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Editorial on the Research Topic

Machine Learning and Network-Driven Integrative Genomics

Rapid advances in high-throughput technologies have produced distinct biomedical data sets that
can be analyzed using mathematical and statistical models including network science tools to
decode interactions among functional molecules in living cells. Availability of data and analysis
tools was critical in forming the foundation for complex networks. In the past decade, since
the birth of this discipline, a robust conceptual framework known as network biology has
emerged. Understanding the dimension and dynamic properties of biological data, including
gene-gene and protein-protein interactions, and metabolic networks and pathways, can help
elucidate the functional properties of cells, which will eventually assist further in understanding
their development and disease dynamics. Machine learning (ML), on the other hand, can handle
heterogeneous data in different ways such as naive Bayesian Network data integration, Tree-Based
Methods such as Random Forest, and penalized linear models such as LASSO. ML-based omics
analyses provide assorted integrative analysis of multiple omics data, by analyzing different omics
layers together. The discipline of Network biology is rapidly emerging withmost recent applications
to personalized medicine. Despite great success, there remain many technical challenges, one of
which is how to integrate or transform subject-specific knowledge in order to adapt to deep-
learning (DL) algorithms and improve outcomes. Technical hurdles exist in data preprocessing,
model selection, parametric function approximation, and model regularization and optimization.
This Research Topic addresses these challenges and hurdles with a specific focus on the application
of DL algorithms to disease prediction and diagnosis, which has not been adequately explored.

As summarized below, this collection of original research papers presents a significant amount
of progress made in the above-mentioned scope of the Research Topic:

CL-PMI identifies pre-miRNA using neural network. In their study, Wang, Ma et al. proposed
a pre-miRNA identification algorithm based on a cascaded CNN-LSTM framework, called CL-
PMI. They used a convolutional neural network (CNN) and employed long short-term memory
(LSTM) to automatically extract features and obtain the sequential and spatial characteristics of
pre-miRNAs and capture time characteristics of pre-miRNAs to improve attention mechanisms
for long-term dependence modeling. Their method overcomes the dataset imbalance problem and
improves the performance of pre-miRNA identification methods.

Inferring Bayesian network using genetic node ordering. In order to study the impact
of genetic variations on gene regulatory networks, Wang, Audenaert et al. proposed an
alternative method for inferring high-quality Bayesian gene networks. Their method, which is
easily scalable to thousands of genes, first constructs a node ordering by conducting pairwise
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causal inference tests between genes and then allows the user
to infer a Bayesian network via a series of independent variable
selection problems. In addition to higher sensitivity, this method
allows for a unified false discovery rate control across genes and
individual edges, and therefore provides a suitable way for tuning
the sparsity level of the inferred network.

Identification of genes involved in Fetal Growth Restriction
(FGR) by in-depth strategy combining methylomics and
transcriptomics analyses. Chabrun et al. performed a rigorous
multi-omics approach by combining methylomics and
transcriptomics analyses on 36 placenta samples in a case-control
study to study pathogenic mechanisms of FGR. Data-mining
algorithms were used to combine the analysis of more than 1,200
significantly expressed and/or methylated genes. They used
machine learning models to explore the phenotypic subgroups
(premature birth, birth weight, and head circumference)
associated with FGR allowing for a better description of the FGR
pathophysiology as well as key genes involved.

A web server to predict Hepatocellular carcinoma (HCC)
(Kaur et al.). This study employed large-scale transcriptomic
profiling datasets containing a total of 2,316 HCC and 1,665
non-tumorous tissues obtained from 30 studies. They identified
a panel of three genes (FCN3, CLEC1B, and PRC1) as a
HCC biomarker using different feature selection techniques.
The three-genes-based HCC biomarker identified HCC samples
in training/validation datasets with an accuracy between 93
and 98%. Furthermore, the prognostic potential of these genes
was evaluated on TCGA-LIHC and GSE14520 cohorts using
univariate survival analysis. They also developed a web server
HCCpred based on the above study to disseminate their tool to
the scientific community.

CRISPR/Cas9 Guide RNA Activity Prediction. In order
to accurately predict guide RNA (gRNA) on-target efficacy,
Zhang et al. proposed CNN-SVR, a novel hybrid system that
combines an improved convolutional neural network (CNN)-
based method with support vector regression (SVR). The CNN-
SVR system is composed of two major components, a merged
CNN as the front-end for extracting gRNA features and an SVR
as the back-end for regression and predicting gRNA cleavage
efficiency. The authors showed that CNN-SVR can effectively
learn deeper features of gRNAs and their corresponding
epigenetic features, which outperforms available methods in
terms of prediction accuracy, generalization, and robustness.

Developing novel computational methods for the inference
of novel biological relations from multi-layered networks (Lee,
Zhang et al.). Despite advances in analysis, data mining
and knowledge discovery of high-dimensional multi-omics
biological data remain a great challenge due to the complexity,
heterogeneity, and high-dimensionality inherent in the omics
data. Network has been widely used to represent relationships
among entities in biological systems. In their review, the authors
first discuss the properties of biological heterogeneous multi-
layered network (HMLN), then surveyed four categories of state-
of-the-art methods, namely matrix factorization, random walk,
knowledge graph, and deep learning, and demonstrated their
applications to omics data integration and analysis.

Infer the regulatory pathway from mixed observational
data. In a new approach Zhong et al. presented a Mixed
Directed Acyclic Graph (mDAG) algorithm and R package to
infer the regulatory pathway from mixed observational data
containing both continuous variables such as gene expression
and categorical variables such as phenotypes or single nucleotide
polymorphisms. Through extensive simulations and real data
analysis, they demonstrated that the mDAG method can identify
upstream causal factors and downstream effectors linked to
a variable and generate hypotheses for causal direction of
regulatory pathways capable of recovering a large sparse DAG
with limited sample size.

A Network-based functional omics analysis server (Lee, Lee
et al.). Cultivated barley is one of the most produced cereal
crops worldwide and an important crop species in plant genetics,
because it harbors numerous stress response alleles in its genome
that can be exploited for crop engineering. In order to study the
functional annotation of its genome, Lee, Lee et al. developed the
BarleyNet, a co-functional network of 26,145 barley genes, along
with a web server for network-based predictions of biological
processes. BarleyNet has three complementary network-based
algorithms for prioritizing genes to study genetic components
of complex traits such as response to environmental stress:
a pathway-centric search for candidate genes of pathways or
complex traits; a gene-centric search to infer novel functional
concepts for genes; and a context-centric search for novel genes
associated with stress response to facilitate understanding of the
underlying genetic components of complex traits in barley.

Predicting Autism risk genes via machine leaning approaches
(Lin et al.). In order to predict Autism spectrum disorder (ASD)
risk genes, the authors employed a machine learning-based
approach using features from spatiotemporal gene expression
patterns in the human brain, gene-level constraint metrics, and
other gene variation features. They performed gene ontology
enrichment analysis on these predicted risk genes that not
only revealed relevant biological processes to ASD such as
neuronal signaling, neurogenesis, and chromatin remodeling,
but also highlighted other potential mechanisms that might
underlie ASD, such as regulation of RNA alternative splicing
and ubiquitination pathway related to protein degradation. They
demonstrated that human brain spatiotemporal gene expression
patterns and gene-level constraint metrics can help predict ASD
risk genes.

Gene regulatory network inference methodologies. In
their review (Van den Broeck et al.), the authors described
experimental methodologies commonly used to identify
regulatory interactions and generate gene regulatory networks
(GRNs), which provide a blueprint of transcriptional regulations
underlying development and environmental responses, including
network topology, network size, and transient binding of
transcription factors (TFs) to DNA. Additionally, they reviewed
network inference techniques that leverage gene expression
data to predict regulatory interactions that can identify new
regulatory interactions and drive novel hypotheses. They also
highlighted the potential of machine learning approaches to
leverage gene expression data to predict phenotypic outputs.
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A hybrid Approach for microbiome network inferences. Jiang
et al. proposed a general framework, HARMONIES, Hybrid
Approach foR MicrobiOme Network Inferences via Exploiting
Sparsity, to infer a sparse microbiome network from datasets
that are often high-dimensional and suffer from uneven sampling
depth, over-dispersion, and zero-inflation. HARMONIES utilizes
a zero-inflated negative binomial (ZINB) distribution to model
the skewness and excess zeros in the microbiome data as
well as incorporate a stochastic process prior to sample-
wise normalization. This allows inferring a sparse and stable
network by imposing non-trivial regularizations based on the
Gaussian graphical model. They showed that HARMONIES can
outperform other commonly used methods and discover a novel
community of disease-enriched bacteria.
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CL-PMI: A Precursor MicroRNA 
Identification Method Based on 
Convolutional and Long Short-Term 
Memory Networks
Huiqing Wang 1, Yue Ma 1*, Chunlin Dong 2, Chun Li 1, Jingjing Wang 1 and Dan Liu 1

1 College of Information and Computer, Taiyuan University of Technology, Taiyuan, China, 2 Dryland Agriculture Research 
Center, Shanxi Academy of Agricultural Sciences, Taiyuan, China

MicroRNAs (miRNAs) are the major class of gene-regulating molecules that bind 
mRNAs. They function mainly as translational repressors in mammals. Therefore, how 
to identify miRNAs is one of the most important problems in medical treatment. Many 
known pre-miRNAs have a hairpin ring structure containing more structural features, and 
it is difficult to identify mature miRNAs because of their short length. Therefore, most 
research focuses on the identification of pre-miRNAs. Most computational models rely on 
manual feature extraction to identify pre-miRNAs and do not consider the sequential and 
spatial characteristics of pre-miRNAs, resulting in a loss of information. As the number 
of unidentified pre-miRNAs is far greater than that of known pre-miRNAs, there is a 
dataset imbalance problem, which leads to a degradation of the performance of pre-
miRNA identification methods. In order to overcome the limitations of existing methods, 
we propose a pre-miRNA identification algorithm based on a cascaded CNN-LSTM 
framework, called CL-PMI. We used a convolutional neural network to automatically 
extract features and obtain pre-miRNA spatial information. We also employed long 
short-term memory (LSTM) to capture time characteristics of pre-miRNAs and improve 
attention mechanisms for long-term dependence modeling. Focal loss was used to 
improve the dataset imbalance. Compared with existing methods, CL-PMI achieved 
better performance on all datasets. The results demonstrate that this method can 
effectively identify pre-miRNAs by simultaneously considering their spatial and sequential 
information, as well as dealing with imbalance in the datasets.

Keywords: pre-miRNA identification, long short-term memory network, convolutional neural network, deep 
learning, imbalanced learning

INTRODUCTION

MicroRNAs (miRNAs) are ribonucleic acid molecules of about 21–23 nucleotides that are widely 
found in microorganisms, viruses (Pfeffer et al., 2004), and plants (Jones-Rhoades et al. 2006). They 
are known to regulate thousands of human genes that account for more than one-third of the genomic 
coding region (Bentwich et al., 2005). miRNAs also have important roles in the pathogenesis and 
treatment of cancer (Wang et al., 2010; Jansson and Lund, 2012; Tüfekci, et al., 2014; Zhu et al., 2014). 
A study has shown that 50% of miRNAs frequently appear in tumor-associated gene regions or fragile 
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sites such as homozygous deletion regions, heterozygous deletion 
regions, amplification regions, and breakpoint regions, as well 
as in proximity to tumor suppressor genes and the locations of 
oncogenes, indicating a correlation between the localization of 
miRNAs on human chromosomes and tumorigenesis (Calin 
et al., 2004). In addition, miRNAs are potential targets for disease 
markers and therapeutic drugs (Schmidt, 2014), for instance, they 
guide the RNA-induced silencing complex to degrade or inhibit 
mRNA translation by pairing with bases of the target gene mRNA, 
thereby regulating protein expression at the post-transcriptional 
level (research has shown that miRNAs can also regulate gene 
expression at the transcriptional level). Therefore, how to identify 
miRNAs is a key question with implications for medical treatment. 
miRNAs exist in many forms; the most primitive of these is primary 
miRNA, which becomes precursor miRNA (pre-miRNA) after 
single processing. The pre-miRNA is digested by Dicer to form 
a mature miRNA (Agarwal et al., 2010). It is difficult to identify 
mature miRNAs owing to their short length; thus, most previous 
studies have focused on identifying pre-miRNAs.

pre-miRNA identification is a binary classification task 
requiring the input of a given set to be classified into two groups, 
producing precursors and non-precursors as the output. A large 
number of computational methods for identifying miRNAs have 
been proposed; these can be divided into experimental cloning 
and computer simulation prediction methods (Bartel, 2004; 
Jones-Rhoades et al., 2006). Experimental methods are recognized 
as the gold standard for miRNA identification; however, it is 
impossible to discover all miRNAs through experimental cloning 
because of the small number of discoveries and the specific 
development time or specific tissue expression. Computer 
simulation methods can be used to obtain reliable predictions 
and reduce the cost of research and production, and they have 
been proven to effectively detect miRNAs expressed in specific 
tissues (Bartel, 2004). Among the available computer simulation 
prediction methods for the identification of miRNAs, rule-based 
methods (Mathelier and Carbone, 2010) and machine learning 
methods have been widely applied. These include microPred 
(Batuwita and Palade, 2009b), triplet-SVM (Xue et al., 2005), and 
miRBoost (Tempel et al., 2015), which use different numbers of 
human and cross-species manual features to identify miRNAs as 
inputs to a support vector machine(SVM); and MiPred (Jiang 
et al., 2007), which selects a set of mixed features, including 
the minimum free energy (MFE), the local contiguous triplet 
structure composition, dinucleotide shuffling, and the P-values 
of randomization tests, to construct a random forest classifier to 
identify miRNAs. The context-sensitive hidden Markov model 
(CSHMM) method (Agarwal et al., 2010) predicts miRNAs by 
filtering the human dataset; whereas M0iRANN (Rahman et al., 
2012), DP-miRNA (Thomas et al., 2017), and BP (Jiang et al., 
2016) extracted 98 features as inputs to their neural networks. 
These methods use hand-crafted features as inputs to the model, 
including pre-miRNA structural and folding energy information 
such as dinucleotide and trinucleotide pair frequency, loop 
and sequence length, MFE, and melting temperature. Manual 
extraction of features often requires careful design based on the 
characteristics of the data; this, combined with reliance on the 
database, weakens the generalization ability of the model.

Many deep learning methods can automatically learn 
the representation of features from the data. For instance, 
deepMiRGene (Park et al., 2017) uses long short-term memory 
(LSTM) to automatically extract features and process time-
dependent problems in a sequence. Do et al. (2018) introduced 
a convolutional neural network (CNN) to automatically extract 
features to identify miRNAs. Lee et al. (2016) used an automatic 
encoder based on a deep recurrent neural network (RNN) to 
determine the interaction of miRNA sequences for miRNA target 
prediction. All of these methods involve automatic extraction 
of features. However, most of the information is both spatial 
and sequential. The miRNA spatial structure contains miRNA 
functional information, as the base sequence of the miRNA 
affects the normal regulation of miRNA molecules. Each of these 
methods focuses on either time or spatial information.

In recent years, researchers have explored how to use CNN 
and RNN tools to construct various CNN-RNN frameworks, 
which can be divided into unified and cascaded combinations 
(Pinheiro and Collobert, 2014; Donahue et al., 2015; Vinyals 
et al., 2015; Zuo et al., 2015; Wang et al., 2016; You et al., 2016). In 
these, the cascaded framework processes the CNN and the RNN, 
respectively, and the RNN takes the output of the CNN as its input 
and returns continuous predictions at different time steps. Such 
cascaded frameworks can handle various tasks. For example, 
Pinheiro et al. replaced an RNN with LSTM to solve image 
subtitle tasks using CNN-RNN (Pinheiro and Collobert, 2014). 
The model trained the CNN to identify objects in video frames 
and classify them, then used the output of the CNN as input to 
the LSTM, creating an “instant” description for each video clip. 
Quang et al. proposed the DanQ CNN/LSTM combination model 
(Quang and Xie, 2016), which models the nature and function 
of introns, using a convolutional layer to capture the regulatory 
motif while the recursive layer captures the inter-model long-
term dependencies, and demonstrated its ability to learn a 
regulatory grammar to improve forecasting. Compared with 
other models, DanQ showed great improvements with respect 
to many metrics. Pan et al. used CNN to learn abstract features 
and used bidirectional LSTM (BLSTM) to capture possible long-
range dependencies between binding sequences and structural 
motifs recognized by CNN. In this way, they predicted sequence 
and structural binding preferences of RNA-protein complexes 
(Pan et al., 2018). These successful applications demonstrate that 
the ability to focus on both sequential and spatial characteristics 
yields better classification results.

However, these models cannot focus simultaneously on 
the sequential and spatial characteristics of pre-miRNAs, 
because they use a single neural network. They also disregard 
the information carried by the sequence owing to their focus 
on the secondary structure. Therefore, we proposed a pre-
miRNA identification method based on a cascaded CNN-LSTM 
framework, called CL-PMI. First, CL-PMI uses the CNN to 
automatically learn the characteristics of the sequence and the 
secondary structure from the input, thereby obtaining a spatial 
feature representation of the pre-miRNAs. Then, a deep RNN 
with LSTM is used to capture pre-miRNA long-term dependence 
information from the effective features of CNN learning. Finally, 
the CL-PMI uses a fully connected layer to identify pre-miRNAs. 
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Our approach involves a series of nonlinear transformations on 
data, performed in a data-driven manner, and uses hybrid neural 
networks to learn the complex abstract sequential and spatial 
features of data with the automatic extraction of features.

MATeRIALS AND MeThODS

Most existing miRNA identification algorithms manually extract 
features, which requires strong expertise in the field and thus 
inevitably limits their universality. These algorithms focus on 
either the sequential characteristics of the miRNA or its spatial 
characteristics, but not both.

Using the input sequence and secondary structure to design 
the size, number, and sliding step size of the convolution kernel, 
CNN can be used to automatically extract features from the input, 
effectively solving the problem of manual extraction of features. 
In the cascaded CNN-RNN framework, the CNN describes the 
state of a certain space, and the RNN connects the spatial states 
together to form a time concept, thus enabling the model to 
consider spatial and sequential characteristics at the same time. 
Therefore, we introduced a cascaded CNN-LSTM framework to 
identify pre-miRNAs, called CL-PMI, which consists of a CNN 
layer, an LSTM layer, and a fully connected layer (FC). In this 
framework, we first use one-hot encoding to process the pre-
miRNA sequence and its corresponding secondary structure, 
using encoded pre-miRNAs as the input to the CNN. The CNN 
automatically extracts pre-miRNAs spatial correlation features; 
then, LSTM takes the effective features of CNN learning as 
inputs and uses the three gating units to capture the long-term 
dependencies of the pre-miRNAs. Finally, the fully connected 

layer combines spatial information and sequential information 
for robust classification. Figure 1 shows an overview of the 
CL-PMI framework.

encoding Sequence and Structure
The information carried by the sequence and secondary structure 
of the pre-miRNA plays an important part in the identification 
process. The pre-miRNA sequence is a non-coding single-
stranded RNA molecule of approximately 22 nucleotides. The 
secondary structure is double-stranded owing to base pairing 
interactions. The stem ring and hairpin structures resulting 
from these interactions, as shown in Figure 2B, are the most 
prominent features of pre-miRNAs. The left side of the stem 
is the forward chain (5'→3'), and the right is the reverse strand 
(3'→5'), complementary base matches between these strands 
result in formation of a helix. Dot bracket notation (DBN) is a 
widely used method for describing secondary structures. As 
shown in Figure  2A, DBN uses paired parentheses to indicate 
complementary pairing of bases and continuous dot numbers 
to indicate stem-loop structures. The pre-miRNA secondary 
structure is one of the inputs of CL-PMI, which is obtained 
by calculating the MFE of the pre-miRNA sequence with the 
RNAfold tool (Hofacker, 2003).

In order to capture more pre-miRNA information, we 
considered the sequence information and corresponding 
secondary structure information simultaneously. Each pre-
miRNA sequence consists of four nucleotide types {A, C, G, 
U}, and the secondary structure has three “(”, “.”, “)” observable 
states. We used a one-hot encoding scheme to convert the 
nucleotides at each position of the pre-miRNA sequence into 

FIgURe 1 | Overview of proposed CL-PMI methodology; the sequence and the secondary structure are first encoded as four-dimensional and three-dimensional 
matrices, respectively. The convolutional layer acts as a scanner across the input matrix to extract features, and the max-pooling layer reduces the data dimension 
and retains significant features. Then two CNNs are integrated as inputs to BLSTM, and the combined information is used to learn the long-term dependence of the 
pre-miRNA. Finally, the fully connected layer performs a sigmoidal nonlinear transformation on the output of BLSTM to identify the pre-miRNA.
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four-dimensional vectors, and the observable state of each 
position of the secondary structure was converted into a three-
dimensional vector; these vectors were used as the inputs to the 
CNN. For example, let Sseq be a pre-miRNA sequence and Sstr 
be the secondary structure corresponding to Sseq, where Sseq = 
{A,C,G,U,U} and Sstr = {(,·,·,·,)}; then, Sseq is encoded as a four-
dimensional binary tuple vector and Sstr is encoded as a three-
dimensional binary tuple vector:

 Sseq : [ , , , ],[ , , , ],[ , , , ],[ , , , ],[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0,, , , ]0 0 1  

 Sstr  : [ , , ],[ , , ],[ , , ],[ , , ],[ , , ]1 0 0 0 1 0 0 1 0 0 1 0 0 0 1  

Convolutional Neural Network
A pre-miRNA sequence contains frequency-dependent features 
of two or three adjacent nucleotide and aggregated dinucleotide 
frequencies. The secondary structure of pre-miRNA involves 
different thermodynamic stability spectra of the pre-miRNA 
and other features, such as adjusted base pair distance, structure 
entropy, melting temperature, loop length, and positional 
entropy, which estimates the structural volatility of the secondary 
structure. As the pre-miRNA sequence and the secondary 
structure carry different information characteristics, we used 
CNN to train two different branches for the sequence and the 
secondary structure and to learn the subsequence features from 
the two types of input information.

Each CNN branch consisted of a convolutional layer, 
a rectified linear unit (ReLU), and a max-pooling layer 
that together extracted sequence and secondary structure 
features from the input. We selected the max-pooling layer 
to subsample the output of the convolutional layer. There 
are two advantages to using max-pooling. First, it reduces 
the offset of estimated mean caused by convolutional layer 
parameter errors. Second, it removes redundant information 
carried by the feature map, reduces parameters, and prevents 
overfitting. The convolutional layer extracts the features 
of the input data and abstracts the implicit associations in 
the original data through the convolution kernel matrix. In 
principle, convolution is a mathematical operation of point-
multiplication summation of two matrices, the input data 
matrix and the convolution kernel (filter or feature matrix). 
The results obtained are expressed as specific local features 
extracted from the pre-miRNA. After convolution, we 
applied a rectifying linear unit to sparsify the output of the 

convolutional layer, then output the region vector obtained by 
the pooling layer to the LSTM layer.

For the sequence, the input matrix length was denoted by b, 
and the convolutional layer included Nfilter filters, each of length 
k. Each sliding window range was s=1 to b-k+1. A sliding filter 
and point multiplication were used to obtain a feature map of size 
Nfilter×(b-k+1). The convolved feature map, Z, can be represented 
as follows:

 Z f Xconv= ( )  (1)

 Z W X Bs i r
k

j

N

i j r s r j i
f

, , , ,= +=
=

+ −∑∑ 1
1

1  (2)

where Zs,i represents the feature map generated by the sth 
sliding neighborhood window and the ith filter; X is the input 
sample, of size Nin×b, i∈{1,…,Nfilter}; W is the weight, of size 
Nfilter×Nin×k; and B is the bias value, of size Nfilter×1. These are the 
trainable parameters of the convolution layer.

Next, we applied a ReLU, an activation function that keeps 
the  convolutional layer positively matched and eliminates 
negative matches:

 f Z relu Z Zrelu ( ) ( ) max( , )= = 0  (3)

In order to reduce the parameters and learn translational invariant 
features, we used max-pooling on the output of the convolution. 
Max-pooling preserves only the maximum output of each filter 
in each step to reduce the output size of the convolution layer; 
it was applied to the output of convolution Z of size Nfilter×s, 
where s=b-k+1. In the case where the size of the pool was m, we 
obtained an output V

 V f Zmaxpool= ( )  (4)

 V
m
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j

Zi p i m s j, , ( )=
=

− +

1
1  (5)
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m
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1, , , i ∈{1,…,Nfilter} and the size of V is 

N s
mfilter ×







. Analogous definitions also hold for secondary 

structure.
Before entering the next layer, the sequence and the secondary 

structure were concatenated into a single output. The next LSTM 

FIgURe 2 | Sequence of pre-miRNA and corresponding secondary structures predicted by RNAfold. (A) Sequence of pre-miRNA and secondary structures 
described by dot-bracket notation. (B) Secondary structure of the given sequence.
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layer and the fully connected layer worked together on the 
merged sequence and the structural layer.

Long Short-Term Memory Network
We introduced LSTM (Hochreiter and Schmidhuber, 1997) 
to identify the combined information of the sequence 
and secondary structures, allowing us to use long-term 
dependency information to aid current predictions. An LSTM 
cell has an internal mechanism called a gate that regulates the 
flow of information. Three gate units are shown in Figure 3. 
When the LSTM cell scans each element of the input 
sequence, it first selectively discards the information in the 
cell state using the “forget” gate. The input gate records new 
information into the cell state and then updates the current 
state value. Finally, the output gates determine which values 
should be output. As standard LSTM often ignores the future 
context of the pre-miRNA when processing the sequence, a 
bidirectional LSTM (Graves et al., 2005) is used to solve this 
problem. Its main goal is to increase the information available 
to the RNN, including the history and future data of an input 
using time series data. It scans the outputs of the CNN from 
two directions, along and against the timing direction. The 
outputs for each direction are connected for subsequent 
classification. The calculation process of the LSTM cell at the 
time step t is as follows:

 i W x W h W c bt xi t hi t ci t i= + + +− −  ( )σ 1 1  (6)

 f W x W h W c bt xf t hf t cf t f= + + +− − σ( )1 1  (7)

 c f c i tanh W x W h bt t t t xc t hc t c= + + +− −  1 1( )  (8)

 o W x W h W c bt xo t ho t co t o= + + +− σ( )1  (9)

 h o ct t t= tanh( )  (10)

where ft,it,ct,ot represent the forget gate, the input gate, the 
cell activation vector, and the output gate, respectively; X, h, 
and c represent input vectors, hidden states, and memory cells, 
respectively; W and b are the weights and bias, that is, the model 
parameters to be trained; and σ is the sigmoid function:

 σ( ) / ( )x e x= + −1 1  (11)

Addressing Potential Overfitting
Overfitting is a very common problem in deep learning and may 
result from the model lacking control during the learning process. 
An overfitting model will not perform well in data identification. 
In the current work, the model would not be able to identify pre-
miRNA correctly if overfitting were to occur and would have 
poor generalization ability. In order to reduce this risk, we used 
batch normalization, dropout, and L2 regularization to prevent 
or mitigate overfitting.

Batch standardization (Ioffe and Szegedy, 2015) normalizes 
the output of neurons in each training batch so that the output 
obeys a normal distribution with 0 as the mean and 1 as the 
standard deviation, thus avoiding the problem of internal 
covariate migration. In the case where the ith batch contains 100 
samples, the particular neuron produces outputs Ni,1, … ,Ni,100, 
then standardizes it in batches:

 N N N Ni i

i

i i

i

, ,, ,1 100−
…

−
σ σ

 (12)

where σi j i j i i j in
N N and N

n
N2

1
100 2

1
1001

1
1=

−
− == =∑ ∑(   )     , , jj are 

the sample variance and mean, respectively. Batch normalization 

FIgURe 3 | Internal structure of the LSTM cell.
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makes the feature scales consistent in all dimensions of the data 
to avoid excessive concentration of some dimensional data, thus 
alleviating gradient disappearance and overfitting. By reducing 
the dependence of the gradient on the parameters or their 
initial scales, the network can be trained with a high learning 
rate to accelerate network convergence. Batch normalization 
can be seen as a means of regularization, which can improve 
the generalization ability of the model and optimize the model 
structure. We batch-standardized the output of the max-pooling 
layer, the LSTM layer, the fully connected layer, and the ReLU 
activation in the network. During the forecast period, the 
batch average and variance were replaced by the total mean 
and variance, which were calculated when all batches had 
been trained.

Dropout (Srivastava et al., 2014) refers to temporarily dropping 
the output of the neural network unit from the network according 
to a fixed probability p during the training of the deep learning 
network. In other words, the effects of these neurons on the 
downstream start-up are neglected in the forward propagation, 
and their weights are not updated in the backpropagation. This 
makes the network less sensitive to changes in the weight of a 
neuron, increasing generalization and reducing overfitting. For 
the max-pooling layer, the LSTM layer, and the fully connected 
layer, we applied a loss rate of p=0.5 to the outputs. Note that 
dropout was only used during training. In the testing stage, 
dropout was not applied because a random output would affect 
the prediction.

Finally, we applied L2 regularization to the weight matrix 
of the fully connected layer, and punished the loss function by 
adding the square of the weight to the loss function. This reduced 
the complexity of the model, thereby reducing overfitting.

Training
We implemented our neural network model using Python and 
Keras (Chollet, 2015). The model utilized a backpropagation 
algorithm to calculate the loss function value between the 
output and the label, before calculating its gradient relative to 
each neuron and updating the weight according to the gradient 
direction. We applied focal loss (Lin et al., 2017), a dynamically 
scaled cross-entropy loss function, to train the samples. Formally, 
focal loss is defined as

 LFL y CEp L= −( )1 γ  (13)

 L pCE y y= −α log  (14)

 p
p if y

py =
=

−
                                     

 
1

1                          otherwise






 (15)

where LCE represents the cross-entropy of binary classification; 
y ∈ {+1,−1} specifies the label of the sample; p ∈ [0,1] is the 
model’s estimated probability for the class with label y = 1; 
α ∈ [0,1] is a weighting factor corresponding to class 1, and 1-α 
corresponds to class -1; γ is the focus parameter; and (1-py)γ is 
the modulation factor. In this work, we set γ to 2 and α to 0.25.

In the process of training a model, choosing a good optimizer 
not only accelerates the training of the model but also improves the 
experimental results. Kingma and Ba (2014) proposed the Adam 
optimizer, which combines the advantages of two algorithms, 
AdaGrad and RMSProp, to calculate the update step by considering 
the first moment estimation (the mean of the gradient) and the 
second moment estimation (the uncentered variance of the 
gradient). Furthermore, Adam is considered to be an optimizer 
with excellent performance and is the default choice. Therefore, 
we chose Adam as the optimizer while training CL-PMI, with 
the mini-batch size and learning rate set to 128 and 0.001 for all 
experiments. The details of the model parameters are shown in 
Supplement A Pseudo code can be obtained in Supplement B.

We performed a five-fold cross-validation on the training 
data to evaluate the classification performance of CL-PMI. As 
shown in Figure 4, SP, F-score, g-mean, and AUROC tend to 
be stable at about 20 epochs. SE and AUPR showed a slight 
upward trend between 20 and 300 epochs. The PPV fluctuated 
around 280 epochs and stabilized after 300 epochs. Loss has 
been in a gentle downward trend. Different indicators are 
stable in different epoch, in order to comprehensively consider 
all indicators, we stopped training after 300 epochs. Owing 
to the data imbalance, the prediction was biased towards the 
negative dataset in the early training stage, as reflected by the 
F-score and geometric mean (g-mean) remaining close to 1. 
However, the prediction was tuned and converged as learning 
progressed.

ReSULTS AND DISCUSSION

Our method and the four comparison methods used the 
same datasets (Tempel et al., 2015; Park et al., 2017), human, 
cross-species, and new. Positive examples were retrieved from 
miRbase (Griffiths-Jones et al., 2006) (18th edition), and the 
negative examples were from NCBI (http://www.ncbi.nlm.nih.
gov), NONCODE (Bu et al., 2011), fRNAdb (Kin et al., 2006), 
and snoRNA-LBME-db (Lestrade and Weber, 2006). Negative 
examples mainly included exonic regions from protein-coding 
genes and noncoding RNAs that were not miRNAs, such as 
tRNA, siRNA, snRNA, and snoRNA. To improve data quality and 
prevent overfitting, mis-annotated elements were discarded in 
these examples and redundant sequences were removed (Tempel 
et al., 2015). In addition, we obtained 690 positive samples from 
miRBase22, and obtained 8,246 negative examples from Xue 
(Xue et al., 2005) and Zou (Wei et al., 2014) as new22 dataset. 
For the human and cross-species datasets, we used 10% of the 
data as the test set and the remaining 90% to implement five-
fold cross-validation for training and selecting the model. The 
new and new22 dataset were only used for testing. We predicted 
for new and new22 dataset using the model trained with cross-
species dataset.

As shown in Table 1, the experiment involved a total of 
3,230 positive examples and 23,934 negative examples. The 
human dataset contained 863 positive examples and 7,422 
negative examples. The cross-species dataset consisted of 
1,677 positive examples and 8,266 negative examples obtained 
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from different species (e.g., mice, humans, and flies). The 
new dataset was obtained from miRBase versions 19 and 
20, and consisted of 690 positive and 8,246 negative newly 
found examples.

experimental Setup
For the human and cross-species datasets, we performed a five-
fold cross-validation. We randomly selected 80% of the data to 
form the training set; the remaining 20% were used as the test set. 
The numbers of hidden nodes in the LSTM and FC layers were 
determined to be 20 and 256 by five-fold cross-validation. The mini-
batch size and training epochs were set to 128 and 300, respectively.

For comparison, sensitivity (SE), specificity (SP), F-score, 
g-mean, positive predictive value (PPV), area under the precision-
recall curve (AUPR), and area under the receiver operating 

FIgURe 4 | Training loss and seven evaluation metrics using test dataset with a varying epoch. The changes in metrics and loss functions tended to be stable after 
about 300 epochs, so we used a model that trained 300 epochs.

TABLe 1 | The number of sequences in the datasets used in this study.

Cross-species human New New22

Positive examples 1,677 863 690 690
Negative examples 8,266 7,422 8,246 8,246
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characteristic (AUROC) were used to evaluate model performance. 
These metrics were calculated as follows:

 SE TP TP FN= +/ ( )  (16)

 SP TN TN FP= +/ ( )  (17)

 PPV TP TP FP= +/ ( )  (18)

 F score TP TP FP FN− = + +2 2/ ( )  (19)

 g mean SE SP− = √ ⋅  (20)

where TN, TP, FN, and FP denote the number of true 
negatives, true positives, false negatives, and false positives, 
respectively. These formulas were based on the confusion matrix, 
with a decision threshold of 0.5.

Validation and Test Performance evaluation
Next, CL-PMI was applied to three datasets for pre-miRNA 
identification. In order to evaluate the performance of CL-PMI, we 
compared it with four existing pre-miRNA identification methods.

One of these methods, miRBoost (Tempel et al., 2015), is an 
ensemble method that extracts the appropriate features from 187 
existing features and performs classification after training the 
data using the enhancement techniques of the SVM component. 

Another, microPred (Batuwita and Palade, 2009b), selects the 
most discriminative feature setting to train the SVM classifier 
using a filtering method, handles the class imbalance problem 
in the dataset, and uses cross-validation to evaluate classification 
performance. The SVM used in these two methods is a binary 
classification model, which can be defined as the linear classifier 
with the largest interval in the feature space. The learning 
strategy is to maximize the interval and finally transform into a 
solution to a convex quadratic programming problem. These two 
comparison methods are traditional machine learning methods.

Park et al. (2017) combined secondary structure with the pre-
miRNA sequence to form a 16-dimensional matrix, then sent the 
results to the RNN to improve long-term dependency modeling. 
The greatest advantage of this approach is that it does not 
require hand-crafted features. Do et al. (2018) proposed a novel 
joint two-dimensional multi-channel method to identify pre-
miRNAs, using the secondary structure encoded by the pairing 
matrix format as the input to the two-dimensional convolution 
network to achieve automatic feature extraction. These features 
were fed into fully connected layers for classification. These two 
comparison methods are deep learning methods.

Therefore, we used miRBoost, microPred, deepMiRGene, 
and DCNN as comparative experiments in this paper to evaluate 
the performance for pre-miRNA identification under the same 
datasets. The experimental results for the three datasets are 
described and discussed below.

TABLe 2 | Results for the human dataset.

Methods\metrics Se SP PPV F-score g-mean AUROC AUPR

miRBoost (CV) 0.803 0.988 0.887 0.843 0.891 − −
microPred (CV) 0.763 0.989 0.888 0.820 0.869 0.974 0.890
deepMiRGene (CV) 0.799 0.988 0.885 0.839 0.888 0.984 0.915
DCNN fixed-sized (CV) 0.878 0.978 0.827 0.849 0.926 0.984 0.915
DCNN variable-sized (CV) 0.835 0.985 0.868 0.851 0.907 0.985 0.922
Proposed (CV) 0.989 0.935 0.992 0.991 0.962 0.962 0.854
miRBoost (test) 0.884 0.969 0.768 0.822 0.925 − −
microPred (test) 0.779 0.988 0.882 0.827 0.877 0.980 0.892
deepMiRGene (test) 0.822 0.992 0.919 0.868 0.903 0.981 0.918
DCNN fixed-sized (test) 0.930 0.984 0.870 0.899 0.957 0.983 0.946
DCNN variable-sized (test) 0.884 0.991 0.916 0.899 0.936 0.986 0.934
Proposed (test) 0.968 0.895 0.988 0.978 0.931 0.972 0.807

Bold numbers are the highest scores in this catergory.

TABLe 3 | Results for the cross-species dataset.

Methods\metrics Se SP PPV F-score g-mean AUROC AUPR

miRBoost (CV) 0.861 0.977 0.884 0.872 0.917 − −
microPred (CV) 0.825 0.975 0.875 0.848 0.897 0.970 0.873
deepMiRGene (CV) 0.886 0.982 0.911 0.898 0.933 0.985 0.927
DCNN fixed-sized (CV) 0.903 0.978 0.894 0.898 0.940 0.985 0.936
DCNN variable-sized (CV) 0.881 0.981 0.906 0.893 0.930 0.983 0.936
Proposed (CV) 0.995 0.950 0.990 0.992 0.972 0.972 0.933
miRBoost (test) 0.856 0.844 0.526 0.651 0.850 − −
microPred (test) 0.814 0.985 0.919 0.863 0.896 0.963 0.906
deepMiRGene (test) 0.900 0.983 0.913 0.906 0.940 0.984 0.955
DCNN fixed-sized (test) 0.904 0.982 0.910 0.907 0.942 0.983 0.951
DCNN variable-sized (test) 0.880 0.988 0.936 0.907 0.933 0.985 0.950
Proposed (test) 0.977 0.910 0.982 0.979 0.943 0.958 0.877

Bold numbers are the highest scores in this catergory.
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Tables 2 and 3 show the cross-validation and test performance 
for the human and cross-species data-sets, respectively. Cross-
validation performance is shown in the top half of each table and 
test performance in the lower half.

Our approach performed best overall in the case of the cross-
species dataset. In the cross-validation, our method achieved the 
best values for SE, g-mean, F-score, and PPV; these were 10.19%, 
3.4%, 10.47%, and 8.67% higher than the best results obtained 
by a comparison method, respectively, and our method ranks 
the second on AUPR. The reduction in SP occurred because 
training a classifier system with an unbalanced dataset (where 
the positive class is a minority) typically produces a suboptimal 
model with higher SP and SE (Batuwita and Palade, 2009a). In 
the test results, compared with DCNN, CL-PMI showed a 8.08% 
increase in SE. The performance with respect to the other metrics 
was the same in the cross-validation. This similarity indicated 
that overfitting had been effectively addressed. Some methods, 
such as miRBoost, showed fair performance in cross-validation, 
but poorer performance for each indicator with the test data. 
However, CL-PMI demonstrated the same level of performance 
in both cross-validation and testing, indicating that our approach 
has a more powerful generalization ability than the others. In 
order to more intuitively show the differences between the five 
methods for each indicator, we drew a radar chart, in which each 
indicator corresponded to a coordinate axis, and the relative 
position and angle of the axis were usually uninformed. Figure 5 
shows a comparison of the predicted performances for the 
cross-species dataset. We performed five-fold cross-validations 
and averaged the results. As illustrated by the radar chart, our 
method performed best on four of the seven indicators, and 
values for the remaining three were also close to optimal. This 
demonstrates that our proposed method is competitive in 
identifying pre-miRNAs.

For the new dataset, in the basic indicators, CL-PMI showed a 
5.32% increase in SE compared with miRBoost. In the comprehensive 
performance indicators, although our method was slightly worse 

than microPred in AUROC and AUPR.CL-PMI showed increases 
of 27.34% and 20.07% in PPV and F-score compared with DCNN, 
respectively. For a better view, we also plotted the AUC curves and 
AUPR curves of our method on human, cross-species, and new, 
respectively in Figures 6 and 7. We performed tests on the new 
dataset using the model trained on the cross-species dataset. The 
results are shown in Table 4. Although CL-PMI was trained on 
the mixed-species dataset, it showed potential for identifying new 
pre-miRNAs.

For human datasets, according to the five-fold cross-validation 
results, CL-PMI outperformed other comparison methods with 
respect to SE, F-score, PPV, and g-mean. Notably, the F-score 
of our method was increased by 16.45% compared with that of 
DCNN; the other metrics also improved by 12.64%, 11.71%, 
and 3.89% compared with the best methods. For the test set, our 
method achieved the best performance in terms of SE, F-score, and 
PPV; although it did not give the highest scores on other metrics, 
the performance of CL-PMI was close to that of the best method.

We compared the performance of traditional machine 
learning and deep learning. In the human dataset, in addition 
to the highest SP achieved with microPred, the deep learning 
methods showed better performance for all metrics. For the 
cross-validation and testing of the cross-species dataset, the deep 
learning methods outperformed other methods. With the new 
dataset, the deep learning methods showed the best performance 
for all the evaluated metrics. All these results demonstrate that 
deep learning methods are superior to machine learning methods 
for identifying pre-miRNAs.

Our method achieved optimal results for SE, PPV, and 
F-score. Although deepMiRGene used LSTM to capture the 
long-term dependence of pre-miRNA, it did not focus on 
pre-miRNA spatial interaction, whereas DCNN used the 
CNN to focus on pre-miRNA spatial dependence but ignored 
complex space-time dependencies. CL-PMI considers both the 
sequential and spatial information of pre-miRNA, enabling 
the model to simultaneously express the characteristics of 

FIgURe 5 | Comparison of prediction performance of our method and other comparison methods on cross-species datasets.
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pre-miRNA in the spatial and time dimensions and thus 
achieve better classification results. The above results and 
analysis confirm that CL-PMI is competitive among deep 

learning methods. In addition, we tested our model on the 
new22 with an accuracy of 0.907. Related experimental details 
of new22 are shown in Supplement C.

FIgURe 7 | The AUROC curves of our method on the dataset human,cross-species, and new.

FIgURe 6 | The AUROC curves of our method on the dataset human,cross-species, and new.
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Impact of Class Imbalance on the Model
There was a certain degree of class imbalance in our experiments. 
That is, the number of positive examples (3,230 pre-miRNAs) 
was much smaller than that of negative examples (23,934 non-
pre-miRNAs). The ratio of positive and negative examples was 
1:7.4. Researchers have conducted extensive explorations of class 
imbalances. Minority classes are largely ignored and predicting 
them is more difficult, leading to degraded classifier performance 
(Weiss, 2004). To improve the model’s performance, it was 
necessary to solve the class imbalance problem.

In response to the dataset imbalance problem, we initially tried 
to use class weights, that is, we directly considered the asymmetry 
of the cost error during the classifier training, which embedded 
the output probability of each class in the cost error information. 
This probability was then used to define a classification rule 
with a 0.5 threshold. Specifically, the aim was to identify those 
small classes (positive pre-miRNAs) that could be used to add 
weight to the positive examples of the model and reduce the 
weight of the negative examples. This method produces a new 
data distribution, which allows the classifier to focus on positive 
examples. In this experiment, we set the positive example weight 
to 0.9 and the negative example weight to 0.1.

Later, we used the focal loss function, which is an elegant and 
effective proposal to solve the problem of class imbalance. In this 
function, γ is the focus parameter, which smoothly adjusts the 
reduced ratio of the weight of the easy sample, and (1-py)γ is the 
modulation factor, which reduces the loss contribution of the 
easy sample and broadens the range in which the sample receives 
low loss. When γ = 0, focal loss is equivalent to cross-entropy 
loss. When γ increases, the influence of the modulation factor 
increases accordingly. By adding the modulating factor, focal loss 

reduces the weight of the easy sample, making the model more 
focused on the hard sample during training.

As shown in Figure 8, all of the performance metrics were 
higher after the class imbalance processing, except for g-mean 
and SP, although these showed small drops of only 0.001 and 
0.042. The reduction of SP occurred because training a classifier 
system with an unbalanced dataset (where the positive class is 
a minority) typically produces a suboptimal model with higher 
SP and lower SE. By applying the class imbalance learning 
method, it is usually possible to increase the SE by sacrificing 
the SP score to some extent (Batuwita and Palade, 2009a). These 
results showed that our model was not biased towards the 
negative dataset. The focal loss method was superior to the class 
weight approach for dealing with imbalances. To be specific, the 
model achieved a 7.25% higher SE using focal loss compared 
with class weight. Similarly, for F-score, PPV, and g-mean, 
using focal loss resulted in 1.68%, 1.62%, and 0.94% higher 
scores compared with class weight. Therefore, we propose that 
focal loss is an effective means to deal with the class imbalance 
problem in pre-miRNA datasets.

CONCLUSIONS

In this paper, we proposed a new pre-miRNA identification 
method, called CL-MPI. In contrast to existing methods, CL-MPI 
captures sequence information while also considering secondary 
structure in data preprocessing. CL-MPI can take into account pre-
miRNA sequential and spatial information while automatically 
extracting pre-miRNA sequence features. We used RNAfold to 
predict the secondary structure of each pre-miRNA sequence, 
then used the secondary structure and sequence as inputs to a 

TABLe 4 | Results for the new dataset.

Methods\metrics Se SP PPV F-score g-mean AUROC AUPR

miRBoost 0.921 0.936 0.609 0.733 0.928 − −
microPred 0.728 0.970 0.672 0.699 0.840 0.940 0.756
deepMiRGene 0.917 0.964 0.682 0.782 0.941 0.981 0.808
DCNN fixed-sized 0.917 0.967 0.696 0.792 0.942 0.979 0.864
DCNN variable-sized 0.859 0.981 0.779 0.817 0.918 0.979 0.818
Proposed 0.970 0.907 0.992 0.981 0.938 0.939 0.746

Bold numbers are the highest scores in this category.

FIgURe 8 | Performance assessment of cross-species dataset before and after unbalanced processing. The average score of the five-fold results is reported.
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CNN to automatically extract features, and finally used LSTM 
to mimic RNA sequences and further understand the role of the 
sequence. According to the experimental results, our method 
achieved better overall performance across cross-species datasets, 
even in the absence of known manual features, especially for 
F-score and g-mean. This demonstrates that automatic extraction 
of features and considering sequential and spatial characteristics at 
the same time are important for the identification of pre-miRNAs. 
Owing to the small number of known pre-miRNAs, we needed 
to deal with extremely unbalanced datasets, with significantly 
more negative than positive examples. According to Saito and 
Rehmsmeier (2015), PPV is more useful than other metrics for 
a binary classifier on an unbalanced dataset, as it varies with 
positive and negative ratios. As described in the section Results 
and Discussion, we used 3,230 positive examples and 23,934 
negative examples to train the CL-MPI model and obtained better 
performance for PPV compared with alternative methods. The 
higher SE and PPV achieved for the unbalanced dataset metrics 
prove that our method can better predict pre-miRNAs.

miRNAs are directly involved in tumor formation (Søkilde 
et al., 2014), which makes it possible to treat tumors using target 
carcinogenic miRNAs to restore the function of tumor suppressor 
miRNAs. With advances in clinical research, miRNAs continue to 
provide new ideas and treatments for tumor molecular diagnosis 
and treatment. Biomedical researchers are reluctant to use the 
outputs of “black box” methods as they are difficult to interpret, 
which affects the credibility of the results. Our next goal will be 
to explore more efficient visualization methods. In the future, 
we will also extend our method to other miRNA-related tasks, 
such as miRNA target prediction (Iqbal et al., 2016) and miRNA 
gene expression. Owing to the limited number of known miRNA 
sequences, the processing of unbalanced datasets also remains a 
challenge for future work.
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Studying the impact of genetic variation on gene regulatory networks is essential to 
understand the biological mechanisms by which genetic variation causes variation in 
phenotypes. Bayesian networks provide an elegant statistical approach for multi-trait 
genetic mapping and modelling causal trait relationships. However, inferring Bayesian 
gene networks from high-dimensional genetics and genomics data is challenging, 
because the number of possible networks scales super-exponentially with the number 
of nodes, and the computational cost of conventional Bayesian network inference 
methods quickly becomes prohibitive. We propose an alternative method to infer high-
quality Bayesian gene networks that easily scales to thousands of genes. Our method 
first reconstructs a node ordering by conducting pairwise causal inference tests between 
genes, which then allows to infer a Bayesian network via a series of independent variable 
selection problems, one for each gene. We demonstrate using simulated and real systems 
genetics data that this results in a Bayesian network with equal, and sometimes better, 
likelihood than the conventional methods, while having a significantly higher overlap with 
groundtruth networks and being orders of magnitude faster. Moreover our method allows 
for a unified false discovery rate control across genes and individual edges, and thus a 
rigorous and easily interpretable way for tuning the sparsity level of the inferred network. 
Bayesian network inference using pairwise node ordering is a highly efficient approach for 
reconstructing gene regulatory networks when prior information for the inclusion of edges 
exists or can be inferred from the available data.

Keywords: systems genetics, network inference, Bayesian network, expression quantitative trait loci analysis, 
gene expression

INTRODUCTION
Complex traits and diseases are driven by large numbers of genetic variants, mainly located in 
non-coding, regulatory DNA regions, affecting the status of gene regulatory networks (Rockman, 
2008; Schadt, 2009; Civelek and Lusis, 2014; Albert and Kruglyak, 2015; Boyle et al., 2017). While 
important progress has been made in the experimental mapping of protein–protein and protein–
DNA interactions (Walhout, 2006; Gerstein et al., 2012; Luck et al., 2017), the context-specific and 
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dynamic nature of these interactions means that comprehensive, 
experimentally validated, cell-type or tissue-specific gene 
networks are not readily available for human or animal model 
systems. Furthermore, knowledge of physical protein-DNA 
interactions does not always allow to predict functional effects 
on target gene expression (Cusanovich et al., 2014). Hence, 
statistical and computational methods are essential to reconstruct 
context-specific, causal, trait-associated networks by integrating 
genotype and gene, protein, and/or metabolite expression data 
from a large number of individuals segregating for the traits of 
interest (Rockman, 2008; Schadt, 2009; Civelek and Lusis, 2014).

Gene network inference is a deeply studied problem in 
computational biology (Friedman, 2004; Albert, 2007; Bansal 
et al., 2007; Penfold and Wild, 2011; Emmert-Streib et al., 
2012; Marbach et al., 2012; Äijö and Bonneau, 2016; Kiani 
et al., 2016). Among the many successful methods that have 
been devised, Bayesian networks are a powerful approach 
for modelling causal relationships and incorporating prior 
knowledge (Friedman et al., 2000; Friedman, 2004; Werhli 
and Husmeier, 2007; Mukherjee and Speed, 2008; Koller 
and Friedman, 2009; Pearl, 2009). In the context of complex 
trait genetics, the availability of genotype data leads to an 
especially significant prior on the direction of causality 
between correlated traits, which is based on the principle 
that genetic variation causes variation in gene expression or 
disease traits, but not vice versa (Schadt et al., 2005). Hence, 
Bayesian networks have become particularly popular for 
modelling conditional independence and causal dependence 
relationships among heritable traits, including molecular 
abundance traits (Zhu et al., 2004; Zhu et al., 2008; Neto 
et  al., 2010; Hageman et al., 2011; Scutari et al., 2014). Using 
expression quantitative trait loci (eQTL) and gene expression 
data as input, Bayesian networks have been used for instance 
to identify key driver genes of type 1 diabetes (Schadt et al., 
2008), Alzheimer’s disease (Zhang et al., 2013; Beckmann 
et al., 2018), temporal lobe epilepsy (Johnson et al., 2015), 
and cardiovascular disease (Talukdar et al., 2016). However, 
Bayesian network inference is computationally demanding 
and limited to relatively small-scale systems. In this paper, 
we address the question whether Bayesian network inference 
from eQTL and gene expression data is feasible on a truely 
transcriptome-wide scale without sacrificing performance in 
terms of model fit and overlap with known interactions.

A Bayesian gene network consists of a directed graph without 
cycles, which connects regulatory genes to their targets, and 
which encodes conditional independence between genes. The 
structure of a Bayesian network is usually inferred from the 
data using score-based or constraint-based approaches (Koller 
and Friedman, 2009). Score-based approaches maximize 
the likelihood of the model, or sample from the posterior 
distribution using Markov chain Monte Carlo (MCMC), using 
edge additions, deletions or inversions to search the space of 
network structures. Score-based methods have been shown to 
perform well using simulated genetics and genomics data (Zhu 
et al., 2007; Tasaki et al., 2015). Constraint-based approaches 
first learn the undirected skeleton of the network using repeated 
conditional independence tests, and then assign edge directions 

by resolving directional constraints (v-structures and acyclicity) 
on the skeleton. They have been used for instance in the joint 
genetic mapping of multiple complex traits (Scutari et al., 2014). 
However, the computational cost of both approaches is high. 
Because the number of possible graphs scales super-exponentially 
with the number of nodes, Bayesian gene network inference with 
conventional methods is feasible for systems of at most a few 
hundred genes or traits, and usually requires a hard limit on the 
number of regulators a gene can have as well as a preliminary 
dimension reduction step, such as filtering or clustering genes 
based on their expression profiles (Zhu et al., 2008; Zhang et al., 
2013; Talukdar et al., 2016; Beckmann et al., 2018).

Modern sequencing technologies however generate 
transcript abundance data for ten-thousands of coding and 
non-coding genes, and large sample sizes mean that ever more 
of those are detected as variable across individuals (Lappalainen 
et al., 2013; Franzén et al., 2016; GTEx Consortium, 2017). 
Moreover, to explain why genetic associations are spread 
across most of the genome, a recently proposed “omnigenic” 
model of complex traits posits that gene regulatory networks 
are sufficiently interconnected such that all genes expressed in 
a disease or trait-relevant cell or tissue type affect the functions 
of core trait-related genes (Boyle et al., 2017). The limitations 
of current Bayesian gene network inference methods mean 
that this model can be neither tested nor accomodated. 
Existing Bayesian network inference methods on categorical 
variables, e.g., Banjo (Smith et al., 2006), lack the resolution 
and directionality for transcriptomic datasets. Hence, there is 
a clear and unmet need to infer Bayesian networks from very 
high-dimensional systems genetics data.

Here, we propose a novel method to infer high-quality causal 
gene networks that scales easily to ten-thousands of genes. 
Our method is based on the fact that if an ordering of nodes 
is given, such that the parents of any node must be a subset 
of the predecessors of that node in the given ordering, then 
Bayesian network inference reduces to a series of independent 
variable or feature selection problems, one for each node (Koller 
and Friedman, 2009; Shojaie and Michailidis, 2010). While 
reconstructing a node ordering is challenging in most application 
domains, pairwise comparisons between nodes can sometimes 
be obtained. If prior information is available for the likely 
inclusion of every edge, our method ranks edges according to the 
strength of their prior evidence (e.g., p-value) and incrementally 
assembles them in a directed acyclic graph (DAG) which defines 
a node ordering, by skipping edges that would introduce a 
cycle. Prior pairwise knowledge in systems biology includes 
the existence of TF binding motifs (Bussemaker et al., 2007), or 
known protein-DNA and protein-protein interactions (Ernst 
et al., 2008; Greenfield et al., 2013), and those have been used 
together with score-based MCMC methods in Bayesian network 
inference previously (Werhli and Husmeier, 2007; Mukherjee 
and Speed, 2008).

In systems genetics, where genotype and gene expression data 
are available for the same samples, instead of using external prior 
interaction data, pairwise causal inference methods can be used 
to estimate the likelihood of a causal interaction between every 
pair of genes (Schadt et al., 2005; Chen et al., 2007; Millstein 
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et al., 2009; Li et al., 2010; Neto et al., 2013; Millstein et al., 2016; 
Wang and Michoel, 2017a). To accomodate the fact that the 
same gene expression data is used to derive the node ordering 
and subsequent Bayesian network inference, we propose a novel 
generative model for genotype and gene expression data, given 
the structure of a gene regulatory graph, whose log-likelihood 
decomposes as a sum of the standard log-likelihood for 
observing the expression data and a term involving the pairwise 
causal inference results. Our method can then be interpreted 
as a greedy optimization of the posterior log-likelihood of this 
generative model.

MeTHODS

an algorithm for the Inference of Gene 
Regulatory Networks From Systems 
Genetics Data
To allow the inference of gene regulatory networks from high-
dimensional systems genetics data, we developed a method that 
exploits recent algorithmic developments for highly efficient 
mapping of eQTL and pairwise causal interactions. A general 
overview of the method is given here, with concrete procedures 
for every step detailed in subsequent sections below.

A. EQTL Mapping
When genome-wide genotype and gene expression data are 
sampled from the same unrelated individuals, fast matrix-
multiplication based methods allow for the efficient identification 
of statistically significant eQTL associations (Shabalin, 2012; 
Qi et al., 2014; Ongen et al., 2015; Delaneau et al., 2017). Our 
method takes as input a list of genes, and for every gene its most 
strongly associated eQTL (Figure 1A). Typically only cis-acting 
eQTLs (i.e., genetic variants located near the gene of interest) 
are considered for this step, but this is not a formal requirement. 
Multiple genes can have the same associated eQTL, and genes 
without significant eQTL can be included as well, although these 
will only be allowed to have incoming edges in the resultant 
Bayesian networks.

B. Pairwise Causal Ordering
Given a set of genes and their respective eQTLs, pairwise causal 
interactions between all genes are inferred using the eQTLs 
as instrumental variables (Figure 1B). While there is a great 
amount of literature on this subject (cf. Introduction), only 
two stand-alone software packages are readily available: CIT 
(Millstein et al., 2016) and Findr (Wang and Michoel, 2017a). 
In our experience, only Findr is sufficiently efficient to test for 
causality between millions of gene pairs.

C. Genetic Node Ordering
In Bayesian Network Model for Systems Genetics Data, we 
introduce a generative probabilistic model for jointly observing 
eQTL genotypes and gene expression levels given the structure 
of a gene regulatory network. In this model, the posterior log-
likelihood of the network given the data decomposes as a sum of 
two terms, one measuring the fit of the undirected network to the 

correlation structure of the gene expression data, and the other 
measuring the fit of the edge directions to the pairwise causal 
interactions inferred using the eQTLs as instrumental variables. 
The latter is optimized by a maximum-weight DAG, which 
induces a topological node ordering, which we term “genetic node 
ordering” in reference to the use of individual-level genotype data 
to orient pairs of gene expression traits (Figure 1C).

D. Bayesian Network Inference
The genetic node ordering fixes the directions of the Bayesian 
network edges. Variable selection methods are then used to 
determine the optimal sparse representation of the inverse 
covariance matrix of the gene expression data by a subgraph of the 
maximum-weight DAG (Figure 1D). In this paper, we consider 
two approaches: (i) a truncation of the pairwise interaction scores 
retaining only the most confident (highest weight) edges in the 
maximum-weight DAG, and (ii) a multi-variate, L1-penalized 
lasso regression (Tibshirani, 1996; Wang and Michoel, 2017b) to 
select upstream regulators for every gene. Given a sparse DAG, 
maximum-likelihood linear regression is used to determine the 
input functions and whether an edge is activating or repressing.

Bayesian Network Model With Prior  
edge Information
A Bayesian network with n nodes (random variables) is defined 
by a DAG G such that the joint distribution of the variables 
decomposes as

 p x x G p x x in j i j
j

n

1
1

,..., | | : ,( ) = ∈{ }( )
=

∏ Pa  (1)

where Paj denotes the set of parent nodes of node j in the graph 
G. We only consider linear Gaussian networks (Koller and 
Friedman, 2009), where the conditional distributions are given 
by normal distributions whose means depend linearly on the 
parent values (see Supplementary Information).

The likelihood of observing a data matrix X∈ℝn×m with 
expression levels of n genes in m independent samples given a 
DAG G is computed as

 p G p x x ijk ik j
j

n

k

m

X | | : .( ) = ∈{ }( )
==

∏∏ Pa
11

 (2)

Using Bayes’ theorem we can then write the likelihood of 
observing G given the data X, upto a normalization constant, as

 
P G p G P G| | ,X X( ) ( ) ( )∝

 

where P(G) is the prior probability of observing G. Note that we 
use a lower-case ‘P’ to denote probability density functions and 
upper-case ‘P’ to denote discrete probability distributions.

Our method is applicable if pairwise prior information is 
available, i.e., for prior distributions satisfying
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( ) ∝
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with fij a set of non-negative weights that are monotonously 
increasing in our prior belief that there exists a directed edge from 
node i to node j (e.g. fij∝−log pij, where pij is a p-value). Note that 
setting fij = 0 excludes the edge (i,j) from being present in G.

