. The vector is input into a deep neural
networks model to classify the promoter strength. Compared
with other latest methods in the same test set, this method
improves 1-4% on all indicators.

COMPUTATIONAL APPROACH FOR
CANCER SUBTYPING

Cancer subtyping is fundamental for precision therapy.
Accurately identifying cancer subtypes enables us to understand
cancer evolution. In Lu et al,, Laplacian score and low-rank
representation methods are integrated to obtain a low-rank
expression of cancer gene expression data. This low rank matrix
is hoping to preserve subtype information. By sorting the
obtained matrix, the feature genes are heuristically selected
to comprise of a gene subset for accurate cancer subtyping.
The method is tested on five cancer dataset and is shown to
achieve superior performance over k-means, non-negative
matrix factorization (NMF) and several other baseline methods.
Aouiche et al. obtained the cancer stages on copy number
variation(CNV) data. The positive significance of distinct stage
division is dependent on not only a high cure rate after cancer
been detected, but also on critical markers, which are potential
therapeutic targets. Li, Wang, Wang et al. identify differentially
expressed genes(DEGs) in tumor by analyzing the residues of
each gene via a regression model and found potential biomarkers
of the individual sample from DEGs. Survival analysis is
performed on samples collected from human and mouse cancer
data, and is shown to be statistically differently.

QUANTITATIVE UNDERSTANDING OF
PATHOGENIC CAUSES

The goal of developing computational disease models is to find
a therapeutic target. As the first step, computational tools are
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required to explain the cause of the disease. Regarding the
identification of Schizophrenia (SZ), Xiang et al. construct a
Brainnetome atlas based on resting-state functional magnetic
resonance imaging. Brainnetome atlas is a weighted undirected
graph constructed with brain regions as nodes and correlations
as edges. The authors calculate the features from the altas and,
then use least absolute shrinkage and selection operator(lasso)
learning to prune the features. The classification is SZ is achieved
by using SVM with an accuracy of 93.10%. In Li X. et al., each
single sample is classified by a pathway-based approach, into
Ulcerative colitis (UC) and Crohn’s disease (CD). Even though
UC and CD have common clinical characteristics, they have
different responses to drugs. According to the gene expression
data of the sample, the author scores each pathway to form a
pathway activation for single sample matrix, which is classified
by a random forest classifier. In Zhang S. et al., the authors aim
to select CNV markers to distinguish between three different
states of mono-ADP-ribosylhydrolase 2 (MACROD?2). The
frequent deletions of MACROD2 locus may lead to chromosomal
instability of human colorectal cancer. The authors firstly select
17 important single nucleotide polymorphism(SNP) site via
mutual information, and then uses bootstrapping scheme to train
multiple classifiers. The trained classifiers are finally ensembled to
effectively distinguish three types of MACROD?2. In Lei W. et al,,
the effectiveness of lipoprotein 2 on Subarachnoid hemorrhage
(SAH) intervention is revealed from the perspective of the
cell signaling pathway. The authors discover five biomarkers,
three of which have been verified by previous experimental
evidence. Finally, the early SAH prediction is performed based
on the assembly learning of logistic regression, SVM and Naive-
Bayes, achieving an accuracy of 79%. Zhang P. et al. clarify
a pathway of polycistronic mRNA ORF73 involved in host
apoptosis through protein p53, supplementing the pathogenic
process of Kaposi sarcoma-associated herpes virus. This work is
mainly done through protein-protein interactions (PPI) analysis,
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
pathway analyses. In Shao et al, 108 whole-non-structural
protein 5 sequences are analyzed in Zika virus, and 35 potential
glycosylation and phosphorylation sites have been discussed.
Mutations in amino acid sites are found to be correlated with
their pathogenicity and transmission efficiency. The relatively
stable nucleic acid sequence is shown to be helpful for detection
and vaccine development.

A meta-analysis can combine multiple studies, and the two
groups apply meta-analysis methods. In Fukutani et al., after the
analysis of Human T-lymphotropic virus 1 (HTLV-1)-infected
patients, the authors find that gene CD40LG and gene GBP2 can
be used as two phenotypic classifications of HTLV-1 infection,
with accuracy rates of 0.88 and 1. In Jin and Shi, a meta-analysis is
performed to test SNP-environment interaction. Based on meta-
regression (MR), the author proposes overlapping MR combined
with the method of processing overlapping data. This method can
reduce type I error and is more robust than MR in dealing with
the non-linear interaction effect.

Gao et al. screen 107 methylomic features in whole blood
methylation samples and use Support Vector Regressor to predict

age. What is interesting is that only gene CALB1 and gene KLF14
are both found in the male and female age prediction models.

DRUG REPOSITIONS AND TARGETING

Four works focus on drug repositions. In Manibalan et al,,
the authors focus on the S100A8 protein, which has a strong
interaction with the prevalence of polycystic ovary syndrome
biomarkers. Therefore, they design a series of RNA aptamers
targeting the S100A8, and select the one with minimal binding
energy as the targeted drug. Wound Scratch experiments confirm
that the synthesized 18-mer oligo has a significant inhibition
effect on tumor cell migration. Wu et al. hope to level
the differences in chemotherapy prognosis through cisplatin
resistance analysis of oral squamous cell carcinoma. Through
the analysis of differentially expressed genes, PPI network and
miRNA-mRNA targeted regulatory network, they find that five
hub genes and the miR-200 family members that regulate hub
genes may be potential drug targets. In Yu, Xu et al.,, new targeted
drugs for hepatocellular carcinoma (HCC) are found by the
drug repositioning bioinformatics method. Finding HCC’s kernel
genes is the first step in work. The next step is to combine
the relationship between the drug and gene expression in the
Connectivity Map database to score the relationship between
the drug and HCC. Among the top ten drugs screened by this
method, eight drugs have been supported by publications. In
Emdadi and Eslahchi, cell line similarity, drug similarity and
half maximal inhibitory concentration are combined to predict
the drug sensitivity of cells, and logistic matrix factorization
is applied to obtain latent vectors. For the drug sensitivity
prediction of the new cell line, the k-nearest neighbors of the
cell line are estimated through the decision tree to obtain the
latent vectors of the cell line. Finally, a threshold based on the
probability of the latent vector is used to predict whether the
cell line is sensitive to drugs. The genomics of drug sensitivity
on haematopoietic cell lines in cancer was tested for model
performance, with an accuracy of 0.721.

BIOLOGY-ORIENTED LEARNING
METHODS

Traditional learning methods have achieved tremendous success
and have provided solutions to even some difficult biological
problems. In Wang et al., Huber loss is applied to alleviate
non-Gaussian noise contaminations. A sparsity penalty item is
used to encourage the sparsity of representation of The Cancer
Genome Atlas data, and a graph regularization is used to preserve
the manifold structure. The clustering accuracy is improved by
5% compared with non-negative matrix factorization. Che et al.
improve the traditional methods on the basis of Sparse Group
Lasso (SGL) and proposed a weighted sparse group lasso (WSGL)
by introducing prior constraint on the sparse term. Compared
with lasso and SGL, the performance is significantly improved,
indicating that prior biological knowledge carries on valuable
message. Comparing the lasso and SGL methods, WSGL can
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screen less genes, and the ratio of candidate genes is higher
using Arabidopsis flowering time data. In Lemagon et al., a
visualization method is proposed based on a scoring system for
rating susceptibility loci. In general, this is a visualization method
for searching for the best potential variants through aggregating
prediction approaches. In Guo, Kullback-Leibler divergence is
used to measure the distance between two SNPs, and these
distances are used as k-means clustering. Then, statistical testing
methods are applied to find epistatic interactions, and the time
cost of this method is about one-tenth that of Bayesian inference-
based method. Zheng et al. use sparse subspace clustering
to perform single-cell clustering. This method assumes that
the feature vector of a sample can be expressed as a linear
combination of other samples in the same subspace. In the test of
10 single-cell datasets, this method maintains the leading position
in normalized mutual information and adjusted rand index.

These teams work together to continuously improve
model accuracy. Most articles related to computational
methods are tailored from early established models for biology
knowledge learning.
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With the development of high-throughput techniques, various biological molecules are
discovered, which includes the circular RNAs (circRNAs). Circular RNA is a novel
endogenous noncoding RNA that plays significant roles in regulating gene expression,
moderating the microRNAs transcription as sponges, diagnosing diseases, and so on.
Based on the circRNA particular molecular structures that are closed-loop structures with
neither 5’-3’ polarities nor polyadenylated tails, circRNAs are more stable and conservative
than the normal linear coding or honcoding RNAs, which makes circRNAs a biomarker
of various diseases. Although some conventional experiments are used to identify the
associations between circRNAs and diseases, almost the techniques and experiments
are time-consuming and expensive. In this study, we propose a collaboration filtering
recommendation system-based computational method, which handles the “cold start”
problem to predict the potential circRNA-disease associations, which is named ICFCDA.
All the known circRNA-disease associations data are downloaded from circR2Disease
database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Based on these data, multiple
data are extracted from different databases to calculate the circRNA similarity networks
and the disease similarity networks. The collaboration filtering recommendation system
algorithm is first employed to predict circRNA-disease associations. Then, the leave-one-
out cross validation mechanism is adopted to measure the performance of our proposed
computational method. ICFCDA achieves the areas under the curve of 0.946, which is
better than other existing methods. In order to further illustrate the performance of ICFCDA,
case studies of some common diseases are made, and the results are confirmed by other
databases. The experimental results show that ICFCDA is competent in predicting the
circRNA-disease associations.

Keywords: circRNA-disease association, collaboration filtering, multiple biological data, recommendation
system, neighbor information
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INTRODUCTION

Circular RNA (circRNA) is a relatively novel biological molecule
compared with the usual linear RNAs. Circular RNAs were first
discovered in the RNA viruses before 1970 (Sanger et al., 1976). It
is said that circRNAs lack covalently closed-loop structures with
neither 5'-3’ polarities nor polyadenylated tails (Chen and Yang,
2015), which causes that it is not easy to find circRNAs compared
with linear RNAs. Because of circRNAs closed-loop structure,
however, more and more circRNAs (Hsu and Coca-Prados, 1979;
Arnberg et al., 1980; Pasman et al., 1996) are revealed based on
the development of the RNA base sequence high-throughput
techniques. In terms of recent researches, there are various kinds
of circRNAs in the creatures, which include as follows: exonic
circRNAs, which are mainly produced by back-spliced exons
(Wilusz and Sharp, 2013), introns circRNAs extracted from
introns (Lasda and Parker, 2014), exon-intron circRNAs that are
analogous to ecircRNAs (Li et al., 2015), and integrated circRNAs
discovered by a biological identifier, CIRI (Gao et al., 2015).
Many recent evidences (Danan et al., 2011) show that circRNAs
play significant roles in different biological processes and have
multiple biological functions (Jeck and Sharpless, 2014; Qu et al.,
2015). First, circRNA can be regarded as miRNA sponges (Hansen
etal., 2013; Kulcheski et al., 2016), which could be adopted to be
an identifier for diseases. Second, some evidences illustrate that
circRNAs also can regulate some transcriptional processes (Chao
et al,, 1998). Simultaneously, circRNAs also have associations
with RNA-binding proteins (RBPs) (Panda et al., 2017) bases on
their stable circular structures. Circular RNA has different ways
to bind with the RBPs compared with the linear RNA (Memczak
et al., 2013), which indicates that circRNAs have potential to be
disease biomarkers. Moreover, circRNAs have some translational
functions (Chen and Sarnow, 1995) like common RNAs.

With the further study of circRNAs functions, increasing
numbers of evidences point out that circRNAs have associations
with complicated diseases (Xu et al.,, 2017) or have effects on
the translation of some proteins (Bartsch et al., 2018). There
are many previous searches revealing the associations between
circRNAs and some cancers. Circular RNA circ-PVT1 has been
discovered to upregulate the gene expression in the gastric
cancer (GC) tissues and promotes the GC cells reproduction
(Chen et al., 2017a). In contrast circRNA hsa_circ_0000190, it
regulates the gene expression in GC tissues by downregulation
(Chen et al.,, 2017b). CircRNA circTCF25 can upregulate the
gene expression or cell proliferation of 13 target locus of miRNA
miR-103a-3p/miR-107, which can be regarded as a biomarker
of bladder cancer (BC) (Zhong et al., 2016). Circular RNA hsa_
circRNA_105055 and hsa_circRNA_086376 are the potential
biomarkers of colorectal cancer by working as sponges for miR-7
(Zeng et al., 2017). Moreover, circRNA hsa_circ_0054633 also
has association with diabetes, especially for prediabetes and type
2 diabetes mellitus (Zhao et al., 2017).

Because of the development of RNA base sequence techniques,
more and more circRNA-related information is excavated. Thus,
many different kinds of circRNA-related databases are established
for further researches of various diseases, biological molecules
and pathways, etc. To create more convenience to the researchers,

circBase database (Glazar et al., 2014) was developed to provide
the evidence supporting their expression, and all the data can be
accessed, downloaded, and browsed within the genomic context.
Circular RNADDb (Chen et al.,, 2016a) is a comprehensive circRNA
database that collects human protein-coding annotations of
circRNAs and includes some important information about
exonic circRNAs such as genomic information, exon splicing,
genome sequence, internal ribosome entry site, open reading
frame, and cricRNA-related references. Furthermore, ExoRBase
(Li et al., 2017) is an online accessible database that extracts
data from RNA-seq data analyses of human blood exosomes.
circNet (Lin et al., 2015) is also a circRNA-related database from
which tissue-specific circRNA expression profiles and circRNA-
miRNA-gene regulatory networks can be downloaded. Moreover,
circ2Traits (Ghosal et al., 2013) is an overall circRNA-disease
associations database, which obtains the associations as follows:
one is identifying the interactions of circRNAs with disease-
related miRNAs; the other is matching the diseases associated
SNPs on circRNA loci. To obtain more reliable circRNA-disease
associations, circR2Disaese (Fan et al., 2018) database (http://
bioinfo.snnu.edu.cn/CircR2Disease/) was developed. The whole
circRNA-disease associations are collected manually from
relevant references and reviews, which provides more convenience
and basics to infer novel circRNA-disease associations.

Although, there are many circRNA-disease associations
discovered by biological experiments, whose experimental
processes are extremely expensive and time-consuming. On
the one hand, there are a limited number of computational
methods existing to predict potential circRNA-disease
associations. On the other hand, we lack comprehensive
circRNA-related diseases databases, which are our main
motivation to propose a new computational method based on
circR2Disease database. In this study, we develop an improved
collaboration filtering recommendation system (Pan et al.,
2008) method to predict circRNA-disease associations,
which is named ICFCDA. First, circRNAs target gene-related
gene ontology (GO) terms, circRNAs base corresponding
sequences data, and circRNA-disease associations are adopted
to calculate the circRNA functional annotation semantic
similarity, sequence similarity, and Gaussian interaction
profile (GIP) kernel similarity. Second, disease-related genes
and circRNA-disease associations are used to calculate the
disease functional similarity and disease GIP kernel similarity.
Furthermore, we also replace the disease names into disease
ontology (DO) IDs to calculate the disease semantic similarity
based onthe DOSE (Yuetal.,2015) tool. Third, multiple disease
similarities and circRNA similarities are combined with the
final disease similarity matrix and circRNA similarity matrix,
respectively. Finally, collaboration filtering method is adopted
to calculate the score of each circRNA-disease pair. For the
sake of evaluating the performance of method we proposed,
leave-one-out cross validation (LOOCYV) is used to calculate
the area under receiver operating characteristic (ROC) curve
(AUC) value. Moreover, several common diseases also are
tested by the LOOCV mechanism. In addition, case studies
of two common diseases are implemented to further illustrate
the performance of ICFCDA.
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MATERIALS AND METHODS

Human circRNA-Disease Associations

To extract circRNA-disease associations, the initial circRNA-disease
associations datasets are downloaded from circR2Disease database
(Fan et al., 2018) (http://bioinfo.snnu.edu.cn/CircR2Disease/). In
the original dataset, there are 725 circRNA-disease associations
that have been verified by biological experiments. These 725
circRNA-disease associations contain 661 circRNA individuals and
100 disease individuals. In term of the initial dataset, 212 circRNA-
disease associations are picked out as the known associations in this
study, which are composed of 42 disease entities and 200 circRNA
entities. The adjacency circRNA-disease association matrix is
deciphered by matrix A. If there is an association between the
disease i and circRNA j, A(3, j) is equal to 1 or A(G, j) is equal to 0.

circRNA Similarity

circRNA Functional Annotation Semantic Similarity
On the basis of the original circRNA-disease associations,
200 circRNA entities are screened out. Then human GO terms
data are downloaded from human protein reference database
(HPRD) database (Keshava Prasad et al., 2009). The initial
circRNA-disease associations provide the circRNAs-related
genes. Thus, the circRNA-related genes are utilized to match
GO data extracted from HPRD database. In this study, an
information content algorithm (Lin, 1998) is adopted to calculate
the circRNA functional annotation semantic similarity. CFS is
used to describe the circRNA functional annotation semantic
similarity network. Moreover, the following equation is used to
calculate the circRNA functional annotation semantic similarity:

2><logP(C,-qu)
logP(Ci)+logP(Cj)

CFS(i, j) = 1)

where CFS(i, j) denotes the functional annotation semantic
similarity between circRNA Ci and Cj; P(Ci) and P(Cj) represent
the probability between the number of Ci and Cj target gene-
related GO terms and the number of the entire GO terms.
P(C;uC;) is the ratio of between the union of the number of
circRNA Ci and Cj target gene-related GO terms and the number
of the entire GO terms.

circRNA Sequence Similarity

For the sake of calculating the circRNA sequence similarity,
the circRNA corresponding RNA base sequence data are
downloaded from circBase database (Glazar et al., 2014) (http://
www.circbase.org/). In our computational model, there are 200
circRNAs needing matching their related RNA base sequences.
A base pairing algorithm named the Needleman-Wunsch
pairwise alignment algorithm is used to calculate the circRNA
sequence similarity, which is integrated into a python toolkit
called Biopython (Cock et al., 2009). Therefore, there are some
parameters needing setting up for obtaining a better result.
The gap-open penalty is set as 2, and the gap-open extending
penalty is set as —0.5 to —0.1. CSS is adopted to represent the
circRNA sequence similarity matrix, and CSS(i, j) represents
the similarity value between the circRNA C; and C,. Then, the

Needleman-Wunsch score of each circRNA pair is normalized
as follows:

NW(i,j)

CSS(i, j)=
) JNW (i) NW(j, )

(2)

where NW(i, j) is the score of the Needleman-Wunsch algorithm
between circRNA i and j.

circRNA GIP Kernel Similarity

Known circRNA-disease associations are adopted to calculate
circRNA GIP kernel (Van Laarhoven et al, 2011) similarity
marked as CGS. According to an assumption (Van Laarhoven
etal.,, 2011) that the more similar the two circRNAs are, the more
likely the disease associated with one of them is to be associated
with another. Therefore, V, is used to represent the interaction
profile of circRNA C(i) with each disease, which means the ith
row in the circRNA-disease association network. The GIP kernel
similarity between circRNA C(i) and C(j) is calculated as follows:

2

CGS(i, j) =exp(=7, |V, = Ve, | ) (3)

where CGS(i, j) is the GIP kernel similarity of circRNA i and j. y,
is an adjusting parameter, which controls the bandwidth of each
kernel, which can be initialized as follows:

A 1 aL
r.=7. VZIHVC

Where 7. is the initial value, which is set as 1 based on the
previous study (Van Laarhoven et al., 2011). N, is total number
of circRNAs.

(4)

circRNA Similarity Integration

Finally, we obtain the circRNA functional annotation semantic
similarity, sequence similarity, and GIP kernel similarity. In order
to make full use of these three circRNA similarities, the following
equation is adopted to integrate the circRNA similarities:

CGS(i, ), if CGS(i,)#0
0 CFS(i, j)+(1—a)CSS(i, j), otherwise

CS(, j)={ (5)

where CS denotes the integrated circRNA similarity network; a
is a harmonic mean factor to integrate the circRNA functional
annotation semantic similarity CFS, and the circRNA sequences
similarity CSS.

Disease Similarity

Disease Functional Similarity

Furthermore, disease-related genes are downloaded from
DisGeNET (Pinero et al., 2017) database, which gathers more
than 3,815,056 gene-disease associations between 16,666 gene
individuals and 13,172 disease individuals. In order to obtain
more reliable disease similarity, we also extract disease-related
genes from Online Mendelian Inheritance in Man (OMIM)
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(Hamosh et al., 2005) database. Based on the initial circRNA-
disease associations, 42 independent disease entities are picked
out as the experimental data. Then, those above disease entities
are used to match the disease phenotype corresponding genes in
the OMIM dataset manually. In this study, JACCARD algorithm,
a statistic method, is used to calculate the disease functional
similarity as follows:

IDG(i) N DG(j)
IDG(i)UDG())

where DG(i) and DG(j) denote the subsets of the disease i and j
related genes.

DS1(i, j)= (6)

Disease GIP Kernel Similarity
GIP kernel similarity algorithm is also adopted to calculate
the disease GIP kernel similarity between D(i) and D(j), which
is similar to calculate circRNA GIP kernel similarities. The
computing process is as follows:

2

DGS(i, j)=exp(—y,

Vi, =V,

) ™)

where DGS is the disease GIP kernel similarity network, and the
DGS(i, j) is GIP kernel similarity score between disease i and j.
Yais also a bandwidth adjustment parameter, which is defined

as follows:
. 1 &
Ya=7a E;“VD{

where Y4 is the initial value, which is set as 1 based on the
previous study (Van Laarhoven et al., 2011). N, is total number
of diseases.

(8)

Disease Semantic Similarity

In order to calculate the semantic similarity between these 42
diseases, the disease-relevant DO IDs are extracted from the DO
(Kibbe et al., 2015) database. Then all the 42 diseases’ names are
replaced into the corresponding DO IDs, which are adopted to
input into a R package named DOSE (Yu et al., 2015) to calculate
the disease semantic similarity. After the semantic similarity score
of each disease pair is obtained, DS2 can be used to represent the
diseases semantic similarity matrix.

Disease Similarity Integration

Thus, the integrated disease similarity thereby can be accessed
by combining the disease functional similarity, GIP kernel
similarity, and semantic similarity. In this study, when we fuse
different disease similarities, different weights are allocated to the
disease functional similarity matrix, GIP kernel similarity matrix,
and semantic similarity matrix based on the following formula:

DGS(i, j), if DGS(i, ) #0

ICFCDA

With the increasing numbers of data in all aspects, it is important
to predict or recommend some associations between the two
different things. It is in this case that the recommendation
system algorithm has attracted the attention of many experts.
Collaborative filtering algorithm (Schafer et al., 2007; Zhou et al.,
2015) is one of the recommendation system algorithms, which is
applied to recommend movies (Zhou et al., 2008) or news (Das
etal., 2007) for users. In this study, we first adopt the collaborative
filtering recommendation system algorithms to predict the
circRNA-disease associations, which is named as ICFCDA, and
its flowchart is illustrated in Figure 1.

For scoring each circRNA-disease association, there are five
steps in our computational method as follows:

Step 1: Obtaining the top k similar neighbors of each
circRNA based on circRNA similarity network CS.

Step 2: Obtaining the top k similar neighbors of each
disease based on disease similarity network DS.

Step 3: Calculating the scores of circRNA-disease association
by the collaborative filtering recommending based on
circRNAs.

Step 4: Calculating the scores of circRNA-disease association
by the collaborative filtering recommending based on
diseases.

Step 5: Integrating the final recommendation scores based
on Steps 3 and 4.

First, the similarity scores between circRNA j and other
circRNAs in the circRNAs dataset are listed in descending order.
Then, the most similar top k neighbors of each circRNA are picked
out based on the final integrated circRNA similarity network CS.
We conduct the same above processes for each circRNA. Therefore,
we obtain the most similar top k neighbors of each circRNA.
Furthermore, the value of k is set as the 4% of the number of the
whole circRNAs, which can be described as nc*0.04.

Second, in terms of the most similar top k neighbors of
cirRNA j and the associations between the disease i and the
neighbors of the circRNA j, the most similar top k neighbors of
the circRNA-based recommendation score between the disease i
and the circRNA j can be calculated as follows:

k
CRS(, j)=% Y At mxcsn,j) (10)

n=1

where CRS(i, j) is the recommendation score between the disease
i and the circRNA j based on the top k most similar neighbors of
circRNA j. A(i, n) is the association information of the nth most
similar neighbor of circRNA j and the disease i. CS(n, j) is the
similarity score of the nth most similar neighbor circRNA and
circRNA j.

Third, the similarity scores between disease i and other diseases
in the disease dataset are listed in descending order. Then, the

DS(i, j) = - . .
@7 BDS1(i, j)+(1—P)DS2(i, j), otherwise ©) most similar top k neighbors of each disease are screened out
based on the final integrated disease similarity network DS. We
where DS denotes the integrated disease similarity network. also carry out the same processes for each disease. Therefore,
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FIGURE 1 | The flowchart of the computational method ICFCDA.

the most similar top k neighbors of each disease are selected.
Moreover, the value of k is set as the 4% of the number of the
whole diseases, which can be described as nd * 0.04.

Fourth, based on the most similar top k neighbors of disease
i and the associations between the neighbors of the disease i and
the circRNA j, the most similar top k neighbors of the disease-
based recommendation score between the disease i and the
circRNA j can be calculated as follows:

k
DRS(i, j)=% " Ds(i,m)x Am, j) (11)

m=1

where DRS(i, j) is the recommendation score between the
disease i and the circRNA j based on the top k most similar
neighbors of disease i. A(m, j) is the association information of
the mth most similar neighbor of disease i and the circRNA j.
DS(i, m) is the similarity score of the mth most similar neighbor
disease and disease i.

Finally, the circRNA-based recommendation scores and the
disease-based recommendation scores are combined with the
final recommendation scores as follows:

IRS(i, j) = YDRS(i, j)+(1—y)CRS(i, ) (12)
where IRS(j, j) is the integrated recommendation scores between
the disease i and the circRNA j. The parameter ye€[0, 1.0]
is a balance factor that can control the significance of the

circRNA-based recommendation scores and the disease-based
recommendation scores.

In order to solve the “cold start” problem in the collaborative
filtering recommendation system, the importance of neighbors
is taken into consideration. The more diseases/circRNAs are
shared by two cicRNAs/diseases, the more significant it is. The
importance of two diseases/circRNAs can be defined as follows:

IMP(C(i),C(})) = forp (C(D))* £, (C(j))* z Jeoa(c(R)) (13)

C(c(k))

where IMP(C(i), C(j)) is the significance coefficient between
circRNA iandj. IMPis divided into three parts, which include the
circRNA C(i) related diseases f,,,(C(i)), which can be calculated
as the following equation:

1
- D(C(i)
where D(C(i)) is circRNA i-related diseases, which means
that circRNA i would provide more useful suggestion, if it is

associated with fewer diseases. f, (C(j)) is the similarity if disease
j based on the disease i, which is defined as follows:

Jep(C(7)) (14)

1
D(C(j))—I(C(),C(j)+1

where I(C(i), C(j)) is intersection of the circRNA i and j-related
disease dataset. f. ,(C(k)) is the disease that is merely associated

(15)

Jus(C(7)) =
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with circRNA i and j. Therefore, for those circRNAs that have
only one relevant disease, the following equation is adopted to
calculate the recommendation score:

Nc
ZIMP(C(t),C(i))*CS(C(t),C(i))

i=1

Scorecald start — ( 16)

Performance Metric

In order to evaluate the performance of our proposed
computational method, the AUC value that is the area of the
ROC curve and the f-measure, which is a comprehensive metric
using the precision and the recall, are the two main evaluation
metrics in this study. The ROC curve consists of the true-positive
rate (TPR) and the false-positive rate (FPR), which are calculated
by the following equations:

pr=_ 1P (17)
TP+FN

FPR:l (18)
FP+TN

where TP is the number of the positive samples that is the
known circRNA-disease associations, which are predicted as
the true circRNA-disease associations, and FN is the number
of the negative samples predicted as the false circRNA-disease
associations. FP is the number of the incorrectly predicted
positive samples, and the TN is the number of the truly predicted
negative samples. In addition, the precision is the true-positive
samples in the dataset, which are predicted as positive samples
dataset. The recall is the ratio between the samples that are
predicted as positive samples and the whole positive samples.
Thus, f-measure is illustrated as follows:

precision = (19)
TP+FP
recall = _IP (20)
TP+ FN
2 X precision X recall
f —measure = 21
precision+recall

RESULTS

Leave-One-Out Cross Validation

In this study, a cross validation mechanism, LOOCY, is adopted
to test the performance of our proposed computational method,
ICFCDA. For each given disease in the circRNA-disease
association network, there could be one or several relevant
circRNAs with each specific disease. First, for each given disease
i, some circRNAs are confirmed that they are associated with the
disease i, which are the known circRNA-disease associations.
Each association between the disease i and one particular circRNA
could be regarded as test data, and all the left circRNA-disease

associations are seen as training dataset. During each LOOCV
procedure, one circRNA-disease association potential score is
generated. When all the scores of the test dataset are obtained,
the remaining unknown circRNA-disease associations are treated
as the test dataset. Finally, the predictive score of each circRNA-
disease pair is obtained. Each circRNA-disease association score
is a threshold after the final potential scores of the circRNA-
disease associations are sorted in descending order. With the
changing threshold, we can calculate the TPRs and the FPRs,
which are adopted to draw the ROC curve and calculate the AUC
value. In order to evaluate the performance of ICFCDA, the AUC
value is compared with other seven state-of-the-art methods
such as heterogeneous graph inference (HGI) method (Chen
etal,, 2016b), KATZ (Ganegoda et al., 2014), random walk restart
(RWR) (Chen et al., 2012), and graph regularized nonnegative
matrix factorization (NMF) (Liu et al., 2018), respectively. The
result is shown in Figure 2, which illustrates that the performance
of ICFCDA is better than others. According to Figure 2, we can
find that ICFCDA achieves greater AUC value of 0.946 compared
with HGI (0.821), KATZ (0.841), RWR (0.774), NMF (0.776),
K-nearest neighbor regression (0.559), support vector regression
with rbf kernel (0.497), and support vector regression with
poly kernel (0.451), respectively. Moreover, the experiment of
collaborative filtering without solving the “cold start” problem is
supplemented to evaluate the performance of ICFCDA, which is
presented in Figure 3. We also make the prediction of other nine
common diseases including BC, breast cancer, colorectal cancer,
and so on, which are represented in Figure 4. In order to illustrate
the stability of our proposed computational method, the average
AUCvalues based on the 42 diseases of other methods are shown in
Table 1. Based on Figure 2 and Table 1, ICFCDA can obtain better
and more stable performance than other computational methods.
Furthermore, for the sake of obtaining more comprehensive and
reliable results, f-measure is also treated as one of our evaluating
metric, which is described in Figure 5. In addition, we also show
the first k correct circRNA-disease relationships in the predicting
results, which is described in Figure 6.

Parameters Analysis

In this study, there are three main parameters that are the most
similar top k neighbors of each circRNA/disease, the circRNA
similarity integration adjustment factor a and the disease
similarity integration adjustment factor f, respectively. Parameter
k controls the selecting neighbors’ number of each circRNA/
disease, which provides the recommendation information from
neighbors. The parameter o determines the importance between
the circRNA functional annotation semantic similarity and the
circRNA sequence similarity, and its value is changed from 0.1
to 0.9. The third parameter { is a tradeoff between the disease
functional similarity and the disease semantic similarity, whose
value ranges from 0.1 to 0.9. At first, to avoid causing the bias
between the circRNA and the disease recommendation scores, the
recommendation integration factor vy is set as N/(N+N,), where
N. is the number the circRNA entries, and the N, is the number
of the disease entries. At first, for testing the suitable value of the
parameter k, the parameter o and the parameter § and y are set
up as 0.5, 0.5, and N/(N+N,), which means that different disease
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FIGURE 3 | The AUC value of ICFCDA compared with CFCDA without
solving the “cold start” problem.

FIGURE 2 | The AUC value of ICFCDA compared with other
computational methods.
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FIGURE 4 | The AUC values of nine kinds of specific diseases.
TABLE 1 | The average AUC values of 42 diseases.
KATZCDA RWRCDA NMFCDA KNNR SVRrbf SVRpoly ICFCDA
Average 0.719 0.478 0.616 0.536 0.441 0.415 0.885
AUC
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FIGURE 6 | The number of correct circRNA-disease association in top k predicting resullts.

similarity scores are treated equally. According to the above
experiments, the parameter a, B, and y are fixed. When k is set
as 4%, ICFCDA can obtain the best AUC value (0.946), which is
shown in Table 2. After that, we can find that the parameter a
and { are not sensitive in our computational method according
to Figure 7. Therefore, both the parameter a and P are set as 0.5.

Case Study

In order to further evaluate the performance of our proposed
computational method ICFCDA, we also conduct case studies of
two common diseases in the world, which are BC (Kaufman et al.,
2009) and breast cancer (Veronesi et al., 2005). Bladder cancer is

one of the most common genitourinary malignant diseases, which
has caused hundreds of thousands of people’s death since it was
discovered clinically. What’s worse, the risk of BC increases with
the increasing age. Another case study is about the breast cancer,
which is an important public healthy disease worldwide and is
also hard to prevent. Breast cancer has a very high mortality rate.
Therefore, some computational methods should be put forward
to identify the potential biomarkers of these above two diseases.
In this study, the prediction results of ICFCDA are validated by
the other three circRNA-disease association-related databases,
which are the circ2Disease (Yao et al., 2018), circRNADisease
(Zhao et al., 2018), and LncRNADisease v2.0 (Bao et al., 2019),

TABLE 2 | AUC with different values for parameter k.

k 1 2 3 4

5 6 7 8 9 10

AUC 0.930 0.932 0.940 0.946

0.923

0.921 0.921 0.906 0.906 0.902
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FIGURE 7 | The AUC of the parameter a and B based on the fixed parameter
yandk.

which are shown in Tables 3 and 4. Both Tables 3 and 4 are the
predicting results of the top 10 BC- and breast cancer-relevant
circRNAs. Circ2Disease, circRNADiseaes, and LncRNADisease
are represented by *, #, and +, respectively.

CONCLUSION

With the discovery of an increasing numbers of disease-related
circRNAs, more and more attention is paid by biologists.
People might have lots of interests to explore the complicated
associations between the various kinds of diseases and circRNAs.
Simultaneously, because of the development of the RNA high-
throughput techniques, it makes more convenience to find the
potential associations of circRNAs and diseases. While the RNA

high-throughput techniques can make this procedure easier
than before, it is not only time consuming but also expensive,
which becomes the main motivation to develop a computational
method to predict the circRNA-disease associations. In this
study, we propose a collaborative filtering recommendation
system solving the “cold start” problem-based method to predict
the circRNA-disease associations, which is named ICFCDA.
For evaluating the performance of ICFCDA, LOOCV and
f-measure show that ICFCDA can obtain better results than
other novel computational methods. Moreover, case studies of
BC and breast cancer also are adopted to test the performance
of the ICFCDA. In terms of the different evaluations, we believe
that our proposed computational method is a useful method to
predict the associations of the circRNAs and the diseases.
ICFCDA can obtain better performance because of some
following nonnegligible reasons. First, our proposed computational
method is based on the recommendation system algorithm,
collaborative filtering, which is suitable to be used to predict the
circRNA-disease associations. Because circRNAs can be treated
as the items, and the diseases can be regarded as the users, the
different items (circRNAs) can be recommended to different users
(diseases). Second, in order to solve the “cold start” problem, the
circRNA similarity and the disease similarity are involved to figure
out this problem. For obtaining more reliable recommendation
information, various kinds of biological data are adopted to
measure the circRNA and disease similarity. We download the
circRNA-related gene annotation terms to calculate the circRNA
functional annotation semantic similarity and the RNA base
sequences to calculate the circRNA sequence similarity. Disease-
related genes and phenotypes (DO ID) are used to calculate the
disease functional and semantic similarity, respectively. Third, in
order to screen out more informative information from the noise,

TABLE 3 | The top 10 bladder cancer related candidates’ circRNAs.

Rank CirRNA name/id Evidences Rank CircRNA name/id Evidences
1 hsa_circ_0000172 + 6 hsa_circ_0002024 +
hsa_circ_0002495 + 7 circMylk/ L #
circRNAMYLK/
hsa_circ_0002768
3 circRNABCRC4/ PMID: 29270748 8 circTCF25/ #

hsa_circ_001598/
hsa_circ_0001577

4 hsa_circ_0003221/ #, +
circPTK2
5 hsa_circ_0091017 #, +

hsa_circ_0041103

9 circFAM169A/ #
hsa_circ_0007158
10 circTRIM24/ #

hsa_circ_0082582

TABLE 4 | The top 10 breast cancer-related candidates’ circRNAs.

Rank CirRNA name/id Evidences Rank CircRNA name/id Evidences
1 hsa_circ_0011946 + 6 circAmotl1/ L #
hsa_circ_0004214

2 hsa_circ_0093859 + 7 hsa_circ_0006528 #,+

3 hsa_circ_0001982 #, + 8 hsa_circ_0002874 #, +

4 hsa_circ_0001785 #, + 9 hsa_circ_0085495 #, +

5 hsa_circ_0108942 #, + 10 hsa_circ_0086241 #, +
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we merely use the top 4% most similar neighbors of each circRNA
and disease to obtain more reliable recommendation score.

For the future work, more biological data will be added to
calculate the disease and the circRNA similarity for reducing the
useless noisy information. Adding multiple data can enrich the
information of the different biological network, such as circRNA-
IncRNA, circRNA-miRNA, and so on.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data can
be found here: http://bioinfo.snnu.edu.cn/CircR2Disease/article/
DownLoad.aspx, http://www.circbase.org/cgi-bin/downloads.cgi,
http://www.disgenet.org/downloads, http://www.disease-ontology.
org/, http://hprd.org/, https://www.omim.org/.

REFERENCES

Arnberg, A. C,, Van Ommen, G. ], Grivell, L. A., Van Bruggen, E. E, and Borst, P.
(1980). Some yeast mitochondrial RNAs are circular. Cell 19, 313-319.
doi: 10.1016/0092-8674(80)90505-X

Bao, Z., Yang, Z., Huang, Z., Zhou, Y., Cui, Q.,and Dong, D. (2019). LncRNADisease
2.0: an updated database of long non-coding RNA-associated diseases. Nucleic
Acids Res. 47, D1034-d1037. doi: 10.1093/nar/gky905

Bartsch, D., Zirkel, A., and Kurian, L. (2018). Characterization of circular RNAs
(circRNA) associated with the translation machinery. Methods Mol. Biol.
(Clifton, N.J.) 1724, 159-166. doi: 10.1007/978-1-4939-7562-4_13

Chao, C. W,, Chan, D. C., Kuo, A., and Leder, P. (1998). The mouse formin (Fmn)
gene: abundant circular RNA transcripts and gene-targeted deletion analysis.
Mol. Med. 4, 614-628. doi: 10.1007/BF03401761

Chen, C. Y, and Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic
translational apparatus on circular RNAs. Science 268, 415-417. doi: 10.1126/
science.7536344

Chen, L. L., and Yang, L. (2015). Regulation of circRNA biogenesis. RNA Biol. 12,
381-388. doi: 10.1080/15476286.2015.1020271

Chen, X, Han, P, Zhou, T., Guo, X., Song, X., and Li, Y. (2016a). circRNADb:
a comprehensive database for human circular RNAs with protein-coding
annotations. Sci. Rep. 6, 34985. doi: 10.1038/srep34985

Chen, S., Li, T., Zhao, Q,, Xiao, B., and Guo, J. (2017b). Using circular RNA hsa_
circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim.
Acta 466, 167-171. doi: 10.1016/j.cca.2017.01.025

Chen, J,, Li, Y., Zheng, Q., Bao, C., He, J., Chen, B,, et al. (2017a). Circular RNA
profile identifies circPVT1 as a proliferative factor and prognostic marker in
gastric cancer. Cancer Lett. 388, 208-219. doi: 10.1016/j.canlet.2016.12.006

Chen, X, Liu, M. X,, and Yan, G. Y. (2012). RWRMDA: predicting novel human
microRNA-disease associations. Mol. Biosyst. 8, 2792-2798. doi: 10.1039/
c2mb25180a

Chen, X,, Yan, C. C,, Zhang, X., You, Z. H., Huang, Y. A,, and Yan, G. Y. (2016b).
HGIMDA: heterogeneous graph inference for miRNA-disease association
prediction. Oncotarget 7, 65257-65269. doi: 10.18632/oncotarget.11251

Cock, P. ], Antao, T., Chang, J. T., Chapman, B. A., Cox, C. ], Dalke, A,, et al.
(2009). Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 25, 1422-1423. doi: 10.1093/
bioinformatics/btp163

Danan, M., Schwartz, S., Edelheit, S., and Sorek, R. (2011). Transcriptome-wide
discovery of circular RNAs in Archaea. Nucleic Acids Res. 40, 3131-3142.
doi: 10.1093/nar/gkr1009

Das, A. S, Datar, M, Garg, A., and Rajaram, S. (2007). “Google news personalization:
scalable online collaborative filtering,” in Proceedings of the 16th international
conference on World Wide Web (Banff, Alberta, Canada: ACM). doi: 10.1145/
1242572.1242610

AUTHOR CONTRIBUTIONS

XL conceptualized the algorithm, designed the method, and
drafted the manuscript. ZF designed the method and drafted
the manuscript. ZF and LG analyzed the data and carried out
the experiments. XL modified the manuscript and polished the
English expression.

FUNDING

This work was supported by the funding from National
Natural Science Foundation of China (61972451, 61672334,
61902230) and the Fundamental Research Funds for the Central
Universities (No. GK201901010).

Fan, C,, Lei, X, Fang, Z., Jiang, Q., and Wu, E-X. (2018). CircR2Disease: a manually
curated database for experimentally supported circular RNAs associated with
various diseases. Database 2018, bay044. doi: 10.1093/database/bay044

Ganegoda, G., Wang, J., Wu, E X, and Li, M. (2014). Prediction of disease genes
using tissue-specified gene-gene network. BMC Syst. Biol. 8 Suppl 3, S3.
doi: 10.1186/1752-0509-8-S3-S3

Gao, Y., Wang, J., and Zhao, E. (2015). CIRI: an efficient and unbiased algorithm
for de novo circular RNA identification. Genome Biol. 16, 4. doi: 10.1186/
s13059-014-0571-3

Ghosal, S., Das, S., Sen, R., Basak, P,, and Chakrabarti, J. (2013). Circ2Traits: a
comprehensive database for circular RNA potentially associated with disease
and traits. Front. Genet. 4, 283. doi: 10.3389/fgene.2013.00283

Glazar, P, Papavasileiou, P, and Rajewsky, N. (2014). circBase: a database for
circular RNAs. RNA 20, 1666-1670. doi: 10.1261/rna.043687.113

Hamosh, A., Scott, A. E, Amberger, J. S., Bocchini, C. A., and Mckusick, V. A. (2005).
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res. 33, D514-D517. doi: 10.1093/nar/gki033

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B.,
Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient
microRNA sponges. Nature 495, 384-388. doi: 10.1038/nature11993

Hsu, M. T., and Coca-Prados, M. (1979). Electron microscopic evidence for the
circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339
340. doi: 10.1038/280339a0

Jeck, W. R., and Sharpless, N. E. (2014). Detecting and characterizing circular
RNAs. Nat. Biotechnol. 32, 453-461. doi: 10.1038/nbt.2890

Kaufman, D. S., Shipley, W. U., and Feldman, A. S. (2009). Bladder cancer. Lancet
374, 239-249. doi: 10.1016/S0140-6736(09)60491-8

Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,
Mathivanan, S., et al. (2009). Human Protein Reference Database—2009
update. Nucleic Acids Res. 37, D767-D772. doi: 10.1093/nar/gkn892

Kibbe, W. A, Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G., et al. (2015). Disease
ontology 2015 update: an expanded and updated database of human diseases
for linking biomedical knowledge through disease data. Nucleic Acids Res. 43,
D1071-D1078. doi: 10.1093/nar/gkul011

Kulcheski, E R., Christoff, A. P, and Margis, R. (2016). Circular RNAs are miRNA
sponges and can be used as a new class of biomarker. J. Biotechnol. 238, 42-51.
doi: 10.1016/j.jbiotec.2016.09.011

Lasda, E., and Parker, R. (2014). Circular RNAs: diversity of form and function.
RNA 20, 1829-1842. doi: 10.1261/rna.047126.114

Li, Z., Huang, C., Bao, C,, Chen, L., Lin, M., Wang, X, et al. (2015). Exon-intron
circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22,
256-264. doi: 10.1038/nsmb.2959

Li, S., Li, Y., Chen, B, Zhao, J., Yu, S., Tang, Y, et al. (2017). exoRBase: a database
of circRNA, IncRNA and mRNA in human blood exosomes. Nucleic Acids Res.
46, D106-D112. doi: 10.1093/nar/gkx891

Frontiers in Genetics | www.frontiersin.org

September 2019 | Volume 10 | Article 897


https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
 http://bioinfo.snnu.edu.cn/CircR2Disease/article/DownLoad.aspx
 http://bioinfo.snnu.edu.cn/CircR2Disease/article/DownLoad.aspx
http://www.circbase.org/cgi-bin/downloads.cgi
http://www.disgenet.org/downloads
http://www.disease-ontology.org/
http://www.disease-ontology.org/
http://hprd.org/
https://www.omim.org/
https://doi.org/10.1016/0092-8674(80)90505-X
https://doi.org/10.1093/nar/gky905
https://doi.org/10.1007/978-1-4939-7562-4_13
https://doi.org/10.1007/BF03401761
https://doi.org/10.1126/science.7536344
https://doi.org/10.1126/science.7536344
https://doi.org/10.1080/15476286.2015.1020271
https://doi.org/10.1038/srep34985
https://doi.org/10.1016/j.cca.2017.01.025
https://doi.org/10.1016/j.canlet.2016.12.006
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.18632/oncotarget.11251
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/nar/gkr1009
https://doi.org/10.1145/1242572.1242610
https://doi.org/10.1145/1242572.1242610
https://doi.org/10.1093/database/bay044
https://doi.org/10.1186/1752-0509-8-S3-S3
https://doi.org/10.1186/s13059-014-0571-3
https://doi.org/10.1186/s13059-014-0571-3
https://doi.org/10.3389/fgene.2013.00283
https://doi.org/10.1261/rna.043687.113
https://doi.org/10.1093/nar/gki033
https://doi.org/10.1038/nature11993
https://doi.org/10.1038/280339a0
https://doi.org/10.1038/nbt.2890
https://doi.org/10.1016/S0140-6736(09)60491-8
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1093/nar/gku1011
https://doi.org/10.1016/j.jbiotec.2016.09.011
https://doi.org/10.1261/rna.047126.114
https://doi.org/10.1038/nsmb.2959
https://doi.org/10.1093/nar/gkx891

Leietal.

Predicting circRNA-Disease Associations

Lin, D. (1998). “An information-theoretic definition of similarity;” in Proceedings
of the fifteenth international conference on machine learning (San Francisco CA,
USA: Morgan Kaufmann Publishers Inc.).

Lin, E-M,, Hsu, S.-D., Liu, Y.-C., Huang, H.-D., Sun, C.-H,, Li, J.-R,, et al. (2015).
CircNet: a database of circular RNAs derived from transcriptome sequencing
data. Nucleic Acids Res. 44, D209-D215. doi: 10.1093/nar/gkv940

Liu, Y., Wang, S. L., and Zhang, J. F. (2018). Prediction of microbe-disease
associations by graph regularized non-negative matrix factorization. J. Comput.
Biol. 25. doi: 10.1089/cmb.2018.0072

Memczak, S., Jens, M., Elefsinioti, A., Torti, E, Krueger, J., Rybak, A., et al. (2013).
Circular RNAs are a large class of animal RNAs with regulatory potency. Nature
495, 333-338. doi: 10.1038/nature11928

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M., et al. (2008). “One-
class collaborative filtering,” in Proceedings of the 2008 Eighth IEEE international
conference on data mining (Washington DC, USA: IEEE Computer Society).
doi: 10.1109/ICDM.2008.16

Panda, A. C,, De, S., Grammatikakis, I., Munk, R., Yang, X., Piao, Y., et al. (2017).
High-purity circular RNA isolation method (RPAD) reveals vast collection of
intronic circRNAs. Nucleic Acids Res. 45, e116. doi: 10.1093/nar/gkx297

Pasman, Z., Been, M. D., and Garcia-Blanco, M. A. (1996). Exon circularization in
mammalian nuclear extracts. RNA (Berlin Heidelberg: Springer), 2, 603-610.

Pinero, J., Bravo, A., Queralt-Rosinach, N., Gutierrez-Sacristan, A., Deu-Pons, J.,
Centeno, E., et al. (2017). DisGeNET: a comprehensive platform integrating
information on human disease-associated genes and variants. Nucleic Acids
Res. 45, D833-d839. doi: 10.1093/nar/gkw943

Qu, S, Yang, X, Li, X., Wang, ], Gao, Y, Shang, R., etal. (2015). Circular RNA: anew star
of noncoding RNAs. Cancer Lett. 365, 141-148. doi: 10.1016/j.canlet.2015.06.003

Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., and Kleinschmidt, A. K. (1976).
Viroids are single-stranded covalently closed circular RNA molecules existing
as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. U.S.A. 73, 3852
3856. doi: 10.1073/pnas.73.11.3852

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). “Collaborative
filtering recommender systems,” in The adaptive web. Eds. B. Peter, K. Alfred,
and N. Wolfgang (Springer Berlin Heidelberg: Springer-Verlag), 291-324. doi:
10.1007/978-3-540-72079-9_9

Van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction
profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036
3043. doi: 10.1093/bioinformatics/btr500

Veronesi, U., Boyle, P., Goldhirsch, A., Orecchia, R., and Viale, G. (2005). Breast
cancer. Lancet 365, 1727-1741. doi: 10.1016/S0140-6736(05)66546-4

Wilusz, J. E., and Sharp, P. A. (2013). Molecular biology. A circuitous route
to noncoding RNA. Science (New York, N.Y.) 340, 440-441. doi: 10.1126/
science.1238522

Xu, Z., Yan, Y., Zeng, S., Dai, S., Chen, X., Wei, J., et al. (2017). Circular
RNAs: clinical relevance in cancer. Oncotarget 9, 1444-1460. doi: 10.18632/
oncotarget.22846

Yao, D., Zhang, L., Zheng, M., Sun, X,, Lu, Y., and Liu, P. (2018). Circ2Disease:
a manually curated database of experimentally validated circRNAs in human
disease. Sci. Rep. 8, 11018-11018. doi: 10.1038/s41598-018-29360-3

Yu, G, Wang, L. G, Yan, G. R,, and He, Q. Y. (2015). DOSE: an R/Bioconductor
package for disease ontology semantic and enrichment analysis. Bioinformatics
31, 608-609. doi: 10.1093/bioinformatics/btu684

Zeng, Y., Xu, Y., Shu, R., Sun, L, Tian, Y., Shi, C,, et al. (2017). Altered
expression profiles of circular RNA in colorectal cancer tissues from
patients with lung metastasis. Int. . Mol. Med. 40, 1818-1828. doi: 10.3892/
ijmm.2017.3189

Zhao, Z., Li, X., Jian, D., Hao, P, Rao, L., and Li, M. (2017). Hsa_circ_0054633
in peripheral blood can be used as a diagnostic biomarker of pre-diabetes
and type 2 diabetes mellitus. Acta Diabetol. 54, 237-245. doi: 10.1007/
500592-016-0943-0

Zhao, Z., Wang, K., Wu, E, Wang, W.,, Zhang, K., Hu, H., et al. (2018).
circRNA disease: a manually curated database of experimentally supported
circRNA-disease associations. Cell Death Dis. 9, 475-475. doi: 10.1038/
$41419-018-0503-3

Zhong, Z., Lv, M., and Chen, J. (2016). Screening differential circular RNA
expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/
miR-107-CDK6 pathway in bladder carcinoma. Sci. Rep. 6,30919. doi: 10.1038/
srep30919

Zhou, Y., Song, B., and Zheng, H.-T. (2015). Exploiting latent relations between users
and items for collaborative filtering. Springer Nature Switzerland AG: Springer
International Publishing, 365-374. doi: 10.1007/978-3-319-26555-1_41

Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. (2008). Large-scale parallel
collaborative filtering for the Netflix prize. Springer Berlin Heidelberg, 337-348.
doi: 10.1007/978-3-540-68880-8_32

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Lei, Fang and Guo. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org

20

September 2019 | Volume 10 | Article 897


https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/nar/gkv940
https://doi.org/10.1089/cmb.2018.0072
https://doi.org/10.1038/nature11928
https://doi.org/10.1109/ICDM.2008.16
https://doi.org/10.1093/nar/gkx297
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1016/j.canlet.2015.06.003
https://doi.org/10.1073/pnas.73.11.3852
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1016/S0140-6736(05)66546-4
https://doi.org/10.1126/science.1238522
https://doi.org/10.1126/science.1238522
https://doi.org/10.18632/oncotarget.22846
https://doi.org/10.18632/oncotarget.22846
https://doi.org/10.1038/s41598-018-29360-3
https://doi.org/10.1093/bioinformatics/btu684
https://doi.org/10.3892/ijmm.2017.3189
https://doi.org/10.3892/ijmm.2017.3189
https://doi.org/10.1007/s00592-016-0943-0
https://doi.org/10.1007/s00592-016-0943-0
https://doi.org/10.1038/s41419-018-0503-3
https://doi.org/10.1038/s41419-018-0503-3
https://doi.org/10.1038/srep30919
https://doi.org/10.1038/srep30919
https://doi.org/10.1007/978-3-319-26555-1_41
https://doi.org/10.1007/978-3-540-68880-8_32
http://creativecommons.org/licenses/by/4.0/

'." frontiers
in Genetics

METHODS
published: 09 October 2019
doi: 10.3389/fgene.2019.00937

OPEN ACCESS

Edited by:

Quan Zou,

University of Electronic Science
and Technology of China, China

Reviewed by:

Lei Deng,

Central South University,
China

Liang Cheng,

Harbin Medical University,
China

*Correspondence:
Xuequn Shang
shang@nwpu.edu.cn

Specialty section:

This article was submitted to
Bioinformatics and
Computational Biology,

a section of the journal
Frontiers in Genetics

Received: 14 July 2019
Accepted: 05 September 2019
Published: 09 October 2019

Citation:

Hu J, Gao Y, Li J and Shang X (2019)
Deep Learning Enables Accurate
Prediction of Interplay Between
IncRNA and Disease.

Front. Genet. 10:937.

doi: 10.3389/fgene.2019.00937

Check for
updates

Deep Learning Enables Accurate
Prediction of Interplay Between
InNcRNA and Disease

Jialu Hu'23, Yiqun Gao', Jing Li* and Xuequn Shang'**

7 School of Computer Science, Northwestern Polytechnical University, Xi’an, China, ? Centre for Multidisciplinary
Convergence Computing, School of Computer Science, Northwestern Polytechnical University, Xi’an, China,

3Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Xi’an, China, * Ming De
College, Northwestern Polytechnical University, Xi’an, China

Many studies have suggested that INcRNAs are involved in distinct and diverse biological
processes. The mutation of INcRNAs plays a major role in a wide range of diseases.
A comprehensive information of INCRNA-disease associations would improve our
understanding of the underlying molecular mechanism that can explain the development
of disease. However, the discovery of the relationship between INcRNA and disease
in biological experiment is costly and time-consuming. Although many computational
algorithms have been proposed in the last decade, there still exists much room to improve
because of diverse computational limitations. In this paper, we proposed a deep-learning
framework, NNLDA, to predict potential INcRNA-disease associations. We compared it
with other two widely-used algorithms on a network with 205,959 interactions between
19,166 IncRNAs and 529 diseases. Results show that NNLDA outperforms other existing
algorithm in the prediction of INncBRNA-disease association. Additionally, NNLDA can
be easily applied to large-scale datasets using the technique of mini-batch stochastic
gradient descent. To our best knowledge, NNLDA is the first algorithm that uses deep
neural networks to predict INcBRNA-disease association. The source code of NNLDA can
be freely accessed at https://github.com/gao793583308/NNLDA.

Keywords: IncRNA, neural network, large dataset, non-linear, computational model

INTRODUCTION

There are about 30,000-40,000 protein-coding genes in the human genome, which are only about
twice as many as in worm or fly (Lander et al., 2001). But the majority of the human genome
transcripts are non-coding RNAs, in particular, long non-coding RNAs (IncRNAs) (Geng et al.,
2013). Protein-coding genes account for only 1.5% of the human genome. However, researchers
observed a total of 62.1% and 74.7% of the human genome to be covered by either processed
or primary transcripts respectively (Djebali et al., 2012). This suggests that IncRNA also plays
an important role in biological processes. Recent studies revealed that numerous sets of non-
coding RNA involved in distinct and diverse biological processes, such as cell proliferation, RNA
binding complexes, immune surveillance, ESC pluripotency, neuronal processes, morphogenesis,
gametogenesis, and muscle development (Mitchell et al., 2009). Furthermore, some important
IncRNA biomarkers were found in a wide range of human diseases. For example, the expression
of HOTAIR would induce androgen-independent (AR) activation, which plays a central role in
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establishing an oncogenic cascade that drives prostate cancer
progression. It can also drive AR-mediated transcriptional
programs in the absence of androgen (Zhang et al., 2015). So
finding the relationship between IncRNA and disease can not
only help us understand the mechanism of disease, but also
accelerate the discovery of biomarker. However, discovering
the potential relationship between IncRNA and disease by
experimental ways are costly and time-consuming. Thus,
many computational models have been proposed to predict
potential connection patterns by utilizing existing data such as
LncRNADisease (Geng et al., 2013), LncRNAdb (Cheng et al,,
2015), and NONE-CODE (Cheng et al., 2015).

The existing computational models can be divided into
two categories. The first class of methods make predictions
based on the similarity of artificial definitions. It assumed that
similar diseases or IncRNA have similar connection patterns.
Take a simple example, if we know that disease(i) is related
to IncRNA(i) and disease(i) and disease(j) are very similar. It’s
obvious that we can infer that disease(j) and IncRNA(i) are also
related. This algorithm needs to collect a lot of additional data
to accurately define similarity. If the definition of similarity
is accurate, the algorithm can achieve high performance. For
example, LncRDNetFlow utilizes a flow propagation algorithm
to integrate multiple networks based on a variety of biological
information including IncRNA similarity, protein-protein
interactions, disease similarity, and the associations between
them to infer IncRNA-disease associations (Zhang et al.,
2017a). IRWRLDA construct IncRNA expression similarity
and IncRNA functional similarity to make prediction (Chen
et al., 2016). RWRIncD infer potential human IncRNAdisease
associations by implementing the random walk with restart
method on a IncRNA functional similarity network (Sun et al.,
2014). BiWalkLDA integrating interaction profiles and gene
ontology information to construct similarity network. Such an
algorithm also has KATZLGO (Zhang et al., 2017b) and IDHI-
MIRW (Fan et al., 2019). It can be seen that this algorithm first
constructs the similarity network based on the relevant data and
then making prediction according to the constructed similarity.
The second class of methods make predictions based on matrix
factorization (MF). Their core idea is to learn a similarity
rather than artificial definition similarity. This actually turns
the prediction process into a classification question. For each
IncRNA and disease, the aim of MF is to learn a latent factor
to represent them and then make prediction based on learned
latent factors. In this way, no additional knowledge is needed
to define similarity. This method is widely used in prediction
IncRNA-disease association. For example, the algorithm of
MFLDA decomposes data matrices of heterogeneous data
sources into low-rank matrices via matrix tri-factorization to
explore and exploit their intrinsic and shared structure (Fu
etal., 2017). SIMCLDA models the IncRNA-disease association
prediction problem as a recommendation task and solves it
with inductive matrix completion (IMC) (Lu et al., 2018).

The known IncRNA-disease association data used by current
algorithms is derived from LncRNADisease (Geng et al., 2013).
This database was proposed in 2013 and does not contain much
IncRNA and disease (almost 300 IncRNA and 700 diseases).

Because the data is relatively small, even though the existing
prediction algorithms can achieve high accuracy, many results
are repetitive and therefore cannot provide more valuable
results. Fortunately, recently, a larger dataset LncRNADisease
2.0 can be used (Bao et al., 2019). LncRNADisease 2.0 curated
19,166 IncRNAs, 823 circRNAs, and 529 diseases from 3878
literatures. Although the form of data remains unchanged, only
the increase in the amount of data makes previous algorithms
not applicable to LncRNADisease 2.0. For methods that need to
artificially define similarity, it is difficult to collect the additional
information needed comprehensively in the face of such large
data. So, it is difficult to define an appropriate similarity for
prediction. For the method based on ME, the time cost of the
algorithm is unacceptable with the increase of data. Besides, MF
is actually a linear model of latent factors, so it cannot describe
more complex relational patterns well (He et al., 2017). As we
all know, deep learning can be applied to large-scale data and
learn complex non-linear relationships by means of mini-batch
stochastic gradientdescentand and nonlinear activation function.
In recent years, deep neural networks have yielded immense
success on object detection (Ren et al., 2017), recommendation
System (Zhou et al., 2017), single cell denoising (Eraslan and
Simon, 2019; Peng et al., 2019), and many other fields. However,
no deep learning-based algorithm has been proposed to predict
potential IncRNA-disease association. In this article, we will
introduce our proposed framework NNLDA which uses neural
networks to predict IncRNA-disease association. To our best
knowledge, NNLDA is the first algorithm that uses deep neural
networks to predict IncRNA-disease association. Experiments
show that NNLDA can be well applied to large data and to learn
more complex non-linear relationships.

METHOD

Our prediction framework NNLDA is improved based on the
MF method. In this section, I will first introduce the method of
MF and point out its shortcomings. Then, we will explain how
we solve these shortcomings and introduce the procedure of
NNLDA in detail.

Matrix Factorization (MF)

MF is a frequently used method in the problem of predicting
IncRNA-disease association (Fu et al., 2017; Lu et al., 2018).
Its core idea is to learn a corresponding latent factor for each
IncRNA and disease. The dot product of the latent factor was
used to represent the possible score of corresponding IncRNA
and disease. Take the prediction of IncRNA-disease association,
for example. First, we should construct an adjacency matrix
A, Where n; is the number of IncRNA and 7, is the number
of diseases. A; = 1 represents that the i IncRNA is associated
with d, otherwise, A; = 0. Then, we assign a k-dimensional latent
factor L(i) for each IncRNA(i) and a k-dimensional latent factor
D(i) for each disease(i). These latent factors are usually randomly
initialized at the beginning and then be adjusted by some
optimization algorithm such as stochastic gradient descent. Now,
we can use the dot product of the latent factor to re-estimate A.
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For each pair of IncRNA(i) and disease(j), we predict its
u k
association using A; =2 L,,D,; . Our objective funcition is
n=1

to minimize the following loss function:

5= 3 5 0

A new L and D can be learned by minimizing loss. This
loss is actually equivalent to Loss=||A—LD|[%, which was
frequently used in other literatures because the dot product
of vectors can be seen as the angle of vectors in space (a-b =
|a||b|cos(a,b)). So, matrix factorization actually maps each
IncRNA and disease into k-dimensional space and then defines
the relationship between IncRNA and disease by using the
length and angle of the latent factor. However, there are several
shortcomings in doing so: (1) There are limitations in utilizing
the angle between latent factor to define the relationship
between IncRNA and disease. Take two-dimensional space as
an example, suppose we now learn three latent factors: a,(1,0),
a,(0,1), a5(1,1), if we also have latent factor a, and we want the
angle between a, and a,, a, to be as small as possible, but the
angle between a, and a4 to be as large as possible. Obviously,
no matter where a, is, it can’t be satisfied. Of course, we can
describe this relationship by adding spatial dimensions, but the
increase of k actually increases the risk of over-fitting. It can
be concluded that angle can’t actually describe some complex
relationship patterns perfectly. (2) The time complexity of
matrix decomposition is too high. When calculating the loss,
it needs to calculate all possible connections between IncRNA
and disease. As the amount of data increases, the time required
is unacceptable. Besides directly optimizing, global loss is easy
to fall into local minima.

Making Matrix Factorization Applicable

to Large Data

In order to make the matrix factorization method suitable for
large-scale data, we made some improvements to the original
method and implemented the method with tensorflow. We named

this method NNMF, which is different from the traditional MF
method in two aspects:

(1) Unlike previous MF, full data is used to minimize loss. We
adopt mini-batch stochastic gradient descent to train model.
This means that we use only one batch data per round to
minimize loss, which makes our algorithm suitable for large-
scale data.

(2) The traditional matrix factorization uses mean square
error or absolute value error to measure loss. Its goal is to
min||A—LD||;. In NNME we use cross-entropy as our
loss function, which is proved to be more applicable to
classification problems and easier to optimize.

With above two improvements, NNMF can be adapted to
large-scale data. The structure of the network and an example
of computational processes are shown in Figure 1. NNMF takes
IncRNA(i) and disease(j) as its input and outputs the probability
of the relationship between IncRNA(i) and disease(j). First,
the network generates a dense latent factor for corresponding
IncRNA(i) and disease(j). This operation is done by embedding
lookup function in tensorflow. Then, the corresponding position
elements of the two vectors are multiplied and summed. Sigmoid
activation functions are added to limit output to between 0 and
1. With the predicted results, we can calculate the cross-entropy
loss to adjust the corresponding latent factor. To avoid storing
the whole data set into memory each time we take a batch data to
train, the batch size is set to 1,024. This process is repeated until
the loss is no longer reduced. NNMF changes the way of training
and the loss function compared with the traditional matrix
decomposition algorithm. With these small changes, NNMF can
be adapted to large-scale data easily.

Learning More Complex Relationships

by Using Full Connectivity Layer

Matrix factorization actually maps IncRNA and disease into
k-dimensional space, and then measures their relationship by
using dot product of latent factors. This approach undoubtedly
has its limitations. In order to learn more complex non-linear
features, a natural idea is to use the full connection layer of the

Predict result

T sum

‘ MF layer l

Multiplieation of Corres ding Elements

A

Disease dense feature ‘

Disease(i)

B sigmoid(-0.2 + 0.4 - 0.1) = 0.52
[ -02]04]-01 |
‘ LncRNA dense feature ‘ ‘ 0.1]02]0.1 ‘ ‘ -212]-1 ‘
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FIGURE 1 | (A) The structure of NNMF. Each IncRNA and disease is projected into a k-dimensional space. It means each INcRNA and disease would be
represented by a corresponding k*1 eigenvector. The relationship between INcRNA and disease is measured by the dot product of their corresponding eigenvector.
The activation function is sigmoid. (B) A toy example of the NNMF, where k is set to 3.
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neural network to improve it. Similar to the NNMF process, Implementation
we initialize a latent factor for each IncRNA and disease at the NNLDA is implementedin Python 3.5and uses TensorFlow1.12.0.
beginning. Then, we concatenated the latent factors and add  Length of latent factor is set to 32. Three full-connection layers

full connection layers to learn more complex relationships.  with lengths of 32, 16 and 8 are added in deep part. L2 regulation
RelU activation function is used on each full connection layer  jsadded in all full-connection layers and latent factors to prevent
to increase the non-linear description ability of the network. over-fitting and regulation rate is set to 0.01. We use adam for

Sigmoid activation functions are added to limit output to between optimization with learning rate 0.01. Epoch is set to 100 and
0 and 1. Considering that using full connection layer alone may batch size is set to 1024.

increase the risk of over-fitting. We adopt the following two

strategies to prevent over-fitting: EXPERIMENT

(1) Add L2 regularization to latent factors and full connection

layer to limit models from learning too complex features. Da_taset‘ ) )
(2) The deep part s trained together with NNME In this way, we Unlike previous algorithms which usually perform on small data
sets such as LncRNADisease database, we use LncRNADisease

2.0 to measure the results of the algorithm. LncRNADisease
2.0 shows that there exists 205,959 interactions between 19,166
We name this new model NNLDA. It means predicting  IncRNAs and 529 diseases. We believe that more valuable results
IncRNA-disease association by means of neural networks.  can be found by using larger data. Such large-scale data also
The overall structure of NNLDA is shown in Figure 2. First,  challenges previous algorithms. The experimental data can be
for each IncRNA and disease, we will find their corresponding ~ downloaded from http://www.rnanut.net/Incrnadisease/. We
latent factors. MF part multiplies the corresponding elements ~ remove all repeating records with the same IncRNA and disease,
of latent factors and deep part use several full-connection layers ~ and all these non-human associations. Finally, we retained 187,55
to learn the complex relationship between IncRNA and disease. ~ IncRNA and 463 disease with 177,899 associations.
Their results are concatenated together and connected to a . .
full connection layer for final prediction. Sigmoid activation ~ 10-Fold Cross Validation
function is added to limit output to between 0 and 1. NNLDA  To test the algorithm performance, we employed a widely-used
learns more complex relational patterns by combining dot strategy, 10-fold cross validation. Known IncRNA and disease
product of latent factors and full connectivity layer. Because  associations are divided into 10 copies. In each round, nine of
NNLDA uses mini-batch stochastic gradient descent to  themare used to train algorithms and the remaining one is used
minimize loss, it can also be well applied to large-scale data. We ~ as a test set. Notice that we need negative samples to train the
believe that NNLDA can perfectly solve the shortcomings of ~ algorithm, but in fact we don’t know which IncRNAs are not
traditional MF methods. associated with diseases. So, for each known LncRNA-disease,

cannot only learn more diverse connection relationships, but
also improve the generalization ability of the model.

Prediction results

™ b T iy Sy

Disease dense feature | LncRNA dense feature

concatenation

1 MF layer deep Ia);ér ‘
onm ; Deep part
|Lgeeg yer |
MF part A deep layer ‘

MF layer

Disease dense feature ‘ | LncRNA dense feature ‘
Disease(i) LncRNA()

FIGURE 2 | The structure of NNLDA. MF part is same as NNMF. Deep part use several full connection layers to learn complex association relationships. Their
results are concatenated together to make final predictions.
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we will randomly sample four IncRNA that do not interact by
this disease as negative samples. When predicting test sets, we
no longer use AUC as an evaluation criterion. This is because
AUC needs to compute all possible associations. This means
that if there are n IncRNA and m disease, we need to calculate
n*m possible cases and then generate a rank list. It’s obvious
that it’s unrealistic when the data set is large. So we adopt a
new evaluation strategy. For each test sample, we will sample
99 random IncRNA that not interact by this disease. The model
scores 99 negative samples and one positive sample to generate
the corresponding rank list. Then, we use Hit Ratio (HR) to
assessment results. The HR intuitively measures whether the
test item is present on the top-k rank list and we can interpret
HR (K) as the probability of positive samples appearing in top-k
rank list. If the test sample is in the first k of rank list, its value
is plus one. The hit rate value can be obtained by dividing the
final hit value by the number of test samples. The higher the hit
rate, the higher the likelihood that true sample will appear in the
top-k rank list.

The Effects of Parameters

Length of Latent Factors

In the first step of NNMF and NNLDA, both IncRNA and disease
need to be mapped into a k-dimensional vector. This vector is
called latent factors. Here, k is an artificially defined parameter
and represents the dimension of feature space. If the value of
k is very small, the model cannot learn complex relationships.
If the value of k is big, the risk of over-fitting of the model
increases. In order to test possible effects on the performance of
the algorithm under different value of k, we changed the value of
kin 8, 16, 32, 64, and 128 each time, and then calculated the HR
10. Because KNN does not use latent factors, we only compared
NNMEF and NNLDA here. The experimental results show in
Figure 3. The result shows that the length of latent factors don’t
actually have much impact on the hit ration. This is because
we added L2 regularization to latent factors. Even if the length
of latent factors increases, it will not be over-fitting data. If no

regularization is added, the loss of the model decreases rapidly
and over-fitting will occur soon.

Number of Layers

We used several full-connection layers in deep part to learn more
complex relationships. More layers can theoretically learn more
complex models, which also increases the risk of over-fitting.
In order to test the possible effect of number of layers on the
performance of the algorithm. We changed the number of layers
in 1-layer (32), two-layer (32 and 16), three-layer (32, 16, and
8) and four-layer (32, 16, 8, and 4), and calculate the hit ration
value. The experimental results are shown in Figure 4. It can be
seen that increasing the number of layers of the network will not
greatly improve the effectiveness of the algorithm. Algorithm
performance is poor when the number of layers is 4. This shows
that even if we use L2 regularization to prevent over-fitting, the
number of layers of the network should not be too big.

Comparison With Other Algorithms

Because we use LncRNADisease 2.0 to compare the performance
of our algorithm. Traditional algorithms cannot be applied to
such large dataset. So, although many computational models
have been proposed, they cannot be used for comparison. We
have made some changes to the traditional algorithm. NNMF
can be seen as a matrix factorization algorithm suitable for
large-scale data. For algorithms that need to define similarity
artificially, we implement an algorithm manually based on the
idea of KNN. The specific process is as follows: First, we calculate
the gauss similarity between diseases which is widely used in
other papers. Then for each disease, we will find 40 diseases that
are most similar to it and use their average interaction profile to
make predictions.

We compare NNLDA with other two computational methods
(NNMF and KNN) of IncRNA-disease association prediction
in terms of HR. All algorithms use the same data to make
predictions. The experimental results are shown in Figure 5. It
can be seen that the performance of KNN is very poor. This is

0.66 T T T
0.65
0.658 b
- 0.6 -
0.656 - ) b
i i 0.55 F
0.654 b
05
0.652 b
o « 045F
® o6s5 ®
: 4 L
DI: x o4
0.648 035
0.646 | 0.3}
L 1 4-layers
0.644 —— 0.25 3-layers| 7
L i i 2-layers
0.642 NNMF 0.2 1-layers| 1
0.64 - . . 0.15 1 L L . . L L .
8 16 82 64 128 1 2 3 4 5 6 7 8 9 10
length of latent factors K
FIGURE 3 | HR @ k Three Algorithms under Different value of k. FIGURE 4 | Effects of lengths of latent factors.
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FIGURE 5 | Effects of lengths of latent factors.

because similarity-based algorithms need to artificially define
the similarity between diseases and then make predictions based
on similarity. As the amount of data increases, additional data
becomes more and more difficult to obtain. Because of this,
it is difficult to define an accurate and reasonable similarity.
So, the performance of this algorithm is limited by similarity.
Comparing NNLDA and NNME we can find that NNLDA
outperforms NNMF in all k values. In fact, NNLDA can be seen
as model fusion of NNMF and full connectivity layer. This shows
that more complex connection relationships can be learned by
using the full-connection layer.

CONCLUSION

Many recent studies suggest that IncRNAs are strongly associated
with various complex human diseases. Therefore, the discovery of
the potential association between IncRNA and diseases helps to
understand the biological processes and underlying mechanisms
of diseases. Many prediction algorithms have been proposed to
predict IncRNA-disease association. Although the algorithm
can achieve high accuracy, traditional prediction algorithms
can no longer be applied to more and more large-scale data.
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A promoter is a short region of DNA (100-1,000 bp) where transcription of a gene
by RNA polymerase begins. It is typically located directly upstream or at the 5’ end
of the transcription initiation site. DNA promoter has been proven to be the primary
cause of many human diseases, especially diabetes, cancer, or Huntington’s disease.
Therefore, classifying promoters has become an interesting problem and it has attracted
the attention of a lot of researchers in the bioinformatics field. There were a variety of
studies conducted to resolve this problem, however, their performance results still require
further improvement. In this study, we will present an innovative approach by interpreting
DNA sequences as a combination of continuous FastText N-grams, which are then fed
into a deep neural network in order to classify them. Our approach is able to attain a
cross-validation accuracy of 85.41 and 73.1% in the two layers, respectively. Our results
outperformed the state-of-the-art methods on the same dataset, especially in the second
layer (strength classification). Throughout this study, promoter regions could be identified
with high accuracy and it provides analysis for further biological research as well as
precision medicine. In addition, this study opens new paths for the natural language
processing application in omics data in general and DNA sequences in particular.

Keywords: DNA promoter, transcription factor, word embedding, convolutional neural network, natural language
processing, precision medicine

INTRODUCTION

A promoter is a region of DNA where RNA polymerase begins to transcribe a gene. Normally,
promoter sequences are typically located directly upstream or at the 5’ end of the transcription
initiation site (Lin et al., 2018). Both promoters and transcription initiation sites are bound by RNA
polymerase and the necessary transcription factors. Promoter sequences describe the direction of
transcription and point out which DNA strand will be transcribed (known as sense strand). The
transcription process is shown in Figure 1, which contains two steps: turning on and turning off
genes. In these two stages, promoters receive information from RNA polymerase to decide the
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FIGURE 1 | Process of promoters in transcription. (A) The gene is essentially
turned off. The repressor is not inhibited by lactose and binds to operator, then
promoter is bound to make lactase; (B) the gene is turned on. The repressor is
inhibited by lactose, then the promoter is bound by the RNA polymerase and
express the genes to synthesize lactase. Finally, the lactase will digest all of the
lactose, until nothing binds to the repressor. The repressor will then bind to the
operator, stopping the manufacture of lactase.

manufacture of lactase. Promoters can be about 100-1,000
base pairs long. There are three elements of promoters in
eukaryotic cells, such as core promoter, proximal promoter,
and distal promoter. Each of them plays a different role in
DNA transcription and RNA polymerase. Many recent studies
suggested that DNA promoters may be the primary cause of
many human diseases, especially diabetes (Déhr et al., 2005;
Tonescu-Tirgoviste et al., 2015) or Huntington’s disease (Coles
et al., 1998).

Owing to the huge importance of promoters in genetics and
human diseases, the detection of them is an essential problem
in genome research. A lot of efforts had been made to address
this issue, from researchers with wet-lab, experimental, and
computational techniques. One of the most important techniques
is to detect the promoters based on TATA box, which is a motif
that contains 24% of promoter genes in eukaryotes. Examples
of this approach include: Promoter Scan (Prestridge, 1995)
built a scoring profile by combining a weighted matrix for
scoring a TATA box; Promoter2.0 (Knudsen, 1999) combined
genetic algorithms and elements similar to neural networks to
recognize promoter regions; Reese (2001) annotated promoters
in the Drosophila melanogaster genome using a time-delay
neural network; and (Down and Hubbard, 2002) combined
TATA box with flanking regions of C-G enrichment. Later, some
approaches focused on addressing this problem with spatial
information of the base pairs in the sequences. There are some
examples in this case: PromoterInspector identified promoters,
based on the genetic context of promoters rather than their
exact location; MCPromoterl.1 (Ohler et al., 1999) identified
promoters based on three interpolated Markov chains (IMCs)
of a different order. Moreover, the location of GpG islands
had been used to predict the promoters region, as shown

in Ioshikhes and Zhang (2000), Davuluri et al. (2001), and
Ponger (2002).

Over the past decade, with the development of NGS
technology, a large number of sequences was transcribed, which
motivates researchers to build their predictors on sequence
information. Similarly for promoters, it is necessary and urgent
to develop highly efficient prediction techniques on it. Some
notable research have been reported in the identification of
promoters using sequence information. For instance (Li and Lin,
2006) recognized and predicted 670 promoters in Escherichia
coli K-12 by using position-correlation scoring matrix (PCSM)
algorithm. This problem has been improved upon using variable-
window Z-curve composition (Song, 2011) and six local DNA
structural properties (Lin et al., 2018). Yang et al. (2017) exploited
sex cell types and word embedding to identify enhancer—
promoter interaction. Two types of promoters (654 and ¢28)
were identified by integrating DNA duplex stability into neural
networks (de Avila e Silva et al., 2014). Later, (Lin et al., 2014)
identified 054 promoters using PseKNC, which is an advanced
feature in bioinformatics fields. PseKNC had been used in
the latter applications to classify promoter’s types (Liu et al.,
2017) and promoter’s strength (Xiao et al., 2018). The promoter
strength of Escherichia coli 70 has been also predicted in
Bharanikumar et al. (2018) with use of respective position weight
matrices (PWM). Deep convolutional neural networks have been
used to identify promoters using sequence information, such as
recognition of prokaryotic and eukaryotic promoters (Umarov
and Solovyev, 2017).

Identifying promoters, especially their strength, is an
important problem in this aspect and latest research (Xiao et al.,
2018) has achieved an accuracy of 83.13 and 71.20% for two
layers, respectively. However, the performance results are not
satisfactory and requires a lot of efforts from bioinformatics
researchers to enhance the accuracy. A novel approach, proposed
in this study, aims to address this problem. Our idea is based
upon the natural language processing (NLP) field which classifies
the text/sentence into its appropriate scenario. Therefore, we
would like to apply it to bioinformatics to interpret the hidden
information of DNA sequences (represented by promoters).
Opver the past decade, some researchers have successfully applied
NLP techniques into biological sequences. One of the pioneering
studies is from Asgari and Mofrad (2015) and it had been applied
successfully in many later bioinformatics applications (Habibi
et al., 2017; Hamid and Friedberg, 2018; Oztiirk et al., 2018).
However, most studies used the Word2Vec model or FastText
model with a single level of N-gram. Here, a novel approach is
presented, in which we used a combination of FastText N-grams
to represent the DNA sequences. With this idea, we are able to
take into account the sub-word information of DNA sequences
as well as many N-gram levels in order to aid the increase in
the predictive performance. Another point is the use of deep
learning to take advantage of the numerous promoter sequences
in this problem.

We listed some key contributions of this study which are
as follows: (1) a computational model for classifying promoters
which achieved better performance than the previous methods;
(2) a novel method for generating hidden information of
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DNA sequences by incorporating a combination of FastText N-
grams and deep learning; (3) a study that provides significant
information for researchers and biologists to better understand
the promoter’s functions; and (4) a basis for further study that
would apply the FastText model and deep learning architecture
in solving the bioinformatics problem. Here we deal with these
contributions clearly in the following sections.

METHODS

Under the operation of a specifically designed pipeline, an overall
flowchart of our approach is presented in Figure 2. Each of the
experimental steps of this proposed pipeline will be sequentially
addressed in the following subsections.

Benchmark Dataset

Collecting a high-quality dataset is one of the most important
steps to address a bioinformatics problem. In this study,
we re-used the benchmark dataset from Xiao et al. (2018)
to objectively assess the difference in performance between
our model and other existing ones. In this dataset, they
collected all experimentally—confirmed promoter sequences

from RegulonDB (Gama-Castro et al., 2015), which is a huge
database of the regulatory network of gene expression. These
sequences were categorized into two groups: strong and weak
promoters based on their levels in transcription activation and
expression. They also extracted non-promoter sequences by
considering intron, exon, and intergenic sequences excluding the
positive sequences. After that, the CD-HIT [26] was also used to
exclude the pairwise sequences whose similarities were calculated
to be more than 85%.

The benchmark dataset encompasses 3,382 promoter samples
and 3,382 non-promoter samples. In 3,382 promoter samples,
there are 1,591 strong promoter samples and 1,792 weak
promoter samples for construction of second layer classification.
It can be freely downloaded at http://www.jci-bioinfo.cn/
iPSW(2L)-PseKNC/images/Supp.pdf. The whole dataset was
randomly divided into five subsets to perform a 5-fold cross-
validation. The training process was performed using a fixed ratio
of the training set over the validation set of 4:1 with alternation.

DNA Representation With Language Model
A DNA sequence consists of four nucleotides: adenosine (A),
cytidine (C), guanosine (G), and thymine (T). These nucleotides
will combine together to form a definite sequence in the DNA
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1 1 1
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FIGURE 2 | Flowchart of this study. First, we used FastText to train model and extract features from benchmark dataset (Xiao et al., 2018), then combined 10-gram
levels to a combination sets of vectors (1,000 dimensions). Deep neural network was then constructed to learn these vectors and classify the DNA sequences.
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sequence. Feature extraction is an important step in most of the
bioinformatics problems, whereby the main features will help
in discriminating DNA sequences. One of the most common
methods is the use of k-mer. K-mers are described as all the
possible subsequences (of length k) from a read accessed through
DNA sequencing. The number of k-mers possible given a string
of length L is L-k+1, whilst the number of possible k-mers
given n possibilities (four in the case of DNA e.g., ATGC) is
nk. K-mer has been used in a lot of bioinformatics problems
and has achieved promising results. Next, Chou highlighted
PseDNC which has extracted DNA sequences via different ways.
PseDNC has helped to rectify numerous problems relating to
bioinformatics, as compared to using k-mer. Another approach
is the use of language model to represent the information of DNA
sequences. In this approach, DNA sequence will be treated as
a language sentence and then fed into supervised learning for
classification. We can easily list the methods using this approach,
from Word2Vector to FastText. In these approaches, FastText
has been proven to achieve better performance as compared to
Word2Vector or Glove.

FastText Implementation
In order to generate continuous N-grams, we made use of
FastText (Bojanowski et al., 2017), which is a library from
Facebook for representation and classification of text. In
FastText, we can train different language models such as skip-
gram or CBOW and apply a variety of parameters such as
sampling or loss functions. There are a lot of improvements from
Word2Vector to FastText as described in Bojanowski et al. (2017)
and Le et al. (2019a). In this study, each DNA sequence was
treated as a sentence with a lot of words. Moreover, each word
contains a bag of character n-gram. As mentioned in FastTexts
document, they modified the algorithm of Word2Vector whereby
special symbols “and” are added at the boundary of words,
which helps to differentiate prefixes and suffixes from other
character sequences. Moreover, the word itself has been also
included in the n-gram set to learn a representation for each
word (together with character n-grams). To explain the idea,
we used our DNA word “ATGAC” as an example. If we would
like to generate the representation of this word with 3-gram,
they will be consequently: <AT, ATG, TGA, GAC, AC> and
the special sequence <ATGAC>. Here, it is noteworthy that
the representation <TGA>, corresponding to the word “TGA,
is different from the tri-gram “TGA,” derived from the word
“ATGAC.” The reason is because of the potential of extracting
sub-word information in word “TGA” of FastText and it could
help generate more information for each word. The word
generated by FastText could be considered as a continuous bag
of words. In this study, we extracted all the n-grams from 1 to 10
to consider the optimal levels of them.

What makes FastText different from Word2Vector is the sub-
word information, and it is proposed via a scoring function s
as follows:

s(w,c) = Z ngvc

g€Gy

where G is the size of n-grams, G,, ranges from 1 to G, wis a given
word, zg is a vector representation to each n-gram g, v¢ is context
vector. This simple modification allows objective representation
of words, thus helping the model learn reliable representation for
rare words.

Based on the recent successful applications of FastText model
in representing biological sequence (Le, 2019; Le et al., 2019a), we
introduced a more in-depth benchmark method using FastText
to improve this representation. Here we take into account
the combination of continuous N-gram levels, which was not
considered by the previous studies. It means that instead of using
only one level of N-gram and sub-word information, we used a
lot of N-gram combinations and considered which was the best
combination for this problem. A huge advantage of this approach
is that we can have many features for learning. In addition, we
can easily implement feature selection techniques and improve
the performance results in the model.

1D Convolutional Neural Network

In general, CNN is a class of deep neural networks that has been
demonstrated to be exceptionally successful in territories, such
as picture acknowledgment and order. CNN has been fruitful in
computer vision related issues such as face recognition, object
detection, or self-driving cars. CNN appears ready to reproduce
and upgrade these key strides in a bound together structure and
learn various leveled portrayals specifically from crude images.
If we take a convolutional neural organization that has been
prepared to perceive protests inside pictures, then that system
will have built up some inward autonomous portrayals of the
substance and style contained inside a given picture. Since the
input of this problem was a vector, therefore, we used 1D
CNN. Similar to 2D CNN approaches which has been used in
bioinformatics (Le and Nguyen, 2019; Le et al., 2019b; Nguyen
etal., 2019), it consisted of the following layers:

(1) Inputlayer: The input of our model is a 1D vector, which is a
vector of size 1 x 100 (created by FastText model).
Convolutional layer: A 1D convolutional layer (e.g.,
temporal convolution) is used to construct a convolution
kernel and then derive features encoded in the 1D input
vector. The convolutional layer moves in stride over the
input, transforming the values into representative values
via a sliding window. This process helps conserve the
dimensional relationship between numeric values in the
vectors, by gaining beneficial features using small parts of
input data. Since our input size was not big, a kernel size of 3
was applied to figure out more information.

Rectified Linear Unit (ReLU): an additional non-linear
operation is presented after every convolution operation. It
aims to perform non-linear function in our CNN and help
our model understand data better. The output function of
ReLU is as follows:

2

(©)

f (x) = max (0, x) 2)

where x is the number of inputs in a neural network.
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(4) Pooling layer: It is normally added inside the convolutional
layers to reduce the calculation of the next layers. Max
pooling was selected in this step with stride of 2.

(5) Dropout layer: A technique which aims to prevent overfitting
and also help to increase the model’s performance (Srivastava
etal., 2014).

(6) Flatten layer: a layer helps to transform the input matrix into
a vector.

(7) Fully connected layer: is normally inserted by the last stage
of the deep networks. The layer is fully-connected if each
node is connected with all of the previous nodes in the
network. Our problem is to identify between promoter and
non-promoter (or classify strong and weak promoter), thus
it was a binary classification. Therefore, the final number of
nodes in our output is 2.

(8) Softmax is a logistic function defined by the formula:

i

_— 3
Zf:l ek ©

o (2); =

where z is the input vector with K-dimensional vector, o(z); is real
values in the range (0, 1) and ith class is the predicted probability
from sample vector x. It was compulsory to insert Softmax, in
order to determine the probability of each possible output.

Assessment of Predictive Ability

To evaluate the performance of the classifiers that were
constructed by the aforementioned deep learning architecture,
the 5-fold cross-validation technique was implemented. The
average metrics among the five testing sets were determined
in order to compare the performance when constructing the
classifier. We follow Chou’s evaluation criteria which is widely
used in many bioinformatics studies (Chou, 2001; Xiao et al.,
2018; Le et al., 2019a). The criteria includes sensitivity (Sens),
specificity (Spec), accuracy (Acc), and Matthews Correlation
Coeflicient (MCC) which are defined as:

+
Sensitivity = 1 — N 0<Sen<1(4)
o N,
Specificity =1 — N 0 < Spec <1 (5)
N+ Ny
Accuracy =1 — m , 0<Acc<1(6)

NI NI
(%)
N;—N* Nf-NT
\/<1+ *N+*><1+ *Nf)

The relations between these symbols and the symbols in
Equations (4, 5, 6, and 7) are given by:

MCC =

, —1 <MCC < 1(7)

Ny =FP
NT =FN
Nt =TP+ N+
N~ = TN +N;

(8)

True positive (TP) and true negative (TN) are the respective
numbers of correctly predicted promoter and non-
promoter, whereas false positive (FP) and false negative
(FN) are the respective numbers of misclassified promoter
and non-promoter.

Likewise, we also used Receiver Operating Characteristics
(ROC) curve and Area Under Curve (AUC) (Bradley,
1997) as the additional metrics for performance
evaluation. The AUC 1is a probability value ranging
from 0 to 1 in which the greater AUC shows the better
predictive performance.

RESULTS
Optimal Experimental Setup

In this analysis, we attempted to observe the optimal
hyperparameters that were used in this study. Because we
integrated FastText and deep learning model, we chose the best
parameters for both methods. FastText has a lot of different
parameters for training purpose. Many prior research on it
determined that changing these parameters will help to change
the model’s accuracy drastically. Therefore, we would like to
perform a one-by-one strategy to tune up the optimal parameters
in FastText. There are a lot of parameters that may affect the
performance results and we decided to adapt these parameters
such as wordNgrams (max length of word n-gram), Ir (learning
rate), dim (size of word vectors), ws (size of context window),
epoch (number of iterations), and loss (loss function). We used a
basic setting on FastText classifier to perform supervised learning
for text classification. The dataset used in this section helped
distinguish between promoters and non-promoters. In the first
experiment, we would like to examine the effect of different
levels of N-grams (from 1 to 10) on the performance results. The
important measurement metric used in this evaluation is ROC
AUC value. As shown in Figure 3, our classifier could classify
promoters with high performance (AUC ~ 0.9), especially in
two levels: 4-gram and 5-gram. However, the differences were
not significant and it indicates that we can select any level of
N-gram to create a good model for promoter classification.
Table 1 shows the hyperparameters used for tuning the model.
After the tuning process, we also presented the best set of
hyperparameters found: learning rate of 0.1, vector dimension
of 100, context window size of 5, epoch of 100, and softmax
loss function.

