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Editorial on the Research Topic
 Psychology and mathematics education




We use numbers and fractions every day, for example when we are doing our shopping or baking a cake. But mathematics is, of course, much more: it is the language of science, or, to use Galileo's words, “the book of Nature is written in mathematical language” (Galileo, 1623) and some mathematical competencies beyond basic arithmetic are required in most professions. Basic mathematics, i.e., elementary arithmetic, elementary geometry and some elements of calculus, is taught in school, not just for everyday life, but as a tool for many different professions. In school, however, mathematics is either “loved” or “hated”, as Hersh and John-Steiner masterfully describe in their book “Loving and Hating Mathematics” (Hersh and John-Steiner, 2010). Research in mathematics education has definitely contributed to reducing school students' hatred of mathematics and this reduction may be seen as one of its many goals.

In contrast with mathematics, the field of mathematics education is strongly interdisciplinary; the closest field to influence it directly is psychology. In fact, mathematics education is consistently shaped by both behavioral and cognitive perspectives, since so many factors—the power of visualizations, the effect of representation formats, but also factors like gender, self-efficacy, etc.—influence and sometimes determine students' performance.

Our aim for this Research Topic and for the collection of papers we are now publishing has thus been to illustrate the relevance of such various psychological perspectives for mathematics education using the contributions of colleagues from around the world. All the contributions we have collected address these interdisciplinary perspectives explicitly or implicitly.

We were surprised by the success of our Research Topic, which was perhaps triggered by the wide range of possible research directions addressed by its general title. The largest section of the papers presents empirical, original research carried out by a wide variety of specialists, with interesting results and suggestions for educators in the classroom. Other papers, which describe psychological features of mathematics education, review factual evidence and the relevant literature. Thus, the collection we present has a descriptive as well as a pragmatic and a prescriptive orientation. It consists of 39 contributions by 109 authors, including 29 original research articles, four brief research reports, three reviews, and three conceptual analyses.

Due to the large number of original research articles, we have decided to arrange them according to different sub-topics, which we list here:

1. Visualizations and representation formats

2. Reasoning, argumentation and biases in connection with mathematics

3. The influence of motor skills

4. Mathematics anxiety as a determining factor

5. Gender and its consequences for students' performance

6. Cultural differences, self-efficacy and consequences for mathematical development

7. Teachers' views, beliefs and culture in connection with teaching mathematics.

We now proceed to describe these sub-topics and cite examples from the corresponding papers.


1. Visualizations and representation formats—their fostering of mathematical intuitions

As we wrote in the overview for this Research Topic, a great inspiration for our endeavor was provided by the work of Herbert Simon with his concept of bounded rationality and its direct descendent, ecological rationality. The ecological rationality perspective allows a novel way of viewing typical aspects of mathematics education, pointing at its fundamental links with cognitive psychology.

We cite here one of Herbert Simon's most famous statements concerning the fundamental importance of representation for solving problems:

“Solving a problem simply means representing it so as to make the solution transparent.” (Simon, 1996, p. 132)

According to Simon, a solution becomes transparent if it emerges from the representation of the structure in terms of which the problem has been modeled. The structure results from an effort of adaptation between the endeavors to solve it and the conceptual constructions of the mind. Adopting the phrasing of Gigerenzer and his school, an adaptation is successful if it is ecologically rational (c.f. Gigerenzer et al., 1999). Ecological rationality is thus considered a fundamental characteristic of successful representations: it refers to behaviors and thought processes that are adaptive and goal-oriented in the context of the representational environment in which the organism is situated.

Constructing a representation that makes a problem easily solvable provides evolutionary advantages in terms of time resources to agents adopting it (Martignon et al., 2020). The most popular example from mathematics is the representation of numbers based on the decimal number system. This example is so fundamental for Mathematics in every-day life, that it deserves a short digression: the positional representation, as is well known, made its way into the western world several centuries after its inception in India. Dysfunctional systems like Roman numerals had forced people in Europe to outsource their counting and computing: during the late Middle Ages and early Renaissance the Abakists did the numerical operations for businessmen, translating Roman numerals into strings of marbles and working with them on their abaci. Their results were then translated back into Roman numerals. Herbert Simon had wondered about the “theoretical” reasons that make the Hindu-Arabic number system so much more adaptive to our minds than Roman numerals. In fact, he wrote:

“We all believe that arithmetic has become easier since Arabic numerals and place notation replaced Roman numerals, although I know of no theoretical treatment that explains why” (Simon, 1996).

The studies of ecological rationality and simple heuristics by Gigerenzer and his school have provided good explanations (see Martignon et al., 2020 for a brief synthesis of the main arguments): the mind/brain, as has been empirically demonstrated, is akin to a sequential, lexicographic treatment of features for comparison tasks or classifications. In the case of two numbers in the decimal positional system their coefficients of powers of 10 are the features a comparison is based on. In fact, when having to compare, say 3.456 and 3.461, for instance, we first check that they are equally long. i.e., they have the same number of digits. Then we start checing each digit from left to right, stopping when we find a difference in digits and determine the largest number accordingly. This procedure can be described by a fast-and-fugal tree, as in the illustration at the center of Figure 1. A fast-and-frugal tree is a simple lexicographic decision tool that proceeds in a sequential way. Its success is the consequence of the non-compensatory weights of its features, as, in the case of numbers, powers of 10 (Figure 1, Left).


[image: Figure 1]
FIGURE 1
 Aspects of the decimal representation system. On the left side, three powers of 10 are illustrated by means of cylinders of corresponding heights. They correspond to the weights of the simple non-compensatory linear model, which characterizes our number system. In the center of the figure, a simple, fast, and frugal tree describes the quick yet sequential decision procedure we use for number comparison. On the right side, the reader sees a famous illustration of Arithmetic represented through an allegory by Reisch in the Margarita Philosophica, who contemplates with a benevolent smile the “algarist” (image source: Typ 520.03.736, Houghton Library, Harvard University). The algarist performs computations based on the positional system, while the “abakist”, on the other side of the illustration, uses marbles for computation with his abakus. The work of abakists was fundamental during the beginnings of the Renaissance, when businessmen employed them to perform all their computations. The decimal positional system made arithmetic calculations simple, transparent, and thus accessible for everyone.


Obviously, the decimal positional system has other fundamental advantages for computing.

The illustration in the right panel of Figure 1 represents an illustration from the Margarita Philosophica (by Gregor Reisch) of 1503. Here the allegory of Arithmetica in the center, looks benevolently toward the “Algarist”, on the left side, who works with numbers in the positional system. On the right side, the Abakist, computes with marbles.

The relevance of ecological rationality for our Research Topic is made evident in several of the papers here. In fact, several authors address aspects of visualizations and representations in mathematical contexts which foster the adaptation of the mind to the mathematical contexts involved. Mathematics education treats representations of mathematical situations and entities as a fundamental aspect of didactics in the classroom. Of course, multiple representations of mathematical entities are possible: the advantages of juggling between them have been treated extensively by Dreher et al. (2016). However, as work in this Research Topic demonstrates, for many types of problem, such as fractions and probabilities, different representations can be mathematically equivalent, yet be far from cognitively equivalent. That is, some representations are more adaptive and advantageous than others because they are aligned to the cognitive systems of human problem-solvers. Representing numbers geometrically has an ecological aspect, and the paper by Kempen et al. demonstrates empirically how figurative numbers enhance numerical understanding.

Approaching the realm of functions in mathematics, for instance, we recall that it would be cumbersome to think about them without the coordinate system introduced in the early seventeenth century by Descartes. Today, much progress has been achieved in dynamic visualizations of functions in coordinate systems. These visualizations allow us to go even further and to greatly improve the understanding of certain aspects of functions. In this connection, we mention the paper by Rolfes et al. in which the authors show that students can learn covariational aspects of the concept of function significantly better with dynamic visualizations than with static representations. However, as they also specify, there seems to be no significant difference in learning with linear or interactive dynamic visualizations.

A natural question related to representations seems to be whether self-generated drawings can always be of help. The answer seems to be that this is not always the case. Self-generated drawings are not always adaptive. In fact, only aspects of them, like their quality, may be of value. Krawitz et al. carried out a replication and elaboration study on the negative effect of self-generated drawings on the number of students' linear overgeneralisation and problem-solving performance. The drawing quality, but the not visual monitoring, affected the number of over generalizations. These results indicate the great importance of the quality of drawing as a strategy for problem-solving.

One mathematical field that has profited immensely from the search for adaptive representations is probability and statistics. Statistical situations concerning data sets profit hugely from dynamic representations. Hood et al. found that dynamic graphs in digital publications can potentially be used for communicating interactions (and other complex relationships) effectively. They are not, however, a panacea for people's challenges in understanding complicated data and more work is needed to take effective advantage of opportunities in digital data presentations.

Probabilistic inference has also profited greatly from adaptive representations: we recall here that it has been a milestone in the field of probabilistic reasoning to discover how certain representations and visualizations foster Bayesian reasoning (Gigerenzer and Hoffrage, 1995) while others hamper it.

The paper by Eichler et al. is especially inspiring, quite in the spirit of ecological rationality, because of the empirically supported claim that people's strategies for solving Bayesian tasks are triggered by corresponding representations, exactly in the sense of Herbert Simon.

Another relevant finding in this field is that the characteristic of visualization making the nested-sets structure of a Bayesian situation transparent has a facilitating effect on people's Bayesian reasoning (Macchi, 2003). Trees and double trees with nodes representing natural frequencies have been proven very effective in this context. A practical extension of the tree format with natural frequencies is the so-called “frequency net” proposed by Binder et al.. Here the disposition allows for sequential treatment in four directions but also provides a view of all relevant frequencies of conjunctions at a glance.

Another question that arises in the context of natural frequencies is whether younger children may exhibit forms of Bayesian reasoning when presented with simple formats of information. The paper by Till et al. presents an intervention study showing that primary school children at the age of nine to ten can understand probabilities and solve Bayesian problems using natural frequency formats. Hence, natural frequencies appear to be a suitable representation for grasping probabilities at an early stage and thus might support understanding more abstract contexts in higher grades.

It is a crucial result, that people may perform correct Bayesian inferences without recurring at all to numerical formats of information: Leuders et al. analyzed how people update their hypotheses based on uncertain evidence (e.g., teachers' updating their assumptions based on students' solutions), when they only have access to non-numerical information. They showed that people need strong support to apply a rational Bayesian strategy and otherwise resort to biased strategies for processing information–analogous to the strategies found in numerical settings.

The review by Neth et al. solves several well-known problems by representing them more transparently. Politely phrased as re-framing representational effects and suggesting a change in perspective, a more apt description of their achievement is to effectively put an end to academic debates and scientific practices that are sustained by obscure abstractions and idiosyncratic terminologies. Encouraged by editors and reviewers, the authors resisted the temptation to distribute their insights across several articles. The published product is long and detailed, but rewards its readers by seeing how numerous scientific puzzles and their solutions are alternative perspectives on a shared representational construct.



2. Reasoning, argumentation, and biases in connection with mathematics

Reasoning is the basis not only of mathematical thought, but of critical thinking in general. In an era of fake news and propaganda proliferated by social media, critical thinking acquires even greater relevance and has been declared one of the competencies of the 21st century by the OECD.

The work by Macchi et al. is represented in this Research Topic by two papers related to the improvement of logical and mathematical performance (Bagassi et al.; Bagassi and Macchi) of children through a pragmatic approach, on the one hand, and on the possibility of facilitating problem-solving by viewing it as the overcoming of misunderstandings, on the other.

Another important field in the realm of reasoning deals with how humans cope with syllogisms. These used to be the basis of reasoning in the traditional approach to rigorous thinking. Syllogisms and how humans handle them have been a matter of research through the centuries. They are the essence of classical logic. But in heuristic decision-making, which definitely takes place when students approach problem-solving in mathematics, less “classical” logics may play an important role. In Chapter 3 of “The Science of the Artificial” Simon recommends the use of multiple logics and in Chapter 5, he explains how

“[m]ultiple logics may become necessary when approaching heuristic decision making” (Simon, 1996).

The paper by Vargas et al. introduces variations on syllogistic experimental tasks by (1) reshaping the pragmatics of the communication situations faced along the dimension of cooperative vs. adversarial attitudes and (2) rendering explicit the construction of counter-examples. It presents evidence on a significant switch in participants' performance and the strategies they employ while reasoning.

The question on how to foster argumentation skills deals with the design of adequate learning environments and can be influenced, as Sommerhoff et al., show, by whether a sequential or a concurrent instructional approach is used in the classroom. Their paper highlights that sequential and concurrent approaches are both effective in supporting the resources underlying mathematical argumentation and proof skills; however, the concurrent approach can have slightly better effects on mathematical argumentation skills, especially in the case of weaker students.

The paper with most views so far is the one by Bruckmaier et al. on the cognitive illusions studied by Kahneman and Tversky, which released a flurry of fundamental investigations on human reasoning. They provide a unified framework for the basic treatment of the classical teasers analyzed by the school associated with Tversky and Kahneman.

Playing games may sharpen reasoning and lead to concept formation. Özel et al. report having worked with children from 8 to 10 years old, who played different versions of a code-breaking game in guided game-based instruction. After this process, a post-test showed that children were remarkably sensitive to key principles in their mathematical reasoning when dealing with information. This adds to evidence that game-based instruction can be a powerful tool for making mathematics moreintuitive.

Through playing games the phenomenon of “help-seeking”, which is so relevant in the context of learning and problem-solving, can be efficiently analyzed, as Taylor et al.. They show that help-seeking is not correlated with a real need for help. The important paper by Jonsson et al. is devoted to how mathematical understanding can be fostered by creativity and cognitive proficiency.

Pursuing another line, in their paper, Reinhold et al. empirically analyzed the biases—the natural number bias in particular—that make working with fractions difficult, especially for low-achieving students.

The paper by Yang et al. analyzes how concept formation, and understanding of categories fosters analytical and mathematical competencies.



3. The influence of individual learner characteristics


3.1. The influence of motor skills

The paper by Fischer et al. on the surprising effect of fine motor skills to mathematical insight is particularly relevant. This is the only paper in the whole Research Topic collection that treats connections between movement and mathematical competency.



3.2. Mathematics anxiety as a determining factor

Three papers in our collection treat mathematics anxiety in connection with mathematics in the context of school (Maldonado Moscoso et al.; Primi et al.) Among the psychological factors that trigger impairments in mathematics, mathematics anxiety has been suggested to play a key role. It has been defined as feelings of apprehension and increased physiological reactivity when individuals have to manipulate numbers, solve mathematical problems or when they are exposed to an evaluative situation connected with mathematics. Mathematics anxiety involves psychological arousal, negative cognitions, escape and/or avoidance behaviors and, when the individual cannot avoid the situation, performance deficits. It is described as a multidimensional construct that is related to, but distinct from, other forms of anxiety, such as trait, social or test anxiety. Mathematics anxiety has been shown to hinder mathematics performance. This phenomenon is very common not just among school students. Adults suffer from it as well.

The paper by Primi et al. describes a new scale for measuring it already in young children.

The paper by Moliner et al. describes a how peer tutoring among school students can become a factor thast reduces math anxiety.



3.3. Gender and its consequences on students' performance

In the paper by Uclés et al. on “Gender Differences in Visuospatial Abilities and Complex Mathematical Problem Solving” the authors provide empirical evidence that students with the ability to solve complex mathematical problems exhibit stronger spatial skills. It also shows that boys and girls present similar spatial abilities, and that there is no significant interaction between the ability to solve complex problems and gender.



3.4. Cultural differences, self-efficacy, and consequences for mathematical development

The role of self-efficacy for mathematical development has become ever more evident since the discoveries of Bandura in the second half of the 20th century (Bandura, 1997). The paper by Siefer et al. reveals that including written data (notes) and non-verbal data (gestures and actions) leads to a more accurate analysis of self-explanations than an analysis solely based on verbal data. This influence is even stronger for the categorization of self-explanations as “adequate” or “inadequate”.

In the paper by Siefer et al. the authors explore the potential multi-dimensionality of self-efficacy focused on three task characteristics:

(1) the representational format,

(2) embedding in a real-life context,

(3) the required operation.

The paper highlights the fact that even within a specific content domain students' self-efficacy can and should be considered a multi-dimensional construct.

The paper by Salle describes how self-explanation, gestures and notes trigger self-assurance and self-efficacy.

The paper by Zakariya addresses causal relationships between the previous and current mathematics performance of undergraduate students.

Pursuing another line, in their paper Meng et al. deal with the thought-provoking topic of the influence of specific cultural phenomena in connection with self-efficacy. In fact, it treats cultural aspects which are apparently more specific to upbringing in China, and shows that these aspects have an influence on factors analogous to self-efficacy when dealing with mathematical tasks.

Findings by Wang and Sperling revealed that those interventions grounded in metacognition-oriented theories and those interventions that targeted multiple strategies including cognitive, metacognitive, and motivational, tended to yield effective increases in both mathematics achievement and self-regulated learning.




4. Teachers' views, beliefs, and culture in connection with teaching mathematics

The role of teachers, their training and their views in the discussion on mathematics education is treated by two papers in the collection.

The paper by Patterson et al. shows the positive effects of special units of teacher training on the performance of students. The findings indicate that students profit from their teacher's participation in special training interventions.

The paper by Tanas et al. addresses how the views of teachers on technology and their perceived ease of technology use affects their use of technology in the mathematics classroom. These new tools provide education with many new opportunities, but their application often meets with a variety of difficulties. Many of those difficulties are general and appear across different areas of technology use. The paper confirms that perceived usefulness has a stronger direct impact on technology use and that user friendly technology increases use.

Besides research articles, our Research Topic contains two research reports, one systematic review, three conceptual analyses, two review articles and ends with an opinion.



5. Further contributions: research reports, systematic review, conceptual analyses, review article and opinion


5.1. Research reports

Sturm et al. report on an empirical study on how the attitudes and beliefs of young students correlate with their problem-solving performance. They also claim that this correlation can be affected by student participation in a training programme.

In his brief research report Rolfes treats the interpretations of pictorial charts involving differences in areas and differences in volumes, as understood by readers of popular reports. His claim is that readers do not seem to interpret two-dimensional pictures of three-dimensional objects spatially.



5.2. Systematic review

The paper Wang et al. analyzes findings on social-cognitive self-regulated learning and discuss implications for good practices in the classroom.



5.3. Conceptual analyses

In Bertram the author examines future directions in research on digital games in mathematics and computer science education. She highlights the importance of a sound psychological foundation for the development of learning games and the need for interdisciplinary research projects and randomized controlled experimental designs to evaluate the effectiveness of games and game features.

The analysis of Kramer on iconic mathematics is extremely pertinent to the realm of ecological rationality in the context of mathematics education. It reminds us of the necessity of reviewing representations of mathematical entities and processes that produce features that are appealing to the mind/body and thus become easy to grasp.

The analysis by Kurdoglu et al. describes one step in the conceptual view on uncertainty and is therefore relevant for the realm of decision-making, having connotations (implications?) that are meaningful for the teaching of probability. It deals with complete uncertainty, a situation that goes beyond mathematically structured scenarios. Under very high levels of uncertainty, decision-makers rely on heuristics to no avail. Kurdoglu et al. posit that eristic reasoning (i.e. self-serving inferences for hedonic pursuits), rather than heuristic reasoning, is adaptive when uncertainty is extreme. They explain how decision-makers can benefit from heuristic vs. eristic reasoning under different levels of uncertainty. Although the authors establish no immediate connection with mathematics in the classroom, their approach is novel and clearly relevant.



5.4. Review article

In Barrocas et al. the authors mostly review the large collection of their own discoveries concerning finger-counting as related to later arithmetic abilities. Their report fits in perfectly with the intention of the Research Topic.



5.5. Opinion

As a final perspective from the Research Topic, we cite here the paper by Simplicio et al. Here the authors insist that results from research should find their way into classrooms, but they see the need for more integration of different perspectives and fruitful collaborations between researchers of different disciplines and educators. Only then, they claim, are there real chances of transferring results from basic research into educational practice. Yet, they also point out that, as has been said by Minshall (2009), “knowledge transfer is a ‘contact sport'; it works best when people meet to exchange ideas, … and spot new opportunities”.

We definitely agree with their statements and conclude the description of our Research Topic with the hope that more steps toward the integration of research on the psychology and even on the neuroscience of mathematics acquisition are soon taken at all levels of research and implementation.
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In this paper we present a laboratory experiment in which 157 secondary-school students learned the concept of function with either static representations or dynamic visualizations. We used two different versions of dynamic visualization in order to evaluate whether interactivity had an impact on learning outcome. In the group learning with a linear dynamic visualization, the students could only start an animation and run it from the beginning to the end. In the group using an interactive dynamic visualization, the students controlled the flow of the dynamic visualization with their mouse. This resulted in students learning significantly better with dynamic visualizations than with static representations. However, there was no significant difference in learning with linear or interactive dynamic visualizations. Nor did we observe an aptitude–treatment interaction between visual-spatial ability and learning with either dynamic visualizations or static representations.
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INTRODUCTION

Students in the fields of science, technology, engineering, and mathematics (STEM) often have to acquire knowledge about a process, i.e., a situation that changes over time. In biology, the dynamic process of cell division is key content; in geography, the eruption of a volcano is a process of change over time; in engineering, comprehending how a machine works involves understanding a dynamic situation; and in mathematics, functional relationships (e.g., the path–time relationship of a moving car) often have to be interpreted dynamically—for example, how much does the dependent variable y (e.g., path) change if the independent variable x (e.g., time) changes by Δx, or at which value of x is the strongest increase of y?


Concept of Function

This kind of dynamic thinking is subsumed in mathematics education under thinking of function as covariation in contrast to thinking of function as correspondence (Vollrath, 1989; Confrey and Smith, 1994; Thompson, 1994). The aspect of correspondence focuses on the pairwise assignment of values of the domain to values of the range. Calculating the function value of a given function (e.g., f(x) = 2x2 + 3x + 1) for a particular value (e.g., x = 5) or finding the zeros of the function f are typically function tasks that address the correspondence conception of function. Traditionally, this static view of a function as pointwise relations plays an important role in teaching the concept of function in school (Hoffkamp, 2011; Thompson and Carlson, 2017). The covariation conception, however, focuses on the interdependent covariation of two quantities, that is, the effect of a change of the value of the domain on the value of the range or vice versa. This thinking of function as covariation is considered “fundamental to students’ mathematical development” (Thompson and Carlson, 2017, p. 423). Furthermore, the aspect of covariation is a central aspect of calculus and can, therefore, be considered calculus-propaedeutic. Covariational thinking can be further split into quantitative and qualitative covariation (Rolfes et al., 2018). In a quantitative covariational analysis, a function is examined in numbers (e.g., calculation of a rate of change). In contrast, in a qualitative covariational analysis, the functional relationship is explored by the visual shape of the graph and without the precise function values (Rolfes et al., 2018). Quantitative covariational thinking requires different skills than qualitative covariational thinking, and they form psychometrically two correlated but separate dimensions (Rolfes, 2018).

In mathematics education, one notes that mathematical objects (e.g., functions) are not directly accessible apart from external representations (Duval, 2006). Therefore, a difference exists between the abstract mathematical object and its representations. Hence, a form of representation is needed to deal with a function. The tabular, graphical, algebraic, and situational representation are four typical forms of representation of a function (Janvier, 1978). The unanimous opinion in mathematics education states that the ability to translate between different forms of representations is one aspect of a deep understanding of the concept of function (e.g., Janvier, 1978; Duval, 2006).



Learning Dynamic Processes With Dynamic Visualizations

One main challenge for teachers and students of all STEM subjects is as follows: how is a dynamic process best learned, and how can we enable students to construct mental models (Johnson-Laird, 1980) that adequately represent the dynamic of the content? The traditional approach uses one or several static pictures to illustrate the process. In textbooks, the cell division process is displayed with static pictures marking crucial steps in the process. Likewise, the process of an eruption of a volcano or the working of a machine is often illustrated with one or more pictures. On the basis of these static pictures, students are required to generate a dynamic mental representation of the processes of cell division, an eruption of a volcano, or the working of a machine. In mathematics, the presentation and learning of dynamic content is even more complicated than in other STEM subjects. If the functional relationship under consideration models a real-life situation (e.g., a path–time relationship), the underlying dynamic situation (e.g., the movement of a car) is often not illustrated at all. Instead, an abstract graph is displayed as a static representation of the functional relationship. Students are required to draw a connection between the real-life situation and the underlying functional relationship on the basis of this static graph. Afterward, they have to “animate” the graph mentally to solve a covariation task (e.g., does the speed of the car increase or decrease?). With the advent of modern technology, a new approach to learning dynamic content has become possible: dynamic visualizations (e.g., animations) of processes (e.g., cell division, eruption of a volcano) that can display the dynamic content dynamically. This approach corresponds with the notion held by many that static representations are the best method for learning about static content, and dynamic visualizations the most appropriate for dynamic content (Ploetzner and Lowe, 2004; Schnotz and Lowe, 2008). Based on this congruency hypothesis between external and mental representations, for example, Karadag and McDougall (2011) argued that e.g., “the term ‘increasing’ points out a dynamic process, which is quite difficult to understand in a static media” (p. 175).

Dynamic visualizations can be defined as representations that change their graphical structure during the presentation (Schnotz et al., 1999; Ploetzner and Lowe, 2004). Kaput (1992) considered as characteristic for dynamic visualizations that time has an “information-carrying dimension” (p. 525). In dynamic visualizations, the states of objects can change as a function of time (Kaput, 1992). Dynamic visualizations can be further subdivided into linear dynamic and interactive dynamic visualizations. In the case of linear dynamic visualizations (e.g., non-interactive animations), the change takes place automatically and cannot be influenced. Interactive dynamic visualizations, on the other hand, give learners “some control over how these changes are presented to them” (Ploetzner and Lowe, 2004, p. 235). Schwan and Riempp (2004) pointed out that interactive dynamic visualizations “enable the user to adapt the presentation to her or his individual cognitive needs” (p. 296). However, interactivity could also have negative effects on cognition if managing interactive features burdens the learner with additional cognitive load (Schwan and Riempp, 2004).

For scientific content, empirical findings concerning learning with dynamic visualizations could seldom corroborate assumed advantages for this mode of learning. Often, dynamic visualizations showed no higher learning effect than static representations. In an experiment conducted by Hegarty et al. (2003), understanding of how flushing cisterns work increased when both static representations and dynamic visualizations were used; however, there was no evidence that dynamic visualizations led to a higher learning effect than did static representations. Mayer et al. (2005) found no advantages in instructions containing dynamic visualizations regarding learning about various types of scientific content (braking systems, ocean waves, toilet tanks, lightning). Instead, for some content, learning with paper-based static representations proved significantly more effective than learning with dynamic visualizations.



Dyna-Linking as a Form of Dynamic Visualization in Mathematics

In mathematics, a graph is a pivotal form of representation when dealing with the concept of function. The ability to connect the situational with the graphical representation is considered essential to understanding graphs (Janvier, 1978; Hoffkamp, 2011). One approach to foster this ability is providing a real-time link between a motion and a graphical representation (e.g., Brasell, 1987; Thornton and Sokoloff, 1990; Nemirovsky et al., 1998; Radford, 2009; Urban-Woldron, 2014). This real-time link can be produced by motion detectors that record motions of persons or objects with a sensor. These data are then displayed in real-time as a kinematic Cartesian graph on a screen, and students have to explore and interpret these kinematics graphs. Brasell (1987) found out in an experiment that the immediate display of the graph on a screen is crucial since a lag of only 30 s already impaired learning. Nemirovsky et al. (1998) concluded, based on their case study with a motion detector, that graphing motions “allows students to encounter ideas such as distance, speed, time, and acceleration” (p. 169). The learning environments using a motion detector have in common that they try to foster a rather conceptual and qualitative than a procedural and quantitative understanding of functional relationships.

A related approach to highlight the connection between two forms of representation is through dynamic linking of representations in a dynamic visualization; this is referred to as hot linkages (Kaput, 1992) or dyna-linking (Ainsworth, 1999). In dyna-linking, two representations are linked so that the effect of an action in one is automatically displayed in the linked second (Kaput, 1992; Ainsworth, 1999). Figure 1 shows an example of dyna-linking a representation of an equilateral triangle with a graph. The graph displays the relationship between the length of the path on the perimeter of triangle ABC from P to Q and the length of the corresponding chord PQ. Starting in vertex A, point Q moves counterclockwise along the triangle line until it reaches vertex A again. The effect of this alteration is simultaneously displayed in the triangle and the graph.
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FIGURE 1. Screenshot (translated into English) of dyna-linking two representations (equilateral triangle and corresponding graph). The effect of a movement of point Q is displayed simultaneously in the triangle ABC and the coordinate system.


In educational research, various reasons for the advantageous nature of dyna-linking were put forward. One says a system that automatically translates between forms of representation should reduce learners’ cognitive load, thereby freeing up cognitive capacity to learn the relationship between representations (Kaput, 1992; Scaife and Rogers, 1996; Ainsworth, 1999; Karadag and McDougall, 2011). Some researchers also considered the idea of supplantation (Salomon, 1979/1994) as the underlying beneficial principle of dyna-linking (Vogel et al., 2007; Hoffkamp, 2011). Salomon postulated that mental operations could supplant mental operations if learners are unable to perform the operations by themselves. Vogel et al. (2007) pointed out that supplantation can support the learner’s mental operations in connecting a graph with the underlying situation concerning both aspects of a function (correspondence and covariation). Furthermore, the framework of instrumental genesis (Rabardel, 2002) can be considered as a theoretical underpinning of the effectiveness of dyna-linking. When a dynamic visualization in the form of dyna-linked representations as an artifact is put into an interactive relationship with a specific task and students’ mental schemes, it transforms into an instrument that can enhance learning.

Some empirical studies evaluated the effect of dynamic visualizations in terms of dyna-linking situational and graphical representations on learning covariational aspects of the concept of function. Hoffkamp (2011) performed a qualitative study with 25 10th grade students. A geometrical situation (area within a triangle) was dynamically linked to the corresponding graph (relationship between area and a length) in a learning environment. Hoffkamp concluded that dyna-linked interactive visualizations “not just lead to the manipulation of some points or lines, but really activate the formation of an intuitive access of calculus” (p. 370). She observed that especially asking for verbalizations prompted conceptualization processes and led to students integrating a dynamic view into their conception of function (Hoffkamp, 2011).

In an experimental study with 133 middle-school students, Vogel et al. (2007) evaluated the effect of supplantation on the ability to interpret graphs. The students were divided into three experimental groups. The full supplantation group had to interpret graphs concerning variables of a geometric object (e.g., relationship between radius and surface area of a cylinder when the volume is fixed). They received support via an interactive dynamic visualization that dyna-linked the graph with a representation of the geometric object. In the reduced supplantation group, the graph was linked with a representation of the geometric object for one particular value, but no dyna-linking was available. In the no-supplantation group, the students only had the graph available and no representation of the geometric object at all. The experiment showed that linking the graph with a representation of the geometric object had a significantly positive effect on learning to interpret graphs. There was, however, no significant difference between the two forms of linking (full vs. reduced supplantation), that is, dyna-linking was not more beneficial than linking the graphical and situational representations in a static manner.

In two experiments with 111 eleventh graders and 24 tenth graders, Ploetzner et al. (2009) investigated which kind of visualizations most helped students to relate motion phenomena to line graphs. The students in the control group only received dyna-linked representations of a moving runner and the corresponding piecewise line graph. In the experimental group, the students also received vectors representing the distance covered by the runner at different points in time. The result showed that adding vectors which dynamically represent the covered distance compared to “only” dyna-linking the motion of the runner with the piecewise line graph had no additional effect.



What Are Favorable Conditions for Learning With Dynamic Visualizations?

Lowe and Ploetzner (2017) conclude that dynamic visualizations have “not proven to be the educational magic bullet that many assumed it would” (p. xv). The explanation for the rather disappointing empirical results concerning learning with dynamic visualizations remains up for discussion. van Gog et al. (2009) suggest that dynamic visualizations place a higher load on working memory; that is, learners need to process the information that is visible at the time as well as remember previous information, and relate and integrate that information to understand the dynamic visualization. These requirements, combined with a constant stream of information, increase the load on working memory. As a result, information shown at the beginning of a dynamic visualization might be lost from memory before it can be linked to information shown later. These problems of transitivity do not exist with static representations because they can be studied repeatedly (van Gog et al., 2009; Höffler and Leutner, 2011). Additionally, from a constructivist perspective, dynamic visualizations, like dyna-linking, can be considered problematic because learners may remain too passive or even be discouraged from worrying about translations of representations (Ainsworth, 1999). This could result in the desired ability to perform translations between representations not being developed by dyna-linking (Ainsworth, 1999). Mayer et al. (2005) have speculated that the mental simulation of a dynamic process based on a static representation could achieve a higher learning effect than that achieved by merely receptively contemplating a dynamic visualization.

The lack of solid empirical evidence for a learning effect of dynamic visualizations, combined with various theoretical rationales concerning the disadvantages, raises the question of whether there are any circumstances in which dynamic visualizations are conducive to learning. Pea (1985) gave some fundamental thoughts on the role of computers and dynamic visualizations. He argued that the computer could be viewed as cognitive technology that not only amplified but reorganized cognition and “helps transcend the limitations of the mind” (p. 168). Therefore, in mathematics, the use of computers and dynamic visualizations shifts the activities more to a meta-level (e.g., interpreting graphs instead of constructing graphs from a table) instead of doing the same as before but “faster, more often and more accurately” (Dörfler, 1993, p. 168). As a consequence, new kinds of tasks are necessary to initiate cognitive activities on the meta-level (Dörfler, 1993).

Some researchers tried to identify the functional role of dynamic visualizations in learning a given content. Schnotz and Rasch (2008) proposed that dynamic visualizations could promote learning if cognitive resources are freed up: if a mental process becomes feasible for a learner only through dynamic visualization, it fulfills an enabling function. If a process can also be carried out with the aid of a static representation, but the dynamic visualization considerably reduces an otherwise very high cognitive load, the dynamic visualization has a facilitating function (Schnotz and Rasch, 2008). Consequently, dynamic visualizations should be most effective in challenging tasks. Tversky et al. (2002) suggested a congruence principle between external and internal representations: dynamic visualizations are only more beneficial than static representations when the dynamically presented content is congruent with the internal representations that the learner must construct.

Furthermore, some general conditions appear to influence learning with dynamic visualizations positively. First, interaction options while learning with dynamic visualizations appear to enhance learning. Experiments have shown that even relatively small interactive elements, such as pausing and replaying a dynamic visualization, can increase learning success (e.g., Mayer and Chandler, 2001; Hasler et al., 2007). This positive effect could be caused by the reduction of cognitive burden on working memory (Spanjers et al., 2010). In general, interactively manipulating dynamic visualizations could enhance learning because they hinder the acceptance of a dynamic visualization in a passive way (De Koning and Tabbers, 2011). Nevertheless, even interaction options are Janus-faced: they can also produce negative effects, such as random clicks or the omission of interaction options (De Koning and Tabbers, 2011). Interactive information places additional demands on learners and potentially limits the cognitive resources available, thus detrimentally affecting the learning process. One could reduce the processing demands of interactivity by constraining the experiment space in an interactive dynamic visualization (Klahr and Dunbar, 1988; van Joolingen and de Jong, 1997), that is, reducing the interaction possibilities.

Second, cognitive activation appears essential when learning with dynamic visualizations. Hegarty et al. (2003) found that understanding increased when learners had to predict the dynamic behavior of a machine from static representations. De Koning and Tabbers (2011) concluded that interactive manipulations combined with understanding processes might increase the learning effect of dynamic visualizations. Additionally, De Koning et al. (2009) advocated highlighting certain parts of a dynamic visualization in order to draw learners’ attention to these areas.



The Role of Visual-Spatial Ability in Learning With Dynamic Visualizations

In addition to general factors like interaction and cognitive activation that appear to enhance the learning effect, moderating factors might influence the impact of dynamic visualizations on learning. Dealing with dynamic visualizations requires visual-spatial ability. Therefore, visual-spatial ability could have a moderating effect on learning with dynamic visualizations, thereby generating an aptitude–treatment interaction (Snow, 1989). In the literature, there are two competing theses about the aptitude–treatment interaction between visual-spatial ability and learning with dynamic visualizations. On the one hand, the ability-as-compensator hypothesis assumes that dynamic visualizations are particularly advantageous for learners with low visual-spatial ability (Mayer and Sims, 1994; Mayer, 2001). People with low visual-spatial ability are less able to animate their own mental representations and use dynamic visualizations to compensate for their lack of skill (Hegarty and Kriz, 2008; Höffler and Leutner, 2011; Sanchez and Wiley, 2014). Therefore, the availability of external dynamic visualizations could help learners with limited spatial imagination to construct satisfactory mental models (Hegarty and Kriz, 2008; Höffler and Leutner, 2011), the dynamic visualization serving as a “cognitive prosthesis” (Hegarty and Kriz, 2008, p. 7). Further, a theoretical foundation for the compensation thesis can be deduced from the theory of supplantation (Salomon, 1979/1994). For our research, the theory of supplantation would imply that external dynamic visualizations could supplant mental processes related to dealing with functional relationships requiring visual-spatial imagination.

The ability-as-enhancer thesis, on the other hand, assumes that learners with good spatial imagination benefit more from dynamic visualizations than do learners with poor spatial imagination (Mayer and Sims, 1994; Huk, 2006; Höffler and Leutner, 2011). In this case, visual-spatial ability serves to amplify the learning process. An amplifying effect could result because dynamic visualizations may place a higher demand on spatial imagination due to their transitivity than static representations (Höffler and Leutner, 2011). Thus, only students with high visual-spatial ability would be able to process the information presented in rapid succession in a dynamic visualization (Hegarty and Kriz, 2008), because visual-spatial imagination is associated with larger spatial working memory (Miyake et al., 2001). This relationship would make dynamic visualizations detrimental to learners with poor visual-spatial ability.

Empirical results on the aptitude–treatment interaction between visual-spatial perception and learning with dynamic visualizations are inconsistent. In an experiment with 162 students, Sanchez and Wiley (2014) found no aptitude–treatment interaction between the performance in a paper folding task and the learning with dynamic visualizations. In three experimental groups, the students had to read a text about the eruption process of a volcano. The text was accompanied either by static pictures or by a linear dynamic visualization or there were no pictures at all. Nevertheless, in the same study but using another measure of visual-spatial ability—a test for predicting the motion of various objects—dynamic visualizations were found to have a compensating effect (Sanchez and Wiley, 2014). Narayanan and Hegarty (2002) and Hegarty et al. (2003) failed to find an aptitude–treatment interaction in an experiment using static illustrations and non-interactive animations with 100 students learning how a flushing cistern works. Höffler and Leutner (2011), on the other hand, identified a compensating effect of dynamic visualizations in an experiment examining chemical content (role of surfactants during the washing process) involving 25 students. The text was illustrated either with a system-paced animation or four static pictures representing the key moments of the process. In a second experiment with 43 students, these same authors (Höffler and Leutner, 2011) were able to replicate an aptitude–treatment interaction.



Present Study

The theoretical findings raise the question to what extent dynamic visualizations influence learning of a core mathematical idea like the concept of function. Therefore, the present study investigated the following three hypotheses:

Hypothesis 1 (H1): Dynamic visualizations of geometrical situations dyna-linked with the corresponding graph are more beneficial than only providing static representations of a geometrical situation and the corresponding graph for learning about the aspect of covariation of a function.

Learning with dynamic visualizations is not more beneficial per se than learning with static representations. Dealing with functional relationships that focus on the aspect of covariation does, however, require the execution of dynamic mental processes. A higher learning effect of dynamic visualizations compared with static representations is to be expected if dynamic visualizations considerably facilitate the learning process, or even just enable it (Schnotz and Rasch, 2008).

Hypothesis 2 (H2): Using interactive dynamic visualizations of geometrical situations dyna-linked with the corresponding graphs are more beneficial than using linear dynamic visualizations for learning about the aspect of covariation of a function.

Interactive dynamic visualizations allow or even require learners to influence the flow of a dynamic visualization. Therefore, learners can control the flow of information and prevent the information overload of working memory. In addition, systematic variations can be deliberately explored. However, the number of variations in the interactive dynamic visualization should be kept low to facilitate a focused learning process.

Hypothesis 3 (H3): There is an aptitude–treatment interaction between visual-spatial ability and learning about the aspect of covariation of a function with linear or interactive dynamic visualizations of geometrical situations dyna-linked with graphs.

The ability-as-compensator and the ability-as-enabler hypotheses offer two rationales postulating an aptitude–treatment interaction between visual-spatial ability and representational form, albeit in different directions.




MATERIALS AND METHODS


Overview and Experimental Design

An experiment consisting of three lessons of 45 min each was performed to check the validity of the hypothesis (cf. Overview in Figure 2). In the first lesson, six control variables were collected (cf. subsection instruments). The intervention with a computer-based learning environment took place in the second lesson (cf. subsection learning environment). The students were randomly assigned to one of three experimental groups and individually learned for 25 min using a static representation, a linear dynamic visualization, or an interactive dynamic visualization. The core content of the learning environment was the learning of qualitative covariational thinking. The computer-based posttest was administered during the second lesson, immediately following the intervention. Finally, four more control variables were collected in the third lesson. The whole experiment took place in three mathematics lessons within one school week.
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FIGURE 2. Overview of the experimental design.