Bayesian Network Model for Systems 
Genetics Data
When genotype and gene expression data are available for the 
same samples, instrumental variable methods can be used to infer 
the likelihood of a causal interaction between every pair of genes 
(Schadt et al., 2005; Chen et al., 2007; Millstein et al., 2009; Li et al., 
2010; Neto et al., 2013; Millstein et al., 2016; Wang and Michoel, 
2017a). Previously, such pairwise probabilities have been used as 
priors in conventional score-based Bayesian network inference 
(Zhu et al., 2004; Zhu et al., 2007), but this is unsatisfactory, 
because a prior, by definition, should not be inferred from the 
same expression data that is used to learn the model. Other 
methods have addressed this by augmenting the gene network 
model with genotypic variables (Neto et al., 2010; Hageman et 
al., 2011), but this increases the size and complexity of the model 
even further. Here we introduce a model to use pairwise causal 
inference that does not suffer from these limitations.

Let G and X again be a DAG and a matrix of gene expression 
data for n genes, respectively, and let E∈ℝn×m be a matrix of 
genotype data for the same samples. For simplicity we assume 
that each gene has one associated genotypic variable (e.g., its 
most significant cis-eQTL), but this can be extended easily to 
having more than one eQTL per gene or to some genes having 
no eQTLs. Using the rules of conditional probability, the joint 
probability (density) of observing X and E given G can be written, 
upto a normalization constant, as

 p G P G p GX E E X X, , .| | |( ) ( ) ( )∝  (3)

The distribution p(X|G) is obtained from the standard 
Bayesian network equations (eq. (2)), and we define the 
conditional probability of observing E given X and G as

 P G P L G G E X Xi i j i i j
ij j

E X| | , , ,,( ) ∝ → →( )
∈

∏∏
Pa

 (4)

where Ei, Xi ∈ℝm are the ith rows of E and X, respectively. 
P(Li→Gi→Gj|Ei,Xi,Xj) is the probability of a causal interaction 
from gene Gi to Gj inferred using Gi’s eQTL Li as a causal anchor, 
and can be computed with pairwise causal inference methods 
(Millstein et al., 2016; Wang and Michoel, 2017a). In other words, 
conditional on a gene-to-gene DAG G and a gene expression 
data matrix, our model assumes that it is more likely to observe 
genotype data that would lead to causal inferences consistent 
with G than data that would lead to inconsistent inferences. 

Other variations on this model can be considered as well, for 
instance one can include a penalty for interactions that are not 
present in the graph, as long as the final model can be expressed 
in the form

 
P G e g

ij

ij

j

E X| ,,( ) ∝
∈

∏∏
Pa  (5)

with gij monotonously increasing in the likelihood of a causal 
inference Li→Gi→Gj.

Combining eqs. (3) and (5) with Bayes’ theorem and a uniform 
prior P(G) = const, leads to an expression of the posterior log-
likelihood that is formally identical to the model with prior edge 
information,

 log | , log ( | ) .P G p G gij
ij j

X E X( ) = + +
∈
∑∑ const

Pa

 (6)

As before, if gij = 0, the edge (i,j) is excluded from being part 
of G; this would happen for instance if gene i has no associated 
genotypic variables and consequently zero probability of being 
causal for any other genes given the available data. Naturally, 
informative pairwise graph priors of the form P(G) = ΣjΣi∈Paj fij, can 
still be added to the model, when such information is available.

Bayesian Network Parameter Inference
Given a DAG G, the maximum-likelihood parameters of 
the conditional distributions [eq. (1)], in the case of linear 
Gaussian networks, are obtained by linear regression of a 
gene on its parents’ expression profiles (see Supplementary 
Information). For a specific DAG, we will use the term 
“Bayesian network” to refer to both the DAG itself as well 
as the probability distribution induced by the DAG with its 
maximum-likelihood parameters.

Reconstruction of the Node Ordering
Without further sparsity constraints in eq. (6), and again 
assuming for simplicity that each gene has exactly one eQTL, 
the log-likelihood is maximized by a DAG with n(n−1)/2 edges. 
Such a DAG G defines a node ordering ≺ where i≺j⇔i∈Paj. 
Standard results in Bayesian network theory show that for a 
linear Gaussian network, the likelihood function (2) is invariant 
under arbitrary changes of the node ordering (see (Koller and 
Friedman, 2009) and Supplementary Information). Hence to 
maximize eq. (6) we need to find the node ordering or DAG 
which maximizes the term ΣjΣi∈Pajgij. Finding the maximum-
weight DAG is an NP-hard problem with no known polynomial 
approximation algorithms with a strong guaranteed error 
bound (Korte and Hausmann, 1978; Hassin and Rubinstein, 
1994). We therefore employed a greedy algorithm, where given 
n genes and the log-likelihood gij of regulation between every 
pair of them, we first rank the regulations according to their 
likelihood. The regulations are then added to an empty network 
one at a time starting from the most probable one, but avoiding 
those that would create a cycle, until a maximum-weight DAG 
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with n(n−1)/2 edges is obtained. Other edges are assigned 
probability 0 to indicate exclusion. The heuristic maximum-
weight DAG reconstruction was implemented in Findr (Wang 
and Michoel, 2017a) as the command netr_one_greedy, with 
the vertex-guided algorithm for cycle detection (Haeupler et 
al., 2012).

Causal Inference of Pairwise Gene 
Regulations
We used Findr 1.0.6 (pij_gassist function) (Wang and Michoel, 
2017a) to perform causal inference of gene regulatory interactions 
based on gene expression and genotype variation data. For every 
gene, its strongest cis-eQTL was used as a causal anchor to infer 
the probability of regulation between that gene and every other 
gene. Findr outputs posterior probabilities Pij (i.e., one minus 
local FDR), which served directly as weights in model (6), i.e., 
we set gij = logPij. To verify the contribution from the inferred 
pairwise regulations, we also generated random pairwise 
probability matrices which were treated in the same way as the 
informative ones in the downstream analyses.

Findr and Random Bayesian Networks 
From Node Orderings
The node ordering reconstruction removes less probable, cyclic 
edges, and results in a (heuristic) maximum-weight DAG G 
with edge weights Pij = egij. We term these weighted DAGs as 
findr or random Bayesian networks, depending on the pairwise 
information used. A significance threshold can be applied on 
the continuous networks, to convert them to binary Bayesian 
networks at any desired sparsity level and thereby perform 
variable selection for the parents of every gene.

lasso-Findr and lasso-Random Bayesian 
Networks Using Penalized Regression on 
Ordered Nodes
As a second approach to perform variable selection in the 
maximum-weight DAGs, we performed hypothesis testing for 
every gene on whether each of its predecessors (in the findr or 
random Bayesian network) is a regulator, using L1-penalized 
lasso regression (Tibshirani, 1996) with the lassopv package 
(Wang and Michoel, 2017b) (see Supplementary Information). 
We calculated for every regulator the p-value of the critical 
regularization strength when the regulator first becomes active in 
the lasso path. This again forms a continuous Bayesian network 
in which smaller p-values indicate stronger significance. These 
Bayesian networks were termed the lasso-findr and lasso-random 
Bayesian networks.

Score-Based Bnlearn-Hc and  
Constraint-Based Bnlearn-Fi Bayesian 
Networks From Package Bnlearn
For comparison with score-based Bayesian network inference 
methods, we applied the hc function of the R package bnlearn 

(Scutari, 2010), using the Akaike information criterion (AIC) 
penalty to enforce sparsity. This algorithm starts from a random 
Bayesian network and iteratively performs greedy revisions 
on the network to reach a local optimum of the penalized 
likelihood function. Since the log-likelihood is equivalent 
to minus the average (over nodes) log unexplained variance 
(see Supplementary Information), which diverges when 
the number of regulators exceeds the number of samples, we 
enforced the number of regulators for every gene to be smaller 
than 80% of the number of samples. For each AIC penalty, one 
hundred random restarts were carried out and only the network 
with highest likelihood score was selected for downstream 
analyses. These Bayesian networks were termed the bnlearn-hc 
Bayesian networks.

For comparison with constraint-based Bayesian network 
inference methods [e.g., (Kalish and Buhlmann, 2007)], we 
applied the fast.iamb function of the R package bnlearn (Scutari, 
2010), using nominal type I error rate. These Bayesian networks 
were termed the bnlearn-fi Bayesian networks.

To account for the role and information of cis-eQTLs on 
gene expression, we also included the strongest cis-eQTL of 
every gene in the bnlearn-based network reconstructions, for 
an approach similar to (Neto et al., 2010; Hageman et al., 2011; 
Tasaki et al., 2015). Cis-eQTLs were only allowed to have out-
going edges, using the blacklist function in bnlearn. We then 
removed cis-eQTL nodes from the reconstructed networks, 
resulting in Bayesian gene networks termed bnlearn-hc-g and 
bnlearn-fi-g respectively.

evaluation of False Discovery Control in 
Network Inference
Scoring metrics are comparable within each hypothesis test, but 
not neccesarily so between different hypothesis tests. Unlike 
p-values, the use of arbitray scores in network inference may 
lead to inconsistent false positive rates of candidate regulators 
among different target genes, which prevents consistent 
network-wide false discovery control (FDC) (Wang and 
Michoel, 2017b). However, the network-wide FDC consistency 
can be evaluated with the linear relation between the numbers 
of false positive regulators and candidate regulators for each 
gene. Violation of the linearity disproves the score for FDC in 
network inference. Due to the (in-degree) sparsity of biological 
networks, we discarded the top 5% of predictions to remove 
true positives, after which the FDC consistency was empirically 
evaluated with the linear relation between the numbers of false 
positive and candidate regulators. See (Wang and Michoel, 
2017b) for method details.

Precision-Recall Curves and Points
We compared reconstructed Bayesian networks with gold 
standards using precision-recall (PR) curves and points, for 
continuous and binary networks respectively. For Geuvadis 
datasets, we only included regulator and target genes that 
are present in both the transcriptomic dataset and the  
gold standard.
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assessment of Predictive Power for 
Bayesian Networks
To assess the predictive power of different Bayesian network 
inference methods, we used five-fold cross-validation to compute 
the training and testing errors from each method, in terms of 
the root mean squared error (rmse) and mean log squared 
error (mlse) across all genes in all testing data (Supplementary 
Information, Algorithm S1). For continuous Bayesian networks 
from non-bnlearn methods, we applied different significance 
thresholds to obtain multiple binary Bayesian networks that form 
a curve of prediction errors.

Data and Software
We used the following datasets to infer and evaluate Bayesian 
gene networks:

• The DREAM 5 Systems Genetics challenge A (DREAM) 
provided a unique testbed for network inference methods that 
utilize genetic variations in a population (https://www.synapse.
org/\#!Synapse:syn2820440/wiki/). The DREAM challenge 
included 15 simulated datasets of expression levels of 1000 genes 
and their best eQTL variations. To match the high-dimensional 
property of real datasets where the number of genes exceeds the 
number of individuals, we analyzed datasets 1, 3, and 5 with 100 
individuals each. Around 25% of the genes within each dataset 
had a cis-eQTL, defined in DREAM as directly affecting the 
expression level of the corresponding gene. Since the identity 
of cis-eQTLs is not revealed, we used kruX (Qi et al., 2014) to 
identify them, allowing for one false discovery per dataset. The 
DREAM challenge further provides the groundtruth network for 
each dataset, varying from around 1,000 to 5,000 interactions.

• The Geuvadis consortium is a population study providing 
RNA sequencing and genotype data of lymphoblastoid cell 
lines in 465 individuals. We obtained gene expression levels 
and genotype information, as well as the eQTL mapping 
from the original study (Lappalainen et al., 2013). We 
limited our analysis to 360 European individuals, and after 
quality control, a total of 3172 genes with significant cis-
eQTLs remained. To validate the inferred gene regulatory 
networks from the Geuvadis dataset, we obtained three 
groundtruth networks: (Rockman, 2008) differential 
expression data from siRNA silencing experiments of 
transcription-associated factors (TFs) in a lymphoblastoid 
cell line (GM12878) (Cusanovich et al., 2014); (Schadt, 
2009) DNA-binding information of TFs in the same cell 
line (Cusanovich et al., 2014); (Civelek and Lusis, 2014) the 
filtered proximal TF-target network from (Gerstein et al., 
2012). The Geuvadis dataset overlapped with 6,790 target 
genes, and 6 siRNA-targeted TFs and 20 DNA-binding TFs 
in groundtruth 1 and 2, respectively, and with 7,000 target 
genes and 14 TFs in groundtruth 3. Processed Geuvadis data 
and groundtruth networks are available at https://github.
com/lingfeiwang/findr-data-geuvadis

We preprocessed all expression data by converting them 
to a standard normal distribution separately for each gene, as 
explained in (Wang and Michoel, 2017a).

Software to reproduce the results from this study is available 
at the following URLs:
• Findr: https://github.com/lingfeiwang/findr.
• lassopv: https://github.com/lingfeiwang/lassopv.

ReSUlTS

Genetic Node Ordering Permits  
High-Dimensional Bayesian Network 
Inference
We developed a method for Bayesian network inference from 
high-dimensional systems genetics data which reconstructs a 
maximum-weight DAG from the confidence scores of pairwise 
causal inferences between gene expression traits using eQTLs as 
causal anchors, and which uses the node ordering induced by 
this DAG (termed “genetic node ordering” in reference to the 
use of genotype data to orient network edges) to decompose the 
Bayesian network inference task into a series of independent 
variable selection problems (Methods, An Algorithm for the 
Inference of Gene Regulatory Networks From Systems Genetics 
Data, Figure 1). Using an efficient implementation for the 
causal inference step (Wang and Michoel, 2017a), this approach 
allows to reconstruct Bayesian networks with thousands to 
ten-thousands of nodes. Our method is based on score-based 
Bayesian network inference methods for systems with pre-
defined node orderings (Koller and Friedman, 2009; Shojaie and 
Michailidis, 2010), but differs in that the ordering is inferred from 
the same expression data, augmented with matched genotype 
data from the same samples, that is used for the subsequent 
Bayesian network log-likelihood maximization, using a single 
generative model (Methods, Bayesian Network Model for Systems 
Genetics Data), rather than relying on external prior information 
to determine the node ordering. Its computational efficiency is 
due to restricting the graph structure search space to Bayesian 
gene networks compatible with this inferred node ordering. 
This differs substantially from conventional score-based and 
constraint-based methods, including those that use genotype 
and gene expression data (Neto et al., 2010; Hageman et al., 2011; 
Tasaki et al., 2015), where the search space can only be reduced 
by limiting the possible number of parents for each gene to an 
artificially small number (Koller and Friedman, 2009). For clarity, 
a comparison of the main characteristics of the Bayesian network 
inference approaches considered in this paper is included in 
Supplementary Table S1.

lasso-Findr Bayesian Networks Correctly 
Control False Discoveries
We inferred findr and lasso-findr Bayesian networks for the 
DREAM datasets, using Findr and lassopv respectively (Methods). 
The Findr method predicts targets for each regulator using a local 
FDR score (Storey and Tibshirani, 2003) which allows consistent, 
network-wide FDC (Chen et al., 2007; Wang and Michoel, 2017a). 
However, the enforcement of a gene ordering/Bayesian network 
partly broke the FDC, as the linearity between the numbers of 
false positive (i.e., significant here) and candidate regulators 
broke down at large candidate regulator counts (Figure 2A, 
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Methods). This effect is confirmed on the larger Geuvadis dataset 
in Results on the Geuvadis Dataset Reaffirm Conclusions From 
Simulated Data. By performing an extra lasso regression on top 
of the acyclic findr network, proper FDC was restored in terms 
of the linear relation in the lasso-findr Bayesian network (Figure 
2B, Supplementary Figure S1).

In contrast, score-based bnlearn-hc Bayesian networks 
(Methods), inferred from multiple DREAM datasets and for a 
spectrum of network sparsities (AIC penalty strengths from 
8 to 12 in steps of 0.5), displayed a highly skewed in-degree 
distribution, with most genes having few regulators, but several 
with near 80 regulators each, i.e., the maximum allowed (Figure 
2C, Supplementary Figure S2). This is in conflict with the 
known in-degree sparsity of gene regulation networks, which is 
required for its modularity, indicating that score-based Bayesian 
networks lack a unified FDR control, i.e., that each gene retained 
incoming interactions at different FDR levels. We believe this is 
due to the log-likelihood score function employed by bnlearn-hc. 

Since the log-likelihood corresponds to the average logarithm of 
the unexplained variance, this score intrinsically tends to focus 
on the explanation of variances from a few variables/genes, 
especially in high-dimensional settings where this can lead to 
arbitrarily large score values (see Supplementary Information). 
Using the total proportion of explained variance as the score may 
spread regulations over more target genes, but this score is not 
implemented in bnlearn.

Constraint-based bnlearn-fi Bayesian networks (Methods) did 
not allow for unbiased FDC either, as they do not have a fully 
adjustable sparsity level. We varied its “nominal type I error rate” 
from 0.001 to 0.2, but the number of significant interactions varied 
very little on DREAM dataset 1 (Supplementary Figure S3).

Incorporating genotypic information in score-based 
(bnlearn-hc-g) or constraint-based (bnlearn-fi-g) Bayesian 
networks did not resolve these issues, as the problems of lacking 
FDC and oversparsity persisted (Supplementary Figure S4, 
Supplementary Figure S5).

FIGURe 1 | Schematic overview of the method. (a) For each gene Gi, the cis-eQTL Li whose genotype explains most of the variation in Gi expression is calculated; 
shown on the left are typical eQTL associations for three genes (colored blue, green, and red) where each box shows the distribution of expression values for 
samples having a particular genotype for that gene’s eQTL. (B) Pairwise causal inference is carried out which considers in turn each gene Gi and its eQTL Li to 
calculate the likelihood of this gene being causal for all others; shown on the left is a typical example where an eQTL Li is associated with expression of Gi (red) and 
with expression of a correlated gene Gj (blue), but not with expression of Gj adjusted for Gi (green), resulting in a high likelihood score for the causal ordering Gi→Gj. 
(C) A maximum-weight DAG having the genes as its nodes is derived from the pairwise causal interactions, which induces a “genetic” node ordering. (D) Variable 
selection is used to determine a sparse Bayesian gene network, which must be a sub-graph of the maximum-weight graph (red edges, Bayesian network; gray 
edges, causal orderings deemed not significant or indirect by the variable selection procedure); the signs of the maximum-likelihood linear regression coefficients 
determine whether an edge is activating (arrows) or repressing (blunt tips).

FIGURe 2 | False discovery controls of different Bayesian networks. (a, B) The linearity test of findr (a) and lasso-findr (B) Bayesian networks at 10,000 significant 
interactions on DREAM dataset 1. (C) The histogram of significant regulator counts for each target gene in the bnlearn-hc Bayesian network with AIC penalty 8 on 
DREAM dataset 1.
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Findr and lasso Bayesian Networks 
Recover Genuine Interactions More 
accurately Than MCMC or  
Constraint-Based Networks
We compared the inferred Bayesian networks from all methods 
against the groundtruth network of the DREAM challenge. We 
drew PR curves, or points for the binary Bayesian networks from 
bnlearn-based methods, as shown in Figure 3 with areas under 
the PR curve (AUPR) in Supplementary Table S2. Bnlearn based 
methods could only recover ∼2% of total true regulations, after 
which they suffered from a sharply dropping precision and behaved 
like random predictions. The highest precisions they achieved could 
not exceed those by lasso or findr based methods at the respective 
recalls either. In addition, bnlearn could not obtain >10% recall 
within 4-day time limit with any of the methods attempted. In this 
sense, the findr, lasso-findr, and lasso-random Bayesian networks 
were more accurate predictors of the underlying network structure. 
The inclusion of genotypic information improved the precision 
of bnlearn methods, but it remained suboptimal than findr and  
lasso-based Bayesian networks.

Findr and lasso Bayesian Networks 
Obtain Superior Predictive Performances
We validated the predictive performances of all networks in the 
structural equation context (see Supplementary Information). 
Under five-fold cross validation, a linear regression model for 
each gene on its parents is trained based on the Bayesian network 
structure inferred from each training set, to predict expression 
levels of all genes in the test set (Methods). Predictive errors 
were measured in terms of rmse and mlse (the score optimized 
by bnlearn-hc). The findr Bayesian network explained the 
highest proportion of expression variation (≈2%) in the test data 
and identified the highest number of regulations (200 to 300), 
with runners up from lasso-based networks (≈1% variation, 
50 regulations, Figure 4). The explained variance by findr and 
lasso networks grew to ≈10% when more samples were added 
(DREAM dataset 11 with 999 samples, Supplementary Figure 

S6). Training errors did not show overfitting of predictive 
performances in the test data (Supplementary Figure S7).

lasso Bayesian Networks Do Not Need 
accurate Prior Gene Ordering
Interestingly, the performance of lasso-based networks did 
not depend strongly on the prior ordering, as shown in the 
comparisons between lasso-findr and lasso-random in Figure 
3, Figure 4, and Supplementary Figure S7. Further inspections 
revealed a high overlap of top predictions by lasso-findr and lasso-
random Bayesian networks, particularly among their true positives 
(Figure 5). This suggests that lasso may be capable of prioritizing 
edges with correct directions, and allows us to still recover genuine 
interactions even if the prior gene ordering is not fully accurate.

lasso Bayesian Networks Mistake 
Confounding as False Positive Interactions
We then tried to understand the differences between lasso and 
Findr based Bayesian networks, by comparing three types of gene 
relations in DREAM dataset 1, both among genes with a cis-eQTL 
in Figure 6A, and when also including genes without any cis-eQTL 
as only targets in Figure 6B. Both findr and lasso-findr showed 
good sensitivity for the genuine, direct interactions. However, 
when two otherwise independent genes are directly confounded by 
another gene, lasso tends to produce a false positive interaction, but 
not findr. As expected, to achieve optimal predictive performance, 
lasso regression cannot distinguish the confounding by a gene that 
is either unknown or ranked lower in the DAG.

Findr and lasso Bayesian Network 
Inference Is Highly efficient
The findr and lasso Bayesian networks required much less 
computation time compared to the bnlearn Bayesian networks, 
therefore allowing them to be applied on much larger datasets. 
To infer a Bayesian network of 230 genes from 100 samples in 
DREAM dataset 1, Findr required less than a second, lassopv 
around a minute, but bnlearn Bayesian networks took half 
an hour to half a day (Table 1). Moreover, since bnlearn only 
produces binary Bayesian networks, multiple recomputation is 
necessary to acquire the desired network sparsity.

Results on the Geuvadis Dataset Reaffirm 
Conclusions From Simulated Data
To test whether the results from the DREAM data also hold for 
real data, we inferred findr and lasso-findr Bayesian networks 
from the Geuvadis data using both real and random causal priors 
(see Methods); conventional bnlearn-based network inference was 
attempted, but none of the restarts could complete within 1000 min.

Lasso-findr Bayesian networks were previously shown to 
provide ideal FDR control on this dataset (Wang and Michoel, 
2017b), whereas findr Bayesian networks did not obtain a 
satisfying FDR control (Supplementary Figure S8). We believe 
this is due to the reconstruction of the node ordering, which 
interferes with the FDR control in pairwise causal inference. On 
the other hand, and again consistent with the DREAM data, findr 

FIGURe 3 | Precision-recall curves/points of reconstructed Bayesian 
networks for DREAM dataset 1.
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Bayesian networks obtained superior results for the recovery of 
known transcriptional regulatory interactions inferred from 
ChIP-sequencing data (Figures 7A, B); neither method predicted 
TF targets inferred from siRNA silencing with high scores or 
accuracy better than random (Figure 7C).

Comparisons on the predictive power yielded results similar 
with the DREAM datasets, where predictive scores were again 
hardly able to distinguish network directions.

DISCUSSION
The inference of Bayesian gene regulatory networks for mapping 
the causal relationships between thousands of genes expressed in 
any given cell type or tissue is a challenging problem, due to the 
computational complexity of conventional hill-climbing, MCMC 
sampling or constraint-based methods. Here we have introduced 
an alternative method, which first reconstructs a topological 
ordering of genes, and then infers a sparse maximum-likelihood 
Bayesian network using variable selection of parents for every gene 
from its predecessors in the ordering. Our method is applicable 

FIGURe 4 | The root mean squared error (rmse, a) and mean log squared error (mlse, B) in test data are shown as functions of the numbers of predicted 
interactions in five-fold cross validations using linear regression models. Shades and lines indicate minimum/maximum values and means respectively. RMSEs 
greater than 1 indicate over-fitting. DREAM dataset 1 with 100 samples was used.

FIGURe 5 | The numbers of overlap and unique interactions (y axis) 
predicted by lasso-findr and lasso-random Bayesian networks as functions 
of the number of significant interactions in each network (x axis), on DREAM 
dataset 1. Positive and negative directions in y correspond to true and false 
positive interactions according to the gold standard.

FIGURe 6 | The significance score of findr (posterior probability; x-axis) and in lasso-findr (-log P-value; y-axis) for direct true interactions (red), directly confounded 
gene pairs (cyan), and other, unrelated gene pairs (black) on DREAM dataset 1; in (a) only genes with cis-eQTLs are considered as regulator or target, whereas in 
(B) targets also include genes without cis-eQTLs. Higher scores indicate stronger significances for the gene pair tested.
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when pairwise prior information is available or can be inferred 
from auxiliary data, such as genotype data. Our evaluation of 
the method using simulated genotype and gene expression data 
from the DREAM5 competition, and real data from human 
lymphoblastoid cell lines from the GEUVADIS consortium, 
revealed several lessons that we believe to be generalizable.

A major disadvantage of conventional score-based methods, 
irrespective of their computational cost, was their over-fitting of the 
expression profiles of a very small number of target genes. In high-
dimensional settings where the number of genes far exceeds the 
number of samples, the expression profile of any one of them can 
be regressed perfectly (i.e., with zero residual error) on any linearly 
independent subset of variables, and this causes the log-likelihood 
to diverge. Even when the number of parents per gene was restricted 
to less than the number of samples, it remained the case that at 
any level of network sparsity, the divergence of the log-likelihood 
with decreasing residual variance of even a single gene resulted in 
score-based networks where most genes had either the maximum 
number of parents, or no parents at all. Restricting the maximum 
number of parents to an artificially small level can circumvent this 
problem, but will also distort the network topology, particularly 
by truncating the in-degree distribution, and therefore predict a 
biased gene regulatory network. Optimizing the total amount of 
variance explained, rather than log-likelihood, might overcome this 
problem. This, however, is not available yet in bnlearn.

Our method reconstructs a Bayesian network as a sparse 
subgraph from a maximum-weight DAG determined by pairwise 
causal relationships inferred using instrumental variable methods. 
We considered two variants of the method: one where the edge 
weights in the maximum-weight DAG were truncated directly to 
form a sparse DAG, and one where an additional L1-penalized 
lasso regression step was used to enforce sparsity. The lasso step 
was introduced for two reasons. First, pairwise relations do not 
distinguish between direct or indirect interactions and do not 
account for the possibility that a true relation may only explain a 

small proportion of target gene variation (e.g. when the target has 
multiple inputs). We hypothesized that adding a multi-variate lasso 
regression step could address these limitations. Second, truncating 
pairwise relations results in non-uniform false discovery rates for 
the retained interactions, due to each gene starting with a different 
number of candidate parents in the pairwise node ordering. As we 
showed in this paper and our previous work (Wang and Michoel, 
2017b), a model selection p-value derived from lasso regression 
can control the FDR uniformly for each potential regulator of 
each target gene, resulting in an unbiased sparse DAG.

Despite these considerations, the “naïve” procedure of 
truncating the original pairwise causal probabilities resulted in 
Bayesian networks with better overlap with groundtruth networks 
of known transcriptional interactions, in both simulated and real 
data. We believe this is due to the lack of any instrumental variables 
in lasso regression, which makes it hard to dissociate true causal 
interactions from hidden confounding. Indeed, it is known that if 
there are multiple strongly correlated predictors, lasso regression 
will randomly select one of them (Zou and Hastie, 2005), whereas 
in the present context it would be better to select the one that has 
the highest prior causal evidence. In a real biological system, findr 
networks and the use of instrumental variables may therefore be 
more robust than lasso regression, particularly in the presence of 
hidden confounders. We also note that the deviation from uniform 
FDR control for the naive truncation method was not huge and 
only affected genes with a very large number of candidate parents 
(Figure 2). Hence, at least in the datasets studied, adding a lasso 
step for better FDC did not overcome the limitations introduced 
by confounding interactions.

On the other hand, the lasso-random network used solely 
transcriptomic profiles, yet provided better performance than 
the conventional score-based and constrained-based networks, 
including those that used genotypic information. Together with its 
better FDC, this makes the lasso-random network an interesting 
method for high-dimensional Bayesian network inference with 
no or limited prior information.

In addition to comparing the inferred network structure against 
known ground-truths, we also compared the predictive performance 
of the various Bayesian networks. Although findr Bayesian networks 
again performed best, differences with lasso-based methods were 
modest. As is well known, using observational data alone, Bayesian 
networks are only defined upto Markov equivalence (Koller and 
Friedman, 2009; Pearl, 2009), i.e., there is usually a large class of 
Bayesian networks with very different topology which all explain the 

FIGURe 7 | Precision-recall curves for Bayesian networks reconstructed from the Geuvadis dataset for three groundtruth networks: DNA-binding of 20 TFs in 
GM12878 (a), DNA-binding of 14 TFs in five ENCODE cell lines (B), and siRNA silencing of six TFs in GM12878 (C).

TaBle 1 | Timings for different Bayesian network inference methods/programs. 

Dataset Samples Genes Findr lassopv bnlearn-hc bnlearn-fi

DREAM 100 230 < 1 s ≈1 min ≥10 h ≥30 min
Geuvadis 360 3172 < 1 min ≈10 h – –

Times for bnlearn methods depend on parameter settings (e.g., nominal FDR and 
AIC penalty), and take longer (approx. 8 times) with genotypes included. Times for 
bnlearn-hc include 10 random restarts.
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data equally well. Hence, it comes as no surprise that the prediction 
accuracy in edge directions has little impact on that in expression 
levels. This suggests that for the task of reconstructing gene networks, 
Bayesian network inference should be evaluated, and maybe also 
optimized, at the structural rather than inferential level. This also 
reinforces the importance of causal inference which, although 
challenging both statistically and computationally, demonstrated 
significant improvement of the global network structure even when 
it was restricted to pairwise causal tests.

Most of our results were derived for simulated data from the 
DREAM Challenges, but were qualitatively confirmed using data 
from human lymphoblastoid cell lines. This is because human 
ground-truth networks have strong limitations. They are normally 
reconstructed from heterogeneous, noisy, high-throughput data 
(e.g., ChIP-sequencing and/or knock-out experiments), and are 
both incomplete (many true interactions are not present) and 
imperfect (many detected physical interactions have no functional 
effect). In addition, statistical inference algorithms can hardly 
distinguish direct interactions from indirect ones, which operate 
through an unidentified third factor and should be regarded as 
“false positives”. As such, one has to be cautious not to over-interpret 
results, for instance on the relative performance of findr vs. lasso-
findr Bayesian networks. Much more comprehensive and accurate 
ground-truth networks of direct causal interactions, preferably 
derived from a hierachy of interventions on a much wider variety 
of genes and functional classes (not only transcription factors), 
would be required for a conclusive analysis. Emerging large-scale 
perturbation compendia such as the expanded Connectivity Map, 
which has profiled knock-downs or over-expressions of more 
than 5,000 genes in a variable number of cell lines using a reduced 
representation transcriptome (Subramanian et al., 2017), hold 
great promise. However, the available cell lines are predominantly 
cancer lines, and the relevance of the profiled interactions for 
systems genetics studies of human complex traits and diseases, 
which are usually performed on primary human cell or tissue 
types, remains unknown.

Lastly, we note that our study has focused on ground-truth 
comparisons and predictive performances, but did not evaluate 
how well the second part of the log-likelihood, derived from the 
genotype data [cf. eq. (4)], was optimized. This score is never 
considered in the conventional score-based algorithms, and 
hence a comparison would not be fair. Moreover, optimising 
it is known to be an NP-hard problem. We used a common 
greedy heuristic optimization algorithm, but for this particular 
problem, this heuristic has no strong guaranteed error bound. 
We intend to revisit this problem, and investigate whether 

other graph-theoretical algorithms, perhaps tailored to specific 
characteristics of pairwise interactions inferred from systems 
genetics data, are able to improve on the greedy heuristic.

To conclude, Bayesian network inference using pairwise 
genetic node ordering is a highly efficient approach for 
reconstructing gene regulatory networks from high-dimensional 
systems genetics data, which outperforms conventional methods 
by restricting the super-exponential graph structure search space 
to acyclic graphs compatible with the causal inference results, and 
which is sufficiently flexible to integrate other types of pairwise 
prior data when they are available.
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Accurate prediction of guide RNA (gRNA) on-target efficacy is critical for effective
application of CRISPR/Cas9 system. Although some machine learning-based and
convolutional neural network (CNN)-based methods have been proposed, prediction
accuracy remains to be improved. Here, firstly we improved architectures of current CNNs
for predicting gRNA on-target efficacy. Secondly, we proposed a novel hybrid system
which combines our improved CNN with support vector regression (SVR). This CNN-SVR
system is composed of two major components: a merged CNN as the front-end for
extracting gRNA feature and an SVR as the back-end for regression and predicting gRNA
cleavage efficiency. We demonstrate that CNN-SVR can effectively exploit features
interactions from feed-forward directions to learn deeper features of gRNAs and their
corresponding epigenetic features. Experiments on commonly used datasets show that
our CNN-SVR system outperforms available state-of-the-art methods in terms of
prediction accuracy, generalization, and robustness. Source codes are available at
https://github.com/Peppags/CNN-SVR.

Keywords: CRISPR/Cas9, guide RNA, convolutional neural network, on-target, support vector regression
INTRODUCTION

The CRISPR/Cas9 system, adapted from a bacterial defense mechanism, is a promising genomic
editing tool that has recently revolutionized the field of biology, biotechnology, and medicine
(Barrangou et al., 2007). This system consists of a nuclease activity-carrying Cas9 protein and the
specificity-programming single guide RNA (gRNA), and the latter of which targets the complex to a
genomic region flanked by a protospacer adjacent motif (PAM) (Jinek et al., 2012). Though the
CRISPR/Cas9 system is considered to be very specific to perform the preconcerted cleavage on
genome, numerous studies have indicated that Cas9 complex also binds to other unintended
genomic sites, termed as off-target (Pattanayak et al., 2013; Doench et al., 2016). Thus, design of a
gRNA with high on-target efficacy and low off-target effects is an important issue in CRISPR/Cas9
system. It has been shown that on-target activity is partly determined by gRNA intrinsic sequence
and chromatin structure of target genomic region, but the underlying molecular mechanism is still
not fully understood. Accurate prediction of gRNA on-target activity facilitates maximization of on-
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target efficacy and minimization of off-target effects, further
contributing to the success application of CRISPR/Cas9 system
(Hsu et al., 2013; Doench et al., 2014; Xu et al., 2015; Chuai et al.,
2016; Doench et al., 2016).

Previous efforts have been made to assist gRNA on-target
identification and efficacy prediction based on different design
rules. The alignment-based methods align the gRNAs from the
given genome purely by locating the PAM [e.g. CCTop
(Stemmer et al., 2015)]. Hypothesis driven-based tools
empirically score the gRNA efficacy by incorporating the effect
of genomic context factors [i.e. CFD (Doench et al., 2016)].
Machine learning-based methods predict the cleavage propensity
of a genomic site for a given gRNA by considering different
nucleotide features, such as position specific nucleotides and
dinucleotides (Doench et al., 2014), GC content (Chari et al.,
2015) as well as non-sequence features including thermodynamic
stability of gRNA (Doench et al., 2014), amino acid cut position
(Chen et al., 2017), and chromatin accessibility (Hinz et al., 2015;
Horlbeck et al., 2016; Listgarten et al., 2018). For example,
support vector machine (SVM)-based sgRNA Designer found
that the position of the target site relative to the transcription
start site and position within the protein are the most important
factors for gRNA activity prediction (Doench et al., 2016). L1-
regularized linear regression-based SSC reported that DNA
sequence composition incorporating the preference for
cytosine at the cleavage site improved the performance of
gRNA on-target prediction (Xu et al., 2015). WU-CRISPR
combined sequence and structural features of the gRNA to
identify highly active gRNA (Wong et al., 2015). In general, no
single feature but rather a combination of feature interactions
governs gRNA cleavage efficacy (Wilson et al., 2018).
Sophisticated models considering the interactions between the
individual features achieved better performance (Aach et al.,
2014; Erard et al., 2017). Nevertheless, some correlated features
may result in the redundancy (Abadi et al., 2017), further
rendering poor prediction outcome. Moreover, the outcomes
of machine learning-based tools mainly depend on laborious
manual feature engineering. They require considerable domain
expertise to design the feature extractor (LeCun et al., 2015).

Deep learning allows computational models that consist of
multiple processing layers to learn representations of features
with multiple levels of abstraction (LeCun et al., 2015). The
layers of features are learned from data by a general-purpose
learning procedure instead of human engineers. Recently, several
successful deep learning-based models have been provided for
predicting CRISPR gRNA on-target activity. For example, Kim
et al. proposed Seq-deepCpf1, which used convolutional neural
networks (CNNs) to learn the nucleotide features of CRISPR
gRNA, and it outperformed previous machine learning
algorithms (Kim et al., 2018). Chuai et al. proposed
DeepCRISPR that used deep convolutionary denosing neural
network-based autoencoder to extract the CRISPR/Cas9 gRNA
sequence representation and utilized the fully CNN model to
predict the gRNA efficacy (Chuai et al., 2018). Extensive
numerical experiments demonstrated DeepCRISPR surpassed
the state-of-the-art tools across a variety of human datasets.
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The above two CNN-based models showed good
performance in CRISPR gRNA efficacy prediction compared
with machine learning-based methods. CNNs are multi-layer
architectures where the successive layers are designed to learn
progressively higher-level features, until the last layer which
produces the classifiers (Huang and LeCun, 2006). The last
layer of CNN can be considered as a linear classifier operator
on feature representation extracted by previous layers. CNN
performs well in automatically learning nonlinearity features.
However, CNN is not always an optimal choice for classification
because the MLP layer following the feature extraction layer
contains many trainable parameters. On the contrary, SVM with
fixed kernel function has good utility on minimizing
generalization error bound when applied to well-behaved
feature vectors. Inspired by this, it is interesting to explore the
hybrid CNN-SVM system in which CNN is trained to extract
features and SVM computes a classifier function in the learned
high dimensional feature spaces. To date, CNN-SVM models
have shown impressive performance in a wide range of
applications, such as object categorization (Huang and LeCun,
2006) and image recognition (Mori et al., 2005; Niu and Suen,
2012). For example, Niu et al. put forward a CNN-SVM model
for handwritten digitals recognition with recognition rate of
99.81%. In their work, the proposed CNN-SVM replaced the
back propagation neural network classifier with SVM in the last
layer of the CNNmodel (Niu and Suen, 2012). Mori et al. trained
a convolutional spiking neural network using different fragment
images. The outputs of each layer in the model were input to the
SVM model. A 100% face recognition rate was obtained for 600
images of 20 people (Mori et al., 2005). In terms of regression
problem, Li et al. proposed CNN combined with support vector
regression (CNN-SVR) for no-reference image quality
assessment. This method achieved advanced outstanding
performance compared with traditional CNN model (Li
et al., 2016).

The prior success of CNN-SVM in computer vision inspired
us to extend CNN-SVM application to CRISPR/Cas9 gRNA
efficacy prediction. Until now, to the best of our knowledge,
there is no such application. Previous studies have suggested that
CRISPR gRNA efficacy prediction using linear regression
achieved better performance than classification (Moreno-
Mateos et al., 2015; Kim et al., 2018). Therefore, SVR, which is
a common application form of SVM for regression, may be more
appropriate for gRNA efficacy prediction when applied to well-
behaved feature vectors. In this work, we developed a hybrid
architecture incorporating CNN and SVR for CRISPR/Cas9
gRNA on-target activity prediction. The key idea of our system
is to train a specialized CNN to extract robust gRNA sequence
and epigenetic features, and to provide them to the SVR classifier
for predicting gRNA cleavage efficacy. First, we trained the CNN
model with back-propagation on the benchmark dataset, aiming
at model selection and parameters tuning. Second, the initial
CNN features were input into the SVR for training and
evaluating. A two-step strategy was performed to select the
important features from well-trained CNN intrinsic gradients
features. Third, the well-trained CNN-SVR was used to test the
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independent cell-line dataset. Specifically, the test data was input
to the well-trained CNN model to obtain the test features. Using
the test feature vector, the well-trained SVR classifier was
performed to predict the gRNA cleavage efficacy. Experiments
showed improved performance of the proposed CNN-SVR
model for CRISPR/Cas9 gRNA on-target activity prediction
compared with state-of-the-art algorithms.
MATERIALS AND METHODS

Data Resources
Benchmark Dataset
Previous studies have shown that PAM-distal region has a high
tolerance for sequence mismatches (Kim et al., 2016; Kleinstiver
et al., 2016). To be specific, gRNAs with two mismatches in the
first two positions from the 5’ end has little influence on cleavage
efficiency (Doench et al., 2014; Doench et al., 2016). Inspired by
these studies, Chuai et al. applied a data augmentation procedure
by changing each gRNA into a new one with two mismatches in
the PAM distal region (Chuai et al., 2018). Consequently, a 23-nt
gRNA sequence can be expanded into 16 gRNAs with identical
cleavage efficacy. The augmented dataset was generated from
~15,000 gRNAs with known on-target cleavage efficacy. By
adopting this data augmentation strategy, they obtained
180512 non-redundant gRNAs. Each observation in the data
contains a 23-nt gRNA sequence and its corresponding cleavage
efficiency. In this work, we used this augmented dataset as the
benchmark data for model selection and pre-training.

Four Cell Line Independent Test Datasets
In order to evaluate the performance of our method, we used
four public experimental validated gRNA on-target cleavage
efficacy independent human datasets, which were integrated
and processed by Chuai et al (Chuai et al., 2018). These
experimented-based datasets were originally collected from
public datasets (Wang et al., 2014; Hart et al., 2015; Doench
et al., 2016). They covered gRNAs targeting 1071 genes from four
different cell lines, including HCT116 (4239 samples) (Hart et al.,
2015), HEK293T (2333 samples) (Doench et al., 2016), HELA
(8101 samples) (Hart et al., 2015), and HL60 (2076 samples)
(Wang et al., 2014) with redundancy removed. The gRNA on-
target activity was strictly restricted to experimental assay, where
the cleavage efficiency was defined as the log-fold change in the
measured knockout efficacy. Readouts of cleavage efficacies
without in vivo (in vitro) experimental validation were excluded.

Each entry in the datasets contained the 23-nt gRNA
sequence, four kinds of corresponding symbolic epigenetic
features, as well as numerical and binary cleavage efficacy. The
epigenetic features information was obtained from ENCODE
(Consortium, 2004), including CTCF binding information
obtained from ChIP-Seq assay, H3K4me3 information from
ChIP-Seq assay, chromatin accessibility information from
DNase-Seq assay, and DNAmethylation information from RRBS
assay. Each epigenetic feature was represented by an “A-N”
symbolic sequence with length of 23. Here, the presence of the
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epigenetic feature at a particular base position ofDNA regionswas
denoted by “A,” and its absence was represented by “N.”

Numerical cleavage efficiency of candidate gRNA was
calculated using a collaborative fi ltering-based data
normalization technique (Badaro et al., 2013). In particular, a
matrix Y was formulated where each row denoted the
experiments and each column represented one gRNA. ymn

represented the n-th gRNA on-target cleavage efficacy in the
m-th experiment. Normalized numerical gRNA on-target
efficiency value was defined as

ynor = ymn − (mrow +mcol +mall)=3 (1)

where mrow denoted the mean value for each row, mcol

represented the mean value for each column, and mall denoted
the mean value of Y. Next, a rank-based normalization method
(Doench et al., 2016) was applied for gRNAs within each gene,
and these normalized ranks were averaged across cell types, then
were rescaled in [0, 1], where 1 indicated the successful on-target
cleavage efficacy. The binary cleavage efficiency of gRNA was
determined by using a log-fold change of 1 as the cut off, where 1
and 0 represented the high-efficiency and low-efficiency gRNAs,
respectively. The processed datasets can be downloaded at
https://github.com/bm2-lab/DeepCRISPR.

Sequence Encoding
We formulated one-hot encoding to encode gRNA sequence
with 23 nucleotides in length. Each base in the sequence can be
encoded as one of the four one-hot vectors [1,0,0,0], [0,1,0,0],
[0,0,1,0] and [0,0,0,1]. Therefore, the 1-by-23 nucleotide
sequence was represented by four binary channels: A-channel,
C-channel, G-channel, and T-channel. Taking A-channel as an
example, the presence of the nucleotide A at a particular base
pair position was denoted by 1 and the absence of the nucleotide
A was represented by 0. Consequently, each gRNA was expressed
by a 4 × 23 matrix, where 23 was the length of the
gRNA sequence.

Analogously, epigenetic feature information including CTCF
binding, H3K4me3, chromatin accessibility, and DNA
methylation were represented by a 4 × 23 binary matrix. Each
type of epigenetic information was denoted by a 1 × 23 matrix
using “A” and “N,” with these notations meaning presence and
absence of that epigenetic feature at specific position of DNA
regions, respectively. To encode the epigenetic feature
information, we derived a 23-length vector to encode each
epigenetic feature. Thus, four epigenetic features were donated
by a 4 × 23 binary matrix (see Figure S1 for an example). The
encoded sequence and epigenetic matrix of gRNA were then fed
into CNN-based gRNA stream and epigenetic stream sub-
networks for model training and testing.

CNN Model Structure
We developed a CNN model to learn deep features of gRNA
sequence and its corresponding epigenetic information (Figure
S2). The proposed CNN is composed of two branches, namely
gRNA stream and epigenetic stream. These two sub-networks
are structurally identical, including two one-dimensional (1D)
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convolution layers, two average-pooling layers, and four fully
connected layers.

Taking gRNA stream as an example, the input is a 4 (size of
nucleotides vocabulary) × 23 (sequence length) binary matrix.
The first layer of the sub-network is a 1D convolution layer
(conv_1), which is designed for extracting the important local
features between neighboring element values of gRNA sequence
information using 256 convolution kernels of size 5. Rectified
linear unit (ReLU) (Krizhevsky et al., 2012) is used as the
activation function to the convolution outputs.

The second layer is a local average pooling layer (pool_1) with
window size of 2 connected with the outputs of previous layer for
down-sampling. Each of the average-pooling windows only
outputs the average value of its respective convolution
layer outputs.

The structures of the following convolution layer (conv_2)
and average pooling layer (pool_2) are identical with the first
(conv_1) and second (pool_1) layers mentioned above. After
being flatten, the features are followed by four fully connected
layers (fc_1, fc_2, fc_3 and fc_4) with the sizes of 256, 128, 64,
and 40, respectively. We used dropout for model regularization
to avoid overfitting.

The feature maps of the fourth fully connected layer from
both gRNA and epigenetic branches are concatenated by the
“concatenate” operator. Subsequently, the outputs of the
concatenation layer are input to the last fully connected layer
of the merged CNN network. The final output layer consists of
one neuron corresponding to a regression score that highly
correlates with gRNA activity. The loss function for our CNN
is mean squared error (MSE) which was adapted in a previous
study (Kim et al., 2018). We chose MSE because it is a good
measure to prevent undesired outliers in the dataset.

Hybrid CNN-SVR Model
We next proposed a network combining CNN and SVR called
CNN-SVR to provide a data-driven and deep learning method
for CRISPR/Cas9 gRNA activity prediction. For cell line-specific
prediction, CNN-SVR receives a 23-nt gRNA sequence and four
“A-N” symbolic epigenetic sequences with length of 23 as inputs,
and it produces a regression score of gRNA on-target cleavage
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efficacy. Compared with machine learning-based methods that
rely heavily on hand-crafted features, CNN-SVR can get rid of
the dependence on manual feature engineering. The basic
flowchart of CNN-SVR consists of two major stages, namely
model selection and pre-training stage as well as fine-tuning and
testing stage (Figure S3). The dataset was randomly divided into
two separate sets of training and testing, respectively. One-hot
encoding converts the input sequences into binary
representations for downstream processing.

In the model selection and pre-training stage, there are
mainly three steps: first, the encoded benchmark dataset is fed
into the proposed CNN model for pre-training by the back-
propagation algorithm. Randomized five-fold cross-validation
tests are conducted to determine hyperparameters of the merged
CNN model. Model with the minimum average validation loss is
regarded as the base model. Second, the initial CNN extracted
features are input to SVR classifier for training and evaluating.
SVR (i.e., cost C, gamma, and epsilon) is optimized using a grid
search approach to achieve the optimal performance. Third, a
two-step strategy is employed to remove the redundancy of CNN
features (see details in the section Feature Representation
Optimization). The extracted low-dimensional representative
feature data and their corresponding gRNA cleavage efficacy
values are fed into SVR classifier for model training.

In the fine-tuning and testing stage, there are mainly two
steps: First, the well-trained CNN model is applied to extract
features from new cell line data. Only the fourth fully connected
layer of gRNA stream and epigenetic stream, and the top fully
connected layer of the merged CNN are fine tuned. MSE loss
function is minimized by back-propagation approach. Second,
the extracted low-dimensional representative features are fed
into the well-trained SVR classifier to complete the final gRNA
activity prediction. Figure 1 displayed the overall framework of
our CNN-SVR; the procedures were described as follows:

• The gRNA sequence and epigenetic feature sequences are
converted into two 4×23 binary matrices by one-hot encoding.

• The encoded gRNA and epigenetic sequences are fed into the
well-trained CNN-based gRNA stream and epigenetic feature
stream to fine-tune and extract features, respectively.
FIGURE 1 | An illustration of procedures for cell line-specific gRNA on-target activity prediction based on CNN-SVR. Here, [f_1,f_2,⋯,f_n ] is the subset of [f_1,f_2,
⋯,f_80 ].
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• SVR classifier is trained based on the optimal feature set.
Ultimately, the well-trained SVR model assigns a prediction
cleavage efficacy score for the candidate gRNA.
Experimental Setup
To evaluate feasibility of CNN-SVR for gRNA activity
prediction, we conducted numerical experiments on public
datasets. We implemented our algorithms using Keras (2.1.0)
with Tensorflow (1.4.0) as the backend, running on Intel Core i7
CPU at 3.6 GHz with 16 GB RAM and NVIDIA 8 GB GTX 1080
GPU. The optimized parameters were tuned automatically under
the Adam optimizer (Kingma and Ba, 2014).

Implementation of the Hybrid CNN-SVR
Model
CNN Model Selection and Training
In the proposed architecture, the distribution of each network
parameter was determined empirically. The main purpose of
hyperparameter optimization was to choose a set of
hyperparameters for a deep architecture, usually with the goal
of optimizing performance of the architecture on an independent
dataset. Grid search from the Scikit-learn Python library was
adopted to tune the hyperparameters of the proposed
architectures. Hyperparameter optimization experiments were
performed sequentially as follows: the network weight
initialization over the choice (“zero,” “he_uniform,” “uniform,”
“glorot_uniform,” “lecun_uniform,” “normal,” “he_normal”),
dropout regularization over the choice (0.2, 0.3, 0.4, 0.5, 0.6),
batch size over the choice (64, 128, 256, 512), and number of
epochs over the choice (50, 100, 200, 300).

All the constructed neural network models were trained and
validated on the benchmark dataset (180512 samples). We
randomly assigned the samples of the no-redundant dataset
with 80% of samples for training and 20% of samples for
testing with five-fold cross-validation in the training phase.
Cross-validation contributed to avoiding overfitting and
guaranteeing the accuracy of our model in which the datasets
were divided into five equal parts randomly. In each training, one
part was regarded as the testing dataset, while the remaining four
parts were taken as the training dataset. Thus, we obtained
115528 training samples, 28881 validation samples, and 36103
testing samples, respectively. Separate training and validation
data were applied to train the model, while the test data was used
to evaluate the performance of the trained model. We chose the
model that showed the minimum average validation loss as the
final CNN model. After optimization, the hyperparameters were
as follows: kernel_initializer: glorot_uniform; batch size: 256;
epoch: 200; dropout: 0.3 (keeping 70% of the connections).

SVR Training and Testing
Next, CNN extracted features were fed into the SVR classifier.
We implemented the SVR algorithm in Scikit-learn library. Grid
search procedure was performed to find the optimal penalty
parameter C, kernel parameter gamma, and epsilon. For training
SVR with Gaussian radial basis kernel (RBF) classifier, grid
search range of each parameter was as follows: cost C from the
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choice (1.0,1.1,⋯,1.9), kernel coefficient gamma over the choice
(0.11,0.12,⋯,0.15), epsilon from the choice (0.08,0.09,⋯,0.12).
We selected the parameters that maximized the maximum
average area under ROC curve (AUROC) value as the final
parameters of SVR classifier. The optimized parameters of the
SVR were as follows: C was 1.7, gamma was 0.12, epsilon was
0.11. These parameters were then used to train the CNN-
SVR model.

Feature Representation Optimization
Considering that CNN extracted features might introduce
redundancy which can undermine model performance, we
employed a two-step feature optimization strategy to identify
important feature subsets from the initial CNN features. To be
specific, we first applied random forest to the learnt feature
representation from well-trained CNN model and obtained the
ranked feature list based on information gain (Liaw and Wiener,
2002). We trained the random forest model with 250 decision
trees using Scikit-learn. The feature importance distribution of
the top 20 features based on their importance scores was
illustrated in Figure S4. As can be seen, the seventeenth
feature of CNN extracted initial features was the most
predictive feature. Second, the sequential forward search (SFS)
(Whitney, 2006) was performed to determine the optimal feature
set. We gradually added features from random forest feature
rank from higher score (lower rank) to lower score (higher rank)
to reconstruct the SVR models. The feature subset with the
relatively higher value of AUROC was regarded as the optimal
feature set. We used the AUROC since it is a good indicator to
evaluate the real performance of models. We noted that, when the
feature number reached at 13, the model achieved the maximum
AUROC of 0.9769. Hence, the top 13 features (i.e., “feat_17,”
“feat_26,” “feat_9,” “feat_19,” “feat_30,” “feat_6,” “feat_12,”
“feat_39,” “feat_36,” “feat_21,” “feat_22,” “feat_3,” “feat_25”) in
the random forest rank list were integrated into SVR classifier to
train the prediction scheme. Here, “feat_17” means the 17th
feature of CNN extracted initial features (total 80 features).
Thereby, we carried out the determined hyperparameters by
integrating the optimal features on the benchmark dataset
under five-fold cross-validation to obtain the well-trained CNN-
SVR model. The training data, validation data, and testing data
were built consistent with the above mentioned data partitioning
way in the CNN Model Selection and Training section. The well-
trained CNN-SVR reached an overall Spearman correlation of
0.952, AUROC value of 0.977.

Transfer Learning for New Cell Line
Specific Prediction
In this section, we proposed a fine-tune strategy by borrowing
information from the benchmark data, aiming at boosting the
prediction performance on small sample size cell line-specific
data. To this end, four above cell-line datasets were combined
together for model training and testing. We constructed the
training, validation, and test data from total four datasets based
on gRNA sequence composition and epigenetic feature
information. The training data (13401 samples) and test data
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(3748 samples) were also generated in the same way in the CNN
Model Selection and Training section. Randomized five-fold
cross-validation was implemented in the training phase.

Considering training a full CNN network with small number
of cell line data may result in overfitting, which may lead to poor
performance. Transfer learning (Bengio, 2012) is effective to
address the challenge where the learned parameters of well-
trained networks on a large dataset are shared. The main idea of
transfer learning is to use a pre-trained model which is trained on
large dataset and to transfer its well-trained parameters (e.g.
weights) to the targeted network model. Though the dataset is
different from the one that the network was trained on, the
lower-level features are similar. Thus, the last fully connected
layers are usually trained on the new dataset. Transfer learning
has been widely applied to computer vision (Shin et al., 2016;
Cheng andMalhi, 2017) and achieved a valuable efficacy in terms
of accuracy. We applied transfer learning from the benchmark
dataset pre-trained CNN model, and fine-tuned for small sample
cell line data. Note that, the low-level features between the
benchmark data and cell line-specific data are similar.
Therefore, we froze the convolution layers, average pooling
layers and the first three fully connected layers of both gRNA
stream and epigenetic stream. After borrowing weights of the
well pre-trained CNN base network, we fine-tuned the weights of
the last fully connected layers of both gRNA and epigenetic sub-
networks and those of the merged fully connected layer to
optimize the mean validation squared error loss function.
During fine tuning, we only updated 5281 free parameters. By
fixing the weights parameters in the other layers, CNN-SVR
could prevent overfitting and effectively learn to integrate the
sequence representative and epigenetic information. For any
given cell line of interest, the training process was described
as follows:

• Pre-train a CNN model with the benchmark data for 200
epochs.

• Freeze the convolution layers, average pooling layers, the first
three fully connected layers (for both the gRNA stream and
epigenetic stream).

• Train the fourth fully connected layer of the above two
streams and the top fully connected layer of the merged CNN
model with training data from the cell line of interest for
another 200 epochs.

• Evaluate the model on the test data.
Settings of Other Methods
For the L1-regularized linear regression (L1), we applied
LassoCV from Scikit-learn Python library to find out the
optimal parameters of alpha by cross-validation. Grid
searching range of regularization parameter alpha was (0.01,
0.02,⋯,0.1). Other parameters were set with default values. We
achieved an optimal value of 0.01. Similarly, we applied RidgeCV
and ElasticNetCV with the same grid searching range of L1 to set
parameter alpha for L2-regularized linear regression (L2) and
L1L2-regularized linear regression (L1L2), respectively. After
optimization, the best alpha values of L2 and L1L2 were 0.04
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and 0.01, respectively. These parameters were then used to train
the CNN-L1, CNN-L2, and CNN-L1L2 models. Other
parameters of L2 and L1L2 were set with default values.

We ran the code of Seq_deepCpf1 using the same data and
basic training process (downloaded from GitHub at https://
github.com/MyungjaeSong/Paired-Library). Note that, the
input of Seq_deepCpf1 was a 4-by-34 dimensional binary
matrix. Here, we changed the input shape of Seq_deepCpf1
model into 4-by-23 to match the size of the data in this study.
Besides, we used the benchmark dataset to pre-train the
Seq_deepCpf1 model. To make a fair comparison, we only
fine-tuned the weights parameters in the last two layers (1681
free parameters) for cell line-specific prediction. The numerical
experimental condition was set consistent with DeepCRISPR.
The source codes of DeepCRISPR were downloaded from
https://github.com/bm2-lab/DeepCRISPR. SSC, sgRNA
Designer and WU-CRISPR provided available web based
applications. More details can be found in Table S1.

Performance Measurements
To quantitatively evaluate the performance of our CNN-SVR,
Spearman correlation coefficient between predicted and
measured on-target activity was calculated. We chose
Spearman correlation is due to it is more robust to outliers
than Pearson’s correlation coefficient (Mukaka, 2012). Besides, it
was adapted in previous studies (Doench et al., 2016; Chuai et al.,
2018; Kim et al., 2018). Spearman correlation was calculated
using SciPy library (http://scipy.org). In addition, AUROC was
employed to comprehensively quantify the overall predictive
model performance. The value of AUROC ranges from 0.5 to
1. A larger AUROC value represents that model achieves better
and more robust performance. Note that, we used 0.5 AUROC as
the baseline. Statistical test was performed using SciPy library for
comparing the differences between GC content distributions of
different datasets. Two-sample Kolmogorov–Smirnov test was
used for testing the distance between two distributions under the
null hypothesis that samples from the same continuous
distribution. P < 0.05 was considered to indicate statistically
significant difference.
RESULTS

Comparison CNN-SVR With CNN Model
To verify the feasibility of our approach, we compared our CNN-
SVR with CNN model on the above four cell-line datasets. The
current practice of training a model was to use cell-line specific
data for prediction. Each data set was randomly split into a
training set and an independent testing set with 80% and 20%
classes. Table 1 summarized the results regarding evaluation
criteria including Spearman correlation and AUROC under 10-
round 10-fold cross-validation tests. CNN-SVR showed
substantially better performance in terms of Spearman
correlation. As for AUROC, CNN-SVR was superior to CNN
on datasets HEK293T, HELA, and HL60. These results showed
that CNN-SVR is more predictive than CNN for gRNA on-target
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activity, further conforming the feasibility and effectiveness of
the combination of CNN and SVR classifier.

Comparison of Various CNN Combined
Regression Models
We then attempted to access the regression performance of
CNN-SVR. To this end, we compared CNN-SVR with three
CNNs plus regression approaches, including CNN plus L1
(CNN-L1), CNN plus L2 (CNN-L2), and CNN plus L1L2
(CNN-L1L2) on the above four cell lines datasets. Note that
for each cell line, the training data and test data were generated in
the same way as described in the section Comparison CNN-SVR
With CNN Model. Ten-time 10-fold cross-validation tests were
randomly performed and the average of the individual
performance were summarized in Table 2. Overall, CNN-SVR
performed better than CNNs with different regression methods
on all datasets. These observations revealed that the regression
learning performance of our SVR surpasses other regression
methods on gRNA activity prediction.

Comparison With State-Of-the-
Art Methods
To validate the performance of proposed CNN-SVR, we
compared it with one deep learning-based method
(DeepCRISPR) and three machine learning methods including
sgRNA Designer, SSC, and WU-CRISPR (Table S2). Note that
Seq-deepCpf1 only allows for receiving gRNA sequence as input.
So, this approach was not compatible with other methods when
considering both gRNA sequence and epigenetic information. To
make a fair comparison, we trained CNN-SVR model based on
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the training data strictly consistent with other methods. The
above four datasets were used for performance evaluation. For
each cell line, the training and test data were constructed in the
same way as described in the section Comparison CNN-SVR
With CNN Model. For any given cell line of interest, the training
data was built by integrating all the training data from four cell
lines. The performance was evaluated on each cell line-specific
testing set, respectively.