The next tuning is from deep learning architecture,
in which we performed a grid search CV on a set of
potential hyperparameters. All of the parameters selected
for tuning in CNN include the number of layers, epochs,
batch sizes, dropout values, weight constant as well as
the optimizer and activation function. After this step,
we identified a set of optimal hyperparameters in CNN
as follows: 64 filter layers, batch size of 100, epoch of
100, dropout of 0.3, weight constraint of 4, adadelta
optimizer, and linear activation. We then used all of the
optimal parameters in the next experiments as well as the
later comparisons.
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FIGURE 3 | Performance results on identifying promoters using different levels
of N-gram. Our classifier could classify promoters with high performance (AUC
~ 0.9), especially at 4-gram and 5-gram levels.

TABLE 1 | Hyperparameters chosen for tuning FastText model.

Parameters Range Stepsize Optimal
Ir 0.05-0.25 0.05 0.1

Dim 50-500 25 100

Ws 1-10 1 5

Epoch 25-500 25 100
Loss [ns, hs, softmax] - softmax

Lr, learning rate; dim, dimension; ws, size of context window; epoch, number of iterations;
loss, loss function.

Effects of Different Levels of N-Gram and
Combination of Continuous N-Grams in

Classifying Promoters

According to the previous section, changing the number of N-
grams did not make significant effect on promoter classification.
It has been also proven in some of the previous works which
used the FastText model (Le, 2019; Le et al., 2019a). However,
one novel idea implemented in this study was to increase the
performance results by using a combination of N-grams. The
idea was to combine all of the N-gram levels into a big set
of features, which will then be fed into classifiers. As such,
our classifier will take full advantage of important features for
each specific N-gram level and remove some less important
features inside all of the levels. The performance results were
shown in detail in Table 2. It is noted that the 5-fold cross-
validation has been performed for several independent iterations
to give a confidence interval for the results. In these results, we
fed all 1,000 features from 10 levels of N-gram into our CNN

TABLE 2 | Comparison between single N-gram and combination of continuous

N-grams.

Methods Sens Spec Acc MCC
Single N-gram 82.43 83.34 82.88 0.658
Combination of N-grams 82.76 88.05 85.41 0.709

Single N-gram, representative by 4-gram; Combination of N-grams, combine 10 levels of
N-gram together.

TABLE 3 | Top-ranked features using MRMD feature selection technique.

No. Feature number Score

1 feature_97 1.0

2 feature_21 0.9170726107858075
3 feature_34 0.9096134637807235
4 feature_92 0.8914645287023287
5 feature_54 0.8463944338892277
6 feature_9 0.8368290059895386
7 feature_41 0.824726606348234
8 feature_8 0.8020998165541897
9 feature_77 0.7714372077391476
10 feature_3 0.7598084 153408637

architecture. It is easy to say that the combination of N-grams
outperforms the single level of N-gram. This method achieved a
sensitivity of 82.76%, specificity of 88.05%, accuracy of 85.41%
and MCC of 0.709, which is improved ~1-4% from single N-
gram in term of specificity, accuracy, and MCC. To statistically
compare between N-gram combination and N-gram single levels,
we performed 10 times of one-sided Wilcoxon tests of the ROC
AUC values between the combination model and each of the
1-10-gram model. After that, all of Wilcoxon tests showed a p-
value of 0.0005 (less than significance level o<= 0.05) which could
strongly conclude that the performance results of combination
features were significantly better than the single ones at high
confidence level.

Since deep learning is a black-box manner, it automatically
generated the hidden information from our feature sets.
Therefore, it is challenging to understand which features have
most contribution or play critical role for promoter distinction in
our model. As a reference, we used a common technique namely
Maximum-Relevance-Maximum-Distance (MRMD) (Zou et al.,
2016a) to evaluate and extract the important features of our
datasets. MRMD has been used a lot of works in bioinformatics
with promising results (Zou et al., 2016b; Wei et al.,, 2017).
According to the results, MRMD suggested that our model will
reach the highest accuracy when we selected 835 top-ranked
features (out of 1,000) to insert into our neural network. To detail,
10 features had the highest scores were shown in Table 3. These
features, therefore, play an essential role in classifying promoter
sequences using our model.

Next, we would like to compare our performance results with
a baseline machine learning technique to check whether the
deep CNN has generated more hidden information and given
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a significant performance. Since nearest neighbor (kNN) (Keller
et al., 1985) has been used to represent for traditional machine
learning classifiers in different problems, we implemented it in
our study for comparison. We used hyperparameter optimization
process and found that the model performed consistently at 10
neighbor trees. The optimal performance reached 78.8%, 86.8%,
82.8%, 0.66, and 0.885 for sensitivity, specificity, accuracy, MCC,
and AUC, respectively. Compared with the performance from
CNN, kNN was lower in term of sensitivity, accuracy, MCC, and
AUC. It is enough evidence to say that the deep neural network
could learn more features and produce a better performance than
traditional neural networks.

Classifying Promoters’ Strength

Since the combination of N-grams performed well in the first
layer classification, we aimed to use the same experimental
setups for the second layer (classifying promoter’s strength).
Our dataset includes 1591 strong promoters and 1792 weak
promoters as collected from Xiao et al. (2018) and has been
mentioned in the dataset section. The experiments show that our
method, which used a combination of N-grams, could classify
the promoter’s strength with an accuracy of 73.1%, sensitivity of
69.4%, specificity of 76.4%, and MCC of 0.46. The performance
was also better than the baseline models with single levels of N-
grams. It means that we can use this setup for both layers with
promising results.

Comparison the Performance Results
Between Proposed Method and the
Existing Methods

Our best model as mentioned in the previous sections is the
combination of different N-gram levels and deep convolutional
neural networks. To be fair, we have to compare our proposed
method with the other previous works that regarding promoter
classification. Also it is noted that we surely chose the previous
works that used the same benchmark dataset. For the first layer,
numerous studies had been done, including PCSF (Li and Lin,
2006), vw Z-curve (Song, 2011), Stability (de Avila e Silva et al.,
2014), iPro54 (Lin et al., 2014), iPromoter-2L (Liu et al., 2017),
and iPSW(2L)-PseKNC (Xiao et al., 2018). Among these studies,
only the last one performed the classification of promoter’s
strength, thus we also compared with this predictor in our second
layer. The results are shown in Table 4, and we highlighted the
highest values to highlight the significance of each metrics. We
then observed that our method outperforms other predictors in
all metrics (sensitivity, specificity, accuracy, and MCC) in both
layer classifications. Another improvement is that our approach
could be applied to actual genome sequences (long fragments of
bacterial genomes) rather only short sequences. All sequences
with different length will be trained to become a vector with a
fix-length. It helps to input any form of sequences flexibly.

DISCUSSIONS

Promoters play an important role in the transcription of genes
affect numerous human diseases. Therefore, identification of

TABLE 4 | Comparison with previous predictors on the same benchmark dataset.

Predictors Sens Spec Acc MCC
1st layer

Ours 82.76 88.05 85.41 0.709
iPSW(2L)-PseKNC 81.37 84.89 83.13 0.663
iPromoter-2L 79.2 84.16 81.68 0.6343
iPro54 77.76 83.15 80.45 0.61
Stability 76.61 79.48 78.04 0.5615
vw Z-curve 77.76 82.8 80.28 0.6098
PCSF 78.92 70.7 74.81 0.498
2nd layer

Ours 69.4 76.4 73.1 0.46
iPSW(2L)-PseKNC 62.23 79.17 71.2 0.4213

Highlighted values are the significant values for each metric.

promoters using their sequence information is one of the most
important tasks in bioinformatics. Although few computational
tools had already been presented, the performance results
require improvements. This study presents a new hybrid system,
from deep learning and a combination of FastText N-grams,
to identify promoters and their respective strengths. To our
knowledge, this is the first bioinformatics study which has
applied this hybrid into biological sequences. By using this
method, we are able to generate the hidden information
of DNA sequences unlike other methods. Our performance
results were evaluated via a 5-fold cross-validation test on a
benchmark dataset. It was found that the proposed method
could identify promoters and their strength, with an accuracy
of 85.41 and 73.1%, respectively. The rest of the measurement
metrics, such as sensitivity, specificity, and MCC, also attained
superior performances. When compared to the other state-
of-the-art predictors regarding the same problem and dataset,
our proposed method has improved at about 1-4% in all of
the metrics. Therefore, our model can be considered as a
reliable method for identifying promoters and their strength,
with use of sequence information. It can also act a basis for
further study that aims to interpret the language context of
DNA sequences.

Last but not least, scientists can use our approach to
solve further bioinformatics problems on sequencing. Since
most bioinformatics problems focused on sequencing data,
their features could be extracted by using our combination
(different levels of FastText N-grams). They then be fed into a
supervised learning to perform the prediction or classification
(e.g., using deep neural network as proposed in this work).
It could also provide a new approach for the previous works
that only used one level of FastText (Le, 2019; Le et al,
2019a). A combination of more levels could be a solution
for boosting their predictive performances. We also provided
our source codes at https://github.com/khanhlee/deepPromoter
to help reproducing our method. Furthermore, since a lot of
previous works on promoter classification extracted features
by using PseKNC [such as (Liu et al, 2017; Lin et al.,, 2018;
Xiao et al, 2018)], a hybrid of this feature and our features
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could be considered in the future works for the purpose of
performance improvement.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: http://www.jci-bioinfo.cn/iPSW(2L)-
PseKNC/images/Supp.pdf.

AUTHOR CONTRIBUTIONS

NL and EY conceived the ideas and designed study. NL
conducted the experiments and analyzed the results. NL, EY, NN,
and H-YY participated in the discussion of the results and writing

REFERENCES

Asgari, E., and Mofrad, M. R. K. (2015). Continuous distributed representation
of biological sequences for deep proteomics and genomics. PLoS ONE
10:¢0141287. doi: 10.1371/journal.pone.0141287

Bharanikumar, R., Premkumar, K. A. R, and Palaniappan, A. (2018).
PromoterPredict: sequence-based modelling of Escherichia coli 670 promoter
strength yields logarithmic dependence between promoter strength and
sequence. Peer] 6:e5862. doi: 10.7717/peer;j.5862

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word
vectors with subword information. Trans. Assoc. Comp. Lingu. 5, 135-146.
doi: 10.1162/tacl_a_00051

Bradley, A. P. (1997). The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognit. 30, 1145-1159.
doi: 10.1016/S0031-3203(96)00142-2

Chou, K. C. (2001). Prediction of protein signal
sequences and  their  cleavage  sites.  Proteins 42, 136-139.
doi: 10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F

Coles, R., Caswell, R.,, and Rubinsztein, D. C. (1998). Functional analysis of
the huntington’s disease (HD) gene promoter. Hum. Mol. Genet. 7, 791-800.
doi: 10.1093/hmg/7.5.791

Davuluri, R. V., Grosse, 1., and Zhang, M. Q. (2001). Computational identification
of promoters and first exons in the human genome. Nat. Genet. 29, 412-417.
doi: 10.1038/ng780

de Avila e Silva, S., Forte, F., Sartor, T. S. I, Andrighetti, T., Gerhardt, G. J. L.,
Longaray Delamare, A. P., et al. (2014). DNA duplex stability as discriminative
characteristic for Escherichia coli 554- and 628- dependent promoter sequences.
Biologicals 42, 22-8. doi: 10.1016/j.biologicals.2013.10.001

Déhr, S., Klingenhoff, A., Maier, H., de Angelis, M. H., Werner, T., and Schneider,
R. (2005). Linking disease-associated genes to regulatory networks via
promoter organization. Nucleic Acids Res. 33, 864-872. doi: 10.1093/nar/gki230

Down, T. A., and Hubbard, T. J. P. (2002). Computational detection and location
of transcription start sites in mammalian genomic DNA. Genome Res. 12,
458-461. doi: 10.1101/gr.216102

Gama-Castro, S., Salgado, H., Santos-Zavaleta, A., Ledezma-Tejeida, D., Muniz-
Rascado, L., Garcia-Sotelo, J. S., et al. (2015). RegulonDB version 9.0: high-
level integration of gene regulation, coexpression, motif clustering and beyond.
Nucleic Acids Res. 44, D133-D43. doi: 10.1093/nar/gkv1156

Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., and Leser, U. (2017).
Deep learning with word embeddings improves biomedical named entity
recognition. Bioinformatics 33, i37-i48. doi: 10.1093/bioinformatics/btx228

Hamid, M.-N., and Friedberg, I. (2018). Identifying antimicrobial peptides using
word embedding with deep recurrent neural networks. Bioinformatics 35,
2009-2016. doi: 10.1101/255505

Tonescu-Tirgoviste, C., Gagniug, P. A., and Guja, C. (2015). Structural properties
of gene promoters highlight more than two phenotypes of diabetes. PLoS ONE
10:e0137950. doi: 10.1371/journal.pone.0137950

of the article. All authors read and approved the final version of
the manuscript.

FUNDING

This work has been supported by the Nanyang Technological
University Start-Up Grant.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used for
this research.

Toshikhes, I. P., and Zhang, M. Q. (2000). Large-scale human promoter mapping
using CpG islands. Nat. Genet. 26, 61-63. doi: 10.1038/79189

Keller, J. M., Gray, M. R, and Givens, J. A. (1985). A fuzzy k-
nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 580-5.
doi: 10.1109/TSMC.1985.6313426

Knudsen, S. (1999). Promoter2.0: for the recognition of Polll promoter sequences.
Bioinformatics 15, 356-361. doi: 10.1093/bioinformatics/15.5.356

Le, N. Q. K. (2019). iN6-methylat (5-step): identifying DNA N6-methyladenine
sites in rice genome using continuous bag of nucleobases via Chou’s 5-step rule.
Mol. Genet. Genomics. 294, 1173-1182. doi: 10.1007/s00438-019-01570-y

Le, N. Q. K, Huynh, T.-T., Yapp, E. K. Y., and Yeh, H.-Y. (2019b). Identification
of clathrin proteins by incorporating hyperparameter optimization in deep
learning and PSSM profiles. Comput. Methods Programs Biomed. 177, 81-88.
doi: 10.1016/j.cmpb.2019.05.016

Le, N. Q. K., and Nguyen, V.-N. (2019). SNARE-CNN: a 2D convolutional
neural network architecture to identify SNARE proteins from high-throughput
sequencing data. Peer] Comp. Sci. 5:¢177. doi: 10.7717/peerj-cs.177

Le, N. Q. K., Yapp, E. K. Y., Ho, Q.-T., Nagasundaram, N., Ou, Y.-Y., and Yeh, H.-
Y. (2019a). iEnhancer-5Step: identifying enhancers using hidden information
of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem.
571, 53-61. doi: 10.1016/j.ab.2019.02.017

Li, Q.-Z., and Lin, H. (2006). The recognition and prediction of ¢70
promoters in Escherichia coli K-12. ]. Theor. Biol. 242, 135-141.
doi: 10.1016/}.jtbi.2006.02.007

Lin, H., Deng, E.-Z., Ding, H., Chen, W., and Chou, K.-C. (2014). iPro54-
PseKNC: a sequence-based predictor for identifying sigma-54 promoters in
prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 42,
12961-12972. doi: 10.1093/nar/gkul019

Lin, H,, Liang, Z., Tang, H., and Chen, W. (2018). Identifying sigma70 promoters
with novel pseudo nucleotide composition. IEEE/ACM Trans. Comp. Biol.
Bioinform. 16, 1316-1321. doi: 10.1109/TCBB.2017.2666141

Liu, B,, Yang, F., Huang, D.-S., and Chou, K.-C. (2017). iPromoter-2L: a two-layer
predictor for identifying promoters and their types by multi-window-based
PseKNC. Bioinformatics 34, 33-40. doi: 10.1093/bioinformatics/btx579

Nguyen, T.-T.-D., Le, N.-Q.-K., Kusuma, R. M. I, and Ou, Y.-Y. (2019).
Prediction of ATP-binding sites in membrane proteins using a two-
dimensional convolutional neural network. J. Mol. Graph. Model. 92:86-93.
doi: 10.1016/j.jmgm.2019.07.003

Ohler, U., Harbeck, S., Niemann, H., N,/dth, E., and Reese, M. G. (1999).
Interpolated markov chains for eukaryotic promoter recognition.
Bioinformatics 15, 362-369. doi: 10.1093/bioinformatics/15.5.362

Oztiirk, H., Ozkirimli, E., and Ozgiir, A. (2018). A novel methodology
on distributed representations of proteins using their interacting ligands.
Bioinformatics 34, 1295-1303. doi: 10.1093/bioinformatics/bty287

Ponger, L. C, and Mouchiroud, D. (2002). CpGProD: identifying CpG islands
associated with transcription start sites in large genomic mammalian
sequences. Bioinformatics 18, 631-633. doi: 10.1093/bioinformatics/18.4.631

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

35

November 2019 | Volume 7 | Article 305


http://www.jci-bioinfo.cn/iPSW(2L)-PseKNC/images/Supp.pdf
http://www.jci-bioinfo.cn/iPSW(2L)-PseKNC/images/Supp.pdf
https://doi.org/10.1371/journal.pone.0141287
https://doi.org/10.7717/peerj.5862
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1002/1097-0134(20010101)42:1<136::AID-PROT130>3.0.CO;2-F
https://doi.org/10.1093/hmg/7.5.791
https://doi.org/10.1038/ng780
https://doi.org/10.1016/j.biologicals.2013.10.001
https://doi.org/10.1093/nar/gki230
https://doi.org/10.1101/gr.216102
https://doi.org/10.1093/nar/gkv1156
https://doi.org/10.1093/bioinformatics/btx228
https://doi.org/10.1101/255505
https://doi.org/10.1371/journal.pone.0137950
https://doi.org/10.1038/79189
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.1093/bioinformatics/15.5.356
https://doi.org/10.1007/s00438-019-01570-y
https://doi.org/10.1016/j.cmpb.2019.05.016
https://doi.org/10.7717/peerj-cs.177
https://doi.org/10.1016/j.ab.2019.02.017
https://doi.org/10.1016/j.jtbi.2006.02.007
https://doi.org/10.1093/nar/gku1019
https://doi.org/10.1109/TCBB.2017.2666141
https://doi.org/10.1093/bioinformatics/btx579
https://doi.org/10.1016/j.jmgm.2019.07.003
https://doi.org/10.1093/bioinformatics/15.5.362
https://doi.org/10.1093/bioinformatics/bty287
https://doi.org/10.1093/bioinformatics/18.4.631
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Leetal

Classifying Promoters Using Deep Learning

Prestridge, D. S. (1995). Predicting Pol II promoter sequences using transcription
factor binding sites. J. Mol. Biol. 249, 923-932. doi: 10.1006/jmbi.1995.0349
Reese, M. G. (2001). Application of a time-delay neural network to promoter
annotation in the Drosophila melanogaster genome. Comput. Chem. 26, 51-56.

doi: 10.1016/S0097-8485(01)00099-7

Song, K. (2011). Recognition of prokaryotic promoters based on a novel
variable-window Z-curve method. Nucleic Acids Res. 40, 963-971.
doi: 10.1093/nar/gkr795

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res. 15,1929-1958.

Umarov, R. K., and Solovyev, V. V. (2017). Recognition of prokaryotic and
eukaryotic promoters using convolutional deep learning neural networks. PLoS
ONE 12:e0171410. doi: 10.1371/journal.pone.0171410

Wei, L., Xing, P, Su, R, Shi, G, Ma, Z. S, and Zou, Q. (2017).
CPPred-RF: a sequence-based predictor for identifying cell-penetrating
peptides and their uptake efficiency. J. Proteome Res. 16, 2044-2053.
doi: 10.1021/acs.jproteome.7b00019

Xiao, X., Xu, Z.-C., Qiu, W.-R., Wang, P., Ge, H.-T., and Chou, K.-C. (2018).
iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their
strength by hybrid features via pseudo K-tuple nucleotide composition.
Genomics (2018). doi: 10.1016/j.ygeno.2018.12.001. [Epub ahead of print]

Yang, Y., Zhang, R., Singh, S., and Ma, J. (2017). Exploiting sequence-based features
for predicting enhancer-promoter interactions. Bioinformatics 33, i252-160.
doi: 10.1093/bioinformatics/btx257

Zou, Q., Wan, S, Ju, Y., Tang, J., and Zeng, X. (2016b). Pretata: predicting TATA
binding proteins with novel features and dimensionality reduction strategy.
BMC Syst. Biol. 10:114. doi: 10.1186/s12918-016-0353-5

Zou, Q., Zeng, J., Cao, L., and Ji, R. (2016a). A novel features ranking
metric with application to scalable visual and bioinformatics data
classification. Neurocomputing 173, 346-354. doi: 10.1016/j.neucom.2014.
12,123

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Le, Yapp, Nagasundaram and Yeh. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

36

November 2019 | Volume 7 | Article 305


https://doi.org/10.1006/jmbi.1995.0349
https://doi.org/10.1016/S0097-8485(01)00099-7
https://doi.org/10.1093/nar/gkr795
https://doi.org/10.1371/journal.pone.0171410
https://doi.org/10.1021/acs.jproteome.7b00019
https://doi.org/10.1016/j.ygeno.2018.12.001
https://doi.org/10.1093/bioinformatics/btx257
https://doi.org/10.1186/s12918-016-0353-5
https://doi.org/10.1016/j.neucom.2014.12.123
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

'." frontiers
in Genetics

ORIGINAL RESEARCH
published: 08 November 2019
doi: 10.3389/fgene.2019.01056

OPEN ACCESS

Edited by:

Quan Zou,

University of Electronic Science and
Technology of China,

China

Reviewed by:

Andrew Dellinger,

Elon University,

United States

Lei Hou,

Massachusetts Institute of
Technology,

United States

*Correspondence:
Eduardo Rocha Fukutani
eduardofukutani@gmail.com

Specialty section:

This article was submitted to
Bioinformatics and
Computational Biology,

a section of the journal
Frontiers in Genetics

Received: 11 June 2019
Accepted: 02 October 2019
Published: 08 November 2019

Citation:

Fukutani ER, Ramos PIF,
Kasprzykowski JI, Azevedo LG,
Rodrigues MMdS, Lima JVAdOR,
Araujo Junior HFSd, Fukutani KF and
Queiroz ATLd (2019) Meta-Analysis
of HTLV-1-Infected Patients Identifies
CD40LG and GBP2 as Markers of
ATLL and HAM/TSP Clinical Status:
Two Genes Beat as One.

Front. Genet. 10:1056.

doi: 10.3389/fgene.2019.01056

Check for
updates

Meta-Analysis of HTLV-1-Infected
Patients Identifies CD40LG and GBP2
as Markers of ATLL and HAM/TSP
Clinical Status: Two Genes Beat as One

Eduardo Rocha Fukutani’*, Pablo Ivan Pereira Ramos’, José Irahe Kasprzykowski',
Lucas Gentil Azevedo’, Moreno Magalhdes de Souza Rodrigues?,

Jodo Victor de Oliveira Pimenta Lima’, Helton Fabio Santos de Araujo Junior?,
Kiyoshi Ferreira Fukutani’** and Artur Trancoso Lopo de Queiroz’

! Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gongalo Moniz, FIOCRUZ, Salvador, Brazil,

2 aboratdrio de Andlise e Visualizagcdo de Dados, FIOCRUZ-RO, Salvador, Brazil, ¢ Fundagdo José Silveira, Multinational
Organization Network Sponsoring Translational and Epidemiological Research, FJS, Salvador, Brazil, 4 Faculdade de
Medicina, Faculdade de Tecnologia e Ciéncias, Salvador, Brazil

Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus.
Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia
(ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP).
Each manifestation is associated with distinct characteristics, as ATLL presents as a
leukemia-like disease, while HAM/TSP presents as severe inflammation in the central
nervous system, leading to paraparesis. Previous studies have identified molecules
associated with disease development, e.g., the downregulation of Foxp3 in Treg cells
was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10,
CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these
molecules were only associated with specific patient groups or viral strains. Furthermore,
the majority of studies did not jointly compare all clinical manifestations, and robust
analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples
also pose difficulties in conducting gene expression analysis to identify specific molecular
relationships. To address these limitations and increase the power of manifestation-
specific gene associations, meta-analysis was performed using publicly available gene
expression data. The application of supervised learning technigues identified alterations in
two genes observed to act in tandem as potential biomarkers: GBP2 was associated with
HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-
classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with
expression correlated to these genes were identified, and we attempted to relate the
enriched pathways identified with the characteristic of each clinical manifestation. The
present findings contribute to knowledge surrounding viral progression and suggest a
potentially powerful new tool for the molecular classification of HTLV-associated diseases.

Keywords: human T-lymphotropic virus 1, bioinformatics, biomarkers, adult T-cell ymphoma/leukemia, HTLV-1
associated myelopathy/tropical spastic paraparesis, meta-analysis
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Meta-Analysis of HTLV-1 Identifies Biomarkers

INTRODUCTION

Human T-lymphotropic virus 1 (HTLV-1) belongs to the
Retroviridae family and Deltaretrovirus genus, and presents
tropism in the infection of T lymphocyte cells (Mirvish et al.,
2011). Two diseases are mainly associated with this infection:
adult T-cell lymphoma/leukemia (ATLL) and HTLV-associated
myelopathy/tropical spastic paraparesis (HAM/TSP) (Gessain
and Mahieux, 2012). Around 2-5% of HTLV-infected subjects
develop ATLL (Uchiyama et al., 1977) and 0.25-3.8% develop
HAM/TSP (Osame et al., 1986), while the majority of HTLV-
infected subjects remain asymptomatic (Galvao-Castro
et al., 1997). ATLL is a lymphoma-like disease classified into
four subtypes: acute, chronic, smoldering, and lymphoma
(Shimoyama and members of The Lymphoma Study Group
(1984-87)*, 1991). Developing this symptomatology results
in a life expectancy less than 1 year in around 65% of affected
individuals (Matutes, 2007), in addition to low documented
chemotherapeutic response (Yamada et al., 2001). HAM/TSP is
characterized as an inflammatory disease of the central nervous
system (CNS), can progressively evolve to spastic paraparesis,
and results in sensory disturbance in the lower extremities and
bladder/bowel dysfunction (Nakagawa et al., 1995).

Currently, ATLL can be diagnosed by integrating cytology
and lymphocyte immunophenotyping with HTLV-1 serology
(Matutes, 2007). The diagnosis of HAM/TSP is based on clinical
evaluation and the exclusion of other disorders and molecular
and serological diagnosis, including HTLV-1 serology, Western
blotting, and PCR analysis (Yamano and Sato, 2012). In this
complex scenario, the identification of biomarkers of this disease
is crucial for improving patient care and treatment. With the goal
of furthering the understanding surrounding the mechanisms
related to disease manifestation, some studies employing
gene expression have been conducted. For instance, the
downregulation of the FOXP3 gene in T-reg cells was reported to
be induced by the HBZ viral protein from HTLV-1. Accordingly,
the stimulated proinflammatory response was found to be
associated with HAM/TSP development (Yamamoto-Taguchi
et al., 2013). Furthermore, other molecules in cerebrospinal fluid,
such as CXCL10, CXCL9, and neopterin, have been proposed as
promising candidates for prognostic biomarkers of HAM/TSP,
offering improved predictive values in comparison to proviral
load (Sato et al., 2013).

On the other hand, CAN2 and SPTA2 proteins have been
proposed as biomarkers capable of classifying ATLL patients.
CAN?2 activity was found to induce ATLL cell death and the
corresponding gene was downregulated in these cells. In
addition, 17 proteins were proposed as capable of classifying
healthy controls from asymptomatic carriers (ACs), HAM/
TSP, and ATLL patients (Ishihara et al, 2013). Several
alterations in anti-inflammatory cytokine levels in infected T
cells, e.g., increased IL-10 and suppressed pro-inflammatory
cytokines, were also associated with this disease (Kagdi
et al., 2018). Another study suggested diagnosing patients by

Abbreviations: ATLL, Adult T-Cell Lymphoma/Leukemia; HAM/TSP, HTLV-
associated myelopathy/tropical spastic paraparesis; AC, Asymptomatic Carriers.

measuring antibody responses to HTLV-1 gag, Env, and Tax
proteins (Enose-Akahata et al., 2012); however, this is akin
to an immunological diagnosis. Despite the identification of
biomarker candidates, various limitations have prevented
adoption, as some markers were only identified in specific
populations (Yasuma et al., 2016), small sample sizes were used
(Ishihara et al., 2013), and the identification was performed
only in specific clinical manifestations without appropriate
confirmation for use as a general biomarker (Sato et al., 2013;
Yamamoto-Taguchi et al., 2013).

To mitigate the impact of low sample sizes, which have
limited the interpretation of individual studies, meta-
analysis approaches have been employed in the field of gene/
marker identification. This approach was used to highlight
important genes and molecular pathways in endometrioid
endometrial cancer (O’Mara et al., 2016), for the identification
of programmed death-ligand 1 as a potential biomarker in
glioblastoma (Xue et al., 2017), to identify a set of candidate
genes, pathways, and transcription factors not previously
associated with the pathogenesis of sickle cell disease (Hounkpe
et al,, 2015), and to disclose a novel set of candidate genetic
markers, pathways, and transcription factors common to both
thrombosis and myeloproliferative disorders (Jha et al., 2016).
Meta-analysis, in combination with classical approaches and
machine learning, has also been applied to identify biomarkers
of viral infection in the Aedes aegypti mosquito (Fukutani et al.,
2017). This methodology has proven powerful in discriminatory
classification using gene expression data and was recently
highlighted as a potentially useful method for discovering
new evidences (Debray et al., 2017); Sweeney et al., 2017).
Given the need to identify biomarkers associated with HTLV-1
infection, and considering the abundance of individual studies
that resulted in the generation of gene expression datasets, we
performed meta-analysis in an attempt to identify candidate
transcriptional biomarkers that could offer improved predictive
power in the classification of clinical manifestations in HTLV-1,
a novelty in this field that has never been done before.

METHODOLOGY

Description of Datasets Comprising the
Discovery Dataset

To identify published datasets relevant to HTLV infection,
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) was searched filtering Homo sapiens
as the organism of interest and “HTLV” as the keyword. This
query returned a total of 41 datasets (search performed in
September 2017). After manual evaluation, 32 datasets were
excluded due to methodological incompatibility (non-blood
cell tissues and absence of symptomatologic information). Of
the remaining datasets, three with detailed gene expression by
peripheral blood mononuclear cells (PBMCs) were selected to
build the Discovery dataset: GSE55851 (Kobayashi et al., 2014),
GSE29312, and GSE29332 (Tattermusch et al., 2012). All of the
studies that produced these datasets were performed in PBMCs
and included at least two different clinical forms of infection, as
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TABLE 1 | Description of the datasets used as the Discovery set.

Accession Reference Symptomatology = Sample Tissue
number number
GSE55851 Kobayashi et al. Control 3 PBMCs
(2014)
Asymptomatic 6 PBMCs
ATLL 12 PBMCs
GSE29312 Tattermusch et al. Control 9 PBMCs
(2012)
Asymptomatic 20 PBMCs
HAM/TSP 10 PBMCs
GSE29332 Tattermusch et al. Control 8 PBMCs
(2012)
Asymptomatic 17 PBMCs
HAM/TSP 10 PBMCs
Total Control 20 PBMCs
Asymptomatic 43 PBMCs
ATLL 12 PBMCs
HAM/TSP 20 PBMCs

well as controls (healthy individuals). When combined, the three
datasets included 20 controls, 43 AC, 12 ATLL, and 20 HAM/
TSP samples (Table 1). For our analysis, the AC samples were
discarded to avoid possible classification bias, since this form can
evolve to another clinical manifestation at some point during the
patient’s life, and no information regarding disease progression
was provided. The remaining six datasets performed in other
tissue types were used for in silico validation.

Data Retrieval, Pre-Processing, and Batch

Correction

Raw expression data were downloaded from GEO/NCBI
using the GEOquery package (Davis and Meltzer, 2007). Next,
the collapseRows R function in the WGCNA package (Miller
et al., 2011) was used to collapse the data, and only probes
mapping to genes common to all datasets were maintained.
Log transformation was applied to the expression data using
the preProcessCore package (Bolstad, 2018), and outlier samples
were identified and removed by the ArrayQualityMetrics
package for R (Kauffmann et al., 2008). The plyr package was
subsequently used to merge all data (Wickham, 2011). Following
pre-processing, the combined dataset was submitted to a batch
correction procedure using an empirical Bayes framework
implemented in the ComBat function of the sva package (Leek
etal., 2013), with clinical manifestations and original datasets as
covariates. This allowed us to account for known or unknown
sources of variation in the datasets, enabling the use of samples
from different datasets in the integrated dataset (i.e., Discovery
dataset). This method allowed for the inclusion of the maximum
number of samples for analysis, in addition to more robust data
interpretation, leading to the identification of consistent insights
regarding biological phenomena. ComBat has been used in
other studies and was shown to outperform other similar tools
designed for this purpose (Chen et al., 2011). The final dataset
consisted of 94 samples, with expression data pertaining to
10,533 genes in total.

Classification of HTLV Patient Clinical
Manifestation via Decision Tree

A decision tree classification procedure was performed in the
Discovery dataset to identify the key genes related to HTLV
patient clinical manifestation (ATLL or HAM/TSP). Decision
trees were constructed using the rpart package Therneau et al.
(2015), which screens for the key factors that allow for the
separation of the groups with maximum accuracy. To measure
the performance of the classification model, areas under receiver
operating characteristic (ROC) curves were calculated to
determine a given model’s sensitivity and specificity. The overall
accuracy of a model is calculated by estimating the area under
the curve (AUC), permitting measurements of the degree of class
separability in a given model. Values approximating 1.0 indicate
that the model is suitably capable of distinguishing among
different classes. Finally, scatterplots were generated to visualize
the dispersion of samples according to the model threshold in
order to verify the accuracy estimated by ROC curve analysis.

Co-Expression and Enrichment Analysis of
Genes Related to CD40LG and GBP2

A correlation matrix between the genes CD40LG and GBP2
(identified as best classifiers) and all the genes within the
Discovery dataset was constructed. Correlation was calculated
separately for each group (control, ATLL, and HAM/TSP) using
gene expression values measured as biweight midcorrelation
coefficients, which function similarly to Pearson’s r, except this
technique is more robust with regard to data outliers (Langfelder
and Horvath, 2012). Correlations were considered significant
using a threshold of |r| 20.7 and p-value <0.05. Next, correlated
genes were clustered according to the functional terms of the
REACTOME pathway database (https://reactome.org/). This
enrichment analysis was performed using clusterProfiler Yu
et al. (2012) with the following parameters: p-value threshold =
0.05, Q-value threshold = 0.05, minimum number of genes to
cluster =20, maximum number of genes to cluster = 500.

Description of Datasets Used

for Validation

Six microarray expression datasets were retrieved from GEO:
GSE17718 (Kress et al., 2010), GSE6034 (Hamamura et al.,
2007), GSE38537 (Pinto et al., 2014), GSE33615 (Fujikawa
et al., 2016), GSE57259 (Araya et al., 2014), and GSE19080 (no
citation available at GEO/NCBI). To confirm the gene signature
performance, we performed the gene model comparison in the
validation dataset independently, without using the thresholds
yielded by the decision tree model estimated during the
discovery phase. The model comparison in each different dataset
was obtained by applying a logistic regression fitting, which
estimated the variable accuracy (CD40LG and GBP2), according
to the response variable [determined by dataset metadata (HTLV
status)]. Then, the ROC curve and the AUC were measured,
which allows the comparison of the gene signature classification
power across the validation datasets. A full description of the
selected datasets is available in Table S1.
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FIGURE 1 | (A) Decision tree classification of three different
symptomatologies using CD40LG to separate all ATLL samples from the
others, and GBP2 to separate 84.2% of the HAM/TSP samples from
controls. (B) Scatterplot of CD40LG (Y axis) and GBP2 (X axis) gene
expression detailing the dispersion of the analyzed samples. Red lines
represent the thresholds suggested by decision tree analysis. (C) ROC curve
representing accuracy. An AUC of 0.9016 was found for the control group,
0.8898 for the HAM/TSP group, and 1.000 for ATLL. The red line represents
the ATLL group, blue indicates HAM/TSP, and green is indicative of controls.

RESULTS

Gene Expression of CD40LG and GBP2
Permits Accurate Discrimination of ATLL
and HAM/TSP Patients

The decision tree algorithm identified two genes, CD40LG and
GBP2, as the most informative in differentiating between the
clinical manifestations of HTLV-infected samples and controls.
The expression of CD40LG allowed for the discrimination
of individuals with ATLL with 100% accuracy. To correctly
classify the remaining samples (HAM/TSP and controls), a
second gene (GBP2) was required. Expression levels of GBP2
were able to discriminate HAM/TSP samples with 84.2%
classification accuracy, and controls with 100% accuracy, with a
15.8% misclassification rate occurring between HAM/TSP and
controls (Figure 1A). In addition, sample dispersion was visually
checked by scatterplot using the log expression cutoffs returned
by the decision tree algorithm: 6.30 for CD40LG and 12.05
for GBP2 (Figure 1B). Finally, sensitivity and specificity were
measured using ROC curve analysis, revealing high accuracy in
discriminating among samples using genes CD40LG and GBP2:
AUC of 0.90 for controls, 0.88 for HAM/TSP, and 1.00 for ATLL
(Figure 1C).

Gene Expression of CD40LG and GBP2
Correlate With Various Immune and
Metabolic Pathways That Could Impact
the Course of HTLV Infection

After evaluating the high predictive power of CD40LG and
GBP2 in discriminating HTLV clinical status, the roles played
by these genes were investigated. Correlation analysis was
performed considering global expression for each clinical
manifestation (HAM/TSP or ATLL) and controls. Our results
showed that 208 genes were significantly positively (r > 0.7
and p-value < 0.05) and 13 genes were significantly negatively
(r > 0.7 and p-value < 0.05) correlated with CD40LG. Also, 84
genes were significantly positively and 1 gene was significantly
negatively correlated with GBP2. In contrast, in the ATLL
samples, 399 genes were significantly negatively correlated with
CD40LG and 743 genes were significantly positively correlated
with GBP2. A total of 12 genes were found to be correlated with
both CD40LG and GBP2 (OAZ1, SLC39A11, NADK, TMED2,
SLC38A5, P4HA1, HM13, MGAT2, HISTIH2BG, UQCRFSI,
PTDSSI, and TAPIB) (Figure S1A). In addition, the HAM/TSP
samples presented 394 positive and 420 negative correlations,
with three being associated with both CD40LG and GBP2
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(PWPI, H3F3A, and GNE). In these samples, correlations with
CD40LG were mostly positive, with 367 positive correlations,
while those with GBP2 were mostly negative, with 230 negative
correlations (Figure S1B). More comprehensive information
regarding this correlation analysis and the commonly observed
genes is available as supplementary material (Tables S2-
S4). The gene set previously identified correlated with the
biomarkers (CD40LG and GBP2) was analyzed in order to
identify their enriched pathways. Thus, the top four pathways
identified from being negatively correlated with the CD40LG
gene set in the HAM/TSP were “Neutrophil degranulation,”
“Signaling by interleukins,” “TRAF6-mediated induction of
NFkB and MAP kinases upon TLR7/8 or 9 activation,” and
“Toll Like Receptor 7/8 (TLR7/8) Cascade.” The main pathways
identified from the gene set that negatively correlated with
GBP2 in the HAM/TSP were “SUMO E3 ligases SUMOylate
target proteins,” “SUMOylation,” “rRNA processing,” and “tRNA
processing” (Figure 2B). Only one pathway was identified from
the gene set that positively correlated with CD40LG in HAM/
TSP: “SUMOylation of DNA replication proteins” Several
pathways were identified from the genes that were positively
correlated with GBP2 in HAM/TSP: “Interferon Signaling,”

» «

“Interferon alpha/beta signaling,” “Activation of G protein gated

Potassium channels,” “G protein gated Potassium channels,”
and “Interleukin-20 family signaling” (Figure 2A).

The top 5 pathways identified from the gene set that negatively
correlated with CD40LG in the ATLL were “MAPK family
signaling cascades,” “MAPK1/MAPK3 signaling” “RAF/MAP
kinase cascade,” “Mitotic G1-G1/S phases,” and “G1/S Transition”
(Figure 2B). Moreover, the associated pathways from the gene
set that positively correlated with GBP2 in ATLL patients were
“tRNA processing in the nucleus,” “RNA processing,” “Viral
Messenger RNA synthesis,” “Late Phase of HIV Life Cycle,” and
“HIV Life Cycle” (Figure 2A).

By contrast, in the control group, the pathways identified
from the gene set that correlated with CD40LG were
“Processing of Capped Intron-Containing Pre-mRNA;
“tRNA processing in the nucleus,” “tRNA processing,’
“Viral Messenger RNA Synthesis,” “Dual incision in
TC-NER,” “Transcription-Coupled Nucleotide Excision
Repair (TC-NER),” “Late Phase of HIV Life Cycle,” “mRNA
Splicing—Major Pathway,” “HIV Life Cycle,” “Synthesis of
DNA;” “SUMOylation of DNA replication proteins,” and “HIV
infection” With regard to GBP2’s positively correlated genes,
the following pathways were found in the control group:
“Neutrophil degranulation,” “Metabolism of water-soluble

Positively correlated genes B Negatively correlated genes
A Processing of Capped Intron-Containing Pre-mRNA [}
Neutrophil degranulation { [ )
{RNA processing in the nucleus |~ @ .
{RNA processing ° * Signaling by Interleukins { [ ]
Viral Messenger RNA Synthesis 3 .
Dual incision in TC-NER L ] TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation [ ]
Transcription-Coupled Nucleotide Excision Repair (TC-NER) [ ]
Late Phase of HIV Lite Cycle ° . Toll Like Receptor 7/8 (TLR7/8) Cascade [
mRNA Splicing - Major Pathway L4 MyD88 dependent cascade initiated on endosome Y
HIV Life Cycle: L ] L]
‘Synthesis of DNA L ] L] MyD88:MAL(TIRAP) cascade initiated on plasma membrane L ]
'SUMOylation of DNA replication proteins L] L] .
HIV Infection ° ° Toll Like Receptor TLR6:TLR2 Cascade [ ]
Neutrophil degranulation
P 9 . Toll Like Receptor 9 (TLRS) Cascade 4 [ ]
Metabolism of water-soluble vitamins and cofactors [ ] .
FCERI mediated MAPK activation L4 Toll Like Receptor TLR1:TLR2 Cascade ') p.adjust
Toll-like Receptor Cascades [ ] GeneRatio
TRAF6 mediated induction of NFKB and MAP kinases upon TLR7/8 or 9 activation [ ] ® o1 Toll Like Receptor 2 (TLR2) Cascade - L 001
Toll Like Receptor 7/8 (TLR7/8) Cascade ) @ o2
SUMO E3 ligases SUMOylate target proteins
MyD88 dependent cascade initiated on endosome Y @ o3 o2 ! getP L4 002
Toll Like Receptor 9 (TLRS) Cascade L] SUMOylation [ ] 0.03
Signaling by Interleukins [ ] ) p.adjust
Apoptotic execution phase L] RNA processing ° GeneRatic
1
Interferon Signaling ° [ ) 00 ® 005
0.02
Interferon alpha/beta signaling (] 1RNA processing ° ® 010
003
Activation of G protein gated Potassium channels [ ] 004 MAPK famiy signaling cascades | ° @ o5
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Interleukin-20 family signaling ) MAPK1/MAPKS signaling ° @ o
Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits. °
Regulation of IFNA signaling 'Y RAFIMAP kinase cascade °
Inwardly rectifying K+ channels [ ]
Mitotic G1-G1/S phases [ ]
GABA B receptor activation [ ]
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FIGURE 2 | (A) Pathways associated with genes found to be positively correlated with CD40LG and GBP2, grouped according to symptomatology. (B) Pathways
associated with genes found to be negatively correlated with CD40LG and GBP2, grouped according to symptomatology. Analysis performed using the following
parameters: p-value = 0.05, g-value = 0.2, minimum number of genes to cluster = 20, maximum number of genes to cluster = 500.
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vitamins and cofactors,” “FCERI mediated MAPK activation,”
“Toll-Like Receptors Cascades,” “TRAF6 mediated induction
of NFkB and MAP kinases upon TLR7/8 or 9 activation,” “Toll
Like Receptor 7/8 (TLR7/8) Cascade,” “MyD88 dependent
cascade initiated on endosome,” “Toll Like Receptor 9 (TLRY)
Cascade,” “Signaling by Interleukins,” “Apoptotic execution
phase,” and “Interferon signaling” (Figure 2A). Further
information regarding the pathways associated with these
genes (ENTREZ ID) is available as supplementary material,
separated into negatively correlated (Table S5) and positively
correlated categories (Table S6).

Validation of CD40LG and GBP2

in Independent Datasets Reveals
Classification Robustness in Different
Tissue Types

To validate the accuracy of our two-gene model in the
discrimination of ATLL, HAM/TSP, and control samples, this
model was applied to the other datasets not used in the discovery
set: (Kress et al,, 2010) (GSE17718), (Hamamura et al., 2007)
(GSE6034), (Pinto etal., 2014) (GSE38537), (Yamagishietal.,2012)
(GSE33615), (Oliére et al., 2010) (GSE57259), and GSE19080.
After downloading and pre-processing these datasets, ROC
curve analysis was applied to measure the discriminant power of
CD40LG and GBP2 in classifying HLTV-1 clinical manifestations.
The discriminant power of this two-gene signature was found to be
very high, allowing for the discrimination of the HTLV-1 clinical
status in five of the datasets with an AUC value of 1 (GSE17718,
GSE6034, GSE38537, GSE33615, and GSE57259). The need to
include both genes for accurate classification was evidenced in the
GSE19080 dataset (in which the CD40LG gene is absent), yielding
a much lower AUC (0.875) in the discrimination of control
samples, compared to 0.666 for HAM/TSP samples and 0.5 when
discriminating ATLL samples. These validation datasets were
derived from a variety of tissues, such as cell lines (StEd, MT-2, Tay
and MT-4), CD4 lymphocytes, and PBMCs. The overall accuracy
of this two-gene signature model is delineated in Table 2. Also, the
sample distribution using the two-gene expression in all validation
dataset is summarized in Figure S2.

DISCUSSION

To date, few studies have attempted to identify biomarkers capable
of discriminating between ATLL and HAM/TSP in HTLV-1
infection. A previous report (Sato et al., 2013) suggested three
potential prognostic biomarkers in cerebrospinal fluid for HAM/
TSP disease progression: CXCL10, CXCL9, and neopterin. Another
study (Baratella et al.,, 2017) stated that the HBZ protein, exclusively
localized in the cytoplasm, could be a biomarker of HAM/TSP.
In addition, CAN-2 and SPTA-2 were identified as biomarkers
capable of discriminating ATLL (Ishihara et al., 2013). However,
these biomarkers were found in a specific population and, to the
best of our knowledge, the literature contains no sets of biomarkers
offering sufficient accuracy to reliably identify both the ATLL and
HAM/TSP phenotypes. With the objective of achieving accurate
discrimination, we employed a robust bioinformatic approach
to consolidate the available expression data using three different
datasets combined into a single Discovery dataset. Three studies
were selected for this analysis, one submitted by Kobayashi et al.
(acc number: GSE55851) and two submitted by Tattermusch et al.
(acc number: GSE29332 and GSE29312). The study by Kobayashi
et al. compares gene expression levels in PBMCs from ATLL,
asymptomatic, and control patients. The other studies submitted
by Tattermusch et al. compared gene expression levels in PBMCs
from HAM/TSP, asymptomatic, and control individuals. Next, a
data mining technique was applied to the merged, batch-corrected
Discovery dataset to identify which variables (genes) could
effectively discriminate clinical status among the samples. Decision
tree analysis revealed genes CD40LG and GBP2 as discriminators of
ATLL and HAM/TSP, offering accuracy rates of 100% and 84.2%,
respectively. A previous report identified lower CD40LG expression
in cells expressing PTHrP and MIP-1a, two proteins associated
with ATLL progression (Shu et al, 2012). The second marker
identified herein, GBP2, was previously associated with tax protein
activity in HTLV-1 (Arainga et al.,, 2012). Despite identifying these
associations, no previous studies proposed either of these genes as
biomarkers of ATLL or HAM/TSP symptomatology.

The CD40LG gene encodes a protein located on the surface of
T cells and exerts the role of regulating B cell functions (Stelzer
et al, 2016). GBP2 is a guanylate binding protein induced

TABLE 2 | Performance of the two-gene signature classifying the samples from validation datasets.

Accession number Symptomatology Tissue Biomarkers AUC
GSE17718 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL Cell lines StEd and MT-2 CD40LG and GBP2 1.00

GSE6B034 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL Cell lines TaY, MT-2 and MT-4 CD40LG and GBP2 1.00

GSE38537 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
HAM/TSP CD4+ Lymphocyte CD40LG and GBP2 1.00

GSE33615 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL PBMCs (Mostly CD4+ Lymphocytes) CD40LG and GBP2 1.00

GSE19080 Control CD4+ Lymphocyte GBP2 0.87
ATLL CD4+ Lymphocyte GBP2 0.50

HAM/TSP CD4+ Lymphocyte GBP2 0.66

GSE57259 Control CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00
HAM/TSP CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00

ATLL CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00
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by IFN-y and is considered as a control factor for tumor cell
proliferation and spreading (Messmer-Blust et al.,, 2010). Our
functional approach entailed the correlation of these biomarkers
with the global expression of other genes, followed by enrichment
analysis using the REACTOME database (Fabregat et al., 2018).
This analysis showed that the genes positively correlated with
CD40LG are associated with pathways mainly related to tRNA
processing, viral replication, and mRNA splicing in the control
group. However, in the HAM/TSP group, these genes were only
found to be associated with the SUMOylation of DNA replication
pathway, which is specifically associated with transcription and
replication pathways. In addition, the genes negatively correlated
with CD40LG were found to be associated primarily with
neutrophil degranulation, signaling for interleukins and several
cascades of Toll Like Receptors in HAM/TSP patients. These
pathways may be associated with immune responses involving
inflammation (Faurschou and Borregaard, 2003; Lacagnina et al.,
2018; Weitzman, 2003), which is frequently observed in HAM/
TSP patients (Nakagawa et al., 1995).

On the other hand, the genes negatively correlated with
CD40LG were found to be associated with MAPK cascade-
associated pathways and cell cycle-related pathways. MAPK
cascade-related pathways are associated with a wide spectrum of
metabolic pathways related to cell proliferation, differentiation,
and apoptosis (Shaul and Seger, 2007). Cell cycle-related
pathways, such as Mitotic G1-G1/S phases, G1/S Transition,
G2/M Transition, and Mitotic G2-G2/M phases, are related to
cell proliferation (Matson and Cook, 2017). These pathways are
all related to cell proliferation, which is consistent with ATLL
symptomatology and the uncontrolled proliferation of T cells
(Shimoyama and members of The Lymphoma Study Group
(1984-87)*, 1991).

The top pathways that positively correlated with GBP2
were mainly related to HIV infection, tRNA, and viral
mRNA processing and synthesis, signaling by interleukins,
and apoptosis regulation. The pathways observed to be
related to HIV infection may be due to similarities between
HTLV-1 and HIV, as both these retroviruses mainly infect
T CD4+ lymphocytes. The tRNA and viral mRNA pathways
are associated with the highly active processing of RNAs
that occurs in ATLL cells. Furthermore, the regulation of
apoptosis could be associated with the immortalization of T
CD4+ cells that characterizes the leukemic aspect of ATLL
(Bellon et al., 2010).

In order to evaluate the predictive power of the CD40LG/GBP2
two-gene signature in the accurate classification of HAM/TSP and
ATLL samples, we conducted a validation step using independent
datasets, which revealed excellent predictive values. The majority
of datasets returned an AUC of 1.0, corresponding to an accuracy
rate of 100% when classifying samples as ATLL, HAM/TSP, or
controls. In one of six validation datasets (GSE19080), a poorer
classification accuracy was found, which is likely due to the
absence of the CD40LG in the array, indicating the requirement of
both genes in order to maintain reliably consistent classification.
Additionally, the selected validation datasets sampled not only
PBMC:s but also several transformed cell lines, including MT-2,
MT-4, StEd, and TaY, as well as isolated CD4+ cells. These high

rates of accuracy seen in a diverse range of tissue types serve
to confirm the robustness of the two-gene signature identified
herein, suggesting a conserved mechanism in the regulation
of genes associated with each symptomatology. Despite some
limitations such as the absence of available datasets studying
HTLV-1 biomarkers in a transcriptional approach and the
reduced sample numbers, our findings provide useful biomarkers
to independently identify populations affected by HTLV-1.

CONCLUSION

Our meta-analysis of gene expression datasets in HTLV-1-
infected patients with specific disease manifestations identified
a two-gene signature (CD40LG/GBP2) allowing for excellent
classification of the HAM/TSP and ATLL phenotypes. This
signature was subsequently validated in six independent
datasets. An exploratory functional enrichment analysis of
the genes found to be positively and negatively correlated with
this signature revealed diverse activation and repression of
pathways relevant to this viral disease. Our findings add to the
accumulation of knowledge surrounding HTLV-1 infection and
may contribute to early diagnosis, as well as the treatment of
related symptomatologies.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: GSE55851, GSE29312,GSE29332,GSE17718,
GSE6034,GSE38537,GSE33615,GSE57259,GSE19080.

AUTHOR CONTRIBUTIONS

EE AQ, KF, MR and PR participated in the data analysis. EF, AQ,
KF and PR participated in the manuscript writing. JK, LA, JL and
HJ participated in the idea generation for this work.

FUNDING

AQ acknowledges financial support from the program Inova
Fiocruz (Project number VPPIS-001-FIO18).

ACKNOWLEDGMENTS

We thank Mr. Olival Rocha for his assistance. The authors would
also like to thank Andris K. Walter for English language revision
and manuscript copyediting assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2019.01056/
full#supplementary-material

TABLE S1 | Datasets used on the validation step's detailed information

Frontiers in Genetics | www.frontiersin.org

November 2019 | Volume 10 | Article 1056


https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fgene.2019.01056/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01056/full#supplementary-material

Fukutani et al.

Meta-Analysis of HTLV-1 Identifies Biomarkers
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and associated genes (ENTREZ ID).

TABLE S6 | Detailed information regarding the positively correlated pathways
and associated genes (ENTREZ ID).

REFERENCES

Arainga, M., Murakami, H., and Aida, Y. (2012). Visualizing spatiotemporal
dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1
Tax and insights into gene expression changes using microarray-based gene
expression analysis. BMC Genomics 13, 275. doi: 10.1186/1471-2164-13-275

Araya, N, Sato, T., Ando, H., Tomaru, U., Yoshida, M., Coler-Reilly, A., et al.
(2014). HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J. Clin. Invest.
124, 3431-3442. doi: 10.1172/JCI75250

Baratella, M., Forlani, G., Raval, G. U,, Tedeschi, A., Gout, O., Gessain, A., et al.
(2017). Cytoplasmic localization of HTLV-1 HBZ protein: a biomarker of
HTLV-1-Associated myelopathy/tropical spastic paraparesis (HAM/TSP).
PLoS Negl. Trop. Dis. 11, €0005285. doi: 10.1371/journal.pntd.0005285

Bellon, M., Baydoun, H. H., Yao, Y., and Nicot, C. (2010). HTLV-I Tax-dependent
and -independent events associated with immortalization of human primary T
lymphocytes. Blood 115, 2441-2448. doi: 10.1182/blood-2009-08-241117

Bolstad, B. (2018). preprocessCore: A collection of pre-processing functions. R package
version 1.44.0. Available at: https://github.com/bmbolstad/preprocessCore.

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011).
Removing batch effects in analysis of expression microarray data: an evaluation
of six batch adjustment methods. PLoS One 6, e17238. doi: 10.1371/journal.
pone.0017238

Davis, S., and Meltzer, P. S. (2007). GEOquery: a bridge between the Gene
Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846-1847.
doi: 10.1093/bioinformatics/btm254

Debray, T. P. A., Damen, J. A. A. G,, Snell, K. I. E., Ensor, J., Hooft, L., Reitsma, J. B.,
et al. (2017). A guide to systematic review and meta-analysis of prediction
model performance. BMJ 356, i6460. doi: 10.1136/bmj.i6460

Enose-Akahata, Y., Abrams, A., Johnson, K. R., Maloney, E. M., and Jacobson, S.
(2012). Quantitative differences in HTLV-I antibody responses: classification
and relative risk assessment for asymptomatic carriers and ATL and
HAM/TSP patients from Jamaica. Blood 119, 2829-2836. doi: 10.1182/
blood-2011-11-390807

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P,, et
al. (2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649
D655. doi: 10.1093/nar/gkx1132

Faurschou, M., and Borregaard, N. (2003). Neutrophil granules and secretory
vesicles in inflammation. Microbes Infect. 5, 1317-1327. doi: 10.1016/j.
micinf.2003.09.008

Fujikawa, D., Nakagawa, S., Hori, M., Kurokawa, N., Soejima, A., Nakano, K., et al.
(2016). Polycomb-dependent epigenetic landscape in adult T-cell leukemia.
Blood 127, 1790-1802. doi: 10.1182/blood-2015-08-662593

Fukutani, K. E, Kasprzykowski, J. L, Paschoal, A. R., Gomes, M., de, S., Barral, A,
et al. (2017). Meta-analysis of expression datasets: comparing virus infection
and blood-fed transcriptomes to identify markers of virus presence. Front.
Bioeng. Biotechnol. 5, 84. doi: 10.3389/fbioe.2017.00084

Galvao-Castro, B., Loures, L., Rodriques, L. G., Sereno, A., Ferreira Junior, O. C.,
Franco, L. G,, et al. (1997). Distribution of human T-lymphotropic virus type
I among blood donors: a nationwide Brazilian study. Transfusion 37, 242-243.
doi: 10.1046/j.1537-2995.1997.37297203532.x

Gessain, A., and Mahieux, R. (2012). Tropical spastic paraparesis and HTLV-1
associated myelopathy: clinical, epidemiological, virological and therapeutic
aspects. Rev. Neurol. 168, 257-269. doi: 10.1016/j.neurol.2011.12.006

FIGURE S1 | Correlation network based on gene expression values in ATLL
samples. Highlighted genes were found to correlate with both CD40LG and GBP2.
B - Correlation network based on the gene expression values in the HAM/TSP
group. Highlighted genes were found to correlate with both CD40LG and GBP2.

C - Correlation network based on the gene expression values in the control group.

FIGURE S2 | Scatterplot of validation datasets sample distribution using the
CD40LG and GBP2's log transformed expression values. The samples can

be separated by symptomatology [ATLL (green), HAM/TSP (red) and control
(blue)], this separation is shown by the collored ellipses. The GSE19080's
scatterplot has only GBP2 within the dataset, the values of X and Y axis are both
representing GBP2's log transformed expression value.

GSE19080, Hernandez, E., and Oliere, S. (2010). Gene expression profiling in
patients infected with HTLV-1: Identification of ATL and HAM/TSP-specific
genetic profiles. Gene Expression Omnibus. GSE19080.

Hamamura, R. S., Ohyashiki, J. H., Kurashina, R., Kobayashi, C., Zhang, Y.,
Takaku, T, et al. (2007). Induction of heme oxygenase-1 by cobalt
protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell
leukaemia cells. Br. J. Cancer 97, 1099-1105. doi: 10.1038/sj.bjc.6604003

Hounkpe, B. W,, Fiusa, M. M. L., Colella, M. P, da Costa, L. N. G., Benatti, R.,
de, O., et al. (2015). Role of innate immunity-triggered pathways in the
pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies.
Sci. Rep. 5, 17822. doi: 10.1038/srep17822

Ishihara, M., Araya, N,, Sato, T., Tatsuguchi, A., Saichi, N., Utsunomiya, A., et al.
(2013). Preapoptotic protease calpain-2 is frequently suppressed in adult T-cell
leukemia. Blood 121, 4340-4347. doi: 10.1182/blood-2012-08-446922

Jha, P. K., Vijay, A., Sahu, A., and Ashraf, M. Z. (2016). Comprehensive Gene
expression meta-analysis and integrated bioinformatic approaches reveal
shared signatures between thrombosis and myeloproliferative disorders. Sci.
Rep. 6, 37099. doi: 10.1038/srep37099

Kagdi, H., Demontis, M. A., Ramos, J. C., and Taylor, G. P. (2018). Switching
and loss of cellular cytokine producing capacity characterize in vivo viral
infection and malignant transformation in human T- lymphotropic virus type
1 infection. PLoS Pathog. 14, €1006861. doi: 10.1371/journal.ppat.1006861

Kauffmann, A., Gentleman, R., and Huber, W. (2008). arrayQualityMetrics—a
bioconductor package for quality assessment of microarray data. Bioinformatics
25, 415-416. doi: 10.1093/bioinformatics/btn647

Kobayashi, S., Nakano, K., Watanabe, E., Ishigaki, T., Ohno, N., Yuji, K,, et al.
(2014). CADM1 expression and stepwise downregulation of CD7 are closely
associated with clonal expansion of HTLV-I-infected cells in adult T-cell
leukemia/lymphoma. Clin. Cancer Res. 20, 2851-2861. doi: 10.1158/1078-
0432.CCR-13-3169

Kress, A. K., Schneider, G., Pichler, K., Kalmer, M., Fleckenstein, B., and
Grassmann, R. (2010). Elevated cyclic AMP levels in T lymphocytes
transformed by human T-cell lymphotropic virus type 1. J. Virol. 84, 8732
8742. doi: 10.1128/JV1.00487-10

Lacagnina, M. J., Watkins, L. R., and Grace, P. M. (2018). Toll-like receptors and
their role in persistent pain. Pharmacol. Ther. 184, 145-158. doi: 10.1016/j.
pharmthera.2017.10.006

Langfelder, P, and Horvath, S. (2012). Fast R functions for robust correlations and
hierarchical clustering. J. Stat. Softw. 46. doi: 10.18637/jss.v046.i11

Leek, J. T., Johnson, W. E., Parker, H. S, Fertig, E. ], Jaffe, A. E., Storey, J. D., et al.
(2013). sva: Surrogate variable analysis. R Package Version 3.

Matson, J. P, and Cook, J. G. (2017). Cell cycle proliferation decisions: the impact
of single cell analyses. FEBS J. 284, 362-375. doi: 10.1111/febs.13898

Matutes, E. (2007). Adult T-cell leukaemia/lymphoma. J. Clin. Pathol. 60, 1373-
1377. doi: 10.1136/jcp.2007.052456

Messmer-Blust, A. E, Balasubramanian, S., Gorbacheva, V. Y,, Jeyaratnam, J. A.,
and Vestal, D. J. (2010). The interferon-gamma-induced murine guanylate-
binding protein-2 inhibits rac activation during cell spreading on fibronectin
and after platelet-derived growth factor treatment: role for phosphatidylinositol
3-kinase. Mol. Biol. Cell 21, 2514-2528. doi: 10.1091/mbc.e09-04-0344

Miller, J. A., Cai, C., Langfelder, P, Geschwind, D. H., Kurian, S. M., Salomon, D.R.,
etal. (2011). Strategies for aggregating gene expression data: the collapseRows
R function. BMC Bioinf. 12, 322. doi: 10.1186/1471-2105-12-322

Frontiers in Genetics | www.frontiersin.org

44

November 2019 | Volume 10 | Article 1056


https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1186/1471-2164-13-275
https://doi.org/10.1172/JCI75250
https://doi.org/10.1371/journal.pntd.0005285
https://doi.org/10.1182/blood-2009-08-241117
https://github.com/bmbolstad/preprocessCore
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1136/bmj.i6460
https://doi.org/10.1182/blood-2011-11-390807
https://doi.org/10.1182/blood-2011-11-390807
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1016/j.micinf.2003.09.008
https://doi.org/10.1016/j.micinf.2003.09.008
https://doi.org/10.1182/blood-2015-08-662593
https://doi.org/10.3389/fbioe.2017.00084
https://doi.org/10.1046/j.1537-2995.1997.37297203532.x
https://doi.org/10.1016/j.neurol.2011.12.006
https://doi.org/10.1038/sj.bjc.6604003
https://doi.org/10.1038/srep17822
https://doi.org/10.1182/blood-2012-08-446922
https://doi.org/10.1038/srep37099
https://doi.org/10.1371/journal.ppat.1006861
https://doi.org/10.1093/bioinformatics/btn647
https://doi.org/10.1158/1078-0432.CCR-13-3169
https://doi.org/10.1158/1078-0432.CCR-13-3169
https://doi.org/10.1128/JVI.00487-10
https://doi.org/10.1016/j.pharmthera.2017.10.006
https://doi.org/10.1016/j.pharmthera.2017.10.006
https://doi.org/10.18637/jss.v046.i11
https://doi.org/10.1111/febs.13898
https://doi.org/10.1136/jcp.2007.052456
https://doi.org/10.1091/mbc.e09-04-0344
https://doi.org/10.1186/1471-2105-12-322

Fukutani et al.

Meta-Analysis of HTLV-1 Identifies Biomarkers

Mirvish, E. D., Pomerantz, R. G., and Geskin, L. J. (2011). Infectious agents
in cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 64, 423-431. doi:
10.1016/j.jaad.2009.11.692

Nakagawa, M., Izumo, S., Ljichi, S., Kubota, H., Arimura, K., Kawabata, M.,
et al. (1995). HTLV-I-associated myelopathy: analysis of 213 patients based
on clinical features and laboratory findings. J. Neurovirol. 1, 50-61. doi:
10.3109/13550289509111010

Oliére, S., Hernandez, E., Lézin, A., Arguello, M., Douville, R., Nguyen, T. L.-A.,,
et al. (2010). HTLV-1 evades type I interferon antiviral signaling by inducing
the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog. 6, €1001177. doi:
10.1371/journal.ppat.1001177

O’Mara, T. A.,, Zhao, M., and Spurdle, A. B. (2016). Meta-analysis of gene
expression studies in endometrial cancer identifies gene expression profiles
associated with aggressive disease and patient outcome. Sci. Rep. 6, 36677. doi:
10.1038/srep36677

Osame, M., Usuku, K., Izumo, S., Jjichi, N., Amitani, H., Igata, A., et al. (1986).
HTLV-I associated myelopathy, a new clinical entity. Lancet 1, 1031-1032. doi:
10.1016/50140-6736(86)91298-5

Pinto, M. T., Malta, T. M., Rodrigues, E. S., Pinheiro, D. G., Panepucci, R. A,,
Malmegrim de Farias, K. C. R., et al. (2014). Genes related to antiviral activity,
cell migration, and lysis are differentially expressed in CD4(+) T cells in
human t cell leukemia virus type 1-associated myelopathy/tropical spastic
paraparesis patients. AIDS Res. Hum. Retroviruses 30, 610-622. doi: 10.1089/
aid.2013.0109

Sato, T., Coler-Reilly, A., Utsunomiya, A., Araya, N., Yagishita, N., Ando, H.,
et al. (2013). CSF CXCL10, CXCL9, and neopterin as candidate prognostic
biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis.
PLoS Negl. Trop. Dis. 7, €2479. doi: 10.1371/journal.pntd.0002479

Shaul, Y. D., and Seger, R. (2007). The MEK/ERK cascade: from signaling
specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213-1226. doi:
10.1016/j.bbamcr.2006.10.005

Shimoyama, M., and members of The Lymphoma Study Group (1984-87)*
(1991). Diagnostic criteria and classification of clinical subtypes of adult T-cell
leukaemia-lymphoma. Br. . Haematol. 79, 428-437. doi: 10.1111/j.1365-
2141.1991.tb08051.x

Shu, S. T., Dirksen, W. P,, Lanigan, L. G., Martin, C. K., Thudi, N. K., Werbeck, J. L.,
et al. (2012). Effects of parathyroid hormone-related protein and macrophage
inflammatory protein-la in Jurkat T-cells on tumor formation in vivo and
expression of apoptosis regulatory genes in vitro. Leuk. Lymphoma 53, 688-698.
doi: 10.3109/10428194.2011.626883

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S.,
et al. (2016). The GeneCards Suite: from gene data mining to disease genome
sequence analyses. Curr. Protoc. Bioinf. 54, 1.30.1-1.30.33. doi: 10.1002/cpbi.5

Sweeney, T. E., Haynes, W. A., Vallania, F, Ioannidis, J. P,, and Khatri, P. (2017).
Methods to increase reproducibility in differential gene expression via meta-
analysis. Nucleic Acids Res. 45, el. doi: 10.1093/nar/gkw797

Tattermusch, S., Skinner, J. A., Chaussabel, D., Banchereau, J., Berry, M. P,
McNab, E W, et al. (2012). Systems biology approaches reveal a specific

interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog.
8, 1002480. doi: 10.1371/journal.ppat.1002480

Therneau, T., Atkinson, B., and Ripley, B. (2015). rpart: Recursive Partitioning and
Regression Trees. R package version 4. pp. 1-10.

Uchiyama, T., Yodoi, J., Sagawa, K., Takatsuki, K., and Uchino, H. (1977). Adult
T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50, 481-
492. doi: 10.1182/blood.V50.3.481.bloodjournal503481

Weitzman, J. (2003). Interleukins in inflammation. Genome
spotlight-20030217. doi: 10.1186/gb-spotlight-20030217-01

Wickham, H. (2011). The Split- Apply-Combine Strategy for Data Analysis. J. Stat.
Softw. 40. doi: 10.18637/jss.v040.i01

Xue, S., Song, G., and Yu, J. (2017). The prognostic significance of PD-L1
expression in patients with glioma: A meta-analysis. Sci. Rep. 7, 4231. doi:
10.1038/541598-017-04023-x

Yamada, Y., Tomonaga, M., Fukuda, H., Hanada, S., Utsunomiya, A., Tara, M.,
etal. (2001). A new G-CSF-supported combination chemotherapy, LSG15, for
adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303.
Br. J. Haematol. 113, 375-382. doi: 10.1046/j.1365-2141.2001.02737.x

Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A.,
et al. (2012). Polycomb-mediated loss of miR-31 activates NIK-dependent
NF-«kB pathway in adult T cell leukemia and other cancers. Cancer Cell 21,
121-135. doi: 10.1016/j.ccr.2011.12.015

Yamamoto-Taguchi, N., Satou, Y., Miyazato, P, Ohshima, K., Nakagawa, M., Katagiri,
K., etal. (2013). HTLV-1 bZIP factor induces inflammation through labile Foxp3
expression. PLoS Pathog. 9, €1003630. doi: 10.1371/journal.ppat.1003630

Yamano, Y., and Sato, T. (2012). Clinical pathophysiology of human T-lymphotropic
virus-type 1-associated myelopathy/tropical spastic paraparesis. Front.
Microbiol. 3, 389. doi: 10.3389/fmicb.2012.00389

Yasuma, K., Matsuzaki, T., Yamano, Y., Takashima, H., Matsuoka, M., and Saito,
M. (2016). HTLV-1 subgroups associated with the risk of HAM/TSP are related
to viral and host gene expression in peripheral blood mononuclear cells,
independent of the transactivation functions of the viral factors. J. Neurovirol.
22, 416-430. doi: 10.1007/s13365-015-0407-2

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS 16, 284-287
doi: 10.1089/0mi.2011.0118

Biol. 4,

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Fukutani, Ramos, Kasprzykowski, Azevedo, Rodrigues, Lima,
Aratijo Junior, Fukutani and Queiroz. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org

45

November 2019 | Volume 10 | Article 1056


https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1016/j.jaad.2009.11.692
https://doi.org/10.3109/13550289509111010
https://doi.org/10.1371/journal.ppat.1001177
https://doi.org/10.1038/srep36677
https://doi.org/10.1016/S0140-6736(86)91298-5
https://doi.org/10.1089/aid.2013.0109
https://doi.org/10.1089/aid.2013.0109
https://doi.org/10.1371/journal.pntd.0002479
https://doi.org/10.1016/j.bbamcr.2006.10.005
https://doi.org/10.1111/j.1365-2141.1991.tb08051.x
https://doi.org/10.1111/j.1365-2141.1991.tb08051.x
https://doi.org/10.3109/10428194.2011.626883
https://doi.org/10.1002/cpbi.5
https://doi.org/10.1093/nar/gkw797
https://doi.org/10.1371/journal.ppat.1002480
https://doi.org/10.1182/blood.V50.3.481.bloodjournal503481
https://doi.org/10.1186/gb-spotlight-20030217-01
https://doi.org/10.18637/jss.v040.i01
https://doi.org/10.1038/s41598-017-04023-x
https://doi.org/10.1046/j.1365-2141.2001.02737.x
https://doi.org/10.1016/j.ccr.2011.12.015
https://doi.org/10.1371/journal.ppat.1003630
https://doi.org/10.3389/fmicb.2012.00389
https://doi.org/10.1007/s13365-015-0407-2
https://doi.org/10.1089/omi.2011.0118
http://creativecommons.org/licenses/by/4.0/

'." frontiers
in Genetics

ORIGINAL RESEARCH
published: 15 November 2019
doi: 10.3389/fgene.2019.01147

OPEN ACCESS

Edited by:

Quan Zou,

University of Electronic Science and
Technology of China, China

Reviewed by:

Xiangxiang Zeng,

Xiamen University, China

Wen Zhang,

Huazhong Agricultural University,
China

*Correspondence:
Minzhu Xie
Xxieminzhu@hunnu.edu.cn

Specialty section:

This article was submitted to
Bioinformatics and
Computational Biology,

a section of the journal
Frontiers in Genetics

Received: 19 July 2019
Accepted: 21 October 2019
Published: 15 November 2019

Citation:

Li S, Xie M and Liu X (2019) A

Novel Approach Based on Bipartite
Network Recommendation and KATZ
Model to Predict Potential Micro-
Disease Associations.

Front. Genet. 10:1147.

doi: 10.3389/fgene.2019.01147

Check for
updates

A Novel Approach Based on Bipartite
Network Recommendation and KATZ
Model to Predict Potential Micro-
Disease Associations

Shiru Li', Minzhu Xie* and Xinqiu Liu?

’ College of Information Science and Engineering, Hunan Normal University, Changsha, China, 2 Hunan Vocational College of
Engineering, Changsha, China

Accumulating evidence indicates that the microbes colonizing human bodies have crucial
effects on human health and the discovery of disease-related microbes will promote the
discovery of biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis
of diseases. However clinical experiments of disease-microbe associations are time-
consuming, laborious and expensive, and there are few methods for predicting potential
microbe-disease association. Therefore, developing effective computational models
utilizing the accumulated public data of clinically validated microbe-disease associations
to identify novel disease-microbe associations is of practical importance. We propose
a novel method based on the KATZ model and Bipartite Network Recommendation
Algorithm (KATZBNRA) to discover potential associations between microbes and
diseases. We calculate the Gaussian interaction profile kernel similarity of diseases
and microbes based on validated disease-microbe associations. Then, we construct a
bipartite graph and execute a bipartite network recommendation algorithm. Finally, we
integrate the disease similarity, microbe similarity and bipartite network recommendation
score to obtain the final score, which is used to infer whether there are some novel
disease-microbe interactions. To evaluate the predictive power of KATZBNRA, we tested
it with the walk length 2 using global leave-one-out cross validation (LOOV), two-fold and
five-fold cross validations, with AUCs of 0.9098, 0.8463 and 0.8969, respectively. The
test results also show that KATZBNRA is more accurate than two recent similar methods
KATZHMDA and BNPMDA.

Keywords: microbe, disease, KATZ model, bipartite network recommendation, Gaussian interaction profile
kernel similarity

INTRODUCTION

A microbe is a microscopic organism, including bacteria, eukaryotes, archaea, and viruses (Wu
etal., 2018). Various types of microbes live on or in different parts of a human body such as the skin,
mouth, hair, stomach, and gastrointestinal tract. An adult human body contains a large number of
bacterial cells, which is estimated to reach 10! and much more than the total number of human
cells, with more than 5 million microbe genes, outnumbering the human genes by more than 100
fold (Sommer and Backhed, 2013). Most microbes are harmless and some are beneficial to humans
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(Grice and Segre, 2011). Recently, accumulated experimental
evidence shows that microbes have an important impact on
human health, nutrient absorption, immune response, cancer
control, and the prevention of pathogen colonization (Wu
et al., 2018). For example, the gut microbiota could significantly
contribute nutrition absorption by producing indispensable
vitamins and decomposing indigestible polysaccharides, and it
also has an important impact on the mucus layer, the balance
of antimicrobial peptides, and immunoglobulin A, and the
differentiation and activation of some lymphocyte populations
(Sommer and Backhed, 2013). Therefore, the gut microbiota
is thought to be an extra ‘organ’ of humans (Gill et al., 2006).
But some microbes may contribute to disease, such as psoriasis
and inflammatory bowel disease (IBD). There have been reports
that psoriasis occurs after strep throat and could worsen
due to the colonization of Candida albicans, Malassezia, and
Staphylococcus aureus on the skin or in the gut (Fry and Baker,
2007). Aroniadis et. al. (Aroniadis and Brandt, 2013) indicated
that the biodiversity of bacteria, such as Bacteroidetes and
Firmicutes, colonizing in individuals affected by IBD has been
found to be reduced by 30 to 50%. Wang et. al. (Wang and Jia,
2016) showed that the gut microbiota’s dysbiosis might be a key
environmental risk factor of many human diseases, though it’s
difficult to reveal the true causality.

To explore the relationship between microbes and their
human hosts, scientists from many countries collaborated and
launched the Human Microbiome Project (HMP) (Human
Microbiome Project, 2012a). Recently, high-throughput
sequencing techniques and corresponding software packages
have been developed rapidly, and a growing number of research
analyses have been carried out on the microbiome, such
as whole-genome shotgun (WGS), 16S, and the taxonomic
profiling (Human Microbiome Project, 2012b), and have
demonstrated significant associations between microbes and
complex human diseases such as rheumatoid arthritis, colorectal
cancer, obesity, and type 2 diabetes (Wang and Jia, 2016).
However, these studies involve time-consuming and expensive
biological experiments. Therefore, it is necessary to utilize the
known information to predict the unknown microbe-disease
interactions. Identifying microbe-disease interactions could
promote discovering biomarkers and drugs for the prevention,
diagnosis, treatment, and prognosis of diseases. Now, more
and more computer algorithms (Chen and Zhang, 2013; Yang
et al., 2014; Zhang et al., 2017; Zeng et al., 2018; Zhang et al.,
2018a; Zhang et al., 2018b; Zhang et al., 2018¢; Zhang et al,,
2018d; Zeng et al., 2019) have been proposed for interaction
prediction of miRNA-disease, IncRNA-disease, and drug-drug,
and it is feasible to apply these methods to the microbe-disease
association prediction field.

Recently, Ma et al. (2017) collected microbe-disease
association data from previous published studies and constructed
the Human Microbe-Disease Association Database (HMDAD).
Based on the data from HMDAD, some microbe-disease
association prediction methods have been proposed. Chen et al.
(2017) used a KATZ measure to predict human microbe-disease
association, and proposed an algorithm named KATZHMDA.
KATZHMDA can predict new microbe-disease associations at a

large scale. Bao et al. (2017) used network consistency projection
and introduced an algorithm NCPHMD to predict human
microbe-disease association. NCPHMD deals with unknown
diseases or microbes that are not present in the disease-microbe
databases. He et al. (He et al, 2018) presented an algorithm
GRNMFHMDA. GRNMFHMDA assigns likelihood scores to
unknown microbe-disease pairs by calculating weighted K nearest
neighbor profiles of microbes and diseases, and then adapts the
standard non-negative matrix factorization by integrating graph
Laplacian and Tikhonov (L2) regularization to obtain a microbe-
disease association prediction score matrix. Zou et al. (2017)
designed an approach BIRWHMDA. BIRWHMDA constructs
a heterogeneous network by connecting the microbe similarity
network and the disease similarity network based on known
microbe-disease associations, and then uses a bi-random walk to
predict microbe-disease association.

In the paper, we propose a novel approach to predict
potential micro-disease association based on the KATZ
measure and bipartite network recommendation algorithm
(KATZBNRA), which is an improvement on KATZHMDA
(Chen et al,, 2017). Similar to KATZHMDA, KATZBNRA
uses the KATZ measure and the similarity of diseases and
microbes according to the Gaussian interaction profile kernel
to predict novel microbe-disease associations based on the
known microbe-disease associations. Furthermore, in order to
improve the predicting accuracy, KATZBNRA uses a bipartite
network recommendation algorithm.

MATERIALS AND METHODS

Known Disease-Microbe Associations
HMDAD (Human Microbe-Disease Association Database,
http://www.cuilab.cn/hmdad) collected the curated human
microbe-disease association data from microbiota studies where
the microbes were determined by 16s RNA sequencing on the
genus level (Ma et al,, 2017). HMDAD provides public access
to the data, and our known microbe-disease association data
were downloaded from HMDAD. The data contains 450 distinct
confirmed associations between 39 diseases and 292 microbes
and is coded in an adjacency matrix A € R** , where n, (or
n,,) is the number of diseases (or microbes). If there has been an
experiment confirming that microbe m; relates to disease d,A(i,)
is set to 1, otherwise A(i,j) is set to 0.

Disease Gaussian Interaction Profile
Kernel Similarity

According to (Chen et al., 2017), there is a generally accepted
assumption that similar diseases show an interaction tendency
to similar microbes. Similar to (Chen and Yan, 2013) and (Chen
etal., 2017), we compute the disease network topologic similarity
based on the Gaussian interaction profile kernel. For a disease-
microbe association adjacent matrix A, the binary element A(i,j)
at row i and column j encodes whether there is a confirmed
association between disease d(i) and microbe m(j). The ith row
of A is denoted by IP(d(i)). IP(d(i)) can be regarded a binary
vector and is called the interaction profile of d(i) since it provides
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the association information of disease d(i) with all microbes. For
two diseases, their similarity KD(d,d)), based on the Gaussian
interaction profile kernel, is calculated from their interaction
profiles according to the following equations.

KD(d,,d;) = exp(-y, || IP(d;)— IP(d;) 1) (1)

Ya= 1 T4
(2211 [l 1P(d}) IIZJ
Ny

KD(d,d,) is adjusted by the norm kernel bandwidth y,;, which
is controlled by the bandwidth parameter Y} . It is obvious that
KD(d,d;)) = 1 and 0 < KD(d,,d;)<1. According to (Vanunu et al,
2010), KD values in (0, 0.3] may be not informative, while KD
values in [0.6, 1] may show significant similarity. Therefore, a
logistic function transformation from KD(x, y) to KD'(x, y) in
Equation (3) is utilized in order to measure the similarity of
diseases x and y more appropriately.

2)

KD'(d;,d;) = KD (d;d; )+d
1+e !

3)

The parameters 7y, and c could be set with cross-validation,
but to simplify the calculation, we set Y = 1 asin van Laarhoven
et al,, 2011, ¢ = -15 as in (Vanunu et al, 2010). According to
(Vanunu et al,, 2010), we set d = 10g(9999) such that KD’(di,dj) =
0.0001 when KD(d,,d)) = 0.

Microbe Gaussian Interaction Profile
Kernel Similarity

As mentioned before, similar diseases show an association
tendency with similar microbes. To measure the similarity of
microbes, we also used the Gaussian interaction profile kernel as
before. It could be calculated in a similar way as follows.

KM(m;,m;) = exp(-Y,, ||IP(mi)—IP(mj)||2) (4)
Vi = ] T
(nzzzl || 1P(m,) ||2] >)

where Y is also set to 1, and IP(m,) is the ith column of matrix
A. Similarly, KM'(m,, m;) could be calculated as Equation (3). It
should be noted that in each cross-validation experiment, the
similarities of diseases and microbes will be recalculated (Sun
etal., 2018).

Bipartite Network Recommendation

The bipartite network recommendation is a two-step resource
allocation process (Chen et al., 2018b), which is based on a
bipartite graph G(D, M, E), where D represents disease nodes,

M microbe nodes, E the edges corresponding to the known
microbe-disease associations. Let f,,(m;) denote the initial
resource allocated to a microbe node m; when considering disease
d, k(mj) be the number of adjacent disease nodes of microbe m
and let k(d;) be the number of adjacent microbe nodes of disease
d; in graph G.

When focusing on disease d,, each disease d; related
microbe node is initially allocated with a resource value of
1, i.e. if there is an edge between the disease node d; and a
microbe node m; in G, allocate an initial resource of 1 to m,.
The first step of the bipartite network recommendation is to
transfer the resource from microbe nodes to disease nodes
according to Equation (6), and the second step is to transfer
the resource of the disease nodes back to microbe nodes
according to Equation (8).

fud) = Za’ff‘“("”

(6)
where a;; is an element of matrix A, i.e. a; = A(, j) and
Lif disease d; is related to microbe m;
a, =
! 0, otherwise @)
In fact,f(),,-(mj) is also equal to A(i, j).
al]fl z(dl
foulm;)= 2 ) (®)
Equations (6) and (8) are integrated into Equation (9).
Foalm)=Y wy foim;) ©)
j=1
nq
1 Aqi%g
(10)

T Kom) & k(d,)

Please see an example of the process of the bipartite network
recommendation focusing on disease d, in Figure 1. After the
process, we obtain the recommendation scores (1, 0, 1/4, 3/4, 0)
of the microbes for disease d,, which suggests that besides m, and
m,, my may also be related to the disease.

The matrix form of Equation (9) is as follows.

B=WxA" (11)
where W = {Wq}n . , and B is a matrix with n, rows and n,

columns. The ith column of B is the recommend scores of
bipartite network recommendation regarding disease d,
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1 0 0 1 0
3/2 0 1/2 0
1 0 1/4 3/4 0
FIGURE 1 | llustration of the two-step resource-allocation process in a
bipartite graph.

KATZBNRA

KATZBNRA uses the KATZ model to compute the associations
between diseases and microbes and is illustrated in Figure 2.
As a network-based computation method, the KATZ model
(Chen, 2015) had been used in the problem of link prediction
in the heterogenous network to calculate the similarity of
nodes. There are two factors that have been regarded as
effective similarity metrics in the KATZ model, the walk steps
(length, i.e. the number of edges of the walk) and the number
of walks from one node to another. We use the KATZ model
to calculate similarities between the nodes of the microbe and
disease by counting the number of walks between them. Here
Al(i,j), the element of the I-th power of A, is the number of
I-length walks between disease node d; and microbe node m;.
Due to the limited data from HMDAD, matrix A is sparse. In
order to use more information, we integrated the matrices KM,
KD, B into a matrix B* as Equation (12) and replace A by B*

! ! !

Logistic transformation L Logistic transformation
of microbe Gaussian ~ Bipartite network ¢ 4; 05 ce Gaussian
interaction profile recommendation © jnteraction profile
kernel similarity (KM")* kernel similarity (KD")*

! !

!

KATZ model

k
S(dmy) = ) BB )

=1

!
[ s e |

FIGURE 2 | The diagram of KATZBNRA.

in the KATZ model to calculate similarities between microbes
and diseases.

(12)

Since walks between nodes of microbe and disease with
different lengths have different contributions to similarities of
node pairs, in order to dampen longer walks™ contribution, we
introduced a parameter ; which is no smaller than 0, and if [,> [,
then B, <, . The potential association between diseases d; and
microbe m;, can be calculated as follows.

k
S(d,m;)="Y BiB" G, j)

=1

(13)

If k— oo, replace B, with ' (0<f <1) (Qu et al.,, 2018) and the
matrix form of Equation (13) is as follows.

S:}EﬂB”:U—ﬁBU*—I

21

(14)

S is a matrix of size (n; + n,)x(n; + n,), and could be
partitioned into four sub-matrices as shown in Equation (12).
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(15)

where the rows of S, | and S, are n,, the rows of S,, and S, , are
n,, the columns of §, | and S, are n,, and the columns of S, , and
S,,are n,. The element S, ,(4, j) of S, , provides the possibility that
an association between disease d; and the microbe m; exists, and
our prediction result can be obtained from S, ,.

Considering that the walks oflonglengths may be meaningless,
we limit k in Equation (13) to be 2, 3 and 4, and the expression
can be as follows.

S, =B-B+B°-(KM’-B+B-KD’) (16)

Sees=S,,+B°-(B-B" -B+KM’*-B+KM’-B-KD’'+ B-KD"?)
(17)

Sies = Si3
+B*-(KM”-B+B-B" -KM’-B+KM’-B-B" -B+B-KD’-B" - B)

, (18)
+pB*-(B-B"-B-KD'+KM"*-B-KD'+KM"B-KD?+B-KD")

RESULTS

Performance Evaluation

The test dataset of microbe-disease association was downloaded
from HMDAD. We used LOOCV (leave-one-out cross
validation), two-fold cross validation and five-fold cross
validation to test the prediction performance of KATZBNRA on
the HMDAD data.

In LOOCY, each known microbe-disease association takes
turns to be picked out as the testing case and the other known
associations are regarded as training data. We then obtained
the prediction score of the test case output by KATZBNRA and
ranked of the test case in the sorted list of all predicted microbe-
disease associations in descending order of their scores. We
used different thresholds to determine the correct predictions
and wrong predictions and calculated corresponding FPR
(false positive rate) and TPR (true positive rate) according
to Equation (19). Finally, the results were presented in the
ROC (receiver operating characteristics) curve plot of TPR
against FPR.

TP

—— , FPR FP
EN +TP

TPR = =
TN + FP

(19)

where FN is the number of false negative predictions (i.e. the
cases whose prediction scores below the threshold), and TP is
the number of true positive predictions (i.e. the cases whose
prediction scores are not smaller than the threshold). FP is the
number of the predicted associations that are not in the HMDAD

dataset with scores not smaller than the threshold, and TN is the
number of predicted associations that are not in the HMDAD
dataset with scores smaller than the threshold. The area under
a ROC curve is called AUC, and AUC is generally utilized to
compare the power of predictive models. AUC of 0.5 indicates an
entirely random prediction while AUC = 1 means a completely
correct prediction.

In order to further test the prediction power of KATZBNRA,
we also adopted 5-fold cross validation and 2-fold cross
validation besides LOOCYV. 5-fold (or 2-fold) cross validation
randomly divides the microbe-disease associations equally
into five (or two) parts and one of the five (or two) parts is
reserved as the verification data while the remaining is used as
training data. Considering the potential random sampling bias,
we repeated each LOOCYV, 2-fold and 5-fold cross validation
test 100 times, and all ROC curves and AUCs are the average
results of the 100 repeated tests. Meanwhile, we compared
KATZBNRA with several state-of-the-art predictive methods
using these validations.

For our method KATZBNRA, the walk length k plays a critical
role. To test the effect of k, we changed the value of k, and carried
out a series of LOOCV experiments. As shown in Figure 3, when
k is set to 2, 3 and 4, the AUCs of each walk lengths are 0.9098,
0.8968, and 0.8827, respectively. Obviously, when parameter k =
2, KATZBNRA achieved the best prediction performance and
walks of longer lengths may make the association prediction
worse. Therefore, in the following experiments, we set k = 2.
KATZBNRA has two more parameters, y' and f. The test in
a previous work (Chen et al,, 2016) showed AUC tended to
decrease when y’ was increased from 1.0 to 1.5, 2.0 and 2.5, and
B was increased from 0.01 to 0.05 and 0.1. We also evaluated the
AUC of KATZBNRA with different values of parameter y’" and ¢
in Equation (2) and Equation (3), and the test results are shown
in Tables 1 and 2, showing similar results as Chen et al., 2016.
Therefore, we set y'=1.0 and $=0.01.

1 . : - : : ——
n‘—“‘*_“d_F
09t =
/;”‘/‘“
08 /,/
07t )I /
06} F
{1
£ ost
o 0.5 ﬂ
Ll
0.4 It
03+
021 ]
—k=2 AUC = 0.9098
01t ——k=3AUC =0.898| |
’ k=4 AUC = 0.8827
0 . ) A : A . ) . )
0 0.1 02 03 04 05 06 07 08 09 1
FPR
FIGURE 3 | The predictive performances of KATZBNRA with different ks.
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TABLE 1 | The AUC of KATZBNRA with y’set different values.