Participants

One hundred and fifty-seven students (88 eighth-graders; 69 ninth-graders) of an academic track secondary school (Gymnasium) in the German state of Rhineland-Palatinate participated in the study. Nearly all students of the seven Grade 8 and 9 classes voluntarily participated in the experiment. Each gender was almost equally represented (55% female; 42% male; 3% N/A). The mean age was 14.2 years (SD = 0.66). The state’s curriculum requires functional relationships to be covered in grades 8 and 9 (Ministerium für Bildung et al., 2007). The focus of the curriculum, however, is on linear and quadratic functions, the procedural-technical handling of algebraic expressions, and the display in graphs. A qualitative analysis of general functional relationships, in particular with regard to the aspect of covariation, is not a regular part of mathematics lessons in these grades. Therefore, the content of the intervention and the posttest (see below) can be considered relatively unknown to the students.



Learning Environment

The computer-based learning environment consisted of 19 tasks. The aim of the learning environment was to foster students’ ability in qualitative covariational thinking. The stimulus in the first task (Figure 3) was an equilateral triangle, in which a chord was drawn from point P to a point Q. The chord’s endpoint Q was variable, while the starting point P was fixed at vertex A. Thus, this geometric configuration constituted a functional relationship between the length of the path on the perimeter of triangle ABC from point A to point Q and the length s of the chord PQ. We selected this problem as the initial content of our learning environment because it provided different demanding covariational tasks (cf. Roth, 2005) and was almost certainly unknown to the students. This geometrical configuration required students to evaluate what effect a variation of the geometrical configuration, that is, moving the endpoint of a chord, has with regard to covariational aspects. Intentionally, quantitative covariational thinking was not addressed. Instead, the focus was to prompt a more conceptional understanding of covariation.
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FIGURE 3. First task of the three experimental conditions in the learning environment (translated into English).


In Task 1, the students had to work out at which point the chord was at its longest based on the representation of the equilateral triangle. The students had to substantiate their answer to stimulate cognitive activation and to avoid guessing behavior. In Task 2, the students had to argue at which point the chord was at its shortest. The same representation of an equilateral triangle was also used in the following tasks 3 to 6, in which students were asked further questions about the functional relationship between the length of the path and the length of the chord—for example, in which part does the length of the chord increase, and in which part does it decrease? The intention of the first six tasks was to engage students in covariational thinking in a geometrical situation. The graph was purposely not introduced before this point. Rather, the students should first acquire a profound understanding of the situational context and its covariational aspects.

Students learned the connection between the situational and graphical representation in the following six tasks according to a predict-observe-explain scheme that has shown beneficial in previous research (Urban-Woldron, 2014). In tasks 7 to 9, students had to predict the form of the graph for different sections (point Q moving from A to B, from B to C, and from C to A). Corresponding lengths were colored with the same color (Kozma, 2003) to support the students’ ability to translate between the situational and graphical representation. Tasks 10 to 13 displayed the connection between the representation of the triangle and the complete graph of the functional relationship (c.f., Figure 1) so that students could check the correctness of their predictions and explain why the graph has this particular form. In the last six tasks (tasks 14 to 19), students had to answer similar questions for a rectangle instead of a triangle. None of the students’ answers were assessed or explicitly corrected.

The tasks of three experimental groups were accompanied by three different forms of representation in the learning environment (Figure 3): when learning with the linear dynamic visualization, students could only watch an animation and observe the movement of a point Q on the triangle line ABC and its effect on the length of chord PQ; the students learning with the interactive dynamic visualization could use their mouse to drag the point Q along the triangle line and study the effect of their manual manipulation; students in the third experimental group had to solve the same tasks using static representations and to simulate mentally the point’s movement without external support.

The mathematical content of the 19 tasks in the learning environment was identical for the three experimental groups, but the instructional text differed where necessary. For example, students using a linear dynamic visualization were instructed to “animate point Q on the perimeter of the triangle by clicking on the play button.” Those working with an interactive dynamic visualization were asked to “drag point Q with the mouse along the perimeter of the triangle,” while those using a static representation were prompted to “move point Q in your mind along the perimeter of the triangle.”

During the intervention, every student worked with the digital learning environment without external support of instructors. Collaboration between students was not allowed and did not take place. The students were unaware of the experimental variation and which group they belonged to until the very end of the experiment.

The original German learning environment is reported in Supplementary Material 1.



Instruments

A number of variables were collected on participants’ attitudes and abilities. The main reason for including these variables was to check whether the randomized assignment into experimental groups led to groups with approximately equivalent preconditions. Furthermore, these variables allow controlling their effect on the outcome (cp. Maxwell et al., 2018). Therefore, we tried to identify covariates that could be assumed to correlate with the posttest (see explanation below) as the outcome variable from a theoretical or empirical perspective. We selected the three scales for measuring mathematics self-efficacy, mathematics anxiety, and intrinsic motivation to learn mathematics (Ramm et al., 2006) from the program for international student assessment (PISA). We specifically chose these because, as our own secondary analysis of PISA data showed, they displayed substantial predictive power for mathematics performance in the German PISA 2003 sample. In addition, we included the two PISA variables attitudes toward computers and computer-related locus of control, because of the computer-based learning setting of our experiment. Cognitive potential usually has high predictive power on mathematics performance. Therefore, we administered the subtest matrices analogies in the German adaptation of the cognitive ability test (Heller and Perleth, 2000). Additionally, visual-spatial ability was assessed because it is a relevant part of intelligence and because we assumed an ATI-effect between visual-spatial ability and learning with dynamic visualization (cp. H3). We used three different scales: the first, dice rotation, and second, compounding two-dimensional figures, were selected from the German intelligence test I-S-T 2000R (Amthauer et al., 2001); the third was the paper-folding test of the Educational Testing Service (Ekstrom et al., 1976). In general, a further important predictor of mathematics performance is prior knowledge. Because the learning environment and the posttest included graphs, we assessed students’ ability to deal with graphs. Hence, we developed a graph comprehension test that had sufficient internal consistency (α = 0.73). It consisted of 21 items that required students to analyze graphs qualitatively. The original German graph comprehension test is presented in Supplementary Material 2.

The computer-based posttest (α = 0.71) comprised 14 items (see Figure 4). Here, students had to apply or “transfer” their acquired knowledge to different figures (e.g., rectangular triangles, rectangles, pentagons). Static representations accompanied all the items because we were interested in how dynamic visualizations can improve the learning process and prompt elaborate mental representations so that the students can subsequently apply their acquired knowledge on static representations without the need for dynamic visualizations. As Dörfler (1993) pointed out, “so-called visualizations of mathematical concepts […] remain an integrative and constitutive part of the respective concept for the individual” (p. 169). The posttest was designed as a level test, and the students were given sufficient time (approx. 15 minutes) to complete all the items. The original German posttest items are reported in Supplementary Material 3.


[image: image]

FIGURE 4. Exemplary item of the posttest (translated into English).




Posttest-Only Design

We used a posttest-only design for the following reasons. First, because students were randomly assigned to one of the three experimental conditions, and the group sizes were sufficiently large. Hence, we can assume that confounding variables (e.g., prior knowledge, intelligence) are balanced out in the groups (Maxwell et al., 2018). Second, we feared an interaction between pretesting and the intervention, that is, that the students would behave differently with a pretest, because of the specific nature of the learning content. Third, we collected several covariates to control for the effect of these variables on the outcome. Fourth and finally, in a pre-posttest-design, there is a risk of the test showing a floor effect in the pretest or a ceiling effect in the posttest. Therefore, we decided the best way to perform the experiment was to refrain from administering a content-specific pretest.



Data Analysis


Analysis of the Experimental Effect

A covariance analysis was performed to analyze whether the learning effects in the three experimental groups differed significantly. The advantage of a covariance analysis over an ANOVA is that it additionally takes into account the effect of the control variables on the outcome (Field et al., 2012; Tabachnick and Fidell, 2014). We used the regression approach of a covariance analysis because it leads to identical results as an ANCOVA but is more general and flexible (Field et al., 2012; Tabachnick and Fidell, 2014).

The first hierarchical regression analysis was intended to identify covariates that had a significant impact on the posttest. Therefore, the control variables were gradually added to the model as predictors in a first regression model. The order of entry to the model was based on theoretical expectations of which variables might explain a larger proportion of the variance. Significant predictors for the posttest were ultimately identified as covariates based on the results of the hierarchical regression analysis.

The covariance analysis was performed in the second regression analysis. Orthogonal contrasts were used to determine the experimental effect. Since the design of the experiment was slightly unbalanced due to randomization—that is, the three experimental groups did not have the exact same number of subjects—the contrast coefficients had to be adjusted to ensure the orthogonality of the contrasts (c.f., Pedhazur, 1997). A total score for visual-spatial ability was generated by calculating a mean of the standardized values of the three different visual-spatial ability variables.



Analysis of the Aptitude–Treatment Interaction

A moderated regression analysis was performed to analyze the aptitude–treatment interaction between visual-spatial ability and experimental effect.



Dealing With Missing Values

Items not seen by a student due to absence during the experiment were coded as missing. Items on the ability scales seen but not answered by students were rated as incorrect (graph comprehension, posttest, matrices analogies, dice rotation, compounding two-dimensional figures, and paper-folding test). In the case of the attitude scales (mathematics self-efficacy, mathematics anxiety, intrinsic motivation to learn mathematics, attitudes toward computers, and computer-related locus of control), seen but unanswered items were coded as missing.

Of the 157 students, five were not present for all three lessons of the experiment. As a result, several of their scale values were incomplete. Therefore, the data of these five subjects were excluded from the analysis. Of the 152 students who participated in all three lessons, six had at least one missing value on an attitude scale because they had not answered one or more items. Therefore, the missing values of these six students were replaced by multiple imputations. Overall, four control variables were affected by the imputations. The regression analyses were therefore performed based on the observed and imputed data of these 152 students.

In the multiple imputations, five imputations were performed resulting in five complete data matrices for the remaining 152 students. Hierarchical regression was performed on each of these five data matrices, and the test statistics pooled. The pooling of the F-values was determined using the [image: image]-statistic (Reiter, 2007), while the pooling of the determinative coefficient R2 was performed using Fisher’s (1915) z-transformation (c. f., Enders, 2010). The regression coefficients and their standard errors were calculated in accordance with Rubin’s (1987) approach. For the significance testing of the pooled regression coefficients by t-tests, the adjusted degrees of freedom were determined using Barnard and Rubin’s (1999) formula for small to medium sample sizes.



Software

Regression analyses were performed using the software package R (R Core Team, 2017). Multiple imputations were calculated with the package Mice (van Buuren and Groothuis-Oudshoorn, 2011).





RESULTS


Learning Effect of Experimental Groups (H1 and H2)

The descriptive analysis of the posttest results showed mean differences between the three experimental groups (see Figure 5). The group learning with static representations had a mean posttest score of M = 5.98 (SD = 3.12), while the groups learning with linear dynamic and interactive dynamic visualizations achieved a mean posttest score of M = 7.04 (SD = 3.04) and M = 7.67 (SD = 2.79), respectively.


[image: image]

FIGURE 5. Boxplots of the raw posttest scores of the three experimental groups.


To determine whether the means differed significantly, a covariance analysis was performed by inserting covariates as predictors in a multiple regression model. An analysis of variance showed that the mean score of the control variables did not differ significantly between the three experimental groups (see Table 1). In addition, no signs of significant variance heterogeneity were found, as revealed by Levene’s test (see Table 1). Furthermore, different regression weights of the control variables could not be identified. Thus, three important preconditions for covariance analysis (covariate independent of group effect, variance homogeneity, and homogeneous regression weights) could be assumed.


TABLE 1. Descriptive statistics of the control variables.

[image: Table 1]
In the first multiple hierarchical regression (see Table 2), significant predictors for the posttest were identified for later inclusion as covariates in the analysis. For this purpose, the graph comprehension test was included in the regression model in step 1. The graph comprehension test had a significant influence, β = 0.47, t(151) = 6.58, p < 0.001 and explained 22.3 percent of the variance of the posttest score, F(1, 151) = 43.31, p < 0.001. An additional significant 9.3 percentage point of explained variance was provided by the four different facets of intelligence (matrices analogies, dice rotation, compounding two-dimensional figures, and paper-folding test), F(4, 147) = 5.01, p < 0.001. The regression weights of the four individual variables did not, however, differ significantly from 0. Including the scales for attitude to mathematics in step 3 significantly increased the proportion of variance explained by a further 7.2 percentage points, F(3, 148.03) = 5.62, p = 0.001. However, only the regression weight of the variable intrinsic motivation to learn mathematics was significant, β = 0.30, t(141.98) = 3.56, p < 0.001. In step 4, the scales anxiety in mathematics and self-efficacy in mathematics were also included in the regression model. Here as well, the regression coefficients did not differ significantly from 0; nor did the inclusion of the two variables significantly increase the proportion of variance explained, F(2, 149.03) = 1.50, p = 0.23.


TABLE 2. Hierarchical regression with posttest as dependent variable.
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In a second step, control variables from the first regression analysis were summarized for or eliminated from inclusion as covariates in a regression model. The four variables measuring cognitive ability (matrices analogies, dice rotation, compounding two-dimensional figures, and paper-folding test) showed multicollinearity from both a theoretical and an empirical point of view. As multicollinearity should be avoided in multiple regression (Tabachnick and Fidell, 2014), the four scales were aggregated into a single value as the standardized sum of the individual variable values. Since all four scales were sub-facets of intelligence tests, this aggregated value was called intelligence. Of the five attitude scales, only the intrinsic motivation to learn mathematics variable was used as a covariate in the second regression model since the four other variables did not significantly contribute to the variance explained.

Thus, the three covariates graph comprehension, intelligence, and intrinsic motivation to learn mathematics were included as predictors in the second hierarchical multiple regression model (see Table 3). Together, they accounted for 38.1 percent of the variance of the posttest, F(3, 148.04) = 30.57, p < 0.001. For a more comprehensible depiction of the experimental effects, the adjusted mean scores for the three experimental groups after eliminating the effect of the covariates were determined (see Figure 6). After controlling for the covariates, the experimental group that had learned with static representations had an adjusted mean posttest score of Madj = 6.12, while the groups learning with linear dynamic and interactive dynamic visualizations had respective adjusted mean posttest scores of Madj = 7.20 and Madj = 7.34.


TABLE 3. Hierarchical regression supplemented by contrasts.
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FIGURE 6. Adjusted mean posttest scores of the three experimental groups. **p < 0.01; ns = nonsignificant.


In order to determine whether the adjusted mean posttest scores differed significantly between the groups, orthogonal contrasts were inserted into the second regression analysis. Since the number of subjects in the experimental groups was not completely balanced (static: n1 = 54, linear dynamic: n2 = 50, interactive dynamic: n3 = 48), the contrasts were adjusted to the size of the experimental groups. Therefore, for the comparison of static representations and dynamic (linear dynamic or interactive dynamic) visualizations, the contrast coefficient K1 = (-98, 54,54) was used, whereas the linear dynamic and the interactive dynamic group were compared using the contrast coefficient K2 = (0, -48, 50). Thus, the sum of the weighted contrast products was 0, and the tested hypotheses were non-redundant and independent (c.f., Pedhazur, 1997).

The integration of orthogonal contrasts contributed significantly to a 3.2 percentage points increase in explained variance of the posttest score, F(2, 149.04) = 4.00, p = 0.02. This means that experimental group had a significant effect on posttest scores. Specifically, there was a significant difference in learning between static and dynamic visualizations, β = 0.18, t(145.03) = 2.81, p = 0.006. However, no significant difference could be identified between learning with linear dynamic and learning with interactive dynamic visualizations, β = 0.02, t(145.03) = 0.30, p = 0.77.

To verify the robustness of the results, a simple regression analysis was performed in addition to the described covariance analysis. No covariates were included as predictors in this regression analysis. The integration of the contrasts resulted in a significant proportion of the variance explained, at 5.3 percent, F(2, 150) = 4.19, p = 0.02. Consistent with the covariance analysis, the experimental groups with linear dynamic or interactive dynamic visualizations learned significantly more than the experimental group with static representations did, β = 0.21, t(150) = 2.70, p = 0.008, whereas there was no significant difference in learning between linear dynamic and interactive dynamic visualizations, β = 0.08, t(150) = 1.04, p = 0.30.



Aptitude–Treatment Interactions (H3)

Hypothesis 3 postulated aptitude–treatment interactions between visual-spatial ability and learning with dynamic visualizations. Therefore, a moderated regression analysis (see Table 4) was performed to determine whether visual-spatial ability had a moderator effect. In the first step, the predictors graph comprehension, visual-spatial ability, and intrinsic motivation to learn mathematics, as well as the two orthogonal contrasts, were included in the regression model. These five predictors accounted for 40.4 percent of the variance of the posttest, F(5, 146.04) = 19.93, p < 0.001; visual-spatial ability showed a significant main effect, β = 0.31, t(145.04) = 3.45, p < 0.001. In the second step, interactions between the contrasts and visual-spatial ability were included in the regression model. The interaction terms did not significantly contribute to the explained variance, F(2, 149.04) = 1.86, p = 0.16.


TABLE 4. Hierarchical regression for analyzing aptitude–treatment interaction.
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DISCUSSION


Learning With Dynamic Visualizations

In our experiment, dynamic visualizations were significantly more beneficial for learning than were static representations. Thus, in accordance with Hypothesis 1, an empirically verifiable added value of dynamic visualizations was found. Potential reasons for the effect can be inferred from the design of the learning environment and the dynamic visualizations.

For example, the dynamic visualizations may have functioned as scaffolding for the construction of a satisfactory mental model. The content in the experiment required a relatively high cognitive effort to mentally simulate the dynamic without external support. In the static representation condition, movement of the point along the perimeter of a triangle or quadrilateral had to be simulated and the effects of this variation analyzed and assessed in working memory. An incorrect mental simulation of the dynamic process most likely led to inadequate inferences about the graph’s shape. This result complies with the idea of supplantation (Salomon, 1979/1994) that was assumed by Vogel et al. (2007) und Hoffkamp (2011) as a theoretical underpinning of dyna-linking. Dynamic visualizations are conducive to learning if they supplant a mental process the student is unable to perform. Therefore, dynamic visualizations can be used to overcome a hurdle in learning mathematics. Conversely, dynamic visualizations do not show a positive learning effect if students do not need supplantation, that is, that they can carry out the necessary mental processes successfully without a dynamic visualization.

Furthermore, the content in the learning environment was developed gradually in all three experimental groups. The students in each group first had to anticipate the form of the graph. The correct graph became visible in a subsequent task. The group learning with static representations could hence also see whether their mental simulation of the dynamic process was correct. In contrast with the experimental groups learning with dynamic visualizations, however, the static representations group had very little opportunity to understand why their considerations may have been wrong; those in the dynamic visualizations groups could contemplate the dynamic on the screen, subsequently correct any erroneous considerations and ideally explore explanations for the shape of the graph. In the dynamic visualization of the equilateral triangle, for example, students could observe that in the middle section the length of the chord decreased more and more slowly until a local minimum was reached; and that the length of the chord then increased speed until it reached a local maximum in the next corner. Being able to observe this process in the dynamic visualization groups made it easier for these learners to realize that the graph in the middle section had to have a symmetrical convex shape with a local minimum in the middle. The group learning with static representations, on the other hand, could only observe that the graph had a convex symmetric form with a local minimum in the following task. If these learners did not correctly anticipate this form (e.g., due to faulty mental simulation of the dynamic process), no help was available to generate a satisfactory mental model and to understand why the graph shape presented was correct. To draw conclusions solely from the illustrated form of the graph about why their mental simulation of the dynamic process was faulty would have required a considerable, in some cases excessive, amount of cognitive effort from the learners. Therefore, dynamic visualizations may have enabled the other student groups to construct a more meaningful and coherent model of the learning content.

Hypothesis 2 could not be corroborated as no difference between learning with interactive and learning with linear dynamic visualizations was found. A greater learning effect of interactive dynamic visualizations was postulated primarily for two reasons. First, it was assumed that interactive dynamic visualizations would make it possible to control and investigate the aspects that were relevant to the particular problem more precisely (Ploetzner and Lowe, 2004) and therefore induce a deeper processing of the learning content (Palmiter and Elkerton, 1993). When asked about the location of the local minima of the length of the chord, for example, the chord could be manipulated more precisely and repeatedly at the relevant point. When using a linear dynamic visualization, the visualization had to be observed carefully; the transitory moment at which the chord became minimal could not be missed. Overall, it seems that the transitivity of the linear dynamic visualization (Höffler and Leutner, 2011) had no negative effect on learners. It seemed that the learners did not experience additional difficulties in processing the changes in the linear dynamic visualization, as shown in some previous research (cp. Bétrancourt and Tversky, 2000). In our experiment, it was just as beneficial to observe the dynamic process in a linear dynamic visualization as it was to work with an interactive dynamic visualization.

Despite this, the experiment also showed that interactivity had no negative effects. Under the assumption that interactivity ties up cognitive resources unavailable for the learning process (Ploetzner and Lowe, 2004), a negative effect of interactive compared with linear dynamic visualizations would theoretically have been understandable. One reason for the non-negative effect of interactivity could be that the interaction possibilities in the experiment were implemented very sparingly, and thus, the interactivity caused no relevant higher cognitive load. Learners could only move the point on the perimeter of the triangle. Other interactive design options (e.g., moving the corner points of the figure or shifting the starting point of the chord) were intentionally disabled to keep the cognitive load and potential negative effects caused by the interaction option low.

In sum, the theoretically assumed advantage of interactive dynamic visualizations over linear dynamic visualizations could not be proven empirically. The potential of interactivity might only come to light in more complex and multifaceted tasks like Hoffkamp’s (2011). In these tasks, the learners could be more able to regulate the cognitive load imposed by a dynamic visualization through interactive actions. Furthermore, the possibility to investigate a task more focussed in an interactive dynamic visualization may come more into play with a variety of interaction options because they enable students to focus their attention on a particular feature of the dynamic visualization.



Aptitude–Treatment Interaction

Regarding Hypothesis 3, no significant aptitude-treatment interaction between visual-spatial ability and learning with dynamic visualizations was found, despite a significant main effect of visual-spatial ability in our experiment. Therefore, a one-directional effect, as assumed by the ability-as-enhancer or the ability-as-compensator thesis, could not be corroborated. However, we should point out that the absence of a significant effect did not prove that there is no aptitude-treatment interaction. The two assumed effects might have balance out, that is, that both an enhancing and a compensating effect of visual-spatial ability on learning with dynamic visualizations exist. Furthermore, the non-significance could be caused by a lack of power of the experiment. It seems unlikely that our findings were the result of the scales of visual-spatial ability used, as in Sanchez and Wiley (2014) experiment, since we selected several subscales that covered various sub-factors (c.f., Carroll, 1993) of visual-spatial ability.



Limitations

The intervention in the experiment only took 25 min. Hence, it was a relatively short and limited learning process. This raises the question of how sustainable the learning process induced by dynamic visualization really was. On the one hand, the differences in learning gains may add up in longer learning units; that is, that the difference between learning with static representations and learning with dynamic visualization becomes even greater in longer learning units. On the other hand, dynamic visualizations might only enable faster access to the content. In a longer intervention, after a slower “ignition phase,” the group learning with static representations could reach a level as high as that reached by the groups learning with dynamic visualization. One might consider examining which of these two effects occurs during prolonged interventions in a further experiment.



Research Desiderata

The main intention of the experiment was to find any empirical evidence for the effect of dynamic visualizations vs. static representations in learning essential mathematical content. Despite its success, just a modest effect of dynamic visualizations compared with static representations was found. Many aspects concerning dynamic visualizations in learning and teaching mathematics remain unclear.

First, the conditions under which dynamic visualizations in mathematics education are conducive to learning have not yet been satisfactorily clarified. It has already been suggested that limiting the interaction possibilities appears to prevent excessive cognitive load. A further experiment might elucidate the question of how an excessive level of interaction might hinder learning. Our experiment also did not show that interactive dynamic visualizations are more beneficial than linear dynamic visualizations. Experimental studies that take a closer look at comparisons between interactive dynamic and linear dynamic visualizations are therefore desirable.

Furthermore, the experiment was based on the assumption that a didactically designed learning environment is needed to generate positive learning effects of dynamic visualizations. Therefore, the dynamic visualizations were integrated into a learning environment in which the students had to explore tasks with increasing difficulty and complexity. This approach could also be validated or falsified by means of further empirical investigation. Two experimental groups could work with the same interactive dynamic visualization: one could work freely and without concrete content-related problems with an interactive dynamic visualization (possible task: “Explore the computer-based learning environment and describe what discoveries you make”); while the other could be given pre-structured and targeted assignments. Such a design could be used to determine to which extent simply exploring an interactive dynamic visualization itself induces a learning process.

Finally, it would be beneficial to investigate the learning effect of dynamic visualizations for further mathematical content. These studies should be combined with further in-depth theoretical considerations about the advantages that learning with dynamic visualizations can offer regarding these contents. For example, in calculus, many students struggle to comprehend limiting processes (e.g., derivative, integral). Therefore, several dynamic visualizations are available to support the learning and teaching of calculus. Against the backdrop of our quantitative results and findings based on qualitative research from Hoffkamp (2011), it seems plausible to assume that the appropriate use of dynamic visualizations could be beneficial in teaching calculus. However, an empirical validation with quantitative experiments of the effectiveness of teaching and learning with dynamic visualizations in calculus is still pending. Furthermore, the use of dynamic visualizations for learning dynamic aspects in stochastics (e.g., the law of large numbers or central limit theorem) or geometry (e.g., construction tasks) has not yet been sufficiently empirically investigated.




CONCLUSION

Eventually, we can draw some conclusions for teaching mathematics from the present study. On the one hand, we can state that, under certain conditions, dynamic visualizations can support learning better than static representations. For example, embedding dynamic visualizations into an elaborated learning environment seems beneficial. In consequence, through the interactive relationship between dynamic visualization as an artifact and the tasks, the dynamic visualization can transform into an instrument that enables learning (Rabardel, 2002). It is reasonable to assume that other mathematical content (e.g., calculus, probability theory) can bring out this potential of dynamic visualizations as well.

On the other hand, the effect of dynamic visualizations was rather modest, and interactivity had no additional effect at all. Other cognitively activating features in a learning environment like predict-observe-explain (Urban-Woldron, 2014) could have a higher effect on learning mathematics than dynamic visualizations. Therefore, the present study confirms that expectations in using dynamic visualizations in teaching mathematics should be realistic: Dynamic visualizations are no magic bullets, but to a certain degree, they can facilitate learning processes in mathematics.
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In teaching statistics in secondary schools and at university, two visualizations are primarily used when situations with two dichotomous characteristics are represented: 2 × 2 tables and tree diagrams. Both visualizations can be depicted either with probabilities or with frequencies. Visualizations with frequencies have been shown to help students significantly more in Bayesian reasoning problems than probability visualizations do. Because tree diagrams or double-trees (which are largely unknown in school) are node-branch structures, these two visualizations (in contrast to the 2 × 2 table) can even simultaneously display probabilities on branches and frequencies inside the nodes. This is a teaching advantage as it allows the frequency concept to be used to better understand probabilities. However, 2 × 2 tables and (double-)trees have a decisive disadvantage: While joint probabilities [e.g., P(A∩B)] are represented in 2 × 2 tables but no conditional probabilities [e.g., P(A|B)], it is exactly the other way around with (double-)trees. Therefore, a visualization that is equally suitable for the representation of joint probabilities and conditional probabilities is desirable. In this article, we present a new visualization—the frequency net—in which all absolute frequencies and all types of probabilities can be depicted. In addition to a detailed theoretical analysis of the frequency net, we report the results of a study with 249 university students that shows that “net diagrams” can improve reasoning without previous instruction to a similar extent as 2 × 2 tables and double-trees. Regarding questions about conditional probabilities, frequency visualizations (2 × 2 table, double-tree, or net diagram with absolute frequencies) are consistently superior to probability visualizations, and the frequency net performs as well as the frequency double-tree. Only the 2 × 2 table with frequencies—the one visualization that participants were already familiar with—led to higher performance rates. If, on the other hand, a question about a joint probability had to be answered, all implemented visualizations clearly supported participants’ performance, but no uniform format effect becomes visible. Here, participants reached the highest performance in the versions with probability 2 × 2 tables and probability net diagrams. Furthermore, after conducting a detailed error analysis, we report interesting error shifts between the two information formats and the different visualizations and give recommendations for teaching probability.

Keywords: frequency net, natural frequencies, conditional probabilities, joint probabilities, Bayesian reasoning


INTRODUCTION

Experimental cognitive psychology research on the effects of natural frequencies and visualizations focuses primarily on conditional probabilities, especially on Bayesian tasks like the famous mammography problem and similar cognitive illusions like the Monty Hall problem (Kahneman et al., 1982; Gigerenzer and Hoffrage, 1995; Goodie and Fantino, 1996; Hoffrage et al., 2000; Krauss and Wang, 2003; Barbey and Sloman, 2007; Spiegelhalter et al., 2011; Baratgin, 2015; Operskalski and Barbey, 2016; McDowell and Jacobs, 2017).

However, conditional probability tasks, and especially Bayesian tasks are only one aspect of teaching probability at secondary schools and university. Tasks on joint probabilities also play an important role in stochastic education, as they contribute significantly to the general understanding of probabilities (see, e.g., Pfannkuch and Budgett, 2017). In this article, we seek to broaden the field of natural frequencies and visualizations in Bayesian reasoning to questions about joint probabilities and to that end present a new visualization that is equally suitable for both types of probabilities.

In the teaching of statistics at secondary school and university level, two visualizations are primarily used when situations with two dichotomous characteristics are represented: 2 × 2 tables and tree diagrams. Both visualizations can be depicted with probabilities or with frequencies. Visualizations with frequencies have been shown to help students significantly more than probability visualizations in Bayesian reasoning problems (Binder et al., 2015, 2018). Tree diagrams and their extensions to double-trees can even display both information formats simultaneously, which is an advantage from a pedagogical point of view.

However, 2 × 2 tables and (double-)trees each have a decisive disadvantage with respect to the probability representation: While in 2 × 2 tables, aside from marginal probabilities, only joint probabilities [e.g., P(A∩B)] are represented but no conditional probabilities [e.g., P(A|B)], (double-)trees present conditional probabilities but no joint probabilities. Although it is possible to see joint probabilities in the double-tree with frequencies by skipping a level and reading “160 of 10,000,” there is no branch provided to display the corresponding joint probabilities directly, which has disadvantages from an educational point of view (the same holds true for 2 × 2 tables).

In this article we present a new visualization—the frequency net (also a node-branch structure)—in which all frequencies as well as all probabilities can be depicted simultaneously. In section “The Frequency Net and Net Diagrams” a detailed theoretical analysis of this new visualization is presented. Furthermore, we will report results of an empirical study on this visualization, conducted with 249 university students, in which we systematically varied the information format (probabilities vs. frequencies) and the visualization (no visualization, 2 × 2 table, double-tree, or frequency net) of the task. In addition to the typical questions for conditional probabilities, we also asked joint probability questions. Finally, a systematic analysis of the typical errors that occurred is presented—separately for information format, visualization and inference type.



VISUALIZATIONS OF STATISTICAL INFORMATION


Conditional Probabilities and Bayesian Reasoning

Many professionals, like medical doctors and judges in court have to make important decisions based on statistical information. Often, Bayesian inferences are necessary for such decision-making processes, for example when a radiologist has to assess and communicate the statistical meaning of, for instance, a positive mammography screening. Many empirical studies have documented faulty inferences and even cognitive illusions among professionals of various disciplines, like physicians (Hoffrage and Gigerenzer, 1998; Garcia-Retamero and Hoffrage, 2013), those in the legal profession (Hoffrage et al., 2000), and managers (Hoffrage et al., 2015a), as well as secondary or university students (Ellis et al., 2014; Binder et al., 2015; Böcherer-Linder and Eichler, 2019).

Consider, for instance, the mammography problem, in which the prevalence of the disease has to be linked with the sensitivity and the false-positive rate for a mammogram in order to determine the probability that a woman with a positive mammogram actually has breast cancer (adapted from Eddy, 1982; see also Gigerenzer and Hoffrage, 1995; Siegrist and Keller, 2011; Micallef et al., 2012; Garcia-Retamero and Hoffrage, 2013; the numbers given below were adjusted in such a way that the positive predictive value corresponds to the one from the current German mammography screening report, Kooperationsgemeinschaft Mammographie, 2018).


Mammography Problem – Probability Format

The probability of breast cancer is 2% for a woman of a particular age group who participates in a routine screening. If a woman who participates in a routine screening has breast cancer, the probability is 80% that she will have a positive mammogram. If a woman who participates in a routine screening does not have breast cancer, the probability is 10% that she will have a false-positive mammogram.

What is the probability that a woman of this age group who participates in a routine screening and has a positive mammogram actually has breast cancer?

The correct solution can be determined using Bayes’ formula and is about 14%. However, most people in reality estimate such (a posteriori) probabilities to be much higher (Eddy, 1982; Hoffrage and Gigerenzer, 1998). In the last 25 year, to help prevent that kind of dangerous misjudgment, research has intensively examined the concept of natural frequencies in Bayesian reasoning problems, both theoretically and empirically (Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998; McDowell and Jacobs, 2017; McDowell et al., 2018). These studies have shown that many more people are able to answer this type of question if all statistical information is presented using natural frequencies rather than confusing probabilities:



Mammography Problem – Natural Frequency Format

200 out of 10,000 women of a particular age group who participate in a routine screening have breast cancer. 160 out of 200 women who participate in a routine screening and have breast cancer will have a positive mammogram. 980 out of 9,800 women who participate in a routine screening and have no breast cancer will have a false-positive mammogram.

How many of the women of this age group who participate in a routine screening and receive positive mammograms actually have breast cancer?

This mode of representation makes it possible to imagine concrete persons, the nested-set relations get transparent, and thus the solution algorithm becomes simpler. Now it is easy to see that 160 + 980 women receive positive mammograms and only 160 out of these 1,140 women actually have breast cancer. A recent meta-analysis by McDowell and Jacobs (2017) summarized 35 studies that implemented natural frequencies and found an average performance in natural frequency versions of Bayesian reasoning problems of about 24%, compared to only 4% in studies that used probability versions (for details see McDowell and Jacobs, 2017).

Another strategy for improving Bayesian reasoning is using visualizations such as 2 × 2 tables (Steckelberg et al., 2004; Binder et al., 2015), tree diagrams (Sedlmeier and Gigerenzer, 2001; Yamagishi, 2003; Steckelberg et al., 2004; Binder et al., 2015; Budgett et al., 2016; Reani et al., 2018), double-trees (Wassner, 2004; Khan et al., 2015; Böcherer-Linder and Eichler, 2019), Euler diagrams (Sloman et al., 2003; Micallef et al., 2012; Sirota et al., 2014; Reani et al., 2018), roulette-wheel diagrams (Yamagishi, 2003; Brase, 2014), frequency grids (Cosmides and Tooby, 1996; Sedlmeier and Gigerenzer, 2001; Garcia-Retamero et al., 2015), Eikosograms (sometimes also called unit squares or mosaic plots; e.g., Oldford and Cherry, 2006; Böcherer-Linder and Eichler, 2017; Pfannkuch and Budgett, 2017; Talboy and Schneider, 2017), or icon arrays (Zikmund-Fisher et al., 2014; Brase, 2008, 2014; Reani et al., 2018). Since the visualization of statistical information is as successful as the natural frequency strategy (McDowell and Jacobs, 2017), there have also been efforts in recent times to develop new visualizations with specific advantages, such as the dot diagram (which is a hybrid visualization of a 2 × 2 table, an Euler diagram, and an icon array; Wu et al., 2017) the turtleback diagram (Yan and Davis, 2018), or interactive diagrams like pachinkograms (Budgett and Pfannkuch, 2019; Starns et al., 2019). For an overview of typical visualizations for situations with two dichotomous characteristics, see Spiegelhalter et al. (2011), or Binder et al. (2015), and for a classification of typical visualizations used for branching, nested-set relation, or frequency, see Khan et al. (2015).

Note that 2 × 2 tables, tree diagrams, and double-trees all have the advantage that they can be constructed easily with paper and pencil by teachers or students. In contrast, most of the other diagrams mentioned above are complicated to produce, which is especially problematic when base rates are extreme (as in typical medical Bayesian reasoning problems). Area-proportional Euler diagrams, for instance, are unsuitable for teaching because drawing such illustrations is geometrically difficult. In the Eikosogram, areas can become so small that they can almost no longer be effectively represented in the diagram (if the base rate is very small). Similarly, the icon array is based on small symbols instead of geometrical areas, and thus many symbols have to be produced in the case of small or unmanageable proportions (such as 0.1%), entailing an enormous amount of effort to draw, for instance, 1,000 or even in some cases 10,000 small icons. Therefore the focus of this article is on 2 × 2 tables, tree diagrams, and double-trees, which are displayed in Figure 1.


[image: image]

FIGURE 1. 2 × 2 tables, tree diagrams, and double-trees (left in probabilities, right in frequencies) for the mammography problem.


Furthermore, these three visualizations usually display the statistical information explicitly as numbers. In these visualizations, the statistical information can be expressed either as probabilities or as absolute frequencies (see, e.g., Figure 1) but only in (double-)trees can both formats be displayed simultaneously.

However, from an educator’s point of view, it would be helpful if a visualization could display both absolute frequencies and probabilities simultaneously because this would allow one to switch representations instantly and to see the meaning of marginal probabilities, conditional probabilities, or joint probabilities in terms of intuitive absolute frequencies that could be combined to natural frequencies (e.g., “160 out of 200”). Yet only in node-branch structures like tree diagrams and double-trees—but not in 2 × 2 tables—can absolute frequencies and probabilities be displayed at the same time (see, e.g., “branching,” Khan et al., 2015). Note that these visualizations are especially helpful when they contain absolute frequencies rather than probabilities (e.g., Binder et al., 2015; Bruckmaier et al., 2019).




From Bayesian Reasoning to Other Statistical Judgments: Teaching Probability in Secondary School and University

In teaching probability and statistics at secondary school level, Bayesian tasks are only one of a number of probability tasks covered. In fact, there are 16 different probabilities in a situation with two dichotomous events (A and B): Four marginal probabilities [P(A), P([image: image]), P(B), P([image: image])], four joint probabilities [P(A∩B), P(A∩[image: image]), P([image: image]∩B), P([image: image]∩[image: image])], and eight conditional probabilities [P(A|B), P([image: image]|B), P(A|[image: image]), P([image: image]|[image: image]), P(B|A), P([image: image]|A), P(B|[image: image]), P([image: image]|[image: image])]. Thus far, research on the effect of natural frequencies and visualizations predominantly focuses on the notoriously difficult Bayesian conditional probabilities (for exceptions, see Böcherer-Linder and Eichler, 2017; Bruckmaier et al., 2019) due to their impact for important real-world decisions in many domains (see, e.g., Hoffrage et al., 2000; Operskalski and Barbey, 2016).

However, judgment errors with severe consequences can also occur in connection with joint probabilities, for example in association with the difficult concept of independence of events such as occurred in the famous trial of Sally Clark (see, e.g., Schneps and Colmez, 2013; Barker, 2017; Jessop, 2018). In this trial, Sally Clark was charged with murdering her two infant sons, who had actually died of sudden infant death syndrome (SIDS). The court expert Roy Meadow made two probabilistic judgment errors here: (1) The court committed the typical “prosecutor’s fallacy” (Hill, 2004), which again is based on misinterpretation of conditional probabilities; and (2) Meadows’ calculation was based on the assumption that two SIDS within a family are stochastically independent, which is not the case. Thus, because of their mathematical value as well as because of their practical relevance, the typical (Bayesian) inverted conditional probabilities should be examined, but—importantly—also joint probabilities, especially when it comes to the visualization of these probabilities.

Table 1 shows four potential advantageous features of visualizations in situations with two dichotomous events: (1) The possibility to display all four joint probabilities directly, (2) the possibility to display all eight conditional probabilities, (3) the possibility to display probabilities and frequencies simultaneously (then it is possible to understand probabilities with the help of frequencies), and (4) the possibility for both reading directions to be represented at the same time. Therefore, Table 1 shows the suitability of 2 × 2 tables, trees, and double-trees for visualizing those 16 probabilities that can occur in situations with two dichotomous events [besides P(Ω) and P(Ø)]. This results in a disadvantage for teaching mathematics: Either the students learn to always select the appropriate visualization for each task, or they have to accept the fact that they sometimes first have to perform an extra calculation before the visualization can be completed (for a detailed explanation, see Binder et al., under review). If, for example, only joint probabilities are given in a task, these probabilities cannot be written directly into the double-tree—because in double-trees, no branch is available for depicting joint probabilities. In this case, the joint probabilities must be converted in a previous calculation into conditional probabilities, which can then be displayed in the (double-)tree.