On the whole, CNN-SVR achieved the highest average
Spearman correlation (Figure 2A). Specifically, CNN-SVR
exhibited better Spearman correlation on three datasets (i.e.,
Total, HCT116, HELA and HL60), whereas for dataset
HEK293T, it performed slightly worse than DeepCRISPR.
Figure 2B illustrated the performance in terms of AUROC.
Some interesting conclusions can be extracted from this figure.
First, deep learning models were superior to machine learning
methods. Second, CNN-SVR exhibited better predictive power
than another deep learning model DeepCRISPR. The details of
their performance can be found in Table S3. To sum up, these
observations indicated that CNN-SVR outperforms the
compared state-of-the-art methods for predicting gRNA on-
target activity.

Assessment of Generalization
Performance With a Leave-One-Cell-
Out Procedure
Next, we investigated the generalizability ability of CNN-SVR
in new cell types. For this purpose, we took turns to test the
model on the above four cell-line datasets using a leave-one-cell-
out approach. The training data and test data for each cell
TABLE 1 | Performance comparison between CNN-SVR and CNN models for gRNA activity prediction on four cell-line datasets under 10-time 10-fold cross-validation.

Model CNN-SVR CNN CNN-SVR CNN

Spearman AUROC

HCT116 0.719 ± 0.008 0.661 ± 0.030 0.933 ± 0.001 0.932 ± 0.001
HEK293T 0.807 ± 0.016 0.725 ± 0.029 0.983 ± 0.002 0.972 ± 0.001
HELA 0.699 ± 0.006 0.702 ± 0.007 0.933 ± 0.001 0.916 ± 0.001
HL60 0.589 ± 0.006 0.576 ± 0.040 0.934 ± 0.003 0.914 ± 0.003
January 2020 | Volume 10
Performance is shown asmean ± standard deviation. This representation also applies to Table 2. The best performance across different folds cross-validation method is highlighted in bold
for clarification. These highlights also apply to Tables 2 to 4 and Tables S3 to S5.
TABLE 2 | Performance comparison of CNN-SVR and different CNNs combined regression models for gRNA activity prediction on four cell-line datasets under 10-time
10-fold cross-validation.

Model HCT116 HEK293T HELA HL60

(A) Spearman correlation
CNN-SVR 0.719 ± 0.008 0.807 ± 0.016 0.699± 0.006 0.589± 0.006
CNN-L1 0.712± 0.010 0.793 ± 0.004 0.633± 0.020 0.542± 0.033
CNN-L2 0.670± 0.025 0.731 ± 0.032 0.683± 0.009 0.517± 0.034
CNN-L1L2 0.701± 0.008 0.803 ± 0.012 0.682± 0.005 0.589± 0.018
(B) AUROC
CNN-SVR 0.933 ± 0.001 0.983 ± 0.002 0.933 ± 0.001 0.934 ± 0.003
CNN-L1 0.931 ± 0.001 0.982 ± 0.001 0.924 ± 0.002 0.930 ± 0.003
CNN-L2 0.919± 0.002 0.975 ± 0.002 0.923± 0.002 0.895± 0.008
CNN-L2 0.918± 0.003 0.977 ± 0.001 0.915± 0.002 0.912± 0.004
The tables from top to bottom respectively record the Spearman correlation and AUROC of CNN-SVR and three CNN combined regression methods.
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line were built in advance. Note that, the partitioning method
for each cell line data followed the way illustrated in the
section Comparison CNN-SVR With CNN Model In the
training phase, for a given cell line to be predicted, we just
used the training data from all other three cell lines (lacking
training data of given cell-line of interest). In the testing stage,
we evaluated the performance on the test data of the given cell-
line of interest. Taking leave-HCT116-out procedure as an
example, we trained the model by combining training data
of HEK293T, HELA and HL60 cell lines (without HCT116
cell line training data), and evaluated the model on HCT116
cell line testing set. For fair comparison, we tested the proposed
CNN-SVR under the same condition with DeepCRISPR,
Frontiers in Genetics | www.frontiersin.org 840
sgRNA Designer, SSC, and WU-CRISPR on the four cell-
line datasets.

As can be seen from Figure 3A, among the compared models,
CNN-SVR exhibited the best predictive power, with average
Spearman correlation of 0.714. Compared with DeepCRISPR,
which was one of the best state-of-the-art approaches, CNN-SVR
showed superior performance on all datasets except for dataset
HCT116. DeepCRISPR got comparable performance with CNN-
SVR on HCT116 dataset. Furthermore, CNN-SVR outperformed
other methods on all datasets in terms of AUROC (Figure 3B).
Together, these results demonstrated the excel lent
generalizability of CNN-SVR. More details of the performance
can be found in Table S4.
FIGURE 3 | Performance comparison of CNN-SVR and other prediction models on various testing cell line data with a leave-one-cell-out procedure.
FIGURE 2 | Performance comparison of CNN-SVR and other prediction models on various testing cell line data.
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Evaluation of Robustness of
Prediction Models
In this section, we aimed to compare the robustness of the above
methods. To this end, we examined the changes between
Spearman correlation and AUROC values obtained by training
with four cell datasets (Figure 2) and those produced by the
leave-one-cell-out approach (Figure 3). For each evaluation
criterion, we calculated the difference of each model by
subtracting the results of training with leave-one-cell-out
(Table S4) from the cell-line independent (Table S3). Taking
CNN-SVR as an example, the AUROC difference of HCT116
dataset was calculated as follows:

DAUROCCNN−SVR = 0:936 − 0:939 = −0:003 (2)

where “ΔAUROC” means the difference value of AUROC. It can
be seen that our CNN-SVR substantially showed smaller changes
than DeepCRISPR in terms of the above mentioned two
evaluation measures (Table 3). Interestingly, we observed that
the performance of DeepCRISPR on dataset HEK293T using the
whole training set was significantly better than that by leave-one-
cell-out approach (with Spearman correlation difference value of
0.805, AUROC difference value of 0.455). Previous studies have
shown that gRNAs with low or high GC content tended to be less
active (Doench et al., 2014; Wang et al., 2014). We analyzed GC
content of the four cell datasets. As expected, dataset HEK293T
has the lowest GC content (vs. dataset HCT116, P=1.35E-52; vs.
dataset HELA, P=1.14E-69, vs. dataset HL60, P=1.45E-07, two-
sample Kolmogorov-Smirnov test, Figure S5).

Effect of Epigenetic Features on gRNA
Cleavage Efficacy
In this section, we determined whether cell line-specific
epigenetic features really boost the predictive performance. We
examined the performance of deep learning-based methods on
the four cell-line datasets only considering gRNA sequence
composition and compared them with those considering both
gRNA sequence and epigenetic information (see the section
Assessment of Generalization Performance With a Leave-One-
Cell-Out Procedure). We trained the prediction models without
epigenetic information (sequence only) for each cell line with a
leave-one-cell-out procedure. Note that, we trained the model
just considering the gRNA stream. Other numerical
experimental conditions were in accord with the section
Assessment of Generalization Performance With a Leave-One-
Cell-Out Procedure. For fair comparison, we compared our
methods with two deep learning-based methods (i.e.,
Frontiers in Genetics | www.frontiersin.org 941
DeepCRISPR and Seq-deepCpf1) only consider ing
sequence composition.

Figure 4 and Table 4 compared the prediction performance
of various deep learning methods trained using different datasets.
Two interesting conclusions can be drawn as below. First, CNN-
SVR showed better performance compared with other models.
Second, as expected, the prediction accuracies of models trained
only considering sequence composition (Figure 4A and Table
4A) became lower compared with those trained with both
sequence and epigenetic data (Figure 4B and Table 4B). To
conclude, these observations confirm that cell line-specific
epigenetic features contribute to gRNA activity and specificity.
More details of their performance of Spearman correlation can
be found in Table S5.

Visualizing Importance of Position-
Specific Nucleotides
Finally, we aimed to investigate what sequence patterns of gRNA
contribute to its on-target activity. Using the method in a
previous study (Xie et al., 2013), we investigated the feature
importance of all possible position-specific nucleotides. In brief,
we constructed a specific sequence and its corresponding
epigenetic features to feed the well-trained CNN model and
took the outputs for visualization. More details can be found in
Supplementary Material. Figure 5A depicts the importance of
all four nucleotides and epigenetic features at different positions.
Several interesting results can be observed: (i) Most of the top
features were generated by convolving the middle region of input
matrix. (ii) Thymines are found to be disfavored at the fourth
position adjacent to the PAM. The same observation was
obtained by Chuai et al., (2018), which is consistent with
previous finding that multiple uracils in the spacer result in
low gRNA expression (Doench et al., 2014). Another study also
found that thymine in the seed sequence might destabilize
interactions between the protein and crRNA (Kim et al., 2017).
(iii) Cytosine is informative at 3-nt upstream of the PAM since
the cleavage site usually resides 3 nt upstream the PAM. (iv) Our
model suggests that cytosine is also preferred at position 17,
which coincides with a previous finding that the cleavage is 3 nt,
4 nt or even further upstream of the PAM (Shou et al., 2018). (v)
In general, the middle region contains more information of the
epigenetic features. Notably, 3 nt upstream of the PAM has a
consistent preference for opening-chromatin information of
Dnase. This observation is in accordance with a previous
study, which corroborates that consideration of target site
accessibility can boost the accuracy of gRNA activity
prediction (Kim et al., 2018). Besides, we presented the
TABLE 3 | The differences of Spearman correlation and AUROC between independent test and a leave-one-cell-out approach between CNN-SVR and DeepCRISPR.

Model HCT116 HEK293T HELA HL60

(A) Spearman correlation
CNN-SVR -0.017 -0.002 0.011 -0.015
DeepCRISPR -0.107 0.805 -0.043 0.012
(B) AUROC
CNN-SVR -0.003 -0.001 -0.008 -0.045
DeepCRISPR -0.045 0.455 -0.038 0.096
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sequence logo to visualize the nucleotide differences on the
benchmark dataset. Overall, the result is in line with our
feature analysis (see Figure 5B).

We also explored the importance of dimers. Here, by
adopting the method proposed above, we generated a sequence
which only contains one dimer (out of 16 possible dimers) at
every position k and repeated the aforementioned process for all
subsequences. The scores of all the constructed subsequences for
all the positions were plotted as a heatmap in Figure S6. We note
that most of the top features were generated by convolving the
region of the seed sequence of the gRNAs. This observation
coincides with previous finding that a prototypical 10–12 nt
PAM-proximal seed sequence largely determines target efficacy
(Jinek et al., 2012; Cong et al., 2013).
DISCUSSION

Accurate prediction of gRNA cleavage efficacy is pivotal to
understanding the mechanisms of CRISPR/Cas9 system.
Although computational prediction of gRNA cleavage
efficiency has made much progress recently, the accuracy
remains to be improved. In this study, we introduced a novel
Frontiers in Genetics | www.frontiersin.org 1042
and interpretable deep learning framework named CNN-SVR for
CRISPR/Cas9 gRNA on-target activity prediction. Specifically,
CNN works as a trainable feature extractor and SVR performs as
a gRNA cleavage efficacy predictor. Compared with CNN and
three CNNs combined regression-based algorithms, CNN-SVR
achieved the best performance. CNN-SVR could not only
automatically extract gRNA sequence and the corresponding
epigenetic features using the CNN, but also improve the
generalization ability of CNN and regression accuracy.

Previous studies suggested that ensemble learning (Woźniak
et al., 2014) by incorporating multiple neural networks together
can achieve higher accuracy than a single learner (Maqsood et al.,
2004). Inspired by this, instead of using a single convolution
network to train the feature vectors of gRNA like Seq-deepCpf1,
we merged two sub-networks (i.e., gRNA stream and epigenetic
stream) to train gRNA sequence and its corresponding
epigenetic information. In addition, the architecture of the
proposed sub-networks was considerably shallower than
DeepCRISPR. Compared with several current state-of-the-art
learning-based methods, CNN-SVR can effectively exploit deep
features of gRNA sequences. Experimental results demonstrated
the power of our CNN-SVR for CRISPR/Cas9 gRNA
activity prediction.
FIGURE 4 | Spearman correlation between different deep learning-based models and datasets. Models considering (A) gRNA sequence composition only and (B)
both gRNA sequence and epigenetic information.
TABLE 4 | AUROC of different deep learning-based methods by considering gRNA sequence only and incorporating both gRNA sequence and epigenetic features.

Model HCT116 HEK293T HELA HL60 Average

(A) Sequence-only
CNN-SVR 0.938 0.976 0.930 0.928 0.943
DeepCRISPR 0.887 0.474 0.788 0.584 0.683
Seq-deepCpf1 0.931 0.976 0.925 0.920 0.938
(B) Sequence composition and epigenetic features
CNN-SVR 0.939 0.979 0.932 0.938 0.947
DeepCRISPR 0.919 0.506 0.820 0.643 0.722
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Besides, we found our CNN-SVR system has good
generalizability in new cell types by using leave-one-cell-out
approach on the four testing datasets. By analyzing the
changes of prediction results with and without considering
epigenetic information, we observed that considering of
epigenetic features slightly improves the accuracy of CRISPR/
Cas9 gRNA activity prediction. This result was consistent with
previous studies (Chen et al., 2017; Chuai et al., 2018; Kim et al.,
2018). Chuai et al. found that the prediction on HEK293T
became poor (Chuai et al., 2018). They speculated that it was
mainly due to the insufficient training data of the HEK293T
training dataset. Note that our findings suggested that the
reducing epigenetic features may be one possible explanation
for the observation. Additionally, the low GC content of dataset
HEK293T may be another possible explanation. We concluded
that our CNN-SVR gained better generalization and robustness
than DeepCRISPR.

Our model focused on gRNA sequence and four kinds of
epigenetic features for CRISPR/Cas9 on-target prediction. A
recent study on protein-related prediction has shown that
integration of other manual extracted features, such as
Frontiers in Genetics | www.frontiersin.org 1143
molecular weight and hydrophobicity into the deep learning
model could improve the predictive power (Wang et al., 2016). It
has been reported that GC content is associated with gRNA
activity (Doench et al., 2014; Wang et al., 2014). We thus made a
preliminary exploration of adding this sequence-derived feature
with our CNN-SVR for gRNA activity prediction on the above
four datasets. Note that, the training data and test data were
constructed in the same way as described in the section
Comparison CNN-SVR With CNN Model. Overall, addition of
GC content to CNN-SVR increased the predictive ability, with
Spearman correlation coefficients of 0.645, 0.656 and 0.608 on
datasets HCT116, HELA and HELA, respectively. Detailed
results can be found in Table S6. Therefore, manual design of
proper gRNA features will contribute to the prediction ability. In
the future, we plan to develop deep learning models
incorporating indirect sequence-derived sequence features to
improve the prediction performance, such as chromatin
accessibility (Kim et al., 2018), RNA thermodynamics (Abadi
et al., 2017), secondary structure of gRNA (Abadi et al., 2017),
and GC content, which cannot be automatically obtained by
deep learning models.
FIGURE 5 | (A) Visualization of the importance of different nucleotides and epigenetic features at different positions for our model trained on the benchmark dataset.
The colors represent the contribution of the position-specific nucleotides to determining an efficient gRNA. The x-axis shows the positions of the nucleotide in the
sequence. The y-axis lists all possible nucleotides. This representation also applies to. (B) Preference of nucleotide sequences that impact CRISPR/Cas9 gRNAs
activity.
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Visualization method was applied to our model. Note that the
PAM and the core region (1-5 nt adjacent to the PAM) are very
important for gRNA target efficacy. However, we observed that
the most top features were generated by convolving the middle
region of the input matrix. Therefore, we believe expanding the
upstream and downstream of the target sequence in a proper
length can enhance the generalization performance of the model.
For example, Kim et al. found 34 bp (4 bp + PAM + 23bp
protospacer + 3bp) was adequate as the input sequence of their
models in CRISPR/Cpf1 system (Kim et al., 2018).

Several future improvements are expected. First, in the
present study, taking advantage of CNN and SVR, we designed
the relative concise hybrid CNN-SVR architecture. Research on
the deep learning-based model for CRISPR/Cas9 system gRNA
cleavage efficiency prediction is still at an early stage. Numerous
complex and modern deep learning models await exploration.
Second, as pre-training technique has great influence on the final
predictive performance, therefore critical to know on what a
model was trained before use. In general, sequencing-based
models are more general applicable, but are only capable of
predicting the genotype changes rather than functional result.
On the contrary, phenotypic trained models are fit for
recognizing target sites that cause functional changes but
limited to numerical experiments with the same condition as
the training set. However, the amount of available gRNA
knockout data is relatively small, which provides a big
challenge for training the deep learning model. Consequently,
appropriate data augmentation techniques are needed to increase
the training sample size. Third, reasonable encoding schemes,
which provide maximum biological characteristics information
as well as reducing the compute costs, will boost the CRISPR/
Cas9 gRNA activity prediction accuracy. Finally, it is possible
that integration of manual extracted features associated with
gRNA activity can also improve predictive power of deep
learning models.
CONCLUSIONS

In this study, we present CNN-SVR, an efficient and extendable
method to automatically learn the sequence features for CRISPR/
Cas9 gRNA activity prediction. We adopt a merged CNN
Frontiers in Genetics | www.frontiersin.org 1244
architecture for gRNA and its corresponding epigenetic
features extraction, and subsequently incorporate SVR classifier
to predict gRNA cleavage efficiency. Compared with CNN, two
state-of-the-art deep neural network based models (e.g.
DeepCRISPR and Seq-deepCpf1) and three machine learning
tools (i.e., sgRNA Designer, SSC, and WU-CRISPR), CNN-SVR
can effectively exploit features interactions from feed-forward
directions to learn deeper features of gRNAs and their
corresponding epigenetic features. Experimental results on the
published datasets demonstrate the superiority of our CNN-SVR
for CRISPR/Cas9 gRNAs on-target activity prediction.
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Transcriptomics and Methylomics
Placental Analysis Highlights Genes
in Fetal Growth Restriction
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Guillaume Bouzillé4,5, Juan Manuel Chao de la Barca1,2, Vincent Procaccio1,2,
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Intrauterine Growth Restriction (IUGR) affects 8% of newborns and increases morbidity
and mortality for the offspring even during later stages of life. Single omics studies have
evidenced epigenetic, genetic, and metabolic alterations in IUGR, but pathogenic
mechanisms as a whole are not being fully understood. An in-depth strategy combining
methylomics and transcriptomics analyses was performed on 36 placenta samples in a
case-control study. Data-mining algorithms were used to combine the analysis of more
than 1,200 genes found to be significantly expressed and/or methylated. We used an
automated text-mining approach, using the bulk textual gene annotations of the
discriminant genes. Machine learning models were then used to explore the phenotypic
subgroups (premature birth, birth weight, and head circumference) associated with IUGR.
Gene annotation clustering highlighted the alteration of cell signaling and proliferation,
cytoskeleton and cellular structures, oxidative stress, protein turnover, muscle
development, energy, and lipid metabolism with insulin resistance. Machine learning
models showed a high capacity for predicting the sub-phenotypes associated with IUGR,
allowing a better description of the IUGR pathophysiology as well as key genes involved.

Keywords: data mining, methylomics, intrauterine growth restriction, multi-omics, text-mining, transcriptomics
Abbreviations: IUGR, intrauterine growth restriction; PE, pre-eclampsia; Se, sensitivity; Sp, specificity; tf, term frequency; idf,
inverse document frequency; SVM, support vector machine; RMSE, root-mean-square deviation; C-section, caesarean section.
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INTRODUCTION

Intrauterine growth restriction (IUGR) is a frequent
complication of pregnancy with a prevalence in up to 5% to
10% in the general population (Zhang et al., 2015). It is defined as
a restriction of fetal growth during pregnancy, “a fetus that
doesn’t reach its growth potential” (Vayssière et al., 2015). It
can lead to a birth weight and/or length below the tenth
percentile for a given gestational age in newborns, thus
considered as “Small for Gestational Age” (Vayssière et al.,
2015). IUGR represents a major public health problem, being
one of the main causes of premature birth, perinatal mortality,
and neurological and respiratory morbidities (Flamant and
Gascoin, 2013). It is also suspected to be a determining factor
in the development of cardiovascular diseases, obesity, and type 2
diabetes in adulthood (Gascoin and Flamant, 2013).

Fetal growth is a complex process that involves fetal genetics,
nutrient and oxygen availability, and maternal nutrition, as well
as growth factors and hormones from maternal, fetal, and
placental origin (Murki, 2014). Fetal growth is inseparable
from placental growth and requires a continuous supply of
nutrients that is adapted to each period of pregnancy (Sharma
et al., 2016).

IUGR remains a complex problem for the clinician. Placental
dysfunction and vascular underperfusion are involved in the
largest proportion of cases (Kaplan, 2007; Malhotra et al., 2019).
It results from utero-placental insufficiency due to abnormal
uterine artery remodeling in the first trimester of pregnancy and
may or may not be associated with pre-eclampsia (PE). However,
while many risk factors have been identified, placental
insufficiency is still unexplained in up to 60% of cases
(Malhotra et al., 2019).

Epigenetics (Xiao et al., 2016) and gene expression (Buffat
et al., 2007; Madeleneau et al., 2015) reprogramming play
a central role in IUGR. However, the pathophysiological
connections between these two fields of high-throughput
analyses have only recently begun to be studied (Ding and Cui,
2017). Although many tools have been developed to analyze and
integrate multi-omics data, this task remains a challenge in
medicine (Gomez-Cabrero et al., 2014). Many features
originating from the variance between samples and the
complexity of the statistical data processing require developing
data-driven approaches rather than classical hypothesis-driven
approaches (van Helden, 2013). The exploration of
pathophysiological conditions with such data-driven
approaches must integrate many processes from clinical and
biological data collection, through complex data normalization
and mathematical and bioinformatics modeling, to the final
interpretation and data visualization.

When dealing with a short list of genes, the exploration of
their roles and underlying patterns is usually carried out through
“manual” interpretation, using both annotations and personal
knowledge. This “manual” interpretation may be used to
categorize the genes, or to seek patterns in roles, functions, or
localizations, underpinning the pathology or context studied.
When dealing with thousands of significant gene features (e.g.
Frontiers in Genetics | www.frontiersin.org 247
expression levels or methylation levels), the interpretation
becomes humanly untenable, due to time and memory limits.
Rather than limiting our literature review to a small subset of the
most significantly altered genes, we used text-mining algorithms
to perform an unsupervised analysis of those genes. Those
algorithms have already been used to categorize and
summarize text corpora based on similarities in their content
(Aggarwal and Zhai, 2012).

With the aim of having an extended vision of the
pathophysiological processes at the origin of IUGR, while
identifying the most predominant deregulated pathways that
may be targeted for therapeutic purposes, we used machine-
learning models to explore the relationship between placental
transcriptomics and methylomics variations and IUGR. The
highly predictive models obtained from IUGR and its sub-
phenotypes were then used to highlight the genes with a high
correlation with IUGR clinical severity, and thus with a high
therapeutic potential.
MATERIAL AND METHODS

The global workflow is summarized in Figure 1.

Patients
All placentas were collected from Angers University Hospital.
This study was approved by the Ethics Committee of Angers.
All patients gave their informed consent for the use of their
placenta. Clinical data related to the mother and the fetus, as
well as neonatal data, were collected from the patients’
obstetric files. The cohort was registered at the French CNIL
(Commission Nationale de l’Informatique et des Libertés no.
pWP03752UL, ethics committee for the collection of clinical
data from patient records). The study was validated by the
French CPP (Comité de Protection des Personnes) and
registered to the French Ministry of Research under number
DC-2011-1467. The study was conducted in accordance with
the declaration of Helsinki.

Placentas were obtained from caesarean sections before onset of
labor or from vaginal delivery. For the analysis, patients were
classified into two groups: IUGR and control group. The IUGR
group was defined by a reduction of fetal growth during gestation,
with anotchobservedbyEcho-Doppler inat least oneuterine artery
and with Doppler abnormalities on umbilical Doppler and/or
cerebral Doppler and/or ductus venosus, and with a birth weight
below the tenth percentile according to Audipog growth curves
(American College of Obstetricians and Gynecologists, 2013) and
confirmedby the anatomopathological analysis of theplacenta after
birth. The control group was defined by women with normal
pregnancy and who underwent a planned caesarean section. All
obstetrical and neonatal data were collected prospectively from
medical records.

Placental Samples
To avoid degradation, only placental tissues dissected within a
time frame of 30 min after delivery were included. After removal
January 2020 | Volume 10 | Article 1292
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of the maternal decidua and amniotic membrane, sections of
1 cm3 of placental villi were dissected from four different
cotyledons between the basal and chorionic plates, as
previously described (Gascoin-Lachambre et al., 2010). After
vigorous washing with PBS to remove maternal blood, tissues
were immediately frozen in liquid nitrogen, before storage at
−80 °C, to further extract DNA and RNA. Placentas were then
sent for anatomopathological analysis or stored at the biological
core facility at Angers University Hospital.

DNA Preparation and Microarray
Hybridization
Genomic DNA extraction was performed manually using a
QIAamp DNA mini QIAcube Kit (Qiagen, Venlo, Netherlands),
according to the manufacturer’s protocol.

DNA was treated with bisulfite using an EZ-96 DNA
Methylation Kit on a Zymo Spin I-96 column (Zymo Research,
Irvine, CA, U.S.A.). Bisulfite-converted DNA was amplified,
fragmented, and hybridized to Illumina Human Methylation
450k microarrays using an Illumina Hybridization Oven
(Illumina, San Diego, CA, U.S.A.), according to the
Frontiers in Genetics | www.frontiersin.org 348
manufacturer’s protocol. Slides were analyzed by an Illumina I-
Scan (Illumina, San Diego, CA, U.S.A.).

Raw iDAT files were directly imported in R software (R
Development Core Team, 2008) and processed using the R
minfi package (Aryee et al., 2014). Raw data were normalized
using functional normalization (Fortin et al., 2014) before
constructing the beta matrix for all 36 samples and 485,512
CpG sites (methylomics dataset).

RNA Preparation and Microarray
Hybridization
Total RNA was extracted after lysing samples with TRIzol
reagent (Life Technologies, Carlsbad, CA, U.S.A.), using the
RNeasy Micro kit (Qiagen, Venlo, Netherlands), according to
the manufacturer’s recommendations. Biotinylated, amplified
cRNA was generated using the Illumina Total Prep RNA
Amplification kit (Ambion, Life Technologies, Carlsbad, CA,
U.S.A.), according to the manufacturer’s recommendations.
cRNA was hybridized on Illumina HumanHT-12 v4
Expression BeadChips, stained, and detected with the iScan
system, according to the manufacturer’s protocol (Illumina,
FIGURE 1 | Global workflow of the analysis. Placentas methylome and transcriptome were analyzed (A). Significant genes were clustered and described using text
annotations (B). Quantitative data were used to predict phenotypic data, and the importance of each gene in phenotype prediction was visualized using networks (C).
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San Diego, CA, U.S.A.). A total of 47,323 marker probes were
assessed, of which: 47,231 elements with sequences, with 46,841
with at least one genome alignment, including 34,627 elements
mapped to at least one among 22,283 unique genes.
GenomeStudio 2011 (version 1) and its Expression Analysis
Module (version 1.9.0) were used for signal extraction and
quantile normalization (Illumina, San Diego, CA, U.S.A.).

Normalized data for all 47,323 marker probes and 36 samples
were imported into R software (R Development Core Team, 2008)
and processed as described below (transcriptomics dataset).

Omics Data Integration
Each omics dataset was processed independently. Levene’s tests
were used to assess the comparability of variances between
control and IUGR groups. Significant features were determined
using Student’s t-tests. Alpha thresholds for p-value significance
were set to a = 0.05. For Student’s t-tests, p-values were adjusted
into q-values using the Benjamini-Hochberg method in order to

control the false discovery rate. The IUGR
control fold-change was

computed for all significant features. Only features with Levene’s
test p-value ≥ 0.05 and Benjamini-Hochberg adjusted Student’s
t-test q-value < 0.05 were considered significant.

Gene Annotation and Text-Mining
All genes showing a significant alteration in methylation or
expression were annotated using abstracts available on
PubMed, by automatic retrieval. Genes without available
annotations were discarded. Abstracts were pre-processed by
removing punctuation, short words (words of three characters or
fewer) and stop words (i.e. common language non-specific
words), and stemming (Willett, 2006). They were then
analyzed by taking into account, in the same analytical process,
unigrams, bigrams, and trigrams, commonly denoted as terms. A
normalized term-frequency inverse-document-frequency (tf-idf)
matrix (Aggarwal and Zhai, 2012) was then computed based on
the frequency and specificity of each term in each gene summary,
using the formula:

Mi,j = tfi � idfi

With the inverse document frequency idfi for the term i:

idfi = log2
jDj

j df jti ∈ djgj
� �

whereMi,j is the value in the matrix for the term i and gene j,tfi is
the number of occurrences of the term i in the gene j summary
divided by the total number of terms in the summary, |D| is the
number of genes and |{d|ti ∈ d|}| is the number of gene
summaries where the term i appears.

Due to the large dimension of the initial tf-idf matrix, a Latent
Semantic Analysis (LSA) (Evangelopoulos, 2013) was performed
in order to reduce its dimension and render further analyses
possible. K-means was then used to perform clustering based on
gene annotations similarity. Clusters were then summarized by
terms closest to the cluster centers.
Frontiers in Genetics | www.frontiersin.org 449
Phenotype Prediction and Network
Visualization
Support vector machines (SVM) are state-of-the-art machine-
learning models that have already been successfully applied to
several omics studies (Ben-Hur et al., 2008). They can
successfully highlight non-linear correlations between genes
and phenotypic traits, in order to highlight genes based on
their links with several phenotypic traits (Altmann et al.,
2010). Furthermore, SVM models are particularly suitable for
high-dimensionality datasets, such as results of high-throughput
analyses (Vanitha et al., 2015).

SVM models were trained using grid search cross-validation
to predict four phenotypic traits as a function of omics data:
control/IUGR group, premature birth (see below), birth weight,
and head circumference at birth. These four phenotypic traits
were chosen because of their known relevance in the IUGR
pathophysiology. Term birth is defined by the International
Classification of Diseases as between 37 (included) and 42
(excluded) weeks (Quinn et al., 2016), otherwise 39.43 ± 2.43
weeks. To simplify, pregnancy term was expressed as a variable
named premature birth, computed with the formula:

Premature birth = 39 − Gestational Age

Since gestational age and the newly-created variable,
premature birth, are linearly correlated, this simplifies yet does
not alter the interpretation of the results of the model’s
predictions. Values >2 therefore indicate pre-term newborns,
while values ≤-3 indicate post-term newborns.

Both head circumference at birth and birth weight were
expressed as Z-scores according to the gestational age and
gender, based on Olsen growth curves (Olsen et al., 2010), to
standardize values between infants born at different terms. Case-
control classification is important to verify the integrity of the
dimension-reduced dataset. Birth weight is a criterion of severity
of the IUGR. Head circumference at birth is a criterion of high
severity, due to the brain sparing effect (Cohen et al., 2015).
Premature birth is indirectly linked to severity of these. Indeed,
in most cases during IUGR pregnancies, a delivery is induced or
carried out via caesarean section, to prevent either maternal or
fetal damage. Exploring factors correlated with the premature
birth may therefore allow exploring severity symptoms not
directly and only linked to IUGR.

The dimensionality of the omics dataset had to be reduced
before training the SVM, to reduce noise and achieve better
model predictions (Keogh and Mueen, 2010). For this reason,
only features with a significant difference between IUGR and
control groups were used to train SVM models (q < 0.05, after
Benjamini-Hochberg adjustment). Several methods may be used
to reduce the dimensionality of a dataset (Guyon and Elisseeff,
2003). Features selection was preferred compared to other
methods like Principal Components Analysis as it allows the
use of the initial variables instead of computing new, abstract
dimensions, making the final interpretation easier. Student’s t-
tests have already been evidenced as an effective method for
features selection (Haury et al., 2011). By using Student’s t-tests
as the features selection method, this step could be applied
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seamlessly to our omics analyses results, without modifying or
altering the results.

The dataset was randomly partitioned into training and test
sets, with a ratio of two-thirds/one-third, using stratified
sampling in order to respect the original case

control ratio. Due to

the low number of samples and the imbalance between IUGR
and control samples, Synthetic Minority Over-sampling
Technique (SMOTE) was used in order to synthetically
increase the training set size (Chawla et al., 2002). Test sets
were not modified to ensure unbiased results when measuring
models’ performances. Hyperparameters were fine-tuned with
grid search cross-validation. Model results were assessed using
accuracy for classification, and Pearson’s correlation factor
for regression.

The variable importance for predicting each phenotypic trait
was computed for each feature by Permutation Importance
(Breiman, 2001). These results were used to carry out a
network visualization to assess the importance of each feature
in the prediction of each phenotypic trait.

Computational Tools
R software (version 3.4.1) and Python (version 3.6) were used to
carry out all data processing and analysis, as well as to output all
plots (van Rossum, 1995; R Development Core Team, 2008).
Heat maps were created using the gplots package (Warnes et al.,
2016). Gene functional annotation analysis was performed for
both gene expression and gene methylation using the DAVID 6.8
online tool (Huang et al., 2009a, 2009b). Genes were annotated
with abstracts available from PubMed (10/10/2019) using
easyPubMed (Fantini, 2019). Text-mining and SVM
Frontiers in Genetics | www.frontiersin.org 550
computing were processed using the python scikit-learn library
(Pedregosa et al., 2011). Word clouds were created using the
wordcloud R software package (Fellows, 2014). Hierarchical
clustering was performed using the R software base package.
Networks were constructed using Cytoscape (Shannon et al.,
2003). The GIMP software was used to refine figures.
RESULTS

Cohort
Patient cohort is described in Table 1. It should be noted that
while the control group is smaller, controls are much more
homogeneous concerning clinically relevant phenotypic traits
discussed below. F-tests show a significantly lower variance in
this control group for gestational age at birth (in grams) (p =
4.48E-5), head circumference at birth (in centimeters) (p =
1.08E-3), and APGAR at 5 min (p = 3.48E-5).

Univariate Analyses
A total of 1651 features (1,072 DNA methylation sites, 579
transcripts) showed significantly different values between
IUGR and control groups (q < 0.05). The full list of significant
features is available in Supplementary Table 1.

Since a significant difference in mean gestational age had
been observed between IUGR and control groups, univariate
analyses were re-run after excluding IUGR samples with a
gestational age lower than 37 weeks. Kendall correlation tests
were then performed to compare Student’s t-tests results
obtained for the whole cohort and for the high gestational age
TABLE 1 | Description of the patient cohort. p-values were computed using Wilcoxon tests (quantitative values) or Fisher tests (percentages).

Control group (n = 8) IUGR group (n = 28) p

Maternal data Age (years) 35.4 ± 3.9 8 29.1 ± 5.9 28 0.006
BMI before pregnancy (kg/m2) 23.7 ± 7.0 8 25.1 ± 7.9 28 N.S.
Tobacco consumption Before pregnancy 0 (0.0%) 8 2 (7.1%) 28 N.S.

During pregnancy 0 (0.0%) 8 9 (32.1%) 28 N.S.
Ethnic group European 7 (87.5%) 8 26 (92.9%) 28 N.S.

North African 1 (12.5%) 8 2 (7.1%) 28 N.S.
Obstetric data Gestity 4.0 ± 2.1 8 2.5 ± 1.9 28 0.03

Parity 2.6 ± 1.3 8 1.4 ± 0.9 28 0.005
Weight gain (kg) 10.5 ± 10.5 8 9.1 ± 6.4 24 N.S.
Type of delivery Vaginal delivery 0 (0%) 8 5 (17.9%) 28 N.S.

C-section 8 (100%) 8 23 (82.1%) 28 N.S.
Pathology IUGR 0 (0%) 8 16 (57.1%) 28 N/A

IUGR + PE 0 (0%) 8 12 (42.9%) 28 N/A
Newborn data Gestational age (week) 38.7 ± 0.7 8 34.0 ± 3.9 28 <0.001

Gender Boy 4 (50.0%) 8 9 (32.1%) 28 N.S.
Girl 4 (50.0%) 8 19 (67.9%) 28 N.S.

Birth weight (Z-score) −0.07 ± 0.89 8 −2.02 ± 0.75 28 <0.001
(g) 3346 ± 444 8 1,524 ± 664 28 <0.001

Birth size (Z-score) −0.47 ± 0.74 7 −1.90 ± 0.80 26 <0.001
Birth size (cm) 49.2 ± 1.8 7 39.2 ± 5.2 26 <0.001
Head circumference at birth (Z-score) 0.22 ± 0.49 7 −1.30 ± 0.86 27 <0.001
Head circumference at birth (cm) 34.6 ± 0.9 7 29.0 ± 3.4 27 <0.001
APGAR at 5 min 9.88 ± 0.35 8 9.11 ± 2.08 28 N.S.
Resuscitation at birth 0 (0%) 8 12 (42.9%) 28 0.03
NICU 0 (0%) 8 18 (64.3%) 28 0.003
January 2020 | Volume 10 | Artic
BMI, body mass index; PE, pre-eclampsia; NICU, neonatal intensive care unit; N.S., non-significant versus a = 0.05; N/A, not applicable.
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restricted subset. Gene expression and gene methylation features
were significantly correlated (p < 0.001, t = 0.45; p < 0.001,
t = 0.40, respectively).

Heat maps picturing all genes with significant expression
(Figure 2) or methylation (Figure 2) alteration showed a global
hypomethylation, as opposed to a balanced ratio between the
number of overexpressed and underexpressed transcripts. While
hierarchical clustering distinctly separated IUGR from control
samples, IUGR samples appeared divided into two different
clusters for both heatmaps, even though the exact distribution
of IUGR samples is not exactly the same for epigenetic and
expression alterations. In order to explain this behavior,
gestational age at birth of IUGR samples according to clusters
was plotted in Figure 3.

Gene functional annotation analysis, performed with
DAVID, showed gene expression and/or methylation
alterations significantly associated with several pathways (p <
0.05), including: NAD-binding, histone acetylation, mTOR
signaling pathway, lysosome, cell-cell adhesion and cell
Frontiers in Genetics | www.frontiersin.org 651
junction, calmodulin binding, and carbohydrates metabolism.
The complete results are available in Supplementary Table 2.

Only 25 genes were found to be altered both in methylome
and transcriptome (Table 2). Among these 25 genes, eight
show a significant linear correlation between methylation
and expression.

Textual Annotation and Text-Mining
Among these 1,651 features, 1,269 unique genes could be
identified, and textual annotations were successfully retrieved
for 1,259 of them. A total of 196,918 abstracts were retrieved
(95% confidence interval: [146;167] abstracts per gene). LSA
allowed reducing the dimension from 135,220 unique terms
among all abstracts to 1,000 principal components, while
retaining 97% of the initial tf-idf matrix variance. Genes were
classified into 24 clusters. The cluster sizes ranged from 7 (0.6%)
to 241 (19.1%) genes.

These clusters were summarized by word clouds picturing the
most frequent and specific terms among the gene clusters,
FIGURE 2 | Hierarchical clustering of samples, gene expression (A) and methylation (B).
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allowing a quick and easy grasp and visualization of the global
role of the clusters (Figure 4).

Predicting Phenotypic Traits From Omics
Data
The 1,651 features were used as input data to predict the
outcome for four phenotypic traits (IUGR, premature birth,
birth weight, and head circumference), in order to measure the
importance of each gene in sub-phenotypic prediction. Class-
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control classification showed perfect predictions on the test set,
with clearly distinct predicted probabilities between control and
IUGR samples (Figure 5). This large gap of probabilities between
IUGR and control samples confirmed the robustness of the
model. These results were expected, as only features showing a
significant difference between IUGR and control groups were
selected for training the model. Furthermore, the previous
unsupervised analysis (Figure 2) confirmed a clear distinction
between IUGR and control samples.
TABLE 2 | Genes found altered in both methylome and transcriptome. Numbers in brackets refer to the number of methylation sites (methylome) and transcripts
(transcriptome) found significantly altered.

Gene symbol Gene name Epigenetics (sites count/total) Gene expression
(transcripts count/total)

r

PAPPA2 Pregnancy-Associated Plasma Preproprotein-A2 Hypomethylated (2/13) Overexpressed (2/2) -0.76
AP2A1 Adaptor Related Protein Complex 2 Subunit Alpha 1 Hypomethylated (1/26) Underexpressed (2/3) N.S.
BCL6 B Cell CLL/Lymphoma 6 Hypomethylated (2/55) Overexpressed (1/2) -0.65
SLC2A1 Solute Carrier Family 2 Member 1 Hypomethylated (2/34) Overexpressed (1/1) -0.42
UNKL Unkempt Family Like Zinc Finger Hypomethylated (2/74) Underexpressed (1/3) N.S.
WSB1 WD Repeat and SOCS Box Containing 1 Hypomethylated (1/19) Underexpressed (2/3) N.S.
AFAP1 Actin Filament Associated Protein 1 Hypomethylated (1/103) Overexpressed (1/3) N.S.
ALDOA Aldolase, Fructose-Bisphosphate A Hypomethylated (1/27) Overexpressed (1/4) -0.43
ALKBH5 AlkB Homolog 5, RNA Demethylase Hypomethylated (1/23) Overexpressed (1/1) N.S.
C1QTNF1 C1q And TNF Related 1 Hypomethylated (1/40) Underexpressed (1/3) 0.40
CALM1 Calmodulin 1 Hypermethylated (1/20) Overexpressed (1/1) N.S.
DGKZ Diacylglycerol Kinase Zeta Hypomethylated (1/62) Overexpressed (1/3) N.S.
DLX5 Distal-Less Homeobox 5 Hypomethylated (1/47) Overexpressed (1/1) N.S.
FLNB Filamin B Hypomethylated (1/40) Overexpressed (1/1) -0.58
FOXK1 Forkhead Box K1 Hypomethylated (1/175) Underexpressed (1/2) 0.36
LIMCH1 LIM and Calponin Homology Domains 1 Hypomethylated (1/51) Overexpressed (1/1) -0.51
PDP2 Pyruvate Dehyrogenase Phosphatase Catalytic Subunit 2 Hypomethylated (1/13) Underexpressed (1/2) N.S.
PDXK Pyridoxal Kinase Hypomethylated (1/37) Underexpressed (1/1) N.S.
PEA15 Proliferation and Apoptosis Adaptor Protein 15 Hypomethylated (1/12) Overexpressed (1/1) N.S.
PLEKHA2 Pleckstrin Homology Domain Containing A2 Hypermethylated (1/22) Overexpressed (1/4) N.S.
RALGPS1 Ral GEF With PH Domain and SH3 Binding Motif 1 Hypomethylated (1/20) Underexpressed (1/1) N.S.
RRAD RRAD, Ras Related Glycolysis Inhibitor and Calcium Channel Regulator Hypomethylated (1/13) Overexpressed (1/2) N.S.
SFRS8 Splicing Factor SWAP Hypomethylated (1/77) Underexpressed (1/1) N.S.
UCKL1 Uridine-Cytidine Kinase 1 Like 1 Hypomethylated (1/18) Underexpressed (1/1) N.S.
USP5 Ubiquitin Specific Peptidase 5 Hypomethylated (1/23) Underexpressed (1/1) N.S.
Janu
ary 2020 | Volume 10 | Article
Pearson’s correlation coefficient r is given for genes with a significant correlation between methylation and expression. N.S., Not significant.
FIGURE 3 | Box plots of gestational age at birth according to IUGR samples position in hierarchical clustering based on methylomics (A) and transcriptomics (B) data.
1292

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Chabrun et al. Omics in Fetal Growth Restriction

Frontiers in Genetics | www.frontiersin.org 853
Premature birth, birth weight, and head circumference scores
predicted on test samples were linearly correlated with actual
values (p < 0.01) (Figure 6).

A network was created to represent all omics features with
at least 10% importance for predicting at least one phenotypic
trait (Figure 7). Among the nine genes with high importance
(> 80%) in the prediction of at least one phenotypic trait,
five (NMD3, ORC6L, MAPK8, PDCL, PLP1), in the center of
the network share an importance in predicting most studied
phenotypic traits.

The full list of methylomics and transcriptomics features with
importance higher than 50% for phenotypic prediction is
available in the Supplementary Table 3.
DISCUSSION

Text Annotation Clustering and Word
Cloud Visualization
In most high-throughput gene studies, functional annotation
analysis is a powerful tool, allowing the highlighting of pathways
enriched in a particular pathophysiological context. However,
FIGURE 4 | Word clouds summarizing the most frequent and specific terms among the 24 gene clusters (A–X).
FIGURE 5 | Box plot of case-control model predicted probability according
to IUGR/control group.
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limiting gene annotation to categorical roles or pathways leads to
a significant loss of knowledge in comparison with data available
in literature.

Word clouds allowed a visual description of the main biological
processes and pathways involved in the IUGR pathophysiology, in
order to speed up and deepen the bibliographic work on genes
significantly altered in IUGR.
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Cell Signaling and Proliferation
Many terms among the most frequent and specific refer to proto-
oncogenes and cell proliferation and signaling and development
mechanisms. This is confirmed by several genes isolated from
both methylome and transcriptome (overexpression of BCL6,
CALM1, DLX5, PEA15, RRAD, and underexpression of FOXK1
and UCKL1).
FIGURE 6 | Values predicted by SVM models as a function of actual values for premature birth (A), birth weight (B), and head circumference at birth (C).
FIGURE 7 | Network depicting significantly altered features and their importance in predicting IUGR phenotype. Nodes were positioned according to an Edge-
weighted Spring Embedded Layout, based on feature importance for predicting each phenotypic trait. Only genes with at least 80% importance for predicting at
least one phenotypic trait are labeled.
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DNA, RNA Regulation, Transcription, Translation
Many gene clusters (C, D, F, G, I, L, respectively 5.4%, 5.5%,
2.1%, 1.8%, 2.0% and 2.9% of genes) refer to DNA methylation
and repair, regulation of transcription, and RNA splicing and
translation. Epigenetic and gene expression alterations in IUGR
have been evidenced here as well as in literature (Kawai
et al., 2015).

Mitochondria and Oxidative Stress
Clusters H and T (2.0% and 1.8%, respectively) refer to
mitochondria alterations, cell death and apoptosis, and redox
reactions. Indeed, pregnancy increases ROS production and
oxidative stress, causing damage to mitochondria and
potentially leading to cell death, especially during pathological
pregnancies like PE or IUGR (Myatt and Cui, 2004). These
phenomena may have a role in the fetal programming
of atherosclerosis (Leduc et al., 2010). ALKBH5 (found
hypomethylated, overexpressed) encodes a hypoxia-inducible
factor playing a role in cell proliferation (Zhang et al., 2016).

Intra- and Extra-Cellular Matrix
Several clusters (E, F, W, respectively 2.3%, 2.1% and 5.0%)
suggest primarily cytoskeleton and cell-cell junction alterations.
Furthermore, cluster N (1.0%) refers to intra-cellular trafficking
and cell mechanisms relying heavily on the cytoskeleton.
Riquelme and her colleagues (Riquelme et al., 2011)
have already evidenced abnormalities in the lipid raft
composition of the microvillous membrane of the placental
syncytiotrophoblast, linked with alterations in the expression
of several cytoskeletal proteins (actin, ezrin, and cytokeratin-7)
in placentas from pathological pregnancies (PE and IUGR). They
suggest that these cytoskeleton alterations might be responsible
for alterations in the syncytiotrophoblast microvilli, which may
play a major role in the IUGR pathophysiology. Among the
genes found altered in both methylome and transcriptome,
AFAP1 is a major regulator of the cytoskeleton structure
(Xiao et al., 2012). FLNB codes for an actin-binding
protein crosslinking actin filaments and playing various roles
including cell proliferation and angiogenesis through
mechanotransduction (Xu et al., 2017). Clusters P and X (2.0%
and 6.9%, respectively) refer to extracellular matrix alterations.
Such alterations have already been evidenced in IUGR
(Merchant et al., 2004; Swierczewski et al., 2012).

Protein Degradation and Turnover
Cluster S (2.6%) refers to protein SUMOylation, ubiquitination,
and degradation. It has been evidenced that protein
ubiquitination is altered in IUGR and PE, particularly due to a
modulation by oxidative stress, with an increased degradation of
p53 and Mcl-1 proteins, contributing to the pathological
mechanisms of the diseases (Rolfo et al., 2012). WSB1
(underexpressed here) mediates ubiquitination and proteolytic
degradation, and is also involved in cell and glucose metabolism,
playing a role in hypoxia-related mechanisms (Haque et al.,
2016). USP5 (underexpressed here) codes for a deubiquitinating
enzyme which has also been shown to play a role in cell
cycle modulation.
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Heart and Skeletal Muscle Development
Heart and skeletal muscles are referred to in cluster P (2.0%).
Wang et al. (Wang et al., 2013) and Yates et al. (Yates et al., 2012)
already reported that hypoxemia and hypoglycaemia undergone
during IUGR decrease muscle mass in offspring. DGKZ (found
hypomethylated, overexpressed) is known to induce muscle fiber
hypertrophy and plays a role in the adaptation to energy
metabolism alterations (Benziane et al., 2017). FOXK1 induces
muscle progenitor cell proliferation and inhibits their
differentiation (Shi et al., 2012). FOXK1 was found here both
hypomethylated and underexpressed. This underexpression
might be due to another role of FOXK1 in repressing
starvation-induced atrophy and autophagy (Bowman et al., 2014).

Energy Metabolism and Insulin Resistance
Major references are made to fat and lipid metabolism in cluster
O (5.4%) and cluster Q (1.2%). These clusters support the
hypothesis of an alteration of lipid and fat metabolism during
IUGR, reflecting mechanisms of insulin resistance. Several genes
found altered in both methylome and transcriptome support this
pathway. Among these genes, PAPPA-2 is the gene with the
largest number of methylation sites significantly altered
(hypomethylation), and with the largest number of transcripts
significantly differently expressed (overexpression) in IUGR
placentas. Its overexpression has already been reported in both
maternal blood and the placenta in IUGR (Whitehead et al.,
2013) and PE (Kramer et al., 2016). PAPPA-2 encodes a protein
cleaving the insulin-like growth factor 1 (IGF-1) from a ternary
complex with IGF binding proteins (IGFBP-3) (Fujimoto et al.,
2017). Via this regulation of the IGF-1 bioavailability, it plays a
key role in both placenta development and fetal growth. Both low
and high levels of IGF-1 have also been associated with insulin
resistance (Friedrich et al., 2012). Interestingly, the STC2 gene,
encoding the PAPPA2 inhibitor stanniocalcin-2, was found
significantly hypomethylated here, but its expression was not
significantly altered between IUGR and control groups.

PEA15 encodes a phosphoprotein responsible for insulin
resistance and diabetes. Higher levels of expression of PEA15
have been reported in both patients with diabetes mellitus type 2
(Condorelli et al., 1998) and in euglycemic patients with
impaired insulin sensitivity (Valentino et al., 2006). The DGKZ
gene, already discussed above, has been proven to play a role in
the protection against peripheral insulin resistance and in
improving overall energy metabolism (Benziane et al., 2017).
SLC2A1, also known as glucose transporter 1 (GLUT1), is the
major glucose transporter in the human placenta and the rate-
limiting step of glucose transport from the placenta to the fetus
(Illsley, 2000). Its overexpression here might reflect mechanisms
of adaptation to fetal nutrient restriction. C1QTNF1, also known
as glucose-dependent insulinotropic polypeptide (GIP) is an
adipokine, whose secretion by adipocytes is increased under
hypoxia, partially under the control of HIF-1a. It stimulates
proinflammatory gene expression and impairs insulin sensitivity
of adipocytes (Chen et al., 2015). However, C1QTNF1 was found
underexpressed in this study.

Two more genes supporting these mechanisms of insulin
resistance were found here among the most overexpressed genes:
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HTRA4 (IGF binding domain containing protein, fold-change =
7.33) and LEP (leptin, fold-change = 4.89). This major
overexpression had already been observed in both IUGR
(Madeleneau et al., 2015) and PE (Brew et al., 2016).

Sub-Phenotype Prediction
Unsupervised clustering (Figure 2) showed a clear distinction
between IUGR and controls and suggested the existence of
multiple sub-phenotypes in the IUGR group (Figure 3).

As expected, SVM models were able to accurately predict
such phenotypic traits: gestational age at birth, birth weight, and
head circumference, using only a small subset of the whole data,
i.e. 1,651 (0.3%) methylome and transcriptome variables. These
results confirmed the high predictive value of the genes
highlighted in this study in the IUGR, as well as in several
variables of severity and pathophysiology of the IUGR.

In particular, nine genes with high importance in the
prediction of these phenotypic traits were observed. Network
visualization (Figure 7) showed that most of these genes are
correlated with most clinically relevant traits studied here.

Among these genes, CERK, GNL1, PLP1, and MAPK8 are
known to be altered or play a direct role in the pathophysiology
of IUGR or PE in various pathways discussed above:
differentiation and proliferation regulation, response to
hypoxia and oxidative stress, and neurological maturation
(Vaiman et al., 2011; Reid et al., 2012; Goyal et al., 2013; Chan
et al., 2019). For the other genes (VTCN1, C11ORF49, PDCL,
ORC6L, NMD3), no obvious link with IUGR was found in
literature, creating a topic for future studies regarding their
exact role in the IUGR pathophysiology.

Limits
Our study was mainly limited by the imbalance between cases
and controls and the relatively weak number of controls.
However, as already stated, controls show a significantly lower
variance for most phenotypic traits discussed in this study.
Furthermore, oversampling methods were used in order to
compensate this limit and prevent model overfitting, while
assessing the importance of genes on unmodified test sets
which were not previously used for training models.

Conclusion
Many epigenetic and gene expression alterations in IUGR
placentas have been observed here, some of them confirming
previous mechanisms already published, and others being new
findings. Several major pathways were highlighted by annotation
text-mining analysis: cell cycle and proliferation, regulation of
apoptosis, epigenetic modifications, transcription, translation,
oxidative stress and hypoxia, cytoskeleton and cell structure,
protein degradation and turnover, autophagy, muscle
development, and glucose and lipid energy metabolism. The
involvement of these pathways was supported by significant
differences in both methylome and transcriptome. Finally,
several key genes with high correlation with phenotypic traits
clinically relevant for IUGR were observed and may constitute
potential targets for future study.
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The high mortality rate of hepatocellular carcinoma (HCC) is primarily due to its late
diagnosis. In the past, numerous attempts have been made to design genetic
biomarkers for the identification of HCC; unfortunately, most of the studies are based on
small datasets obtained from a specific platform or lack reasonable validation performance
on the external datasets. In order to identify a universal expression-based diagnostic
biomarker panel for HCC that can be applicable across multiple platforms, we have
employed large-scale transcriptomic profiling datasets containing a total of 2,316 HCC
and 1,665 non-tumorous tissue samples. These samples were obtained from 30 studies
generated by mainly four types of profiling techniques (Affymetrix, Illumina, Agilent, and
High-throughput sequencing), which are implemented in a wide range of platforms. Firstly,
we scrutinized overlapping 26 genes that are differentially expressed in numerous datasets.
Subsequently, we identified a panel of three genes (FCN3, CLEC1B, and PRC1) as HCC
biomarker using different feature selection techniques. Three-genes-based HCC biomarker
identified HCC samples in training/validation datasets with an accuracy between 93 and
98%, Area Under Receiver Operating Characteristic curve (AUROC) in a range of 0.97 to
1.0. A reasonable performance, i.e., AUROC 0.91–0.96 achieved on validation dataset
containing peripheral blood mononuclear cells, concurred their non-invasive utility.
Furthermore, the prognostic potential of these genes was evaluated on TCGA-LIHC and
GSE14520 cohorts using univariate survival analysis. This analysis revealed that these
genes are prognostic indicators for various types of the survivals of HCC patients (e.g.,
Overall Survival, Progression-Free Survival, Disease-Free Survival). These genes significantly
stratified high-risk and low-risk HCC patients (p-value <0.05). In conclusion, we identified a
universal platform-independent three-genes-based biomarker that can predict HCC
patients with high precision and also possess significant prognostic potential. Eventually,
we developed a web server HCCpred based on the above study to facilitate scientific
community (http://webs.iiitd.edu.in/raghava/hccpred/).

Keywords: liver cancer, hepatocellular carcinoma, biomarker, expression, diagnosis, survival, machine
learning, classification
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INTRODUCTION

Cancer is a heterogeneous disease driven by genomic and
epigenomic changes within the cell (Sharma et al., 2010;
Dawson and Kouzarides, 2012; Nagpal et al., 2015; Flavahan
et al., 2017; Kamel and Al-Amodi, 2017; Chatterjee et al., 2018;
Kagohara et al., 2018; Narrandes and Xu, 2018; Nebbioso et al.,
2018; Kumar et al., 2019). Gene dysregulation is considered a
hallmark of cancer. Among the 22 common cancer type,
hepatocellular carcinoma (HCC) ranks at sixth in terms of
frequency of occurrence and fourth at cancer-related mortality
(Siegel et al., 2019). The etiology of HCC can be induced by
multiple factors, especially hepatitis viral infection, alcoholic
cirrhosis, and consumption of aflatoxin-contaminated foods
(Ho et al., 2016). Although various traditional and locoregional
treatment strategies such as hepatic resection (RES),
percutaneous ethanol injection (PEI), radiofrequency ablation
(RFA), microwave ablation (MWA), and trans-arterial
chemotherapy infusion (TACI) have improved the survival
rate, patients with HCC still have a late diagnosis and poor
prognosis (Tian et al., 2018).

In the past, several studies focus on the identification of
biomarkers by comparing the global gene expression changes
between cancer tissue and non-tumorous tissues (Shirota et al.,
2001; Jia et al., 2007; Marshall et al., 2013; Gao et al., 2015; Kang
et al., 2015; Liu et al., 2015; Emma et al., 2016; Komatsu et al.,
2016; Cai et al., 2017; Li et al., 2017; Zhang et al., 2017; Li et al.,
2018b; Liao et al., 2018; Meng et al., 2018; Wang et al., 2018; Xu
et al., 2018; Zheng et al., 2018; Cai et al., 2019; Jiao et al., 2019;
Xia et al., 2019; Zhang et al., 2019). Such analyses yield hundreds
or thousands of gene signature that are differentially expressed in
cancer tissue compared to normal tissue, thus making it difficult
to identify a universal subset of genes that play a crucial role in
neoplastic transformation and progression (Rhodes et al., 2004).
The lack of concordance of signature genes among different
studies and extensive molecular variation between the patient’s
samples restrains the establishment of the robust biomarkers,
promising targets and their experimental validation in clinical
trials (Vasudevan et al., 2018). The transcriptome signatures
have yet to be translated into a clinically useful biomarker, which
may be due to a lack of their satisfactory validation performance
on independent patient’s cohort.

In this regard, treatment of HCC remains unsatisfying as only
diagnostic and prognostic biomarkers alpha-fetoprotein (AFP)
has been established so far. Several other biomarkers AFP-L3,
osteopontin, and glypican-3 are currently being under
investigation for the early diagnosis of HCC patients (Ocker,
2018). Advancement in the genomics has created rich public
repositories of microarray and high throughput datasets from
numerous studies such as The Cancer Genome Atlas (TCGA)
Abbreviations: AUROC, Area under the Receiver Operating Characteristic curve;
ETREES, Extra Trees Classifier; SVC-RBF, Support Vector Machine with RBF
kernel; TCGA, The Cancer Genome Atlas; KNN, K Neighbors Classifier; HCC,
Hepatocellular Carcinoma; MCC, Matthew’s correlation coefficient; LR, Logistic
Regression; NB, Naive Bayes; RF, Random Forest; PBMCs, Peripheral Blood
Mononuclear Cells
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(Cancer Genome Atlas Research Network et al., 2013), Genomic
Data Common (GDC), and Gene Expression Omnibus
(Grossman et al., 2016), (Barrett et al., 2013), which provide
the opportunity to study the various aspects of cancer. Thus,
novel methods exploring the computational approach by
merging multiple datasets from different platforms could
provide a new way to establish a robust and universal
biomarker for disease diagnosis and prognosis with increased
precision and reproducibility. Recently, this approach has been
used for biomarker identification of pancreatic adenocarcinoma
(PDAC) (Bhasin et al., 2016; Klett et al., 2018). However, various
studies employed large-scale data or meta-analysis approaches to
identify protein and miRNA expression-based biomarker for
HCC diagnosis (Ji et al., 2016; Ding et al., 2017; Chen et al.,
2018b; Ji et al., 2018). But, to the best of our knowledge, RNA-
expression data are not explored in this regard for identification
of the robust biomarker for HCC diagnosis and prognosis.