Y AUC
1 0.9098
1.5 0.9083
2 0.9033
TABLE 2 | The AUC of KATZBNRA with ¢ set different values.

c AUC
-15 0.9098
-10 0.9038
-5 0.8935

We compared KATZBNRA with another three prediction
methods, the native bipartite network recommendation (BNR)
(Zhou et al., 2007), KATZHMDA (Chen et al, 2017), and
IMCMDA (Chen et al, 2018a) using LOOCYV, 5-fold cross
validation and 2-fold cross validation. The global LOOCV
showed that the AUCs of KATZBNRA, KATZHMDA,
IMCMDA and BNR were 0.9098, 0.8382, 0.7786, and 0.4113,
respectively, as shown in Figure 4-6 show the 5-fold cross
validation experimental results and the 2-fold cross validation
experimental results, respectively. In 5-fold cross validation
KATZBNRA, KATZHMDA, IMCMDA, and BNR obtained
AUC:s of 0.8972, 0.8330, 0.8041, and 0.5645, respectively, and in
2-fold cross validation, their AUCs were 0.8463, 0.8190, 0.7988
and 0.5434, respectively. In all the above experiments, the curves
of KATZBNRA are above those of the other methods, which
means that among the four methods, KATZBNRA achieved the
best prediction performance.

Case Studies
We studied asthma and inflammatory bowel disease (IBD)
of microbe-related diseases of human beings based on recent

. . - —
09 ﬁ — E
0.8 '“:'" S 4
///J S ot
07t [ﬂ - |
L] ]
0.6 p,
E 05r : b
(= rf
0.4 i
/
03[ 1
02k ——KATZBNRA AUC = 0.9098 .
—— KATZHMDA AUC =0.8382
0.1F IMCMDA AUC = 0.7786 |
’ — bipartite network recommendation AUC = 0.4113
0 0.1 02 03 04 05 06 07 08 0.9 1
FPR

FIGURE 4 | The LOOCV experimental results of KAZTBNRA, KATZHMDA,
IMCMDA, and the native bipartite network recommendation.

TPR

0.2 ’/

——KATZBNRA AUC = 0.8972
—— KATZHMDA AUC =0.8330
IMCMDA AUC = 0.8041

1 1
0 ( — bipartite network recommendation AUC = 0.5645
0 0.1 02 03 04 05 06 07 08 0.9 1
FPR

FIGURE 5 | The 5-fold cross validation experimental results of KAZTBNRA,
KATZHMDA, IMCMDA, and the native bipartite network recommendation.
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FIGURE 6 | The 2-fold cross validation experimental results of KAZTBNRA,
KATZHMDA, IMCMDA, and the native bipartite network recommendation.

published clinical and biological reports to further evaluate
the ability of our method. The predicted disease-microbe
associations which are contained in the HMDAD dataset are
sorted according to their prediction scores in descending order.
For asthma and IBD, we observed the microbes in the top 10
associations of the lists. This guarantees absolute independence
between the verification candidate and the known association for
model training.

As a common chronic lung inflammatory disease, asthma
causes difficulty in breathing (Martinez, 2007). It is believed
that asthma is caused by the environment and a combination of
genes. For severe asthma, one of the leading causes is a microbe
(Huang et al., 2011). All of top predicted 10 candidate microbes
of KATZBNRA (Table 3) have been verified by recent studies.
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TABLE 3 | The Asthma-related microbe prediction of KATZBNRA. All of top 10
microbes were confirmed by recent studies.

Rank Microbe Evidence

1 Firmicutes PMID: 23265859(Marri et al., 2013)

2 Actinobacteria PMID: 23265859(Marri et al., 2013)

3 Clostridium coccoides PMID:21477358(Vael et al., 2011)

4 Streptococcus PMID: 17950502(Preston et al., 2007)
5 Lactobacillus PMID: 20592920(Yu et al., 2010)

6 Lachnospiraceae PMID:17433177(Rados et al., 2007)
7 Pseudomonas PMID:13268970(Fein, 1955)

8 Burkholderia PMID:24451910(Beigelman et al., 2014)
9 Fusobacterium Dang et al., 2013(Dang et al., 2013)
10 Propionibacterium PMID:27433177(Jung et al., 2016)

TABLE 4 | Top 10 potential IBD-related microbes predicted by KATZBNRA

Rank Microbe Evidence

1 Clostridium coccoides PMID:19235886(Sokol et al., 2009)

2 Firmicutes PMID:25307765(Walters et al., 2014)

3 Bacteroidetes PMID:25307765(Walters et al., 2014)

4 Staphylococcus PMID:28174737(Pedamallu et al., 2016)
5 Prevotella PMID:25307765(Walters et al., 2014)

6 Streptococcus PMID:23679203(Kojima et al., 2014)

7 Propionibacterium unconfirmed

8 Propionibacterium acnes unconfirmed

9 Bacteroidaceae PMID:17897884(Takaishi et al., 2008)
10 Haemophilus PMID:24013298(Said et al., 2014)

As a typical chronic GI (gastrointestinal) tract inflammatory
bowel disease, IBD includes ulcerative colitis and Crohn’s disease
(Lomax et al., 2006). We listed the top 10 IBD-related candidate
microbes predicted by KATZBNRA in Table 4, among which
eight microbes have been previously validated.

DISCUSSION

Based on the bipartite network recommendation and the KATZ
model, the paper introduced a novel disease-microbe association
prediction method called KATZBNRA. KATZBNRA uses the
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Non-negative matrix factorization (NMF) is a matrix decomposition method based on
the square loss function. To exploit cancer information, cancer gene expression data
often uses the NMF method to reduce dimensionality. Gene expression data usually have
some noise and outliers, while the original NMF loss function is very sensitive to non-
Gaussian noise. To improve the robustness and clustering performance of the algorithm,
we propose a sparse graph regularization NMF based on Huber loss model for cancer
data analysis (Huber-SGNMF). Huber loss is a function between L;-norm and L,-norm
that can effectively handle non-Gaussian noise and outliers. Taking into account the
sparsity matrix and data geometry information, sparse penalty and graph regularization
terms are introduced into the model to enhance matrix sparsity and capture data manifold
structure. Before the experiment, we first analyzed the robustness of Huber-SGNMF and
other models. Experiments on The Cancer Genome Atlas (TCGA) data have shown that
Huber-SGNMF performs better than other most advanced methods in sample clustering
and differentially expressed gene selection.

Keywords: non-negative matrix factorization, Huber loss, sample clustering, graph regularization, robustness

INTRODUCTION

Cancer is considered to be the number one killer of human health. The development of high-
throughput sequencing technology has enabled researchers to obtain more comprehensive
information about cancer patients (Chen et al., 2019). The gene expression data of cancer patients
can be more used for effective data mining through computational methods (Chen et al,, 2018). In
general, cancer gene expression data are characterized by high dimensionality, which is extremely
difficult for data analysis. How to effectively reduce the dimensionality of data is the key to analyzing
cancer data. Principal component analysis (PCA) (Feng et al., 2019), locally linear embedding (LLE)
(Roweis and Saul, 2000), and non-negative matrix factorization (NMF) (Yu et al., 2017) are common
methods for reducing the data dimensionality. Unlike several other methods, NMF can find two
non-negative matrices and its product can effectively restore the original matrix. The non-negative
constraint guarantees additive combinations between different elements. NMF demonstrates its
advantages in facial recognition, speech processing, document clustering, and recommendation
systems (Guillamet and Vitria, 2002; Xu et al., 2003; Schmidt and Olsson, 2006; Luo et al., 2014).
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NMF has developed rapidly in recent years, and several
variants of NMF have been proposed to improve the effectiveness
of the decomposition. Cai et al. proposed graph regularized
NMF (GNMEF) for data representation (Cai et al., 2011). GNMF
considers the association between points to preserve the internal
structure of the data. Kim et al. applied the L'-norm constraint
on the coefficient matrix to introduce sparse NMF for clustering
(SNMF) (Kim and Park, 2007). Sparseness is more likely to
remove redundant features of data. The most of cancer data have
noise and outliers, and the original NMF cannot solve this. Wang
et al. introduced Characteristic Gene Selection Based on Robust
GNMF (RGNMF) (Wang et al., 2016a) to improve the robustness
of the algorithm. RGNMF assumes that the loss follows Laplacian
distribution and uses the loss function of the L*!-norm (Kong
et al,, 2011) constraint. The L*!-norm combines the advantages
of the L*-norm and the L'-norm, which impose an L?*-norm
constraint on the entire data space and an L!-norm constraint on
the sum of the different data points (Ding et al., 2006).

The original NMF model is simple to understand and
computationally fast, but the squared loss function is too
sensitive to outliers and noise. Mao et al. proposed the
correntropy induced metric based GNMF (CGNMF) (Mao et al,,
2014) that changed the original loss function. The correntropy
uses L°-norm approximation for large outliers and noise through
kernel function filtering, and the normal data is constrained by
the L?-norm (Liu et al., 2007), so it is not sensitive to outliers and
noise. Du et al. proposed Huber-NMF (Du et al., 2012), which
is also a loss function that is insensitive to outliers and noise. It
uses approximate L!-norm processing for outliers and noise, and
L?-norm for valuable data. Correntropy uses kernel functions
to control weights, and Huber loss uses a different function
approximation for different data through threshold adjustment.
The robustness analysis of these several non-square loss models
is given in the experimental part. To compare the performance of
the NMF algorithm, the robust PCA (RPCA) based method for
discovering differentially expressed genes proposed by Liu et al.
(2013) is added to the experiment.

In this paper, we propose a model called sparse graph
regularization NMF based on Huber Loss Model for Cancer Data
Analysis (Huber-SGNMEF). It effectively combines Huber loss,
manifold structure, and sparse constraint. Huber loss is based on the
relationship between L'-norm and L*-norm to approximate different
data. In detail, Huber loss adjusts the square loss or linear loss to the
data according to the threshold to enhance the robustness of the
model to outliers. Geometric information in high-dimensional data
should remain locally constant in low-dimensional representations
(Cai et al,, 2011), so graph regularization is added to preserve the
manifold structure of the data. Sparse constraints in the model can
remove redundant features contained in the data to reduce the
amount of model calculations and improve clustering performance
(Kim and Park, 2007).

The contributions of this article are as follows:

1. Thesquaredloss of the original NMF is too sensitive to outliers
and noise; so, we use a more robust Huber loss combined with
NME The Huber loss considers the relationship between the
L'-norm and the L>-norm to effectively handle non-Gaussian

noise and large outliers. For the update rules of Huber loss,
we use the multiplicative iterative algorithm based on semi-
quadratic optimization to find the optimal solution.

2. The NMF model fits the data in Euclidean space but does
not consider the intrinsic geometry of the data space. If
the data is related in high-dimensional space, then we
believe that the data represented by the low-dimensional
should also be closely related. Considering the manifolds
embedded in the high-dimensional environment space, we
add graph Laplacian as a regularization term to the model.
Graph regularization takes into account the impact of recent
neighbors on data, and retaining graph structure can make
NMEF more distinguishable.

3. Sparse matrices can remove redundant data, reducing data
complexity and model computational difficulty. In data
analysis, sparsity can improve clustering performance by
reducing the difficulty of feature selection. The L*>!-norm as a
sparse constraint is added to the model because the L*!-norm
is robust and can achieve row sparse effect.

The remainder of this paper is organized as follows. The
introduction of related work is shown in Section 2. Models and
solution optimization are presented in Section 3. The experiment
and analysis are arranged in Section 4. Section 5 summarizes the
entire paper.

RELATED WORK

Non-Negative Matrix Factorization
NMEF is a dimensionality reduction method based on partial
representation. For a given dataset X= [xl,x2 cenX, ] eR™",
NMEF can decompose it into the basic matrix UeR™* and the
coefficient matrix V e R®", with the purpose of approximating
the original matrix by two matrix products. In general, the rank
of matrix factorization k is selected by the number of larger
singular values.

For gene expression data matrix X e R™", each row represents
a gene corresponding to n samples, and each column represents
a sample composed of m genes. Moreover, U contains m rows of
metagene and V contains n rows of metapattern (Liu et al., 2018).
Each column of V is a projection of a corresponding sample
vector in X according to the basic matrix U (Li et al., 2017). NMF
is visualized on gene expression data as shown in Figure 1.

The NMEF loss function is minimized as follows:
2

min HX—UV

st.U20,V20, (1)

where HH represents the application of the Frobenius norm to the
matrix.

Lee and Seung proposed the use of multiplicative iterative
update rules to solve the optimal solution of NMF (Lee and
Seung, 1999). Its update formula is as follows:

Uy =1 (xv)q )
L G e
(uvv?),
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FIGURE 1 | The gene expression data matrix X e R™" is decomposed into a low-dimensional basic matrix U € ]Rka and a low-dimensional coefficient
matrix V€ R™"  The product of two low-dimensional matrices can approximate the original matrix.
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_ (ux),
Vi =V (

UTUV)k]- i (3)
where u; and v;; are elements belonging to U and V, respectively.
The non-negative constraints of U and V only allow additive
combinations between different elements, so NMF can learn
part-based representations (Cai et al., 2011).

Huber Loss
Data usually contain a small amount of outliers and noise, which
can have a worse effect on model reconstruction. For noise
and outliers in the dataset, Huber loss uses weighted L,-norm
processing because the L,-norm is robust and can effectively
handle outliers and noise (Guofa et al., 2011; Yu et al., 2016). For
other valuable data in the dataset, Huber losses still use L,-norm
loss to fit the data. Huber loss function 8(-) is defined as follows:
5(6): e 1f‘e‘<c,

(4)

26‘6‘—62 if ‘e‘ 2¢,

where ¢ represents the threshold parameter of the data using the
L,-norm or the L,-norm. This function is a bounded and convex
function that minimizes the effects of a single anomaly point
(Chreiky et al., 2016). Huber losses often apply to the insensitive
outliers and noise contained in the data, which are often difficult
to find using the squared loss function (Du et al., 2012).

Manifold Regularization

The manifold learning theory (Belkin and Niyogi, 2001) shows
that the internal manifold structure of the data can be effectively
simulated by the nearest neighbor of the data points. Each data
point finds its nearest p neighbors and connects the data points
to the neighbors with edges. There are many ways to define the
weight of an edge, most commonly 0-1 weighted: W;=1, if and
only if nodes i and j are connected by edges. The advantage of this
weighting method is that it is easy to calculate.

Weight matrix W is only used to measure the intimacy
between data points. For the low-dimensional representation
s; of the high dimensional data x;, the Euclidean distance
O(sj,s,)szj—slH is typically used to measure the similarity
between two low-dimensional data points. According to the
intimacy weight W, the smoothness of the two low-dimensional

vectors can be measured as follows:

R= %ZZHSI -s|'W,

N7 N
=Z - SJ'SJ'Dﬁ_Z- 3 s;sW,
j=1 jsl=1

tr(VDVT) = tr(vwvT)
= tr(VLV?),

where tr(-) denotes the trace of a matrix. The matrix D is defined
as a diagonal matrix with diagonal elements D, = Z W, The

graph Laplacian (Liu et al., 2014) matrix L is defined a5 L=D-W.

We hope that if the high-dimensional data x; and x; are very
intimate, then s;and s;should be close enough in low-dimensional
representations (Cai et al.,, 2011). Therefore, minimizing R is
added to our model to encode the internal geometry of the data.

METHOD
The Huber-Sgnmf Model

Based on the Huber loss function, we proposed a novel model that
preserves the manifold structure and sparsity simultaneously. The
Huber loss is combined with NMF to enhance NMF robustness.
To further optimize the model, the graph regularization term and
the L,,-norm are added to the loss function as constraints. L, ;-
norm mathematical expression is as follows:

m n ) m
R O DM
i=1 j=1 i=1

1,% 2

. (6)
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The Huber-SGNMEF final model Oy, sonur 1S as follows:

min  §(X-UV)+otr(VLVT )+ BV,

U20,V=0 (7)
where tr(-), a, and § represent the trace of the matrix, the
regularization term parameters, and the sparse constraint
parameters, respectively. In the experiment, the basic matrix
U and the coeflicient matrix V are used for differential gene
selection and cluster analysis, respectively.

Optimization

Obviously, the loss function is a non-quadratic optimization
problem, and finding the optimal solution is not simple.
Fortunately, the semi-quadratic optimization technique that has
been proposed can effectively optimize the loss function. The
loss function can be reconstructed to find the optimal solution
by introducing auxiliary variables. According to the conjugate
function and the semi-quadratic technique (Nikolova and
Chan, 2007), the fixed loss function o(Z) can be constructed
as follows:

o(2;)=min (2, W, )+9(W, ) (8)

K
where Z; =X, -2 U, V,; represents the difference between
k=1

the NMF predicted value and the actual value. o(-) indicates the
noise or normal data, which is processed using different loss
functions. W €R™" is the introduced auxiliary variable. d(W;)
is the conjugate function of Z;. T(‘,-) is a quadratic term for Z;
and W;. The NMF model only needs to consider the quadratic
term of the multiplication form:

‘L'(Z 9)

ij>

1 2
w,.].)=5w,jz,.j.

Combine Equation (8) and Equation (9) with the loss function
(7):

min 5(X - UV)+ OCtr(VLVT )+ ﬁHVHu

U20,V=0

= min W®(X-UV)2+¢(w)+atr(VLVT)+ﬂHVH2J, 1o

U20,V=0

where ® represents the Hadamard product, which is the product
between two matrices’ elements. Operator ® takes precedence
over other matrices operators. Its Lagrangian function expansion
is expressed as follows:

m

Lituber-sGNMF (U) = Z(Xi* -U.V, )Q1 (Xi* -U.V, )T + tr(\pUT),

i=1

(11)

and

Lietuer—soNmre (V): Z(X*,' -U,,V, )R,- (X*}- -U,,V,; )T
=]

+otr(VLV') + Bur(VGV' ) (WU )+ e (ov7),

(12)

where Q; and R; are defined as Q=diag(W;) and R=diag(W.,),
respectively. \|l=[l//,.k:| and @=| @;; | are Lagrangian multipliers
of non-negative constraints U 0 and V 0, respectively. G is a
diagonal matrix with diagonal elements, which is given by:

k
_ 2
Gﬁ—I/J E mﬂvw+w

where w is a number that is very close but not equal to zero.

Let yU=0 and ¢V=0 by using Karush-Kuhn-Tucher (KKT)
(Qi and Jiang, 1997) conditions. The loss function (10) can be
iteratively optimized by the following schemes:

Update W when U and V are fixed. The weight matrix W
according to equation (8) is defined as follows:

(13)

(14)

where the elements of weight matrix is w; e W Combine the loss
function (7) with the equation (14) are as follows:

X —uikvkj‘ <c,

L

15
_— otherwise, (15)
X-uv

i

Update U and V when W is fixed. The update rules for U and
Vare as follows:

(x.Qv")

ik

Uy (U,.*VQ,.VT)

Uy =
ik

(16)
) (W®XVT )ik

o (W®(UV)VT )ik ,

oxn),

TN

V.. =V,
Y (UTR, UV, +aVL+ BVG)
J

(v (wex))

_ ki

' (U7 (WO UV)+avL+BVG)

ki
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The threshold parameter ¢ is set to the median of the
reconstruction error,

c= median (‘X—UVLJ_). (18)

The corresponding algorithm is shown in Algorithm 1.

ALGORITHM 1 | Huber-SGNMF.

Data input: X e R™", Le R™"
Data output: Ue R™*, Ve R*¥" and weight matrix W e R™"
Parameters: a,f

Data initialize: U>0, V=0
Repeat

Update G by (13);

Update W by (15);

Update u, by (16);

Update v, by (17);

Update ¢ by (18);

End convergence

Convergence Analysis

According to the update rules of Huber-SGNME the loss
function Oy, soyur €an converge to the local optimum through
theorem 1.

Theorem 1. The loss function (7) is guaranteed to be non-
increasing under the update rules (16) and (17). The loss function
is constant when the elements u;; and v;; have fixed values.

To prove theorem 1, we introduce the auxiliary function H in
Algorithm.

Lemma 1. Suppose H (r, r') is an auxiliary function of F (r).
If the conditions H (r,r’) F(r) and H (r,r)=F(r) are satisfied, then
it can be concluded that F(r) is non-increasing from iteration ¢
to t+1:

r' =arg minH(r,r") (19)

Proof:
F(r ) SHG P SHO ) = F(r). (20)

Suppose loss function Oyy,.soyur has a suitable auxiliary
function H,,,;,, If the minimum updates rule for H,, ., is equal to
(16) and (17), then the convergence of Oy, sqyur €an be proved.
Furthermore, the parts of the loss function Oy, sonur @ssociated
with the elements u; . U and v;; . V are represented by F; and F;
respectively. The partial derivative equation of Oy, senur €an be
derived as follows:

’ ao uber—
F, = (HBUSGWF] =(—zx,.*QiVT +2U,.,FVQ,.VT)ik, 21)
ik

”__ aonuber—SGNMF _ T
E '(auz =2(vavr),, (22)

’ aOHuberstNMF T
E _[ v, =2(U'X. R,

(23)
T
+2(U'R UV, ) +20VL+2BVG,

B = [W] - Z(UTRjU)kk +(2aL)]_j +(2BG)ﬁ .
K

(24)

Essentially, the algorithm updates each element, which means
that if the elements F; and Fy; are non-increasing, then Oy,
s 1S also non-increasing.

Lemma 2. Define HHube,(u,ufk) and HHube,(v,v,’cj) as auxiliary
functions for u; and v, respectively. The expansion items are as
follows:

Hpper (”:”itk) =F (uitk ) +Ej (uitk )(”_ U )

Yoy (25)
H,_,ube,(v,v,ij)=ij(v,ij)+F,:j(v,ij)(v—v,ij)
(U'R; UV, +aVL+ BVG) . (26)
+ v L V=
kj

Proof:

According to the lemma 1, Hy,,, (uu)=F;(u) and H,,,,,
(v,v):ij(v) can be obtained. We have the following formulas
through the Taylor series expansion of the auxiliary function.

) (27)
+l xf(“fk)(“ ufk) >
A o)
(28)

+%Fg(v,‘(j)(v—v,’(j)2.

Next, HHuhe,(u,ufk)ZFik(u) and HHube,(v,v,’(j)szj(v) need
to be guaranteed.

According to (25) and (27), expand HHuhE,(u,ufk)ZFik (u) is
as follows:

T
(U,.*VQ,.V ),_k .
L Jesyv, (29)
Uik

Frontiers in Genetics | www.frontiersin.org

November 2019 | Volume 10 | Article 1054


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Wang et al. Non-Negative Matrix Factorization
since 1100
¥ —— PHD
T N T T 1000 PHDEC
(UavQv?), =D u(vav’) zu(vav') . 6o
a=1
900 .
Y
According to (26) and (28), expand HHubE,(v,v,’(j)Zij(v) is S
as follows: g 800 |
E
T £ 700f |
U R,UV,;+aVL+fVG) =
, “>(U'RU) +(aL) +(BG) , g
Vij kk Ji i 8 600
3
(31) 500
since 400
K
T _ T T 300 L L L L L L
(U RJ'UV*J')kj _Z(U RiU)th”f Z(U RfU)ka"j’ (32) 0 40 80 120 160 200
b=t Iteration
N FIGURE 2 | Convergence analysis curve of Huber-SGNMF model. Each
— curve represents a dataset. PHD and PHDEC are the datasets used in
(ﬂVG)kj _BZVH’GW Zﬁvijﬁ’ (33) the experiment.
b=1
and s .
dataset, which is represented as PHD. These two integrated datasets
N contain only diseased samples of different diseases. Datasets are
( aVD) = az v.D,>av,D, standar.dlze.d before using, and the dal.ta normalization scales d.ata
ki = to specific time intervals. Pre-processing data speeds up searching
(34)  for the best solution and optimizes convergence speed. Since

2wy (D-W) =awL;.

So, Hyp (u,ufk) > F,-k(u) and HHuber(v,v,’(j ) >F, (v) can be
obtained. In other words, the auxiliary functions F; (1) and Fy;
(v) of the updated rules (16) and (17) are non-increasing, and the
derivation of theorem 1 is completed. Finally, the convergence of
the loss function Oy,.,.soumr 1S proved.

The corresponding convergence analysis curve is shown in
Figure 2.

RESULTS AND DISCUSSION

Datasets

Five gene expression datasets downloaded from TCGA are used
in the experiment. TCGA is a gene data sharing system that
contains information on thousands of cancer patients and has
made great contributions to the path of human exploration of
cancer genomics. The experiment used five datasets including
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD),
head and neck squamous cell carcinoma (HNSC), pancreatic
cancer (PAAD), and esophageal cancer (ESCA).

To explore the association between genes and multiple cancers,
diseased samples from multiple datasets are integrated into one
dataset. In detail, the detesteds PAAD, HNSC, and COAD are
integrated into one dataset, which is represented as PHD. The
detesteds PAAD, HNSC, and COAD are integrated into one

high-dimensional gene expression data contains a large amount
of redundant information, PCA (Wu et al., 2017) is used to reduce
the dimensions to 2,000 genes in the pre-processing.

Model Robustness

To analyze the robustness of RGNME, CGNMF, and Huber-
SGNME we apply these methods to a composite dataset consisting
of 200 two-dimensional data points (Figure 3A). All data points
are distributed in one dimensional space. In Figure 3A, there
is only one contaminated point, and each model can restore
the original data normally. The contaminated points in Figures
3B-D are 50 points, 100 points, and 150 points, respectively. In
the case where a part of the data is contaminated, only Huber-
SGNMF successfully restores the original data. CGNMF and
RGNMF are affected by some noise or outliers when restoring
data, while NMF is most affected by noise or outliers.

Parameter Selection

In the experiment, we consider the effect of each parameter on the
solution model. A grid search method is used to find the optimal
parameters of the model. The grid search range is [102~10?].
As shown in Figure 4, the PHD dataset is used as an example
to find the optimal parameters of the Huber-SGNMF model.
Specifically, the two datasets are set to the same parameters o =
100 and 3 =0.01 Other methods in the experiment are set up with
prior parameters or grid searches to find the optimal parameters.
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FIGURE 3 | In the case of different data points are contaminated, NMF, RGNMF, CGNMF, and Huber-SGNMF restore 200 synthetic two-dimensional data points:
(A) the data contains 1 noise or outlier, (B) the data contains 50 noise or outliers, (C) the data contains 100 noise or outliers, (D) the data contains 150 noise

Performance Evaluation and Comparisons
To prove the validity of the performance of the model, six states of
the art methods including RPCA (Liu et al.,, 2013), NMF (Lee and
Seung, 1999), SNMF (Kim and Park, 2007), GNMF (Cai et al., 2011),
RGNMF (Wang et al,, 2016a), CGNMF (Mao et al,, 2014), and
Huber-NMF (Du et al.,, 2012) are compared with Huber-SGNME
In the experiment, the basic matrix and the coefficient matrix are
used to differentially gene selection and cluster analysis, respectively.

Feature Selection Results and Analysis

Feature selection is the selection of representative features
from multiple feature values (Yu and Liu, 2003). In the analysis
of cancer data, the feature selection is to find differentially
expressed genes for cancer (that is, pathogenic genes). This is of
great significance in exploring the link between cancer and genes
(Chen et al.,, 2017). For each method, the top 500 genes with the
greatest differential expression are analyzed.

The GeneCards (https://www.genecards.org/) system is
used to download all gene libraries associated with the disease.
The selected genes are compared with the gene bank to select
overlapping genes and obtain a corresponding relevance score.
The relevance score is the indicator that GeneCards assesses
the association between the gene and the disease. The higher the
relevance score is, the greater the intimacy of the gene and the
disease. The average relevance score (ARS) and the maximum
relevance score (MRS) are used to evaluate the performance of
the model.

The specific experimental results of the seven methods are
listed in Table 1. The results show that the genes selected by
Huber-SGNMF model have higher ARS and MRS. This means
that the model can effectively find the genes associated with
cancer. Table 2 lists the genes for the top 10 largest relevance
scores selected by the Huber-SGNMF model on the PHD dataset.
The detailed genetic analysis is as follows.
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FIGURE 4 | Optimal parameter selection for the Huber-SGNMF model on the
PHD dataset. Huber-SGNMF is set with parameters a = 100 and g = 0.01.

CTNNBI is a protein-coding gene from which the protein
encoded by the gene forms part of an adhesion-linked protein
complex. Mutations in the CTNNB1 proto-oncogene are associated
with most human colorectal epithelial tumors, and a significant
increase in expression in the same tumor may indirectly or directly
lead to intestinal adenocarcinoma (Wang et al., 2011). Moreover,
deep sequencing of patients with pancreatic ductal adenocarcinoma
also found CTNNBI mutations (Honda et al.,, 2013; Javadinia
et al., 2019). Multiple studies have shown that CTNNB1 mutation
analysis is important for PAAD and COAD (Kubota et al., 2015).

ERBB2, commonly referred to as HER2, may be critical for
enhancing the synergistic effect of PI3K inhibitors in HNSC
patients (Michmerhuizen et al., 2019). It is generally believed that
dysregulated ERBB2 signaling plays a key role in the development
of pancreatic cancer (Lin et al, 2019). For the treatment of
intestinal adenocarcinoma, ERBB2 mutations and amplification
in small intestinal adenocarcinoma patients also make a great
contribution (Adam et al., 2019). Recent studies have shown
that HER?2 targeted therapy has significantly improved outcomes
in patients with breast and stomach problems with ERBB2
mutation/amplification (Meric-Bernstam et al., 2019).

The CDHI1 gene plays a regulatory role in cell growth (Nagai
etal,, 2018), and the CDH1 gene located on chromosome 16q22.1
is considered to be a tumor suppressor of diffuse gastric cancer.
By measuring the methylation profile of gastric cancer and breast
cancer patients, it is found that CDHI is closely related to low
protein expression (Wang et al., 2016b; Wang et al., 2016c).
Studies have shown that abnormal expression of CDHI gene
leads to uncontrolled growth of tumor cells (Dial et al., 2007;
Chen et al., 2012).

The above experimental results show that Huber-SGNMF
model can find pathogenic genes more effectively. Although
some genes have not been confirmed, they may be a key part of
solving cancer problems in the future.

Clustering Results and Analysis

After the Huber-SGNMF model reduces the dimensions of
the data, the coeflicient matrix is used for k-means clustering.
Sample clustering is a common analytical method for cancer
diagnosis and molecular subtype discrimination (Xu et al., 2019).
Moreover, multiple evaluation criteria accuracy (ACC), recall
(R), precision (P), and F-measure (F) are adopted to judge the
model to be feasible and effective. ACC is an evaluation standard

TABLE 1 | Relevance scores for seven methods.

NMF SNMF GNMF RGNMF RPCA CGNMF Huber-NMF  Huber-SGNMF
PHD MRS 116.4 113.99 116.4 164.03 194.01 113.99 164.03 164.03
ARS 22.64 21.75 22.03 22.16 26.03 21.75 25.56 27.19
PHDEC MRS 92.51 96.36 1563.66 124.37 172.9 164.91 145 172.9
ARS 20.18 30.05 36.58 27.87 37.83 35.07 356.93 44.97

Bolded texts denoted best experimental results.

TABLE 2 | Detailed analysis of the differentially expressed genes in PHD dataset.

Gene name Relevance score Gene official name Related diseases

CTNNB1 164.03 Catenin beta 1 Colorectal cancer and pilomatrixoma
ERBB2 1562.33 Erb-B2 receptor tyrosine kinase 2 Lung cancer and ovary adenocarcinoma
CDH1 149.92 Cadherin 1 Gastric cancer and breast cancer
TGFBR2 102.74 Transforming growth factor beta receptor 2 Colorectal cancer and esophageal cancer
CDK4 93.35 Cyclin dependent kinase 4 Myeloma and melanoma

EPCAM 86.79 Epithelial cell adhesion molecule Pancreatic cancer and gastrointestinal carcinoma
GNAS 76.17 GNAS complex locus Osseous heteroplasia

ERBB3 74.35 Erb-B2 receptor tyrosine kinase 3 Transitional cell carcinoma

CEACAMb5 59.9 Carcinoembryonic antigen related cell Adhesion molecule 5 Colorectal cancer and lung cancer
MAP2K2 51.51 Mitogen-activated protein kinase kinase 2 Head and neck squamous cell carcinoma
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that can visually reflect the clustering of samples. It is defined as
follows:

Ao 2?Zl5(ai,map(bi)))
n

(35)

Where ¢ (o) and map (e) represent function permutation and
delta mapping function, respectively. The actual sample label,
the predicted sample label, and the total number of samples are
denoted by a, b and n, respectively.

Considering clustering accuracy alone does not fully
demonstrate clustering performance, and more evaluation criteria
need to be introduced. The clustering results can be divided into
true positive (TP), true negative (TN), false positive (FP) cases,
and false negative (FN) according to real and predictive labels.
These four measures are listed in Table 3. The detailed evaluation
criteria are as follows.

re TP
TP+EN’ (36)
po TP
TP+EP’ (37)
2XRXP
p=2287"
R+P (38)

Since R, B and F can only reflect the clustering performance
of a certain sample categories, for multi-category problems,
the average of each category of indicators is usually used as the
evaluation criterions:

Macro—R=l E R, (39)
n
i=1

TABLE 3 | Clustering result confusion matrix.

The true Clustering result
situation

Positive Negative
Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)

1 n
Macro—P=—ZP.,
n ~ i (40)

2X Macro— Rx Macro— P
Macro— R+ Macro— P

Macro— F =

where 7 represents the number of sample categories.

According to the above evaluation criterions, each algorithm
is performed 50 times to get an average result. Since the
initialization matrix is random, the average value can reduce the
chance of the algorithm. Table 4 lists the comparative experiments
of seven methods based on four evaluation criterions. Compared
with the other six methods, our proposed model has the excellent
clustering performance under the four evaluation criterions. The
specific analysis of the clustering results is as follows:

1. Since the squared loss of the original NMF is sensitive to
noise and outliers, the squared loss is replaced by Huber loss
to improve the robustness of the algorithm. The experimental
results show that the clustering performance of RPCA,
CGNMF, RGNME Huber-NMF, and Huber-SGNMF is higher
than standard NMF and GNME. The reason is that both NMF
and GNMF use square loss while other methods use more
robust loss function. Moreover, the experimental results show
that the robustness of the Huber loss model is higher than the
L,, -norm loss and correntropy loss. The RPCA model has
higher performance as a state-of-the-art algorithm and is still
lower than Huber-SGNME. The Huber loss use L, -norm or
L, -norm to different data, which can effectively reduce the
influence of noise and outliers and enhance the robustness of
the algorithm. Compared with NME, the clustering accuracy
of Huber-SGNMF model on the two datasets increased by
4.90 and 5.68%, respectively.

2. Assuming that data points are related in a high-dimensional
state, they should also be relevant in low-dimensional
representations. However, the association between data
points is difficult to preserve when the data is mapped to
low-dimensions. The manifold structure preserves the spatial
structure of high-dimensional data in low-dimensional
representations, enhancing the correlation between data
points. Constructing a sample association graph of gene
expression data to preserve the relationship between the
samples. The experimental results of several models (NMF

TABLE 4 | Clustering effect for seven methods.

Dataset Evaluation NMF SNMF GNMF RGNMF RPCA CGNMF Huber-NMF  Huber-SGNMF

PHD ACC (%) 85.38+1.24 8893+058 86.05+197 86.50+1.84 86.37+204 87.18+1.43 8855+098 90.36 + 0.91
Macro-R (%) 82.99+157 86.86+0.82 81.02+1.09 8428+240 84.10+2.79 8500+1.79 86.41+127 88.50=1.19
Macro-P (%) 84.88+1.74 89.08+0.86 8355+3.76 8568+274 8558+296 86.77+202 8832+1.36 90.18x1.28
Macro-F (%) 83.92+1.65 87.95+0.84 8225351 84.92+260 84.83+288 8587+1.90 87.35+1.31 89.33 + 1.23

PHDEC ACC (%) 69.84 +0.26  71.51 +0.31 70.15+0.08 71.86+0.69 75.02+0.32 7381027 7253+0.21 75.52 + 0.20
Macro-R (%) 63.95+0.18 65.33+0.14 61.98+0.38 6445+0.87 6837+028 66.74+0.15 67.09+0.07 69.02 +0.07
Macro-P (%) 61.34+026 6245+019 58.77+0.10 62.80+097 65.81+0.50 64.47+027 63.92+025 6556=+0.25
Macro-F (%) 64.17 +0.20 63.79 = 0.21 60.24 + 0.27 63.49 + 0.87 66.92 + 0.29 65.51 +0.17 65.34 + 0.12 67.17 =+ 0.10

Bolded texts denoted best experimental results.
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and GNME, Huber-NME and Huber-SGNMF) show that
the clustering performance of the model with the addition
of graph regularity constraints is improved. Compared
with Huber-NMF, Huber-SGNMF has improved clustering
accuracy by 1.73 and 2.99% in the two datasets, respectively.

3. Matrix sparseness removes redundant data and simplifies
model calculations. The sparsity constraint of the coefficient
matrix removes redundant features and improves clustering
performance. The experimental results of SNMF and Huber-
SGNMF prove this. Compared with SNMF, since Huber-
SGNMEF improves the loss function and manifold structure,
the clustering accuracy in the two datasets is increased by 1.35
and 4.02%, respectively.

In summary, the experimental results based on the four
evaluation indicators demonstrate the excellent clustering
performance of the Huber-SGNMF model. Compared with NMEF,
the clustering performance of Huber-SGNMF has improved
5.30 and 4.49% on average in PHD dataset and PHDEC dataset,
respectively. Huber-SGNMF clustering performance improves
1.93 and 2.07% on average compared to Huber-NME. The above
experimental results strongly prove the effectiveness of Huber-
SGNMF in clustering performance.

CONCLUSION

In this paper, we propose a novel model based on Huber loss:
Huber-SGNME, which is dedicated to samples clustering and
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The microbiome-wide association studies are to figure out the relationship between
microorganisms and humans, with the goal of discovering relevant biomarkers to guide
disease diagnosis. However, the microbiome data is complex, with high noise and
dimensions. Traditional machine learning methods are limited by the models' representation
ability and cannot learn complex patterns from the data. Recently, deep learning has
been widely applied to fields ranging from text processing to image recognition due to
its efficient flexibility and high capacity. But the deep learning models must be trained
with enough data in order to achieve good performance, which is impractical in reality. In
addition, deep learning is considered as black box and hard to interpret. These factors
make deep learning not widely used in microbiome-wide association studies. In this work,
we construct a sparse microbial interaction network and embed this graph into deep
model to alleviate the risk of overfitting and improve the performance. Further, we explore
a Graph Embedding Deep Feedforward Network (GEDFN) to conduct feature selection
and guide meaningful microbial markers' identification. Based on the experimental results,
we verify the feasibility of combining the microbial graph model with the deep learning
model, and demonstrate the feasibility of applying deep learning and feature selection
on microbial data. Our main contributions are: firstly, we utilize different methods to
construct a variety of microbial interaction networks and combine the network via graph
embedding deep learning. Secondly, we introduce a feature selection method based on
graph embedding and validate the biological meaning of microbial markers. The code is
available at https://github.com/MicroAVA/GEDFN.git.

Keywords: graph embedding, deep learning, feature selection, biomarkers, microbiome

INTRODUCTION

A large number of microorganisms are parasite on various parts of the human body, mainly
concentrated in the intestine, oral cavity, reproductive tract, epidermis and skin. The microbial
communities existing in different parts of the body or in different host environments are very
different (Turnbaugh et al., 2007; Lloyd-Price et al., 2017). These microorganisms include bacteria,
fungi, viruses and protozoa. All genetic material in the particular microbial community is called
the microbiome. Recent studies have shown that microorganisms are directly or indirectly
related to many diseases. For example, the gut microbiome may be closely related to irritable
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bowel syndrome and its imbalance may lead to chronic
kidney diseases. Microorganisms may also be closely related
to digestive tract diseases, endocrine diseases, circulatory
diseases, reproductive system diseases, respiratory and
psychiatric diseases (Kho and Lal, 2018). Since the microbiome
plays a central role in the hosts' health, understanding the
distribution and composition of microbial communities in
humans, especially under different diseases or physiological
conditions, is of great significance for disease diagnosis,
prevention and treatment. The microbiome-wide association
studies are to find disease-associated microbial markers to
guide disease diagnosis and treatment (Gilbert et al., 2016;
Wang and Jia, 2016). Compared with the human genome, the
microbiome is an ideal target and more convenient to regulate.
Therefore, the microbiome is often named “the second human
genome” (Briils and Weissenbach, 2011). However, there are
many types of microorganisms and most of them cannot be
cultured. Therefore, a high-throughput sequencing method
is a feasible means of understanding microbial communities.
Through high-throughput sequencing, we can understand
the types of microorganisms and even their functions in the
community (Ranjan et al., 2016).

The microbiome data is from high-throughput sequencing
methods such as 16s or shotgun sequencing, which is often
with high dimensions with noise. As a result, it is difficult
to mine microbial signatures from these data. Traditionally,
statistical-based methods identify markers mainly through
microbial abundance differential expression (Paulson et al.,
2013). However, the statistical approaches often have strong
assumptions and the real data often do not satisfy these
assumptions (Hawinkel et al., 2017; Weiss et al., 2017). Other
machine learning methods are widely explored (Pasolli et al.,
2016). Recently, deep learning has received great attention,
especially its end-to-end automatic learning ability. At
present, deep learning is widely used in automatic driving,
image recognition and text processing, which has received
exciting results (LeCun et al., 2015). The deep models can
learn specific patterns directly from the data, thus avoiding
the artificial feature engineering (Goodfellow et al., 2016;
Kong and Yu, 2018). In the analysis of biomedical data,
especially the analysis of various omics data, deep learning has
achieved good improvement, but still faces many problems
and challenges (Angermueller et al., 2016; Camacho et al,,
2018; Eraslan et al., 2019). First, deep learning requires a large
amount of training data to learn useful information while the
biological sample size is often limited and cannot fully utilize
its capabilities. Second, the training process is often considered
a black box and people can only control the input and models'
parameters. More specifically, deep learning involves complex
network structures and nonlinear transformations, as well
as a large number of hyperparameters, which hinder people
from understanding how deep neural networks are making
predictions. Although deep neural networks perform well on
some classification tasks, biological problems should be paid
more attention to which features lead to better classification
(Ching et al., 2018).

In this paper, we propose a feature selection method based
on Graph Embedding Deep Feedforward Network (GEDFN)
to conduct microbiome-wide association studies. Firstly, we
construct three different microbial co-occurrence interaction
networks. We utilize a graph embedding method to embed
the network as a priori knowledge into Deep Feedforward
Neural Network to reduce parameters, alleviate the overfitting
problem and improve the models' performance. Secondly,
we propose a feature selection approach based on GEDFN.
Experiments show the microbial feature markers obtained via
this method have biological significance. In other words, our
results demonstrate graph embedding deep learning could
guide feature selection.

RELATED WORK

Microbial Interaction Network

Because of the various relationships between microorganisms,
such as symbiosis, competition and so on, as well as the complex
structure and function of microorganisms due to their dynamic
properties, the network is a good way to represent complex
relationships. Understanding microbial interaction can help us
understand microbial functions. System-oriented graph theory
can facilitate microbial analysis and enhance our understanding
of complex ecosystems and evolutionary processes (Faust et al.,
2012; Layeghifard et al., 2017). However, most microorganisms
are uncultured, we can only construct microbial interaction
networks from high-throughput sequencing data. At present,
there are many computational methods to construct microbial
interaction networks. In theory, any method of calculating features'
relationships can be used. For example, Bray—Curtis can be used
to measure species abundance similarity (Bray and Curtis, 1957).
The Pearson correlation coefficient is used to evaluate the linear
relationship and the Spearman correlation coeflicient can measure
the rank relationship (Mukaka, 2012). CoNet uses an ensemble
approach and combines with different comparison metrics to
detect different relationships (Faust and Raes, 2016). Maximum
mutual information is designed to capture broader relationships,
not limited to specific function families (Reshef et al., 2011).
MENA applies random matrix theory to conduct microbial analysis
and experiments show it is robust to the noise and threshold (Deng
etal., 2012). Sparse Correlations for Compositional data (SparCC)
is a tool based on Aitchison's log ratio transformation to conduct
microbial composition analysis (Friedman and Alm, 2012). SParse
InversE Covariance Estimation for Ecological Association Inference
(SPIEC-EASI) combines data logarithmic transformation with
graph model inference framework to build a correlation network
(Kurtz et al., 2015).

Feature Selection

Real biomedical data, especially various omics data with high
dimensions and noise, often has feature redundancy problem.
Feature selection is a step of data preprocessing, which involves
selecting related features from a large number of features to
improve subsequent learning tasks (Li et al., 2017).
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There are mainly three kinds of feature selection methods,
including filter, wrapper and embedded method. The filter
approach selects subset features and then trains the learner.
The feature selection process is independent of the subsequent
learner. This is equivalent to filter the initial feature with the
feature selection process and train the model with the filtered
features. However, filter methods often ignore some features
that are helpful for classification. At the same time, many filter
methods are based on a single-featured greedy algorithm. The
assumption is that each feature is independent while this
is often not the case in microbiological data. The wrapper
feature selection directly takes the performance of the learner
to be used as the evaluation criterion of the feature subset. In
other words, the purpose of the wrapper feature selection is to
select a feature subset that is most efficient in its performance
for a given learner. Compared to the filter method, the
wrapper method can evaluate the result of feature selection to
improve the classification performance; however, the feature
selection process requires to train the learner iteratively and
the calculation is huge (Li et al., 2017). The embedded feature
selection combines the feature selection in the learning
and training process, both of which are completed in the
same optimization. In other words, the feature selection is
automatically performed during the training.

Feature selection is a traditional machine learning research
field with many methods. For more information, please refer
to the literature (Li et al., 2017). The previous work proposed a
feature selection method based on Deep Forest (Zhu et al., 2018);
however, there is less work on microbiome-wide association
studies via Deep Neural Network and less research is done from
the perspective of embedding approach for feature selection.

The challenge of feature selection based on microbial network
is that there is no microbial network available at present. The
commonly used statistical-based interaction network methods
may lead to high false positive rate due to the compositional bias
(Gloor et al., 2017).

MATERIALS AND METHODS

We mainly explain the feature selection method based on GEDFN
from the following three aspects (Figure 1). First, we will introduce
the construction method of microbial interaction network, including
sparcc, SPIEC-EASI and Maximal Information Coefficient (MIC)
then, we will introduce a deep embedding structure to embed the
graph into Deep Feedforward Network. Finally, we will propose a
feature selection approach for GEDFN.

Microbial Correlation Network

The total amount of genetic material extracted from the microbial
community and the sequencing depth will affect the whole reads.
It is often necessary to normalize the reads in the sample. As a
result, the microbial abundance obtained by 16s sequencing
is relative rather than absolute, which is not independent.
The traditional statistical measures for detecting microbial
interactions, for example, Pearson correlation, will lead to false
positives (Gloor et al., 2017).

Sparcc

Assuming that the network is sparse, sparcc constructs the
association network by using standard logarithmic ratio
transformation and iteratively calculates the variance matrix of

validate classsifier]
—> using
test data

}

abundance

- construct graph embedding] feature train classifier
PP microbial — and importance with
networks model training score top K features
0 e

3

FIGURE 1 | The workflow of graph embedding deep network to conduct feature selection. 1. Construct microbial interaction network. The input is Operational
Taxonomic Unit (OTU) abundance. Different approaches are adopted to obtain different interaction networks. The vertexes are species and the edges are correlation
coefficient. 2. Graph embedding and model training. The feature graph is embedded into the first hidden layer in order to achieve sparse connection instead of
fully-connected between the input layer and the first hidden layer. The first hidden layer (graph embedding layer) has the same neurons as the input layer. 3. Feature
selection. The neurons (features) are ranked according to their importance score which is calculated via each neuron's connection weights.
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compositional dependence. For details of the algorithm, please
refer to the literature (Friedman and Alm, 2012).

SPIEC-EASI

SPIEC-EASI assumes the network is sparse and combines
logarithmic transformation of compositional data with graph
inference framework to construct the network. It consists of
two steps: first, logarithmic ratio transforms the data; then,
SPIEC-EASI uses the neighborhood selection and sparse inverse
covariance selection to infer the interaction graph from the
transformed data (Kurtz et al., 2015).

Maximal Information Coefficient

The maximal information coeflicient (MIC) is used to measure
the degree of linear and nonlinear correlation between two
variables (Reshef et al., 2011). The main idea of the MIC method
is based on the recognition that if there is some correlation
between two variables, the distribution of the data in the grid
can be reflected after meshing the scatter plots formed by the
two variables. The MIC divides the scatter plot of the variable
pair (x, y) and uses dynamic programming to calculate and
search for the maximum mutual information value that can
be achieved under different split modes. Finally, the maximum
mutual information value is normalized and the result is MIC.

The Framework of Graph Embedding

Deep Feedforward Network

Deep Feedforward Neural Network

Deep Feedforward Network, also known as feedforward neural
network or multilayer perceptron, is a typical deep learning
model. In this model, the information moves only in one
direction from the input nodes to the output nodes through the
hidden nodes. There is no loop in the network. A feedforward
neural network structure with / hidden layers is:

P(Y|X’e)=f(ZoutW0ut +bout) (1)
Zoi=0(Z Wi+ ) )
Zin = G(Zka + l’k) (3)
Z,=o(XW, +b,) @)

where XER™ is an input matrix with n samples and p features,
YER" is the output label for the classification task. In this work,
it is a binary classification. The label for each sample is normal
or disease. Z,,, and Z,,(k=1,...,I-1) are the neurons in the hidden
layer. W, is the weight matrix. b is the bias. 0 is the parameters.
o(-)is the activation function(such as, sigmoid, tanh, rectifiers).
F(-) is a softmax function which is used to convert the output
layer value into the predicted probability.

The model uses a stochastic gradient descent (SGD)
algorithm to minimize the cross entropy loss function to
update the parameter . When a feedforward neural network
is used to receive input x and produce an output y . During
training, forward propagation can continue until it produces
a scalar cost function J(0). The backpropagation algorithm
runs information from the cost function and flow backward
through the network to calculate the gradient in order to
update the weight parameters (Goodfellow et al., 2016).

](9): _%le(yiloglsi+(1_yi)log(l_ﬁi)) ®)

Graph Embedding Deep Feedforward Network

The fully connected deep feedforward neural network has
many parameters and requires a large number of training data,
but often the biological sample size is limited, which often
leads to overfitting. Therefore, we construct a microbial sparse
network and embed this graph network into the model. There
are two main advantages. First, the sparse graph embedding
will greatly reduce the parameters of deep feedforward
network and mitigate the overfitting risk. Second, the sparse
graph structure is derived from existing prior information
and combining the priori information into the network can
improve the reliability of the model. The main idea of graph
embedding is to replace the full connections between the
input layer and the first hidden layer with a sparse graph
(Figure 2).

Consider a graph G=(V,E), V is the vertical set with p features. E
is a collection of all edges. A common way of representing a graph
is to use an adjacency matrix. Given a graph G with p vertices, a
pxp adjacency matrix A is:

. L if V; and V; connected, Vi,j=L,...,p
’ 0, otherwise.

G is an undirected graph and A is a symmetric matrix. At
the same time, we consider A;=1 which indicates that the vertex
itself is connected. We construct a feedforward neural network in
which the first hidden layer has the same dimensions as the input
layer, h,,_p, similarly,W,, is a pxp matrix. The input X is sparsely
connected with Z, (Figure 2). In other words, the original fully
connected layer:

A =cs(XW. +bin) (6)

in

is changed to:
7, =o(X(W, ©A)+b,) 7)

Where © is element-wise product. Therefore, the connection
between the input and first hidden layer of the feedforward
network is filtered by the graph adjacency matrix. Each feature is
corresponding to a hidden neuron. All features have corresponding
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FIGURE 2 | Graph embedding deep feedforward network (GEDFN). The graph embedding layer (first hidden layer) has same neurons with the input layer. The
sparse connect between the input layer and the first hidden layer is marked as black. Other hidden layers are fully-connected.

Output

Hidden layer

Hidden layer

hidden neurons in the first hidden layer. The feature can only
provide information to the connected graph. In this way, the graph
helps to achieve the sparsity of the connection between the input
layer and the first hidden layer (Kong and Yu, 2018).

Feature Selection Based on GEDFN

In addition to improving classification, it is also meaningful to find
features that contribute significantly to classification because they
reveal potential biological mechanisms. However, Deep neural
network is a “black box’, the interpretability of deep learning hasn't
been well-defined (Guidotti et al., 2019). In our experiment, we
focus on how the input features influence the prediction and we
borrow the idea from Olden and Jackson (2002) and Kong and Yu
(2018). The feature importance score is the quantification values
of the contributions of features to a model prediction, which links
the input features and output prediction. They highlight the parts
of a given input that are most influential for the model prediction
and thereby help to explain why such a prediction was made. The
feature selection is based on feature score, which means the score
is high if the feature is important. As a result, we develop a feature
ranking method based on the feature relative importance score,

similar to the connection weights method introduced by Olden and
Jackson (2002) and Kong and Yu (2018). What is learned by neural
networks is contained in the connection weights. Based on idea of
connection weight, we propose a graphical connect weight method
that emphasizes the importance of the features of our proposed
neural network architecture.

The main idea of a graphical connect weight is: the contribution of
a particular variable directly reflects the magnitude of the connection
weights associated with the corresponding hidden neurons in the
graph embedding layer. The sum of the absolute values of the directly
related weights for a neuron (or feature) gives its relative importance:

(8)

>

_ Polingca _1‘ sh |,
S;i=Y; Wi (Ay =D+Z, W),

yjzmin(c/zz_l(Akj=1),1j,j=1,...,p. )

Where s; is importance score of the feature j w(™ indicates

the weights between the input layer and the first hidden layer,
while w") indicates the weights between the first and second
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hidden layer. The constant c is to penalize vertices with too many
connections so that they don’t over impact the result. In the
following experiments, we set the parameter ¢ = 50.

EXPERIMENTS AND RESULTS
Data Set

Inflammatory bowel diseases (IBD) are a group of specific
chronic intestinal diseases, mainly including Crohn's disease
and ulcerative colitis. The occurrence and development of IBD
are closely related to intestinal microorganisms (Gevers et al.,
2014). In our experiment, OTU BIOM files and metadata were
downloaded from the QIITA (https://qiita.ucsd.edu/) database
(studyid: 1939). The detailed experiment was described in Gevers
et al, 2014. The IBD data set consists of 1,359 metagenomic
samples, including rectal, ileal biopsy and fecal samples (Gevers
et al,, 2014). We retained samples of mucosal tissue biopsies
(terminal ileum and rectum) samples under the age of 18. The
control group were without inflammatory conditions, such
as abdominal pain and diarrhea. The final data set consisted
of 657 IBD samples and 316 normal samples, respectively. We
used QIIME's taxa collapse to filter the strain's species, limiting
features at genus level.

Results

The Hyperparameters of Graph Embedding Deep
Feedforward Neural Network

The structure of the graph embedding deep feedforward neural
network (GEDFN) is shown in Figure 2. The most important
part of GEDEFN is that the number of neurons in the first hidden
layer is the same as the number of neurons in the input layer and
they are sparsely connected, which is different with normal fully
connected feed forward neural network. The second layer, third
and fourth hidden layers are consisting of 128, 64 and 16 neurons
respectively and they are fully connected.

We use three different methods to construct a microbial
co-occurrence interaction network from microbial abundance
data. When the sparcc method is used to build the network, we
reserve the vertexes if the correlation of two vertexes is larger
than 0.3. We get an adjacency network with 63 vertexes and 315
edges. We adopt the mictools (Albanese et al., 2018) to build the
MIC relevant network and we get 279 vertexes and 3230 edges
when the correlation threshold is 0.2. The network constructed
by sparcc and SPEC-EASI methods is sparse while MIC gets
relatively a dense network. Different methods get different
interaction networks. We find the higher the threshold, the more
reliable is the network. However, the high threshold will make
the network too sparse. As a result, we combine three kinds of
networks to get a larger network with 736 vertexes and 18,034
edges. In this way, the connections between the input layer and
the first hidden layer are more reliable and less dense than the
fully connected approach.

Other hyperparameters of GEDEN are as follows: the learning
rate is 0.0001, the activation function is Rectified Linear Unit
(ReLU) and the weight initializer is he_uniform, the drop out

is 0.2. the code is implemented in keras and available at https://
github.com/MicroAVA/GEDEFN.git.

The Evaluation of Classification

Traditional classification methods such as Random Forest has
been shown to be the best performers in omics data classification
tasks and the results show that Random Forest has achieved the
best performance on microbial classification (Pasolli et al., 2016).
Therefore, we compare GEDFN with Deep Forest (DF), Random
Forest (RF) and Support Vector Machines (SVM). For the
binary classification, we calculate the Area Under the Receiver
Operating Characteristics (AUROC) and classification accuracy
for each method (Figure 3).

AUROC curve is a performance measurement for classification
problem at various thresholds settings, which can evaluate
classifiers considering all true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN). Receiver Operating
Characteristics (ROC) is a probability curve and Area Under the
Curve (AUC) represents degree or measure of separability. It tells
how much a model is capable of distinguishing between classes.
The higher the AUC, the better the model is at predicting Os as
0s and 1s as 1s. By analogy, the higher the AUC, the better the
model is at distinguishing between patients with disease and no
disease. The ROC curve is plotted with true positive rate (TPR)
against the false positive rate (FPR) where TPR is on the y-axis
and FPR is on the x-axis.

TP

=———,FPR FP
TP+FN

TPR =
TN + FP

The classification accuracy means the percentage of correct
predictions from the total number of predictions made.

ACC= %21(} =)
i=1

Where y is the predicted label and y; is the true label for the
sample i. The m means the sample size and I(:)is the indicator
function.

In this experiment, we adopt a five-fold cross-validation. We
use the implementation of Random Forest in python's scikit-
learn package. We set the estimator parameter to 300. The Deep
Forest is based on the work (Zhu et al., 2018). From the AUC
value, we find that the Graph Embedding Deep Feedforward
Network (GEDFN) is much better than SVM (AUC = 0.663).
Compared with Deep Forest and Random Forest, GEDEN is also
very competitive. GEDFN achieves an AUC value of 0.843, which
is slightly better than Deep Forest (AUC = 0.834) and Random
Forest (AUC = 0.823). In terms of classification accuracy,
GEDFN achieves an average accuracy of 79.52%, Deep Forest
achieves 76.6% and Random Forest achieves 75.16%. GEDFN
outperforms 2-4% than Deep Forest and Random Forest. These
methods are much better than SVM (67.5%).
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FIGURE 3 | The Area Under Receiver Operating Characteristic curve (left) and accuracy of classification (right) for GEDFN, Deep Forest (DF), Random Forest (RF)
and Support Vector Machines (SVM). Left: the grey dash line is the chance discrimination that located on diagonal line (AUC = 0.5). The maximum AUC = 1 means
the classifier could discriminate the di d and non-di d perfectly while AUC = 0 means the classifier incorrectly classified all subjects with diseased as
negative and all subjects with non-diseased as positive. The AUC is averaged through a five-fold cross validation. Right: the boxplot for classifiers’ classification
accuracy.

The Evaluation of Feature Selection want to know if the features obtained by the traditional machine
In our experiment, we compare GEDFN with traditional feature  learning feature selection method can also be selected by GEDFN.
selection methods, such as minimum redundancy and maximum  As can be seen from the Venn diagram (Figure 4), most of the
Relevance (mRMR) (Ding and Peng, 2005), Random Forest and features selected by the mRMR are different from those selected
Deep Forest respectively. Each method selects 50 features. We by the other three methods. Among these 50 features selected by

FIGURE 4 | The feature selection based on Graph Embedding Deep Feedforward Network (GEDFN). The Venn diagram for top the 50 features selected via
minimum Redundancy and Maximum Relevance (mRMR), Random Forest (RF), Deep Forest (DF) and GEDFN.
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GEDEN, there are 25 and 21 features which are consistent with
the Random Forest and Deep Forest respectively.

In addition, we compare the performance of GEDFN + SVM,
RF + SVM, RF + SVM and RF + DE. Our approach is to select top
10, top 15, top 20,..., top 50 feature subsets from GEDFN and
RF respectively, and test them on SVM and Deep Forest (DF)
classifiers with five-fold cross-validation (Table 1). GEDFN +
SVM, means GEDEN is utilized to conduct feature selection and
SVM is the classifier. RF + SVM, means RF is utilized to conduct
feature selection and SVM is the classifier. GEDFN + DF, means
GEDEFN is utilized to conduct feature selection and DF is the
classifier. RF + DE means RF is utilized to conduct feature selection
and DF is the classifier.

From Table 1, the combination of GEDFN and SVM
achieves the best f1 score, while RF + SVM gets the worst
performance. Meanwhile, GEDEN + SVM and GEDFN +
DF have consistent performance. We find GEDFN prefers
the sparse features while RF prefers the dense features. In
other words, RF has a bias in the feature selection process
where multivalued features are favored (Nguyen et al., 2015).
In addition, RF is biased in the presence of correlation and
often identifies non-predictive features that are independent
from each other (Nicodemus and Malley, 2009). Actually, the
microbial data is sparse and the features are dependent, which
makes RF not the best choice to conduct feature selection in
microbiome. However, GEDFN is to embed the priori sparse
correlation network and find biomarkers as a whole, which
makes it more suitable for microbiome-wide association
studies than RF-based models.

The cophenetic similarity or cophenetic distance of two objects
is a measure of how similar those two objects have to be in order
to be grouped into the same cluster (Sokal and Rohlf, 1962; Saracli
et al., 2013). We calculate the cophenetic distance of the feature
subsets. The specific process is as follows: we select different
feature subsets obtained by Random Forest, Deep Forest and
GEDEN, such as top 10-50 features, and then calculate node-node
pairwise distance. The distance is characterized by the leaf nodes
of the phylogenetic tree. We use the cophenetic method of the
ape package in R to calculate the node-node pairwise cophenetic
distance. The value in the matrix is the sum of the branch lengths

separating each pair of species. We compare the top 50 features of
Random Forest, Deep Forest and GEDFN respectively. We find
the feature subsets of GEDFN has smallest cophenetic distances
among these methods, which means that the subset of these
features is better cohesive and we speculate that this cohesion may
be functional meaningful (Figure 5). Deep Forest and Random
Forest have similar cophenetic distance because Deep Forest is a
cascade structure based on Random Forest.

In addition, we utilize interactive Tree Of Life (iTOL) (Letunic
and Bork, 2016) to visualize the top 20 features selected by
GEDEFN (Figure 6). The features are ranked according to their
importance score. We average each species' relative abundance
for diseased and normal groups respectively. We find that
Neisseria, Pasteurellaceae, Bamesiellaceae, $24-7, Fusobacterium,
Anaeroplasma and Gemellaceae had high abundance compared
to the normal group, while other microorganisms are lowly
expressed in the disease group. The Neisseria, Pasteurellaceae,
Fusobacterium and Gemellaceae increased in Crohn's disease,
which was reported in the research (Gevers et al., 2014).
The Clostridiales, Eubacterium, Erysipelotrichaceae and
Peptostreptococcaceae, Christensenellaceae were found in lower
relative abundance in Crohn's disease (Gevers et al., 2014;
Matsuoka and Kanai, 2015; Pascal et al., 2017). However, there
is no unified option on the Crohn's disease-related microbial
biomarkers. As a result, our findings must need further
experiments to explore and verify.

CONCLUSIONS

In this work, we propose a method of embedding a microbial
graph into a Deep Feedforward Network to achieve feature
selection purpose. We have verified the feasibility of this method
through experiments. The main contributions of our work are as
follows: Firstly, the feasibility of this method is verified through
combining microbial interaction structure and deep learning,
and a sparse network structure is proposed. Secondly, the feature
selection method is introduced into the microbial sparse network
and the reliability of the feature selection results is verified,
indicating that deep neural networks can also conduct feature

TABLE 1 | The performance among GEDFN + SVM, RF + SVM, GEDFN + DF and RF + DF.

# GEDFN + SVM RF + SVM GEDGN+DF RF+DF
P R Fi1 P R P R Fi1 P R F1
10 0.733 1 0.846 0.675 1 0.806 0.733 1 0.846 0.785 0.871 0.825
15 0.745 1 0.854 0.675 1 0.806 0.745 1 0.854 0.722 0.909 0.800
20 0.752 1 0.858 0.675 1 0.806 0.750 0.991 0.854 0.717 0.927 0.805
25 0.706 1 0.828 0.675 1 0.806 0.705 0.991 0.824 0.765 0.907 0.829
30 0.707 1 0.828 0.675 1 0.806 0.707 0.983 0.823 0.718 0.957 0.821
35 0.698 1 0.822 0.675 1 0.806 0.698 1 0.822 0.692 0.977 0.810
40 0.704 1 0.826 0.675 1 0.806 0.709 0.985 0.824 0.706 0.962 0.813
45 0.707 1 0.828 0.675 1 0.806 0.707 1 0.828 0.687 0.991 0.811
50 0.697 1 0.822 0.675 1 0.806 0.697 1 0.822 0.695 0.974 0.810
XPXR

2
#, number of top features; P, precision; R, recall; F1=

P+R

. The best F1 scores are marked as bold.
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FIGURE 5 | The cophenetic distance for top 50 features selected via Random Forest (RF), Deep Forest (DF) and Graph Embedding Deep Feedforward Network
(GEDFN) respectively (The cophenetic distance is the sum of the features' pair-wise distance.). The cophenetic distance of two objects is a measure of how similar
those two objects have to be in order to be grouped into the same cluster.
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FIGURE 6 | The top 20 species selected via Graph Embedding Deep Feedforward Network (GEDFN). The species in red circle are higher relative abundance while
species in blue star are lower relative abundance in diseased group. These species are visualized on the phylogenetic tree.

selection. We hope our work will bring another perspective to et al., 2016). The networks constructed by various methods are
the interpretability of deep learning. varying. We found that the reliability of the microbial network

The problems still exist in the research work. First of all,  directly affected the subsequent results. Secondly, the threshold
our work does not compare the influence of various methods  of association network was traded off and there was no relevant
of constructing microbial networks on feature selection (Weiss ~ guidance suggestion. In general, the higher the threshold, the
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more reliable the network, but it would make the network too
sparse. It would be required to balance the threshold and the
network's sparseness. Finally, we only consider the influence of
the weight parameters of the Deep Neural Network on the feature
selection without considering the threshold of the neuron.
Because it would involve the nonlinear transformation which
could make the problem complicated and difficult. Therefore, our
future work will focus on how to build a more reliable microbial
interaction network and get more meaningful microbial markers.
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A Corrigendum on

Graph Embedding Deep Learning Guides Microbial Biomarkers’ Identification
by Zhu, Q. Jiang, X., Zhu, Q., Pan, M., and He, T. (2019). Front. Genet. 10:1182.
doi: 10.3389/fgene.2019.01182

Although in the original article although we have cited the work (Kong and Yu, 2018) in the
Introduction section, we did not cite the work in the Materials and Methods section. Our
approach to embedding deep learning for identifying microbial biomarkers is based on their
methods and thus contributed a lot to our article. Therefore, this citation has been added to the
following sections.

In order to avoid misinterpretation, we would like to add the reference in the following places
which were highlighted in RED:

The Materials and Methods section, subsection The Framework of Graph Embedding
Deep Feedforward Network, sub-subsection Graph Embedding Deep Feedforward Network,
paragraph 4:

“Where (O is element-wise product. Therefore, the connection between the input and first
hidden layer of the feedforward network is filtered by the graph adjacency matrix. Each feature
is corresponding to a hidden neuron. All features have corresponding hidden neurons in the first
hidden layer. The feature can only provide information to the connected graph. In this way, the
graph helps to achieve the sparsity of the connection between the input layer and the first hidden
layer (Kong and Yu, 2018).”

The Materials and Methods section, subsection Feature Selection Based on GEDEFN,
paragraph 1:

“In addition to improving classification, it is also meaningful to find features that contribute
significantly to classification because they reveal potential biological mechanisms. However, Deep
neural network is a “black box”, the interpretability of deep learning hasn’t been well-defined
(Guidotti et al.,, 2019). In our experiment, we focus on how the input features influence the
prediction and we borrow the idea from Olden and Jackson (2002) and Kong and Yu (2018). The
feature importance score is the quantification values of the contributions of features to a model
prediction, which links the input features and output prediction. They highlight the parts of a
given input that are most influential for the model prediction and thereby help to explain why
such a prediction was made. The feature selection is based on feature score, which means the
score is high if the feature is important. As a result, we develop a feature ranking method based
on the feature relative importance score, similar to the connection weights method introduced
by Olden and Jackson (2002) and Kong and Yu (2018). What is learned by neural networks is
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contained in the connection weights. Based on idea of connection
weight, we propose a graphical connect weight method that
emphasizes the importance of the features of our proposed neural
network architecture.”
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Genes in Individual Tumor Samples
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Individual patient biomarkers have an important role in personalized treatment.
Although various high-throughput sequencing technologies are widely used in biological
experiments, these are usually conducted only once or a few times for each patient,
which makes it a challenging problem to identify biomarkers in individual patients. At
present, there is a lack of effective methods to identify biomarkers in individual sample
data. Here, we propose a novel method, IBI, to identify biomarkers in individual tumor
samples. Experimental results from several tumor data sets showed that the proposed
method could effectively find biomarker genes for individual patients, including common
biomarkers related to the mechanisms of the development of cancer, which can be used
to predict survival and drug response in patients. In summary, these results demonstrate
that the proposed method offers a new perspective for analyzing individual samples.

Keywords: biomarker, individual sample, tumor, regression model, gene expression data

INTRODUCTION

Biomarker discovery is critical for cancer diagnostics, prognosis, and monitoring of therapy
in clinical trials. With the development of high-throughput biochip technologies such as next-
generation sequencing, massive quantities of cancer genomic data are being generated in the
healthcare field, which offers an opportunity to identify high-quality cancer biomarkers for use in
personalized medicine. Therefore, various computational methods have been proposed to identify
cancer biomarkers. At present, the most commonly used methods are statistical tests, such as t-test,
KS-test, and Wilcoxon’s rank sum test (Li et al., 2007; Dembélé and Kastner, 2014; Love et al., 2014;
Moore et al., 2016; Wang et al., 2018), which identify differentially expressed genes (DEGs) from
two types of samples and choose the group of genes with the lower p-value as potential biomarkers.
However, the method often ignores and misses information between genes (Lewis-Wambi et al.,
2008). Machine learning algorithms and statistical models also are widely used to identify cancer
biomarkers. For example, the 70-gene biomarkers (Van't Veer et al., 2002), wound-response gene
biomarkers (Chang et al., 2005), and several of our gene biomarkers (Li et al., 2008; Li et al., 2010;
Zhang et al., 2017) are all identified using machine learning algorithms. The 21-gene biomarkers
(Van’t Veer and Bernards, 2008) and immunotherapy response biomarkers (Ock et al., 2017; Jiang
et al., 2018) are based on statistical models.

However, the above methods are only able to identify biomarkers in two groups of samples, not
in an individual sample. As cancer is a complex and heterogeneous disease, different patients have
differences in pathogenesis and need different treatments. Thus, there is a need for biomarkers
for individual patients that reflect their status. Currently, high-throughput biological experiments
are usually conducted once or a few times for a single patient, which makes it a challenging
problem to analyze single samples and, in particular, to identify biomarkers in individual patients.
Some algorithms have been developed to analyze single samples. Rezwan et al. (2015) used the
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Crawford-Howell t-test to analyze methylation data of single
samples and identified hypomethylation at different sites.
However, this method could only detect differences in a single
molecular element among different samples and may ignore the
relationships of different molecular elements in the same sample.
Liu et al. (2017) proposed the sDNB (single-sample dynamic
network biomarkers) method to detect early-warning signals or
critical states in individual patients using gene expression data.
sDNB detects changes in gene expression levels of a pair of genes
relative to reference samples and considers the local information
of a gene in network. Drier et al. (2013) proposed an algorithm
to analyze single tumor samples using pathway-level information
instead of gene-level information. Pathways were detected that
were significantly associated with survival of glioblastoma and
colorectal cancer patients. However, a set of genes in the same
pathway have similar functions; this means that models based
on redundant features (biomarkers) are usually more complex.
Here, we propose a novel method, IBI (identification of
biomarker genes in individual tumor samples), to identify
biomarker genes in individual tumor samples using gene
expression data. An overview of the IBI method is given

in Figure 1. First, DEGs in tumor and normal samples are
identified. Then, regression models are constructed using the
selected DEGs, and residuals of each gene in different samples
are analyzed using the kernel density estimation (KDE). Finally,
we assess the degree of change of each gene according to the
credibility interval (CI) of its residuals to decide which genes are
biomarkers of the individual sample.

MATERIALS AND METHODS

Data Collection and Preprocessing

The proposed method was used to analyze three gene expression
data sets: TCGA-BRCA (Tomczak et al., 2015), GSE63557
(Lesterhuis et al., 2015), and GSE35640 (Ulloa-Montoya et al.,
2013). TCGA-BRCA consists of 1,090 breast cancer samples and
113 normal tissue samples. GSE63557 contains AB1-HA tumor
data from mice during immunotherapy with 10 anti-CTLA-4
immunotherapeutic response samples and 10 non-response
samples, and GSE35640 consists of advanced melanoma data
with 22 MAGE-A3 immunotherapeutic response and 34

Each Tumor Sampl

Gene symbol

il BT
ne Expression
Data

Tumor Sample 1

Tumor Sample 2

Average Tumor
Sample

Tumor Sample n

Nomal Sample 1)
Nomal Sample 2

Nomal Sample m

2 o 2 . . .
Average Normal
Sample

Each Normal Sampl

Tumor Residual 1

Tumor Residual 2
ﬁKD%f—\

A

Biomarker Genes For o
Each Sample

Tumor Residual n

FIGURE 1 | Overview of IBI method.

/Normal Residual 1
' t Normal Residual 2
R G
Nomal Residual m

A

Frontiers in Genetics | www.frontiersin.org 80

November 2019 | Volume 10 | Article 1236


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Lietal

IBI Identification of Biomarkers

non-response samples. The first data set contains RNA-seq data,
which was preprocessed using DESeq2 (Love et al.,, 2014), and
the latter two data sets were preprocessed using the z-score.

Identification of Differentially

Expression Genes

Assuming we have gene expression data with two types of
samples and genes, let each sample be labeled with either “+”
or “-”; n; and n, are the number of samples with label “+” and
“~7, respectively (n = n,+ n,). y; is the expression value of the
jth gene of the ith sample with label “+7, and x;; is the expression
value of the jth gene of the ith sample with label “~”. ¢ DEGs
are obtained using the robust algorithm (Love et al., 2014) or

GEO2R (Smyth, 2004).

« »,

Average Sample

Let average samples with label _“+” and “-” be
u' = uf,u;..uﬂ and u~ =[uf,u2’...uq’ , respectively.
L LN .
u; :n—ziZij[., q=2j=21
' )]
-1 ™ .
ujzfz X g=2j=21
n2 i=1
2)

Regression Model Based on Average and

Single Samples
Let Yji be the expression value of the jth DEG of the ith sample

« »

with label “+” and x; the expression value of the jth DEG of

« »

the ith sample with label “~” For the ith sample with label “+,

S = [J/fny;im)’;w] , Y5 can be predicted using the following
regression model according to ] :

- + +, + .
y;i:ﬁ0+ vup . q2j21

3)

where B; and B are the regression coefficients estimated
according to a set of data yl,-,u]*?,(yzl.,u;) s e (}’qz‘s”;) , using
the least squares method. o ,

Similarity, fortheithsamplewithlabel “-” > S; :[xli,x2i...xqi],
x], can be predicted using the following regression model
according to u; :

Xy =By By, qzjz1

(4)

where B, and B, are the regression coefficients estimated

according to a set of data (x”,uf) , (xzi,u; ) s oo (xqi,u;) using
the least squares method.

Algorithm for Identifying Biomarker Genes
of a Single Sample
Among g DEGs, expression values of some genes of a single
sample may undergo very significant changes compared with
their average values, i.e., the observed values of these genes are
far from regression line. These genes are called biomarker genes
of the single sample. The degree of the significant difference can
be calculated using the residual value between the predicted
value and observed value.

For the ith sample with label “+,” the residual value of its the
jth DEG is:

v_ 7 .
€;=Yi—Vi>» q2j=21

(5)

Similarity, for the ith sample with label “-”, the residual value
of it’s the jth DEG is:

o~

€; =X

% qzjz1

(6)

«, »

To obtain biomarker genes of the ith sample with label “+”, the
KDE is introduced to estimate the probability density function

fi (e,-) of residual values: (ef'i,e;’i,...,e;), Its kernel density

estimator with Gaussian kernel K is as follows:

- 1

fi (e,-)=thj_1K[ i;l ji]

1
_2x2

e 2

K(x)=

1
N2 (8)
where h is a smoothing parameter called the bandwidth (h >

0). Let @ be the cumulative distribution function of the kernel
density estimator; then, the CI at confidence level a is

el

The jth gene is considered a biomarker gene of the ith sample

9)

with label “+” (n,>i>1) if (I)(e;) € CI,, . Similarity, we can obtain

the biomarker gene of the ith sample with label “~"(n, 2i >1).

RESULTS

Performance Evaluation

It was somewhat difficult to directly evaluate the performance of
the proposed method. Three methods were employed to evaluate
the power of the method.

1) Statistical test: The biomarker genes of each sample should be
specific, that is, their expression values in the sample should
be significantly different from those of other samples. We
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designed a method to test such differences, as follows. First,
biomarker genes of sample S, are selected and their expression
values extracted from all samples. Then, the expression
values of each biomarker gene in different samples are sorted
respectively and used to construct a rank matrix. The ith row
vector, R;, of the matrix denotes orders of biomarker genes
of S, Finally, the Kolmogorov-Smirnov test is performed to
determine whether there is a significant difference between R,
and R (j=1).

2) Survival analysis: The biomarker genes of each tumor sample
should reflect its characteristics, namely, it should be possible
to use biomarker genes to classify tumor samples into high-
and low-risk groups and predict the survival risk of tumor
patients.

3) Validation via biological evidence: The biomarker genes of
each tumor sample should reflect the pathogenesis of cancer,
that is, they should have been reported to be associated with
tumor development in the published literature.

Experimental Results for TCGA-BRCA
The experiments on TCGA-BRCA were performed as follows.

First, 6120 DEGs in two groups of samples were identified using
DESeq2 (Love et al., 2014) at a 95% confidence level and absolute
value of log fold change > 1. Next, average tumor and normal
samples based on 6120 DEGs were obtained using Equations. (1)
and (2). Then, 1,090 (113) regression models were constructed
based on average tumor (normal) samples and 1,090 tumor (113
normal) samples, respectively; an example is shown in Figure 2.
The residuals of the genes of each sample were calculated

CLEC3A
"

Tumor sample TCGA-Z7-A8R6-01A-11R-A41B-07

6
The average tumor sample

FIGURE 2 | Regression model based on tumor sample TCGA-Z7-A8R6-
01A-11R-A41B-07 and average tumor sample. The points in the upper-left
(lower-right) partition are two biomarker genes with the highest (lowest)
expression levels.

using Equations (5) and (6); Figure 3 shows residual values of
biomarker genes from two samples. Finally, biomarker genes for
each sample were identified using Equations (7), (8), and (9). The
distribution of the number of biomarker genes in the 1,090 (113)
tumor (normal) samples is shown in Figure 4.

As shown clearly in Figures 2 and 3, genes were distributed
in two main areas. The genes scattered in the upper-left of the
plots are those with higher expression levels, whereas genes in
the lower-right portion have lower expression values, in the
single tumor/normal sample. In Figure 2, there are several spots
that are distant from the regression lines. These spots represent
biomarker genes of the single sample. Figure 3 shows more clearly
which genes had very significant variation in expression. For
example, the residuals of CLEC3A and CCNO were 4.92 and 3.83,
respectively, significantly higher than the values for other genes;
while the residuals of HIST3H2A and TNNTI were —3.33 and
—2.95, respectively, significantly lower than those of other genes.

It can also be seen from Figure 4 that the number of biomarker
genes varied among different samples. Some tumor samples had
more than 315 biomarker genes, while others had about 290. The
mean numbers of biomarker genes in the tumor samples and
normal samples were 304.9 and 305, respectively. In addition,
the biomarker genes of different samples were also different.
In 1090 tumor samples and 113 normal samples, the biomarker
genes had different frequencies (a biomarker gene has higher
frequency if it is found in more samples). The top 15 biomarker
genes with significantly different frequencies in tumor and normal
samples are listed in Supplementary Table 1. These genes were
common biomarkers of most tumor samples, and they had higher
frequency in tumor samples than in normal samples. Therefore,
these genes were likely to be related to the development of breast
cancer. To test our hypothesis, we searched the literature using
public databases and found that 14 of the 15 genes were indeed
related to the development of breast cancer. The top gene was
S100A7, which has been found to be expressed in several tissues
including breast adenocarcinomas and squamous carcinomas
of the head and neck, the cervix, and the lung (Emberley et al.,
2004); SIO0A7 is also related survival of breast cancer patients
(Emberley, 2003). CLEC3A had the highest frequency in tumor
samples; its overexpression promotes tumor progression and
poor prognosis in breast invasive ductal cancer (IDC) and is
related to higher lymph node and poorer overall survival (OS)
of breast IDC (Ni et al,, 2018). PRAME has a tumor-promoting
role in triple-negative breast cancer, increasing cancer cell motility
through the epithelial-to-mesenchymal transition (EMT) gene
reprogramming. Therefore, PRAME could serve as a prognostic
biomarker and/or therapeutic target in triple-negative breast
cancer (Al-Khadairi et al., 2019). Kammerer et al. (2016) suggested
that patients with estrogen receptor-positive breast cancer might be
stratified into high- and low-risk groups based on the KCNJ3 levels
in the tumor. CST1 was found to be generally upregulated in breast
cancer at both the mRNA and the protein level. Furthermore, OS
and disease-free survival in the low CST1 expression subgroup
were significantly superior to those in the high CST1 expression
subgroup, indicating that CST1 could be a prognostic indicator and
a potential therapeutic target for breast cancer (Dai et al., 2017).
Xuan et al. (2015) reported that higher expression of MMPI in
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breast cancer might play a crucial part in promoting breast cancer
metastasis. Powell et al. (2018) demonstrated that CEACAMS5 was
a clinically relevant driver of breast cancer metastasis. NKAINT is
associated with OS in breast cancer (Su et al., 2019). DSCAM-ASI
promotes tumor growth in breast cancer by reducing miR-204-5p
and upregulating RRM2 (Liang et al, 2019). Overexpression
of CEACAM6 promotes migration and invasion of estrogen-
deprived breast cancer cells (Lewis-Wambi et al., 2008). Bhakta
et al. (2018) suggested that anti-GFRA1-veMMAE ADC might
provide a targeted therapeutic opportunity for luminal A breast
cancer patients. BMPRIB is related to proliferation of breast cancer
cells (Bokobza et al., 2009). Jia et al. (2016) identified COL11A1

as a highly specific biomarker of activated cancer-associated
fibroblasts (CAFs), which could promote breast cancer and inhibit
pancreatic cancer. In summary, 14 of the top 15 biomarker genes
have been reported to be associated with breast cancer. Therefore,
these results demonstrate that the proposed method can effectively
identify biomarkers related to cancer.

Statistical tests were performed to evaluate whether expression
levels of biomarker genes of a sample were significantly different
compared with those of other samples. As the biomarker gene
set of each sample was represented by a p-value vector with
dimension n, 1,090%*1,089 [n(n—1)], where n is the number of
samples) p-values were obtained for the 1090 tumor samples, and
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113*112 p-values for the 113 normal samples; 1,186,999 (99.99%)
and 12,626 (99.76%) of these p-values were less than 0.05 for the
tumor samples and normal samples, respectively. These results
indicate that there were significant differences between the
expression levels of the identified biomarker genes of a sample
and those of other samples, that is, the proposed method can
effectively identify the biomarker genes of a single sample.

The frequencies of biomarker genes in tumor and normal
samples were different. Here, we mainly analyzed biomarker
genes whose frequency was higher in tumor samples than in
normal samples, to explore which genes might have important
roles in survival prediction and development of breast cancer.
We selected 305 biomarker genes with higher frequency in tumor
samples, and clustered the tumor samples into two groups using
the multiple survival screening (MSS) algorithm (Li et al., 2010).
Survival was significantly different between the two groups
(p-value = 0.0089) (Figure 5). This means these biomarker
genes are important features of breast cancer and can be used to
distinguish tumor patients into high- and low-risk groups (here,
we removed two samples with the negative follow-up-time, so
there were 1,088 samples participating in survival analysis).

Experimental Results for
Immunotherapeutic Response Samples

The proposed method was also used to analyze mouse AB1-HA
tumor data: GSE63557. A total of 8,042 DEGs in two groups
of samples were identified using GEO2R (Smyth, 2004) at a
95% confidence level. Regression models of 10 anti-CTLA-4
immunotherapeutic response samples and 10 non-response
samples were constructed; one of these is shown in Figure 6.
Figure 7 shows residual values of biomarker genes from two
samples. The number of biomarker genes of 10 response samples
and 10 non-response samples is shown in Figure 8. In Figures
6 and 7, there are several genes that are far from the regression

I

1.0

0.8
L

I

0.6
L

Survival Probability

T T T T
0 5 10 15 20

Years

FIGURE 5 | Kaplan-Meier survival curves based on 305 tumor biomarker
genes. In the high-risk group (red line), there are 329 tumor samples. In the
low-risk group (blue line), there are 759 tumor samples.
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FIGURE 6 | Regression model based on response sample GSM1552230
and the average response sample.

lines. For example, the residuals of Krt6b and Stfa3 were 2.07
and 2.26, respectively, significantly higher than those of other
genes; the residuals of Chil3 and Igkv2-109 were —1.82 and -2.10,
respectively, significantly lower than those of other genes.

The number of biomarker genes of different samples is shown
in Figure 8, illustrating the variation between samples. The
biomarker genes from different samples were also different. For 10
response samples and 10 non-response samples, the top 15 genes
with the most significant differences in frequency are shown in
Supplementary Table 2. Four of these genes, Gzme, CD38, CD3D,
and Chil3, appeared in the important cancer modules identified
by Lesterhuis et al. (2015) However, the top gene, Jchain, had not
been identified as a member of these important cancer modules;
notably, Jchain was also found to be the most important of the
anti-CTLA-4 immunotherapeutic response biomarker genes in
our study, with frequencies in response and non-response samples
of 80% and 0%, respectively. This suggests that Jchain is related to
immunotherapeutic response. GeneCards (https://www.genecards.
org/) indeed confirms that Jchain has an important role in immune
response. Moreover, Iglj1, Cd38, and Cd3d are also immune response
related. This demonstrates that the IBI method can detect important
genes contributing to the immunotherapeutic response mechanism.

According to the statistical tests, 100% of p-values were less
than 0.05 in both response and non-response samples. The rank
matrix of each response sample is shown in Figure 9A. These
results indicate that there are significant differences between the
identified response biomarker genes of a sample and those of
other samples, that is, the proposed method also can effectively
identify biomarker genes of individual samples even when fewer
samples are used. We wanted to analyze biomarker genes whose
frequency was higher in response samples than in non-response
samples, and estimate their ability to predict survival in AB1-HA
tumor samples. However, there was no follow-up information
for AB1-HA mice. The selected 392 biomarker genes with higher

Frontiers in Genetics | www.frontiersin.org

84

November 2019 | Volume 10 | Article 1236


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Lietal

IBI Identification of Biomarkers

395 -

390 -

The number of biomarker genes per sample

A B 15
Krtéb *
o Stfa3
2 PS ° Rnase2a
Q. 9 o 10
o o »:
° ° ° ° Regt
o
o °
; oo OO 5 P o - g o o 00 ° X OQ
0. o g® ® ° °
‘9 °°g 80 °p fo %° o 28 9. 82 "2 0
o
] ]
© )
= =
B« =]
@ @
Q ]
« «
8D 3 6
AR & T S RO I I
1 o o8 . 5 0 © ° o
° o °
o
d o
°
Chil3 10
s
2 Igkv2-109
.
15
2000 4000 6000 800K 0 80
Genes in response sample GSM1552230
FIGURE 7 | Residuals of biomarker genes (A) GSM1552230, (B) GSM1552221.
A B
400 - .
400 .

The number of biomarker genes per sample

395 .

390

385

GSM1552228
GSM1552229
GSM1552230
GSM1552231

SM1552232

SM1552233
GSM1552234
GSM1552235
GSM1552236
GSM1552237

& 3
Response sample ID

G

FIGURE 8 | Number of biomarker genes in (A) response samples and (B) non-response samples.

GSM1552218
GSM1552219
GSM1552220
SM1552221
SM1552222
SM1552223
GSM1552225
GSM1552226
GSM1552227

O GSM1552224

S (L] (0]
Non-Response sample |

frequency were tested against a human mesothelioma data set
(TCGA-MESO, https://portal.gdc.cancer.gov). Notably, these
biomarker genes could still effectively distinguish all patients into
high- and low-risk groups (Figure 9B) with a p-value of 1.57x10-.
These results further support the validity of the proposed method.

Experimental Results for Advanced
Melanoma Data

The proposed method was used to analyze advanced melanoma
data: GSE35640. A total of 1420 DEGs were identified in 22

MAGE-A3 immunotherapeutic response and 34 non-response
samples using GEO2R (Smyth, 2004) at a 95% confidence
level. Regression models of 22 MAGE-A3 immunotherapeutic
response and 34 non-response samples were constructed; one of
these is shown in Figure 10. Figure 11 shows residual values of
biomarker genes from two samples. The number of biomarker
genes of 22 response samples and 34 non-response samples is
shown in Figure 12.

As shown in Figure 12, there were small differences in
the number of biomarkers from different samples. The mean
number of biomarker genes in response samples was 70. The
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FIGURE 10 | Regression model based on response sample GSM872356
and the average response sample from GSE35640 gene expression data.

top 15 genes with the most significant difference of frequency
in 22 response samples and 34 non-response samples are shown
in Supplementary Table 3. We proposed that these genes
were likely to be mainly immune or tumor related. To test our
hypothesis, we searched GeneCards for these genes and found
that some of them play important roles in the development of
immune-related cells. For example, MS4A1 is associated with
the development of B-cells into plasma cells; CD37 may play a
part in T-cell-B-cell interactions; CD5L participates in obesity-
associated autoimmunity; MMP8, IRF5, and RHOF are related to
innate immune pathways; MMP9 has a role in tumor-associated
tissue remodeling; and TRAMILI is related to the well-known
cancer-related NF-kB pathway. This demonstrated that the
IBI method could detect important genes contributing drug
response mechanisms and help to elucidate immunotherapeutic
response mechanisms. In the statistical tests, 96.96 and 95.72%
of p-values were less than 0.05 in the response and non-response
samples, respectively. These results also indicate that biomarker
genes of a sample show significant differences compared with
those of other samples, that is, the proposed method can also
effectively identify MAGE-A3 immunotherapeutic response
biomarker genes in individual advanced melanoma samples
even with fewer samples.

We wanted to analyze biomarker genes whose frequency was
higher in response samples than in non-response samples, and
estimate their ability to predict survival in advanced melanoma.
However, there was no follow-up information in GSE35640, so
we used skin cutaneous melanoma gene expression data (TCGA-
SKCM) for the survival analysis. The selected 70 biomarker genes
were tested against TCGA-SKCM, showing that these biomarker
genes could effectively distinguish skin cutaneous melanoma
patients into high- and low-risk groups (Figure 13), with a
p-value of 0.016. These results indicate that the proposed method
performs well. In their original paper, Ulloa-Montoya et al. (2013)
identified 84 gene expression signatures associated with response
to MAGE-A3 immunotherapy in metastatic melanoma and non-
small-cell lung cancer, whereas 61 of the 84 genes were chosen
as biomarker genes by our proposed method (e.g., CD86, CCL5,
and IRFI). These genes were mainly immune related and were
involved in interferon gamma pathways and specific chemokines.
Experimental results showed that pretreatment MAGE-A3
immunotherapy in metastatic melanoma influenced the tumor’s
immune microenvironment and the patient’s clinical response.
The proposed method could be used to identify these biomarker
genes and predict the influence of MAGE-A3 immunotherapy on
survival in metastatic melanoma (Figure 13).

Experimental Results for the Simulated
Data

In order to further test the performance of the proposed method,
we added a supplemental experiment on the simulated gene
expression data. First, the simulated gene expression data with 10
samples 1000 genes is generated using simulateGEdata function
in the RUVcorr (Freytag et al., 2015) package. Then, 1,000 genes
are divided into 10 groups, we increase/decrease gene expression
value of the ith group of genes in the ith sample by an up or down
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FIGURE 13 | Kaplan-Meier survival curves for TCGA-SKCM based on
biomarker genes from GSE35640; p-value = 0.016. There were 281 and 166
samples in the high-risk and low-risk groups, respectively.

perturbation value. The range of perturbation value is from 0 to
mean value of the corresponding gene in 10 samples. Thus, the
ith group of genes can be considered as biomarker genes of the
ith sample. Finally, experiment is performed on the simulated
data to observe whether the proposed method can find these
markers. We repeated the above steps ten times and experimental
results shown that the proposed method can effectively identify the
biomarker genes of 10 samples. The 99% biomarker genes identified
by the proposed method are the predefined biomarkers when the
perturbation value is twice (see Supplementary Figure 1).