TABLE 1. Advantages and disadvantages of 2 × 2 tables, trees, double-trees, and net diagrams.

[image: Table 1]
Furthermore, as mentioned above, the double-tree as a node-branch structure has one feature that might be an advantage for teaching—compared to the 2 × 2 table—because it can represent probabilities as well as frequencies, including their mutual relations at the same time. In contrast to what one sees in “basic” tree diagrams, both reading directions are simultaneously evident in double-trees. However, even the advantageous double-tree has three disadvantages:

• Missing joint probabilities: There are no branches on which the (four) joint probabilities can be directly depicted. If such branches are added, the diagram becomes cumbersome.

• Crossing branches: Two branches overlap in the lower part of the double-tree. This may be problematic for learners, since it carries the risk of confusing the conditional probabilities that are positioned on the two crossing branches.

• Doubled node: One of the nodes of the double-tree appears twice—namely the one that represents the total sample (e.g., 10,000 women).



The Frequency Net and Net Diagrams

This article presents a novel visualization that enables the four marginal probabilities, all four joint probabilities, and all eight conditional probabilities to be taken in at a glance: the frequency net. Figure 2 shows a schematic net diagram for two abstract events A and B, and their respective counter-events [image: image] and [image: image]. Moreover, in Figure 3, net diagrams (with probabilities, absolute frequencies, and both information formats) concerning the mammography problem are displayed. For a visualization coming close to our frequency net, yet without including joint probabilities (or corresponding branches), see Soto-Andrade (2019), and for a similar schematic visualization without joint probabilities or any numbers, see Wikipedia (without date)1.
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FIGURE 2. Schematic net diagram for two abstract events A and B and their counter-events [image: image] and [image: image], representing four marginal probabilities, four joint probabilities, and eight conditional probabilities.
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FIGURE 3. Net diagram with probabilities (top), frequencies (middle), or both information formats simultaneously for the mammography problem.


It has to be noted that absolute frequencies and probabilities can be displayed simultaneously in net diagrams (see Figure 3, below). Therefore the frequency net, consisting of a node-branch structure, is an enhancement of a double-tree. As in the double-tree, all four marginal probabilities and all eight conditional probabilities can be depicted. In addition and in contrast to the double-tree, the net diagram has four branches for the joint probabilities. Furthermore, and also in contrast to the double-tree, no branches cross each other, and none of the nodes appears twice.

The frequency net can also be seen as a hybrid version of a tree diagram combined with a 2 × 2 table: On the one hand, the frequency net consists of two tree diagrams that have been carefully placed one on top of the other (see Figures 4A,B; the two possible tree diagrams are also represented in a double-tree). On the other hand, the frequency 2 × 2 table is included in the four corner nodes (Figure 4C) of the net diagram, and the probability 2 × 2 table is included on the four branches for the corresponding joint probabilities (Figure 4D).
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FIGURE 4. Both possible tree diagrams and the 2 × 2 table are included in the net diagram. (A) Net diagram with highlighted tree A; (B) Net diagram with highlighted tree B; (C) Net diagram with highlighted frequency 2 × 2 table; (D) Net diagram with highlighted probability 2 × 2 table.


In the middle node of the net diagram (Figure 2), an (imaginary) sample size is displayed to which all further statistical information refers. First, the four marginal probabilities can be found from the middle node horizontally and vertically: P(A), P(B), P([image: image]) and P([image: image]). Second, the joint probabilities are plotted diagonally from the middle node to the corner nodes: P(A∩B), P([image: image]∩B), P(A∩[image: image]), P([image: image]∩[image: image]). Finally, the eight conditional probabilities are found at the borderlines of the net diagram: P(A|B), P([image: image]|B), P(A|[image: image]), P([image: image]|[image: image]), P(B|A), P([image: image]|A), P(B|[image: image]), and P([image: image]|[image: image]).

Note that in the net diagram, the following four probability rules apply, which are described separately in detail for probabilities and frequencies in Binder et al. (under review):

• Line rule: The sum of probabilities on opposing horizontal or vertical branches, both starting from the middle node is always 1.

• Triangle rule (≙ multiplication rule in the tree diagram): If you multiply the probabilities of the two “legs” in the eight elementary right-angled triangles, you get the probability displayed on the dashed hypotenuses.

• V-rule (≙ addition rule in the tree diagram): The sum of the probabilities of two adjoining diagonal (dashed) branches always equals the probability that is displayed on the enclosed branch [e.g., P(A∩B) + P(A∩[image: image]) = P(A)].

• X-rule: The probabilities on all four diagonal branches added together result in 1.

Since we present in our results not only the performance of participants but also an analysis of their errors, we will consider in the next section prior research results concerning error analyses in Bayesian reasoning.



Typical Errors in Bayesian Reasoning and Typical Errors With 2 × 2 Tables


Typical Errors in Bayesian Reasoning

From an educational point of view, it seems obvious to examine participants’ performance in relation to different information formats or visualizations. Equally interesting, however, is analyzing the reasons why participants were not able to solve a given task. In fact, many statistics educators, and also the psychologist McDowell and the statistician Jacobs, stress the importance of examining erroneous cognitive algorithms in Bayesian reasoning (McDowell and Jacobs, 2017). Weber et al. (2018), for example, found that many people who could not solve Bayesian reasoning tasks in the natural frequency format had first converted the statistical information back into probabilities and then subsequently failed in solving the task correctly. Lehner and Reiss (2018); Reani et al. (2018), and Bruckmaier et al. (2019) examined decision-making strategies (e.g., in contingency tables) with the help of eye-tracking analysis and found that eye-tracking is a useful method for investigating correct and incorrect solution algorithms, based on certain probability visualizations.

However, the demanding effort that an eye-tracking study involves is not always necessary. In many cases, the tasks can be constructed in such a way that the wrong solution itself already makes the faulty solution algorithm apparent. Along these lines, Gigerenzer and Hoffrage (1995) classified the wrong answers given by participants in “write-aloud protocols” and identified typical wrong answers in pure text versions of Bayesian tasks (see Table 2; compare also Eichler et al., under review; Steckelberg et al., 2004; Zhu and Gigerenzer, 2006; Días and Batanero, 2009; Eichler and Böcherer-Linder, 2018; Bruckmaier et al., 2019). Table 2 summarizes the few existing classifications of incorrect Bayesian reasoning strategies. While Gigerenzer and Hoffrage (1995) describe the typical erroneous strategies based on probabilities, Zhu and Gigerenzer (2006) and Eichler and Böcherer-Linder (2018) choose an explanatory approach based on frequencies. Bruckmaier et al. (2019), however, merge these two types of error presentation.


TABLE 2. Correct solution and typical incorrect Bayesian strategies with regard to the correct solution “F out of D” in a typical Bayesian reasoning task (according to Gigerenzer and Hoffrage, 1995; Steckelberg et al., 2004; Zhu and Gigerenzer, 2006; Días and Batanero, 2009; Eichler and Böcherer-Linder, 2018; Bruckmaier et al., 2019).
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It has to be noted that the research findings obtained thus far are also consistent with the alignment hypothesis: Some presentations of statistical information create “a better alignment between presented and requested relationships, and this should facilitate the comprehension of the requested ratio beyond the represented quantities” (Tubau et al., 2019, p. 1808; see also Johnson and Tubau, 2017). One common error in the text-only version of Bayesian reasoning problems is the Fisherian. In a frequency version, this error occurs because participants are mapping presented numbers onto the requested ratio without a proper comprehension of the relevant relationships.

To this date, there has only been limited research on how error patterns shift when (1) the information format is changed, and (2) an additional visualization is shown. Such results are still lacking, especially with regard to non-Bayesian questions such as the one for joint probabilities. However, it has been understood since Gigerenzer and Hoffrage (1995) that in the pure text versions of Bayesian tasks, the errors joint occurrence and Fisherian are to be expected in both information formats. Furthermore, Bruckmaier et al. (2019) found evidence in an eye-tracking study that the joint-occurrence error appears more frequently in a probability 2 × 2 table than in a frequency 2 × 2 table. All errors of Table 2 are related to the notation that is shown in Figure 5 (uppercase letters stand for absolute frequencies while lowercase letters represent probabilities, see also Bruckmaier et al., 2019).
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FIGURE 5. Schematic representation of 2 × 2 tables, double-trees, and net diagrams (left in probabilities, right in frequencies).





Typical Errors With 2 × 2 Tables

Besides the above-mentioned studies on typical errors in Bayesian reasoning, there are several studies on typical errors and strategies regarding non-Bayesian judgments made with the use of a 2 × 2 table, for instance depending on different developmental stages in childhood (Batanero et al., 1994; Lehner and Reiss, 2018). Most of these studies focus on situations in which the proportion “F out of D” has to be compared with “I out of E” in 2 × 2 tables with frequencies (e.g., “Which one is larger?”). While there are several correct multiplicative strategies for solving this task (McKenzie, 1994), there are also various additive strategies that generally do not correspond to valid modeling of the situation and therefore can lead to misjudgments (Shaklee and Hall, 1983; Ufer et al., 2011; Lehner and Reiss, 2018). The present article, however, focuses on “simpler” inferences than the one just described. Instead of those complex comparisons of two different distributions, fewer mental steps are required for answering the questions in the present empirical study. The studies mentioned above are more about “read beyond the data,” whereas the present study is more about “read between the data” (Curcio, 1989). To the best of our knowledge, there are no comprehensive studies concerning typical difficulties in the simple act of choosing a number or a piece of information or even making simple inferences from a 2 × 2 table (for a study on the subject, albeit with only a few participants, see Bruckmaier et al., 2019). Furthermore, there are no studies on the efficiency of the frequency net thus far.




RESEARCH QUESTIONS

The main goal of the present study is to examine empirically whether the net diagram can already be understood intuitively by participants without any prior explanation. We will explore the following research questions regarding the new visualization.

Research question 1: Depending on the information format (probabilities vs. frequencies), what effect do various visualizations (text only vs. 2 × 2 table vs. double-tree vs. net diagram) have on the ability of participants to solve a


a)conditional probability task?

b)joint probability task?



With respect to (a), we expect that all visualizations depicted with frequencies will have a positive effect on participants’ performance. Since 2 × 2 tables are taught in secondary school (in Germany) but double-trees and net diagrams are not, this study cannot deliver a fair direct comparison of these visualizations. Rather, this study is intended to test the hypothesis that the net diagram—although structurally completely unknown—is already as supportive to participant understanding as the other two visualizations.

Since no previous research results are available on question (b), it is rather explorative in nature. However, due to the frequent confusion of conditional probabilities with joint probabilities in typical Bayesian reasoning problems, we expect the opposite confusion to occur regarding the question for joint probabilities and assume that some participants will answer this question erroneously with a conditional probability.

Research question 2:

What is the effect of all three visualizations—again depending on information format—on specific errors that typically appear when asking for


a)conditional probability?

b)joint probability?



Do certain visualizations prevent or provoke specific errors? Since Bruckmaier et al. (2019) have already found, in an eye-tracking study with 24 participants, first indications that the 2 × 2 table with probabilities, for example, provokes the joint-occurrence error, we would like to examine this hypothesis in particular.

We also expect to find other erroneous strategies than those typical mistakes reported thus far because the presentation of a (fully completed) 2 × 2 table, a double-tree, or a net diagram show more statistical information than a tree diagram or purely textual Bayesian tasks, and therefore makes other typical error patterns possible.



EMPIRICAL STUDY


Design

In a paper-and-pencil questionnaire, participants were presented with two situations that are typical for Bayesian reasoning problems, the mammography problem and a short version of the economics problem (Ajzen, 1977; for problem formulations, see Table 5). The statistical information was either given in the structure of a typical Bayesian task (i.e., base rate, sensitivity, and false-alarm rate), or within a visualization (without any additional text provided with the statistical information). The presented diagrams were completely filled with numbers (either with frequencies or with probabilities). Therefore, in most cases, participants simply had to choose the correct number/pair of numbers, and no genuine inference was necessary (see Table 4).

The design of the study (see Table 3) includes two factors of interest (visualization and format of information) and one factor that was not of interest (context), resulting in a 4 × 2 × 2 design:


TABLE 3. Design of the 16 tested problem versions.
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• Factor 1: Visualization: Bayesian text vs. 2 × 2 table vs. double-tree vs. net diagram.

• Factor 2: Format of information: probabilities vs. frequencies.

• Factor 3: Context: mammography problem vs. economics problem (not a factor of interest).

Each participant received one of the two problem contexts with probabilities and the other with frequencies. In that way, the order of context and information format was varied systematically. Furthermore, if, for instance, in one of the two problems a 2 × 2 table was displayed, in the other problem either no visualization, a double-tree, or a net diagram was presented. Note that in the versions with visualizations, the text with the statistical information was not presented additionally, so that participants had to use the visualization. A former study showed no effect on participants’ performance whether one provides the text with an additional visualization or not (Binder et al., 2018). Because with the text version it is only possible to formulate text with either conditional probabilities or joint probabilities (compare standard menu vs. short menu in Gigerenzer and Hoffrage, 1995), we decided to provide only “Bayesian text versions” (i.e., no text with joint probabilities), which is more in line with previous research. The amount of information given is therefore different in each version: Each of the Bayesian text versions consists of three pieces of information, but note that the three pieces of information in the natural frequency version are composed of five absolute frequencies. The net diagram used in our study displayed all 16 probabilities in the probability version (see Figure 3, above), or all 9 frequencies in the frequency version (see Figure 3, middle). In the frequency 2 × 2 table, frequency double-tree, and frequency net all nine absolute frequencies are displayed. Whereas the probability 2 × 2 table shows only joint probabilities (in addition to marginal probabilities), the double-tree displays only conditional probabilities (in addition to marginal probabilities). However, with the net diagram implemented in our study, one can see all 16 probabilities at a glance.

In Table 3 the design of the study is illustrated, resulting in 16 implemented versions, and in Table 5 the corresponding problem formulations are denoted. In each of the 16 versions, two different questions were asked: The first question addressed a conditional probability and the second question addressed a joint probability.

Note that in contrast to many other studies, our tasks do not require a genuine inference and thus fewer mental steps are required (with the exception of the Bayesian text versions; compare Ayal and Bayth Marom, 2014). Since the visualizations already provide a good deal of statistical information, in many cases only the matching number(s) has (have) to be chosen from the visualization (i.e., in the one case the requested probability and in the other case the two absolute frequencies that form the corresponding natural frequency). In the following we will only speak of something as a genuine inference if it was not enough simply to select one or two numbers but instead was necessary to combine further numbers, for example, with addition, subtraction, multiplication, or division being necessary to solve the problem.

Table 4 displays the requested cognitive strategies for answering the implemented tasks. Since Ayal and Bayth Marom (2014) have shown that participants perform poorly on complicated tasks that require more mental steps, we distinguish three different levels of complexity in Table 4. Whereas in the Bayesian text versions a genuine inference is always necessary, in most other versions it is sufficient to identify and choose the correct number (in probability versions) or the correct pair of numbers (in frequency versions), which is much easier than making a genuine inference because it requires fewer mental steps. However, according to Cognitive Load Theory (Sweller, 2003), it is probably not so easy to find the right number among many numbers.


TABLE 4. Mental steps that are necessary for answering each question.
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It has to be noted that whereas all university students are already familiar with 2 × 2 tables from secondary school, most have never seen a double-tree or a net diagram before. It should also be noted that a question asking for natural frequencies is unusual in German secondary education.

Please note that the main focus of the present empirical study is the question of conditional probabilities. In the current study, the order of questions for conditional probabilities and joint probabilities is not varied systematically (in that case, twice as many participants would have been required.). This could influence the responses of the participants who have already answered a question about conditional probabilities, for example.

There were no time constraints for completing the questionnaire (participants required about 20 min for both tasks). Participants were examined in small groups of about 10–20 persons. Pocket calculators were distributed, which could be used at any time during the study.



Instrument

Each participant was presented two successive tasks that varied in terms of (1) visualization (Bayesian text vs. 2 × 2 table vs. double-tree vs. net diagram), (2) information format (probabilities vs. frequencies), and (3) problem context (mammography vs. economics problem). All versions began with a cover story (see also Table 5); after that, one of the four different kinds of visualizations (including no visualization) was given (see Figure 1 above and below for the 2 × 2 tables and the double-trees, and see Figure 3 above and in the middle row for the net diagrams for the mammography context). Finally, two questions were provided in the same format as the information in the text: One question for a (Bayesian) conditional probability/frequency and one question for a joint probability/frequency (see Table 5).


TABLE 5. Problem formulations.
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Participants

Participants were N = 249 German university students in the fields of Pharmacy (N = 117), Human Movement Sciences (N = 33), student teacher for primary school (N = 90), and student teacher for secondary school (N = 9). 184 students were female, 65 male, and the mean age value was 20.6 (SD = 2.2). From their secondary school education, all students were familiar with 2 × 2 tables containing probabilities, 2 × 2 tables containing frequencies, and tree diagrams containing probabilities, yet not with tree diagrams containing absolute frequencies, double-trees, or net diagrams.

The study was carried out in accordance with the University Research Ethics Standards. Students were informed that their participation was voluntary (two students refrained from participating) and anonymity was guaranteed.



Coding


Conditional Inferences

The correct solution for the mammography problem in the frequency version is 160 out of 1,140 and for the economics problem 205 out of 613. The answer was coded as correct if both correct absolute numbers were provided. In the probability versions of the tasks, the answer was classified as correct if the exact probability was provided (14.03% in the mammography problem and 33.4% in the economics problem). In addition, the answers were also coded as correct if the solution was rounded up or down to the next full percentage point (e.g., in the economics problem the correct solution is 33.4%, and therefore answers between 33 and 34% were classified as a correct solution; see also Gigerenzer and Hoffrage, 1995). To be conservative, we also coded the answer as correct if the solution algorithm was correctly specified but no final result was calculated.



Joint Inferences

The correct solution for the mammography problem in the frequency version is 40 out of 10,000 and for the economics problem 115 out of 1,000. Again, the answer was only coded as correct if both correct absolute numbers were provided in the frequency version. In the probability versions of the tasks, the correct answer of the mammography problem is 0.4%, and every answer between 0.4% and 0.5% (but exclusive of 0.5% because 0.5% was one of the expected wrong solutions) was coded as correct. In the economics problem, the correct solution was 11.5%, and every answer between 11% and 12% was coded as correct. We have also classified the answer 0.1 as correct for two participants because it was clearly recognizable that the solution algorithm was correct and the result was only incorrectly rounded. In these two cases it was a Bayesian text version with probabilities and a version with a probability net. The classification of these two answers as correct was therefore conservative against our research question.





RESULTS


Participants’ Performance With Respect to Conditional Inferences

Figure 6 shows participants’ performance on the question for conditional probabilities across contexts (because context was no factor of interest in our study). Supplementary Figure S1, however, shows participants’ performance on the question for conditional probabilities, separately for the two different contexts (mammography problem vs. economics problem).
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FIGURE 6. Percentages of correct inferences in the question for a conditional probability, separated for information format and visualization type (across both contexts).


With regard to the question for conditional probability, two relevant results can be observed. First, students performed better when statistical information was presented in frequencies (58% correct inferences across context and visualization) than in probabilities (23% correct inferences across context and visualization). This finding holds true for both contexts and for all three visualizations. Second, the presentation of a visualization leads to higher performance rates (48% correct inferences) compared to a Bayesian text problem (19% correct inferences; again holding true across all versions and conditions).

As expected, the highest performance was achieved in problems using the only visualization participants knew from secondary school lessons: the 2 × 2 table with frequencies (78% correct inferences). However, participants also performed very well with the frequency double-tree and the frequency net (60 and 61% correct solutions), which students had not encountered in their secondary education. The more mental steps required for answering the question correctly, the lower the performance rate.

In order to statistically compare the effects of information format and types of visualization, we estimated a generalized linear mixed model with a logit link function to predict performance regarding the question for a conditional probability. In this model, we specified the probability version without any visualization (Bayesian text in probabilities) as the reference category and included the possible explanatory factors “frequencies,” “2 × 2 table,” “double-tree,” and “net diagram” via dummy coding.

The (unstandardized) regression coefficient for frequencies was significant (b1 = 1.88, SE = 0.27, z = 6,97, p < 0.001), and presenting a corresponding 2 × 2 table (b2 = 1.81, SE = 0.36, z = 4.99, p < 0.001), double-tree (b3 = 1.76, SE = 0.37, z = 4.78, p < 0.001), or net diagram (b4 = 1.77, SE = 0.36, z = 4.91, p < 0.001) also led to a significant regression coefficient (b0 = −2.83, SE = 0.38, z = −7.39, p < 0.001). Thus with regard to conditional inferences, frequencies and all visualizations were helpful for solving the task.

Furthermore, the actual level of education (“Semesterzahl”), grade point average (German “Abiturnote” from high school), and field of study were collected from all participants. These variables (and also the context of the task: mammography problem vs. economics problem) were then implemented as potential predictors in the generalized linear mixed model. It turned out that the context, the grade point average, and studying to be a secondary school teacher significantly predicted the probability of solving a conditional inference correctly. However, implementing these factors in the generalized linear mixed models did not change the results substantially. Furthermore, there were no significant order effects. However, there was a slight tendency for the second task (joint probability/frequency) to be correctly completed less frequently than the first task (conditional probability/frequency), as has been shown in earlier studies (Binder et al., 2018).

Although this article does not do any in-depth comparison of the different visualizations (because one visualization was known for the participants, the others two were not), it can be noted that performance on tasks using double-tree and net diagram are remarkably high given the fact that neither of these two visualizations has been explained in advance.



Participants’ Performance With Respect to Joint Inferences

Figure 7 shows participants’ performance with respect to joint probabilities and frequencies across context (because context was no factor of interest in our study). Supplementary Figure S2, however, shows participants’ performance with respect to joint inferences, separately for the two different contexts (mammography problem vs. economics problem).
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FIGURE 7. Percentages of correct inferences in the question for a joint probability, separated for information format and visualization type (across both contexts).


The study shows three interesting results: (1) If the frequency versions only are considered, each visualization of the situation was similarly helpful for the participants—no matter which of the visualizations (2 × 2 table, double-tree, or net diagram) was used. (2) In contrast to conditional inferences in typical Bayesian reasoning problems, the question of joint probabilities does not reveal a format effect (probabilities vs. frequencies). Tasks with frequencies were not processed better than tasks with probabilities. Possible reasons for this differential format effect are outlined in the discussion. (3) The highest performance was reached with probability 2 × 2 tables (which is in line with Bruckmaier et al., 2019; Binder et al., under review) and probability nets. Note that in these versions, the number of mental steps required is also the fewest. In both cases only one number has to be read from the diagram, while in the double-tree a genuine inference is required (compare also Table 4).

Note again that the main focus of the present empirical study was conditional inferences. The order of questions for conditional probabilities and joint probabilities was not varied systematically. This could have influenced the responses of participants who had already answered a question about conditional probabilities before the question on joint probabilities.

Again, in order to statistically compare the effects of information format and type of visualization, we estimated a generalized linear mixed model with a logit link function to predict performance in a joint probability question.

This time, the (unstandardized) regression coefficient for frequencies was not significant (b1 = −0.05, SE = 0.19, z = −0.26, p = 0.80), but presenting a 2 × 2 table (b2 = 2.04, SE = 0.31, z = 6.53, p < 0.001), double-tree (b3 = 0.69, SE = 0.30, z = 2.28, p = 0.02), or net diagram (b4 = 1.53, SE = 0.30, z = 5.09, p < 0.001) led to a significant regression coefficient (b0 = −1.41, SE = 0.26, z = −5.46, p < 0.001). Thus regarding joint inferences, 2 × 2 tables and net diagrams were most helpful. Also, double-trees led to a significantly higher performance rate compared to a Bayesian textual version of the task. However, there is no frequency effect in joint inferences.

Again, the level of education, grade point average, and field of study of the participant, as well as the context and the order of the task, were implemented as potential predictors in the generalized linear mixed model. We found that only the grade point average significantly predicted the probability of a joint inference being correct. However, implementing these factors in the generalized linear mixed models did not change the results. Furthermore, there were no significant effects of order, context, level of education, or field of study.



Typical Errors and Error Shifts Regarding Conditional Inferences

Figure 8 shows—separated by version—the respective errors that occurred regarding conditional inferences. Note that only errors that occurred in at least 5% of the cases in one of the examined versions are mapped in Figure 8. This means in concrete terms that if one error occurred in one version (e.g., in the Bayesian text version with probabilities) in 5% of the cases or more (e.g., the error “base rate only”), this error is also displayed for all other versions (even if this error only occurs in 2% of the cases in the probability net). Other errors that can be clearly classified but which were committed by only one or two participants per version are thus assigned to the category, “Other uniquely classifiable errors.”
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FIGURE 8. Typical errors on the question for a conditional probability, separated for information format and visualization type (across both contexts). In particular, the two errors Fisherian and joint-occurrence could be observed.


Essentially, participants made two main mistakes regarding conditional inferences: (1) joint occurrence, which is the confusion of the conditional information P(A|B) with the joint information P(A∩B) [e.g., indicating the proportion of women with a positive mammogram and breast cancer P(T+∩B) instead of the correct conditional information P(B|T+)], and (2) Fisherian, which means that participants confused P(A|B) with P(B|A) [e.g., indicating the sensitivity of the mammography P(T +|B) as the correct solution instead of the positive predictive value P(B|T+)]. Furthermore, in some cases the base rate only error occurs, which means providing only the base rate of, for example, breast cancer P(B) as an answer. This error most often appeared in the Bayesian text version in probabilities. It is noticeable that most of the wrong solution strategies could be clearly classified. The errors evidence only (see, e.g., Zhu and Gigerenzer, 2006) and Pre-Bayes (see, e.g., Steckelberg et al., 2004; Zhu and Gigerenzer, 2006) only occurred very rarely. In contrast to Gigerenzer and Hoffrage (1995), who sometimes observed the error likelihood-substraction (especially in probability versions), that error did not occur in our study. In the Bayesian text version with probabilities, there was (as one would expect) the highest proportion of participants who could not give a solution (11%).

The analysis of the error pattern in Figure 8 shows three main results: First, an interesting result (according to our hypothesis) is obtained by comparing the probability 2 × 2 table with the frequency 2 × 2 table. Bruckmaier et al. (2019) have already provided evidence that the probability 2 × 2 table provokes the joint-occurrence error, which we replicated (56% of the participants). The error rate, on the other hand, drops considerably if the information is presented in frequencies (only 11% of the participants made this error when the information was presented in this way). It seems as if it is not at all clear to many participants that the joint probability in the probability 2 × 2 table must be associated with another number. With frequencies, however, this necessity does seem to be clear to participants.

Second, if one compares all probability visualizations, it becomes clear that the joint-occurrence error appears primarily in versions in which the joint probability is directly represented—most frequently in the 2 × 2 table and second most frequently in the net diagram—because the correct solution is also shown there. As expected, the joint-occurrence error appears most rarely in the version with the probability double-tree. The reason why that error is comparatively rare in this version is that the joint probability first has to be calculated using the multiplication rule in the double-tree.

Third, if one compares all frequency visualizations, a shift of Fisherian and joint-occurrence errors can be observed. While Fisherian and joint-occurrence errors appear about as frequently in the 2 × 2 table, Fisherian errors in the frequency double-tree and in the frequency net hardly occur at all. A confusion of the “reading direction” is therefore less frequent in the frequency double-tree and the frequency net. In these two visualizations, however, joint occurrence appears more frequently. It seems less clear to participants that the total number should not be chosen as the reference set. It should be a focus of future research to investigate the extent to which the error patterns change after a training with the different visualizations.



Typical Errors and Error Shifts Regarding Joint Inferences

While typical error patterns for conditional inferences are already recognized because of earlier research, we now systematically consider the error patterns regarding joint inferences. Figure 9 shows—separated by version—the respective errors. When naming these errors, we refer to the expressions from Figure 5 [e.g., the expression “p-error” means that the participant erroneously answered the question with P(B|T–) instead of P(B∩T–)]. Again, only errors that occurred in at least 5% of the cases in one of the examined versions are mapped in Figure 9. This means in concrete terms that if one error occurs in one version (e.g., in the Bayesian text version with probabilities) in 5% of the cases or more (e.g., the “m-error”), this error is also displayed for all other versions (even if this error only occurs in 3% of the cases in the probability net). Errors that can be clearly classified but which were committed by only one or two participants are again grouped in the category “Other uniquely classifiable errors.”
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FIGURE 9. Typical errors on the question for a joint probability, separated for information format and visualization (across both contexts). In the versions with frequencies, two main errors can be observed: the confusion of the joint probability either with the conditional probability p or the conditional probability q. In the versions with probabilities, on the other hand, more diverse error patterns appear: Specific errors are provoked by the pure text version with probabilities and the probability double-trees.


Figure 9 shows three results: First, if we look at the frequency versions, we can see at a glance that the error patterns are less diverse than they are in the probability versions. In the frequency versions two errors occur often: the confusion of the joint probability [e.g., P(T–∩B)] with one of the two corresponding conditional probabilities [i.e., P(T–|B) = : q-error and P(B|T–) = : p-error; these errors are structurally equivalent to the joint-occurrence error]. Actually, it should be assumed that the p-error occurs as frequently as the q-error because there is no reason why P(A∩B) should be confused with P(A|B) rather than P(B|A). However, it is understandable that the q-error occurs more frequently in the Bayesian text version, because this error is algorithmically easier to calculate in this version. But in the three versions with a visualization, this argument is no longer valid. Both conditional probabilities, p-error and q-error, can now be read from the diagrams with equal ease. Here we have defined a clear reading direction for the visualizations by the nature of our question. We asked for the probability of “negative mammogram and breast cancer” and not for the probability “breast cancer and negative mammogram” (which is of course mathematically equivalent). The participants now seemed to examine the three visualizations along the lines of the question, which more often provokes the p-error. It would be interesting in a new study to vary the order of events in the question and, for example, to examine in an eye-tracking study whether our hypothesis is correct that the error patterns p-error and q-error are provoked by the order of events.

Second, it is noticeable that in the probability versions various error patterns appear—for example in the Bayesian text version with probabilities. In addition to a few errors that we could not classify, there are many error patterns that can be clearly classified but which occur only very rarely. However, two confusions occurred more frequently (both in the responses of 5 out of 61 persons): the confusion of the required joint probability with the conditional probabilities m-error [i.e., P(T+|nB)] and n-error [i.e., P(T–|nB)]. In these cases, participants obviously misread the negations in the question.

Third, specific errors can also be observed in the probability double-tree. This was to be expected, since in the probability versions more mental steps are necessary for solving the task with the double-tree, while the required joint probability can be read directly from the probability 2 × 2 table or from the probability net. The two double-tree confusions are particularly interesting here. We provoked these two confusions inadvertently by writing the two conditional probabilities l and p on the branches in such a way that it was difficult to see which of the two pieces of information belonged to which branch (as in Figure 1). We assume that both university and school students also often follow that path when drawing a double-tree and that these mistakes are therefore ecologically valid. However, we could have prevented this error by designing the double-tree as shown in Figure 5, so that confusion between the two branches l and p would be less likely. Double-tree confusion I consists of the fact that many of the participants confused the joint probability with the conditional probability p (like many other participants) and additionally confused the branches p and l. If we had designed the double-tree in such a way that the conditional probabilities p and l could be better distinguished, these participants would presumably have committed the p-error. Double-tree confusion II, on the other hand, would have led to the correct answer, because here the participants correctly calculated the joint probability using the multiplication rule. However, they confused the branches and thus the probabilities p and l and came to a wrong result. If we had made the lower branches in the double-tree clearer, these participants would probably have calculated the joint probability correctly.

In addition to these three main findings, the occurrence of the independence error is also interesting—here the participants calculated the joint probabilities by multiplying the associated marginal probabilities. The students probably remembered the formula P(A∩B) = P(A) ⋅ P(B) and did not consider that this formula only applies if the events are independent. Furthermore, some participants committed the double joint probability error, which means that they tried to calculate the joint probability from both above in the double-tree and below with the multiplication rule. Each of these calculations would lead to the right solution on its own. However, the participants then added these two results and came to a solution of exactly twice the probability they were looking for.




DISCUSSION

In this article the frequency net is presented as a new tool for simultaneously visualizing probabilities and frequencies, a capability that is not possible with the use of existing visualizations such as the 2 × 2 table, the tree diagram, and the double-tree. Whereas 2 × 2 tables only display joint probabilities but no conditional probabilities, tree diagrams and double-trees only display conditional probabilities but no joint probabilities. Before the frequency net, no visualization had the capacity to represent all 16 probabilities that can occur in a situation with two dichotomous characteristics (i.e., four marginal probabilities, four joint probabilities, and eight conditional probabilities) and all frequencies simultaneously. The fact that the frequency net can enable visualization of (1) probabilities and frequencies and (2) joint probabilities and conditional probabilities is a didactic advantage because performing demanding additional calculations based on a net diagram is no longer necessary.

In an empirical study conducted with university students, the net diagram was already as intuitively understandable (to a comparable degree) as the 2 × 2 table and the double-tree, even without prior explanations. In a similar way, Binder et al. (under review) could show that secondary school students (grade 10) were also able to use this tool intuitively without prior instruction, and that the net diagram even supported the students in this study in solving probability problems better than a tree diagram or a double-tree did.

An analysis of typical error patterns shows—regarding conditional inferences—a remarkable error shift from probability 2 × 2 tables to frequency 2 × 2 tables. Whereas many participants committed the joint-occurrence error with probability 2 × 2 tables, this error disappeared almost completely with the frequency 2 × 2 table. The analysis of errors regarding joint inferences—on which there have been only a few previous studies—reveals that the formulation of the question [P(A∩B) vs. P(B∩A)] seems to provoke either a q-error or a p-error (see also section Future Research). Furthermore, many different error patterns occurred in the Bayesian text version with probabilities. Especially interesting, however, were the errors specific to the double-tree, some of which were provoked by our having written the labels 86 and 0.5% in unfavorable positions on the crossing branches (so that these numbers could not unambiguously be assigned to the appropriate branches). It is very likely that these mistakes would also occur if participants were asked to create their own double-tree (because these positions in the double-tree seem like a good place to write these two conditional probabilities). Also interesting is the occurrence of the independence error and the double-joint probability error, which occur predominantly in the probability double-tree.


Limitations

The present article and Binder et al. (under review) can of course only provide first indications of the efficacy of the net diagram in teaching probabilities—even though these first indications are very promising. In the teaching context, for example, learners have to be instructed that branches in the net can now also display joint probabilities (whereas the widely used tree diagrams only carry marginal probabilities and conditional probabilities).

Furthermore, it could also be argued that the presentation of the information in a frequency net does not make the sequential character of the situation as transparent as it is in a tree diagram. However, the error analysis does not indicate that the reading direction (Fisherian error) becomes confused more frequently with the net diagram than it does with the double-tree or even the 2 × 2 table (a bit more rare).

The main limitation of the net diagram is that it cannot be extended as flexibly as the tree diagram. Tree diagrams can be adapted to 2-test cases, 3-test cases, etc. (Hoffrage et al., 2015b; Binder et al., 2018). However, it should be noted that even the double-tree cannot be expanded flexibly to 2-test cases, 3-test cases, and other complex Bayesian reasoning tasks. In any case, these kinds of tasks are rarely the focus of teaching stochastics at the secondary-school level.



Future Research

The missing format effect regarding joint inferences is at the same time interesting and unusual. One reason for its being missing, however, could be the formulation of the question and especially the required answer structure (“____ out of ____”) in the frequency format, which is unusual to students. In the teaching of stochastics at secondary-school level, two different types of questions are used: (1) Questions about a probability or a proportion, which students are expected to answer in percentages, fractions, or decimal fractions, or (2) in lower-level classes, questions like “How many are X and Y?” which students are expected to answer with an absolute frequency (e.g., “200”) but not with a pair of absolute frequencies, namely natural frequencies (e.g., “200 out of 10,000”). Therefore, it would be quite possible that the participants were confused by the unusual answer format (“____ out of _____”). Hence, for future research it would be interesting to examine whether there is actually a format effect if, for example, one asks for a probability or a proportion in the frequency version of the task.

Furthermore, in future research a systematic variation of the order of the questions (conditional probabilities vs. joint probabilities) should be implemented in order to identify any possible sequence effect. In the present study, the question for a conditional probability was always asked as the first question and the question for a joint probability as the second question. This could have influenced participants’ performance and also the errors that occurred in second-question responses, due to, for example, an Einstellung effect or a mental set effect (Luchins, 1942).

Future research should focus more on error analysis than just measuring the performance of participants in Bayesian reasoning. Furthermore, not just the typical Bayesian tasks should be examined but also other probability tasks that are focused on stochastic teaching in schools (see also Böcherer-Linder and Eichler, 2017; Bruckmaier et al., 2019). Moreover, in future research on the net diagram, it would be desirable to include additional control variables because various other factors are known to have an impact on performance in Bayesian reasoning tasks. For example, individual differences of participants, particularly cognitive abilities such as numeracy, graphicacy, and spatial abilities, have an impact on performance rates in Bayesian reasoning problems (e.g., Chapman and Liu, 2009; Micallef et al., 2012; Johnson and Tubau, 2013; Ayal and Bayth Marom, 2014). In addition, the length of the text (Johnson and Tubau, 2013) and the specific numerical values for population size, base rate, sensitivity, and false-alarm rate can influence accuracies (Schapira et al., 2001).

Since one advantage of the net diagram is that it can display both probabilities and frequencies, it would be interesting to implement in further studies a net diagram that displays both types of representation simultaneously (see Figure 3, below). It would also be important to examine net diagrams that only show the statistical information, which is needed for solving the task at hand (because that is the way it would be done at school).

In further investigations, training studies might be implemented, which are fairer in terms of existing prior knowledge of certain visualizations from school. With training studies is it possible to examine whether students are able to create frequency nets on their own by first explaining the structure of the frequency net to students and then have them drawing their own frequency nets for subsequent tasks.
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The strategy of making a drawing has been claimed to facilitate mathematical problem solving. However, De Bock et al. (2003) surprisingly found that drawing negatively affected performance in solving non-linear geometry problems, in which the area or volume of similar figures or solids had to be determined by a given scaling factor. The authors suggested that making a drawing increased the number of overgeneralizations and negatively affected students’ performance. Our study involves a partial replication and also an important validation and extension of this study by addressing two factors: low-quality drawing strategy and poor visual monitoring, both of which might explain the negative effect of drawing. First, we expected that improving the quality of the drawing strategy by prompting students to highlight important information in their drawings would diminish the negative effect of the drawing strategy. Second, we expected that fostering visual monitoring while drawing, by offering problems with small scaling factors, would diminish the negative effect of the drawing strategy. We conducted a randomized controlled trial with 180 students (ninth- to eleventh-graders) to investigate the effects of drawing and visual monitoring on solving non-linear geometry problems. Our results replicated the previous finding that drawing negatively affects performance. We confirmed that linear overgeneralizations are a prevalent reason for this finding. Elaborating on previous findings revealed that the quality of the drawing strategy but not visual monitoring was responsible for the effect of the drawing strategy on linear overgeneralizations. Furthermore, an exploratory analysis of students’ awareness of linear overgeneralizations indicated that improving the quality of drawing strategy and enhancing visual monitoring did not lead to a greater awareness of the mistakes learners made because of linear overgeneralizations. We conclude that the way the drawing strategy is used determines whether it is useful or damaging, and more efforts are essential to enable students to apply it appropriately.

Keywords: drawing strategy, geometry problems, illusion of linearity, linear overgeneralizations, monitoring, problem solving, self-generated drawing


INTRODUCTION

Making a drawing is considered a powerful strategy in mathematical problem solving (Pólya, 1945). According to the theory of external representations (Cox, 1999), it can support problem solving by helping problem solvers organize the information, and it can make missing and implicit information (e.g., relations between objects) explicit. Therefore, it deepens understanding and facilitates self-explanatory activities. Empirical evidence for the benefits of drawing for problem solving has been found in various studies (e.g., Van Essen and Hamaker, 1990; Hembree, 1992; Zahner and Corter, 2010; Rellensmann et al., 2016). However, the drawing strategy does not seem to be helpful for solving some types of problems, and surprisingly, it can even be disadvantageous by decreasing students’ performance in solving non-linear geometry problems (De Bock et al., 2003). It seems that drawing leads to an increase in students’ well-known tendency to engage in linear overgeneralizations, which means that learners tend to apply linear models to non-linear situations (Van Dooren et al., 2005). From a broader perspective, this finding demonstrates the need to investigate the processes elicited by the drawing strategy and the key factors that determine the beneficial use of the strategy. On the basis of these considerations, the goals of the present study are twofold: (a) to replicate De Bock et al. (2003) surprising finding that drawing hinders students’ ability to solve non-linear geometry problems and (b) to find explanations for this unexpected phenomenon. On the basis of prior research, we suggest that the insufficient quality of the drawing strategy and a lack of opportunity to use the drawing strategy for monitoring purposes are crucial factors that have contributed to the negative effects of drawing. Our aim is to clarify whether these factors come into play while students solve non-linear geometry problems and, more specifically, whether it is possible to diminish the negative effect of drawing by addressing these factors.