In order to overcome the limitations of existing methods, we
made a systematic attempt to identify genetic biomarkers for
HCC diagnosis that apply to a wide range of platforms and
profiling techniques. One of the objectives of this study is to
identify robust gene expression signatures for discrimination of
HCC samples by the integration of multiple transcriptomic
datasets from various platforms. Here, we have collected and
analyzed a total of 3,981 samples from published datasets, out of
which 2,316 and 1,665 are of HCC and normal or non-tumorous
tissue samples, respectively. From this, we identified 26 genes,
which are commonly differentially expressed in uniform patterns
among most of the datasets, which provides a universally
activated transcriptional signatures of HCC cancer type.
Further, we have established a robust “three-genes-based HCC
biomarker” implementing different machine learning techniques
to distinguish HCC and non-tumorous samples with high
precision. Additionally, the survival analysis of HCC patient’s
cohorts using these genes revealed their significant prognostic
potential in the stratification of high-risk and low-risk
patient’s groups. To the best of our knowledge, this is the first
study regarding HCC cancer type for the identification of
universal platform-independent diagnostic biomarkers by
integrating data from multiple platforms implementing
machine learning approaches.
MATERIALS AND METHODS

Dataset Collection
Collection of Gene Expression Datasets of HCC
In this study, we extract raw expression data of 30 datasets, where
29 transcriptome datasets were obtained from GEO and one is
from TCGA; each dataset contains at least 10 samples. The
following is the list of datasets obtained from GEO: GSE102079
(Chiyonobu et al., 2018), GSE22405, GSE98383 (Diaz et al.,
2018), GSE84402 (Wang et al., 2017), GSE64041 (Makowska
et al., 2016), GSE69715 (Sekhar et al., 2018), GSE51401,
GSE62232 (Schulze et al., 2015), GSE45267 (Chen et al.,
2018a), GSE32879 (Oishi et al., 2012), GSE19665 (Deng et al.,
2010), GSE107170 (Diaz et al., 2018), GSE76427 (Grinchuk et al.,
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2018), GSE39791 (Kim et al., 2014), GSE57957 (Mah et al.,
2014), GSE87630 (Woo et al., 2017), GSE46408, GSE57555
(Murakami et al., 2015), GSE54236 (Villa et al., 2016; Zubiete-
Franco et al., 2019), GSE65484 (Dong et al., 2015), GSE31370
(Seok et al., 2012), GSE84598, GSE89377, GSE29721 (Stefanska
et al., 2011), GSE14323 (Mas et al., 2009), GSE25097 (Lamb et al.,
2011; Tung et al., 2011; Wong et al., 2016), GSE14520 (Roessler
et al., 2010; Zhao et al., 2015), GSE36376 (Lim et al., 2013),
GSE36076). All GEO datasets were obtained using GEOquery
package of Bioconductor in R-3.5.3. The TCGA RNA-seq dataset
of TCGA-LIHC was downloaded using gdc-client from the GDC
data portal. All datasets were curated manually to remove all
non-human samples and ensured that only human tissue
samples remain in the dataset. Besides, Probe ID mapped to
gene symbols extracted from respective platform file and
incorporated in the dataset matrix for each dataset. It has been
observed that two datasets, i.e., GSE102079 and GSE64041, have
three types of samples (HCC, adjacent non-tumor, and normal
healthy). Thus, we derived two datasets from GSE102079, called
GSE102079_D1 (contains HCC and adjacent non-tumor
samples) and GSE102079_D2 (contains HCC and healthy
normal samples). Similarly, we derived GSE64041_D1 and
GSE64041_D2 datasets from GSE64041. Finally, we derived 32
datasets from original 30 datasets as we derived four datasets
corresponding to GSE102079 and GSE64041. Notably, we used
one non-invasive dataset (GSE36076), which contains 20 blood
samples of peripheral blood mononuclear cells (PBMCs) to
evaluate our models.

Pre-Processing of Datasets
Each retrieved raw dataset (Supplementary Data) was subjected
to a detailed curation process. We have pre-processed dataset
matrix individually from each profiling technique for different
platforms in a standardized manner. In case of Affymetrix
datasets, raw data files were pre-processed with background
correction; RMA values were calculated using the Oligo
package (Carvalho and Irizarry, 2010). In case of Illumina
datasets, raw files were processed using Limma and Lumi
packages (Du et al., 2008; Ritchie et al., 2015) and finally log2
values calculated using in-house R scripts. Similarly, raw Agilent-
1-color and Agilent-2-color files were pre-processed using
Limma package individually, then A-values were generated,
which were further transformed to log2 values. Eventually, the
average of multiple probes computed that correspond to a single
gene for each dataset individually employing in-house R scripts.
TCGA-LIHC dataset contains FPKM values, which were further
converted to log2 values. Entrez transcript IDs were mapped to
the gene symbols using GENCODE v22.

Datasets for the Identification of Differentially
Expressed Genes
We divide our datasets into two parts: i) datasets for features
extraction and ii) datasets for the development of the prediction
models. Twenty-seven out of 32 datasets were selected for
identification of differentially expressed genes (DEGs); each
dataset contains more than 10 samples (Figure 1A). These 27
datasets were derived from 25 original GEO datasets. Out of
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them, 20 datasets contain HCC v/s adjacent non-tumor samples
and 7 datasets contain HCC v/s healthy samples. These datasets
encompass a total of 1,199 HCC and 949 normal or adjacent
non-tumor samples.

Training and Validation Datasets
In this study, the GSE25097 dataset was used as a training
dataset to develop prediction models; it contains 268 HCC
and 243 non-tumor samples (Figure 1B). The performance of
these models was evaluated on the following three datasets:
GSE14520, GSE36376, and TCGA-LIHC, and called them as
external validation datasets. As shown in Figure 1B, each
dataset has a minimum of 400 samples. The distribution of
all cohorts used in the current study based on sample size is
shown in Figure 1C. To validate the performance of models on
the non-invasive specimen, we also evaluated the performance
on the GSE36076 dataset. This dataset contains 20 blood
samples of PBMCs; it contains 10 HCC and 10 healthy
individuals. In order to reduce the cross-platform artifacts, we
performed quantile normalization using the PreprocessCore
library of Bioconductor (Grossman, et al., 2016) package, for
each dataset as well as for each profiling technique. This
approach is well-adapted in the literature (Huang and
Qin, 2018; Klett et al., 2018; Pedersen et al., 2018). These
datasets contain a total of 1,117 HCC and 716 adjacent non-
tumor samples.

Identification of Differentially Expressed
Genes
Each gene in 32 datasets was analyzed for differential expression
using Student’s t-test (Welch t-test and Wilcoxon t-test). It is
implemented using in-house R scripts after the assignment of
samples to the respective class, i.e., cancer or normal. These tests
have been applied previously in different studies for the
identification of DEGs (WELCH, 1947; Akaiwa et al., 1999;
Carvalho and Irizarry, 2010; Aino et al., 2014; Schulze et al.,
2015; Best et al., 2016; Bhasin et al., 2016; Bhalla et al., 2017; Cai
et al., 2017; Bhalla et al., 2019; Cai et al., 2019; Kaur et al., 2019).
Wilcoxon T-test is used for paired samples and Welch T-test is
used for unpaired samples. Only those sets of genes chosen to
define DEGs that are statistically differentially expressed between
two classes of samples with Bonferroni adjusted p-value less than
0.01. In order to identify a set of differential expression signatures
or “core DEGs of hepatocellular carcinoma,” DEGs in all 27
datasets were compared. Finally, only those overlapping genes
were considered as “core DEGs of hepatocellular carcinoma,”
which have significant differential expression in at least 80% of
cohorts. A similar type of approach was previously implemented
in various studies (Bhasin et al., 2016; Klett et al., 2018; Li
et al., 2018a).

Identification of Robust Biomarkers for
HCC Diagnosis
Ranking and Selection of Features
To reduce the number of genes from the selected set of signature,
i.e., “the core genes of hepatocellular carcinoma,” genes were
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ranked on training dataset (GSE25097) using a simple threshold-
based approach (Bhalla et al., 2017; Bhalla et al., 2019; Kaur et al.,
2019). In the threshold-based approach, genes with a score above
the threshold are assigned to cancer if it is found to be
upregulated in cancer and otherwise normal; whereas sample is
assigned to normal if the gene is downregulated in cancerous
condition. We compute the performance of each gene based on a
given threshold and identify the top 10 features having the
highest performance. We further identified the top 5 features,
which give the best performance when evaluated on the training
dataset using a 10-fold cross-validation technique. Features were
further reduced from five to four and then four to three using a
wrapper-based approach. In this technique, one-by-one each
feature is removed, and the prediction model is developed using
the remaining features. Finally, a combination of features that
Frontiers in Genetics | www.frontiersin.org 462
give the best performance is selected. This technique is also
known as the feature-reduction technique.

Development of Prediction Models
Here, we have developed the prediction models to distinguish
HCC and non-tumorous samples using selected features. These
models were implemented using Python package Scikit-learn
(Pedregosa et al., 2011). A wide range of machine learning
techniques have been used for developing these prediction
models that include ExtraTrees (ETREES), Naive Bayes, K-
nearest neighbor (KNN), Random Forest, Logistic Regression
(LR), and SVC-RBF (radial basis function). The optimization of
the parameters for the various classifiers was done by using a grid
search with AUROC curve as scoring performance measure for
selecting the best parameter.
FIGURE 1 | Distribution of samples among datasets used in the study: (A) Datasets used for DEG analysis; (B) Datasets used for Development of Prediction
models; (C) Sample-wise distribution of the datasets.
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Performance Evaluation of the Prediction
Models
In the current study, both internal and external validation
techniques were employed to evaluate the performance of
models. First, the training dataset is used to develop prediction
models and standard 10-fold cross-validation is used for
performing internal validation, which is commonly employed
in the literature (Burton et al., 2012; Bastani et al., 2013; Kourou
et al., 2015; Bhalla et al., 2017; Jiang et al., 2018; Bhalla et al.,
2019; Kaur et al., 2019). It is important to evaluate the realistic
performance of the model on the external validation dataset,
which should not be used for training and testing during model
development. Therefore, we evaluated the performance of our
models on four independent gene-expression cohorts that
include GSE14520, GSE36376, GSE36076, and TCGA-LIHC
obtained from GEO and The Cancer Genome Atlas (TCGA)
(see Figure 1B), which were not used for training. In order to
measure the performance of models, we used both threshold-
dependent and threshold-independent parameters. In the case of
threshold-dependent parameters, we measure sensitivity,
specificity, accuracy, and Matthew’s correlation coefficient
(MCC) using the following equations.

Sensitivity   Senð Þ = TP
TP + FN

� 100 (1)

Specificity   Specð Þ = TN
TN + FP

� 100 (2)

Accuracy   Accð Þ = TP + TN
TP + FP + TN + FN

� 100 (3)

MCC =
TP � TNð Þ − FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp (4)

where FP, FN, TP, and TN are false positive, false negative, true
positive, and true negative predictions, respectively.

In case of threshold-independent measures, we used a
standard parameter Area under the Receiver Operating
Characteristic (AUROC) curve. The AUROC curve is
generated by plotting sensitivity or true positive rate against
the false positive rate (1-specificity) at various thresholds. Finally,
the area under the curve is calculated to compute a single
parameter called AUROC.

Prognostic Potential of Identified HCC
Diagnostic Biomarkers
The prognostic potential of the “three-genes HCC biomarker” was
analyzed using gene-expression data of TCGA-LIHC and
GSE14520 cohorts. The TCGA and GSE14520 datasets contain
374 and 219 tumor samples, respectively. Their clinical
information was extracted from GEO, GDC, and the literature
(Roessler et al., 2010; Liu et al., 2018a). The clinical characteristics
of patients are given in Table S1 (Supplementary Information
File 1). Univariate survival analyses and risk assessments were
performed by survival package in R (Therneau and Grambsch,
2000; Therneau, 2013). The distribution of the survival risk groups
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is done by using a log-rank test, eventually represented in the form
of Kaplan-Meier plots. A p-value < 0.05 was considered the cut-off
to describe the statistical significance in all survival analyses. Here,
we analyzed four types of survivals, i.e., OS (Overall Survival), DSS
(Disease-Specific Survival), DFS (Disease-Free Survival), and PFS
(Progression-Free Survival) for TCGA-LIHC cohort, and two
types of survivals, i.e., OS and RFS (Recurrence-Free Survival)
(also called as DFS) for GSE14520 cohort. Besides, genes from the
signature, univariate survival analysis is also performed on clinical
characteristics of patients like age, gender, and tumor stage
individually. Additionally, multivariate survival analysis was
performed to assess the combined effect of clinical
characteristics with the signature genes.

Functional Annotation of Signature
Genomic Markers
In order to discern the biological relevance of the signature genes,
enrichment analysis is performed using Enrichr (Kuleshov et al.,
2016). Enrichr executes Fisher exact test to identify enrichment
score. It provides Z-score and adjusted p-value, which is derived
by applying correction on a Fisher exact test. We have considered
only those Gene Ontology (GO) terms that are significantly
enriched with adjusted p-value less than 0.05.
RESULTS

Overview
The pipeline of our analysis is illustrated in Figure 2. The detail
of each step is described below.

Transcriptomic Cores for Hepatocellular
Carcinoma
Identification of the Transcriptomic Cores
The individual statistical differential expression analyses of 27
gene-expression datasets resulted in the identification of hundreds
of DEGs (Supplementary Figure 1). The 9,954 genes are present
among each of the 27 datasets (Supplementary Information File
1, Table S2). Further, the comparative analysis among all 27
datasets scrutinized 26 overlapping genes that are differentially
expressed in 80% or more datasets, i.e., 22 datasets. We called
these genes as “core genes for hepatocellular carcinoma.” Among
these 26 genes, 12 are downregulated and 14 are upregulated in
HCC in comparison to normal samples. The regulatory patterns
of the core genes were consistent among most of the datasets
(Table 1). Additionally, the expression pattern of these genes in
training and three external validation datasets is shown in Figure
S2 (Supplementary Information File 2).

Gene Enrichment Analysis of the Transcriptomic
Cores
Gene enrichment analysis of these “core genes of HCC” revealed
their biological significance. The proteins encoded by the
downregulated genes mainly enriched in complement activation
and lectin pathways related processes. These genes negatively
regulate cellular extravasation. They are also enriched in GO
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TABLE1 | List of overlapping 26 genes that are differentially expressed (Core DEGs for HCC) between HCC and adjacent normal or adjacent non-tumor samples with
Bonferroni p-values < 0.01.

Gene #Up #Down #Sig #Non-sig Up (%) Down (%) Sig (%) Regulation

FCN3 1 26 24 3 3.70 96.30 88.89 Down
CLEC4M 2 25 24 3 7.41 92.59 88.89 Down
FCN2 2 25 24 3 7.41 92.59 88.89 Down
MARCO 3 24 22 5 11.11 88.89 81.48 Down
CRHBP 2 25 22 5 7.41 92.59 81.48 Down
CFP 2 25 22 5 7.41 92.59 81.48 Down
STEAP3 2 25 25 2 7.41 92.59 92.59 Down
HGFAC 4 23 22 5 14.81 85.19 81.48 Down
CLEC1B 2 25 23 4 7.41 92.59 85.19 Down
CXCL12 3 24 24 3 11.11 88.89 88.89 Down
MT1E 3 24 24 3 11.11 88.89 88.89 Down
NSUN5 25 2 24 3 92.59 7.41 88.89 Down
MCM7 24 3 24 3 88.89 11.11 88.89 Up
MCM3 24 3 24 3 88.89 11.11 88.89 Up
ITGA6 24 3 24 3 88.89 11.11 88.89 Up
SSR2 24 3 23 4 88.89 11.11 85.19 Up
STMN1 23 4 24 3 85.19 14.81 88.89 Up
PRC1 24 3 23 4 88.89 11.11 85.19 Up
POLD1 24 3 23 4 88.89 11.11 85.19 Up
PBK 24 3 24 3 88.89 11.11 88.89 Up
IGSF3 22 5 23 4 81.48 18.52 85.19 Up
DTL 24 3 22 5 88.89 11.11 81.48 Up
ZWINT 24 3 22 5 88.89 11.11 81.48 Up
SPATS2 24 3 24 3 88.89 11.11 88.89 Up
GPSM2 23 4 23 4 85.19 14.81 85.19 Up
COL15A1 24 3 22 5 88.89 11.11 81.48 Up
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Up, Upregulated in cancer or HCC; Down, Downregulated in cancer or HCC; #Up: No. of datasets in which gene is overexpressed; #Down: No. of datasets in which gene is under-
expressed; #Sig: No. of datasets in which gene is significantly differentially expressed; #Non-Sig: No. of datasets in which gene is not significantly differentially expressed; Up (%):
Percentage of datasets in which gene is overexpressed; Down (%): Percentage of datasets in which gene is underexpressed; Sig (%): Percentage of datasets in which gene is significantly
differentially expressed.
FIGURE 2 | Overview for the analysis implemented in the study.
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molecular functions like serine-type endopeptidase,
oxidoreductase, RNA methyltransferase activity, etc.
(Supplementary Information File 2, Figure S3). Whereas,
upregulated core genes are enriched in cell cycle GO biological
processes like mitotic spindle organization and mitotic sister
chromatid segregation, DNA synthesis and DNA replication,
post-replication repair and cellular response to DNA damage
stimulus, etc. They are also enriched in GO molecular functions
such as exodeoxyribonuclease activity, GDP-dissociation inhibitor
activity, DNA polymerase activity and insulin-like growth factor
binding, etc. (Supplementary Information File 2, Figure S3).

Identification of HCC Biomarkers and
Development of Prediction Models
Single-Gene Based Prediction Models
All 26 DEGs were ranked on the training dataset using
threshold-based approach; ranking is based on their
discriminatory power to distinguish HCC from non-tumorous
samples (Bhalla et al., 2017; Kaur et al., 2019). The performance
of the top 10 genes having maximum discriminatory power is
shown in Table 2; see Supplementary Information File 1, Table
S3 for detail. These top 10 genes showed highest performance
with an accuracy > 85%, MCC > 0.75, and AUROC > 0.85. We
also evaluate the performance of these top 10 genes using 10-fold
cross-validation to understand their robustness as shown in
Table S4 (Supplementary Information File 1). We further
selected 5 genes out of 10 genes, which exhibit the maximum
performance. These genes are FCN3, CLEC1B, CLEC4M, PRC1,
and PBK; models based on these genes have accuracy more than
90% with AUROC > 0.95. In addition, the performance is also
evaluated on the external validation datasets. The performance of
the method was same on the training dataset but decreases on the
external validation for few genes/features (see Table S5,
Supplementary Information File 1).

Multiple-Genes Based Prediction Models
We identified the top five genes based on single gene-based
prediction models, as described above. Further, we developed
machine learning techniques-based classification models using
these top five genes. We called these models as multiple-genes
based prediction models as they take multiple genes as input.
Frontiers in Genetics | www.frontiersin.org 765
These models were evaluated on the training as well as validation
datasets using internal and external cross-validation. The
performance of these models on training as well as on three
validation datasets is shown in Table 3. As shown in Table 3, we
got AUROC approximately 0.98 on training as well as on the
validation datasets. We further reduced one gene from selected
set offive genes using feature reduction technique as described in
Materials and Methods and obtained a set of four genes (FCN3,
CLEC1B, PRC1, PBK). Subsequently, machine learning
prediction models developed based on them classified HCC
and non-tumor samples with accuracy more than 95% with
AUROC in the range of 0.97–0.99 on both training and three
independent validation datasets as shown in Table S6
(Supplementary Information File 1). Results from this
analysis show that we got nearly same performance using four
genes-based biomarkers as we got in case of five genes-based
biomarkers. Thus, reduction of one feature (five to four) does not
affect the performance of our multiple-gene based prediction
method. We further reduced features using feature reduction
technique and got a set of three genes that contains FCN3,
CLEC1B, and PRC1. Prediction models based on three genes-
biomarker got accuracy 95–98% with AUROC in the range of
0.96–0.99 on training as well as independent validation datasets
as shown in Table 4. The expression pattern of these three genes
among samples of training dataset and three external validation
datasets is depicted in Figure 3. We also tried two gene
biomarkers, but there is substantial reduction in the
performance on validation datasets. Thus, our final model is
developed using a biomarker panel of three genes that include
FCN3, CLEC1B, and PRC1. We considered three-genes based
biomarker as the final model because the number of genes is
limited. Hence, it is easy to implement in real life as well
as economical.

Validation of Models on Blood Samples
In this study, models have been developed on tissue samples,
which is complex and difficult to implement for routine testing.
The question arises whether this model can also be used to
discriminate the samples achieved from non-invasive techniques.
Thus, we assessed the performance of our final model on
PBMCs/blood samples of GSE36076. These signature genes
TABLE 2 | Top 10 genes based on the simple threshold-based approach.

Gene symbol Thresh Sens (%) Spec (%) Acc (%) MCC AUROC Mean in HCC Mean in normal Mean diff

FCN2 9.78 97.76 99.59 98.63 0.97 0.98 5.76 10.89 –5.13
CLEC4M 7.59 97.01 98.77 97.85 0.96 0.98 4.32 9.37 –5.06
FCN3 10.76 95.15 99.18 97.06 0.94 0.97 7.87 12.32 –4.45
CLEC1B 9.46 95.52 97.94 96.67 0.93 0.97 5.96 11.38 –5.42
CFP 8.14 96.64 94.24 95.50 0.91 0.96 6.15 8.63 –2.48
CRHBP 8.69 92.54 96.71 94.52 0.89 0.95 6.35 10.30 –3.95
PRC1 7.76 91.42 97.12 94.13 0.88 0.94 10.03 6.35 3.68
PBK 6.03 91.04 93.42 92.17 0.84 0.93 8.65 4.41 4.24
DTL 6.71 85.82 94.65 90.02 0.80 0.91 8.72 5.20 3.52
IGSF3 6.93 81.34 91.77 86.30 0.73 0.88 8.10 6.08 2.01
Januar
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correctly predicted 90% of both HCC and healthy samples with
ROC in the range of 0.91–0.96 and MCC 0.80–0.82. Complete
results of prediction models are tabulated in Table 5. This
demonstrates that our three genes-based models have the
ability to discriminate HCC and healthy blood samples with
reasonably high accuracy.

Protein-Based Biomarkers
In the past, proteins have been identified as diagnostic
biomarkers for HCC. These protein biomarkers are AFP
+GPC3 and AFP+GPC3+CK19 (KRT19) (Lou et al., 2017;
Ocker, 2018). As we do not have their protein expression for
these patients’ samples, we employed only their gene expression
values. Models based on the gene expression of AFP+GPC3
+KRT19 classified HCC and normal samples of training
dataset with an accuracy 67–75%. While this model attained
accuracy of 69–77%, 51–87%, and 50–74% on external validation
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dataset1, dataset2 and dataset3, respectively, as shown in Table
S7 (Supplementary Information File 1). Further, the prediction
models based on the gene expression of AFP+GPC3 have
improved performance on training dataset with an accuracy of
70–77%, but lower performance on all three validation datasets
as given in Table S8 (Supplementary Information File 1).

Survival Analysis to Determine the
Prognostic Potential of “Three-Genes HCC
Biomarker”
Univariate Survival Analysis for Three-Genes HCC
Biomarker
To examine the prognostic potential of the “three-genes HCC
biomarker,” the univariate survival analysis was performed on
TCGA-LIHC and GSE14520 cohorts. The samples were
partitioned into low-risk and high-risk groups. Interestingly, all
three genes of “three-genes HCC biomarker-A” are significantly
TABLE 4 | Performance of three-genes HCC biomarker-A (FCN3, CLEC1B, PRC1) based models on training and validation datasets implementing various machine
learning techniques.

Classifier Sens (%) Spec (%) Acc (%) MCC AUROC with 95% CI Sens (%) Spec (%) Acc (%) MCC AUROC with 95% CI

Training Dataset Validation Dataset1

ETREES 96.64 97.94 97.26 0.95 0.99 (0.98-0.99) 94.67 95.91 95.28 0.91 0.97 (0.96-0.99)
NB 97.39 99.18 98.24 0.96 0.99 (0.99-1.0) 96.00 95.91 95.96 0.92 0.98 (0.97-0.99)
KNN 97.76 98.77 98.24 0.96 0.99 (0.99-1.0) 93.78 97.73 95.73 0.92 0.97 (0.96-0.99)
RF 97.01 97.53 97.26 0.95 0.99 (0.99-1.0) 94.67 96.36 95.51 0.91 0.97 (0.96-0.99)
LR 93.28 100 96.48 0.93 0.99 (0.99-1.0) 92.89 97.73 95.28 0.91 0.98 (0.97-0.99)
SVC-RBF 94.03 100 96.87 0.94 0.99 (0.98-0.99) 96.00 96.82 96.40 0.93 0.98 (0.97-0.99)

Validation Dataset2 Validation Dataset3
ETREES 93.75 96.37 94.92 0.90 0.98 (0.97-0.99) 95.72 98 95.99 0.84 0.99 (0.98-0.99)
NB 94.58 98.45 96.3 0.93 0.98 (0.97-0.99) 98.13 82 96.23 0.82 0.96 (0.95-0.98)
KNN 95.83 97.93 96.77 0.94 0.98 (0.97-0.99) 97.59 96 97.41 0.88 0.99 (0.98-0.99)
RF 95.42 94.3 94.92 0.90 0.98 (0.97-0.99) 95.45 96 95.52 0.82 0.98 (0.97-0.99)
LR 95.42 98.45 96.77 0.94 0.99 (0.98-0.99) 97.33 98 97.41 0.89 0.99 (0.98-0.99)
SVC-RBF 93.33 97.93 95.38 0.91 0.98 (0.97-0.99) 96.79 98 96.93 0.87 0.99 (0.98-0.99)
January
 2020 | Vo
ETREES, Extra Trees Classifier; NB, Naive Bayes; KNN, K Neighbors Classifier; RF, Random Forest; LR, Logistic Regression; SVC-RBF, Support Vector Machine with RBF kernel; Sens,
Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve.
TABLE 3 | Performance of five genes (FCN3, CLEC4M, CLEC1B, PRC1, PBK) based models on training and validation datasets implementing various machine learning
techniques.

Classifier Sens (%) Spec (%) Acc (%) MCC AUROC with 95% CI Sens (%) Spec (%) Acc (%) MCC AUROC with 95% CI

Training Dataset Validation Dataset1

ETREES 97.39 98.35 97.85 0.96 0.99 (0.99-1) 97.78 94.09 95.96 0.92 0.98 (0.97-0.99)
NB 97.76 99.18 98.43 0.97 0.99 (0.99-1) 97.33 95.45 96.40 0.93 0.98 (0.97-0.99)
KNN 97.39 98.77 98.04 0.96 0.99 (0.99-1) 96.89 96.82 96.85 0.94 0.98 (0.97-0.99)
RF 97.01 97.94 97.46 0.95 0.99 (0.99-1) 97.33 94.55 95.96 0.92 0.98 (0.97-0.99)
LR 97.76 99.59 98.63 0.97 0.99 (0.99-1) 95.56 97.27 96.40 0.93 0.99 (0.98-0.99)
SVC 97.01 100 98.43 0.97 0.99 (0.99-1) 96.89 95.00 95.96 0.92 0.99 (0.98-0.99)

Validation Dataset2 Validation Dataset3
ETREES 95 97.41 96.07 0.92 0.98 (0.97-0.99) 97.86 96 97.64 0.89 0.99 (0.98-0.99)
NB 94.58 98.45 96.3 0.93 0.98 (0.96-0.99) 98.13 92 97.41 0.88 0.98 (0.98-0.99)
KNN 92.92 98.45 95.38 0.91 0.97 (0.96-0.99) 97.86 94 97.41 0.88 0.99 (0.98-0.99)
RF 96.67 93.26 95.15 0.9 0.98 (0.97-0.99) 98.4 90 97.41 0.88 0.99 (0.98-0.99)
LR 93.75 98.45 95.84 0.92 0.98 (0.97-0.99) 97.59 98 97.64 0.90 0.99 (0.98-0.99)
SVC-RBF 93.33 98.45 95.61 0.91 0.98 (0.97-0.99) 97.33 98 97.41 0.89 0.99 (0.98-0.99)
ETREES, Extra Trees Classifier; NB, Naive Bayes; KNN, K Neighbors Classifier; RF, Random Forest; LR, Logistic Regression; SVC-RBF, Support Vector Machine with RBF-kernel; Sens,
Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve.
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associated with the survival of HCC patients. For instance, higher
expression (greater than mean) of CLEC1B and FCN3 is
significantly associated with good outcome of the patients, i.e.
OS, DSS, DFS, and PFS; while the overexpression of PRC1 is
significantly associated with poor survival including DSS, DFS,
or RFS and PFS of HCC patients for TCGA-LIHC dataset as
shown in Figure 4. In the GSE14520 dataset, higher expression
of PRC1 is significantly associated with the poor outcome of
patients, i.e., OS and DFS or RFS, while the higher expression of
FCN3 is significantly associated with the better outcome of HCC
patients as depicted in Figure 5. Complete results of survival
Frontiers in Genetics | www.frontiersin.org 967
analysis with HR (Hazard Ratio), with 95% CI and p-value, are
presented in Table S9 (Supplementary Information File 1).

Univariate Survival Analysis for Clinical Features
The clinical characteristics of the patients like age, gender,
tumor size, and stage are considered as important prognostic
indicators for the survival of the patients in different malignancies
including HCC (Best et al., 2016; Liu et al., 2018a; Wu et al.,
2018; Yang et al., 2019). As the tumor size information is not
present in one of the cohorts, therefore, we performed univariate
survival analysis using only age, gender, and tumor stage of
TABLE 5 | Performance of three-genes HCC biomarker-A (FCN3, CLEC1B, PRC1) based models on training and validation datasets 4 (containing blood samples, i.e.,
PBMCs) implementing various machine learning techniques.

Classifier Sens (%) Spec (%) Acc (%) MCC AUROC with 95% CI Sens (%) Spec (%) Acc (%) MCC AUROC with 95% CI

Training Dataset Validation Dataset4

ETREES 94.78 99.18 96.87 0.94 0.99 (0.979-0.998) 100 80 90 0.82 0.93 (0.854-1.0)
NB 97.39 99.18 98.24 0.96 0.99 (0.989-1.0) 90 90 90 0.80 0.95 (0.81-1.0)
KNN 97.01 99.59 98.24 0.97 0.99 (0.986-1.0) 90 90 90 0.80 0.96 (0.878-1.0)
RF 95.52 99.59 97.46 0.95 0.99 (0.991-1.0) 100 80 90 0.82 0.93 (0.81-1.0)
LR 96.64 100 98.24 0.97 0.99 (0.992-1.0) 90 90 90 0.80 0.96 (0.877-1.0)
SVC 95.15 99.18 97.06 0.94 0.99 (0.988-0.999) 90 90 90 0.80 0.91 (0.744-1.0)
January
 2020 | Vo
ETREES, Extra Trees Classifier; NB, Naive Bayes; KNN, K Neighbors Classifier; RF, Random Forest; LR, Logistic Regression; SVC-RBF, Support Vector Machine with RBF kernel; Sens,
Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve.
FIGURE 3 | Boxplot representing the expression pattern of three-genes panel-based HCC biomarker in the (A) Training Dataset, (B) Validation Dataset 1,
(C) Validation Dataset 2, (D) Validation Dataset 3.
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the patients. This analysis shows that tumor stage is an important
clinical factor with prognostic potential that significantly
stratified high-risk and low-risk groups of patients in both
cohorts, i.e., TCGA-LIHC and GSE14520. For instance, stage
individually significantly (p-value <0.0001) stratified risk groups
for OS, RFS with HR = 1.73 and HR = 1.65 of TCGA cohorts and
with HR = 2.29 and HR = 1.79 of GSE14520 cohort, respectively
(Table S10, Supplementary Information File 1). While the
gender and age of patients do not possess high prognostic
potential, as shown in Table S10 (Supplementary Information
File 1).
Frontiers in Genetics | www.frontiersin.org 1068
Multivariate Survival Analysis
Eventually, the multivariate analysis is performed to assess the
independent impact of clinical characteristics and three genes of
our signature biomarker that are determined as significant
prognostic variables by univariate analysis. From this analysis,
tumor stage is identified as the sole independent prognostic
factor associated with the survival of HCC patients that
significantly (with p-value <0.01) stratified high-risk and low-
risk groups of both TCGA-LIHC and GSE1450 cohorts as
presented in Figures S4–S6 (Supplementary Information
File 2).
FIGURE 4 | Kaplan Meier survival curves for the risk estimation of HCC patient in TCGA cohort based on the RNA expression of (A) FCN3, (B) PRC1, and (C)
CLEC1B.
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Web Server
To facilitates the scientific community working in the area of
liver cancer research, we developed “HCCpred” (Prediction
Server for Hepatocellular Carcinoma). In HCCpred, we execute
mainly two modules: Prediction Module and Analysis Module
based on robust five-genes, four-genes. and three-genes HCC
biomarkers and 26 Core genes of HCC identified in the present
study for the prediction and analysis of samples from the RNA-
expression data. The prediction module permits the users to
predict the disease status, i.e., cancerous or normal using RNA
expression values of a subset of genes using in silico prediction
models based on robust five-genes, four-genes, and three-genes
HCC biomarkers identified in the present study. Here, the user is
required to submit RMA (for Affymetrix), A-value (for Agilent),
Log2 value (for Illumina), or FPKM (High throughput RNA-seq
data) for a subset of genes or biomarkers. The output result
displays a list for patient samples and corresponding predicted
status of samples. Moreover, the user can select among the
models, i.e., ETREES-based or SVC-RBF based model. Further,
the Analysis Module permits the user to analyze the expression
pattern of any of the top 10 ranked genes to check whether it is
upregulated or downregulated in comparison to HCC samples
Frontiers in Genetics | www.frontiersin.org 1169
based on the samples of the current study. This webserver is
freely accessible at http://webs.iiitd.edu.in/raghava/hccpred/.
DISCUSSION

HCC is a type of tumor that is associated with the poor prognosis
and a high mortality rate among the most common cancer types
(Siegel et al., 2019). High recurrence rate and low rate
of early detection results in poor prognosis. Accurate diagnosis
of HCC may provide the opportunity for appropriate
treatment, including traditional available treatment like liver
transplantation resection, etc. Although the AFP and DCP
proteins are well-established markers for the diagnosis of HCC,
their sensitivity and specificity are not optimum (Sauzay et al.,
2016). Therefore, the development of a novel robust diagnostic
and prognostic biomarker for HCC is needed as it can assist in the
existing clinical management of tumor. Towards this, our current
report is an attempt to scrutinize a robust transcriptomic
biomarker for HCC diagnosis. Briefly, in this study, we provide
a novel large-scale analysis-based approach to identify a robust
gene expression-based candidate diagnostic biomarker for HCC
FIGURE 5 | Kaplan Meier survival curves for the risk estimation of HCC patient in GSE14520 cohort based on the RNA expression of (A) RFS for PRC1, (B) RFS for
FCN3, and (C) OS for PRC1.
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derived from multiple transcriptomic profiles/datasets across a
variety of platforms obtained from GEO and TCGA. This
metadata integration approach employed to elucidate “core
HCC DEGs” subset followed by a class prediction by
implementing various machine learning algorithms. Eventually,
validation on external independent datasets led us to the
identification of multiple-genes based robust biomarkers for HCC.

Here, firstly, we have identified 26 genes named as “Core DEGs
for HCC” that are uniformly differentially expressed among 80%
of datasets. We have considered only these genes for downstream
machine learning analysis. In an urge to identify a manageable
subset with the minimum number of genes from this list that have
a high discriminatory power, we further identified three genes
signature-set containing CLEC1B, FCN3, and PRC1. This “three-
genes based HCC biomarker” has predictive accuracy of 95–98%
and AUROC 0.96–0.99 on the training and all three independent
validation datasets. We further hypothesized that this biomarker
gene set might be proved as quite an effective non-invasive
diagnostic biomarker for HCC. Therefore, eventually, we
validated their discriminatory performance on 20 PBMCs
samples (GSE36076) extracted from 10 HCC and 10 healthy
individuals. As anticipated, this biomarker set correctly classified
90% of the samples with AUROC in the range of 0.91–0.96.
Besides, we also developed the prediction models based on the
gene expression of already well-established protein biomarkers of
HCC in the literature, i.e., AFP+GPC3 and AFP+GPC3+KRT19
(Lou et al., 2017). The prediction models based on AFP+GPC3
+KRT19 discriminate samples of training dataset with an accuracy
of 67–75% and 69–77% of validation dataset1, 55–87% of
validation dataset2, and 50–74% of validation dataset3, while
the models based on AFP+GPC3 have quite lower performance
on validation datasets. Further, we speculate that “three-genes
HCC biomarker” can be explored as an effective novel protein
based non-invasive biomarker as they have very good predictive
power to distinguish HCC and non-tumor samples at gene
expression level from the tissue and PBMC samples. Moreover,
the product of FCN3 gene is released in the serum and bile
(Akaiwa et al., 1999; Brown et al., 2015; Pan et al., 2015; Tizzot
et al., 2018); thus, this may serve as non-invasive biomarkers for
diagnosis of HCC. Furthermore, recently, it has been reported that
the protein product of two of the three genes from three-genes
HCC biomarker, i.e., PRC1 and FCN3, is also associated with HCC
diagnosis and prognosis independently (Liu et al., 2018b; Shen
et al., 2018). Hence, we anticipate that the three-genes signature
might prove to be a good diagnostic and prognostic marker for
HCC at the protein level as well. There is still a need for the
validation of the protein product of these genes on a large scale of
samples to confirm this hypothesis and their clinical utility.

Interestingly, the robust “three-genes HCC biomarker”
contains FCN3, PRC1, and CLEC1B, has very high diagnostic
ability, and also possesses prognostic potential, i.e., they
are significantly associated with survival of HCC patients
as determined by univariate analysis. For instance, higher
expression of CLEC1B and FCN3 significantly associated with
the good outcome of HCC patients in TCGA-LIHC cohort; while
higher expression of PRC1 is significantly associated with the poor
Frontiers in Genetics | www.frontiersin.org 1270
outcome of HCC patients in both TCGA-LIHC and GSE14520
cohorts. Besides, the role of CLEC1B and PRC1 was previously
also revealed in the diagnosis and prognosis of HCC (Chen et al.,
2016; Chan et al., 2018; Hu et al., 2018; Kaur et al., 2019). Further,
univariate analysis employing clinical factors of patients found
that tumor stage of patients can act as a strong prognostic factor in
the various types of survival, i.e., OS, RFS/DFS, PFS, and DSS of
patients. Eventually, the multivariate survival analysis revealed the
tumor stage as a sole independent prognostic factor, which was
also corroborated with the previous literature (Aino et al., 2014;
Wang and Li, 2019). The correct tumor stage identification is
quite a tedious and challenging task in comparison to the
quantification of the expression of genes.

In the past, a concern raised by Kaplan et al. is that despite the
number of advantages of big studies, large sample size can also
magnify thebias associatedwithanerror resulting fromsamplingor
study design (Kaplan et al., 2014). Thus, to reduce the
overestimation of inferences from the results of large cohorts, we
have included both types of cohorts, i.e., large cohort (sample size
>50) and small cohort (sample size <50). We hypothesized that
these results might be more reliable and applicable. Additionally, it
might be practically more useful in real life, where, usually, small
cohorts are availablewithmaximumclinical parameters. Therefore,
to ensure that cohort’s size does not affect the results derived from
the overall study, results should be validated on a small cohort as
well. Towards this, we have also validated models built on the
training dataset on three large cohorts of external validation dataset
and one small cohort (contains 20 blood samples). Thus, these
results indicate that there is no overestimation of inferences from
the results of cohorts used in the study.

Taken together, we have established a robust three-gene HCC
diagnostic biomarker with reasonable performance and possesses
both diagnostic and prognostic potential. A meta-data integration
pipeline is employed for the identification of a robust biomarker
usingmachine learning techniques, which canwork across different
platforms. Further, this pipeline can also be used for the analysis of
any other cancer type. Although more and more research is under
the development of novel biomarkers, further workwill be required
to implement the clinical utilization of identified biomarker tomeet
real-world demand.We are anticipating that identifying novel cost-
efficient biomarker using predictive technology for the detection of
HCC will be promising.
CONCLUSIONS

This study identified and validated a highly accurate three-genes
HCC biomarker for discriminating HCC and non-tumorous
samples; it also possesses a significant prognostic potential that
may facilitate more accurate early diagnosis and risk stratification
upon validation in prospective clinical trials. Reasonable
performance on the validation dataset of PBMCs samples
indicates their non-invasive utility. Moreover, the protein product
of FCN3 is released in the serum and bile. Thus, this may serve as
non-invasive protein diagnostic biomarkers. Large-scale non-
invasive cohorts are required to confirm their non-invasive
January 2020 | Volume 10 | Article 1306
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clinical utility. Additionally, the uniform overexpression pattern of
PRC1 among numerous HCC samples suggests it as a novel
potential therapeutic target for HCC.
DATA AVAILABILITY STATEMENT

We have taken the Gene-expression data from the public
repositories, i.e., GEO (https://www.ncbi.nlm.nih.gov/geo/) and
GDC data portal (https://portal.gdc.cancer.gov/).
AUTHOR CONTRIBUTIONS

HK collected the data and created the datasets. HK developed
classification algorithms. HK and AD implemented algorithms.
HK and AD performed the survival analysis. HK and AD created
the back-end server and front-end user interface. HK and
GR analyzed the results. HK, RK, and AD wrote the
manuscript. GR conceived and coordinated the project, helped
in the interpretation and analysis of data, refined the drafted
manuscript, and gave complete supervision to the project. All of
the authors have read and approved the final manuscript.
FUNDING

This research was funded by J. C. Bose National Fellowship (with
Grant No. SRP076), Department of Science and Technology
(DST), India.
Frontiers in Genetics | www.frontiersin.org 1371
ACKNOWLEDGMENTS

All the authors acknowledge funding agencies J. C. Bose National
Fellowship DST. HK and RK are thankful to Council of Scientific
and Industrial Research (CSIR) and AD is thankful to DST
INSPIRE for providing fellowships, respectively.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2019.
01306/full#supplementary-material

SUPPLEMENTARY FIGURE S1 | Distribution of Significantly DEG (Differentially
Expressed Genes) among various datasets with Bonferroni adjusted p-value < 0.01.

SUPPLEMENTARY FIGURE S2 | Heatmap representing the expression pattern
of “Core genes of HCC” in different datasets.

SUPPLEMENTARY FIGURE S3 | Gene Enrichment analysis of 26 genes or
“Core genes of HCC”.

SUPPLEMENTARY FIGURE S4 | Multivariate analysis of clinical characteristics
and three genes of HCC Biomarker on TCGA cohort for (A) OS, (B) RFS/DFS.

SUPPLEMENTARY FIGURE S5 | Multivariate analysis of clinical characteristics
and three genes of HCC Biomarker on TCGA cohort for (A) DSS, (B) PFS.

SUPPLEMENTARY FIGURE S6 | Multivariate analysis of clinical
characteristics and three genes of HCC Biomarker on GSE14520 cohort for
(A) OS, (B) RFS/DFS.
REFERENCES

Aino, H., Sumie, S., Niizeki, T., Kuromatsu, R., Tajiri, N., Nakano, M., et al. (2014).
Clinical characteristics and prognostic factors for advanced hepatocellular
carcinoma with extrahepatic metastasis. Mol. Clin. Oncol. 2, 393–398. doi:
10.3892/mco.2014.259

Akaiwa, M., Yae, Y., Sugimoto, R., Suzuki, S. O., Iwaki, T., Izuhara, K., et al. (1999).
Hakata Antigen, a New Member of the Ficolin/Opsonin p35 Family, Is a Novel
Human Lectin Secreted into Bronchus/Alveolus and Bile. J. Histochem.
Cytochem. 47, 777–785. doi: 10.1177/002215549904700607

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: archive for functional genomics data sets–update.
Nucleic Acids Res. 41, D991–D995. doi: 10.1093/nar/gks1193

Bastani, M., Vos, L., Asgarian, N., Deschenes, J., Graham, K., Mackey, J., et al.
(2013). A machine learned classifier that uses gene expression data to
accurately predict estrogen receptor status. PloS One 8, e82144. doi: 10.1371/
journal.pone.0082144

Best, J., Bilgi, H., Heider, D., Schotten, C., Manka, P., Bedreli, S., et al. (2016). The
GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly
improves detection of BCLC early stage hepatocellular carcinoma.
Z. Gastroenterol. 54, 1296–1305. doi: 10.1055/s-0042-119529

Bhalla, S., Chaudhary, K., Kumar, R., Sehgal, M., Kaur, H., Sharma, S., et al. (2017).
Gene expression-based biomarkers for discriminating early and late stage of
clear cell renal cancer. Sci. Rep. 7, 44997. doi: 10.1038/srep44997

Bhalla, S., Kaur, H., Dhall, A., and Raghava, G. P. S. (2019). Prediction and
Analysis of Skin Cancer Progression using Genomics Profiles of Patients. Sci.
Rep. 9, 15790. doi: 10.1038/s41598-019-52134-4

Bhasin,M.K.,Ndebele, K., Bucur,O.,Yee, E.U.,Otu,H.H., Plati, J., et al. (2016).Meta-
analysisof transcriptomedata identifies anovel 5-genepancreatic adenocarcinoma
classifier. Oncotarget 7, 23263–23281. doi: 10.18632/oncotarget8139
Brown, G. R., Hem, V., Katz, K. S., Ovetsky, M., Wallin, C., Ermolaeva, O., et al.
(2015). Gene: a gene-centered information resource at NCBI.Nucleic Acids Res.
43, D36–D42. doi: 10.1093/nar/gku1055

Burton, M., Thomassen, M., Tan, Q., and Kruse, T. A. (2012). Gene expression
profiles for predicting metastasis in breast cancer: a cross-study comparison of
classification methods. Sci. World J. 2012, 380495. doi: 10.1100/2012/380495

Cai, J., Li, B., Zhu, Y., Fang, X., Zhu,M.,Wang,M., et al. (2017). Prognostic Biomarker
Identification Through Integrating the Gene Signatures of Hepatocellular
Carcinoma Properties. EbioMed. 19, 18–30. doi: 10.1016/j.ebiom.2017.04.014

Cai, C., Wang, W., and Tu, Z. (2019). Aberrantly DNA Methylated-Differentially
Expressed Genes and Pathways in Hepatocellular Carcinoma. J. Cancer 10,
355–366. doi: 10.7150/jca.27832

Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills,
G. B., Mills Shaw, K. R., Ozenberger, B. A., et al. (2013). The cancer genome
atlas pan-cancer analysis project. Nat Genet. 45 (10), 1113–1120. doi: 10.1038/
ng.2764

Carvalho, B. S., and Irizarry, R. A. (2010). A framework for oligonucleotide
microarray preprocessing. Bioinformatics 26, 2363–2367. doi: 10.1093/
bioinformatics/btq431

Chan, H. L., Beckedorff, F., Zhang, Y., Garcia-Huidobro, J., Jiang, H., Colaprico,
A., et al. (2018). Polycomb complexes associate with enhancers and promote
oncogenic transcriptional programs in cancer through multiple mechanisms.
Nat. Commun. 9, 3377. doi: 10.1038/s41467-018-05728-x

Chatterjee, A., Rodger, E. J., and Eccles, M. R. (2018). Epigenetic drivers of
tumourigenesis and cancer metastasis. Semin. Cancer Biol. 51, 149–159. doi:
10.1016/J.SEMCANCER.2017.08.004

Chen, J., Rajasekaran, M., Xia, H., Zhang, X., Kong, S. N., Sekar, K., et al. (2016).
The microtubule-associated protein PRC1 promotes early recurrence of
hepatocellular carcinoma in association with the Wnt/b-catenin signalling
pathway. Gut 65, 1522–1534. doi: 10.1136/gutjnl-2015-310625
January 2020 | Volume 10 | Article 1306

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/articles/10.3389/fgene.2019.01306/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01306/full#supplementary-material
https://doi.org/10.3892/mco.2014.259
https://doi.org/10.1177/002215549904700607
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1371/journal.pone.0082144
https://doi.org/10.1371/journal.pone.0082144
https://doi.org/10.1055/s-0042-119529
https://doi.org/10.1038/srep44997
https://doi.org/10.1038/s41598-019-52134-4
https://doi.org/10.18632/oncotarget8139
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.1100/2012/380495
https://doi.org/10.1016/j.ebiom.2017.04.014
https://doi.org/10.7150/jca.27832
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.1093/bioinformatics/btq431
https://doi.org/10.1093/bioinformatics/btq431
https://doi.org/10.1038/s41467-018-05728-x
https://doi.org/10.1016/J.SEMCANCER.2017.08.004
https://doi.org/10.1136/gutjnl-2015-310625
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Kaur et al. Diagnostic Biomarker Panel for HCC
Chen, C.-L., Tsai, Y.-S., Huang, Y.-H., Liang, Y.-J., Sun, Y.-Y., Su, C.-W., et al.
(2018a). Lymphoid Enhancer Factor 1 Contributes to Hepatocellular
Carcinoma Progression Through Transcriptional Regulation of Epithelial-
Mesenchymal Transition Regulators and Stemness Genes. Hepatol.
Commun. 2, 1392–1407. doi: 10.1002/hep41229

Chen, H., Zhang, Y., Li, S., Li, N., Chen, Y., Zhang, B., et al. (2018b). Direct
comparison of five serum biomarkers in early diagnosis of hepatocellular
carcinoma. Cancer Manage. Res. 10, 1947–1958. doi: 10.2147/CMAR.S167036

Chiyonobu, N., Shimada, S., Akiyama, Y., Mogushi, K., Itoh, M., Akahoshi, K.,
et al. (2018). Fatty Acid Binding Protein 4 (FABP4) Overexpression in
Intratumoral Hepatic Stellate Cells within Hepatocellular Carcinoma with
Metabolic Risk Factors. Am. J. Pathol. 188, 1213–1224. doi: 10.1016/
j.ajpath.2018.01.012

Dawson, M. A., and Kouzarides, T. (2012). Cancer epigenetics: from mechanism
to therapy. Cell 150, 12–27. doi: 10.1016/j.cell.2012.06.013

Deng, Y.-B., Nagae, G., Midorikawa, Y., Yagi, K., Tsutsumi, S., Yamamoto, S., et al.
(2010). Identification of genes preferentially methylated in hepatitis C virus-
related hepatocellular carcinoma. Cancer Sci. 101, 1501–1510. doi: 10.1111/
j.1349-7006.2010.01549.x

Diaz, G., Engle, R. E., Tice, A., Melis, M., Montenegro, S., Rodriguez-Canales, J.,
et al. (2018). Molecular signature and mechanisms of hepatitis D virus–
associated hepatocellular carcinoma. Mol. Cancer Res. 16, 1406–1419. doi:
10.1158/1541-7786.MCR-18-0012

Ding, Y., Yan, J.-L., Fang, A.-N., Zhou, W.-F., Huang, L., Ding, Y., et al. (2017).
Circulating miRNAs as novel diagnostic biomarkers in hepatocellular
carcinoma detection: a meta-analysis based on 24 articles. Oncotarget 8,
66402–66413. doi: 10.18632/oncotarget.18949

Dong, H., Zhang, L., Qian, Z., Zhu, X., Zhu, G., Chen, Y., et al. (2015).
Identification of HBV-MLL4 integration and its molecular basis in chinese
hepatocellular carcinoma. PloS One 10, e0123175. doi: 10.1371/
journal.pone.0123175

Du, P., Kibbe, W. A., and Lin, S. M. (2008). lumi: a pipeline for processing Illumina
microarray. Bioinformatics 24, 1547–1548. doi: 10.1093/bioinformatics/btn224

Emma, M. R., Iovanna, J. L., Bachvarov, D., Puleio, R., Loria, G. R., Augello, G.,
et al. (2016). NUPR1, a new target in liver cancer: implication in controlling
cell growth, migration, invasion and sorafenib resistance. Cell Death Dis. 7,
e2269. doi: 10.1038/cddis.2016.175

Flavahan, W. A., Gaskell, E., and Bernstein, B. E. (2017). Epigenetic plasticity and
the hallmarks of cancer. Science 357, eaal2380. doi: 10.1126/science.aal2380

Gao, B., Ning, S., Li, J., Liu, H., Wei, W., Wu, F., et al. (2015). Integrated analysis of
differentially expressed mRNAs and miRNAs between hepatocellular
carcinoma and their matched adjacent normal liver tissues. Oncol. Rep. 34,
325–333. doi: 10.3892/or.20153968

Grinchuk, O. V., Yenamandra, S. P., Iyer, R., Singh, M., Lee, H. K., Lim, K. H., et al.
(2018). Tumor-adjacent tissue co-expression profile analysis reveals pro-
oncogenic ribosomal gene signature for prognosis of resectable hepatocellular
carcinoma.Mol. Oncol. 12, 89–113. doi: 10.1002/1878-0261.12153

Grossman, R. L., Heath, A. P., Ferretti, V. V. H. E., Lowy, D. R., Kibbe, W. A., and
Staudt, L. M. (2016). Toward a shared vision for cancer genomic data. N. Engl.
J. Med. 375 (12), 1109–1112. doi: 10.1056/NEJMp1607591

Ho, D. W.-H., Lo, R. C.-L., Chan, L.-K., and Ng, I. O.-L. (2016). Molecular
Pathogenesis of Hepatocellular Carcinoma. Liver Cancer 5, 290–302. doi:
10.1159/000449340

Hu, K., Wang, Z.-M., Li, J.-N., Zhang, S., Xiao, Z.-F., and Tao, Y.-M. (2018).
CLEC1B Expression and PD-L1 expression predict clinical outcome in
hepatocellular carcinoma with tumor hemorrhage. Transl. Oncol. 11, 552–
558. doi: 10.1016/j.tranon.2018.02.010

Huang, H.-C., and Qin, L.-X. (2018). Empirical evaluation of data normalization
methods for molecular classification. PeerJ 6, e4584. doi: 10.7717/peerj4584

Ji, J., Wang, H., Li, Y., Zheng, L., Yin, Y., Zou, Z., et al. (2016). Diagnostic
evaluation of des-gamma-carboxy prothrombin versus a-Fetoprotein for
hepatitis B virus-related hepatocellular carcinoma in China: a large-scale,
multicentre study. PloS One 11, e0153227. doi: 10.1371/journal.pone.0153227

Ji, J., Chen, H., Liu, X.-P., Wang, Y.-H., Luo, C.-L., Zhang, W.-W., et al. (2018). A
miRNA combination as promising biomarker for hepatocellular carcinoma
diagnosis: a study based on bioinformatics analysis. J. Cancer 9, 3435–3446.
doi: 10.7150/jca.26101
Frontiers in Genetics | www.frontiersin.org 1472
Jia, H.-L., Ye, Q.-H., Qin, L.-X., Budhu, A., Forgues, M., Chen, Y., et al. (2007).
Gene expression profiling reveals potential biomarkers of human
hepatocellular carcinoma. Clin. Cancer Res. 13, 1133–1139. doi: 10.1158/
1078-0432.CCR-06-1025

Jiang, Y., Mei, W., Gu, Y., Lin, X., He, L., Zeng, H., et al. (2018). Construction of a
set of novel and robust gene expression signatures predicting prostate cancer
recurrence. Mol. Oncol. 12, 1559–1578. doi: 10.1002/1878-0261.12359

Jiao, Y., Li, Y., Jiang, P., Han, W., and Liu, Y. (2019). PGM5: a novel diagnostic
and prognostic biomarker for liver cancer. PeerJ 7, e7070. doi: 10.7717/
peerj7070

Kagohara, L. T., Stein-O’Brien, G. L., Kelley, D., Flam, E., Wick, H. C., Danilova, L.
V., et al. (2018). Epigenetic regulation of gene expression in cancer: techniques,
resources and analysis. Brief. Funct. Genomics 17, 49–63. doi: 10.1093/bfgp/
elx018

Kamel, H. F. M., and Al-Amodi, H. S. A. B. (2017). Exploitation of gene expression
and cancer biomarkers in paving the path to era of personalized medicine.
Genomics Proteomics Bioinf. 15, 220–235. doi: 10.1016/j.gpb.2016.11.005

Kang, L., Liu, X., Gong, Z., Zheng, H., Wang, J., Li, Y., et al. (2015). Genome-wide
identification of RNA editing in hepatocellular carcinoma. Genomics 105, 76–
82. doi: 10.1016/j.ygeno.2014.11.005

Kaplan, R. M., Chambers, D. A., and Glasgow, R. E. (2014). Big Data and Large
Sample Size: A Cautionary Note on the Potential for Bias. Clin. Transl. Sci. 7,
342–346. doi: 10.1111/cts.12178

Kaur, H., Bhalla, S., and Raghava, G. P. S. (2019). Classification of early and late
stage liver hepatocellular carcinoma patients from their genomics and
epigenomics profi l e s . PloS One 14 , e0221476 . do i : 10 .1371/
journal.pone.0221476

Kim, J. H., Sohn, B. H., Lee, H.-S., Kim, S.-B., Yoo, J. E., Park, Y.-Y., et al. (2014).
Genomic predictors for recurrence patterns of hepatocellular carcinoma:
model derivation and validation. PloS Med. 11, e1001770. doi: 10.1371/
journal.pmed.1001770

Klett, H., Fuellgraf, H., Levit-Zerdoun, E., Hussung, S., Kowar, S., Küsters, S., et al.
(2018). Identification and validation of a diagnostic and prognostic multi-gene
biomarker panel for pancreatic ductal adenocarcinoma. Front. Genet. 9, 108.
doi: 10.3389/fgene.2018.00108

Komatsu, H., Iguchi, T., Masuda, T., Ueda, M., Kidogami, S., Ogawa, Y., et al.
(2016). HOXB7 expression is a novel biomarker for long-term prognosis after
resection of hepatocellular carcinoma. Anticancer Res. 36, 2767–2773.

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. I.
(2015). Machine learning applications in cancer prognosis and prediction.
Comput. Struct. Biotechnol. J. 13, 8–17. doi: 10.1016/j.csbj.2014.11.005

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q.,
Wang, Z., et al. (2016). Enrichr: a comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97. doi:
10.1093/nar/gkw377

Kumar, R., Patiyal, S., Kumar, V., Nagpal, G., and Raghava, G. P. S. (2019). In
Silico Analysis of Gene Expression Change Associated with Copy Number of
Enhancers in Pancreatic Adenocarcinoma. Int. J. Mol. Sci. 20, 3582. doi:
10.3390/ijms20143582

Lamb, J. R., Zhang, C., Xie, T., Wang, K., Zhang, B., Hao, K., et al. (2011).
Predictive genes in adjacent normal tissue are preferentially altered by sCNV
during tumorigenesis in liver cancer and may rate limiting. PloS One 6, e20090.
doi: 10.1371/journal.pone.0020090

Li, L., Lei, Q., Zhang, S., Kong, L., and Qin, B. (2017). Screening and identification
of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic
analysis. Oncol. Rep. 38, 2607–2618. doi: 10.3892/or.20175946

Li, J., Tan, W., Peng, L., Zhang, J., Huang, X., Cui, Q., et al. (2018a). Integrative
analysis of gene expression profiles reveals specific signaling pathways
associated with pancreatic duct adenocarcinoma. Cancer Commun. (London
England) 38, 13. doi: 10.1186/s40880-018-0289-9

Li, N., Li, L., and Chen, Y. (2018b). The identification of core gene expression
signature in hepatocellular carcinoma. Oxid. Med. Cell. Longev. 2018, 3478305.
doi: 10.1155/2018/3478305

Liao, X., Liu, X., Yang, C., Wang, X., Yu, T., Han, C., et al. (2018). Distinct
diagnostic and prognostic values of minichromosome maintenance gene
expression in patients with hepatocellular carcinoma. J. Cancer 9, 2357–
2373. doi: 10.7150/jca.25221
January 2020 | Volume 10 | Article 1306

https://doi.org/10.1002/hep41229
https://doi.org/10.2147/CMAR.S167036
https://doi.org/10.1016/j.ajpath.2018.01.012
https://doi.org/10.1016/j.ajpath.2018.01.012
https://doi.org/10.1016/j.cell.2012.06.013
https://doi.org/10.1111/j.1349-7006.2010.01549.x
https://doi.org/10.1111/j.1349-7006.2010.01549.x
https://doi.org/10.1158/1541-7786.MCR-18-0012
https://doi.org/10.18632/oncotarget.18949
https://doi.org/10.1371/journal.pone.0123175
https://doi.org/10.1371/journal.pone.0123175
https://doi.org/10.1093/bioinformatics/btn224
https://doi.org/10.1038/cddis.2016.175
https://doi.org/10.1126/science.aal2380
https://doi.org/10.3892/or.20153968
https://doi.org/10.1002/1878-0261.12153
https://doi.org/10.1056/NEJMp1607591
https://doi.org/10.1159/000449340
https://doi.org/10.1016/j.tranon.2018.02.010
https://doi.org/10.7717/peerj4584
https://doi.org/10.1371/journal.pone.0153227
https://doi.org/10.7150/jca.26101
https://doi.org/10.1158/1078-0432.CCR-06-1025
https://doi.org/10.1158/1078-0432.CCR-06-1025
https://doi.org/10.1002/1878-0261.12359
https://doi.org/10.7717/peerj7070
https://doi.org/10.7717/peerj7070
https://doi.org/10.1093/bfgp/elx018
https://doi.org/10.1093/bfgp/elx018
https://doi.org/10.1016/j.gpb.2016.11.005
https://doi.org/10.1016/j.ygeno.2014.11.005
https://doi.org/10.1111/cts.12178
https://doi.org/10.1371/journal.pone.0221476
https://doi.org/10.1371/journal.pone.0221476
https://doi.org/10.1371/journal.pmed.1001770
https://doi.org/10.1371/journal.pmed.1001770
https://doi.org/10.3389/fgene.2018.00108
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.3390/ijms20143582
https://doi.org/10.1371/journal.pone.0020090
https://doi.org/10.3892/or.20175946
https://doi.org/10.1186/s40880-018-0289-9
https://doi.org/10.1155/2018/3478305
https://doi.org/10.7150/jca.25221
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Kaur et al. Diagnostic Biomarker Panel for HCC
Lim, H.-Y., Sohn, I., Deng, S., Lee, J., Jung, S. H., Mao, M., et al. (2013). Prediction
of disease-free survival in hepatocellular carcinoma by gene expression
profiling. Ann. Surg. Oncol. 20, 3747–3753. doi: 10.1245/s10434-013-3070-y

Liu, F., Li, H., Chang, H., Wang, J., and Lu, J. (2015). Identification of
hepatocellular carcinoma-associated hub genes and pathways by integrated
microarray analysis. Tumori 101, 206–214. doi: 10.5301/tj.5000241

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A.
D., et al. (2018a). An integrated TCGA pan-cancer clinical data resource to
drive high-quality survival outcome analytics. Cell 173, 400–416.e11. doi:
10.1016/j.cell.2018.02.052

Liu, X., Li, Y., Meng, L., Liu, X.-Y., Peng, A., Chen, Y., et al. (2018c). Reducing
protein regulator of cytokinesis 1 as a prospective therapy for hepatocellular
carcinoma. Cell Death Dis. 9, 534. doi: 10.1038/s41419-018-0555-4

Lou, J., Zhang, L., Lv, S., Zhang, C., and Jiang, S. (2017). Biomarkers for
Hepatocellular Carcinoma. Biomark. Cancer 9, 1–9. doi: 10.1177/
1179299X16684640

Mah, W.-C., Thurnherr, T., Chow, P. K. H., Chung, A. Y. F., Ooi, L. L. P. J., Toh,
H. C., et al. (2014). Methylation profiles reveal distinct subgroup of
hepatocellular carcinoma patients with poor prognosis. PloS One 9, e104158.
doi: 10.1371/journal.pone.0104158

Makowska, Z., Boldanova, T., Adametz, D., Quagliata, L., Vogt, J. E., Dill, M. T.,
et al. (2016). Gene expression analysis of biopsy samples reveals critical
limitations of transcriptome-based molecular classifications of hepatocellular
carcinoma. J. Pathol. Clin. Res. 2, 80–92. doi: 10.1002/cjp2.37

Marshall, A., Lukk, M., Kutter, C., Davies, S., Alexander, G., and Odom, D. T.
(2013). Global gene expression profiling reveals SPINK1 as a potential
hepatocellular carcinoma marker. PloS One 8, e59459. doi: 10.1371/
journal.pone.0059459

Mas, V. R., Maluf, D. G., Archer, K. J., Yanek, K., Kong, X., Kulik, L., et al. (2009).
Genes involved in viral carcinogenesis and tumor initiation in hepatitis C
virus-induced hepatocellular carcinoma. Mol. Med. 15, 85–94. doi: 10.2119/
molmed.2008.00110

Meng, C., Shen, X., and Jiang, W. (2018). Potential biomarkers of HCC based on
gene expression and DNA methylation profiles. Oncol. Lett. 16 (3), 3183–3192.
doi: 10.3892/ol.20189020

Murakami, Y., Kubo, S., Tamori, A., Itami, S., Kawamura, E., Iwaisako, K., et al.
(2015). Comprehensive analysis of transcriptome and metabolome analysis in
Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma. Sci. Rep. 5,
16294. doi: 10.1038/srep16294

Nagpal, G., Sharma, M., Kumar, S., Chaudhary, K., Gupta, S., Gautam, A., et al.
(2015). PCMdb: Pancreatic Cancer Methylation Database. Sci. Rep. 4, 4197.
doi: 10.1038/srep04197

Narrandes, S., and Xu, W. (2018). Gene Expression Detection Assay for Cancer
Clinical Use. J. Cancer 9, 2249. doi: 10.7150/JCA.24744

Nebbioso, A., Tambaro, F. P., Dell’Aversana, C., and Altucci, L. (2018). Cancer
epigenetics: Moving forward. PloS Genet. 14, e1007362. doi: 10.1371/
journal.pgen.1007362

Ocker, M. (2018). Biomarkers for hepatocellular carcinoma: What’s new on
the horizon? World J. Gastroenterol. 24, 3974–3979. doi: 10.3748/wjg.
v24.i353974

Oishi, N., Kumar, M. R., Roessler, S., Ji, J., Forgues, M., Budhu, A., et al. (2012).
Transcriptomic profiling reveals hepatic stem-like gene signatures and
interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic
cholangiocarcinoma. Hepatology 56, 1792–1803. doi: 10.1002/hep.25890

Pan, J.-W., Gao, X.-W., Jiang, H., Li, Y.-F., Xiao, F., and Zhan, R.-Y. (2015). Low
serum ficolin-3 levels are associated with severity and poor outcome in
traumatic brain injury. J. Neuroinflammation 12, 226. doi: 10.1186/s12974-
015-0444-z

Pedersen, C. B., Nielsen, F. C., Rossing, M., and Olsen, L. R. (2018). Using
microarray-based subtyping methods for breast cancer in the era of high-
throughput RNA sequencing. Mol. Oncol. 12, 2136–2146. doi: 10.1002/1878-
0261.12389

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in Python. JMLR 12, 2825–2830.

Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D.,
et al. (2004). Large-scale meta-analysis of cancer microarray data identifies
common transcriptional profiles of neoplastic transformation and
Frontiers in Genetics | www.frontiersin.org 1573
progression. Proc. Natl. Acad. Sci. U.S.A. 101, 9309–9314. doi: 10.1073/
pnas.0401994101

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47. doi: 10.1093/nar/gkv007

Roessler, S., Jia, H.-L., Budhu, A., Forgues, M., Ye, Q.-H., Lee, J.-S., et al. (2010). A
unique metastasis gene signature enables prediction of tumor relapse in early-
stage hepatocellular carcinoma patients. Cancer Res. 70, 10202–10212. doi:
10.1158/0008-5472.CAN-10-2607

Sauzay, C., Petit, A., Bourgeois, A.-M., Barbare, J.-C., Chauffert, B., Galmiche, A.,
et al. (2016). Alpha-foetoprotein (AFP): A multi-purpose marker in
hepatocellular carcinoma. Clin. Chim. Acta 463, 39–44. doi: 10.1016/
j.cca.2016.10.006

Schulze, K., Imbeaud, S., Letouzé, E., Alexandrov, L. B., Calderaro, J., Rebouissou,
S., et al. (2015). Exome sequencing of hepatocellular carcinomas identifies new
mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–
511. doi: 10.1038/ng3252

Sekhar, V., Pollicino, T., Diaz, G., Engle, R. E., Alayli, F., Melis, M., et al. (2018).
Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1
and occludin highly downregulated in hepatocellular carcinoma. PloS Pathog.
14, e1006916. doi: 10.1371/journal.ppat.1006916

Seok, J. Y., Na, D. C., Woo, H. G., Roncalli, M., Kwon, S. M., Yoo, J. E., et al.
(2012). A fibrous stromal component in hepatocellular carcinoma reveals a
cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal
transition. Hepatology 55, 1776–1786. doi: 10.1002/hep.25570

Sharma, S., Kelly, T. K., and Jones, P. A. (2010). Epigenetics in cancer.
Carcinogenesis 31, 27–36. doi: 10.1093/carcin/bgp220

Shen, S., Peng, H., Wang, Y., Xu, M., Lin, M., Xie, X., et al. (2018). Screening for
immune-potentiating antigens from hepatocellular carcinoma patients after
radiofrequency ablation by serum proteomic analysis. BMC Cancer 18, 117.
doi: 10.1186/s12885-018-4011-8

Shirota, Y., Kaneko, S., Honda, M., Kawai, H. F., and Kobayashi, K. (2001).
Identification of differentially expressed genes in hepatocellular carcinoma
with cDNA microarrays. Hepatology 33, 832–840. doi: 10.1053/
jhep.2001.23003

Siegel, R. L., Miller, K. D., and Jemal, A. (2019). Cancer statistics, 2019. CA. Cancer
J. Clin. 69, 7–34. doi: 10.3322/caac.21551

Stefanska, B., Huang, J., Bhattacharyya, B., Suderman, M., Hallett, M., Han, Z.-G.,
et al. (2011). Definition of the Landscape of Promoter DNA Hypomethylation
in Liver Cancer. Cancer Res. 71, 5891–5903. doi: 10.1158/0008-5472.CAN-10-
3823

Therneau, T. (2013). A Package for Survival Analysis in S. R package version 2,
37–4, Available at: http://CRAN.R-project.org/package=survival

Therneau, T., and Grambsch, P. (2000). Modeling Survival Data: Extending the
Cox Model. New York: Springer.

Tian, G., Yang, S., Yuan, J., Threapleton, D., Zhao, Q., Chen, F., et al. (2018).
Comparative efficacy of treatment strategies for hepatocellular carcinoma:
systematic review and network meta-analysis. BMJ Open 8, e021269. doi:
10.1136/bmjopen-2017-021269

Tizzot, M. R., Lidani, K. C. F., Andrade, F. A., Mendes, H. W., Beltrame, M. H.,
Reiche, E., et al. (2018). Ficolin-1 and Ficolin-3 Plasma Levels are altered in
HIV and HIV/HCV coinfected patients from Southern Brazil. Front. Immunol.
9, 2292. doi: 10.3389/fimmu.2018.02292

Tung, E. K.-K., Mak, C. K.-M., Fatima, S., Lo, R. C.-L., Zhao, H., Zhang, C., et al.
(2011). Clinicopathological and prognostic significance of serum and tissue
Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int. 31, 1494–
1504. doi: 10.1111/j.1478-3231.2011.02597.x

Vasudevan, S., Flashner-Abramson, E., Remacle, F., Levine, R. D., and
Kravchenko-Balasha, N. (2018). Personalized disease signatures through
information-theoretic compaction of big cancer data. Proc. Natl. Acad. Sci.
U.S.A. 115, 7694–7699. doi: 10.1073/pnas.1804214115

Villa, E., Critelli, R., Lei, B., Marzocchi, G., Cammà, C., Giannelli, G., et al. (2016).
Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular
carcinomas and worst survival. Results from a prospective study. Gut 65, 861–
869. doi: 10.1136/gutjnl-2014-308483

Wang, C.-Y., and Li, S. (2019). Clinical characteristics and prognosis of 2887
patients with hepatocellular carcinoma: a single center 14 years experience
January 2020 | Volume 10 | Article 1306

https://doi.org/10.1245/s10434-013-3070-y
https://doi.org/10.5301/tj.5000241
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1038/s41419-018-0555-4
https://doi.org/10.1177/1179299X16684640
https://doi.org/10.1177/1179299X16684640
https://doi.org/10.1371/journal.pone.0104158
https://doi.org/10.1002/cjp2.37
https://doi.org/10.1371/journal.pone.0059459
https://doi.org/10.1371/journal.pone.0059459
https://doi.org/10.2119/molmed.2008.00110
https://doi.org/10.2119/molmed.2008.00110
https://doi.org/10.3892/ol.20189020
https://doi.org/10.1038/srep16294
https://doi.org/10.1038/srep04197
https://doi.org/10.7150/JCA.24744
https://doi.org/10.1371/journal.pgen.1007362
https://doi.org/10.1371/journal.pgen.1007362
https://doi.org/10.3748/wjg.v24.i353974
https://doi.org/10.3748/wjg.v24.i353974
https://doi.org/10.1002/hep.25890
https://doi.org/10.1186/s12974-015-0444-z
https://doi.org/10.1186/s12974-015-0444-z
https://doi.org/10.1002/1878-0261.12389
https://doi.org/10.1002/1878-0261.12389
https://doi.org/10.1073/pnas.0401994101
https://doi.org/10.1073/pnas.0401994101
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1158/0008-5472.CAN-10-2607
https://doi.org/10.1016/j.cca.2016.10.006
https://doi.org/10.1016/j.cca.2016.10.006
https://doi.org/10.1038/ng3252
https://doi.org/10.1371/journal.ppat.1006916
https://doi.org/10.1002/hep.25570
https://doi.org/10.1093/carcin/bgp220
https://doi.org/10.1186/s12885-018-4011-8
https://doi.org/10.1053/jhep.2001.23003
https://doi.org/10.1053/jhep.2001.23003
https://doi.org/10.3322/caac.21551
https://doi.org/10.1158/0008-5472.CAN-10-3823
https://doi.org/10.1158/0008-5472.CAN-10-3823
http://CRAN.R-project.org/package=survival
https://doi.org/10.1136/bmjopen-2017-021269
https://doi.org/10.3389/fimmu.2018.02292
https://doi.org/10.1111/j.1478-3231.2011.02597.x
https://doi.org/10.1073/pnas.1804214115
https://doi.org/10.1136/gutjnl-2014-308483
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Kaur et al. Diagnostic Biomarker Panel for HCC
f r om Ch ina . Med . (Ba l t imo r e ) . 98 , e 14070 . do i : 1 0 . 1 097 /
MD.0000000000014070

Wang, H., Huo, X., Yang, X.-R., He, J., Cheng, L., Wang, N., et al. (2017). STAT3-
mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver
cancer metastasis by regulating SOX4. Mol. Cancer 16, 136. doi: 10.1186/
s12943-017-0680-1

Wang, Z., Teng, D., Li, Y., Hu, Z., Liu, L., and Zheng, H. (2018). A six-gene-based
prognostic signature for hepatocellular carcinoma overall survival prediction.
Life Sci. 203, 83–91. doi: 10.1016/j.lfs.2018.04.025

WELCH, B. L. (1947). The generalisation of student’s problems when several
different population variances are involved. Biometrika 34, 28–35. doi: 10.1093/
biomet/34.1-2.28

Wong, K.-F., Liu, A. M., Hong, W., Xu, Z., and Luk, J. M. (2016). Integrin a2b1
inhibits MST1 kinase phosphorylation and activates Yes-associated protein
oncogenic signaling in hepatocellular carcinoma. Oncotarget 7, 77683–77695.
doi: 10.18632/oncotarget.12760

Woo, H. G., Choi, J.-H., Yoon, S., Jee, B. A., Cho, E. J., Lee, J.-H., et al. (2017).
Integrative analysis of genomic and epigenomic regulation of the transcriptome
in liver cancer. Nat. Commun. 8, 839. doi: 10.1038/s41467-017-00991-w

Wu, G., Wu, J., Wang, B., Zhu, X., Shi, X., and Ding, Y. (2018). Importance of
tumor size at diagnosis as a prognostic factor for hepatocellular carcinoma
survival: a population-based study. Cancer Manage. Res. 10, 4401–4410. doi:
10.2147/CMAR.S177663

Xia, Q., Li, Z., Zheng, J., Zhang, X., Di, Y., Ding, J., et al. (2019). Identification of
novel biomarkers for hepatocellular carcinoma using transcriptome analysis. J.
Cell. Physiol. 234, 4851–4863. doi: 10.1002/jcp.27283

Xu, W., Rao, Q., An, Y., Li, M., and Zhang, Z. (2018). Identification of biomarkers
for Barcelona Clinic Liver Cancer staging and overall survival of patients with
hepatocellular carcinoma. PloS One 13, e0202763. doi: 10.1371/
journal.pone.0202763

Yang, J. D., Addissie, B. D., Mara, K. C., Harmsen, W. S., Dai, J., Zhang, N., et al.
(2019). Galad score for hepatocellular carcinoma detection in comparison with
Frontiers in Genetics | www.frontiersin.org 1674
liver ultrasound and proposal of galadus score. Cancer Epidemiol. Biomarkers
Prev. 28, 531–538. doi: 10.1158/1055-9965.EPI-18-0281

Zhang, C., Peng, L., Zhang, Y., Liu, Z., Li, W., Chen, S., et al. (2017). The
identification of key genes and pathways in hepatocellular carcinoma by
bioinformatics analysis of high-throughput data. Med. Oncol. 34, 101. doi:
10.1007/s12032-017-0963-9

Zhang, Y.-L., Ding, C., and Sun, L. (2019). High expression B3GAT3 is related
with poor prognosis of liver cancer. Open Med. (Warsaw Poland) 14, 251–258.
doi: 10.1515/med-2019-0020

Zhao, X., Parpart, S., Takai, A., Roessler, S., Budhu, A., Yu, Z., et al. (2015).
Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM+
AFP+ hepatocellular carcinoma. Oncogene 34, 5095–5104. doi: 10.1038/
onc.2014.438

Zheng, Y., Liu, Y., Zhao, S., Zheng, Z., Shen, C., An, L., et al. (2018). Large-scale
analysis reveals a novel risk score to predict overall survival in hepatocellular
carcinoma. Cancer Manage. Res. 10, 6079–6096. doi: 10.2147/CMAR.
S181396

Zubiete-Franco, I., García-Rodríguez, J. L., Lopitz-Otsoa, F., Serrano-Macia, M.,
Simon, J., Fernández-Tussy, P., et al. (2019). Sumoylation regulates LKB1
localization and its oncogenic activity in liver cancer. EBioMedicine 40, 406–
421. doi: 10.1016/j.ebiom.2018.12.031

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Kaur, Dhall, Kumar and Raghava. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
January 2020 | Volume 10 | Article 1306

https://doi.org/10.1097/MD.0000000000014070
https://doi.org/10.1097/MD.0000000000014070
https://doi.org/10.1186/s12943-017-0680-1
https://doi.org/10.1186/s12943-017-0680-1
https://doi.org/10.1016/j.lfs.2018.04.025
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.18632/oncotarget.12760
https://doi.org/10.1038/s41467-017-00991-w
https://doi.org/10.2147/CMAR.S177663
https://doi.org/10.1002/jcp.27283
https://doi.org/10.1371/journal.pone.0202763
https://doi.org/10.1371/journal.pone.0202763
https://doi.org/10.1158/1055-9965.EPI-18-0281
https://doi.org/10.1007/s12032-017-0963-9
https://doi.org/10.1515/med-2019-0020
https://doi.org/10.1038/onc.2014.438
https://doi.org/10.1038/onc.2014.438
https://doi.org/10.2147/CMAR.S181396
https://doi.org/10.2147/CMAR.S181396
https://doi.org/10.1016/j.ebiom.2018.12.031
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Shizhong Han,

Johns Hopkins Medicine,
United States

Reviewed by:
Olivier Taboureau,

Paris Diderot University, France
Chih-Hsu Lin,

Baylor College of Medicine,
United States

*Correspondence:
Lei Xie

lxie@iscb.org

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology, a section of the journal

Frontiers in Genetics

Received: 28 September 2019
Accepted: 18 December 2019
Published: 28 January 2020

Citation:
Lee B, Zhang S, Poleksic A and Xie L
(2020) Heterogeneous Multi-Layered

Network Model for Omics Data
Integration and Analysis.
Front. Genet. 10:1381.

doi: 10.3389/fgene.2019.01381

REVIEW
published: 28 January 2020

doi: 10.3389/fgene.2019.01381
Heterogeneous Multi-Layered
Network Model for Omics Data
Integration and Analysis
Bohyun Lee1, Shuo Zhang1, Aleksandar Poleksic2 and Lei Xie1,3,4,5*

1 Ph.D. Program in Computer Science, The City University of New York, New York, NY, United States, 2 Department of
Computer Science, The University of Northern Iowa, Cedar Falls, IA, United States, 3 Ph.D. Program in Biochemistry and
Biology, The City University of New York, New York, NY, United States, 4 Department of Computer Science, Hunter College,
The City University of New York, New York, NY, United States, 5 Helen and Robert Appel Alzheimer’s Disease Research
Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, Ithaca, NY, United States

Advances in next-generation sequencing and high-throughput techniques have enabled
the generation of vast amounts of diverse omics data. These big data provide an
unprecedented opportunity in biology, but impose great challenges in data integration,
data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics,
uncertainty, and high-dimensionality inherited in the omics data. Network has been widely
used to represent relations between entities in biological system, such as protein-protein
interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to
infer novel relations given a reconstructed network (aka link prediction). Particularly,
heterogeneous multi-layered network (HMLN) has proven successful in integrating
diverse biological data for the representation of the hierarchy of biological system. The
HMLN provides unparalleled opportunities but imposes new computational challenges on
establishing causal genotype-phenotype associations and understanding environmental
impact on organisms. In this review, we focus on the recent advances in developing novel
computational methods for the inference of novel biological relations from the HMLN. We
first discuss the properties of biological HMLN. Then we survey four categories of state-of-
the-art methods (matrix factorization, random walk, knowledge graph, and deep learning).
Thirdly, we demonstrate their applications to omics data integration and analysis. Finally,
we outline strategies for future directions in the development of new HMLN models.

Keywords: data mining and knowledge discovery, machine learning, biological data analysis, biological network,
link prediction, relation inference, deep learning
INTRODUCTION

A fundamental task in biological studies is to identify relations, more specifically dynamic
functional associations or physical interactions between various chemical and biological entities.
Network has been widely used to represent relations between entities in biology such as gene
regulation, signaling transduction, metabolism, brain connectivity, and species interaction. In the
network, a node represents an entity such as chemical compound, gene, protein, etc. A link between
nodes represents their relations. There are basically two types of relations (or links), intra-domain
January 2020 | Volume 10 | Article 1381175
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relations and cross-domain relations. An intra-domain link
denotes a relation between the same type of entities, e.g. a
protein-protein interaction. A cross-domain link represents a
relation between two entities that belong to different types, e.g.
protein-chemical interactions. Given a network of nodes and
links (observed relations), a computational challenge is how to
predict missing relations.

Depending on the underlying algorithms, relation inference
(or link prediction) can be formulated as a problem in a
homogenous network, a multiplex network, or a heterogeneous
multi-layered network (HMLN), as shown in Figure 1. In a
homogenous network (Figure 1A), all nodes from different
domains, as well as intra-domain and cross-domain relations,
are treated equally. In contrast, multiplex and multi-layered
networks separate different types of nodes and relations. A
multiplex network is often used to represent homogeneous
nodes that have different types of characterizations (a.k.a.
views). For example, a gene can be characterized by multiple
measurements of gene expression, essentiality, literature citation,
phylogenetic profile, neighborhood in the interaction network,
biological pathway involved, Gene Ontology annotation, protein
domain profile etc. (Hwang et al., 2019). Each type of
measurement can form a unique type of link between genes
(Figure 1B). In a HMLN (Figure 1C), multiple types of
heterogeneous nodes are involved. The nodes from each type
are grouped into a single layer and treated separately. In the same
vein, different types of intra-domain and cross-domain relations
are marked differently in a multi-layered network. We note that
more complex network representations, such as multiplex multi-
layered network, may be needed in real applications. In this
review, we focus on the cross-domain relation inference (or link
prediction) problem for the HMLN. Readers can refer other
excellent reviews of the multiplex networks (Chauvel
et al., 2019).
Frontiers in Genetics | www.frontiersin.org 276
Recently, multi-layered networks have been proposed to
connect multiple inter-dependent heterogeneous domains in
biology (Himmelstein and Baranzini, 2015; Chen et al., 2016;
Kringelum et al., 2016; Li et al., 2017; Pinero et al., 2017) and
ecology (Silk et al., 2018). A typical example of a multi-layered
network is HetioNet (Himmelstein and Baranzini, 2015) (Figure
1D). HetioNet contains nine domains, namely compound,
pharmacologic class, gene, pathway, biological process, disease,
side effect, symptom, and anatomy. Another example of a multi-
layered network is a multi-scale model that represents metabolic
phenotypic response to vaccination (Li et al., 2017). It consists of
four layers: blood transcriptomics, plasma metabolomics, plasma
cytokines, and cell populations. The multi-layered network
provides a natural way to represent the hierarchy of a
biological system and its environmental context: from genetic
markup to gene to biological pathway to cellular function to
organismal phenotype to population dynamics. It allows us to
uncover novel relations between biological entities (e.g.
genotype-phenotype associations) on a multi-scale.
Furthermore, the cross-layer relations may represent casual
effects (e.g. loss-of-function mutation) rather than statistical
correlations, e.g. Genome-Wide Association Studies (GWAS).
Compared to a homogeneous single-layered network, a unique
topological characteristic of a multi-layered network lies in its
cross-layer relation or dependency structure in addition to intra-
layer connectivity. For example, in HetioNet (Himmelstein and
Baranzini, 2015), a compound can inhibit or activate a gene. This
cross-layer dependency often plays a central role in a multi-
layered network. The prediction of new cross-layer relations is
often the key to new discoveries, such as a treatment of a new
disease by an existing drug, i.e. drug repurposing.

Substantial efforts have been devoted to reconstructing a
multi-layered network [e.g. HetioNet (Himmelstein and
Baranzini, 2015)] from the experimentally observed or
FIGURE 1 | Illustration of three types of network models, (A) homogeneous network, where all nodes and edges are treated equally, even though they may belong
to different types (dashed red and green circles). (B) multiplex network, (C) multi-layered network, (D) an example of heterogeneous multi-layered network HetioNet
(Himmelstein and Baranzini, 2015).
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computationally inferred heterogeneous data sets. Even though
the recent technology advances have enabled the generation of a
vast amount of biological, physiological, and epidemiological
data, the cross-layer relations observed by experiments are rarely
complete, unbiased, and certain (Xie et al., 2017). Many
important cross-layer relations are even completely missing.
For example, there are no connections between genes and side
effects in HetioNet, although such linkages are critical in
understanding the molecular and genetic basis of adverse drug
reactions. An unsolved computational problem is how to
efficiently, accurately, and robustly infer the missing cross-
layer relations in a HMLN.

In this review, we summarize the recent advances in the
development of cross-layer relation inference algorithms for the
HMLN, and their applications to biological discovery. The paper
will be organized as follows. First, we will discuss the properties
of biological HMLN. Second, we will introduce four major
computational strategies for the cross-layer relation prediction,
namely, matrix factorization, random walk, meta-path, and deep
learning. Then, we will demonstrate the applications of these
methods in biomedicine. Finally, we will discuss the unsolved
issues and future directions.
CHARACTERISTICS OF BIOLOGICAL
HMLN

Biological HMLN has several unique characteristics that impose
great challenges for cross-layer relation inference.

Biasness
Due to limitation of experimental techniques and biases of
researchers' interests, the observed data is highly skewed to
certain gene families, species, diseases, etc. (Xie and Bourne,
2005) Rapid accumulation of large omics data could alleviate this
problem to a certain degree. In addition, the reported positive
results often greatly exceed the reported negative results, as the
latter ones are seldom reported in the literature. Unless this
reporting bias is taken into account, the models trained using the
observed data by machine learning are unrealistic and hence
unreliable when applied to unseen data.

Noisiness
Many observed cross-layer links are noisy. The source of
noisiness is mainly due to the inconsistency in the experimental
and clinical observations. Given the same relation, the
inconsistency might result from different experimental
protocols, computational pipelines, and batch effects.

Uncertainty
The relations in HMLN often come from calculated values or
predictions made by heuristic algorithms. For example, many
algorithms exist for computing intra-layer relations, such as
chemical-chemical similarity. These methods differ in the
choice of chemical representation and similarity metric
employed. Similarly, no method is perfect for constructing
Frontiers in Genetics | www.frontiersin.org 377
cross-layer relations. While text mining is a popular technique,
it is known to introduce a large number of false positives.

Conditionality
Biological observations could be from different cell lines, culture
conditions, disease conditions, and environmental conditions.
Under different circumstances, the biological relations are
changed dynamically. For example, the physical strength and
functional consequence of protein-ligand binding are strongly
dependent on that mutation and post-modification state of
protein, gene expression profile, and other factors.

Ambiguity
Many relations in HMLN are ambiguous and require proper
classification. In one scenario, a relation can have opposite
biological consequence. For example, the “association” relation
between diseases and genes in HetioNet (Figure 1D) can be
either “upregulate” or “downregulate”. Another example is the
binding of bioactivity compounds on a protein. The bioactivity of
compound is often ambiguous. It could be an agonist or
an antagonist.

Sparsity and Imbalance
The observed cross-layer links are highly sparse. In the real
world, the number of relations of existence could be far less than
the number of relations of non-existence. For example, a highly
selective drug only binds to several protein isoforms among
hundreds of thousands of protein isoforms in human. In
addition, the observed relations are rare compared with the
unobserved relations. For example, among hundreds of
millions of sequenced genes, only tens of thousands of genes
have the bioactivity data associated with chemical compounds.
Because the negative cases often and greatly outnumber the
positive ones, this imbalance imposes a great challenge in model
training and evaluation.

Open World Assumption
Missing links cannot be treated as false relations, but instead as
“unknown”. In reality, these links could represent either a true or
false relation (of different kinds, if the relation is not binary), or
the lack of a relation.
ALGORITHMS FOR RELATION
INFERENCE IN HMLN

Overview
The premise of relation inference or link prediction is that the
missing relations can be inferred from the existing observed
relations. Although such direct linkages are sparse, they can be
recovered through intermediate intra-domain and cross-domain
relations. For example, if a rare SNP Sx is a gain-of-function
mutation of the gene G3 and if G3 is associated with the tall
height P1, then Sx is likely to be associated with P1, even if the Sx-
P1 association is not statistically significant in the GWAS
(Figure 2). However, such a simplistic inference method, based
January 2020 | Volume 10 | Article 1381
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on the existing highly sparse and highly biased observations, is
prone to type I errors. In the above setting, multiple genes (e.g.
G3 and G4) may be collectively responsible for P1 and thus the
likelihood of the inference “Sx causes P1” has to be adjusted
accordingly. To factor in the network multi-connectivity, an
algorithm needs to jointly predict whether Sx is associated with
other genes and whether these genes are associated with P1, by
simultaneously taking all observed cross-layer and intra-layer
relations into account. In Figure 2 example, the linkages of Sx-
S2-> G2- G4 and Sx- S3-> G2- G4 will significantly strengthen the
inferred Sx-P1 association.

A number of algorithms have been developed to solve the
relation inference problem in HMLN. All of these algorithms
follow a common framework, consisting of two steps, as shown
in Figure 3. The first step is to infer low dimension (i.e. rank)
latent features for each entity and/or relation (aka node
embedding and edge embedding). In the second step, the
latent features from different layers are used to restore all
missing cross-layer relations through a simple inner product or
other more sophisticated machine learning techniques. In
Figure 3, a chemical-gene-disease network is used to illustrate
the concept. The input is a matrix representation of multi-
layered network including both intra-layer relations (disease-
disease similarity, gene-gene similarity, and chemical-chemical
similarity) or their attributes (e.g. fingerprint representation for
nodes in chemical layer, sequence representation for nodes in
Frontiers in Genetics | www.frontiersin.org 478
gene layer, and word2vec representation for nodes in disease
layer), as well as a set of cross-layer relations (observed gene-
disease association and chemical-gene interaction). In principle,
even if we do not know any drug-disease associations, we can
infer them through observed drug-gene, and gene-disease
associations. The difference between the algorithms lies in the
objective function for shallow or deep representations in the first
step and machine learning methods for classification, regression,
or ranking used in the second step.

In the next section, we review the major embedding
algorithms in more details. These algorithms can be roughly
classified into matrix factorization, random walk, meta-path,
graph convolutional network (GCN), and their combinations.

Matrix Factorization
The cross-layer relation inference problem is conceptually
related to collaborative filtering (Goldberg et al., 1992).
Commonly used collaborative filtering methods can be
classified into two groups: neighborhood methods (Breese et
al., 1998) and latent factor methods (Koren et al., 2009). As the
latent factor approach is generally more effective in capturing the
implicit cross-layer relations, many variants of this methodology,
such as recommended systems (Portugal et al., 2018), have been
proposed to address relation inference problems in a two-layered
network (Gao et al., 2019; Xuan et al., 2019). However, few
methods have been developed for the multi-layered network.
FIGURE 2 | An illustration of relation inference in the HMLN. The line thickness is proportional to the degree of relation. Arrowed and headed lines denote positive
and negative relations, respectively.
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Zitnik et al. developed a penalized matrix tri-factorization
(PMTF) approach for data fusion (Zitnik and Zupan, 2015).
Singh et al. proposed a collective matrix factorization (CMF)
model to learn the dependencies across any two inter-dependent
domains (Singh and Gordon, 2008). However, neither PMTF
nor CMF takes the side information (i.e. intra-relations) into
account. Moreover, both methods suffer the “cold-start”
problem, which occurs when a new node arrives in the network.

Recently, Chen et al. developed the FASCINATE (Chen et al.,
2016) algorithm to solve the multi-layered network inference
problem, formulated as a weighted neighborhood-regularized
collective one-class collaborative fi l tering problem.
Mathematically, let G denotes a g × g layer-layer association
matrix, where G(i, j) = 1 if layer-j associates with layer-i, and G(i,
j) = 0 otherwise. Furthermore, let A = {A1,…,Ag} represents a set
of g within-layer connectivity matrices that describe the
connectivity/similarity between nodes within the same layer.
Finally, denote by D = {Di,j i, j = 1,…, g} the set of cross-layer
relation matrices, where Di,j specifies the relations between the
nodes from layer i and the nodes from layer-j. (each relation is
labeled 1, in case of an observed association; otherwise 0). The
problem of inferring missing relations between layers is
formulated as the following minimization problem:

min
Fi≥0 i=1,…,gð Þ

J = o
i,j :G i,jð Þ=1

‖Wi,j ⊙ Di,j − FiF
0
j

� �
‖2F

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Matching observed cross-layer relations

+ ao
g

i=1
tr F0

i Ti − Aið ÞFi
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Node homophily

+ bo
g

i=1
‖ Fi ‖2F

|fflfflfflfflffl{zfflfflfflfflffl}
Regularization

(1)
Frontiers in Genetics | www.frontiersin.org 579
In the above loss function, Wi,j denotes an ni × nj weight
matrix that assigns different weights to different associations in
the corresponding cross-layer relation matrix Di,j, depending
on the confidence in Di,j. The confidence scores are extracted
from the existing databases (Jensen et al., 2009; Kuhn et al.,
2012). The matrix Fi gives the low-rank representation for nodes
in layer i, while Ti is the diagonal degree matrix of Ai. Overall, the
first term in Eq. 1 is used to match all the cross-layer relations
calibrated by the weight matrix Wi,j,. The second term ensures
that the similar nodes have similar low-rank representations. The
third term is included to help prevent over-fitting. The
optimization problem defined in Eq. (1) is non-convex. Block
coordinate descent method is applied to find a local optima
(where each Fi naturally forms a ‘block’). Furthermore, the
second term in Eq. (1) allows us to address the cold-start
problem (namely the scenario where the query node does not
have any known cross-layer links with the existing nodes in the
network) based on similarity information.

There are several limitations of the existing MF-based
methods for HMLN. First, the linear reconstruction of the
complete matrix may not capture the complex cross-layer
relations that are often non-linear. Deep neural network
(DNN) has enjoyed great success in two-layered recommender
system (Batmaz et al., 2019). Thus, it is interesting and tempting
to extend the application of DNN to model the HMLN. Second,
multiple types of links are often needed to model various
biological relations between two layers. For example, there are
three types of links between ‘gene’ and ‘disease’ in HetioNet:
‘down-regulate’, ‘up-regulate’, and ‘associate’. And, while ‘down-
regulate’ and ‘up-regulate’ are mutually exclusive, ‘associate’ is
ambiguous (could be either ‘down-regulate’ or ‘up-regulate’). Few
FIGURE 3 | An illustration of the common algorithmic framework for the relation inference (link prediction). HMLN is represented as a graph or collection of matrices.
An inference algorithm takes the HMLN as input and generates a low-rank latent feature representation of chemicals, genes, and diseases, respectively. The inner
product of latent features or supervised learning techniques will reconstruct complete gene-disease, chemical-disease, and chemical-gene association matrix.
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of the existing MF-based methods can handle such multi-type
relations. Finally, the scalability might become an issue when the
existing implementations of MF are applied to extremely large
matrices. A distributed variant of MF could alleviate the problem.

Random Walk
Network propagation algorithm has been widely used in network
biology (Cowen et al., 2017). Majority of applications of network
propagation to biology networks are formulated in a
homogeneous setting. For example, Lin et al. constructed a
disease-gene-chemical network by integrating multiple data
resources and then applied several homogenous network
propagation algorithms for the relation inference (Lin et al.,
2019). The random walk with restart (RWR) is one of the most
representative network propagation algorithms. It was first
developed to explore the global topology of networks, by
simulating a particle that iteratively moves from a node to a
randomly selected neighboring node (Lovasz, 1993). Only
recently, random walk model has been extended to HMLN by
allowing jumps across layers (Valdeolivas et al., 2019).

Consider an undirected graph, G = (V, E) with adjacency
matrix A. An imaginary particle starts a random walk at the
initial node v0 ∈ V. At a discrete time step t ∈ N, the particle is at
node vt. Then, it walks from vt to vt+1, a randomly selected
neighbor of vt, by following the transition matrix M calculated
from A via column normalizat ion (Lovasz , 1993).
Probabilistically, ∀x,y ∈ V, ∀t ∈ N

P vt+1 = yjvt = xð Þ =
1=d xð Þ if  x, yð Þ ∈ E

0 otherwise,

(
(2)

where d(x) is the degree of x in the graph G. The probability
distribution of random walk at time t+1 is described by the
following equation:

PT
t+1 = MPT

t (3)

Accounting for the restart probability r on the seed node to
avoid the particle’s dead-end, the random walk with restart
(RWR) can be reformulated as:

PTt+1 = 1 − rð Þ*MPT
t + r*PT0 (4)

Even a multiplex graph with the collection of L undirected
graphs can be formulated as a RWR problem (De Domenico et
al., 2013; Kivelä et al., 2014). Each layer a = 1,…,L, can be
represented by an n-by-n adjacency matrix A[a] = (A[a] (i,j))i,j = 1,

…,n, where A
[a] (i,j) = 1, if nodes i and j are connected in layer a,

and 0 otherwise (Battiston et al., 2014). The multiplex graph is
defined as GM = (VM, EM), where:

VM = vai , i = 1,…, n,a = 1,…Lf g,
where vai stands for node i in layer a ,  and

(5)

EM = vai , v
a
j

� �
,  i, j = 1,…, n,  a = 1,…L,  A½a� i, jð Þ ≠ 0

n o

∪ vai , v
b
i

� �
, i = 1,…, n,  a ≠ b

n o
: (6)
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The particle can walk from its current node vai to any of its
neighbors within a layer, or jump to any node vbi with a ≠ b (De
Domenico et al., 2013), and thereby travel from one layer to
another, as shown in Figure 1C.

Extending classical RWR algorithm to a multiplex graph
introduces a supra-adjacency matrix A of size nL*nL, which
contains different types of transitions:

A =

1 − dð ÞA½1� d
L−1ð Þ I ⋯ d

L−1ð Þ I

d
L−1ð Þ I 1 − dð ÞA½2� ⋯ d

L−1ð Þ I

⋮ ⋮ ⋱ ⋮
d
L−1ð Þ I

d
L−1ð Þ I ⋯ 1 − dð ÞA½L�

0
BBBBBB@

1
CCCCCCA

(7)

In (7), I is the n-by-n identity matrix and A[a] is the adjacency
matrix of the layer a, as previously described. The diagonal
elements represent potential intra-layer walks, whereas the
off-diagonal elements account for possible jumps between
different layers. The parameter d ∈ [0,1] quantifies the
probability of staying in the current layer or jumping to another
layer. If d = 0, the particle will stay in the same layer after a non-
restart step.

Topological features of each node or edge derived from the
RW algorithm can be directly applied to link prediction. Those
features are often used as the basis of the more sophisticated
node embedding algorithms, such as DeepWalk (Perozzi et al.,
2014), Node2Vec (Grover and Leskovec, 2016), etc. However,
these algorithms focus on the homogenous network and have not
been extended to HMLN yet.

One of major limitations of the network propagation
algorithm is that its performance strongly depends on the
topology of the input network. It is less tolerant to biasness,
noisiness, and incompleteness of the network, which are the
characteristics of reconstructed biological HMLN.

Meta-Path-Based Algorithms
Meta-path has been extensively studied in heterogeneous
information networks (HIN) (Sun and Han, 2013). Since
HMLN is a variant of HIN, the meta-path algorithm, described
here, can be applied to the relation inference problem for HMLN.
Given a directed graph representation: G = (V, E) of HIN, an
object type mapping function t: V! A and a link type mapping
function j : E! R are defined such that object v ∈ V belongs to
one particular object type t (v) ∈ A and each link e∈ E belongs to
a particular relation j(e) ∈ R. A meta-path in G is a sequence of
relations R1, …, Rl, which connect two object types Ai and Aj. In
the example of Figure 2, the relation types include SNP-
associate-Phenotype (SaP), Chemical-associate-Gene (CaG),
and Gene-associate-Phenotype (GaP), SNP-similar-SNP (SsS),
Phenotype-similar-Phenotype (PsP), and Gene-similar-Gene
(GsG). The SNP-Phenotype association between Sx and P1 can
be defined by multiple meta-paths, e.g., SaG->GaP, SaG->GsG-
>GaP, and SsS->SaG->GaP, etc. By systematically designing
meta-path based topological features and their measures in
HLMN, supervised models can be used to learn the best
weights associated with different topological features for
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effective relation inference (Sun et al., 2012). In general, for a
target relation <Ai, Aj>, any meta-path starting with type Ai and
ending with type Aj (other than the target relation itself) can be
used as a topological feature. All these meta-paths can be
obtained by traversing on the network schema, for example,
using the breadth first search. Most algorithms for HIN
reconstruction enumerate a predefined set of meta-paths. Once
all meta-paths are defined, the next task is to design measures
on their topology. The commonly used measures include the
count of the path instances and the random walk-based
measures. Using topological features, either a supervised or
unsupervised learning model is used for node representation.
For example, the metapath2vec method (Dong et al., 2017) uses
a meta-path-based random walk to form the heterogeneous
neighborhood of a node, taking advantage of word
representation algorithm in the Nature Language Processing to
perform node embedding (Dong et al., 2017). One of the
drawbacks of these algorithms is that they require manual
predefinition and enumeration of meta-paths. This may be not
feasible for schema-rich HMLN or the relations that involve
multiple hopping paths (Cao et al., 2017), e.g. relations inferred
through thousands of similar chemicals.

Graph Neural Network and Other Deep
Learning Techniques
Besides the traditional algorithms, like matrix factorization,
random walk, and meta-path, introduced in previous sections,
the embedding of HMLN can also benefit from Deep Learning
techniques, especially the Neural Networks (NNs). Though NNs
are initially proposed to learn the embedding of data, such as
texts, images, and videos, they have shown powerful
performance when dealing with graph structured data, which
exist in non-Euclidean domain. Due to the growing interests
and demands in recent years, Graph Neural Networks (GNNs)
have been proposed to learn the embedding of graphs (Li et al.,
2015; Scarselli et al., 2008; Duvenaud et al., 2015; Kipf and
Welling, 2017; Hamilton et al., 2017; Zhang et al., 2018; Ying
et al., 2018; Morris et al., 2019; Xu et al., 2019; Zhang and
Xie, 2019).

A GNN consists of a number of hidden layers that employ
iterative, propagation procedures in order to transform different
node and edge features. Each layer takes the output of the
previous layer as the input. With graph structured data, GNNs
adopt element (node or edge) features X and the graph structure
A as input to learn the representation of each element hi, or
graph hG, for different tasks. Each hidden layer employs the
“aggregation” functions and the “update” functions (Battaglia
et al., 2018). Each aggregation function r takes a set of node or
edge features as input and reduces it to a single element which
represents the aggregated information. The aggregations usually
operate on the nearest neighbors or the local subgraphs of each
element to capture local information gradually. Since the
permutation invariance of the input holds in graph data, the r
functions must also have the same property. These functions can
take variable numbers of arguments. Commonly used r
functions include sum (Xu et al., 2019), mean (Kipf and
Welling, 2017), max-pooling (Hamilton et al., 2017) and
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attention mechanism (Velickovic et al., 2018; Wang et al.,
2019; Fan et al., 2019). Update functions f are applied across
all elements to compute per-element updates after the
aggregations. In the final layer, the generated embedding can
be fed into the classification/prediction layer, and the whole
model is trained for different (e.g. node classification, link
prediction) tasks.

The design of GNNs is flexible. GNNs can be designed to fit
different graph structures and different tasks. In the link
prediction problem, the prediction of a feature (e.g. link or
non-link) of a desired edge is based on the local structural
information around that edge. For example, the method by
Zhang et al. learns the link prediction heuristics from local
(enclosing) subgraphs of edges rather than from the entire
network (Zhang and Chen, 2018). The prediction of cross-
layer relations follows a similar idea if HMLN is given as
input. The model designed by Fan et al. learns the embedding
of the two nodes by aggregating their neighbors (Fan et al., 2019).
The embedding of two nodes is fed into a classification layer to
classify the type of a given edge. Due to the topology of HMLN,
GNNs can take meta-path into consideration when designing the
aggregation functions r. In (Wang et al., 2019), the node
embedding are computed by the neighbor nodes connected by
meta-paths. During the training procedure, the effect of different
meta-paths can be distinguished by using attention mechanism
in aggregation. In (Zhang et al., 2018), the original input
heterogeneous network is modified to be multi-channel
network. Each channel is a homogeneous network consisting
of the nodes that are connected by a similar type of meta-paths
in the original network. Thus, GNNs can be used on each
channel for learning the embedding, which is concatenated
from all channels. As discussed in the previous section, the
meta-path based GNN shares the same limitations of other
meta-path based algorithms. New types of GNNs, those that
explicitly take different types of relations into consideration, are
needed for the link prediction problem in HMLN (Nathani
et al., 2019).

Although Graph Neural Networks have been applied to
heterogeneous networks and proven their ability of learning
representations (Zhang et al., 2019), GNNs still exhibit
limitations in several aspects. First, current GNNs proposed for
the learning of heterogeneous networks do not particularly
distinguish cross-layer from intra-layer relations. For example,
while researchers can simply treat distinct relations as different
types, the intra-layer relations in the same layer of an HMLN
usually represent the similarity relation, which is semantically
distinct from the cross-layer relation. The above needs to be
taken into consideration when designing GNNs for HMLN.
Second, the current design of GNNs relies on heuristics and
empirical findings, which adds to the difficulty of learning the
representations of HMLN. To enhance power of HMLN, it is
crucial to properly identify the conditions that the aggregation
and update functions ought to satisfy and to set those functions
accordingly. Third, although GNNs can achieve promising
results on different tasks for heterogeneous networks, it is hard
for GNNs to have interpretability comparing to other traditional
techniques. Therefore, new methods are needed to handle the
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problems that need interpretability (e.g. the need to find
important nodes or edges that contribute to the results).

Application of HMLN in Omics Data
Integration and Analysis
Homogeneous and bi-layered network models have been widely
applied in omics data integration and analysis. Recently, the
HMLN has emerged as a powerful alternative. Here, we will
highlight several exemplary applications of the HMLN to infer
genotype-phenotype associations, and to predict chemical and
other environmental perturbations.

Yao et al. integrated multi-omics data to construct a three-
layered network model MetPriCNet, which consists of
metabolite network, gene network, phenotype network,
metabolite-phenotype network, metabolite-gene network, and
gene-phenotype network (Yao et al., 2015). Afterwards, an RWR
algorithm is applied to prioritize metabolites associated with
diseases. The cross-validation on a benchmarking data set
achieved the AUC values exceeding 0.9. An approach similar
to MetPriCNet has been applied to identify and prioritize the
metabolites responsible for atrial fibrillation (Yan et al., 2019),
postmenopausal osteoporosis (Zhang et al., 2019), and Acute
Lung Injury in Patients with Sepsis (Wang et al., 2019).

In addition tometabolite-disease association, the RWRmethod
has been used to identify other molecular dysregulations that are
associated with diseases based on the multi-layered network
model. To infer disease associated m6A RNA methylation site,
Tang et al. constructed a three-layered network, that includes a
m6A site network, a gene network, a disease network, a m6A-gene
network, and a gene-disease network (Tang et al., 2019). Xu and
Wang applied random walk on a three-layer heterogeneous
network that uses a kinase layer as an intermediate to infer
disease-phosphorylation site relation. They showed that the
three-layer phosphorylation site-kinase-disease network model is
superior in inferring disease-phosphorylation site relation when
compared with the existing random walk models and commonly
used classification methods (Xu and Wang, 2016).

HMLN provides new opportunities for inferring novel drug-
target-pathway-disease-side effect associations. The
identification of such missing relations could facilitate the
discovery of new therapies for complex diseases.

The ANTENNA method by Wang et al. employs a one-class
collaborative filtering technique based on RWR and the matrix
tri-factorization to predict the drug-disease associations using a
three-layered drug-gene-disease network. In a comprehensive
benchmarking study, ANTENNA outperformed the more
conventional OCCF methods. Using ANTENNA, Wang et al.
showed that diazoxide might inhibit the growth of triple negative
breast cancer (TNBC) cells efficiently (Wang et al., 2018). Lim et
al. applied FASCINATE to a three-layered drug-gene-side effect
network model to identify biological pathways associated with
rare side effects. Their predicted side effect-causing pathways are
consistent with clinical evidences (Lim et al., 2018). Fu et al.
extracted meta-path based topological features from a semantic
network with nine object types (compound, ChEBI type,
chemical substructure, protein, GO annotation, pathway,
tissue, disease, and side effect), and twelve relation types.
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Subsequently, they applied the extracted features to predict
drug-target interactions (Fu et al., 2016).
FUTURE DIRECTIONS

Representation of Biological Hierarchy
and Environment
Only a few multi-layered network models for the genotype-
phenotype associations have been developed that consist of
more than three layers. These models lack the power to
represent the full spectrum of information flow from the
genotype to the phenotype. Even in a simplified picture, a
multi-layered network model needs more than three layers to
connect genome to phenome via epigenome (DNA layer),
transcriptome (RNA layer), proteome (protein layer), and
metabolome (metabolite layer). The representation of DNA,
RNA, protein, and metabolite in the different layer could
facilitate heterogeneous omics data integration and multi-scale
modeling of information flow from genotype to phenotype.
Furthermore, environmental components, such as gut
microbiome, play a critical role in shaping the organismal
phenotypes. With the exponential growth of different omics
data from the same cohorts [e.g. TCGA (Cancer Genome Atlas
Research Network et al., 2013)], the multi-layered network model
represents a potentially powerful tool to integrate and analyze
heterogeneous data sets for novel discovery.

Incorporation of Mechanism-Based
Modeling
The capability of data-driven modeling is limited by the existing
data. We can enrich the missing relations in HMLN using
complementary methods. For example, text mining is a
commonly used tool to construct HMLN. Besides alternative
machine learning approaches, mechanism-based modeling in
biophysics, systems biology, and other fields can be applied to
establish causal relations between entities. For example, protein-
ligand docking can be applied to infer chemical-protein
interactions. The mechanism argument HMLN may provide us
with new opportunities for novel discovery, as demonstrated in a
recent study (Lim et al., 2019). However, the potential false
positives from the outside predictions should be taken into
consideration when designing HMLN learning procedures.

Data Consolidation and Normalization
When reconstructing HMLN, both intra-layer and cross-layer
relations can come from multiple resources. For instance, in
HumanNet, gene-gene co-functional links are derived from co-
citation, co-essentiality, co-expression, pathway database, protein-
domain profile association, and gene neighborhood (Hwang et al.,
2019). Another example is chemical-protein interaction (Gaulton
et al., 2012). The binding assay could be performed using different
experimental techniques, and measured by different metrics
(IC50, pKi, etc.). However, mapping the entities, minimizing
batch effects, and normalizing the weights of different edge
types in the same network remain the challenging tasks.
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Inference of Directionality and Trend of
Relations
Few of relation inference algorithms can predict the
directionality and trend of edges. The directionality means that
one entity has effect on another but not vice versa. The trend
represents distinct and often opposite functional consequence.
For example, a drug can down- or up-regulate a gene. The
identification of the directionality and trend of relation is pivotal
to understand many biological processes such as drug action,
signaling transduction and gene regulation, and determine
causality between biological entities. For example, knowing
that a chemical C interacts with a gene G, which is associated
with a diseaseD, does not necessarily imply that the compound C
will be effective on the disease D. On the other hand, if the
compound C up-regulates the gene G, and the gene G is down-
regulated in the disease D, than it is more likely for the
compound C to treat or palliate the disease D. Recent
development on signed network algorithm may provide partial
solution to this problem (Kim et al., 2018).

Inference of Non-Binary and Dynamic
Relations
Existing link prediction algorithms for HMLN mainly focus on
binary relations. However, other types of relations, such as unary
and higher-arity relations, are needed to encode more complete
biological knowledge. The unary relation represents the property of
an entity, for example, the expression value of a gene. When
modeling a dynamic system, a relation is associated with time
and location. A single binary relation is not sufficient to capture its
temporal and spatial nature. In this case, the higher-arity relations
might prove beneficial. An example of a ternary relation is “gene A
with a mutation M down-regulates the expression of gene B in
neuro cells”. This relation includes three entities or layers (mutation,
gene, and cell), and it can be expressed by three binary relations:
“Mutation M is in gene A”, “drug A down-regulates gene B”, and
“gene B is expressed in the neuro cells”. However, the genesA and B
might be expressed in other types of cells in addition to the neuro
cells. The mutation M in gene A may not down-regulate gene B in
other cells. As a result, the tissue-specific correspondence between
mutation M and the neuro cell is lost.

Incorporation of Ontology
A number of biomedical ontologies have been developed to
facilitate knowledge integration and discovery (Musen et al.,
2012). These ontologies can serve as HMLN constraints to
reduce false positives and resolve contradictory relations. There
are two types of ontology constraints that can be applied to
HMLN, namely deterministic constraint and functional
constraint. A deterministic constraint imposes a clear
dependency on relations such as “IsA” and “LocatedIn”. For
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example, if a protein binds to zinc, it is safe to state that the
protein is metal-binding, because zinc is a metal. One can
precompute all relations derived from the deterministic
constraint and add them to HMLN prior to learning. Functional
constraints enforce mutual exclusiveness between possible values.
For example, if a chemical A is a known inhibitor of enzyme B,
one can exclude the relation “A activates B” from HMLN.

Sampling of Negative Relations
Many learning algorithms need a balanced number of negative
examples. As mentioned in section 2, there are much less
negative examples than positive examples in the biological
HMLN, although, in reality, the negative cases are substantially
more frequent than the positive ones. The conventional method
is to randomly sample from a uniform distribution after
excluding positive examples. However, this approach may not
be applicable to the biological HMLN, where opposite relations
exist between two entities. For example, a drug can either “down-
regulate” or “up-regulate” a gene. It is not obvious how to assign
the sampled relations to the opposites of “down-regulate” or “up-
regulate”. Cai et al. have recently developed an adversarial
reinforcement learning framework to assign the negative
samples (Cai and Wang, 2017). This approach can be extended
to the negative sampling for different relation types in HMLN.

Visualizing HMLN
Visualization plays a key role in data mining tasks. Although
many computational platforms, such as Cytoscape (Shannon
et al., 2003), have been developed for the network visualization,
few tools are available for efficient and intuitive visualization of
HMLN, especially when the network is large (Mcgee et al., 2019).
There is an urgent need to design a robust data structure for the
representation and grouping of nodes and relations in HMLN in
a way that they can be efficiently mapped to the graphic user
interface and easily navigated by users.
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Construction of regulatory networks using cross-sectional expression profiling of genes is
desired, but challenging. The Directed Acyclic Graph (DAG) provides a general framework
to infer causal effects from observational data. However, most existing DAG methods
assume that all nodes follow the same type of distribution, which prohibit a joint modeling of
continuous gene expression and categorical variables. We present a new mixed DAG
(mDAG) algorithm to infer the regulatory pathway frommixed observational data containing
both continuous variables (e.g. expression of genes) and categorical variables (e.g.
categorical phenotypes or single nucleotide polymorphisms). Our method can identify
upstream causal factors and downstream effectors closely linked to a variable and
generate hypotheses for causal direction of regulatory pathways. We propose a new
permutation method to test the conditional independence of variables of mixed types,
which is the key for mDAG. We also utilize an L1 regularization in mDAG to ensure it can
recover a large sparse DAG with limited sample size. We demonstrate through extensive
simulations that mDAG outperforms two well-known methods in recovering the true
underlying DAG. We apply mDAG to a cross-sectional immunological study of
Chlamydia trachomatis infection and successfully infer the regularity network of
cytokines. We also apply mDAG to a large cohort study, generating sensible
mechanistic hypotheses underlying plasma adiponectin level. The R package mDAG is
publicly available from CRAN at https://CRAN.R-project.org/package=mDAG.

Keywords: regulatory network, directed acyclic graphs, mixed observational data, continuous and categorical
variables, causal regulatory pathways
INTRODUCTION

Identification of differentially expressed genes associated with disease has become an instrumental
approach, but with only limited success in mechanistic discovery, partly due to the fact that current
methods based on fold-change focus only on a single gene. Co-expression network analysis
(Oldham et al., 2006; Chen, 2012; Hawrylycz et al., 2012), an approach that constructs networks
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of genes that tend to co-activate among a group of samples,
provides a connectome of gene interaction. (Zhuang et al., 2016)
proposes a more general class of undirected graphical models
that can handle mixed types of variables. However, the
undirected graphical model by itself cannot reveal disease
causality. There is a critical need to understand regulatory
pathways for discovery of therapeutic targets and
disease mechanisms.

A few approaches have been proposed in recent years to
estimate regulatory networks/pathways. iPoint was proposed by
Atias and Sharan (2013) to infer a compact subnetwork that
connects the source of the response (anchor genes) to the targets
of the response (terminal genes) while optimizing local
(individual path lengths) or global (likelihood) aspects of the
subnetwork to solve the “anchor” reconstruction problem. The
input of iPoint requires a single anchor gene and a list of terminal
genes. PINE was proposed by Wilentzik and Gat-Viks (2015) to
identify the particular pathways by which DNA variants perturb
the signaling network. It requires prior established biological
knowledge of how the stimulations affect gene expression and
existence of multiple stimulation conditions. TieDie was
proposed by Paull et al. (2013) to infer regulatory pathways
linking genomic events (e.g. mutated genes) to transcriptional
changes by a heat diffusion strategy. However, TieDie assumes
that mutations necessarily lead to loss of function. All these
methods assume prior knowledge of particular biological
networks/pathways or functions.

Over the past few years, there has been a growing interest in
utilizing directed acyclic graphs (DAG), which do not require
any prior biological knowledge, to infer directional relations in a
regulatory network in a large variety of disciplines such as
biology, neuroscience, and psychology (Friedman et al., 2000;
Huang et al., 2010; Borsboom and Cramer, 2013). The logical
basis of such graphical models is the conditional independence
structure of the underlying probability distributions of data. We
propose to jointly model the probability distribution of mixed
data composed of continuous variables (e.g., expression of
proteins or genes) and discrete variables (e.g., categorical
disease outcomes or single nucleotide polymorphisms) by DAG.

There are three types of methods to estimate a DAG
(Nagarajan et al., 2013): constraint-based methods, score-based
methods, and hybrid methods. The constraint-based methods
learn a DAG by exploiting the conditional independence
constraints in the observational distribution. The most
prominent example of such methods is the PC algorithm
(Spirtes et al., 2000). This algorithm first estimates the skeleton
of the underlying DAG, and then adds orientations to the
skeleton based on a set of edge orientation rules (Meek, 1995).
The CPC-stable algorithm (Colombo and Maathuis, 2014)
improves the PC algorithm by resolving the order-dependence
issue in the determination of the skeleton. A more recent
constraint-based method (Tsagris et al., 2018) proposes a
symmetric conditional independence tests based on likelihood-
ratio test and combines it with the existing constraint-based
methods (e.g. PC algorithm) to estimate a DAG. The score-based
methods (Chickering, 2002) learn a DAG by a greedy search for
Frontiers in Genetics | www.frontiersin.org 287
the optimal score of the goodness-of-fit of the estimated DAG.
The hybrid methods (Nagarajan et al., 2013) learn a DAG by
integrating the constraint-based and the score-based methods.
An example is the Max-Min Hill-Climbing (MMHC) algorithm
(Tsamardinos et al., 2006), which applies the Max-Min Parents
and Children algorithm to obtain the skeleton and the Hill
Climbing greedy search algorithm to orient edges in the
skeleton. Another example is the causalMGM algorithm
(Sedgewick et al., 2016; Sedgewick et al., 2017), which firstly
estimates an undirected graph and then uses PC-stable or CPC-
stable for orientation. The first step modifies the mixed graphical
model method (Lee and Hastie, 2015) by using different penalty
functions for different edge types. The second step uses a
likelihood-ratio test to test the conditional independence in
order to use the PC-stable or CPC-stable algorithm for edge
orientation. Based on our experience, such an orientation
method is not as efficient as score-based method, which is used
in our algorithm.

However, most of these methods assume that all variables are
of the same type. For example, the Gaussian graphic model
assumes that the joint distribution of all variables is multivariate
normal. Therefore, these methods cannot be directly applied to
infer the causal relationship between continuous measurements,
such as protein or gene expression, and the categorical variables,
such as categorical traits or single nucleotide polymorphisms
(SNPs). To this end, we propose a mixed DAG method (mDAG)
that accommodates data of different types. We assume the joint
distribution of all variables follow a pairwise Markov random
field, which ensure that the conditional distribution of one graph
node on all other nodes either follow a Gaussian distribution or a
multinomial distribution. Thus, it enables joint modeling of
continuous and categorical variables. We demonstrate the
efficacy of our method through extensive simulations and
apply it to a study of human cytokines associated with
chlamydial susceptibility to infer cytokines with causal effects
on a categorical disease phenotype. We also show that our
method can identify gene expression levels that mediate the
effect of genetic variants on traits.
MATERIALS AND METHODS

Definitions and Preliminaries
We first introduce a few key concepts in the DAG theory. A
DAG of a vector of random variables X = (X1,…,Xd)

T is a
directed graph with no cycle, which is denoted by G = (V, E),
where V is the set of d vertices representing X, and E is the set of
all directed edges. Given a path Xi0 ! Xi1 ! …! Xin in a
DAG, Xil−1   is called a parent of Xil   and Xil   is called a child of
Xil−1  . The d separation set S that blocks nodes i and j is a vertex
set that blocks all paths that connect i and j for either the path
that contains at least one arrow-emitting vertex belonging to S,
or the path that contains at least one collision vertex (a vertex
without emitting edges) that is outside S and no children of the
collision vertex belongs to S. In a DAG, the Markov blanket of a
node includes its parents, children, and the other parents of all
February 2020 | Volume 11 | Article 8
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of its children. In an undirected graph, the Markov blanket of a
node contains all nodes connecting to itself. The skeleton of a
DAG is the undirected graph that results from ignoring the
directionality of every edge in a DAG. In order to model the
mixed data, we assume the joint distribution of all variables is
faithful to a DAG, meaning that for any i, j∈V and any set S⊂V,
Xi and Xj are conditional independent given Xs if and only if
node i and j are d-separated by set S (Pearl, 2009) and S is called
the d-separation set of node i and j. In other words, the
conditional independence can be read from the DAG. Under
the faithfulness assumption, the joint distribution has the
Markov property that a node is independent of all other
nodes conditional on the Markov blanket. Such an
assumption is widely used in Bayesian Network literature, the
PC-algorithm (Spirtes et al., 2000), PC-stable and CPC-stable
algorithm (Colombo and Maathuis, 2014), and MMHC
algorithm (Tsamardinos et al., 2006). Meek (2013) proved
that this assumption holds for a variety of Bayesian Network.