DISCUSSION

Precision medicine is an active area of cancer research. The
key to cancer precision medicine is to find biomarker genes
with high performance, and various approaches to identify
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such genes have been developed. However, identification
of biomarker genes for individual tumor samples remains
a challenging problem; for many reasons, there is a lack of
effective approaches to identify biomarkers in individual
patients. Here, we developed a novel approach to address this
issue. Experimental results based on several different data
sets show that the proposed method can effectively identify
biomarker genes of individual human tumor samples, not only
from several hundred samples but also from a few samples
without clinical information, and even from mouse samples.
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Acetylation is one of post-translational modification (PTM), which often reacts with acetic
acid and brings an acetyl radical to an organic compound. It is helpful to identify
acetylation protein correctly for understanding the mechanism of acetylation in biological
systems. Although many acetylation sites have been identified by high throughput
experimental studies via mass spectrometry, there still are lots of acetylation sites need
to be discovered. Computational methods have showed their power for identifying
acetylation sites with informatics techniques which usually reduce experiment cost and
improve the effectiveness and efficiency. In fact, if there is an approach can distinguish
the acetylated proteins from the non-acetylated ones, it is no doubt a very meaningful
and effective method for this issue. Here, we proposed a novel computational method for
identifying acetylation proteins by extracting features from the conservation information of
sequence via gray system model and KNN scores based on the information of functional
domain annotation and subcellular localization. The authors have performed the 5-fold
cross-validation on three datasets along with much analysis of features and the Relief
feature selection algorithm. The obtained accuracies are all satisfactory, as the mean
performance, the accuracy is 77.10%, the Matthew’s correlation coefficient is 0.5457,
and the AUC value is 0.8389. These works might provide useful insights for the related
experimental validation, and further studies of other PTM process. For the convenience of
related researchers, the web-server named “iIACetyP” was established and is accessible
at http://www.jci-bioinfo.cn/iAcetyP.

Keywords: acetylation, Random Forest, family and domain databases localization, post-translational modification,
identification

INTRODUCTION

To date, more than 450 unique protein modifications have been identified (Han et al., 2018),
including phosphorylation, acetylation, ubiquitination, and sumoylation, which are regulatory
mechanisms of cellular proteins with a number of biological functions, and also are very important
for regulating the function of many prokaryotic and eukaryotic proteins (Yang et al., 2017). Among
these post-translational modification (PTM), acetylation is a dynamic and highly conserved PTM
(Figure 1) that plays a vital role in the regulating processes of diverse cellular. The role of acetylation
in histones were first discovered in histones (Allfrey et al., 1964), and the first deacetylase activity
was identified back in 1969 (Inoue and Fujimoto, 1969). Owing to its important involvement
in some relevant biological processes, acetylation becomes one of the most important reversible
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FIGURE 1 | An illustration to show the acetylation protein.

An example of N, Acetyl-lysine

protein posttranslational modifications, hence, more and more
acetylated proteins are discovered with the help of high-
throughput technologies. Thus, it is a piece of very interesting
work to identify the potential acetylation sites for finding the
underlying molecular mechanisms, and is helpful for basic
bioresearch and drug development.

However, due to the importance and complexity of
acetylation, identifying acetylation sites is a great challenge
to fully understand the regulatory roles and the molecular
mechanism of acetylation regulation. Actually, it is a time-
consuming, expensive and labor-intensive process for purifying
acetylation sites due to that the acetylation process is dynamic,
rapid and reversible (Li et al., 2017; Yang et al., 2017). Fortunately,
some studies had showed that experimental methods and
computational models can be used to identify underlying PTMs
sites (Hershko and Ciechanover, 1998; Haglund and Dikic,
2005; Tung and Ho, 2008; Radivojac et al., 2010), such as
ubiquitination model of Radivojac et al. (2010), Zhao et al.
(2011), and Cai et al. (2012), phosphorylation model of Ingrell
et al. (2007), Yao et al. (2012, 2015), Chen et al. (2015), Li et al.
(2015), Trost et al. (2015), and Xu et al. (2015), sumoylation
model of Beauclair et al. (2015), Xu et al. (2016), and Han et al.
(2018), acetylation model of Zhao et al. (2010), Wang et al.
(2012), Hou et al. (2014), and Wuyun et al. (2016), and so on.
Although these researchers did make much contribution to this
issue, there is still a lot of room for improving the prediction
quality. However, most of these efforts are on identifying some
determinate PTMs sites for a given protein sequence, and few
of computational method was proposed for distinguishing the

acetylated proteins from the non-acetylated ones. This study was
an attempt for the issue.

For a given protein represented with amino acid sequence,
how to identify whether it may be one of some certain PTM
proteins or may not? This may be the first step for identifying
PTM sites and then is helpful and meaningful for basic research
and drug development. In fact, we have made some preliminary
exploration and attempt on identifying phosphorylated proteins.
In Qiu et al. (2017a,b), we presented a method for identifying
human phosphorylated proteins and a multi-label classifying
model for different type of phosphorylated proteins with the
help of the General PseAAC concept and gray system theory.
Although the results are not so perfect, we still argue that the
formulations and models can be applied to this issue, and it may
be more powerful when some structure, function or localization
information of proteins were added into the model. This site
may be a fruitful opportunity for bioinformatics. For example,
Gene Ontology (GO) (Ashburner et al., 2000) was proposed by
Ashburner to reposit the concepts denoted as GO Terms that are
associated to other gene products, and it has been widely used in
describing the attributes for gene products (Agapito et al., 2016;
Peng et al., 2016).

The dataset we used here was fully extracted from Uniprot
(The UniProt, 2017). The present study tried to construct a
classifying model for potential acetylation proteins by fusing the
digital features which are come from its evolution information,
Subcellular localization (noted as SL) (Nakai and Horton, 1999)
information and functional domain annotation (noted as FDA)
databases including GO (Harris et al., 2004), Pfam (Bateman
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et al, 1999), Smart (Letunic et al., 2004), InterPro (Hunter
et al,, 2009), PRINTS (Attwood et al., 2012), PROSITE (Sigrist
et al., 2010), SUPFAM (Pandit et al., 2004). As for subcellular
localization (Du et al,, 2012), it was retrieved from the original
UniProt database, which was reorganized by UniProt build-in
hierarchical subcellular localization table. This paper proposed
a new computational model for identifying potential acetylation
proteins only on the basis of a query amino acid sequence
by using its evolution information obtained with gray system
model (Gray-PSSM) (Kaur and Raghava, 2004; Jones, 2007) and
KNN scores calculated with the fuzzy distance by using its FDA
and subcellular localization information. There are 80 amino
acid sequence features extracted by incorporating the sequence
evolution information were fused into PseAAC feature set and
KNN scores, all of these features are combined according to
different coeflicients on the basis of its importance. To highlight
the advantages of the proposed model, the model was trained
and tested with three sub-datasets and cross-validations methods.
In addition to some discussion of protein abovementioned
features, some hypotheses for distinguishing acetylation proteins
from non-acetylation ones were also depicted with the aid of
training dataset.

MATERIALS AND METHODS

Benchmark Dataset

It is fundamental and important that a stringent benchmark
dataset be stablished for testing the proposed statistical predictor.
Luckily, the UniProtKB/Swiss-Prot database is accepted by most
of bioinformatics researchers, and has been using more and more
widely. The data used in the current study to support this work
are established on the basis of web http://www.uniprot.org.

In this study, we assume that our work is to identify whether
an uncharacterized amino acid sequence is acetylation protein.
As we known, the input sequence is comprised by amino acids
and can be expressed as

P=PP)P;---P;--- P (1)
where P; represents the i-th residue of amino acids sequence P, L
is the length of P.

Here, we separate a benchmark dataset into a training dataset

noted as S. Thus, the datasets can be formulated as:

Sal = Sposi U Snega (2)

Snega = ST US; USy

where  Sposi is  composed of the acetylation proteins,
Snega is  composed of the non-acetylation proteins,
S N§ =0 (i # j;ij = 1,2,3). U and N represent the

symbol for “set union” and “set intersection,” respectively.

The version of protein data used in the current study
was released in May 2017. The positive dataset was
generated according to the following criteria: (1) The
potential acetylated proteins should be noted by anyone
keyword of the set, ie. {N_acetylcysteine, N_acetylserine,
N_acetylglutamate, N_acetylglycine, N_acetylproline,
N_acetylthreonine, N_acetylvaline, N_acetylmethionine,
N_acetyltyrosine, N2_acetylarginine, N6_acetyllysine,

O_acetylserine, O_acetylthreonine}. (2) The collected proteins
are labeled by “Evidence” for the item of “Any assertion method.”
(3) Only the proteins which consisting of 30 and more amino
acid residues can be included, and the redundant proteins were
removed with the threshold of 50% by using CD-HIT software.

The negative dataset was generated similar to the positive one
except that those proteins should not be labeled none member of
the mentioned above keyword-set. Since there are mass number
of candidates here, we randomly collected negative datasets
which have the balance samples size with positives.

Under the aforementioned standards, we obtained 2,925
protein samples, of which, the numbers of positive and negative
samples are 725 and 2,175, respectively. In terms of Equation (2),
we have 725 positive samples in Spos; and 2,175 negative samples
in Spegq. Here, we test the models with cross-validation on the
three datasets with 1,450 samples, i.e., Sposi U 87, Sposi U S5 and
Sposi U S5, of which, the positive and negative ones are equal, i.e.,
725 samples.

Feature Construction
General Pseudo Amino Acid Composition (PseAAC)
Most of traditional machine-learning algorithms, such as
Random Forest, SVM, and K nearest Neighbor, are not so
powerful, the input should be vectors instead of sequence samples
for biological issue. To overcome this problem, the researchers
trying their best to improve the discrete or vector model by
formulating the amino acids sequence into all kinds of pseudo
amino acid composition (PseAAC), encoding method (Zhang
et al., 2006; Chen et al., 2011; Shi et al., 2012; Jiao and Du, 2017)
or other approaches.

Here, the proposed model followed the idea of PseAAC (Chou,
2011), and formulated an amino acids sequence P as:

P=[p p Pu PN]T ©)

Here, the symbol T means the transpose operator for a matrix, N
is an integer representing the number of features which depend
on the method(s) used for extracting information from protein
P (cf. Equation 1). P is a vector for representing amino acids
sequence P and p; (i = 1,2,---,N) is the ith element of the
vector. Below, we will describe how to extract functional domain
annotation and subcellular localization information as well as
pseudo amino acid composition, which are used in this study,
from a query sequence to define the components for amino acids
sequence P.

Protein Sample Formulation With KNN Score Based
on FDA and Subcellular Localization (SL)

In addition to GO database, “Pfam,” “Smart,” “PROSITE;
“SUPFAM,” “InterPro,” and “PRINTS” are established according
to cellular component, molecular function, biological process
or some other characteristics. For example, the Pfam database
is a large collected protein families generated by using hidden
Markov models. SMART is abbreviation of Simple Modular
Architecture Research Tool which can be used for research on the
protein domains and architectures. PROSITE consists of entries
describing the protein families, domains and functional sites as
well as amino acid patterns and profiles. InterPro provides a

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

92

December 2019 | Volume 7 | Article 311


http://www.uniprot.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Qiu et al.

Identifying Acetylation Protein

functional analysis of protein sequences, and PRINTS also is a
resource of detailed annotation for protein families in addition
to a diagnostic tool for newly determined sequences. Subcellular
localization feature is a key functional characteristic of potential
gene products such as proteins, especially for plant.

Actually, in the GO database, proteins are clustered in a way
in which their subcellular locations can be reflected fully. To
incorporate more information, most of the approaches need to
formulate a long list of the GO numbers, and a great part of
the GO numbers make meaningless as a whole. In literatures
(Gao et al, 2010; Yao et al., 2012), the authors show us that
local sequence clusters often appear in the neighborhood of
PTM sites for the reason that the same PTM family generally
have some similarities in local sequences. As a better choice for
depicting the character, K nearest neighbor score was proposed.
To take advantage of such cluster information of GO and other
FDA databases as well as subcellular localization for predicting
acetylation proteins, for a given potential acetylation protein,
we took the characteristics around the query neighborhood and
extracted the KNN scores features from the training dataset
containing both positive and negative samples. The algorithm is
listed as follows.

Step 1. For a query protein sequence find its k nearest
neighbors, which can be positive or negative samples, in the
whole set according to local sequence similarity. For a given
protein p, FDA;(p) {Nf ’J,Nf’], e ,Nﬁl’f} represents the
keywords set of the jth FDA. The j (=1, 2, ..., 7, 8) represents
“GO; “Pfam,” “Smart, “PROSITE, “SUPFAM, “InterPro,
“PRINTS,” or “subcellular localization,” respectively), FDA;(q) =

{Nq’],Ng’J,u- ,NZ;]} is the similar mean for protein q. The

similarity distance Distj (p, q) between p and g can be defined
as follows:

[FDA, () (Y FDA, ()|
[FDA, (j) U FDA, (7)]

Dist; (p, q) =Wi. (1 - ) + wy . dist(p,q) (4)

Where (), | and | | are the operators “union,” “intersection,” and
“norm” of the set theory, respectively. Here, | | is defined as the
number of its elements. dist(p, q) is the Euclidean distance on the
basis of PseAAC. w; and w; are the weights of the two distances.

Step 2. A corresponding KNN feature is then extracted
by calculating the KNN score, noted it as the percentage of
acetylation proteins in its k nearest neighbors.

Step 3. To obtain diverse and enough properties of neighbors
with KNN scores, the above two steps were repeated for different
k values. For the jth member of FDA, the protein P can be
formulated as:

Pepa; = [@1()s 020), -+ ok () 1" (5)
In this paper, the number of features is 50 and k was defined to be
0.1, 0.4, 0.7, ..., 14.5 and 14.8 percent of the size of the involved
dataset. In this way, 50 KNN scores were extracted as features
for identifying acetylation proteins. To be more precisely, ¢ (j) is
the ratio of positive neighbors to whole concerned samples, i.e.,
0.1 percent of the size of the training data set, ¢, (j) is the ratio
of positive neighbors to whole concerned samples whose value is

~

Input query protein\ .
sequence P Swiss-Prot
| PSI-BLAST

Find the homology
protein of P

A 4

Generate FDA
descriptor for P

r— -_—-——p
Generate Knn
scores for P

Training
Dataset

FIGURE 2 | Flowchart of the proposed predictor.

the product of 0.004 and the size of the training data set, and so
forth, when K = 50, ¢s0(j) is the ratio of positive neighbors to
14.8 percent of the size of the training data set.

In a word, a query protein sequence can be
formulated with  seven  50-Dimension  vectors, i.e.,
Prpa = [Prpa,>PrDA,>- - -» PrDA, ], by using FDA database.

Since Chou’s pseudo amino acid composition (PseAAC) (Chou,
2001; Mondal and Pai, 2014) have showing so great powerful
for identifying structure and function of protein, the proposed
method took it into account according to the style of reference
(Shen and Chou, 2008) (we select type 1 and let A = 5). Thus,
a given protein sequence can be expressed as 375-dimension
vector, and these digital representations served as the input of
the query protein for the prediction model.

Operation Engine and Evaluation

Algorithms

Here we choose Random Forest as the operation engine as the
predictor, and named the final predictor as “iAcet-PseFDA.” This
name is an acronym created from its description, and Figure 2
would show how iAcet-PseFDA working.

As shown in Figure 2, the first step is to input the query amino
acid sequence P. And then, the PSI-BLAST software was used to
find the most similar protein to P, which is used to determine the
most likely GO or other information of FDA set and generate the
KNN scores with it. With the descriptor of P, the desired result
can be obtained with the framework of Random Forest classifier
trained on the benchmark.
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Metrics and Test Method

The predictor iAcet-PseFDA was evaluated with cross-
validation tests in the terms of following seven widely-accepted
measurements: accuracy (or Acc, for short), Mathew’s correlation
coefficient abbreviated as Mcc, sensitivity (abbreviated as Sn,
i.e., the fraction of the relevant documents that are successfully
retrieved), specificity (i.e., Sep), Precision (i.e., Pre, a description
of random errors), F-measure (or F-m, the harmonic mean of
precision and recall), and G-mean. Since the area under the
receiver operating characteristic curve (auROC, for short) is
another important measurement of the performance of a given
model, it was also calculated and plotted in this study. In view of
the traits of validation method trait, cross-validation method was
applied on three datasets for evaluating the proposed predictor.

RESULTS AND DISCUSSION

Investigating the Performances of KNN

Score of FDA Represent

Figure 3 depicted the comparisons of the KNN scores of
acetylation and non-acetylation proteins on all of the FDA
features, and there really are some differences between the
positive and negative samples. Figure 3A showed the comparison
of PAAC represents between acetylation proteins and non-
acetylation proteins, Figure 3B showed those of KNNScore-GO,
and so forth, Figure 31 showed those of Subcellular localization.

Overall, acetylation proteins gained obvious larger KNN
scores than non-acetylation proteins on GO and Subcellular
localization, and a little larger gap between the KNNScores of
positive and negative datasets, all of the average KNN scores are
nearly merged in 0.5 with the growth of features.

Specifically, for acetylation proteins with the view of GO
evaluated on different sizes of nearest neighbors, the average
values shown in Figure 3B are within 0.6-0.8, however, the
average digits are within 0.2-0.4 for non-acetylation proteins.
From the view of Subcellular localization as showed in Figure 31,
most of the average KNN scores of acetylation proteins are
waved within 0.5-0.7 while those of non-acetylation proteins
fluctuating around 0.4. From the view of Smart, Supfam, InterPro
Pfam, Prosite and PRINTS as showed in Figures 3C-H, there
are clearly gaps between the acetylation proteins and non-
acetylation proteins, and the gaps are narrowing with the growth
of KNNScores number.

We tested the eight kinds of features on the three datasets
with RE and the mean performances are depicted in the first
11th lines of Table 1, while the compared measurements obtained
from the proposed model, in which the features were selected
with Relief, are attached in the last line. As showed in the table,
the features of Subcellular localization reached the best results
with Acc is 73.95%, Mcc is 0.4843, Sn is 81.24%, Recall is 81.24%,
F-measure is 75.72%, and G-mean is 73.59%. As regards for Sp
and Precison, GO gained the best result which are 68.37 and
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TABLE 1 | Mean performance comparison with different KNN score feature tested with RF.

Acc% Mcc% Sn% Sp% Pre% F_m% Gmean%
PAAC 69.49 0.3909 73.01 65.98 68.22 70.53 69.40
GO 73.61 0.4754 78.85 68.37 71.39 74.90 73.39
Pfam 68.21 0.3647 70.99 65.43 67.27 69.07 68.14
Smart 67.01 0.3410 70.11 63.91 66.04 68.01 66.93
PROSITE 68.37 0.3679 70.85 65.89 67.52 69.14 68.31
SUPFAM 68.67 0.3738 7117 66.16 67.79 69.44 68.62
InterPro 68.25 0.3658 71.40 65.10 67.17 69.22 68.18
PRINTS 66.11 0.3234 69.52 62.71 65.10 67.21 65.99
Subcellular localization 73.95 0.4843 81.24 66.67 70.91 75.72 73.59
All-MeanJK 74.64 0.4980 81.38 67.91 71.78 76.24 74.30
This paper 77.55 0.5883 96.41 71.26 52.79 68.23 82.89
*The bold value means the largest element of the column.
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71.39%, respectively. Thus, the features of GO gained the second
place. The other six performances are not satisfactory and worse
than those of GO and Subcellular localization, all Accs of them
are <0.7 except for GO and Subcellular localization. The results
obtained with the enhanced model are discussed below.

Performance of Proposed Model
Based on the above discussions, we argue that the local amino
acids surrounding acetylation sites, which have been verified,
would share in similar pattern(s) with positive set on average as
expected. These findings confirm that there are some acetylation-
related clusters in acetylated proteins and hence may be used to
distinguish them from the non-acetylation protein. Accordingly,
the KNN scores were used to encode query sequence for
predicting acetylation proteins in this study.

As we known, the Relief algorithm as a feature weighting
algorithm was first proposed by Kira and Rendell (1992). In
the algorithm, the features were allocated different weights in

light of the relevance of characteristics and categories. The
feature will be removed when its weight less than a threshold
by this method. Since the combined features generated a high-
dimensional vector, and the Relief method can rank the values of
features, this work thus used Relief to reduce feature redundancy.
With the help of Relief, we tested the predictor on different
features sets and listed the mean performances in the last line of
Table 1. The Acc is 77.55% which is better than 74.64%, the result
obtained by using all of the eight features, and better than that of
subcellular localization. The Relief model gained the better results
according to the other seven measurements. Figure 4 depicted
the selected features by Relief algorithm which containing 156
potential features (of which, there are 8 PSSM-gray features, 13
GO KNNScores, 27 for PFAM, 41 for SMART, 15 for PROSITE,
2 for SUPFAM, 3 for INTEPRO, 19 for PRINTS, and 28 for
Subcellular localization KNNScores). From the figure, we can see
that the importance of PAAC, SMART and PRINTS are obvious
since a lot of features are noted as blue which means their rank
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in the selected feature set. The predictor obtains the best result at
156, which means there are 156 features were selected here, with
Accis 77.55%, Mccis 0.5883, Sn is 96.41%, Sp is 71.26%, Precision
is 52.79% which isn’t the best performance unfortunately, Recall
is 96.41%, F-measure is 68.23% and G-mean is 82.89%. These
obtained results are better than anyone of Table 1.

The performance of iAcet-PseFDA was also depicted with
ROC curves shown in Figure 5 in which the graphic lines are
represent for GO, Subcellular localization and other Domain
notations’ KNNScores along with PseAAC’s. As shown in first
subfigure of Figure 5, the proposed model’s AUC value is 0.8280
while those of PseAAC, GO, PFAM are 0.7521, 0.8146, 0.7548,
respectively. Thus the proposed model obtained best result of
the four methods. With similar analysis depicted in the last two
subfigures of Figure 5, the AUC values of SMART, PROSITE,
SUPFAM, INTERPRO, PRINTS, and Subcellular localization
KNNScores are 0.7453, 0.7538, 0.7614, 0.7611, 0.7144, and
0.8087, respectively. In conclusion, all of the values are <0.8280,
and there still are gaps between them and that of the proposed
model. It shows that the feature set enhanced with Relief would
obtain more satisfactory results than those of the independent
FDA features.

CONCLUSION

In order to detect acetylation proteins, this study developed
a method on the basis of Random Forest algorithm and
Relief. Our approach considered information of sequence
conservation extracted by PSI-BLAST besides with PseACC. The
involved features are extracted from the sequence conservation
information and “GO,” “Pfam,” “Smart,” “PROSITE,” “SUPFAM,”
“InterPro,” “PRINTS” and Subcellular localization information
of the given query amino acid sequence. This work may
cope with the expensive and time-consuming process of
identifying acetylation proteins because that the features only
incorporated the sequence conservation via gray system model
and Knn scores based on FDA databases. All of these

processes only need computational model instead of any physical
chemistry experiment.

Also, our result manifested that it appears that using FDAs
is essential for the prediction of acetylation functional class,
which had been reported in previous research (Qiu et al,
2016a,b, 2017b), and the information related to subcellular
is also important for identifying the PTM proteins. As the
growing demand of verification of acetylation sites, we argue
that more effort should be input in developing organism-
specific predictors for this issue. The reason for presenting the
model here then is for the improving the predictor used in
similar research, and it may be helpful for those researchers
who would like to deal with bioinformatics problems with
computational models. In addition, the involved features may
provide important clues of the acetylation mechanism and guide
the related experimental validations.

Additionally, a web-server has been established at http://www.
jci-bioinfo.cn/iAcetyP which is user-friendly and convenient for
the researchers who are working in distinguishing acetylated
proteins from non-acetylated proteins.
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Copy number variation (CNV) is a common structural variation pattern of DNA, and it
features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects
a larger fragment of genomes. CNV is related with the genesis of complex diseases
and can thus be used as a strategy to identify novel cancer-predisposing markers
or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2
(MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity
to DNA damage and results in chromosomal instability. The relationship between CNV
and cancer has not been explained. In this study, on the basis of the genome variation
profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed
the CNV data to select crucial SNP sites with the most relevance to three different
states of MACRODZ2 (heterozygous deletion, homozygous deletion, and normal state),
suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study
can shed new insights into the genesis of cancer based on CNV, providing reference for
clinical diagnosis, and treatment prognosis of CRC.

Keywords: copy number variation, MACROD2, colorectal cancer, subtype, classification

INTRODUCTION

Copy number variation (CNV) is a common structural variation pattern of DNA; it is defined as
a >1kb genomic segment with a different copy number compared with the reference genome,
leading to gains, or losses of multiple DNA sites that are either microscopic or submicroscopic
(Redon et al., 2006). CNV features a higher mutation rate than single-nucleotide polymorphisms
(SNPs) and affects a larger fragment of genomes (Zhang et al., 2009). For a large number of CNV's
generated in the human genome, one of the known mechanisms is DNA recombination, which
includes non-allelic homologous recombination and non-homologous end-joining. Recently, a new
mechanism based on DNA error replication has been discovered. Named the “Fork stalling and
switching” model, this mechanism can explain complex-structure CNVs that do not conform to
non-allelic homologous recombination or non-homologous end-joining.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 99

December 2019 | Volume 7 | Article 407


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2019.00407
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2019.00407&domain=pdf&date_stamp=2019-12-19
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tohuangtao@126.com
mailto:cai_yud@126.com
https://doi.org/10.3389/fbioe.2019.00407
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00407/full
http://loop.frontiersin.org/people/866888/overview
http://loop.frontiersin.org/people/857914/overview
http://loop.frontiersin.org/people/552744/overview
http://loop.frontiersin.org/people/844845/overview
http://loop.frontiersin.org/people/846849/overview
http://loop.frontiersin.org/people/326927/overview
http://loop.frontiersin.org/people/576896/overview
http://loop.frontiersin.org/people/773554/overview
http://loop.frontiersin.org/people/552766/overview
http://loop.frontiersin.org/people/103860/overview

Zhang et al.

CNV Pattern for Discriminating MACROD?2 States

With the development of high-resolution SNP arrays,
identifying large-scale CNVs in thousands of samples has been
possible (Beroukhim et al., 2010). Studies have demonstrated that
CNV is related to the genesis of Mendelian diseases, sporadic
diseases, and susceptibility to complex diseases (Yang et al.,
2008; De Cid et al., 2009; Willer et al., 2009; Sato et al., 2014;
Zhang et al., 2014). CNVs also play a potential role in cancer
risk, and the genome-wide copy number analysis can be used
as a strategy to identify novel cancer-predisposing markers or
mechanisms (Kuiper et al., 2010). Ding et al. (2010) reported that
the genome of primary tumors is diverse and frequently includes
gene rearrangements and copy number variations. Shlien et al.
(2008) used high-density oligonucleotide arrays to compare
the genomes of healthy population and a Li-Fraumeni cancer
predisposition disorder (LFS) cohort and observed that CNV
in the cell adhesion gene mixed-lineage leukemia translocated 4
(MLLT4) is associated with LFS, in which patients always harbor
a germline heterozygous mutation of the tumor suppressor gene
TP53 and experience a high probability of developing early-
stage breast, sarcoma, brain, and other tumors. Scrima et al.
(2012) revealed that 24, 31, and 26% of patients with lung
adenocarcinoma achieved a copy number gain in adenylate
kinase (AK) 1, AK2, and phosphoinositide-3-kinase, catalytic,
alpha polypeptide (PI3KCA), respectively, via fluorescence in
situ hybridization.

Evidence has recognized CNV as one of the most important
genomic alterations affecting cancer pathogenesis (Hermsen
et al, 2002), whereas chromosomal instability and allelic
imbalance at certain chromosomal loci play crucial roles in
most sporadic cases of colorectal cancer (CRC) (Zanke et al.,
2007). CRC is the fourth most common cancer and the second
leading cause of cancer death worldwide, with over 1.1 million
new cancer cases and 880,000 deaths estimated in 2018 (Bray
et al, 2018). For better assessment of the progression of
CRC, the Dukes staging system was proposed as a common
classification system for CRC (Dukes, 1932). Four stages of
CRC are defined by such system depended on the degree
of colorectal pathology. Dukes A represents the invasion of
tumor cells into but not through the bowel wall. Patients in
Dukes A stage usually have better outcomes with over 90%
5-year survival. When tumor grows through the muscle layer
of the bowel but not infiltrate into lymph nodes, it will be
identified as Dukes B stage. Dukes C refers to the spread
of cancer to at least one lymph node close to the bowel.
And lastly, widespread metastases of tumor cells in CRC, also
called advanced CRC, indicate the stage of Dukes D. The clear
stage of CRC contributes to the decision making in clinical
treatment, and also provides a detailed description for the
pathology research.

Frequent deletions of the mono-ADP-ribosylhydrolase 2
(MACROD2) locus in human CRC alter DNA repair and
sensitivity to DNA damage and result in chromosomal instability
(Sakthianandeswaren et al., 2018). In addition, MACROD2
deletion in CRC is significantly associated with the extent
of malignancy, indicating that MACROD?2 acts as a haploin-
sufficient tumor suppressor, with the loss of function promoting
chromosome instability and thereby driving cancer evolution.

In this study, based on the genomic variation profiling by
SNP array from 651 CRC primary tumors (Sakthianandeswaren
et al,, 2018), the log R ratio (LRR) and B allele frequency
data (BAF) of each SNP site were exported using two types of
hybridization probes specific to two types of known alleles (Wang
et al, 2007), and the SNP genotype also can be determined
by the ratios of the hybridization intensities of two types of
probes. The genotype of SNPs located in the region of MACROD?2
was used to represent the genotype state of MACROD?2, which
means that the individuals with the loss of both alleles in at
least one SNP site in MACROD?2 will be classified into the state
of homozygous deletion, and the deletion of only one allele
indicates the heterozygous deletion status. A wild-type stage
or normal stage refers to no deletion happened in MACROD2.
Following that, each patient was classified into one of the
three states: heterozygous deletion, homozygous deletion, and
normal state in our study. We computationally analyzed the
CNV data to select the crucial SNP sites showing the most
relevance to the four Dukes stages of CRC (A, B, C, and D)
and three different states of MACROD?2 (heterozygous deletion,
homozygous deletion, and normal state), suggesting that these
CNVs may play functional roles in CRC tumorigenesis. We
constructed a classifier with high accuracy to group individuals
into the corresponding state categories. This classification model
also provides a meaningful list of genomic loci that perform
important functions in the development and progression of
cancers. To date, the relationship between CNV and cancer has
not been exactly explained. Our study can shed new light on
the genesis of cancer based on CNV, providing reference for the
clinical diagnosis and treatment prognosis of CRC.

MATERIALS AND METHODS

In this study, we first used the minimum redundancy and
maximum relevance (mRMR) method (Peng et al., 2005) to
analyze all features. Irrelevant features were discarded and
the rest features were ranked in a feature list, which was
further fed into the incremental feature selection (IFS) (Liu and
Setiono, 1998) to obtain the optimum features and extract the
classification rules for readable explanation. We adopted the
same computational pipeline to separately analyze four kinds of
carefully organized datasets, including the CRC stage with LRR
or BAF and the MACROD? status with LRR or BAF.

Datasets

The LRR and BAF data on 651 CRC primary tumors obtained
using the Illumina Human610-Quad v1.0 BeadChip were
downloaded from Gene Expression Omnibus under the accession
number GSE115145 (Sakthianandeswaren et al., 2018). The LRR
and BAF were calculated with GenomeStudio (Illumina). The
651 CRC samples can be divided into four stages: 60 stage A
samples, 208 stage B samples, 297 stage C samples, and 86 stage
D samples. Based on MACROD?2 status, 441 wild-type samples,
137 heterozygous deletion samples, and 73 homozygous deletion
samples were obtained. Each sample was represented by 620,901
SNP features.
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Feature Selection

As mentioned above, each sample was represented by lots of
SNP features. Clearly, not all of them were highly related
to classification of these samples. Thus, we employed some
powerful feature selection methods to analyze all features. The
analysis procedures included three stages. The first stage was
to exclude irrelevant features; the second one was to sort rest
features; the last stage was to construct optimal classifier with
optimum features and classification rules with the help of IFS
method, support vector machine (SVM) (Corinna Cortes, 1995),
and repeated incremental pruning to produce error reduction
(RIPPER) (Cohen, 1995).

The purpose of the first stage was to exclude irrelevant
features. To this end, all features were evaluated by the mRMR
method. The mRMR method was a mutual information (MI)-
based feature selection method (Peng et al., 2005; Li et al., 2019).
The importance of each feature was evaluated by its MI to class
labels. It is clear that the higher the MI values were, the more
important the features were. After a threshold for MI value was
set, irrelevant features can be excluded.

After irrelevant features were excluded, rest features were
assessed by mRMR method in another way in the second stage.
In detail, rest features were ranked in a feature list in terms of
their relevance to class labels and redundancies to other features.
The feature subset consisting of some top features in the list can
be deemed to be the optimal feature combination with highest
relevance to class labels and lowest redundancies among these
features, which can provide a powerful discrimination. In this
study, we used the mRMR program downloaded from http://
home.penglab.com/proj/mRMR/index.htm. Default parameters
were adopted.

In the third stage, we ran a two-stage IFS with a classification
algorithm to select the optimum features for building the optimal
classifier or construct classification rules. In the first stage, a
series of feature subsets with a step 10 was generated, where
feature subset 1 consists of the top 10 features, feature subset 2
consists of the top 20 features, and so on. Then, for each feature
subset, a classifier was trained on the samples consisting of the
features from the feature subset, and this classifier was evaluated
using 10-fold cross-validation (Kohavi, 1995). An interval [min,
max] with a good performance was determined. In the second
stage, a series of feature subsets within the interval [min, max]
was generated to further select the final optimum features or
construct classification rules. Based on these optimum features,
an optimal classifier can be built.

SVM

SVM attempts to identify a hyper plane with a maximum margin
between two groups of samples, and it has been widely used in
biological data studies (Pan and Shen, 2009; Mirza et al., 2015;
Cai et al., 2018; Chen et al.,, 2018, 2019; Zhou et al., 2019). In
this work, we used a multi-class SVM with a one vs. rest strategy.
The multi-class SVM consists of multiple binary SVMs, and each
SVM classifies the samples of one class from the rest of the classes.
When predicting the class for a new sample, the SVM predicts
the sample’s label corresponding to the class with the highest

probability. This study adopted the SVM implemented by a tool
“SMO” in Weka.

Rule Learning

To understand how a classification model makes a prediction, we
used rule learning to extract the readable classification rules. A
rule consists of an IF-THEN relationship between features and
output labels, such as IF SNP1 <= 0.7 AND SNP2 >= 1.02;
THEN stage = “A.” In this study, we applied RIPPER (Cohen,
1995), which is implemented by a tool “JRip” in Weka. RIPPER
consists of two stages, including the rule building stage and rule
optimization stage.

SMOTE

As mentioned in the Datasets section, 651 CRC samples were
classified into three or four classes. The sizes of classes varied a
lot. Thus, investigated datasets were imbalanced. For this type of
dataset, the performance of an ordinary classifier is dependent
on the biggest class. To tackle this problem, Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002; Wang
etal., 2018; Zhang et al., 2019) was employed in this study, which
is a oversampling method. This method can produce some new
samples and pour into minority class, thereby making all classes
having equal sizes. In this study, for the BAF/LRR dataset of
CRC stage, new samples were generated by SMOTE for classes
of stages A, B, and D, while new samples were yielded by SMOTE
for classes of heterozygous deletion and homozygous deletion for
BAF/LRR dataset of MACROD?2 status.

In this study, we adopted the SMOTE program implemented
by python, which was downloaded at https://github.com/scikit-
learn- contrib/imbalanced-learn.

RESULTS

In this study, we separately analyzed the four kinds of carefully
organized datasets with a three-stage feature selection method.
Whole procedures are illustrated in Figure 1.

For the first stage, we set the threshold of MI values to
be 0.01; i.e., features receiving the MI values larger than 0.01
were kept. The number of remaining features for BAF/LRR
dataset of CRC stage was 47515/44931, while it was 20839/20973
for BAF/LRR dataset of MACROD2 status. Then, in the
second stage, remaining features in each dataset were ranked
by the mRMR method. Obtained feature lists are provided
in Tables S1-S4. The third stage employed the IFS method
and classification algorithms to extract optimum features and
construct classification rules. The key results are provided in
Tables 1-4.

Results on BAF Dataset of CRC Stage

We first ran the computational pipeline on the first BAF dataset
of CRC stage. Key results are provided in Table 1 and Figure 2.
For the first stage of IFS with a step 10, results are provided
in Table S5 and a curve with Matthews correlation coefficient
(MCC) (Matthews, 1975; Gorodkin, 2004; Zhao et al., 2018, 2019;
Cui and Chen, 2019) as Y-axis and number of features as X-axis
was plot, as shown in Figure 3A. The SVM yielded the highest
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FIGURE 1 | Entire procedures to analyze the log R ratio (LRR) and B allele frequency (BAF) data on colorectal cancer (CRC) primary tumor samples. CRC samples are
classified into four stages; at the same time, they can also be classified into three classes according to their MACROD?2 status. For each classification, two datasets
with LRR and BAF, respectively, were constructed. Four datasets were obtained in total, in which single-nucleotide polymorphism (SNP) features were used to
represent each CRC sample. A feature selection procedure, including three stages, was adopted to analyze all SNP features. Finally, an optimal classifier and several

classification rules were accessed for each dataset.

TABLE 1 | Performance of classification models on BAF dataset of CRC stage
with IFS method.

TABLE 3 | Performance of classification models on BAF dataset of MACROD2
status with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules
Highest point Turning point Highest point Turning point

SVM 0.9653 (35,440) 0.9007 (8,790) 0.9008 (8,797) — SVM 0.9683 (5,610) 0.9406 (2,080) 0.9436 (2,064) —

RIPPER 0.2932 (8,500) 0.2692 (2,170) 0.2745 (2,075) 30 RIPPER  0.3923 (18,460) 0.3677 (5,530) 0.3677 (5,530) 23

*These performances are measured by MCC; numbers of used features are listed
in brackets.

BAF, B allele frequency, CRC, colorectal cancer; IFS, incremental feature selection;
SVM, support vector machine; RIPPER, repeated incremental pruning to produce error
reduction; MCC, Matthews correlation coefficient.

TABLE 2 | Performance of classification models on LRR dataset of CRC stage
with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules
Highest point Turning point

SVM 0.7542 (20,400) 0.7143 (3,960) 0.7231 (3,967) —

RIPPER  0.3420 (18,530) 0.3417 (3,040) 0.3490 (2,841) 32

*These performances are measured by MCC; numbers of used features are listed
in brackets.
LRR, log R ratio.

MCC value of 0.9653 (Table 1) when the top 35,440 features
were used. Considering this extremely large number, we used
another turning point (top 8,790 features), which still yielded a

*These performances are measured by MCC; numbers of used features are listed
in brackets.

TABLE 4 | Performance of classification models on LRR dataset of MACROD2
status with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules
Highest point Turning point

SVM 0.9069 (5,540) 0.8759 (1,030) 0.8785 (1,022) —

RIPPER 0.6953 (410) — 0.7385 (306) 17

*These performances are measured by MCC; numbers of used features are listed
in brackets.

high MCC value of 0.9007. Thus, in the second IFS stage, we
ran the same pipeline with the interval [1, 8800] with a step 1.
Results are collected in Table S6, and a curve was also plotted, as
shown in Figure 3B. The best MCC value was 0.9008 when the
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yielded by SVM. (B) Second-stage IFS results on BAF data of CRC stage vyielded by SVM. (C) First-stage IFS results on BAF data of CRC stage yielded by RIPPER.
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top 8,797 features were used. Accordingly, we built an optimal
SVM classifier with the top 8,797 features.

In addition to SVM, we applied the interpretable rule learning
method RIPPER to evaluate the selected features’ performance in
a rule manner. After running RIPPER on the samples consisting
of features from individual feature subsets with a step 10, we
obtained the performance of RIPPER on different feature subsets,
as shown in Table S5 and Figure 3C. We obtained the best MCC
value of 0.2932 when the top 8,500 features were used. A turning
point was observed (top 2,170 features), yielding an MCC value
of 0.2692. To further select the optimum features, we ran the IFS
with RIPPER within the interval [1, 2,200]. Results are available

in Table S6 and displayed in Figure 3D. We obtained the best
MCC value of 0.2745 when the top 2,075 features were used.

Although RIPPER showed a poorer performance than SVM
in this case, one advantage of RIPPER is that it can generate
classification rules, which help us understand how the model
makes a prediction on a subgroup of samples. Considering these
data, the RIPPER produced 30 classification rules, which are
given in Table S7.

Results on LRR Dataset of CRC Stage

We ran the above same pipeline on the second dataset. Key
results are provided in Table 2 and Figure 4. When running the
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IFS with an SVM on the samples consisting of features from  used, the performance showed a notable change as a performance

individual feature subsets, we obtained the best MCC value of  turning point. Thus, in the second stage of IFS, we ran the

0.7542 when the top 20,400 features were used. We adopted a ~ RIPPER on the interval [1, 3100] and obtained the best MCC

smaller turning value (top 3,960 features), which yielded an MCC  value of 0.3490 when using the top 2,841 features. The 32 learned

value of 0.7143. Then, we ran the second stage of IFS on the  classification rules are given in Table S10.

interval [1, 4000] and obtained the best MCC value of 0.7231

when the top 3,967 features were used. These results are given Results on BAF Dataset of MACROD2

in Tables S8, S9 and illustrated in Figures 5A,B. Accordingly,an ~ Status

optimal SVM classifier was built based on the top 3,967 features.  Instead of analyzing the association between the CRC stages and
Similarly, TFS with RTPPER was also used on this dataset. ~ CNV states, we used the same pipeline to analyze the MACROD2

All results are provided in Tables S8, S9 and displayed in  status associated with particular CNV types. For the BAF dataset

Figures 5C,D. We obtained the best MCC value of 0.3420 when  of MACROD?2 status, key results are provided in Table 3 and

using the top 18,530 features. Of note, when 3,040 features were  Figure 6. Results of the first stage of IFS with SVM are available in
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FIGURE 5 | IFS results on LRR data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of CRC stage yielded by SVM. (B)
Second-stage IFS results on LRR data of CRC stage yielded by SVM. (C) First-stage IFS results on LRR data of CRC stage yielded by RIPPER. (D) Second-stage IFS
results on LRR data of CRC stage yielded by RIPPER.
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Table S11, and a curve was plotted in Figure 7A. We obtained the ~ point 5530 for the second stage of IFS, which yielded an MCC
best MCC value of 0.9683 when the top 5,610 features were used. ~ value of 0.3677. For the second stage of IFS within the interval [1,
We detected the turning point 2,080, which yielded an MCC  5530], results are available in Table S12 and a curve was shown
value of 0.9406. In the second stage of IFS, we ran the SVM on  in Figure 7D. We still obtained the best MCC value of 0.3677
the interval [1, 2080]. Results are collected in Table S12, and a  when the top 5,530 features were used. The 23 classification rules
curve was plotted in Figure 7B. The best MCC value was 0.9436  generated by RIPPER are listed in Table S13.

when the top 2,064 features were used, which can be used to build

an optimal SVM classifier. Results on LRR Dataset of MACROD2
We also ran the IFS with RIPPER on this dataset. The first-  Status

stage results are provided in Table S11. A curve was plotted in ~ We did the similar procedures for the LRR dataset of MACROD2
Figure 7C. RIPPER yielded the best MCC value of 0.3923 when  status. Key results are provided in Table 4 and Figure 8. For the
the top 18,460 features were used. We also selected the turning  first stage of IFS with SVM, results are provided in Table S14 and
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a curve was plotted in Figure 9A. We obtained the best MCC  features were used. Then, we ran the second stage of IFS within
value of 0.9069 when using the top 5,540 features. Similarly, a  the interval [1, 410]. Results are available in Table S15. A curve
smaller turning point 1,030 was used for the second stage of IFS,  was plotted in Figure 9D. It can be seen that the best MCC value
because it still yielded a satisfactory MCC value of 0.8759. In  was 0.7385 when using the top 306 features. Table 5 lists the 17
the second stage of IFS, we set the interval [1, 1,100]. Results  classification rules generated by RIPPER.
are collected in Table S15, and a curve was plotted in Figure 9B.
We obtained the best MCC value of 0.8785 when the top 1,022
features were adopted. The optimal SVM classifier was built using  DISCUSSION
the top 1,022 features.

We ran the IFS with RIPPER again. Results are provided in ~ On each of four datasets, a group classification rules were
Table S14. A curve was plotted in Figure 9C, from which we  generated by RIPPER. According to the performance of RIPPER
can see that the best MCC value was 0.6953 when the top 410  listed in Table 4, rules on the LRR data of MACROD?2 status were
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TABLE 5 | Classification rules on dataset of MACROD2 status with LRR.

Index Condition Result Support®% Accuracy®%

1 rs353149 <= —0.3811 Homozygous 5.84 92.11
rs6034087 <= —0.2724 deletion

2 rs445945 <= —0.3040 Homozygous 3.23 90.48
rs6712905 >= 0.1367 deletion
rs377954 <= —0.3691

3 rs6135314 <= —0.5109 Homozygous 4.61 93.33
rs6685801 <= —0.0057 deletion
rs2900712 <= —0.0619
rs9444675 <= 0.1020

4 rs6135362 <= —0.2468 Homozygous 1.84 91.67
rs2100272 >= 0.1398 deletion
rs700029 <= 0.0035

5 rs6110500 <= —0.2528 Homozygous 7.37 83.33
rs10500528 <= —0.0094  deletion

6 rs6079537 <= —0.2319 Homozygous 0.92 100.00
rs2900712 <= —0.0981 deletion
rs6043173 >= —0.0832

7 rs9355387 <= —0.2856 Homozygous 1.84 91.67
rs11905979 <= —0.3878  deletion

8 rs199305 <= —0.4455 Homozygous 0.77 100.00
rs377201 >= —0.2189 deletion

9 rs6135314 >= —0.0746 Wild-type 35.48 98.70
rs1998086 >= 0.0340
rs381053 >= —0.0576

10 rs1475531 >= —0.0454 Wild-type 31.80 96.14
rs365516 >= 0.0220

11 rs2423866 >= —0.1223 Wild-type 24.42 98.11
rs385770 >= —0.0670
rs7241111 >= —0.1500

12 rs449849 >= —0.0559 Wild-type 27.80 97.24
rs716316 >= —0.0107
rs6904713 >= —0.1428

13 rs1327323 <= —0.2719 Wild-type 6.76 75.00
rs6135269 <= —0.1044

14 rs353149 >= —0.0059 Wild-type 5.07 96.97
rs13011654 >= 0.0742
rs445945 <= 0.067

15 rs6034046 >= —0.015 Wild-type 19.05 95.16
rs6135314 >= —0.0323
rs6034011 <= 0.0668

16 rs6043173 >= 0.131 Wild-type 23.81 94.84
rs449849 >= —0.0689

17 Others Heterozygous 20.28 85.61

deletion

aThe support of a rule is the percentage of samples satisfying the rule.
bThe accuracy of a rule is the proportion of the corrected classified samples among
samples satisfying the rule.

with the highest performance (MCC = 0.7385). Thus, we mainly
discussed these rules, which are listed in Table 5. Each rule can
cover some CRC samples and give high accuracies.

Given that the status of MACROD?2 is significantly relevant
to the intestinal tumorigenesis and plays a crucial role in cancer
development (Sakthianandeswaren et al., 2018), our classifiers
are expected to be prognostic indicators for evaluating the
malignancy of intestinal tumor. On LRR data, 17 decision rules
were generated by RIPPER, which can distinguish the three status

of MACROD?2 with LRR with a classification accuracy of 0.7385.
Depending on the CNV profiles of selected loci, predicting
whether a heterozygous, or homozygous depletion of MACROD2
exists in CRC patients is possible. To validate the reliability of
these rules, we examined existing experimental evidence through
a literature review.

We focused on the 17 decision rules and a few top-ranked
features on data of MACROD?2 status with LRR. Such rules and
features described specific CNV characteristics contributing to
the identification of MACROD?2 status and CRC classification,
indicating their crucial roles in cancer development. Especially,
several top-ranked features showed strong biological and
biomedical relevance with MACROD2, indicating that they also
play relevant functions in cancer progression.

Among the 17 rules, 8 rules could identify the homozygous
deletion of MACROD?2, and the other 8 decision rules can identify
the normal non-depletion status of MACROD?2. The last one
indicates the heterozygous deletion, which means that if the CNV
profiles in patients failed to meet any criteria of the other 16
rules, they were predicted to carry the heterozygous deletion
of MACROD2.

Rules for Homozygous Deletion
In the eight rules identifying the homozygous deletion of
MACROD? (see first eight rules in Table 5), 21 criteria involving
20 SNP sites were located in different regions of six genes.
Notably, 12 of these SNP sites were located in the genomic
regions of MACROD?2, and the LRR of specific regions near
these SNP sites featured a low value, which is naturally and
logically consistent given that the CNV loss in MACROD?2 leads
to homozygous deletion. Thus, our analysis actually highlights
the potential core roles of specific SNP sites, suggesting its
capability to identify the overall state of MACROD2 based on the
CNV conditions of a few loci. In detail, the 12 SNPs (rs353149,
rs6034087, rs445945, rs377954, rs6135314, rs6135362, rs6110500,
rs6079537, rs6043173, rs11905979, rs199305, and rs377201)
were distributed in different locations of the intron regions of
MACROD?2 and displayed strong relevance to the overall status
of MACROD?2. By the detection of CNV in these selected loci
markers, we can identify the deletion state of MACROD?2 in
patients. We will find the corresponding therapy methods for
the treatment targets in the future. Further research about these
incompletely elucidated SNP sites may reveal the mechanisms
of tumor development at the genomic level. The biological and
biomedical significance of several SNPs is summarized below.
The SNP site rs6685801 located in chrl:3547887 required
a low value of LRR to identify the homozygous deletion of
MACROD?2 in our decision rules. This position is in the intron
region of multiple EGF-like-domains 6 (MEGF6) gene, which
was reported to play a critical role in cell adhesion and involved
in many disorders of neural system development (Sunnerhagen
et al., 1993). Recent publications have confirmed that MEFG6
can promote the epithelia-to-mesenchymal transition in CRC
metastasis (Hu et al., 2018). This gene is also significantly
upregulated in tumor tissue and results in the poor survival of
a colon adenocarcinoma cohort. MEGF6 can also accelerate the
cell growth and inhibit apoptosis in CRC as demonstrated by the
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experiment in vitro. All these results suggest that MEGF6 may
serve as an oncogene, and its overexpression may contribute to
the tumorigenesis in CRC patients. We inferred that the copy
number loss in this specific intron region caused the upregulated
expression of MEGF6 as it may perform inhibitory effects on
transcription. Thus, the low LRR of the SNP site rs6685801
can indicate the severe extent of CRC, consistent with the
homozygous deletion state of MACROD?2.

Another important SNP site rs9444675, which displayed
strong relevance to the status of MACROD2 in our classifier,
is located in the intron region of gamma-aminobutyric
acid receptor subunit rho-1 (GABRRI). GABRRI, also called
GABA(A) receptor, is a member of the rho subunit family and
acts as the receptor of major inhibitory neurotransmitters in the
mammalian brain (Cutting et al., 1992). A recent study has shown
that GABRRI is significantly upregulated by the transcriptome
of chemokine (C-X-C motif) ligand 1-(CXCLI) treated colon
cancer cells (Hsu et al., 2018). Further analysis via bioinformatics
methods reported that high expression of GABRRI showed
a significant correlation with reduced overall survival rates,
suggesting the crucial role of GABRRI in the progression
of colon cancer. In addition, another research reported the
upregulation of GABRRI in cancer cohorts compared with the
controls with regard to gene expression profiles of medullary
thyroid carcinoma (Oczko-Wojciechowska et al., 2006). These
pieces of evidences support the decision rule that copy number
loss of specific region located in GABRRI will lead to the
upregulation of GABRRI and contribute to the carcinogenesis
of CRC, resulting in the similar consequence as the homozygous
deletion state of MACROD2.

One important criterion identified in the decision rules
suggests the high value of LRR near the specific SNP site
rs2100272. This site is located in the intron regions of VWA3B,
which showed a tendency toward malignancy development.
VWAS3B encodes an intracellular protein thought to function in
transcription, DNA repair, and membrane transport (Kawarai
et al, 2016; Huttlin et al, 2017), playing a role similar to
MACROD?2, which was reported to influence DNA repair
and sensitivity to DNA damage and result in chromosome
instability (Sakthianandeswaren et al., 2018). In the patients of
bladder urothelial carcinoma, evident copy number alterations
were observed in the 2q12 regions in which the VWA3B was
mapped (E. Pontes et al,, 2013), in line with the suggestion
that VWA3B plays a crucial role in bladder carcinogenesis.
In addition, VWAS3B is significantly differentially expressed in
tongue squamous cell carcinoma samples at the transcriptome
level (Song et al., 2019). These results confirm our decision
rules, which indicate that the copy number gain of the specific
regions near rs2100272 will alter the expression of VWA3B and
contribute to the development of certain cancers including CRC.

Another criterion was found in the experimental findings, and
it required a low LRR near the SNP site rs700029 to identify
the homozygous deletion state of MACROD2. This SNP site is
located in chr1:81805339 and was mapped in the intron region
of adhesion G protein-coupled receptor L2 (ADGRL2), which
encodes a member of the latrophilin subfamily of G-protein
coupled receptors. ADGRL2 functions as a p53 target gene and

regulator of neuronal exocytosis (Hamann et al., 2015). Recent
research has shown the low expression level of ADGRL2 in
genomic sequencing analyses of both gastric cancer and colon
cancer cell lines due to the hypermethylation of CpG islands
within the gene (Jeon et al,, 2016). ADGRL2 is also associated
with lung squamous cell carcinoma and may serve as the
diagnostic marker for small cell lung cancer (Huang et al., 2018).
The rules that require the copy number loss of specific intron
region in ADGRL2 may result in the alteration of expression
profile and lead to the development of CRC.

We also identified a critical SNP site rs9355387 located in the
intron region of gene Parkin RBR E3 ubiquitin protein ligase
(PRKN), which according to the rules indicates the homozygous
deletion state of MACROD?2. The gene PRKN, best known as
PARK?2, is a key component of a multiprotein E3 ubiquitin
ligase complex, which mediates the targeting of substrate proteins
for proteasomal degradation. Mutations occurring in this gene
cause Parkinson’s disease (Oczkowska et al., 2013). The loss of
PRKN at both the DNA copy number and mRNA expression
levels contributes to cancer progression via redox-mediated
inactivation of phosphatase and tensin homolog (PTEN) (Gupta
et al., 2017). The depletion of PRKN also enhanced pancreatic
tumorigenesis in KRAS-driven engineered mouse models based
on its role in mediating the degradation of mitochondrial iron
importers (Kang et al.,, 2019), implying that PRKN can be a
potential target for pancreatic cancer therapy. These results
highlight the crucial role of PRKN in cancer progression and
confirm our predicted rules, indicating that the loss of copy
number near rs9355387 would be an indicator of severe status
of cancer.

Rules for Wild-Type

The eight rules for identifying the non-deletion or wild-type
status of MACROD?2 included 21 criteria with 19 SNP sites, 15
of which are located in the intron regions of MACROD?2. The
LRR of these specific regions requires a high value opposite
that of the homozygous deletion state. Among the 15 SNP
sites located in MACROD?2 and with built non-deletion status,
4 SNPs (rs6135314, rs353149, rs445945, and rs6043173) have
been applied in the identification of the homozygous deletion
state of MACROD2 with relatively low values as mentioned
before. The other 11 SNP sites (rs1998086, rs381053, rs1475531,
rs365516, rs2423866, rs385770, rs449849, rs716316, rs6135269,
rs6034046, and rs6034011) showed different distributions in
varying locations in the intron regions of MACROD?2, displaying
a significant correlation with the overall state of MACROD2 and
implying that these selected loci may play unexplained functional
roles in regulating DNA replication. The candidate SNP sites
identified by our prediction model can be applied as biomarkers
for the pathologic evaluation of CRC, given that the state of
MACROD?2 has been confirmed to be a significant signal in
intestinal cancers.

The copy number loss of the regions near the SNP site
rs1327323 can indicate the non-deletion state of MACROD2
in one decision rule. This site is located in chrl13:52296316
and mapped in the intron regions of transmembrane
phosphoinositide ~ 3-phosphatase and tensin homolog 2
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pseudogene 2 (TPTE2P2), which is considered a putative
promoter in human genome (Kimura et al, 2006). By the
whole-exome sequencing analysis of 42 tumor-normal paired
samples, highly frequent sites of increased copy number were
found in the specific position of chromosome arm 13q (Corraliza
Mirquez, 2014), the gains in which have been associated with
a poor prognosis and metastasis in CRC (Leary et al., 2008).
TPTE2P2 is present in the segments with copy number loss,
suggesting that it probably facilitates defect in tumorigenesis.
Another publication also reported TPTE2P2 as one of the key
genes identified in gastric cancers (Zeng et al., 2018), implying
its crucial role in certain cancers. We inferred that the copy
number gain in the specific intron region of TPTE2P2 results
in the progression of CRC, and the loss of copy number in our
decision rules identifies the normal status of MACROD?2 and the
absence of CRC.

Some SNP sites (rs5904713 and rs13011654) are located in the
intron regions of the non-coding RNA gene or the intergenic
regions in our decision rules. They have not been reported in
current research literature but show strong relevance to the
progression of CRC at the CNV level, implying their potential
roles in the regulation of oncogenes.

Numerous top-ranked features display the significant
relevance to the classification of three status of MACROD?2,
most of which are located in the intron regions of MACROD?2.
Coincident with the relevant information and our inferred
decision rules, the CNVs in MACROD?2 resulted in the direct
altered states (e.g., cancer). In addition, our approach provides an
effective method to evaluate the malignancy extent by detecting
a few biomarkers (e.g., SNP sites) rather than conducting an
overall detailed analysis of the large gene MACROD2, which is
more than two million base pairs in size. In summary, our study
has proposed for the first time that specific SNP sites can be
applied as biomarkers in cancer diagnosis, and further research
on these sites will shed light on the molecular mechanism on
how these specific DNA regions contribute to the progression
of CRC.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgitacc=GSE115145.

AUTHOR CONTRIBUTIONS

TH and Y-DC designed the study. SZ, XP, and LC performed the
experiments. TZ, WG, ZG, Y-HZ, and YZ analyzed the results.

REFERENCES

Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J.,
et al. (2010). The landscape of somatic copy-number alteration across human
cancers. Nature 463, 899-905. doi: 10.1038/nature08822

SZ, XP, and TZ wrote the manuscript. All authors contributed to
the research and reviewed the manuscript.

FUNDING

This study was supported by the National Key R&D
Program of China (2018YFD1100104, 2018YFC0910403),
Shanghai Municipal Science and Technology Major Project
(2017SHZDZXO01), National Natural Science Foundation of
China (31701151, 318724180), Natural Science Foundation
of Shanghai (17ZR1412500), Shanghai Sailing Program
(16YF1413800), Youth Innovation Promotion Association
of Chinese Academy of Sciences (2016245), the fund of the
key Laboratory of Stem Cell Biology of Chinese Academy of
Sciences (201703), and the Science and Technology Commission
of Shanghai Municipality (18dz2271000).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2019.00407/full#supplementary-material

Table S1 | Ranked features with MaxRel scores for CRC stage with BAF.

Table S2 | Ranked features with MaxRel scores for CRC stage with LRR.
Table S3 | Ranked features with MaxRel scores for MACROD?2 status with BAF.
Table S4 | Ranked features with MaxRel scores for MACROD?2 status with LRR.

Table S5 | Performance of 1st-stage IFS with SVM and RIPPER for CRC stage
with BAF.

Table S6 | Performance of 2nd-stage IFS with SVM and RIPPER for CRC stage
with BAF.

Table S7 | Classification rules learned by RIPPER for CRC stage with BAF.
Table S8 | Performance of 1st-stage IFS with SVM and RIPPER for CRC stage
with LRR.

Table S9 | Performance of 2nd-stage IFS with SVM and RIPPER for CRC stage
with LRR.

Table S10 | Classification rules learned by RIPPER for CRC stage with LRR.

Table S11 | Performance of 1st-stage IFS with SVM and RIPPER for MACROD2
status with BAF.

Table S12 | Performance of 2nd-stage IFS with SVM and RIPPER for MACROD2
status with BAF.

Table S13 | Classification rules learned by RIPPER for MACROD2 status with BAF.

Table S14 | Performance of 1st-stage IFS with SVM and RIPPER for MACROD2
status with LRR.

Table S15 | Performance of 2nd-stage IFS with SVM and RIPPER for MACROD2
status with LRR.

Bray, F. Ferlay, J., Soerjomataram, I, Siegel, R. L., Torre, L. A,
and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J. Clin. 68, 394-424. doi: 10.3322/caa
c.21492

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

December 2019 | Volume 7 | Article 407


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115145
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115145
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00407/full#supplementary-material
https://doi.org/10.1038/nature08822
https://doi.org/10.3322/caac.21492
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Zhang et al.

CNV Pattern for Discriminating MACROD?2 States

Cai, Y.-D., Zhang, S., Zhang, Y.-H., Pan, X, Feng, K., Chen, L., et al. (2018).
Identification of the gene expression rules that define the subtypes in glioma.
J. Clin. Med. 7:350. doi: 10.3390/jcm7100350

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357.
doi: 10.1613/jair.953

Chen, L., Pan, X,, Hu, X,, Zhang, Y.-H., Wang, S., Huang, T., et al. (2018). Gene
expression differences among different MSI statuses in colorectal cancer. Int. J.
Cancer 143, 1731-1740. doi: 10.1002/ijc.31554

Chen, L., Pan, X, Zhang, Y.-H., Kong, X., Huang, T., and Cai, Y.-D. (2019). Tissue
differences revealed by gene expression profiles of various cell lines. J. Cell.
Biochem. 120, 7068-7081. doi: 10.1002/jcb.27977

Cohen, W. W. (1995). “Fast effective rule induction,” in The Twelfth International
Conference on Machine Learning (Tahoe City, CA: Elsevier), 115-123.
doi: 10.1016/B978-1-55860-377-6.50023-2

Corinna Cortes, V. V. (1995). Support-vector networks. Mach. Learn. 20, 273-297.
doi: 10.1007/BF00994018

Corraliza Mérquez, A. M. (2014). Copy Number Variations of Colorectal Cancer by
Whole Exome Sequencing Data (Master’s thesis). University of VIC, Barcelona,

Spain.
Cui, H., and Chen, L. (2019). A binary classifier for the prediction
of EC numbers of enzymes. Curr. Proteomics 16, 381-389.

doi: 10.2174/1570164616666190126103036

Cutting, G. R,, Curristin, S., Zoghbi, H., O’hara, B., Seldin, M. F., and Uhl,
G. R. (1992). Identification of a putative gamma-aminobutyric acid (GABA)
receptor subunit rho2 ¢cDNA and colocalization of the genes encoding rho2
(GABRR2) and rhol (GABRRI1) to human chromosome 6q14-q21 and mouse
chromosome 4. Genomics 12, 801-806. doi: 10.1016/0888-7543(92)90312-G

De Cid, R,, Riveira-Munoz, E., Zeeuwen, P. L. J. M., Robarge, J., Liao, W,
Dannhauser, E. N, et al. (2009). Deletion of the late cornified envelope LCE3B
and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41,
211-215. doi: 10.1038/ng.313

Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., et al. (2010).
Genome remodelling in a basal-like breast cancer metastasis and xenograft.
Nature 464, 999-1005. doi: 10.1038/nature08989

Dukes, C. E. (1932). The classification of cancer of the rectum. J. Pathol. Bacteriol.
35, 323-332. doi: 10.1002/path.1700350303

E. Pontes, M. G. N., Da Silveira, S. M., De Souza Trindade Filho, J. C., Rogatto,
S. R., and De Camargo, J.L.V. (2013). Chromosomal imbalances in successive
moments of human bladder urothelial carcinoma, Urologic Oncology:
Seminars and Original Investigations 31, 827-835. doi: 10.1016/j.urolonc.2011.
05.015

Gorodkin, J. (2004). Comparing two K-category assignments by a K-
category correlation coefficient. Comput. Biol. Chem. 28, 367-374.
doi: 10.1016/j.compbiolchem.2004.09.006

Gupta, A., Anjomani-Virmouni, S., Koundouros, N., and Poulogiannis, G. (2017).
PARK?2 loss promotes cancer progression via redox-mediated inactivation of
PTEN. Mol. Cell. Oncol. 4:e1329692. doi: 10.1080/23723556.2017.1329692

Hamann, J., Aust, G., Arag, D., Engel, F. B., Formstone, C., Fredriksson,
R., et al. (2015). International union of basic and clinical pharmacology.
xciv. adhesion g protein-coupled receptors. Pharmacol. Rev. 67, 338-367.
doi: 10.1124/pr.114.009647

Hermsen, M., Postma, C., Baak, J., Weiss, M., Rapallo, A., Sciutto, A., et al.
(2002). Colorectal adenoma to carcinoma progression follows multiple
pathways of chromosomal instability. Gastroenterology 123, 1109-1119.
doi: 10.1053/gast.2002.36051

Hsu, Y.-L., Chen, Y.-J., Chang, W.-A,, Jian, S.-F., Fan, H.-L., Wang, J.-Y,, et al.
(2018). Interaction between tumor-associated dendritic cells and colon cancer
cells contributes to tumor progression via CXCLI. Int. J. Mol. Sci. 19:2427.
doi: 10.3390/ijms19082427

Hu, H., Wang, M., Wang, H,, Liu, Z., Guan, X,, Yang, R,, et al. (2018). MEGF6
promotes the epithelial-to-mesenchymal transition via the TGFB/SMAD
signaling pathway in colorectal cancer metastasis. Cell. Physiol. Biochem. 46,
1895-1906. doi: 10.1159/000489374

Huang, B., Zhong, N., Cao, H., and Yu, G. (2018). A curated target gene pool
assisting disease prediction and patient-specific biomarker selection for lung
squamous cell carcinoma. Oncol. Lett. 16, 5140-5146. doi: 10.3892/01.2018.9241

Huttlin, E. L., Bruckner, R. ], Paulo, J. A., Cannon, J. R, Ting, L., Baltier, K., et al.
(2017). Architecture of the human interactome defines protein communities
and disease networks. Nature 545, 505-509. doi: 10.1038/nature22366

Jeon, M.-S., Song, S.-H., Yun, J., Kang, J.-Y., Kim, H.-P., Han, S.-W_, et al. (2016).
Aberrant epigenetic modifications of LPHN2 function as a potential cisplatin-
specific biomarker for human gastrointestinal cancer. Cancer Res Treat. 48,
676-686. doi: 10.4143/crt.2015.153

Kang, R, Xie, Y., Zeh, H. J., Klionsky, D. J., and Tang, D. (2019). Mitochondrial
quality control mediated by PINK1 and PRKN: links to iron metabolism and
tumor immunity. Autophagy 15, 172-173. doi: 10.1080/15548627.2018.1526611

Kawarai, T., Tajima, A., Kuroda, Y., Saji, N., Orlacchio, A., Terasawa, H.,
et al. (2016). A homozygous mutation of VWA3B causes cerebellar ataxia
with intellectual disability. J. Neurol. Neurosurg. Psychiatr. 87, 656-662.
doi: 10.1136/jnnp-2014-309828

Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R., et al.
(2006). Diversification of transcriptional modulation: large-scale identification
and characterization of putative alternative promoters of human genes. Genome
Res. 16, 55-65. doi: 10.1101/gr.4039406

Kohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in: International Joint Conference on Artificial
Intelligence: Lawrence Erlbaum Associates Ltd (Montreal), 1137-1145.

Kuiper, R. P., Ligtenberg, M. J., Hoogerbrugge, N., and Van Kessel, A. G. (2010).
Germline copy number variation and cancer risk. Curr. Opin. Genet. Dev. 20,
282-289. doi: 10.1016/j.gde.2010.03.005

Leary, R. ], Lin, J. C., Cummins, J., Boca, S., Wood, L. D., Parsons, D. W., et al.
(2008). Integrated analysis of homozygous deletions, focal amplifications, and
sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci.
U.S.A. 105, 16224-16229. doi: 10.1073/pnas.0808041105

Li, ], Lu, L., Zhang, Y. H,, Liu, M., Chen, L., Huang, T., et al. (2019). Identification
of synthetic lethality based on a functional network by using machine learning
algorithms. J. Cell. Biochem. 120, 405-416. doi: 10.1002/jcb.27395

Liu, H. A, and Setiono, R. (1998). Incremental feature selection. Appl. Intellig. 9,
217-230. doi: 10.1023/A:1008363719778

Matthews, B. W. (1975). Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442-451.
doi: 10.1016/0005-2795(75)90109-9

Mirza, A. H., Berthelsen, C. H., Seemann, S. E., Pan, X,, Frederiksen, K. S., Vilien,
M., et al. (2015). Transcriptomic landscape of IncRNAs in inflammatory bowel
disease. Genome Med. 7:39. doi: 10.1186/s13073-015-0162-2

Oczko-Wojciechowska, M., Wtoch, J., Wiench, M., Fujarewicz, K., Simek, K., Gala,
G., et al. (2006). Gene expression profile of medullary thyroid carcinoma-
preliminary results. Endokrynol Pol. 57, 420-426.

Oczkowska, A., Kozubski, W., Lianeri, M., and Dorszewska, J. (2013). Mutations
in PRKN and SNCA genes important for the progress of Parkinson’s disease.
Curr. Genom. 14, 502-517. doi: 10.2174/1389202914666131210205839

Pan, X. Y., and Shen, H. B. (2009). Robust prediction of B-factor profile from
sequence using two-stage SVR based on random forest feature selection. Protein
Pept. Lett. 16, 1447-1454. doi: 10.2174/092986609789839250

Peng, H. C,, Long, F. H, and Ding, C. (2005). Feature selection based
on mutual information: criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226-1238.
doi: 10.1109/TPAMI.2005.159

Redon, R, Ishikawa, S., Fitch, K. R,, Feuk, L., Perry, G. H., Andrews, T. D,, et al.
(2006). Global variation in copy number in the human genome. Nature 444,
444-454. doi: 10.1038/nature05329

Sakthianandeswaren, A., Parsons, M. J., Mouradov, D., Mackinnon, R. N., Catimel,
B., Liu, S., et al. (2018). MACROD?2 haploinsufficiency impairs catalytic activity
of PARP1 and promotes chromosome instability and growth of intestinal
tumors. Cancer Discov. 8, 988-1005. doi: 10.1158/2159-8290.CD-17-0909

Sato, S., Yamamoto, K., Matsushita, T., Isobe, N., Kawano, Y., linuma, K., et al.
(2014). A genome-wide copy number variation study identified T-cell receptor
as a susceptibility gene for multiple sclerosis and neuromyelitis optica. Multiple
Scler. J. 20, 251-252. doi: 10.1002/ana.24511

Scrima, M., De Marco, C., Fabiani, F., Franco, R., Pirozzi, G., Rocco, G., et al.
(2012). Signaling networks associated with AKT activation in non-small cell
lung cancer (NSCLC): new insights on the role of phosphatydil-inositol-3
kinase. PLoS ONE 7:¢30427. doi: 10.1371/journal.pone.0030427

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

December 2019 | Volume 7 | Article 407


https://doi.org/10.3390/jcm7100350
https://doi.org/10.1613/jair.953
https://doi.org/10.1002/ijc.31554
https://doi.org/10.1002/jcb.27977
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1007/BF00994018
https://doi.org/10.2174/1570164616666190126103036
https://doi.org/10.1016/0888-7543(92)90312-G
https://doi.org/10.1038/ng.313
https://doi.org/10.1038/nature08989
https://doi.org/10.1002/path.1700350303
https://doi.org/10.1016/j.urolonc.2011.05.015
https://doi.org/10.1016/j.compbiolchem.2004.09.006
https://doi.org/10.1080/23723556.2017.1329692
https://doi.org/10.1124/pr.114.009647
https://doi.org/10.1053/gast.2002.36051
https://doi.org/10.3390/ijms19082427
https://doi.org/10.1159/000489374
https://doi.org/10.3892/ol.2018.9241
https://doi.org/10.1038/nature22366
https://doi.org/10.4143/crt.2015.153
https://doi.org/10.1080/15548627.2018.1526611
https://doi.org/10.1136/jnnp-2014-309828
https://doi.org/10.1101/gr.4039406
https://doi.org/10.1016/j.gde.2010.03.005
https://doi.org/10.1073/pnas.0808041105
https://doi.org/10.1002/jcb.27395
https://doi.org/10.1023/A:1008363719778
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1186/s13073-015-0162-2
https://doi.org/10.2174/1389202914666131210205839
https://doi.org/10.2174/092986609789839250
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1038/nature05329
https://doi.org/10.1158/2159-8290.CD-17-0909
https://doi.org/10.1002/ana.24511
https://doi.org/10.1371/journal.pone.0030427
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Zhang et al.

CNV Pattern for Discriminating MACROD?2 States

Shlien, A., Tabori, U., Marshall, C. R., Pienkowska, M., Feuk, L., Novokmet,
A, et al. (2008). Excessive genomic DNA copy number variation in the Li-
Fraumeni cancer predisposition syndrome. Proc. Natl. Acad. Sci. U.S.A. 105,
11264-11269. doi: 10.1073/pnas.0802970105

Song, Y., Pan, Y., and Liu, J. (2019). Functional analysis of IncRNAs based
on competitive endogenous RNA in tongue squamous cell carcinoma. Peer]
7:¢6991. doi: 10.7717/peer;j.6991

Sunnerhagen, M. S., Persson, E., Dahlqvist, I., Drakenberg, T., Stenflo, J., Mayhew,
M., et al. (1993). The effect of aspartate hydroxylation on calcium binding
to epidermal growth factor-like modules in coagulation factors IX and X. J.
Biol.Chem. 268, 23339-23344.

Wang, K, Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F,, et al. (2007).
PennCNV: an integrated hidden Markov model designed for high-resolution
copy number variation detection in whole-genome SNP genotyping data.
Genome Res. 17, 1665-1674. doi: 10.1101/gr.6861907

Wang, T., Chen, L., and Zhao, X. (2018). Prediction of drug combinations with
a network embedding method. Comb. Chem. High Throughput Screen. 21,
789-797. doi: 10.2174/1386207322666181226170140

Willer, C. J., Speliotes, E. K., Loos, R. ], Li, S., Lindgren, C. M., Heid, I. M., et al.
(2009). Six new loci associated with body mass index highlight a neuronal
influence on body weight regulation. Nat. Genet. 41, 25-34. doi: 10.1038/ng.287

Yang, T. L., Chen, X. D,, Guo, Y., Lei, S. F, Wang, J. T., Zhou, Q,, et al
(2008). Genome-wide copy-number-variation study identified a susceptibility
gene, UGT2B17, for osteoporosis. Am. J. Hum. Genet. 83, 663-674.
doi: 10.1016/j.ajhg.2008.10.006

Zanke, B. W., Greenwood, C. M., Rangrej, J., Kustra, R., Tenesa, A., Farrington,
S. M., et al. (2007). Genome-wide association scan identifies a colorectal
cancer susceptibility locus on chromosome 8q24. Nat. Genet. 39:989-994.
doi: 10.1038/ng2089

Zeng, W., Rao, N,, Li, Q., Wang, G,, Liu, D., Li, Z,, et al. (2018). Genome-wide
analyses on single disease samples for potential biomarkers and biological
features of molecular subtypes: a case study in gastric cancer. Int. J. Biol. Sci.
14, 833-842. doi: 10.7150/ijbs.24816

Zhang, F., Gu, W., Hurles, M. E., and Lupski, J. R. (2009). Copy number variation
in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10,
451-481. doi: 10.1146/annurev.genom.9.081307.164217

Zhang, F.,, Guo, X,, Zhang, Y. P., Wen, Y., Wang, W. Z., Wang, S., et al. (2014).
Genome-wide copy number variation study and gene expression analysis
identify ABI3BP as a susceptibility gene for Kashin-Beck disease. Hum. Genet.
133, 793-799. doi: 10.1007/s00439-014-1418-4

Zhang, X., Chen, L, Guo, Z.-H. and Liang, H. (2019). Identification of
human membrane protein types by incorporating network embedding
methods. IEEE Access 7, 140794-140805. doi: 10.1109/ACCESS.2019.29
44177

Zhao, X., Chen, L., Guo, Z.-H., and Liu, T. (2019). Predicting drug side
effects with compact integration of heterogeneous networks. Curr. Bioinform.
doi: 10.2174/1574893614666190220114644. [Epub ahead of print].

Zhao, X., Chen, L., and Lu, J. (2018). A similarity-based method for prediction of
drug side effects with heterogeneous information. Math. Biosci. 306, 136-144.
doi: 10.1016/j.mbs.2018.09.010

Zhou, J.-P., Chen, L., and Guo, Z.-H. (2019). iATC-NRAKEL: an efficient multi-
label classifier for recognizing anatomical therapeutic chemical (ATC) classes of
drugs. Bioinformatics btz757. doi: 10.1093/bioinformatics/btz757. [Epub ahead
of print].

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Zhang, Pan, Zeng, Guo, Gan, Zhang, Chen, Zhang, Huang and
Cai. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

December 2019 | Volume 7 | Article 407


https://doi.org/10.1073/pnas.0802970105
https://doi.org/10.7717/peerj.6991
https://doi.org/10.1101/gr.6861907
https://doi.org/10.2174/1386207322666181226170140
https://doi.org/10.1038/ng.287
https://doi.org/10.1016/j.ajhg.2008.10.006
https://doi.org/10.1038/ng2089
https://doi.org/10.7150/ijbs.24816
https://doi.org/10.1146/annurev.genom.9.081307.164217
https://doi.org/10.1007/s00439-014-1418-4
https://doi.org/10.1109/ACCESS.2019.2944177
https://doi.org/10.2174/1574893614666190220114644
https://doi.org/10.1016/j.mbs.2018.09.010
https://doi.org/10.1093/bioinformatics/btz757
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

:\' frontiers
in Genetics

METHODS
published: 20 December 2019
doi: 10.3389/fgene.2019.01231

OPEN ACCESS

Edited by:

Yanjie Wei,

Shenzhen Institutes of Advanced
Technology (CAS), China

Reviewed by:

Xiaoqi Zheng,

Shanghai Normal University, China
Pengmian Feng,

North China University of Science and
Technology, China

*Correspondence:
Yang Gao
gaoy@nankai.edu.cn
Pu-Feng Du
padu@tju.edu.cn

Specialty section:

This article was submitted to
Bioinformatics and
Computational Biology,

a section of the journal
Frontiers in Genetics

Received: 09 October 2019
Accepted: 06 November 2019
Published: 20 December 2019

Citation:

Miao Y-Y, Zhao W, Li G-P, Gao Y and
Du P-F (2019) Predicting Endoplasmic
Reticulum Resident Proteins

Using Auto-Cross Covariance
Transformation With a U-Shaped
Residue Weight-Transfer Function.
Front. Genet. 10:1231.

doi: 10.3389/fgene.2019.01231

Check for
updates

Predicting Endoplasmic Reticulum
Resident Proteins Using Auto-Cross
Covariance Transformation With a
U-Shaped Residue Weight-Transfer
Function

Yang-Yang Miao "2, Wei Zhao!, Guang-Ping Li', Yang Gao®* and Pu-Feng Du™*

' College of Intelligence and Computing, Tianjin University, Tianjin, China, 2 School of Chemical Engineering, Tianjin University,
Tianjin, China, 3 School of Medicine, Nankai University, Tianjin, China

Background: The endoplasmic reticulum (ER) is an important organelle in eukaryotic
cells. It is involved in many important biological processes, such as cell metabolism,
protein synthesis, and post-translational modification. The proteins that reside within the
ER are called ER-resident proteins. These proteins are closely related to the biological
functions of the ER. The difference between the ER-resident proteins and other non-
resident proteins should be carefully studied.

Methods: We developed a support vector machine (SVM)-based method. We developed
a U-shaped weight-transfer function and used it, along with the positional-specific
physiochemical properties (PSPCP), to integrate together sequence order information,
signaling peptides information, and evolutionary information.

Result: Our method achieved over 86% accuracy in a jackknife test. We also achieved
roughly 86% sensitivity and 67 % specificity in an independent dataset test. Our method is
capable of identifying ER-resident proteins.

Keywords: pseudo-amino acid composition, support vector machine, endoplasmic reticulum resident protein,
leave-one-out cross-validation, weight transfer

INTRODUCTION

The endoplasmic reticulum (ER) is an important subcellular organelle in eukaryotic cells. Two
major functions are usually recognized for ER. One is that it selectively transports secreted proteins
and membrane proteins. The other is that it retains some proteins to maintain its own structure and
function (Lavoie and Paiement, 2008). The ER proteins are sorted precisely with quality controls
(Ellgaard and Helenius, 2003; Araki and Nagata, 2011). An understanding of these processes
contributes to the elucidation of endoplasmic reticulum function and the pathogenesis of many
diseases (Paschen and Frandsen, 2001; Verkhratsky, 2002).

ER-resident proteins are an important topic in ER-related studies. Some of the ER-resident
proteins possess sorting signals, such as KDEL or KXXX, while some others do not (Stornaiuolo
et al,, 2003). Over the last two decades, several efforts have been made to determine the ER sorting
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signals experimentally. For example, Teasdale and Jackson
(1996) found that UGT2 localizes to the endoplasmic
reticulum when they studied the UDP-galactosyl transporter
(UGT). They also reported that the C-terminal sequence
“LLTKVKGS” of the UGT2 is useful in the sorting process.
Kabuss et al. (2005) proved that mutating this part of the
sequence will result in re-localization of UGT2 to the Golgi
apparatus. Although wet experiments for detecting protein
localization signals can provide clear evidence and distinguish
between maintenance and return signals, performing these
experiments is always costly and time-consuming. Therefore,
computational predictions are recognized as an alternative
approach that provides useful and informative guidance to the
experimental methods.

Computational predictions of protein subcellular
localizations have been heavily studied in bioinformatics. In
the early 1990s, computational systems were developed to
recognize the sorting signals from the primary sequences of
proteins (Nakai and Kanehisa, 1991; Nakai and Horton, 1999;
Wang et al., 2014). When statistical sequence features were
introduced to represent protein sequences, machine learning-
based algorithms were employed to predict protein sorting
destinations. Many studies have tried to apply various
algorithms to predict protein subcellular localizations at
different levels in different contexts. Several online services
have proved useful in this regard. These services include
ProLoc-GO (Huang et al., 2007; Huang et al., 2008),
KnowPredsite (Lin et al., 2009), SlocX (Ryngajllo et al., 2011),
iLoc-Animal (Lin et al., 2013), iLoc-Euk (Chou et al., 2011), Cello
v-2.5 (Yu et al, 2006), HybridGO-Loc (Wan et al, 2014),
mGOASVM (Wan et al., 2012), Hum-mPloc (Shen and Chou,
2007; Shen and Chou, 2009; Zhou et al., 2017), Euk-mPloc (Chou
and Shen, 2007; Chou and Shen, 2010), HPSLPred (Wan et al.,
2017), and many others (Chou and Shen, 2008; Briesemeister
et al, 2010; Du et al, 2011; Du and Xu, 2013; Almagro
Armenteros et al., 2017; Wei et al., 2018; Chen et al., 2019).

The general-purpose protein subcellular location predictors
take ER as only one of many subcellular locations. The dataset
used for training and testing these methods does not distinguish
between ER-resident proteins and non-ER-resident proteins.
Since both of these types of proteins may be annotated with
subcellular localization ER, constructing a high-quality dataset
that is capable of separating them is important. Kumar et al.
(2017) proposed the ERPred method, using a carefully curated
dataset to distinguish the ER-resident proteins from the non-ER-
resident proteins. By using split amino acid compositions
(SAAC), they achieved a very promising result. Their results
confirmed that the peptide sequences at the terminals of proteins
are very informative in guiding the protein sorting process in the
ER. Moreover, their results revealed that even if no known
sorting signals were found on the sequence, the terminal
peptides were still very useful in identifying ER-resident
proteins (Kumar et al., 2017).

Pseudo-amino acid composition, which was proposed by
Chou (2001), has been widely applied in representing protein
sequences for predicting various attributes of proteins. By

coupling this with many different machine-learning algorithms,
a series of consecutive successes have been achieved. These
successful efforts provide consolidated evidence that the
pseudo-amino acid compositions are capable of representing
protein sequences of various lengths using a fixed-length
numerical vector without losing much of the sequential
information (Chou, 2011; Chou, 2013; Chou, 2015).

In this study, we introduced a U-shaped weight-adjustment
function to improve the pseudo-amino acid compositions. The U-
shaped weight-adjustment function transfers weights from the
middle-positioned residues to those at the terminals. Besides the
weight-adjustment function, we have made two more
augmentations to the original pseudo-amino acid compositions.
One is to introduce the auto-cross covariance pseudo-factor form,
which has been applied in finding protein folding patterns (Dong
et al., 2009). The other is to incorporate positional-specific
physicochemical properties, which have been applied in
predicting protein submitochondrial locations and sub-Golgi
locations (Du and Yu, 2013; Jiao and Du, 2017; Zhao et al., 2019).

Our method actually emphasizes the terminal signaling
peptide information in pseudo-amino acid compositions. We
expect that our approach can be applied not only in predicting
ER-resident proteins but also in other topics associated with
analyzing protein sorting and localization processes.

MATERIALS AND METHODS

Benchmarking Datasets

In this study, we took the ERPred dataset as our benchmarking
dataset. Kumar et al. (2017) released this dataset along with their
ERPred study. The ERPred dataset contains two parts: the
training set and the independent testing set. Table 1 gives a
breakdown of the entire ERPred dataset. The training set
contains 124 ER-resident proteins and 1200 non-ER-resident
proteins. The independent testing set contains 65 ER-resident
proteins and 2900 non-ER-resident proteins. It is obvious that
this dataset is highly imbalanced. The number of non-ER-
resident proteins is about 10 times that of the ER-resident
proteins in the training set and over 40 times that in the
independent testing set. The identifiers of the proteins in the
benchmarking dataset are listed in the supplementary materials
(Tables S1-S3).

Sequence Representations

The ERPred study applied SAAC sequence representations. The
result of ERPred implied that the terminal peptides contain more

TABLE 1 | Breakdown of the dataset.

Data set ERRP’ non-ERRP’
Training set 124 1200
Independent testing set 65 2900

AERRP, Endoplasmic reticulum resident proteins.
Pnon-ERRP, Non-endoplasmic reticulum resident proteins.
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information for sorting proteins to ER (Kumar et al, 2017).
Therefore, we introduced a U-shaped weight-adjustment
function to transfer weights from those residues in the middle
part of the sequence to those at the terminals of the sequence.
Besides this improvement, we incorporated the sequential
evolution information using the positional-specific
physicochemical properties (PSPCP) (Du and Yu, 2013; Jiao
and Du, 2017), as well as the auto-cross covariance form pseudo-
factors (Dong et al., 2009).

In order to explain our method properly, we developed a new
set of matrix-based notations to describe the Type-II classic
pseudo-amino acid compositions, also known as the amphiphilic
pseudo-amino acid compositions (Chou, 2005). These new
formulations, in mathematics, equal the original ones but with
a much simpler appearance. We first give the definitions of the
all-ones vector and the shifting matrix.

An n-D all-ones vector is defined as follows:

). = [51 0y o Sn]T’ (1)
where 6;=1(i=1,2, ..., n).
An n-sized shifting matrix is defined as:
M” = {miaj}nxn’ (2)

where

1 ,wheni-j=1;
m,»,jz
0

A given protein sequence p with length / can be represented as
a string:

(i=1,2,.,mj=1,2,.,n) (3)

, otherwise

p=nnn )
where r; (j= 1,2, ..., I) is the j-th residue on the protein sequence.
Every residue represents one of twenty different kinds of amino
acids. We use a 20-D binary vector A; to represent 7; (j = 1, 2,
oD

A] = [al’j azJ e

(5)

20, ] T,

where

1 ,when r; is the i~th type amino acid;
a;; = (i=1,2,..,20,j = 1,2,...,])
"o

,otherwise

(6)

The whole sequence can be represented using a matrix,
as follows:

Alp)=1A1 Ay--A] @)

where A(p) is a matrix-based sequence representation, and A;
(=1,2,...,]) asin Eq. (5).

When the PSSM can be created using the PSI-BLAST
program for protein p, we can obtain a normalized PSSM
scoring matrix for p, as elaborated in (Du and Yu, 2013). The
normalized PSSM scoring matrix is denoted as follows:

by by - by "
byi by - by
Bp=| | (8)
b1 baoy -+ by,
where the following normalization condition is satisfied:
20
Ebi,j_l(]_l’z’ ..,l) (9)

We define the following matrix to combine matrix B(p) and
matrix A(p):

S(p)

{ EB(p) ,when PSSM can be created for protein p;
EA(p)

, otherwise .
(10)

where matrix E is a weight-adjustment matrix. It can be defined
as a diagonal matrix, as follows:

E= dlag( E & - 81), (11)

where g (j = 1, 2,..., I) is a weight-adjustment factor for the j-th
residue on the sequence. It is computed by a U-shaped function,
as follows:

_; _=xplk(2j = D/1] + explk(I - 2)) /1]
!
2 (explk(2j — 1) /1] + explk(l - 27) /1))
i1

& (j=12,..

(12)

where k is a weight distribution parameter, exp(.) is the
exponential function, [ is the length of the sequence, and j is
the j-th residue.

Given a type of physicochemical property H, the values for
20 different types of amino acids can be represented using a
20-D vector.

H=[h hy - hyl', (13)
where h; (i = 1, 2,..., 20) is the physicochemical property value of
the i-th type amino acid. We use the following method to
standardize the physicochemical property vector:

H = (H-m(H)Jy)/sd(H), (14)
where J,, is a 20-D all-ones vector,
m(H) = H'J,,/20, (15)
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and

sd(H) = \/HTH/20 - m*(H) .

In this study, we took two different kinds of physicochemical
properties into consideration: the hydrophobicity and
hydrophilicity of amino acids. We denote them as H; and H,,
respectively. We define the sequence auto-cross covariance
matrix of physicochemical properties as:

(16)

R,,(p) = S(p)H,H,S"(p), 17)
where u, v €{1,2}.
The k-th order covariance factor can be defined as:
Tun(P) = Ry (PIMF ) /(1= K), (18)

where tr(.) computes the trace of a matrix, M, the [-sized shifting
matrix, and u, v as in Eq. (17). For every given value of k, a 4-D
covariance vector can be generated as:

8:(p) = [Tin1 (P) Ti12(P) Tean (P) Tran(p)]”.

By setting the maximum value of k, which is denoted as A, we
can use a 4A-D vector to contain all covariance factors as:

Vi(p) = (8] (p) 1 (p) ... 1(p)]".

Considering the weight-adjustment factors, the 20-D
conventional amino acid composition vector can be
constructed as follows:

(19)

(20)

C(p) =S(p/1. (21)

We can combine the V(p) and the C(p) to create a (20 + 44)-
D vector to represent the protein sequence p, as follows:

Flp) = | I’

where w is a balancing parameter between 0 and 1. We use F(p)
to represent protein p in this study.

c’(p) oV} (p)
CT(Pao+oV; (pP)an CT(p)Ia+@V] (p)az

(22)

Prediction Algorithm

We employed a support vector machine (SVM) as the prediction
algorithm. The SVM searches for an optimal separating hyper-
plane in the high-dimensional feature space, which is widely used
in bioinformatics problems (Liao et al., 2018; Meng et al., 2019a;
Meng et al., 2019b). The hyper-plane can maximize the margin
in the feature space. We applied the radial basis function (RBF)
as the kernel function in SVM, because the RBF kernel function
is the most flexible and the most widely used of such functions. It
can be defined as follows:

K(F(p).F(q)) = exp(~ 7[F(p) - F(q)*),

where p and q are two proteins, and |.| is the operator that
computes the Euclidean length of a vector.