DRAWING STRATEGY AND LINEAR OVERGENERALIZATIONS


Self-Generated Drawing

External visual representations are omnipresent in contexts of learning and education. Thus, they serve different functions. First, the ability to deal with external visual representations such as drawings can be considered a learning goal on its own because in many situations in class and everyday life, it is necessary to interpret, construct, and work with them (National Governors Association Center for Best Practices and Council of Chief State School Officers, 2010). Second, they have been claimed to enhance learning by relieving working memory, promoting self-explanation activities, and leading to a deeper understanding of the learning material (Cox, 1999; Mayer, 2005; Van Meter and Garner, 2005). An important distinction has to be made between ready-made and self-generated external visual representations. For the latter, learners construct representations on their own, which means that they are actively involved in externalizing their mental representation, which includes the processes of organizing, selecting, and integrating the information given in the problem (Van Meter and Garner, 2005). In the present paper, we focus on self-generated drawing. We define the drawing strategy as the process of constructing an external visual representation that corresponds to the mathematical problem structure and is aimed at solving the problem (Van Meter and Garner, 2005).

Self-generated drawing influences the process of problem solving, as it guides the learner’s attention and directs or even determines his or her actions. Theories of cognition assume that when beginning to solve a problem, humans construct an internal representation of the problem situation called a mental model (Johnson-Laird, 1980). While drawing, the mental model is transformed into an external visual representation (i.e., a drawing). This process is more than a simple translation because it involves a re-organization of the given information and dynamic iterations between the mental model and the externalized model in order to match both representations (Cox, 1999). Re-organizing the information can make key elements of the problem and its relations visible so that the information can be more easily processed after a drawing is constructed (see section “Quality of Drawing Strategy”) (Larkin and Simon, 1987). In order to successfully solve the problem, it is crucial that the structure of the problem be adequately presented in the external visual representation. Otherwise, drawing could cause perceptual and cognitive biases, which might guide the problem solver away from the goal (Zhang, 1997; Cox, 1999).

Studies investigating the effect of drawing on problem solving performance have arrived at divergent findings. A number of empirical studies have found that drawing positively affects problem solving in mathematics (Van Essen and Hamaker, 1990; Hembree, 1992; Zahner and Corter, 2010; Rellensmann et al., 2016). Strong support for the benefits of the drawing strategy were provided by the meta-analysis conducted by Hembree (1992). Training students to draw was identified as the most effective treatment for improving problem solving performance compared with training them to use other strategies such as handling extraneous data, verbalizing concepts, or using guess-and-test procedures. However, several factors seem to determine whether the drawing strategy is helpful or not. For example, Van Essen and Hamaker (1990) found that drawing showed a positive effect for fifth-graders but not for first- and second-graders, indicating that the benefits of making a drawing depend on the specific difficulties learners encounter while solving problems. Another important factor seems to be the type of problem because, for some types of problems, drawing was shown to be beneficial [e.g., probability problems (Zahner and Corter, 2010) or arithmetic word problems (Van Essen and Hamaker, 1990)], whereas for other types of problems, in particular non-linear geometry problems, no effect (De Bock et al., 1998) or even a negative effect (De Bock et al., 2003) was found. The most important factor that determined whether making a drawing was beneficial or not seemed to be the quality of the drawing strategy, which we address in the next section.



Quality of Drawing Strategy

The quality of the drawing strategy refers to the correctness and the explicit presentation of key information. Accordingly, the high-quality use of the drawing strategy means that the drawing as the product of the drawing process is correct and complete with regard to the important elements and their relations. Both criteria need to be met so that the rapid processing capabilities of a learner’s visual system can be used to make perceptual judgments instead of depending on difficult logical inferences (Cox, 1999).

Research on self-generated drawing has shown that the benefits of drawing are strongly related to the quality with which the drawing strategy is applied (Van Garderen and Montague, 2003; Uesaka et al., 2007; Schwamborn et al., 2010; Mason et al., 2013; Rellensmann et al., 2016). Learners who apply the drawing strategy in a high-quality way perform better on problem solving and learning outcome tests than learners who apply the drawing strategy in a lower quality manner. Problem solving research has shown that students often fail to use a high-quality drawing strategy because they tend to generate pictorial representations with merely a decorative function instead of depicting important elements and their relations (Hegarty and Kozhevnikov, 1999; Van Garderen and Montague, 2003). For non-linear geometry problems, a qualitative analysis of students’ solutions indicated that the quality with which the drawing strategy was applied was usually too poor – regarding correctness and the explicit presentation of key information – to help students solve the problems (De Bock et al., 1998). Hence, the request to draw is probably not enough, and it might be necessary to give students support that will render the drawing strategy more helpful for problem solving. Empirical indications for this claim have been provided in studies of text-based learning. In the study by Van Meter (2001), applying the drawing strategy was more effective for conditions in which students’ drawing process was supported by providing illustrations or prompts to compare the illustrations with self-generated drawings. It was found that supporting students’ drawing activities had a positive effect on the performance of comprehensive free recall but not recognition items. These results indicate that improving the quality of the drawing strategy is essential for students’ performance if the assessment requires them to build connections between the information given in the problem, as is the case when students solve non-routine mathematical problems.



Visual Monitoring

Another important factor in the context of research on self-generated drawing is that the drawing strategy can enhance monitoring processes. Monitoring has been claimed to be essential for problem solving (Flavell, 1979) and plays an important role in detecting incorrect intuitions and misconceptions such as linear overgeneralizations (Van Dooren et al., 2004). The drawing strategy can be considered a tool that can be used for monitoring for the following reasons. When students use the drawing strategy, they construct a visual representation on the basis of an abstract symbolic representation. As visual representations are limited in abstraction, they aid processability and lead to the generation of new information (Stenning and Oberlander, 1995). Hence, the drawing strategy can be used to detect inconsistencies. In particular, in problem solving, the drawing strategy can be applied with the goal of revealing mistakes and inaccuracies in the student’s mental model of the problem situation. In the following, when the drawing strategy is applied for monitoring purposes, we refer to this as visual monitoring.

Empirical evidence for the claim that drawing strategy can be used for monitoring purposes can be derived from the study by Stylianou (2011). The problem solving activities of experts (mathematicians) and novices (middle school students) were analyzed by using qualitative methods in order to identify the purposes of the drawing strategy. Both experts and novices used the drawing strategy to monitor the progress of problem solving, including checking the correctness and making informed decisions about subsequent actions. However, in contrast to experts, middle school students engaged in visual monitoring only infrequently and – if at all – to verify their result at the end of the problem solving process. This finding indicates the importance of supporting school students in their visual monitoring activities.

Further indications come from text-based learning research. Van Meter (2001) analyzed the think-aloud protocols of fifth- and sixth-graders who read a science text under two conditions: Self-generated drawing compared with working with ready-made drawings. It was found that students who used self-generated drawing engaged in significantly more monitoring events, such as looking back and self-questioning, compared with students who worked with ready-made drawings. Further, monitoring events were higher when students received additional support during their drawing activity. Hence, supporting students’ drawing activities is crucial for determining the way in which the drawing strategy is used. In sum, drawing seems to fulfill monitoring purposes, and supporting the drawing activities increases visual monitoring. However, research has yet to determine the extent to which these results are valid for mathematical problem solving.



Linear Overgeneralizations

Misconceptions often emerge when learners generalize their prior knowledge by systematically activating it in contexts in which it is inappropriate (Smith et al., 1993). A well-known example of such a misconception is the “illusion of linearity,” the tendency to apply linear models to non-linear situations, which will be referred to as linear overgeneralizations in the following. Linearity and especially proportionality can be considered the simplest but also the most important property of mathematical relationships (two quantities change with an equal amount of growth). Many facts of the real world are based on linear and proportional relationships. Also in mathematics education, linearity plays a central role and emerges during the time children are in school in the contexts of different mathematical topics ranging from arithmetic word problems, to linear functions, to advanced concepts such as the diameter and circumference of a circle. However, the intensive treatment of linearity might result in the disadvantage that some students will develop false conceptions, namely, the idea that linear models have a kind of universal validity. As a consequence, they might mistakenly transfer the principle of linearity to non-linear contexts.

Empirically, students’ strong tendency to engage in linear overgeneralizations has been supported by a large amount of research that has included different age groups ranging from primary school (Van Dooren et al., 2005) to university students (Esteley et al., 2010) and has referred to different mathematical domains such as arithmetic word problems (Van Dooren et al., 2005, 2010), algebraic patterns (Stacey, 1989), geometry (De Bock et al., 1998, 2003; Ayan and Bostan, 2018), and probability (Van Dooren et al., 2003). More specifically, linear overgeneralizations seemed to increase after linear problems were taught in class (Van Dooren et al., 2005), supporting the assumption that students’ experiences with linear concepts in the mathematics classroom are responsible for their strong tendency to engage in linear overgeneralizations. However, even very young students (second- and third-graders) tend to give linear answers to non-linear problems, indicating that other factors also need to be taken into account. One of these factors could be individuals’ tendency to reduce information in their environment into structures that are as simple as possible, which is known as the “Law of simplicity” (Chater and Vitányi, 2003). As linearity and in particular proportionality is the simplest form of relationship between two quantities, this bias may also occur independent of the effect of students’ experiences with linear problems in class.

One of the most investigated types of problems with regard to linear overgeneralizations is the non-linear geometry problem, in which students are asked about how enlarging or reducing a geometrical figure affects its area or volume. For example: “You need approximately 400 g of flower seed to lay out a circular flower bed with a diameter of 10 m. How many grams of flower seed would you need to lay out a circular flower bed with a diameter of 20 m?” (De Bock et al., 1998, p. 68). A series of studies demonstrated that students between the ages of 12 and 16 were usually not able to solve such problems (De Bock et al., 1998, 2002b, 2003). Overall, these studies reported particularly low solution rates for younger students (rates of 2% and 7% for correct solutions for 12- to 13-year-olds), but wrong answers were usually given among the older students too (23% correct solutions for 13- to 14-year-olds; 17%, 22%, 43% correct responses for 15- to 16-year-olds). Building on these findings, De Bock et al. (2002a) conducted an interview study to investigate which aspects are responsible for the frequent appearance of linear overgeneralizations. They found that some of the students had the firm conviction that any relationship between two variables could be expressed by a constant of proportionality. However, the majority of the students used linear models in an intuitive manner, without being aware of the model they chose. Students apparently do not recognize the mistakes they make on the basis of linear overgeneralizations and therefore probably perceive that their solutions to these problems are correct even when they are incorrect.

Further, a teaching experiment conducted by Van Dooren et al. (2004) showed that it is possible to decrease the number of linear overgeneralizations in the solutions to such problems. In 10 experimental lessons, major holes in students’ prior geometrical knowledge and their linearity preconceptions were addressed by eliciting cognitive conflicts. Further aims of the intervention were to facilitate students’ meta-conceptual awareness, including monitoring and enhancing a deeper understanding from the use of multiple external representations of the central mathematical contents. Although the automatic use of linear strategies was successfully reduced, some of the students in the experimental group still tended to engage in linear overgeneralizations, whereas others started to also apply non-proportional strategies to proportional problems, indicating that the intervention was not successful in terms of fostering a deep conceptual understanding of differences in linearity and non-linearity in some of the students. These results provide the first hints that external representations might be beneficial for diminishing linear overgeneralizations. Further support comes from the study by De Bock et al. (2002b) who found that providing ready-made drawings of the original and scaled figures on graph paper had a positive albeit small effect on solution rates for non-linear geometry problems. Graph paper allows comparisons to be made of the areas of the figures by counting the squares and thus facilitates the recognition of the non-linear relationship of the areas.

We view these findings as initial indications of the importance of external representations for overcoming linear overgeneralizations and performance. Further indications pointing in the opposite direction come from research on self-generated drawing.



Effects of the Drawing Strategy on Linear Overgeneralizations and Performance

A series of experimental studies investigated the impacts of making a drawing on linear overgeneralizations and performance. In one of these studies (De Bock et al., 1998), students in a drawing condition were instructed to draw before solving each item. The instructions were given at the beginning of the test using an example item. Contrary to theoretical considerations, no effect of making a drawing on performance was found. The percentage of correct solutions for the group of 12- to 13-year-old students remained at only 2% and was also found to be low for 15- to 16-year-old students regardless of the drawing instructions.

Different drawing instructions were implemented in a subsequent study (De Bock et al., 2003). In the drawing condition, students between the ages of 13 and 16 were given a drawing of a geometrical object for each problem (e.g., a square) and were asked to complete the drawing by supplementing a scaled copy of the object using the given scaling factor. The surprising finding was that students who received these instructions showed significantly lower solution rates than the control group (23% vs. 44%). An additional analysis of the solution processes from this study suggested that self-generated drawing did not elicit visual solution strategies such as “paving” – determining the area of a plane figure by paving it with similar Figures – and hence, the drawing strategy was apparently not applied appropriately. This is a potential reason why drawing is not beneficial, but it does not explain the negative effect. An analysis of the problems used in this study provided another reason for this result. Making a drawing might hinder students’ progress while solving non-linear problems because the process of drawing might divert their attention to unimportant elements or even to elements that could interfere with their solution process: Figures are typically depicted by their circumferences, which change linearly through scaling. In the process of drawing, learners work with linear relationships and may erroneously transfer them to the area. This might render the quality of the drawing strategy insufficient because key information (i.e., the area) is not made salient in the drawing. Increasing the quality of the drawing strategy by highlighting the area in the drawings may guide learners’ attention to the important elements of the problem, thus helping them identify non-linear properties while drawing.

Another aspect that also affects the recognition of non-linearity concerns visual monitoring. Visual monitoring should reveal that the area changes non-linearly through scaling. However, visual monitoring might potentially not come into effect if the size of the scaling factor is too large. For problems with small scaling factors (e.g., doubling the side length), the difference between the area or volume of the original and of the modified figure becomes salient while drawing so that visual monitoring should uncover the non-linear relationship. Whereas for large scaling factors (e.g., if the side length is twelve or more times larger), the difference in the area or volume cannot be easily visually estimated. Consequently, it can be expected that visual monitoring, enabled by using small scaling factors, can help learners overcome their difficulties with linear overgeneralizations so that they will demonstrate better performance in problem solving. However, even if students recognize the non-linear relationship by engaging in high-quality drawing or visual monitoring, they are not necessarily able to solve the problem. Instead, they might change the problem by imposing an inappropriate structure that enables them to apply available solution strategies (Goos, 2002). It is possible that they might detect the non-linear property of the area but nevertheless use linear models to solve the problem because they lack adequate solution strategies (Weber, 2001). Students who recognize the non-linear relationship of the areas are probably aware of their inappropriate application of linear overgeneralizations and will consequently perceive their lower performance in solving the problems than students who do not recognize the non-linear relationship. Thus, we assume that students’ perceptions of their performance in solving non-linear geometry problems might be an indicator of students’ awareness of the non-linear property of the problems. Data on students’ perceived performance will help us interpret the effect of drawing quality and visual monitoring on linear overgeneralizations and performance.




RESEARCH QUESTIONS AND EXPECTATIONS

On the basis of theoretical considerations and prior empirical findings, we posed the following research questions:


1.Does the instruction to make a drawing of the scaled figure lead to a larger number of linear overgeneralizations and have a negative effect on problem solving performance of non-linear geometry problems?

2.Does improving the quality of the drawing strategy by highlighting important information in the drawing decrease the number of linear overgeneralizations and diminish the negative effect of the drawing strategy on problem solving performance?

3.Does visual monitoring decrease the number of linear overgeneralizations and diminish the negative effect of the drawing strategy on problem solving performance?

4.Does drawing or visual monitoring affect students’ perceived performance when solving non-linear geometry problems?




Expectations for Research Question 1 (Drawing)

The first research question addresses the replication of De Bock et al.’s (2003) finding that making a drawing hinders students’ ability to solve non-linear geometry problems. Following theoretical domain-specific considerations regarding the reasons for learners’ linear overgeneralizations, we assume that self-generated drawing distracts learners and draws their attention toward elements of the problem that interfere with their solution process, for example, the linear relationship of the circumferences of the original and scaled figures in problems with rectilinear plane figures. Because of the very common tendency to engage in linear overgeneralizations (Van Dooren et al., 2008), they may erroneously transfer the linear relationship of the circumferences to the non-linear relationship of the areas. The same considerations can be made for problems with non-rectilinear figures and solids regarding the linear property of the diameter and the non-linear property of the volume. Thus, we expected the drawing strategy to increase the number of linear overgeneralizations and negatively affect problem solving performance.



Expectations for Research Question 2 (High-Quality Drawing):

We expected that increasing the quality of the drawing strategy by highlighting key information would diminish the negative effect of the drawing strategy. Hence, we expected that students applying a high-quality drawing strategy and students not applying the drawing strategy would show the same number of linear overgeneralizations and performance in solving non-linear geometry problems. Further, we expected fewer linear overgeneralizations and higher performance from students who applied the high-quality drawing strategy than students who used the lower quality drawing strategy. The rationale behind these expectations is that the effects of the drawing strategy strongly depend on drawing quality. One key characteristic of a high-quality drawing is the explicit presentation of key information. For non-linear geometry problems, mistakes are made due to an inappropriate focus on the side length or the diameter of the figure or solid and its linear properties instead of considering the area or the volume, respectively. Hence, highlighting the area or volume of the drawn figure or solid will improve the quality of the drawing strategy and should lead to fewer linear overgeneralizations and a higher performance than the use of a lower quality drawing strategy.



Expectations for Research Question 3 (Visual Monitoring)

We expected that visual monitoring would diminish the negative effect of the drawing strategy. Consequently, visual monitoring while drawing should lead to a similar number of linear overgeneralizations and a similar performance in solving non-linear geometry problems in comparison with solving the problems without a drawing. In addition, we expected that visual monitoring would lead to fewer linear overgeneralizations and a higher performance than drawing without visual monitoring. We enhanced visual monitoring by using small scaling factors instead of large ones on the basis of our assumption that for small scaling factors, the non-linear relationship of the areas becomes salient while drawing. Consequently, visual monitoring could help overcome the linear overgeneralizations that were elicited by the drawing strategy.



Expectations for Research Question 4 (Effects on Perceived Performance)

The fourth research question followed an exploratory approach. Thus, we did not have specific expectations. The aim of analyzing students’ perceived performance is to increase the validity by using different indications of students’ success (Rovers et al., 2019) and to gather further information that helps to explain the findings from our experimental study. Students’ perceived performance in the drawing and visual monitoring conditions will provide indications of students’ awareness of the non-linear property of the problems. Students who notice the non-linear relationship because they make a high-quality drawing or engage in visual monitoring might lack the mathematical knowledge to proceed and will therefore nevertheless stick to the application of linear models and will report lower perceived performance.




MATERIALS AND METHODS


Sample and Procedure

The present study involved 198 students (57.1% female, mean age = 16.15 years) from nine classes, including ninth-graders (12.6%), tenth-graders (48.5%), and eleventh-graders (38.9%). Students came from four high-track schools (German Gymnasium) and one comprehensive school (German Gesamtschule).

Students in each class were randomly assigned to one of five groups: Students in the experimental conditions received either drawing (D) or drawing with highlighting (DQ) instructions, aimed at increasing the quality of the drawing strategy, and the test version with either large [11, 12, or 13 as used in the study by De Bock et al. (2003)] or small scaling factors (3, 4, or 5), aimed in enhancing visual monitoring (V− and V+ groups). These conditions resulted in four combinations of experimental conditions (DV−, DV+, DQV−, DQV+). Students in the control group (CG) received no drawing instructions and the test version with large scaling factors as in the study by De Bock et al. (2003). All groups worked on a paper-and-pencil test consisting of four experimental items, which were non-linear geometry problems, and three additional buffer items. All items were taken from the study by De Bock et al. (2003). Drawing and drawing with highlighting instructions were embedded in each item on the test. Figure 1 shows a sample item with drawing with highlighting instructions as used in the version of the test that was administered in the DQ condition. Students in the D group received the same drawing instructions (part a) but no highlighting instructions (part b).


[image: image]

FIGURE 1. Sample item with drawing and highlighting instructions. Tasks were adopted from De Bock et al. (2003, p. 449).


After taking the test, students completed a questionnaire. The aim of the questionnaire was to collect data on how solving non-linear geometry problems and the experimental treatment were perceived by the students. Thus, the questionnaire included four statements for measuring students’ perceived performance.



Treatment Check

To check the implementation of the treatment, we examined whether students in the experimental and control groups followed the instructions. The results confirmed that students followed the drawing instructions and the instructions to draw and highlight. As intended, the number of drawings in the D groups was significantly higher than in the CG [96.1% vs. 40.2%; t(43.636) = 7.542, p < 0.001, d = 1.903]. Further, the number of highlighted drawings in the DQ groups was significantly higher than in the CG [80.0% vs. 0.65%; t(84.756) = 22.526, p < 0.001, d = 3.608] and D groups [80.0% vs. 2.4%; t(109.960) = 15.798, p < 0.001, d = 3.033]. However, 19 of 41 participants of the control group made at least for one of the items a spontaneous drawing. These students seem to perform similar or even better than students who did not make a drawing (50.0% vs. 45.5% correct solutions; 18% vs. 29% linear overgeneralizations). To ensure that spontaneous drawings did not distort our results, we again addressed our research questions by analyzing an adjusted subsample. The adjusted subsample included only students who acted in accordance with their condition. As our analysis revealed nearly the same effect sizes for the adjusted subsample and the whole sample, we analyzed the whole sample in our study.

In addition, we examined students’ age and last mathematics grade by computing an ANOVA to ensure the comparability of the treatment conditions. As expected, no significant difference between the groups was found (p > 0.10).



Measures


Linear Overgeneralizations and Problem Solving Performance

Linear overgeneralizations were estimated by analyzing whether the solution was based on a linear model (coded 1) or not (coded 0). Students’ performance was analyzed by assigning a score of 1 for the correct solution and a score of 0 for an incorrect solution. Two independent coders were involved in scoring the test booklets. Inter-rater reliability was calculated for each problem on a subset of 20% of the test booklets which were scored by both coders with sufficient inter-rater agreement (Cohen’s κ ≥ 0.773). Reliability was satisfactory (Cronbach’s α = 0.729 for linear overgeneralizations and 0.754 for performance). All problems were taken from De Bock et al. (2003) and are listed here in the version for the V− groups in Table 1.


TABLE 1. Experimental items in the V− groups.
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Perceived Performance

Students rated the statements on the questionnaire using a five-point Likert scale (from full disagreement to full agreement). The scale for measuring perceived performance was adapted from prior studies (Hänze and Berger, 2007; Schukajlow and Krug, 2014; Schukajlow et al., 2015, 2019a). It included four items: “I noticed that I really understood the arithmetic problems”; “I felt able to master the arithmetic problems”; “I feel able to master similar arithmetic problems”; and “I felt confident about my knowledge about the topic today.” The scale reliability (Cronbach’s α) was 0.863.




Data Analysis

The hypotheses were tested with a 3 × 2 MANOVA with Drawing (no drawing, D, DQ) and Visual Monitoring (V− and V+) as the independent variables and Linear Overgeneralizations and Performance as the dependent variables. There was homogeneity of variance as assessed with Levene’s test (p > 0.05). Significant main effects were further analyzed with post hoc Tukey tests. The reported p-values for Linear Overgeneralizations and Performance were one-tailed due to our directional expectations. We followed De Bock et al. (2003) procedure to ensure the comparability of the results. This included conducting our analysis with only two of four experimental items. Including all four items in the MANOVA revealed the same results because the effect sizes from the two analyses were very similar.

To analyze Perceived Performance, we conducted a 2 × 2 ANOVA with Drawing (D, DQ) and Visual Monitoring (V− and V+) as factors. Homogeneity of variance was confirmed. Because of the exploratory approach, no assumptions were made about the direction of the effects, and two-tailed p-values are reported.




RESULTS

An overview of the mean scores and standard deviations for all variables in the different experimental conditions is presented in Table 2.


TABLE 2. Mean scores (and standard deviations) of all variables in the different experimental conditions.
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Effect of Drawing Strategy on Linear Overgeneralizations and Performance

In line with our expectations, the drawing strategy increased the number of linear overgeneralizations. Students who applied the drawing strategy with a lower quality (D groups) tended to make more linear overgeneralizations than students who did not use this strategy (CG) (43.5% vs. 24.4%). The MANOVA revealed a marginally significant main effect of Drawing on Linear Overgeneralizations [F(2,197) = 1.970, p = 0.071; [image: image] = 0.020]. Post hoc comparisons using the Tukey test indicated significant differences (p < 0.05, dCohen = −0.461) between students who used the drawing strategy and the control group, which did not draw.

Further, our expectation that the drawing strategy would have a negative effect on performance was confirmed. Students who applied the drawing strategy with a lower quality (D groups) achieved significantly lower performance scores than students who did not use this strategy (28.6% vs. 47.6%). The MANOVA revealed a significant main effect of Drawing on Performance [F(2,197) = 4.323, p < 0.05; [image: image] = 0.043], and post hoc comparisons indicated significant differences (p < 0.05 dCohen = 0.436) between students who applied the drawing strategy and students who did not.

These findings did not interact with the use of the two test booklets (large- or small-sized scaling factors), which were administered to the D and DQ groups but were not administered to the CG group for economic reasons (large scaling factors only). We will elaborate on this point in the results for the third research question (see section “Effect of Visual Monitoring on Linear Overgeneralizations and Performance”). To ensure comparability, we conducted an additional analysis in which only the groups who received the test version with the large scaling factor were included (CG, DV−, DQV−). The results were similar with even stronger effect sizes (Linear Overgeneralizations: [image: image] = 0.022; Performance: [image: image] = 0.069).



Effect of High-Quality Drawing Strategy on Linear Overgeneralizations and Performance

We were able to partly confirm the hypothesis that the high-quality drawing strategy (DQ) would diminish the negative effect of the drawing strategy. As expected, students who used the high-quality drawing strategy engaged in linear overgeneralizations comparably as often as students who did not use the drawing strategy (CG) (35.0% vs. 24.4%). Post hoc Tukey tests confirmed that there were no statistically significant differences between students who used the high-quality drawing strategy and the control group (p = 0.198, dCohen = −0.261). However, contrary to our expectations, students who used the high-quality drawing strategy did not show significantly fewer linear overgeneralizations than students who used the drawing strategy with a lower quality (D) (35.0% vs. 38.9%, Tukey tests: p = 0.211, dCohen = 0.197).

Further, we expected that students who used the high-quality drawing strategy (DQ) would show the same performance as students who did not use the drawing strategy (CG). Contrary to our expectations, Tukey tests indicated that the mean performance score for the DQ group was significantly lower (p < 0.05, dCohen = 0.471) than the score for the CG (27.5% vs. 47.6%). Also the comparison of the two drawing conditions yielded results that went contrary to our expectations: The use of high-quality drawing strategy (DQ) did not lead to a higher performance than a lower quality use of the drawing strategy with a lower quality (D) (27.5% vs. 28.6%; p = 0.493, dCohen = 0.027).



Effect of Visual Monitoring on Linear Overgeneralizations and Performance

We expected that the use of a drawing strategy would not hinder problem solving when used for monitoring purposes, referred to here as visual monitoring. Visual monitoring was operationalized by the smaller-sized scaling factor because we assumed that a smaller scaling factor would make relations between objects in the drawing salient and would therefore inspire visual monitoring.

The results did not confirm our expectations. Students in the visual monitoring group did not differ in the number of linear overgeneralizations from students who could not perform visual monitoring (42.0% vs. 32.5%). There was no significant main effect of Visual Monitoring on Linear Overgeneralizations [F(1,197) = 0.698, p = 0.202; [image: image] = 0.004], and there was also no effect of the Visual Monitoring × Drawing interaction on Linear Overgeneralizations [F(1,197) = 0.334, p = 0.282; [image: image] = 0.002].

Our expectations were not confirmed for performance either: Visual monitoring did not diminish the negative effect of the drawing strategy on performance (32.0% vs. 32.1%). As was already found for the number of linear overgeneralizations, there was no significant main effect of Visual Monitoring on Performance [F(1,197) = 1.312, p = 0.127; [image: image] = 0.007], and there was no effect of the Visual Monitoring × Drawing interaction on Performance [F(1,197) = 0.337, p = 0.281; [image: image] = 0.002].



Effect of Drawing Strategy and Visual Monitoring on Perceived Performance

The results of the ANOVA showed that the quality of the drawing strategy did not affect students’ perceived performance [F(1,153) = 0.183, p = 0.670; [image: image] = 0.001]. Students who were given the high-quality drawing strategy (DQ) perceived that their performance was the same as students who were given the lower quality strategy (D) (M = 3.54, SD = 0.88 vs. M = 3.58, SD = 0.83).

However, the results revealed a significant effect of visual monitoring on students’ perceived performance [F(1,153) = 16.357, p < 0.01; [image: image] = 0.097]. Students in the visual monitoring group perceived a significantly higher performance than their peers who could not easily engage in visual monitoring (M = 3.84, SD = 0.79 vs. M = 3.32, SD = 0.83).

Further, no significant effect of the Drawing × Visual Monitoring interaction on Perceived Performance was found [F(1,153) = 0.571, p = 0.571; [image: image] = 0.004].




DISCUSSION

The present study was aimed at replicating De Bock et al. (2003) finding that the drawing strategy hinders students’ ability to solve non-linear geometry problems. We also aimed to elaborate on the potential reasons for this finding by addressing two factors: the quality of the drawing strategy and visual monitoring. Furthermore, we performed an exploratory analysis of students’ perceived performance in order to gather information about students’ awareness of linear overgeneralizations with the hope that this would help us interpret the results of our experimental study.


Negative Effect of the Drawing Strategy

Our results replicated the previous findings of a negative effect of the drawing strategy on the performance of non-linear geometry problems and confirmed the previous assumption that linear overgeneralizations are a prevalent reason. We found that students who applied the drawing strategy (D groups) made more linear overgeneralizations than students who did not draw. Self-generated drawing seems to guide learners toward mistakenly focusing on the linear relationships depicted in the drawings. However, the effect of the drawing strategy on the number of linear overgeneralizations was smaller than the effect for performance, indicating that applying the drawing strategy may have also resulted in other mistakes, perhaps because of the cognitive cost associated with the externalization process (Zhang, 1997).

Further, the replication of the negative effect of drawing on performance indicates that the findings are stable across different samples. Even the solution scores were very similar to the ones reported by De Bock et al. (2003), with a rate of about 75% for incorrect solutions in the drawing group and 50% in the non-drawing group in both studies.

On a global level, the finding that self-generated drawing hinders students’ ability to solve non-linear geometry problems shows that drawing strategy is not a one-size-fits-all solution and stresses the need to elaborate on the factors that determine beneficial strategy use.



Quality of Drawing Strategy

Following theoretical considerations about the importance of the quality of self-generated drawing that was confirmed in prior research, we expected that the drawing strategy would hinder students’ ability to solve non-linear geometry problems because it would be applied insufficiently when students solved non-linear problems. Therefore, we increased the quality of the drawing strategy by addressing its key feature by explicitly presenting information that is essential for solving the problem.

The results confirmed the importance of the quality of the drawing strategy. Improving the quality of the drawing strategy diminished the increase in linear overgeneralizations that previously resulted from the drawing strategy. In particular, we found that students who used a high-quality drawing strategy did not differ in the number of linear overgeneralizations they made from students who did not use the drawing strategy, whereas students who applied a lower quality drawing strategy made a larger number of linear overgeneralizations compared with non-drawing students. This finding helps to explain the negative effect of self-generated drawing on solving non-linear geometry problems: Applying the drawing strategy in a high quality way ensures that the area, which is a key element of the problem, will be visible in the drawing. This seems to prevent at least some of the students from being guided by their drawing toward mistakenly focusing on elements of the problem that will interfere with their ability to solve the problem, such as the linear properties of the circumference or the side length. However, more efforts are essential for investigating how we can improve drawing quality so that the drawing strategy can become beneficial.

Contrary to our expectations, we found that improving the quality of the drawing strategy did not diminish the negative effect of self-generated drawing on performance, although it did diminish the negative effect with respect to the number of linear overgeneralizations. Apparently, improving the quality of the drawing strategy did not help students solve the problems. Even the high-quality use of the drawing strategy did not seem to elicit the visual solution strategies that could help students find the right solution. In line with prior research, this finding points out the lack of visual solution strategies, such as calculating the area by paving the figure in order to solve non-linear geometry problems (De Bock et al., 2002b, 2003). Future research should investigate whether training students to use visual solution strategies can lead to the beneficial use of the drawing strategy.



Visual Monitoring

Another factor that we addressed in order to explain the negative effect of drawing strategy was visual monitoring, the use of the drawing strategy for monitoring purposes. Monitoring has been identified as essential for problem solving (Flavell, 1979) and was found to be important for detecting linear overgeneralizations (De Bock et al., 2002a). For non-linear geometry problems, we assumed that visual monitoring would take place for problems with small scaling factors but would not for large ones because the non-linear relationship of the areas becomes salient while drawing when small scaling factors are used.

However, the findings did not confirm our expectation that visual monitoring diminishes the effect by which self-generated drawing hinders students’ ability to solve non-linear geometry problems. Visual monitoring did not affect the number of linear overgeneralizations or performance. One potential reason for this finding is that students’ tendency to engage in linear overgeneralizations is very strong and difficult to change by engaging in subtle actions such as visual monitoring (De Bock et al., 2007). Visual monitoring may have helped students recognize the non-linear relationship between the areas while drawing, but because students lacked knowledge of how to proceed, they stuck to their use of the linear models they were familiar with to solve the problem. Another reason might be that students did not even notice the non-linear relationship of the areas while drawing because they did not use the drawing strategy for monitoring. Consequently, our assumption that visual monitoring takes place when the drawing strategy is applied to problems with small scaling factors needs to be reconsidered. Previous research has indicated that, in contrast to experts, students use the drawing strategy only infrequently to monitor their solution processes (Stylianou, 2011), so they might not have engaged in visual monitoring even though the non-linear property of the area was made salient while they were drawing. We need more research on how visual monitoring affects the drawing strategy and on how to clarify the mechanisms that can improve visual monitoring in students.

Taken together, our findings confirmed the idea that applying a strategy can have negative effects on students’ performance. The use of a drawing strategy and its effects on solving non-linear problems demonstrates that more efforts are essential for clarifying which factors, apart from fostering linear overgeneralizations, affect the decrease in students’ performance. On a more general level, we argue that there is a need to also further investigate the negative effects of other strategies and identify why some students are misguided when they apply a specific strategy even when this strategy might be helpful for the majority of students. The quality of strategy use seems to be an important factor that should be addressed more often in research on strategies. In addition, research on cognitive factors such as strategic knowledge about drawing (Lingel et al., 2014; Rellensmann et al., 2019) or on emotional and motivational factors such as enjoyment of drawing and the costs of drawing (Uesaka and Manalo, 2017; Schukajlow et al., 2019b) can contribute to clarifying the conditions under which drawing is helpful and when it has a hindering effect.



Awareness of Linear Overgeneralizations

On the basis of theoretical considerations, we assumed that increasing the quality of the drawing strategy and enhancing visual monitoring would affect students’ awareness of linear overgeneralizations even if it did not affect their performance. Learners may recognize the non-linear property of the problem but might still stick to linear models because they lack the mathematical knowledge necessary to proceed. Indications of whether students were aware of their linear overgeneralizations could be derived from their perceived performance. If students did not notice that drawing guided them incorrectly toward an inadequate use of linear models, they presumably perceived that their performance was higher than the performance of students who were aware that their solution was probably wrong because they made inappropriate linear assumptions.

In order to validate our findings, we conducted an exploratory analysis of students’ perceived performance. Our findings indicated that neither improving the quality of drawing strategy nor enhancing visual monitoring led to a greater awareness of linear overgeneralizations. This finding is in line with prior research that pointed to the intuitive nature of linear misconceptions (Van Dooren et al., 2004, 2008).

It seems that students also encountered other difficulties while solving the problems, ones that did not rely on the non-linear properties of the problem. Students in the group in which visual monitoring was enhanced by using small scaling factors perceived that their performance was even higher than students in the low visual monitoring group who worked on problems with large scaling factors, although the two groups had the same performance scores. The use of small scaling factors probably led to a higher perceived performance because it facilitated the calculations, but it did not lead to a higher performance because the learners made mistakes on the basis of the linear overgeneralizations that they were not aware of. These points indicate that we also need to investigate other difficulties students encounter in solving non-linear geometry problems with the help of a drawing strategy in order to develop a complete picture of the difficulties encountered while solving non-linear problems.




STRENGTHS AND LIMITATIONS

We investigated the effect of the drawing strategy for solving non-linear geometry problems by using an experimental design with drawing conditions and a control group that was not instructed to draw. We implemented a treatment check, which showed that students reliably followed the instructions. However, 19 of 41students in the control group spontaneously made drawings. Therefore, we additionally analyzed an adjusted subsample that included only the students in drawing conditions who actually drew and the students in the control group who did not draw. This analysis showed the same results as the previous analyses.

In order to keep the design of the study as simple as possible, the control group worked only on the test version with large scaling factors. As noted in Section “Effect of Drawing Strategy on Linear Overgeneralizations and Performance,” we conducted additional analysis to ensure the comparability of the different drawing conditions. However, the design of our study does not allow to compare students of no drawing and drawing conditions for tests with small scaling factors.

Another important limitation is that our findings are valid for the effects of instructions to make a drawing, but not for spontaneous drawing activity. Descriptive analysis of students’ solutions indicated that students’ spontaneous drawing did not have negative (or even might have slightly positive) effects on students’ achievement-related outcomes. Thus, it might be that spontaneous drawing activity is positively related to students’ achievement-related outcomes. Identifying task- and person-related factors that predict spontaneous use of drawings for non-linear problems is another open question.

A further limitation concerns the operationalization of the factors of drawing quality and visual monitoring. On the basis of theoretical considerations, we assumed that drawing quality would improve if we highlighted the key information given in the problem. Further, we assumed that visual monitoring would be enhanced by the use of small scaling factors compared with large scaling factors. Although both assumptions are plausible, our manipulation might address other factors in addition to these two factors. For example, using small scaling factors decreases the difficulty of the calculations.

As our study was a partial replication of the study by De Bock et al. (2003), we decided to use the same material to render the results as comparable as possible and therefore included only two items in the analyses. As reported in the method section, additional analyses based on all of the four experimental items showed the same results, but future research should increase the number of items to strengthen the validity of these findings.
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The use of figurate numbers (e.g., in the context of elementary number theory) can be considered a heuristic in the field of problem solving or proving. In this paper, we want to discuss this heuristic from the perspectives of the semiotic theory of Peirce (“diagrammatic reasoning” and “collateral knowledge”) and cognitive psychology (“schema theory” and “Gestalt psychology”). We will make use of several results taken from our research to illustrate first-year students’ problems when dealing with figurate numbers in the context of proving. The considerations taken from both theoretical perspectives will help to partly explain such phenomena. It will be shown that the use of figurate numbers must not be considered to be any kind of help for learners or some way of ‘easy’ mathematics. Working in this representational system has to be learned and practiced as another kind of knowledge is necessary for working with figurate numbers. The named findings also touch upon the concept of ‘proofs that explain.’ Finally, we will highlight some implications for teaching and point to a number of demands for future research.

Keywords: figurate numbers, mathematical proof, proof that explain, diagrammatic reasoning, generic proof


INTRODUCTION

There are different ways of communicating facts and ideas in mathematics. Besides the mathematical symbolic language, geometric representations can also be used: in figurate numbers, “numbers are classified according to their geometric representation as sets of dots” (Weaver, 1974, p. 661). These figurate numbers have a long tradition in mathematics history: even the ancient Greeks and the Chinese, for example, used the geometric order of points to perform mathematics (see Chemla, 2012). As Steinweg (2002, p. 131; our translation) puts it: “Figurate numbers can be considered as a cultural heritage of mathematics.” Even today, these kinds of representations can be found in mathematical journals (e.g., Gallant, 1983; Wakin, 1984) as well as in school mathematics (e.g., Norman, 1991; Conway and Guy, 1996). While figurate numbers can constitute a unique playground for conjecturing and proving, its use can also be helpful in the context of problem solving. However, besides the useful advantages that are linked with the use of geometric representations, some research results point to possible obstacles.

In this article, we want to discuss the use of figurate numbers in mathematics from different perspectives. In this sense, each section will have a different focus on this topic. (This is why the structure of this paper is different from ‘normal’ papers with an empirical focus). The paper aims at getting deeper into the phenomenon of using figurate numbers in mathematics and in learning mathematics. This ‘deeper’ is concerned with two foci: (1) Why is it possible to do mathematics by making use of figurate numbers? (2) What problems are associated with the use of figurate numbers in mathematics for learners?

First, we will summarize the use of such representations in mathematics, especially in the field of problem solving and proving. In this context, we also want to highlight some useful benefits from the educational point of view. In a second step, we will discuss the use of figurate numbers from two theoretical perspectives. The semiotic perspective of “diagrammatic reasoning” of Peirce opens the view for the meaning of the “diagrams” used and the importance of the rules for dealing with them and reading and understanding corresponding calculations. The field of cognitive psychology will help to elaborate on the concepts of learning and understanding and hint to possible obstacles when doing mathematics in this context. In a third step, we will summarize different findings from our research to illustrate and underline the considerations taken from both theoretical perspectives. Finally, some implications for research and teaching are highlighted.