To recover the underlying DAG from the mixed data, our
method consists of three main steps. First, we use a penalized
nodewisemaximum likelihoodmethod (Lee andHastie, 2015) to
identify the Markov blanket of each node. Second, we use a
modified PC-stable algorithm (Ha et al., 2016) to obtain the
DAG's skeleton and its d-separation set. Finally, we add
orientations to the skeleton using a greedy search algorithm
(Tsamardinos et al., 2006). Different from the existing literature,
since our data is of mixed types, we propose a new permutation
test on the second step to test the conditional independence,
which is the key to estimate the skeleton of the DAG for
mixed data.

Identification of the Markov Blanket
We assume the distribution of X = (X1,…,Xp+q)

T follows a
pairwise Markov random field with a density

p x;Qð Þ ∝ exp

�
Sp
s=1S

p
t=1 −

1
2
bstxsxt + Sp

s=1asxs

+ Sp
s=1S

q
j=1rsj xp+j

� �
xs + Sq

j=1S
q
r=1frj

�
xp+j, xp+r

��

where we assume without loss of generality that Xj(j = 1,…p) are
continuous variables, Xp+j(j = 1,…q) are discrete variables, and
Q = (as, bst, rsj, frj) for s,t = 1,… and j,r=1,…q are parameters.
We assume that the discrete variable Xp+j takes a total of Lj
values. As shown in (Lee and Hastie, 2015), the conditional
distribution of a pairwise Markov random field is either Gaussian
or multinomial. Thus, it enables a joint modeling of mixed data.
In particular, for a continuous variable Xj its density conditional
on all other variables X-j is given by

p xj
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where x-j = (x1,…, xj-1, xj+1,…, xp+q)
T and qj∈R(p+q-1) and s 2

j   are
parameters from the Gaussian distribution. For a discrete
variable Xj, its conditional density is given by
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where (w(0)
j ,  …  w

(Lj)
j )T   are parameters from the multinomial

distribution. In order to recover the Markov blanket, we
implement a nodewise penalized generalized linear model
(GLM) to perform neighborhood selection for each node (Lee
and Hastie, 2015). More specifically, for node j we solve a
penalized maximum likelihood problem that

b̂ j =   arg min
bj

  –Sn
k=1 log p xkj

� ��xk,−jÞ + lj ∥ bj ∥1

Where xkj is the observed data for subject k at node j,xk,-j = (xk1,
xk2,…, xk,j+1,…, xkn) and Sn

k=1 log p (xkjjxk,−j) is the log-likelihood
of all subjects. The parameter bj = qj when Xj is Gaussian; and�
w(1)T

j ,w(2)T

j , � � �,w(Lj)
T

j

�T when Xj is categorical. In (1), we add

an L1-penalty on the bj to enable the neighborhood selection. If
node j is continuous, we connect node i with node j if the ith

element of b̂ j is nonzero. If node j is categorical, we connect node

i with node j if any ith element of ŵ (k)
j (k = 1,  …, Lj)   is nonzero.

In the next section, we will discuss how to remove false
connections identified at this stage that do not belong to the
skeleton of the DAG. In (1), the tuning parameter lj controls the
level of penalization and how sparse the resulting graph will be.
Its optimal value is chosen by minimizing the extended Bayesian
information criteria (EBIC) (Foygel and Drton, 2010).

EBICg bj
� �

= −2Sn
k=1 log p xkj

� ��xk,−jÞ + ∥ bj ∥0 log n

+ 2g ∥ bj ∥0 log p + q − 1ð Þ
where n is sample size, ∥bj∥0 is number of nonzero elements of
bj and g is a user-predefined constant.

Identification of the Skeleton
The nodewise penalized GLM results in a Mixed Graphical
Model (MGM), which is graphical model on continuous and
discrete variables. Next, we remove edges in a MGM that do not
exist in the corresponding DAG's skeleton. In a MGM, two
vertices are connected if the two variables are dependent
conditional on all other variables. However, in a v-structure
X ! W  Z of a DAG, co-parents X and Z are independent
conditional on their parents. Therefore, X and Z are not
connected in the DAG's skeleton. But since X and Z are
dependent given any vertex set that contains W or its
descendant, X and Z are connected in a MGM. Therefore, we
need to remove false connections between co-parents of v-
structures in a MGM to obtain the DAG’s skeleton.

The removal of false connections between co-parents of v-
structures relies on testing the conditional independence of two
variables given a set of other variables. In a Gaussian graphical
model, testing conditional independence is equivalent to testing a
zero partial correlation coefficient (Baba et al., 2004). Therefore,
such a test can be easily performed using a Fisher’s z-transformation
(Ha et al., 2016) on the partial correlation. However, for mixed data,
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testing conditional independence will be more complicated as it is
no longer equivalent to testing zero partial correlation coefficient.
To this end, we propose a permutation method to test the
conditional independence of mixed data. Let Xj and Xl be two
variables, and XK be the set of variables that Xj and Xl are
conditioning on. We first regress Xj and Xl on XK respectively
using a GLM. When Xj is Gaussian, we calculate the residual rij   =
  xij   – x̂ ij,   (i = 1,  …,   n)   from the ordinary linear regression,
where xij is the ith observation of Xj and x̂ ij   the prediction of xij
from the ordinary linear regression. When Xj is discrete, we
calculate the Pearson residual from a multinomial logit model

rij = SLj−1
k=1

xijk − m̂ ijkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂ ijk 1 − m̂ ijk

� �q

where xijk the ith observation of the kth dummy variable created
for Xj and m̂ ijk is its predicted value from the logit model. In a
special case of binary outcome, the above form reduces to the
Pearson residual from a logistic model. Then, we calculate the
partial correlation

r̂ jl =
Sn
i=1 rij − �rj
� �

ril − �rlð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
i=1 rij − �rj
� �2Sn

i=1 ril − �rlð Þ2
q

where �rj =
1
n S

n
i=1rij and  �rl =

1
n S

n
i=1ril . Next, we permute the

residuals   (ril)
n
i=1 to have (rp(i)l)

n
i=1 where p(i) ∈ { 1,…,n } is the

permuted label of i. The permutation is repeated for B times. For
the bth permutation, we calculate the partial correlation

r̂ bð Þ
jl =

Sn
i=1 rij − �rj
� �

r bð Þ
il − �r bð Þ

l

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
i=1 rij − �rj
� �2Sn

i=1 r bð Þ
il − �r bð Þ

l

� 2
r

The p-value testing the conditional independence of Xj and Xl

then given by p = 1
B S

B
i=1I(r̂ jl > r̂ (b)

jl )where I(x) is the indicator

function. We conclude that Xj and Xl are conditionally
independent if such a p-value is greater than 0.05. Based on
the above test of conditional independence, we remove the edges
belonging to the MGM but not the DAG's skeleton and obtain
the d-separation set.

Orientation of the Mixed DAG
In the last step, we add orientation to the skeleton of the DAG
using a greedy search algorithm as proposed in (Tsamardinos
et al., 2006). We aim to find the orientation such that the
Bayesian Information Criterion (BIC) of the whole graph is
minimized (Schwarz, 1978). For a given directed graph, the BIC
score for the jth (j = 1,2,3,…,(p+q)) node is

BIC jð Þ = −2 log L jð Þ b̂
� 

+ ∥ b̂ ∥0 log n

where L(j)(b̂ ) is the log-likelihood of the GLM regressing the jth
node on its parents, b̂ is the estimated vector of coefficients,
and ∥ b̂ ∥0 is the number of nonzero elements in b̂ . The overall
score of a directed graph is then given by BIC(overall) = Sp+q

j=1 BI
C(j). The greedy search starts from an empty graph, whose
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score is calculated as summation of scores of each node without
any parent. Then, for a node j and any node k connected with j
in the estimated skeleton, we attempt to add, delete or reverse
an edge between them based on the BIC change. More
specifically, if there is no directed edge between nodes j and k
at the current iteration, we add a directed edge j!k if the BIC
score becomes smaller after adding this directed edge. If there is
a directed edge between nodes j and k, we delete or reverse it if
the BIC score becomes smaller after deleting or reversing this
edge. This algorithm stops when the above edge operations fail
to decrease the overall BIC score and the resulting directed
graph is the estimated DAG. For the pseudo code
(Supplementary Table S1) and a small-scale illustration
(Supplementary Figure S1) of our entire algorithm, see the
Supplementary Material.
RESULTS

Simulation Studies
To assess our method 's performance , we s imulate
eight scenarios with different combinations of sample
s ize , number of nodes and edges , and percentage
of categorical nodes. We vary the sample size by 100
and 1,000; the number of nodes by 100 and 500;
the percentage of categorical nodes by 10% and 20%; and
the number of edges by 100 and 500. For each scenario, each
categorical node contains 4 levels. More details of the
simulation settings are summarized in Table S2 in the
Supplementary Material.

For each scenario, we first use the R package spacejam to
generate a DAG. We randomly select 10% or 20% of the nodes as
categorical and remaining nodes as continuous. For node i with
no parents, if Xi is continuous, Xi is generated fromN(0,1); if Xi is
categorical, Xi is sampled from {1,2,3,4} with equal probabilities.
For node i; with parents, if Xi is continuous, Xi is generated from
N(∑j∈parent(i)Xj, 1), where parent (i) is the parent(s) of node i; if Xi

is a categorical variable, Xi is generated from Multinomial (1,p)

where p=(p1, p2, p3, p4) and pl =
exp (loj∈parent(i)Xj)

S4
l=1 exp (loj∈parent(i)Xj)

, l = 1, 2, 3, 4:  

In simulation studies, we compared our method with the
CPC-stable method (implemented the R package pcalg) and the
MMHC method (implemented by the R package bnlearn).
Both methods cannot d i s t inguish categor ica l and
continuous variables but treat all of them as continuous.
For each method, we evaluated edge recovery performance
in both the estimated skeleton and the estimated DAG.
The edge recovery performance is assessed through
sensitivity, specificity, and false discovery rate (FDR). When
evaluating the estimated skeleton, we define true edges as
edges appearing in the true DAG's skeleton, estimated edges as
edges appearing in the estimated skeleton, true null edges as
unconnected edges in the true DAG's skeleton, and estimated
null edges as unconnected edges in the estimated skeleton. We
further defined sensitivity, specificity, and FDR of the
estimated skeleton as follows:
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Sensitivity =
#   of   estimated   edges ∩ true   edgesð Þ½ �

#   of   true   edges
,

Specificity =
#   of   estimated null   edges ∩ true null   edges½ �

#   of   true null   edges
,

FDR  =
#   of   estimated   edges − true   edges½ �

#   of estimated   edges

When evaluating the estimated DAG, we defined true edges as
directed edges in the true DAG, estimated edges as directed edges
in the estimated DAG, undetermined edges as edges with
undetermined direction in the estimated DAG, true null edges
as unconnected edges in the true DAG, and estimated null edges
as unconnected edges in the estimated DAG. Then, the
sensitivity, specificity, and FDR of the estimated DAG is
defined as follows:

Sensitivity =
#   of   estimated   edges − undermined   edgesð Þ ∩ true   edges½ �

#   of   true   edges
,

Specificity =
#   of   estimated null   edges ∩ true null   edges½ �

#   of   true null   edges
,

FDR  directedð Þ = #   of   estimated   edges − true   edges½ �
#   of estimated   edges
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Among the three measurements, sensitivity measures how
a method recovers the connected edges in the true DAG
and its skeleton. In particular, for DAG, sensitivity
also measures if the direction of an edge is correctly
recovered. Specificity measures how a method identifies the
null edges in the true DAG and its skeleton. FDR measures
the rate of falsely identified edges. In Figure 1, we present the
boxplots of sensitivity, specificity, and FDR for all
simulated scenarios.

Sensitivity, specificity, and FDR should be considered
simultaneously to assess the overal l edge recovery
performance. In Figures 1A–D, the true DAG is sparse, i.e.,
not too many edges are connected. Our method has much
better specificity and FDR for recovering the DAG and its
skeleton, even though its sensitivity is smaller than the
two competing methods. In Figures 1E–H, the true DAG is
dense, i .e. , many edges are connected. Our method
performs the best in terms of all three measurements in
both recovering the DAG and its skeleton. In all cases,
our method's FDR is much lower, indicating that it
e s t imates many fewer fa l se pos i t ive edges . These
results clearly demonstrate the merit of our methods
by distinguishing categorial variables from continuous
variables in the mixed data, especially when the DAG is
dense. For mixed data, directly applying existing methods
a n d i g n o r i n g d a t a t y p e d i ff e r e n c e c l e a r l y h a s
inferior performance.
FIGURE 1 | Sensitivity, specificity, and FDR of mDAG and two alternative methods, MMHC and CPC-stable, in simulation scenarios 1–8. (A) Scenario 1; (B)
Scenario 2; (C) Scenario 3; (D) Scenario 4; (E) Scenario 5; (F) Scenario 6; (G) Scenario 7; (H) Scenario 8. The X-axis indicates the measurements of performance
(sensitivity, specificity, and FDR); the Y-axis indicates the corresponding values. “*” indicates the sensitivity/specificity/FDR from mDAG significantly differs from the
sensitivity/specificity/FDR of CPC-stable or the sensitivity/specificity/FDR of MMHC. “**” indicates the sensitivity/specificity/FDR from mDAG significantly differs from
the sensitivity/specificity/FDR of CPC-stable and the sensitivity/specificity/FDR of MMHC. Such comparisons are tested by two-sample Wilcoxon.
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Real Data Application
Human Chlamydia Infection Dataset
Chlamydia trachomatis can ascend from the cervix to the uterus and
fallopian tubes (upper genital tract) to cause long term sequelae,
including chronic pelvic pain and infertility. Inflammatory cytokines
and chemokines were measured in cervical secretions from 160
asymptomatic C. trachomatis infected women (age 15–30 years),
participating in a previously described T cell Response Against
Chlamydia (TRAC) cohort (Russell et al., 2015). The Institutional
Review Boards for Human Subject Research at the University of
Pittsburgh and the University of North Carolina approved the study
and all participants provided written informed consent prior to
inclusion. Ninety-six proteins were quantified using Milliplex
Magnetic Bead Assay Kits (Millipore Sigma, St. Louis, MO), as
previously described (Poston et al., 2019). 160 women who were
infected at enrollment were assigned to two groups: women who had
both cervical and endometrial infection were defined as Endo+
(cases), while those with cervical only infection were defined as
Endo- (controls). To determine the regulatory networks involved in
chlamydial ascension to the endometrium, we focused on 14
cytokines that were consistently detected in cervical secretions and
were tentatively positively or negatively associated with endometrial
infection by univariable logistic regression after adjustment for
previously determined confounders, including cervical chlamydial
load and gonorrhea coinfection (P<0.20) (Poston et al., 2019). We
jointlymodeled continuous nodes, including expression of 14 cervical
cytokines and one covariate (cervical chlamydial load), with
categorical nodes, including the binary disease outcome
(endometrial infection: Endo+ vs. Endo-) and a binary covariate
(gonorrhea coinfection) by the mDAG.

Results for our mDAG analysis are shown in Figure 2A, and the
arrows indicate direction. We found two distinct pathways that
emanate from CXCL10. The CXCL9 network is connected with
ascending infection, while the CXCL11 network is distant and
disconnected, which indicates a more favorable host response. The
CXCL9 network includes CXCL13, IL-17A, CCL4, and TNFa as
downstream regulated proteins. These cytokines are predominately
associated with the induction of antibody and Th17 cells that are not
protective against chlamydial genital tract infection (Andrew et al.,
2013; Frazer et al., 2013; Darville et al., 2019). CXCL13, a CXCR5
ligand, is produced bymultiple cell types and is a potent recruiter and
activator of T follicular helper (Tfh) cells and B cells (Legler et al.,
1998; Breitfeld et al., 2000). CXCL13 is a marker of germinal center
activity (Havenar-Daughton et al., 2016) and may also reflect
increased ectopic lymphocyte cluster development (Denton et al.,
2019). Thus, increased CXCL13 levels may promote or sustain
plasma cell aggregates previously observed in tissues from women
with chlamydial endometritis and salpingitis (Kiviat et al., 1990).
Increased CXCL13 levels that stimulate plasma cell development are
consistent with detection of high serum and cervical levels of anti-
chlamydial IgG and IgA in women who remain susceptible to
repeated chlamydial infection (Darville et al., 2019). This is
consistent with the network connectivity of CXCL13 and IL-17A,
since proinflammatory CXCR5+ Th17 cells are also effective B-cell
helpers capable of inducing strong antibody responses (Morita et al.,
2011). Furthermore, the production of TNFa by CCL4-recruited
Frontiers in Genetics | www.frontiersin.org 691
CD8 T cells may play a role in recruitment or differentiation of Th17
cells and enhance genital tract pathology (Murthy et al., 2011;
Andrew et al., 2013). Besides chlamydial load, a factor we
previously identified as associated with enhanced risk for upper
genital tract infection, the analysis indicated TNFa production was
FIGURE 2 | Graphic results for causal network analysis of human Chlamydia
infection dataset, a mixed type dataset consisting of continuous variables,
including expression of 14 cervical cytokines and one covariate (cervical
chlamydial load), and categorical variables, including the binary disease
outcome (endometrial infection: Endo+ vs. Endo-) and a binary covariate
(gonorrhea coinfection) by mDAG and two alternative methods, respectively.
The arrows indicate direction of causality. (A) mDAG; (B) MMHC; (C) CPC-
stable. The dashed line in (A) separates cytokines connected to ascension on
the left, from cytokines disconnected from ascension on the right.
February 2020 | Volume 11 | Article 8

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhong et al. DAG of Mixed Data
connected with chlamydial ascension. Previous studies have linked
TNFa to infertility in C. trachomatis-infected women (Reddy et al.,
2004; Srivastava et al., 2008).

The other major network that diverges from ascension is
driven by CXCL11 and includes IL-14, CXCL14, IL-16, IL-15,
PDGF-AA, and PDGF-BB. CXCL11 can induce and recruit
CXCR3+ T cells shown to be protective during chlamydial
infection (Perry et al., 1997), and could therefore prevent
ascension. CXCL11 has strong binding affinity to its receptor,
CXCR3, which is consistent with the ability of CXCL11 to
increase intracellular calcium at lower doses than CXCL9 (Cole
et al., 1998), and may explain the deviation of these two
chemokines into separate networks. Next, the convergence of
CXCL14 and CXCL11 with IL-14 could represent the ability of
CXCL14 to enhance CD4 T cell activation (Chen et al., 2010).
This activation would lead to the release of IL-14 and
subsequently stimulate local B cell activation and proliferation
(Ambrus et al., 1993). Although T cell interactions with activated
antigen-presenting B cells could enhance antibody production
capable of initiating Fc-mediated platelet activation and PDGF
release, this cell-to-cell signaling will also trigger T cell receptor-
mediated IL-16 secretion (Wu et al., 1999) and further enhance
CD4 T cell recruitment (Lynch et al., 2003). IL-16 can directly
stimulate mononuclear phagocyte IL-15 production (Mathy
et al., 2000), which is critical for T cell survival and effector
function (Borger et al., 1999; Purton et al., 2007) that would
protect from chlamydial ascension. These findings are consistent
with our previous analysis demonstrating that cytokines
downstream of CXCL9 were associated with increased odds of
endometrial infection, while cytokines downstream of CXCL11
were associated with decreased odds (Poston et al., 2019).

In addition, we applied theMMHC and CPC-stable algorithms to
infer the regulatory pathways. Although theMMHC (Figure 2B) was
able to predict the causal direction among cytokines, the
directionality was completely disconnected from the disease trait,
and the direction between cervical bacterial load and upper genital
tract infection was reversed. Regulatory networks predicted by the
CPC-stable algorithm (Figure 2C) completely failed to infer the
direction in our cytokine dataset, which might be due to its
conservative feature.

These results suggest that our proposed mDAG can infer
upstream causal cytokines and downstream effector cytokines
more closely linked to disease and correctly separate pathogenic
and protective regulatory networks.

Metabolic Syndrome in Men Dataset
The Metabolic Syndrome in Men (METSIM) study is a population-
based study with 10,197 males randomly selected from the
population register of the town of Kuopio in Finland (Stancakova
et al., 2009). The Ethics Committee of the University of Eastern
Finland and Kuopio University Hospital approved the METSIM
study, and this study was conducted in accordance with the
Declaration of Helsinki. All study participants gave written
informed consent. A subset of 770 participants have gene
expression measurements from subcutaneous adipose tissue
(Civelek et al., 2017), we analyzed genotype, gene expression, and
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plasma adiponectin levels using our mDAG and alternative methods.
For directional inference, we focused on two GWAS loci for
adiponectin (Zhong et al., 2019) and expression of genes within ±
1Mb at each locus t. Genetic variants at the first locus near the
ADIPOQ gene may exert their effects on adiponectin levels through
expression of the ADIPOQ gene, which is expressed in adipose tissue
and encodes the adiponectin protein studied. In contrast, genetic
variants identified at the second locus, where the index SNP (the SNP
with the most significant p-value from GWAS) is an intronic SNP in
ARL15, which might influence adiponectin levels through expression
of the FST gene instead of ARL15 (Civelek et al., 2017; Martin et al.,
2017; Zhong et al., 2019).

We extracted genotypes of the index SNP for each locus and
expression levels of genes within ± 1Mb of each index SNP.
Because a gene may have multiple probesets, we first applied a
Sobel test to each probeset to detect mediation effect of the index
SNP on adiponectin levels through the probeset. We then
selected the probeset with the minimum mediation p value.
We applied our mDAG and alternative methods to estimate
DAGs (Figures 3A–C) for the ADIPOQ locus and 4A-4C for the
FST-ARL15 locus]. mDAG has the feature of forcing SNPs to
point to other nodes. Results of mDAG suggest that the ADIPOQ
gene is a mediator at the first locus (Figure 3A), and that FST
gene (not ARL15) is a mediator at the second locus (Figure 4A).
These findings are consistent with the results in (Zhong et al.,
2019). In contrast, alternative methods failed to identify the
expected directional relationships (Figures 4B, C).
DISCUSSION

Jointly modeling the probability distribution of the continuous
measurements of gene expression or protein abundance and the
categorical nodes, such as disease traits and SNPs, identifies the
regulatory paths of a disease. More importantly, it distinguishes
the disease-causing pathways from the disease-reaction
pathways, and identifies genes mediating the effects of GWAS
loci on diseases. This leads to a better understanding of disease
mechanisms, and helps generate more precise targets for new
therapeutic and diagnostic interventions. The existing DAG
methods cannot be applied to such a joint model, as they
mostly assume all nodes are of the same type.

To this end, we proposed a mixed DAG (mDAG) algorithm to
infer the regulatory paths of mixed data. Our mDAG algorithm is a
hybrid method and consists of three main steps including
identification of the Markov blanket, determination of the skeleton,
and inference of edge orientation. There are some alternative
algorithms which can be applied in each step. For example, a more
general framework (Zhuang et al., 2016) can be used to estimate
undirected graph and PC algorithmbased approach can be applied for
edge orientation. Our algorithm uses a new permutation-based
method to test the conditional independence of nodes of mixed
types. We compared our method with two alternative well-known
methods that ignore the type difference of nodes. The simulation
results show that mDAG outperforms the alternative methods in
terms of the FDR, sensitivity, and specificity of the edge recovery of the
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underlying true DAG. Results from the human chlamydial infection
dataset demonstrates that mDAG successfully reconstructs the
pathogenic and protective regulatory networks for chlamydial
ascension. The regulatory pathways inferred by our method identify
upstream causal factors and generate hypotheses for causal direction
of regulatory pathways, and therefore provide candidates for
experimental validation. For the Metabolic Syndrome in Men
Frontiers in Genetics | www.frontiersin.org 893
dataset, mDAG also identifies the expected paths of important
GWAS loci for adiponectin suggested by previous publications
(Civelek et al., 2017; Martin et al., 2017), even in the presence of
multiple presumably irrelevant genes in the 1D neighborhood of the
loci under study in the model, indicating that mDAG can bridge
the functional gap of synonymous GWAS signals and provide the
mechanistic hypotheses underlying GWAS variants.
FIGURE 3 | Graphic results for causal network analysis of the Metabolic
Syndrome in Men dataset, a mixed type dataset consisting of a categorical
variable, genotypes of one index SNP at the ADIPOQ GWAS locus, and
several continuous variables, including expression levels of 21 genes and
plasma adiponectin levels (disease trait). The arrows indicate direction of
causality. (A) mDAG; (B) MMHC; (C) CPC-stable.
FIGURE 4 | Graphic results for causal network analysis of Metabolic
Syndrome in Men dataset, a mixed type dataset consisting of a categorical
variable, one index SNP at ARL15 GWAS locus, and continuous variables,
including expression of 8 genes and adiponectin levels (disease trait). The
arrows indicate direction of causality. (A) mDAG; (B) MMHC; (C) CPC-stable.
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The mDAG could not only be used to infer the causality paths
in mixed types of proteomic or transcriptomic data with
categorical phenotypes and/or SNP data, but it could also be
applied to other mixed data, such as metabolomics and DNA
structural variants, including copy number variation, since it
does not require prior biological knowledge. Beyond genetics, it
can be applied to social, behavioral, and psychology studies.
DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the Gene
Expression Omnibus with the accession number GSE70353.
ETHICS STATEMENT

For the TRAC study, the Institutional Review Boards for Human
Subject Research at the University of Pittsburgh and the
University of North Carolina approved the study and all
participants provided written informed consent prior to
inclusion. For the METSIM study, the Ethics Committee of the
University of Eastern Finland and Kuopio University Hospital
approved the METSIM study, and this study was conducted in
accordance with the Declaration of Helsinki. All study
participants gave written informed consent.
AUTHOR CONTRIBUTIONS

Conceptualization and supervision: QL and XZ. Data curation:
XZ, TD, TP, CS, KM, and YL. Resources: XZ, TD, CS, KM, and
Frontiers in Genetics | www.frontiersin.org 994
YL. Formal analysis, visualization and writing—Original draft
preparation: WZ and LD. Investigation, methodology, software
and validation: WZ, LD, QL, and XZ. Writing—Review and
editing: QL, XZ, TD, TP, DW, KM, and YL.
FUNDING

This work was supported by Development and Research
Program awards by National Institutes of Health (www.nih.
gov) to XZ (U19 AI144181, AI113170), National Institutes of
Health (www.nih.gov) to TD (R01 AI119164, U19 AI084024 and
AI007001), KM (DK093757), YL (R01 HL129132 and R01
GM105785), DL (R01 GM047845) and American Heart
Association (www.heart.org) to CS (17POST33650016). The
funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
ACKNOWLEDGMENTS

We thank all participants in TRAC and METSIM for agreeing to
take part in the studies, and all investigators in these two studies
for sharing the data.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00008/full#supplementary-material
REFERENCES

Ambrus, J. L., Pippin, J., Joseph, A., Xu, C., Blumenthal, D., Tamayo, A., et al. (1993).
Identification of a cDNA for a human high-molecular-weight B-cell growth factor.
Proc. Natl. Acad. Sci. 90, 6330–6334. doi: 10.1073/pnas.90.13.6330

Andrew, D. W., Cochrane, M., Schripsema, J. H., Ramsey, K. H., Dando, S. J.,
O'Meara, C. P., et al. (2013). The duration of Chlamydia muridarum genital
tract infection and associated chronic pathological changes are reduced in IL-
17 knockout mice but protection is not increased further by immunization.
PloS One 8, e76664. doi: 10.1371/journal.pone.0076664

Atias, N., and Sharan, R. (2013). iPoint: an integer programming based algorithm for
inferring protein subnetworks. Mol. Biosyst. 9, 1662–1669. doi: 10.1039/c3mb25432a

Baba, K., Shibata, R., and Sibuya, M. (2004). Partial correlation and conditional
correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46,
657–664. doi: 10.1111/j.1467-842X.2004.00360.x

Borger, P., Kauffman, H. F., Postma, D. S., Esselink, M. T., and Vellenga, E. (1999).
Interleukin-15 differentially enhances the expression of interferon-$g$ and
interleukin-4 in activated human (CD4+) T lymphocytes. Immunology 96, 207.
doi: 10.1046/j.1365-2567.1999.00679.x

Borsboom, D., and Cramer, A. O. J. (2013). Network analysis: an integrative
approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–
121. doi: 10.1146/annurev-clinpsy-050212-185608

Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M., et al. (2000).
Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell
follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–
1552. doi: 10.1084/jem.192.11.1545
Chen, L., Guo, L., Tian, J., He, H., Marinova, E., Zhang, P., et al. (2010).
Overexpression of CXC chemokine ligand 14 exacerbates collagen-induced
arthritis. J. Immunol. 184, 4455–4459. doi: 10.4049/jimmunol.0900525

Chen, L. S. (2012). “Using eQTLs to reconstruct gene regulatory networks,” inQuantitative
Trait Loci (QTL) (New York: Springer), 175–189. doi: 10.1007/978-1-61779-785-9_9

Chickering, D. M. (2002). Optimal structure identification with greedy search.
J. Mach. Learn. Res. 3, 507–554.

Civelek, M., Wu, Y., Pan, C., Raulerson, C. K., Ko, A., He, A., et al. (2017). Genetic
regulation of adipose gene expression and cardio-metabolic traits. Am. J. Hum.
Genet. 100, 428–443. doi: 10.1016/j.ajhg.2017.01.027

Cole, K. E., Strick, C. A., Paradis, T. J., Ogborne, K. T., Loetscher, M., Gladue, R. P.,
et al. (1998). Interferon–inducible T cell alpha chemoattractant (I-TAC): a
novel Non-ELR CXC Chemokine with potent activity on activated T cells
through selective high affinity binding to CXCR3. J. Exp. Med. 187, 2009–2021.
doi: 10.1084/jem.187.12.2009

Colombo, D., and Maathuis, M. H. (2014). Order-independent constraint-based
causal structure learning. J. Mach. Learn. Res. 15, 3741–3782.

Darville, T., Albritton, H. L., Zhong, W., Dong, L., O'Connell, C. M., Poston, T. B.,
et al. (2019). Anti-chlamydia IgG and IgA are insufficient to prevent
endometrial Chlamydia infection in women and increased anti-chlamydia
IgG is associated with enhanced risk for incident infection. Am. J. Reprod.
Immunol. 81 (5), e13103. doi: 10.1111/aji.13103

Denton, A. E., Innocentin, S., Carr, E. J., Bradford, B. M., Lafouresse, F., Mabbott, N. A.,
et al. (2019). Type I interferon induces CXCL13 to support ectopic germinal center
formation. J. Exp. Med. jem–20181216. 216 (3), 621–637. doi: 10.1084/jem.20181216
February 2020 | Volume 11 | Article 8

http://www.nih.gov
http://www.nih.gov
http://www.nih.gov
http://www.heart.org
https://www.frontiersin.org/articles/10.3389/fgene.2020.00008/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.00008/full#supplementary-material
https://doi.org/10.1073/pnas.90.13.6330
https://doi.org/10.1371/journal.pone.0076664
https://doi.org/10.1039/c3mb25432a
https://doi.org/10.1111/j.1467-842X.2004.00360.x
https://doi.org/10.1046/j.1365-2567.1999.00679.x
https://doi.org/10.1146/annurev-clinpsy-050212-185608
https://doi.org/10.1084/jem.192.11.1545
https://doi.org/10.4049/jimmunol.0900525
https://doi.org/10.1007/978-1-61779-785-9_9
https://doi.org/10.1016/j.ajhg.2017.01.027
https://doi.org/10.1084/jem.187.12.2009
https://doi.org/10.1111/aji.13103
https://doi.org/10.1084/jem.20181216
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhong et al. DAG of Mixed Data
Foygel, R., and Drton, M. (2010). “Extended Bayesian information criteria for
Gaussian graphical models,” in Advances in neural information processing
systems, 604–612. San Diego, CA: Neural Information Processing Systems.

Frazer, L. C., Scurlock, A. M., Zurenski, M. A., Riley, M. M., Mintus, M., Pociask,
D. A., et al. (2013). IL-23 Induces IL-22 and IL-17 Production in Response to C
hlamydia muridarum Genital Tract Infection, but the Absence of these
Cytokines does not Influence Disease Pathogenesis. Am. J. Reprod. Immunol.
70, 472–484. doi: 10.1111/aji.12171

Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian
networks to analyze expression data. J. Comput. Biol. 7, 601–620. doi: 10.1089/
106652700750050961

Ha, M. J., Sun, W., and Xie, J. (2016). PenPC: a two-step approach to estimate the
skeletons of high-dimensional directed acyclic graphs. Biometrics 72, 146–155.
doi: 10.1111/biom.12415

Havenar-Daughton, C., Lindqvist, M., Heit, A., Wu, J. E., Reiss, S. M., Kendric, K.,
et al. (2016). CXCL13 is a plasma biomarker of germinal center activity. Proc.
Natl. Acad. Sci. 113, 2702–2707. doi: 10.1073/pnas.1520112113

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., et al. (2012). An anatomically comprehensive atlas of the adult human
brain transcriptome. Nature 489, 391. doi: 10.1038/nature11405

Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., et al. (2010). Learning brain
connectivity of Alzheimer's disease by sparse inverse covariance estimation.
Neuroimage 50, 935–949. doi: 10.1016/j.neuroimage.2009.12.120

Kiviat, N. B., Wølner-Hanssen, P., Eschenbach, D. A., Wasserheit, J. N., Paavonen,
J. A., Bell, T. A., et al. (1990). Endometrial histopathology in patients with
culture-proved upper genital tract infection and laparoscopically diagnosed
acute salpingitis. Am. J. Surg. Pathol. 14, 167–175. doi: 10.1097/00000478-
199002000-00008

Lee, J. D., andHastie, T. J. (2015). Learning the structure ofmixed graphicalmodels.
J. Comput. Graph. Stat. 24, 230–253. doi: 10.1080/10618600.2014.900500

Legler, D. F., Loetscher,M., Roos, R. S., Clark-Lewis, I., Baggiolini,M., andMoser, B.
(1998). B cell–attracting chemokine 1, a human CXC chemokine expressed in
lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp.
Med. 187, 655–660. doi: 10.1084/jem.187.4.655

Lynch, E. A., Heijens, C. A. W., Horst, N. F., Center, D. M., and Cruikshank,
W. W. (2003). Cutting edge: IL-16/CD4 preferentially induces Th1 cell
migration: requirement of CCR5. J. Immunol. 171, 4965–4968. doi: 10.4049/
jimmunol.171.10.4965

Martin, J. S., Xu, Z., Reiner, A. P., Mohlke, K. L., Sullivan, P., Ren, B., et al. (2017).
HUGIn: Hi-C unifying genomic interrogator. Bioinformatics 33, 3793–3795.
doi: 10.1093/bioinformatics/btx359

Mathy, N. L., Scheuer, W., Lanzendörfer, M., Honold, K., Ambrosius, D., Norley,
S., et al. (2000). Interleukin-16 stimulates the expression and production of
pro-inflammatory cytokines by human monocytes. Immunology 100, 63–69.
doi: 10.1046/j.1365-2567.2000.00997.x

Meek, C. (1995). Causal inference and causal explanation with background
knowledge, in: UAI’95:Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers Inc.,
pp. 403–410.

Meek, C. (2013). Strong completeness and faithfulness in Bayesian networks.
arXiv Prepr. arXiv1302.4973.

Morita, R., Schmitt, N., Bentebibel, S.-E., Ranganathan, R., Bourdery, L.,
Zurawski, G., et al. (2011). Human blood CXCR5+ CD4+ T cells are
counterparts of T follicular cells and contain specific subsets that
differentially support antibody secretion. Immunity 34, 108–121. doi:
10.1016/j.immuni.2010.12.012

Murthy, A. K., Li, W., Chaganty, B. K. R., Kamalakaran, S., Guentzel, M. N.,
Seshu, J., et al. (2011). Tumor necrosis factor alpha production from
CD8+ T cells mediates oviduct pathological sequelae following primary
genital Chlamydia muridarum infection. Infect. Immun. 79, 2928–2935.
doi: 10.1128/IAI.05022-11

Nagarajan, R., Scutari, M., and Lèbre, S. (2013). Bayesian networks in R. Springer
122, 125–127. doi: 10.1007/978-1-4614-6446-4

Oldham, M. C., Horvath, S., and Geschwind, D. H. (2006). Conservation and
evolution of gene coexpression networks in human and chimpanzee brains.
Proc. Natl. Acad. Sci. 103, 17973–17978. doi: 10.1073/pnas.0605938103

Paull, E. O., Carlin, D. E., Niepel, M., Sorger, P. K., Haussler, D., and Stuart, J. M.
(2013). Discovering causal pathways linking genomic events to transcriptional
Frontiers in Genetics | www.frontiersin.org 1095
states using tied diffusion through interacting events (TieDIE). Bioinformatics
29, 2757–2764. doi: 10.1093/bioinformatics/btt471

Pearl, J. (2009). Causality (Cambridge, England: Cambridge University Press). doi:
10.1017/CBO9780511803161

Perry, L. L., Feilzer, K., and Caldwell, H. D. (1997). Immunity to Chlamydia
trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent
and-independent pathways. J. Immunol. 158, 3344–3352.

Poston, T. B., Lee, D. E., Darville, T., Zhong, W., Dong, L., O'Connell, C. M., et al.
(2019). Cervical cytokines associated with Chlamydia trachomatis susceptibility
and protection. J. Infect. Dis. 220 (2), 330–339. doi: 10.1093/infdis/jiz087

Purton, J. F., Tan, J. T., Rubinstein, M. P., Kim, D. M., Sprent, J., and Surh, C. D.
(2007). Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204,
951–961. doi: 10.1084/jem.20061805

Reddy, B. S., Rastogi, S., Das, B., Salhan, S., Verma, S., and Mittal, A. (2004).
Cytokine expression pattern in the genital tract of Chlamydia trachomatis
positive infertile women–implication for T-cell responses. Clin. Exp. Immunol.
137, 552–558. doi: 10.1111/j.1365-2249.2004.02564.x

Russell, A. N., Zheng, X., O'connell, C. M., Taylor, B. D., Wiesenfeld, H. C., Hillier,
S. L., et al. (2015). Analysis of factors driving incident and ascending infection
and the role of serum antibody in Chlamydia trachomatis genital tract
infection. J. Infect. Dis. 213, 523–531. doi: 10.1093/infdis/jiv438

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.
doi: 10.1214/aos/1176344136

Sedgewick, A. J., Shi, I., Donovan, R. M., and Benos, P. V. (2016). Learning mixed
graphical models with separate sparsity parameters and stability-based model
selection. BMC Bioinf. 17, S175. doi: 10.1186/s12859-016-1039-0

Sedgewick, A. J., Ramsey, J. D., Spirtes, P., Glymour, C., and Benos, P. V. (2017).
Mixed graphical models for causal analysis of multi-modal variables. arXiv
Prepr. arXiv1704.02621. Cambridge, MA.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and
search (Cambridge, MA: MIT Press). doi: 10.7551/mitpress/1754.001.0001

Srivastava, P., Jha, R., Bas, S., Salhan, S., and Mittal, A. (2008). In infertile women, cells
from Chlamydia trachomatis infected site release higher levels of interferon-gamma,
interleukin-10 and tumor necrosis factor-alpha upon heat shock protein stimulation
than fertile women. Reprod. Biol. Endocrinol. 6, 20. doi: 10.1186/1477-7827-6-20

Stancakova, A., Javorsky, M., Kuulasmaa, T., Haffner, S. M., Kuusisto, J., and
Laakso, M. (2009). Changes in Insulin Sensitivity and Insulin Release in
Relation to Glycemia and Glucose Tolerance in 6,414 Finnish Men. Diabetes
58, 1212–1221. doi: 10.2337/db08-1607

Tsagris, M., Borboudakis, G., Lagani, V., and Tsamardinos, I. (2018). Constraint-
based causal discovery with mixed data. Int. J. Data Sci. Anal. 6, 19–30. doi:
10.1007/s41060-018-0097-y

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-
climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31–
78. doi: 10.1007/s10994-006-6889-7

Wilentzik, R., and Gat-Viks, I. (2015). A statistical framework for revealing signaling
pathways perturbed by DNA variants. Nucleic Acids Res. 43, e74–e74. doi:
10.1093/nar/gkv203

Wu, D. M. H., Zhang, Y., Parada, N. A., Kornfeld, H., Nicoll, J., Center, D. M., et al.
(1999). Processing and release of IL-16 from CD4+ but not CD8+ T cells is
activation dependent. J. Immunol. 162, 1287–1293.

Zhong, W., Spracklen, C. N., Mohlke, K. L., Zheng, X., Fine, J., and Li, Y. (2019).
Multi-SNP mediation intersection-union test. Bioinformatics 35 (22), 4724–
4729. doi: 10.1093/bioinformatics/btz285

Zhuang, R., Simon, N., and Lederer, J. (2016). Graphical models for discrete and
continuous data.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhong, Dong, Poston, Darville, Spracklen, Wu, Mohlke, Li, Li and
Zheng. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
February 2020 | Volume 11 | Article 8

https://doi.org/10.1111/aji.12171
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1111/biom.12415
https://doi.org/10.1073/pnas.1520112113
https://doi.org/10.1038/nature11405
https://doi.org/10.1016/j.neuroimage.2009.12.120
https://doi.org/10.1097/00000478-199002000-00008
https://doi.org/10.1097/00000478-199002000-00008
https://doi.org/10.1080/10618600.2014.900500
https://doi.org/10.1084/jem.187.4.655
https://doi.org/10.4049/jimmunol.171.10.4965
https://doi.org/10.4049/jimmunol.171.10.4965
https://doi.org/10.1093/bioinformatics/btx359
https://doi.org/10.1046/j.1365-2567.2000.00997.x
https://doi.org/10.1016/j.immuni.2010.12.012
https://doi.org/10.1128/IAI.05022-11
https://doi.org/10.1007/978-1-4614-6446-4
https://doi.org/10.1073/pnas.0605938103
https://doi.org/10.1093/bioinformatics/btt471
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1093/infdis/jiz087
https://doi.org/10.1084/jem.20061805
https://doi.org/10.1111/j.1365-2249.2004.02564.x
https://doi.org/10.1093/infdis/jiv438
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1186/s12859-016-1039-0
https://doi.org/10.7551/mitpress/1754.001.0001
https://doi.org/10.1186/1477-7827-6-20
https://doi.org/10.2337/db08-1607
https://doi.org/10.1007/s41060-018-0097-y
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1093/nar/gkv203
https://doi.org/10.1093/bioinformatics/btz285
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Frontiers in Plant Science | www.frontiersin

Edited by:
Xiyin Wang,

North China University of Science and
Technology, China

Reviewed by:
Le Shu,

University of California,
Los Angeles, United States

Margaret Woodhouse,
Iowa State University,

United States
Nils Stein,

Leibniz Institute of Plant Genetics and
Crop Plant Research (IPK),

Germany

*Correspondence:
Insuk Lee

insuklee@yonsei.ac.kr

†Present address:
Tak Lee

Sainsbury Laboratory,
University of Cambridge,

Cambridge, United Kingdom

‡These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal

Frontiers in Plant Science

Received: 12 November 2019
Accepted: 22 January 2020

Published: 18 February 2020

Citation:
Lee S, Lee T, Yang S and Lee I (2020)

BarleyNet: A Network-Based
Functional Omics Analysis Server for

Cultivated Barley, Hordeum vulgare L.
Front. Plant Sci. 11:98.

doi: 10.3389/fpls.2020.00098

TECHNOLOGY AND CODE
published: 18 February 2020
doi: 10.3389/fpls.2020.00098
BarleyNet: A Network-Based
Functional Omics Analysis Server for
Cultivated Barley, Hordeum vulgare L.
Sungho Lee‡, Tak Lee†‡, Sunmo Yang and Insuk Lee*

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea

Cultivated barley (Hordeum vulgare L.) is one of the most produced cereal crops
worldwide after maize, bread wheat, and rice. Barley is an important crop species not
only as a food source, but also in plant genetics because it harbors numerous stress
response alleles in its genome that can be exploited for crop engineering. However, the
functional annotation of its genome is relatively poor compared with other major crops.
Moreover, bioinformatics tools for system-wide analyses of omics data from barley are not
yet available. We have thus developed BarleyNet, a co-functional network of 26,145
barley genes, along with a web server for network-based predictions (http://
www.inetbio.org/barleynet). We demonstrated that BarleyNet's prediction of biological
processes is more accurate than that of an existing barley gene network. We implemented
three complementary network-based algorithms for prioritizing genes or functional
concepts to study genetic components of complex traits such as environmental stress
responses: (i) a pathway-centric search for candidate genes of pathways or complex
traits; (ii) a gene-centric search to infer novel functional concepts for genes; and (iii) a
context-centric search for novel genes associated with stress response. We
demonstrated the usefulness of these network analysis tools in the study of stress
response using proteomics and transcriptomics data from barley leaves and roots upon
drought or heat stresses. These results suggest that BarleyNet will facilitate our
understanding of the underlying genetic components of complex traits in barley.

Keywords: barley, Hordeum vulgare L., gene network, network biology, crop systems genetics
INTRODUCTION

Cultivated barley (Hordeum vulgare L.) is one of the first cultivated grains, domesticated about
10,000 years ago in the Near East (Badr et al., 2000). It was ranked the fourth cereal crop in quantity
produced after maize, bread wheat, and rice in 2017 (FAOSTAT 2017, http://fao.org/faostat/).
Barley mainly serves as a source of fodder for livestock, fermentable material for alcoholic beverages,
and is present in various healthy organic foods. In developing countries, it is also still a major source
of carbohydrates. Furthermore, barley is a great plant model organism for studying genetic
resistance to biotic or abiotic stress, since it can endure a great range of environmental stresses
like drought, flood, and cold or fungal infections, either single or combined (Gürel et al., 2016).
Therefore, the barley genome is a reservoir of numerous stress response alleles, which are precious
.org February 2020 | Volume 11 | Article 98196
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subjects for genetic engineering in other crop species. The size of
the haploid Barley genome is approximately 5.3 Gbp. It is one of
the largest diploid genomes sequenced to date and contains
83,105 putative genetic loci including 39,734 high-
confidence ones.

Numerous studies have exploited these agronomically
important traits, assisted by various new technologies such as
high-throughput sequencing and mass spectrometry-based
proteomics. Although they provide important clues about
molecular components associated with complex plant traits,
individual omics profiles are insufficient to reconstruct a
holistic view of functional modules involved in these traits.
Moreover, the functional interpretation of omics profile data
generally requires the incorporation of other information.
Therefore, a systems biology platform that integrates
information derived from different data sources could
effectively encapsulate the molecular network underlying
complex traits. Co-functional gene networks have been applied
to integrate the functional information of genes derived from
heterogeneous data through a Bayesian statistics framework
(Shim et al., 2017). Co-functional networks previously
constructed for other major crop species have been successfully
used in the genetic dissection of complex plant traits (Lee et al.,
2015a; Lee et al., 2017; Lee et al., 2019). Yet, such an effective
network-assisted systems genetics platform has not been
developed for barley. Therefore, we developed BarleyNet, a co-
functional network of barley genes and a companion web server
(www.inetbio.org/barleynet/), enabling network-assisted systems
genetics analysis for cultivated barley. All information on
functional association between barley genes is also readily
downloadable through the companion web server. Finally, the
three complementary network-based algorithms implemented in
the web server facilitate effective use of omics profiles for
generating new functional hypotheses.
MATERIALS AND METHODS

Reference Genome
We constructed BarleyNet based on the IBSC_v2 barley genome
assembly (https://plants.ensembl.org/Hordeum_vulgare/Info/
Annotation/#assembly) presented by the International Barley
Sequencing Consortium (Mascher et al., 2017). Among 83,105
putative genetic loci, 39,734 high-confidence loci were selected as
a reference gene set for network construction. Supervised
learning of co-functional gene pairs requires gold standard
(GS) positive and negative gene pairs, which are generally
derived from high-quality pathway annotation databases.
However, both the quantity and the quality of pathway
annotations for barley were not sufficient by the time we
launched this project. Thus, we transferred GS-positive barley
gene pairs based on sequence homology with those used for
modeling Arabidopsis (Lee et al., 2015b) and rice (Lee et al.,
2015a) gene networks. Consequently, 215,170 and 27,254 GS-
positive gene pairs were transferred from rice and Arabidopsis,
respectively. The final set of GS-positive gene pairs for training
Frontiers in Plant Science | www.frontiersin.org 297
BarleyNet was a union of all transferred gene pairs, comprising
234,070 gene pairs among 7,350 barley genes (18.5% of the
genome). All other possible pairwise relationships between the
7,350 barley genes were then considered GS-negatives,
comprising 26,773,505 gene pairs.
Benchmarking Co-Functional Barley Gene
Pairs
The likelihood of a functional association between two genes is
based on the ratio between our belief after seeing the supporting
data and our prior belief. Thus, we scored functional association
between genes using previously developed log likelihood score
(LLS) (Lee et al., 2004), shown as the following equation:

LLS =   ln
P Lð jSÞ=P(⌐ LjS)
P Lð Þ=P ⌐ Lð Þ

� �

where P(L|S) and P(⌐L|S) represent the probability of GS-
positive and GS-negative gene pairs, respectively, supported by
the given data, and P(L) and P(⌐L) represent the expected
probability of GS-positive and GS-negative links, respectively.

Gene pairs are sorted by data-intrinsic scores such as the
expression correlation coefficient, and then assigned into bins of
1,000 gene pairs. We computed LLS for each of the bins and then
did a sigmoid regression between means of data-intrinsic scores
and LLSs. Using the regression function, we calculated LLS for
every gene pair derived from each data source.
Integrating Co-Functional Barley Gene
Pairs
Functional association between barley genes can be supported by
multiple data sources. We may integrate the LLS of their
functional association by naïve Bayes integration, if there is no
correlation between data sources, which is generally not true. In
order to handle information correlation between supporting data
sources, we previously developed the weighted sum (WS)
method (Lee et al., 2007), shown as the following equation:

WS = Lo +o
n

i=1

Li
D� i

,   for   all   L ≥ T

where LO represents the highest LLS of all available supporting
data sources, and Li represents the remaining LLSs with rank
index i.D and T are free parameters for the weight factor and LLS
cutoff to be considered, respectively. These free parameters were
selected where the integrated network achieved the best
performance based on a precision-recall curve. A total of 25
distinct data sources were finally integrated into BarleyNet
(Supplementary Table 1).
Inferring Co-Functional Links From mRNA
Co-Expression Patterns (CX)
Functionally associated genes tend to show a similar expression
pattern across various biological contexts. Co-functional links
between these genes were inferred from diverse sets of expression
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profiles gathered from the Gene Expression Omnibus (GEO)
database (Clough and Barrett, 2016), ArrayExpress (Kolesnikov
et al., 2015), and Expression Atlas (Papatheodorou et al., 2018).
We assessed a total of 2,385 expression profiles (1,780 by
microarray and 650 by RNA-seq) and incorporated 28 datasets
comprising 2,047 expression profiles into the final co-expression
network. Affymetrix microarray data (Barley genome array,
GPL1340) were normalized by MAS5 software. RNA-seq data
were downloaded as raw data, quantified using Kallisto (Bray
et al., 2016), and normalized as transcripts per million (TPM).
The co-expression between two genes across expression profiles
was assessed by the Pearson's correlation coefficient (PCC) and
then benchmarked for functional associations by LLS. All the co-
expression networks from the 28 expression datasets
(Supplementary Table 2) were then integrated into a single
co-expression network using the weighted sum method
described above.
Inferring Co-Functional Links From Protein
Domain Profile Association (DP)
The domain composition of a protein reflects its function.
Therefore, the co-functional relationship between proteins
can be inferred from the association between their domain
composition profiles. We downloaded a list of barley proteins
and identified domains in the InterPro database (Mitchell
et al., 2018) for each protein from the Ensembl Plants
database (Vullo et al., 2017). Then, mutual information
scores were computed between domain profiles. We used a
weighted mutual information (WMI) scheme, which assigns
more weight on rarer domains during mutual information
computation (Shim and Lee, 2016; Shim and Lee, 2020). We
calculated LLSs for gene pairs using a regression function
between WMI and LLS.
Inferring Co-Functional Links From
Phylogenetic Profile Associations (PG)
During speciation, genes that operate the same biological
processes tend to be inherited together. Therefore, we can infer
co-functional gene pairs based on their co-inheritance pattern
across a large number of species. Considering that gene
inheritance across species can be represented as phylogenetic
profiles, these can be used in the identification of co-inherited
genes. We first aligned all the 39,734 barley protein sequences
against total protein sequences from 1,626 bacterial genomes,
396 eukaryotic genomes, and 122 archaea genomes using
BLASTP (Altschul et al., 1990), and then constructed
phylogenetic profiles based on –log(E-value) of BLAST hit
scores. Previously, we found that domain-specific phylogenetic
profile analysis improved inference of co-functional links (Shin
and Lee, 2015). Therefore, we calculated mutual information
between two phylogenetic profiles for each of the three domains
of life, resulting in three networks for profiles with bacterial,
eukaryotic, and archaeal genomes. The resulting networks were
scored by LLS and integrated into one single network for the
phylogenetic profile method.
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Inferring Co-Functional Links From Gene
Neighborhood (GN)
Prokaryotic genes that operate in the same biological process
tend to be located closely in chromosomes, often forming
operons. We thus can infer functional associations between
barley genes based on the proximity of their orthologs in
prokaryotic genomes with two complementary measures:
distance-based approach and probability-based approach (Shin
et al., 2014; Szklarczyk et al., 2017). Considering 122 archaeal
genomes and 1,626 bacterial genomes, the resulting two
networks obtained by the different gene neighborhood
measures were then scored by LLS and integrated into a single
co-functional network for the gene neighborhood method.

In addition, we inferred co-functional links between barley genes
from ortholog neighborhoods in metagenomes (Kim and Lee,
2017), which provide tremendous amounts of bacterial contigs.
We used two distinct metagenomics resources, the Human
Microbiome Project (HMP) database (Huttenhower et al., 2012)
and the global ocean microbiome database from the TARA Oceans
study (Sunagawa et al., 2015). We used DIAMOND, a fast sequence
aligner (Buchfink et al., 2014), due to the enormous number of
metagenomic contigs. Inferred co-functional links were scored by
LLS and integrated with those based on neighborhood in fully
sequenced prokaryotic genomes into a single network.

Inferring Co-Functional Links by
Transferring Orthologous Gene Pairs From
Other Species
Not only individual genes but also pathways are functionally
conserved during speciation. Therefore, we may transfer
functional information of orthologous gene pairs between
species. This conserved co-functional relationship is called
associalog (Kim et al., 2013). For protein homology mapping
between barley and other species, we used InParanoid (Remm
et al., 2001), which provides sensitive orthology mapping by
taking account of co-orthologs. Associalogs were then
transferred from a total of 21 co-functional networks for nine
other species: AraNet v2 (Lee et al., 2015b), MaizeNet (Lee et al.,
2019), RiceNet v2 (Lee et al., 2015a), HumanNet v2 (Hwang
et al., 2018), MouseNet v2 (Kim et al., 2015), DanioNet (Shim
et al., 2016), WormNet v3 (Cho et al., 2014), FlyNet (Shin et al.,
2015), and YeastNet v3 (Kim et al., 2014).

Codes and Data Availability
Source codes for network search functions and edge information
of BarleyNet are freely available from github (https://github.com/
netbiolab/BarleyNet/).
RESULTS AND DISCUSSION

Construction of Barleynet via the
Integration of Omics Data From Barley
and Many Other Species
We inferred co-functional links between barley genes by
analyzing various types of omics data obtained from cultivated
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barley, three other plant species (Arabidopsis thaliana, Zea mays,
and Oryza sativa), five animal species (human, Mus musculus,
Danio rerio , Caenorhabditis elegans , and Drosophila
melanogaster), and baker's yeast, Saccharomyces cerevisiae.
Using our network evaluation scheme based on Bayesian
statistics (see Materials and Methods), we selected networks
with at least 2,000 inferred links more likely than those by
random chance (i.e., LLS > 0). A total of 25 co-functional
networks of barley genes inferred from distinct data sources
(Supplementary Table 1) were integrated into a single final
network mapping 1,272,200 co-functional associations between
26,145 barley genes (covering ~65.8% of 39,734 high-confidence
genes) (Figure 1A). All edge information regarding the
integrated BarleyNet and each of the component co-functional
networks are freely available at the “Download” tab of the
BarleyNet web server (www.inetbio.org/barleynet/download.
php) and github (https://github.com/netbiolab/BarleyNet/),
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under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by-sa/4.0/).

Since a considerable amount of co-functional links were
derived from other species rather than barley itself, we first
summarized information sources supporting BarleyNet links
(Figure 1B) using the UpSet visualization tool (Lex et al.,
2014). We roughly classified network links into three groups
based on the species of origin of the inferred co-functional
association: “barley,” “other plants (A. thaliana, Z. mays, or O.
sativa),” and “animals or yeast (human,M. musculus, D. rerio, C.
elegans, D. melanogaster, or S. cerevisiae).” We first found that
the largest portion of BarleyNet information derived from co-
functional association between orthologous genes in animals or
yeast (579,005 links, 45.5% of all BarleyNet links). Given that
many proteins are highly conserved between unicellular
eukaryote yeast and multicellular eukaryote plant species, and
much information is available from yeast interactomes, the large
FIGURE 1 | Overview of BarleyNet. (A) BarleyNet was constructed by integrating functional associations between barley genes inferred from the co-expression of
genes (CX), gene neighborhood (GN), association of protein domain composition profiles (DP), phylogenetic profile association (PG), and those transferred from 21
networks previously constructed for other species based on functional association between orthologous proteins (associalog). (B) Summary of BarleyNet edge
information with UpSet visualization. Network edges were classified into three groups based on the species of origin of the inferred co-functional association:
“barley,” “other plants” and “animals or yeast.” The bar height represents the number of BarleyNet links for each species group or their combination. The red bar
represents the number of links that are 20 fold more likely than gene pairs by random (i.e., high confidence links).
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observed contribution of yeast-derived information to BarleyNet
was expected. In addition, we previously observed a large
contribution of animal-derived information during the
construction of co-functional gene networks for other plant
species (Lee et al., 2010; Lee et al., 2019). Thus, we confirmed
the usefulness of information derived from non-plant species in
the reconstruction of a co-functional network of plant genes.
Next, we observed a similar amount of co-functional links
between barley genes was derived from the contribution of a
group of other plant species. BarleyNet links derived from barley
have a larger portion of links with high confidence (20-fold more
likely than random gene pairs) than those derived from other
plants (~26.5% compared with ~10%). This suggests that omics
data generated from barley made critical contributions in
improving the accuracy of BarleyNet. Finally, we noticed that
only a small portion of BarleyNet links were supported by
multiple species, although the majority of them are high
confidence links (30–50% of links supported by two species
groups and ~83.5% of links supported by all groups).
Altogether, the contribution of different species groups to
BarleyNet demonstrated the advantages of integrating omics
data derived from various organisms in the construction of
system-wide models with high completeness and accuracy.
Barleynet Is Highly Predictive for
Biological Processes in Barley
We evaluated the overall quality and predictive power of
BarleyNet. First, we assessed its accuracy against an existing
barley gene network. To avoid circularity in network evaluation,
we compiled a test dataset of gene pairs from the agriGO v2.0
database (Tian et al., 2017) which was not used for training the
co-functional network of barley genes. The agriGO database
provides gene ontology (GO) annotations for many agricultural
animal and plant species, including barley. We found that gene
pairs for the same GO biological process (GOBP) term
comprised only 1.72% of gene pairs used for training
BarleyNet, which indicates independence from the dataset used
for network evaluation. The evaluation could be biased by gene
pairs for GOBP terms that annotate a very large number of genes,
so we ignored GOBP terms that annotated more than 1,000
genes during network evaluation. Subsequently, we compared
BarleyNet and a barley network available at the STRING v11
database (Szklarczyk et al., 2019) regarding network accuracy
(precision of gene pairs for the same GOBP terms) and coverage
of all high confidence genes in barley (Figure 2A). We found that
BarleyNet is substantially more accurate than the STRING
database network of barley genes for any genome coverage. For
example, in networks that cover 30% of the barley genome, the
accuracy of BarleyNet is ~85.2% whereas that of the STRING
database barley gene network is ~24.5%. Although the latter
contains ~2.6 million links, it covers only 41% of all 39,734 high-
confidence genes in barley, whereas the former covers ~65.8% of
them. From these results, we concluded that BarleyNet is
substantially more comprehensive and accurate than the
STRING database network of barley genes.
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Next, we evaluated the network-based gene prioritization for
biological processes in barley. In an accurate and
comprehensive co-functional network, the genes involved in
same biological processes or pathways are highly likely to be
connected by the network. If we prioritize genes for a particular
pathway by network connections to the known genes of the
pathway, all of the known pathway genes will be ranked
generally higher than the others. Then, we may assess the
network-based gene prioritization by receiver operating
characteristic (ROC) analysis for the pathway genes, which
can also be summarized as the area under the ROC curve
(AUROC). We computed AUROC scores not only for entire
ranks of predictions but also for early retrieved candidates,
because only the top several hundred candidate genes are
generally considered for the follow-up functional analysis in
real practice. We thus computed AUROC until reaching false
positive rates (FPRs) of 1% and 10%, in addition to AUROC for
all predictions. We compared BarleyNet and the STRING
database network of barley genes in the prediction of
pathways annotated by the Plant Reactome database, ver. 59
(Gupta et al., 2016; Naithani et al., 2017), which was not used
for training either BarleyNet or the STRING database network.
We computed the AUROCs for 122 Plant Reactome pathways
that annotate at least 10 barley genes and found that BarleyNet
is significantly more predictive than the STRING database
network for pathways with both early retrieved predictions
and entire ranks of predictions (P < 0.001 by the Wilcoxon
signed rank test for all comparisons, Figure 2B). From these
results, we concluded that BarleyNet is substantially more
predictive for various biological processes in barley than the
existing STRING database gene network.