Due to the dataset imbalance, we developed a voting scheme
to use all samples in the dataset. We partitioned the negative
samples into m subsets. The first m - 1 subsets have an equal
number of negative samples as that of all the positive samples.
The remaining subset contains all the remaining negative
samples. For each of these m subsets, all the positive samples

(23)

Input Sequence

\ 4
Matrix-based sequence
L notations )
A 4
-

Auto-Cross- h
Corr+tAmPseAAC+U-Shaped
L Weight function )
A 4
C Fp) )

SVM

Prediction Nen-E )

ERRP

C )

FIGURE 1 | Flowchart of the algorithm. The input sequence will be first
converted to matrix-based notations. These notations will be converted into
fixed-length numerical vectors, which can represent the sequence order
information, the evolutionary information, and the importance of the terminal
signaling peptides.

were replicated to compose a training subset. We trained the
SVM classifier on each of these training subsets. The final
prediction result is the majority result of these m classifiers.
Figure 1 is a flowchart of the entire algorithm.

Evaluation Method
Three validation methods are commonly applied in evaluating a
bioinformatics predictor. They are known as the self-consistency
test, jackknife test, and independent dataset test (Jiao and Du,
2016). Of them, the jackknife test is usually considered as the
most objective and rigorous (Chou and Zhang, 1995). However,
some recent studies have shown that the independent dataset test
can provide even better estimation to the true performance if a
sufficiently large testing dataset can be given (Jiao and Du, 2016).
Due to the limited size of the training dataset and the fact that
our training dataset is highly imbalanced, we applied the
jackknife test to estimate the prediction performance of our
method. We also evaluated our method using the independent
testing dataset, which allowed us to compare our method to the
state-of-the-art methods in a fair manner.

Four statistics were applied to measure the prediction
performances of our method quantitatively. They are the
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sensitivity, specificity, overall accuracy, and the Matthew’s
Correlation Coefficient (MCC). They are defined as follows:

TP

Sen=——, 24
TPy EN (24)
N
Spe= —— . 25
P = TN+ FP (25)
TP + TN
Acc = , 2
T IPYTIN+FP+FN (26)
TPTN — FPEN
MCC = . (27)

/(TP + FP)(TP + EN)(FP + FN)(IN + FN)

where Sen is the sensitivity, Spe the specificity, Acc the overall
accuracy, MCC the Matthew’s Correlation Coefficient, and TP,
TN, FP, and FN are the number of true positives, true negatives,
false positives, and false negatives, respectively.

Parameter Calibrations

Several parameters can be adjusted in our method. The values of
these parameters affect the prediction performances. We applied
a grid-search strategy to optimize the jackknife test performance
by scanning different combinations of the values of k, 4, and @.
The parameter k was scanned in the set {0, 0.01, 0.1, 1, 1.5}, the
parameters A from 2 to 20 with a step of 1, and the parameter @
from 0.05 to 0.95 with a step of 0.05. For each parameter
combination, we use another grid-search to find the best values
of ¢, % and w, where c is the cost parameter of SVM, 7 is the
parameter in the RBF kernel, and w is the class weight ratio
between two classes. In this study, we applied the SVM functions
in the scikit-learn python package. The grid search of SVM
parameters was conducted automatically with a python script.

RESULTS AND DISCUSSION

Performance Analysis and Comparison

We obtained the optimized combination of parameters when k =
0.1, A =16, ®=0.55, ¢ = 1000, Y= 0.01, and w = 1.2. The PSSM
matrix was created using the PSI-BLAST program with three
iterations and 0.001 as the threshold of e-values.

In the jackknife test, our method can correctly identify 111
out of all 124 ER-resident proteins. The prediction performance
values are recorded in Table 2, with comparison to the
ERPred method.

According to these performance values, our method performed
better than the ERPred method. Our method achieved a sensitivity
of 83.06% and a specificity of 86.38%, which are both higher than
the values for ERPred on the same dataset.

TABLE 2 | Prediction performance estimations using a jackknife test.

Methods Sensitivity Specificity Accuracy MCC
This work 83.1% 86.4% 86.1% 50.6%
ERPred 79.8% 81.6% 81.4% 42.0%

Independent Dataset Test

The training dataset of our work is identical to that used for
ERPred. This dataset is highly imbalanced. To further eliminate
the concern of over-estimated performances, we performed
testing with an independent dataset. We took the same
independent testing dataset as used in the ERPred method.
The independent testing dataset was processed by the predictor
that was trained with the training dataset. The prediction
performances of our method are recorded in Table 3.
Although the specificity is lower than that from the jackknife
test, the sensitivity value remains almost unchanged. Therefore,
we think the prediction performance is not over-estimated.

We also entered the same testing dataset into several other
predictors for comparison. The compared predictors include
ERPred (Kumar et al., 2017), Cello v2.5 (Yu et al., 2006), iLoc-
Euk (Chou et al.,, 2011) and Euk-mPLoc 2.0 (Chou and Shen,
2007; Chou and Shen, 2010), which all provide the option to
identify ER proteins. According to the prediction performance
values, our method has the best sensitivity. However, the
specificity of our method is lower. The results indicate that
Cello and iLoc-Euk tend to assign non-ER locations to an ER-
resident protein. They increase the specificity by severely
sacrificing the sensitivity. As the nature of the ER-resident
proteins is that the number of non-ER resident proteins is
much larger than the resident ones, we think it is acceptable to
sacrifice some specificity for the balance to the sensitivity. The
ERPred method, Euk-mPLoc 2.0, and our method have a better
balance between sensitivity and specificity. Particularly, it seems
that the Euk-mPLoc 2.0 method has the best performance, as it
achieves over 66% sensitivity while maintaining over 99%
specificity. However, it should be noted that Euk-mPLoc 2.0 is
not specifically designed to identify ER-resident proteins. Some
of the proteins in the testing dataset may have already been used
as training samples when Euk-mPLoc 2.0 was developed. This
may result in an over-estimated performance value in the
comparison. Another factor that should be noticed for Euk-
mPLoc 2.0 is that it relies on GO annotations, which makes it not
an ab initio predictor. Although using GO annotations is
common in developing this kind of predictor (Du and Xu,
2013), comparing an ab initio predictor with a homology
search-based method is not a fair comparison. Therefore, we
believe that our method has, at least, comparable prediction
performance to other existing methods. Especially in identifying
ER-resident proteins, our method should be considered with a
higher priority than general-purpose subcellular
location predictors.

TABLE 3 | Prediction performance comparison using the independent dataset.

Methods Sensitivity Specificity
This work 85.7% 67.2%
ERPred 72.3% 83.7%
Cello 2.5 16.9% 99.9%
iLoc-Euk 15.4% 99.8%
Euk-mPloc 2.0 66.2% 99.0%
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Effects of the Residue Weight-Transfer
Function

The ER-resident proteins can be roughly divided into two
different types. One type is proteins with a specific C-terminal
tetra-peptide signal, which usually has a form like KDEL or
HDEL. The other type is proteins without this kind of signaling
peptide on either its C-terminal or N-terminal. The latter types
of proteins usually have an N-glycan modification or similar
modifications like cereal prolamin storage proteins (Stornaiuolo
et al., 2003). In our training dataset, we searched for the tetra-
peptide signals by using ProSite. We found only 41 signaling
peptides in all of the 124 ER-resident proteins. In our testing
dataset, we performed the same search. We found only 11
singling peptides in all of the 65 non-ER-resident proteins.
Therefore, it is not practical to identify ER-resident proteins
using only the signaling peptide information. This observation is
consistent with the motivation of the ERPred study.

ERPred is a very powerful and useful computational method. It
introduces SAAC sequence representations, which successfully
emphasize the terminal signaling sequence information.
However, the sequence order information is lost in the amino
acid composition representations. Although the pseudo-amino
acid composition representation can preserve the sequence order
information, it cannot emphasize the terminal signaling peptides in
the protein sequence. Therefore, we introduced a U-shaped weight-
transfer function into the pseudo-amino acid composition in this
study. The purpose of this weight-transfer function is to emphasize
the terminal signaling information and also to incorporate the
sequence order information. However, it is difficult to decide how
many weights should be transferred to the terminals from the

25

middle part of a sequence. We formulate this factor as a parameter
k in Eq. (12). Figure 2 illustrates the shape of the function with
different k values. Figure 2 enables an intuitive understanding of
this U-shaped weighting function. The larger the value of k, the
more weights are transferred to the terminals of a sequence. Please
also note that Figure 2 is only an intuitive illustration of the U-
shaped function when the length of a protein is 100. The crossing
point under this condition cannot be extended to other cases.

To find an optimized k value, we trained and tested predictors
with different k values. Figure 3 plots the performance values
with different k. The sensitivity increases slightly with an increase
in k. The specificity peaks when k = 0.1. Therefore, at least for
predicting ER-resident proteins, k = 0.1 creates a good weight-
transfer function.

The choice of using a U-shaped function rather than another
shape is not easy. Since we do not know how much weight should
be transferred, this must be an adjustable parameter in the
function. Besides, we need to make the function satisfy the
following conditions at the same time: (1) all weights are
positive; (2) the sum of all weights equals the sequence length;
(3) the portion of the weight-increased part and weight-decreased
part remains almost unchanged when we adjust the amount of
weight that is transferred. This will make the function only transfer
weights among residues, not create or remove total weight. The U-
shaped function not only satisfies all these conditions but also
provides us with a simple way to implement it.

Sequence Representation Augments
Besides the U-shaped weight-transfer function, we augmented
the classic amphiphilic pseudo-amino acid compositions in two

— k=0
k=1
— k=15

—k=2

0.5

50 60 70 80 90 100

FIGURE 2 | lllustration of the U-shaped weight-transfer function with various k values. The U-shaped function transfers weights from the middle part of a sequence
to its terminals. The total weight of a sequence does not change after applying the U-shaped weight-transfer function. When the parameter k is O, every residue on
the sequence has equal weights, which will produce identical results as where there is no weight-transfer function. When the value of k increases, more and more
weights are transferred from the residues in the middle part of a sequence to the residues on its terminals.
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ways. One is to use auto-cross correlation to replace the auto-
correlation in the classic amphiphilic pseudo-amino acid
compositions, while the other is to use matrix-based notations
to represent the sequence itself.

The advantage of using auto-cross correlation over auto-
correlation has been proved in predicting protein folding
patterns (Dong et al., 2009). The matrix-based sequence
notations see each residue on the sequence as a 20-D
composition vector. The original sequence can then be
represented using the one-hot encoding scheme, which can be
unified with the normalized PSSM. Since PSI-BLAST cannot
generate PSSM for every protein sequence, the matrix-based
notation actually provides a mathematically compatible way to
compensate for the missing PSSM using the one-hot encodings. As
elaborated in Du and Yu (2013), when the PSSM is available for a
protein sequence, this matrix-based notation also adjusts the
weights of residues according to the evolutionary information.

Therefore, our sequence representation actually encoded the
sequence order information and the evolutionary information
with emphasis on the terminal signaling peptides in a (20 + 44)-
D numerical vector. Compared to other studies, our sequence
representation has a much lower number of dimensions. On a
dataset with limited samples, the risk of over-estimated
performance increases with the number of dimensions of the
representation. Our method should be a better choice when the
number of samples is limited.

CONCLUSIONS

Many existing methods can predict protein subcellular locations.
However, only the ERPred method can specifically identify ER-
resident proteins. The ER may be the most important type of

k=0.1 k=1 k=135

Parameter k&

FIGURE 3 | Performance analysis with different weight-transfer functions. Prediction performance varies with the value of parameter k in the weight-transfer function. Whenk = 0.1,
the performance value peaks. This means that the residues on the terminals are slightly more important than those in the middle part in predicting ER-resident proteins.

subcellular organelle, linking all the major subcellular structures,
including the nucleus, cytoplasm, and cell membrane. In this
study, we present a new method for predicting ER-resident
proteins. Although establishing a web server for a predictive
method is good practice, it is not easy for us to do so due to the
limitations of our resources and the complexity of this new
method. We will establish a web server for this method in the
future. The most important part of this work is to introduce a U-
shaped weight-transfer function into the pseudo-amino acid
compositions. Since the signaling peptide information is useful
in analyzing many different subcellular processes and this is the
first time that the signaling peptide information has been
emphasized in pseudo-amino acid composition
representations, we believe that our method has great potential
for application in predicting various attributes of proteins.

DATA AVAILABILITY STATEMENT

In this study, we took the ERPred dataset as our benchmarking
dataset. Kumar et al released this dataset, along with their
ERPred study (Kumar et al., 2017).

AUTHOR CONTRIBUTIONS

Y-YM curated the dataset, designed the algorithm,
implemented the algorithm, and partially calibrated the
parameters. WZ performed the experiments, partially
calibrated the parameters, and collected the results. G-PL
partially collected the results and analyzed the results. YG and
P-FD investigated the question, designed the whole study,

Frontiers in Genetics | www.frontiersin.org

118 December 2019 | Volume 10 | Article 1231


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Miao et al.

Predicting ER Resident Proteins

conceptualized the algorithm, analyzed the results, and wrote
the manuscript.

FUNDING

This work was supported by National Key R&D Program of China
(2018YFC0910405); National Natural Science Foundation of China
(NSEC 61872268); and Open Project Funding of CAS Key Lab of
Network Data Science and Technology, Institute of Computing
Tech-nology, Chinese Academy of Sciences (CASNDST201705).

REFERENCES

Almagro Armenteros, J. J., Senderby, C. K., Senderby, S. K., Nielsen, H., and
Winther, O. (2017). DeepLoc: prediction of protein subcellular localization
using deep learning. Bioinformatics 33, 3387-3395. doi: 10.1093/
bioinformatics/btx431

Araki, K., and Nagata, K. (2011). Protein folding and quality control in the ER.
Cold Spring Harb. Perspect. Biol. 3, a007526. doi: 10.1101/cshperspect.a007526

Briesemeister, S., Rahnenfiihrer, J., and Kohlbacher, O. (2010). Going from where
to why-interpretable prediction of protein subcellular localization.
Bioinformatics 26, 1232-1238. doi: 10.1093/bioinformatics/btq115

Chen, W., Feng, P, Liu, T., and Jin, D. (2019). Recent advances in machine
learning methods for predicting heat shock proteins. Curr. Drug Metab. 20,
224-228. doi: 10.2174/1389200219666181031105916

Chou, K.-C,, and Shen, H.-B. (2007). Euk-mPLoc: a fusion classifier for large-scale
eukaryotic protein subcellular location prediction by incorporating multiple
sites. J. Proteome Res. 6, 1728-1734. doi: 10.1021/pr060635i

Chou, K.-C., and Shen, H.-B. (2008). Cell-PLoc: a package of Web servers for
predicting subcellular localization of proteins in various organisms. Nat.
Protoc. 3, 153-162. doi: 10.1038/nprot.2007.494

Chou, K.-C,, and Shen, H.-B. (2010). A new method for predicting the subcellular
localization of eukaryotic proteins with both single and multiple sites: Euk-
mPLoc 2.0. PloS One 5, €9931. doi: 10.1371/journal.pone.0009931

Chou, K. C,, and Zhang, C. T. (1995). Prediction of protein structural classes. Crit.
Rev. Biochem. Mol. Biol. 30, 275-349. doi: 10.3109/10409239509083488

Chou, K.-C., Wu, Z.-C., and Xiao, X. (2011). iLoc-Euk: a multi-label classifier for
predicting the subcellular localization of singleplex and multiplex eukaryotic
proteins. PloS One 6, €18258. doi: 10.1371/journal.pone.0018258

Chou, K. C. (2001). Prediction of protein cellular attributes using pseudo-amino
acid composition. Proteins 43, 246-255. doi: 10.1002/prot1035

Chou, K.-C. (2005). Using amphiphilic pseudo amino acid composition to predict
enzyme subfamily classes. Bioinformatics 21, 10-19. doi: 10.1093/
bioinformatics/bth466

Chou, K.-C. (2011). Some remarks on protein attribute prediction and pseudo
amino acid composition. J. Theor. Biol. 273, 236-247. doi: 10.1016/
jjtbi.2010.12.024

Chou, K.-C. (2013). Some remarks on predicting multi-label attributes in
molecular biosystems. Mol. Biosyst. 9, 1092-1100. doi: 10.1039/c3mb25555g

Chou, K.-C. (2015). Impacts of bioinformatics to medicinal chemistry. Med.
Chem. 11, 218-234. doi: 10.2174/1573406411666141229162834

Dong, Q., Zhou, S., and Guan, J. (2009). A new taxonomy-based protein fold
recognition approach based on autocross-covariance transformation.
Bioinformatics 25, 2655-2662. doi: 10.1093/bioinformatics/btp500

Du, P, and Xu, C. (2013). Predicting multisite protein subcellular locations:
progress and challenges. Expert Rev. Proteomics 10, 227-237. doi: 10.1586/
EPR.13.16

Du, P, and Yu, Y. (2013). SubMito-PSPCP: predicting protein submitochondrial
locations by hybridizing positional specific physicochemical properties with
pseudoamino acid compositions. BioMed. Res. Int. 263829. doi: 10.1155/2013/
263829

Du, P, Li, T,, and Wang, X. (2011). Recent progress in predicting protein sub-
subcellular locations. Expert Rev. Proteomics 8, 391-404. doi: 10.1586/
EPR.11.20

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
01231/full#supplementary-material

TABLE S1 | Training Dataset.
TABLE S2 | Independent testing Dataset-Positive.

TABLE S3 | Independent testing Dataset-Negative.

Ellgaard, L., and Helenius, A. (2003). Quality control in the endoplasmic
reticulum. Nat. Rev. Mol. Cell Biol. 4, 181-191. doi: 10.1038/nrm1052

Huang, W.-L., Tung, C.-W., Huang, H.-L., Hwang, S.-F., and Ho, S.-Y. (2007).
ProLoc: prediction of protein subnuclear localization using SVM with
automatic selection from physicochemical composition features. BioSystems
90, 573-581. doi: 10.1016/j.biosystems.2007.01.001

Huang, W.-L,, Tung, C.-W., Ho, S.-W., Hwang, S.-F., and Ho, S.-Y. (2008). ProLoc-
GO: utilizing informative Gene Ontology terms for sequence-based prediction of
protein subcellular localization. BMC Bioinf. 9, 80. doi: 10.1186/1471-2105-9-80

Jiao, Y., and Du, P. (2016). Performance measures in evaluating machine learning
based bioinformatics predictors for classifications. Quant. Biol. 4, 320-330. doi:
10.1007/s40484-016-0081-2

Jiao, Y.-S., and Du, P.-F. (2017). Predicting protein submitochondrial locations by
incorporating the positional-specific physicochemical properties into Chou’s
general pseudo-amino acid compositions. J. Theor. Biol. 416, 81-87. doi:
10.1016/j.jtbi.2016.12.026

Kabuss, R., Ashikov, A., Oelmann, S., Gerardy-Schahn, R., and Bakker, H. (2005).
Endoplasmic reticulum retention of the large splice variant of the UDP-
galactose transporter is caused by a dilysine motif. Glycobiology 15, 905-911.
doi: 10.1093/glycob/cwi085

Kumar, R., Kumari, B., and Kumar, M. (2017). Prediction of endoplasmic
reticulum resident proteins using fragmented amino acid composition and
support vector machine. Peer J. 5, €3561. doi: 10.7717/peerj.3561

Lavoie, C., and Paiement, J. (2008). Topology of molecular machines of the
endoplasmic reticulum: a compilation of proteomics and cytological data.
Histochem. Cell Biol. 129, 117-128. doi: 10.1007/s00418-007-0370-y

Liao, Z., Li, D., Wang, X, and Zou*, L. L. Q. (2018). Cancer diagnosis through
IsomiR expression with machine learning method. Curr. Bioinf. 13 (1), 57-63.
doi: 10.2174/1574893611666160609081155

Lin, H.-N,, Chen, C.-T., Sung, T.-Y., Ho, S.-Y., and Hsu, W.-L. (2009). Protein
subcellular localization prediction of eukaryotes using a knowledge-based
approach. BMC Bioinf. 10 Suppl 15, S8. doi: 10.1186/1471-2105-10-S15-S8

Lin, W.-Z,, Fang, J.-A., Xiao, X., and Chou, K.-C. (2013). iLoc-Animal: a multi-
label learning classifier for predicting subcellular localization of animal
proteins. Mol. Biosyst. 9, 634-644. doi: 10.1039/C3MB25466F

Meng, C,, Jin, S., Wang, L., Guo, F., and Zou, Q. (2019a). AOPs-SVM: a sequence-
based classifier of antioxidant proteins using a support vector machine. Front.
Bioeng. Biotechnol. 7, 224. doi: 10.3389/fbioe.2019.00224

Meng, C,, Wei, L, and Zou, Q. (2019b). SecProMTB: support vector machine-based
classifier for secretory proteins using imbalanced data sets applied to
mycobacterium tuberculosis. Proteomics 19, 1900007. doi: 10.1002/pmic.201900007

Nakai, K., and Horton, P. (1999). PSORT: a program for detecting sorting signals
in proteins and predicting their subcellular localization. Trends Biochem. Sci.
24, 34-36. doi: 10.1016/S0968-0004(98)01336-X

Nakai, K., and Kanehisa, M. (1991). Expert system for predicting protein
localization sites in gram-negative bacteria. Proteins 11, 95-110. doi:
10.1002/prot.340110203

Paschen, W., and Frandsen, A. (2001). Endoplasmic reticulum dysfunction-a
common denominator for cell injury in acute and degenerative diseases of the
brain? J. Neurochem. 79, 719-725. doi: 10.1046/j.1471-4159.2001.00623.x

Ryngajllo, M., Childs, L., Lohse, M., Giorgi, F. M., Lude, A., Selbig, J., et al. (2011).
SLocX: predicting subcellular localization of arabidopsis proteins leveraging
gene expression data. Front. Plant Sci. 2, 43. doi: 10.3389/fpls.2011.00043

Frontiers in Genetics | www.frontiersin.org

119

December 2019 | Volume 10 | Article 1231


https://www.frontiersin.org/articles/10.3389/fgene.2019.01231/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01231/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btx431
https://doi.org/10.1093/bioinformatics/btx431
https://doi.org/10.1101/cshperspect.a007526
https://doi.org/10.1093/bioinformatics/btq115
https://doi.org/10.2174/1389200219666181031105916
https://doi.org/10.1021/pr060635i
https://doi.org/10.1038/nprot.2007.494
https://doi.org/10.1371/journal.pone.0009931
https://doi.org/10.3109/10409239509083488
https://doi.org/10.1371/journal.pone.0018258
https://doi.org/10.1002/prot1035
https://doi.org/10.1093/bioinformatics/bth466
https://doi.org/10.1093/bioinformatics/bth466
https://doi.org/10.1016/j.jtbi.2010.12.024
https://doi.org/10.1016/j.jtbi.2010.12.024
https://doi.org/10.1039/c3mb25555g
https://doi.org/10.2174/1573406411666141229162834
https://doi.org/10.1093/bioinformatics/btp500
https://doi.org/10.1586/EPR.13.16
https://doi.org/10.1586/EPR.13.16
https://doi.org/10.1155/2013/263829
https://doi.org/10.1155/2013/263829
https://doi.org/10.1586/EPR.11.20
https://doi.org/10.1586/EPR.11.20
https://doi.org/10.1038/nrm1052
https://doi.org/10.1016/j.biosystems.2007.01.001
https://doi.org/10.1186/1471-2105-9-80
https://doi.org/10.1007/s40484-016-0081-2
https://doi.org/10.1016/j.jtbi.2016.12.026
https://doi.org/10.1093/glycob/cwi085
https://doi.org/10.7717/peerj.3561
https://doi.org/10.1007/s00418-007-0370-y
https://doi.org/10.2174/1574893611666160609081155
https://doi.org/10.1186/1471-2105-10-S15-S8
https://doi.org/10.1039/C3MB25466F
https://doi.org/10.3389/fbioe.2019.00224
https://doi.org/10.1002/pmic.201900007
https://doi.org/10.1016/S0968-0004(98)01336-X
https://doi.org/10.1002/prot.340110203
https://doi.org/10.1046/j.1471-4159.2001.00623.x
https://doi.org/10.3389/fpls.2011.00043
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Miao et al.

Predicting ER Resident Proteins

Shen, H.-B., and Chou, K.-C. (2007). Hum-mPLoc: an ensemble classifier for
large-scale human protein subcellular location prediction by incorporating
samples with multiple sites. Biochem. Biophys. Res. Commun. 355, 1006-1011.
doi: 10.1016/j.bbrc.2007.02.071

Shen, H.-B., and Chou, K.-C. (2009). A top-down approach to enhance the power
of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal.
Biochem. 394, 269-274. doi: 10.1016/j.ab.2009.07.046

Stornaiuolo, M., Lotti, L. V., Borgese, N., Torrisi, M.-R., Mottola, G., Martire, G.,
et al. (2003). KDEL and KKXX retrieval signals appended to the same reporter
protein determine different trafficking between endoplasmic reticulum,
intermediate compartment, and Golgi complex. Mol. Biol. Cell 14, 889-902.
doi: 10.1091/mbc.e02-08-0468

Teasdale, R. D., and Jackson, M. R. (1996). Signal-mediated sorting of membrane
proteins between the endoplasmic reticulum and the golgi apparatus. Annu.
Rev. Cell Dev. Biol. 12, 27-54. doi: 10.1146/annurev.cellbio.12.1.27

Verkhratsky, A. (2002). The endoplasmic reticulum and neuronal calcium
signalling. Cell Calcium 32, 393-404. doi: 10.1016/S0143416002001896

Wan, S., Mak, M.-W,, and Kung, S.-Y. (2012). mGOASVM: multi-label protein
subcellular localization based on gene ontology and support vector machines.
BMC Bioinf. 13, 290. doi: 10.1186/1471-2105-13-290

Wan, S, Mak, M.-W,, and Kung, S.-Y. (2014). HybridGO-Loc: mining
hybrid features on gene ontology for predicting subcellular localization
of multi-location proteins. PloS One 9, e89545. doi: 10.1371/
journal.pone.0089545

Wan, S., Duan, Y., and Zou, Q. (2017). HPSLPred: an ensemble multi-label
classifier for human protein subcellular location prediction with imbalanced
source. Proteomics 17, 1700262. doi: 10.1002/pmic.201700262

Wang, Z., Zou, Q., Jiang, Y., Ju, Y., and Zeng, X. (2014). Review of protein
subcellular localization prediction. Curr. Bioinf. 9, 331-342. doi: 10.2174/
1574893609666140212000304

Wei, L., Ding, Y., Su, R,, Tang, J., and Zou, Q. (2018). Prediction of human protein
subcellular localization using deep learning. J. Parallel Distrib. Comput. 117,
212-217. doi: 10.1016/j.,jpdc.2017.08.009

Yu, C.-S., Chen, Y.-C,, Lu, C.-H., and Hwang, J.-K. (2006). Prediction of protein
subcellular localization. Proteins 64, 643-651. doi: 10.1002/prot.21018

Zhao, W., Li, G.-P., Wang, J., Zhou, Y.-K,, Gao, Y., and Du, P.-F. (2019).
Predicting protein sub-Golgi locations by combining functional domain
enrichment scores with pseudo-amino acid compositions. J. Theor. Biol. 473,
38-43. doi: 10.1016/j.jtbi.2019.04.025

Zhou, H., Yang, Y., and Shen, H.-B. (2017). Hum-mPLoc 3.0: prediction
enhancement of human protein subcellular localization through modeling
the hidden correlations of gene ontology and functional domain features.
Bioinformatics 33, 843-853. doi: 10.1093/bioinformatics/btw723

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Miao, Zhao, Li, Gao and Du. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org

120

December 2019 | Volume 10 | Article 1231


https://doi.org/10.1016/j.bbrc.2007.02.071
https://doi.org/10.1016/j.ab.2009.07.046
https://doi.org/10.1091/mbc.e02-08-0468
https://doi.org/10.1146/annurev.cellbio.12.1.27
https://doi.org/10.1016/S0143416002001896
https://doi.org/10.1186/1471-2105-13-290
https://doi.org/10.1371/journal.pone.0089545
https://doi.org/10.1371/journal.pone.0089545
https://doi.org/10.1002/pmic.201700262
https://doi.org/10.2174/1574893609666140212000304
https://doi.org/10.2174/1574893609666140212000304
https://doi.org/10.1016/j.jpdc.2017.08.009
https://doi.org/10.1002/prot.21018
https://doi.org/10.1016/j.jtbi.2019.04.025
https://doi.org/10.1093/bioinformatics/btw723
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

:\' frontiers
in Genetics

ORIGINAL RESEARCH
published: 10 January 2020
doi: 10.3389/fgene.2019.01319

OPEN ACCESS

Edited by:

Quan Zou,

University of Electronic Science and
Technology of China, China

Reviewed by:

Yuan Zhou,

Peking University, China

Wang Guohua,

Harbin Institute of Technology, China

*Correspondence:
Guoqging Wang
qing@jlu.edu.cn

Specialty section:

This article was submitted to
Bioinformatics and
Computational Biology,

a section of the journal
Frontiers in Genetics

Received: 20 October 2019
Accepted: 03 December 2019
Published: 10 January 2020

Citation:

Shao T, Pan J, Zhang S, Xin Z

and Wang G (2020) Application of
MCMC-Based Bayesian Modeling
for Genetic Evolutionary and Dynamic
Change Analysis of Zika Virus.

Front. Genet. 10:1319.

doi: 10.3389/fgene.2019.01319

Check for
updates

Application of MCMC-Based
Bayesian Modeling for Genetic
Evolutionary and Dynamic Change
Analysis of Zika Virus

Tong Shao', Jiahui Pan’, Shiwei Zhang', Zhuoyuan Xin" and Guoqing Wang "-#*

’ Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical
Science, Jilin University, Changchun, China, 2 The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin
University, Changchun, China

Zika virus was first discovered in 1947. For a long time afterward, no large-scale outbreaks
occurred. However, more recently, in 2007 and 2016, there were two episodes of ZIKV
outbreak that have produced serious public health problems. By analyzing the evolution of
the viral genome, we can understand the potential for its outbreak. In this study, we
constructed a maximum clade credibility (MCC) tree for the ZIKV non-structural protein 5
(NS5) gene using the Bayesian method. A total of 108 whole-NS5 sequences were
retrieved from the GeneBank. We carried out an analysis of potential glycosylation and
phosphorylation sites of the ZIKV virus NS5 gene and dynamic analysis of the evolutionary
characteristics of the gene. Phylogenetic analysis revealed the presence of two sequence
lineages: African and Asian. The sequence of the strains obtained from GeneBank has
high homology of 85% to 100%. There are 35 potential phosphorylation sites and
glycosylation sites in the ZIKV-NS5 sequences. This article analyzes the possible
causes of ZIKV virus outbreaks from the perspective of genetic evolution and analyzes
the dynamic trends of virus outbreaks to provide a theoretical basis for predicting the
outbreak of the virus.

Keywords: zika virus, NS5, evolution, dynamic changes, Bayesian method

INTRODUCTION

In 1947, Zika virus (ZIKV) was first isolated from a monkey in Zika forest, Uganda. (Dick et al.,
1952). ZIKV is a member of the virus family Flaviviridae and genus Flavivirus and is a mosquito-
transmitted virus. The virus particles are spherical, with diameters of about 40 ~ 70 nm. Zika virus
is a type of single-stranded, positive-sense RNA virus. The whole-genome length is about 10.8 kb,
and its single ORF encodes three structural proteins and seven non-structural proteins (NSI,
NS2A, NS2A, NS4A, NS4A, NS4B, and NS5) (Kuno and Chang, 2007). The nonstructural protein
5 (NS5) is necessary for genomic replication of zika virus. The N-terminal of NS5 contains
methyltransferase (MT), followed by the RNA-dependent RNA polymerase (RdRp).

Abbreviations: ZIKV, Zika virus; NS5, non-structural protein 5; MCC, maximum clade credibility.
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The methyltransferase domain at the N-terminal stabilizes the viral
RNA genome through 5' capping, while the RdRp domain at the end
of C-terminal is very important for the RNA replication of the virus
(Decroly et al., 2011; Lu and Gong, 2013; Zhao et al., 2015).

The main means of transmission of ZIKV is through Aedes
mosquito bites, perinatal transmission, sexual contact, and
blood transfusion (Besnard et al., 2014; Musso et al., 2014;
Franchini and Velati, 2016). Since the first discovery of Zika
virus in 1947, it has gradually spread to become a large-scale
problem in the world. The first strain isolated from Asia was
named “P6-740” and was isolated from Aededon in Malaysia in
1966 (Haddow et al.,, 2012). Molecular biology and
bioinformatics analysis showed that there are two subtypes of
ZIKV, the African and Asian lineages. However, from 1966 to
2007, confirmed cases were scarce, and there was no associated
sequence data regarding the Asian linkage. That was until 2007,
when 49 cases of ZIKV infection were confirmed in Yip Island
and became the first large-scale human infection event in
history (Duffy et al., 2009). Now, more than 30 countries have
reported ZIKV infections, and these infections have led to
multiple imported cases. The ZIKV epidemic has become an
important public issue of concern to the whole world (Gong
et al., 2016). Base variation, including base recombination,
conversion and deletion, will affect the codon usage pattern of
the virus, and changes in the codon usage pattern will affect the
encoded protein. It is reported that there are potential mutation
sites associated with microcephaly (Wang et al., 2017). Studies
have shown that envelope protein and NS1 protein of zika virus
are predicted to have glycosylation modification sites (Lanciotti
et al., 2008; Haddow et al., 2012; Faye et al., 2014). Recently, it
has been suggested that correlation between the polymorphism
of glycosylation sites and vectors has caused the evolution of
Zika virus (Faye et al., 2014). The prediction of viral mutation
sites and glycosylation sites is of great significance for
understanding the evolution of the virus and the spread of
the disease.

Bayesian Inference (BI) is based on using the evolutionary
model of sequence evolution to reconstruct the statistical method
of the system tree. The resulting tree not only reflects the best
estimate of the phylogenetic relationship but also provides the
exact support for the branch (Battaglia et al., 2016). Because of
the important function of the NS5 gene and the previous
construction of an evolutionary tree using the NS5 gene (Gong
et al., 2016; Shen et al, 2016), this article uses the Bayesian
method to analyze the evolution of the Zika virus NS5 protein,
with simultaneous analysis of possible mutation sites. The
research result provides a significant theoretical guide to the
prevention and treatment of the disease.

MATERIALS AND METHODS

Sequence Collection

The total of 108 NS5 gene sequences that had been added to
GenBank before October 2017 were downloaded for Bayesian
analysis. These gene sequences are the complete NS5 sequences.

The detailed sequence information is listed in Additional
Table S1.

Sequence Analysis and Comparisons

of NS5

The nucleotide sequences of Zika virus NS5 were analyzed using
DNASTAR Lasergen 7.0 software to compare their homology.

Analysis of Potential Protein

Modification Sites

We used the NetOGlyc 4.0 Server (http://www.cbs.dtu.dk/
services/NetOGlyc/) (Steentoft et al., 2013) to estimate the O-
glycosylation status of these NS5 sequences (Boon et al., 2016).
GlycoMine was used to predict the C-linked and N-linked
glycosylation (http://glycomine.erc.monash.edu/Lab/
GlycoMine/).

Analysis of the Obtained Viral Genome
Data by the Bayesian Method

The Bayesian analysis method was used to study the present
evolution rate and evolution model of the epidemic ZIKV strain.
The complete NS5 sequence alignment of the ZIKV was disposed
carefully with the Clustal W program in MEGA. The RDP3
recombination package was used to detect the recombination of
all the sequences. The saturation monitoring was also tested by
screening sequences with DAMBE software. If ISS <ISS.c, it means
that the sequence substitution is not saturated and meets the
requirements for building a phylogenetic tree using Bayesian
methods. Finally, the best evolution model was selected with
jModelTest software. BEAST v1.8.0 was employed under the GTR
+1+G model of nucleotide substitutions and with the Relaxed clock:
Uncorrelated Log-normal setting to perform 80 million MCMC
runs to construct a maximum clade credibility tree (effective
sampling size >200). The analysis was sampled at every 8000
states. Posterior probabilities were calculated with a burn-in of 8
million states. The analysis of the sampling data was output by
Tracer v1.6, and the Tree Annotator program was employed to
output the results of the MCC tree model. FigTree program was
then used to plot the MCC molecular evolutionary tree.

RESULTS

Homologous Comparison of Zika

Virus Sequences

Zika virus is a member of the family Flaviviridae and genus
Flavivirus and is a mosquito-transmitted virus. In the
phylogenetic tree, it is close to Dengue virus, Japanese
encephalitis virus, and West Nile virus;, the closest virus is
Spondweni (Figure 1). The Zika virus strains used in this
study were 108 strains collected from 20 districts. The results
showed that the nucleotide homology of the 108 strains of Zika
virus was between 85.4% and 100% and that some of them were
100% homologous. Twenty-four strains from the United States
(Figure 2A) and seventeen strains from Brazil are compared
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KX893855 Zika virus
KJ776791 Zika virus
KY785448 Zika virus
KY785426 Zika virus
MF438286 Zika virus
KY785474 Zika virus
KU681082 Zika virus
KU955595 Zika virus
DQB59064 Spondwen virus
{ NC 009942 West Nile virus

1 UF957179 West Nile virus
AF326573 Dengue virus type 4
M29095 Dengue virus type 2
AF038402 Dengue virus type 2

EF025110 Dengue virus type 1

AY496879 Dengue virus type 3

| FJB54700 Yellow fever vinus

L AF094612 Yellow fever virus
| KF283987 Chikungunya virus
| EU037962 Chikungunya virus

050

FIGURE 1 | Phylogenetic analysis of Zika virus, Dengue virus, Spondweni virus,
West Nile virus, Yellow fever virus and Chikungunya virus based on NS5 gene.

respectively (Figures 2B). We can see the homogeneity of the
twenty-four strains of the NS5 gene from the United States is
96.3%~100%, and there are many sequences of the strains of the
NS5 amino acid that have a homology of 100%. The same result
was found in the Brazil strains. The nucleotide homology of the

Brazil strains is 99.4%~100%. This result shows that the
mutation rate in the 108 strains is low and that the NS5 gene
is relatively conservative.

Prediction of Glycosylation Sites

We performed three types of glycosylation site prediction for
NS5 sequences of 100 strains. We used GlycoMine to predict C-
linked and N-linked glycosylation sites and NetOGlyc to predict
O-glycosylation. It can be seen from the results that there are 10
sites that are potentially modified by O-glycosylation (Figure
3), and the number of sites of N-linked and C-linked
glycosylation that may occur in different strains is not much
different (Figure 3). For example, comparing one strain of
KY014296 from Brazil with other strains from Brazil that lack
a C-linked site 654 (Figure 3), we can see in the sequence
alignment that the amino acid of the strain at this position is
arginine, whereas the amino acid of the other strains at this
position is tryptophan.

Recombinant Analysis of Virus Strains

In order to identify whether recombination occurs between
different strains in the same region, we used SimPlot to analyze
the sequences of different strains in the same region. As shown
in Figure 4, there is no recombination in the strains of Brazil.
The sequences of all of the NS5 genes were then grouped by
region, with the strains from the same region grouped together.
SimPlot was then used to verify the occurrence of
recombination events further. From Figure 4, we can see that
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FIGURE 2 | Homologous comparison. (A) Homology alignment analysis of 24 Zika strains from the United States using the DNASTAR software package.
(B) Homology alignment analysis of 17 Zika strains from Brazil using the DNASTAR software package.
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there is no recombination event in any of the sequences. The
above results indicate that no recombination occurred in the
selected strain sequences.

Evolutionary Tree Construction Based on
the Bayesian-Markov Chain Method

A total of 108 complete NS5 gene sequences were used in the
phylogenetic analysis. Samples were collected from 20 regions.
Although these strains were from 20 different regions, they were
eventually divided into two groups, the African lineage and the
Asian lineage. After 2015, the isolated strains were very close to
each other and the new outbreak strains selected in this study are
all Asian-type. Indicating that during this time, the NS5 gene
sequence of ZIKV was conservative. There is no extra genotype
from after the outbreak of the ZIKV epidemics in 2015 and 2016.
The recent outbreak was predominantly in Asia, and the

contemporary epidemics are dominantly evolved from Asian
strains. Neither the American strains nor the Brazilian strains
have a very specific genotype (Figure 5C). Moreover, among
these strains, there is no clear dividing line between the strains of
each country. As can be seen from Figure 5, strains from the
United States, Brazil, and the Dominican Republic are cross-
distributed in the phylogenetic tree, with the closest ancestor
being a tree root. Strains from Honduras, Nicaragua, and Mexico
are closely spaced, and these are the strains most distant from the
Africa linkage. From a temporal perspective, the kinship strains
we collected at different times from the same area were the most
recent. This shows that the strains in each region are from local
ancestors, and there is no cross-infection with other regions.
The Bayesian-Markov chain method was used to determine
the codon mutation rate of the Zika NS5 gene, and the BEAST
results were analyzed by Trace. The results showed that the
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codon mutation rates of the amino acids encoded of ZIKV NS5
were different, and, respectively, the mutation rates of the three
codons were 0.3695, 0.1596, and 2.4709 (Figures 6A). Thus, the
mutation rate of the third codon was the highest. Since the
mutation rate of the third codon is the highest and the codon has
degeneracy, some mutations do not change the amino acids of
the encoded protein, which makes the homology between the
Zika virus strains very high. These values indicate that during
this period, there was a base mutation of the NS5 gene, and this
may be associated with the recent outbreak of the Zika virus. The
geographical distribution of Zika viruses is steadily growing. As

FIGURE 5 | Phylogenetic analysis of Zika virus. (A) Evolutionary development of 24 strains of Zika virus NS5 genes from the United States. (B) Evolutionary
development of 17 strains of Zika virus NS5 genes from Brazil. (C) Evolutionary development of 108 strains of Zika virus NS5 genes.

can be seen from the skyline plot (Figure 6), the effective size of
the Zika virus has decreased since its discovery, but it also
increased somewhat in 2015, coinciding with the Zika
virus outbreak.

DISCUSSION

The Zika virus, which was discovered in 1947, returned 70 years
after its discovery, unexpectedly appearing in the Pacific Islands
and Latin America. Pathogenic changes, including microcephaly
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A
Summary Statistic CPl.mu CP2.mu CP3.mu
Mean 0.3695 0.1596 2.4709
95% HPD lower 0.2976 0.1133 2.3819
95% HPD upper 0.4482 0.2111 2.5546
Effective sample size (ESS) 7300.39 8101 7532.37
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FIGURE 6 | Zika virus NS5 codon mutation rate and skyline plot (A, B). The codon mutation rate of the Zika virus NS5 gene was estimated by the Bayes-Markov
chain method. The codon mutation rate is the result of a BEAST run using Trace analysis. (C) Dynamic study of Zika virus NS5 gene genetic diversity by Bayesian
skyline plot. The thick solid line is the median estimate, and the dotted line shows the 95% confidence interval. The abscissa is time, and the ordinate is the effective
population size. The curve shows that the Zika virus NS5 gene has been in a stable state and the population gradually began to grow in 2015.

and Guillain-Barre syndrome, have caused widespread concern.
One possible reason for this is the objective environmental
conditions of an increased global population and an increased
mosquito vector population (Pettersson et al., 2016; Shi et al.,
2018). Another possibility is that amino acid substitution occurs
that affects the rate of transmission and the pathogenicity of the
virus. The effect of amino acid substitution on pathogenicity has
been reported previously. For example, it was found that there
was a substitution from S to N at position 139 of the prM protein
before the French Polynesian outbreak of 2013 and that the
subsequent strains in the Americas were all 139N. In vitro
experiments showed that amino acid substitution enhanced
infectivity and induced more severe microcephaly. Interaction
between the virus and the host can lead to different infection
outcomes (Yuan et al., 2017). Yang Liu et al. showed that
spontaneous mutations on NS1 proteins increase their own
antigenemia (Liu et al, 2017). Hongjie Xia et al. believe that
mutations in Zika NSI1 protein increase the body's ability to
evade the immune response and increase the possibility of
infection and epidemic (Xia et al., 2018). The replacement of
one amino acid site has the potential to improve pathogenicity
and transmission efficiency, which may explain why Zika virus
has re-emerged after so many years. This is of great significance
to study this mutation.

Compared with other gene fragments, NS5 and envelope gene
fragments still had higher variability, although the non-structural
proteins NS3 and NS5 were relatively conserved compared with
other gene fragments according to homologous modeling
analysis (Koh, 2014; Mazeaud et al., 2018), which in turn
affects the genetic stability of the protein, making it easier for
the virus to invade the human body (Yuan et al., 2015). We can
observe an obvious cluster of NS5 genes consisting of only
Chinese strains (Figure 4 red), and the genetic distance
between Chinese strains and French Polynesian strain is small.
In 2013, a study showed that this strain from China and the Latin
American strains have a common ancestor. (Faria et al., 2016).
This suggests that this Chinese lineage may have evolved from an
ancestor that erupted in the Pacific islands in 2013. Asian strains
form an independent cluster, and the recent outbreaks of the
Zika virus are of Asian lineage, indicating that Asian strains are
more diversified than African Zika virus strains. There is a
certain degree of mutation in the NS5 genes of Zika virus
strains collected from Brazil and the United States. However,
these mutations did not alter the glycosylation and
phosphorylation sites of the NS5-encoded protein, suggesting
that though there are mutations in the NS5 gene, these mutations
did not impair the stability of the virus, and the protein structure,
which plays an important role in the protein structure, remained
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stable. From Figure 5, we can see that the mutation rate of the
third codon is the highest. Because of the degeneracy of the
codon, mutations that occur on the third codon may not cause
amino acid changes, which could explain why the various
glycosylation and phosphorylation sites did not change after
mutation. Glycosylation sites in the Zika virus genome display
polymorphisms and may have adaptive value in evolutionary
processes (Singh et al., 2016). It has been reported that Zika virus
has a loss of glycosylation sites (Hanna et al., 2005; Lee et al.,
2010). Mutations at amino acid sites play an important role in
the pathogenicity of Zika virus, so analysis of the virus evolution
is critical to better understand the pathogenesis of viral infection
and the variability of its clinical phenotype.

The data we selected included the NS5 protein sequence of the
Zika virus that broke out in 2016 and previously. The relatively
stable NS5 gene nucleotide sequence will provide a great
opportunity to develop a vaccine for this disease. We predicted
the dynamic phylogenetic trends, which indicate the outbreak
trends of ZIKV and provide theoretical foundations for clinical
prevention. The potential glycosylation and phosphorylation
sites of the NS5 gene were predicted and discussed in
conjunction with existing functional assays.
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mMiRNA plays an important role in many biological processes, and increasing evidence
shows that miRNAs are closely related to human diseases. Most existing miRNA-disease
association prediction methods were only based on data related to miRNAs and diseases
and failed to effectively use other existing biological data. However, experimentally verified
miRNA-disease associations are limited, there are complex correlations between
biological data. Therefore, we propose a novel Three-layer heterogeneous network
Combined with unbalanced Random Walk for MiRNA-Disease Association prediction
algorithm (TCRWMDA), which can effectively integrate multi-source association data.
TCRWMDA based not only on the known miRNA—disease associations, also add the
new priori information (INCRNA-mMIiRNA and IncRNA-disease associations) to build a
three-layer heterogeneous network, INCRNA was added as the transition path of the
intermediate point to mine more effective information between networks. The AUC value
obtained by the TCRWMDA algorithm on 5-fold cross validation is 0.9209, compared with
other models based on the same similarity calculation method, TCRWMDA obtained
better results. TCRWMDA was applied to the analysis of four types of cancer, the results
proved that TCRWMDA is an effective tool to predict the potential miRNA-disease
association. The source code and dataset of TCRWMDA are available at: https://
github.com/yIm0505/TCRWMDA.

Keywords: miRNA-disease association prediction, three-layer heterogeneous network, unbalanced random walk,
LncRNA, Laplace normalization

INTRODUCTION

MiRNAs are widely found in eukaryotes and regulate the expression of other genes. miRNA is very
important for the control of animal development and physiology (Victor, 2004). miRNA is involved
in regulating cell differentiation (Lee et al., 1993)and plays an important role in many biological
processes, including cell cycle progression and apoptosis (Brennecke et al., 2003). Mutations and
biogenic dysfunction of miRNA and disorders of miRNA and its targets may lead to a variety of
diseases. Calin et al. published the first study that microRNAs linked to cancer in 2002, there was a
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significant association between decreased levels of both miRNAs
and chronic lymphoblastic leukemia, suggesting a potential
relationship between miRNA and cancer (Calin et al, 2002).
miRNA is an important factor in tumorigenesis, and the artificial
regulation of some miRNAs may lead to the occurrence or
apoptosis of tumors, which depends on the regulation of
miRNA (Yang et al, 2009). With the development of miRNA
research, the association between miRNA and disease has been
extended to many types of cancer, including leukemia and lung
cancer (Johnson et al., 2005; Bandyopadhyay et al., 2010), breast
cancer, and colon cancer (Michael et al., 2003), and so on,
exploring the relationship between miRNA and disease has
become the subject of many kinds of cancer research. More
and more evidence proving that miRNA is closely related to
diseases, understanding relationships between miRNA and
disease is conducive to understanding the pathogenesis of
diseases at the molecular level, but more importantly is
conducive to prognosis, diagnosis, evaluation, treatment, and
prevention of diseases and the promotion of human medical
progress. Traditional experiments are costly, time consuming,
and only suitable for small-scale data, with the development of
biology, mass biological data about miRNA have been generated.
There is an urgent need to develop a powerful computational
method to predict the potential disease-related miRNAs, possible
candidate miRNAs with higher prediction score were obtained
by computational methods can reduce the time and cost of
biological experiment.

In the early research methods of miRNA-disease association
prediction, under the assumption that functionally related
miRNAs are often related to diseases with similar phenotypes
(Lu et al.,, 2008), A computational model based on
hypergeometric distribution to predict the miRNA-disease
association was proposed (Jiang et al., 2010), and constructed a
heterogeneous phenome-microRNAome network for human
phenome-microRNAome by combining the miRNA functional
similarity network and the disease phenotype similarity network
with the known miRNA-disease association, However, this
method relies on the neighbor point information of the
predicted miRNA, and the false positive and false negative
rates are relatively high, so the prediction accuracy of this
method is not high. With the development of miRNA-disease
research, the restart random walk algorithm was used to predict
the miRNA-disease association (RWRMDA) based on the
similarity model, which is the first to use the global network to
predict miRNA-disease association (Chen et al., 2012b). A
restart random walk was performed on the MiRNA functional
similarity network to predict potential MiRNA disease
interactions, but RWRMDA did not work on any known
related MiRNA disease. A semi-supervised classification
method RLSMDA to predict the potential miRNA-disease
association based on regularized least squares is proposed
(Chen and Yan, 2015), RLSMDA is a semi-supervised model
that does not require negative samples and a global approach
that prioritizing the association of all diseases at the same time.
Combined Within-Score with Between-Score for miRNA-disease
association prediction (WBSMDA) was proposed (Chen et al.,

2016), WBSMDA based on the basis of known miRNA-disease
association data and assuming that miRNAs with similar
functions are more likely to be associated with diseases with
similar phenotypes may lead to bias (preference) on miRNAs
with more known diseases, In addition, the accuracy of the
model is still not very high. Then, a KNN model based on rank to
predict potential related miRNAs for diseases (RKNNMDA) was
proposed (Chen et al., 2017), which based on miRNA functional
similarity, disease semantic similarity, Gaussian interaction
profile kernel similarity and known miRNA-disease
association. In RKNNMDA, k-nearest neighbor algorithm was
used to search k-nearest neighbor of miRNA and disease, and
these k-nearest neighbors were reordered and reweighted
according to the support vector machine model to obtain the
final predicted results. Random walk has also been further
developed in the prediction of miRNA-disease association. The
random walk technique has also been developed in association
prediction, unbalanced bi-random walk on the heterogeneous
networks (BRWH) based on RWR was proposed (Luo and Xiao,
2017) to predict the miRNA-disease Association. From the
matrix, making use of matrix completion algorithm
(MCMDA) to update the adjacency matrix based on the
known miRNA-disease association data to predict its potential
association proposed in (Li et al,, 2017). In 2018, there is a
KATZMDA model for miRNA-disease association prediction
(Qu et al., 2018), which based on KATZ model to calculate
miRNA similarity and disease similarity to predict the
association between miRNA and disease, and KATZMDA
yields better results than the previous algorithms mentioned.
Based on the idea of MCMDA, a new induction matrix
completion model (IMCMDA) for MiRNA-Disease
Association prediction was proposed (Chen et al., 2018).
Different from MCMDA, IMCMDA uses disease similarity and
miRNA similarity as the characteristics of disease and miRNA to
complete the missing miRNA-disease association. Recently, a
kernel-based soft-neighborhood similarity model combined with
similar network fusion for miRNA-disease association prediction
was proposed (Ma et al, 2018a). The improvement of the
similarity model improves the accuracy of predicting miRNA-
disease. Ha et al. predict miRNA and disease associations based
on matrix decomposition, which has been widely used in
recommendation systems (Ha et al., 2019). Based on the
heterogeneous network of miRNA and disease, structural
perturbation method is also applied to the prediction of
miRNA-disease correlation, and the final perturbed matrix
represents the correlation score between the two (Zeng et al,
2018). However, these methods mentioned above only
considered the miRNA-disease association data sets and
functional similarity, without extracting more information
from other data sets related to them to improve the accuracy
and reliability of the model.

With the development of biomedicine, the number of
biological databases increases, and the association between
biological data is gradually excavated, which enables us to
combine different information from different databases to
reliably predict the miRNA-disease association. In view of the

Frontiers in Genetics | www.frontiersin.org

131

January 2020 | Volume 10 | Article 1316


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Yu et al.

Heterogeneous Network and Unbalanced Random Walk

limitations of the above methods, in this paper, we put forward a
novel prediction model of three-layer network combining
unbalanced random walk for miRNA-disease association
prediction (TCRWMDA). Based on the known associated data
of miRNA-disease, IncRNA-miRNA and IncRNA-disease,
TCRWMDA build a three-layer heterogeneous network and
performs unbalanced random walk between networks and on
heterogeneous networks to obtain the final prediction results.

To evaluate the effectiveness of the TCRWMDA, we
compared it with other classical and advanced algorithms
based on the same similarity measure on 5-fold cross-
validation. In addition, compared with the latest model based
on the kernel-based soft neighborhood network fusion similarity
model. In order to verify the applicability of TCRWMDA
algorithm, four diseases were studied by TCRWMDA
algorithm. Experimental results and case studies show that this
method can be effectively used to predict the potential
association between miRNA and disease.

MATERIALS AND METHODS
The Dataset

The associated data sets used in this article are from (Chen,
2015). The dataset mainly consists of three association data sets.
First, miRNA-disease association data set is from HMDDV2.0
(Li et al., 2013), finally, 5,430 miRNA-disease associations were
obtained, including 383 diseases and 495 miRNAs. A represents the
known association between miRNA and disease, A(i,j)=1. denotes
miRNA m(i) is related to disease d(j), otherwise, A(i,)=0.

A(i,j) = {

Second, the IncRNA-miRNA association dataset was derived
from the star-base v2.0 database (Yang et al, 2011). Repeated
associations of different evidences were deleted, as well as the
IncRNA-miRNA associations that did not exist in 5,430 known
miRNA-disease associations and their corresponding IncRNA-
miRNA associations in the IncRNA-disease association. Finally,
704 IncRNA-miRNA associations were obtained. B represents the
known relationship between IncRNA-miRNA, B(i,j)=1 represents
miRNA m(i) is related to IncRNA I(j),otherwise, B(i,j)=0.

B(i,j) = {

Third, the IncRNA-disease association data set in the IncRNA
Disease database (Geng Chen et al., 2012a) was downloaded, and
the repeated association of different evidences and the
association of IncRNA-disease related to the disease or IncRNA
were removed. After removing the data of diseases not shown in
the above data set, 182 IncRNA-disease associations of 34
IncRNAs were finally obtained. C represents association matrix
between IncRNA and disease, C(i,j)=1 denotes IncRNA (i) is
related to disease d(j), otherwise, C(i,j)=0.

1, if miRNA m(i) is associated with IncRNA I(j)

0, otherwise

1, if miRNA m(i) is associated with IncRNA 1(j)

0, otherwises

1, if IncRNA I(i) associated with disease d(j)

C(i,j) = {

TCRWMDA

Based on the idea of unbalanced bi-random walk, we proposed
three-layer heterogeneous network combined with unbalanced
random walk for miRNA-disease association prediction
algorithm. TCRWMDA algorithm includes three random walks,
including the random walk on miRNA-miRNA network, disease
similarity network, and the mapping relationship of miRNA-
IncRNA-disease. Figure 1 shows the flow chart of TCRWMDA
algorithm to predict miRNA-disease association. In the dotted
black box above Figure 1, blue dots represent miRNA, yellow dots
represent disease, and red dots represent IncRNA. A three-layer
heterogeneous network consist of the similar networks formed by
same color nodes with straight lines and the heterogeneous
networks formed by nodes of different colors with dotted lines.
The similarity measure can be obtained by calculating the
similarity of association data, the similarity measure was use to
obtain the transition probability matrix by Laplace normalization,
finally, TCRWMDA algorithm using the transition probability
matrix to unbalanced random walk on heterogeneous network to
get the potential association scores between the disease and its
associated miRNAs and sorting. The feasibility and effectiveness of
the algorithm is verified by whether the predicted results already
exist in the existing database.

0, otherwise

Construction of Similarity Networks

The similarity networks in this paper consist of IncRNA
similarity network, Disease similarity network, miRNA
similarity network.

IncRNA Similarity Network

Genes can be mutated, inserted and deleted, it is difficult to
achieve a complete match of two sequences, so we use sequence
information as its feature. We extract the sequence features by
considering sequence composition (Zhang et al, 2018). For
IncRNA sequences, we calculated the proportion of four
nucleotide types (A, C, G, T) and 16 dinucleotide types (AA,
AG, AC...) in each IncRNA sequence, every IncRNA (i) can get a
20-dimensional eigenvector, where (i) is its component, named
as IncRNA sequence composition. The sequence data of 34
selected IncRNA were downloaded from LNCipedia5 (Volders
etal,, 2019). Use cosine similarity method to calculate the IncRNA
similarity sI, the formula of IncRNA similarity is as follows:

SELG) x £()
VERLO) < [SELG)

sl(i,j) =

Disease Similarity Network
In this paper, we used the same method as in literature (Wang
et al., 2010) to calculate the disease similarity.

Disease semantic similarity model 1: Directed acyclic graph
(DAG) was constructed to describe the disease based on MeSH
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FIGURE 1 | Flow chart of TCRWMDA algorithm. The steps of TCRWMDA for the association prediction between miRNA and disease are divided into four stages: the
construction of similarity network, the calculation of transition probability matrix and the random walk on the three-layer heterogeneous network. Finally, the final prediction
score is obtained to analyze the association probability of a certain disease and a certain miRNA. In the black dotted box is the construction of similarity network, which
are based on association data and related data from the available database. The red dotted line shows that an unbalanced random walk on a three-layer heterogeneous
network.

descriptor downloaded from national library of medicine
(Lipscomb, 2000) (http://www.nlm.nih). According to DAG, SS1(d(i), d(j)) = EdET(d(i))ﬁT(d(j)) (Dld(i)(d) +D1d<j)(d))

the contribution of disease d to the semantic value of disease d DV1(d(i)) + DV1(d(}))
DAG (d) is expressed as: Disease semantic similarity model 2: It is unreasonable to give
Dlp(d) =1 if d=D the same contribution value for diseases in the same layer of

DAG (D). Therefore, according to the model proposed by Xuan
et al., we define the contribution of disease d to the semantic

D1p(d) = {AxD1p(d')|d’ E children of d}if d =D

A denotes attenuation coefficient of semantic contribution. value of disease d in DAG (d) as follows:
The self-semantic value of disease D was defined as follows: Das(d) = -Io the number of DAGs including d
DV1(D) = > serp)D1p(d) pid) =08 the number of diseases

Where T(D) represents all ancestor nodes of D and D itself. We define the semantic similarity of diseases d(i),d(j) as the
Based on the assumption that the two diseases share a large part ratio of share ancestor node contributions to all ancestor node
of DAG and their semantic similarity is large, the semantic contributions. The semantic similarity model 2 is calculated
similarity between disease d(i). and disease d(j) can be defined as: as follows:
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der(

$82(d(i), d(j)) = sz(d( i) + sz(d( i)

Among them,

DV2(D) = EdeT(D)DzD(d)

miRNA Similarity Network

Wang et al. (2010) proposed the method of MISIM and miRNA
functional similarity based on the hypothesis that miRNAs with
similar functions are more likely to be associated with diseases
with similar characteristics. The miRNA function similarity data
downloaded from http://www.cuilab.cn/files/images/cuilab/
misim.zip. We use FS(m(i),m(j)) to represent association score
between miRNA m(i) and miRNA m(j)

Gaussian Kernel Similarity

Based on the basic assumption that similar diseases are often
associated with miRNAs with similar functions (Wang et al.,
2010), we calculated the Gaussian kernel similarity for miRNA
and disease to obtain the miRNA similarity and disease
similarity. First, we use vector IP(d(i)) to represent there is or
is not an association between each miRNA and disease d(i) and
regard IP(d(i)) as interaction profile of the disease d(i), then, the
gaussian interaction profile kernel similarity between disease d(i)
and d(j) was calculated:

kd(i,f) = exp(=v IIIP(d( ) -
EHIP

Y4 controls kernel bandwidth. Similarly, the Gaussian kernel
similarity between disease m(i) and disease m(j) can be obtained
as follows:

IP(d() |I°)

n—m/ I

km(i, ) = exp(=, || IP(m(i)) — IP(m(j)) | )
, 1 nm . )
ymzym/(—nmglllP(m(z))ll )

Integrated Similarity for Diseases and miRNAs

We could not obtain the DAGs of all diseases, that is, for a
specific disease without DAG, we could not calculate the
semantic similarity score of this disease with other diseases.
Therefore, for the disease pairs with semantic similarity score, we
used the semantic similarity score to express the disease
similarity, and for other disease pairs, we used the gaussian
kernel interaction profile similarity to represent the disease
similarity. The disease similarity matrix of disease d(i) and
disease d(j) was constructed as follows:

SSI<d(i>’d(j));rssz<d<i>’d(j>) d(i) and d(j) has semantic
sd(i,j) = similarity
kd(d(i),d(j)) otherwise

Similarly, the similarity matrix of miRNA can be obtained:

[ ES(m(i),m
sm(i,j) = {km(m(i),m(j))

The similarity between the two miRNAs is the weight of edge
in the miRNA similarity network, in the same way, the similarity
between the two diseases is the weight of edge in the disease
similarity network.

(j)) ml(i) and m(j) has functional similarity

otherwise

Calculation of Transition Probability Matrix
To perform a random walk on three-layer heterogeneous
networks, the state transition between networks must be
considered and transition probability matrix needs to be
created. To calculate the transition probability in the miRNA
similarity network, we make use of the Laplace normalization
(Zhao et al., 2015) to calculate transition probability matrix in
the miRNA similarity network, and the exit degree of nodes and
the entry degree of nodes were taken into account.

Laplace normalization: Assuming that Z=[(i,j)],i,j=1,2,...,N is
a symmetric matrix, Y is a diagonal matrix, defined as: Y (i,i) is
the sum of the i row of Z, When i is not equal to j,Y (i,)=0.
Matrix normalization: Z=Y"?AY"? also a symmetric matrix,
The elements in can be defined as:

Z(irj)
Y (i)Y (j.j)
Then the transition probability matrix M in the miRNA
similarity network can be expressed as:

1f25m(1 ])andzsm(z ) #0

Z(i, j)

sm(i,f)
\/2 sm(i, ) smi, )

0

M(i,j) =
otherwise

Similarly, we can obtain the transition probability matrix D
and L in the disease similarity network and IncRNA similarity
network as follows:

sd(i) lesd(z ])andgsd(z N#0
D j) = \/2 sd(i, ) > sd(i, )
0 otherwise
sli,) if sl(i, and > sl(i, j) = 0
oy | VA F

0 otherwise

TCRWMDA Algorithm Process

Specifically, TCRWMDA algorithm can be divided into two
parts: one is random walk on heterogeneous networks, and the
other is random walk between networks. Table 1 introduces the
process of TCRWMDA algorithm in predicting miRNA-disease
association, and Table 2 introduces the process of unbalanced
random walk between networks.

Random Walk on Three-Layer Heterogeneous Networks
Where MD represents the predicted correlation matrix between
miRNA and disease, MD' represents t-step random walk were
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TABLE 1 | The description of the TCRWMDA algorithm.

Algorithm 1 TCRWMDA (Random Walk on three-layer heterogeneous
network)

Input: Transition probability matrix M, D, L; Initial association matrix A, B, C;
Parameter o, A, B, /, 1, s.

Output: Predicted miRNA-disease association matrix MD

: MD° =A/sum(A)

. for t=1to max (, r)

MD'=MD

s if t</ then

:MDly = o0 x M x MD'™" + (1 - 0) x [A x BNetWalk(B,C,L,B,S) + (1 — &) x A
rendift <rthen

7 MDﬁ,g,,, =ax MD"™" x D+(1-0) x [A x BNetWalk(B,C,L,8,S) + (1 =) x A
8:MD' = 8 x MDjegy + 8o x MDlyigpy

9: end for

10: return MD

o g wWN =

E is identity matrix, if <x, &<y is 1, and O otherwise.

TABLE 2 | The description of the BNetWalk algorithm.

Algorithm 2 BNetWalk (Random Walk between networks)

Input: Transition probability matrix L; Initial association matrix B and C;
parameter B,s

Output: Predicted miRNA-disease association matrix R
: ML =B/sum(B), LD® =C/sum(C)

cfort=1tos

R'=R

ML'=B xML""xL+(1-xp)xB

LD'=B xLxLD""+(1-xB)xC

: R=ML'xLD'

. end for

creturn R

performed MD, A, B, C denotes matrix of prior knowledge.
TCRWMDA algorithm has six parameters: o, 3, , r, s. [, 1. s
represents the number of steps random walk on miRNA-miRNA
network, disease-disease network and networks respectively. o
controls network walk or return to the proportion of prior
knowledge; The function of A is to provide a new priori
knowledge, there is a linearly combination of the new state
form by a random walk between networks and the known
initial state by A. That is, if the current particle is in the
miRNA network, then the particle has probability of o to
perform the [-step random walk in the miRNA network, to
perform the [-step random walk (1-0)xA perform the s-step
random walk into disease network, and has probability of (1-
)%(1-A) to return the start node. If the current particle is in the
disease network, then the particle has probability of o to perform
the r-step random walk in the disease network, has probability of
(1-a)xA perform the s-step random walk into miRNA network.

Random Walk Between Networks

ML represents the predicted association score between miRNA
and IncRNA, while LD represents the probability matrix of
disease generation on IncRNA. B notes the probability of
controlling the random walk on the IncRNA network or

returning to prior knowledge during random walk among
networks. R represents the miRNA-disease association matrix
formed through Random Walk between networks.

ML' and LD’ represents t-step random walks were performed
ML and LD, respectively. In equation (18), the association matrix
between miRNA and IncRNA is multiplied by the right
transition probability matrix L on the IncRNA network, which
represents a random walk on IncRNA network to update ML.
Similarly, the left multiplication probability transition matrix L
represents a random walk on IncRNA network to update LD,
finally, we can obtain association between miRNA and disease.

RESULTS AND ANALYSIS

Parameter Analysis
Receiver operating characteristic curve (ROC curve) takes true
positive rate (sensitivity) as the vertical coordinate and false
positive rate (1-specificity) as the horizontal coordinate. The area
under the ROC curve is the AUC value, which can be used as the
evaluation index to intuitively evaluate the classifier. The higher the
AUC value, the better the performance of the algorithm. In the
process of parameter selection, AUC value is selected as the index to
evaluate the influence of parameters. For an algorithm, if the
parameters are set with different values, it corresponds to different
models. For which model to choose, the best way is to use the model
with the minimum generalization error. However, it is generally
impossible to directly obtain the generalization error of the model,
we select the model parameter when the AUC value is the largest.

TCRWMDA has six parameters, set step size of o, B and A is
0.1, with values ranging from 0 to 1. For [, r and s, set the step size
to 1 and the value range to 1-5. The known association between
495 miRNAs and 383 diseases verified by 5-fold cross validation.
First, fix some parameters, change the value of a parameter, and
then the influence of parameters on the model performance was
determined according to the change of AUC value. In the process
of parameter selection, the value of s was changed in the
experiment, and the AUC value did not change much. The
increase in the number of steps in the network could not
provide us with more information, and the information that
could be mined was limited. Moreover, the larger s was, the
higher the algorithm complexity, and the performance of the
model barely changed as s increased, so we set s = 1 in this paper,
which also indicates that the data volume in the IncRNA data set
is too small to provide more network structure information.

Change the values of [ and s and fix other parameters. The
change result of AUC is shown in Figure 2. For parameters [ and
1, the results are significantly better when [ > r than when I < r.
Fixed I, with the increase of r, the AUC value decreased
significantly, which indicated that excessive walking on the
disease network would lead to a certain false positive, and the
overall performance decreased. According to the results of
parameter analysis, we set / = 1 and r = 1.

Next, fix I = 1, r = 1, s = 1, Change the values of 0., 8, and A,
the experimental results are shown in Figure 3. o denotes restart
probability, when o = 0, only random walk between networks
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FIGURE 2 | Effects of parameters | and r on the result of 5-fold cross
validation. (@=0.1, B=0.1, s=1, A=0.9). When the value of o, B, s, and A are
fixed, the AUC value is maximized when / and r are both equal to 1.

played a role, ignoring the random walk between the miRNA
network itself and the heterogeneous network on the disease
network. Therefore, the results of the model were not ideal, but
the remaining values of AUC were 0.9205~0.9209, with no
significant fluctuation. When B = 0.1, the AUC value is the
maximum and the model performance is the best. When the
parameter B is larger, the probability of prior knowledge is
reduced. The known association information is gradually
ignored, and the results presented are reduced, which indicates
that the known association information plays an important role
in the algorithm itself and cannot be ignored. Parameter A has
little influence on the model, when A = 0.9, AUC is the largest.
From what has been discussed above, we select[=1,r=1,s=1,
a=0.1,B=01%=09.
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0.93 . .
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FIGURE 3 | Effects of parameters o, B and A on the result of 5-fold cross
validation. (=1, r=1, s=1). When a=0, AUC value is the lowest. In this case,
only the random walk between the networks is at work. AUC is relatively
stable with the variation of parameters  and A.

Algorithm Performance Comparison

In this paper, we take the AUC (Area under Curve) value as the
evaluation index, all known miRNA-disease associations were
divided into five groups of the same size, four of which were used
as training set for model learning, then, the similarity calculation
method mentioned above was used to calculate miRNA and
disease similarity, we compare TCRWMDA with IMCMDA
(Chen et al,, 2018), RWRMDA(Xing Chen et al., 2012),
KATZMDA (Qu et al., 2018), BRWH (Luo and Xiao, 2017) for
5-fold cross validation. The results of TCRWMDA and other
methods for 5-fold cross validation are shown in Figure 4. True
positive rate (sensitivity) is the percentage of a test sample ranked
above a given threshold. False positive rate (1-specificity) is the
percentage of samples below the threshold. In this paper, for the
specified threshold, the true positive rate is the percentage that
accurately predicts the miRNA associated with a known disease,
and the false positive rate is the percentage that predicts the
miRNA unrelated to the disease. When AUC = 1, the
performance of the model is the best. When AUC = 0.5, it
indicates that the classification method is completely ineffective
and has no classification value.

It can be seen from Figure 4, the area under the ROC curve of
TCRWMDA algorithm is the largest, that is, the prediction
performance of this algorithm is better than other methods.
The AUC values obtained by IMCMDA (Chen et al, 2018)
(Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen
et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al,,
2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018)
(Chen et al,, 2018), RWRMDA, KATZMDA, BRWH, and
TCRWMDA on 5-fold cross validation are respectively
0.8351, 0.8676, 0.9088, 0.9106, 0.9209. The AUC value of
the TCRWMDA algorithm was 1.3% higher than that of the
BRWH, which indicates add new related dataset and perform a
random walk on constructed multi-layer network and then is
effective. TCRWMDA is 10.3% better than IMCMDA, 6.1%
better than RWRMDA, and 1.1% better than KATZMDA.

—— TCRWMDA(AUC=0.9209)

RWRMDA(AUC=0.8576) | 7
——— KATZMDA(AUC=0.9088)
—— BWRH(AUC=0.9106) i
— IMCMDA(AUC=0.8351)

. . . . . . . . 1
03 0.4 : 06 07 08 09 1
False positive rate

FIGURE 4 | The AUC value of TCRWMDA and other methods for 5-fold
cross validation.
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Based on Kernel-Based Soft-
Neighborhood Network Fusion

Similarity Model

Ma et al. considered the distance factor and the reconstruction
relationship between samples to establish the nuclear soft
neighborhood similarity model (Ma et al., 2018b), and combined
the nuclear soft neighborhood similarity matrix of miRNA (disease)
with the functional similarity (disease semantic similarity) of
miRNA using similarity network fusion (SNF) (Wang et al,
2014), proposed kernel-based soft-neighborhood network fusion
similarity model, and obtained good results. The following analysis
based on kernel-based soft-neighborhood network fusion similarity
model. After parameter analysis, the final selectionisI=1,r=1,s =
1, o=02B=0.14=09.

Figure 5 shows the results of TCRWMDA and LKSNF soft
neighborhood network of nuclear fusion based similarity model
on 5-fold cross validation. In Figure 5, the red solid line
represents the result of TCRWMDA algorithm for 5-fold cross
validation, the green dotted line represents the result of
TCRWMDA algorithm based on kernel-based soft-
neighborhood network fusion similarity model, and the black
dotted line represents the result of the LKSNF algorithm on 5-
fold cross-validation. Based on kernel-based soft-neighborhood
network fusion similarity model, the AUC value of the
TCRWMDA algorithm is improved by 0.99%. However, the
association data of IncRNA-miRNA and IncRNA-disease are
sparse, the number of IncRNAs that can be considered is also
small, resulting in a certain deviation in the prediction results,
the AUC value obtained by TCRWMDA algorithm is almost the
same as that obtained by LKSNF algorithm.

Case Study

Globally, breast cancer is the most common cancer in women,
accounting for 25% of all cancers in women. In 2012, there were
1.68 million cases of breast cancer and 520,000 deaths due to

ROC
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09} P 4
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FIGURE 5 | The AUC value of TCRWMDA and LKSNF for 5-fold cross
validation based on kernel-based soft-neighborhood network fusion similarity
model.

breast cancer. Mir-200c inhibits the growth and differentiation of
cancer cells, and strongly inhibits the ability of normal breast
stem cells to form mammary ducts and human breast cancer-
driven tumorigenesis in vivo (Shimono et al., 2009). In addition,
miRNA may be abnormally downregulated or upregulated in
colon cancer tissues. In 2003, the first study on miRNAs was
published in colon cancer (Michael et al., 2003), identifying mir-
143 and mir-145 as new misaligned miRNAs in colon cancer.

In order to further prove the predictive performance of
TCRWMDA in predicting miRNA-disease association, we used
TCRWMDA algorithm to carry out analysis of breast cancer and
colon cancer, as shown in Tables 3 and 4.

The predicted results were verified by dbDEMC database
(Yang et al., 2017) and HMDD (Li et al., 2013), for breast tumor
diseases, 44 of the first 50 predicted miRNAs were verified in
dbDEMC and 45 of the top 50 predicted colon tumor diseases
were verified by dbDEMC. In order to enhance the persuasion,
we also listed two other cases (lung neoplasms and lymphoma),
whose prediction results were verified as shown in the
Supplementary Tables 1 and 2.

CONCLUSION

With the development of bioinformatics, more and more
experiments and evidence show that miRNA is closely related
to the generation and development of human diseases, and the
discovery of miRNA that may be related to diseases has attracted
much attention. The experiment is time-consuming and costly,
the new and effective miRNA-disease association prediction

TABLE 3 | The top 50 potential miRNAs predicted by TCRWMDA for breast
neoplasms and their associations confirmed by database (column 1: top 1-25;
Column 3: top 26-50).

miRNA Evidence miRNA Evidence
hsa-mir-106a dbDEMC hsa-mir-454 dbDEMC
hsa-mir-130a dbDEMC hsa-mir-421 dbDEMC
hsa-mir-15b dbDEMC hsa-mir-181d dbDEMC
hsa-mir-150 dbDEMC hsa-mir-216a dbDEMC
hsa-mir-192 dbDEMC hsa-mir-330 dbDEMC
hsa-mir-142 unconfirmed hsa-mir-451 dbDEMC
hsa-mir-130b dbDEMC hsa-mir-544a dbDEMC
hsa-mir-372 dbDEMC hsa-mir-181c dbDEMC
hsa-mir-196b dbDEMC hsa-mir-198 dbDEMC
hsa-mir-98 dbDEMC hsa-mir-376a dbDEMC
hsa-mir-92b dbDEMC hsa-mir-211 dbDEMC
hsa-mir-30e unconfirmed hsa-mir-363 dbDEMC
hsa-mir-32 dbDEMC hsa-mir-455 unconfirmed
hsa-mir-186 dbDEMC hsa-mir-490 unconfirmed
hsa-mir-99b dbDEMC hsa-mir-494 dbDEMC
hsa-mir-424 dbDEMC hsa-mir-381 dbDEMC
hsa-mir-212 dbDEMC hsa-mir-154 dbDEMC
hsa-mir-449a dbDEMC hsa-mir-216b dbDEMC
hsa-mir-449b dbDEMC hsa-mir-370 dbDEMC
hsa-mir-99a dbDEMC hsa-mir-520e dbDEMC
hsa-mir-491 unconfirmed hsa-mir-484 dbDEMC
hsa-mir-28 dbDEMC hsa-mir-217 dbDEMC
hsa-mir-151 HMDD hsa-mir-302e dbDEMC
hsa-mir-144 dbDEMC hsa-mir-590 unconfirmed
hsa-mir-95 dbDEMC hsa-mir-377 dbDEMC
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TABLE 4 | The top 50 potential miRNAs predicted by TCRWMDA for colon
cancer (colon neoplasms) and confirmed by database (column 1: top 1-25;
Column 3: top 26-50).

miRNA Evidence miRNA Evidence
hsa-mir-21 dbDEMC hsa-mir-200a unconfirmed
hsa-mir-20a dbDEMC hsa-mir-31 dbDEMC
hsa-mir-16 dbDEMC hsa-mir-137 dbDEMC
hsa-mir-155 dbDEMC hsa-mir-205 dbDEMC
hsa-mir-29a dbDEMC hsa-mir-148a dbDEMC
hsa-mir-221 dbDEMC hsa-mir-10b dbDEMC
hsa-mir-143 dbDEMC hsa-mir-125a dbDEMC
hsa-mir-19a dbDEMC hsa-mir-486 dbDEMC
hsa-mir-146a dbDEMC hsa-let-7b dbDEMC
hsa-mir-18a dbDEMC hsa-let-7f dbDEMC
hsa-let-7a dbDEMC hsa-mir-375 dbDEMC
hsa-mir-200c unconfirmed hsa-mir-22 dbDEMC
hsa-mir-34a dbDEMC hsa-mir-24 dbDEMC
hsa-mir-92a dbDEMC hsa-mir-27a dbDEMC
hsa-mir-9 dbDEMC hsa-mir-214 dbDEMC
hsa-mir-222 dbDEMC hsa-mir-183 dbDEMC
hsa-mir-125b dbDEMC hsa-mir-18b dbDEMC
hsa-mir-196a dbDEMC hsa-mir-140 dbDEMC
hsa-let-7¢ dbDEMC hsa-mir-7 dbDEMC
hsa-mir-107 dbDEMC hsa-mir-142 unconfirmed
hsa-let-7e dbDEMC hsa-let-7i dbDEMC
hsa-mir-141 dbDEMC hsa-mir-25 dbDEMC
hsa-mir-106b dbDEMC hsa-mir-199a unconfirmed
hsa-mir-93 dbDEMC hsa-mir-133b dbDEMC
hsa-mir-223 unconfirmed hsa-mir-29c dbDEMC

algorithm can effectively provide research directions and reduce
the cost and time of biological experiments.

In this paper, we propose a novel TCRWMDA algorithm, which
is different from the traditional prediction methods based on
heterogeneous network and incorporates new prior knowledge
(IncRNA information related to miRNA and disease) to effectively
make the best use of the information that we have. TCRWMDA is a
framework for integrating multiple sources of information, which
may yield better results when the data set is large. TCRWMDA is
applied to miRNA-disease association prediction, which
implements unbalanced random walk on three-layer
heterogeneous networks and integrate the related similarity
information to predict disease-related miRNAs. TCRWMDA is
efficient because it makes use of multi-source information from
reliable data sources. Considering the association between IncRNA
and disease and the association between miRNA and disease,
TCRWMDA mines the association information on between data
and topological information in the network to improve the

REFERENCES

Bandyopadhyay, S., Mitra, R., Maulik, U., and Zhang, M. Q. (2010). Development
of the human cancer microRNA network. Silence 1, 6-6. doi: 10.1186/1758-
907X-1-6

Brennecke, J., Hipfner, D. R,, Stark, A., Russell, R. B., and Cohen, S. M. (2003).
bantam Encodes a Developmentally Regulated microRNA that Controls Cell
Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell 113,
25-36. doi: 10.1016/S0092-8674(03)00231-9

Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al.
(2002). Frequent Deletions and Down-Regulation of Micro-RNA Genes miR15

prediction accuracy. Experimental results and case studies prove
that the TCRWMDA algorithm is an effective tool for predicting the
potential miRNA-disease association. If more data sets are added,
the increase and optimization of parameters is a problem worth
thinking about. In the future, we hope to conduct more stable data
integration and seek methods for optimizing parameter selection.

DATA AVAILABILITY STATEMENT

All datasets for this study are included in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

LY and XS designed and implemented the computing
framework. LY and XS analyzed the results and wrote the
manuscript. LY, XS, DZ and JY revised the manuscript. LY
prepared the computational codes and carried out. All the
authors wrote, reviewed and approved the final manuscript.

FUNDING

This research was supported by the National Natural Science
Foundation of China (61532008, 61872157, 61932008), the Self-
determined Research Funds of CCNU from the Colleges' Basic
Research and Operation of MOE (CCNU19QDO003) and the
National Language Commission Key Research Project
(ZDI135-61).

ACKNOWLEDGMENTS

This article was included in the CBC2019.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
01316/full#supplementary-material

and miR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci.
U. S. A. 99, 15524-15529. doi: 10.1073/pnas.242606799

Chen, X, and Yan, G. (2015). Semi-supervised learning for potential human
microRNA-disease associations inference. Sci. Rep.-UK 4, 5501. doi: 10.1038/
srep05501

Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X,, et al. (2012a).
LncRNADisease: a database for long-non-coding RNA-associated diseases.
Nucleic Acids Res. 41, D983-D986. doi: 10.1093/nar/gks1099

Chen, X,, Liu, M., and Yan, G. (2012b). RWRMDA: predicting novel human
microRNA-disease associations. Mol. Biosyst. 8 (2792), 21106. doi: 10.1039/
c2mb25180a

Frontiers in Genetics | www.frontiersin.org

138

January 2020 | Volume 10 | Article 1316


https://www.frontiersin.org/articles/10.3389/fgene.2019.01316/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01316/full#supplementary-material
https://doi.org/10.1186/1758-907X-1-6
https://doi.org/10.1186/1758-907X-1-6
https://doi.org/10.1016/S0092-8674(03)00231-9
https://doi.org/10.1073/pnas.242606799
https://doi.org/10.1038/srep05501
https://doi.org/10.1038/srep05501
https://doi.org/10.1093/nar/gks1099
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1039/c2mb25180a
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Yu et al.

Heterogeneous Network and Unbalanced Random Walk

Chen, X,, Yan, C. C,, Zhang, X, You, Z,, Deng, L., Liu, Y., et al. (2016). WBSMDA:
Within and Between Score for MiRNA-Disease Association prediction. Sci.
Rep.-UK 6, 21106. doi: 10.1038/srep21106

Chen, X, Wu, Q. F,, and Yan, G. Y. (2017). RKNNMDA: Ranking-based KNN for
MiRNA-Disease Association prediction. RNA Biol. 14, 952-962. doi: 10.1080/
15476286.2017.1312226

Chen, X., Wang, L., Qu, J., Guan, N, and Li, J. (2018). Predicting miRNA-disease
association based on inductive matrix completion. Bioinformatics 34, 4256
4265. doi: 10.1093/bioinformatics/bty503

Chen, X. (2015). Predicting IncRNA-disease associations and constructing
IncRNA functional similarity network based on the information of miRNA.
Sci. Rep.-UK 5, 13186. doi: 10.1038/srep13186

Ha, J., Park, C., and Park, S. (2019). PMAMCA: prediction of microRNA-disease
association utilizing a matrix completion approach. BMC Syst. Biol. 13, 33. doi:
10.1186/s12918-019-0700-4

Jiang, Q., Hao, Y., Wang, G., Juan, L., Zhang, T., Teng, M., et al. (2010). Prioritization
of disease microRNAs through a human phenome-microRNAome network.
BMC Spyst. Biol. 4 Suppl 1, S2-S2. doi: 10.1186/1752-0509-4-S1-S2

Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al.
(2005). RAS Is Regulated by the let-7 MicroRNA Family. Cell 120, 635-647.
doi: 10.1016/j.cell.2005.01.014

Lee, R. C,, Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell
75, 843. doi: 10.1016/0092-8674(93)90529-y

Li, Y., Qiu, C, Tu, J., Geng, B, Yang, J., Jiang, T., et al. (2013). HMDD v2.0: a
database for experimentally supported human microRNA and disease
associations. Nucleic Acids Res. 42, D1070-D1074. doi: 10.1093/nar/gkt1023

Li,J. Q. Rong, Z. H., Chen, X, Yan, G. Y., and You, Z. H. (2017). MCMDA: Matrix
completion for MiRNA-disease association prediction. Oncotarget 8, 21187.
doi: 10.18632/oncotarget.15061

Lipscomb, C. E. (2000). “Medical Subject Headings (MeSH).”, in.).

Lu, M,, Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W,, et al. (2008). An Analysis
of Human MicroRNA and Disease Associations. PloS One 3, €3420. doi:
10.1371/journal.pone.0003420

Luo, J., and Xiao, Q. (2017). A novel approach for predicting microRNA-disease
associations by unbalanced bi-random walk on heterogeneous network.
J. Biomed. Inform. 66, 194-203. doi: 10.1016/j.jbi.2017.01.008

Ma, Y., Ge, L, Ma, Y, Jiang, X,, He, T.,, and Hu, X. (2018a). Kernel soft-
neighborhood network fusion for miRNA-disease interaction prediction, in:
2018 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 197-200. doi: 10.1109/BIBM.2018.8621122

Ma, Y., Yu, L, He, T,, Hu, X, and Jiang, X. (2018b). Prediction of long non-
coding RNA-protein interaction through kernel soft-neighborhood similarity,
in: 2018 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 193-196. doi: 10.1109/BIBM.2018.8621460

Michael, M. Z., Young, G. P., and James, R. J. (2003). Reduced accumulation of
specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882-891. doi:
10.1007/s00268-008-9865-5

Qu, Y., Zhang, H., Liang, C., and Dong, X. (2018). KATZMDA: prediction of
miRNA-disease associations based on KATZ model. IEEE Access 6, 3943-3950.
doi: 10.1109/ACCESS.2017.2754409

Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009).
Downregulation of miRNA-200c links breast cancer stem cells with normal
stem cells. Cell 138, 592-603. doi: 10.1016/j.cell.2009.07.011

Victor, A. (2004). The functions of animal microRNAs. Nature 431, 350-355. doi:
10.1038/nature02871

Volders, P., Anckaert, J., Verheggen, K., Nuytens, J., Martens, L., Mestdagh, P.,
et al. (2019). LNCipedia 5: towards a reference set of human long non-coding
RNAs. Nucleic Acids Res. 47, D135-D139. doi: 10.1093/nar/gky1031

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010). Inferring the human
microRNA functional similarity and functional network based on microRNA-
associated diseases. Bioinformatics 26, 1644-1650. doi: 10.1093/bioinformatics/
btq241

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014).
Similarity network fusion for aggregating data types on a genomic scale. Nat.
Methods 11, 333-337. doi: 10.1038/nmeth.2810

Yang, L., Belaguli, N., and Berger, D. H. (2009). MicroRNA and Colorectal Cancer.
World J. Surg. 33, 638-646. doi: 10.1007/s00268-008-9865-5

Yang, J., Li, J., Shao, P., Zhou, H., Chen, Y., and Qu, L. (2011). starBase: a database
for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq
and Degradome-Seq data. Nucleic Acids Res. 39, D202-D209. doi: 10.1093/nar/
gkql056

Yang, Z., Wu, L., Wang, A, Tang, W., Zhao, Y., Zhao, H,, et al. (2017). dbDEMC
2.0: updated database of differentially expressed miRNAs in human cancers.
Nucleic Acids Res. 45, D812-D818. doi: 10.1093/nar/gkw1079

Zeng, X., Liu, L., Lii, L., Zou, Q., and Valencia, A. (2018). Prediction of potential
disease-associated microRNAs using structural perturbation method.
Bioinformatics. 34. doi: 10.1093/bioinformatics/bty112.

Zhang, W., Qu, Q., Zhang, Y., and Wang, W. (2018). The linear neighborhood
propagation method for predicting long non-coding RNA-protein
interactions. Neurocomputing 273, 526-534. doi: 10.1016/j.neucom.
2017.07.065

Zhao, Z. Q., Han, G. S, Yu, Z. G,, and Li, J. (2015). Laplacian normalization and
random walk on heterogeneous networks for disease-gene prioritization.
Comput. Biol. Chem. 57, 21-28. doi: 10.1186/s12918-018-0660-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yu, Shen, Zhong and Yang. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use, distri-
bution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org

139

January 2020 | Volume 10 | Article 1316


https://doi.org/10.1038/srep21106
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1093/bioinformatics/bty503
https://doi.org/10.1038/srep13186
https://doi.org/10.1186/s12918-019-0700-4
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1016/j.cell.2005.01.014
https://doi.org/10.1016/0092-8674(93)90529-y
https://doi.org/10.1093/nar/gkt1023
https://doi.org/10.18632/oncotarget.15061
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1016/j.jbi.2017.01.008
https://doi.org/10.1109/BIBM.2018.8621122
https://doi.org/10.1109/BIBM.2018.8621460
https://doi.org/10.1007/s00268-008-9865-5
https://doi.org/10.1109/ACCESS.2017.2754409
https://doi.org/10.1016/j.cell.2009.07.011
https://doi.org/10.1038/nature02871
https://doi.org/10.1093/nar/gky1031
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1007/s00268-008-9865-5
https://doi.org/10.1093/nar/gkq1056
https://doi.org/10.1093/nar/gkq1056
https://doi.org/10.1093/nar/gkw1079
https://doi.org/10.1093/bioinformatics/bty112
https://doi.org/10.1016/j.neucom.2017.07.065
https://doi.org/10.1016/j.neucom.2017.07.065
https://doi.org/10.1186/s12918-018-0660-0
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

',\' frontiers

in Bioengineering and Biotechnology

ORIGINAL RESEARCH
published: 15 January 2020
doi: 10.3389/fbice.2019.00479

OPEN ACCESS

Edited by:

Fa Zhang,

Institute of Computing Technology
(CAS), China

Reviewed by:

Leyi Wei,

Tianjin University, China
Renmin Han,

Shandong University, China

*Correspondence:
Jin Liu
liujin06@csu.edu.cn

Specialty section:

This article was submitted to
Bioinformatics and Computational
Biology,

a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 05 September 2019
Accepted: 23 December 2019
Published: 15 January 2020

Citation:

Xiang Y, Wang J, Tan G, Wu F-X and
Liu J (2020) Schizophrenia
Identification Using Multi-View Graph
Measures of Functional

Brain Networks.