FIGURATE NUMBERS IN MATHEMATICS AND MATHEMATICS EDUCATION

Many sequences in mathematics can be illustrated by using a special kind of geometric representation as sets of dots and the other way round (examples are shown in Figure 1).


[image: image]

FIGURE 1. Some examples of figurate numbers (and their relationship to sequences): triangular numbers, square numbers, and hexagonal numbers.


In addition to the arithmetic properties, the geometric shapes may lead to special kinds of insights. In Figure 2, for example, the transition from a square to the next is done by adding two sides and one dot in the corner. This ‘is why’ the difference of two consecutive square numbers is always an odd number. Such types of insights that correspond to understanding have a special quality that can hardly be explained by purely behaviorist descriptions (Köhler, 1959, p. 731). We will return to this fact later in the context of cognitive psychology (see section “Some Insights From Cognitive Psychology”).


[image: image]

FIGURE 2. The transition from one square number to the next represented by figurate numbers.


It becomes obvious, that figurate numbers can be useful for both clarifying and illuminating mathematical issues. Accordingly, they can be used in a variety of ways in mathematics and mathematics education. In the following sections, we will elaborate on three different aspects: Figurate numbers in the context of problem solving, in the context of mathematical proof and for educational purposes.


Geometric Representations in the Context of Problem Solving

Being confronted with a ‘problem’ in mathematics, one might follow different heuristic strategies, like having a look at examples and special cases or trying to follow a forward/backward strategy. Another heuristic is using a change of representation [compare the idea of “deciding on a notation” or “change of representation to see the problem from a fresh perspective” in Mason et al. (1982) and the heuristic of variation, variation of representation, described in Schwarz (2018), p. 3 ff].

We consider the following example: “Which natural numbers can be written as a sum of consecutive natural numbers?”.

Having a look at some concrete examples, one might have different conjectures:

[image: image]

Conjecture: All odd numbers can be written as corresponding sums.
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Conjecture: The sum of three consecutive natural numbers is always divisible by three. Accordingly, numbers from the three times table can be written as consecutive sums. (It is a hypothesis to be proven that this is true for all multiples of 3).

This gives a partial answer to the initial question: all numbers from the three times table can be written as sums of consecutive numbers.

This idea can be transmitted to the sums of four consecutive numbers:

[image: image]
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In this case, the sums of four consecutive numbers are not divisible by four. However, one realizes that numbers like 10 + n⋅4 (n ∈ ℕ0) can be written as consecutive sums.

What about the sum of five consecutive numbers?

[image: image]
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Conjecture: The sum of five consecutive natural numbers is always divisible by five. Accordingly, numbers from the five times table starting with 15 can be written as consecutive sums. (It is a hypothesis to be proven that this is true for all multiples of 5 greater or equal to 15).

One might follow this investigation by having a look at concrete examples. However, a change of representation can be helpful in this case. In the field of figurate numbers, even and odd numbers can be represented by two rows of dots with equal long rows (“even”) or with the difference of one dot (“odd”) (see Figure 3). Having a closer look at this structure of odd numbers, one easily divides the figure representing the odd number ‘in the middle,’ obtaining two consecutive natural numbers (see Figure 4).


[image: image]

FIGURE 3. Even and odd numbers represented by figurate numbers.



[image: image]

FIGURE 4. Odd numbers divided into two consecutive natural numbers.


The sums of consecutive numbers can be represented by ‘stairs’ of dots (see Figure 5). Following this idea, the sum of three consecutive numbers always has three steps, the sum of four has four, and so on. The phenomenon explaining the assumptions above is the following: having an odd number of stairs, one always has a line in the middle. Accordingly, the dots overhanging on one side can be transformed to the other side obtaining equal long rows. This transformation does not work with an equal number of stairs (see Figure 6).


[image: image]

FIGURE 5. The sums of 3, 4, and 5 consecutive numbers represented by figurate numbers.
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FIGURE 6. The transformation of odd numbers for obtaining equal long rows of dots.


Summarizing our ‘problem’: all odd numbers and all numbers that are divisible by an odd number can be written as sums of consecutive numbers. The numbers left are the powers of two (1, 2, 4, 8, 16, …). And indeed, as one can show – these numbers cannot be written as respective sums.

As we have seen, the use of figurate numbers can help investigate a problem (here: in elementary arithmetic) and may even lead to a solution. More than this, the usage of figurate numbers above also answers the question, why the assumptions are true in every case. This fact opens the view for using figurate numbers in the context of mathematical proving, too.



Figurate Numbers and Mathematical Proof

In the investigation above, an argument was found to explain, why the sum of three consecutive natural numbers is always divisible by three (see Figure 6). This idea can also be used to prove the corresponding claim. However, in the context of concrete examples, the question of generality arises. One characteristic of mathematical proof is the issue of generality. The given argument concerning the transformation of one dot to the former shortest row can be used in every possible case! This is due to the shape of stairs on the right-hand side when representing the sum of any three consecutive natural numbers by figurate numbers. This kind of proof, giving some concrete examples to illustrate an overall idea and explicating its generality is called “generic proof” (e.g., Dreyfus et al., 2012, p. 200 f.). A complete generic proof is shown in Figure 7.
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FIGURE 7. Generic proof with figurate numbers (Figure similar to Kempen and Biehler, 2019a, p. 735).


In comparison, one feature of the mathematical symbolic language is the possibility to express generality, e.g., by using algebraic variables. A corresponding proof with algebraic variables might be:
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Since (n + 1) ∈ ℕ the sum is divisible by three.

In the context of figurate numbers, a special kind of symbol has been introduced to represent an arbitrary number of dots to express some kind of generality, too. Kempen and Biehler (2019a, p. 735) call this a “geometric-variable.” Geometric-variables allow the construction of mathematical proof in the context of figurate numbers expressing generality by its use of symbols (see Figure 8).
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FIGURE 8. A proof using geometric variable (Figure similar to Kempen and Biehler, 2019a, p. 736).


There are a lot of proofs collected in the literature making use of such geometric representations, called “charming proofs” (Alsina and Nelsen, 2010) or “proofs without words” (Nelsen, 1993, 2000; Alsina and Nelsen, 2009). From a meta point of view, such proofs are said to bear a special kind of explanatory quality (e.g., Hanna, 1990, 2018; Hemmi, 2006).


A Closer Look at the Idea of Explanatory Proofs

The famous distinction between proofs that prove and proofs that explain has been given by Hanna (1990). However, the idea of explanation allows for different approaches (Hanna, 2018). In the philosophy of mathematics, the explanatory quality is stressed by the connections between mathematical statements and their mutual relationships. From a pedagogical point of view, the idea of explanation is combined with some insights as to why a statement is true. In the following, we will refer to this pedagogical concept of explanation. We also refer to the characterization of proofs that explain, considered in Lockwood et al. (2019), for their description links the concept with the features of different representations systems that will be useful in the theoretical consideration from a semiotic point of view (see below). “We interpret, then, that a proof that explains allows for a prover to make meaning of whatever formal representation system he or she may be working with in order to connect ideas to some semantic system.” (ibid., p. 777). The idea of a semantic system is taken from the distinction between semantic and syntactic proof production that seems to be helpful for our discussion.

Weber and Alcock (2004) describe two different ways of producing mathematical proofs. The syntactical proof production is done by “manipulating correctly stated definitions and other relevant facts in a logically permissible way. […] The prover does not make use of diagrams or other intuitive and non-formal representations of mathematical concepts.” (ibid., p. 210). In a semantic proof production, a person uses instantiations of the mathematical objects to guide the formal inferences in the proving process. With instantiations, the authors describe “a systematically repeatable way that an individual thinks about a mathematical object, which is internally meaningful to that individual” (Weber and Alcock, 2004, p. 210). As Weber (2010b, p. 34) puts it, an explanatory proof “allows the reader to translate the formal argument that he or she is reading to a less formal argument in a separate semantic representation system”. (The author uses the term semantic representational system in opposite to a formal representational system). They give the following descriptions of an even function as an example: in a formal representational system, an even function satisfies the condition ∀x ∈ ℝ:f(x) = f(−x). In a semantic representational system, this concept might be described “informally as a function whose graph is symmetric around the y-axis” (ibid., p. 34).

This conceptualization of proof that explains gives a hint of why such explanatory proofs often make use of geometric descriptions to reach the conclusion: The representation system of figurate numbers can be considered to be such a semantic representation system, as it constitutes a non-formal way for communicating mathematical ideas. In this sense, proofs making use of geometric representations are considered to have a special kind of explanatory quality. As an example, we give an explanatory proof for the formula [image: image] (see Figure 9).


[image: image]

FIGURE 9. An explanatory proof for the sum of the first n ∈ ℕ natural numbers making use of figurate numbers.




Figurate Numbers for Educational Purposes

In elementary school, figurate numbers can be used to get insights into the nature of natural numbers and the decimal systems and to promote mathematics as a science of patterns (e.g., Steinweg, 2002). Even at elementary school, figurate numbers offer the possibility to discuss generality and to introduce students to the idea of reasoning (e.g., Söbbeke and Welsing, 2017). Sequences of figurate numbers can be used in middle school to foster algebraic thinking (e.g., Rossi Becker and Rivera, 2006; Britt and Irwin, 2008). Moreover, the context of figurate numbers may serve as a playground to perform exploration and conjecturing in the interplay of algebra, arithmetic, and geometry (e.g., Weaver, 1974; Flores, 2002). For the context of first-year pre-service teachers at university, Kempen (2019, p. 21) highlights several benefits of the use of figurate numbers. Their use…


•… offers the possibility to take up students’ prior experiences from school mathematics, also concerning mathematical reasoning,

•… offers a non-symbolic language for the pre-service teachers they can use in their daily life as a teacher in the future,

•… makes it possible to involve the students in conjecturing and proving and helps to highlight the process aspect of mathematics,

•… may help to highlight the advantages of the mathematical symbolic language in comparison.



Moreover, in the comparison of the single test of some concrete examples, generic proofs and so-called ‘formal proofs’ making use of algebraic variables, the important distinction between purely empirical verification and the matter of generality in mathematical proofs can be stressed.



THEORETICAL CONSIDERATIONS


Diagrammatic Reasoning

In this section, we will analyze the use of figurate numbers from a semiotic point of view. This will help us discuss possible obstacles in their usage when reading and constructing mathematical proofs.

Peirce (1839–1914) uses the word “diagram” in a wide sense. He calls those signs and their combinations “diagrams” that can be used, read and understood in the context of a wider representational system, where the rules for dealing with the diagrams are constituted. As an example, we mention the following diagrams: “a2,” “2x + 5y + 6x,” and “7b2.” The meaning of the signs, their combinations and the possibility of transformations are given by the representational system of algebra. From a semiotic point of view, the area of figurate numbers can be considered to be such a representation system, too. Fischer (2010) describes the corresponding rules for dealing with the symbols:

Natural numbers are represented by the quantity of dots. Summation corresponds to joining amounts of dots, multiplication to the duplication of dots. Subtraction is done by eliminating dots (by erasing or crossing them). Dividing means to divide the dots into equal subgroups. (ibid., p. 86; our translation).

Following Peirce’s semiotic theory and his view on mathematics as “diagrammatic reasoning” (Hoffmann, 2003; Dörfler, 2008), the work in a representational system presupposes certain knowledge (“collateral knowledge”) about this system (Hoffmann, 2005). This knowledge comprises facts about the construction of diagrams, their usage and the interpretations of possible results. In some sense, this collateral knowledge can be seen as an implicit instruction manual for the use of the whole representational system. When performing or learning mathematics, one has to have the corresponding collateral knowledge, in order to work with the diagrams used or offered.

Peirce describes the mathematical activity making use of diagrams as the essential feature of mathematics:

By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a percept expressed in general terms, performs experiments upon this diagram, notes their results, assures itself that similar experiments performed upon any diagram constructed according to the same percept would have the same results, and expresses this in general terms (Conference on Sensation-Mediation-Perception, 2012, p. 2).

This sequence of four phases [(i) construction of a diagram, (ii) performing experiments, (iii) observing the results, and (iv) determining the overall generality] describes the way new insights are gained in mathematics (see Dörfler, 2006, p. 211). The idea of diagrammatic reasoning, considered as the basic activity in mathematics, can be transmitted to the concept of mathematical proof. We will illustrate this by stating two different proofs concerning the claim “The sum of an odd number and its double is always odd.”

The proving process for a so-called “formal proof” is shown in Table 1.


TABLE 1. Description of the proving process for a so-called “formal proof” following the concept of diagrammatic reasoning.

[image: Table 1]Overall, the meaning of the collateral knowledge in the different phases as well as for the whole proving process becomes clear. We will compare this use of diagrams and the meaning of the corresponding collateral knowledge when dealing with the representational system of figurate numbers in the context of mathematical proof.

The corresponding proof in the representational system of figurate numbers (using geometric variables) is shown in Table 2.


TABLE 2. Description of the proving process for making use of figurate numbers following the concept of diagrammatic reasoning.

[image: Table 2]At this stage, we would like to highlight that several representational systems can be used to perform mathematical proving. The quality of a representational system has to be judged in comparison to its usefulness in this context. On the one hand, the writer of the proof has to have the corresponding collateral knowledge to construct such proofs. On the other hand, the reader of the proof also has to have this knowledge, to be able to read and to understand the proof correctly. Learners have to acquire certain collateral knowledge before they can be successful in working with any (geometric) representation.



Some Insights From Cognitive Psychology

In this section, we will enrich the discussion about the use of figurate numbers by referring to different strands from cognitive psychology. After discussing basic aspects of understanding and the schema theory (see section “Diagrammatic Reasoning”), we will have a look at the perception of figurate numbers from the area of Gestalt psychology (see section “Some Insights From Cognitive Psychology”). Finally, the specific role of pictures and texts for understanding are revisited.


Understanding and the Extension of Existing Schema

From the perspective of cognitive psychology, the meaning of previous knowledge for learning is highlighted. Understanding is conceptualized as the integration of new information into the existing knowledge to build new schema (see Lee and Seel, 2012 for a summarized description). When working with (geometric) representations, this previous knowledge concerns semantical and syntactical issues. Since one person’s knowledge has an individual character, the process of understanding is an individual matter, too. However, the process of understanding (of getting new insights) must not be considered to be just some kind of accumulation. New information is integrated into one person’s existing knowledge and leads to elaboration, to the extension of existing schemata (Axelrod, 1973; Minsky, 1975; Collins et al., 1980). Following the perspective of the schema theory, one’s knowledge is organized and arranged in a specific way. DiMaggio (1997) brings in the schema aspect here: a schema describes a pattern of thought that organizes categories of information and the relationships between them. In this sense, the knowledge about the use and meaning of (geometric) representations is organized as a whole and constitutes a so-called schema. Combined with the concept of proof, the corresponding schema becomes evident. Again, a learner has to be acquainted with an adequate schema before being able to work with such representations or gain new insights from their usage.

When being confronted with a mathematical claim, a learner might activate the schema ‘figurate numbers’ in the context of proving. Activating this schema, several ‘blank spaces’ arise that have to be filled with respective knowledge:

– Geometrical representation (start): what kind of geometrical representation (e.g., shape) seems to be appropriate to represent the situation given in the context of the claim?

– Operations (start): which operations in the context of figurate numbers seem to be appropriate for being a translation of the operations mentioned in the given claim?

– Transformations: which transformations in the context of figurate numbers can be used to verify the given claim?

– Geometrical representation (end): what kind of geometrical representation should be reached after the transformations were done? What geometrical arrangement is considered to be a translation of the desired mathematical results?

– On a meta level: (1) why and when to use figurate numbers? (2) why is it possible and legitimate to perform mathematical proving with figurate numbers?

It becomes obvious that these demands have to be handled on top of the mathematical problem itself. This is also the case when using the algebraic language, but normally, learners have much more experience in using the algebraic language and therefore have a more complete schema in this case.



Some Remarks on Perception of Arrangements From the ‘Gestalt Psychology’

When dealing with figurate numbers, the question arises: why and how do we perceive such elements as arrangements in larger structures? For using figurate numbers to do mathematics and/or to grasp a general idea in a given pattern, it might be necessary to realize different structures within the whole. We take Figure 2 as an example: in this Figure, a 4 times 4 square is given. The transition from the previous to the given one results from seeing the following elements: the previous square (3 times 3), the two newly placed sides at the top and the right and the new point at the top right corner. Finally, for a general understanding of the transition from one square (number) to the next, this concrete pattern has to be recognized as a general one. The coming together of these aspects are necessary for obtaining the intended insight. This requires seeing one pattern in different ways. The Gestalt psychology gives some hints to why this activity might be problematic. Wertheimer (1938, p. 71; emphasis in original) describes this phenomenon as follows:

The concrete division which I see is not determined by some arbitrary mode of organization lying solely within my own pleasure; instead I see the arrangement and division which is given there before me. And what a remarkable process it is when some other mode of apprehension does succeed!

This author names several principles trying to explain the arrangement of stimuli perceived. Such impressions rely among others on the factor of proximity (this concerns the distance between individual elements) and the factor of similarity (the tendency to band similar or equal elements together)1. We cite two short examples (ibid., p. 72 and 74) to illustrate these principles.

Having a look at the sequence shown in Figure 10, one tends to ‘see’ naturally groups of two dots being near to each other (so to say the sequence “ab | cd | ef | gh”). Somehow it would be possible to always group the two dots next to the gap (“a | bc | de | fg | h”), which tends to be much harder. As Wertheimer puts it: (ibid., p. 73; emphasis in original): “[…] that form of grouping is most natural which involves the smallest interval. They all show, that is to say, the predominant influence of what we may call The Factor of Proximity.” In the sequence shown in Figure 11, all distances between the dots are exactly the same. However, the picture seems to contain vertical rows of dots. One might try to see a pattern of horizontal lines, but this tends to be harder. Accordingly, the factor of similarity describes the tendency to group similar elements.


[image: image]

FIGURE 10. Sequence to illustrate the “factor of proximity” (patterns similar to Wertheimer, 1938, p. 72).



[image: image]

FIGURE 11. Different geometric interpretations of the triangular numbers.


By making use of such principles (implicitly), one’s perception of figurate numbers (e.g., their geometrical shape as a whole or the phenomenon of detecting several sub-groups in the whole figure) might be explained.2 A first and simple example is given in Figure 12. The way one interprets the pattern of the triangular numbers has effects on the geometrical interpretation of the corresponding formula. Following interpretation (i), the new number line is always added on the right-hand side. Accordingly, the previous number is detected on the left in the actual pattern. In interpretation (ii), the new number line is added below the former pattern and (iii) offers a diagonal interpretation. Finally, the representation as a pyramid (iv) offers some more interpretation. However, one interpretation is necessary for a person for ‘seeing’ the connection between the given formula and the corresponding geometric shapes. It becomes obvious, that different interpretations can lead to a number of misunderstandings between teachers and learners or among the learners.


[image: image]

FIGURE 12. The connection between cube numbers and hexagonal numbers.


Another example might be the fact, that the sum of two consecutive triangular numbers is always a square number. A more complex example of seeing a subpattern in the whole is given in Figure 13. Do you ‘see’ why the difference of two cube numbers is always a hexagonal number (Figure 13)? Adding three lines makes it much easier to see this relationship. The respective connection in the transition from one cube to the next can be calculated easily: cn−cn−1 = n3−(n−1)3 = n3−[n3−3n2 + 3n−1] = 3n2−3n + 1 = hn.


[image: image]

FIGURE 13. A student answer, which belongs to the category “empirical” [“=21 result odd → claim”].


In accordance to the patterns or shapes perceived, operations on these figures (see section “Diagrammatic Reasoning”) might be considered as “pro-structural,” when being in line with the perceived structures or when leading to new ones, or as “contra-structural” (ibid., p. 76), when destroying some structure. Thus, the perception of a shape might guide one’s operations.

However, seeing a different arrangement after perceiving the first one tends to be difficult (Wertheimer, 1938, p. 71):

[…] one sees a series of discontinuous dots upon a homogeneous ground not as a sum of dots, but as figures. Even though there may here be a greater latitude of possible arrangements, the dots usually combine in some “spontaneous,” “natural” articulation – and any other arrangement, even if it can be achieved, is artificial and difficult to maintain.

For each individual, through the coming together of the various named principles and the individual’s experiences, a certain initial interpretation of what has been experienced emerges. If one tries to see another interpretation, the earlier stimuli must be overcome.

From a meta-level, it seems to be significant, not only for the phenomenon of figurate numbers, that some kind of quantity is translated into orderly spaced identical elements. In our cases, these orderly spaced identical elements are considered to convey special kinds of insights. However, this principle can be detected in other parts of mathematics, too. As an example, we point to the meaning of such representations for estimating quantities (e.g., Hansen et al., 2015). Another example is the translation of quantities into position in space as one basic principle of many data graphs such as scatter plots (some nice examples are discussed in Garcia-Retamero and Cokely, 2017).



About the Role of Figurate Numbers Seen as ‘Pictures’

Our focus is on the interplay of mathematical content and the use of figurate numbers. To be successful in achieving understanding, learners have to combine the given content with its interpretation in the context of figurate numbers and to integrate this information into one coherent mental representation. Since figurate numbers are a specific type of representation that somehow resembles a picture, it could be assumed that, unlike conventional texts, they could fulfill different functions in the process of understanding. Accordingly, we will take a first look at the role that ‘pictures’ play in our everyday process of understanding. [For this discussion, we will shortly leave the interpretation of pictures and its parts as diagrams in a wider representational system in the sense of Peirce (see above), for our intention is to highlight a normal or naïve role of pictures for the individual in the context of understanding].

As a part of our living in the real world, we seem to have learned that reading a text is about acquiring information and about constructing mental models. Pictures, particularly given in addition to a text, are about reading off information (compare Zhao et al., 2020). Furthermore, pictures can constrain the interpretation of a text (Ainsworth, 1999) and serve a scaffolding function for constructing mental representation (e.g., Eitel and Scheiter, 2015) that might lead to the construction of deeper understanding (Ainsworth, 2008). However, research has shown, that learners often fail to exploit such advantages and the use of (several) representation might hinder learning (ibid.). When one works with figurate numbers, the ‘pictures’ themselves become the center of interest. At first glance, it might seem quite unnatural that these pictures should contain all relevant information (and not a given text), this phenomenon might contradict previous experiences. In addition, one is also asked to work with these pictures; the diagrams should be (intentionally) changed and new information should be taken from the result. This change in function may prevent learners from fully exploiting the potential of the figurate numbers.

For the process of problem solving, the search for a suitable representation of the problem can serve as a promising heuristic (see section “Geometric Representations in the Context of Problem Solving”). A type of representation will emphasize certain or characteristic features of the initial problem (see also Dunbar, 1998, p. 294). In this sense, a change of presentation will also change the problem: This change may affect the initial state, the target state and/or the set of applicable operations (ibid.; see also section “Diagrammatic Reasoning”). In summary, it can be said that a problem discussed in another representation system can be considered a different problem.



FINDINGS FROM OUR RESEARCH UNDERLINING THE THEORETICAL CONSIDERATIONS ABOVE

In this section, we will recapitulate findings and experiences from our empirical research in the context of figurate numbers. The research presented here touches upon the following aspects: students’ proof construction making use of figurate numbers (see section “Students’ Proof Construction With Making Use of Figurate Numbers”), students’ perceived explanatory power, conviction, and proof-acceptance (see section “Proof-Acceptance, Explanatory Power, and Conviction”), and students’ perception of proofs making use of figurate numbers (see section “Students’ perception of proofs making use of figurate numbers”). Due to the size of this paper, we will only report on the main findings. For deeper descriptions of the methodology used and further results the relevant references will be given.


Students’ Proof Construction With Making Use of Figurate Numbers

The authors investigated pre-service teachers’ proof construction in the winter term 2013/2014 (Biehler and Kempen, 2015) and 2014/2015 (Kempen, 2017, 2019) in the context of the transition-to-proof course “Introduction into the culture of mathematics.” In both years, the students were asked to prove a given claim in the final exam of the course by using four different kinds of proofs they had learned about before. The claim to be proven was: “The sum of six consecutive natural numbers is always odd.” These four different kinds of proofs comprise:


(1)One proof with concrete examples making use of natural numbers. In this case, the overall argument to verify the given claim in general was explicated in a narrative (“generic proof with numbers”3).

(2)One proof with concrete examples making use of figurate numbers. In this case, the overall argument to verify the given claim in general was explicated in a narrative (“generic proof with figurate numbers”).

(3)One proof making use of figurate numbers and geometric variables to highlight the general quality of the argument given in the geometrical representation (“proof with figurate numbers making use of geometric variables”).

(4)One so-called formal proof making use of algebraic variables (“formal proof”).



The authors developed a set of categories for summarizing all proving attempts and for comparing the results evenly between the different kinds of proof. A summarized version of the set of categories is described below (compare Kempen, 2017, p. 388 f.); the examples illustrating the categories concern the generic proof with figurate numbers. The claim to be proven is mentioned above.


(1) n. p.: not processed.

(2)Empirical: The truth of the statement is inferred from a subset of (concrete) examples (see Figure 14).

(3)Pseudo: the answer is given by merely stating or paraphrasing the statement that the sum is always odd/wrong solutions/irrelevant information/construction (see Figure 15).

(4)Fragmentary: only fragmentary information is given/meaningful arrangement of figurate numbers without further information (see Figure 16).

(5)Sound argument: the students derives the conclusion from a connected argument and from generally agreed facts of principles that might contain (minor) inaccuracies (see Figure 17).




[image: image]

FIGURE 14. A student answer, which belongs to the category “pseudo.”



[image: image]

FIGURE 15. A student answer, which belongs to the category “fragmentary.”



[image: image]

FIGURE 16. A student answer, which belongs to the category “sound argument” [“Three points can always be used for completing the rectangle. Thus, we obtain the product by multiplying the sides (here: 6⋅4)” which is even. Since there are always three points left, and three is an odd number, the sum of the even and the odd number will always be odd].



[image: image]

FIGURE 17. Boxplots concerning students’ measured proof acceptance.


In both years, the students were asked to prove the given claim with all four kinds of proof in the final exam of the course. The corresponding results are shown in Table 3.


TABLE 3. Results [%] concerning students’ proof productions in the context of the course “Introduction into the culture of mathematics” concerning four different kinds of proofs (“genN,” generic proof with numbers; “genFig,” generic proof with figurate numbers; “GV,” proof with geometric variables; “FP,” formal proof).

[image: Table 3]First, we would like to stress that several students did not even try to solve the given task by using figurate numbers (“GenFig” + “GV”) in the winter term 2013/2014, even though, they were sitting an exam to pass the course. Moreover, the higher percentage of pseudo answers and the lower results of proving attempts belonging to the category “sound argument” when working with figurate numbers (“GenFig” + “GV”) are astonishing in both years.4

To sum up, these results highlight students’ difficulties in making use of figurate numbers to construct mathematical proofs.



Proof-Acceptance, Explanatory Power, and Conviction

Kempen and Biehler (2019b) investigated the perceived explanatory power, conviction, and proof acceptance concerning the four different kinds of proof (see above) in the context of pre-service teachers at the University of Paderborn in Germany.

We will rely on the following research questions taken from the study of Kempen and Biehler (2019b)

(i) How do pre-service teachers rate the different kinds of proofs concerning the perceived explanatory-quality and conviction at the beginning of their university studies?

(ii) How can students’ proof acceptance of the four kinds of proofs be described?

While Kempen and Biehler (2019b) investigated the changes in students’ proof perception and acceptance while attaining the course “Introduction into the culture of mathematics,” we will have a close look at the corresponding results from the pre-test at the beginning of the course.

To answer the research question (i), the students were asked to rate one proof of each kind (see above) concerning the perceived explanatory power and conviction on a six-level Likert scale ([1] “totally Disagree” … [6] “totally agree,” see Table 4). We cite the example for the so-called formal proof (Kempen and Biehler, 2019b, p. 39 f.) for the claim “For all natural numbers a,b,c: If b is a multiple of a and c is a multiple of a, then (b+c) is a multiple of a.”


TABLE 4. The items concerning “conviction” and “explanatory power” for the rating of the four different kinds of proof.

[image: Table 4]
Let a,b,c be natural numbers. Since b is a multiple of a, there exists a natural number n with: n⋅a=b. Since c is a multiple of a, there exists a natural number m with: m⋅a=c. We have: b + c = n⋅a + m⋅a = a⋅(n+m). Since (n+m) is a natural number, (b+c) is a multiple of a. Q.e.d.

As indicated in Table 4, students were asked to rate other statements concerning the given proofs, too. These statements comprised the aspects verification, interpretation as purely empirical verification, the existence of counterexamples, the importance of variables, the interpretation as testing of concrete cases and correctness. The mean of the different ratings for each kind of proof was considered to be one’s score in “proof acceptance.” I.e., a high scale value represents a high level of acceptance concerning a given ‘proof’ and vice versa. This construction of one scale was confirmed by a corresponding factor analysis. The reliabilities of the constructed scales for the four kinds of proof out of the eight items were very high (all Cronbach’s alpha > 0.88). Accordingly, we used the following conceptualization for “proof acceptance” to answer the research question (ii):

“‘proof acceptance’ is conceptualized as the extent to which an individual perceives verification, conviction and explanation when reading a mathematical proof combined with the extent, the reader does consider the reasoning to be a correct mathematical proof” (ibid., p. 31).

We quote the corresponding results:

With regard to both conviction and explanatory power, the formal proof achieved the highest ratings (Table 5), whereas the proof with geometric variables achieved the lowest. The results concerning the generic proofs are located between these kinds of proofs. All differences concerning the medians are pairwise highly statistically significant (p ≤ 0.001, Wilcoxon-test) with medium and high effect sizes (see Table 6).


TABLE 5. Statistical data concerning the items “conviction” and “explanatory power” (“genN,” generic proof with numbers; “genFig,” generic proof with figurate numbers; “GV,” proof with geometric variables; “FP,” formal proof).

[image: Table 5]
TABLE 6. Statistical significance of the differences between the medians concerning “conviction” and “explanatory power” (p-value, Wilcoxon-test) with effect sizes [Pearson’s correlation coefficient (r)].

[image: Table 6]The results concerning students’ proof acceptance are shown in Table 7 and Figure 17. The score concerning the generic proof with numbers (mean of 2.79) was quite low, as was the acceptance of the proof with geometric variables. Again, the formal proof achieved the highest score (mean: 5.15).


TABLE 7. Statistical data concerning proof acceptance scales.

[image: Table 7]All differences between the means are highly statistically significant (p ≤ 0.001; t-test) with medium to high effect sizes, except for the difference between the generic proof with numbers and the proof with geometric variables (see Table 8).


TABLE 8. Statistical significance of the differences between the means of the acceptance scores (p-value, t-test) with effect sizes (Cohen’s d).

[image: Table 8]To sum up, the students in our study struggled with the interpretation of figurate numbers in the context of proving. The use of these geometric representations in such proofs did not lead to an increased perception of conviction or explanatory power. On the contrary, the proof making use of algebraic variables (the ‘formal proof’) was perceived as the most convincing and explanatory argument. The same is true for the measured proof-acceptance values5.



Students’ Perception of Proofs Making Use of Figurate Numbers

Kempen and Biehler (2015) conducted an interview study with 12 first-year pre-service teachers to investigate students’ perceptions of proofs making use of concrete examples in elementary number theory. These students participated in the course “Introduction into the culture of mathematics,” where they were introduced to the concept of proving. In the context of the course, the varying use of concrete examples, figurate numbers, and algebraic variables played an important role (see Kempen and Biehler, 2019a, b). In this research study, the students were asked to work on the following task: “Prove or disprove: If one takes a natural number and adds its square, the result will always be divisible by 2.” After students’ initial answers, an interview phase followed. Here, the students were asked to explain their proving attempts to reason why they used the respective approach in contrast to the other ones they had learned in the course. We transcribed each session and analyzed the transcripts and students’ proof constructions. We looked for common and characteristic patterns in students’ comments to categorize them as cases of a certain type.

This study reveals some interesting results concerning learners’ perspective on the usage of figurate numbers. Following students’ responses in the interview, proofs making use of figurate numbers (i) are hard to construct because one always has to have a special “idea” and (ii) can be harder to understand than formal proofs. As an example, we cite the following statements from three different students (taken from Kempen, 2019, p. 260 f.; authors’ translation):

[…] compared to the one with figurate numbers, but since [with figurate numbers; L. K.] you always need an idea first, right? That’s why I like it worse, compared to the formal proof, because one always has to have an idea.

[…] we know at an early age if we multiply a number by two, that the result is logically divisible by 2. Here [in the case of figurate numbers; L. K.] one has to consider horizontal/vertical, odd number above/even number below. The feeling of looking at and understanding is easier here [in the case of the formal proof; L. K.]. Here one shows, no matter which natural number you take, multiplied by two will be logically divisible by 2.

I find that [the formal proof; L. K.] is most understandable for everyone. If someone else were to look at it, he or she would most likely understand it, instead of such proofs with figurate numbers, where one would have to think over and over again.

These results point to the fact, that the use of figurate numbers (even for university students) cannot be considered as being that easy. Argument (i) points to the problems that have already been raised in the context of schema theory: starting with a mathematical claim, one has to translate the given information to the representational system of figurate numbers. This means that a geometrical interpretation of the given facts has to be undertaken. The second argument highlights the fact that the use of figurate numbers must not be considered as being easier than the use of the algebraic symbolic language. As already mentioned in the context of Peirce’s semiotic theory, dealing with a representational system has to be learned and practiced. In this way, learners might acquire the respective collateral knowledge to work in this system.



SUMMARY, CONCLUSION, AND IMPLICATIONS FOR TEACHING AND RESEARCH

It has been shown above that figurate numbers can be used in mathematics in various ways, e.g., for illustrating, clarifying, and illuminating mathematical issues. Moreover, in the context of problem solving and proving, a change to this special kind of representational system and working with it can be considered to be a useful heuristic. Especially in the context of mathematical proof, working with such ‘semantic’ representational system (Lockwood et al., 2019) is said to increase the explanatory power of mathematical proof leading to so-called proofs that explain. Besides, the use of such representation is said to ease the transition to algebra and to contribute to a meaningful concept of variable. Finally, working within this field can constitute a playground for exploration, conjecturing, and proving in the interplay of algebra, arithmetic, and geometry.

However, the discussion of part of Peirce’s semiotic theory led to a closer look at the representational system ‘figurate numbers.’ For working with the corresponding symbols and signs, a special kind of knowledge (“collateral knowledge”) is necessary. This knowledge comprises facts about the construction of diagrams, their usage and the interpretations of possible results. Working with figurate numbers in mathematics (especially in mathematical proving) can be conceptualized as diagrammatic reasoning, i.e., reasoning by making use of such diagrams. It became clear that performing mathematics with figurate numbers or understanding someone else’s performance presupposes the existence of the corresponding collateral knowledge.

The discussion about necessary prior knowledge and the acquisition of new understanding could be elaborated by referring to cognitive psychology. Here, learning and understanding are combined with the integration of new information into the existing knowledge to build new schema. In addition to parts of knowledge referring to the use of such representations (an appropriate ‘translation’ of a mathematical issue to the system of figurate numbers, the choice of operations to achieve a selected aim) some meta-knowledge about the usage of such representations (e.g., “why and when to use them”) is necessary, too. Since geometric representations like figurate numbers fulfill distinct functions in the context of understanding and the construction of mental models, the question arose, as to how learning processes change while changing the representational system. Finally, it became obvious, that one problem or task changes fundamentally when changing the representational system, because the initial state of the problem, the goal state and/or the set of operations that can be applied will differ fundamentally. Besides, the semiotic considerations above hint toward the fact, that while changing a representational system, another collateral knowledge is necessary, that can be developed more or less than the previous one for each person. This is also true for the interpretation of learning and understanding by referring to a corresponding schema.

Insights from the Gestalt psychology made it possible to investigate the phenomenon of ‘seeing’ patterns within the arrangements of figurate numbers. However, corresponding principles of perception do not constitute universally valid rules, the individual experiences play another constitutive part. That is why the individual’s perception of geometric arrangements may be different to someone else’s. (The corresponding reading and understanding of a perceived geometric shape is again a matter of collateral knowledge). Working with figurate numbers demands a flexible perception about recognizing patterns, imaging future constellations, and eventually grasping a general idea. Furthermore, the identification of patterns does also affect the perception and awareness of possible operations or transformations that can be used, being “pro-structural” and “contra-structural.” Accordingly, the individual’s perception of a given arrangement may influence its choice of operations or transformations which, of course, also indicates the possibilities of achieving the respective goals and possible insights. The coming together of all these aspects illustrates the demands placed on learners when working with figurate numbers. Finally, the way of working with these ‘pictures’ for performing operations, achieving results, and getting new insights may contradict previous experiences about the role of pictures and texts in the context of learning.

In chapter 4, we summarized some findings from our own empirical research concerning the use of figurate numbers in a variety of aspects concerning the topic “mathematical proof.” As could be observed in every study, the students struggled with the use and the understanding of figurate numbers. This was somehow in contrast to the descriptions in the literature, highlighting the benefits of the use of figurate numbers for educational purposes. Concerning students’ proof productions, the learners struggled the most in constructing mathematical proofs by using figurate numbers. However, the students succeeded much better in construction generic proofs with numbers (instead of figurate numbers) and formal proofs. In this sense, the use of the representational system of Algebra seemed to be much easier for them than the one of figurate numbers and lead to the construction of proofs at a higher level. Concerning perceived explanatory power and conviction, the formal proof making use of algebraic variables always got the highest ratings. In this sense, the pre-service teachers in our study did not perceive a special kind of explanatory power and conviction in the context of the representational system ‘figurate numbers.’ Moreover, such proofs achieved significantly less scores concerning the individual’s “proof acceptance” than the formal proof. Taken together, these students seemed to appreciate especially the mathematical symbolic language in the context of proving. Results from our interview study could partly explain the results obtained. Students mentioned the necessity for a special “idea” when working with figurate numbers. When working with natural numbers (generic proof with numbers) or algebraic variables (formal proof), the students did not mention such challenges.

Finally, we will combine the theoretical considerations and the empirical findings. In the studies presented, the representational system of algebra (making use of algebraic variables in the context of elementary arithmetic) led to the biggest success when being used by students. These results can be explained by the fact that this representational system is the most used and practiced one in school mathematics. Other representational systems (as figurate numbers) are used less. Accordingly, students did not have enough time to acquire the corresponding collateral knowledge and to practice its use. Working within a representational system can be described by the four phases of diagrammatic reasoning [(i) construction of a diagram, (ii) performing experiments, (iii) observing the results, and (iv) determining the overall generality]. In all of these phases, a special kind of knowledge is necessary to cope with the respective aspects of a representational system. The lack of collateral knowledge will prevent the construction of correct mathematical proofs.

The named hints from schema theory highlighted the aspects, learners have to be (implicitly) aware of when working with figurate numbers in mathematics, too. When trying to prove a given claim, all aspects named in the given statement have to be transmitted to the representational system of figured numbers. Then, the conclusion has to be faced, again interpreted in the context of figurate numbers. Finally, this goal has to be achieved using the possible operations in this representational system. Again, students’ problems when working with figurate numbers can be partly explained by making use of such aspects from the schema theory. However, the corresponding understanding and interpretations belong to the individual’s perception which also affects the identification and selection of suitable operations. Accordingly, the given problem changes by undertaking a change of the given representational system and it also changes due to the individual’s perception. These perceptions could be elaborated by pointing to the Gestalt psychology. In addition, there is not only the need for perceiving and constructing a first pattern, as the initial state of a given problem. There are multiple arrangements and possibilities the learner has to recognize. A change in perception is difficult to achieve. However, this is a necessary prerequisite for making targeted transformations.

Both theoretical perspectives mentioned above highlight the necessity of corresponding prior knowledge for being able to work with and to understand the representational system of figurate numbers. In this sense, the use of such representations is no guarantee to lead to special insights. The explanatory quality of such ‘pictures’ or ‘proofs’ has to be considered as an ‘offer’ and not as a ‘present.’ The understanding of a representation is an individual process (of elaboration) and relies on the individual’s previous knowledge and perception. All kinds of representations (or representational systems) constitute a learning content at the first level. Even so-called ‘explanatory’ representations have to be read and to be understood by a certain reader, who has to have the corresponding collateral knowledge (in the sense of Peirce, see above). Considering learning as an active process based on one’s prior knowledge highlights the subjective nature and the relativity of the understanding of given representations. Accordingly, such ‘explanatory proofs’ making use of geometrical representations are not self-evident nor self-explanatory (see also Jahnke, 1984); ‘explanatory proofs’ cannot be considered to be explanatory by themselves.