Since BarleyNet includes a large number of co-functional
links between barley genes inferred from other species, we
evaluated the contribution of network information originating
from different species. For the analysis, we generated “dropout”
networks that excluded the co-functional links derived from
barley, plant species other than barley (Arabidopsis, rice, or
maize), or animals and yeast (Figure 2C). We observed large
decreases in the AUROCs for all range of FPRs by excluding links
derived from barley. Notably, we observed significant decreases
in the overall AUROC by excluding links inferred from other
species, but not in the AUROCs for early-retrieved candidates
(for FPR < 0.01 or 0.1). These results suggest that co-functional
links transferred from other species by orthology contribute to
the functional prediction, but not as much as those inferred from
species-specific omics data sources.

We also tested robustness of BarleyNet-based functional
prediction by evaluating networks with some degree of noise in
network information. For the analysis, we generated 100
networks in which 20% of BarleyNet links were randomized
while maintaining characteristics of network topology. Although,
we observed significant decrease in AUROC with 20% of noise in
network information, they were still higher than those by
STRING database network (Figure 2D). This result suggests
that BarleyNet-based functional prediction is relatively robust to
some degree of noise in network information.
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Gene Prioritization for Complex Traits
Using Barleynet
The majority of omics studies on crop species aim to identify
genetic components underlying economically important and
complex traits such as environmental stress responses.
Through the above presented benchmarking with GOBP and
Plant Reactome database, BarleyNet proved to be highly
predictive for pathways, but not yet for complex traits. Most
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human diseases are complex traits and a large portion of human
disease genes were shown to be strongly associated with specific
pathways (Li and Agarwal, 2009). We thus expected that genes
for complex plant traits should be associated with specific
pathways, and given that BarleyNet is highly predictive for
pathways, it might also be predictive for complex traits. If a
network is predictive for a complex trait, the genes involved in
this trait might be more connected to one another than to other
FIGURE 2 | Assessment of BarleyNet and a network of barley genes by STRING database. (A) The quality of the networks was evaluated based on precision for
gene pairs that have the same GOBP terms by agriGO annotations and coverage of all barley genes. BarleyNet showed substantially higher precision than the
network of barley genes by the STRING v11 database considering the entire range of coverage. (B) Comparison of area under receiver operating characteristic curve
(AUROC) of 122 pathway gene sets derived from Plant Reactome database. Box-and-whisker plots represent 10%, 25%, median, 75%, and 90% of 122 AUROC
scores. The same AUROC analyses were conducted until 1%, 10%, and 100% of false positive rate (FPR) were reached. BarleyNet showed a significantly higher
prediction power than the STRING database barley gene network in all FPR ranges (P < 0.001, Wilcoxon signed rank test). (C) AUROC analyses were conducted as
for (B) with BarleyNet and the following “dropout” networks by excluding links from animals and yeast (w/o animals, yeast), by excluding links from Arabidopsis, rice,
and maize (w/o other plants), and by excluding links from barley (w/o barley). ns, not significant; *, P < 0.05; ***, P < 0.001 by Wilcoxon signed rank test. (D) AUROC
analyses were conducted as for (B) with 100 networks in which 20% of BarleyNet links were randomized. Average AUROC scores for the 122 pathways gene sets
across 100 networks are represented in the Box-and-whisker plot for randomized networks.
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genes. We thus evaluated BarleyNet in the prediction of complex
traits based on the connectivity within a group of genes involved
in the same traits. For this, we compiled genes for complex traits
from drought-induced proteomic profi les of barley
(Chmielewska et al., 2016). This study identified differentially
accumulated proteins in the leaves and roots of two barley
cultivars, Maresi and Cam/B1/CI (referred to as CAM), after
10 days of drought. We observed a significantly higher
connectivity within a group of genes than in random gene sets
of the same size in both organs of both cultivars (Figure 3A),
which indicated that BarleyNet is significantly more predictive of
drought response than random chance. The predictive power of
BarleyNet for drought response was confirmed by high AUROC
scores for the same groups of drought response genes
(Figure 3B).

Considering the obtained results, we hypothesized that we
might prioritize additional candidate genes for drought response
through their connections to experimentally identified genes.
This approach is basically a network-based search for novel
candidate genes for a complex trait using previously identified
genes as guides. Candidate genes were then ranked by sum of
edge weight scores to the guide genes, which reflects their
functional closeness. We implemented this network algorithm
as a pathway-centric search method in the BarleyNet server. This
server application also provides a network viewer, which
visualizes a network of user-input guide genes and their closely
connected neighbors. For example, Figure 3C shows a network
of drought response genes identified from differentially
accumulated proteins in CAM roots and their 50 closest
neighbors. The neighbors of guide genes could be novel
candidates involved in drought response in barley. Although
providing a proxy for future functional studies, these candidate
genes from network-based prediction should be taken with some
careful consideration. The gene set analysis function of the
pathway-centric search enables users to test whether these new
candidates are enriched for relevant GOBP annotations. Since
GOBP annotations for barley genes are still very sparse, we also
employed annotations for orthologous proteins in three
relatively well annotated plant species: Arabidopsis, rice, and
maize. We found that GOBP annotations by orthology are useful
in the interpretation of novel candidate genes. For example, we
could not find any GOBP terms closely related to drought
response among the top five enriched barley GOBP
annotations. However, we found “response to heat” and
“cellular response to heat,” which are closely related to drought
response, among the top five enriched Arabidopsis GOBP
annotations (Figure 3D). Through the BarleyNet server, users
can run gene set enrichment analyses for GOBP terms of all four
plant species simultaneously.

A pathway-centric search provides additional information such
as the list of user-input guide genes, within-group connectivity
tests and AUROC analysis results for the guide gene set, as well as
the list of top 100 candidate genes. By selecting a specific candidate
gene, users can obtain detailed information including its
connected guide genes, edge scores, data sources that support
the prediction and their relative contribution, and GOBP
Frontiers in Plant Science | www.frontiersin.org 7102
annotations (Figure 3E). For example, HORVU5Hr1G072420
was a candidate drought response gene ranked 13th. The
network viewer informed that six distinct data sources
supported the prediction, of which yeast co-citation (SC-CC)
data contributed the most (25.1% of the total prediction score).
Codes for all distinct data sources are listed in Supplementary
Table 1. Notably, the candidate genes were annotated as “response
to water deprivation” in Arabidopsis GOBP annotation but not in
barley, which demonstrates the usefulness of GOBP annotations
from other plant spec ies in the interpretat ion of
BarleyNet predictions.

Prediction of Gene Functions
Using BarleyNet
In this next step, we implemented the gene-centric search which
prioritizes biological functional concepts for a gene of interest.
Many proteins differentially accumulated in barley after drought
stress are not yet functionally annotated. With the gene-centric
search application, we can prioritize GOBP terms for genes
detected in drought conditions using GOBP terms that
annotate their network neighbors through information
propagation. Information can be propagated to both direct and
indirect neighbors in the network, and we only used the
propagation to direct neighbors. We prioritized GOBP terms
based on the sum of edge weight scores (log likelihood scores) to
the neighbors annotated by the GOBP terms.

Figure 4A shows a screenshot of gene-centric search results
for HORVU3Hr1G014120, which was differentially accumulated
in CAM roots but had no GOBP annotation yet. Gene-centric
search predicted “response to water” or “response to water
deprivation” genes within the top five prioritized GOBP terms
according to annotations for barley, Arabidopsis, and maize. This
example clearly demonstrated that the BarleyNet gene-centric
search is a useful tool in the functional interpretation of omics
data in the study of complex traits of barley.

Prediction of Stress Response Genes
Using Barleynet and Gene Expression
Data
Finally, we provided context-centric search: a network-based
prediction algorithm that uses differentially expressed genes
(DEGs) along with the barley gene network to prioritize those
associated with stress responses. In general, genes that respond to
biotic or abiotic stresses are detected through genome-wide
transcriptome profiling in which DEGs are considered to be
involved in the stress response. However, some of the DEGs
might play more important roles in stress response than others.
Moreover, genes that do not change their transcript levels may
also be involved in stress response. As discussed earlier, genes for
complex plant traits such as stress response are likely to be
associated with specific pathways. Therefore, we could prioritize
genes involved in stress response by the changes in expression
profiles of pathways they belong to. For this analysis, we pre-
defined each gene and its direct neighbors in BarleyNet as
subnetworks that represent pathways. We then selected
subnetworks of “hub genes” that had at least 100 neighbors.
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The algorithm then computed the significance of overlap
between user-submitted DEGs associated with a biological
context such as stress conditions and the neighbors of each
hub gene using Fisher's exact test. If the overlap between gene
Frontiers in Plant Science | www.frontiersin.org 8103
sets turned out to be significant, the hub gene was considered a
“context-associated hub” highly likely to be involved in the
biological context. The prioritized context-associated genes
could be either DEGs or not.
FIGURE 3 | Predictions for drought response genes using BarleyNet. (A) Within-group edge connectivity was computed for drought response genes identified from
leaves and roots of two cultivars, Maresi and Cam/B1/CI (referred to as CAM), and 1,000 random gene sets of the same size. Asterisks indicate the within-group edge
count of each trait-associated gene set in BarleyNet. Within-group edge counts for drought response genes by BarleyNet were significantly higher than those by random
gene sets (P < 0.001 by a binomial test). (B) AUROC analysis for the same drought response genes. (C) Screenshot of network viewer, which visualizes a network of
drought response genes identified from differentially accumulated proteins in CAM roots (guide genes; blue nodes) and their 50 closest neighbors (candidate genes;
yellow nodes) in BarleyNet. The number of neighbors in the network can be controlled by selecting a score threshold at the bottom left area. Clicking the button at the
right bottom area allows gene set enrichment analysis for the selected neighbors. (D) Enriched GOBP terms among the 50 closest neighbors to the drought response
genes, based on barley (upper plot) and Arabidopsis GOBP annotations (lower plot). (E) Screenshot of the network viewer highlighting a selected candidate gene (yellow
node), HORVU5Hr1G072420. The viewer also highlights its connected user-input guide genes (i.e., drought response genes; blue nodes) and edges with their log
likelihood scores. The right-side panel shows related information such as data sources that support the prediction of HORVU5Hr1G072420 as a candidate gene
(Evidences) with relative contributions (% of total prediction score), as well as GOBP annotations for the candidate gene. Notably, the selected candidate gene
HORVU5Hr1G072420 was annotated for “response to water deprivation” in Arabidopsis GOBP annotations (marked by a red arrow).
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In order to demonstrate the utility of the context-centric
search application, we compiled 625 upregulated DEGs upon
heat stress in barley cultivar Rolap root (Pacak et al., 2016).
We manually evaluated novel candidate genes predicted by
the context-centric search using the 625 upregulated DEGs
(adj. p-value ≤ 0.05 and fold change ≥ 4) as input data. We
found that many top ranked predictions are also DEGs that
are annotated by GOBP terms for heat responses such as
Frontiers in Plant Science | www.frontiersin.org 9104
“response to heat” and “cellular response to heat” (Figure
4B). Notably, we observed candidate genes that are not DEGs
but are annotated as heat response genes (see candidate genes
ranked 17th , 18th , and 20th) . These results c lear ly
demonstrated that the network-based prediction along with
functional genomics data facilitates the discovery of novel
candidate stress response genes that could not be identified
by expression profiles alone.
FIGURE 4 | Example results from gene-centric search and context-centric search analyses using BarleyNet. (A) Screenshot of BarleyNet gene-centric search results
with gene HORVU3Hr1G014120, which was not annotated by barley GOBP terms. GOBP terms for drought response, “response to water” and “response to water
deprivation,” are marked by red circles. (B) Screenshots of BarleyNet context-centric search results with 625 upregulated differentially expressed genes upon heat stress
in the roots of barley cultivar Rolap. The predicted genes between rank 2 and 16 were omitted. GOBP terms for heat stress response are marked by red circles.
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Because context-centric search uses network algorithm different
from that of pathway-centric search, they are expected to provide
different candidate genes. To investigate to what extent candidate
genes vary by alternative network algorithms, we compared
predictions by pathway-centric and context-centric searches for the
same input genes, 30 drought response genes from differentially
accumulated proteins in CAM roots. We found that 24 genes overlap
between top 50 predictions from the two different network searches
(48% overlap). Nevertheless, a functionally relevant GOBP term,
“response to heat,” was found to be enriched for both of the top 50
predictions, which indicates that both network-based methods can
provide highly probable candidate genes. These results also suggest
that users may use the alternative network-based methods
complementarily to obtain more confident candidate genes for the
follow-up functional analysis.
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Plant responses to environmental and intrinsic signals are tightly controlled by
multiple transcription factors (TFs). These TFs and their regulatory connections form
gene regulatory networks (GRNs), which provide a blueprint of the transcriptional
regulations underlying plant development and environmental responses. This review
provides examples of experimental methodologies commonly used to identify regulatory
interactions and generate GRNs. Additionally, this review describes network inference
techniques that leverage gene expression data to predict regulatory interactions.
These computational and experimental methodologies yield complex networks that
can identify new regulatory interactions, driving novel hypotheses. Biological properties
that contribute to the complexity of GRNs are also described in this review. These
include network topology, network size, transient binding of TFs to DNA, and
competition between multiple upstream regulators. Finally, this review highlights the
potential of machine learning approaches to leverage gene expression data to predict
phenotypic outputs.

Keywords: gene regulatory network, network properties, network inference, machine learning, experimental
methodologies

FROM GENES TO NETWORKS: A CONTINUOUS MOLECULAR
SCALE FOR PLANT RESEARCH

Plant responses need to integrate environmental signals, including those from biotic and
abiotic stresses. Additionally, plants integrate intrinsic signals, such as developmental or
hormonal cues. Plant responses to environmental and intrinsic signals are under tight
control to ensure a fast and appropriate response and at the same time prevent an
indiscriminate activation of this response (Swift and Coruzzi, 2017). Accordingly, the
chance of randomly activating a plant response is significantly reduced when multiple
transcription factors (TFs) regulate and fine-tune this response (Swift and Coruzzi, 2017).
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As such, multiple upstream TFs, connected to each other,
form complex gene regulatory networks (GRNs) to redundantly
control downstream responsive genes, also defined as target
genes (Hernando et al., 2017). These GRNs consist of nodes
that represent genes, and edges that represent the regulatory
connections between genes. Overall, GRNs provide a blueprint
of the molecular interactions underlying plant responses. The
generation of GRNs in the context of plant responses has
played a critical role in identifying new regulatory connections
between genes and driving novel hypotheses. For example, the
generation of a GRN at the base of the myo-inositol metabolic
pathway in soybean (Glycine max) predicted new regulatory
interactions, of which 13 interactions could be validated. The
GRN was generated with transcriptome data from two mutant
lines, mips1 (myo-inositol phosphate synthase 1) and a triple
mutant mips1/mrp-l (multi-drug resistance protein)/mrp-n that
led to low phytic acid and a decrease in seed emergence (Redekar
et al., 2017). More specifically, differentially expressed genes
(DEGs) were clustered in modules based on their expression
patterns. Putative regulatory interactions between the DEGs
encoding TFs and the different modules were then determined
based on the enrichment of known DNA-binding motifs within
each module (Redekar et al., 2017). By using a systems-level
approach, unknown regulatory interactions were predicted and
validated, allowing for a better understanding of the myo-inositol
metabolic pathway in soybean.

In another example, newly identified hub genes, i.e., highly
connected genes, were hypothesized to have functional roles as
stress-induced genes (Vermeirssen et al., 2014). To generate the
stress-induced GRN, an Arabidopsis microarray compendium
including 199 abiotic stress conditions was used to identify
modules of co-expressed genes. Using three different network
inference techniques, a set of putative upstream TFs was
identified for each module resulting in a total of 200,014
regulatory interactions. Fifty percent of the predicted regulatory
interactions involving seven identified hub TFs were confirmed,
highlighting the capacity of GRNs to identify functional
interactions (Vermeirssen et al., 2014). Furthermore, one of
these seven TFs, NAC DOMAIN CONTAINING PROTEIN 32
(NAC032), was not yet shown to play a role in stress tolerance.
Phenotypic analyses confirmed the involvement of NAC032 in
the regulation of the osmotic stress response, demonstrating the
power of GRNs to identify regulatory TFs in a biological context
(Vermeirssen et al., 2014).

In addition to identifying new regulatory connections between
genes with GRNs, the assessment of GRN topology can provide
a system-level approach to understand network complexity
and robustness, and help in identifying putative strategies for
manipulating the network response. The network topology refers
to the structure of the GRN and includes properties such
as node connectivity, network diameter, network density, and
network motifs (Hu et al., 2005). Node connectivity is the
number of connections a node has to other nodes. Network
diameter measures the number of connections between the most
distant parts of the network. Network density is a measure of
the number of connections in a network in proportion to the
number of nodes. Lastly, network motifs are subgraphs that

occur within a GRN with high occurrence. These aspects of
network topology contribute to the understanding of network
robustness and complexity.

BIOLOGICAL PROPERTIES OF GENE
REGULATORY NETWORKS AND
APPROACHES TO INVESTIGATE THEM

As mentioned above, complex GRNs can be identified that
contribute to plant development and environmental responses.
Several biological properties, including network topology,
contribute to the complexity of GRNs and can be assessed when
studying GRNs:

1. Multiple upstream regulators: Many genes are regulated by
multiple upstream TFs, resulting in a complex regulatory
module for every gene (Barah et al., 2016; Huang et al.,
2017). Moreover, upstream TFs can act alone, form
complexes, compete for binding, and act as a co-factor
with or sequester other TFs (Nagel and Kay, 2012). In
addition to the high number of upstream regulators, some
TFs only regulate a downstream gene in combination with
another TF and/or under specific conditions (Gonzalez
et al., 2015). Such interactions are thus overlooked in the
absence of the second TF. Furthermore, it has been shown
that TFs bind to different motifs when paired with other
TFs than motifs bound by single TFs, further increasing
network complexity (Jolma et al., 2015). How multiple
upstream TFs regulate the expression of one target gene is
thus highly complex. Currently, transient luciferase assays
(TEAs) can be used to quantify the effect of multiple
TFs on the expression of a target gene (Vanden Bossche
et al., 2013). Accordingly, by transforming protoplasts
with multiple effector plasmids containing the TFs of
interest and one reporter plasmid with the promoter of
the target gene of interest, the combined effect of these
TFs on the activity of the promoter can be evaluated. This
information can be used to refine the network.

2. Transient binding: Transcription factors scan the DNA
until they encounter the correct DNA-binding motif and
bind to the DNA, which can occur transiently. A TF can
execute its function through the hit-and-run principle,
which means that once the TF is bound (hit), it establishes
a transcriptional complex that regulates transcription
even when the TF is no longer present (run) (Doidy
et al., 2016; Swift and Coruzzi, 2017). Because these
transient bindings occur within minutes and do not last,
they are harder to detect by methods such as chromatin
immunoprecipitation (ChIP), resulting in false negatives
in the GRN. Performing ChIP experiments with an
inducible system over multiple time points can decrease
the number of false negatives (Doidy et al., 2016; Swift
and Coruzzi, 2017). As such, a new class of target genes
that is only transiently bound by basic LEUCINE ZIPPER
1 (bZIP1) within 1 to 5 min and not at later time points
was discovered (Para et al., 2014).
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3. Size: Depending on the molecular process, the network
size can increase significantly, reaching hundreds of genes
in one network. Researchers can reduce the number of
genes in the network by (i) increasing the fold change or
decreasing the q-value threshold to select a smaller subset
of DEGs, (ii) focusing on a specific type of protein such
as TFs, or (iii) performing an overlap with DEGs from
other relevant datasets. To visualize, explore, and analyze
these networks, regulatory interactions can be uploaded
in Cytoscape R© and analyzed with different applications
such as BiNGO or NetMatch∗ (Su et al., 2014). Generally,
these large-scale networks include hub genes with a
high out-degree, i.e., the number of outgoing edges and
thus the number of target genes (Lorenz et al., 2011;
Barah et al., 2016). Such hub genes can be biologically
important genes and thus relevant for further studies
characterizing gene function.

4. Network topology: Within a GRN, multiple network
motifs, such as feedback and feedforward loops, are
found (Nohales and Kay, 2016). These network motifs
can exhibit specific dynamic characteristics (Figure 1).
Depending on the network motif, delayed, transient,
or increased activation of target genes can occur
(Figure 1; Martin et al., 2016). Thus, as a result of
their dynamic behavior, network motifs contribute to
GRN dynamics and complexity (Figure 1). As shown
in Figure 1, multiple snapshots of the transcriptomes
can be detected depending on the sampled time point
(Figure 1). These characteristics were highlighted in
Chang et al., where ChIP-seq data identifying EIN3
targets upon ethylene treatment were combined with
RNA-seq analysis to construct a GRN (Chang et al.,
2013). Because samples were taken at multiple time points
after ethylene treatment, the dynamics of the response
to ethylene could be unraveled. This study shows the
power of time courses to unravel the dynamics of a
GRN and view the progression of the downstream events
(Chang et al., 2013).

The latter network topology also contributes to the phenotypic
output of plant responses. For example, incoherent feedforward
loops will generate pulses of gene expression, which in turn
generate rhythmic behaviors, such as the circadian clock in
Arabidopsis (Joanito et al., 2018). Studying phenotypic outputs
is commonly achieved by eliminating or overexpressing a single
gene or several genes. However, studying phenotypic outputs
in the context of entire GRNs appears to be more challenging,
and additional tools may be necessary to connect network
characteristics and plant phenotype.

EXPERIMENTAL METHODOLOGIES TO
GENERATE GENE REGULATORY
NETWORKS

To reach a comprehensive understanding of plant responses,
multi-level data, ranging from phenotypic analyses to

gene expression analyses, are being acquired. Advances in
bioinformatics and high-throughput experimental approaches,
such as RNA sequencing and ChIP sequencing, allow us to
study whole transcriptomes. This variety of data can be used to
study genes across a molecular scale, ranging from a single gene,
several genes, or interacting genes forming a GRN. A variety
of experimental methodologies are used to collect data for the
generation of GRNs and provide a system-level view of the plant
response under study (Figure 2). These methodologies can (i)
determine the binding of a TF to specific DNA sequences or (ii)
identify target genes that are regulated by a TF of interest. Based
on this information, directional edges can be drawn from the
genes encoding TFs to their downstream targets.

Methodologies to identify DNA binding events of TFs
are yeast one-hybrid (Y1H) assays, ChIP experiments and
in vitro DNA binding assays (Figure 2). These methodologies
are frequently used in studies focusing on the detailed
characterization of a single gene or a small group of genes.
Additionally, they can be applied in a systems-level context when
performed in parallel.

– Y1H Screens. A large-scale Y1H screen that tested the
promoters of 50 genes involved in xylem development
against 467 TFs was used to construct a GRN at the base of
secondary cell wall synthesis (Taylor-Teeples et al., 2015).
This Y1H screen resulted in a highly interconnected GRN
containing feedforward loops and led to the identification
of new key TFs in the specification of the secondary
cell wall (Taylor-Teeples et al., 2015). Another recently
published GRN constructed from Y1H screens unraveled
a GRN downstream of plant cell regeneration; subdivided
this GRN in wounding, auxin, or cytokine-induced
regeneration subnetworks; and identified hub TFs and
novel promoter–TF interactions (Ikeuchi et al., 2018).
Even though Y1H assays allow for high-throughput data
generation of direct TF-DNA binding to construct GRNs,
the yeast genetic background can affect the results and
the identified regulatory interactions should be confirmed
in planta.

– ChIP. When performing ChIP followed by high-
throughput sequencing (ChIP-seq) or microarray
hybridization (ChIP-chip), genome-wide TF binding
loci can be determined. Although ChIP-seq is limited
to one TF, the technique can be used to build GRNs
when performed in parallel. A recently published study
performed ChIP-seq experiments on 21 TFs related to
abscisic acid (ABA) in the presence and absence of ABA,
enabling the identification of dynamic TF binding; for
19 of the 21 TFs, the binding events increased after
ABA treatment (Song et al., 2016). Because the authors
determined the direct downstream targets of 21 TFs, they
could identify highly regulated target genes that were
downstream of multiple TFs, such as core ABA genes
but also novel non-ABA-related genes, such as RGL3
(RGA-like 3) regulated by gibberellin (GA) and ACS2
(ACC synthase 2) controlling the biosynthesis of ethylene
(Song et al., 2016). Expresso is available to explore and
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FIGURE 1 | Schematic representation of multiple snapshots of the transcriptomes in relation to the presence of network motifs, such as feedforward and feedback
loops. Left panel: a coherent feedforward loop composed of activation interactions results in increased activation of the target gene over time as the induction of the
second transcription factor (TF) only occurs after its own activation by TF1. Middle panel: delayed activation of target2 as a result of the delayed activation of TF4,
part of an incoherent feedforward loop. Right panel: as a result of the feedback loop between TF5 and TF6, target3 is only transiently activated. These interactions
also depend on the relationship between the two TFs, the degradation of the transcripts, and the amount of input signal. The observed transcriptomes will thus be
different over multiple time points and result in different snapshots (dark gray zones). Green and red arrows represent activation and repression, respectively.

access available processed ChIP-seq data in Arabidopsis
(Aghamirzaie et al., 2017).

– In vitro DNA-Binding Experiments. As with Y1H
assays, this methodology can be used to construct GRNs;
however, the large number of regulatory interactions
found with these techniques are not always functional
and need to be placed in a biological context. In vitro
techniques used to determine DNA binding events of TFs
include protein binding microarrays (PBM), DNA-affinity
purification sequencing (DAP-seq), and Systematic
Evolution of Ligands by Exponential Enrichment
(SELEX). PBMs consist of dsDNA microarrays that are
incubated with a tagged TF of interest. The DNA-bound
TFs are detected with a fluorescent-bound antibody
(Berger and Bulyk, 2009). Using PBMs, the DNA-binding
motif of 2913 TFs, selected from different species, was
determined in a large-scale experiment (Weirauch et al.,
2014). These data are publicly available at Cis-BP1

and forms a large resource for bioinformatics analysis
and GRN inference. DAP-seq and SELEX are similar
techniques; however, to our knowledge SELEX has not
been used to build a GRN in plants. For SELEX, a target
(e.g., TF) is incubated with a library, e.g., a synthetic

1http://cisbp.ccbr.utoronto.ca

library or a genome-based library of ssDNA, dsDNA,
or RNA, followed by the selection and amplification of
the bound complexes (Djordjevic, 2007). DAPseq makes
use of a dsDNA library (inferred from genomic DNA)
of which the fragments contain an adaptor sequence.
A purified TF bound to beads is added to the library. Next,
the bound gDNA fragments are eluted and sequenced.
By mapping the sequence reads onto the genome, bound
target genes can be identified (Bartlett et al., 2017). The
in vitro DNA-binding sites of 526 Arabidopsis TFs are
determined with DAP-seq (O’Malley et al., 2016)2.

In addition to constructing a GRN based on the binding
events of a TF, gene expression data of inducible overexpressing
plant lines can be used to build GRNs (Figure 2). The major
advantage of inducible overexpressing lines is that the desired
gain or loss of function can be applied at a specific developmental
stage, resulting in temporal or developmental specific GRN
changes. Three inducible systems are generally used. (i) TFs
translationally fused to a glucocorticoid receptor (GR) domain
translocate to the nucleus in the presence of dexamethasone
(DEX) (Corrado and Karali, 2009). The two other systems make
use of a two-component system in which a chimeric TF induces

2http://neomorph.salk.edu/dev/pages/shhuang/dap_web/pages/index.php
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FIGURE 2 | Overview of network generation and inference methodologies described in this review. High-throughput Y1H screens, ChIP-seq assays, in vitro
DNA-binding experiments, or expression experiments with inducible overexpressing lines can be used to generate GRNs. Three computational methodologies are
described in this review to infer GRNs: Correlation networks, Dynamic Bayesian networks, and machine learning networks. Advantages and disadvantages are given
for each experimental and computational methodology. GRN, gene regulatory network; ML, machine learning; Y1H, yeast one-hybrid; ChIP, chromatin
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the expression of the transgene upon a chemical inducer. (ii)
First, a fusion protein, called XVE, contains a LexA DNA binding
domain, the VP16 transactivation domain, and the human
estrogen receptor domain and is activated when treated with
estrogen (e.g., estradiol). Subsequently, the fusion protein can
activate the expression of the TF of interest by binding on the
LexA operator sequence upstream of the gene encoding the TF
(Zuo et al., 2000). (iii) The third system, called the alc system,
also contains two components: the first component is the AlcR
TF activated in the presence of ethanol or acetaldehyde and
the second component consists of the gene encoding the TF of
interest downstream of the AlcA promoter. When the AlcR is
active, it can bind the AlcA promoter and induces the expression
of the TF of interest (Caddick et al., 1998).

These systems have been used to overexpress a gene of
interest at a desired developmental stage and explore their
downstream effects with, e.g., transcriptomics (Wellmer et al.,
2006; Dubois et al., 2013). For example, APETALA1 (AP1), a
central gene in the initiation of flower development, was fused
to a GR-domain and transformed into the ap1 cal (cauliflower)
double mutant. By specifically activating AP1 in the inflorescence
meristems of this mutant, the temporary obstruction of flower
formation in ap1 cal is lifted and flowers develop synchronously
(Wellmer et al., 2006). In addition to inducing TFs, a system has
been developed in which artificial microRNAs (amiRNAs) are
specifically induced during flower development, generating new
possibilities to unravel GRNs (O’Maoileidigh et al., 2015).

These GRNs contain experimentally determined
transcriptional regulations but do not make a distinction
between indirect or direct targets. By using cycloheximide
in combination with inducible overexpressing lines, indirect
and direct target genes can be distinguished. Cycloheximide
will block the formation of new proteins, preventing direct
targets to in turn regulate their targets and thus the detection of
indirect target genes (Davies and Exworth, 1973). Based on these
principles, the technique TARGET (Transient Assay Reporting
Genome-wide Effects of Transcription factors) was developed
(Bargmann et al., 2013). Protoplasts are transformed with a
GR-TF fusion cassette that also contains a red fluorescent protein
(RFP), enabling the sorting of transformed protoplast through
fluorescence-activated cell sorting (FACS). With the addition of
4-thiouracil (4tU), a distinction can be made between existing
and newly synthesized mRNA (Doidy et al., 2016). Using this
technique, the “hit-and-run” principle was proven for bZIP1
(Para et al., 2014). However, some genes are transcriptionally
induced by cycloheximide, which can render false positive. In
this case, including early and later time points upon induction
of overexpression can indicate whether DEGs are direct or
indirect downstream targets (Van den Broeck et al., 2017).
As such, the regulatory effect of 21 TFs on their downstream
targets was assessed upon multiple time points after induction
of overexpression. Genes differentially expressed 1, 2, and 4 h
after overexpression were selected as putative direct targets and
experimentally validated. The validated targets were used to
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construct a GRN that is specifically activated upon osmotic stress
(Van den Broeck et al., 2017).

The above-described methodologies use experimental data
ranging from Y1H screens to expression data, to construct GRNs.
However, these methodologies introduce uncertainties as a result
of incomplete observations, background noise, and systematic
errors, leading to false negatives. To this end, researchers can
make use of network inference approaches to describe regulatory
interactions as probabilities and built GRNs.

PROBABILISTIC NETWORK INFERENCE
APPROACHES TO IDENTIFY CAUSAL
RELATIONS

The inference of GRNs from large datasets is not an easy task, and
different computational tools, including correlation networks,
and causal inference methods such as Mutual Information and
Bayesian networks, have been applied to this task (Margolin et al.,
2006; Vignes et al., 2011). Co-expressed genes can be identified
from microarray or RNAseq data with correlation methods,
such as Pearson or Spearman correlation. This information
can then be used to build correlation networks (Figure 2).
These correlation networks are based on the principle that
genes expressed in the same conditions could perform a similar
biological function. Correlation networks can thus be powerful
tools to predict new regulatory genes of a specific plant response.
For example, a correlation network in rice was built based on
57 microarray experiments performed during different stages of
anther development. This resulted in 545 clusters, with genes
showing the same expression pattern across the different samples
(Lin et al., 2017). By mapping DEGs identified with knock-
out experiments onto the correlation network, new biologically
important genes involved in anther development were identified.
GRNs have been developed for a large number of species
under different environmental conditions and multiple tools
are available to explore correlation networks or identify sets of
co-expressed genes (Table 1; De Bodt et al., 2010).

Correlation networks can be used to explore large datasets
and identify putative central regulators/hub genes (Figure 2).
However, these networks are unable to provide information
about transcriptional relations between upstream regulators
and downstream target genes. They are also limited in
determining whether the interaction is direct or indirect, results
in activation or repression, or involves competition between
multiple upstream regulators. One technique to provide useful
predictions using correlation networks despite this limitation is
to integrate additional types of data. For example, combining
correlation networks with metabolic data has led to the
identification of key regulatory genes in metabolic pathways
(Wu et al., 2016). The addition of genome-wide association
studies (GWAS) can increase the power and robustness of a
correlation network. A correlation network at the base of mild
and severe salt stress response in roots was constructed in
parallel with a GWAS of a 94-RIL (Ler/Cvi) population. Genes
identified with GWAS were used to explore the clusters of the
correlation network. By analyzing the neighboring genes of the

identified GWAS hits, connections could be made, such as the
allocation of GWAS and neighboring genes identified under
mild salt stress to specific clusters (Kobayashi et al., 2016).
Leveraging the advantage of combining GWAS with correlation
networks, a computational framework, Camoco, was built to
identify candidate SNP-associated genes, build a correlation
network, and prioritize the candidates genes based on their
expression correlation (Schaefer et al., 2018). This approach
is especially useful for species for which the majority of the
genome remains functionally uncharacterized. Other methods
that integrate correlation networks with additional data are
based on known DNA-binding motifs to identify the upstream
regulators of a group of DEGs that cluster together (Palaniswamy
et al., 2006; Lv et al., 2014; Barah et al., 2016). The TF2Network
tool is such a method that allows constructing a GRN based on
DNA-binding motifs by searching in a given list of genes for
enriched TF-binding sites (Kulkarni et al., 2017).

While correlation networks are an adaptable and widely
used computational tool, other methods are necessary to infer
causal relationships from gene expression without the use of
DNA-binding motifs. Using network inference methods, putative
upstream regulators for DEGs can be predicted by searching for
regulators that can explain observed gene expression patterns,
allowing the researcher to construct a GRN (Segal et al., 2003;
Phuong et al., 2004). Bayesian network (BN) inference provides
one avenue to construct large, informative GRNs and infer
direct causal relations between genes (Figure 2; Yu et al., 2004;
Chen et al., 2006; Bansal et al., 2007; Vignes et al., 2011). In
BNs, edges are encoded as probabilistic connections between
their origin and destination nodes (Pearl, 2008). These networks
are a particularly widely used tool in determining conditional
dependencies among genes to predict direct interactions between
an upstream gene and its downstream targets (Yu et al.,
2004; Chen et al., 2006; Bansal et al., 2007; Vignes et al.,
2011). In one example, a BN was used to infer conditional
dependencies among SHOOT MERISTEMLESS (STM) and 56
other genes encoding TFs with publicly available datasets
in Arabidopsis. With this network a strong dependency was
identified between STM and CUP-SHAPED COTYLEDON 1
(CUC1), which was then experimentally validated (Scofield et al.,
2018). Importantly, BNs can be constructed by beginning with
a set of genes of interest and iteratively adding genes that
lead to a model with increased fitness. Using this approach,
several GATA TFs were identified as possible regulators of
photosynthesis in Arabidopsis and novel relationships were tested
(Needham et al., 2009).

To lower the number of possible networks and thus
sometimes extensive computation time, network inference based
on Bayesian principles can make use of a priori knowledge about
the pathway. A priori knowledge can be incorporated in ways
such as restricting possible network structures based on known
patterns of interaction or limiting the number of connections
any node may have. For example, Bayesian inference with an
assumption of hierarchical structure and a limited number of
connections was applied to infer GRNs in Arabidopsis under
different stress conditions. These networks identified 9 TFs as
putative regulators of DESICCATION-RESPONSIVE PROTEIN
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TABLE 1 | Summary of the available tools to explore expression datasets in different species.

Tool Species Specificity References

CORNET Arabidopsis thaliana Co-expression and protein-protein
interaction tool

De Bodt et al., 2010

FlowerNet Arabidopsis thaliana Includes only stamen-, pollen-, or
flower-specific expression studies

Pearce et al., 2015

Genevestigator Arabidopsis thaliana, Hordeum vulgare,
Oryza sativa, Medicago truncatula,
Glycine max, Zea mays, Nicotiana
tabacum, Solanum lycopersicum,
Physcomitrella patens, Triticum
aestivum, and Sorghum bicolor

Multiple tools to analyze a set of genes,
such as clustering and differential
expression

Hruz et al., 2008

RapaNet Brassica rapa Includes 143 B. rapa microarrays Kim et al., 2017

RiceAntherNet Oryza sativa Includes 57 rice anther tissue
microarrays

Lin et al., 2017

RiceArrayNet/PlantArrayNet Oryza sativa, Arabidopsis thaliana, and
Brassica rapa

Includes diverse microarrays and links
genes to pathway maps

Lee et al., 2009

PlantExpress Oryza sativa and Arabidopsis thaliana Contains two sub platforms,
OryzoExpress and ArthaExpress,
enabling cross-species analysis

Kudo et al., 2017

ATTED-II Arabidopsis thaliana, Brassica rapa,
Oryza sativa, Glycine max, Populus
trichocarpa, Solanum lycopersicum,
Vitis vinifera, Medicago truncatula, and
Zea mays

Includes microarray data of crops and
added RNAseq data of Arabidopsis

Obayashi et al., 2014, 2018

PlaNet Arabidopsis thaliana, Hordeum vulgare,
Medicago truncatula, Populus
trichocarpa, Oryza sativa, Glycine max,
Triticum aestivum, Nicotiana tabacum,
Brachypodium distachyon,
Physcomitrella patens, and Selaginella
moellendorffii

Comparative analysis of co-expression
networks across plant species and
prediction of gene function

Mutwil et al., 2011

PLANEX Arabidopsis thaliana, Glycine max,
Hordeum vulgare, Oryza sativa,
Solanum lycopersicum, Triticum
aestivum, Vitis vinifera, and Zea mays

Contains microarray data from the
Gene Expression Omnibus (GEO)

Yim et al., 2013

Different tools are developed to identify sets of co-expressed genes across a wide range of environmental conditions or mutant lines and explore these regulatory modules.
Each tool has overlapping and distinct features.

29A (RD29A), a well-known stress-induced gene, in agreement
with previous experimental data (Penfold et al., 2012).

Another method to infer regulatory relationships is the use of
ordinary differential equation (ODE) models. These approaches
are based on fitting parameterized differential equations to time-
course expression data, where these equations characterize the
dynamic influence of regulators on the expression patterns of
target genes. These equations typically describe mechanistic
interactions between regulators and targets and can vary in
complexity, ranging from linear equations to more complex
non-linear representations (Wu et al., 2014). Given a specific
model type and time-course gene expression data, optimization
routines are used to estimate the parameters of the ODE. These
include least-squares methods, LASSO, Markov Chain Monte
Carlo, and Genetic Algorithms (Locke et al., 2005, 2006; Krouk
et al., 2010; Koryachko et al., 2019). Issues that arise when using
ODEs to model GRNs include overly complex models resulting
in overparameterization, sparse data resulting in unidentifiable
parameters (Krouk et al., 2010), overfitted parameters resulting
in models that are not generalizable (Krumsiek et al., 2010), and
model structures that result in “sloppy” parameters where a wide

range of parameters provide adequate fit to the data (Bujdoso
and Davis, 2013). ODE models are also typically constrained to
a subset of DEGs to reduce the numbers of parameters that need
to be optimized. Putative upstream regulators of genes involved
in the response to different light conditions in Arabidopsis
were selected based on literature, databases such as Kyoto
Encyclopedia of Genes and Genomes (KEGG), and regulator-
gene predictions based on motif presence in promoter regions.
Fitting ODE models to time-course expression data allowed for
the removal of weak regulatory interactions and the refinement of
a GRN under photosynthetic light acclimation (Yao et al., 2011).
Similarly, an ODE model incorporating hidden states to represent
actual protein abundances was used to infer GRNs related to
nitrate response in Arabidopsis. In this study, SPL9 was identified
as a possible regulator of nitrate signaling and experimentally
validated by overexpressing SPL9 (Krouk et al., 2010).

Importantly, each inference technique has specific advantages
and limitations. For example, Bayesian inference methods are
well-suited to extract useful information from noisy gene
expression data and to identify linear cascades (Marbach et al.,
2012). However, they cannot scale to infer large networks and
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are limited in identifying feedforward loops (Marbach et al.,
2012). These shortcomings can be addressed by performing a
clustering step prior to inference (de Luis Balaguer et al., 2017)
and extending the BN into a Dynamic Bayesian Network (DBN),
respectively (Friedman et al., 1998). In DBN inference, a time-
course dataset is provided to predict probabilistic dependencies
between genes. As such, the value of each gene at one time point
depends on the values of its regulators at the previous time point
and/or at the same time point, depending on the sparsity of
the time-course data that is provided. DBNs have been used to
predict mechanisms that are key in regulating circadian rhythms
in Arabidopsis. These were later confirmed in experimentally
verified networks (Dondelinger et al., 2012). Moreover, DBNs
have successfully been used to infer GRNs underlying molecular
responses and reconstruct experimentally determined stem cell
networks. Accordingly, a DBN inferred from root stem cell-
specific time-course data identified PERIANTHIA (PAN) as an
upstream of known stem cell regulators. Experimental evidence
showed that this newly predicted stem cell regulator indeed
controls columella stem-cell maintenance and QC division (de
Luis Balaguer et al., 2017). Importantly, the computational
pipeline used in this work, called GENIST, was made available on
GitHub and through TuxNet, a simple graphical user interface for
processing of RNAseq data and inferring GRNs (de Luis Balaguer
et al., 2017; Spurney et al., 2019). In addition to TuxNet, other
tools are available to facilitate the use of BNs and DBNs for
plant biologists, such as BNArray, a tool developed in R that
creates small DBNs and combines them to predict regulatory
subnetworks (Chen et al., 2006). Similarly, open source Cytoscape
plugins are available for network inference: (i) NetworkBMA
uses Bayesian Network Averaging to infer regulatory networks
(Fraley et al., 2014); (ii) Cygenexpi is based on ODEs and
uses known putative regulations and time-course data to
assess regulatory interactions (Modrák and Vohradskı, 2018);
and (iii) ARACNE can analyze and integrate high-throughput
expression steady-state data and was already successfully
used in identifying previously known and new transcriptional
regulations in the Arabidopsis root (Margolin et al., 2006;
Chávez Montes et al., 2014).

BRIDGING THE GAP BETWEEN
QUANTITATIVE EXPRESSION DATA AND
PHENOTYPIC TRAITS WITH MACHINE
LEARNING APPROACHES

Pleiotropic effects can be a major challenge in making targeted
changes to biological systems. This problem can be circumvented
by adjusting the specificity of the downregulation or upregulation
of the gene expression. For example, the adverse effect of the
constitutive overexpression of PLASTOCHRON1 (ZmPLA1) in
maize, such as the absence of flowering, is eliminated by targeting
the ectopic expression of PLASTOCHRON1 (ZmPLA1) to the
transition zone of a maize leaf. This is achieved by placing
ZmPLA1 downstream of the GA2-OXIDASE (ZmGA2OX)
promotor, of which the expression is limited to the transition
from cell division to cell expansion and results in larger leaves

(Sun et al., 2017). Predicting the need for these kinds of targeted
interventions requires a detailed understanding of the complex
connections between gene expression data and downstream
phenotypic effects. Unraveling GRNs and understanding their
dynamics provides one means to link gene expression and
phenotype. However, when the link between gene expression
and phenotypic output is unclear, unresolved, or highly complex
machine learning (ML) approaches can provide an attractive
avenue. ML approaches can yield data-driven models that
offer predictions, thus providing a broadly applicable toolset
to analyze biological data and predict phenotypic outputs
based on gene expression data (Figure 3). This could help to
improve the effectiveness and precision possible in modifying
phenotypic traits.

Machine learning tools have been applied to biological systems
at multiple scales. They have been applied to gene expression
data to identify DEGs (Pirooznia et al., 2008) and transcriptional
regulations between genes (Figure 2; Huynh-Thu et al., 2010).
At the phenotypic level, ML systems have been used to analyze
images for rapid phenotyping (Gonzalez-Sanchez et al., 2014;
Sommer et al., 2017). Computer vision systems using ML have
been used to track Arabidopsis growth and movement through
day–night cycles, extracting patterns of movement and growth,
automating extraction of phenotypic information (Bernotas et al.,
2019). In another example, linear regression, support vector
machines (SVMs), artificial neural networks (ANNs), random
forest regression, and stochastic gradient boosting were tested
for accuracy and robustness in yield prediction in almonds using
orchard images, orchard-specific attributes, and weather data.
After testing these ML methods, stochastic gradient boosting was
found to provide the best performance in yield prediction and
identifying key determinants of almond yield, such as orchard age
and levels of precipitation during periods of pollinator activity
(Zhang et al., 2019).

Additionally, several ML approaches such as SVMs, random
forests, logistic regression, naïve Bayes classifiers, and ANNs
have already been applied to genetic data for the prediction
of phenotypic traits (Figure 3). For example, deep ANNs were
used to predict yield in maize from genotype data and weather
conditions. In this case, the models were able to predict yield
with a root mean squared error of 12%, although this was
highly sensitive to weather prediction accuracy (Khaki and Wang,
2019). ML approaches have also been used to predict genotypes.
Logistic regression and naïve Bayes approaches have been used
to predict the genotype of crosses between maize strains, with
prediction accuracy between 82 and 85% (Seka et al., 2019).
However, because of the complexity of ML approaches and
lack of interpretable intermediary results, it can be difficult to
understand whether the model will generalize well and operate on
a wide range of input data without prohibitive amounts of testing.
One approach to address this is to identify informative features
that can be extracted from the data before it is used in the ML
system. Extracting information about this process and using that
as an input to the ML system can reduce the complexity of the
relationships the ML system needs to infer.

Gene regulation is an integral mechanism for numerous
biological processes. As a result, GRN topology plays a significant
role in the plant response to intrinsic or environmental signals
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FIGURE 3 | Current and potential future applications of machine learning methods in plant biology. Top panel: current applications of machine learning approaches
include predicting relationships from expression data, predicting phenotype from direct observational data, and predicting phenotype from genotype. Bottom panel:
in the future, gene expression data and GRN inference methods could be used to make phenotypic predictions based on the regulatory relationships between genes.

(Stelling et al., 2002). This connection between phenotype and
regulatory relationships makes constructed or inferred GRNs an
attractive intermediary step between expression-level data and
phenotypic predictions. Due to the key role of gene regulation
in determining phenotype, features derived from the topology of
GRNs, such as node connectivity, network diameter, and network
density, could be used by the ML system to make predictions
at a higher level of abstraction than using the raw expression
data. As such, the incorporation of GRN features within the ML
system can improve both phenotypic prediction performance and
model interpretability (Figure 3). Network topological features
have found use in predicting emergent behavior in systems such
as protein interaction networks and metabolic networks (Hasan
et al., 2006). For example, network features have been applied
to identify biologically important genes in E. coli metabolic
networks and found their predictions to agree with genome-
wide knockout screens (Plaimas et al., 2008, 2010). Similarly, ML
approaches that integrate network topological features have been
applied to predict metabolic pathways from correlation networks
in tomato plants, identifying a novel melibiose-degradation
pathway (Toubiana et al., 2019).

Designing an ML system involves many tradeoffs
between detail, predictive performance, availability of
data, and model interpretability. While deep learning
methods provide extreme detail, incorporating GRN-derived

features presents an opportunity to improve predictive
performance and interpretability while still making efficient
use of available data.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

As shown in this review, multiple techniques, both empirical and
in silico techniques, are available for the generation of GRNs.
An environmental signal or a developmental cue can trigger
transcriptional changes that are regulated by highly dynamic
GRNs. Different transcriptomes are identified depending on
the time upon stress or developmental signal (Figure 1) and
as such sampling at multiple time points is crucial to fully
comprehend a biological response. Moreover, as transcriptomes
differ significantly between organs (root versus shoot), tissues
(proliferating versus mature), and even cell types (epidermis
versus stoma), the precise developmental stage at which the
sampling occurs should be considered with care. Nowadays,
more techniques are being developed that allow for the analysis
of specific cell types using FACS, fluorescence-activated nuclei
sorting (FANS), and Isolation of Nuclei TAgged in specific Cell
Types (INTACT) (Bargmann and Birnbaum, 2010; Deal and
Henikoff, 2011; Slane et al., 2015; Reynoso et al., 2018). Moreover,
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several studies report that even within the same cell type,
gene expression is heterogeneous between cells. The complexity
of cellular diversity and cell-to-cell gene expression variability
can be addressed with transcriptomics at scale with single-cell
resolution (Denyer et al., 2019). Single-cell transcriptomics allows
for the simultaneous and accurate profiling of thousands of cells,
revealing detailed transcriptional pathways and developmental
processes (Denyer et al., 2019). Computational techniques, such
as Bayesian network inference and ML approaches, will need to
be adapted to the large amounts of data generated by single-cell
RNA sequencing and the cross-talk between datasets.
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The human microbiome is a collection of microorganisms. They form complex

communities and collectively affect host health. Recently, the advances in

next-generation sequencing technology enable the high-throughput profiling of the

human microbiome. This calls for a statistical model to construct microbial networks from

the microbiome sequencing count data. As microbiome count data are high-dimensional

and suffer from uneven sampling depth, over-dispersion, and zero-inflation, these

characteristics can bias the network estimation and require specialized analytical

tools. Here we propose a general framework, HARMONIES, Hybrid Approach foR

MicrobiOme Network Inferences via Exploiting Sparsity, to infer a sparse microbiome

network. HARMONIES first utilizes a zero-inflated negative binomial (ZINB) distribution to

model the skewness and excess zeros in the microbiome data, as well as incorporates

a stochastic process prior for sample-wise normalization. This approach infers a sparse

and stable network by imposing non-trivial regularizations based on the Gaussian

graphical model. In comprehensive simulation studies, HARMONIES outperformed

four other commonly used methods. When using published microbiome data from a

colorectal cancer study, it discovered a novel community with disease-enriched bacteria.

In summary, HARMONIES is a novel and useful statistical framework for microbiome

network inference, and it is available at https://github.com/shuangj00/HARMONIES.

Keywords: Bayesian statistics, microbiome network, Gaussian graphical model, Dirichlet process prior,

hierarchical model

1. INTRODUCTION

Microbiota form complex community structures and collectively affect human health. Studying
their relationship as a network can provide key insights into their biological mechanisms.
The exponentially growing large datasets made available by next-generation sequencing (NGS)
technology (Metzker, 2010), such as 16S rRNA gene and metagenomic profiling, motivate the
development of statistic tools to quantitatively study the microbial organisms. While the number
of discovered microbial taxa continues to increase, our knowledge of their interactive relationships
is severely lacking. Understanding the structural organization of the human microbiome plays a
vital role in revealing how the microbial taxa are collaborating or competing with each other under
different physiologic conditions.
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In sequencing-based microbial association studies, the
enormous amount of NGS data can be summarized in a
sample-by-taxon count table where each entry is a proxy to
the underlying true abundance. However, there is no simple
relationship between the true abundances and the observed
counts. Additionally, microbiome sequencing data usually have
an inflated amount of zeros, uneven sequencing depths across
samples, and over-dispersion. Initial attempts at constructing
microbial association networks with this type of data (Ban
et al., 2015; Lo and Marculescu, 2017), first transformed
the microbiome sequencing counts into their compositional
formula. Specifically, a count was normalized to its proportion
in the respective sample. Then, each sample was transformed
by a choice of log-ratio transformations to remove the unit-
sum constraint of the compositional data. While this type of
normalization is simple to implement and preserves the original
ordering of the counts in a sample, it fails to capture the sample
to sample variation and it overlooks the excess zeros in the
microbiome data. Note that these zeros can be attributed to
biological or technical reasons: either certain taxa are not present
among samples, or they are not sequenced due to insufficient
sequencing depths. As the existing logarithmic transformation
neglects the difference between these two types of zeros, it can
lead to a biased estimation of the network structure. Thus, we
propose a model-based normalization strategy for microbiome
count data. Our normalization method simultaneously accounts
for uneven sequencing depth, zero-inflation, over-dispersion,
as well as the two types of zeros. Then we use the normalized
abundances to estimate microbial abundance networks.

There are two major categories of statistical methods that
are often used to infer microbial abundance networks. The
first type is based on a taxa abundance covariance structure.
For example, Faust and Raes (2016) and Weiss et al. (2016)
used pairwise Pearson correlations to represent edge weights.
This simple inference could be problematic since two variables
(i.e., taxa) may be connected in the network due to their
confounding variables (Gevers et al., 2014). The other type
aims to estimate taxa abundance partial correlations, removing
confounding effects. Kurtz et al. (2015) proposed a statistical
model for inferring microbial ecological network, which is based
on estimating the precision matrix (via exploiting sparsity)
of a Gaussian multivariate model and relies on graphical
lasso (Glasso) (Friedman et al., 2008). However, their data
normalization step needs to be improved to account for unique
characteristics observed in microbiome count data.

In this paper, we propose a general framework, HARMONIES
(Hybrid Approach foR MicrobiOme Network Inferences
via Exploiting Sparsity), to infer the microbiome networks.
It consists of two major steps: (1) normalization of the
microbiome count data by fitting a zero-inflated negative
binomial (ZINB) model with the Dirichlet process prior
(DPP), (2) application of Glasso to ensure sparsity and using
a stability-based approach to select the tuning parameter in
Glasso. The estimated network contains the information of
both the degree and the direction of associations between
taxa, which facilitates the biological interpretation. We
demonstrated that HARMONIES could outperform other

state-of-the-art tools on extensive simulated and synthetic data.
Further, we used HARMONIES to uncover unique associations
between disease-specific genera from microbiome profiling
data generated from a colorectal cancer study. Based on these
results, HARMONIES will be a valuable statistical model to
understand the complex microbial associations in microbiome
studies. The R package HARMONIES is freely available at
https://github.com/shuangj00/HARMONIES.

2. METHODS

2.1. Microbiome Count Data Normalization
Let Y denote the n-by-p taxonomic count matrix obtained from
either the 16S rRNA or the metagenomic shotgun sequencing
(MSS) technology. Each entry yij, i = 1, . . . , n, j = 1, . . . , p
is a non-negative integer, indicating the total reads related to
taxon j observed in sample i. It is recommended that all chosen
taxa should be at the same taxonomic level (e.g., OTU for 16S
rRNA or species for MSS) since that mixing different taxonomic
levels in the proposed model could lead to improper biological
interpretation. As the real microbiome data are characterized
by zero-inflation and over-dispersion, we model yij through a
zero-inflated negative binomial (ZINB) model as

yij ∼ πiI(yij = 0)+ (1− πi)NB(λij,φj). (1)

The first component in the Equation (1) models whether zeros
come from a degenerate distribution with a point mass at zero.
It can be interpreted as the “extra” zeros due to insufficient
sequencing effort. We can assume there exists a true underlying
abundance for the taxon in its sample, but we fail to observe it
with the mixture probability πi representing the proportion of
“extra” zeros in sample i. The second component, NB(λij,φj),
models the “true” zeros and all the nonzero observed counts.
i.e., counts generated from a negative binomial (NB) distribution
with the expectation of λij and dispersion 1/φj. Here, “true” zero
refers to a taxon that is truly absent in the corresponding sample.
The variance of the random variable fromNB distribution, under
the current parameterization, equals to λij+λ2ij/φj. Smaller values

of φj can lead to over-dispersion.
To avoid explicitly fixing the value of πi’s and φj’s, we use

a Bayesian hierarchical model for parameter inference. First,
we rewrite the model (1) by introducing a binary indicator
variable ηij ∼ Bernoulli(πi), such that yij = 0 if ηij = 1,
and yij ∼ NB(λij,φj) if ηij = 0. Then, we formulate a beta-
Bernoulli prior of ηij by assuming πi ∼ Beta(aπ , bπ ), and we
let aπ = bπ = 1 to obtain a non-informative prior on ηij. We
specify independent Gamma prior Ga(aφ , bφ) for each dispersion
parameter φj. Letting aφ = bφ = 0.001 results in a weakly
informative gamma prior.

The mean parameter of the NB distribution, λij, contains
the key information of the true underlying abundance of the
corresponding count. As λij is affected by the varying sequencing
effort across samples, we use a multiplicative characterization of
the NB mean to justify the latent heterogeneity in microbiome
sequencing data. Specifically, we assume λij = siαij. Here,
si is the sample-specific size factor that captures the variation
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in sequencing depth across samples, and αij is the normalized
abundance of taxon j in sample i.

In parameter estimation, one needs to ensure identifiability
between si and αij. For example, si can be the reciprocal of the
total number of reads in sample i. The resulted αij is often called
relative abundance, which represents the proportion of taxon j
in sample i. In this setting, the relative abundances of all the
taxa in one sample always sum up to 1. Similarly, other methods
have been proposed with different constraints for normalizing
the sequencing data (Anders and Huber, 2010; Bullard et al.,
2010; Robinson and Oshlack, 2010; Paulson et al., 2013). Some
normalization methods can perform better than the others in the
downstream analysis (e.g., the differential abundance analysis) in
certain settings. From a Bayesian perspective, fixing the values
of si’s imposes a strongly informative prior in model inference.
Hence, all these methods could bias the estimations of other
model parameters and degrade the performance of downstream
analyses. We thus propose a regularizing prior with a stochastic
constraint for estimating si’s. Our method can simultaneously
infer the size factor and other model parameters. In particular,
we adopt the following mixture model for si,

log si ∼
M

∑

m=1

ψm

[

tmN(νm, σ
2
s )+ (1− tm)N

(

− tmνm

1− tm
, σ 2

s

)]

,

(2)

whereψm is the weight for outer mixtures of themth component.
The inner mixture of the mth component consists of two
Gaussian distributions with tm and 1−tm as weights, respectively.
It is straightforward to see that the inner mixture has a mean of
zero and thus ensuring the stochastic constraint of E(log si) = 0.
For the outer mixtures, M is an arbitrarily large positive integer.
Letting M → ∞ and defining the weight ψm by the stick-
breaking procedure (i.e.,ψ1 = V1,ψm = Vm

∏m−1
u=1 (1−Vu),m =

1, 2, . . .) makes model (2) a special case of Dirichlet process
mixture models. This class of Bayesian nonparametric infinite
mixtures is widely used in quantifying the model uncertainty
and allowing for flexibility in parameter estimation (Kyung
et al., 2011; Taddy and Kottas, 2012). In particular, this Dirichlet
process prior (DPP) has been used to account for sample
heterogeneity since it is able to capture multi-modality and
skewness in a distribution (Li et al., 2017; Lee and Sison-Mangus,
2018). In practice, we set M to be a large positive integer, and
adopt the following hyper-prior distributions for the parameters
in (2) such that νm ∼ N(0, τν), tm ∼ Beta(at , bt), and Vm ∼
Beta(am, bm). We further set σ 2

s = 1 to complete the parameter
specification in the DPP prior.

In our model, the normalized abundance matrix A = {αij}
represents the true underlying abundance of the original count
matrix. We further assume logαij ∼ N(µj, σ

2
j ). This variance-

stabilizing transformation on each αij not only reduces the
skewness of the normalized abundance, but converts the non-
negative αij to a real number. We apply the following conjugate
setting to specify the priors for µj and σ 2

j , j = 1, . . . , p.

We let µj ∼ N(0, h0σ
2
0 ) and σ 2

j ∼ inverse-gamma(a0, b0).

After integrating out µj and σ
2
j , the prior of the normalized

abundances of taxon j follows a non-standardized Student’s
t-distribution, i.e.,

p(α·j) = (nh0 + 1)−
1
2
Ŵ

(

a0 + n
2

)

Ŵ(a0)

b
a0
0

{

b0 + 1
2

[

∑n
i=1 logα

2
ij −

(
∑n

i=1 logαij)
2

n+ 1
h0

]}a0+ n
2

. (3)

As for the fixed parameters a0, b0, h0, and σ
2
0 , we follow Li et al.

(2019) and set a0 = 2, b0 = 1 to obtain a weakly informative
prior for σ 2

j . We fix σ 2
0 = 1 and let h0 = 10 such that the

normal prior on µj is fairly flat. We adopt the following prior
specification for the rest model parameters. First, we assume an
noninformative prior for each πi by letting aπ = bπ = 1. Next,
we specify aφ = bφ = 0.001 in the Gamma prior distribution for
all φj’s. Then, we apply the following prior setting for the DPP:
M = n/2, σs = 1, τν = 1, at = bt = 1, and am = bm = 1.