Front. Bioeng. Biotechnol. 7:479.
doi: 10.3389/fbioe.2019.00479

Check for
updates

Schizophrenia Identification Using
Multi-View Graph Measures of
Functional Brain Networks

Yizhen Xiang', Jianxin Wang "2, Guanxin Tan', Fang-Xiang Wu? and Jin Liu™

" School of Computer Science and Engineering, Central South University, Changsha, China, 2 Hunan Provincial Key Lab on
Bioinformatics, Central South University, Changsha, China, ° Division of Biomedical Engineering and Department of
Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada

Schizophrenia (SZ) is a functional mental disorder that seriously affects the social
life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention
of researchers. At present, study of brain network based on resting-state functional
magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification
by studying functional network alteration. However, previous studies based on brain
network analysis are not very effective for SZ identification. Therefore, we propose an
improved SZ identification method using multi-view graph measures of functional brain
networks. Firstly, we construct an individual functional connectivity network based on
Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by
the brain network analysis method as feature representations. Next, in order to consider
the relationships between measures within the same brain region in feature selection,
multi-view measures are grouped according to the corresponding regions and Sparse
Group Lasso is applied to identify discriminative features based on this feature grouping
structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ
identification task. To evaluate our proposed method, computational experiments are
conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using
a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed
method can obtain an accuracy of 93.10% for SZ identification. By comparison, our
method is more effective for SZ identification than some existing methods.

Keywords: Schizophrenia identification, fMRI, functional brain networks, multi-view graph measures, SVM

1. INTRODUCTION

Schizophrenia (SZ) is a functional mental disorder which caused by genetic factors and
environmental effects. Patients with SZ (SZs) share some common symptoms which include
depression, hallucinations, cognitive dysfunction and disorganized thinking (Marin, 2012).
Impairments of this disorder cover multiple cognitive areas, including memory (He et al., 2012),
attention and executive function (Heinrichs and Zakzanis, 1998). One percent of the population is
affected by the serious psychiatric disease worldwide (Ripke et al., 2013). The clinical diagnosis of SZ
relies mainly on mental state examination rather than any biomarker (Arbabshirani et al., 2013; Liu
et al,, 2017d) since the cause and mechanism of the disease are not clearly revealed. However, this
diagnosis method is usually subjective and not completely effective. Therefore, it is urgent to find an
objective method to realize the automatic diagnosis of SZ and improve the accuracy of recognition.
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Nowadays, Magnetic resonance imaging technology has been
widely used in various studies related to brain disease diagnosis
(Nieuwenhuis et al., 2012; Liu et al., 2016, 2017b,c, 2018a; Yang
and Wang, 2018). Since SZ is reported to be a functional disease,
functional magnetic resonance imaging (fMRI) is increasingly
used to study brain dysfunction in patients with mental illness
(Castro et al., 2011; Huang et al., 2018; Liu et al., 2018b; Moghimi
et al.,, 2018; Chen et al., 2019). In addition, fMRI provides a
database for functional analysis of these brain diseases owing to
it’s massive spatial and temporal information.

In recent years, the number of neurobiological literatures
using fMRI to study SZ disease has increased significantly. fMRI
is usually applied to discover anomalous patterns present in
activation maps [i.e., Regional Homogeneity (REHO), Amplitude
of Low Frequency Fluctuations (ALFF), fractional Amplitude of
Low Frequency Fluctuations (FALFF)] (Guo et al., 2014; Chyzhyk
et al., 2015; Huang et al., 2018) of SZ. These activation maps
are widely used as potential clinical biomarkers for the diagnosis
of SZ. For example, Huang et al. (2018) used tree-guided group
sparse learning method to perform feature selection on fALFF
data in multi-frequency bands, and then used multi-kernel
learning (MKL) method to achieve an accuracy of 91.10% on
34 subjects. Chyzhyk et al. (2015) combined these activation
maps by using extreme learning machines and successfully
distinguished SZs from healthy controls (HCs). However, these
methods focus on the voxel-wise information in these maps
rather than the connectivity between regions of interest (ROIs).

Functional connectivity has been reported to analyze the
differences in the functional organization of brain networks
between patients and HCs (Lynall et al., 2010; Pettersson-Yeo
etal., 2011). Functional connectivity networks are usually derived
from fMRI data (Van Den Heuvel and Pol, 2010; Craddock
et al., 2013). Nodes of a functional brain network could be the
voxels of fMRI data, ROIs defined by brain atlas or the discrete
regions with similar size by randomly parcellating the brain
(Fornito et al., 2013). Links of a functional brain network could
be determined by the correlations estimated from time courses
between pairs of nodes (Liu et al., 2017a). For example, Yu et al.
(2015) created functional brain network using group ICA and
Pearson correlation coefficient, and they found the new evidence
about altered dynamic brain graphs in SZ. Abraham et al. (2017)
investigated the most predictive biomarkers for Autism spectrum
disorders (ASD) by building participant-specific connectomes
from functionally-defined brain areas. For these methods, the
connections between all pairs of nodes in a brain network
are employed as features, but the topological measures of
connectivity networks are not considered.

To quantitatively analyze functional brain networks, graph
theoretical analysis is employed for investigating the topological
organization of functional connectivity (Anderson and Cohen,
2013; Brier et al, 2014). The most commonly used graph
measures include betweenness centrality, degree, local efficiency,
participation coefficient, average clustering coeflicient, average
path length, global efficiency, and small-worldness (Liu et al.,
2017a). These topological measures have been applied in the
brain disease classifications (Cheng et al., 2015; Khazaee et al,,
2015, 2017; Moghimi et al., 2018). For example, Moghimi et al.

(2018) calculated a set of 25 graph measures including global
and local measures for each subject and obtained a classification
accuracy of 80% with a double-cross validation scheme. Cheng
et al. (2015) achieved an accuracy of 79% by using betweenness
centrality measure in SZ identification, and they found that
changes in functional hubs were associated with SZ. Overall,
these methods using graph measures for SZ identification have
not achieved a good classification performance.

In this paper, we propose an improved method based on
multi-view graph measures to identify SZs from HCs. Functional
brain networks are constructed based on fMRI scans. Nodes of
functional brain network are brain regions parcellated with the
Brainnetome atlas (Fan et al., 2016), and edges of functional brain
networks are determined by Pearson’s correlation coefficients.
Five local graph measures are calculated from functional brain
networks by graph theoretical approach as features. The five local
graph measures include betweenness centrality, nodal clustering
coeflicient, local efficiency, degree and participation coeflicient.
In order to consider the relationship of features within the
same region, firstly we need to group graph measures according
to brain regions defined by Brainnetome atlas. Then Sparse
Group Lasso feature selection method is employed to select the
most important regions as well as discriminative features within
the selected regions. Finally, support vector machine (SVM) is
trained for SZ identification. Our experiments are conducted
on 145 samples with fMRI data, including 74 HCs and 71 SZs.
Our proposed method achieves a mean classification accuracy
of 93.10% using a leave-one-out cross-validation (LOOCV)
scheme. The overall framework of our proposed method is
shown in Figure 1, which consists of four main components
include image preprocessing, feature representation, feature
selection, and classification with SVM classifier. The code for
this classification framework is available for download at https://
github.com/xyzxzj/SZClassification.

2. MATERIALS AND METHODS

2.1. Subject Description and Image

Preprocessing

The data involved in this study is collected by the Center
for Biomedical Research Excellence (COBRE). COBRE! dataset
consists of 148 subjects with functional and anatomical MRI data.
74 HCs and 71 SZs of the dataset are employed for our subsequent
experiments owing to the class labels of the other three subjects
are not given. During the scan, all participants are asked to
remain relaxed and keep their eyes open. A brief summary of
demographic information of subjects is listed in Table 1.

All of the fMRI images are preprocessed by using Data
Processing & Analysis for Brain Imaging (DPABI) (Yan et al.,
2016). The preprocessing procedure is as follows: the first 10
volumes of functional runs are removed owing to the fMRI
signal instability. Then, the rest volumes are performed slice time
correction, head-motion correction, and co-registration of T1-
weighted MRI images and fMRI images. After that, the fMRI
images are normalized to Montreal Neurological Institute (MNI)

Uhttp://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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FIGURE 1 | The overall framework of our proposed method using multi-view
graph measures of functional brain network for SZ/HC classification.

space and resampled to 3 x 3 x 3mm?> voxels. Smooth (4-mm
FWHM) and band-pass filter (0.01-0.1Hz) are applied to the
images which are transformed to MNI space.

In order to construct time series matrices for all subjects, first
all brain images are parcellated into 246 regions by registering
images to the Brainnetome atlas after fMRI data preprocessing.
Then we extract the averaged time series for each of 246 brain
regions for each subject. The time series of each brain region
is derived from averaging fMRI signals of all voxels within the
region. Finally, a time series matrix consists of 246 regional
time series.

2.2. Feature Representation
2.2.1. Brain Network Construction
A network is composed of a collection of nodes and links. It
can be described as a graph G = (V; E), where V denotes

TABLE 1 | Demographic information of 145 subjects from COBRE dataset.

Type Number Age Gender (M/F)
S74 71 38.1+£13.9 57/14
HC 74 358+ 11.5 51/23

the set of nodes and E is the set of links. There are four types
of network topology, including weighted undirected, weighted
directed, binary undirected and binary directed. In this study, the
functional connectivity network is represented by an weighted
undirected graph. The nodes in functional connectivity network
usually are defined by brain regions, and links can represent
temporal correlation in activity between pairs of nodes. Given
a time series matrix, we can construct a functional connectivity
network by calculating Pearson correlation coefficients (Pedersen
et al., 2018) between signals of all pairs of regions. The generated
functional brain network has 246 x (246 — 1)/2 = 30,315
weighted edges under the condition of 246 brain regions and
the strength of each edge is the Pearson correlation coefficient
between a pair of connected nodes.

2.2.2. Brain Network Analysis

A great deal of functional connections in the network may lead
to feature redundancy. A threshold ¢ is employed in the dense
network to keep a certain proportion of edges with the highest
correlation. Graph-theoretic measures can quantify topological
organization of network. Thus, we can extract some measures
which can characterize the global or local functional connectivity
from the threshold network. We compute 5 local graph measures
using brain network analysis as feature representations, including
degree, betweenness centrality, nodal clustering coeflicient, local
efficiency, and participation coeflicient.

Degree is the most fundamental and important measure to
characterize the centrality of nodes. In general, nodes with a
higher degree are more important in networks. Betweenness
centrality can also reflect the centrality of nodes. The betweenness
centrality of a brain region can measure its ability on
information transmission. Nodal clustering coeflicient represents
the possibility that any two neighbors of a given node are also
neighbors of each other. It measures the ability of the node on
functional segregation. Local efficiency measures the efficiency of
a subnetwork formed by a given node and all its direct neighbors
to transfer information. Local efficiency is related to the shortest
path length of the node, the shorter the shortest path length, the
greater the local efficiency of the node, the faster the information
transmission in the subnetwork. Participation coefficient of a
node measures its diversity of intermodular interconnections.
The nodes with low participation coeflicient but high degree in
the module are regarded as provincial hubs, it indicates that
the hubs are likely to have a great impact on the modular
segregation. These five local measures play an important role
in information exchange of functional networks. They can be
calculated as follow:

K() = > a (1)
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where K(i), B(i), C(i), Ej(i), and PC(i) are the degree,
betweenness centrality, clustering coefficient, local efficiency, and
participation coefficient of node i, respectively. N is the number
of nodes in a network, a;; = 1 if node i and node j are connected,
ajj = 0 otherwise; 7,i(i) is the number of shortest paths between
m and j that pass through node i, and n,,; is the number of
shortest paths between m and j; sw; is the sum of the weights of
all the connected edges between the neighbors of node i; G; is
the subnetwork that contains node i and its all direct neighbors,
Ng, is the number of nodes in the subnetwork G;, [j; is the length
of shortest path between node j and node h in the subgraph; M
denotes the set of modules, k; is determined as the number of
links between i and the nodes within module .

In this study, we adopt the Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net) ~ (Rubinov  and
Sporns, 2010) to calculate these five local graph measures.
For each local graph measure (gm), we compute 246 values
corresponding to the 246 brain regions. Therefore, the dimension
of the final feature vector for each subject is 1,230.

2.3. Feature Selection

The raw feature matrices have high dimension, multiple
redundancy and multi-noise characteristics. Thus, applying a
suitable feature selection algorithm to identify features related
to SZ/HC identification and remove unnecessary information
appears especially important. Least absolute shrinkage and
selection operator (Lasso) (Chan et al., 2015) is widely used in
various areas due to the very low data requirements. In addition,
lasso can filter variables and reduce the complexity of the model.
It aims to select the most important features from dense data
matrix by using /; norm constraint. The optimization problem
can be formulated as follow:

min ||y — Xer||* + Al (6)

where X denotes an n x p feature matrix, and »n is the number
of subjects, p represents the dimension of a feature vector. y
is defined as a class label, « is a coeflicient vector, and A is a
regularization parameter.

Graph measures within the same region usually have a certain
correlation. However, Lasso has not consider the relationship
between graph measures derived in the same brain region. Hence
we use the priori information of brain regions to group measures
and then perform feature selection based on this feature grouping
structure. Group Lasso (GLasso) (Yuan and Lin, 2006), a group
variable selection method, is the extension of Lasso. It can select

Brain
regions

graph |

measures)

N
STTT TR T ~Group!
. ) |
:\Q«s*{gmy@ ““““ EMys 55 sets !

FIGURE 2 | The grouping structure: the nodes in the third layer represent local
graph measures and the blocks in the second layer represent brain regions;
G = {gmjj e gm,;,} is a group set which consists of 5 local graph
measures calculated for j_th region.

the most important groups by grouping all the variables and
penalizing the [, norm of each group. The effect is that we can
eliminate the entire set of coeflicients into zero at the same time
and then this set of features are excluded. The objective function
of GLasso is as follow:

M
. 2
min [y — Xer|> + 42 ) will, |12 (7)
j=1

where oG denotes the set of coefficients of all features in the
group Gj, wj is a weight for group G;.

Actually, there are also many redundant features in the
important groups selected by GLasso. It is necessary to perform
another feature selection to choose the most important features
from these selected groups. Sparse Group Lasso (SGLasso) (Liu
et al.,, 2009) is introduced to select the most significant groups as
well as the discriminative features within the selected groups by
adding /; and I, penalties. The objective function of the SGLasso
can be written as:

M

. 2 .
min [y — Xe|* + Aillells + 22 )_willagllz  (8)
j=1

Before performing SGLasso, 1230-dimensional feature vector for
each subject is grouped as G = {Gi, ..., Gj, .., Gy} according the
brain regions defined by Brainnetome atlas. M is the number
of groups. G; = {gmj 1,gmj 2,gm; 3,gm; 4,gm; s} is a group
consists of 5 local graph measures calculated for j_th region. The
grouping structure is shown in Figure 2. In addition, z-score
transformation is used to normalize the feature matrix before
feature selection. It is worth noting that, after feature selection,
those features are kept with corresponding regression coefficients
greater than the mean value of absolute values of all elements in
coeflicient vectors.
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2.4. Classification

SVM (Chang and Lin, 2011) is widely applied in various fields
such as natural language processing, target detection, pattern
classification due to its good performance as a supervised
machine learning approach. The choice of SVM kernel functions
is critical to their performance. In this study, we choose the linear
kernel SVM (LSVM) to identify SZs from HCs. Linear kernel is
mainly used in linear separability cases, and the dimension of
the feature space and input space is the same. It performs good
classification in most linear separable problems owing to the less
parameters and fast calculation. The formulation of SVM model
and linear kernel function are as follows:

LN N N
max —3 2o >0 AikyiyiK(xi, x) + D A
i=1j=1 i1
N 9)
s.t. Z Ayi=0
=1

0<r<GCi=12,..,N
K(xi, %)) =< xi, % > (10)

where A is the Lagrange multiplier, N is the number of samples,
x; represents the feature vector of the i-th sample, and y; is the
label corresponding to x;, K(.,.) denotes the kernel function, C is
determined as the soft margin parameter.

After feature selection, the optimal feature set X =
{X1, .. Xi, .., X, } 1s used as the input to SVM classifier, i = 1,..., n.
Giving a test subject x, the trained SVM will predict its label based
on a decision function P(x) as follows:

N
P(x) = sign()_ 1iyiK(xi, x)) (11)

i=1

3. EXPERIMENTS AND RESULTS
3.1. Experiment Settings

In our study, the classification performance of our proposed
method is estimated by adopting LOOCV scheme. LOOCV
scheme is not affected by the random sample partitioning because
n samples are only divided into n subsets in a unique way,
each subset contains one sample. Each subset will be tested
as a test data in turn while remaining subjects as the training
data. In addition, we usually adopt the LIBSVM library (Chang
and Lin, 2011) to solve SVM classification. We further calculate
classification accuracy (ACC), sensitivity (SEN), specificity (SPE)
to measure the performance of the method. These three metrics
can be written as follows:

ACC = IP+ 1IN (12)
" TP+FP+FN+ 1IN
TN
SPE = — (13)
TN + FP
TP
SEN = —— (14)
TP 4+ FN

where true positive (TP), true negative (TN), false negative (FN),
and false positive (FP) are defined as the number of correctly
classified SZs, HCs and misidentified SZs, HCs, respectively.
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FIGURE 3 | Classification accuracies for SZ identification based on different
network thresholds.

In addition, the area under receiver operating characteristic
(ROC) curve (AUC) is also used to evaluate overall classification
performance of our method.

At the stage of feature representation, we set t =
[0.1,0.12,...,0.48, 0.5] to represent a collection of threshold values
from 0.1 to 0.5 by the step of 0.02, and then calculate the 5 local
graph measures at these 21 thresholds. The two regularization
parameters for SGLasso are set as A; = [1,2,3,4,5,6,7,8,9,10]
and A, = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0], which are
optimized with the grid search algorithm.

3.2. Identification Performance for SZ

We use LSVM to perform SZ/HC classification on the optimal
feature set obtained from feature selection of SGLasso at each
of 21 thresholds. The classification results corresponding to 21
thresholds are showed in Figure 3.

According to Figure 3, we can see that the best accuracy
(93.10%) is achieved at ¢t = 0.30. Furthermore, the classification
accuracies at these 21 thresholds are all higher than 70%.
In addition, the number of selected features is 55 and SEN,
SPE, AUC values are 92.96%, 93.24%, 0.950, respectively. The
experimental results indicate that the feature combination of five
local measures extracted at t = 0.30 has a relatively strong
correlation with SZ identification.

4. DISCUSSION

4.1. Comparison With Different Feature
Selection Methods

In order to demonstrate the SGLasso method is more effective
than the common feature selection methods based on these five
local measures for SZ classification, we compare four feature
selection methods. The first one is ¢-test which is the one of the
most basic feature selection method and the most critical part
of this method is selecting features based on the p-value (ie.,
0.05). The rest methods are Lasso, GLasso and Elastic Net (Enet).
These three methods are based on linear sparse models. GLasso
and Enet are the extension of Lasso. GLasso is used to solve
Iy /l3-norm regularized problem. Enet is used for the situations
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TABLE 2 | Classification with different feature selection methods.

TABLE 3 | Comparison with other SVMs using different kernels.

Methods ACC (%) SEN (%) SPE (%) AUC
RBF-SVM 80.00 76.06 83.78 0.8601
Poly-SVM 82.07 77.46 86.49 0.8506
Sigm-SVM 87.59 83.10 91.89 0.9393
LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

Methods Number of ACC (%) SEN (%) SPE (%)
selected features
t-test 163 78.62 80.28 77.03
Lasso 123 83.45 88.73 78.38
GlLasso 225 86.21 85.92 86.49
ENet 64 85.52 84.51 86.19
SGlLasso 55 93.10 92.96 93.24
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FIGURE 4 | ROC curves for SZ/HC classification for different feature selection
methods.

where features are related to each other and always produce
valid solution.

These four feature selection methods perform the same
experimental procedure as SGLasso for the sake of fairness. It’s
worth noting that the five local graph measures are extracted at
the threshold of 0.30. Table 2 shows the experimental results of
the above mentioned four methods and SGLasso feature selection
method. As we can see that SGLasso method selects the least
features (55) but achieves the best ACC (93.10%), SEN (92.96%),
SPE (93.24%). The ROC curves for SZ/HC classification for
different feature selection methods as shown in Figure 4. We
notice that SGLasso achieves the highest AUC (0.950) than
other four feature selection methods. Experimental result shows
that considering within- and between- group sparsity is likely
helpful for selecting significant features that are effective for
SZ identification.

4.2. Comparison With Different Classifiers

In order to prove that LSVM is optimal to conduct classification
in this context, a series of comparative experiments using several
SVMs with different kernels including Radial Basis Function
kernel (RBF), Ploynomial kernel (Poly), Sigmoid kernel (Sigm)

TABLE 4 | Comparison with other commonly used classifiers.

Methods ACC (%) SEN (%) SPE (%) AUC

KNN 82.07 74.65 89.19 0.7912
RForest 77.93 74.65 81.08 0.8378
NBayes 84.83 83.10 86.49 0.9069
LDA 90.34 87.32 93.24 0.9418
LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

under the same condition as the LSVM have been performed.
These SVMs are denoted as RBE-SVM, Poly-SVM, Sigm-SVM,
respectively. The experimental results of SVMs with different
kernels are shown in Table 3. It is worth mentioning that bold
text indicates that the best result is obtained on a certain
evaluation metric.

In addition, we also compare four commonly used classifiers,
such as k-nearest neighbors (KNN), Random Forest (RForest),
NaiveBayes (NBayes), and Linear Discriminant Analysis (LDA).
These classifiers are all implemented on the platform of
Matlab2016a. We evaluate the performance of the above four
classifiers under the same conditions as LSVM. The experimental
results of these five classifiers are shown in Table 4. As can be
seen from Tables 3, 4, LSVM can achieve the best classification
performance than other classifiers.

4.3. Regularization Parameter Selection
The regularization parameters of SGLasso have a great influence
on the results of feature selection. Using different regularization
parameters, the selected features are also different. It affects
not only the feature dimension, but also the final classification
performance. Therefore, selecting the appropriate regularization
parameters can improve the efficiency of SGLasso method and
obtain more effective features associated with the labels.

The two regularization parameters of SGLasso are A; and
Az. A1 is used to control the model sparseness, and i, can
control the sparse constraint of each feature group. We use
the grid search algorithm to find the optimal combination
of regularization parameters. Figure 5 shows the classification
results using different combination of A;, X,. According to
Figure 5, when the parameter combination is (A;=9, 1,=0.1), the
features obtained from SGLasso feature selection method are the
most effective for SZ/HC classification.
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FIGURE 5 | Classification results using different combination of A1,z.

4.4. Regression Coefficient Selection

In general, the non-zero elements in the coeflicient vector o«
generated from the SGLasso feature selection algorithm indicate
that the corresponding features are selected. In order to retain
the least but most informative features according to «, we test the
impact of the three coefficient selection strategies on classification
performance. We named these three strategies as SGLasso_absZ,
SGLasso_absM, and SGLasso_absMS. The description of these
three strategies is as follows:

e SGLasso_absZ is a common strategy to retain non-zero
coefficients of «.

e SGLasso_absM strategy is to retain those coefficients which are
greater than the mean value of absolute values of all elements
ina.

e SGLasso_absMS strategy is more strict for selecting
coefficients, since it retains the coeflicients which are
larger than the mean value of absolute values of all non-zero
coefficients in «.

We apply the above mentioned three strategies to feature
selection, and then select the corresponding features according
to the retained coefficients in . SVM performs SZ identification
using these selected features. The classification results using three
different regression coefficient selection strategies are shown in
Figure 6. According to Figure 6, the classification accuracy is
the best when using SGLasso_absM strategy. Experimental result
indicates that using SGLasso_absM strategy in feature selection
can select the most effective features for SZ/HC classification.
Therefore, we finally choose the SGLasso_absM strategy to select
the regression coeflicients.

4.5. Classification Comparison Using

Different Feature Combinations
In order to explore the impact of different feature combinations
on SZ/HC identification, we combine these five local measures

92.41% 93.10%

86.90%

80

60

ACC(%)

40

20

) SGLasso_absZ SGLasso absM  SGLasso _absMS

FIGURE 6 | Classification results using three different regression coefficient
selection strategies.

extracted at the threshold of 0.30 in C2 + C2 + C + C2 = 26
ways. Furthermore, we don’t consider individual graph measure
because we only investigate multiple measures in this study.
We evaluate these 26 feature sets under the same experimental
settings. The classification results are shown in Figure 7.

As can be seen from Figure 7, the combination of 5 local
graph measures achieves the best classification performance
compared to other feature sets. At the same time, we also
find that the classification accuracies obtained by using feature
sets including two measures are lower than the classification
accuracies obtained by using feature sets including three
measures, four measures and five measures. It indicates that
using fewer measures may not be enough to characterize brain
network alternation, and we find that the combination of
five local measures can provide more useful information for
SZ identification.

4.6. Comparison With Existing

Classification Methods
To verify the effectiveness of our proposed classification
method, we compare some recently proposed methods for SZ
classification using fMRI in the literature. Huang et al. (2018)
proposed a tree-guided group sparse learning method to select
the most important information from FALFF data in four
frequency bands and get a classification accuracy of 91.1% by
using multi-kernel SVM. Cheng et al. (2015) calculated only
betweenness centrality measure to characterize the network.
They used the rank of betweenness centrality of all nodes as
feature representations and used SVM to classify SZs from HCs.
The two above mentioned methods are performed on the
COBRE dataset. The classification results and ROC curves for
SZ/HC classification of the two methods and our proposed
method are shown in Table5 and in Figure 8, respectively.
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TABLE 5 | Comparison with some existing methods for SZ/HC classification.

Methods ACC (%) SEN (%) SPE (%) AUC
Huang et al. (2018) 77.24 77.46 76.58 0.815
Cheng et al. (2015) 74.48 73.53 69.12 0.792
Proposed 93.10 92.96 93.24 0.950

Bold text indiicates that the best result is obtained on a certain evaluation metric.

According to Table 5 and Figure 8, Our proposed method gets
the best ACC (93.10%), SEN (92.96%), SPE (93.24%), and
AUC (0.950) values. The experimental result illustrates that
our proposed method has made a significant improvement in
classification performance on the COBRE dataset.

4.7. Analysis of Discriminative Graph
Measures and Corresponding Regions

The graph measures selected in the feature selection stage are
considered to be related to their corresponding brain regions.
Our method can select the most discriminative brain regions
as the biomarkers to guide the disease-induced interpretation.
There is a total of 145 experiments in the LOOCV scheme
due to 145 subjects. And the number of feature occurrence in
145 experiments is introduced to indicate the contribution of
the feature to classification. We assume that if the occurrence
number of a local graph measure extracted from a certain
brain region is greater than 140 in a total of 145 experiments,
the brain region is considered to have the most discriminative
power to distinguish between SZs and HCs. Based on this
hypothesis, 21 salient brain regions have been found. These
significant brain regions are shown in Table 6. Five brain
regions include left superior frontal gyrus (SFG_L_7_2), right
inferior temporal gyrus (ITG_R_7_7), right inferior parietal
lobule (IPL_R_6_4), right postcentral gyrus (PoG_R_4_1), and
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FIGURE 8 | ROC curves for SZ/HC classification for different classification
methods.

R_8_7) are related to more than one local

right thalamus (Tha
graph measure.
These findings on discriminative brain regions are in
agreement with the following studies: superior frontal
gyrus,cingulate gyrus, postcentral gyrus (Szeszko et al., 1999;
Gur et al., 2000; Arbabshirani et al., 2013; Chyzhyk et al., 2015),
parahippocampal gyrus (Shenton et al., 1992; Chyzhyk et al.,
2015), middle temporal gyrus, fusiform gyrus and thalamus
(Chyzhyk et al., 2015; Li et al., 2019), inferior parietal lobule,
inferior temporal gyrus (Peng et al., 1994; Goldstein et al., 1999;
Li et al., 2019). However, we cannot report agreement with these
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TABLE 6 | The most discriminative graph measures and corresponding
Brainnetome regions.

Graph measures Hemisphere Brainnetome regions Occurrence

number
Nodal clustering coefficient SFG_L_7_2 Superior Frontal Gyrus 144
Degree SFG_L_7_2 Superior Frontal Gyrus 145
Nodal clustering coefficient SFG_R_7_2 Superior Frontal Gyrus 140
Participation coefficient SFG_R_7_7 Superior Frontal Gyrus 144
Betweenness centrality IFG_L_6_3 Inferior Frontal Gyrus 143
Betweenness centrality OrG_L_6_2 Orbital Gyrus 143
Betweenness centrality OrG_R_6_6 Orbital Gyrus 145
Betweenness centrality PrG_L_6_3 Precentral Gyrus 142
Degree MTG_L_4_4 Middle Temporal Gyrus 145
Betweenness centrality MTG_L_4_1 Middle Temporal Gyrus 141
Participation coefficient ITG_R_7_7 Inferior Temporal Gyrus 145
Betweenness centrality ITG_R_7_7 Inferior Temporal Gyrus 145
Betweenness centrality FuG_R_3_3 Fusiform Gyrus 145
Betweenness centrality PhG_L_6_3 Parahippocampal Gyrus 144
Degree PhG_R_6_5 Parahippocampal Gyrus 145
Local efficiency IPL_R_6_4 Inferior Parietal Lobule 145
Participation coefficient IPL_R_6_4 Inferior Parietal Lobule 145
Degree IPL_R_6_2 Inferior Parietal Lobule 145
Degree PCun_L_4_3 Precuneus 145
Nodal clustering coefficient PoG_R_4_1 Postcentral Gyrus 145
Betweenness centrality PoG_R_4_1 Postcentral Gyrus 145
Local efficiency PoG_R_4_1 Postcentral Gyrus 143
Degree PoG_R_4_1 Postcentral Gyrus 145
Participation coefficient CG_L_7_4  Cingulate Gyrus 145
Betweenness centrality CG_R_7_3 Cingulate Gyrus 145
Participation coefficient LOcC_L_4_8 lateral Occipital Cortex 145
Degree BG_R_6_1 Basal Ganglia 145
Betweenness centrality BG_R_6_4 Basal Ganglia 145
Participation coefficient Tha_ L 8 8 Thalamus 145
Degree Tha_ L 85 Thalamus 145
Degree Tha_R_8_8 Thalamus 145
Nodal clustering coefficient Tha_R_8_7 Thalamus 140
Local efficiency Tha_R_8_7 Thalamus 141

regions:inferior frontal gyrus, orbital gyrus, precentral gyrus,
precuneus, lateral occipital cortex and basal ganglia.

5. CONCLUSION

In this paper, we propose a method to classify SZs from
HCs using multi-view graph measures of functional brain
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Jacques Simard and Arnaud Droit
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One of the most challenging tasks of the post-genome-wide association studies (GWAS)
research era is the identification of functional variants among those associated with a trait
for an observed GWAS signal. Several methods have been developed to evaluate the
potential functional implications of genetic variants. Each of these tools has its own scoring
system, which forces users to become acquainted with each approach to interpret their
results. From an awareness of the amount of work needed to analyze and integrate results
for a single locus, we proposed a flexible and versatile approach designed to help the
prioritization of variants by aggregating the predictions of their potential functional
implications. This approach has been made available through a graphical user interface
called DSNetwork, which acts as a single point of entry to almost 60 reference predictors
for both coding and non-coding variants and displays predictions in an easy-to-interpret
visualization. We confirmed the usefulness of our methodology by successfully identifying
functional variants in four breast cancer and nine schizophrenia susceptibility loci.

Keywords: fine-mapping analysis, variant prioritization, decision support, deleteriousness prediction,
network visualization

INTRODUCTION

Since 2006, thousands of susceptibility loci have been identified through Genome-Wide Association
Studies (GWAS) for numerous traits and complex diseases, including breast cancer (MacArthur
et al., 2017). GWAS build on the concept of linkage disequilibrium (LD) to identify statistical
associations between genetic variants and diseases (Visscher et al., 2017). While this approach is
powerful for locus discovery, it cannot distinguish between truly causal variants and non-functional
highly correlated neighboring variants. Thus, for the vast majority of these loci, the causal variant(s)
and their functional mechanisms have not yet been elucidated.

Statistical fine-mapping analyses combined with the functional annotation of genetic variants
can help pinpoint the genetic variant (or variants) responsible for complex traits, or at least narrow
down the number of variants underlying the observed association for further functional studies. In
this regard, tremendous efforts have been put forth to assist the functional assessment of variants at

Frontiers in Genetics | www.frontiersin.org

151 January 2020 | Volume 10 | Article 1349


https://www.frontiersin.org/article/10.3389/fgene.2019.01349/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01349/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01349/full
https://loop.frontiersin.org/people/804097
https://loop.frontiersin.org/people/98917
https://loop.frontiersin.org/people/866322
https://loop.frontiersin.org/people/844504
https://loop.frontiersin.org/people/817115/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:arnaud.droit@crchudequebec.ulaval.ca
https://doi.org/10.3389/fgene.2019.01349
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01349
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01349&domain=pdf&date_stamp=2020-01-17

Lemacon et al.

DSNetwork: Integration of Deleteriousness Predictions

risk loci and numerous scoring methods and tools have been
developed to predict the deleteriousness of variants based on a
number of characteristics such as sequence conservation,
characteristics of amino acid substitution, and location of
the variant within protein domains or three-dimensional
protein structure.

In recent years, efforts have been made towards the
aggregation of many different functional annotations resulting
from these scoring methods in a single integrative value called
metascore (lonita-Laza et al., 2016; Feng, 2017), an approach
that seems to yield better performances than any predictor
individually (Dong et al, 2015). Although these methods
demonstrate themselves to be useful, they have some
limitations, notably not being directly comparable to one
another due to integration of different sets of annotations or
different weighting of these annotations, and sometimes having
contradictory results.

In order to allow a quick survey of a wide range of predictors
for a given list of variants and assist in the interpretation of the
resulting prediction scores, we propose a flexible and integrative
method capable of gathering information from multiple sources
in an easy-to-interpret representation rather than a static new
metascore. For this purpose, we created a single point of entry
fetching predictors for coding and non-coding variants and
presenting them as a network, where the nodes illustrate the
scores of each predictor for a given variant and the edges the LD
between variants. The network is built with the aim of
rendering the predictor results easier to peruse during
analyses involving multiple variants, and therefore, assist in
the variant prioritization process in the context of fine-
mapping analyses.

This approach has been made available through a graphical
user interface (GUI) stand-alone application called DSNetwork.
The tool is freely available via bitbucket repository and is also
accessible through our portal for demonstration purpose at:
http://romix.genome.ulaval.ca/dsnetwork/.

MATERIALS AND METHODS

Annotations Retrieval
Variant annotations and scoring data are fetched on-the-fly from
MyVariant.info high-performance web services (Xin et al., 2016)
using their third-party R package. SNPnexus (Dayem Ullah et al.,
2018) scorings are fetched upon request through a Python script
kindly provided by the SNPnexus team. Due to their novelty and
relevance for our purpose, three complementary whole genome
resources are included: LINSIGHT (Huang et al., 2017),
BayesDel (Feng, 2017), and predictions and sequence
constraint data (di Tulio et al., 2018), which can be used as a
proxy to score functionality and the consequences of mutations.
BayesDel, LINSIGHT, and Context-Dependent Tolerance scores
were extracted from a local copy. A description of the integrated
predictors is available in the Supplementary Material.

LD data are computed from 1000 Genomes Phase 3 (1000
Genomes Project Consortium et al., 2015).

Visual Integration

Prediction result for variants of interest are displayed as a
network, whose components, namely, the edges and nodes, are
used to convey different types of information in an easy-to-
comprehend way.

The following paragraphs describe DSNetwork’s approach
through the hypothetical analysis of a loci containing five
variants rs4233486, rs35054111, rs11808410, rs11804913, and
rs7554973 using the deleteriousness scores of five distinct fictive
predictors A, B, C, D, and E. Table 1 summarizes the scores
generated by these five predictors, reflecting their predictions
regarding the functional impacts of the candidate variants.

DSNetwork integrates the characteristics of the different
predictors and creates a reference frame containing the lower
and upper boundaries as well as the direction [ascending (ASC)
or descending (DESC)] of their prediction scores (Figure 1A).
The direction is used to rank variants from the most deleterious
to the least deleterious on the basis of their respective scores. The
boundaries are used to establish the absolute deleteriousness level
of each variant. Once the different reference frames are
integrated, they can be used to prioritize the variants according
to three types of representations: the intra-predictor relative
ranks, the intra-predictor absolute scores, and the global ranks.

Intra-Predictor Ranks

Intra-predictor ranks allow the prioritization of a list of variants
relative to one another. According to the reference frames
illustrated in Figure 1A, the five predictors produce scores
ranging from 0 to 1. We can classify the five variants of interest
from the most deleterious (rank 1) to the least deleterious (rank 5)
with each predictor. In order to summarize this information in an
easy-to-interpret representation, each variant is depicted as a pie
chart where each slice represents the rank of the variant for one of
the predictors. Thus, in the current analysis, five pie charts are
generated and each pie chart is divided by five slices of the same
size. We used a color gradient ranging from red to green, where
red corresponds to the most deleterious variant (rank 1) among
the candidates for a given predictor. The gray color represents
missing data. Figure 1B depicts the pie charts generated for the
five candidate variants. The slices can be ordered by color to allow
easy identification of variants that appear the most deleterious
across predictors.

Intra-Predictor Absolute Scores

Intra-predictor absolute scores allow prediction of variant
deleteriousness in reference to the thresholds established for a
particular predictor. Given these boundaries, we can determine

TABLE 1 | Deleterious scores generated by five different approaches.

A B C D E
rs4233486 0.13 0.4 0.78 0.23 0.12
rs35054111 NA 0.7 0.21 NA 0.43
rs11808410 0.51 0.4 0.21 0.2 0.77
rs11804913 0.01 0.4 0.21 0.3 0.37
rs7554973 0.2 0.5 0.55 NA 0.01
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FIGURE 1 | DSNetwork visual approach. (A) Representation of predictors reference frames illustrating each approach boundaries and direction. (B) Representation
of intra-predictors ranking based on the predictors reference frame. (C) Representation of intra-predictors absolute score intervals based on the predictors reference
frame. (D) Representation of the global mean rank. (E) The edges between the nodes can be used to map Linkage Disequilibrium (LD) levels between two variants.
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where each variant is located on the deleteriousness spectrum for
each predictor. We chose to divide the score range of each
approach into 20 equal intervals. This number of intervals was
chosen as a compromise between granularity and readability.
The first interval contains the most deleterious scores and the
20th, the least deleterious. Thus, the annotation scores obtained
for each variant are translated into their corresponding intervals.

This allows the user to know if a variant is predicted as
deleterious by a particular approach without having to know
the implementation details of this approach. For clarity purposes,
in this example the range of scores has been divided into four
intervals (instead of 20) (Figure 1C).

As for intra-predictor ranks, each variant is depicted as a pie
chart where each slice represents the score interval of the variant
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for a particular predictor. We used a color gradient ranging from
red to blue. The red color represents the most deleterious interval
for a given predictor. The gray color represents missing data.
Figure 1C depicts the pie charts generated for the five candidate
variants. The slices can be ordered by color to easily identify
variants with the most predictions of deleteriousness.

Global Ranking

In order to further facilitate the prioritization, we propose to
summarize the information regarding the relative ranks in an
overall rank for each variant. To do so, we calculate the average
rank of each variant based on its intra-predictor ranks. Then, we
order the variants according to their average rank. Variants with
the lowest average ranks are considered as the best candidates for
being deleterious. Because in some cases there may be missing
values for some of the predictors when analyzing a specific set of
variants, we propose three strategies for calculating a consistent
average rank, which will be comparable between variants and
which will take into account these missing values: 1) replace
missing values with the median value (default one); 2) replace
missing values with the average value; or 3) systematically
attribute missing values the “worst” rank. Once the necessary
substitutions are made, the average ranks can be calculated and
the global ranks generated. As for the intra-predictor scores and
ranks, the global ranks are made available for each variant under
the form of a pie chart where the rank is represented by a color
gradient ranging from red to green. The color red represents the
most deleterious variant among the candidates for all approaches
(Figure 1D).

Variants Network

DSNetwork offers the possibility to simply visualize scores and LD
between variants in order to identify potential haplotypes through
an interactive interface. Users can interact with the network using
the mouse by scrolling in and out to zoom, or double-click on a
variant node to display variant annotation details among other
features. They can also update the predictors used to prioritize the
variants. As displayed in Figure 1E, edges between nodes can be
used to map LD levels between two variants. LD (squared
correlation r*) is based on a user-chosen 1000 genomes
population and is represented by an absolute color gradient
ranging from yellow to red. Red indicates a high disequilibrium.
The gray color represents the missing information. By default, no
LD data are shown. To map LD on the network edges, users have
to choose a population from 1000 Genomes and can restrict the
LD range to display for a particular variant.

Implementation

DSNetwork was created using the Shiny framework (Chang
et al, 2017). This tool provides users with deleteriousness
predictions for a selected set of coding and non-coding human
Single Nucleotide Variants (SNVs) and short inserts and
deletions (InDels) (hgl9 build) and generates a set of
prioritized results for further analysis. These prediction scores
are recovered from several trusted sources and presented in a
cross-platform, user-friendly web interface. The interface is
organized in three sections, namely, Input, Selection, and

Visualization, as illustrated and described in Figure 2. For
complete usage guide, see the Supplementary Material.
DSNetwork is encapsulated using Docker platform to
guarantee the cross-platform compatibility. The source code
and installation procedure are available at https://bitbucket.org/
vmtrap/dsnetwork_deploy/src/master/. The tool can be installed
on all operating systems supporting Docker Engine (see
supported platforms at https://docs.docker.com/install/) and is
also accessible through our portal for demonstration purpose at:
http://romix.genome.ulaval.ca/dsnetwork/.

Case Studies

We chose to demonstrate the utility of DSNetwork in the context
of the functional analysis of four breast cancer susceptibility loci
identified through the latest published breast cancer association
study (full description in Michailidou et al., 2017) and nine loci
reported in the latest published study on schizophrenia
susceptibility (full description in Huo et al., 2019). Michailidou
etal. (2017) report the discovery of 65 new breast cancer risk loci
and deepens the functional characterization for four regions,
namely, 1p36, 1p34, 7q22, and 11p15. For each of these regions,
the authors defined sets of credible risk variants (CRVs) and
investigated their impact through functional assays in order to
identify the functional variants. Huo et al. (2019) investigated
over 180 loci reported to be associated with schizophrenia in
several GWA studies and prioritized regulatory single-nucleotide
polymorphisms (SNPs) at these risk loci. They deepen the
functional validation of 10 variants from nine different loci.

RESULTS AND DISCUSSION

Prioritization of Four Breast Cancer
Susceptibility Loci

The original study by Michailidou et al. (2017) reported 65 novel
breast cancer susceptibility loci. For each of these regions, they
defined a set of CRV containing variants with P-values within
two orders of magnitude of the most significant SNPs in this
region. They then selected four loci for further evaluation,
namely, 1p36, 1p34, 7q22, and 11pl5. Initially, these four
regions contained, respectively, 54, 13, 19, and 85 significantly
associated variants. The p-value cutoft enabled them to reduce
the number of variants to, respectively, 1, 4, 6, and 19 CRVs. The
list of variants for these loci was extracted from the original
paper’s Supplementary Tables 8 and 13 in the context of the
current analysis. Following data extraction, the analysis
procedure was: 1) upload the variants of interest on the web
tool, 2) fetch the annotations, 3) visualize the variants through
the overview plot, 4) visualize the available deleteriousness scores
through the relative ranking in the decision network, 5) use
absolute interval visualizations to identify the best candidates,
and finally 6) conclude.

Locus 1p36
This region contains a single CRV, rs2992756 (P = 1.6x10™").
For demonstration purposes, we selected the 30 most associated
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FIGURE 2 | Architecture overview. The first section is dedicated to user input and parameters for data retrieval. The middle panel presents a relevant subset of
annotations for each submitted variant and enables the selection of variants to be integrated in the final visualization. The bottom part on the interface is dedicated to
the integrated visualization of the deleteriousness predictions displayed as a network.

variants in this region to put to the test. Among these 30 variants,
2 variants (rs200439143, rs71018084) weren’t annotated by
DSNetwork because of their absence from MyVariant.info
service, and 24 were identified as regulatory variants and 4 as
non-synonymous variants. For the purposes of our analysis, we
focused on the regulatory variants.

Based on the deleteriousness scores available for this subset of
variants, a quick overview of variant nodes has allowed to easily
identify rs2992756 as the best candidate. Indeed, the node for this
variant contained the largest proportion of red, indicating a high
ranking for most of the scoring approaches (Figure 3A). To
confirm this observation, we used the relative rank visualization
(Figure 3B). The mean rankings of variants, clearly materialized
by both the color code and the values, enabled the confirmation
of rs2992756 as the best candidate among the 30 most breast
cancer-associated variants at the 1p36 locus. Using reporter
assays, Michailidou et al. (2017) demonstrated that the
presence of the risk T-allele of this variant within KLHDC7A
promoter significantly lowers its activity.

Locus 1p34

This region contains four CRVs among 13 significantly
associated variants. All the variants were found by DSNetwork
and identified as regulatory variants.

Based on the deleteriousness scores available for this subset of
variants, a quick overview of variant nodes has allowed to easily
identify two variants, rs42334486 and rs7554973, as the best
candidates. Indeed, the nodes for these variants contained the
largest proportion of red and orange indicating a good ranking of
these variants for most of the scoring approaches (Figure 4A).
The sorting by color (Figure 4B) facilitated the prioritization of
these two variants, which initially seemed to present the same
proportion of high ranks. The visualization of the mean ranking
confirms rs4233486 as the most credible candidate among the
CRVs (Figure 4C). This observation is in accordance with results

from Michailidou et al. (2017), which demonstrated, using
reporter assays, that the presence of the risk T-allele of this
variant within a putative regulatory element (PRE) reduced
CITED4 promoter activity.

Locus 7922

This region contains six CRVs among 19 significantly associated
variants. All the variants were found by DSNetwork and
identified as regulatory variants.

Based on the deleteriousness scores available for this subset of
variants, a quick overview of variant nodes has allowed to easily
identify two variants, rs6961094 and rs71559437, as the best
candidates. Indeed, the nodes for these variants contained the
largest proportion of red, indicating a good ranking for most of
the scoring approaches (Figure 5A). The visualization of the
mean ranking confirms rs6961094 and rs71559437 as the most
credible candidates among the CRVs (Figure 5B). These
observations are supported by the functional experiments
performed by Michailidou et al. (2017), which demonstrated,
using allele-specific Chromatin Conformation Capture (3C)
assays, that the presence of the risk haplotype (rs6961094
combined with rs71559437) is associated with chromatin
looping between CUXI, RASA4, and PRKRIP1 promoters
suggesting that the protective alleles abrogate this phenomenon.

Locus 11p15

This region contains 19 CRVs among 85 candidate variants.
Among the 19 CRVs, five variants, located in the proximal
promoter of PIDDI (a gene implicated in DNA-damage-
induced apoptosis and tumorigenesis; Lin et al., 2000), namely,
rs7484123, rs7484068, rs11246313, rs11246314, and rs11246316,
were further analyzed by Michailidou et al. (2017). They
demonstrated, using reporter assays, that these variants,
incorporated in a construct, significantly increased PIDDI
promoter activity.
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Rank

FIGURE 3 | Networks representing the 30 most significant variants
associated with breast cancer at the 1p36 locus. (A) All available predictions
represented under the form of relative rank grouped by color. (B) Global
ranking representing the mean relative ranks with missing values substituted
by the median value. Based on the deleteriousness scores available for this
subset of variants, a quick overview of variant nodes has allowed to easily
identify rs2992756 as the best candidate.

A quick overview of the relative and absolute metascores
visualization allowed to easily prioritize the 19 CRVs (Figures
6A and B). First, the prioritized list based on the metascores
confirms the selection of these five variants as functional credible
SNPs. Indeed they are ranked at the first, second, third, fifth, and
eighth place out of 19. Moreover, we notice that variants
rs7484123 and rs11246314 demonstrate a higher level of
coloration, confirming them as the best candidates among the
variants located in the proximal promoter of PIDD]. The variant
rs7484123 particularly stands out as a very promising candidate
for subsequent experiments.

Prioritization of Nine Schizophrenia
Susceptibility Loci

As a second example, we have applied DSNetwork to data from an
extensive study by Huo et al. (2019) investigating over 180 loci
reported to be associated with schizophrenia in several GWAS. This
study has prioritized regulatory SNPs at these risk loci using five
annotation methods (CADD, Eigen, LINSIGHT, GWAVA, and
RegulomeDB) and expression quantitative loci (¢QTL) annotation.
Potentially causal SNPs have further been identified using
functional genomics data such as CHIP-Seq experiments

Yy
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FIGURE 4 | Networks representing the four CRVs associated variants with
breast cancer at the 1p34 locus. (A) All available predictions represented
under the form of relative rank ordered by predictors. (B) All available
predictions represented under the form of relative rank grouped by color.
(C) Global ranking representing the mean relative ranks with missing values
substituted by the median value. Based on the deleteriousness scores
available for this subset of variants, a quick overview of variant nodes has
allowed to easily identify two variants, rs42334486 and rs7554973, as the
best candidates.

performed on brain tissues. Doing so and using reporter gene
assays, they have validated the regulatory effect of nine transcription
factor binding-disrupting SNPs from nine different loci.

The list of credible causal variants (CCV) for these nine loci
was downloaded from the Psychiatric Genomics Consortium
portal (https://www.med.unc.edu/pgc/results-and-downloads/
scz/). These regions contained, respectively, 37 CCV
on chromosome 1, 73 CCV on chromosome 3, 51 CCV on
chromosome 6, 55 CCV on chromosome 7, 32 CCV on
chromosome 12, 14 and 5 CCV on chromosome 15, 75 CCV
on chromosome 16, and 128 CCV on chromosome 17.

The list of CCV for each locus was uploaded on the
DSNetwork tool to identify the best functional candidates.
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FIGURE 5 | Networks representing the six CRVs associated variants with
breast cancer at the 7922 locus. (A) All available predictions represented
under the form of relative rank grouped by color. (B) Global ranking
representing the mean relative ranks with missing values substituted by the
median value. Based on the deleteriousness scores available for this subset
of variants, a quick overview of variant nodes has allowed to easily identify
two variants, rs6961094 and rs71559437, as the best candidates.

Table 2 presents, for each of the nine loci, the SNP that was
prioritized in the original paper and in the DSNetwork analysis.
In cases where results diverged, we also present the ranking
provided by DSNetwork for the SNP prioritized in the original
paper. From these analyses, we can conclude that DSNetwork
found the same top SNP in the majority of cases (five SNPs
ranked first and two SNPS ranked in the top 3). Two SNPs
ranked in the top 10 but one of them rs696520 was not
functionally validated in the original paper. Finally, rs17821573
on the chromosome 16 locus ranked 22nd with DSNetwork. It is
important to note that fine-mapping analyses aim at reducing the
list of candidate variants and not identifying the causal variant
(Cannon and Mohlke, 2018). Furthermore, there is a difference
between causal and functional variants: a variant showing a
regulatory effect in functional assays does not confirm its
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FIGURE 6 | Networks representing the 19 CRVs associated variants with
breast cancer at the 11p15 locus. (A) Global ranking representing the mean
relative ranks with missing values substituted by the median value. The purple
arrows highlight the five credible causal variants identified by Michailidou et al.
(B) The absolute intervals show rs7484123 and rs11246314 as the best
candidates with regard to deleteriousness predictions. The best candidate
variant rs7484123 sports a high level of linkage disequilibrium (depicted by
the red links emanating from rs7484123’s node) with the other candidate
variants in the European population.

implication in a phenotypic variation. Therefore, it would be
interesting to test if the top SNP identified by DSNetwork
(rs17854029) could also be functional.

These examples demonstrate the ability of DSNetwork to
effectively reduce the amount of CCV despite a large number of
candidate variants.

Furthermore, compared to other existing methods for
prioritization, DSNetwork has the advantage of being scalable
and flexible. Indeed, as a majority voting based approach where
each predictor is a crowdsourcing annotator proposing its
prioritized list, DSNetwork enables the addition of an infinite
number of annotators. However, in practice, one drawback of
usual crowdsourcing systems is that the annotators are
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TABLE 2 | Summarized results from DSNetwork analysis for the nine schizophrenia susceptibility loci.

Locus # of CCV Huo et al. top SNP Validated
chrl 37 rs301791 Yes
chr3 73 rs696520 No
chré 51 rs7752421 Yes
chr7 55 rs37718 Yes
chr12 32 rs7304782 Yes
chr15 1 14 rs28676999 No
chr156 2 5 rs4702 No
chr16 75 rs17821573 Yes
chr17 128 rs11655813 Yes
chr17 128 rs9908888 Yes

DSNetwork top SNP Huo et al. top SNP in DSNetwork

rs301791
rs9845457
rs7752421

rs37718
rs7304782
rs62021888

rs4702

rs17854029

rs216172
rs2281727 7

4 = N

W

anonymous. Therefore, their expertise levels are often unknown
and uneven, which makes it difficult for the end-user to trust the
final vote. In DSNetwork, the annotations are derived from
several databases and their reliability level can be estimated
through their performance reported in the literature. By
default, all the available predictors are used to produce an
optimal decision. However, we enable users to adjust the list of
predictors used according to their preferences and expertise. As
explained in Ribeiro et al. (2016), “explaining the rationale
behind individual predictions would make us better positioned
to trust or mistrust the prediction, or the classifier as a whole.”
For this reason, in order to assist the users in their decision, we
provide a short description of each predictor and the list of the
annotations they use. Another way to take into account
annotator reputation is to add a weight to each vote, the
weights representing the competence levels (Tao et al., 2019).
This explicit way to incorporate weight in the voting process
could be included in further development.

CONCLUSION

We analyzed four breast cancer risk loci through DSNetwork and
were able to pinpoint the same most plausible causal variants
than those proposed in the original paper. In a similar way, we
were able to efficiently circumscribe the number of credible
candidate variants throughout the prioritization of nine
schizophrenia susceptibility loci. DSNetwork provides a user-
friendly interface integrating predictors for both coding and non-
coding variants in an easy-to-interpret visualization to assist the
prioritization process. The use of DSNetwork greatly facilitates
the selection process of potentially deleterious variants by
aggregating the results of nearly 60 prediction approaches and
easily highlighting the best candidate variants for further
functional analysis.
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As an important approach to cancer classification, cancer sample clustering is of
particular importance for cancer research. For high dimensional gene expression data,
examining approaches to selecting characteristic genes with high identification for cancer
sample clustering is an important research area in the bioinformatics field. In this paper, we
propose a novel integrated framework for cancer clustering known as the non-negative
symmetric low-rank representation with graph regularization based on score function
(NSLRG-S). First, a lowest rank matrix is obtained after NSLRG decomposition. The
lowest rank matrix preserves the local data manifold information and the global data
structure information of the gene expression data. Second, we construct the Score
function based on the lowest rank matrix to weight all of the features of the gene
expression data and calculate the score of each feature. Third, we rank the features
according to their scores and select the feature genes for cancer sample clustering.
Finally, based on selected feature genes, we use the K-means method to cluster the
cancer samples. The experiments are conducted on The Cancer Genome Atlas (TCGA)
data. Comparative experiments demonstrate that the NSLRG-S framework can
significantly improve the clustering performance.

Keywords: cancer gene expression data, low-rank representation, feature selection, score function, clustering

INTRODUCTION

High-throughput DNA microarray technology has long been used to collect biomedical cancer gene
expression data (Russo et al., 2003). In general, gene expression data contain a notably large number

Lu C, Wang J, Liu J, Zheng C, Kong X
and Zhang X (2020) Non-Negative
Symmetric Low-Rank Representation
Graph Regularized Method for Cancer
Clustering Based on Score Function.
Front. Genet. 10:1353.

doi: 10.3389/fgene.2019.01353

of genes (high dimension), a small number of samples (low sample size), irrelevant genes and noisy
genes caused by complex processing (Mohamad et al., 2010). Therefore, it is necessary to select
feature genes or informative genes that contribute to identifying different cancers and the cancerous
state (Mohamad et al., 2013; Ge and Hu, 2014; Tang et al., 2014). The selected genes have potential
for use in developing cancer treatment strategies (Rappoport and Shamir, 2018). However, the high-
dimensional and low-sample-size characteristics of the cancer gene expression dataset present a
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challenge for researchers in terms of data mining. To mitigate
this problem, researchers have proposed many methods (Cui
et al,, 2013; Ge and Hu, 2014; Wang et al,, 2016; Wang et al,,
2018; Xu et al, 2019). Among the existing methods, feature
selection is a reasonable method that has achieved great success.

Feature selection is an important data processing method that
can select the most important feature subset from a set of features
and reduce the dimension of the feature space. The existing
feature selection methods can be divided into two groups:
“wrapper” methods and “filter” methods (Kohavi and John,
1997). Wrapper methods use the learning algorithm to
evaluate the candidate features. However, because wrapper
methods are highly complex with a large amount of
calculation, they are not suitable for large-scale datasets
(Langley, 1994). Filter methods select a feature subset via the
evaluation function. Construction of an evaluation function is
based on the correlations between the features and properties of
the raw data, such as the distance measures, information
measures, dependence measures or others (Dash and Liu, 1997;
Talavera, 2005; He et al.,, 2006). Among the existing evaluation
functions, as a criterion, the data variance might be the simplest
evaluation for feature selection. The main idea of the data-
variance-based approach is to capture the directions of the
maximum variance in the data, which reflects the major power
of the data. The Principal Component Analysis (PCA) method
and its variants belong to the filter methods and are used to find
features that are useful for recovering data. However, there is no
reason to confirm that selected features can effectively
discriminate between data points in different classes. He et al.
proposed the Laplacian Score (LS) method to select features with
high identification, and the LS method is a “filter” method that is
independent of other methods (He et al., 2006). The LS method
constructs a nearest neighbour graph to preserve the local
geometric structure. The selected features can reflect the local
structure of the data space.

As we know, the global structure plays an important role in
clustering when the data contain multiple subspaces (Liu et al.,
2010). The LS method focuses excess attention on the
relationships between local data points but ignores the influence
of global data structures. This drawback might lead to reduced
discrimination effects of the selected feature when the given data
contain multiple subspaces. For the feature selection method, it is
a challenge to satisfactorily characterize and represent global data
structures from a dataset with multiple subspaces. Fortunately, the
Low-Rank Representation (LRR) method solves this issue nicely.
The LRR method can find a low-rank matrix to capture and
represent the global structure of the raw dataset (Liu et al., 2010).
The key to the LRR method is that the high-dimensional data can
be represented by potential low-dimensional subspaces (You et al,
2016). In bioinformatics, LRR has achieved great success in gene
expression data mining. For example, Cui et al. used the LRR
method to identify subspace gene clusters and obtained good
results (Cui et al, 2013). To preserve the intrinsic geometric
structures of gene expression data, Wang et al. introduced graph
regularization into LRR and proposed the Laplacian regularized
LRR (LLRR) method (Wang et al, 2016). Recently, LLRR was

applied to cancer sample clustering (Wang et al., 2019a).
Furthermore, Wang et al. introduced the mixed-norm to
increase the robustness of the LLRR method and proposed the
mixed-norm Laplacian regularized LRR (MLLRR) method for
tumour sample clustering based on penalized matrix
decomposition (Wang et al, 2018). However, cancer sample
clustering is processed on the obtained low-rank matrix, which
is the global structural representation of the raw data. These LRR-
based approaches mainly consider the global structure of data, but
sometimes they ignore the single feature gene.

Motivated by the above insights, we propose a novel
framework that integrates the advantages of the LRR and LS
methods. Based on the multi-cancer gene expression dataset, the
proposed framework is used to select the feature gene for cancer
sample clustering.

First, we incorporate the constraints of the non-negative
symmetric low-rank matrix and graph regularization in the LRR
method and propose a non-negative symmetric low-rank
representation graph regularized method, or NSLRG method for
short. The NSLRG method considers the property and structure of
the gene expression data. The NSLRG method obtains the lowest
rank matrix, which preserves the local data manifold information
and the global data structure information of the raw data.

Second, according to the lowest rank matrix, we construct a
Score function to evaluate each gene for selection of the feature
genes. The importance level of a gene depends on its significance
for the global and local structures of the raw data. We integrate
the NSLRG method with the Score function to achieve the aim of
evaluating and selecting feature genes, and we refer to it as the
NSLRG-S framework.

Finally, we apply the K-means method to cluster cancer
samples based on the selected feature genes. Based on the
different multi-cancer gene expression data, the experimental
results suggest that the performance of the NSLRG-S framework
is better than that of other methods.

In summary, the contributions of this paper include the
following main aspects:

(1.) We propose a novel data mining method known as the
NSLRG method. The NSLRG method operates under graph
regularization and non-negative symmetric low-rank matrix
constraints. The NSLRG method can learn the lowest rank
matrix to satisfactorily represent the gene expression data
and can capture the global structures and local geometric
structures of the raw data. Non-negativity is more consistent
with Dbiological modelling. The symmetric constraint
improves the interpretability of the lowest rank matrix. The
constraints of non-negativity and symmetry facilitate the
lowest rank matrix to learn the structure of the gene
expression data.

(2.) Based on the lowest rank matrix, we propose a Score function
to select the feature genes for cancer sample clustering. The
selected feature genes have important significance to the raw
data. In the clustering of cancer samples, the selected genes
have strong discriminability to realize the classification of
different samples.
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(3.) We present a novel feature selection framework, known as
NSLRG-S, that is designed to evaluate and select the feature
genes for cancer sample clustering. Based on this framework,
the selected result of the gene expression dataset has lower
dimensionality. In multi-cancer sample clustering, this
method has a high recognition rate to find subsets using the
selected result as experimental data. We conduct extensive
experiments to demonstrate that the feature gene subset
selected by NSLRG-S has good performance in cancer
sample clustering.

The remainder of this paper is organized as follows. In section
Related Work, we briefly review the original LRR and several
related variants as well as the LS method. In section Method, we
first present the NSLRG method and its optimal solution, and
based on the Score function, the NSLRG-S framework is clearly
given for modelling of multi-cancer gene expression data.
Section Experiments analyses and discusses the NSLRG method
based on multiple evaluation indicators and convergence
analysis. The performance of the NSLRG-S framework is
validated by experiments based on synthetic data and multi-
cancer gene expression data. Section Conclusions Work presents
the conclusion of our work.

RELATED WORK

In this section, we briefly introduce the original Low-Rank
Representation (LRR) (Liu et al., 2010), the related variants
based on the original LRR method, and the Laplacian Score
method (He et al., 2006).

Low-Rank Representation

Original LRR Method

The Low-Rank Representation (LRR) method is an efficient
method for exploring observed data and subspace clustering.
The main idea is that each data sample can be represented as a
linear combination of the dictionary data. In general, the matrix
X = [x1,%,..,%,]ER™" represents the observed data, of which
each column is a data sample. Therefore, the matrix X contains n
data samples drawn from independent subspaces. The matrix
D = [dy,dy,....d,]eR™F represents the dictionary data and is
overcomplete. The general model of the LRR method is
formulated as follows.

X = DZ, (1)

mZinrank(Z) s.t.

where the matrix ZER®" is the coefficient matrix. The aim of
this model is to learn a lowest rank matrix Z* to represent the
observed data X. In the actual application, the matrix X always
replaces D as the dictionary data (Liu et al., 2010; Liu et al., 2013).
Therefore, Z becomes a square matrix and ZER™". The element
z; € Zy., can denote the confidence of sample i and j in the
same subspace (Wang et al., 2019b). Hence, the matrix Z* can be
used in subspace clustering that clusters data samples into several
sets, with each set corresponding to a subspace.

The problem of mZinrank(Z) is a rank function, which is

difficult to optimize with an NP-hard nature. To mitigate this
problem, the best alternative is convex relaxation on problem (1),
and it is written as follows.

mZin||Z||* s.t. X=XZ, (2)

where |||+ is the nuclear norm, and || Z||~ is defined as || Z ||+ =
E?Si’ where §; is the singular value of matrix ZER"". It has been
confirmed in the literature (Cai et al., 2010) that matrix Z of the
LRR can capture the global structure of the raw data using the
nuclear norm item. Furthermore, to address the real data under
the noise and outliers, a more reasonable formula is applied after
adjustment, and it is expressed as follows.

min||Z |l +A|Ellp s.t. X =XZ+E, 3)

where || E||p is the error term, and it selects a different P to model
special noise or outliers based on error prior information, such as
l;-norm (]|E||;) and L, ;- norm (]| E||5,;) (Chen and Yang, 2014),
and A > 0 is the parameter that trades off the effect of the
error item.

Many researchers have attempted and proposed variants
based on the original LRR method. The main idea is to
introduce constraint items to optimize or improve existing
methods. For example, the original LRR method is improved
by considering the geometric structures within the data,
including the graph regularization method (Lu et al., 2013) and
k-nearest neighbour graph method (Yin et al, 2016). The
different norm items are used to improve the robustness of the
original LRR method (Wang et al.,, 2018) and others.

LRR With Graph Regularization

Under certain conditions, the geometric structure within the
data is crucial for the result that we desire. To address this
issue, researchers introduced graph regularization into the
LRR method to create the graph-regularized low-rank
representation (GLRR) method (Lu et al., 2013). The equation
of GLRR is written as follows.

nzuiEn||Z||*+),1tr(ZLZT)+22||E||2)1 s.t. X=XZ+E, (4)

where the error item uses the L,;-norm and || E||,; = Ej:l

EZI([E],j)Z, tr(-) is the trace of the matrix, L is the graph

Laplacian, and A4, and A, are two parameters used to balance the
graph-regularized item and the error item. Based on manifold
learning, the graph-regularized item achieves the aim that
representative data points z; and z can hold the property of
the data points x; and x; of X, which are closed in the intrinsic
manifold. Therefore, the inherent geometric structure in the raw
data is preserved in the low-rank matrix Z.

Non-Negative LRR With Sparsity

The non-negativity constraint ensures that every data point is in
the convex hull of its neighbours. The sparse constraint ensures
that each sample is associated with only a few samples. The non-
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negative and sparse low-rank matrix supplies a well
discriminated weight for the subspace and information group.

Inspired by the above insights, Zhuang et al. proposed the
non-negative low rank and sparse graph (NNLRS) method
(Zhuang et al., 2012). The formula is given as follows.

min|| Z ||, +4; I Zll, +4 | Elly; 5-t. X =XZ+E, Z>0, (5)

where ||Z]|; is the /;-norm to guarantee the sparsity of coefficient
matrix. In real-world applications, the sparsity and non-
negativity matrix Z obtained by the NNLRS method can offer a
basis for semi-supervised learning by constructing the
discriminative and informative graph (You et al., 2016).

Laplacian Score Method

According to the Laplacian eigenmaps (Belkin and Niyogi, 2001)
and the locality preserving projection (He and Niyogi, 2005), the
aim of the Laplacian Score (LS) method is to evaluate features
based on their locality preserving power (He et al., 2006). The LS
is defined as follows.

Eg (% = %) 7S;

LS(r) = Var(x )

,(I1<r<m1<i<j<n),

(6)
I I

where the heat kernel function S;; =e™ © is used to obtain
weight matrix S, and t is a suitable constant, which is set
empirically. The matrix S is used to model the local structure of
the raw data space. Additionally, Var(x, ) is the estimated variance
of the r-th feature in all data points, and the larger the Var(x,,.), the
more information held by the r-th feature. The > (x,; - x,)” is
the sum of differences in the expression of r-th feature between
all samples. For larger values of S;; and the smaller values of 2:;
(x,; — x,j)z, the value of LS(r) tends to be smaller, meaning that the
importance level of the feature is higher. Therefore, the important
features are selected according to LS(r).

METHOD

In this section, we propose a novel feature selection framework to
select the feature genes for cancer clustering. This framework is
set up based on the NSLRG method and the Score function. We
refer to this approach as the NSLRG-S Subsection NSLRG
Method presents the NSLRG method and its optimization
algorithm. In subsection NSLRG With Score Function, we
introduce the NSLRG method with the Score function. The last
subsection Framework of NSLRG-S is devoted to clustering of
cancer samples based on NSLRG-S modelling of gene
expression data.

NSLRG Method

Graph Regularization

Because graph regularization can preserve the intrinsic local
geometric structure in the original data, it has received much
attention from researchers. The theory of graph regularization is

based on the principle that the representation of the intrinsic
local geometric structure that is distributed in the original data is
inherited by a graph under the new basis mapping. In the graph,
the vertices correspond to the data points, and the edge weights
represent the relationships between the data points (Du et al.,
2017). Thus far, graph theory has been widely applied and
developed (Chen et al., 2018).

For this paper, in the step of graph construction, we assume
that if data points x; and x; are “close”, an edge exists between x;
and x;. In this work, we use the K-nearest neighbour method to
find the connection of x; and x;. In other words, if x; or x; is
among the K-nearest neighbours of each other, the data points x;
and x; are located on the same edge. This construction strategy is
simpler for determination of connected edges, which tends to
lead to a connected graph. In the next step, the edge weights are
defined to represent the affinity between the data points. In
current study, we define a symmetric weighting matrix W by the
heat kernel weighting function (Cai et al., 2005). The weighting
formula is defined as follows.

I I
e © , if x; and x; are connected
ij >
0o , otherwise

7)

where the parameter ¢ is defined as the mean value of the Euclidean
distance for all data points, which can be automatically adjusted
based on the different dataset. Therefore, the degree matrix D is
defined as D;; = Ej Wi, which is a diagonal matrix. Finally, based
on the connected graph, we obtain the graph Laplacian matrix L,

which is defined as follows.

L=D-W. (8)
Accordingly, a reasonable minimize objective function exists
to satisfy our assumption, and it is defined as follows.

mmg 1z = 2 I” W = mintr(Z(D - W)Z")

= mzin(ZLZT), (9)

where z; and z; are mappings of x; and x; under the new basis,
which are also close to each other if x; and x; are close. The
objective function is known as the graph regularization item.

Objective Function

We introduce graph regularization and sparse items into the
original LRR. Furthermore, we impose the non-negative and
symmetric constraints on the low-rank matrix Z. This method is
known as the non-negative symmetric low-rank representation
graph regularized (NSLRG) method, and its objective function is
written as follows.
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minl| Z || +,tr (ZLZT) + L, I E Nl +245 | Z ]l (10)
s.t. X=XZ+E, Z=27", Z>0.

In the NSLRG method, we represent a given set of data points
as a linear combination of other points using a low-rank matrix
Z. The low-rank matrix should be sparse to improve the
recognition ability. Therefore, the matrix Z with a sparse
constraint could make the result of the representation more
discriminative. However, the ||Z]|o item of problem (10) is NP-
hard. Thus, as suggested by matrix completion methods (Candes
et al., 2011), we use ||Z||;, a proper relaxed convex item, to
replace ||Z]|p, and the objective function of NSLRG can be
rewritten as follows.

nZliEn||Z||*+/11tr(ZLZT) + L IEN +A4 I Z]), (11)
s.t. X=XZ+E, Z=27", Z> 0.

The matrix Z* is learned by the NSLRG method, and matrix
Z* is a non-negative symmetric lowest rank matrix. The element
z;; of Z* can be treated as the degree of similarity between the
data points x; and x;. In addition, the obtained matrix Z* has
good interpretability, for which the element of matrix Z* can be
directly converted to similar-degree weights. The symmetry
constraint can strictly guarantee the consistency of similarity of
data pairs. The similarity of data points i and j corresponding to
the similar-degree weights elements z;; and z;; is equal, as shown
as Figure 1. The non-negative constraint is more adaptive for the
property of the gene expression data. In other words, the NSLRG
method avoids the situation in which the lowest rank matrix
might be negative and asymmetric, and it also avoids
symmetrization of itself, as suggested in (Liu et al, 2010), ie.,
Z" = (|Z*| +|Z*|")/2. Therefore, we refer to the matrix Z* as the
similar-degree matrix.

Optimization
As we know, many algorithms are based on convex relaxation to
solve the high-dimension optimization problem, such as Singular
Value Thresholding (SVT) (Cai et al., 2010), Accelerated
Proximal Gradient (APG) (Toh and Yun, 2010), Alternating
Direction Method (ADM) (Lin et al., 2009) and Linearized
Alternating Direction Method with Adaptive Penalty
(LADMAP) (Lin et al., 2011). As an extended ADM, the
LADMAP algorithm adds the quadratic penalty term
linearization and the penalty self-adaption change, which leads
to use of fewer auxiliary variables and avoids matrix inversions to
solve the problem. Specifically, LADMAP reduces the complexity
of the LRR from O(n*) to O(rn*), where r is the rank of low-rank
matrix Z. This algorithm makes it possible for LRR to be applied
on large-scale dataset, such as video surveillance, digital images,
and gene expression data. Therefore, the LADMAP algorithm
has been recognized as the most efficient algorithm for solving
the problem of convex relaxation of low-rank and sparse
matrices. Similarly, we also adopt LADMAP to solve (11).
First, to easily and effectively obtain matrix Z, we use an
auxiliary variable Q to separate the variables, i.e., nuclear norm
(I1Z]]-) and I;-norm (]|Z||;). The objective function can be
rewritten as equation (12) using the Augmented Lagrange

W DN

n

Z,=7,1<i<nl<j<n)

FIGURE 1 | The matrix Z with the symmetry constraint.

Multiplier method (Lin et al., 2010).
. T
UZ,E,QY,, Y, 1) = minllZ 1, +M,tr(ZLZ")

2Bl +2 QI +Y,, X-XZ-E+Y,, z-Q (12
+8 IX-XZ-E|;+51Z2-Qll} s.t. Z=Z"Z>0,

where 4, A,, and 4; are positive weighting parameters; tt > 0
is the penalty parameter; Y;Y, are Lagrangian multipliers; A,
B=tr(A"B) is the Euclidean inner product between the matrices
A and B; and ||-||r is the Frobenius-norm. Mathematically,
equation (12) is equivalent to equation (13) after applying a
small transformation. Equation (13) facilitates processing of the
next step.

U(Z,E,QY,, Yy, ) = min I Z1l«

+hatr(ZLZ) + A I BNl +45 1 QU (13)
+f(Z,E,Q Y, Yo, ) s.t. Z=27Z"Z>0.

Hence, f(Z,E,Q Y, Yo, ) = u(| X - XZ -E+ Y/l |7 +||
Z-Q+Y,/ullE)/2.
We divide equation (13) into three subproblems and solve it
in three steps. The three subproblems are written as follows.
(= min| Z I, +Mtr(ZLZ") + f(Z,E, Q. Y, Yy, t) (14)
s.t. 2=22>0
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by =mink, | E|, +u | X -XZ-E+Y,/ullz /2 (15)

G = minds | QL +# 11 Z - Q+ Yo/ u /2 (16)
Finally, we solve the above subproblems to find the optimal
solution. The specific steps are given as follows.
Step 1. Update Z: The matrix Z can be obtained by solving
subproblem ¢; while keeping E and Q fixed. First, we define the
following formula (17) based on #;.

o (Zk) Ej, Qk>Y]f»Y§)ﬂk)

= Z’l tr(ZLZT) +f(Zk!Ek! Qk,YIf,lec,,le> . (17)

By setting the first derivative of /5 with respect to Z;, we can
obtain the following formula (18).

ok

57, =h (ZiL+ Z L") + X" (xzk X +E- Y’f//.tk)

+ﬂk(Zk—Qk+Y§/ﬂk) . (18)

According to LADMAP, subproblem ¢; can be replaced by
solving the following problem (19).

. ol
minl| Z|l,+5 5 2= Zo+ T 127, (19)
s.t. Z=72",72Z2>0,

where 1y = 24, | Ll +(1 + | X|13).
Equation (19) can be transformed into the following formula
(20).

1
min 1 Z 5 112 (zk - 20)

otk
a—Zlk/m) IF
7= ZT Z>0.

To solve the symmetric and non-negative constraints of low-
rank matrix Z, we adopt Lemma 1 of (Chen et al., 2017) and the
non-negative operator, i.e., equation (24), respectively. Lemma 1
is defined as follows, and the detailed proofs have been given in
the literature (Chen et al., 2017).

Lemma 1 If there is an expression similar to equation (21), its
closed solution is equation (22).

s.t.

1
||G||*+5||G—H||§ s.t. G=G',

1
—EI,)VE.

In this work, U,, ¥, and V, are the members of the skinny
singular value decomposition (SVD) of the matrix G =UzVY;
%, =diag(6,,6,,...,6,); 6, is the smgular value for Wthh the positive
smgular values are greater than + B i {r:6, > } G is defined

as G = (H+HD) /2; and I, is an identity matrix with size r x .

1
arg min— 21)

G B

G =1, (z, (22)

Based on Lemma 1, we make Z; = 1z, - ag‘; /m) + (Zy -
azk /Th)T} We solve the Zy,, using the s1ngular value
thresholding operator 6.(A) = U,S. (%, — - Ir)V,, where S,
sgn(x)max(| x [-€,0). The iterative formula is written as follows

Ziy =0, (20), @3

where 1y = 24, | L ||, +1e(1 + || X ||3). After obtaining matrix
Z., by equation (23), the non-negative constraint is imposed
on matrix Zj,, through a non-negative operator. The non-
negative operator is defined as follows.

(i) (i)
i Z7, 7’ >0
F<Z]);(,1’])) — { k+1 k+1 (24)
0, otherwise

Finally, the non-negative symmetric low-rank matrix ZZ+1
is obtained.

Step 2. Update E: The matrix E can be obtained by solving
subproblem ¢, while keeping Z and Q fixed. Analogously,
following equation (18), the first derivative of ¢, is set with
respect to Ey, i.e., g é ,and set 3 /2 = 0. Thus, we obtain equation
(25).

ol
aTi = .uk(Ek - X+ XZyy —Ylf//lk) =

— By =X -XZp,, + Y} /1l . (25)

According to the NSHLRR method (Yin et al., 2016), the
iterative formula of E is given as follows.

Epn =¥y (X —XZjy + Ylf/,uk) - (26)
i

Step 3. Update Q: The matrix Q can be obtained by solving

subproblem ¢; while keeping Z and E fixed. Similar to Step 2, we

set the first derivative of ¢; with respect to Qy, i.e., aQ , and set

g é = 0. Thus, we obtain the following equation.

= Uy [Qk - (Zk+1 + Yg/ﬂk)} =0

— Q= Zyy + Y5/ (27)

According to the NSHLRR method (Yin et al.,, 2016), the
iterative formula of Q is written as follows.

k
Qi1 = max{lljﬁ (Zk+1 + YZ/,uk) > 0} (28)
Hi
Algorithm 1 clearly summarizes the above solution steps. The
initialization parameter values are set based on experimental
experience and the existing relevant research recommendations
(Yin et al., 2016).

NSLRG With Score Function

It is known that both local structure and global structure can
influence the importance of features in raw data. However, the LS
method primarily focuses on the locality preserving power of
data to evaluate the features. Inspired by the lowest rank matrix
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Z* of the NSLRG method, which can capture the global and local
structure of the raw data, we believe that the important feature of
high-dimension data can be extracted based on the matrix Z*.
Therefore, we propose a Score function that is established on the
lowest rank matrix Z* for selection of the important feature. The
formula is defined as follows.

E i (xri - er) ? sz—NSLRG

Var (xr,:)

Score(r) = ,(1<r<m1<i<j<n),

(29)

where the Z;; yg re is the element of Z* obtained by the NSLRG
method, and Z;; ys;rg denotes the similarity degree of the i-th
and j-th samples and is used to measure the r-th feature between
two samples. The property of the global and local structure
captured by the lowest rank matrix can be used as a constraint for
feature selection. The selected feature results are quite useful for
capturing the subspace structures of raw data. In different classes,
this constraint can guarantee the selected feature with
high discrimination.

Based on the result of the Score function, all features are
arranged in ascending order to form a score curve. The number
of selected features is T (T <m), which occurs before the first
inflection point of the score curve. Thus, we cluster the cancer
samples based on the selected feature genes.

We refer to the NSLRG method with the Score function as the
NSLRG-S framework for short. In a nutshell, the NSLRG-S
framework can be divided into four steps. In the first step, the
lowest rank matrix is obtained by the NSLRG method. In the
second step, the Score function is used to evaluate and rank
features based on the lowest-rank matrix of the first steps. In the
third step, the feature genes are selected according to the results
of the Score function. In the fourth step, cancer sample clustering
is processed based on the selected feature genes. This novel
framework delivers better reliability in selection of the most

ALGORITHM 1 | The NSLRG method.

Input: data X; parameters 4, A, and Ag; the number of k-nearest-neighbors.
Initialization: Z, = E; = Qy = Y = Y2 =0, po=2.5, tto=10"2, fimax=10°, €1=107°,
e=1072, L.
While not converged do
1. Update Z by Step1.
2. Update E by Step2.
3. Update Q by Step3.
4. Update Lagrangian multipliers Y4 and Ya:
Y = Y 4 (X = X241 ~ Eg1)
ng = Yg + W@t — Quev)
5. Update pi,+:
Hie 1 =MIN(Lrrax, Pl

where py = {

if max (N | Zuer = Z I, b 11 By — g I,
1, otherwise

Po; W | Quet = Qi I} < €2

Checking convergence:

if [IX=-XZy.1—Ep.1|/|IXl|<eq or

max{ 1112k 1=Zll ikl Exs1~Ekll, el Ques1—Qiell }<e2
End while
Output: The lowest rank matrix Z*.

important feature for cancer sample clustering according to the
global and local structure of the raw data.

Framework of NSLRG-S

Based on the proposed NSLRG-S framework, our goal is to
model the gene expression data and cluster the cancer samples
according to the selected feature genes.

The modelling process is shown in Figure 2. At the start, the
matrix X,,,,.,, represents the gene expression data with size m x n,
and one row represents the expression level of a same gene in
different samples. The totals of genes and samples are m and n,
respectivgly. Usually, m is notably large and 7 is rather small. The
matrix Z,,, is the lowest-rank matrix obtained by the NSLRG
method as the basis for the Score function. Second, according to
the score result, all of the genes are ranked in ascending order.
The total number of 7 (7 <m) feature genes are selected based on
the first inflection point of the score curve. Finally, we cluster the
cancer samples based on the selected feature genes to
demonstrate the selected genes with efficient discrimination.
The result is compared with those of different methods,
including the K-means, Graph Regularized Nonnegative
Matrix Factorization (GNMF) (Cai et al., 2011), Robust
Principal Component analysis (RPCA) (Candes et al., 2011),
Sparse Principal Component Analysis (SPCA) (Journée et al,
2010), Graph-Laplacian PCA (GLPCA) (Jiang et al., 2013), LS
(He et al,, 2006), and LLRR (Wang et al., 2016) methods. The
details of the experimental result are described in subsection
Experiments on Gene Expression Data. Algorithm 2 is the
framework of the NSLRG-S for clustering of gene
expression data.

EXPERIMENTS

To evaluate the performance of the NSLRG-S framework, we
compare the NSLRG-S framework with multiple typical
methods, including the K-means, GNMF (Cai et al, 2011),
RPCA (Candeés et al., 2011), SPCA (Journée et al., 2010),
GLPCA (Jiang et al, 2013), LS (He et al., 2006), and LLRR
(Wang et al., 2016) methods. In subsection Evaluation and
Quantitative Benchmarks, we select three quantitative
benchmarks to evaluate the experimental results. In
subsection Experiments on Synthetic Data and subsection
Experiments on Gene Expression Data, comparative
experiments are conducted on synthetic data and cancer gene
expression data, respectively.

ALGORITHM 2 | Framework of NSLRG-S for clustering gene expression data.

Input: Gene expression data X clustering number k
Step:

1) Learn a lowest rank matrix Z* by the Algorithm 1;

2) Obtain the ranked feature genes by the Score-function;

3) Obtain the selected feature genes.

4) Obtain the clustering cancer samples results using the K-means method.
Output: Clustering results
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FIGURE 2 | Framework of NSLRG-S for clustering gene expression data.
Evaluation and Quantitative Benchmarks R-_P (33)
To evaluate the performance of the clustering results based on tp +fn

comparison methods, we select three quantitative benchmarks:
the clustering accuracy rate (Acc) (Cui et al,, 2013), F1
measurement (F1) (Rijsbergen, 1979), and Rand Index (RI)
(Rand, 1971).

Clustering Accuracy Rate
The Acc is defined as follows.

S E(E map(ry))
N

where N is the total number of samples, and Z(&;,map(r;)) is used
to identify whether &; and r; are matched. The &; and r; are the
actual label and clustering label of the i-th sample, respectively,
and if they are matched, the value of Z(&;,map(r;)) is equal to one;
otherwise, its value is equal to zero. The map(r;) is the mapping
function based on the Kuhn-Munkres method (Lovdsz and
Plummer, 1986).

Acc = x 100 % (30)

F1 Measurement

The F1 measurement is a special form of the F-Measure under a
certain parameter. The F-Measure is also referred to as the F-
Score and is the weighted harmonic mean of the Precision rate
and Recall rate of the result of clustering. The F-Measure,
Precision rate, and Recall rate are defined as follows.

where F is the F-Measure, P is the Precision rate and R is the
Recall rate. The tp (true positives) is the item that records the
number of positive samples that are clustered into their own
positive class, fp (false positives) is the item that records the
number of negative samples that are clustered into the positive
class, and fn (false negatives) is the item that records the number
of positive samples that are clustered into negative class. Figure 3
clearly shows tp, fp and fn. The F-Measure can balance the
contribution of fn by weighting Recall through the parameter
¢ > 0. When the parameter ¢ = 1, F-Measure becomes the most
common form, ie., F1 measurement, and equation (31) is
rewritten as follows.

2XPxR

F1=2"-"2
P+R

F1 measurement reaches its best value at 1 and its worst score

at 0. The relative contributions of the Precision rate and Recall
rate to the F1 measurement are equal.

(34)

Rand Index

The given data have two partitions: one is the actual
classification, and the other is the clustered result (returned by
our Algorithm 2). The Rand Index (RI) is used to compute how
similar the result of clustering is to the actual classification. The
RI is defined as follows.

2

+1) xPxR

po (9741 X PxR ; ) , (31) AL (35)

¢* x (P+R) 2
Nsamples

tp where a indicates the number of pairs of data points belonging to

= 7’ (32)  the same class in both the actual classification and the clustered

p+Jp result, b indicates the number of pairs of data points belonging to
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The raw data.

Precision

FIGURE 3 | The tp, fo, and fn of the clustering result.

The result of clustering.

.

Recall

the different class in both the actual classification and the
clustered result, and Cﬁmﬂ“ represents the total number of data
pairs obtained from the given data. The range of RI is [0,1], and
the larger the value, the more the clustering results are in
accordance with reality.

Experiments on Synthetic Data

In this subsection, comparison experiments are conducted on
synthetic data. In subsection Synthetic Data, we construct the
synthetic data. In subsection Convergence Analysis, we perform
convergence analysis to compare the NSLRG-S framework and
other methods. In subsection Clustering Results, we analyze the
performance of comparison methods on clustering data samples.

Synthetic Data
The synthetic data are constructed by the following steps (1) and
(2). These synthetic data contain ten independent subspaces.

(1.) Construction of 10 original databases by O;;; = TO;, 1 <
i < 9. The value of the database ranges from 0 to 1, T is the
transform random rotation matrix, and O; is a random
orthogonal matrix of 1000x100. The rank of each original
database is 100.

(2.) We extract 10 data vectors from each original database by X;
= 0,Q;,1 < i < 10, where the matrix Q!**!° is an indepen-
dent identical distribution matrix N(0,1), and its size is
100x10. All extracted data vectors are combined in synthetic
data X3000<100 — (X, X,,...,X}0].

Synthetic data

Convergence Analysis

We define an Error-Values function Fg (k) based on the loss
function value to calculate the convergence rate. In the same
iterations, the smaller the value of the Error-Values, the faster the
convergence rate. The formula is given as follows.

Fpy(k) = | X~ (XZ; + Eg) llp> (36)

where the minimum value of Fg (k) is equal to zero. To clearly
characterize the convergence rate, Figures 4A, B show the
convergence trends of the NSLRG-S and the compared
methods GNMF, RPCA, SPCA, and LLRR in 100 iterations. In
Figure 4B, we find that the convergence rate of the NSLRG
method is faster than those of the other methods.

Clustering Results

Table 1 lists the results of the GNMF, RPCA, SPCA, GLPCA, LS,
LLRR, and NSLRG-S methods on the three quantitative
benchmarks as Acc, F1, and RI. The results show that the
performance of NSLRG-S is better than those of other methods.

Experiments on Gene Expression Data

In this subsection, we conduct experiments on gene expression
datasets. The experimental datasets are downloaded from the
famous gene expression database The Cancer Genome Atlas
(TCGA). We cluster the cancer samples based on the feature
genes obtained by the NSLRG-S framework. The experimental
results demonstrate that we can improve the performance in
cancer samples clustering by applying the selected feature genes.
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FIGURE 4 | (A and B): The convergence analysis of different methods in 100 iterations.

TABLE 1 | The clustering results of compared methods and NSLRG-S method
on synthetic data.

Method Acc (%) F1 (%) RI (%)
GNMF 72.44 68.42 93.01
RPCA 80.68 78.82 96.57
SPCA 70.42 67.6 91.07
GLPCA 67.28 64.45 89.84
LS 80.62 78.37 96.12
LLRR 81.04 78.67 96.12
NSLRG-S 82.00 79.21 96.27

Acc, clustering accuracy rate; F1, F1 measurement; and RI, Rand Index; GNMF, Graph
Regularized Nonnegative Matrix Factorization; SPCA, Sparse Principal Component
Analysis; GLPCA, Graph-Laplacian PCA; LS, Laplacian Score; and LLRR, Laplacian
regularized Low-Rank Representation; NSLRG-S, non-negative symmetric low-rank
representation with graph regularization based on score function.

The bolded texts mean the results are better than the others.

Gene Expression Datasets
The TCGA database is a source of experimental data and is an
important project for accelerating and comprehensively
understanding cancer genetics using innovative genome
analysis technologies (Tomczak et al., 2015). This database is
one of the invaluable sources for gene expression datasets.
Therefore, we select the TCGA database as the data source to
research the clustering performance of the NSLRG-S framework.

We downloaded five cancer gene expression datasets, namely,
esophageal carcinoma (ESCA), head and neck squamous cell
carcinoma (HNSC), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD) and pancreatic adenocarcinoma
(PAAD). Each type of gene expression dataset contains cancer
tissue samples and normal tissue samples. There are 20,502 genes
in each tissue sample. The distribution of each gene expression
dataset is listed in Table 2.

In addition, to find the feature gene with a high recognition
rate between different cancers for cancer sample clustering, we
construct seven mixed datasets. The mixed datasets are HN-PA,

ES-PA, CO-ES and HN-CH; HN-PA-CH, ES-PA-CH, and CO-
PA-CH. The construction rule combines tumour tissue samples
that come from different gene expression data, and the combined
datasets contain two or three types of cancers. For example, in
the HN-PA data, HN represents all of the cancer tissue samples
of the HNSC data, and PA represents the total of the cancer
tissue samples of the PAAD data. The cancer tissue samples of
HN and PA are combined to construct the new mixed data, i.e.,
HN-PA, which contain two types of cancers and have 574 cancer
tissue samples. For the other mixed datasets, the distributions are
listed in Table 3.

The five original datasets and seven mixed datasets are used in
experiments. We classify all datasets into three categories
according to the number of cancers they contain. The datasets
that contain one type of cancer belong to Category I. Thus,
Category I contains PAAD, HNSC, ESCA, COAD, and CHOL.
Datasets that contain two types of cancers belong to Category II,
and they are HN-PA, ES-PA, CO-ES, and HN-CH. The datasets
that contain three types of cancers belong to Category III, and the
names of these datasets are HN-PA-CH, ES-PA-CH, and CO-
PA-CH. Table 4 clearly lists the category results.

Parameter Selection
In the experiments, we need to select the optimal parameters of
the different datasets. For the three parameters (4, A,, 43) of the

TABLE 2 | The distribution of five gene expression datasets.

Dataset Cancer tissue Normal tissue Total Total
samples samples samples genes
PAAD 176 4 180 20502
HNSC 398 20 418 20502
ESCA 183 9 192 20502
COAD 262 19 281 20502
CHOL 36 9 45 20502
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TABLE 3 | The distribution of mixed datasets.

TABLE 5 | The parameter selection.

Dataset Cancer tissue and the number Total number
HN-PA 398 from HNSC; 176 from PAAD; 574
ES-PA 183 from ESCA; 176 from PAAD; 359
CO-ES 262 from COAD; 183 from ESCA; 445
HN-CH 398 from HNSC; 36 from CHOL; 434
HN-PA-CH 398 from HNSC; 176 from PAAD; 36 from CHOL; 610
ES-PA-CH 183 from ESCA; 176 from PAAD; 36 from CHOL; 395
CO-PA-CH 262 from COAD; 176 from PAAD; 36 from CHOL; 474

ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.