These considerations lead to several implications for teaching: As Dörfler (2006) points out, learners have to perform several activities to get used to a representational system, i.e., to acquaint the corresponding collateral knowledge. These activities comprise (i.a.): manipulating (performing calculations) with the diagrams, performing experiments on the diagrams to explore their characteristics, investigating the relationships between such diagrams, inventing new diagrams, etc. Some examples of such activities can be found in modern textbooks. Kempen and Biehler (2019a) proposed some learning environment for first-year pre-service teachers to cope with different representational systems in the context of mathematical proof.

The perspective of schema theory highlights the questions, what kind of knowledge concerning the representational system as a whole is necessary to construct a coherent schema for dealing with this system in mathematics. (This knowledge also touches upon some kind of meta knowledge concerning mathematics). Such question can partly be discussed from the perspective of diagrammatic reasoning (see above). However, the Gestalt psychology stresses the individual’s perception in this context. Besides, affective factors might also contribute to the individual’s perspective.

The theoretical considerations above also lead to implications for research. The use of geometric representation in mathematical activities (like problem solving or conjecturing and proving) has to be investigated at different stages and in different institutions. Here, the aspect of “acceptance” should be considered, too, constituting a basis for the individuals work and understanding. This is also true when considering different research areas of mathematics and different representations in the context of proving (e.g., Weber, 2010a). Finally, the phenomenon of getting some ‘insights’ demands further research. Haider and Rose (2006) have proposed a way for detecting ‘insights’ empirically. Besides, philosophical investigations seem to be promising for conceptualizing this unique moment of ‘understanding-why’ (e.g., Lawler, 2019).
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FOOTNOTES

1 Concerning the perception of arranged stimuli, Wertheimer (1938) also mentions the factor of continuity and the factor of closure.

2 Similar principles for the grouping of patterns (proximity, collinearity, and good-continuation) could be verified empirically by Kubovy and van den Berg (2006).

3 Concerning the concept of generic proofs see Section “Figurate Numbers and Mathematical Proof.”

4 The different results between the 2 years can be explained by referring to several changes made in the whole course (see Kempen, 2019 for description of the whole research project).

5 This study was originally conducted with a bigger sample size. The students dealt with in Kempen and Biehler (2019b) are those, that could be tracked from the pre- to the post-test. The whole sample contains 145 pre-service teachers. The corresponding results are discussed in Kempen (2018). However, also in the whole sample, the overall results are nearly the same: the formal proof achieves the highest ratings and acceptance-score.
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People often struggle with Bayesian reasoning. However, previous research showed that people’s performance (and rationality) can be supported by the way the statistical information is represented. First, research showed that using natural frequencies instead of probabilities as the format of statistical information significantly increases people’s performance in Bayesian situations. Second, research also revealed that people’s performance increases through using visualization. We have built our paper on existing research in this field. Our main aim was to analyze people’s strategies in Bayesian situations that are erroneous even though statistical information is represented as natural frequencies and visualizations. In particular, we compared two pairs of visualization with similar numerical information (tree diagram vs. unit square, and double-tree diagram vs. 2 × 2-table) concerning their impact on people’s erroneous strategies in Bayesian situations. For this aim, we conducted an experiment with 540 university students. The students were randomly assigned to four conditions defined by the four different visualizations of statistical information. The students were asked to indicate a fraction in response to four Bayesian situations. We documented the numerator and denominator of the students’ responses representing a basic set and a subset in a Bayesian situation. Our results showed that people’s erroneous strategies are highly dependent on visualization. A central finding was that the visualization’s characteristic of making the nested-sets structure of a Bayesian situation transparent has a facilitating effect on people’s Bayesian reasoning. For example, compared to the unit square, a tree diagram does not explicitly visualize the set-subset relations that are relevant in a Bayesian situation. Accordingly, compared to a unit square, a tree diagram partly hinders people in finding the correct denominator in a Bayesian situation, and, in particular, triggers selecting a wrong numerator. By analyzing people’s erroneous strategies in Bayesian situations, we contribute to investigating approaches to facilitate Bayesian reasoning and to further develop the teaching of Bayesian reasoning.

Keywords: Bayesian reasoning, Bayesian situations, natural frequencies, strategies, visualization


INTRODUCTION

Bayes’ formula is one of the main models for dealing with inferential judgment of situations of uncertainty (Gigerenzer and Hoffrage, 1995). Reasoning in such situations, known as Bayesian situations, is a challenge for students in school (e.g., Wassner, 2004; Weber et al., 2018); adult laymen in real life (e.g., Colomé et al., 2018); and even experts in different professions, such as physicians, lawyers, or managers (Gigerenzer, 2014; Hoffrage et al., 2015). A typical Bayesian situation concerning an unspecific medical context is given in Figure 1.


[image: image]

FIGURE 1. A typical Bayesian situation in an unspecific medical context (Johnson and Tubau, 2015, p. 3).


Although it is important to judge Bayesian situations in various aspects of real life, research from recent decades showed that experts as well as laymen and students have severe difficulties with Bayesian reasoning (Kahneman et al., 1982; McDowell and Jacobs, 2017). McDowell and Jacobs (2017) revealed that only about 4% of people were able to calculate a probability in a Bayesian situation when the statistical information was given by percentages or rather probabilities, such as [image: image] representing the solution of the Bayesian situation in Figure 1.

However, research gained results refer to two approaches of representing statistical information that facilitate Bayesian reasoning. Research showed that using an appropriate Bayesian strategy in a Bayesian situation is highly dependent on the way the statistical information is presented. The first approach is using natural frequencies (Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996). The meta-analysis by McDowell and Jacobs (2017) showed that the rate of correct responses increases from approximately 4% to about 25% if the statistical information in a Bayesian situation is presented in the form of natural frequencies. Figure 2 presents the Bayesian situation in Figure 1 using natural frequencies. The second facilitating approach is using visualization (McDowell and Jacobs, 2017). Research demonstrates a facilitating effect of different kinds of visualizations, such as tree diagrams (e.g., Sedlmeier and Gigerenzer, 2001), double-tree diagrams (e.g., Böcherer-Linder and Eichler, 2019), 2 × 2-tables (e.g., Binder et al., 2015), unit squares (e.g., Böcherer-Linder and Eichler, 2017), Euler diagrams (e.g., Sloman et al., 2003), roulette-wheel diagrams (e.g., Yamagishi, 2003), bar graphs (e.g., Starns et al., 2019), frequency grids (e.g., Sedlmeier and Gigerenzer, 2001), or icon arrays (e.g., Brase, 2009). In particular, studies using visualization in addition to natural frequencies reported an increase of correct responses in Bayesian situations from about 40–70% (Garcia-Retamero and Hoffrage, 2013; Binder et al., 2015; Böcherer-Linder and Eichler, 2017).


[image: image]

FIGURE 2. The Bayesian situation of Figure 1 with natural frequencies.


The aim of this paper is to contribute to the field of facilitating Bayesian reasoning by focusing on those people who fail to use the correct Bayesian strategy (Zhu and Gigerenzer, 2006) in a Bayesian situation although the statistical information is given by natural frequencies and by visualization. For this purpose, we investigate particularly erroneous and non-Bayesian strategies (cf. Zhu and Gigerenzer, 2006) of 540 undergraduate students concerning four Bayesian situations. Furthermore, we investigate relationships between erroneous strategies and properties using two pairs of visualizations of Bayesian situations. We restrict our focus to these two pairs of visualizations for two reasons. First, our aim was to investigate visualizations that are appropriate for training, regardless of available tools such as paper and pencil, or computers (cf. Bruckmaier et al., 2019). This excludes visualization representing a frequency style (Khan et al., 2015) from our study. For example, to draw an icon array with 1,000 icons is not appropriate in a paper-pencil situation. Second, from the other two styles (Khan et al., 2015), that is, the branch style and the nested style, we selected two visualizations each that were found to have a facilitating effect, but that differed in the numerical information. Thus, we investigated relationships between two pairs of visualizations, providing mostly the same numerical information (i.e., tree diagram vs. unit square, and double tree diagram vs. 2 × 2-table), and the erroneous strategies of the students. Since the main aim of our study was to investigate erroneous non-Bayesian strategies when Bayesian situations are presented in a supportive way including both natural frequencies and visualizations (cf. McDowell and Jacobs, 2017), we desisted from defining a condition in which the Bayesian situations were only supported by natural frequencies, or in which the Bayesian situations were given in a probability format. A related investigation was presented by Gigerenzer and Hoffrage (1995) or Zhu and Gigerenzer (2006).



THEORETICAL PERSPECTIVES ON NATURAL FREQUENCIES AND VISUALIZATION

Two perspectives are proposed to explain the “natural frequency facilitation effect” (McDowell and Jacobs, 2017, p. 5). The first perspective refers to an ecological rationality (Gigerenzer and Hoffrage, 1995; Johnson and Tubau, 2015). A human strategy is “ecologically rational to the degree that it is adapted to the structure of an environment” (Todd and Gigerenzer, 2000, p. 730). A possible evolutionary reason for the ecological rationality of a frequency format is “that the mind is tuned to frequency formats, which is the information format humans encountered long before the advent of probability theory” (Gigerenzer and Hoffrage, 1995, p. 697). This evolutionary explanation of the benefit of representing Bayesian situation in a frequency format was also supported by Cosmides and Tooby (1996). Gigerenzer and Hoffrage (1995) further emphasized the match between natural frequencies and a natural sampling process that leads to reduced computational complexity in a Bayesian situation (Brase and Hill, 2015; Johnson and Tubau, 2015; McDowell and Jacobs, 2017).

The second perspective is called “nested-set hypothesis” (Sloman et al., 2003, p. 297). This hypothesis is based on a dual-process model, including a “primitive” and error-prone associative system, and a rule-based system respecting the “logic of set inclusion” (Barbey and Sloman, 2007, p. 244). Thus, in this perspective, the main assumption is that a representation of statistical information that “makes nested set relations transparent” (Barbey and Sloman, 2007) triggers a rule-based system and therefore facilitates Bayesian reasoning. Accordingly, proponents of the nested-sets perspective suggest that “any manipulation that increases the transparency of the nested-sets relation should increase correct responding” (Sloman et al., 2003, p. 302; cf. also Mandel, 2015; Mandel and Navarrete, 2015). We discuss a concrete example of a transparency of nested-sets relations in visualizations in the next section.

Some researchers recommend neglecting the differences of the two theoretical perspectives on the natural frequency facilitation effect (Brase and Hill, 2015; Johnson and Tubau, 2015; McDowell and Jacobs, 2017). Thus, Johnson and Tubau (2015, p. 5) suggested that “in order to advance the discussion, we need to move away from the standard ‘natural frequency vs. nested-sets’ debate.” Putting this debate in the background means to focus on the basis of the natural frequency facilitating effect, that is, to provide an transparent structure of the statistical information and simpler computation compared to a probability format (Johnson and Tubau, 2015; McDowell and Jacobs, 2017).

There is a broad consensus that visualization facilitates Bayesian reasoning (e.g., Brase, 2009; Spiegelhalter et al., 2011; Khan et al., 2015; McDowell and Jacobs, 2017). Depending on the theoretical perspectives outlined above, different facilitating properties of visualizations are proposed. Proponents of the ecological rationality perspective suggest “real, discrete, and countable” objects as facilitating property of visualization (Cosmides and Tooby, 1996, p. 33; cf. also Tubau et al., 2019). Proponents of the nested-sets perspective suggest that “the transparency of the nested-sets” (Sloman et al., 2003, p. 302) facilitates Bayesian reasoning. Transparency means making “set inclusion and set membership” visible (McDowell and Jacobs, 2017, p. 6; cf. also Sloman et al., 2003). Accordingly, an Euler diagram or a roulette wheel diagram (Yamagishi, 2003) that include transparency of a nested-sets relation are proposed as facilitating visualization. Moro et al. (2011) also recommend making the relative proportions of sets and subsets transparent. Beyond the theoretical perspectives, Garcia-Retamero and Hoffrage (2013) or Binder et al. (2015) give evidence that visualizations have an additional facilitating effect when the statistical information in a Bayesian situation is given by natural frequencies. Our own research (Böcherer-Linder and Eichler, 2019) focused on the effect of five visualizations including the natural frequency format (tree diagram, double tree diagram, 2 × 2-table, unit square, and icon array) on people’s performance concerning Bayesian reasoning tasks. The results provided evidence that visualizing discrete and countable objects (cf. Cosmides and Tooby, 1996; Brase, 2009), and making the nested-sets relation transparent (Sloman et al., 2003; Barbey and Sloman, 2007), have a facilitating effect on people’s performance concerning Bayesian reasoning tasks. However, we found that making nested sets transparent has a much stronger effect compared to visualizing discrete and countable objects (Böcherer-Linder and Eichler, 2019).



VISUALIZATION OF BAYESIAN SITUATIONS

This paper is based on the theoretical discussion summarized above and on existing empirical research including our own findings. Instead of comparing performance rates for Bayesian reasoning tasks, here we focus on erroneous “non-Bayesian strategies” (Zhu and Gigerenzer, 2006, p. 296) that people use instead of a correct Bayesian strategy and ask for specific characteristics of visualizations that trigger erroneous strategies. As outlined in the introduction, we restrict our focus in this research to two pairs of visualizations: tree diagram and unit square, double-tree diagram and 2 × 2-table (Figure 3). We discuss each of the four visualizations of Bayesian situations regarding their main properties below. We further refer to the solution in the medical context given in Figures 1, 2, respectively. Using the abbreviation Ω for a sample, H for hypothesis (in this case having a disease), and D for data (in this case a positive test result), the solution for the medical context given with natural frequencies is [image: image].


[image: image]

FIGURE 3. Tree diagramm (A), unit square (B), double-tree diagram (C), and 2 × 2-table (D) visualizing the Bayesian situation of Figure 2. The indication of the sets were added for illustrating the discussion in the text.


A common visualization of Bayesian situations representing a branch style (Khan et al., 2015) is a tree diagram (e.g., de Veaux et al., 2012; Utts and Heckard, 2015; Figure 3A), which is often found to facilitate Bayesian reasoning (Sedlmeier and Gigerenzer, 2001; Steckelberg et al., 2004; Binder et al., 2015; Budgett et al., 2016). A tree diagram implies a hierarchy of sets (events) that are highlighted by nodes (cf. Böcherer-Linder and Eichler, 2017; Bruckmaier et al., 2019). Thus, a set inclusion following this hierarchy, such as (H∩D)⊆H, is transparent (cf. also the findings of Bruckmaier et al., 2019). Concerning the solution P(H|D) of a Bayesian reasoning task, the set H∩D is given by a single node, but the set D is given by two nodes representing H∩D and [image: image]. Since the nodes and the related branches are parts of different paths of the tree, the set inclusion (H∩D)⊆D and [image: image] is not transparent (Böcherer-Linder and Eichler, 2017). Furthermore, the hierarchy of the tree diagram implies the conjunction of events, such as H∩D, only implicitly in the second level of the tree.

A unit square (Eichler and Vogel, 2015; Figure 3B) representing a nested style (Khan et al., 2015) was also found to facilitate Bayesian reasoning (Oldford, 2003; Böcherer-Linder and Eichler, 2017, 2019; Talboy and Schneider, 2017). In a unit square, the set inclusion (H∩D)⊆D and [image: image] as well as (H∩D)⊆H and [image: image] are presented in one row or in one column. Thus, physically neighboring fields in a column or row represent subsets of the same set. For this reason, we understand a unit square as a visualization that makes the nested-sets relation in a Bayesian situation transparent. More specifically, we call this transparency “graphical transparency.” A unit square further shows the proportions of sets and subsets (cf. Moro et al., 2011). Although Talboy and Schneider (2017) suggest this area proportionality as an important property of a visualization of a Bayesian situation, we did not found a facilitating effect of this property concerning people’s performance in Bayesian reasoning tasks (Böcherer-Linder and Eichler, 2019). A unit square does not include a hierarchy. A unit square includes similar numerical information as a tree diagram concerning a Bayesian situation. We call the amount of numerical information “numerical transparency.” Although there are slight differences, we understand the numerical transparency of a tree diagram and a unit square as comparable.

A double-tree diagram (Figure 3C) has also been found to facilitate Bayesian reasoning (Wassner, 2004; Böcherer-Linder and Eichler, 2019). The double-tree diagram represents a branch style (Khan et al., 2015), and emphasizes two different hierarchies in a Bayesian situation. One hierarchy is the same as in a tree diagram, showing, for example, the relation Ω⊇H⊇(H∩D) with [image: image]. The second hierarchy shows inversely, for example, the relation (H∩D)⊆D⊆Ω with [image: image]. For this reason, the set inclusion (H∩D)⊆D and [image: image] is visualized in both cases by a branch that connects the subset with the basic set (Figure 3C). Thus, the set inclusion is transparent. In addition, a double tree diagram includes more numerical information compared to a tree diagram and a unit square, namely for every nine sets and subsets in a simple Bayesian situation, such as the situation shown in Figure 1. Thus, the numerical transparency of a double tree diagram is higher than the numerical transparency of a tree diagram and a unit square. The conjunction of events (e.g., H∩D) is visible since there exist branches to each of the two basic sets, that is, to H and to D. However, the conjunction of events is not explicitly visualized.

Further, a 2 × 2-table (Figure 3D) representing a nested style (Khan et al., 2015) facilitates Bayesian reasoning (Binder et al., 2015; Böcherer-Linder and Eichler, 2019). A 2 × 2-table includes the same numerical information of the nine sets and subsets in a simple Bayesian situation as a double tree diagram. Thus, a 2 × 2-table provides the same numerical transparency than a double tree diagram, but shows a higher numerical transparency than a tree diagram and a unit square. The set inclusion (H∩D)⊆D and [image: image] as well as (H∩D)⊆H and [image: image] is presented in one row or in one column in a 2 × 2-table. Subsets of the same set are given in neighboring fields in the same row or same column (c.f. Figure 3D; Böcherer-Linder and Eichler, 2019). For example, H∩D and [image: image] are represented by neighboring fields in the same row in a 2 × 2-table. A 2 × 2-table does not include a hierarchy of events. The conjunction of events such as H∩D is explicitly visualized. For example, the events H and D are represented by a side of a field that represents the conjunctive event H∩D.

To conclude, if a set and subset are connected by a branch (or path) or are given by neighboring fields in a row or column, we assume the transparency of a set inclusion and, thus, the transparency of a set-subset relation in a Bayesian situation (graphical transparency). Furthermore, a visible relation between two sets and their intersection set makes the nested-sets structure of a Bayesian situation transparent (cf. Barbey and Sloman, 2007; McDowell and Jacobs, 2017). Finally, we differentiated between the two pairs of visualizations concerning the amount of numerical information (numerical transparency). A tree diagram and a unit square provide mostly the same numerical information, although there are slight differences. For example, in a tree diagram, there is additional numerical information of the sample size (#Ω), as compared to the unit square. The double tree diagram and the 2 × 2-table provide the same numerical information.



STRATEGIES IN BAYESIAN SITUATIONS

To summarize the existing knowledge about people’s strategies in Bayesian situations, we use Figure 4, including a tree diagram, a unit square, a double-tree diagram, and a 2 × 2-table. For every visualization, n is the size of on abstract sample. Based on n, we define the following natural frequencies: [image: image] and [image: image]. A Bayesian strategy (Zhu and Gigerenzer, 2006) produces the correct response [image: image].


[image: image]

FIGURE 4. Tree diagram (A), unit square (B), double-tree diagram (C), and 2 × 2-table (D) with natural frequencies.


Since the correct identification of the basic set D is crucial in a Bayesian situation, we first refer to erroneous strategies involving a correct identification of the basic set D. After this, we report other erroneous strategies.

A strategy first described by Zhu and Gigerenzer (2006) is called “pre-Bayes” and is represented by the quotient of [image: image]. In this strategy, the correct basic set D, or rather, the frequency of d1 + d3, is chosen as denominator, but an incorrect numerator is chosen by confusing the sets H and H∩D.

The strategy is “evidence only” (Zhu and Gigerenzer, 2006), is represented by the quotient of [image: image]. In this strategy, the correct basic set, that is, [image: image] is connected to the whole sample (Ω) represented by the frequency of n.

Further strategies do not include D, or rather the frequency d1 + d3, but include H∩D as subset represented by d1 as the numerator of the correct solution. One erroneous strategy is described in mathematics education research (Diaz and Batanero, 2009) as well as in psychological research (Zhu and Gigerenzer, 2006) and is given by [image: image]. This strategy is based on the reciprocal value of the conditional probability of the correct Bayesian strategy. For this reason, Diaz and Batanero (2009) called this strategy “transposed conditional” fallacy. Zhu and Gigerenzer (2006) named this strategy “representative thinking” following Dawes (1986). A further name was given by Gigerenzer and Hoffrage (1995), who called this strategy “Fisherian.”

A further erroneous strategy is called “joint occurrence” and is represented by the quotient of [image: image] (Zhu and Gigerenzer, 2006). In this case, people seem to over-emphasize the conjunction H∩D, and to neglect [image: image].

An erroneous strategy that neither includes the correct basic set D represented by the frequency d1 + d3 nor the subset H∩D represented by frequency d1 is called “conservatism” and is given by the quotient of [image: image] (Zhu and Gigerenzer, 2006). The same strategy is called “base-rate only” by Gigerenzer and Hoffrage (1995).

Diaz and Batanero (2009) described an erroneous strategy without naming it that is represented by the reciprocal value of the correct quotient, that is, [image: image]. We call this strategy “inverse Bayes.” This strategy may be explained through correct identification of the basic set and the subset in a Bayesian situation but also through confusing the correct relationship of the frequencies representing these sets.

Further erroneous strategies were reported by Gigerenzer and Hoffrage (1995), but these strategies were restricted to a probability format of statistical information (e.g., a likelihood-subtraction). In addition, some erroneous strategies that were observed in the cited studies were not categorized since the frequency of these strategies were small. Gigerenzer and Hoffrage (1995) summarized related strategies as “not identified strategies,” Zhu and Gigerenzer (2006) subsumed these strategies to “guessing.”

A study by Bruckmaier et al. (2019) also focused on people’s strategies in Bayesian situations. Since the study was based on an eye-tracking method, the study included a very small sample size of 24 students. Bruckmaier et al. (2019) found only strategies discussed so far for the students’ Bayesian reasoning to be supported by natural frequencies and a tree diagram or 2 × 2-table. The findings concerning the tree diagram supported the hypothesis that the hierarchy of the tree diagram triggers people to identify a subset-set relation in different levels of the tree. The results referring to the 2 × 2-table are difficult to interpret for our purposes, because participants solved the same tasks with the 2 × 2-table that had been solved before with the tree diagram.

Although the participants, materials, and methods were different in the cited studies, we present the frequencies for the Bayesian strategy and further erroneous strategies for different studies and samples in Table 1.


TABLE 1. People’s strategies for dealing with Bayesian situations in prior research.

[image: Table 1]In each of the cited studies, the focus is on strategies representing people’s way of identifying a combination of a basic set and subset, or rather, a fraction. In this study, we aim at enhancing the focus by differentiating between choosing a denominator and a numerator of a fraction representing a basic set and subset. Given the specific properties of the visualizations of Bayesian situations, we hypothesize that different visualizations trigger people to choose specific basic sets and subsets.



HYPOTHESES

Our approach is to analyze which set (numerator) and subset (denominator) people choose depending on the different visualizations. Based on this, a structured set of hypotheses refers to the following selection of a denominator and numerator in a Bayesian situation:

H1: Selection of the correct denominator

H1.1: Selection of the correct numerator provided the denominator is correct

H1.1.1: Specific response in the numerator provided the denominator is correct

H2: Selection of the correct numerator

H2.1: Selection of the correct denominator provided the numerator is correct

H2.1.1/2: Specific responses in the denominator provided the numerator is correct

H3: Erroneous strategy depending on the numerical proportion of numerator and denominator

Now, we provide the rationale behind every hypothesis and formulate the hypotheses more specifically. Since we divided the four visualizations in two pairs of visualizations, in which each pair of visualization provides the same amount of numerical information (numerical transparency), we also divided the hypotheses for each pair: the hypotheses labeled “a” concern the pair of tree diagram and unit square, and the hypotheses labeled “b” concern the pair of double tree diagram and 2 × 2-table. Finally, we do not formulate directional hypotheses referring to the facilitating effect of visualizations between the two pairs of visualizations.

A main challenge in Bayesian situations is to identify the correct basic set (D), that is, to identify d1 + d3 (Figure 4) as the denominator in Bayes’ formula (cf. Sloman et al., 2003). In a tree diagram, the subsets H∩D and [image: image] are represented by two nodes of different paths that have no visible direct relation. Thus, the set inclusion (H∩D)⊆D and [image: image] is not transparent (cf. McDowell and Jacobs, 2017). To use the correct denominator d1 + d3 requires adding the two frequencies d1 and d3. In a unit square, the subsets H∩D and [image: image] are directly related since they are represented by neighboring fields (in a row). Thus, the set structure of a Bayesian situation and the set inclusion (H∩D)⊆D and ([image: image] is more transparent than in the tree diagram (cf. Sloman et al., 2003; Moro et al., 2011). As in the tree diagram, the correct denominator in a Bayesian situation, that is, d1 + d3 has to be computed by a simple addition. For this reason, the first main hypothesis is as follows:

Hypothesis 1a: People who use a unit square refer to d1 + d3 as the denominator more frequently than those who use a tree diagram.

In a double-tree diagram, both subsets H∩D and [image: image] are connected to the basic set D by a branch. Thus, the set inclusion mentioned above is transparent in the hierarchy of the double-tree diagram. Further, the correct denominator in Bayes’ formula is directly given as a frequency and needs no additional computation (numerical transparency). In a 2 × 2-table, the two subsets H∩D and [image: image] are represented by neighboring fields (in a row), and the frequency of the basic set D, that is, the frequency d1 + d3, is directly given. Since the double tree diagram and unit square do not seem different regarding numerical and graphical transparency, we did not formulate a directed hypothesis.

Based on the correct identification of the basic set D and the denominator d1 + d3, it is a further challenge to identify the correct subset H∩D, or rather, the correct numerator d1 in Bayes’ formula (cf. Sloman et al., 2003). In the hierarchy of a tree diagram, H∩D and [image: image] appear explicitly as subsets of H. Moreover, [image: image] and [image: image] appear explicitly as subsets of [image: image]. However, the tree diagram does not make the set inclusion (H∩D)⊆D transparent since (H∩D) and [image: image] are not directly related. In a unit square, the set inclusion [image: image] is directly related since it is visualized by neighboring fields of a row. If the basic set D was identified before, the mentioned set inclusion is transparent. For this reason, the structure of the tree diagram seems to hinder people in identifying both the basic set and subset in a Bayesian situation. Hence, a subsequent hypothesis is as follows:

Hypothesis 1.1a: Restricted to those who identify d1 + d3 as correct denominator: People who use a tree diagram fail to identify d1 as numerator of the correct solution more frequently than those who use a unit square.

A double-tree diagram makes this set inclusion outlined above transparent: In the second hierarchy of a double tree, the set inclusion (H∩D)⊆D is given by a branch. The set inclusion (H∩D)⊆D is also visualized in a 2 × 2-table in a row including two frequencies of subsets and the sum of these two frequencies. For this reason, we did not formulate a directed hypothesis regarding a difference between the double tree diagram and the 2 × 2-table.

People who correctly identified the basic set D and the related frequency d1 + d3 may fail to identify the correct numerator (d1) in Bayes’ formula. Based on our main assumption about the transparency of a set inclusion, in a tree diagram H, [image: image], or Ω are transparently related to H∩D and [image: image] (Figure 4). To differentiate between the three possible sets, we follow Zhu and Gigerenzer (2006), who argued that people do not use a combination of a numerator and a denominator that results in a fraction above 1 (cf. also Chapman and Liu, 2009). However, the mentioned fraction with a denominator d1 + d3 is below 1 only for specific numerators h1 and is never below 1 for a numerator n. The possible quotient h1/(d1 + d3) is known as pre-Bayes strategy by Zhu and Gigerenzer (2006), but this quotient is not always below 1. Thus, the pre-Bayes strategy is highly dependent on the Bayesian situation and the concrete frequencies in this situation. This is apparent also in the results of Bruckmaier et al. (2019), who used two situations with h1/(d1 + d3) > 1 and, accordingly, found nearly no pre-Bayes strategy. In our study, we used situations with h1/(d1 + d3) > 1, and situations with h1/(d1 + d3) < 1. Considering Zhu and Gigerenzer (2006), we expect few answers representing the pre-Bayes strategy in the first case. We refer later to the difference of situations concerning the value of h1/(d1 + d3) below or above 1.

Referring to the transparency of a set-subset relation, for a unit square there is no meaningful reason to select H, or rather h1, as the numerator in a Bayesian situation.

A similar difference could be identified concerning the second pair of visualizations: In a double tree diagram, H∩D and [image: image] are obviously transparently related to D by a branch. However, H and [image: image] or Ω are related to D by a path (Figure 4). For this reason, the erroneous pre-Bayes strategy is also plausible for the double tree diagram if people fail to identify d1 as the correct numerator. For a 2 × 2-table there is no meaningful reason to select H, or rather h1, as the numerator in a Bayesian situation. Thus, our hypotheses are as follows:

Hypothesis 1.1.1a: Restricted to those who identify d1 + d3 as correct denominator: People who use a tree diagram use h1 as numerator in a Bayesian situation more frequently than those who use a unit square.

Hypothesis 1.1.1b: Restricted to those who identify d1 + d3 as correct denominator: People who use a double tree diagram use h1 as numerator in a Bayesian situation more frequently than those who use a 2 × 2-table.

The corpus of hypotheses formulated so far focuses on selection of the basic set (correct: D) in a Bayesian situation or the denominator (correct: d1 + d3) in Bayes’ formula. However, it is possible to change the perspective and focus on the selection of a subset, or rather, a numerator in a Bayesian situation. Actually, the visualizations allow for selecting a frequency representing a set, and selecting a second frequency representing either a basic set or a subset. The correct subset H∩D is transparently visualized as a conjunction of two sides, representing the sets H and D in the related field in a unit square and a 2 × 2-table. This structure of sets and the subset H∩D does not seem to be as transparent as in the double tree diagram, since H and D represent paths in two different hierarchies. The tree diagram does not make the structure of the sets H and D and the subset H∩D explicitly transparent. For this reason, we expect a unit square and 2 × 2-table to facilitate the identification of the conjunction H∩D as a relevant subset in a Bayesian situation. Thus, the second main hypothesis is as follows:

Hypothesis 2a: People who use a unit square refer to d1 as the numerator in the correct solution more frequently than those who use a tree diagram.

Hypothesis 2b: People who use a 2 × 2-table refer to d1 as the numerator in the correct solution more frequently than those who use a double tree diagram.

Furthermore, with the same rationale outlined for hypothesis 1.1, it is possible to develop a hypothesis based on correct selection of the subset H∩D, or rather, the correct numerator d1. The basic set D is not transparent in the tree diagram (see above), but is transparently visualized in a unit square. For this reason, a further hypothesis is as follows:

Hypothesis 2.1a: Restricted to those who identify d1 as correct numerator: People who use a unit square refer to d1 + d3 as the denominator in their solution more frequently than those who use a tree diagram.

Since there is no theoretical difference concerning the numerical or graphical transparency of a double-tree diagram and a 2 × 2-table, we formulated no directional hypothesis concerning the identification of the correct denominator given a correct numerator.

With the same argumentation as outlined above, the hierarchy of a tree (and partly also the double-tree) may influence the selection of a denominator (basic set) using a path of the tree, namely h1 or n. Hence, a further pair of hypotheses regarding an erroneous response with the correct numerator in a Bayesian situation is as follows:

Hypothesis 2.1.1a: Restricted to those who identify d1 as correct numerator: People who use a tree diagram use h1 as denominator in a Bayesian situation more frequently than those who use a unit square.

Hypothesis 2.1.1b: Restricted to those who identify d1 as correct numerator: People who use a double tree diagram use h1 as denominator in a Bayesian situation more frequently than those who use a 2 × 2-table.

This confusion is called “representative thinking” strategy in Table 1.

Hypothesis 2.1.2a: Restricted to those who identify d1 as correct numerator: People who use a tree diagram, use n as denominator in a Bayesian situation more frequently than those who use a unit square.

Hypothesis 2.1.2b: Restricted to those who identify d1 as correct numerator: People who use a double tree diagram use n as denominator in a Bayesian situation more frequently than those who use a 2 × 2-table.

This confusion is called “joint occurrence” strategy in Table 1.

Referring to people’s strategies in Bayesian situations reported so far, we neglected the evidence-only strategy, that is, (d1 + d3)/n, and the conservatism strategy, that is, h1/n. We analyzed both erroneous strategies without a directional hypothesis for both pairs of visualizations.

As outlined above, an erroneous strategy may highly be influenced by the given situation that is represented by specific natural frequencies. For example, if h1/(d1 + d3) > 1, we expect only few people to use the pre-Bayes strategy compared to situations in which h1/(d1 + d3) < 1. For this reason, we formulate – independent from specific visualizations – the following hypothesis:

Hypothesis 3: In Bayesian situations with h1/(d1 + d3) < 1, people follow a pre-Bayes strategy more frequently compared to Bayesian situations with h1/(d1 + d3) > 1.



MATERIALS AND METHODS

Our sample consisted of 540 undergraduate students enrolled in two mathematics courses for prospective primary school teachers. Bayesian reasoning was not part of their curriculum.

The students were randomly assigned to the four visualizations. The subsamples differed a little and had the following sizes: 122 students were assigned to the tree diagram, 120 students to the double tree diagram, 146 students to a 2 × 2-table, and 152 students to a unit square.

Each student received a test referring to a specific visualization, such as a tree diagram, comprising two parts. The first part consisted of one page with a brief explanation of how to construct a specific visualization (cf. Böcherer-Linder and Eichler, 2017). Every explanation started with a table including the statistical information in a natural frequency format. The explanations for every visualization consisted of two further steps describing how to construct the specific diagram. The number of explanation-steps was kept constant to provide the same amount of supporting information in every condition. However, the explanations among the visualizations differed due to their different characteristics. Also, the level of familiarity was different among the visualizations. 98% of students indicated familiarity with a tree diagram, and 86% indicated familiarity with a 2 × 2-table. By contrast, only 33% were familiar with a unit square, and 28% were familiar with a double tree diagram. We discuss these differences later. The second part of the questionnaire consisted of four Bayesian tasks. One of the tasks is given in Figure 5, and the other tasks are available in a free accessible repository1. In these tasks, the Bayesian situation was represented by only one specific visualization. We did not use natural frequencies in the brief description of the Bayesian situation in the text (except the total sample size), but only within the visualizations. Therefore, problems could only be solved by reading the information from the visualization. This decision was made to be able to analyze the facilitating effect of the visualization. In every Bayesian situation, we asked students to indicate a fraction representing the mathematical expression for the relation of the cardinal numbers of the set (denominator) and subset (numerator). Thus, the fraction is an expression of the data partition in a Bayesian situation (Barbey and Sloman, 2007). In this regard, to ask for a fraction is the mathematical version of a single-step frequency question (Girotto and Gonzalez, 2001). Asking for a fraction is also related to the common format for responses in textbooks for school or university (e.g., Utts and Heckard, 2015).


[image: image]

FIGURE 5. Sample task including a Bayesian situation. In the original tasks, only one of the four visualizations was shown.


The students had 15 min to complete the test. No intervention was delivered during the test.

The numbers in every Bayesian situation were chosen in a way that allowed identifying which sets a student had selected for determining the numerator and the denominator of his or her response. As mentioned before, the focus on the denominator and numerator allows for specifying the students’ identification of basic sets and subsets in a Bayesian situation. In some of the tasks, one of which is shown in Figure 5, the fraction h1/(d1 + d3) is below 1; in other tasks, the fraction h1/(d1 + d3) is above 1.

For analyzing students’ strategies, we regarded only those solutions that included a fraction or a number. There were also students who completed, for example, two tasks, but did not provide a solution to the other two tasks. For this reason, the amount of strategies that students showed differed among the four Bayesian situations. In the results section, we indicate the number of strategies shown by the students, as well as the missing responses. The data is provided in a free accessible repository (see text footnote 1).

Firstly, we documented each combination of a denominator and numerator in a descriptive way, also including versions that were cancelled down. Following Zhu and Gigerenzer (2006), we did not analyze the few solutions that provided a fraction above 1 in detail, except for the specific analysis concerning hypothesis 3. For this reason, we did not regard the inverse Bayes’ strategy that Diaz and Batanero (2009) proposed (see Table 1).

For the inferential analysis, we referred to systematic strategies. To estimate whether a student’s response represented a systematic strategy or was a result of guessing, we followed Zhu and Gigerenzer (2006) and compares the student’s responses with a guessing model. The basis of this model is the amount of single numbers and simple sums of two numbers that are provided in a Bayesian situation. Nine of these numbers or sums are given in a 2 × 2-table (Figure 3). We further added 1 as a possible number since some of the students’ responses consisted of a natural number. In these cases, we assumed a denominator of 1. We further assumed that the students chose two different numbers or sums representing different sets for the numerator or denominator. Thus, we regarded 10 × 9 = 90 different possible responses. Only half of these responses consisted of a fraction below 1. One of these responses represents the Bayesian strategy. For erroneous strategies, we assumed a uniform distribution and, accordingly, a probability of 1/44 for every strategy. We used this model to decide whether a response was based on a systematic strategy or guessing. We used a binomial distribution in which p equals 1/44 and n is given by the number of erroneous responses for a specific visualization. Based on this distribution, we determined an integer k for that the probability of the interval [k; n] is lower than 0.05, but bigger than 0.05 for [k-1; n]. Table 2 shows the values of k for the different visualizations. Thus, if a certain erroneous strategy is given in k or more than k of the students’ responses, we defined this strategy as systematic erroneous strategy.


TABLE 2. Limits for estimating an erroneous strategy as systematic.

[image: Table 2]We used a χ2–test for independence for the statistical analyses. To measure the effect of differences between two visualizations, we used the odds ratio, but also reported Cohen’s d.

This experiment was carried out in accordance with the University Research Ethics Standards. Participation was voluntary, without financial incentives, and anonymity was guaranteed. A written, informed consent was not required as per local legislation and institutional requirements.



RESULTS


Strategies

First, we describe the results in a descriptive way, concerning absolute and relative frequencies with which the students indicated different fractions in the four Bayesian situations. We consider these fractions by indicating the numerator and the denominator.

Each table in Figure 6 shows the numerators that the students at least once provided in the first row, and the denominators that the students at least once provided in the first column. In each cell, the absolute frequency and relative frequency are given. The last row and the last column indicate the sums. The sum in the second row indicates the number of responses that could not be interpreted. The gray shaded fields represent fractions that no student provided as response. Further, the fields with a thick frame represent the fractions that were reported as an erroneous strategy in literature (cf. Table 1). The black field represents the Bayesian strategy.


[image: image]

FIGURE 6. Students’ answers to Bayesian tasks differentiated to denominators and numerators.


The results concerning systematic strategies are given in Table 3, based on the guessing model outlined in the methods section. The strategies are sorted in the same way as in Table 1. The frequencies refer to the number of responses in which the fraction in the first column or an equivalent fraction was indicated. Beyond the erroneous strategies reported so far, we identified and labeled two further erroneous strategies with regard to existing strategies, namely, a pure evidence strategy, and a likelihood strategy. These two erroneous strategies may be understood as systematic strategies for at least one of the four visualizations, and are given in Table 3 in italics. The category “guessing” includes the amount of responses that could not be interpreted or that were seldom indicated. Finally, we indicated the amount of missing responses for every visualization. The impact of the visualization on the amount of missing responses is highly significant. Here, a very familiar visualization, a 2 × 2-table, has significantly less missing responses than the other three visualizations. However, since our aim was to analyze people’s erroneous strategies in Bayesian situations and the impact of different visualizations on these strategies, we neglect the missing responses in the following section. For an analysis of people’s performance in Bayesian situations when using visualizations that also include incomplete tasks, see Böcherer-Linder and Eichler (2019).


TABLE 3. Descriptive results of students’ responses concerning the Bayesian strategy and erroneous strategies. n indicates the number of students in a condition. The percentages are related to the amount of responses (excluding missing responses). The amount of missing responses is also given.

[image: Table 3]


Results Concerning the Hypotheses


Hypotheses Concerning the Correct Denominator

The first hypothesis refers to differences in students’ abilities to indicate the correct basic set represented by d1 + d3. The results given by absolute and relative frequencies referring to each of the visualizations in brackets are shown in Table 4. The order of the visualization, that is, tree diagram – unit square in the first pair, and double tree diagram – 2 × 2-table in the second pair, represents the order in all hypotheses. Thus, in these hypotheses, we assume that the visualization on the right side of the two pairs is more efficient than the visualization on the left side.


TABLE 4. Frequencies for indicating d1 + d3 as denominator in a Bayesian situation.

[image: Table 4]A χ2-test for independence indicating d1 + d3 did not produce a significant difference between a tree diagram and unit square (df = 1, χ2 = 2.91, p = 0.088). By contrast, the difference between a double tree diagram and 2 × 2-table was significant (df = 1, χ2 = 10.17, p < 0.05), with a small effect (odds ratio: 1.60; Cohen’s d = 0.20). Thus, hypothesis 1 was not confirmed, since the difference between a tree diagram and unit square was less pronounced than expected. By contrast, we found an unexpected difference between the double tree diagram and 2 × 2-table.