The logarithmic scale of A, denoted as Z = logA,
represents the normalized microbiome abundances on the
log scale. We use Markov chain Monte Carlo (MCMC)
algorithm for model parameter estimation (see details in the
Supplementary Material), and calculate the posterior mean of Z
to fit the Gaussian graphical model in the next step. Since the
observed zero counts may not always represent the absence of
taxa in the samples, we treat these zeros differently in the matrix
Z. We categorize the two types of zeros (“extra” and “true” zeros)
based on the estimated ηij for each observed yij = 0 in the data. In
particular, suppose that we observe L zeros in total. We calculate
the marginal posterior probability of being 1 for each ηl, l =
1, . . . , L as pl =

∑B
b=1 I (ηl = 1) /B, where I(·) is the indicator

function, and B is the number of MCMC iteration after burn-in.
This marginal posterior probability pl represents the proportion
of MCMC iterations in which the lth 0 is essentially a missing
value rather than the lowest count in the corresponding sample.
Then, the observed zeros can be dichotomized by thresholding
the L probabilities. The zeros with pl greater than the threshold
are considered as “true" zeros in the data, whereas the rest are
imputed by the corresponding posterior mean of logα

·j. We used
the method proposed by Newton et al. (2004) to determine the
threshold that controls the Bayesian false discovery rate (FDR) to
be smaller than cη. Specifically, we first specify a small number cη,
which is analog to the significance level in the frequentist setting.
Then we compute the threshold following Equation (4), which
guarantees the imputed zeros have a Bayesian FDR to be smaller
than cη,

Bayesian FDR =
∑L

l=1

(

1− pl
)

I
(

1− pl < cη
)

∑L
l=1

(

1− pl < cη
)

. (4)

In practice, a choice of cη = 0.01 guarantees that the Bayesian
FDR to be at most 0.01. We set cη = 0.05 for the simulation study
and cη = 0.01 for the real data analysis.
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2.2. Graphical Model for Inferring
Taxa-Taxa Association
Based on the normalizedmicrobial abundances, we estimate their
partial correlation matrix in order to construct the microbiome
network under the Gaussian graphical model (GGM) framework.
An undirected graph G = (V ,E) is used to illustrate the
associations among vertices V = {1, . . . , p}, representing the
p microbial taxa. E = {emk} is the collection of (undirected)
edges, which is equivalently represented via a p-by-p adjacency
matrix with emk = 1 or 0 according to whether vertices m and
k are directly connected in G or not. GGM assumes that the
joint distribution of p vertices is multivariate Gaussian N(µ,6),
yielding the following relationship between the dependency
structure and the network: a zero entry in the precision matrix
� = 6−1 indicates the corresponding vertices are conditional
independent, and there is no edge between them in the graph
G. Hence, a GGM can be defined in terms of the pairwise
conditional independence. If X ∼ N(µ,�), then

ωmk = 0 ⇔ Xm ⊥ Xk|XV\{m,k} ⇔ ρmk = 0,

where ρmk = −ωmk/
√
ωmmωkk is the partial correlation

between vertices m and k, representing the degree and direction
of association between two vertices, conditional on the rest
variables. Consequently, learning the network is equivalent to
estimating the precision matrix �. For real microbiome data, we
set the taxa (on the same taxonomic level) as vertices. Hence, a
zero partial correlation in the precision matrix can be interpreted
as no association between the corresponding pair of taxa, while a
nonzero partial correlation can be interpreted as cooperative or
competing associations between that taxa pair.

In biological applications, we often require a sparse and
stable estimation of the precision matrix �. The sparsity can be
achieved by imposing l1-penalized log-likelihood,

�̂ = argmin
�≻0

log det�− trace(S�)− λ ‖�‖1 , (5)

where S is the sample covariance matrix. The coordinate descent
algorithm can iteratively solve p. The estimated precision matrix
is sparsistent (i.e., all the parameters that are zeros would be
estimated as zero with probability one) (Lam and Fan, 2009),
as Glasso theoretically guarantees a consistent recovery of the
sparse graph for the p vertices. When p >> n, the computational
efficiency is often satisfactory, and thus Glasso is widely used
in studying large-scale biological networks (Menéndez et al.,
2010; Oh and Deasy, 2014; Zhao and Duan, 2019). We employ
a stability-based approach to select the tuning parameter in the
Glasso, which is named Stability Approach to Regularization
Selection (StARS) (Liu et al., 2010). This method is an improved
algorithm for estimating the tuning parameter λ in (5). The
StARS selects the optimal sparsity parameter according to the
graph reproducibility under the subsampling of the original data.
In general, for each λ along the sparsity parameter path, we
first obtain random subsamples from the original data. Then we
estimate the graph for each subsample using the Glasso. Next, for
each sparsity parameter, we calculate the overall edge selection

instability from all the graphs constructed by the subsamples.
Finally, the optimal sparsity parameter λ∗ is chosen such that
it corresponds to the smallest amount of regularization and
still results in a graph instability to be lower than the pre-
specified tolerance level. Liu et al. (2010) showed that StARS
could provide the “sparsistent” network estimation that includes
all the true associations with probability one. Further, the StARS
has been widely used in biological network studies (Kurtz et al.,
2015; Tipton et al., 2018; Zhao and Duan, 2019). Due to its
excellent performance, here we adopt the StARS to select the
tuning parameter for Glasso. In summary, we use the normalized
abundances (on the log scale) as inputs, calculate the sparse
estimation of the precision matrix using the Glasso, and use the
StARS method to select λ in problem (5) to obtain the estimated
graph that represents the microbiome network.

2.3. Simulation Scenarios
We compare the performance of the HARMONIES and several
widely used methods for inferring microbiome networks. These
methods include SPIEC-EASI (Kurtz et al., 2015), CClasso (Fang
et al., 2015), and correlation-based network estimation used
in Faust and Raes (2016) and Weiss et al. (2016). While the
proposed model and SPIEC-EASI infer the network structure
from sparse precision matrices, CClasso, and the correlation-
based method utilize sparse correlation matrices to represent the
network. We generated both simulated and synthetic datasets
that mimic the real microbiome sequencing count data. We use
Yn×p to denote the generated count matrix. For a comprehensive
comparison, we varied the sample size and the number of taxa as
n ∈ {60, 100, 200, 500}, and the number of taxa p ∈ {40, 60}.

2.3.1. Generating Simulated Data
We generated the simulated datasets from a Dirichlet-
multinomial (DM) model using the following steps: (1) to
generate the binary adjacency matrix; (2) to simulate the
precision matrix and the corresponding covariance matrix;
(3) to generate n multivariate Gaussian variables based on
the covariance matrix to represent the true n × p underlying
taxonomic abundances, denoted as D; (4) to simulate the count
table Yn×p from a DM model, with its parameters being exp(D);
(5) to mimic the zero-inflation in real microbiome data by
randomly setting part of entries in the count table to zeros.
Note that the data generative scheme is different from the
model assumption, which is given in Equation (1). The detailed
generative models are described below.

We began with simulating a p-by-p adjacency matrix for
the p taxa in the network. Here, the adjacency matrix was
generated according to an Erdős–Rényi (ER) model. An ER
model ER(p, ρ) generates each edge in a graph G with probability
ρ independently from every other edge. Therefore, all graphs
with p nodes and M edges have an equal probability of

ρM(1− ρ)(
p
2)−M . All the edges in graph G correspond to the 1’s

in the resulted binary adjacency matrix. Next, we simulated the
precision matrix � following Peng et al. (2009). We started by
setting all the diagonal elements of � to be 1. Then, for the rest
elements that correspond to the 1s in the adjacency matrix, we
sampled their values independently from a uniform distribution
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Unif([−0.1, 0] ∪ [0, 0.1]). To ensure positive definiteness of the
precision matrix, we followed Peng et al. (2009) by dividing each
off-diagonal element by 1.5 times the sum of the absolute value
of all the elements in its row. Finally, we averaged the rescaled
precision matrix with its transpose and set the diagonal elements
to 1. This process ensured the preceding matrix was positive
definite and symmetric. The corresponding covariance matrix
was set as 6 = �−1.

Next, we simulated n multivariate Gaussian variables from
MN(µ,6) to represent the true underlying abundances D.
To obtain a count matrix that fully mimics the microbiome
sequencing data, we generated counts from a DM model with
parameter exp(D). Specifically, we first sampled the underlying
fractional abundances for the ith sample from a Dirichlet
distribution. The ith underlying fractional abundance was then
denoted as ψ i ∼ Dirichlet(exp(Di·)). Next, the counts in the
ith sample were generated from Multinomial(Ni,ψ i). Finally,
we randomly selected π0% out of n × p counts and set
them to zeros to mimic the zero-inflation observed in the real
microbiome data. In general, the generative process had different
assumptions from the proposed method. Under the appropriate
choice of parameters, the simulated count data was zero-inflated,
overdispersed, and the total reads varied largely between samples.
In practice, we let ρ = 0.1 in the ER model. The mean
parameter µ of the underlying multivariate Gaussian variable
was randomly sampled from a uniform distribution Unif[0, 10].
The number of total counts across samples Ni, i = 1, . . . , n
was sampled from a discrete uniform distribution with range
[50, 000, 100, 000]. Under each combination of n, p, and π0, we
generated 50 replicated datasets by repeating the process above.

2.3.2. Generating Synthetic Data
We generated synthetic data following the Normal-to-Anything
(NorTA) approach proposed in Kurtz et al. (2015). NorTA was
designed to generate multivariate random variables with an
arbitrary marginal distribution from a pre-specified correlation
structure (Cario and Nelson, 1997). Given the observations of p
taxa from a real microbiome dataset, the NorTA generates the
synthetic data with n samples as follows: (1) to calculate the p-
by-p covariance matrix 60 from the input real dataset; (2) to
generate an n-by-p matrix, denoted by Z0, from a multivariate
Gaussian distribution with a mean of 01×p and the covariance
matrix of60; (3) to use standard normal cumulative distribution
function to scale values in each column of Z0 within [0, 1]; (4) to
apply the quantile function of a ZINB distribution to generate
count data from those scaled values in each column of Z0. In
practice, we used R package SPIEC-EASI to implement the
above data generative scheme, where the real data were from
those healthy control subjects in our case study presented in
section 3.2. Under each combination of n and p, we generated
50 replicated datasets.

2.4. Model Performance
2.4.1. Alternative Methods in Network Learning
We considered the four commonly used network learning
methods. The first twomethods, SPIEC-EASI-Glasso and SPIEC-
EASI-mb, use the transformed microbiome abundances which

are different from the normalized abundances estimated by
HARMONIES. Both infer the microbial network by estimating
a sparse precision matrix. The former method (SPIEC-EASI-
Glasso) measures the dependency among microbiota by their
partial correlation coefficients, and the latter method (SPIEC-
EASI-mb) uses the “neighborhood selection” introduced by
Meinshausen and Bühlmann (2006) to construct the network.
The third method, denoted as Pearson-corr, calculates Pearson’s
correlation coefficients between all pairs of taxa. In its estimated
network, the edges correspond to large correlation coefficients.
To avoid arbitrarily thresholding the correlation coefficients,
the fourth method, CClasso (Fang et al., 2015), directly infers
a sparse correlation matrix with l1 regularization. However, as
discussed in section 1, representing the dependency structure
by the correlation matrix may lead to the detection of
spurious associations.

2.4.2. Evaluation Criteria
We quantified the model performances on the simulated data by
computing their receiver operating characteristic (ROC) curves
and area under the ROC curve (AUC). For the HARMONIES or
SPIEC-EASI, the network inference was based on the precision
matrix. Hence, under each tuning parameter of Glasso, we
calculated the number of edges being true positive (TP) by
directly comparing the estimated precision matrix against the
true one. More specifically, we considered an edge between taxon
m and taxon k to be true positive if ωmk 6= 0, ω̂mk 6= 0, and ω̂mk

shared the same sign with ωmk. We calculated the number of true
negative (TN), false positive (FP), and false negative (FN) in a
similarmanner. Therefore, each tuning parameter defined a point
on a ROC curve. As for the correlation-basedmethods, we started
with ranking the absolute values in the estimated correlation
matrices, denoted as Ĉ. Next, we used each value as a threshold
and set all the entries in Ĉ having their absolute values smaller
than the current threshold to be zeros. Then, the number of TP,
TN, FP, or FNwas obtained by comparing the sparse Ĉ against the
true partial correlation matrix. Therefore, each unique absolute
value in the original estimated correlation matrix defined a point
on the ROC curve.

We further used the Matthew’s correlation coefficient (MCC)
to evaluate results from the simulated data. The MCC is
defined as

(TP× TN− FP× FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

Here, the MCC was particularly suitable for evaluating network
models. As the number of conditionally independent taxa pairs
was assumed to be much greater than the number of dependent
pairs in a sparse network, MCC was preferable to quantify the
performances under such an imbalanced situation. Note that
MCC ranges from [−1, 1], with a value close to 1 suggesting
a better performance. Since each value of MCC was calculated
using a given set of TP, TN, FP, and FN, we adopted the optimal
choice of tuning parameter for the HARMONIES or SPIEC-
EASI (with either Glasso or MB for network inference), given by
StARS. As for the correlation-based methods, CClasso outputted
a sparse correlation matrix. We used the result to calculate TP,
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TN, FP, and FN directly. For Pearson-corr, we set the threshold
such that the resulted number of nonzero entries in the sparse
correlation matrix was the same as the number of non-zero
entries in the true sparse partial correlation matrix. In fact, this
choice could favor the performance of Pearson-corr for larger
sample size, as shown in section 3.1.

To assess model performances on the synthetic datasets, we
followed Kurtz et al. (2015) to use a metric called area under
the precision-recall (AUPR) curves, in addition to AUC. Briefly
speaking, the AUPR and AUC were calculated as follows: (1)
to rank all possible edges according to their confidence values;
(2) to generate the precision-recall curve and the ROC curve
by comparing edge inclusions against the true sparse precision
matrix; (3) to calculate the area under the precision-recall curve
or the ROC curve. Note that the confidence values were chosen
as the edge stabilities under the optimal choice of the tuning
parameter selected by StARS for HARMONIES, SPIEC-EASI-
Glasso, and SPIEC-EASI-mb, while for CClasso and Pearson-
corr, p-values were used.

3. RESULTS

3.1. Simulation Results
Figures 1, 2 compare the AUCs andMCCs on the simulated data
under various scenarios, including varying sample sizes (n =
60, 100, 200, or 500), total numbers of taxa (p = 40 or 60), extra
percentages of zeros added (π0 = 10, or 20%). In each subfigure,
the HARMONIES outperformed the alternative methods in
terms of both AUC and MCC, and it maintained this advantage
even with the number of sample size greatly increases. Further,
a smaller sample size, a larger proportion of extra zeros added
(π0 = 20%), as well as a larger number of taxa in the network
(p = 60), would hamper the performance of all the methods,
as we expected. Two modes of SPIEC-EASI, SPIEC-EASI-Glasso,
and SPIEC-EASI-mb, showed very similar performances under
all the scenarios, with SPIEC-EASI-Glasso having only amarginal
advantage over the other. Further, we observed that the Pearson-
corr method yielded higher AUCs even than the precision matrix
based methods, especially when there was a lager proportion of
extra zeros or larger number of taxa in the network. This result
suggested that the Pearson-corr could capture the overall rank
of the signal strength in the actual network. However, under
a fixed cut-off value that gave a sparse correlation network,
the MCCs from the Pearson-corr were always smaller than the
precision matrix based methods. Note that the cut-off value
we specified for Pearson’s correlation method indeed favored
its performance. In general, the alternative methods considered
here were able to reflect the overall rank of the signal strength
by showing reasonable AUCs. However, they failed to give an
accurate estimation of the network under a fixed cut-off value.

Figure 3 demonstrates that ourmodel outperformed all others
on the synthetic datasets. The performances in terms of AUC
under different scenarios are summarized in Figures 3A,B,
while those in terms of AUPR are displayed in (Figures 3C,D).
As we can see, either increasing the sample size n or
decreasing the number of features p would improve the
performance of all methods and lead to greater disparity between

partial and pairwise correlation-based methods. In general,
our HARMONIES maintained the best in all simulation and
evaluation settings except for one case, where the SPIEC-EASI-
mb only showed a marginal advantage (see n = 60 in Figure 3C).
Interestingly, our observation confirmed a finding mentioned by
Kurtz et al. (2015), that is, the SPIEC-EASI-mb was slightly better
than SPIEC-EASI-Glasso in terms of AUPR under the optimal
choice of the tuning parameter. As for the two correlation-based
methods, we found that Pearson-corr outperformed CClasso in
most of the scenarios.

3.2. Analysis of Microbiome Data From
Colorectal Cancer Patients
Colorectal cancer (CRC) is the third most common cancer
diagnosed in both men and women in the United States
(Arnold et al., 2017). Increasing evidence from recent studies
highlights a vital role for the intestinal microbiota in malignant
gastrointestinal diseases including CRC (Louis et al., 2014; Sears
and Garrett, 2014; Drewes et al., 2016). In particular, studies
have reported that dysbiosis of specific microbiota is directly
associated with CRC (Marchesi et al., 2011; Kostic et al., 2013;
Flynn et al., 2016). The current microbiome research interests
have gone beyond the discovery of disease-related microbiota,
with a growing number of studies investigating the interactive
associations among the microbial taxa. Using the proposed
model, we interrogated the microbiome profiling data of a CRC
study to determine the microbiome network structures.

We analyzed the gut microbiome dataset of a CRC study
published by Feng et al. (2015). We extracted from the original
cohort1 the 43 CRC patients and the 58 healthy controls. The
original sequencing data at the genus level were quantified using
curatedMetagenomicData (Pasolli et al., 2017). We had p = 187
genera for both the 43 CRC patients and the 58 healthy controls.
We implemented the HARMONIES as follows. For the CRC
group, we first applied the ZINB model to obtain the normalized
abundance matrix A, utilizing the specifications detailed in
section 2.1. We then took the logarithmic transformation of the
normalized abundance and imputed the missing values. Before
implementing the proposed method, we filtered out the low
abundant genera with zeros occurring more than half samples.
Removing low abundant taxa is a common step in microbiome
research (see e.g., Qin et al., 2014; Zeller et al., 2014; Kostic
et al., 2015; Kurtz et al., 2015; Wadsworth et al., 2017; Yilmaz
et al., 2019). The rationale being that these “zero-abundant” taxa
may be less important in a network, which was also confirmed
by our simulation study. This filtering process left 51 and 36
genera in the CRC and control group, respectively. The result
from using a more relaxed filtering threshold is available in the
supplement, where we kept the genera that had at least 10%
nonzero observations across the samples.

Figures 4A,B display the estimated networks for the CRC
and the control group, respectively. Each node, corresponding
to a genus, was named after its phylum level. All the genera

1The original metagenomic shotgun sequencing data from the fecal samples

are available in the European Bioinformatics Institute Database (accession

number ERP008729).

Frontiers in Genetics | www.frontiersin.org 6 June 2020 | Volume 11 | Article 445124

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jiang et al. HARMONIES

FIGURE 1 | Simulated data: (A,B) area under the ROC curves (AUCs) and (C,D) Matthew’s correlation coefficient (MCCs) achieved by different methods under the

number of taxa p = 40 and different sample sizes and zero proportions, averaged over 50 replicates.

shown in Figure 4 belong to six phyla in total. By using their
phylum name to further categorize these distinct genera, we
aimed at exploring interesting patterns among them at a higher
taxonomic level. Figure S1 displays the same network using
the actual genus name on each node. The node sizes are
proportional to its normalized abundances in the logarithmic
scale. The green or red edge indicates a positive or a negative
partial correlation, respectively. And the width of an edge is
proportional to the absolute value of the partial correlation
coefficient. To make a clear comparison, we intentionally kept
the nodes and their positions to be consistent between the
two subfigures. In either of the two groups, we included a
node in the current plot if there exists an edge between it
with any nodes in at least one group. In general, the two
groups share several edges with the same direction of partial
correlations, but the majority of edges are unique within
each group.

Network estimation of the CRC group demonstrated
several microbial communities. For example, three genera:
Fusobacterium, Peptostreptococcus, and Parvimonas consisted of
a unique subnetwork as highlighted in Figure 4A. These three
genera were isolated in the control group’s network, as shown
in Figure 4B. Interestingly, specific species under these three
genera have been reported as enriched taxa in CRC and related
to worse clinical outcome (Mima et al., 2016; Yu et al., 2017;
Long et al., 2019). A previous CRC study by Kostic et al. (2013)
supported the causal role of species Fusobacterium nucleatum

by showing that F. nucleatum promotes tumor progression
by increasing both tumor multiplicity and tumor-infiltrating
myeloid cells in a preclinical CRC model. Further, a recent
study (Long et al., 2019) demonstrated that Peptostreptococcus
anaerobius accelerated colorectal tumorigenesis in a murine
CRC model. This study suggested that P. anaerobius directly
interacted with colonic epithelial cells and also promoted
CRC by modifying the tumor immune microenvironment.
While the causal role of the species Parvimonas micra has not
been biologically validated, multiple clinical studies reported
an elevated level of P. micra in CRC patients (Purcell et al.,
2017; Yu et al., 2017; Dai et al., 2018). Of interest, Parvimonas
were closely associated with animal-based diets, which have
previously been shown to be significantly associated with
increased risk for CRC (Chan et al., 2011). The previous
studies only investigated those CRC-related taxa individually,
whereas a novel finding by HARMONIES analysis suggested
that all the three genera were co-aggregating in CRC patients
as their pairwise associations are all positive. Interestingly, in a
prior study direct positive associations between Fusobacterium
and Peptostreptococcus, as well as Peptostreptococcus and
Parvimonas, were identified (Hibberd et al., 2017). However,
there was no direct association between Fusobacterium and
Parvimonas. Similarly, another study (Drewes et al., 2017)
found a direct co-occurrence pattern between two species: F.
nucleatum and P. micra. Using HARMONIES, we could jointly
identify the relationship among each pair of the three genera,
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FIGURE 2 | Simulated data: (A,B) area under the ROC curves (AUCs) and (C,D) Matthew’s correlation coefficient (MCCs) achieved by different methods under the

number of taxa p = 60 and different sample sizes and zero proportions, averaged over 50 replicates.

conditional on all other genera. This novel subcommunity of
three CRC-enriched genera formulated a recurring module
and may function as a cooperative group in CRC patients.
A closer investigation of their co-occurrence pattern could
potentially elucidate both their contributions to CRC and
the basic biology under their relationships. Two additional
novel taxa interactions were identified by HARMONIES
analysis: Streptococcus and Veillonella, and Streptococcus and
Haemophilus. In fact, previous CRC studies showed enrichment
of these three genera or their species in CRC patients (see
e.g., Geng et al., 2014; Ugai et al., 2014; Kumar et al., 2017;
Koliarakis et al., 2019), but had not detected these novel
interactions. In conclusion, HARMONIES may reveal how
multiple CRC-related taxa could potentially promote disease
progression together.

Having shared edges between the two networks suggests
that the HARMONIES is robust to the edge selection. We
observed that the shared edges tended to appear for those
more abundant genera. For example, we circled eight genera in
Figure 4B, and the HARMONIES suggested multiple positive
partial correlations among them. For these eight genera, we
observed six shared edges between the CRC and healthy control
networks. Notice that all the shared edges were consistent in
the association directions, and they also corresponded to the
relatively stronger association in both networks (wider in the
edge width). We found these shared edges tend to connect
those more abundant genera (node with larger size). Indeed,

the eight genera considered here belong to phyla Bacteroidetes
and Firmicutes, both were in the top three most abundant phyla
for CRC patients and healthy controls reported by Gao et al.
(2015) and Mori et al. (2018). Therefore, it was more likely that
the highly abundant genera shared similar association patterns
between the two groups, and the HARMONIES demonstrated
its robustness by preserving these relatively stronger partial
correlations among these genera. On the other hand, the network
of the control group contained more negative partial correlations
as shown in Figure 4B. Furthermore, the two edges linked
to Streptococcus were different from the CRC group. Here,
Streptococcus had a negative association with Subdoligranulum
and a positive association with Rothia. There has been no
evidence suggesting these two genera are CRC-related. Hence
a further investigation is merited. Additionally, the CRC group
has another distinct small subnetwork formed by the four
genera, two from Firmicutes, one from Proteobacteria, and one
from Verrucomicrobia. These group-specific associations were
never reported. Lastly, we observed several interesting patterns
between the two groups when summarizing the genera to
their phylum levels. Genera in Firmicutes (labeled as “Fm” in
Figure 4) showed more positive associations in the case group
than in the control group, whereas negative associations between
Firmicutes and Bacteroidetes (labeled as “Ba” in Figure 4)
were more common in the control group. Again, these novel
patterns still need further biological validations to elucidate
their functions.

Frontiers in Genetics | www.frontiersin.org 8 June 2020 | Volume 11 | Article 445126

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jiang et al. HARMONIES

FIGURE 3 | Synthetic data: (A,B) area under the ROC curves (AUCs) and (C,D) area under the precision-recall curves (AUPRs) achieved by different methods under

different sample sizes and taxa numbers, averaged over 50 replicates.

FIGURE 4 | CRC case study: The estimated networks by HARMONIES for (A) CRC patients and (B) healthy controls. Increased abundances of species under the

three genera (Fusobacterium, Peptostreptococcus, Parvimonas) in the dashed rectangular box in (A) were reported to be associated with the disease. CRC patients

and healthy controls shared a similar subnetwork (composed of eight genera) circled in (B). Each node here represents a genus labeled by its phylum name. The

version with distinct genus names is available in Figure S1 in the supplement.
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4. DISCUSSION

With the advent of next-generation sequencing technology,
microbiome research now has the opportunity to explore
microbial community structure and to characterize the microbial
ecological association for different populations or physiology
conditions (Kurtz et al., 2015). In this paper, we introduce
HARMONIES as a statistical framework to infer sparse networks
using microbiome sequencing data. It models the original count
data by a zero-inflated negative binomial distribution to capture
the large amount for zeros and over-dispersion, and it further
implements Dirichlet process priors to account for sample
heterogeneity. In contrast, current methods for microbiome
network analyses rely on the compositional data, which could
cause information loss due to ignoring the unique characteristics
of the microbiome sequencing count data. Following the
data normalization step, the HARMONIES explores the direct
connections in the network by estimating the partial correlations.
The results from the simulation study have demonstrated the
advantage of the HARMONIES over alternative approaches
under various conditions.When applied to an actual microbiome
dataset, the HARMONIES suggests all the nodes to be taxa
at the same taxonomic level, such as species, genus, family,
etc. This ensures proper biologically interpretations of those
detected associations. When applied to a real CRC study, the
HARMONIES revealed an intriguing community among three
CRC-enriched genera. Further, shared patterns between the
CRC and the control networks suggest a common community
pattern of disease neutral genera. Additional studies validating
the biological relevance of these microbial associations, however,
will need to be conducted.

Both the simulated and synthetic data showed that a larger
sample size improved the performance of all the network
learning methods. In practice, many disease-related microbiome
studies, especially those studying rare diseases, always have small
sample sizes. This limitation directly affects the estimation of the
normalized matrix A from the ZINB model. Notice that for a
taxon j, a small sample size could result in a large variance in the
posterior distribution of logα

·j. However, many disease studies
include reference groups where the measurements on the same
taxonomic features are available. The additional information
from the subjects in the reference group can potentially help
improve the posterior inference of the normalized abundances.
We generalized the proposed ZINB model to handle two groups,
with the goal of borrowing information between groups in
estimating the normalized abundances. These detailed model
formula and implementation were included in the supplement
(see Supplementary Material: section 2).

Our hybrid approach for microbiome network inference
can be extended. One future direction is to incorporate the
differential network analysis into the existing framework. It

jointly considers the association strengths between each pair
of taxa from different groups, and it compares the estimated
individual networks to capture the significantly different
connectivities. Our current method can infer the normalized
abundances for two groups, and we provided the details steps
in the supplement. However, an integrated differential network
can be expected to better study the differential microbial
community structure and link the communities to human
health status.
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Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a
strong genetic basis. The role of de novo mutations in ASD has been well established,
but the set of genes implicated to date is still far from complete. The current
study employs a machine learning-based approach to predict ASD risk genes using
features from spatiotemporal gene expression patterns in human brain, gene-level
constraint metrics, and other gene variation features. The genes identified through
our prediction model were enriched for independent sets of ASD risk genes, and
tended to be down-expressed in ASD brains, especially in frontal and parietal cortex.
The highest-ranked genes not only included those with strong prior evidence for
involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated
potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in
protein ubiquitination. We also showed that our method outperformed state-of-the-art
scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment
analysis of our predicted risk genes revealed biological processes clearly relevant to
ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also
highlighted other potential mechanisms that might underlie ASD, such as regulation of
RNA alternative splicing and ubiquitination pathway related to protein degradation. Our
study demonstrates that human brain spatiotemporal gene expression patterns and
gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system
provides a useful resource for prioritizing ASD candidate genes.

Keywords: autism, de novo mutation, gene expression, constraint, machine learning

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impaired
social interaction and communication, as well as repetitive behavior. While its etiology is complex,
ASD has a strong genetic basis (Hallmayer et al., 2011; Jeste and Geschwind, 2014; Colvert et al.,
2015). The role of de novo mutations in ASD has been firmly established through candidate
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gene (Wang et al., 2016; Stessman et al., 2017), whole exome
(Iossifov et al., 2012, 2014; Sanders et al., 2012; Ronemus et al.,
2014), and whole genome sequencing studies (Ryan et al., 2017;
Turner et al., 2017). Although the list of risk genes implicated
by de novo mutations is growing, it is still very likely far from
complete, with an estimated full set of ASD genes ranging
from several hundred to more than 1,000 (Iossifov et al., 2014).
In the search for additional de novo mutations, sequencing
studies continue to be an important approach, but the current
sequencing cost is still very high, especially for large samples.
As an alternative strategy, advanced analytical approaches, which
leverage previously implicated genes and prior knowledge, have
the potential to enhance risk gene discovery in an efficient and
cost-effective manner (Asif et al., 2018; Gök, 2018; Brueggeman
et al., 2020).

One approach is based on the concept of guilt-by-association,
i.e., assuming that genes that confer risk for ASD are likely to be
functionally related, and that they thus converge on molecular
networks and biological pathways implicated in disease (Gandhi
et al., 2006; Xu and Li, 2006). For example, one study showed
that ASD genes with de novo mutations converged on pathways
related to chromatin remodeling and synaptic function (Krumm
et al., 2014). To leverage these functional relationships, several
studies have explored integrating known risk genes using a
protein-protein interaction (PPI) network to identify novel
genes involved in ASD (Gilman et al., 2011; Li et al., 2014;
Hormozdiari et al., 2015; Liu et al., 2015). However, a PPI
network is built upon general PPIs without reference to tissue
or cell type specificity, and this approach may not fully capture
the brain-centric functional relationships among ASD genes.
Accordingly, a brain-specific network-based approach, which
considered relationships within the context of the brain, was
proposed to predict ASD genes (Krishnan et al., 2016; Duda
et al., 2018). Studies employing this paradigm, however, did
not consider the dynamic patterns of gene relationships during
brain development, thereby limiting their potential for discovery,
given the possibility that genes might only be functionally related
within a specific developmental stage. Evidence for this comes
from Willsey et al. (2013) who showed, using spatiotemporal gene
expression data from human brain, that co-expression patterns
of ASD risk genes varied by spatiotemporal windows, with the
strongest co-expression patterns observed in the prefrontal and
primary motor–somatosensory cortical regions during midfetal
development, suggesting an important convergence of risk gene
activity in particular places at a particular time.

In addition to having functional relationships, ASD genes
affected by de novo mutations tend to be intolerant of variations
(Samocha et al., 2014; Iossifov et al., 2015). With the availability of
sequencing data from large samples, recent work has developed
measures to quantify the sensitivity of genes to disruptive
functional variations (Petrovski et al., 2013; Lek et al., 2016).
Utilizing exome data on more than 60,000 individuals from the
Exome Aggregation Consortium (ExAC), a gene-level constraint
metric–the probability of being loss-of-function (LoF) intolerant
(pLI)–was created, which separates genes into LoF intolerant or
LoF tolerant (Lek et al., 2016). Kosmicki et al. (2017) further
demonstrated that the excess of de novo mutations in ASD

individuals was primarily driven by LoF-intolerant genes, but not
LoF-tolerant genes.

We reasoned that ASD risk genes show expression patterns
that are clustered in specific brain regions and developmental
stages critical to disease development, and that high resolution
spatiotemporal gene expression patterns in human brain can
help distinguish genes that cause disease from those that do
not. In addition, because ASD genes affected by de novo
mutations are sensitive to mutational changes, we reasoned
that gene-level constraint metrics can further differentiate
ASD genes from normal ones. The objective of this study
was to employ a machine learning-based approach to predict
ASD risk genes using human brain spatiotemporal gene
expression signatures, gene-level constraint metrics, and other
gene variation features. We compared the performance of our
method with five other state-of-the-art scoring systems for
ranking ASD candidate genes, and evaluated the risk genes from
our prediction model using independent sets of risk genes and
differential gene expression (DGE) evidence. Gene Ontology
(GO) enrichment analysis was also performed to understand the
biology underlying ASD risk genes.

MATERIALS AND METHODS

Gene Set
To train the gene prediction model, we used labeled genes curated
by Duda et al. (2018) as described in detail elsewhere. Briefly, the
labeled genes contained 143 true positive genes and 1,145 true
negative ones. The true positives came from the high confidence
genes in the Simons Foundation Autism Research Initiative
(SFARI) resource1 (Category 1, Category 2, and syndromic genes)
and the 65 reported genes in Sanders et al. (2015). The true
negative genes were selected from the non-ASD gene list created
by Krishnan et al. (2016), which were genes associated with
non-mental health diseases, as annotated in OMIM. Among
these genes we focused on those that had both gene expression
data from the BrainSpan atlas and gene-level constraint metrics
available, so that our final training gene set included 121 true
positive genes and 963 true negatives.

Prediction Feature Sets
The feature sets in our prediction task included spatiotemporal
gene expression patterns in human brain, network features,
gene-level constraint metrics, and other gene variation features.
Supplementary Table S1 provides a summary of all features. We
provide details below for each feature set.

Spatiotemporal Gene Expression
We downloaded RNA-Seq data (version 10), summarized
to Gencode v20 gene-level reads per kilobase per million
mapped reads (RPKM) values, from the BrainSpan website2.
Detailed information on tissue processing, experimental and
bioinformatics procedures related to the RNA-Seq data is

1https://www.sfari.org/resource/sfari-gene/
2http://www.brainspan.org/
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available at the BrainSpan website. The BrainSpan dataset
includes 524 gene-level expression features for each gene across
13 developmental stages in 31 brain regions from 524 brain
samples spanning a variety of developmental stages and brain
regions. Gene expression values were log-transformed (log2
[RPKM + 1]) and were used to predict autism genes.

To capture the functional relationships among genes,
we built a weighted network for genes with both gene
co-expression and PPI evidence from InWeb (Rossin et al.,
2011). Specifically, the co-expression level between a gene
pair was assessed by the Fischer z-transformed Pearson
correlation between their spatiotemporal gene expression values.
The genes with PPIs were connected and their edges were
weighted by their co-expression levels. We extracted a set
of network features that characterized the network topologies
using igraph package in R. Specifically, we measured the node
centralities using node degrees, clones centralities, betweenness
centralities, Bonacich power centralities, eigenvector centralities,
and alpha centralities (Bonacich, 1987). We captured the
modules in functional relationship networks using the principle
component decomposition and K-core decomposition (Batagelj
and Zaversnik, 2003). The loading of the 1st principle
component, hub score and coreness were obtained for each
node. The importance of each node was further measured
using the PageRank algorithm (Brin and Page, 1998), which
counts the number and weight of links to each node. In
total, 10 network features were extracted from the weighted
gene network and were used for autism risk gene prediction.
For genes appeared in BrainSpan but not in PPI network,
we imputed their network features using the k-Nearest
Neighbor algorithm.

Gene-Level Constraint Metrics and Other
Gene Variation Features
We used gene-level constraint metrics developed from the
exome data of more than 60,000 individuals from the ExAC
to quantify the sensitivity of genes to variations (25). We
considered six gene-level constraint metrics, including Z scores
for synonymous (syn_z), missense (mis_z), and LoF variants
(lof_z), the pLI, the probability of being intolerant of homozygous
but not heterozygous LoF variants (pRec), and the probability
of being tolerant of both heterozygous and homozygous LoF
variants (pNull). A higher Z score or pLI indicates that the
gene is more intolerant of variation (more constrained). We
also included 10 general gene features, including the number
of coding base pairs (bp), probabilities of mutations across
the transcript for synonymous (mu_syn), missense (mu_mis),
and LoF variants (mu_lof), number of rare variants (n_syn,
n_mis, n_lof), and depth adjusted number of expected rare
variants (exp_syn, exp_mis, exp_lof). Gene-level constraint
metrics and general gene features were downloaded from the
ExAC website3. Wilcoxon rank sum test was used to compare
the group differences in above features between known ASD risk
and non-risk genes.

3ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_
constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt

Autism Risk Gene Prediction
We used machine learning methods to predict autism risk
genes from their spatiotemporal expression signatures, network
topology features, gene-level constraint metrics, and other
general gene features. We applied four machine learning methods
ranging from ones that are regression based [logistic regression
and support vector machines (SVM) with Gaussian kernel] to
others that are tree based (random forest and gradient boosted
trees). The gradient boosted trees model ensembles a set of trees
for prediction bias reduction and was trained in the XGBoost
package (Chen et al., 2015). The optimal tuning parameters in
each model were selected by a nested grid-search, and model
performances were evaluated by five-fold cross validation (CV)
on training data. The prediction accuracy was measured by
the area under the receiver-operator curve (AUC-ROC) on the
hold-out set for each fold of the CV. As the training data is
unbalanced with small number of autism risk genes, we further
considered the area under precision-recall curve (AUC-PRC) to
measure the prediction accuracy.

Based on the average prediction accuracy over five folds,
the gradient boosted trees model (BTree) was selected as the
optimal algorithm. The final prediction model was built by
applying the gradient boosted trees algorithm (with optimally
tuned parameters) on all training genes and stored to predict
over 17,000 unlabeled genes. For each labeled gene, the risk score
was computed by prediction model that left the gene in the
hold-out set in each CV.

Autism Risk Gene Validation Using
Differential Gene Expression Evidence
Based on our gene ranking system, we classified genes into
risk and non-risk genes using a threshold of risk score of 0.22
(resulting in 1,109 predicted ASD genes). We chose the risk
score threshold of 0.22 because it gave the highest prediction
accuracy (F1 score = 0.59) on training data. Genes with a
risk score higher than the threshold were predicted as risk
genes and the remaining genes were predicted as non-risk
genes. We validated the classification performance by examining
whether our predicted risk genes show DGE evidence for
ASD. Specifically, we obtained DGE summary statistics (beta
and p-values) for ASD from RNA-Seq datasets for four major
cortical lobes (frontal, temporal, parietal, and occipital) and
their average from Supplementary Table S1 of a previous study
(Gandal et al., 2018), as well as the summary statistics for a
non-psychiatric disorder inflammatory bowel disease (IBD) and
two psychiatric disorders (bipolar disorder and schizophrenia)
that we employed as negative controls from the same study
(Gandal et al., 2018). The DGE summary statistics for IBD was
derived using a linear mixed-effect model from meta-analysis
of two published gene-expression microarray studies. The DGE
summary statistics for ASD, bipolar disorder and schizophrenia
were calculated using limma (Ritchie et al., 2015) with empiric
Bayes moderated t-statistics from RNA-Seq analyses of post-
mortem brain samples. The details for each datasets and DGE
analyses were provided in the original study (Gandal et al., 2018).
We used simulation-based approach to estimate the enrichment
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statistics of predicted risk genes in DGE evidence. We first
generated a background distribution from 100,000 random gene
sets, while matching for gene size found in predicted risk genes.
The enrichment fold was estimated by the ratio of the observed
number of risk genes with DGE evidence (p < 0.05) to the
average number of that from random gene sets. The p-value
for enrichment was then the proportion of random gene sets
with the same or a greater number of genes with DGE evidence,
as compared to the number found for predicted risk genes. To
investigate whether the enrichment of DGE evidence was specific
to ASD, we also performed the same enrichment analysis for IBD,
bipolar disorder, and schizophrenia.

Autism Risk Gene Validation in
Independent Sequencing Studies
We further evaluated our gene ranking system utilizing genes
targeted by de novo LoF mutations from two studies, including
one that performed whole exome sequencing of 2,517 families
in the Simons Simplex Collection (SSC) cohort (Iossifov et al.,
2014) and another that performed whole genome sequencing of
the MSSNG cohort (Ryan et al., 2017). To get independent lists of
genes for validation, we excluded candidate genes from the two
validation cohorts that overlapped the true positive genes in the
training sample. For the SSC cohort, after excluding genes not
included in BrainSpan, we compiled a list of 346 singleton LoF de
novo mutations in probands, and 170 LoF de novo mutations in
the unaffected siblings as negative controls. From the study of the
MSSNG cohort, we created a list of 212 de novo LoF mutations
in probands, 58 statistically significant de novo LoF or missense
mutations, and 18 statistically significant de novo LoF or missense
mutations that were not previously reported. For each of the
five gene lists, we tested whether a larger proportion of genes
were observed in the first decile of our gene ranking system than
expected using a binomial test. The expected proportion (0.166)
was determined using the percentage of genes with synonymous
de novo mutations in the unaffected siblings of the SSC cohort.

Comparison With Other Ranking
Systems
We compared our predictions with five autism gene prediction
scores, including the ExAC score (pLI) (Lek et al., 2016), Iossifov
probability score (Iossifov et al., 2015), Krishnan probability
score (Krishnan et al., 2016), Zhang D score (Zhang and
Shen, 2017), and Duda score (Duda et al., 2018). The former
two (Iossifov et al., 2015; Lek et al., 2016) were based on
measures of gene intolerance to disruptive variations, and the
later three (Krishnan et al., 2016; Zhang and Shen, 2017;
Duda et al., 2018) were based on machine learning methods
that utilize brain-specific network features or cell-type specific
gene expression signatures from mouse. Different gene scoring
systems were compared in terms of ranking 173 curated
candidate genes, including 130 genes with suggestive evidence
from the SFARI Gene database (Category 3) and 43 recurrent
de novo LoF genes discovered in recent studies (Wang et al.,
2016; Li et al., 2017; Ryan et al., 2017; Stessman et al., 2017). We
compared the overall ranking of candidate risk genes for different

gene scoring systems, with a higher ranking (smaller number)
indicating a greater likelihood of being ASD risk genes. We also
compared the enrichment of candidate genes in the first decile of
different gene scoring systems.

Gene Ontology Enrichment Analysis
We performed GO enrichment analysis to examine whether
predicted risk genes were clustered into specific biological
processes. Fisher’s exact test was used to test the enrichment
of risk genes in GO terms compared to non-risk genes. GO
terms were chosen from the GO ontology of biological processes
in MSigDB (v5.2) (Subramanian et al., 2005). To facilitate
interpretation of the results, we included 2,758 GO terms
that overlapped at least 20, but not more than 2,000 genes
with our tested genes. Bonferroni correction was applied for
multiple testing correction. Because GO terms were often highly
overlapping in genes, we used hierarchical clustering to group
significant gene sets into clusters based on similarity of their
gene profiles (Chen et al., 2014). We first defined a gene
overlapping matrix by counting the number of overlapping
genes for each pair of gene sets. The Pearson correlation
coefficient R was then calculated for each pair of gene sets based
on their overlap profiles. The distance matrix for hierarchical
clustering was then 1 - R. Hierarchical clustering was performed
using the “ward” method implemented in the R function
“hclust.” The dendrogram and heatmap were plotted using the
R function “heatmap.2.”

RESULTS

An Overview of Study
An overview of study is provided in Figure 1. The basic premise
is that ASD risk genes tend to show distinguishing features,
including spatial-temporal gene expression patterns in human
brain, gene network features, and gene-level constraint metrics.
We reason that machine learning models utilizing those features
can differentiate ASD genes from normal ones. To evaluate the
performance of our prediction model, we examined if predicted
ASD genes were enriched for DGE evidence and independent
sets of ASD risk genes. We further performed GO enrichment
analysis to understand the biology of predicted ASD genes.

Genome-Wide Prediction of Autism Risk
Genes
We visualized gene expression patterns for 1,084 training genes
across various regions and developmental stages of human brain
(Supplementary Figure S1). There was a trend for known
autism risk genes (left gene panel, red rows) to have higher
expression levels than non-risk genes (left gene panel, blue
rows). We further tested expression level differences between
known risk and non-risk genes for each specific brain region and
developmental stage (Supplementary Figure S2). The known
autism risk genes showed significantly higher expression levels
on average than non-risk genes for all tested brain regions and
developmental stages (p < 0.05). Of note, the difference was
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FIGURE 1 | Overview of study design. We first collected training data of labeled genes (121 true positive genes and 963 true negatives) and their associated features
(spatiotemporal gene expression values from BrainSpan, network features, and gene-level constraint metrics). We then applied four machine learning algorithms to
predict ASD genes, including logistic regression, support vector machine, random forest, and boosted trees. The boosted trees achieved the best prediction
performance and was employed to predict ASD risk genes across the genome. We further evaluated predicted risk genes through enrichment analyses.

stronger for early to middle prenatal stages, ranging from 12 to
21 postconceptional weeks (pcw).

We compared known autism risk and non-risk genes in
their sensitivity to mutational changes and other gene variation
features. As shown in Supplementary Figure S3, compared
to non-risk genes, autism risk genes were more intolerant of
missense (mis_z, p = 7 × 10−16) and LoF mutations (lof_z,
p = 2 × 10−23; pLI, p = 2 × 10−20), were less likely intolerant
of homozygous, but not heterozygous LoF variants (pRec,
p = 5 × 10−21), and had a lower probability of being tolerant
of both heterozygous and homozygous LoF variants (pNull,
p = 3 × 10−24). Autism risk genes had longer coding base pairs
(p = 4 × 10−29), a higher probability of mutation across the
transcript (mu_syn, p = 1 × 10−16; mu_mis, p = 2 × 10−18;
mu_lof, p = 4 × 10−19), and a larger number of rare synonymous
or missense variants (n_syn, p = 4 × 10−16; n_mis, p = 1 × 10−6),
but less number of LoF variants (n_lof, p = 3 × 10−4).

We compared the prediction accuracy of four machine
learning algorithms across five-fold CV. The gradient boosted
trees (BTree) model achieved the best prediction accuracy for
autism risk genes with AUC-ROC value of 0.86 and AUC-PRC
value of 0.55 (Figure 2). The effects of different features on the
boosted trees model were further explored by comparing the
prediction accuracy under different feature sets (Supplementary
Figure S4). We found that using the spatiotemporal gene
expression features alone achieved an AUC-ROC (AUC-PRC)
greater than 0.8 (0.4), and that the prediction accuracy was
further improved by including either gene network features or
gene-level constraint metrics, with the highest accuracy observed

when all feature sets were included. We further evaluated the
importance of individual features in the optimal BTree model.
The feature importance was quantified as the average gain, i.e.,
improvement in node purity, of the feature when it was used in
trees. Supplementary Figure S5 illustrates the top 30 important
features, including 28 spatiotemporal expression features and two
gene-level constraint metrics (pLI and pNull). It was notable that
pLI was the most predictive feature among all features used.

Autism Risk Gene Validation Using
Differential Gene Expression Evidence
We predicted 1,109 risk genes using our gene ranking system
under the threshold of risk score > 0.22, which generates the
highest prediction accuracy measured by F1 score on training
data. We then examined whether those predicted risk genes
were enriched for DGE evidence for ASD. We found that the
predicted risk genes tended to be down-expressed in ASD brains,
especially in frontal (fold = 1.7, p < 1.0 × 10−5) and parietal
cortex (fold = 1.7, p < 1.0 × 10−5) (Figure 3). We did not see
any significant enrichment of DGE evidence for IBD, bipolar
disorder and schizophrenia, suggesting that the enriched DGE in
our predicted genes was specific to ASD.

Autism Risk Gene Validation in
Sequencing Studies
We further evaluated our gene ranking system using two
sequencing studies (Figure 4). For the risk genes identified from
the SSC cohort, our top decile genes were significantly enriched
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FIGURE 2 | Performance of four machine learning algorithms across five-fold cross validation. The left was measured by the area under receiver operating
characteristic curve (ROC), and the right was measured by the area under precision-recall curve (PRC).

with de novo LoF mutations in probands. Specifically, genes in
the first decile of our ranking system included 32% (88 of 273,
p = 6.8 × 10−9) of de novo LOF mutations in probands. In
contrast, we did not observe significant enrichment of genes with
de novo LOF mutations in the unaffected siblings (p = 0.65).
Similarly, for risk genes identified from the MSSNG cohort, we
found significant enrichment for all three gene lists, including
the de novo LOF mutations in probands (29%, p = 2 × 10−4),
the 25 genes that reached genome-wide significance (72%,
p = 4.4 × 10−9), and the 18 novel genes (67%, p = 6.6 × 10−6).

Comparison With Other Ranking
Systems
We compared the performance of our ranking system (BTree)
with five other gene scoring systems in their ability to rank
curated candidate genes. When we examined the rank of an
independent set of 173 autism candidate genes, our method
outperformed other methods, because our method had the
smallest median ranking (indicating the greatest likelihood of the
set containing autism risk genes) (Supplementary Figure S6).
We further compared the enrichment of 173 candidate genes
in the first decile of each gene ranking system (Supplementary
Figure S7). We observed the highest proportion of candidate
genes in the first decile of our ranking system (52%), which was
higher than the Duda score (40%), ExAC score (44%), Iossifov
probability score (23%), Krishnan probability score (38%), and
Zhang D score (30%). The superior performance of our method
might be attributable to the human brain spatiotemporal gene
expression features that were not considered in other methods.

Gene Ontology Enrichment Analysis
We conducted GO enrichment analysis to examine whether
predicted 1,109 risk genes (score > 0.22) were clustered into

specific biological processes. The full results of this analysis
are shown in Supplementary Table S2. There were 179 GO
terms that remained significant after Bonferroni correction
(pcorrected < 0.05). Significant GO terms were grouped into
five major clusters using hierarchical clustering (Supplementary
Figure S8). These clusters included GO terms related to neuronal
signaling (orange), neurogenesis (blue and black), chromatin
remodeling (green), and transcriptional regulation (red). Table 1
shows details for the top 10 enriched GO terms in enrichment
fold that were particularly interesting, as they included GO
terms involved in ionotropic glutamate receptor signaling, motor
neuron axon guidance, and regulation of histone methylation.

DISCUSSION

A number of methods have been developed for inferring
ASD risk genes. Although they employ differing computational
methodologies, most methods were built upon the concept of
guilt-by-association, using the assumption that risk genes are
functionally related. Theoretically, ASD risk genes should exert
their effects at specific developmental stages in specific brain
tissues or cell types that are critical to disease development.
However, most existing methods have not considered the
spatial and temporal patterns of gene relationships during brain
development. In addition, gene-level constraint metrics, such as
loss of function intolerance, have been used to prioritize ASD
candidate genes, but no studies have quantitatively examined
their potential for predicting ASD genes. Employing a supervised
machine learning algorithm, we have shown that a combination
of human brain spatiotemporal gene expression patterns and
the gene-level constraint metric features predict ASD risk genes.
We further demonstrated the validity of our method through
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FIGURE 3 | Enrichment analysis of differential expression evidence for predicted ASD risk genes. The histogram shows the distribution for the number of genes with
DGE evidence (p < 0.05) from random gene sets. The vertical dotted red line indicates the number of genes with DGE evidence from predicted ASD risk genes.
Predicted risk genes tended to be down-expressed in brains of ASD, but not for disorders of negative control (IBD, bipolar disorder, and schizophrenia).

validations using DGE evidence and independent sets of risk
genes. We have further shown the superior performance of
our ranking system over several other state-of-the-art ranking
systems in ranking curated candidate genes.

We explored the potential role of the top ranked genes in
ASD risk. The gene NBEA, which encodes neurobeachin that
is a brain-specific kinase-anchoring protein implicated synaptic
structure and function, was assigned the highest probability for
conferring ASD risk (score = 0.97). Indeed, mutations in NBEA
have been identified in ASD (Castermans et al., 2003; Wise et al.,
2015) and neurodevelopmental disorders (Mulhern et al., 2018).
Another notable gene in our top list was HERC1 (ranked third,
score = 0.94), which encodes a protein that is a probable E3
ubiquitin-protein ligase. Multiple lines of evidence indicate a role
for HERC1 in ASD: (1) it was reported that HERC1 mutations
caused intellectual disability and facial dysmorphism in two
Colombian siblings (Ortega-Recalde et al., 2015); (2) A nonsense
variant in HERC1 was associated with intellectual disability,

megalencephaly, thick corpus callosum and cerebellar atrophy
(Nguyen et al., 2016); (3) importantly, mutations in HERC1 were
reported to be associated with ASD in an exome sequencing study
(Hashimoto et al., 2016). Our ranking system also successfully
predicted another two ASD candidate genes TCF20 (ranked
26th, score = 0.87) and FBXO11 (ranked 19th, score = 0.88).
Intriguingly, TCF20 was one of the highest ranking candidate
autism risk genes (category 2) according to the most recent
version of the SFARI Gene resource. Mutations in TCF20 were
also implicated in Phelan-McDermid syndrome (Upadia et al.,
2018), developmental disorders (Deciphering Developmental
Disorders Study, 2017), and schizophrenia (Smeland et al., 2017).
FBXO11 was prioritized as a strong ASD candidate gene (Ji et al.,
2016), and was recently reported to be associated with a variable
neurodevelopmental disorder (Gregor et al., 2018).

Our ranking system also highlighted some potential novel
candidate genes that may deserve further investigation.
Four genes, ZYG11B, HECTD1, CAND1, and MYCBP2,
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FIGURE 4 | Decile enrichment of de novo mutations from two independent cohorts in our gene ranking system.

TABLE 1 | Top ten enriched GO terms in predicted ASD risk genes.

GO terms OR 95%_CI_L 95%_CI_U p padj

GO_CENTRAL_NERVOUS_SYSTEM_PROJECTION_NEURON_AXONOGENESIS 27.0 10.0 80.1 1.7E-11 4.7E-08

GO_IONOTROPIC_GLUTAMATE_RECEPTOR_SIGNALING_PATHWAY 17.5 6.9 45.3 1.9E-09 5.1E-06

GO_CENTRAL_NERVOUS_SYSTEM_NEURON_AXONOGENESIS 17.2 7.1 42.5 4.3E-10 1.2E-06

GO_DENDRITE_MORPHOGENESIS 13.0 6.2 27.0 6.5E-11 1.8E-07

GO_MOTOR_NEURON_AXON_GUIDANCE 11.2 4.4 27.6 6.7E-07 0.0018

GO_POSITIVE_REGULATION_OF_HISTONE_METHYLATION 11.1 5.0 24.4 1.4E-08 4.0E-05

GO_GLUTAMATE_RECEPTOR_SIGNALING_PATHWAY 11.1 5.4 22.4 3.1E-10 8.7E-07

GO_EXCITATORY_POSTSYNAPTIC_POTENTIAL 10.4 4.1 25.2 1.1E-06 0.003

GO_REGULATION_OF_HISTONE_H3_K4_METHYLATION 10.4 4.1 25.2 1.1E-06 0.003

GO_MODULATION_OF_EXCITATORY_POSTSYNAPTIC_POTENTIAL 9.3 3.6 23.2 7.1E-06 0.019

OR: odds ratio; 95%_CI_L: OR 95% confidence interval lower bound; 95%_CI_U: OR 95% confidence interval upper bound.

ranked second, fourth, seventh and tenth, are all involved in
protein ubiquitination, which has been implicated in neuronal
function and brain disorders, including ASD (Mabb and Ehlers,
2010). To our knowledge, direct genetic links between these
genes with ASD have not been found. Of note, CAND1 encodes
an essential regulator of Cullin-RING ubiquitin ligases that play
a critical role in ubiquitination and protein degradation (Zheng
et al., 2002); MYCBP2 encodes an E3 ubiquitin-protein ligase
that plays a role in axon guidance and synapse formation in the
developing nervous system. We have provided the whole list of
ranked genes with their probability scores in Supplementary
Table S3. Researchers can further explore the top-ranked genes
or genes of their own interest.

Our study not only provides hundreds of new ASD
candidate genes with evidence for involvement in ASD, but
also shows that the predicted risk genes are biologically
meaningful and are clustered around biological processes
relevant to ASD. GO enrichment analysis demonstrated that
the predicted risk genes were enriched in GO terms related to
neuronal signaling, neurogenesis, chromatin remodeling, and
histone modification, all of which are important biological
processes implicated in ASD. In addition, among our top
10 ranked genes, we found that five were related to the
protein ubiquitination pathway (HERC1, CAND1, ZYG11B,
HECTD1, and MYCBP2), which is consistent with the significant
enrichment of protein ubiquitination process in our GO
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enrichment analysis (GO_PROTEIN_UBIQUITINATION,
OR = 2.3, pcorrected = 1.9 × 10−6), supporting the merging
role of ubiquitin signaling in ASD (Mabb and Ehlers,
2010; Cheon et al., 2018). Our analyses also highlighted
other biological mechanisms that may underlie ASD. For
example, there is evidence for roles of RNA alternative splicing
(Parikshak et al., 2016) in ASD, which was represented in
our top enriched GO terms (GO_RNA_SPLICING, OR = 3.5,
pcorrected = 8.0 × 10−12).

Our study also sheds light on when and where ASD
genes may exert their effects during brain development. Of
the 28 gene expression features from the top 30 important
features in the BTree model, 15 referred to brain regions in
the early to mid-prenatal stage (≤24 pcw), reinforcing the
important role of early prenatal development in ASD. The
involved brain regions include the posteroventral (inferior)
parietal cortex (IPC), primary motor cortex (area M1,
area 4) (M1C), posterior (caudal) superior temporal cortex
(area 22c) (STC), inferolateral temporal cortex (area TEv,
area 20) (ITC), medial prefrontal cortex (MFC), cerebellum
(CB), dorsolateral prefrontal cortex (DFC), and ventrolateral
prefrontal cortex (VFC).

This work should be viewed in light of several limitations.
First, our method was trained on genes implicated in ASD by
de novo mutations. It was not clear how our gene ranking
system was relevant to genes affected by other type of variants.
Second, our gene ranking system was validated using enrichment
analyses of DGE evidence in ASD brain and independent lists of
candidate genes. However, a more solid validation should be a
replication study for top ranked genes in independent samples
through sequencing, but it is beyond the scope of current study.
Third, given the strong evidence of clinical and genetic overlap
between ASD and other types of neurodevelopmental disorders
(Mullin et al., 2013; Srivastava and Schwartz, 2014), further work
is needed to investigate whether our gene ranking system is
specific to ASD.

In summary, our study has demonstrated that human
brain spatiotemporal gene expression patterns and gene-level
constraint metrics predict ASD risk genes. Our gene ranking
system provides a useful resource for prioritizing ASD
candidate genes.
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FIGURE S1 | Heatmap view of spatiotemporal gene expression in human brain.
Each cell in the heat map corresponds to the expression level of a gene (row) in a
specific brain region and development stage (column). The ASD risk and non-risk
genes are denoted by red and blue rows, respectively. Brain regions are
represented by the 31 colors in Color Key of Brain Regions. The ASD risk genes
tend to be expressed in a higher level compared to non-risk genes across
developmental stages and brain regions. The intensity of the color in each cell
represents the log2-transformed expression level. Full names of each brain region:
CBC, cerebellar cortex; CB, cerebellum; VFC, ventrolateral prefrontal cortex; M1C,
primary motor cortex (area M1, area 4); M1C-S1C, primary motor-sensory cortex
(samples); IPC, posteroventral (inferior) parietal cortex; PCx, parietal neocortex;
HIP, hippocampus (hippocampal formation); DTH, dorsal thalamus; TCx, temporal
neocortex; S1C, primary somatosensory cortex (area S1, areas 3,1,2); MD,
mediodorsal nucleus of thalamus; A1C, primary auditory cortex (core); AMY,
amygdaloid complex; STR, striatum; URL, upper (rostral) rhombic lip; OFC, orbital
frontal cortex; Ocx, occipital neocortex; MGE, medial ganglionic eminence; CGE,
caudal ganglionic eminence; LGE, lateral ganglionic eminence; STC, posterior
(caudal) superior temporal cortex (area 22c); MFC, anterior (rostral) cingulate
(medial prefrontal) cortex; V1C, primary visual cortex (striate cortex, area V1/17);
ITC, inferolateral temporal cortex (area TEv, area 20); DFC, dorsolateral
prefrontal cortex.

FIGURE S2 | Gene expression difference between ASD risk and non-risk genes in
the spatiotemporal development of human brain. Each cell in the heat map
represents the expression level difference (t-test) in a specific brain region (column)
and development stage (row). The intensity of color represents the
log-transformed p-value from a t-test. The brain regions and stages without gene
expression data are marked as black.

FIGURE S3 | Boxplot of gene-level constraint metrics and other gene variation
features for true positive (TP) and true negative (TN) genes.

FIGURE S4 | Boxplot of AUCs under different feature sets for BTree model. The
left was measured by the area under receiver operating curve (ROC), and the right
was measured by the area under precision-recall curve (PRC).

FIGURE S5 | Top 30 important features in the BTree model.

FIGURE S6 | Comparison of our gene ranking system (BTree) with five other gene
ranking systems on overall rankings of 173 independent candidate genes.

FIGURE S7 | Decile enrichment of 173 independent candidate genes for each
gene ranking system. The number on the top of each panel represents the
number of 173 curated candidate genes appeared in the first decile of
each ranking system.

Frontiers in Genetics | www.frontiersin.org 9 September 2020 | Volume 11 | Article 500064139

https://www.frontiersin.org/articles/10.3389/fgene.2020.500064/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.500064/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-500064 September 8, 2020 Time: 18:17 # 10

Lin et al. De novo Mutations and Autism

FIGURE S8 | Hierarchical clustering of significant GO terms.

TABLE S1 | Feature sets included in prediction model.

TABLE S2 | GO enrichment analysis for predicted ASD risk genes.

TABLE S3 | Gene risk score predicted from Boosted tree model.
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