NSLRG method, we assume that the optimal value of each
parameter exists within an estimation range of 10°(t = { -5,-4,
-3,-2,-1,0,1,2,3,4,5 }). We study the influence of each parameter
on feature selection and select the optimal parameters according
to the different datasets. First, our main task is to determine the
sensitivity of each parameter to the different datasets. We change
one parameter within the candidate interval while holding the
other two parameters fixed to explore the influence degree of this
parameter on the dataset. We find that the parameter A5 is
insensitive for all datasets. Therefore, the NSLRG method is
robust for the parameter A5, and we select the A; = 107 according
to experimental experience. The details of selection of the other
two parameters are listed in Table 5.

Results and Discussion
In this subsection, based on the datasets of subsection Gene
Expression Datasets, we apply the NSLRG-S to cluster the cancer
samples. We adopt seven clustering methods, including K-
means, GNMF, RPCA, SPCA, GLPCA, LS, and LLRR, for
comparison with NSLRG-S.

Typically, gene expression data mining can be recognized as
addressing a small sample size and high-dimensional problem.
The applied methods must face and suffer from what is known as
the curse of dimensionality. This situation occurs because the
more dimensions contained in the data (20,502 in our case), the
more unstable the result. Therefore, in our experiments, we
improve the reasonableness of the result by running the
experiment 50 times. The mean of the results is taken as the
measurement of the clustering results.

Table 6 clearly lists the experimental results of all methods.
Based on Table 6, we obtain the mean metrics of each category
dataset, and they are listed in Table 7. Furthermore, to clearly
show the experimental results on different categories of dataset

TABLE 4 | The category result of experimental datasets.

Category | ] 1]

Dataset PAAD HN-PA HN-PA-CH
HNSC ES-PA ES-PA-CH
ESCA CO-ES CO-PA-CH
COAD HN-CH /
CHOL / /

ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.

Dataset M Ao Az

PAAD 10° 107 10
HNSC 10°° 10 10°°
ESCA 10* 107 10
COAD 10* 10° 10
CHOL 107 107 10
HN-PA 10 10" 10°°
ES-PA 1072 10™ 10°
CO-ES 10% 10° 10°
HN-CH 107 10° 10°
HN-PA-CH 10° 102 10
ES-PA-CH 10 10° 10
CO-PA-CH 10' 102 10

ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma, and PAAD, pancreatic adenocar-
cinoma.

and different methods, Figure 5 presents a broken-line graph for
the three category datasets corresponding to different methods.
Figure 6 presents a histogram for the different methods
corresponding to the three category datasets.

By comparing the clustering results of NSLRG-S and other
methods, we find that the results of the NSLRG-S method are the
best of all methods in most datasets. According to Table 6, for the
Category I dataset, the clustering performance of NSLRG-S for the
HNSC and ESCA datasets is higher than that of other methods. In
the COAD and CHOL dataset, NSLRG-S achieves the same best
results as the other methods. For the Category II dataset, the
clustering performance of NSLRG-S is the best of all methods.
For the Category III dataset, except for the metrics of Accand F1 on
HN-PA-CH and Acc on CO-PA-CH, which are obtained by
GNMTF, and F1 on HN-PA-CH obtained by LLRR, the clustering
performance of NSLRG-S is better than that of other methods.

In addition to the numerical comparison, we also find that the
NSLRG-S method has different advantages after comparing it
with different comparison methods. In the next section, we
conduct a more detailed comparison and analysis between
NSLRG-S and the other comparison methods.

In the seven comparison methods (K-means, GNMF, RPCA,
SPCA, GLPCA, LS, and LLRR), K-means is the traditional
clustering method; GNMF belongs to matrix factorization
techniques, which extend the nonnegative matrix factorization
with preservation of the intrinsic geometric structure (Cai et al.,
2011); RPCA, SPCA, and GLPCA are variant methods of
principal component analysis, which is a well-established
descending dimension method for mining high dimensional
data (Journée et al,, 2010); LS is the feature selection method;
and the LLRR is the subspace clustering method. In addition, the
NSLRG-S framework combines the NSLRG method and Score
function. Therefore, this framework belongs to a mixed method
that combines the advantage of both sides.

First, we compare the NSLRG-S framework with K-means.
Based on Table 6, we find that a higher clustering result is
obtained by NSLRG-S. This comparison result shows that the
proposed NSLRG-S framework is better than the traditional
clustering method in cancer sample clustering. This result
occurs because the NSLRG-S considers the local and global
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TABLE 6 | The result of comparison experiment.

Category Dataset

| PAAD

HNSC

ESCA

COAD

CHOL

Il HN-PA

HN-CH

ES-PA

CO-ES

Ml HN-PA-CH

ES-PA-CH

CO-PA-CH

Measure

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1
RI

Acc
F1

Rl

Acc

F1
RI

K-means

69.50%
43.28%
638.77%
69.50%
46.78%
59.44%
62.01%
43.97%
58.34%
74.71%
60.02%
65.22%
85.72%
66.16%
75.03%
97.66%
95.99%
96.38%
85.42%
73.89%
76.94%
96.41%
73.89%
95.44%
96.58%
96.07%
93.95%
81.01%
62.79%
84.14%
81.14%
65.98%
86.29%
80.24%
68.56%
84.22%

GNMF

74.67%
46.69%
61.96%
81.72%
44.97%
70.05%
54.69%
40.00%
50.18%
99.29%
97.31%
98.58%
97.78%
96.66%
95.56%
99.83%
99.80%
99.65%
98.39%
94.18%
96.82%
97.21%
97.21%
94.57%
80.67%
77.59%
68.75%
92.79%
63.16%
94.79%
68.86%
52.42%
77.41%
89.45%
63.60%
84.00%

RPCA

63.49%
41.42%
55.23%
64.52%
47.34%
54.19%
53.65%
40.22%
50.01%
86.39%
71.08%
76.45%
100.00%
100.00%
100.00%
99.48%
99.39%
98.96%
82.56%
71.16%
72.33%
98.25%
97.95%
97.37%
97.53%
97.45%
95.17%
77.20%
61.82%
81.99%
73.91%
63.41%
82.73%
74.04%
61.77%
82.27%

SPCA

56.47%
40.31%
50.58%
62.20%
46.59%
52.86%
53.97%
41.15%
50.06%
81.28%
65.41%
69.48%
100.00%
100.00%
100.00%
99.30%
99.19%
98.61%
89.59%
77.83%
81.36%
99.16%
99.16%
98.34%
96.85%
96.75%
93.89%
78.83%
63.15%
81.85%
72.78%
66.55%
80.33%
74.63%
63.27%
84.02%

GLPCA

76.53%
45.53%
64.45%
90.71%
68.51%
83.68%
84.90%
46.74%
76.19%
84.42%
68.68%
73.60%
100.00%
100.00%
100.00%
98.95%
98.78%
97.93%
92.06%
81.62%
85.37%
99.16%
99.16%
98.34%
96.18%
96.06%
92.63%
80.13%
65.25%
81.76%
72.52%
66.13%
80.29%
75.40%
64.27%
83.65%

LS

97.78%
66.10%
95.63%
93.54%
48.33%
87.89%
94.79%
48.66%
90.07%
87.09%
47.54%
78.08%
63.82%
44.81%
53.36%
68.95%
41.77%
57.11%
90.12%
47.40%
82.15%
50.86%
34.37%
49.89%
59.10%
37.65%
51.55%
65.25%
26.69%
51.20%
46.51%
22.30%
42.64%
55.59%
26.89%
45.84%

LLRR

81.46%
48.45%
69.73%
81.44%
48.43%
69.69%
67.47%
46.97%
56.41%
88.20%
73.40%
79.15%
100.00%
100.00%
100.00%
99.65%
99.59%
99.30%
94.14%
86.08%
89.46%
99.16%
99.16%
98.34%
97.30%
97.21%
94.74%
87.71%
70.03%
87.74%
86.03%
69.23%
85.98%
85.57%
70.44%
84.53%

NSLRG-S

97.22%
49.30%
94.57%
94.37%
48.55%
89.36%
94.91%
64.18%
90.40%
99.29%
97.31%
98.58%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
99.54%
98.45%
99.08%
99.72%
99.72%
99.44%
98.65%
98.60%
97.33%
88.62%
63.36%
89.98%
89.37%
72.141%
90.58%
83.74%
73.56%
85.52%

ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocarcinoma.
The bolded texts mean the results are better than the others.

TABLE 7 | The mean metrics of result for all methods on Category dataset |, II, III.

Metrics Category K-means GNMF RPCA SPCA GLPCA Ls LLRR NSLRG-S
ACC [ 72.29% 81.63% 73.61% 70.78% 87.31% 87.40% 83.71% 97.16%
I 94.02% 94.03% 94.45% 96.23% 96.59% 67.26% 97.56% 99.48%
Il 80.80% 83.70% 75.05% 75.42% 76.02% 55.78% 86.44% 87.24%
Fi [ 52.04% 65.13% 60.01% 58.69% 65.89% 51.09% 63.45% 71.87%
I 84.96% 92.20% 91.49% 93.23% 93.91% 40.30% 95.51% 99.19%
Il 65.78% 59.73% 62.34% 64.32% 65.21% 25.29% 69.90% 69.67%
RI [ 64.36% 75.27% 67.18% 64.60% 79.58% 81.01% 75.00% 94.58%
I 90.68% 89.95% 90.96% 93.05% 93.57% 60.17% 95.46% 98.96%
Il 84.88% 85.40% 82.33% 82.07% 81.90% 46.56% 86.08% 88.70%

Acc, clustering accuracy rate; F1, F1 measurement; and R, Rand Index; GNMF, Graph Regularized Nonnegative Matrix Factorization; SPCA, Sparse Principal Component Analysis;
GLPCA, Graph-Laplacian PCA; LS, Laplacian Score; and LLRR, Laplacian regularized Low-Rank Representation; NSLRG-S, non-negative symmetric low-rank representation with graph
regularization based on score function.
The bolded texts mean the results are better than the others.

structure of the raw data. This framework can select feature genes

with a high recognition rate for cancer sample clustering. In
addition, the K-means method performs cancer sample
clustering based on the raw data, which ignores the contents
considered in NSLRG-S. Figure 5 clearly shows that the NSLRG-
S is superior to the K-means method.

Second, we compare the NSLRG-S with the GNMF method.

In GNMEF, a nearest neighbour graph is constructed by encoding
the geometrical information of the data space. The method seeks
matrix factorization, which incorporates the graph structure (Cai
etal., 2011). Based on Table 5, the GNMF method obtains good

results, and a subset of them are even better than those of
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NSLRG-S method. For most of the datasets, the results of
NSLRG-S are still better than those of GNMF. The reason for
this result is that the NSLRG-S method can obtain the
characteristics of the subspace structure of the raw data, and
the corresponding subspace of different types of cancer can be
satisfactorily distinguished.

Third, we compare the NSLRG-S with the RPCA, SPCA, and
GLPCA methods. RPCA, SPCA, and GLPCA belong to principal
component analysis methods and are suitable for processing
high-dimensional gene expression data by learning a low-
dimensional representation. The results of NSLRG-S are better
than those of three methods, except for the CHOL dataset. We
can conclude that the NSLRG-S method is better than the variant
methods of principal component analysis in clustering of
multiple cancer samples.

Fourth, we compare the NSLRG-S with the LS method. Based
on Figure 5, we find that the performance of LS decreases
gradually on the Category I, Category II and Category III
datasets, and this trend is different with other methods. The

reason for this result is that the feature genes selected by the LS
method have locality-preserving power attributes but do not
have good multi-subspace separation attributes. In the
framework of the NSLRG-S, feature genes are obtained under
the Score function based on the low-rank matrix obtained by the
NSLRG method. This low-rank matrix can preserve the global
and local structure of the raw data, and after further processing
the low-rank matrix through the Score function, the selected
genes have a strong discrimination in multi-subspace clustering.
Therefore, the performance of NSLRG-S is better than that of LS.

Finally, we compare the NSLRG-S with the LLRR method.
Based on Figure 5, the broken line of the NSLRG-S is always
above that of the LLRR method except for F1 on the Category III
dataset. The comparison results show that the Score function
plays an important role in further mining of the low-rank matrix
of the NSLRG method.

Furthermore, we note an interesting trend in the results of
three categories of datasets for each method, as shown in
Figure 6. Other than the LS method, which shows a
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downward trend, the other methods show an upward trend first
followed by a downward trend. In other words, except for the LS
method, after comparing all of the results of the other methods,
we note that the experimental results of the Category II datasets
are the best, followed by the Category III datasets or the Category
I datasets, and this trend occurs in all metrics. According to
Tables 2-4, the distributions of sample size in the Category II
datasets are more balanced than those in Category I and
Category III. Therefore, the result of the Category II dataset is
more reasonable and stable than the results of Category I and
Category III. However, with an increasing number of subspaces,
the structure of the data is more complex, and the global and
local structures of raw data are more difficult to capture.
Therefore, compared with the experimental results of the
Category II datasets, the experimental results of the Category
III datasets decrease. Fortunately, according to Table 7, the
NSLRG-S is still better than other methods. This observation
demonstrates that the NSLRG-S framework has better
advantages in cancer sample clustering than other methods
when working with unbalanced and multi-subspace datasets.
Based on the above discussion and analysis, we conclude that the
NSLRG-S framework has a good effect for cancer sample
clustering based on a gene expression dataset.

CONCLUSIONS WORK

In this paper, we cluster the cancer samples of multi-cancer gene
expression datasets based on select feature genes obtained by the
NSLRG-S framework. In addition, NSLRG-S simultaneously
considers the local and global structure of the raw gene
expression dataset. The selected feature genes have a high
recognition rate in subspace clustering. The comparison
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Background: Oral squamous cell carcinoma (OSCC) is a solid tumor, which originates
from squamous epithelium, with about 400,000 new-cases/year worldwidely. Presently,
chemoradiotherapy is the most important adjuvant treatment for OSCC, mostly in
advanced tumors. However, clinical resistance to chemotherapy still leads to poor
prognosis of OSCC patients. Via high-throughput analysis of gene expression database
of OSCC, we investigated the molecular mechanisms underlying cisplatin resistance in
OSCC, analyzing the differentially expressed genes (DEGs) and their regulatory
relationship, to clarify the molecular basis of OSCC chemotherapy resistance and
provide a theoretical foundation for the treatment of patients with OSCC and
individualized therapeutic targets accurately.

Methods: Datasets related to “OSCC” and “cisplatin resistance” (GSE111585 and
GSE115119) were downloaded from the GEO database and analyzed by GEO2R.
Venn diagram was used to obtain drug-resistance-related DEGs. Functional enrichment
analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were
performed on DEGs using The Database for Annotation, Visualization and Integrated
Discovery (DAVID) software. Protein—protein interaction (PPI) network was constructed by
STRING (search tool for recurring instances of neighbouring genes) database. Potential
target genes of miRNA were predicted via miRDB, and cBioportal was used to analyze the
function and survival of the potential functional genes.

Results: Forty-eight upregulated DEGs and 49 downregulated DEGs were obtained from
the datasets, with cutoff as p < 0.01 and |log FC| > 1. The DEGs in OSCC mainly enriched
in cell proliferation regulation, and chemokine activity. In PPl network with hub score >
300, the hub genes were identified as NOTCH1, JUN, CTNNB1, CEBPA, and ETST.
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Among MiRNA-mMRNA targeting regulatory network, hsa-mir-200c-3p, hsa-mir-200b-3p,
hsa-mir-429, and hsa-mir-139-5p were found to simultaneously regulate multiple hub
genes. Survival analysis showed that patients with high CTNNB1 or low CEBPA
expression had poor outcome.

Conclusions: In the OSCC cisplatin-resistant cell lines, NOTCH1, JUN, CTNNBT,
CEBPA, and ETS1 were found as the hub genes involved in regulating the cisplatin
resistance of OSCC. Members of the miR-200 family may reverse drug resistance of
OSCC cells by regulating the hub genes, which can act as potential targets for the
treatment of OSCC patients with cisplatin resistance.

Keywords: differentially expressed genes, resistance, oral squamous cell carcinomas, cisplatin, miRNA

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), the sixth
most common malignant tumor in the world (Kim et al., 2011a),
is an important public health issue worldwide. Among the total
HNSCC cases, 30% are oral squamous cell carcinoma (OSCC)
cases (World Health, 2003; Petersen, 2003a; Petersen, 2003b). In
2012, about 145,000 patients with OSCC died worldwide, with a
mortality rate of 1.8% (Petersen, 2005; Kim et al., 2011a; Ong
et al, 2016). Interestingly, OSCC is one of the three most
common malignancies in Central and South Asia. In India, the
age-standardized incidence of OSCC is 12.6 per 100,000 people
(Petersen, 2005). According to statistics, the incidence of OSCC
has increased sharply in several countries and regions, including
Denmark, France, Germany, Scotland, and Central and Eastern
Europe (Petersen, 2005).

OSCC can occur in different areas of the mouth and tongue,
including lips, alveolar ridge, oral floor, oral tongue, hard palate,
posterior molars triangle, and buccal mucosa, lined by squamous
epithelium and scattered in smaller salivary glands and
lymphatic drainage pathways. OSCC is common in the elder
people with a history of tobacco and alcohol usage, with
malignant tumors or somatic cell mutation by inducing DNA
damage (Leemans et al., 2011). Although surgery is the main
treatment strategy for OSCC, chemoradiotherapy is also an
effective method, especially for advanced tumors. However,
drug resistance due to unraveled molecular mechanisms
significantly reduces the survival of OSCC patients.

Since the first miRNA— lin-4 was identified in 1993, miRNAs
have attracted the attention of researchers in the field of gene
expression regulation and gene therapy (Liang et al,, 2014). By
inhibition of RNA translation or degradation of target mRNA,
miRNAs act as negative gene regulators at the post-
transcriptional level (Sakai et al., 2013). Importantly, miRNAs
can simultaneously modulate many target genes, such as tumor
suppressors or oncogenes, widely influencing the phenotype of
malignant tumors. Since miRNAs have been found to have
important role in various aspects of malignant tumors, including
oncogenesis, proliferation, metastasis, multidrug resistance, self-
renewal, and differentiation of malignant stem cells (Wu et al,
2014), they may represent a new set of therapeutic target

biomarkers for finding multidrug resistance in malignant tumors
(Hong et al., 2013).

In this study, the potential molecular mechanisms of cisplatin
resistance of OSCC were studied by using high-throughput gene
expression database. The differentially expressed genes (DEGs)
in OSCC and their regulatory relationships were analyzed, in
order to elucidate the molecular basis of OSCC chemotherapy
resistance, and to provide theoretical basis and individualized
precise therapeutic targets for the treatment of OSCC patients.

MATERIALS AND METHODS

Microarray Datasets

“OSCC” and “cisplatin resistance” were used as the keywords for
searching the GEO database, and GSE111585 and GSE115119
were downloaded as the gene expression data sets for cisplatin
resistance in OSCC; the platforms used were GPL14715
and GPL16955.

GSE111585 included six samples of SCC9 cells and was
divided into normal group and drug resistance group (Lin
et al, 2018). GSE115119 contained four samples of CAL-27
cells, with normal group and drug resistant group. Both SCC9
and CAL-27 are human OSCC cell lines.

Data Analysis and Differential Expressed
Gene Acquisition

Limma package of R software (GEO2R) was used for analysis of
the original datasets. |log FC| > 1 and p value < 0.01 were defined
as the cutoff values for further analysis of DEGs. Volcano maps
were constructed by SangerBox software.

Furthermore, the list of oncogenes (http://ongene.bioinfo-
minzhao.org/) (Liu et al, 2017) and tumor-suppressor genes
(https://bioinfo.uth.edu/TSGene/index.html) (Zhao et al., 2016)
provided potential functional roles of genes in cancer process. To
obtain DEGs in cisplatin-resistant OSCC cells, Venn package
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to
draw the intersection of the up-regulated or down-regulated
genes in the datasets with oncogenes or tumor-suppressor
genes, respectively.
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Functional Enrichment Analysis of DEGs
Gene Ontology (GO) provides a computational model of
biological systems, from the molecular to the organism level,
across different species in the following three categories:
biological process (BP), molecular function (MF), and cellular
component (CC) (Thomas, 2017). Kyoto encyclopedia of genes
and genomes (KEGG) is a database for high-level functions and
utilities of the biological systems, based on molecular-level
information of genome sequencing and other high-throughput
experimental technologies (Kanehisa et al., 2017). DAVID
Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/)
comprises a comprehensive set of functional annotation tools
for functional enrichment analysis of gene groups (Huang da
et al., 2009). To identify the biological significance of DEGs in
cisplatin-resistant OSCC cells, DAVID 6.8 was used to analyze
GO function and KEGG pathway enrichment, with the
enrichment standard as p < 0.05.

Protein-Protein Interaction Network

of DEGs

Protein—protein interaction (PPI) network analysis is helpful to
investigate the molecular mechanisms of diseases and discover
new drug targets from a systematic perspective. STRING 11.0
(https://string-db.org/), covering more than 5,000 organisms
with known and predicted protein-protein interactions,
provides direct (physical) and indirect (functional) association
(Szklarczyk et al., 2019). The PPI analysis of DEGs was
performed by STRING 11.0, and the results were analyzed by
Cytoscape 3.7.1. Furthermore, the cytoHubba plug in was used to
calculate the interaction coefficient score between the DEGs. The
top genes with hub score > 300 were identified as the hub genes
with high connectivity in the PPI network.

Predicting Hub Gene-Related miRNAs

MicroRNAs (miRNAs), small non-coding RNA molecules with
highly conserved regions, regulate the expression of target genes
by binding to the 3’-untranslated regions (3’-UTR) of specific
mRNAs, involved in many physiological and disease processes.
Each miRNA is thought to regulate multiple genes with
enormous potential regulatory circuitry afforded by miRNA
(Lim et al, 2003). To identify the potential miRNA-mRNA
interaction in the network of the hub genes, miRDB (http://
mirdb.org/), an online resource for miRNA target prediction and
functional annotation (Wong and Wang, 2015), was used to
predict the hub gene-related miRNAs, and the miRNA-mRNA
regulatory network was constructed by Cytoscape 3.7.1.

Expression and Survival Analysis of
Hub Genes
The Oncomine database (https://www.oncomine.org/resource/
login.html), an online cancer microarray database-mining
platform (Rhodes et al., 2004), was used to investigate the
difference in transcriptional levels of the hub genes in HNSCC
and normal tissues.

As mutations of oncogenes and/or tumor-suppressor
genes are frequent in tumor tissues, the Human Protein

Atlas (http://www.proteinatlas.org/) was analyzed for the
prognostic values of the hub genes (Uhlen et al., 2017), and
cBioportal database (http://www.cbioportal.org/), an open-access
online resource for multi-dimension analysis of data from The
Cancer Genome Atlas (TCGA) (Gao et al.,, 2013), was used to
analyze the effects of mutations in hub genes on the survival of
patients with OSCC (MD Anderson, Cancer Discov, 2013).

RESULTS

Difference of Gene Expression Between
Parental and Cisplatin-Resistant
OSCC Cells
The gene expression microarray datasets, GSE111585 and
GSE115119 were downloaded from GEO datasets with paired
parental and cisplatin-resistant OSCC cells. As shown in Figure 1,
the expression of most genes in cisplatin-resistant OSCC cells was
similar to that of the parental OSCC cells. Cluster analysis by R
software (|log FC| > 1 and p value < 0.01 as the cutoff) revealed
1,386 up-regulated genes and 643 down-regulated genes in
cisplatin-resistant OSCC cells compared with parental OSCC
cells in GSE111585 (Figure 1A), and 757 up-regulated genes
and 625 down-regulated genes in cisplatin-resistant OSCC cells
compared with parental OSCC cells in GSE115119 (Figure 1B).
The intersection between DEGs and the list of oncogenes
drawn by Venn software showed 48 up-regulated DEGs
(Figure 1C), and 49 down-regulated DEGs were obtained via
intersection between down-regulated genes and the list of tumor-
suppressor genes (Figure 1D).

Close Association of the DEGs With the
Regulation of Transcription and
microRNAs in Cancers
Using the DAVID analysis software, functional enrichment
analyses (BP, MF, and CC) of the DEGs were done. BP
enrichment showed that the up-regulated DEGs were mainly
enriched in cell proliferation regulation, inflammatory reaction,
lipopolysaccharide, cells in response to growth factors to
stimulate, neuronal migration, transmembrane receptor protein
tyrosine kinase signaling pathway, and transcription of RNA
polymerase II promoter (Figure 2A), whereas down-regulated
DEGs were significantly enriched mainly in the following GO
terms: response to X-ray, RNA polymerase II promoter negative
transcription regulation, and DNA damage response (Figure 2B).
MF enrichment showed that the up-regulated DEGs were
significantly enriched in chemokine activity, transcription factor
activity, sequence specific DNA binding, non-membrane crossing
protein tyrosine kinase activity, and sequence specific DNA
binding (Figure 2C), and the down-regulated DEGs were
enriched in p53 binding, sequence specific DNA binding,
transcriptional activator activity, and RNA polymerase II hub
promoter proximal region sequence specific binding (Figure 2D).
CC analysis predicted close association between the up-
regulated DEGs and the following GO terms: mRNA cutting,
polyadenylation specific factor complex, extracellular space,
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selected based on the intersection between up-regulated gene in GSE111585/GSE115119 and oncogenes. (D) Forty-nine down-regulated DEGs was selected
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promyelocytic leukemia proteome, and transcription factor
complex (Figure 2E), and significant relation was found
between the down-regulated DEGs and the following GO
terms: junction complex, desmosomes, ciliated tips, cytoplasm,
nuclear cytoplasm, and plasma membrane (Figure 2F).

KEGG pathway analysis provided the potential function
cluster of DEGs, showing that the up-regulated DEGs were
clustered in malaria, human T-cell leukemia virus type I, the
way of malignant tumor, legionella infection disease, TNF
signaling pathways, and T-cell receptors signaling pathways
(Figure 3A), whereas the down-regulated DEGs were
significantly concentrated in axon guidance and microRNAs in
cancers (Figure 3B).

Identification of Hub Genes Through PPI
Network of DEGs

To further analyze the correlation between DEGs in cisplatin-
resistant OSCC cells, STRING was used to construct PPI network
showing close relationship between the DEGs (Supplemental
Figure 1), and their hub score was calculated. The genes with
high hub score were predicted to have a strong association with
other genes (shown in dark color in the figures). As shown in

Figure 4, based on the cutoft hub score > 300, the following five
genes were selected as the hub genes: NOTCHI, JUN, CTNNBI,
CEBPA, and ETSI.

Construction of miRNA-mRNA Network
Based on Predicting miRNA-Target Genes
As the DEGs in cisplatin-resistant OSCC cells were closely
related to tumor-related miRNA, miRDB database was used to
predict potential miRNAs that might participate in the
transcriptional regulation of the hub genes in this process. The
prediction scores were also collected from the miRDB database,
and the miRNA-mRNA with high score meant close potential
function of miRNA in regulation of the target mRNA. After
setting cutoff > 80, Cytoscape software was used to construct the
miRNA-mRNA network (Figure 5). Interestingly, hsa-miR-
200c-3p, hsa-miR-200b-3p, hsa-miR-429, and hsa-miR-139-5p
could simultaneously regulate multiple hub genes, which may be
the key miRNAs involved in this process. Interestingly, hsa-miR-
200c-3p, hsa-miR-200b-3p, and hsa-miR-429 belong to miR-200
family members, with similar functions; suppression of ZEB1/2,
followed by inhibition of epithelial-mesenchymal
transition (EMT).

Frontiers in Genetics | www.frontiersin.org

178

January 2020 | Volume 10 | Article 1328


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Wau et al.

DEGs in Cisplatin Resistant OSCCs

lue
A . - pval

a of cell.,
i b L
response to ipopol hiarich
cellular response te growth factor

positive regulation of call... se————
neuron mi
transmembrane receptor protein. . EE——————
e —

positive slation of phil...
regulation of cell profiferation
positive regulation of i

-]

1 2 3 4 -] [ 7

c p value
chemokine activity NG
transcription factor activity, .. NI
non-membrane spanning protein. .. GGG
sequence-spedfic DNA binding NG
CXCR chemokine recaptor binding I

0o 05 1 15 2 25 3 35

E p value

mRNA cleavage and. . I
extracellular space I

PML body I

transcription factor complex
extrinsic component of cytoplasmic. .. .

)

05 1 15 2 25

The Expression Pattern of Hub Genes

in OSCC

To investigate the potential function of the hub genes in OSCC,
Oncomine database was used to analyze the difference in the
expression levels of the hub genes. However, due to limited
research on OSCC, only one study revealed that the expression of
CTNNBI and ETSI in tumor tissues was higher than that in
normal tissues, with 2.285 and 2.111 fold change, respectively,

FIGURE 2 | Functional enrichment analysis of cisplatin-resistant DEGs in OSCC. (A) BP analysis of up-regulated DEGs. (B) BP analysis of down-regulated DEGs.
(C) MF analysis of up-regulated DEGs. (D) MF analysis of down-regulated DEGs. (E) CC analysis of up-regulated DEGs. (F) CC analysis of down-regulated DEGs.
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while no difference was found in the expression of NOTCHI and
JUN genes in the two tissues (Figure 6).

Survival Value of Hub Genes in OSCC

For survival analysis, cBioportal based on TCGA database was
used, which revealed that low expression of CTNNBI in patients
with OSCC showed better overall survival (p = 0.01) (Figure 7C),
and low expression of CEBPA predicted poor overall survival in
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FIGURE 3 | KEGG pathway analysis of cisplatin-resistant DEGs in OSCC. (A) KEGG of up-regulated DEGs. (B) KEGG of down-regulated DEGs.
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FIGURE 4 | The PPI network of DEGs with Hub score. The dark color indicates high hub score, and the light color predicts low hub score.

OSCC patients (p = 0.04) (Figure 7D). Although the expression
of other hub genes did not show a significant relationship with
the survival status of OSCC patients (p > 0.05), the OSCC
patients with high expression of NOTCHI (Figure 7A) and
ETSI (Figure 7E) or low expression of JUN (Figure 7B)
tended to have long lifespans.

The dataset obtained from MD Anderson, Cancer Discov
2013, showed that the median overall survival of all OSCC
patients was 78.8 months. Except for NOTCHI, no mutation
was found in the other hub genes in the OSCC patients. And the
mutations in NOTCHI showed no significant association with
the overall survival of patients with OSCC (Figure 8), suggesting
that the regulation, without mutation of the hub genes was the
main mechanism of cisplatin resistance in OSCC.

DISCUSSION

Worldwide, OSCC is an important public health issue with
limited therapy strategies and researches; systemic drug
resistance has aggravated this situation. In this study, high-
throughput screening was used to explore the potential genes
involved in cisplatin resistance of OSCC, and NOTCH]I, JUN,
CTNNBI, CEBPA, and ETSI were identified as the hub genes in
the occurrence of cisplatin resistance. These genes were found to
be regulated by the members of the miR-200 family. Regulation
of the corresponding hub genes by miRNAs may reverse

cisplatin resistance of OSCC, and the sensitivity of tumor cells
to cisplatin maybe restored; thus, providing a novel potential
target for anticancer therapy.

Studies have shown that changes in NOTCH signaling
pathway are associated with many human cancers (Villanueva
etal, 2012). NOTCH]I is reported to be both a tumor suppressor
gene and a tumor oncogene. The tumorigenic or anti-tumor
activity of NOTCH family members in different types of tumors
displays its role in promoting or inhibiting the undifferentiated
state of stem cells in the corresponding tissues (Wang et al,
2012). Carcinogenic action of NOTCH has been found in many
cancers, including non-small cell lung cancer (Lenhart et al.,
2015), acute T lymphoblastic leukemia (Weng et al., 2004), and
malignant gliomas (Purow et al., 2005). In contrast, NOTCHI
signaling is inhibited in neuroendocrine tumor cells, including
small cell lung cancer (Platta et al., 2008). This suggests that
induction of NOTCHI expression is an effective strategy for
treating these tumors. NOTCH signaling pathway is also
involved in chemotherapy resistance. For example, NOTCH1
plays an important role in cisplatin resistance mechanism of
head and neck squamous cell tumor, colorectal tumor, ovarian
cancer (Wang et al., 2010), and other malignant tumors. In this
study also, expression of NOTCHI gene was found to be
significantly inhibited in cisplatin-resistant OSCC cell lines as
compared to that in normal or tumor tissues, but no effect was
observed on the overall survival of patients. These results suggest
that NOT'CHI1 signaling molecules may be involved in different
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biological processes of malignant tumor development through
different molecular pathways, and could play an important role in
resistance of OSCC against cisplatin and other chemotherapy drugs.

JUN is a protein-coding gene and has no introns; it is located
in 1p32-p31: a chromosomal region involved in human
malignant translocations and deletions (Fazal et al., 2017)
JUN-related diseases, include sarcomas and whooping cough
(Syc-Mazurek et al, 2017). JUN is involved in the following
pathways: apoptosis regulation, signal transduction, tacrolimus/
cyclosporine pathway, and pharmacodynamics. JUN is also
associated with sequence-specific DNA binding (GO

annotation). In this study, although JUN molecular expression
was significantly changed, its correlation with malignant tumor
tissues and its influence on patient survival were not found.
Therefore, its function and molecular mechanism will be
explored in future studies.

The protein encoded by CTNNBI is a part of the protein
complex that forms the adhesive junctions. Adhesion is necessary
to create and maintain the epithelial layer (Li et al.,, 2017a). The
coding proteins, which also include the actin cytoskeleton, are
responsible for signaling contact inhibition, and once the upper
cortex completes signaling, the cell stops dividing. Finally, the
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protein binds to the product of the APC gene, which is mutated in
colorectal adenomatous polyposis. The mutation is a cause of
colorectal cancer, hairy tumors, medulloblastoma, and ovarian
cancer (Li et al,, 2017b). Selective splicing of CTNNBI RNA leads
to multiple transcript variants. Diseases associated with CTNNBI,
include hairy tumors and intellectual disability, both being 19
autosomal dominant (Lee et al., 2018). The pathways associated
with CTNNBI are beta-adrenergic signaling and blood-brain
barrier pathways. Because it inhibits the expression of
downstream signals, GO annotations associated with it, include
DNA-binding transcription factor activity and binding. In this
study, it was found that the expression of CTNNBI in tumor

tissues was significantly higher than that in normal tissues, and the
survival period of patients with high expression of CTNNBI was
significantly shortened. These results suggest that CTNNBI also
plays an important role in the occurrence and development of
OSCC, but the mechanism of its influence on cisplatin
chemotherapy resistance needs to be further studied and explored.

CEBPA is an intron-free transcription factor that contains
a basic leucine zipper domain and recognizes the CCAAT
motif in the target gene promoter (Mannelli et al., 2017). The
coding proteins act in homodimers and heterodimers with
CCAAT or enhancer binding proteins, beta and gamma. The
activity of CEBPA protein regulates the expression of genes,

Frontiers in Genetics | www.frontiersin.org 183

January 2020 | Volume 10 | Article 1328


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Wau et al.

DEGs in Cisplatin Resistant OSCCs

which are involved in cell cycle regulation and weight balance.
Mutation in the CEBPA gene has been linked to acute myeloid
leukemia (Avellino et al.,, 2016). CEBPA mutations are
particularly associated with cytogenetically-normal AML
(Taskesen et al., 2011). CEBPA is necessary for granulocyte
formation in mice. Mutations in CEBPA are associated with
longer survival of OSCC patients. CEBPA-related diseases,
include leukemia, acute myeloid leukemia, and myeloid
leukemia. The pathways associated with CEBPA are adenoid
cystic carcinoma and the adipogenesis pathway. CEBPA has
important DNA binding transcription factor activity and can
bind to sequence specific DNA. However, there are no relevant
studies on CEBPA and cisplatin resistance of OSCC at present.
In the current study, we found that high expression of CEBPA
is closely related to the prognosis of OSCC patients.

ETSI is a member of the encoding transcription factor ETS
family, which has a conserved DNA binding domain of ETS that
recognizes the hub consistent DNA sequence GGAA/T in the
target gene (Poon and Kim, 2017). These proteins act as
transcriptional activators or inhibitors of many genes and are
involved in stem cell development, cell aging and death, and
tumorigenesis. Splicing transcriptional variants encoding
different subtypes have also been previously described.
Jacobsen syndrome and estrogen receptor negative breast
cancer are the diseases associated with ETSI (Carpinelli et al.,
2015). The pathways involving ETSI include focal adhesion and
focal adhesion kinase mediated signal transduction events. The
gene also has important DNA-binding transcription factor
activity and transcription factor binding. We found that ETSI
is an important cisplatin resistant gene based on high-
throughput data analysis, PPI network, and expression
verification. Studies have shown that overexpression of ETSI
induces IKK alpha mRNA and protein expression as well as IKK
alpha activity (Gu et al., 2004). In a previous study, ETS1 protein
expression and IKK alpha were significantly upregulated in 231
cisplatin-resistant cell lines. Inhibition of ETSI expression has
been reported to enhance cisplatin sensitivity of resistant cell
lines. ETSI knockout increases the stability of cisplatin in mouse
xenograft models (Zhang et al., 2018). These results are similar to
the results obtained in the current study. ETSI was highly expressed
in cisplatin-resistant OSCC cell lines as compared to that in the
normal tissues; ETS1 was highly expressed in tumor tissues,
suggesting that it is an important molecule in this process.

Based on previous studies on hub genes and members of the
miR-200 family, miR-200b/a/429 transcription is known to be
regulated by different transcriptional factors in tissue-specific
manner (Kim et al.,, 2011b). ZEB1/2 is the classical target gene of
miR-200s, and many other potential factors have also been
reported as the genes regulated by miR-200s (Nagalla et al,
2011). In the current study, new potential target genes were
reported as the hub genes in cisplatin-resistant OSCC cells. In
2018, Liu et al. reported a smart miRNA-reporter gene for in
vitro and in vivo imaging of biogenesis of miRNA and their
related functions (Liu et al., 2018). Further study involving the
reporter system could be helpful in investigation of the
relationship between miR-200s and the hub genes in OSCC.

And as the researches related to OSCC are limited, the
relationship between the expression of hub genes and
clinicopathological parameters in OSCC patients will be
collected and analyzed in the further, to confirm their roles in
the occurrence of cisplatin resistance in OSCC.

CONCLUSION

We found that NOTCH1, JUN, CTNNBI1, CEBPA, and ETS1 were
the key genes regulating cisplatin resistance in OSCC drug-
resistant cell lines, and the miR-200 family may be capable of
reversing OSCC cell resistance by regulating NOTCH]1, JUN, and
ETSI, which could also act as potential targets for treating
cisplatin resistant OSCC patients.
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Background: Kaposi sarcoma-associated herpes virus (KSHV) is one of the most
common causal agents of Kaposi Sarcoma (KS) in individuals with HIV-infections. The
virus has gained attention over the past few decades due to its remarkable pathogenic
mechanisms. A group of genes, ORF71, ORF72, and ORF73, are expressed as
polycistronic MRNAs and the functions of ORF71 and ORF72 in KSHV are already
reported in the literature. However, the function of ORF73 has remained a mystery. The
aim of this study is to conduct comprehensive exploratory experiments to clarify the role of
ORF73 in KSHV pathology and discover markers of AIDS-associated KSHV-induced KS
by bioinformatic approaches.

Methods and Results: We searched for homologues of ORF-73 and attempted to
predict protein-protein interactions (PPI) based on GeneCards and UniProtKB, utilizing
Position-Specific lterated BLAST (PSI-BLAST). We applied Gene Ontology (GO) and
KEGG pathway analyses to identify highly conserved regions between ORF-73 and p53to
help us identify potential markers with predominant hits and interactions in the KEGG
pathway associated with host apoptosis and cell arrest. The protein p53 is selected
because it is an important tumor suppressor antigen. To identify the potential roles of the
candidate markers at the molecular level, we used PSIPRED keeping the conserved
domains as the major parameters to predict secondary structures. We based the FUGE
interpretation consolidations of the sequence-structure comparisons on distance
homology, where the score for the amino acids matching the insertion/deletion (indels)
detected were based on structures compared to the FUGE database of structural profiles.
We also calculated the compatibility scores of sequence alignments accordingly. Based
on the PSI-BLAST homologues, we checked the disordered structures predicted using
PSI-Pred and DISO-Pred for developing a hidden Markov model (HMM). We further
applied these HMMs models based on the alignment of constructed 3D models between
the known structure and the HMM of our sequence. Moreover, stable homology and
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structurally conserved domains confirmed that ORF-73 maybe an important prognostic
marker for AIDS-associated KS.

Conclusion: Collectively, similar variants of ORF-73 markers involved in the immune
response may interact with targeted host proteins as predicted by our computational
analysis. This work also suggests the existence of potential conformational changes that
need to be further explored to help elucidate the role of immune signaling during KS
towards the development of therapeutic applications.

Keywords: herpesvirus, immune evasion, sequence homology, protein-protein interactions, AIDS, ORF-73

INTRODUCTION

Pre-existing human immunodeficiency virus (HIV) infections
affect the immune system increasing the risk for development of
Kaposi sarcoma (KS). Since the discovery of Kaposi sarcoma-
associated herpesvirus (KSHV), also termed human herpesvirus
8 (HHV8), the tumor development and oncogenesis were
associated with co-expression of different genes (Barré-Sinoussi
etal, 1983; Gelmann et al., 1983). KS is a common type of cancer
associated with blood vessels and lymph nodes. Soon after the
discovery of HIV-1, scientists discovered y-herpesvirus in KS
lesions (Chang et al., 1994). Now that the full KSHV genome has
been sequenced, it fulfils Koch's modern postulates linking the
KS cancer initiation to the oncogenic virus (Russo et al., 1996; zur
Hausen, 2001). KSHV is a key viral pathogen in cancer biology
affecting humans and its discovery promoted clinical and
epidemiological research into viral oncology (Chang et al.,
1994). However, many questions remain unanswered due to
the significant mortality and rapid morbidity of those affected by
HIV-1 and KSHV (Parkin, 2006; Sinfield et al., 2007; Dittmer
and Damania, 2019; Gaur et al., 2019).

In fact, KS was named after Dr. Moritz Kaposi, a prominent
Hungarian dermatologist, who described KS as an ‘idiopathic
pigmented sarcoma of the skin' in 1872 (Kaposi, 1872). The
evolved gamma-herpesviruses have been classified into many
subfamilies (Roizman et al., 1981) and produce many viral gene
products capable of subverting the normal cellular machinery
through processes involving apoptosis, cell cycle progression,
antiviral responses, and immune surveillance resulting in
alterations in master cell signaling pathways to establish a
persistent host infection. The double-stranded KSHV genome
(124-174 kb) is enclosed in an icosahedral capsid composed of
162 capsomeres with many of its ORFs being conserved in alpha-
and beta-herpesviruses, but absent from other herpesviruses.

The KSHYV is closely related to the subfamily Rhadinoviridae
(gamma-2-herpesviruses), which is also close to the Herpes virus
saimiri (HVS); therefore, similarities between ORFs of KSHV
and HVS may influence the pathogenesis of KS (Schifer et al.,
2003). The HVS genome exists as a stable non-integrated circular
episome in altered human and simian T cells. A group of genes,
ORF71, ORF72, and ORF73, are located at the right end of the L-
DNA and are expressed as polycistronic mRNAs (Fickenscher
et al., 1996). Initial studies discerned that both KSHV and HVS
ORF71 encode the anti-apoptotic FLICE inhibitory protein

(VELIP) (Thome et al., 1997), although HVS ORF71 is not
mandatory for viral replication, transformation, or
pathogenicity (Glykofrydes et al., 2000). ORF72 produces a v-
Cyclin D homolog which is important for transformation of
human T lymphocytes (Ensser et al., 2001). However, the
function of ORF73 has remained a mystery. Therefore,
developing and conducting comprehensive exploratory
experiments to clarify the role of ORF73 in KSHV pathology
is important.

Typically, the phenotypic features of KS initially appear on
the face, legs, or feet as painless red spots but, in severe cases, the
lesions also appear in the lungs and digestive tract (Bhutani et al.,
2015; Yarchoan et al., 2015). KSHV is considered an oncogenic
human virus (Martin et al., 1998). People with weak immune
systems are more susceptible to HHV-8 infection (triggering KS
development). Even with the availability of the anti-retroviral
treatment [HAART], the prevalence of AIDS-associated KS has
not declined significantly (Nguyen et al., 2008). Although KSHV
infection is important for the onset of KS, additional factors must
be present to allow the establishment of the lesions. The chance
of infection is one in 100,000 among the general population, but
only around one in 20 among HIV-infected individuals (La Ferla
et al,, 2013). The chance of acquiring the infection was one in
three among HIV-infected individuals before the introduction of
HAART (Beral et al, 1990; Gallo, 1998). Epidemiological
observations from incidence rates in endemic areas suggest
that HIV-negative individuals with KSHV infections never
develop KS due to the role of immunological host factors
including immune-response genes and genetic polymorphisms
of the inflammatory modulators (Cottoni et al., 2004; Gazouli
et al., 2004; Dorak et al., 2005).

KSHV infection of endothelial and/or hematopoietic
progenitors (Della Bella et al., 2008) alter their morphology
(Moses et al., 1999), growth rate, gene expression (Flore et al.,
1998; Ciufo et al., 2001), and glucose metabolism (Delgado et al.,
2010), leading to development of KS. Antibody titers specific for
KSHYV correlate with its viral load. Among individuals with low
viral load, antibody titer concentrations may be too low for
current serological assays to identify them. Identification of
circulating biomarkers in KSHV-associated disease may help in
predicting clinical outcomes (Aka et al., 2015). Immune
modulatory and evasion proteins of KSHV modulate cellular
responses associated with complement activation, autophagy,
IEN family signaling, chemokines, natural killer cells, and
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apoptosis (Liang et al., 2008). They are located in a region of the
viral capsid that is rich in a protein known as tegument. Six
tegument proteins have been identified: ORF21, ORF33, ORF45,
ORF63, ORF64, ORF73 and ORF75. Among these, the roles of
ORF63 and ORF64 in immune evasion have been elucidated
(Zhu et al., 2005; Gregory et al., 2011). We focused on the
identification of the role of ORF73 in KSHV. The ORF73 gene
encodes the HHV-LANAI viral proteins that have been linked
with AIDS-associated KS, indicating an association between HIV
and ORF73. For our computational study, we hypothesized that
ORF-73 is a viral proliferation factor based on studies on KS and
on its interactions with the host gene p53 (Woodberry et al,
2005). The importance of ORF-73 for cellular host apoptosis
through the p53 signaling pathway and p53 is in order of ORF-73
which illustrates the molecular mechanism of this key biomarker
associated with KS (Duus et al., 2004).

The variability in KS lesions observed in histopathological
assays include spindle cell hemangiomas, cutaneous
angiosarcomas, vascular leiomyomas, and fibrous
histiocytomas (Hunt et al., 2004). Endothelial biomarkers, such
as CD31 and CD34, bcl-2, c-kit, Ki-67, and p53, have been used
to distinguish nonvascular spindle sarcomas from angiosarcomas
(Weeden, 2002; Fukunaga, 2005). Hence, investigating the HHV -
latent associated nuclear antigen-1 (LANA-1) viral protein
encoded by ORF-73 is important to identify markers for
AIDS-associated KS. Also, studying its interactions may help in
the development of preventive strategies and therapeutic options
against KS. In this study, we used advanced bioinformatics tools
and approaches to identify KS markers Supplementary Figure 1.

MATERIALS AND METHODS

Selection of Markers

We used publicly available databases including the National
Centre for Biotechnology Information (NCBI), GeneCards
(Hou et al,, 2017) and UniProtKB (Tang et al., 2013) to
identify potential markers of KS and selected the most specific
ones using “Kaposi's sarcoma” as a keyword. Human protein
markers were further ran through a BLAST search for homology
sequences. We extracted ORF-73 sequences from the NCBI
database search using the accession number AAC57158.1.
These are the exact URLs of the searched databases we used to
identify markers associated with KS : GeneCards https://
genecards.weizmann.ac.il/v3/index.php?path=/Search/keyword/
kaposi%20sarcoma%20markers/0/20; UniPortKB https://www.
uniprot.org/uniprot/?query=kaposi+sarcoma&sort=score; and
NCBI https://www.ncbi.nlm.nih.gov/protein/?term=0ORF-73%
20kaposi%20sarcoma).

Bioinformatics: Sequence

Computational Analysis

We used publicly available internet-based protein search tools
and bioinformatics programs with default settings, unless
otherwise stated in the text, for the analysis. We tested selected
protein sequences to identify conserved domains from NCBI and

BLAST algorithms, and we used the PSIPRED program to
predict the secondary structure of proteins based on the
conserved domain sequences. We further executed a position
specific iterative BLAST (PSI-BLAST) search to build a PSSMs
(position specific score matrix), which could predict the
secondary structure of the input sequences (Majerciak et al.,
2015) to predict secondary structures of the selected conserved
domains based on multiple sequence alignment related proteins
spanning a variety of organisms to reveal sequence regions
containing the same, or similar, patterns of amino acids. We
submitted the primary sequence of ORF-73 to FUGUE to show
the sequence-structural homology by identifying distant
sequence-structure homologues and alignments comparing
amino acid insertions/deletions (Shi et al., 2001). We used
BLASTp and PSI-BLAST (non-redundant protein databases)
for pattern specific profiling (Bujnicki and Rychlewski, 2001).

Gene Ontology and Pathway

Enrichment Analysis

We chose the ORF-73 target effector to perform a Gene Ontology
(GO) search, is a hierarchical graph-based annotation system
where the terms closer to the root describe more general
information while those away from the root provide more
specific information about a given GO category and all the GO
terms associated with a protein sequence were obtained from the
GO database. The KEGG network pathway enrichment analysis
by collecting data of related genomes and their pathways
associated with diseases (Yan et al., 2013) and we set a P value
<0.05 as the cut-off criterion.

Protein-Protein Interaction (PPI)

Network Analysis

We used the online Search Tool for the Retrieval of Interacting
Genes (STRING) (Franceschini et al., 2013) and GeneMania
(https://genemania.org/) to analyze interactions associated with
KS among the proteins encoded by the DEGs. The two parts of
GeneMania algorithm consists of an algorithm based on linear
regression to calculate functional association from multiple
networks from different data sources; and a label predicting
gene function of composite network. We employed keywords
such as—ORF73 to determine interacting partners. This was
pursued using downstream regulator p53 as an apoptosis marker
during pathogenesis in the host. Moreover, the marker protein
was used for transient interaction study.

PPI Biochemical Analysis

We immobilized His-tag, GST-tag, or biotin-tag bait proteins to
an affinity resin and incubated them with solution expressed
proteins as prey proteins. We then captured the bound bait and
pulled down the cell lysate flow through. Subsequently, we used
mass spectrometry (MS) or Western blots to confirm
interactions. Using this technique, we determined interacting
protein partners of relevant proteins (Einarson, 2001;
Arifuzzaman et al., 2006).
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RESULTS

TABLE 1 | GeneCards and UniPortkKB databases used to choose the top-most
scored identities of markers associated with KS.

Homology Search and KS Marker
Identification

GeneCard database

Annotations used to search for the KS-associated markers in the ﬁ'o Symbol Description Gcid Score
UniProtKB database quoted about 137 entries, which we then
screened to find those with computationally annotated data. 1 KRT15 Keratin 15 GC17M039675  1.58
Search engine GeneCards reported about 369 KS markers witha 2~ OSM Oncostatin M GG22M030658  1.58

. . 3 TAT Tyrosine aminotransferase  GC16MO07 1599 1.27
relevance score. Table 1 lists the markers with the top ten scores. 1 MK Marker of profferation Ki-  GC10M120894 1,14

We found61 ORF-73 marker homologous hits related to the 67
family of human gamma herpes virus 8 with varied E-values. Out 5  cD34 CD34 molecule GCO1M208057 1.1
of these, we used only the most identical sequence (based on 6  PTX3 Pentraxin 3, long GCO3P157154  1.09
sequence identity was measured by matched by dividing the 7 ~ PECAMI :;aggszr‘?”rsglt:ﬂi ‘139” GC17M062399 - 1.01
length of region aligned match), AAC§715§.1., for our o Fi-1 proto-oncogene, GC11P128596 101
computational analyses. A search for proteins similar to the ETS transcription factor
selected marker ORF-73 resulted in8 protein accessions (ORF21, IFNA2 Interferon, alpha 2 GCO9M021374 1.01
ORF33, ORF45, ORF63, ORF64, and ORF75), and 2 CDS regions 10 ACTCH Actin, alpha, cardiac GC15M035080 0.99
(accession numbers AAC57158.1 and AAC55944.1). Uniport KB database muscle 1
Domain Prediction and Structural Profile N, [Enyname - Protein name ety Gen name
We looked for conserved domains in the marker protein ORF-73 1 MIR1_HHV8P  E3 ubiquitin-protein ligase P90495 K3
based on hypothetical domain sequences using literature MIR1
recapitulation NCBI's Conserve Domain Database (CDD). To ~ 2 ~ MR2_HHVEP  ES ubiquitin-protein ligase  P90489 KS
identify potential marker roles at the molecular level, we focused 5 55 {vep :\Eﬂrlssope gycoprotein B F5HBS 9BORFS
on its predicted secondary structure. Therefore, we searched for 4 ARBH_HHVSP Apoptosis regulator Bol-2  F5HGJ3 VvBCL2
hypothetical protein having conserved domain and used homolog ORF16
accession number AAC5744 of gi.1633572 in an NCBI domain ~ 5  SCAF_HHV8P  Capsid scaffolding protein - Q2HRBG ORF17
search and found only one significant hypothetical conserved 6 Oxev_HHveP le(;i T;r;:r:;enolo PocT88 K4
domain (PHA03169) with the same accessison number (Figure 7 GN_HHVeP grzvelgpe egcoproteSw N FSHFQO N ORF53
1). We then used PSIPRED to predict the secondary structure, 8  GM_HHV8P Envelope glycoprotein M FSHDDO gM ORF39
noted the conserved domains (Figure 2) and highlighted the =~ 9  ORF45_HHV8P Protein ORF45 F5HDE4 ORF45
regions with different markers to predict the secondary 10 VM2 HHV8P  Viral macrophage Qe8157 ORF K4
structures. FUGE interpreFation consolidations .of the 11 VIRF1_HHVSP leEFrr_]:natory protein ——— VRFA
sequence-structure comparison were based on distance 15 Gpo7 HHVBP  MRNA export factor Q2HR75 ORF57
homology, where the score for the amino acids matching the ICP27 homolog
insertion/deletion (indels) detected were based on structures 18 GH_HHv8P Envelope glycoprotein H ~ FSHAK9 gH ORF22
compared to the FUGE database of structural profiles and we 14 ANHRAVBP Shutoff alkaline Q2HROS ORF37
calculated the compatibility scores of sequence alignment .. | A1_HHVEP Etgpe?slﬁa;\‘: | Q9QR71 LANAT
ORF73

accordingly (Table 2).

Cdd:PHA@3169 311

gi 1633572 1122
Cdd:PHA@3169 389

WEASHPLAGNLQSSIVKFKKPLPL 1145
YEKKYPRSAHLKASLVRMSRGLPI 412

Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 88.10 E-value: 4.38e-18

10 20 30 40 50 60 79 80
P S I S I S [ PR [P [ s A S R T |
gi 1633572 966 PGDNTPDDDPQPGPSREYRYVLRTSPPHRPG--VRMRRVPVTHPKKPH- -PRYQQPPvpyrqiDDCPAKARPQHIFYRRF 1041
Cdd:PHA@3169 237 PTEPEREGPPFPGHRSHSYTVVGWKPSTRPGgvPKLCLRCTSHPSHRSr1PEGQQSE------ DKVPRKYQARRRFFRQV 310
90 100 11 120 130 140 159 160
R SR I S . SO [ ST DR LT UL U LI U P
gi 1633572 1042 LGKDGRRDPKcQWKFAVIFWGNDPYGLKKLSQAFQFGGVKAGPVSCLPHPGPDQSPITYCVYVYCQNKDTSKKVQMARLA 1121

LPSILPPRPG-PUCWVVFCLIG-DPYSLYRLSRCLQFPGAVSSGYQTFPDAPGSPVIUAYCITVFCQSRGTAKAVIKAQKK 388

FIGURE 1 | Conserved hypothetical protein domain of PHA03169 in reference to the ORF-73 of Human gamma herpesvirus 8,E-value 38e-18.
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FIGURE 2 | Overview of the ORF-73 secondary structure prediction. The predicted structural positions incorporate two feed-forward neural networks obtained from
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TABLE 2 | Structure of Kaposi sarcoma marker ORF-73 predicted based on an
environmental-specific substitution table and its structure-dependent gap
penalties.

sl. No. Profile Hit PLEN RAWS RVN ZSCORE
1 hs4biga 121 756 247 24.21
2 hs2ap3a 191 215 8 17.29
3 hs2qiha 136 —822 10 16.57
4 hs2p03a 323 249 21 14.78
5 hs1idda 188 157 33 14.61
6 hsdcgka 351 325 115 13.67
7 hs2edlbb 9 -880 5 13.53
8 hs1fxka 103 168 19 13.45
9 hs1owaa 156 166 6 13.28
10 hs4hpgc 396 556 5 12,92

PLEN, Profile length; RAWS, Raw alignment score; RVN, (Raw score)-(Raw score for
NULL model); ZSCORE, Z-score normalized by sequence divergence (evolutionary rela-
tionship associated with a score >5.0 to the sequences are compared to each other);
ZORiI, Original Z-score (before normalization).

Using PSI-BLAST, we confined the search of HHV-latency-
associated nuclear antigen homology to ORF-73 homologs. The
DNA binding of viral protein associated with HHV-8 LANA
sheltered 134 residues covering 12% of the sequence with 100%
confidence based on the single highest scoring template of c4k2jB
(Figures 3 and 4). 598 residues covering 51% could be modelled at
>90% confidence using multiple-templates. We submitted the top-
ranking model of the protein (c4k2jB, 100.0% confidence) to the
3DLigandSite (Wass et al., 2010) server to predict potential binding
sites. Based on PSI-BLAST homologues, the predicted disordered
structures were checked using PSI-Pred (Jones, 1999) and DISO-
Pred (Jones and Cozzetto, 2015) for generating a hidden Markov
model (HMM). The models were based on the alignment of the

constructed 3D models between the known structure and the
HMM of our sequence predicting the3-states—a-helix, B-strand
or coil (“SS” indicates the predicted confidence; middle orange,
yellow, and green indicate the confidence of prediction).

Gene Expression and Pathway Prediction

The exclusive over-expression of HHV-8 LANA-1 in KS confirms
significant sensitivity and specificity. The domain is conserved in
the HHV-8 and ORF-73, suggesting its expression during viral
latency and allowing it to interact with p53, thereby inducing the
apoptosis pathway. The evidence from another study indicates
abnormal expression of p53 in the nodular region and metastatic
lesion of angiosarcomas (rather than in the primary lesion) (Yee-
Lin et al., 2018). To account for this, the lead p53 in KS was taken
with reference to the database for a herpes virus-associated infection
model so as to understand the immune evasion with a detailed
pathway demonstrating the dominant role of a p53 oncogene in
KSHV- (Figure 5). The tumor suppressor antigen p53 depends on
cellular conditions inducing arrest of the cell growth and controlling
cell division. This process inhibits cyclin-dependent kinases
mediated by the expression of BAX and FAS antigens or by the
repression of the Bcl-2expression (Kanashiro et al., 2003).
Addressing the markers involved in the cell-cycle arrest is
important to understand the molecular evolution of KS and for
work towards its eradication. We examined PPIs to explore the
complex biochemical interactions and molecular functions of
proteins of interest with cellular components, as reported in
Table 3. Table 3 also presents the functional enrichment of p53
including its biological process, molecular functions, and cellular
components. The effector p53 is directly involved in the arrest of the

Frontiers in Genetics | www.frontiersin.org

191

January 2020 | Volume 10 | Article 1376


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Zhang et al.

Identification of AIDS-Associated Kaposi Sarcoma

1 A0

. .50

EETEKY Q  MRRHLQV f [
Predicted secondary structure gt 1 N 1 Y N Sy
SS confidence
LR TEIORE—ARARARARRARS TTTT S

FIGURE 3 | Highest scored template c4k2jB chain B structure.
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FIGURE 4 | Decameric ring structure of KSHV HHV-LANA DNA binding
domain with dimensions (X:40.909, Y:43.389, and Z:44.674).

G1/S cell-cycle progression from normal to cancerous cells (Chen,
2016). Analysis of PPI with STRING showed an enriched p-value of
1.31e-05 with respect to the network having significantly more
interactions than expected with 11 nodes, 47 edges, an average node
degree of 8.55 and an average local cluster coefficient of 0.919
(Figure 6). The functions of the protein p53, a tumor protein, are
associated with various expression levels during oncogenesis.
GeneMania predicted various valuable functions of the query
protein and interacting partners associated with it (Figure 7).

Pulldown Strategy and Protein Interaction
Prediction for Biomarker Selection

Pull-down assays serve as a complementary method to further
validate the predicted interactions in a quantitative manner
towards understanding their dissociation constants and relative
bindings of proteins and their direct binding sites. However, this
is beyond the scope of this study. We believe the following
recommendations should be followed by researchers
investigating transient protein interactions: First, determining

the protein solubility is essential. If the prey protein is at a too-
high concentration, it will not be sufficiently soluble. Second,
shortening the time and adjusting buffer conditions of
incubation help prevent prey protein degradation. Third,
checking the prey protein with beads if bait protein is not
bound should be done as a control. Fourth, conducting all
assays at a constant temperature of 4 °C should be considered
if a variation in Kd is found between repeated experiments.

The tumor suppressor antigen p53 depends on specific
cellular conditions to induce arrest of cell growth and to
control cell division (Pucci et al., 2000; Chen, 2016).

Our network analysis (entry N00170, class nt06164) showed
involvement of LANA and other effector markers in KS
conditions and helped elucidate their mechanisms of action
(Figure 8, Table 4). Therefore, we suggest that ORF-73 is an
important protein that may be a useful biomarker for AIDS-
related KS. Studies have suggested a linkage between ORF-73 and
host apoptosis through p53 signaling pathways (Tornesello et al.,
2018), that could represent a molecular mechanism for the
predicted markers associated with KS. Our study discovered
KS-associated markers which trigger cancer. ORF-73 encodes
LANA-1 virtual proteins of KSHV, linking them with AIDS-
associated KS, by their interaction with several cellular processes
which include cell apoptosis (through p53) and inhibition of
downstream transcriptomic performance. The association
between HIV and ORF73 can be inferred by these findings.

DISCUSSION

Many viral genes are homologous to host cellular genes in KSHV
(Swanton et al., 1997). The PubMed, Google Scholar, and Scopus
searches confirmed the key diagnostic markers for KS based on the
available literature. Our computational study on them revealed
their importance and evolutionary role in human cancer biology.
LANA-1 imparts important immunogenic effects to KSHV, and it
specifically interacts with many cellular pathways, including that
of cell apoptosis (through its interaction with p53, and repression
of downstream transcripts; see Table 4). This induces oncogenesis
by targeting the protein-E2F transcriptional regulatory pathway
(Radkov et al., 2000). The protein homologues identified through
our search were structurally different from each other. Therefore,
we analyzed selected proteins and compared them using
homology searches for the selected domains to prove
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KAPOSI SARCOMA-ASSOCIATED HERPESVIRUS INFECTION

Interferance with

Atgld [Vps3d

interferone (FN signa ..¢ [orFas]
- / =) DA In\‘lamnmo? cﬁ\okmes
Endosore Tobamator IRF? IR IFH
) sigpaling pathwrag \ |
lKK! [F1re7 | 1
Cosgulation and @ - RNA—| (TR&F3} "‘m
\ (e !
7
No— - @—»—»—.
Complement inhibition
firF12] ] |
. —
! JAK-STAT Medistors of the IFN
T JAKL signaling pathway l_\snn 1 DNA antiviral resporse
mie] -
™ -
""‘"r“,‘.‘.’ﬂ‘;:‘ ton Cytokine mRNA [haice] 5, Loz
of cytblines o +
tabilit ; —_——
sty b2 =)
dez Bruclage ot spopotc
DNA
= EING = il B .
pathway Mitochondrion v | genes
[rRADD) [TRAF- KK Ixba |
Cell swuce molecues NF-x B signalig
CTLcell evasion (MHCI, ICAMI, ...etc) 1
N (g m e %
2 Brocage gfautphagic
B«llll-l

m——+

: -——HE e} %
| 503
- o

hisa Laboratories

05167 71018
(9 Kane

Amop\}?y
Association of LANA-pS)
Raf sz HIFly
pmmy
B
--*m-“’ngmmw;m Ctmie
ell proliferation
PI3K- pf:“my » -\ [Co2] [Gry] Angiogenesis
\ Qs | Inflammation
——————— ransformation
1
I
1
|
|
1
|
J
IS {go120 } 1AK2 [5TAT3 ] lifer
Wms [Gska) @—98_»" O CRER ]  pepiersion
[SeDt] (o ]
———————————————

interactions with other host proteins that trigger and induce
cancer in individuals with immunosuppression (Kersse et al.,
2011). Hyper mutation and conserved structural sequence
similarities help to maintain key aspects of secondary and
tertiary structures, which were consistent with the
computational analyses in our study (Huang et al., 2002). Figure
5 shows the KSHV infection pathway from KEGG. We
highlighted the reference pathway using a red box that shows
that LANA is associated with the p53 signaling pathway. A BLAST
homology search confirmed an ORF-73 marker interaction during
herpesvirus pathogenesis. The results of STRING and KEGG
searches suggested ORF-73 interacts with the host p53.

ORF-73 is not the only protein marker implicated in KS
pathology, but much about it remains unknown. It is used as a
marker for KSHV; especially, its protein folding and motifs are
important for the marker assessment observed in the pattern of
structural domains in the selected sequence analyzed with PSI-
PRED. The pathogenic interactions in the network-based analysis
between LANA and the host p53 suggest that LANA was confirmed
by STRING and FUGUE tools. The predicted sequence motifs give
detailed interactions that are conserved in the subfamilies of the
herpesviruses as discussed in detail on the KEGG pathway with

FIGURE 5 | The Kaposi sarcoma-associated herpesvirus infection pathway from KEGG. Reference pathway highlighted using red box shows that LANA is
associated with p53 signaling pathway which confirms the predictable role of the ORF-73 protein in the KS associate marker protein.

notable mechanisms described in the literature (Schulz, 2000;
Direkze and Laman, 2004; Sharma-Walia et al., 2004; Mesri et al.,
2010). However, the markers associated with KS need to be
incorporated into comprehensive clinical cohort studies, designed
using differential protein purification techniques and evidence-
based knowledge on protein interactions with bait proteins to
develop practical medical applications in the future.

Many PPIs have been elucidated using pull-down assays to
map the genomes of many organisms, such as yeast (Valente
et al., 2009), Escherichia coli (Arifuzzaman et al., 2006)
Caenorhabditis elegans (Remmelzwaal and Boxem, 2019).

Like all other herpesviruses, KSHV displays latency and a lytic
life cycle replication that are characteristic of some viral gene
expressions. The genes LANA, v-FLIP, v-cyclin, and Kaposins A, B,
and C for latency facilitate the establishment of life in its host and
survival against host immune mechanisms. During latency,
proteins expressed as K1, K15, vIL6, vGPCR, vIRFs, and vCCLs
participate in inflammatory and angiogenic processes evident in KS
lesions. Many other lytic and latent viral proteins are involved in
the transformation of KSHV host cells into malignant cells. Also,
Bcl-2 is one of the major KS progression factors, and TP53 and c-
myc have a role in the progression of disease. KS pathology is
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TABLE 3 | Functional enrichment of p53.

TABLE 3 | Continued

Biological process (GO)

Biological process (GO)

Sl GO-term Description Count in False Sl. GO-term Description Count in False
No gene set  discovery No gene set discovery
rate rate
1 GO:0016579  Protein deubiquitination 10 of 275 3.83e-15 SMART Protein Domains
2 G0O:0007249 I»lkappaB kinase/NF-kappaB 8 of 70 3.83e-15 1 SM00213 Ubiquitin homologues 4 of 45 6.776-08
_ signaling . 2 SM00005 DEATH domain, found in proteins 2 of 27 0.00035
3 G0:0035666 'I'lRIF»(ljependent toll-like receptor 6 of 24 8.43e-13 involved in cell death
signaling pathway 3 SM00184 Ring finger 30f308 00012
4 G0O:0051092  Positive regulation of NF-kappaB 50f2142 6.64e-11
transcription factor activity
5  GO0:0070423 Nucleotide-binding 5 of 27 4.65e-10
oligomerization domain
Molecular function (GO) IKBKG
1 GO:0031625 Ubiquitin protein ligase binding 5 of 311 4.44e-05
2  G0:0042975 Peroxisome proliferator activated 2 of 10 0.00062
receptor t?mcﬁng TNERSF1A
3  G0:0019899 Enzyme binding 7 of 2197 0.0012
4 GO:0042802 Identical protein binding 6 of 1754 0.0032
5 G0:0032813 Tumor necrosis factor receptor 2 of 46 0.0052
superfamily binding
Cellular components (GO)
1 G0:0043657 Host cell 4 of 29 2.76e-07
2 GO:0030666 Endocytic vesicle membrane 50f 162  2.90e-07
3  G0:0098805 Whole membrane 8 of 1654  3.85e-06
4 GO:0012506 Vesicle membrane 6 0of 743  1.69e-05
5 GO0:0005741 Mitochondrial outer membrane 40f181  3.05e-05 MDM4
KEGG pathway
1 hsa04668 TNF signaling pathway 40f108  1.27e-05
2 hsa04064 NF-kappa B signaling pathway 4 of 93 1.27e-05
3 hsa05160 Hepatitis C 4 of 131 1.60e-05
4 hsa04210 Apoptosis 40f135  1.60e-05
5 hsa05167 Kaposi's sarcoma-associated 40f 183  3.53e-05
herpesvirus infection
Reactome pathways ) o )
) FIGURE 6 | Protein—protein interactions (PPI) between cell arrest marker p53
1 HSA-5357956 T.NFRj -induced NFkappaB 90f30 3.98e-21 of cancer cell and Ubiquitin Specific Peptidase 2 (USP2). TNF receptor-
5'9”3"”9 pathway o associated factor 2 (TRAF2), tumor necrosis factor receptor superfamily
2 HSA-5357905  Regulation of TNFR1 signaling 9of32  398e-21 member 1A (TNFRSF1A), polyubiquitin-C (UBC), protein Mdmé4, E3 ubiquitin-
3 HSA-5689880 Ub-spegﬁc processing proteases 100f202  1.94e-17 protein ligase Mdm2, ubiquitin-40S ribosomal protein S27a, polyubiquitin-B
4 HSA-6804757 Fiegulat!on of TP53 Degradatlom 70f 35 2.30e-15 (UBB), NF-kappa-B essential modulator (IKBKG), receptor-interacting serine/
5 HSA-8675482 Regulation of necroptotic cell 6of 17  2.63e-14 threonine—protein kinase 1 (RIPK1), and Ubiquitin-60S ribosomal protein L40
death (UBA52) play important roles in the regulation of cell survival and apoptosis.
UniPort keywords
1 KW-0832 Ubl conjugation 90f2380 1.28e-05 . s .
5 KW-0013 ADP-ribosyation 40f 100 1280-05 1nterc9nnected with immune modul'atlon effects such as cell'c‘ycle
3 KW-1017 Isopeptide bond 7of1713  0.00017 arrest in the host cell, which is required for pathogenic conditions
4 KW-0945 Host-virus interaction 40f432  0.00094 and is mitigated by modulating key factors such as LANA.
5 KW-0963  Cytoplasm 9of4972  0.0015 Likewise, measuring the expression level and identifying the
PFAM Protein Domains function of the encoded protein products is important to
1 PF14560 Ubiquitin-like domain _ 4o0f14  3.12e-09 understand the pathogenesis of KS. We used a methodology
2 PrRI1976 Ubiquitin-2 like Radg0 SUMO-ike 4of21 - 6.440-09 similar to that in co-immunoprecipitation (Co-IP) experiments
3 PF00240 Ubiquitin family 40f46  7.76e-08 mco inoprecip *p :
4 PFO2201 SWIB/MDM?2 domain 50f5  2.866-05 because of our ligand's affinity to capture the strongest interacting
5 PFO0G41T Zn-finger in Ran binding protein 20f16  0.00017 proteins (Lapetina and Gil-Henn, 2017). MS identifies subunits
and others and helps explore the structural information associated with the
INTERPRO Protein Domains and Features protein of interest (Byrum et al., 2012). Dynamic PPI machines
1+ IPRO19956  Ubiquitin 4of 12 1.83e-09 assemble or disassemble the ever-changing inter-, intra-, and
2 IPROT9954  Ubiquitin conserved site 40f10  1.83e-09 extracellular influx cues as a preliminary step towards
3 IPRO00626  Ubiquitin domain 40f57  3.14e-07 ) pr y step t i
4 IPRO16495 P53 negative regulator Mdmz/ 50f 2 1.466-05 understanding the structure of proteins and to determine their
Mdm4 functions to identify the relevant pathways of interacting proteins
5 IPR029071 Ubiquitin-like domain superfamily 4 of 184~ 1.75e-05 (Einarson, 2001; Vikis and Guan, 2004; Einarson et al., 2007). The
(Continue)  tole and important reason to select ORF-73 in the study is that
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FIGURE 8 | Network map of KEGG for the selected KS protein marker LANA. Protein downstream effect in the cell cycle of disease progression with pooled
effectors in cell cycle arrest at G1/S and KS activating mechanisms.

encoding LANA protein distinct domain induces a putative =~ LANA also modulates transcriptional activity of HIV-1 long
nuclear localization signal (NLS), which product shown  terminal repeat and to understand the how ORF-73 appears to
interacting with many co-cellular p53, pRb, and ATF4/CREB2.  prevent activity of KS-associated genes was new to know to make
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TABLE 4 | Identities of associated markers, downstream signaling candidates,
and linked pathways during Kaposi sarcoma pathogenesis.

Sl. Entry Description

No

1 N00216 HGF-MET-RAS-ERK signaling pathway

2 NO0160 KSHV K1 to RAS-ERK signaling pathway

3 N00188 IL1-IL1R-JNK signaling pathway

4 NO00189 KSHV K15 to JNK signaling pathway

5 NO00186 IL1-IL1R-p38 signaling pathway

6 N00187 KSHV Kaposin B to p38 signaling pathway

7 N00182 IGF-IGFR-PI3K-NFKB signaling pathway

8 N00179 KSHV K1 to PISK-NFKB signaling pathway

9  NO0030 EGF-EGFR-RAS-PI3K signaling pathway

10 N00159 KSHV K1 to PISK signaling pathway

11 NOO056 Wnt signaling pathway

12 NOO175 KSHV LANA to Wnt signaling pathway

13 NO0053 Cytokine-Jak-STAT signaling pathway

14 NOO181 KSHV vIL-6 to Jak-STAT signaling pathway

15 N00147 EGF-EGFR-PLCG-calcineurin signaling pathway

16 N00180 KSHV K1 to PLCG-calcineurin signaling pathway

17 N00172 KSHV K15 to PLCG-calcineurin signaling pathway

18 N00148 TLRS3-IRF7 signaling pathway

19 NO0O162 KSHV vIRF3 to TLR3-IRF7 signaling pathway

20 NO0163 KSHV KIE1/2 to TLR3-IRF7 signaling pathway

21 NO0149 TLRS-IRF3 signaling pathway

22 NO0161 KSHV vIRF1/2 to TLR3-IRF3 signaling pathway

23 NO00463 Alternative pathway of complement activation

24 NO00213 KSHV Kaposin to alternative pathway of complement activation

25 NO0150 Type I IFN signaling pathway

26 N00261 KSHV VvIRF2 to IFN signaling pathway

27  NO0151 TNF-NFKB signaling pathway

28 NO0174 KSHV VFLIP to TNF-NFKB signaling pathway

29 NO0173 KSHV K15 to TNF-NFKB signaling pathway

30 NOO171 KSHV vFLIP to NFKB signaling pathway

31  NO00152 CXCR-GNB/G-ERK signaling pathway

32 N00157 KSHV vGPCR to GNB/G-ERK signaling pathway

33 N00153 CCR/CXCR-GNB/G-PI3K-RAC signaling pathway

34 N00462 KSHV vCCL1/2/3 to CCR signaling pathway

35 N00212 KSHV vCCL2 to CCR signaling pathway

36 N00178 KSHV vGPCR to GNB/G-PI3K-JNK signaling pathway

37 N00154 CXCR-GNB/G-PISK-AKT signaling pathway

38 N00158 KSHV vGPCR to GNB/G-PI3K-AKT signaling pathway

39 NO00363 Antigen processing and presentation by MHC class | molecules

40 N00184 KSHV MIR1/2 to antigen processing and presentation by MHC
class | molecules

41 N00185 KSHV MIR2 to cell surface molecule-endocytosis

42 NOO155 Autophagy-vesicle nucleation

43  N00177 KSHV vBCL2 to autophagy-vesicle nucleation

44 NOO156 Autophagy-vesicle elongation

45 NO0176 KSHV VFLIP to autophagy-vesicle elongation

46 N00066 MDM2-p21-Cell cycle G1/S

47 NO0167 KSHV VIRF1/3 to p21-cell cycle G1/S

48 N00169 KSHV LANA to p21-cell cycle G1/S

49  N00168 KSHV vCyclin to cell cycle G1/S

50 NO0170 KSHV LANA to cell cycle G1/S

51 NO00146 Crosstalk between extrinsic and intrinsic apoptotic pathways

52 NO0166 KSHV VFLIP to crosstalk between extrinsic and intrinsic
apoptotic pathways

53 NO0164 KSHV vBCL2 to crosstalk between extrinsic and intrinsic
apoptotic pathways

54 NO0165 KSHV VIAP to crosstalk between extrinsic and intrinsic

apoptotic pathways

preventive strategy (Schifer et al., 2003). Our findings may help
researchers planning cancer prevention strategies, but we used
common computational analyses alone, and future studies with
expression and interaction analyses should be used to confirm our
results and generate treatment options for KS.

CONCLUSION

Our computational studies found that ORF-73 is involved in host
apoptosis through p53 signaling pathways and is a key marker
associated for Kaposi Sarcoma. This study also identified
potential KS-associated genes which are reported to trigger
cancer and suggested mechanisms of interaction that may help
researcher developing prevention strategies.
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A Bipartite Network Module-Based
Project to Predict Pathogen-Host
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Jie Li*, Shiming Wang, Zhuo Chen and Yadong Wang
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Pathogen-host interactions play an important role in understanding the mechanism by
which a pathogen can infect its host. Some approaches for predicting pathogen—host
association have been developed, but prediction accuracy is still low. In this paper, we
propose a bipartite network module-based approach to improve prediction accuracy.
First, a bipartite network with pathogens and hosts is constructed. Next, pathogens and
hosts are divided into different modules respectively. Then, modular information on the
pathogens and hosts is added into a bipartite network projection model and the
association scores between pathogens and hosts are calculated. Finally, leave-one-out
cross-validation is used to estimate the performance of the proposed method.
Experimental results show that the proposed method performs better in predicting
pathogen—host association than other methods, and some potential pathogen—host
associations with higher prediction scores are also confirmed by the results of
biological experiments in the publically available literature.

Keywords: BNMP, bipartite network project, pathogen, host, pathogen-host association

INTRODUCTION

Pathogen-host interactions (PHIs) play a crucial role in understanding the mechanisms of
infections and identifying potential targets for infection therapeutics. Therefore, various
biological experimental or computing methods have been developed to test and predict the
interactions between pathogens and hosts. However, it is not only time-consuming and laborious
to test PHIs through biological experimentation but also costs a lot of money. Computing methods
such as biological reasoning and machine learning are considered as another important approach
for predicting PHIs. Three main approaches can be used to predict PHIs: biological reasoning
homology-based, structure-based, and domain/motif interaction-based (Nourani et al., 2015). The
basis of homology-based prediction is that the interaction between conserved homologous
organisms would also be conserved. Lee et al. inferred more than 3000 H. sapiens-P. falciparum
protein—protein interactions (PPIs) based on orthologous pairs, revealing that Plasmodium
falciparum can utilize calcium regulatory proteins in host cells to maintain Ca2+ levels (Lee
et al,, 2008). Wuchty et al. used the random forest method to evaluate and filter homology-based
prediction results, which further improved prediction accuracy (Stefan, 2011). Structure-based
prediction assumes that a pair of proteins with similar protein structures that are known to interact
may interact in the same manner. Davis et al. proposed an algorithm for predicting possible
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interactions based on the physical structure of the protein by
scanning the genome of the pathogen and host to find
structurally similar proteins (Davis et al., 2010). Aloy and
Russell also proposed a method for inferring the molecular
details of interactions that might occur by evaluating a pair of
potentially interacting proteins on a complex of known 3D
structures (Patrick and Russell, 2002). Doolittle et al. used this
method to predict the interaction between HIV and human
proteins, providing assistance for further trials and therapeutic
intervention targets (Doolittle and Gomez, 2010). Domain/motif
interaction-based prediction combines the known intraspecific
PPI with the protein domain spectrum to predict the PPI
between host and pathogen proteins (Dyer et al., 2007). Evans
et al. used the method to predict the interaction between HIV-1
and human proteins, confirming that the linear binding motif
shared by the virus and the host protein was an important part of
the crosstalk between the virus and the host (Evans et al., 2009).
Machine learning methods are widely used in the prediction of
pathogen-host interaction relationships. Ahmed et al. used a
comparison of a neural network model versus SVM for the
prediction of host-pathogen PPI based on a combination of
features including amino acid quadruplets, pairwise sequence
similarity, and human interactome properties; they found that
the neural network achieved a significant improvement in overall
performance compared to a predictor using the triplets feature
and that it achieved good accuracy in predicting B.anthracis—
human interaction (Ahmed et al, 2018). Mei et al. proposed
the AdaBoost approach to predict proteome-wide interactions
between Salmonella and human proteins based on multi-
instance transfer learning (Mei and Zhu, 2014). Subsequently,
a new negative data sampling method based on single-class SVM
was proposed to predict the protein interaction between HTLV
retrovirus and Homo sapiens. Use of this method provided
valuable cues for the pathogenesis of HTLV retrovirus (Mei
and Zhu, 2015).

Predicting unknown relations between pathogens and hosts
in advance is of great significance for detecting changes in their
relations and preventing the spread of infectious diseases in
hosts. The above methods are used to predict protein-protein
interactions of pathogens and hosts based on protein-related
information. However, in cases where protein information or
other molecular information is unavailable and we only know the
relations between pathogens and hosts, we need to develop a new
method to predict the potential relations between pathogens and
hosts based only on the relations of pathogens and hosts. Zhang
et al. developed a bipartite network project (BNP) (Zhou et al.,
2007) to predict the relations between an X set and Y set (two sets
included in the bipartite network). The experimental results on
personal recommendation shown that BNP performed much
better than the most commonly used global ranking method.
Chen et al. proposed a novel computational model of Bipartite
Network Projection for MiRNA-Disease Association prediction
(BNPMDA) (Chen et al., 2018) based on the known miRNA-
disease associations, integrated miRNA similarity, and integrated
disease similarity. BNPMDA could effectively predict the
potential miRNA-disease associations with a high accuracy
level. Sun et al. developed the NTSMDA method to predict

miRNA-disease associations by integrating network topological
similarity (Sun et al,, 2016). NTSMDA demonstrates excellent
predictive performance. Tad et al. developed an algorithm to
predict missing links based on conditional probability estimation
and associated, node-level features (Dallas et al.,, 2017). They
validated this algorithm on simulated data and then applied it to
a desert small mammal host-parasite network. The approach
achieved high accuracy on simulated and observed data,
providing a simple method for accurately predicting missing
links in networks without relying on prior knowledge about the
network structure. These methods are based on bipartite network
models and are widely used in different fields. However, these
methods not only ignore the relations of elements in the X set but
also the relations of elements in the Y set, though these relations
are important to predict the relations of the X set and Y set.
Zhang et al. proposed a weight-based model (Zhang et al., 2015)
in a dual-layer network, using the cell line similarity network,
drug similarity network, and drug-cell line response network.
WBSMDA (Chen et al., 2016a) employed the concepts of within-
score and between-score to predict the association score in the
association network. These methods consider the relations of
elements in the X and Y sets from a global perspective, and
collecting the information from a local perspective and then
integrating them from the global perspective can detect the
information in the network more comprehensively. Based on
this idea, we proposed a bipartite network module-based project
(BNMP) to predict pathogen-host associations by adding
modular information into a bipartite network projection.
Firstly, a pathogen-host bipartite network is constructed, and
the distances of pathogens and hosts are computed respectively
on the basis of the topological structure. Pathogens are then
divided into several modules, as are hosts. Finally, the module
information of pathogens and hosts, respectively, is applied to
BNP to calculate the prediction score.

MATERIALS AND METHODS

Data Collection and Pre-Processing

First, the pathogen-host interaction data were downloaded from
PHI-base (Urban et al,, 2017) (http://www.PHI-base.org/index.
jsp), HPIDB (Ammari et al., 2016) (https://hpidb.igbb.msstate.
edu/index.html), and IntAct (Sandra et al., 2014) (https://www.
ebiac.uk/intact/). These three databases are commonly used
molecular interaction databases that cover most of the
molecular interaction data in open data sources. We
downloaded all of the entire datasets of these three databases
on September 8, 2019. These three databases provide downloads
of previous version data, and researchers can select the related
version for replication. Then, based on the taxonomy ID, we
selected bacteria-host interaction data and deleted duplicate data
from the data sets. The final dataset comprised data on 997
bacteria—host interactions, covering 243 hosts and 388 bacteria.
The number of pathogens and hosts were s and f, respectively.
We used them to generate the pathogen-host association matrix
A. A[ p; I[ h; ]=1 means that there is a pathogen-host protein-
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protein interaction between the ith pathogen and the jth host,
whereas A[ p; ][ h; ]=0 means there is no interaction between the
ith pathogen and the jth host.

Bipartite Network Projection

Here, for a bipartite network G(P,H,E) where P={ p,p,,....p; }
and H={ hy,hy,...,h; } are pathogen and host sets respectively,
ECPxH is the edge set between pathogens and hosts, and the
association scores between a host and all pathogens can be
calculated using the bipartite network projection (Zhou et al,
2007) (BNP) method. If we let a host h,,,; be the seed vertex, the
association scores between h;,,; and all pathogens are as follows.

BNP(P’ H) hseed) = {SCp(pl),SCp(pz), ...,SCp(pS)}
sep(pi) = X1 Alpi] (k] sch(hy) /d (k)
sch (hj) = >4 [hj}A[Pi] [heeeal /d(p;)

where d(h;) and d(p;) are the degrees of the jth host and the ith
pathogen, respectively. scp(p;) is the association score between
hgeeq and the ith pathogen, which requires sch(h, ), sch(h,), ..., sch
(hy) as the input.

Bipartite Network Module-Based Project
For G(P, H, E) with s pathogens and ¢ hosts, BNMP comprises
the following steps (Figure 1):

1) Let a host A4 be the seed vertex. Calculate the distance
between two pathogens. Dis(p,p;) is the distance between
pathogen p; and p; in the following formula (Figure 1A), where
A[ p; ] is the binary vector in the ith row in association matrix A.

Dis(pi,p;) = 1 - exp(||Alpi] - A[p,] )

2) Divide pathogen set P={ py,p,,...,ps } into m modules {Mj,
M,,...,M,,} with s1,5,,..., and s, pathogens, respectively (Figure
1B) where m is the degree of hg..s; namely the number of
pathogens associated with h.,4, as expressed in the following
formula. The intersection between two modules is empty. So s =

Sitiss My ={pilpy €P, 1<r<s}.
m = EA[P,] [hseed}
i=1

The process of generating m modules is as follows: (1) m
pathogens associated with h,., are divided into m modules
respectively and marked as the core vertexes of the
corresponding m modules; (2) p; (i=1,2,...,s) is added to the
module whose core vertex has the shortest distance from it; (3) In
order to keep a balance of resources received by the h.,; from
different modules, select s,—[s/m] ([s/m] means the rounded-up
value of the result of s/m) pathogens with the furthest distance
from the core vertex of M; if s; is larger than [s/m] and reassign
them to other modules in which the number of pathogens is less
than [s/m]. (4) Repeat (3) until the number of pathogens in each
module does not exceed [s/m].

3) Calculate the association score set scorey,, between hge.q and
M(I=1, 2,...,m) (Figure 1C).

SeoTe— = Eléjém,j;th(Ml’]VIj) X By,
M > i<jemjer (M, M;)

where

ZPuEMI ZPVEMJ. Dis (pu P v) )

WML 1) = e ( 4] [0

By, = BNP(My, Hyj, heeeq)
By, = By, U By,

M; =M, U M,
Hy = {h,|Alpilh] = Lpy € My 1 <<t}

w(M;,M;) is the weight coefficient of resources that M; receive
from M; (j#). By, Is the association score set obtained by
running the BNP algorithm on M; ,H), and hg,4 which
includes two sets: By, and Byy- By, and By, are the association
score sets of pathogens in By, and By, respectively.

Finally, the association score set {scorey; , Scoreyy,, ..., SCOTey; +
between h,,; and all pathogens is obtained.

4) Select each host as the seed vertex in turn, and repeat the
process above. Obtain r association score sets, and combine them
to form a pathogen and host association score matrix Syasmogen—host
(Figure 1D). Each element of Syuogen—nost is an association score of
a pathogen and a host. Similarly, chose a pathogen as the seed
vertex in turn, and obtain another association score matrix, Sy
—pathogen (Figures 1E-H).

5) Finally, take the integrated value of the two matrices,
Spathogen—host and S;{ost_wthogm, as the association score matrix
between pathogens and hosts, where x is a parameter to balance

T .
Spathogen—host and Shost_thOgen (Figure 11):

T
S=xx Spathugen—host + (1 - x) X Shost—pathogen

RESULTS

Performance Evaluation

Leave-one-out cross-validation (Kohavi, 1995) (LOOCYV) is used
to evaluate the performance of BNMP relative to previous
evaluation methods (Geeleher et al.,, 2014; Zhang et al., 2015;
Chen et al., 2016b; Sun et al., 2016 Fei et al., 2018; Le and Pham,
2018). Specifically, each known pathogen-host interaction is
chosen as a test data set in turn, the remaining known
interactions are chosen as the training set, and the pathogen-
host association score in the training set is calculated using
BNMP. After the LOOCV test process is completed, we plot the
receiver operating characteristic (ROC) curve and precision
recall (PR) curve and use the area under the ROC curve
(AUROC) and the area under the PR curve (AUPR) to
evaluate the performance of BNMP.

Performance Analysis of BNMP

We constructed the pathogen-host association network, namely
network 1, which consists of 388 pathogens, 243 hosts, and 997
associations, as shown in Table 1. To clarify the influence of the
balance parameter x, AUROC and AUPR values were calculated
with different values of x, as shown in Figures 2A and B. It can be
found that the prediction performance with x, € (0, 1) is better
than with x = 0 or x = 1, demonstrating the effectiveness of the
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Then express all the association scores between host seed and all pathogens
| s @ matrix Spuogen host-

i hy hy hs hy hs he hq
! pr 0.822 0.820 0.611 0.250 0.222 0.165 0.111
: p2 0.681 0.681 0.278 0.195 0.111 0.138 0.000 ;
i ps 0.361 0.196 0.639 0.806 0.667 0.165 0.111 i
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; 0.
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1

! Repeat the above processes until all pathogens are selected as the pathogen

! sced. Then express all the association scores between pathogen seed and all

: hosts as @ mALriX Suos pathogen:
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! hi 0.833 0.667 0.345 0.681 0.362 0.138 0.000

: hy 0.778 0.667 0.194 0.361 0.639 0.165 0.111

i hs 0.609 0.222 0.679 0.317 0.222 0.651 0.278
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FIGURE 1 | Process of the bipartite network module-based project. (A) Construct the pathogen—host bipartite network and choose a host as the seed vertex.