In an exploratory way, we also tested post-hoc the difference between visualizations regarding pairs of visualizations that differ in terms of the numerical information. Since there were four further pairs of visualizations with different numerical information, we ran χ2-tests using the Bonferroni-correction. In this case, the difference between a unit square and double tree diagram was significant (p∗ = 4p < 0.05, Cohen’s d = 0.17). The difference between a unit square and 2 × 2-table was highly significant (p∗ = 4p < 0.001), with a medium effect (Cohen’s d = 0.37). Finally, the difference between a tree diagram and both a double-tree diagram and 2 × 2-table was highly significant (p∗ < 0.001), with a nearly medium effect: Cohen’s d being between 0.24 and 0.45.

Hypothesis 1.1 refers to applying the Bayesian strategy restricted to those students who indicates d1 + d3 as denominator. In a subordinated hypothesis 1.1.1, we explored further if there was a dependency of the visualization, and a tendency to use h1 as numerator given the correct denominator d1 + d3. Due to the difference in the Bayesian situations, we involved only two Bayesian situations with h1 < d1 + d3 for hypothesis 1.1.1. The related results for both hypotheses (1.1 and 1.1.1) are shown in Tables 5, 6.


TABLE 5. Frequencies for indicating the correct numerator when d1 + d3 is given as correct denominator in a Bayesian situation.

[image: Table 5]
TABLE 6. Frequencies for indicating h1 as numerator when d1 + d3 is given as correct denominator in a Bayesian situation.

[image: Table 6]The visualization seems to have a strong impact on the ability to correctly combine d1 + d3 and the correct numerator d1. A χ2-test found a highly significant difference between a tree diagram and a unit square (df = 1, χ2 = 71.16, p < 0.001), with a nearly high effect (odds ratio 6.2; d = 0.72). Also, the difference between a double tree diagram and 2 × 2-table was highly significant (df = 1, χ2 = 26.59, p < 0.001), with a medium effect (odds ratio 3.0; d = 0.38). For this reason, hypothesis 1.1 was confirmed.

Moreover, the difference between the tree diagram and both a double-tree diagram and 2 × 2-table was highly significant (p∗ = 4p < 0.001). The odds ratios were between 2.1 and 6.3, and Cohen’s d showed a medium effect for the double-tree diagram (d = 0.33), and a nearly high effect for the 2 × 2-table (d = 0.72). Finally, the difference between a double-tree diagram and a unit square was highly significant (p∗ = 4p < 0.001; d = 0.38). This means that both tree diagrams seem to hinder identification of d1 as numerator of the correct solution if the correct basic set is identified. This is also apparent in the comparison of a double tree diagram and unit square, although a double tree diagram provides more numerical information than a unit square.

For hypothesis 1.1.1, a χ2-test provided a highly significant result (df = 1, χ2 = 64.09, p < 0.001) concerning the difference between a tree diagram and unit square, with a high effect (odds ratio: 7.0; d = 0.93). The visualization strongly impacted the pre-Bayes strategy when d1 + d3 was identified as correct denominator. Further, the difference between a double-tree diagram and 2 × 2-table was highly significant (df = 1, χ2 = 14.94, p < 0.001), with a medium effect (d = 0.39). Thus, hypothesis 1.1.1 was confirmed. Both tree diagrams seem to trigger people to choose a node in the hierarchy of tree diagrams for identifying an adequate numerator.

Again, the difference between a tree diagram and both a double-tree diagram and 2 × 2-table was highly significant (p∗ = 4p < 0.001). The effect sizes varied concerning the odds ratio between 2.6 and 7.3, while Cohen’s d implied an at least medium effect (d = 0.46 for double-tree, and 0.88 for a 2 × 2-table). Moreover, the difference between a double-tree diagram and a unit square was highly significant (p∗ = 6p < 0.001; d = 0.39), although a double tree diagram provides more numerical information than a unit square.



Hypotheses Concerning the Correct Numerator

For testing Hypothesis 2, we analyzed the two pairs of visualizations concerning the use of the correct numerator d1. The related results are shown in Table 7.


TABLE 7. Frequencies for indicating d1 as the correct numerator in a Bayesian situation.

[image: Table 7]The ability to identify the correct numerator in a Bayesian situation was highly impacted by the visualization. The difference between a tree diagram and unit square was highly significant (df = 1, χ2 = 50.87, p < 0.001), with a medium effect (odds ratio: 2.8; d = 0.46). Further, the difference between the double-tree diagram and 2 × 2-table was significant (df = 1, χ2 = 27.54, p < 0.001), with a medium effect (d > 0.33). Thus, hypothesis 2 was confirmed. The tree diagrams seem to systematically hinder people to identify the correct numerator. Again, the difference between a tree diagram and both a double-tree diagram and 2 × 2-table was highly significant (p∗ = 4p < 0.001). Moreover, the difference between a double-tree diagram and unit square was significant (p∗ = 4p < 0.05; d = 0.17), although a double tree diagram provides more numerical information than a unit square.

Hypothesis 2.1 refers to the amount of correct solutions with the indication of d1 as correct numerator. In a pair of subordinated hypotheses (2.1.1 and 2.1.2), we further explored the dependency of the visualizations and tendency to use h1 or n as denominator given the correct numerator d1. The results concerning these three hypotheses are shown in Table 8.


TABLE 8. Frequencies for indicating the correct solution, n as denominator, or h1 as denominator, given d1 as the correct numerator in a Bayesian situation.

[image: Table 8]For hypothesis 2.1.1, a χ2-test showed that the dependency of indicating h1 as denominator given d1 as correct numerator and the visualization was significant. The difference between a tree diagram and a unit square was highly significant (df = 1, χ2 = 14.67, p < 0.001), with a nearly medium effect (odds ratio: 2.1, Cohen’s d = 0.29). By contrast, the difference between a double tree diagram and a 2 × 2-table was not significant. Thus, hypothesis 2.1.1 was partly confirmed for hypothesis 2.1.1a).

Further, the difference between a tree diagram and a double-tree diagram and 2 × 2-table was highly significant (p∗ = 4p < 0.01), with a medium effect (d = 0.39 and 0.37).

The tendency to identify the incorrect denominator n combined with the correct numerator d1 was partly impacted by the visualization. The difference between a tree diagram and unit square was not significant. By contrast, the difference between a double-tree diagram and 2 × 2-table was significant (df = 1, χ2 = 11.44, p < 0.001), with a small effect (odds ratio: 2.7; d = 0.23). Thus, hypothesis 2.1.1 was partly confirmed for hypothesis 2.1.1b). Moreover, the difference between the three visualizations, that is a tree diagram, a double tree diagram and a unit square, and a 2 × 2-table was significant with a small effect.



Hypothesis Concerning the Specific Proportion of Numerator and Denominator

Finally, we tested hypothesis 3. Table 9 shows the results for both scenarios, d1 + d3 > h1, and d1 + d3 < h1. The relative frequency is based on the number of solutions for each visualization in each of the two scenarios.


TABLE 9. Pre-Bayes strategy for situations with d1 + d3 > h1 and with d1 + d3 < h1.

[image: Table 9]The difference concerning the sum of the four visualizations produced a highly significant result (df = 1, χ2 = 98.75, p < 0.001). The highly significant difference appeared for each of the visualizations as well. Thus, the context represented by a specific proportion of the numerator and denominator has a significant impact on the pre-Bayes strategy in Bayesian situations.



Use of the Strategies Described in the Literature

Additionally, we analyzed differences between the visualizations referring to the erroneous strategies reported in Table 1. Table 10 indicates if a visualization in the first column shows a significantly higher amount of people showing a specific strategy. We do not regard the accumulation of hypotheses in this case. For this reason, the results must be interpreted carefully. Referring to the pre-Bayes strategy, we again restricted the analysis to two tasks.


TABLE 10. Differences among the visualizations referring to strategies shown in Table 1 based on the entirety of students’ answers.

[image: Table 10]


DISCUSSION

The main aim of this paper was to contribute to the field of facilitating Bayesian reasoning by focusing on people who fail to use the correct strategy in a Bayesian situation, even though the statistical information is given by natural frequencies and visualization. We focused on two pairs of visualizations. According to Khan et al. (2015), the visualizations within a pair provide mostly the same numerical information but differ in style, that is, a branch style and a nested style, and further differ in graphical transparency. Visualizations between the two pairs differ in at least the numerical information and, thus, in numerical transparency. To investigate people’s erroneous strategies, we differentiated between identifying the correct basic set and the correct subset of the nested-sets structure in a Bayesian situation. We realized this approach by asking people to respond with a fraction. This allowed us to analyze erroneous responses concerning the denominator and the numerator. However, since other studies use a single step frequency version for a response, findings in these studies must be compared with caution with our results. Our results provide substantial evidence that people’s strategies in Bayesian situations are strongly dependent on different visualizations. Thus, a specific visualization hinders or facilitates identification of the relevant basic set D represented by the denominator d1 + d3, and the relevant subset H ∩ D represented by the numerator d1.

We first analyzed different strategies regarding identification of the correct basic set D (hypothesis 1). We found that numerical transparency has the main impact. We did not find significant differences within the two pairs of visualization, that is, between a tree diagram and a unit square, and between a double tree diagram and a 2 × 2-table. By contrast, but as expected, the difference between the two visualizations that provide the relevant subset (D) numerically (double tree diagram and 2 × 2-table) and the two visualizations that do not provide this numerical information (tree diagram and unit square) is significant. Against expectations, a unit square was not found to be more effective for identification of the correct basic set in a Bayesian situation compared to the tree diagram. This was an unexpected result, since the mentioned partition of D is transparent in the unit square, but not in a tree diagram. Regarding a differentiation between the relevant basic set (denominator) and subset (numerator), our result contributes to the discussion of transparency of the nested-sets relation in a Bayesian situation by focusing on the visualizations’ characteristics (cf. Sloman et al., 2003).

In subordinated hypotheses, the students’ responses were restricted to those in which the basic set D was correctly identified. The correct identification of the basic set in visualizations representing a nested style (unit square, 2 × 2 table, cf. Khan et al., 2015) almost always goes along with the use of a Bayesian strategy: 92% of the responses with the correct basic set show the correct Bayesian strategy. Students who use a visualization representing the branch style (tree diagrams, cf. Khan et al., 2015) and who identified the correct basic set use the correct Bayesian strategy to a lesser extent: only 78% of the students using a double-tree diagram and 63% of the students using a tree diagram used the Bayesian strategy, although they were able to identify the correct basic set D. More specifically, our results show that both tree diagrams trigger the identification of H as a relevant subset. We expected a difference between a tree diagram and unit square since the relation between the basic set D and the subset H ∩ D is not visualized in the hierarchy of the tree diagram and is therefore not transparent. However, a study by Bruckmaier et al. (2019) suggests that people tend to search for a set-subset relation in the hierarchy of a tree diagram. For this reason, the tree diagram hinders use of the Bayesian strategy compared to other visualizations such as unit square, since a tree diagram obscures the nested-sets structure of a Bayesian situation. We did not expect the difference between a double tree diagram and 2 × 2-table, and even between a double tree diagram and unit square. This result provides evidence that a graphical transparency is effective beyond a numerical transparency. A possible, but speculative interpretation of this result, is that the two hierarchies in a double-tree diagram partly trigger people to identify the basic set D with its subsets H∩D and [image: image]. If this is the case, the challenge is the same as for a tree diagram, that is, to identify a subset of [image: image] in the (first) hierarchy of a double-tree diagram. However, this interpretation should be investigated in future research.

A second analysis started with identification of the correct subset H ∩ D. As expected, the result indicated that identifying the correct subset H ∩ D is strongly impacted by the visualization. Thus, a 2 × 2-table and a unit square are more effective for identifying the correct subset in a Bayesian situation, although the subset is given by a node in both tree diagrams. We interpret this result by the transparency of the subset H ∩ D as an intersection set. Thus, a field within a 2 × 2-table or unit square implies representing an intersection of sets represented by the two sides of the field. By contrast, the hierarchical path of both tree diagrams makes the property of H ∩ D as intersection set not transparent to the same extent. This result agrees with the findings of Bruckmaier et al. (2019) regarding the analysis of people’s ability to identify conjoint probabilities in a tree diagram and a 2 × 2-table. Our results concur with the findings of Binder et al. (2020), who found that a 2 × 2-table facilitates identifying conjoint events compared to a double tree diagram. The result also goes along with our own finding in Böcherer-Linder et al. (2018) that people’s performance can be increased by making the subset H ∩ D as intersection set, graphically transparent.

The results for hypothesis 2.1 are similar to the results for hypothesis 1: it is easier to identify the correct basic set (D) in the 2 × 2-table and the double-tree diagram, for which the basic set is explicitly given (numerical transparency), than in a unit square and a tree diagram. In contrast to the results concerning hypothesis 1, it is easier to identify the basic set in a unit square than in a tree diagram, for which the basic set D is not transparent. The result concerning hypothesis 2.1.1 strengthens the assumption that a visualization’s hierarchy may be a disadvantage when dealing with Bayesian situations. Thus, a unit square was found to be significantly more effective compared to a tree diagram in order to avoid the representative thinking strategy (d1/h1), when the correct subset is identified. Also, a double tree diagram is more effective in avoiding this strategy than a tree diagram. We interpret this result considering the property of the double-tree diagram to propose two possibilities for identifying the correct basic set in the hierarchy of the tree, that is, the nodes representing the frequencies of h1 and of d1 + d3, whereas the tree diagram proposes only the node representing h1.

With hypothesis 3, we regarded the influence of the Bayesian situation’s context that is given by the two scenarios h1/(d1 + d3) < 1 and h1/(d1 + d3) > 1. The difference in the Bayesian situations strongly impacts the amount of responses showing the pre-Bayes strategy. Thus, whereas the pre-Bayes strategy is of minor importance if h1/(d1 + d3) > 1, it is an often used strategy if h1/(d1 + d3) < 1. This finding is apparent for each of the four visualizations. Accordingly, research either yielded the pre-Bayes strategy (Zhu and Gigerenzer, 2006), or not (Bruckmaier et al., 2019).

The strategies described so far in literature (Table 1) are mostly dependent on visualization. The most prominent strategy is the correct Bayesian strategy that people used in between 37.3% (tree diagram) to 72.4% (2 × 2-table) of the cases. Thus, visualization was again found to strongly impact people’s performance in Bayesian situations. Nevertheless, there are some studies that did not find a facilitating effect of visualization (e.g., icon arrays in Sirota et al., 2014; Euler-diagrams in Brase, 2009). For this reason, and congruent with the research of Binder et al. (2015) and Binder et al. (2020), we found that visualization in combination with natural frequencies strongly impacted people’s performance in Bayesian situations. We have analyzed differences in people’s performance concerning visualization before (Böcherer-Linder and Eichler, 2019). In this paper, erroneous strategies are of particular importance. In this regard, our findings replicate the results of Zhu and Gigerenzer (2006) with respect to the existence of the main strategies (Table 1). However, the work of Zhu and Gigerenzer (2006) is expanded through our research, since the strategies are described as being dependent on different visualizations. Further, we contribute to the analysis of erroneous strategies by a differentiated focus on the basic set D and the subset H∩D. In our results, the most prominent erroneous strategy was the pre-Bayes strategy. As outlined above, this strategy depends on the situation and visualization. Particularly, a unit square and a 2 × 2-table are more effective at avoiding the pre-Bayes strategy compared to both tree diagrams. The second significant erroneous strategy is the representative thinking strategy. The representative thinking strategy is highly dependent on a visualization, and seems to be triggered especially by a tree diagram and its hierarchy as outlined in hypothesis 2.1.2.

The other systematic erroneous strategies are of less importance if all visualizations are considered. However, for a part of the visualizations, specific strategies are of importance. For example, since it seems to be easy to identify the correct subset (numerator) in a Bayesian situation when a unit square is used (Table 7), to identify in addition the correct basic set (denominator) seems to be a bigger challenge and yields a considerable amount of joint occurrence strategy (d1/n) and likelihood strategy (d1/d3).

Our results contribute to existing research on Bayesian reasoning, particularly to research concerning people’s erroneous strategies in Bayesian situations. Moreover, our results have implications for mathematics education, specifically the teaching and learning of conditional probabilities and Bayes’ formula. Due to the relevance of these subjects for inferential judgements in situations of uncertainty in real life and the relevance of these subjects for learning probability in school, understanding how to facilitate Bayesian reasoning and avoid erroneous strategies is important. A striking result concerns a property of a tree diagram compared to the three other visualizations that differ in graphical transparency (unit square), numerical transparency (double tree diagram), or graphical and numerical transparency (2 × 2-table): a tree diagram seems to trigger the identification of an erroneous basic set and, in particular, an erroneous subset in a Bayesian situation. This result is interesting, since the tree diagram is one of the most common visualizations of Bayesian situations (e.g., Utts and Heckard, 2015). For this reason, favoring the tree diagram as a visualization to improve Bayesian reasoning may be questioned.

Further, our results can be used to improve trainings of Bayesian reasoning that are based on a double-tree diagram (Wassner, 2004) or a unit square (Talboy and Schneider, 2017). When using a double-tree diagram, a specific focus must be put on identifying the correct subset H∩D, and emphasizing the related node as representing the intersection set H∩D that allows for the set inclusion (H∩D)⊆D. When using a unit square, our results imply that a specific focus must be put on identification of the correct basic set, since most of the students found a correct strategy based on this identification. We assume that a brief training focusing on the mentioned aspects can result in a considerable impact on the facilitating effect of a double-tree diagram and a unit square.

A 2 × 2-table seems to appear as an optimal visualization of a Bayesian situation. Although this statement is clearly supported by the results of this study and is also implied by other studies (Binder et al., 2015; Bruckmaier et al., 2019; Böcherer-Linder and Eichler, 2019), this statement must be interpreted carefully. Firstly, for the students in our study, the 2 × 2-table was a very familiar visualization. With our study design, we were not able to estimate the impact of this fact. However, the results regarding the tree diagram that was also very familiar to the students provided evidence that familiarity is not as important for a facilitating effect as other characteristics of a visualization. Furthermore, we follow Bruckmaier et al. (2019), stating that a 2 × 2-table is restricted to Bayesian situations that are given in a natural frequency format. If a Bayesian situation is given in a probability format with P(H),P(D|H) and, the conditional probabilities cannot be visualized by a 2 × 2-table. Thus, to draw a 2 × 2-table based on this information in the probability format necessitates computing the information in a 2 × 2-table. This is not necessary for the other visualizations, that is, a tree diagram, a double-tree diagram, or a unit square. For this reason, we assume that the facilitating effect of a 2 × 2-table is restricted to situations in which the statistical information of a Bayesian situation is entirely given in a natural frequency format.

Finally, an open question remains about the effect of visualizations on people’s erroneous strategies when they have been trained in using visualizations before. This research may lead to further enhancement on the facilitating effect of visualization and its impact on people’s strategies in Bayesian situations.



CONCLUSION

We illustrated that people’s strategies in Bayesian situations depend strongly on specific visualizations of the statistical information in these situations. Different visualizations trigger specific ways of identifying a basic set and related subset in Bayesian situations. Although each of the visualizations in our research, that is, a tree diagram, a unit square, a double-tree diagram, and a 2 × 2-table were found to improve people’s performance in Bayesian situations, a tree diagram triggers significantly more erroneous strategies in comparison to the other three visualizations. The differences may be explained by a numerical transparency. In our research, the numerical transparency is implied if the basic set of a Bayesian situation is explicitly given by a field or a node. However, beyond the amount of numerical information, making the nested-sets structure of a Bayesian situation graphically transparent seems to help avoid erroneous strategies. In our research, the nested-sets structure of a Bayesian situation was in particular graphically transparent when a subset could be clearly identified as an intersection set. Our findings contribute to the debate about beneficial graphical properties of visual representations of statistical information in Bayesian situations, and serve as an empirical foundation in mathematics education for designing interventions to improve Bayesian reasoning.
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Cognitive psychology has shown that understanding numerical information is deeply related to the format in which this information is presented; percentages are difficult to grasp whereas frequency formats are intuitively accessible. This plays a vital role in the medical domain where difficult risk-related probability judgments have to be made both by professionals and their patients. In this article, we demonstrate that the idea of representing statistical information in terms of frequency formats is not only helpful for communicating risks, but can be applied to primary school stochastics when percentages and fractions are not available. For this purpose, we report on an intervention study conducted in grade 4 in primary school. The results show, on the one hand, that primary school students could already solve Bayesian reasoning tasks in the pretest when natural frequencies were used. On the other hand, the students profited from the intervention where they used different representations, namely colored tinker cubes and natural frequencies in order to describe and quantify frequencies and probabilities. These results go along with findings from cognitive psychology that activities with hands-on material as well as pointing out to the underlying nested-sets structure can foster Bayesian reasoning. The results are discussed in particular with regard to teaching stochastics in (primary) school.
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THEORETICAL BACKGROUND

Why do people find probability and statistics unintuitive and difficult? I've been working in this area for around 35 years, and after all this time have finally arrived at an answer. Because probability and statistics are unintuitive and difficult.

–Spiegelhalter and Gage (2014)

The core idea of this paper is to provide empirical evidence from an intervention study in primary school that demonstrates that probability and statistics are not—per se—unintuitive and difficult. It appears that the way stochastic concepts and contents are communicated and represented is often unintuitive and difficult but, can be—at least partly—made accessible already to primary students by using natural frequencies in combination with enactive, hands-on material and activities. In our study, we focus on Bayesian reasoning in the sense of inferring or adjusting probabilities for hypotheses “upon receiving new evidence” (Vallée-Tourangeau et al., 2015, p. 4). First of all, there is an a-priori probability P(H) for a certain hypothesis to be true. When receiving new information (data = D), this probability might be adjusted. In many stochastic situations the conditional probability P(D|H) can be determined from the context. However, what is often of interest is the inversion of this conditional probability, namely P(H|D). In these cases, the Bayes' theorem that can be applied in order to calculate the inversion of such a conditional probability what can be considered as an update of the a-priori probability. Research clearly shows that it is very difficult for many people to understand conditional probabilities and in particular the Bayes' theorem (Gigerenzer and Hoffrage, 1995; Sedlmeier, 2001; Sedlmeier and Gigerenzer, 2001; Hoffrage et al., 2002; Wassner, 2004). With regard to our sample, we won't focus on the Bayes' theorem in this study. However—as we will show in this paper—primary school students can already understand the core idea of Bayesian reasoning in the sense of updating probabilities, if the used representation format is adequate, e.g., if natural frequencies are used. In the following, we will describe how natural frequencies can support human understanding in specific situations.


The Role of Natural Frequencies in Human Comprehension of Situations of Uncertainty

The way statistical or numerical information is communicated is deeply related to the processes of the human mind and its mechanisms (Gigerenzer and Hoffrage, 1995; Sedlmeier, 2001; Hoffrage et al., 2002; Spiegelhalter et al., 2011). During the last 50 years, there have been disputes between advocates of the heuristics-and-biases tradition and evolutionary psychologists about humans' reasoning and judgment capabilities under uncertainty (Samuels et al., 2002). The hot-button issue is the question of whether human beings lack a sense for probability (Piattelli-Palmarini, 1994) or whether they do indeed have a form of instinct for it (Pinker, 1997). The scholars with a pessimistic mindset come primarily from the ranks of the heuristics-and-biases program. Piattelli-Palmarini (1994), Bazerman and Neale (1986) as well as Gould (1992) state that humans are somewhat probability-blind when reasoning and judging under uncertainty. From their perspective, humans are not capable of making probability-related judgments because of one main reason: The human mind is “not built to work by the rules of probability” (Gould, 1992, p. 469). As a result, human choice behavior will always deviate from normatively appropriate judgments (Samuels et al., 2002). One of the most popular proponents and founder of the heuristics-and-biases program is Daniel Kahneman. In his opinion, there is little hope of eliminating wrong intuitions and biases in probabilistic thinking through instruction (Kahneman, 2011). In contrast, several evolutionary psychologists argue that probabilistic phenomena are too pervasive in nature for humans to lack a sense of them (Pinker, 1997). Almost every incident in everyday life can be described as a probabilistic phenomenon. As a result, the human mind must be capable of dealing with randomness. Moreover, the reasons for the difficulties mentioned above hark back to counterintuitive formats in which probabilities are communicated (Gigerenzer, 1991). Information should be presented in the way people naturally think (Pinker, 1997). As a consequence, cognitive illusions such as the base-rate fallacy or the conjunction fallacy may just disappear (Gigerenzer, 1991). We will now introduce the concept of natural frequencies, a format that might support understanding probabilities.

The concept of natural frequencies was first put forward by Gigerenzer and Hoffrage (1995). It can be vividly illustrated as a natural movement people perform when they, e.g., extract two apples from a basket with 10 apples, or certain tokens from a larger set of tokens (see Figure 1). The relations between those subsets can be interpreted as “nested sets.” The so-called “nested-sets theory” is based on the idea that Bayesian reasoning is deeply intertwined with the understanding of the relation within sets and their subsets (McDowell and Jacobs, 2017; see also Section Possible Explanations for the Advantages of Natural Frequencies: The Nested-Sets Theory and the Ecological Rationality Framework).


[image: Figure 1]
FIGURE 1. Sampling using frequencies: cover image of a German schoolbook for upper-secondary level mathematics (source: Diepgen et al., 1993).


In order to show the specific and intuitive nature of natural frequencies, we contrast them to numerical expressions of percentages. For instance, when describing the proportion of colored tokens from the image in Figure 1, we can either say 7 out of 40 are colored (natural frequencies) or we can say 17.5% tokens are colored (relative frequency as percentage).

Both expressions are mathematically equivalent; however, one appears to be adapted to the human mind because of the natural movement we associate with this expression. We can directly obverse and count the numbers involved in the natural frequency of colored tokens (Hoffrage et al., 2002). Expressions in terms of percentages are more difficult to grasp because of the normalization to 100. This might be explained by the following: the base rate describes the frequency of a certain feature (seven colored tokens) in relation to the population (a total of 40 tokens). Normalization means dividing this absolute frequency by the total number in the population (and multiplying it with 100). As a result of this normalization, the information about the absolute numbers within the population disappear. On the one hand, this procedure facilitates comparing populations of different sizes. On the other hand, this process increases the level of abstraction, since there are no absolute, countable entities in the standardized frequencies, i.e., the percentages.

People might say that natural frequencies are not mathematically valid. Whereas, 7 out of 40 might be considered as only one arbitrary numerical example of the underlying proportion, the percentage 17.5% is the commonly used and most generally accepted representation of this proportion. And it is true that dealing with natural frequencies might not be easy when comparing or computing proportions since sizes of the underlying populations might be different—in contrast to percentages. However, an argument for using natural frequencies is that 7 out of 40 can indeed be considered as a representative of the underlying proportion if we think of it as an expected value. For instance, this expected value can easily be interpreted as the mean proportion of the following: 5 out of 40; 9 out of 40; 6 out of 40 and 8 out of 40. Another argument for using natural frequencies is that they are suitable for describing conditional probabilities. Referring to the example in Figure 1, the conditional probability P (green token | colored tokens) can be described as 2 green out of 7 colored tokens, which is more easy to interpret than the percentage 29% (rounded value of 2/7). Again, a natural movement can be associated, i.e., extracting the colored tokens out of the large set of all tokens and taking the two green tokens out of the small subset of colored tokens.


Natural Frequencies Can Support the Understanding of Bayesian Reasoning Tasks

Within the pioneering edition Judgment under uncertainty—Heuristics and Biases by Kahneman et al. (1982, p. 253), Eddy stressed that medical doctors do not follow the Bayes' formula when solving the following task:

The probability that a woman aged 40 has breast cancer (B) is 1% (P(B) = prevalence = 1%). According to the literature, the probability that the disease is detected by a mammography (M) is 80% (P(M+|B) = sensitivity = 80%). The probability that the test mis-detects the disease, although the patient does not have it is 9.6% (P(M+|B) = 1 - specificity = 9.6%). If a woman aged 40 is tested as positive, what is the probability that she indeed has breast cancer P(B|M+)?

Application of the Bayes' formula yields the following result:

[image: image]

Thus, although having a positive mammography, the probability of breast cancer is only 7.8%, while Eddy (1982) reports that 95 out of 100 doctors wrongly estimated this probability to be between 70 and 80% in his empirical study.

In order to support the estimation of such conditional probabilities, Gigerenzer and Hoffrage (1995) investigated the corresponding representation of uncertainty. In Eddy's task from above, quantitative information was represented as probabilities. Gigerenzer and Hoffrage presented an adaption of Eddy's task to medical doctors: The original probabilities were replaced by a different representation of uncertainty, namely natural frequencies. The adapted task was as follows (ibid., p. 688):

Hundred out of every 10,000 women aged 40 who participate in routine screening have breast cancer. 80 of every 100 women with breast cancer will be detected as positive by a mammography. 950 out of every 9 900 women without breast cancer will also be detected as positive by a mammography. Here is a new representative sample of women aged 40 who have been detected as positive by a mammography in routine screening. How many of these women do you expect to actually have breast cancer?

Putting the numbers into Bayes' formula yields the following result:

[image: image]

Gigerenzer and Hoffrage (1995) reported that nearly half (46%) of all doctors gave the correct answer to this adapted task. This study was one of the first of several studies that empirically confirmed the positive effects of representing information in terms of natural frequencies instead of percentages (Gigerenzer and Hoffrage, 1995; see also Macchi, 1995; Girotto and Gonzalez, 2001). In the following section, we will present further empirical studies comparing natural frequencies with other probability formats such as percentages in order to get a more profound view of their potential benefit.



Natural Frequencies—A Panacea for Solving Bayesian Reasoning Problems?

The frequency-probability-effect, i.e., the fact that using natural frequencies produces higher solution rates than using probabilities, is a very robust phenomenon. It has been replicated in many studies (see, e.g., the meta-analysis of McDowell and Jacobs, 2017). Nevertheless, the correctness of judgments concerning the medical test problem is far from being accurate—even if natural frequencies are used (Pighin et al., 2018). In some cases, single-event probabilities have indeed shown some advantages over natural frequencies. In this sense, Pighin et al. (2018) found that the communication of test results in terms of chances compared to natural frequencies better helped patients to interpret their personal situation. Moreover, Ayal and Beyth-Marom (2014) found evidence that tasks using a natural frequency format were only solved better if not more than one mental step was required. There is evidence that in more complex tasks with several mental steps, probability formats outperform natural frequencies. This might be due to the normalization of the frequencies that is characteristic for probabilities and percentages and that helps to compare and compute different values (Ayal and Beyth-Marom, 2014).

These findings relativize the frequency-probability-effect and, hence, have to be accounted for in this research field. Nevertheless, they play only a minor role for our study conducted in primary school. If any, quantifications of probabilities in primary school are restricted to frequency formats in the sense of “The probability to get a red cube is, e.g., 3 out of 10.”

Two opposite theories, the Nested-Sets Theory and the Ecological Rationality Framework, have been established that provide explanations for the frequency-probability-effect. We will briefly present and contrast them in the following section.



Possible Explanations for the Advantages of Natural Frequencies: The Nested-Sets Theory and the Ecological Rationality Framework

McDowell and Jacobs (2017) state a long-lasting controversy with regard to possible explanations of the frequency-probability-effect. Proponents of the Ecological Rationality Framework ERF (e.g., Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996) assume that there is a specialized module in the human mind that automatically processes natural frequencies. According to ERF, this module has developed through evolution based on an appropriate matching between the human mind and the structure of the environment (McDowell and Jacobs, 2017). As a consequence, the presentation of a Bayesian reasoning task in terms of natural frequencies increases solution rates as these natural frequencies correspond to people's natural environment for millions of years. In particular, the advantages of using natural frequencies are independent from the individual's cognitive resources (Lesage et al., 2013).

A contrary view is expressed by the Nested-Sets Theory (NST) that explains the frequency-probability-effect as a result of emphasizing the nested-sets structure of the Bayesian problem when probabilities are translated into frequency format (Girotto and Gonzalez, 2001; Barbey and Sloman, 2007). By using natural frequencies, this nested-sets structure becomes more prominent and visible. As a result, the analytical system of human mind is triggered and executive resources get available that can be used for calculating a correct answer. Lesage et al. (2013) examined the relationship between cognitive capacity and performance on Bayesian reasoning tasks. Participants with rather low cognitive capacity did not benefit much from facilitating the tasks via using natural frequencies. This finding is in line with NST that states that people with rather low cognitive resources profit less from the nested-sets structure visible in natural frequencies. In contrast, ERF claims that the benefits of using natural frequencies should rather equally apply for people with different levels of cognitive capacity since everyone has such a specialized module that automatically processes natural frequencies.

With regard to the focus of this study, we will not go into further details concerning the presented theories. However, they both emphasize that natural frequencies can help the understanding of, e.g., conditional probabilities or Bayesian reasoning tasks. Moreover, NST provides an analytical explanation for the benefit of using natural frequencies: When people get aware of the nested-sets structure of a Bayesian reasoning task (i.e., by natural frequencies), they will perform better on these tasks. Although this theory can serve as a theoretical basis for our study, as primary school students are able to work on such nested-sets, it has to be noted that there are different factors that mediate people's performance on Bayesian tasks. Such factors will be presented in the following.



Critical Factors Mediating Performance on Bayesian Reasoning

The meta-analysis of McDowell and Jacobs (2017) reveals important factors that account for different performances in Bayesian reasoning tasks. Two of the strongest factors concern the characteristics of the tasks and they apply for both natural frequencies and probabilities. First, task performance increases substantially if task complexity is reduced (see in particular Ayal and Beyth-Marom, 2014). This means for instance that less irrelevant information is given in a task or that less mental steps in the mathematical computations are required. Second, if participants are given visual aids, they perform much better since these external representations can clarify the underlying nested-sets structure (McDowell and Jacobs, 2017).

Concerning individual factors, cognitive abilities and thinking dispositions (Sirota et al., 2014), text comprehension (Johnson and Tubau, 2015), as well as numeracy and cognitive reflection (Sirota and Juanchich, 2011) predict Bayesian reasoning performance in both natural frequencies and probability formats. As the meta-study of McDowell and Jacobs (2017) indicates that a high level of numeracy leads to better Bayesian reasoning, Johnson and Tubau (2013) focused their study on this concrete individual characteristic. They found that short and clear natural frequency problems lead to less differences between people with low and high numeracy skills. Hence, both high and low numerate participants were able to adequately solve short Bayesian reasoning tasks using natural frequencies. The solution rates became smaller when the problems were presented in the form of longer word problems both in the natural frequencies and the probability format.

Whereas there are several studies focusing on such individual factors mediating the ability to solve Bayesian reasoning problems, there is only little research on how for example interactivity-based intervention improves performances on Bayesian reasoning tasks. Vallée-Tourangeau et al. (2015) conclude that enabling an enactive, physical manipulation of the problem information leads to substantially better statistical reasoning, without a specific training or instruction. In their study, participants benefited by working with malleable physical representations of a problem, namely playing cards. The participants who solved the problems with playing cards performed better than their peers without.

Although the mentioned studies reveal important findings about mediating factors on people's performance in Bayesian reasoning tasks, there is still the need to explore how this performance can be fostered. In particular, it stands to reason if and how young students with limited experiences in stochastics can be supported in this perspective. Therefore, the next section will present to what extent stochastics and Bayesian reasoning are taught at primary school.




Stochastics and Bayesian Reasoning in Primary School—Status Quo and Potential

Teaching stochastics in primary school is required by the German curricular standards but restricted to descriptive statistics (e.g., gathering, representing, and analyzing data in the context of tasks related to the students' everyday lives such as “How do you get to school?”) and basic random experiments (e.g., performing experiments with dice and spinners and discussing whether an event is “impossible”, “certain” or “likely” (KMK, 2004)). There is a strong focus on qualitative probability judgments and basic quantitative probability (e.g., “Are you more likely to get a number on the dice between 1 and 2 or a number between 3 and 6?”). Nevertheless, young students' potential does not appear to be fully exploited, as several studies suggest that primary school students are able to do more profound stochastics.

Lindmeier and Reiss (2014), for example, show that children aged from 9 to 12 years can acquire elementary competencies regarding inferential statistics. In their experiment, the students took random samples out of a box with an unknown amount of red and blue cubes. After several trials, they had to estimate the amount and proportion of red and blue cubes in the box.

Other studies indicate that students in primary school are able to grasp an elementary form of conditional probabilities and Bayesian reasoning if these concepts are introduced using natural frequencies (Martignon and Kurz-Milcke, 2006; Martignon and Krauss, 2009; Latten et al., 2011; Till, 2015). Due to the students' young age, these studies focus on their ability to capture the statistical or probabilistic phenomena instead of on their ability to work out the Bayes' formula. Promoting such a propaedeutic understanding of (conditional) probabilities also appears to be an important basis for further learning as, for instance, Diaz and Fuente (2007) show that students often approach probabilities in an algorithmic way: They master the techniques but do not catch the underlying phenomenon.

The study of Zhu and Gigerenzer (2006) used specific tasks promoting (an elementary form of) Bayesian reasoning by means of natural frequencies. Before presenting such student tasks, we will introduce a task by Kahneman (2011, p. 6–7) that served as a model for Zhu and Gigerenzer. In Kahneman's task, which often results in wrong judgments, an individual is described by a neighbor as follows:

Steve is very shy and withdrawn, invariably helpful but with very little interest in people or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail. Is Steve more likely to be a librarian or a farmer?

According to Kahneman's (2011) research, most people answered that Steve is probably a librarian. However, as there are five times as many farmers as librarians in the United States, the absolute number of shy and helpful farmers is larger than the absolute number of shy and helpful librarians. Hence, the right answer to Kahneman's task is that it is more likely that Steve is a farmer. The most common mistake in this kind of task is that people neglect the base rate. Gigerenzer and Hoffrage (1995) claim that this typical fallacy—as well as some others—disappears when using natural representation formats.

In order to use such tasks that focus on Bayesian reasoning already in primary school, Kahneman's task was adapted to this age group by Zhu and Gigerenzer (2006). Latten et al. (2011) implemented these ideas several years later in a short learning environment (the cited learning environment originates from Multmeier, see, e.g., Multmeier, 2012). In this adaption, librarians became princesses; farmers became mermaids, and the attribute shy became wearing a crown:

5 out of 60 fairytale characters are princesses, and 4 of these 5 princesses wear a crown. The other 55 out of 60 fairytale characters are mermaids, and 12 of these 55 mermaids wear a crown.

The corresponding question in this task is as follows: “Imagine you see a fairytale character wearing a crown. Would she be more likely to be a princess or a mermaid?”

When solving this task, the students have to concentrate only on the people wearing a crown and mask out all people without crown. Then they can compare the given natural frequencies of fairytale characters with crowns: 4 out of 16 characters with crowns are princesses, whereas 12 out of 16 characters with crowns are mermaids. Therefore, if they were to see a character with the attribute wearing a crown, it would be more likely to be a mermaid! By comparing the concrete numbers, students can realize that although almost every princess wears a crown (4 out of 5), there are altogether more mermaids with a crown. Hence, the attribute wearing a crown applies to more mermaids, which is why it is more likely for a character with a crown to be a mermaid. Understanding these nested-sets structure is essential for Bayesian reasoning.

The presented typical Bayesian reasoning task can be made even more accessible by combining the use of natural frequencies with iconic representations, such as icon arrays (Kurz-Milcke et al., 2011). Several studies have shown the positive effects of visual representations for (probabilistic) problem-solving (Corter and Zahner, 2007; Brase, 2008; Garcia-Retamero et al., 2010; Gaissmaier et al., 2012; McDowell and Jacobs, 2017). As a result of representing statistical information by means of visual representations, subset structures become visible, which is particularly conducive to understanding Bayesian reasoning problems. The big advantage of such visually perceived representations is that all proportions of the relevant features are visible what might help students to intuitively grasp all proportions (Scholz and Waschescio, 1986). Figure 2 displays an iconic representation related to the above-described student task. This representation helps students to realize that there are so-called symptomatic characteristics for certain fairytale characters such as crowns for princesses. In the above-presented task, it helps the students to get aware that the symptomatic characteristic crown does not automatically lead to a higher probability for princesses. As, in this example, the absolute number of mermaids wearing a crown is higher than that of the princesses, the correct answer for the task above is “mermaid.”


[image: Figure 2]
FIGURE 2. Iconic representation of a typical Bayesian task: Icon array. See Till (2015, p. 91).


Of course, there are also other representations that could help students to work on the described Bayesian task. For instance, it can alternatively be modeled using hands-on material in the form of colored tinker cubes. Figure 3 displays such an example. In this simplified version, there are 2 princesses (red) and 8 mermaids (blue). 1 of the 2 princesses and 2 of the 8 mermaids wear a crown (marked in yellow). The other fairytale characters wear no crowns (marked in green). The base rate of princesses is 2 out of 10 (prior probability). Looking for princesses in the sample of the characters with crowns yields a base rate of 1 out of 3 (posterior probability).