(B) Divide the pathogen set into several modules. (C) Calculate the association score between the seed and pathogens in each module. (D) Select each host as the
seed vertex in turn and repeat process (A-C) then obtain the pathogen-host association score matrix Spasmogen-nost (E) Choose a pathogen as the seed vertex.

(F) Divide the host set into several modules. (G) Calculate the association score between the seed and hosts in each module. (H) Select each pathogen as the seed
vertex in turn and repeat process (E-G) then obtain the host-pathogen association score matrix Spost—pathogen- (1) INtegrate matrix Spatmogen—rost @A Shost—pathogen @S
the association score matrix between all pathogens and hosts.
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TABLE 1 | The constructed network 1 and network 2.

Network Number of Number of Number of
pathogens hosts associations

Network 1 388 243 997

Network 2 167 96 653

integrated association score matrix. When x = 0.575, BNMP
acquires the highest AUROC and AUPR values. We plotted the
ROC and PR curves when x = 0,0.575, and 1, as shown in Figures
2C and D. It is noteworthy that the ROC curves take the form of
an oblique upward-sloping straight line. We analyzed the results
and found that more than half of the hosts are related to only one
pathogen. As a result, the association scores between these hosts
and pathogens are predicted to be zero in the LOOCV
experiment, which has little worth for our prediction and
results in the oblique upward-sloping straight line rather than
a smooth ROC curve. To evaluate the prediction accuracy of
BNMP on hosts (pathogens) that have more than one association
with pathogens (hosts), the rows or columns with only one “1”
are removed from the pathogen-host association matrix. After
processing, 167 pathogens, 96 hosts, and 653 associations
remained, namely network 2, and this was used to evaluate the
performance of BNMP, as shown in Table 1. The analysis
regarding x is shown in Figures 3A and B. When x = 0.675,

BNMP achieves the highest AUROC value of 0.8656. When
x = 0.825, BNMP achieves the highest AUPR value of 0.4318.

Comparison With Existing Methods

In order to further prove the effectiveness of the proposed
method, BNMP is compared with four other methods :
Zhang's method (Zhang et al,, 2015), NTSMDA (Sun et al,
2016), WBSMDA (Chen et al., 2016a), and BNP (Zhou et al.,
2007). BNMP has different prediction performance when x is
different (see Figure 3). To ensure the fairness of the
comparison, we did not select the best prediction performance
of BNMP for comparison with the other four methods. Instead,
we ranked the AUROC values in Figure 3A in descending order
and selected the upper quartile (the corresponding x value is 0.8)
for comparison with other methods. LOOCYV experiments were
performed with BNMP, Zhang's method, NTSMDA, WBSMDA,
and BNP, and the resulting ROC and PR curves are shown in
Figure 4. BNMP acquires an AUROC value of 0.8645, exceeding
those of NTSMDA (0.8376), BNP (0.8352), Zhang's method
(0.7807), and WBSMDA (0.7592). Meanwhile, BNMP obtains
an AUPR value of 0.4315, exceeding those of NTSMDA (0.3729),
WBSMDA (0.3254), Zhang's method (0.2644), and BNP (0.201).
We also calculated the AUROC and AUPR values for each
pathogen by these methods, and performed a paired ¢-test
(Demisar and Schuurmans, 2006) between BNMP and the
other methods (see Figure 5). The result is that all the p-values
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FIGURE 2 | Prediction performance of BNMP with network 1. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values
by different balance parameter values. (C) ROC curves of BNMP with the different balance parameter values. (D) PR curves of BNMP with the different balance
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are less than 0.05, indicating that the proposed approach is a
significant advance over the previous approaches and has better
prediction ability.

Validation via Biological Evidence

Most data sources use text mining algorithms to obtain the
original interaction data. Due to the limitation of the
development of pathogen-host interaction text mining
algorithms, the existing open data sources can only cover a
part of pathogen-host interaction data. To further test the ability
of BNMP to predict potential pathogen-host associations, we
rank pathogen-host pairs without relations in existing data sets
according to association scores and search the public literature to
see whether there is evidence that pathogens and hosts with
higher association scores have relations. It is found that among
the top 20 pathogen-host pairs without relations in the existing
data set, biological experiments have verified that 16 pairs have
associations (Table 2); these 16 pairs are ranked lower by the
other four methods. The pair of pathogen Serratia marcescens
and host Mus musculus ranks 1st. Iwaya A et al. studied the
clinical application and evaluation of rapid and quantitative
detection of blood Serratia marcescens by a real-time PCR
assay in a mouse infection model (Iwaya et al., 2005). The pair
of pathogen Cronobacter turicensis and host Mus musculus
ranks 3rd. Téthova L et al. used Cronobacter turicensis to
infect female mice to prove the effects of isolated Cronobacter-
specific phages on renal colonization in a model of urinary tract
infection in mice (T6thové et al, 2011). The pair of pathogen
Escherichia coli O157:H7 and host Mus musculus ranks 4th.
Tanji Y et al. found that repeated oral administration of SP15-21-
22 can effectively treat mice infected with Escherichia coli O157:
H7 (Tanji et al, 2005). The pair of pathogen Acinetobacter
nosocomialis and host Homo sapiens ranks 5th. Visca P et al.
discussed the infection mechanism and threats of Acinetobacter
nosocomialis and other Acinetobacter species to humans
(Visca et al, 2011). The pair of pathogen Stenotrophomonas
maltophilia and host Mus musculus ranks 6th. Bacterial
adhesion to mouse tracheal mucus as the role of flagella in the

adhesion process were investigated using clinical isolates of
Stenotrophomonas maltophilia (Zgair and Chhibber, 2011).
The pair of pathogen Sclerotinia sclerotiorum and host
Nicotiana tabacum ranks 7th. Researchers carried out a
preliminary evaluation of the potential of polyamine
biosynthesis inhibition a strategy for the control of plant
diseases initiated by S. sclerotiorum ascospores, using tobacco
(Nicotiana tabacum) leaf discs as an experimental system (Garriz
et al., 2010). The 8™-ranking confirmed pair is pathogen
Pseudomonas aeruginosa and host Oryctolagus cuniculus.
Researchers have determined the pharmacokinetics and
adverse effects following SC administration of ceftiofur
crystalline free acid (CCFA) in Oryctolagus cuniculus by using
Pseudomonas aeruginosa and other bacterium (Gardhouse et al.,
2017). The 9'-ranking confirmed pair is pathogen Enterococcus
faecalis and host Homo sapiens. A study showed that an 88-kDa
secreted protein, endoglycosidase (Endo) E, which is most likely
responsible for the activity of the human pathogen Enterococcus
faecalis, degrades the N-linked glycans of human RNase B to
acquire nutrients (Mattias and Fischetti, 2004). The pair of
pathogen Alternaria citri and host Citrus reticulate ranks 10th.
Reasearchers found that the phytopathogenic fungus, Alternaria
citri (Alternaria alternata pathotype citri), produces a complex of
analogous toxins (ACTG-toxin) that selectively damages Dancy
tangerine (Citrus reticulata) and other mandarin cultivars
(Kohmoto et al., 1979). The pair of pathogen Mycobacterium
marinum and host Homo sapiens ranks 12th. Flowers found that
a person was infected with Mycobacterium marinum by being
bitten by a dolphin and thus associated human mycobacterial
infection with an aquatic mammal (Flowers, 1970). The 14th
score is the pair of pathogen Mycobacteroides abscessus and host
Homo sapiens. Mycobacterium abscessus is one of the common
species that causes disseminated infections in patients with cystic
fibrosis. It has been reported that NLRP3 inflammasome
activation contributed to antimicrobial responses against
M. abscessus in human macrophages and that its activation
was dependent on dectin-1/Syk signaling (Hye-Mi et al., 2012).
The pair of pathogen Alternaria alternata and host Solanum

TABLE 2 | Pathogen—host pairs predicted using BNMP and their rank according to five methods.

Pathogen Host BNMP NTSMDA BNP Zhang's method WBSMDA

Serratia marcescens Mus musculus (lwaya et al., 2005) 1 43 15 17 13
Cronobacter turicensis Mus musculus (Tothova et al., 2011) 3 10 26 24 109
Escherichia coli O157:H7 Mus musculus (Tanji et al., 2005) 4 38 172 14 10
Acinetobacter nosocomialis Homo sapiens (Visca et al., 2011) 5 13 251 119 18
Stenotrophomonas maltophilia Mus musculus (Zgair and Chhibber, 2011) 6 44 124 21 13082
Sclerotinia sclerotiorum Nicotiana tabacum (Garriz et al., 2010) 7 61 44 540 169
Pseudomonas aeruginosa Oryctolagus cuniculus (Gardhouse et al., 2017) 8 588 62 960 55
Enterococcus faecalis Homo sapiens (Mattias and Fischetti, 2004) 9 37 33 109 19
Alternaria citri Citrus reticulata (Kohmoto et al., 1979) 10 528 57 9021 41
Mycobacterium marinum Homo sapiens (Flowers, 1970) 12 39 36 115 26
Mycobacteroides abscessus Homo sapiens (Hye-Mi et al., 2012) 14 20 25 102 20
Alternaria alternata Solanum lycopersicum (Hai and Gubler, 2012) 15 261 40 447 3045
Enterococcus faecium Homo sapiens (Lester et al., 2006) 16 40 27 106 121
Fusarium oxysporum Nicotiana tabacum (Jennings et al., 2001) 17 118 43 537 1313
Pectobacterium carotovorum Arabidopsis thaliana (Lee et al., 2012) 19 259 74 199 764
Mycoplasma agalactiae Mus musculus (Smith, 1967) 20 26 201 101 211
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lycopersicum ranks 15th. A study evaluated whether 1-MCP
treatment could affect postharvest decay caused by A. alternata,
B. cinerea, and Fusarium spp. in Solanum lycopersicum (Hai and
Gubler, 2012). The 16™-ranking association is the pair of
pathogen Enterococcus faecium and host Homo sapiens. A
previous study was performed to determine whether resistance
genes from an E. faecium isolate of animal origin could be
transferred to a human E. faecium isolate in the intestines of
human volunteers without any selective antimicrobial pressure
(Lester et al, 2006). The 17th pair of pathogen and host is
Fusarium oxysporum and Nicotiana tabacum. Jennings et al.
found that protein Nepl from Fusarium oxysporum inducted
defense responses in tobacco (Jennings et al., 2001). The 19th
potential link is Pectobacterium carotovorum and Arabidopsis
thaliana. The study indicated that Arabidopsis thaliana were
infected with Pectobacterium carotovorum (Lee et al., 2012). The
20th potential link is pathogen Mycoplasma agalactiae and host
Mus musculus. Smith G R. et al. used Mycoplasma agalactiae to
infect mice to verify the toxicity of the Mycoplasma agalactiae
(Smith, 1967). Based on the above findings, one can argue that
BNMP is very efficient in predicting associations between
pathogens and hosts.

DISCUSSION

In this study, we focus on the problem of pathogen-host
association prediction. To consider the relations of pathogens
and hosts comprehensively, we adopt the pattern of local before
global, proposing a novel approach, BNMP. The method is based
on bipartite network modules and integrates module
information of pathogens and hosts, respectively, into a
bipartite network projection model to improve prediction
performance. Where the host is the seed, the time complexity
of acquiring the association score vector between the seed and all
pathogens is O(ms’t), where m is the degree of the seed. Hence,
the time complexity of acquiring S,asmogen—host i O(es®t), where e
is the number of associations in the host-pathogen association
network. Similarly, the time complexity of acquiring S;ost—pathogen
is O(et’s). BNMP has a time complexity of O(est(s*+12)), namely
O(es®t) when s>t and O(ef’s) when f>s. Experimental results
show that BNMP achieved better prediction performance
compared with other efficient methods.

Although BNMP is used here in pathogen-host association
prediction, it can also be applied to association analysis in other
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Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and
is an important medical problem worldwide. However, the use of current therapies for
HCC is no possible to be cured, and despite numerous attempts and clinical trials, there
are not so many approved targeted treatments for HCC. So, it is necessary to identify
additional treatment strategies to prevent the growth of HCC tumors. We are looking for
a systematic drug repositioning bioinformatics method to identify new drug candidates
for the treatment of HCC, which considers not only aberrant genomic information, but
also the changes of transcriptional landscapes. First, we screen the collection of HCC
feature genes, i.e., kernel genes, which frequently mutated in most samples of HCC
based on human mutation data. Then, the gene expression data of HCC in TCGA
are combined to classify the kernel genes of HCC. Finally, the therapeutic score (TS)
of each drug is calculated based on the kolmogorov-smirnov statistical method. Using
this strategy, we identify five drugs that associated with HCC, including three drugs that
could treat HCC and two drugs that might have side-effect on HCC. In addition, we also
make Connectivity Map (CMap) profiles similarity analysis and KEGG enrichment analysis
on drug targets. All these findings suggest that our approach is effective for accurate
predicting novel therapeutic options for HCC and easily to be extended to other tumors.

Keywords: hepatocellular carcinoma (HCC), drug repositioning, mutated genes, kernel genes, gene expression

INTRODUCTION

Identifying a cure for cancer is a difficult, costly and often inefficient process (Adams and Brantner,
2006). Drug repositioning, i.e., the discovery of new indications of existing drugs, beyond their
original indications, is an increasingly attractive new-use discovery model. In addition to saving
time and money, one advantage of the drug reuse approach is that existing drugs have been
reviewed for safety, dose and toxicity (Ashburn and Thor, 2004; Fathima et al., 2018; Su et al,,
2019; Yu et al., 2019). As a result, repurposed drugs usually go into clinical trials faster than newly
developed drugs (Yu et al., 2017a, 2018). The rapid development of genomics has resulted in the
generation of genomic and transcription group data from disease samples, normal tissue samples,
animal models and cell lines. Transcriptomic profiles, such as gene expression data, are most widely
used for drug repositioning (Yu et al., 2016). A key data source behind several re-use efforts is the
Connectivity Map (CMap) (Lamb et al., 2006), which generated large-scale gene expression profiles
in human cancer cell lines treated with different drug compounds under different conditions. The
CMap method attempts to provide a more comprehensive view of this transcription data and use
them to connect expression profiles across conditions (Lamb et al., 2006). In particular, it suggests
that if there is a strong negative correlation between disease characteristics and drug expression
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characteristics, the drug may have a therapeutic effect on the
disease. For example, by systematically comparing the gene
expression characteristics of GEO-derived inflammatory bowel
disease (IBD) with the gene expression characteristics of a group
of 164 drug compounds from CMap, Dudley et al. (2011)
predicted several interesting new drug-disease pairs and, in the
IBD preclinical model, validated one pair. Yu et al. (2015)
proposed a method that discovered the drug-disease association
based on protein complexes. In another case, Jahchan et al. (2013)
applied a drug repurposing bioinformatics method to identifying
antidepressant drugs for the treatment of small cell lung cancer
through querying a large compendium of gene expression
profiles. Although many machine learning-based methods have
been developed by using features (Zhang et al., 2017, 2018a,b,
2019), more and more literature supports the usage of CMap
for drug repositioning; despite this, there are still problems. A
candidate can often be strengthened using independent disease
signatures. But disease signatures are often selected by statistical
methods, they are lack of biological information.

Hepatocellular carcinoma (HCC) is the fourth most common
primary liver tumor and is an important medical problem
worldwide (El-Serag and Mason, 1999; Yu et al., 2017b). HCC is
usually caused by infection with hepatitis B virus (HBV) (Chang
and Liu, 2016) and hepatitis C (HCV) (Lingala and Ghany, 2015),
exposure to aflatoxin Bl from Aspergillus (Kew, 2013), alcohol
abuse (Abenavoli et al.,, 2016), or non-alcoholic fatty hepatitis
(Charrez et al., 2016). However, the use of current therapies for
HCC is no possible to be cured, and despite numerous attempts
and clinical trials, there are not so many approved targeted
treatments for HCC. So, it is necessary to identify additional
treatment strategies to prevent the growth of HCC tumors.

Many diseases, but especially cancer, are related with
abnormal genomes and transcription landscapes (Chakravarthi
et al., 2016; Tang et al, 2018). In this study, we seek to use
systematic drug repositioning bioinformatics to identify new
drug candidates for the treatment of HCC. First, we screen
the collection of HCC feature genes that frequently mutated in
most samples of HCC based on human mutation data. Then,
the gene expression data of HCC in TCGA are combined to
classify the gene set of HCC. Finally, the therapeutic score (TS)
of each drug is calculated based on the kolmogorov-smirnov
statistical method. Using this strategy, we identified five drugs
that associated with HCC, including three drugs that could
cure HCC and two drugs that might have bad effect on HCC.
In addition, we also make CMap (Lamb et al., 2006) profiles
similarity analysis and KEGG enrichment analysis on drug
targets. All these findings suggest that our approach is effective
for accurate discovering novel therapeutic options for HCC and
easily to be extended to other tumors.

MATERIALS AND METHODS

Datasets

HCC Gene Expression Data

The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015)
is a comprehensive and coordinated effort to accelerate
our understanding of the molecular basis of cancer by

applying genomic analysis techniques, including large-scale
genome sequencing. TCGA researchers aim to catalog
and discover major changes to the cancer-causing genome
to create a comprehensive “atlas” of cancer genomes. So
far, the project analyzed groups of more than 30 human
tumors through large-scale genome sequencing and integrated
multidimensional analysis.

We download the gene expression profiles of HCC from
TCGA, and there are 423 samples in the data set. The type
of a sample is distinguished by the barcode provided by
TCGA. If the fourth part of the barcode of one sample is
in the range from 01 to 09, the sample is a cancer sample.
If the fourth part of the barcode in the range from 10 to
19, the sample is a normal sample. The specific introduction
to the barcode can be found in TCGA help file. First, we
obtain gene expression matrix data (20,501 x 423), which
contains 373 cancer samples, 50 normal samples, and 20,501
genes. Then, we standardize the expression values of all genes
as follows:

&~ mean(g;)
= std(gi) M)

where gj; represents the expression value of gene i in sample j, and
mean (g;)and std (g;), respectively represent mean and standard
deviation of the expression vector for gene i across all samples.
Finally, we use Limma (Ritchie et al.,, 2015) to analyze cancer
and normal samples and get the log FC value of each gene. The
definition of log FC is as follows:

1
i > Zik
keT

Wl‘ Zzik

keN

log FC; = log, (2)

where log FC; is the log FC value of gene i; zj is the normalized
expression of gene i in sample k [see formula (1)]; T is
the set of cancer samples (|T]|=373); N is the set of normal
samples (|N| =50).

For a gene, if its ‘logFC’ > 1and p— > value < 0.02,
it is a differentially expressed gene. The thresholds of log FC and
p— > value refer to Dalman et al. (2012).

Gene Expression Data Related to Drugs

The gene expression data related to drugs is downloaded
from the CMap (http://www.broadinstitute.org/cmap/)
database. It contains 6,100 instances which cover 1,309
drugs. These instances are measured on five types of human
cancer cell lines, including the breast cancer epithelial cell
lines MCF7 and ssMCF7, the prostate cancer epithelial
cell line PC3, the nonepithelial lines HL60 (leukemia) and
SKMELS5 (melanoma).

SNP Mutation Data of HCC

We download the single nucleotide polymorphism (SNP) gene
mutation data of HCC from TCGA database. The SNP mutation
data contains 373 cancer patient sample files, and each sample
file contains the detailed descriptions of all the mutated genes.
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Since the mutation frequency of each gene across all samples is
different, we select genes with relatively high mutation frequency
for further analysis. Here, the mutation frequency is set to be
no less than 11 (11 = 373 x 3%), that is a gene mutated in
at least three percent of all samples. These genes are defined
as frequently mutated genes. Finally, we find 406 frequently
mutated genes.

Methods

Defining the Feature Gene Set of HCC

According to the data analysis we have done in section Datasets,
we can divide the 20,501 genes into three classes based on
their mutation frequency and differential expression value.
One category is the kernel genes, which mutate frequently.

The second category is the secondary genes, which do not
mutate frequently but differentially express. The third category
is the marginal genes, which neither mutate frequently nor
differentially express.

In our work, we take the 406 kernel genes, i.e., frequently
mutated gene, as the feature gene set of HCC.

Calculating the Therapeutic Scores of Drugs

We select kernel genes as the feature genes of HCC and rank
them in descending order based on their differential expressions.
For a gene, if its logFC value is >0, it is stored in up-
regulated gene set. Otherwise, it is stored in down-regulated
gene set. Finally, we get two ordered gene lists for HCC:
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Average degree in PPIs
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Marginal Secondary Kernel

Secondary

24 4

Average number of Gene Ontology terms

FIGURE 1 | Characteristics of the three gene types. (A) Average degree for three different gene types. (B) Average PubMed records associated for each gene type.
(C) Gene Ontology terms annotated for each gene type. (A-C) The red rectangle represents kernel genes, the blue rectangle represents secondary genes, the gray
rectangle represents marginal genes. (D) Type distribution of five kernel genes’ direct neighbor genes. Green rectangle represents differentially expressed genes in
HCC, and yellow rectangle represents frequently mutated genes in patients with HCC.

B 160-
2]
k=4
S 1204
e
©
)
=
Kol
-
O g0
o
)
Kol
£
=
<
S 01
©
g
<
0
Marginal Secondary Kernel
D
25 -
[_]Frequently Mutated Gene
[ Differentially Expressed Gene 21
20 -
15 -
2
g 1
Z 104 9
7
5 —
2
(= : :
o) 3% Omm
AXINT  CTNNB1  IGF2R  PIK3CA TP53

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

210

January 2020 | Volume 8 | Article 8


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Yu et al.

Predict Therapeutic Drugs for HCC

the up-regulated gene list (G,p) and the down-regulated gene
list (Gaown)-

We get 6,100 gene expression instances covered 1,309 drugs
from CMap database. In other words, a drug may correspond to
multiple instances. We rank the genes in each instance by their
differential expression values between drug-treated and drug-
untreated cell lines. In this way, we get 6,100 drug-related gene
lists. Therefore, based on kernel genes and 6,100 drug-related
gene expression instances, we use a non-parameter, ranking-
based pattern matching strategy that was originally introduced
by Lamb et al. (2006) to evaluate the relationship between drugs
and HCC.

TABLE 1 | HCC related genes extracted from OMIM.

Gene names Gene entrez IDs

We take each ranked drug expression profile as reference
signature and assess their similarity to HCC. We compute a
connectivity score separately for the set of up- or down-regulated
genes: ES, or ES, . The computational formulas as follows
(Lamb et al., 2006):

14
a= I\/ﬁx |:p — @:| (3)
p=1 m n
14 —1
b = Max {(p) - p} (4)
p=1 n m
_ aup/down(ifaup/down > bup/down)
Esup/down B { _bup/dawn(ifaup/down < bup/duwn) (5)

Where n represents the total number of genes in the reference
drug expression profile; m represents the size of Gy, or the size
of Gjown; p represents the position of the input set (p = 1...m);
V(p) is the position of the pth input gene in the gene list of drug
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FIGURE 2 | The precision of our approach at different top-x drugs.
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near the bottom (down-regulated) of the rank-ordered drug gene
lists, we can get high positive therapeutic scores (TS), which
indicate the drugs and HCC have similar expression profiles and
the drugs might aggravate HCC. On the other hand, if the up-
regulated pathway genes are near the bottom of the rank-ordered
drug gene lists and the down-regulated pathway genes are near
the top of the rank-ordered drug gene lists, we can get negative
therapeutic scores (TS), which imply the given drugs and HCC
have adverse expression profiles and the drugs could be treatment
candidates for HCC.

RESULTS

Analysis of Disease Characteristics of HCC
We characterize the kernel, secondary, and marginal genes in the
context of protein interaction (PPIs) network, PubMed (www.
ncbi.nlm.nih.gov/pubmed), and Gene Ontology (Ashburner
et al.,, 2000) term annotation. The Human Protein Reference
Database (HPRD) (Prasad et al., 2009) is a protein database for
experimentally derived information about human proteomics,
including protein and protein interactions (Ding et al., 2016;
Wei et al., 2017a), post-translational modifications (PTMs) (Wei
et al., 2017b) and other information. We download all human
PPIs from this database, containing 15,231 proteins and 38,167
interactions. Interestingly, we find that all three gene types had
heterogeneous degree distribution, and that the kernel genes tend
to have higher degrees than those of secondary and marginal
genes (Figure 1A). Similarly, kernel genes are related with more
PubMed records and Gene Ontology term annotation than
secondary and marginal genes (Figures 1B,C).

In order to analyze biological functions of kernel genes,
we analysis the nine HCC pathogenic genes obtained from
Online Mendelian Inheritance in Man (OMIM) (Hamosh et al.,
2005) from two aspects of gene mutation and expression level
change. These eight HCC pathogenic genes (Table 1) are IGF2R,
CASP8, MET, PDGFRL, TP53, PIK3CA, CTNNBI, and AXINI.
We find that five (IGF2R, TP53, PIK3CA, CTNNB1, AXIN1)
of these genes are belong to kernel genes, these genes are
frequent mutations, but their expression level don’t change
significantly. For direct neighbors in PPIs of these five genes, we
find that there are frequently mutated or differentially expressed
genes (see Figure 1D) among their direct neighbors. TP53 is
a quite important tumor suppressor gene, which can translate
and synthesize protein P53. P53 protein is a vital regulator
for cell growth, proliferation and injury repair. For the direct
neighbors of TP53, there are 27 frequently mutated genes, and
11 differentially expressed genes. CTNNBI gene can encode
p-catenin, a dual function protein that involves in regulation
and coordination of cell-cell adhesion and gene transcription
(Nollet et al., 1996). Recent study of HCC has shown that
CTNNBI1 gene mutations and overexpression of its encoded
protein are closely related to occurrence, progression and
prognosis of tumor (Kitao et al., 2015). CTNNBI1 has 7 frequently
mutated direct neighbors, and 9 differentially expressed direct
neighbors. The above analysis results show that the kernel genes
selected by mutation and expression information contain more

comprehensive biological knowledge and to some extent, the
characteristics of HCC can be depicted.

Choosing Potential HCC Drugs Through

CTD Benchmark

To find most likely HCC-related drugs, we need evaluate
the precision of our method firstly. We take Comparative
Toxicogenomics Database (CTD) (Davis et al, 2015) as
benchmark. CTD supplies manual collated information about
drug-gene, drug-disease, and gene-disease interactions. Curated
chemical-disease relationships are obtained from the published
literature by CTD biocurators and inferred relationships are set
up via CTD curated chemical-gene associations.

For a drug in CMayp, if it cannot find corresponding chemical
name in CTD, we will not calculate its therapeutic score (defined
in section “Methods”). In this way, we finally get 1168 scored
drugs. Because most drug-disease associations in CTD are not
marked as positive or negative, we rank the 1168 drugs in
descending order by the absolute values of their therapeutic
scores. We know the top drugs imply stronger connections with
HCC. And then we calculate the precisions of our approach at
different top-x drugs, which are shown in Figure 2. The precision
is calculated as follows:

P
precision = % (7)

TABLE 2 | Nineteen therapeutic drugs for HCC in the Top-30 drugs.

Rank Drug name Evidence Inferred count
1 Daunorubicin T 42

2 Chrysin Inferred 34

3 Topiramate Inferred 8

4 Securinine NULL NULL
5 Piperlongumine Inferred 8

6 Luteolin Inferred 28

7 Apigenin Inferred 36

8 Celastrol Inferred 19

9 Sirolimus T 68

10 Mercaptopurine NULL NULL
Ihl Genistein T 93

12 Irinotecan Inferred 46

13 Sanguinarine Inferred 5

14 Tyrphostin Ag-825 Inferred 7

15 Decitabine M 84

16 Camptothecin Inferred 28

17 Reserpine NULL NULL
18 Mycophenolic Acid Inferred 7

19 Tyrphostin Ag-1478 Inferred 35

Evidence represents a drug-disease association is curated, inferred or not existed in
CTD database. Curated associations include three types: marker/mechanism (Evidence =
“M”), therapeutic (Evidence = “T”), marker/mechanism & therapeutic (Evidence = “M&T”).
If an association is inferred by CTD, Evidence = “inferred,” and if it is not existed in CTD,
Evidence = “NULL"; Inferred Count represents the number of inferrederence (s) for the
curated and inferred associations. If an association is not existed in CTD, Inferred Count
= “NULL".
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where P represents the number of top-x drugs, i.e., P = x; Pcrp
represents the number of drugs in the top-x drugs, which can be
found related with HCC in CTD database.

We find in the top-10 drugs (x = 10), there are 9 drugs
associated with HCC in CTD. That is to say, the precision is
0.9. For the top-20 drugs (x = 20), the precision is 0.85 and

there are three potentially HCC-related drugs. When x is 30, its
precision is 0.83 and we get five potential drugs with HCC. From
the Figure 2, we notice that with the increase of x, the precision
declines and the number of potential drugs increases. We aim to
predict relatively more HCC-related drugs with high precision.
Then, we choose top-30 (x = 30) drugs for further analysis.

Securinine

aggravating effect on HCC patients.

HCC
—————————— »
CDKN3
B
p
Thioguanine
. HCC
N NH
I
\N N  ———————— - —>
Symbol Representation Drug Disease
e Activation Securinine HCC
— Inhibition Ethisterone
—— el Therapeutic Effect
—— =l Aggravating Effect

FIGURE 3 | Diagrams of the possible mechanism of between HCC and two drugs. (A) A possible mechanism of securinine treating HCC. Securinine has been found
to be active as a y-amino butyric acid (GABA) receptor antagonist. GABA stimulates HCC cell line HepG2 growth. Consequently, it means that securinine is a
promising agent with therapeutic effect on HCC patients through inhibiting GABA receptor. (B) A possible mechanism of thioguanine aggravating HCC. Thioguanine is
a guanine analogs and it can decrease the expression of CDKNS. But, CDKNS gene inhibits tumor growth by controlling mitosis. Hence, thioguanine may get
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Validating Potentially HCC-Related Drugs
Through Pubmed Literature

In the above section, we choose the top-30 drugs (precision
= 0.83) for further analysis. There are 19 therapeutic drugs
with negative TS values in the top-30 drugs, shown in Table 2.
Sixteen of them can be found having connections with HCC
in CTD (Davis et al., 2015). Three of the 16 drugs are marked
as therapeutic drug (Rank = 1, Rank = 9, Rank = 11, and
Evidence = “T” in Table 2) for HCC. Meanwhile, one drug is
marked as marker/mechanism drug (Rank = 15, Evidence =
“M” in Table 2) for HCC and the other 12 inferred drugs are
unmarked in CTD. Here, we can indicate these 12 unmarked
drugs are possibly therapeutic drugs for HCC. The rest three
drugs (Securinine, Mercaptopurine, and Reserpine) are newly
predicted ones by our method, which are marked as bold in
Table 2. Based on PubMed, we analyze the three drugs further.

TABLE 3 | Eleven aggravating drugs for HCC in the Top-30 drugs.

Rank Drug name Evidence Inferred count
1 Cytochalasin B Inferred 5

2 Exemestane Inferred 2

3 Spiperone Inferred 2

4 Cinchonine Inferred 1

5 Mepacrine Inferred 8

6 Tioguanine NULL NULL
7 Rifabutin NULL NULL
8 N-Phenylanthranilic Acid Inferred 1

9 Valinomycin Inferred 1

10 Betulin Inferred 2

1 Puromycin Inferred 13

TABLE 4 | The relationships of five predicted drugs with known HCC therapeutic
drugs in CTD.

Predicted drugs Known HCC drugs in CTD Connectivity scores

Securinine Daunorubicin 0.916
Troglitazone 0.902
Paclitaxel 0.844
Mercaptopurine Estradiol 0.941
Dexamethasone 0.926
Sirolimus 0.845
Troglitazone 0.833
Reserpine Roxithromycin 0.922
Resveratrol 0.834
Tioguanine Genistein —0.973
Sirolimus —0.928
Indometacin —0.891
Paclitaxel -0.872
Rifabutin Calcium Folinate —-0.878
Estradiol —-0.873

The potentially therapeutic drugs of HCC are marked as bold. The other two drugs are
potentially aggravating drugs of HCC.

PubMed, a free resource, is developed and maintained by the
National Center for Biotechnology Information (NCBI) at the
National Library of Medicine (NLM). PubMed comprises more
than 26 million inferrederences and abstracts on life sciences and
biomedical topics.

Securinine (Rank = 4 in Table2), a quinolizine
pseudoalkaloid (not from amino acid) from securinega
suffurutiosa or securinini nitras, is one of central nervous

TABLE 5 | Pathway enrichment analysis result of five selected drugs.

Drug name Drug KEGG pathways
targets
Securinine None None
Mercaptopurine HPRT1, Purine metabolism;
PPAT Metabolic pathways;
Drug metabolism other enzymes;
Alanine aspartate and glutamate
metabolism;
Biosynthesis of antibiotics
Reserpine SLC18A2, Cocaine addiction;
SLC18A1 Synaptic vesicle cycle;
Amphetamine addiction;
Serotonergic synapse;
Dopaminergic synapse;
Parkinson’s disease;
Alcoholism
Tioguanine None None
Rifabutin rpoA, NOD-like receptor signaling pathway;
rpoB, Prostate cancer;
rpoC, Estrogen signaling pathway;
HSP90A1, Protein processing in endoplasmic
HSP90B1 reticulum;

PISK-Akt signaling pathway;
Pathways in cancer;

Antigen processing and presentation;
Thyroid hormone synthesis;
Progesterone-mediated oocyte
maturation

The potentially therapeutic drugs of HCC are marked as bold. The other two drugs are
potentially aggravating drugs of HCC. “NULL" represents the drug has no targets in
DrugBank at present. Thus, its corresponding KEGG pathway is “NULL” too.

TABLE 6 | Twelve enriched tissue-specific KEGG pathways with HCC.

Pathways Number of HCC-specific genes P-values
Pathways in cancer 20 3.06E-13
Prostate cancer 10 1.41E-08
Adherens junction 8 1.44E-06
Endometrial cancer 7 2.15E-06
Colorectal cancer 8 2.62E-06
Apoptosis 8 3.32E-06
Melanoma 7 1.36E-05
Wnt signaling pathway 9 1.41E-05
Cell cycle 7 3.28E-04
Notch signaling pathway 5 4.16E-04
Basal cell carcinoma 5 7.61E-04
Melanogenesis 6 8.61E-04
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stimulants and clinically applied to treat amyotrophic lateral
sclerosis (ALS) (Buravtseva, 1958), poliomyelitis (Copperman
et al., 1973) and multiple sclerosis (Copperman et al., 1974). It
is found to be active as a gamma-aminobutyric acid (GABA)
receptor antagonist (Perez et al, 2016). GABA is the main
inhibitory neurotransmitter of the central nervous system
and plays an important role in reducing neuronal excitability
throughout the nervous system. Studies show that GABA
stimulates HCC cell line HepG2 growth (Lu et al, 2015).
Consequently, it means that securinine is a promising agent
with therapeutic potential for HCC through inhibiting GABA
receptor. Figure 3A gives a diagram of the possible mechanism
of the treatment of HCC by securinine.

Mercaptopurine(6-MP, Rank = 10 in Table 2) is a drug for
cancer and autoimmune diseases (Sahasranaman et al., 2008). As
a purine analog, mercaptopurine belongs to purine antagonist
anti-metabolic drugs (Thackery, 2002). 6-MP nucleotides inhibit
the synthesis and metabolism of pure nucleotides by inhibiting
an enzyme called phosphoribosyl pyrophosphate (PRPP)
amidotransferase PRPP Amidotransferase is a rate-limiting
enzyme for pure synthesis (Zollner, 1982). This changes the

synthesis and function of RNA and DNA. Mercaptopurine
interferes with nucleotide conversion and glycoprotein synthesis.
This makes the mercaptopurine can effectively inhibit the
synthesis of DNA, thereby inhibiting the growth of tumor
cells (Cara et al., 2004). At present, although there is no direct
experiment that mercaptopurine can inhibit the growth of
HCC cells, it is used to treat acute lymphoblastic leukemia
(ALL), chronic myeloid leukemia (CML), Crohn’s disease
and ulcerative colitis (Joint Formulary Committee, 2011). In
summary, mercaptopurine is likely to achieve a certain effect
on HCC.

Reserpine (Rank = 17 in Table 2) is an antipsychotic and
antihypertensive drug (Bridgwater and Sherwood, 1960) used to
control hypertension and relieve psychotic symptoms (Arnt et al.,
1985). The results of Gwak et al. (2009) showed that reserpine
could reduce the expression level of CCND1 gene and its encoded
protein. The CCND1 gene encodes the cyclin D1 protein. Cyclin
D1 protein is a member of the circulatory protein family, involved
in regulating cell cycle progression. This protein plays a key role
during the transition from the G1 phase, in which the cell grows,
to the S phase, during which DNA is replicated. Overexpression
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of this protein allows cells to be easily crossed G1/S checkpoint
that limits the growth of cells, which promotes tumor hyperplasia
and is therefore considered to be an oncoprotein (Donnellan
and Chetty, 1998). Some studies have found that CCND1 gene
is over-expressed in HCC (Xu et al., 2004). Thus, reserpine can
potentially be used as an agent against HCC.

The other 11 drugs with negative TS values are shown in
Table 3. They are possible to aggravate HCC. Nine of them have
been found having relationships with HCC in CTD database
and we can infer these relationships are possibly negative. The
remaining 2 drugs (Tioguanine, Rifabutin) are newly potential
drugs for aggravating HCC marked as bold in Table 3. We
will investigate the two drugs (Tioguanine, Rifabutin) based
on PubMed.

Tioguanine, also known as thioguanine, (Rank = 6 in Table 3)
is a guanine analogs, with cell cycle specificity, for the S cycle
of the strongest cell sensitivity. In addition, thioguanine can
inhibit the synthesis of guanosine nucleoside, by inhibiting the
biological activity of guanylate kinase, the drug can inhibit
the guanosine monophosphate (GMP) phosphoric acid to
guanosine bisphosphate (GDP) transformation process (Golan,
2011). Thibird is a drug used to treat acute myeloid leukemia
(AML) (Gill et al., 1982), acute lymphoblastic leukemia (ALL)
(Marmont and Damasio, 1973) and chronic myeloid leukemia
(CML) (Yang et al., 2006). In 2005, Ganter et al. showed that
CDKN3 expression was significantly decreased after a period of
administration of thioguanine (Ganter et al., 2005). The CDKN3

gene inhibits tumor growth by controlling mitosis, which is a
tumor suppressor gene (Nalepa et al., 2013). Dai et al. found that
CDKN3 expression in patients with HCC was significantly lower
than that in normal humans. CDKN3 knockout experiments
indicated that CDKN3 could inhibit tumor growth (Dai et al,,
2016). A possible mechanism of thioguanine aggravating HCC
is shown in Figure 3B. Therefore, in order to ensure the
effectiveness of the treatment, clinical patients should avoid HCC
patients taking thioguanine.

Rifabutin (Rank = 7 in Table 3) is a piperazine-containing
rifamycin derivative, the drug has a broad spectrum of
antibacterial activity. It can able to bind to the B-subunit of
RNA polymerase and inhibit RNA polymerase activity, thereby
reducing the number of RNA synthesis of bacterial (Beard, 2001).
Rifabutin has been approved to prevent and treat disseminated
infections of mycobacterium mycobacterium complex (MAC)
carried by HIV-infected persons (Arevalo et al., 1997), and it
is also used to treat multidrug-resistant tuberculosis (Skolik
et al, 2005). Kobayashi et al. find that rifabutine will lead
to an increase in the expression of cytochrome P450 3A4
(CYP3A4) in liver tissue (Nakajima et al., 2011). CYP3A4 is an
important metabolic enzyme, belongs to the cytochrome P450
family. It is also the most important component of adult liver
microsomes CYP450, this gene is expressed in the intestinal,
liver and kidney (Hashimoto et al., 1993). However, Fanni et al.
find a significant increase of expression of CYP3A4 in HCC
patients and overexpression of CYP3A4 gene could result in
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drug degradation or even a decreased therapeutic effect (Fanni
et al, 2016). Therefore, for both suffering from HCC and
tuberculosis patients, doctors should avoid using rifabutin to
treat tuberculosis.

Analyzing Potentially HCC-Related Drugs

Through CMap Database

The CMap database can not only be applied to calculate drug-
disease correlations, but also can be used to identify connections
between two drugs. In particular, for a same disease, if two
drugs have strongly positive relationship, they may have similar
effects on this disease. On the contrary, if their relationship
is negative, they may have opposite effects. In this section, we
further analyze the five predicted drugs (three therapeutic drugs
shown in Table 2: securinine, mercaptopurine and reserpine; two
aggravating drugs shown in Table 3: tioguanine and rifabutin)
based on CMap and estimate their correlations [evaluated by
formula (6)] with known HCC drugs marked as “therapeutic” in
CTD database. The results are shown in Table 4.

For the three potentially therapeutic drugs (securinine,
mercaptopurine and reserpine) marked as bold in Table4,
we find that they all have strong positive correlation with
known drugs for HCC. Securinine yields highly positive
connectivity score [calculated by formula (6)] with drugs
daunorubicin, troglitazone and paclitaxel. Mercaptopurine is
found having strongly positive relationships with drugs estradiol,

dexamethasone, sirolimus, and troglitazone. Reserpine gets high
positive connectivity scores with drugs roxithromycin and
resveratrol. For the two potentially aggravating drugs (tioguanine
and rifabutin) in Table 4, they all have negative relationship with
known HCC drugs. Tioguanine has high negative connectivity
scores with drugs genistein, sirolimus, indomethacin, and
paclitaxel. Rifabutin have clear negative connection scores with
drugs calcium folinate and estradiol.

Overlap Between Pathways Associated
With Predicted Drugs and HCC-Related

Tissue-Specific Pathways

In this part, we further analyze the relationship between these
five drugs (three therapeutic drugs: securinine, mercaptopurine
and reserpine; two aggravating drugs: tioguanine and rifabutin)
and HCC from the point of view of drug targets. First, we get
the target set of drugs from DrugBank (Law et al., 2014) because
DrugBank contains the most complete information on drug and
drug targets. Then, we use DAVID (Huang et al., 2009) to obtain
all the KEGG (Kanehisa et al., 2010) pathways of the drug target.
The p-value is set to be less than or equal to 0.05. The results are
shown in Table 6.

From Table 5, it can be seen that securinine and tioguanine
have no corresponding target information in the DrugBank
database. So we can’t enrich their associated pathways.
Mercaptopurine has two drug targets, and we find five KEGG
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pathways related to them. Reserpine has two drug targets,
which are included in seven KEGG pathways. Rifabutine has
five drug targets, and nine KEGG pathways are enriched
to them.

In order to obtain the tissue-specific KEGG pathways of HCC,
firstly, the eight genes (see Table 1) related to HCC are extended
through obtaining their direct neighbors in liver-specific protein-
protein interaction (PPI) network got from GIANT (Greene
et al.,, 2015). Then, we obtain a subnetwork from the liver PPI
network, which contains 57 genes and 838 edges with weight >
0.1. Finally, by using DAVID tool, we obtain 12 KEGG pathways
related to the 57 genes (see Table 6). The parameters of DAVID
are fixed as: p-value = 0.001 and count = 5.

We find that there are four pathways related to
mercaptopurine have common genes with the 12 tissue-
specific KEGG pathway of HCC. The interactions between
the four pathways and the 12 tissue-specific KEGG pathway
of HCC is shown in Figure4. The gray edges indicate that
there are common genes between two pathways, and the more
genes there are, the wider the edges in the network. “Metabolic
pathways” have common genes with seven tissue-specific KEGG
pathways of HCC. Though there is only one edge between
“purine metabolism” and HCC related pathway, the edge is very
wide, indicating that there are a lot of common genes. These
overlap genes between the pathways of mercaptopurine and
HCC tissue-specific KEGG pathways show that mercaptopurine
has a potential effect on treating HCC.

For drug reserpine, there are six pathways have common
genes with the 12 tissue-specific KEGG pathway of HCC. Their
relationships are shown Figure 5. For example, “serotonergic
synapse” has common genes with ten pathways of HCC.
“Dopaminergic synapse” has common genes with nine pathways
of HCC. Overall, drug reserpine has more overlapping pathways
with HCC, and more genes overlap between pathways. The
results indicate that drug reserpine is likely to become the
treatment of HCC.

For the potential aggravating drug rifabutine, we also analyze
its pathway overlap with HCC. We try to explain the possible
reasons for its aggravating HCC in terms of pathway overlap.
Two pathways of rifabutine (“Pathways in cancer” and “Prostate
cancer”) are overlapped with pathways of HCC highlighted in
Table 6. The interactions between the pathways and the 12 tissue-
specific pathways of HCC is shown in Figure 6. Two overlapping
pathway nodes are colored in two colors (purple and green)
in Figure 6. We find the pathways of rifabutine have a very
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Meta-analysis, which combines the results of multiple studies, is an important analytical
method in genome-wide association studies. In genome-wide association studies
practice, studies employing meta-analysis may have overlapping data, which could
yield false positive results. Recent studies have proposed models to handle the issue of
overlapping data when testing the genetic main effect of single nucleotide polymorphism.
However, there is still no meta-analysis method for testing gene-environment interaction
when overlapping data exist. Inspired by the methods of testing the main effect of gene
with overlapping data, we proposed an overlapping meta-regulation method to address
the issue in testing the gene-environment interaction. We generalized the covariance
matrices of the regular meta-regression model by employing Lin’s and Han’s correlation
structures to incorporate the correlations introduced by the overlapping data. Based on
our proposed models, we further provided statistical significance tests of the gene-
environment interaction as well as joint effects of the gene main effect and the interaction.
Through simulations, we examined type | errors and statistical powers of our proposed
methods at different levels of data overlap among studies. We demonstrated that our
method well controls the type | error and simultaneously achieves statistical power
comparable with the method that removes overlapping samples a priori before the
meta-analysis, i.e., the splitting method. On the other hand, ignoring overlapping data
will inflate the type | error. Unlike the splitting method that requires individual-level
genotype and phenotype data, our proposed method for testing gene-environment
interaction handles the issue of overlapping data effectively and statistically efficiently at
the meta-analysis level.

Keywords: meta-regression, meta-analysis, gene-environment interaction, overlapping data, correlation matrix

INTRODUCTION

Numerous associations between human traits or diseases and single nucleotide polymorphisms
(SNPs) have been identified by genome-wide association studies (GWAS) (Manolio, 2010). Meta-
analysis combines the results from multiple studies to increase the effective sample size and
statistical power of the association test (Fleiss, 1993; Borenstein et al, 2009). It has played an
important role in finding the genetic architectures of complex traits and diseases.
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Method for Overlapping Data

Many meta-analysis methods are used in GWAS (Eleftheria
and John, 2009). The fixed effect model is a commonly used
method. It assumes that there are the same effect sizes across
different studies. This method is effective if the heterogeneity
among studies is small (Pfeiffer et al., 2009). Other methods, such
as random effect models, are used in GWAS as well. They assume
that the effect sizes of the studies follow a probability distribution
due to the heterogeneity (Pereira et al., 2009). Recently, we
proposed a new random effect method for testing the
interaction between SNP and environment factor, which
provides a higher power than the fixed effect methods when
heterogeneity is large (Jin and Shi, 2019). The P-value based
method (Fisher, 1967) was widely used earlier and has been
abandoned because it does not include directions of effects under
test; thus, it cannot provide an overall estimation of the effect
size. The application of this method may lead to false positive
results (Evangelou and loannidis, 2013). The Z scores method
considers the direction of effect and its weight is estimated as the
square root of the sample size of each study (Evangelou and
Toannidis, 2013). Bayesian methods (Kraft and Haiman, 2010)
depend on the assumption of the prior distribution of the
parameters and are usually computationally intensive. The
subset method (Morris, 2011; Wen and Stephens, 2014) is
similar to the fixed effect methods; however, it assumes that
the effect exists only in a subset of the studies. All these classical
methods assume that the studies have no overlapping samples,
thus helping maintain independence among the summary
statistics of the studies.

However, in GWAS practice, overlapping data between
studies may occur. This may be caused inadvertently or
intentionally by researchers. Spurious association may be
achieved if overlapping data exist and are ignored in the meta-
analysis (Lin and Sullivan, 2009; Han et al., 2016). Recently,
meta-analysis methods, such as the P-value based method
(Zaykin and Kozbur, 2010), subset method (Bhattacharjee
et al, 2012), Bayesian method (Wen, 2014), fixed effect
method (Lin and Sullivan, 2009), and random effect methods
(Han and Eskin, 2011; Han et al., 2016) have been proposed for
handling the overlapping data issue. All existing methods are for
testing the SNP main effect. Lin’s method (Lin and Sullivan,
2009) is proposed for combining the results of case-control
studies. It has been shown to yield higher and more robust
power than the splitting method that removes the overlapped
data in studies before calculating the study-level summary
statistics. Han’s method (Han et al., 2016) involves modeling
the covariance matrix of the estimated effects due to the
overlapping data in fixed or random effect models and
transforming the covariance matrix to be diagonal. The
transformed matrix can then be synthesized by regular
methods that assume independent data among studies.

Meta-regression (MR) (Xu et al., 2013) is an efficient meta-
analysis method for testing SNP-environment interaction
assuming independent data among studies. In MR, subjects in
each study are divided into groups by the distribution of an
environment variable. Then, the SNP main effects, standard
errors, and the average environmental variables in each group

are estimated using linear or logistic regressions. The SNP main
effects and environmental variables across all groups are then
collected and synthesized by MR. The overall main effect of the
SNP, the effect of SNP-environment interaction, and the
corresponding standard errors can be derived. The MR
method is also shown to be robust when confounding effects
exist (Shi and Nehorai, 2017).

Many complex diseases or traits are owing to the combination
of effects of genetic factors, environment factors, and gene-
environment interactions and involve in complex regulatory
networks (Chen et al., 2019; Chen et al., 2019). Consider
CDKN2A/B-rs10811661 as an example, which is associated
with dyslipidemia. Researchers used CC/CT genotypes with a
low-energy diet and a high frequency of exercise as the control
group to study the effect of the interaction between rs10811661
gene polymorphism and energy intake and exercise on the level
of blood lipid. The study found that the incidence of
hypercholesterolemia was approximately 2 times higher in the
TT genotype than in the control group and 1.5 times higher in
the CC/CT genotype than in the control group (Mehramiz et al.,
2018). The analysis of the genes and environment interactions
can provide new insight into complex traits or disease
mechanisms. However, a meta-analysis of SNP-environment
interaction method with overlapping data does not exist
currently. Data have to be split in studies such that every study
contributes non-overlapped samples, i.e., the so-called splitting
method. The splitting method requires the study-level genotype
and phenotype data, which is usually unavailable for the meta-
analysis. In addition, different ways of splitting samples may lead
to different results.

In this paper, inspired by Lin’s method (Lin and Sullivan,
2009) and Han’s decoupling method (Han et al., 2016) for testing
the SNP main effect, and based on MR, we propose the
overlapping MR (OMR) method, which is a fixed effect MR
model designed especially for handling overlapping data. The
remainder of this paper is organized as follows: In the materials
and methods section, we present the correlation matrices for the
OMR method and then the method for testing the SNP-
environment interaction. We also provide the relationship
between MR and OMR. In the Results section, we simulate
numerical examples and use them to examine the type I error
and power of our method and the splitting method. We also
show that the type I error is inflated with regular MR without
considering overlapping samples. In the discussion and
conclusion sections, we discuss the results and conclude
the paper.

MATERIALS AND METHODS

Based on Lin’s and Han’s correlation structures (Lin and
Sullivan, 2009; Han et al., 2016), we generalized regular MR
model for independent studies to consider studies with
correlated summary statistics due to overlapping data. To
describe our method clearly, we first briefly introduce the
regular MR method.
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Regular MR Method

Before the MR analysis, individuals in each study are first
stratified into several groups according to their environmental
measurements. The main effects of SNP at the group level can be
estimated via linear regression as follows:

Y=ﬁ0+ﬂGG+ﬁEE+€,

where Y is a quantitative phenotype, G is the code of the SNP,
and E is the environmental measurement. .
Assume that 3 is the estimate of the SNP main effect, and f3;
is the estimate of the SNP main effect for the i-th study and the j-
th group where i= 1,2,...,n, j=1,2,...,n;, The symbol n is the
number of studies and #; denotes the number of groups in the i-
th study, and ¢;; denotes the standard error in the j-th group of
the i-th study. The mean environmental measurement in the j-th
group of the i-th study is Ej;. ais the regression coefficient vector
of interest. The symbol X is the interest matrix and X; is the
interest matrix for the i-th study. € is the standard error matrix
and the & is the standard error matrix for i-th study. In MR, the
SNP effect is regressed on the environmental factor as follows:

B=Xoa+e, (1)
where
B Bi X 1 E;
- B> . Ba X5 1 Ep
ﬂ = > IBI = . X = :XI = s
ﬁn ﬁin- Xn 1 Em‘
€1 €i1 T 0
€ € o
€ = 2 ’€l = i2 s o= 5 2 = 5
(053
€n €in,~ 0 Zn
éil * 0
Zi =
0 - e

and €; N(0,¢;),i=1,2,...,n, j=1,2,....n,
o and Cov(or) are estimated by (Xu et al, 2013; Shi and
Nehorai, 2017).
o = (X'='X)'X'=B
dz = (0, 1) &
Cov(é) = (X'=7X)™ @)

Cov(6r)y=(0,1)(X'=7X) ™ (?)

Under the null hypothesis Hy:0,=0, Wald statistic for testing
the SNP-environment interaction effect is ¢&,/Cov(Q.),,, which
follows a 1 degree of freedom (df) Xz distribution. Under the null
hypothesis of Hy: =0, the Wald statistic for testing joint effects of

the SNP and the interaction is ¢ Cov(é)'é, which follows a 2
df % distribution.

The model (1) can be specified as any nonlinear function of
the environmental variable as necessary. For example, to test
quadratic SNP-environment interaction, the model can be
formulated as

B =xVa" +e (3)

where 5
Xy 1 Ey Ej

o
XY 1 E, E}

XN = . ,XIN = . . . N aN = %N

N

o
Xqu\] 1 Ein,v Eizn;

The Wald statistic then follows a 2 df x> distribution when
testing the two interaction effects simultaneously. The Wald
statistic follows a 3 df x* distribution for testing the SNP main
and interactions jointly (Xu et al., 2013).

Overlapping MR Method

Inspired by the methods for testing the SNP main effect with
overlapping data (Lin and Sullivan, 2009), based on regular MR,
we propose the OMR model for testing the SNP-environment
interaction when data among studies are overlapped.

We consider the kernel process for modeling the correlations
due to the overlapping data. Following Lin’s recommendation,
the covariance matrix under the correlated studies can be
modeled as follows (Lin and Sullivan, 2009):

Q=x"2cz'?, (4)

where C is the correlation matrix. The dimensions of this matrix
C are related to the number of studies and the group number of
each study. The details of the correlation matrix will be presented
in the next section.

Alternatively, the variance covariance matrix can be
generalized according to Han’s suggestion as follows (Han
et al., 2016):

Q= diag(e/ (21/2C21/2)4>71 (5)

where e is a vector of ones whose length is the sum of the number
of groups among all studies. After this modification, the
correlation matrix becomes a diagonal matrix. This matrix is
highly likely to be positive semi-definite and the analysis of the
positive semi-definite matrix is similar to the condition of case-
control studies (Han et al., 2016).

Lin’s variance covariance matrix is equivalent to Han’s (Han
et al., 2016). The variance covariance matrix based on Han’s
formula (5) is more flexible. However, it is more computationally
intensive. The method of Lin is simple in its mathematical form
and calculation. In cases analyzing with existing programs that
require studies to be independent, Han’s method can be applied.

Correlation Matrices

Lin and Sullivan (2009) developed a correlation matrix C for
incorporating correlations among summary statistics of studies
due to the overlapping data. The correlation of studies i and j is
given as follows:
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Yi = i/ /i, (6)

where n; and n; are the numbers of studies i and jrespectively,
and n;; is the number of overlapped individuals between the i-th
and j-th studies.

When considering the MR method, this correlation can be

modeled as follows:

Y = nihjk/ v in o ™)
where n;, and n;_are the sample sizes of the h-th group of study
i and the k-th group of study j, and n;; is the number of
overlapping samples between them. In this correlation structure,
the block matrix that corresponds to each study is an identity
matrix; that is, the diagonal block matrices of the correlation

matrix are all identity matrices.

Hypothesis Testing
With the introduced correlation matrix, linear unbiased
estimates 6 and Cov(Q) can be found as follows (Becker and
Wu, 2007): R

o= (XQ'X)'XQ'B

6, = (0,1)&

Cov(é) = (X'27'X)™ 8)

0
Cov(a)yn=(0,1)Cov(ar) ( . )

Under the null hypothesis 0,=0, the Wald statistic for testing
the SNP-environment interaction effect is given as follows:

Si=a %/COV(&)zz

This statistic follows a 1 df y*distribution.
Under null distribution 0=0 the Wald statistics for testing the
SNP and the interaction joint effects are given as follows:

)

S; = a’/Cov(ax)

which follows a 2 df x* distribution.

OMR method can also be extended to test nonlinear SNP-
environment interaction for overlapping method. This process is
similar with model (1), the Wald statistic for the test of SNP-
environment interaction and quadratic SNP-environment
interaction follows a 2 df %? distribution. The Wald statistic for
testing the SNP, SNP-environment interaction, and quadratic
SNP-environment interaction interactions jointly follows a 3 df
2 distribution.

As can be seen, our models are generalized versions of the
regular MR. When the data of studies are independent,
correlation matrix C is an identity matrix, and the two

covariance matrices become L
Q=3C¥x =%

(10)

(11)
and

Q- diag(e’ (zl/zcz‘/z)fl)%: T (12)

In this case, the covariance matrix is identical to that of the
regular MR.

RESULTS

We evaluated the type I error to ensure that the false positive rate
is appropriately controlled by our proposed OMR method when
overlapping data exist, that is, whether the empirical type I error
rate is close to the specified level. We compared our method with
the splitting method and regular MR method, which did not
consider overlapping data. The power was then compared at
different levels of sample overlap. We considered two scenarios
where there were 100 and 400 overlapping subjects between
every two studies.

Simulation

The quantitative phenotype Y was simulated as being related to G
and E, which were the genotypes of the SNP and environment
variables, respectively. The simulation model representing this
relationship is given as follows:

Y=,BGG+[3GX5G><E+ﬂEE+€

Here, the SNP was assumed to have an additive genetic effect;
the minor allele frequency was 0.3, and G was the code of SNP,
which was the number of minor alleles. We generated random
numbers by the runif function in R, then the values of G are
determined by which intervals the random numbers fall into, and
the intervals are determined by genotype frequency. Variable E
was normally distributed, E~N(0,1). 10% of the variation in Y
was explained by BgE. The fixed effects g and Bk varied in our
simulated datasets. The random error € was normally distributed
with zero mean and its variance was chosen such that phenotypic
variance is unit. The environment variable and error term were
generated by the rnorm function in R. In all our numerical
experiments, we considered meta-analyses of data from 2, 3, 4, 5,
and 6 studies, each of which had 1,000 unrelated individuals. In
each study, we simulated three variables: the phenotype Y,
environmental E, and genotype SNP. Across studies, there
were 100 or 400 overlapping samples between any two studies.
Under each simulation setup, data were generated with
1,000 replicates.

We divided 1,000 unrelated individuals in each study into five
groups according to the distribution of E, before meta-analyses.
In each group, we applied linear regression to estimate the main
effects f3, its corresponding error & and the mean environment
variable E. Meta-analysis were performed with 2, 3, 4, 5, and
6 studies.

Type | Error

To obtain the type I error of the interaction test, the effect of the
SNP-environment interaction was set to be zero and the SNP
main effect explained 0.5% variance of the trait variance. The
empirical type I error of our method was calculated by
transforming the covariance matrix with overlapping data into
a diagonal matrix and then using regular MR. Under this
simulation, the test of empirical type I error of our method
followed a 1 df distribution. The empirical type I error of the
splitting method with two studies was estimated by removing
100 or 400 overlapping subjects of study 1, and the data in study
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2 were left unchanged. The empirical type I error of the splitting
data method with 3, 4, 5, and 6 studies was estimated by
discarding 100 or 400 overlapped subjects from each study.
Figures 1A, B show the type I error rates of 2, 3, 4, 5, and 6
studies in the test of SNP-environment interaction with 100 and
400 overlapping subjects, respectively. We can see that both our
method and the splitting data method yielded type I error results
close to the specified 0.05 level. The regular MR method, which
did not consider overlapping data, yielded inflated type I error
rates. The greater the overlap, the more the inflation was.

To calculate the type I error rates of the joint test of the SNP
main effect and the interaction, we set both the SNP and the
SNP-environment interaction effects to be zeros. The Wald test
statistics followed a 2 df y*distribution. Figures 1C, D show the
type I errors of the joint test under the null hypotheses. We can
also see that the results of the two methods were around 0.05 as
well; thus, both our OMR method and splitting method treated
the overlapping data appropriately. The regular MR method in
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FIGURE 1 | Type | error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are type | errors of the interaction test
with 100 and 400 overlapping data, respectively. (C, D) are type | errors of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is
type | errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is type | errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line
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with filled triangles is type | errors of the regular MR with 2, 3, 4, 5, and 6 studies when overlapping data is ignored.

the joint test yielded a higher type I error than in the interaction
test because it included more information on overlapping data.

In real meta-analysis, sample sizes of studies vary and
percentages of overlapping may be different for studies. Here,
we set the sample sizes of the 6 studies as (1,000, 1,200, 1,400,
1,600, 1,800, 2,000). Let the effect of the SNP-environment
interaction to be zero and the SNP main effect explained 0.5%
of trait variance. Type I errors of testing the SNP-environment
interaction are shown in Figures 2A, B, which represent results
of testing the interaction with 100 and 400 overlapping
individuals in each study, respectively. Setting both the SNP
and the SNP-environment interaction effects to be zeros, we
conducted joint tests for SNP and SNP-environment interaction.
Figures 2C, D show type I errors of the joint test with 100 and
400 overlapping individuals, respectively. As the results in
Figure 1, OMR and the splitting method control type I errors
as expected, while inflated type I errors can be observed for the
regular MR.
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FIGURE 2 | Type | error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400, 1,600,
1,800, 2,000 individuals, respectively. (A, B) are type | errors of the interaction test with100 and 400 overlapping data, respectively. (C, D) are type | errors of the
joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is type | errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with
filled squares is type | errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line with filled triangles is type | errors of the regular MR with 2, 3, 4, 5, and 6

Power
To compare the statistical power of testing the SNP-environment
interaction, both SNP-environment and SNP effects explained
0.5% variance of the trait variance. In this simulation, statistical
significance was determined by the P values of the tests, which
were smaller than 0.05. The empirical power was obtained by
calculating the proportion of the significant results in 1,000
replicates. The P values were calculated using the Wald test
(9), which followed a 1 df 3* distribution. Figures 3A, B show the
power of the SNP-environment interaction with overlapping
data of 100 and 400, respectively. We can see that our method
yields similar results to those of the splitting method. Note that
our method does not require the study-level genotype or
phenotype data, which is its major advantage.

In the joint test of the SNP main effect and the SNP-
environment interaction effect, both SNP-environment and SNP
effects explained 0.5% variance of the trait variance. In this

simulation, the P values were again calculated using the Wald test
(10) following a 2 df > distribution. Figures 3C, D show the powers
of the joint test with 100 and 400 overlapping samples, respectively.
We compared our method with the splitting method. These results
are similar to those from the SNP-environment interaction test;
however, the joint test yielded higher power than the interaction
test. This is because the joint test included more effects than the
SNP-environment interaction test (Kraft et al., 2007).

For studies with unequal sample sizes (1,000, 1,200, 1,400,
1,600, 1,800, 2,000), power of testing the SNP-environment
interaction and power of the joint test for the SNP and the
interaction are presented in Figure 4. Effects of the SNP and the
interaction are the same as those in previous example. We can
see that powers in Figure 4 demonstrate similar patterns as those
in Figure 3, whereas the former are in general larger than the
latter. This is because that total sample size employed in Figure 4
is larger than that in Figure 3.
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6 studies.

In GWAS, it is a common phenomenon that effects of the
SNP and SNP-environment interaction may have different
directions. Here, we consider the scenario that both the SNP
and the interaction explained 0.5% variance of the trait variance
but the directions of their effects are opposite. As in the previous
example, we tested the SNP-environment interaction as well as
joint effects of the SNP and the interaction. Figures 5A, B show
powers of the interaction test with 100 and 400 overlapping
samples. Figures 5C, D present powers of joint test with 100 and
400 overlapping samples. Compared with the results in Figure 3,
whose effects of the SNP and interaction have the same direction,
we can see that the powers of the two tests are about the same in
the two scenarios.

Finally, we added simulation for nonlinear SNP-environment
interaction when testing the effect of SNP-environment interaction
and the joint effects of SNP and SNP-environment. Both the effect of
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FIGURE 3 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are statistical powers of the
interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid
line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and

SNP and the effect of SNP-environment interaction explained 0.5%
variance of the trait variance, the effect of nonlinear SNP-
environment interaction explained 0.05% variance of the trait
variance. We compared the model considering nonlinear SNP-
environment as in (Xu et al., 2013). with the model not
considering nonlinear SNP-environment. Figures 6A, B show the
results of this comparison with 100 and 400 overlapping individuals
for the test of interaction respectively, in each of the two figures, we
can see that the two lines we compared present similar results. From
Figures 6C, D we can see that the powers under the model
considering nonlinear SNP-environment are lower than that not
considering with 100 and 400 overlapping individuals for the joint
test respectively. That is because the column variables in X are not an
orthonormal basis when considering nonlinear interaction. The
nonlinear interaction enters the model as part of the SNP main
effect (Xu et al., 2013).
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FIGURE 4 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400,

1,600, 1,800, 2,000 individuals, respectively. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical
powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid
line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.

DISCUSSION

SNP may indeed interact with E nonlinearly in real biological
process. In this case, regressing the main effect of SNP on E linearly
involved model mis-specification. On the other hand, such linear
regression can hopefully capture a portion of the main effect. In this
case, we can employ Hermite polynomials to the nonlinear
interaction model to avoid this phenomenon (Xu et al., 2013).
The sample sizes of studies vary in real meta-analysis. As
explained in the reference (Manning et al., 2011), there are 561
individuals in the FamHS Study, 1,661 in the HealthABC Study,
2,854 in the CHS Study, 8,367 in the ARIC Study, 6,023 in the
FHS Study, which gives a total sample size of 19,946. For
methodological evaluations, the authors of (Manning et al.,
2011) chose to simulate five studies each of 1,000 individuals.
In our work, we also adopted a relatively moderate sample size
1,000 to verify the effectiveness of our method. In the revised

manuscript, we conducted additional simulations to have studies
with different sample sizes to evaluate the sensitivity to the
unbalanced sample sizes among studies.

When testing the SNP main effect, the splitting method for
case-control studies was reported to yield a lower power than Lin’s
method, which is because the studies share common controls (Lin
and Sullivan, 2009). Splitting these studies such that every subject
contributes only once leads to a dramatic decrease in the effective
sample size. Our simulation examples based on cohort studies
yielded slightly less power than the splitting method because the
overlapping structure in our examples differed from that in the
case-control studies. The splitting method in the cohort studies
drops less data than in case-control studies, so the power loss due
to splitting the data is smaller.

Our method is based on the MR in which one divides the
studies into several groups according to the environmental
variable. Thus, when calculating the correlation matrix, we
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must consider both the number of overlapping data among
studies and the number of overlapping data among groups.
When the overlaps among groups are unavailable and the data
overlap is independent of the environment variable, the overlaps
between two groups can be estimated by the overlaps between
their studies and the sample proportions of the groups in the two
studies. In either case, our method does not require individual-
level data as the splitting method does.

To the best of our knowledge, there is still no meta-analysis
method for testing SNP-environment interaction with overlapping
data among studies. Our OMR method was generalized from
regular MR. When evaluating our proposed OMR method, we
compared our method with the splitting method and regular MR.
Figure 1 indicates that regular MR yielded inflated type I error rates;
the more the amount of overlapping data, the higher the amount of
inflation. On the other hand, our OMR method controlled the type I
error rates appropriately. Therefore, regular MR is unsuitable for
studies that have overlapping data.
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studies. Solid line with filed squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.

CONCLUSION

In this paper, we generalized the regular MR model to OMR by
incorporating correlations among studies due to the overlapping
data. We proposed a test for the SNP-environment interaction as
well as a joint test for the SNP and the interaction under the
OMR framework. The two test were compared with the splitting
method in terms of their type I error rate and statistical power.
Through simulation, we demonstrated that our method yielded
comparative power with respect to the splitting method and the
type I error rate of the regular MR is inflated when overlapping
data are ignored. We also evaluated our OMR method with
unequal sample sizes among studies, opposite directions of the
SNP effect and the interaction effect, and assessed the robustness
of our method when nonlinear interaction effect exists. Our
method does not require individual-level genotype and
phenotype data, which overcomes the major limitation of the
splitting method. In GWAS practice, our OMR method can be

Frontiers in Genetics | www.frontiersin.org

229

January 2020 | Volume 10 | Article 1400


https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Jin and Shi

Method for Overlapping Data

used to control false positive results when the studies with
overlapping individuals are included in the meta-analysis, thus
improve the probability of finding genuine associations.
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with 100 and 400 overlapping data, respectively. Solid line with filled squares shows powers of OMR when nonlinear interaction effect was considered in the model.
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With the generation of a large amount of sequencing data, different assemblers have
emerged to perform de novo genome assembly. As a single strategy is hard to fit various
biases of datasets, none of these tools outperforms the others on all species. The process
of assembly reconciliation is to merge multiple assemblies and generate a high-quality
consensus assembly. Several assembly reconciliation tools have been proposed.
However, the existing reconciliation tools cannot produce a merged assembly which
has better contiguity and contains less errors simultaneously, and the results of these tools
usually depend on the ranking of input assembilies. In this study, we propose a novel
assembly reconciliation tool MAC, which merges assemblies by using the adjacency
algebraic model and classification. In order to solve the problem of uneven sequencing
depth and sequencing errors, MAC identifies consensus blocks between contig sets to
construct an adjacency graph. To solve the problem of repetitive region, MAC employs
classification to optimize the adjacency algebraic model. What's more, MAC designs an
overall scoring function to solve the problem of unknown ranking of input assembly sets.
The experimental results from four species of GAGE-B demonstrate that MAC
outperforms other assembly reconciliation tools.

Keywords: adjacency algebraic model, contig classification, contig reconciliation, de novo assembly,
next-generation sequencing

INTRODUCTION

Next-generation sequencing technologies (NGS) offer a large volume of short sequences with relatively
short insert size compared to the traditional Sanger sequencing technology and the third generation
sequencing technologies, e.g., Pacific Biosciences (Eid et al., 2009) and Oxford Nanopore (Clarke et al.,
2009). Although considerable third generation sequencing data has been produced, due to the higher
cost per base and higher sequencing errors, NGS sequencing data still plays an important role in tackling
an increasing list of biological problems. The de novo genome assembly is a fundamental process for
computational biology (Schatz et al., 2010), which drives the generation of many assemblers to complete
the construction of genome sequences, such as Velvet (Zerbino and Birney, 2008), ABySS (Simpson et al.,
2009), ALLPATHS- LG (Gnerre and Jaffe, 2011), SOAPdenovo (Li et al., 2010), EPGA2(Luo et al., 2015),
Miniasm (Li, 2015), BOSS (Luo et al., 2017), SCOP (Li et al., 2018a), ARC (Liao et al., 2018), iLSLS
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(Li et al., 2018b), MEC (Wu et al., 2017), EPGA-SC (Liao et al,,
2019a), PE-Trimmer (Liao et al., 2019b), and so on.

However, there is no single assembler that could perform
optimally in every quality metric, which has been
demonstrated repeatedly (Earl et al,, 2011; Salzberg et al.,
2012; Bradnam et al., 2013). The situation is caused by
various factors: (1) Assembly algorithms are mainly based on
overlap-layout-consensus graphs or de Bruijn graphs, these
two types of algorithms use different strategies to deal with
errors, inconsistencies, and ambiguities; (2) NGS genome
assemblies suffer from long repeats and duplications, which
is the primary reason why some assemblers outperform others
in specific regions and specific species (Alkan et al., 2010); (3)
the uneven sequencing coverage of NGS data increases the
complexity of assembly, which makes the parameters having
great influence on the assembly results, such as k-mer size; (4)
the sequencing errors and chimeric reads cause direct
assembly mistakes. Besides, different sequencing platforms
usually introduce different bias (Harismendy et al., 2009), so
the assemblies generated by various platforms may present
different features, and there is usually complementarity
between them (Diguistini et al., 2009). Thus, it is appealing
merging different assemblies to generate a high-quality
assembly by using complementary, which is first proposed by
Zimin et al., called assembly reconciliation. The main goal of
assembly reconciliation is to increase the contiguity of
assembly results while reducing (or at least not increasing)
the errors in assembly.

Many assembly reconciliation algorithms have been
proposed, for some earlier ones, such as Reconciliator (Zimin
et al., 2005) and GAM (Casagrande et al., 2009). Reconciliator
detects apparent errors in the assembly, and then the error
regions are modified by using the alternative draft assembly,
through which the gaps between sequences are reduced. GAM
defined supercontig to facilitate the integration, which takes two
assemblies as input, and regards the former one as reference. For
some reference-based algorithms, such as eRGA (Francesco
et al, 2011), RAGOUT (Kolmogorov et al., 2014), and MAIA
(Nijkamp et al., 2010), if there is no corresponding reference or
relative reference genome, they cannot work properly, so we
don’t discuss these methods here. The algorithm CISA is used to
integrate the assemblies of bacterial genome in the four major
phases (Lin and Liao, 2013). Firstly, CISA extracts the largest
contig as a representative contig, and aligns the remaining
contigs to the representative coting, then conducts extension
with the contig whose alignment rate is more than 80%. This step
is repeated iteratively until there is no representative contig
found. Secondly, CISA identifies two types of misassemble
contigs: for the misjoined error, CISA removes the contig; for
the insertion error, CISA splits the contig. Thirdly, CISA merges
contigs which have at least 30% overlap, and also estimates the
size of repeats. Finally, if the overlap between two contigs is
greater than the maximum size of repeats, CISA merges the
contigs. CISA could be used to merge more than two assemblies.

The objective of GAA is to generate an accordance assembly
from two or more large genome assemblies (Yao et al., 2012).

GAA takes a target assembly and a query assembly as input,
then uses BLAT aligner (Kent, 2002) to align the query
assembly to target assembly. The high scoring matches are
used to construct the accordance graph, GAA finds the
maximal sub-paths from the graph, and the gaps can be
divided into two types, between contigs and inside contigs.
For the gaps between contigs, GAA compares the observed
value and expected value of gap size, then decides whether to
merge two contigs. For the gaps inside contigs, a compression-
expansion(CE) statistic module (Zimin et al., 2005) is used to
evaluate the gap regions. The 454 and Illumina de novo
assemblies are used to examine the performance of GAA.

GAM-NGS (Vicedomini et al., 2013) is the updated version of
GAM, GAM-NGS can be used on all NGS-based assemblies,
especially for eukaryote genomes. Two assemblies and a SAM
alignment file are taken as input, GAM-NGS first searches the
mapping file to identify highly similar fragments between two
assemblies, which is called “blocks”, then a graph is used to record
and weight the information of blocks, and the conflicts are resolved
in the graph. A semi-global alignment between contigs is computed
by GAM-NGS, and two contigs are merged if the identity between
them is larger than 95%. The CE statistic module (Zimin et al., 2005)
is used to choose which assembly can be merged.

The main purpose of MIX (Soueidan et al., 2013) is to reduce
both the fragmentation of contig sets and reduce the time
consumption of genome finishing. MIX builds an extension
graph where vertices represent the terminals of contigs, and
the edges represent the alignment situation between contigs.
MIX attempts to solve the maximal independent longest path set,
which is NP-hard. The performance of algorithm is evaluated on
the GAGE-B (Tanja et al.,, 2013) bacterial dataset.

Metassembly (Wences and Schatz, 2015) merges all the
input assemblies into a final one, which is better than or as
good as the original assemblies. Metassembly regards one of
the inputs as a “primary” assembly, then the others are
“secondary” assemblies, the secondary assemblies are used to
add useful information to the primary assembly. A pairwise
algorithm is used to merge multiple assemblies, the
primary assembly is aligned to the secondary assembly, and
the best aligned position can be evaluated by LIS (longest
increasing subsequence) function. The CE statistic (Zimin
et al., 2005) is used to assess the conflicts and select the
locally best sequence.

In general, most of the methods described above are based
on the CE statistic (Zimin et al., 2005), which is used to detect
compression or expansion misassemblies between two input
assemblies. However, the CE statistic is obtained by aligning
paired-end or mate-pair reads to the assembly, which is
impacted by the alignment quality and the false positive
within error detection leads to the misassembly directly. In
addition, most of the current reconciliation tools are designed
for merging short sequences (<100bp), like CISA and GAM-
NGS, which performed poorly in merging longer sequences
(>200bp). Therefore, there is an urgent require for the robust
reconciliation tool to increase the length and quality of
assembly, as well as adapt to longer sequencing data.
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In this study, we propose a novel assembly reconciliation tool,
named MAC, which uses alignment information and GC-content of
paired-end reads to classify all the contigs into two types. Then,
consensus blocks between contig sets are identified, and the
unreliable fragments caused by uneven sequencing depth or
sequencing errors could be filtered out. In addition, MAC utilizes
the adjacency algebraic model to facilitate the merging process, in
which the adjacent graph is used to fulfill accurate fusions between
consensus blocks. The classification result of contigs is used to
optimize the model, and the repetitive regions could be eliminated
by splitting contigs and reconstructing the adjacent graph. What’s
more, an overall scoring function is proposed to solve the problem of
unknown ranking of input assemblies, the scoring function evaluates
the overall quality of assembly sets by alignment quality and coverage
information. The experimental results from the datasets of GAGE-B
demonstrate that MAC performs better than other
reconciliation tools.

METHOD

MAC employs the adjacency algebraic model (Sankoff et al.,
2000) and the classification to merge assemblies. The
identification of consensus blocks is to filter out the unreliable
fragments caused by uneven sequencing depth and sequencing
errors; the addition of classification is to optimize the adjacency
algebraic model and eliminate the influence of repetitive regions.
The outline for the whole algorithm is as follows: (1)
Preprocessing: MAC aligns paired-end/mate-pair reads to
contig sets, and filters out the low-quality alignment; (2)
Ranking input assemblies: MAC designs an overall scoring
function to rank the input assemblies; (3) Classifying contigs:
MAC utilizes the alignment results and GC-content of paired
reads to classify contigs; (4) Adopting the adjacent algebraic
model: MAC constructs an adjacent graph to fulfill some
accurate fusions of consensus blocks, then uses classification
results of contigs to optimize the remaining processing steps. The
flowchart of MAC algorithm is shown in Figure 1.

Preprocessing

MAC takes multiple contig sets and paired-end/mate-pair reads
as input, the aligner Bowtie2 needs to be installed in advance.
The input reads are aligned to each contig set, respectively. For
reads aligning to multiple positions, MAC only maintains the
highest score alignment for each read, and removes the
redundant alignments. According to the paper of Luo et al,
the length of insert size follows a normal distribution N (s, O;),
so the distance between two paired reads, which align to the same
contig, should be in the range of [u;— 3*0;, Ui+ 3¥0;]. For the
reads which violate this rule, MAC removes the corresponding
alignment. To reduce the impact of sequencing errors, MAC
extracts the sequencing quality of every base in reads, and
calculates the average and standard deviation of sequencing
quality for the remaining alignment, denoted by My and ©,,,
respectively. Let Q; represent the mean value of sequencing

quality for the i-th alignment. If Q; < My- 3*0,,, MAC
removes the alignment information.

Ranking Input Assemblies

As most existing assembly reconciliation tools depend on the
ranking of input, and the results usually change when the order
of input assemblies change. To achieve better results, users
have to evaluate the contiguity and correctness of every input
assembly by taking the reference into Quast (Gurevich et al,,
2013) or other evaluation tools. In the study, MAC utilizes the
mapping quality and read coverage to rank the input
assemblies. The compact idiosyncratic gapped alignment
report (CIGAR) can be obtained from files in the SAM
format, in which “M” represents match/mismatch, “I”
represents insertion, “D” represents deletion, and the
number before a character represents its corresponding
quantity. Assume that the length of contig Cis L, j (1<j<L)
is the position at C, q; represents the CIGAR of position j,
which is calculated as follows.

N

where M denotes match and M* denotes mismatch. In fact, we
cannot distinguish match and mismatch from a single
character “M”, so MAC calculates the average mapping score
of the SAM file. If the mapping score of the corresponding read
is larger than or equal to the average mapping score, the
character “M” is thought to be match, otherwise, “M” is
thought to be mismatch.

To take the coverage into consideration, MAC extracts the
alignment of contig C, to calculate the average rc, and standard
deviation ©,. of read coverage. Assume that rc; is the read
coverage of the spanning region of read i, RC is used to
indicate whether the coverage of the region deviates too much,
which is computed as follows.

1L if j=M
P (1)
-1, if j=Mor I or D,

1, if (r¢; > rc+2x%0,) or (r¢; < rc—2x*0,.) @
2
-1, otherwise

In order to comprehensively consider the mapping quality
and read coverage, MAC employs an overall scoring function to
rank the input assemblies, which is calculated as follows.

2112;1% - Eil :<=1RC
N

3)

score =

Classifying Contigs

In this step, MAC evaluates the quality of contigs by using the
alignment result and GC-content, and then classifies all the
contigs into two types. Due to the problems of sequencing
errors, uneven depth, existence of repetitive regions and the
bias of algorithm strategy, contigs often contain
misassemblies, which influence the subsequent assemblies
directly. Therefore, MAC estimates the correctness of
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FIGURE 1 | Flowchart of MAC algorithm.

contigs, and marks the type for every contig, and records the
potential error positions.

For a contig C, whose length is L, the coordinate of position j is in
the range of [1, L]. The fragment coverage fc(j) could be defined as
the number of reads with the high alignment scores which span the
position j. Because low coverage regions more likely contain error
joints, MAC employs a cutoff fc* to identify the potential error
positions, fc* can be calculated by the average of fragment coverage
for all the positions of contig C as follows (Wu et al., 2017).

L .
> feli)
L

The parameter o can be set by users. If the fragment coverage
of position j is less than the cutoff, that is fc(j) < fc*, the position j
is regarded as a potential error position. If there are multiple
continuous potential error positions, the region covering these
positions can be group into a region set T (T = {[m, n] |n = m, V
jE [m, n], fc(j) < fc*}). For every region in set T, MAC chooses
the position whose fragment coverage is the lowest as the
breakpoint, B, (m< B,< n).

Owing to the uneven sequencing depth, some low-depth regions
may be mistakenly categorized as containing error positions.
Therefore, MAC estimates the coverage condition of the neighbor
flanking regions for breakpoint B, to reduce false positives. M is the

fc* = o

4)

number of paired reads whose left mate maps to the left flanking
region of By, and right mate maps to other contigs. M,, is the number
of paired reads whose right mate maps to the right flanking region of
By, and left mate maps to other contigs. Then two rates: P and P,
are calculated as follows (Wu et al., 2017).

_ fc(B,)
“ " TeB,) + M, ©
fc(B,) ©

P fe(B,) + M,

P and P, are used to estimate whether the region [m, n] is
low-depth or not. If P, ;> or P.,>f3, the region is thought to be
a low-depth region, and should be removed from the
potential set.

Owing to the GC-content bias, some regions may cover less
reads or even no reads, and these regions are mistakenly
categorized as containing error positions. Therefore, MAC
evaluates whether the GC-content of the neighbor flanking
regions for B, is too high or too low. Pgc is the GC-content
rate of the potential error region which contains By, and Py is the
GC-content of the whole genome, P, is calculated as follows (Wu
et al., 2017).

P

N L
Ei=12j=llj
g~ »

NL
=1

(7)

where N represents the number of contigs, L; is the length of
the i-th contig, I; is an indicator variable, when the base at
position i is G or C, I; equals to 1, otherwise, I; equals to 0. If
Pgc = Py + 1, the region is thought to be GC-rich, otherwise, the
region is thought to be GC-poor. Both GC-rich and GC-poor
regions are removed from the potential set.

After removing the low-depth regions and GC-bias regions,
the remaining single potential positions and potential regions are
certainly false. which satisfy the following conditions at the
same time:

@ fe(j) < fc*;
@P,<PBand P, < fB;
©PGC<Pg+ 1 andPGC>Pg+ 1.

The regions estimated as low-depth or GC-bias are thought to
be uncertain regions, and the positions in these regions satisfy
the following conditions simultaneously:

@ fe(j) < fe*;
@ P> Bor Py, >
@PGCng‘}'lOrPGCng‘Fl.

After excluding the above two types of positions, the rest
positions are certainly true. For the certainly false positions/
regions, MAC breaks the corresponding contigs at the false
position or the B, position of the false region, and eliminate
certainly false positions. Based on the above evaluation, all the
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input contigs can be divided into two types: Uncertain (U) and True
(T). If the contig contains one or more uncertain regions, the contig
is classified as U contig, while the contig only containing true
positions is classified as T contig.

Adopting Adjacency Algebraic Model

The order of merging is determined by the ranking of overall
scores, which are calculated in the previous step. MAC merges
two assemblies at a time, the next assembly and the resultant
assembly are merged iteratively. In the merging process, MAC
utilizes an adjacency algebraic model (Sankoff et al., 2000) to
find the conjunctions between contigs. The adjacency algebraic
model was introduced by Feija£O and Meidanis to find a
permutation to minimize the algebraic rearrangement
distance (FeijatO and Meidanis, 2013), and the adjacency
algebraic model was proved to be efficient on the problem of
contig ordering (Chen et al., 2018). In this study, MAC uses the
adjacent graph to represent the adjacency algebraic model and
utilizes the classification of contigs to optimize the model, the
pseudo-code of adopting the adjacency algebraic model is as
shown in Algorithm 1 of Supplementary Material.

Constructing Adjacent Graph

Given two input contig sets O and R, MAC utilizes the
NUCmer package from MUMmer (Kurtz et al., 2004) to
identify the high similarity fragments between O and R,
which are called “consensus blocks”, and numbers these
consensus blocks. Two consensus blocks are thought to be
adjacent, if they are next to each other, or if they overlap each
other end-to-end with the overlapping length of I (I < I,,,;,,*
0.01), where I,,,,;,, is the smaller one between the lengths of two
consensus blocks, [ is called the adjacent region. In general,
there are two or more consensus blocks in one contig, and the
consensus blocks may connect with each other, or maybe
contain intervals between them. As described above, every
contig can be divided into two types: “U” and “T”. For the “U”
type of contigs, if potential error positions locate at the
adjacent regions of consensus blocks, the position
information is retained. Otherwise, if potential error
positions locate at the center region of consensus blocks,
these positions are thought to be reliable, and could be
removed form the potential error set. For the “T” type of
contigs, MAC retains its state. MAC distributes the orientation
for every consensus block, and uses tail(“t”) to denote the
starting position, head(“h”) to denote the ending position. As
shown in the example of Figure 2, 9 consensus blocks are
found between two contig sets O and R, the adjacent
relationships are enclosed in brackets, so O and R can be
represented by O = {[1, 5], [9], [8, 2], [-3, 7], [6, 4]}, R={[1, 6,
5], [4, 3], [2, 7, 8]}, respectively. As the orientation of
consensus block “3” in O is reversed (from 3h to 3t), we use
“-3” to represent this consensus block in O. In Figure 2, we
suppose that there were uncertain positions between [1,5] in
the first contig of O and [7,8] in the third contig of R, so these
two contigs were regarded as “U” type, which are marked by
red cycles on the contigs, and the corresponding consensus

blocks are also marked with underlines in Figure 2, the detail
classification strategy has been described above.

Then the adjacent graph G = <V, E > is constructed, V is the
vertices set of the adjacent graph, the single terminals or
conjunctions of consensus blocks are regarded as vertices, in
the example of Figure 2, 1t, 9t, 9h, 6t, and so on are the single
terminals of O set, 1h5t, 6h4t, and so on are the conjunctions of
O set. E is the edges set of the adjacent graph, an edge is added
between O and R if two vertices have a terminal in common, such
as 1h5t of O and 1h6t of R both have 1h, so there is an edge
between 1h5t and 1hét.

Extracting Good Paths

The major objective of the adjacent algebraic model is to
minimize the algebraic distance between two contig sets, which
can be denoted by d(O,R) =N -C —g (Feija£O and Meidanis,
2013), where N represents the number of contigs, C represents
the number of cycles, P represents the number of paths in the
adjacent graph G.

Through the demonstration of Lu et al., getting the minimum
algebraic distance is equivalent to obtaining the maximum
number of cycles, and the term of “good path” is defined for
the cycle (closing path), which can connect multiple consensus
blocks to generate a longer assembly. Here we define the
conjunctions between two consensus blocks as adjacency,
which are enclosed in square brackets in Figure 2. The paths
in adjacent graph can be summarized according to the length,
whether two ends of the path in the same set or in the same
adjacency or not. We list all the possible combinations of the
features mentioned above, as shown in Table 1 there are 9 types
of combinations in total. In the adjacent graph, two ends of the
path appear in the same contig only if they appear in the same
contig set, so if two ends of the path cannot be found in the same
contig set, they cannot be found in the same contig or adjacency,
thus for the types of No.3 and 7 in Table 1, two ends of the paths
are in different contig sets, they cannot in the same adjacency,
here we use “-” to represent the type is absent. If the length of
path is odd, two ends should be found in different contig sets, so
types of No.1 and 2 are absent. If the length of path is even, two
terminals should be found in the same set, so type of No.8 is
absent. However, there is an exceptional case, when two
terminals form a circle, they can be found in different sets and
different adjacencies.

From Table 1, four types are absent, and the type of No.6 is
regarded as a good path, whose length is even, both of the ends
are in the same set but in different adjacencies. There are two
kinds of poor paths: No.4 and No.5. As the example in Figure 2
shows, the paths of {4h, 4h3t, 3t7t, 2h7t, 2h}, {9t, 3h9t, 3h}, {7h,
7h8t, 8t} are good, which can form the cycles of [4h, 2h], [9t,
3h], and [7h, 8t]. Through the fusion of [4h, 2h], adjacencies
[8, 2] and [6, 4] can be joined into [8, 2, -4, -6]. Through the
fusion of [9t, 3h], adjacencies [9] and [-3, 7] can be joined into
[-9, -3, 7]. Through the fusion of [7h, 8t], adjacencies [8, 2] and
[-3, 7] can be joined into [-3, 7, 8, 2], and these two newly
generated results can be further merged into [-9, -3,7, 8, 2, -4,
-6], equals to [6, 4, -2, -8, -7, 3, 9].
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FIGURE 2 | An example for constructing adjacent graph.
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Optimizing the Adjacency Algebraic Model

In the study of Lu et al., two odd paths (No.4 in Table 1) are
chosen to join into a cycle repeatedly, until the odd path graph
becomes an alternating cycle with the length of two. The
remaining No.4 and No.5 paths can be arbitrarily joined
together into two longer paths. However, in the actual
implementation process, they found the fusion of these two
types of paths resulting in error joints. In this study, MAC
utilizes the classification of contigs to optimize the processing of
poor paths in the adjacency algebraic model. Due to the circle
paths in the graph represent the same adjacencies between two
sets, so MAC maintains these paths without any process.

As described above, all the input contigs are divided into two
types: Uncertain (“U”) and True (“T”), the classification result is
stored in the form of a label for every contig together with the
potential error positions. After extracting good paths from the
adjacent graph, the poor-1 type of paths can be further divided
into two sub-types: single path and non-single path. The length
of single path is 1, and two terminals are the same, for example,
{1t, 1t}, {5h, 5h} and {3h, 3h} in Figure 2 are single paths, {6t,
1hét, 1h5t, 6h5t, 6h4t, 4t} is a non-single path. MAC uses the
following steps to process poor paths:

 For non-single paths, MAC extracts the adjacencies which are
included in the path, then checks the classification of contigs
where the adjacencies are located. If contig is “U”, and there is
potential error position locating at adjacent region I, MAC
splits the contig at the potential error position, and then
reconstructs the sub-graph to extract good paths again.

* For single paths, MAC does not take any treatment, because
during the process of graph reconstruction, some single paths
would be eliminated automatically.

» For poor-2 type of paths, if both terminals of a poor-2 path
appears in any good path, then the poor-2 path is thought to
be spurious, and MAC remo