[image: Figure 3]
FIGURE 3. Enactive representation of a typical Bayesian task: Tinker cubes. See Till (2015, p. 91).


The previous section shows that there are possibilities of introducing conditional probabilities and Bayesian reasoning already in primary school. In the following, we will sketch empirical results related to using natural frequencies in Bayesian reasoning tasks—in secondary but also in primary school.



Empirical Research on Students' Bayesian Reasoning

In an intervention study, Wassner (2004) compared two ways of teaching the Bayes' formula in a sample of 15- to 17-year-old students: one with probabilities and one with natural frequencies. The students who worked with natural frequencies performed significantly better in the posttest than the students who worked with probabilities. Wassner also reported on long-term effects of the intervention.

In the experimental study “The dog ate my homework!,” Spiegelhalter and Gage (2014) asked 14- to 16-year-old students to model the following Bayesian task: Within a school class, several students were accused of lying about the reasons why they had forgotten their homework. Hence, the study participants had to find out how likely it was that the accused or non-accused students were lying or telling the truth. In order to encode the binary variables (lying/telling the truth; accused/non-accused), the students worked with colored tinker cubes; moreover, all students created 2 × 2 tables and empirical frequency trees. All of these representations were based on natural frequencies, the concrete numbers of students' attributes (lying/telling the truth and accused/non-accused) were assigned randomly. This class experiment indicated that students could easily do probability calculations based on natural frequencies. However, due to the study design, it was not possible to determine the representation format that led to the highest growth in learning.

Zhu and Gigerenzer (2006) showed that children aged from 9 to 11 years can already work successfully on typical Bayesian tasks when the relevant information is presented as natural frequencies. The researchers used a set of ten tasks presented in two different ways: The information was given as probabilities in percentage form to one group of children and as natural frequencies to the other group. The students working with probabilities could not find any right solution at all. In contrast, even the youngest students (aged 9 years) from the group working with natural frequencies solved 14% of the tasks. The 10-year-olds in this group solved 42% and the 11-year-olds 47% of the tasks. These findings indicate that also very young students can deal with conditional probabilities when natural frequencies are used.

In an experiment, Martignon and Kurz-Milcke (2006) asked students aged from 8 to 10 years to construct stochastic situations using tinker cubes and stochastic urns. One of their aims was to foster the development of dynamic mental imagery to represent stochastic situations. The experiment consisted of a so-called “urn arithmetic” in which first elements of expanding proportions were fostered. The students had to compare proportions by constructing equivalent urns in the following manner: We have two urns, namely U1 (1 red: 2 all) and U2 (2 red: 5 all). Which urn is more convenient if we want a red tinker cube? (Martignon and Kurz-Milcke, 2006). Without knowing about fractions the students discussed how to enlarge an urn without changing the odds (1 out of 2 = 2 out of 4). The authors consider “this first confrontation with comparison of proportions and similarity of proportions [as] a fundamental previous step before fractions are introduced” (Martignon and Kurz-Milcke, 2006, p. 3). In their experiment Martignon and Kurz-Milcke also used Kahneman's Bayesian task related to girls' and boys' mathematical enthusiasm and modeled the situation with a big urn in the involved classes. All students in the corresponding class were represented by tinker towers, i.e., a combination of two colored tinker cubes (red/blue for the students' gender, yellow/green for their math enthusiasm). After having gathered the relevant information about the whole class, the towers were categorized in a tree diagram. Based on this tree diagram, students formulated questions such as: “I have a blue cube (boy) behind my back. Do you think I am likely to be a math enthusiast?” Although there was no formal testing in this experiment, the authors stated that representing conditional probabilities via tinker towers in combination with tree-like layouts on the classroom floor helped students to work on Bayesian tasks.

Martignon and Krauss (2009) conducted a study in which they introduced a tool box for decision-making and reckoning with risk. This study was conducted in six grade 4 primary school classes. The students aged 9 to 10 were confronted with a sequence of tasks and playful activities involving, e.g., elementary Bayesian reasoning [“princess/mermaid task” presented in chapter Stochastics and Bayesian Reasoning in Primary School—Status Quo and Potential (Latten et al., 2011)] as well as the comparison of proportions and risks. One focus of the training was dealing with the Wason selection task, a logic puzzle about deductive reasoning. By following logical principles, students needed to figure out which cards to flip over to figure out certain rules. Hence, this game bridges between logical thinking and conditional probabilities. Furthermore, the primary school students played the game “Ludo” and were asked to compare different moves and the associated risks. The authors stated that these playful tasks and activities were fruitful. Again, this study confirmed that primary school students can successfully work on Bayesian tasks.

The study RIKO-STAT (e.g., Kuntze et al., 2010) assessed different competencies in the area of statistical literacy in a sample of primary school, secondary school, and university students. The tasks for the primary school students required them to apply, e.g., an elementary approach to expected values, risk reduction, and comparing proportions. The students were also confronted with the above-described Bayesian reasoning task addressing mermaids and princesses (chapter Stochastics and Bayesian Reasoning in Primary School—Status Quo and Potential). All in all, the students' performance showed considerable weaknesses, and hence, the authors argued in favor of encouraging statistical and probabilistic thinking earlier and more deeply at school. Furthermore, the authors reported that the primary school students performed well on the Bayesian tasks. Analyzing the primary students' strategies showed that many intuitively used an approach focusing on natural frequencies which led to satisfying solution rates, whereas the secondary school students mostly used percentages and did not perform well. The authors assumed that they would have performed better if these secondary school students had applied natural frequencies instead of percentages.

Based on the results from RIKO-STAT, researchers from Ludwigsburg University of Education and cognitive psychologists from the Harding Center for Risk Literacy in Berlin investigated in a sample of primary school students aged 9 to 10 their competencies related to risk (Latten et al., 2011). In this intervention study consisting of six lessons, the students were confronted with first elements of expected values, risk reduction, conditional probabilities, and comparisons of proportions. The authors reported of significantly improved competencies due to the intervention.

The above-mentioned findings show that natural frequencies can be used to foster students' Bayesian reasoning. In the next section, we will outline the corresponding research desideratum of our study.



Research Desideratum

Since several decades, there is vast empirical evidence that many people have difficulties with Bayesian reasoning—even if they dispose of high cognitive capacity and high numeracy (e.g., Kahneman et al., 1982; Sirota and Juanchich, 2011; McDowell and Jacobs, 2017). One idea to foster Bayesian reasoning, is to confront already young children with corresponding situations and tasks in order to develop valid intuitions. This idea is based and supported by considerations of the previous sections that outlined (a) theoretically-driven explanations for the intuitive character of natural frequencies, (b) empirical findings confirming their advantages compared to probabilities represented as percentages and, in particular, (c) empirical results indicating that natural frequencies can successfully be used at primary school, where percentages, ratios, and fractions are not explicitly addressed—at least not in Germany. In this perspective, the first research question of this study investigates how successful primary school students are with specific Bayesian reasoning tasks represented in natural frequencies. The corresponding research question is:

• To what extent are students in grade 4 able to solve Bayesian reasoning tasks when the information is given in terms of natural frequencies?

Considering empirical evidence from prior research leads to the hypothesis that already young students can handle with such tasks. This study aims at confirming these prior studies and to enlarge them by quantitative evidence—as most of the cited study do not provide quantitative results.

Moreover, and based on the idea that primary school students can successfully work on Bayesian reasoning tasks via natural frequencies, it stands to reason if and how primary school students can be supported in this regard. For this age group, a play- and activity-based approach appears to be adequate that could prepare a valid basis for the further learning about Bayesian reasoning (Martignon and Kurz-Milcke, 2006; Martignon and Krauss, 2009; see also Johnson and Tubau, 2015). The intervention of this study was conceived in this sense as it involves playful learning with enactive representations like tinker cubes. The intervention will be described in the Methods Section in more detail. The corresponding research question focuses on evaluating the effectiveness of this intervention:

• How does a specific intervention affect primary students' performance in tasks related to conditional probabilities and Bayesian reasoning?

As numeracy has proven to be a predictor of Bayesian reasoning in prior research (Johnson and Tubau, 2013), we will control for this covariate when investigating research question 2.

Previous studies have indicated that young students' Bayesian reasoning can be fostered through activities such as in our intervention, but often, a statistical effect has not been proven empirically. In particular, most of the cited studies do not provide an experimental design enabling to quantitatively evaluate an intervention effect of using natural representations. This study closes this research gap and seeks to support the above-mentioned findings using a pretest-posttest design including a control group. In the following, we will describe the method used in this study.




METHODS


Sample

In this study, 244 grade 4 students (131 girls) aged between 8 and 12 years (M = 9.5, SD = 0.61) took part. The students came from 12 classes from six different schools in the surroundings of a medium-sized city in the south of Germany. Eight classes including 152 students were part of the treatment group and four classes including 92 students served as control group (baseline). The classes were not assigned randomly to the different test conditions due to pragmatic reasons (see Limitations Section). In each of the classes, there were around 20 students. As conditional probabilities and Bayesian reasoning are usually taught in grade 10 or 11 at the earliest, the students had no previous school experience with these topics.



Design of the Study

In order to determine particular intervention effects, a pre-, post-, follow-up test design with a treatment and control group was chosen. All students from the treatment and control group completed the tests; however, only the students from the treatment group attended stochastics-specific lessons, whereas the students from the control classes attended general and non-stochastics-specific math lessons in the time between the testings. The pre- and posttests were administered directly before and after the intervention; the follow-up test was conducted 3 months after the posttest. These temporal distances were comparable in the treatment and control group.

The intervention effects were analyzed via a multiple regression in SPSS 25. Covariates, such as students' age, gender, and their grades were collected. In this study, we control for the covariate “grades in Mathematics” as a safeguard against possible biases of the intervention effect due to general mathematical competency represented by these grades. This appears to be important as numeracy has shown to be an influencing factor of Bayesian reasoning performances (Sirota and Juanchich, 2011; Johnson and Tubau, 2013).



Intervention

The intervention included elements of several classroom experiments and studies which had been conducted before at the University of Education in Ludwigsburg as well as at the Max-Planck Institute in Berlin (Martignon and Kurz-Milcke, 2006; Martignon and Krauss, 2009; Latten et al., 2011). In particular, the intervention comprised tasks and activities related to risk and decisions under uncertainty that were intended also to foster first intuitions of expected values. In the first lesson, the students were confronted with a play-based simulation of the following trade-off: “Either you choose one candybar for sure or you can toss a coin. If you get heads, you win four candybars. Otherwise you go empty-handed.” In the second and third lesson the focus was on proportional reasoning as well as on relative and absolute risks (see e.g., Till, 2014, 2015). In the fourth lesson, the students were confronted with a typical Bayesian task during an ordinary 45-min lesson. Because of the focus of this article, we will present the content of this lesson in more detail. The following task, which was adapted from the medical test problem (see chapter Stochastics and Bayesian Reasoning in Primary School—Status Quo and Potential), was discussed in this lesson:

“In a school yard, there are two girls—one with long hair and one with short hair. There are also eight boys—two with long hair and six with short hair. If I told you that I talked with one of these children with long hair. Would you bet it was a girl?”

At the beginning of the lesson, the students were asked several questions about the distribution of different characteristics within their own class such as “How many girls are in this class?” “How many students play soccer in a sports club?” By doing so, the class was introduced to represent the considered population. Afterwards, the initial question relating to countable entities was turned into a probabilistic question: “Imagine someone picks one student out of your class. What is the probability that this person is a girl or a boy?” After some qualitative judgments addressing for instance terms such as “more likely,” the class made quantitative judgments formulated as frequencies (“8 out of 21”). In the sense of Bayesian reasoning, these statements can be understood as a-priori probabilities. After these preparative activities, the task described above was introduced. In order to really understand this Bayesian task and to clarify the nested-sets structure of the problem, a little role play was performed: 10 students (two girls and eight boys) representing the characteristics described in the task were asked to line up in front of the class. The other students described the distribution of the characteristics in the two groups (girls and boys). By doing so, they were unknowingly introduced to natural frequencies: “2 out of 10 children are girls; 1 out of 2 girls has long hair, whereas 2 out of 8 boys have long hair.” Therefore, the characteristic long hair is more typical for a girl. The teacher then asked “I talked with one of these children with long hair. Would you bet it was a girl?” The class discussed about the right answer. In order to make this situation more accessible, the teacher asked the students with long hair to make a step forward. Now all students gave the right answer because they realized the nested-sets structure related to the characteristic “long hair.” Afterwards, the students used colored tinker cubes to encode the features boy, girl, long hair, and short hair in order to model the situation. By putting two cubes together, students were able to represent related characteristics (i.e., a long-haired boy).



Instrument

According to Diaz and Fuente (2007), there are no standardized tests of (young) students' understanding of conditional probabilities and Bayesian reasoning. Therefore, test items were used that are comparable to the items of Zhu and Gigerenzer (2006). They were structured in the same way as the medical test problem (Eddy, 1982; Cosmides and Tooby, 1996). However, different cover stories were created for the pre-, post-, and follow-up test.

In order to illustrate the test in more detail, we will present and describe two items in the following. The Item FEU (see Figure 4 on the left) is characterized by the fact that students first are asked by a sub-item (a) to determine the a-priori probability of the hypothesis that a student of a certain school comes from the city [P(H)]. Afterwards, they are asked in sub-item (b) to update this probability when new information is given, namely the fact that the observed child has a mobile phone [P(H|D)]. Sub-item (a) draws the students' attention to the frequencies of children coming from the city and the village within the whole set. Sub-item (b) draws their attention to children from the city and village within the subset of children having a mobile phone. As the sub-item (a) might be considered as a trigger to think about the nested-sets structure given in the task—what might help students to answer also sub-item (b)—we label such items as “guided tasks.” In addition to such “guided” tasks, there are “non-guided” task (LaH) that are mathematically equivalent to the presented type-(b) sub-item of the “guided” tasks (see Figure 4 on the right). However, students‘ attention here is not drawn to the nested-sets structure by a preceding type-(a) sub-item. The students are asked about the a-posteriori probability relating to the number of princesses in the subset of individuals wearing a crown [P(H|D)] without being triggered to the frequency of princesses in the whole set.


[image: Figure 4]
FIGURE 4. On the left: “Guided” task (FEU); on the right: “Non-guided” task (LaH).


As mentioned above, we consider the “guided task” as easier to solve because students are triggered to think about and determine the a-priori probability of a hypothesis and then update this probability into an a-posteriori probability when new information is gathered. This consideration is in line with the nested-sets theory (Girotto and Gonzalez, 2001; Barbey and Sloman, 2007) as students' attention is drawn to the nested-sets structure of the given situation. As the sample items illustrate, the tasks were written in a short and comprehensible language to make sure that students of both groups (treatment and control group) exactly understood what they were required to do. The pre-, post-, and follow-up tests all included items where the students (a) had to mark the right answer (single-choice format), (b) fill in the blanks with their answer, or (c) give an explanation for their answer. Hence, altogether there were six items yielding to a maximum score of six points. Tasks with missing values were coded as zero because the students had enough time to complete the tests.

Beyond tasks referring to Bayesian reasoning such as the presented ones, the test included also tasks involving, e.g., elementary comparisons of probabilities, proportions and frequencies, trade-offs as first elements for expected values, and risk reductions. As these tasks are not addressed in this article, we do not report on them in more detail. More information about the test instrument can be found in Till (2015). For ease of reading, in the following we will label the test scores referring to the Bayesian reasoning items only as pre-, post-, and follow-up test scores.




RESULTS

In the following, we present the results of this study in two subsections: First, we report and analyze students' overall performance on the Bayesian reasoning tasks (both treatment and control group) at the different times of testing (see research question 1 und 2). Second and in order to investigate the intervention effects (research question 2) in more detail, we will present solution frequencies of the two items FEU and LaH that were already introduced in the Methods Section.

The overall average of the Bayesian pretest score was 2.96 (SD = 1.48) out of 6 points. The students from the control group had significantly higher pretest scores compared to the students from the treatment group (Mtreatment = 2.81, SD = 1.48; Mcontrol = 3.22, SD = 1.44; t(242) = 2.11, p = 0.036, Cohen's d = 0.28). After the intervention, the students from the treatment group outperformed the students from the control group with a marginally significant p-value [Mtreatment = 4.20, SD = 1.86; Mcontrol = 3.75, SD = 1.74; t(225) = 2.24, p = 0.071, Cohen's d = 0.26]. The increase from pre- to posttest was significant both in treatment [t(143) = −8.39, p < 0.001, Cohen's d = 0.83] and control group [t(82) = 2.74, p = 0.008, Cohen's d = 0.33]. After 3 months, the follow-up test scores of the treatment group were still higher (Mtreatment = 3.84, SD = 1.86; Mcontrol = 3.64, SD = 1.88), though this difference was not significant [t(226) = 0.7595, p = 0.448]. Table 1 displays an overview of these results.


Table 1. Average test scores of the treatment and control group.
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In order to get more insight into the intervention effects, a multiple regression was performed including also the covariate grades in Mathematics (considered as a representative of students‘ numeracy). Two models were compared (see Table 2): In the first model, the predictors pretest Bayes score and grades in Mathematics explained 17% of the variance of the posttest Bayes score (pretest predicting follow-up test: 23%). Both predictors proved to be significant, which means that, on average, students with good grades in Mathematics (considered as numeracy) and students with high pretest scores also achieved high posttest scores.


Table 2. Prediction of the posttest results of the Bayesian tasks.
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For the second model, the third predictor test condition (dummy-coded with 0 for the control group and 1 for the treatment group) additionally explained 2% of variance. Hence, 19% of the posttest results can be explained by the three predictors pretest score, grade in Mathematics, and test condition. The fact that the predictor test condition had a significant regression weight of 0.18 (p < 0.01) indicates that the short treatment had a significant effect. Determining the effect size for pretest-posttest-designs with treatment and control group (corrected in the sense of Morris, 2008) indicated a medium effect size of d = 0.59. The findings related to the prediction of the 3-months-delayed follow-up test result were similar (see Table 3), whereas in this case the test condition was not significant.


Table 3. Prediction of the follow-up test results of the Bayesian tasks.
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As mentioned above and in order to get insight into the intervention effect in more detail, we will now present solution frequencies of two concrete items. As we only consider two items, we do not use t-tests or other inferential statistics. The item FEU represents a so-called “guided task” whereas the item LaH is a “non-guided” task (see Methods Section).

Figures 5, 6 show the different solution frequencies of the treatment and the control group on the two tasks. In the pretest, the majority of the students (68% both in control and treatment group) were able to complete the “guided task” FEU. Only about 23% of the students from the treatment group and 36% of the control group solved the “non-guided” task.


[image: Figure 5]
FIGURE 5. Comparison of solution rates related to two different items (treatment group).



[image: Figure 6]
FIGURE 6. Comparison of solution rates related to two different items (control group).


After the treatment, 64% of the students from the treatment group solved the “non-guided task”, the solution frequency in the control group was 49%. The solution rates of the posttest concerning the “guided task” were still high in both groups (treatment group 73%; control group 66%).



DISCUSSION

The first—and perhaps the most important—result of this study is the relatively high average pretest score of all students. Even without prior confrontation with Bayesian text problems, the students on average achieved half of the maximum test score. This is even more meaningful when we consider the difficulties that adults (medical doctors, lawyers) have with such tasks (Gigerenzer et al., 2008; Gaissmaier et al., 2012). One explanation of this finding might be the task's representation format, namely natural frequencies. Existing literature (e.g., Gigerenzer and Hoffrage, 1995; Sedlmeier and Gigerenzer, 2001; Hoffrage et al., 2002; Wassner, 2004; Zhu and Gigerenzer, 2006) shows that people benefit from working with natural frequencies when they have to solve probability-related tasks. This applies in particular for a special kind of probability task, the medical test problem, as difficult conditional probabilities and their inversions become easier to understand if they are presented in terms of natural frequencies. Barbey and Sloman (2007) explain that natural frequencies lead to a clear representation of the subset relationships (see also NST, e.g., Girotto and Gonzalez, 2001) and to a simplification of numerical calculations (Sedlmeier, 2001; Sedlmeier and Gigerenzer, 2001; Wassner, 2004). Therefore, we assumed that this format might be also suitable for primary school. This assumption could be confirmed by the present study.

Beyond the representation format of natural frequencies, another explanation of the rather strong average pretest scores might be the short and simple question format of our test instrument that was obviously easy to understand for the children. In particular, this question format made visible the nested-sets structures underlying the tasks. In each task, a given set of individuals with certain attributes had to be considered and absolute numbers had to be compared. As the study shows, many students managed to solve the inversion of the conditional probability task even without the support of the intervention. These results go along with findings from McDowell and Jacobs (2017) according to which short and simple text formats as well as the communication in terms of natural frequencies facilitate Bayesian reasoning tasks. Moreover, the comparison between the “guided” and “non-guided” tasks shows that the students of both groups had less problems with the “guided” task. This is even more impressive when we consider that the “guided task” was arithmetically more demanding than the “non-guided” one (“guided task”: A small school with 60 children; “non-guided task”: A castle with 10 women). In line with the Nested-Sets Theory (Girotto and Gonzalez, 2001; Barbey and Sloman, 2007), this finding was to be expected as the type-(a) sub-item of the “guided” task draw the students' attention to the nested-sets structure and hence makes it more visible. However, as these type-(a) sub-items do not draw the students' attention directly to the structure focused in the type-(b) sub-items, this expectation had to be empirically confirmed. The higher solution rates (pretest) of both groups for the “guided task” confirm that making the nested-sets structure visible helps the students to solve the task.

In the following, we will discuss the intervention effects. A comparison of the results after the intervention reveals that there was a significant difference in students' performance in the test condition. Directly after the intervention and even 3 months later, the students of the treatment group achieved higher test scores than their peers in the control group. Although the absolute differences between the two groups in their average scores in the posttests were not large (Table 1; similar also in the follow-up tests), the scores of the children in the treatment group showed a significantly larger increase from pre- to posttest with a medium effect size (Table 2). These results empirically confirm that young students' Bayesian reasoning could be fostered by the short intervention providing a first experience with natural frequencies and modeling stochastic situations using tinker cubes. Hence, using natural frequencies once again showed up to be appropriate already in primary school. Moreover, the playful and hands-on intervention including a role-play and modeling nested-sets structures with tinker cubes proved to be supporting for the students. This is in line with Vallée-Tourangeau et al. (2015) who claim that making all sets and subsets explicit by enabling enactive activities related to the problem information substantially improves statistical reasoning. One reason for the rather moderate absolute differences between treatment and control group in the post- and follow-up test scores (see Table 1) might be that the maximum score was limited to 6 what means – together with the relatively high pretest scores—that there wasn't much improvement potential for the students. Another reason might be the short duration of the intervention of only one lesson. In such a short period, large improvements cannot to be expected. However, the medium effect sizes allow us to be optimistic about the potential of this approach.

Comparing the intervention effects related to the “guided” and “non-guided” tasks shows that the solutions rates of the “guided” task were relatively stable over time in both groups. However, within the treatment group, the solution rate of the “non-guided” task considerably increased, and even in the control group, higher posttest scores were recorded. We interpret this as follows: For the “guided” tasks, there was a kind of ceiling effect leading to no substantial differences from pre- to posttest. Moreover, the intervention effect appears to be moderate on tasks where the nested-sets structure is already triggered by the task itself. In contrast, the intervention appears to support students' ability to recognize the nested-sets structure particularly in tasks where it is not triggered automatically. The fact that also the students in the control group increased their solution frequency in this task indicates that already the repeated dealing with (“guided” and “non-guided”) Bayesian reasoning tasks supports students' corresponding performance. Hence, experiences with nested-sets structures appear to help students in developing their Bayesian reasoning. In our study, they could particularly be supported by a corresponding training using hands-on activities (and natural frequencies) but also the individual dealing with such tasks can (moderately) improve their corresponding abilities. The slight improvement of the children in the control group is not limited to the “non-guided” tasks but can also be seen in the overall Bayesian reasoning score. This might be explained by familiarity with the test items or (subconscious) learning effects of working on them (including possibly also the informal exchange of the participants between pre- and posttest). It also highlights once again the importance of using an appropriate representation format—which was also used in the test items.


Implications for Future Research

The idea of this article was to evaluate the effect of a representation format that facilitates probabilistic reasoning, namely natural frequencies, in a sample of young students. In contrast to other studies, the focus was not on comparing different factors (e.g., representation format, task-complexity, numeracy) and their influence on Bayesian reasoning performances. In the present study the intention was to empirically prove that an activity-based and playful training can lead to better performances on Bayesian reasoning tasks. Our results show, that already this short intervention had a medium effect, that might be strengthened by a longer duration of the intervention. However, this expectation of a more substantial effect by a longer intervention should be empirically proven. Moreover, the used test instrument should be enlarged by more Bayesian reasoning tasks in order to get a more detailed insight into the effects of such a longer intervention.

Although this study confirmed that students can be fostered in their Bayesian reasoning by an activity-based and playful training it also raises issues for further research. For instance, we support the claim of research that focuses on the following questions: “What strategies are the participants pursuing when solving Bayesian reasoning problems? Which aids are helpful for recognizing the nested-sets structure?” (e.g., playing cards/modeling the subset-relationships via tinker cubes). With this demand we join the research desideratum of McDowell and Jacobs (2017) as well as Vallée-Tourangeau et al. (2015). This desideratum could be approached by qualitative studies in which students communicate their thoughts via interviews or open-ended questions when solving Bayesian reasoning problems.



Implication for Teaching Statistics in Primary and Secondary School

What are the consequences for teaching probability and statistics (in primary school)? Should we refrain from working with percentages and use only natural frequencies from now on? Of course not. In primary school where fractions and percentages are not available yet, natural frequencies seem to be a suitable way to quantify probabilities at an early stage. In this perspective, our study shows that it is possible to teach already primary school students in Bayesian reasoning when using natural frequencies. We consider such early and playful experiences with Bayesian reasoning as important in order to establish a basis for more abstract contexts (e.g., the formal calculation of probabilities in general or the Bayes‘ theorem). Although our study shows that the early fostering of Bayesian reasoning can be successful, we see two obstacles for its implementation at school: First, time is limited and therefore teachers might put more emphasis, e.g., on arithmetic skills than on statistics. Second, in German primary schools, a considerable number of teachers did not study Mathematics as a main subject. Particularly these teachers cannot draw on solid prerequisites to teach Bayesian reasoning. Developing and implementing primary school teacher trainings could help to overcome both of these obstacles. In particular, teachers here could learn about the importance and benefit of using natural frequencies in primary and secondary school: They allow the quantification of probabilities without using fractions and percentages. Furthermore, they also contribute to strengthen the concept of ratios and fractions at an early stage. Additionally and as our study shows, teachers can use them to introduce Bayesian reasoning at an early stage. For this purpose, also hands-on activities such as using the described tinker cubes can be introduced what illustrates the playful character and the appropriateness of a teaching unit based on the ideas of our intervention for young students. Such teacher trainings might at least lead to overcome the prejudice that statistics and Bayesian reasoning are per se too difficult for primary school. In a longterm perspective, such teacher trainings and implementations of Bayesian reasoning in primary school might have the potential to increase the number of people making reasonable decisions under uncertainty. We are absolutely convinced that enhancing good decisions under uncertainty goes along with an appropriate statistics education at school.



Limitations

Even though the intervention had an effect on the students' understanding of conditional probabilities and Bayesian problems, there are some limitations that relate to the design of the study. First, students who participated in a training were compared to students who had no training at all (baseline control group). Although no different treatments were tested against each other, comparing the treatment group to a baseline control group appears to be appropriate in order to evaluate the effectiveness of new ideas and learning approaches. Second, in this study, the classes were not assigned randomly to the different test conditions. This is caused by the fact that in Germany, school interventions hinge on the willingness of the teachers. Some teachers wanted their class to be part of the intervention. Others only wanted to be part of the control group. In order not to refuse participation in this study to any of the teachers, their corresponding requests were satisfied. Therefore, and as we consider a large number of students in the treatment group as more important than in the control group, their ratio is not perfectly balanced. In order to account for the different pretest scores in the treatment and control group, this variable was controlled for in the multiple regression analysis. A multilevel analysis due to the hierarchical structured sample (classes/schools) has not been carried out as the sample of this study was not large enough. Further studies with bigger samples could take into account this hierarchical structure.
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A diagnostic judgment of a teacher can be seen as an inference from manifest observable evidence on a student’s behavior to his or her latent traits. This can be described by a Bayesian model of inference: The teacher starts from a set of assumptions on the student (hypotheses), with subjective probabilities for each hypothesis (priors). Subsequently, he or she uses observed evidence (students’ responses to tasks) and knowledge on conditional probabilities of this evidence (likelihoods) to revise these assumptions. Many systematic deviations from this model (biases, e.g., base-rate neglect, inverse fallacy) are reported in the literature on Bayesian reasoning. In a teacher’s situation, the information (hypotheses, priors, likelihoods) is usually not explicitly represented numerically (as in most research on Bayesian reasoning) but only by qualitative estimations in the mind of the teacher. In our study, we ask to which extent individuals (approximately) apply a rational Bayesian strategy or resort to other biased strategies of processing information for their diagnostic judgments. We explicitly pose this question with respect to nonnumerical settings. To investigate this question, we developed a scenario that visually displays all relevant information (hypotheses, priors, likelihoods) in a graphically displayed hypothesis space (called “hypothegon”)–without recurring to numerical representations or mathematical procedures. Forty-two preservice teachers were asked to judge the plausibility of different misconceptions of six students based on their responses to decimal comparison tasks (e.g., 3.39 > 3.4). Applying a Bayesian classification procedure, we identified three updating strategies: a Bayesian update strategy (BUS, processing all probabilities), a combined evidence strategy (CES, ignoring the prior probabilities but including all likelihoods), and a single evidence strategy (SES, only using the likelihood of the most probable hypothesis). In study 1, an instruction on the relevance of using all probabilities (priors and likelihoods) only weakly increased the processing of more information. In study 2, we found strong evidence that a visual explication of the prior–likelihood interaction led to an increase in processing the interaction of all relevant information. These results show that the phenomena found in general research on Bayesian reasoning in numerical settings extend to diagnostic judgments in nonnumerical settings.

Keywords: Bayesian reasoning strategies, information processing, judgment under uncertainty, teachers’ diagnostic judgment, visualization of Bayesian update


INTRODUCTION

Judgments on other people’s knowledge, even when based on accurate knowledge and sound evidence, are uncertain and fallible (Nickerson, 1999). For example, when teachers assess students’ abilities, their diagnostic judgments are based on evidence available in a concrete situation (e.g., the student’s solution on a task) and on their prior knowledge on the student’s abilities. Generally, teachers’ judgments are framed by their theoretical knowledge (e.g., pedagogical content knowledge about typical misconceptions) (Schrader, 2009; Herppich et al., 2018; Loibl et al., 2020).

Often, such diagnostic judgments are investigated with respect to their accuracy and their dependence on personal and situational characteristics (for a meta-analysis, see Südkamp et al., 2012). Less often to be found is research on the cognitive processes underlying the diagnostic judgments of teachers (e.g., Glock and Krolak-Schwerdt, 2014; Pit-ten Cate et al., 2016). For many years, diagnostic judgments of clinicians have been investigated with a focus on cognition, e.g., within the heuristics-and-bias paradigm (cf. Round, 2001; Gill et al., 2005; Croskerry, 2009) and with respect to Bayesian reasoning (Edwards, 1968; Gigerenzer and Hoffrage, 1995; Griffiths et al., 2008).

A diagnostic judgment of a teacher can be seen as an inference from manifest observable evidence on a student’s behavior to his or her thinking or latent traits. Usually, such an inference is inherently uncertain. Hence, the result of a diagnostic judgment is rather a set of hypotheses about the observed student with varying plausibility than an unequivocal classification of the student. For example, a student may give a wrong answer when asked to compare two decimals – e.g., stating that 4.8 < 4.63 – because he or she treats the fractional parts of decimal numbers as natural numbers (8 < 63). Many students do so consistently (Moloney and Stacey, 1997) with a high probability. However, an uncertainty remains, since even students with this misconception may occasionally solve a task correctly. In addition, students with other misconceptions may give the same wrong answer (e.g., by ignoring the decimal point: 48 < 463), and even those students who do understand decimals well may occasionally (i.e., with a low probability) give a wrong answer. Therefore, the inference from the observed behavior to an underlying cognition is uncertain, even though the students’ cognitions are well known, as is the case for comparing decimals.

From the perspective of the accuracy of teachers’ judgments, these uncertainties can be interpreted as reduced diagnosticity either due to imperfect specificity or sensitivity of the tasks or due to inadequate knowledge or reasoning of the teachers. As a consequence, one would strive to optimize the tasks or to train the teachers. However, from the perspective of the cognitive processes underlying the judgment, one may probe deeper into the teachers’ thinking and ask how teachers incorporate such uncertainties in their judgments.

A prominent approach that describes judgments under conditions of uncertainty is the Bayesian model of inference (Edwards, 1968; Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996; Griffiths et al., 2008): An initial uncertainty is modeled as a set of assumptions (hypotheses) about a situation, with subjective probabilities for each hypothesis (often called “priors” or “base rates”). Subsequently, observed data (i.e., “evidence”) is used to update these probability assumptions – provided one knows the plausibility of the evidence, expressed by its conditional probabilities (also called “likelihoods”).

The ideal probabilistic model for this “updating process” is given by formal Bayesian reasoning. The Bayes’ formula can be used to describe, by means of probability calculus, how the probabilities of hypotheses change when evidence is produced:

[image: image]

Many researchers argue that people are capable of intuitively applying the Bayesian update strategy, represented numerically by this formula, when they make judgments under conditions of uncertainty (e.g., Martins, 2006; Zhu and Gigerenzer, 2006; Girotto and Gonzales, 2008). However, there is also much evidence for systematic deviation from this model. Some of the most often reported biases relate to disregarding the prior distribution (base-rate neglect, Kahneman and Tversky, 1996, p. 584) by only considering the likelihoods proportionally: P(Hi|E)∝P(E|Hi) – in an extreme form even mistaking one conditional probability for the other: P(Hi|E) = P(E|Hi) (inverse fallacy, Villejoubert and Mandel, 2002). Another biased strategy would be to assume wrong base rates for the hypotheses P(Hi), for example an anchoring bias caused by an expert blind spot, i.e., experts’ tend to overestimate the knowledge of novices (Nathan and Koedinger, 2000). We use the term Bayesian (update) strategy only for the (approximative) application of the Bayes’ rule above. However, it might be sensible to apply a broader understanding of Bayesian reasoning (Baratgin and Politzer, 2010; Mandel, 2014; see section “Discussion”).

In the context of diagnostic judgments of teachers, the diagnostic situation is structurally analogous to the judgment situations indicated in the literature above, which does not refer to teachers: A teacher’s prior assumptions (hypotheses) on a students’ latent trait (e.g., a decimal-comparison misconception) relies on his or her estimation of the typical prevalence (base rates) of these misconceptions. A student’s behavior or response to a task (manifest data, evidence) can be used to revise these assumptions (by updating the prior hypotheses).

The structure of this updating process in the context of teachers’ diagnostic judgment on student knowledge is displayed in Figure 1: In order to update the probabilities of the hypotheses [from P(Hi) to P(Hi|E)], the teacher processes his or her diagnostic knowledge (i.e., prior probabilities and conditional probabilities) as well as the information provided in the diagnostic situation (i.e., the evidence). Uncertainty plays a major role in this updating process: Students do not respond consistently (cf. conditional probabilities), and different student knowledge may lead to same responses (ambiguity/limited diagnosticity).
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FIGURE 1. The structure of teacher’s diagnostic judgment based on knowledge, evidence, and information processing and the role of uncertainty.


However, a teacher’s situation also differs from the situation typically encountered in research on Bayesian reasoning, since these pieces of knowledge and information are usually not explicitly represented by numbers but only by qualitative and subjective estimations in the mind of the teacher. Any assumed process of Bayesian reasoning therefore also relies on processing such information in a qualitative, nonnumerical way.

Against this background, we ask to which extent individuals, who are asked for a diagnostic judgment in a situation as described here, are able to (approximately) apply a rational Bayesian strategy or resort to other “biased” strategies of processing information for their diagnostic judgments. We explicitly pose this question with respect to nonnumerical settings, bearing in mind that Bayesian and other types of reasoning are already researched and reported extensively for numerical settings.

To systematically investigate this question, we develop a rich scenario of diagnostic judgment (three possible hypotheses, diagnostic tasks with limited reliability, and diagnosticity) that is displayed in an optimized way for accessing all relevant information (prior probabilities, conditional probabilities, updating procedure) in a qualitative way, without recurring to numerical representations or mathematical procedures (as, e.g., systematically investigated in Hoffrage et al., 2015).



THEORETICAL BACKGROUND


Teachers’ Diagnostic Judgments Under Uncertainty – Through the Lens of Bayesian Reasoning

Identifying learners’ misconceptions is one key task of teachers in order to address these misconceptions adequately in teaching (Weinert et al., 1990). However, such diagnostic judgments are far from straightforward and – like many types of human judgment – characterized by uncertainty (Tversky and Kahneman, 1974; Kozyreva and Hertwig, 2019; Mandel et al., 2019). As described earlier, students with different misconceptions can show the same behavior (i.e., give an identical answer to a task) – either because the task cannot distinguish between several misconceptions or because the students do not respond consistently. Both phenomena are sources of uncertainty for teachers’ diagnostic judgments. In order to judge in a rational way, teachers have to apply effective strategies to deal with the diverse uncertainties. When doing so, teachers usually do not resort to numerical or mathematical procedures of probability calculus but take into account their knowledge (gained by experience or based on literature) on the assumed relative probabilities of the misconceptions and the expected (in)consistency of students’ answers in a qualitative, nonnumerical manner. In other words, they may engage in Bayesian reasoning without applying the explicit Bayesian formula (cf. Martins, 2006). Although the literature on Bayesian reasoning in many different contexts abounds, all studies rely on numerical representation and calculation of some sort, and no research relates to the situation of teachers’ diagnostic judgments as depicted in Figure 1. Still, the literature on Bayesian reasoning provides many insights into various strategies and biases in Bayesian reasoning and viable support structures to influence these strategies systematically, as outlined in the following.

There is evidence that humans are capable of utilizing Bayesian update strategies when making judgments under uncertainty (Martins, 2006; Girotto and Gonzales, 2008). Even children are able to do so, at least if the information is provided in natural frequencies instead of probabilities (Zhu and Gigerenzer, 2006; Pighin et al., 2017). However, as indicated above, children and adults also often fail to apply the Bayesian update strategy (e.g., Gigerenzer and Hoffrage, 1995; Weber et al., 2018). Instead, they consistently process only a part of the relevant information, resulting in reasoning strategies that deviate from optimal Bayesian reasoning (e.g., Gigerenzer and Hoffrage, 1995; Zhu and Gigerenzer, 2006; Cohen and Staub, 2015).

There is some discussion whether it is appropriate to consider these strategies defective (using the term “biased”) or whether they may be effective in certain situations (ecological rationality: Simon, 1955; Gigerenzer and Hoffrage, 1995). However, this discussion is not relevant for our investigation, since we do not address the questions of effectiveness (i.e., ecological validity) of the strategies under investigation.

Against this background, two questions and the respective lines of research (although not conducted specifically for the case of teachers’ diagnostic judgments) are of relevance for our research interest:

(1) Which (biased) strategies of processing (nonnumerical) information do individuals apply, when not following a Bayesian update strategy?

(2) How can individuals be supported in (approximatively) applying an Bayesian update strategy?


Biased Strategies of Processing Information for Updating Judgments

One of the most familiar and often studied judgment situations refers to a medical test of an illness with given prevalence [i.e., base rate P(H)], a given sensitivity [i.e., positive-when-true rate, likelihood P(E|H)] and a given specificity [i.e., negative-when-false rate P(¬E|¬H)] (e.g., Gigerenzer and Hoffrage, 1995). In such a situation, the probability that a person, selected at random, who receives a positive test result actually has the disease P(H|E) can be calculated according to the Bayes rule. The posterior probability P(H|E) is the rational choice for the judgment on the patient’s state given the evidence of the test. Since the base rate is low in most medical diagnostic test situations, the Bayes rule leads to a much lower posterior probability estimations than most individuals typically estimate (ibid.), even when strongly supported (Weber et al., 2018). Indeed, research has shown that humans often do not apply the Bayes rule, resulting in biased judgments, where the most often reported biases in judgment updating relate to disregarding the prior distribution (base-rate neglect, Kahneman and Tversky, 1996, S. 584).

In a systematic analysis on the types of update strategies in the context of Bayes reasoning tasks (i.e., tasks with a similar structure to the prototype described above), Cohen and Staub (2015) showed that most participants’ judgment strategies amount to not making use of all sources of information (prior probabilities of hypotheses and likelihoods of evidence under each hypothesis), leading to biased update strategies. They further provided evidence that most participants seem to estimate the posterior probability based on only one of the multiple provided probabilities or by computing a weighted sum of several, but not all probabilities. In their studies, the most frequently used pieces of information were the likelihood of the evidence (i.e., positive-when-true rate) and the likelihoods of the evidence under the other hypotheses (i.e., positive-when-false rate).

The findings of Cohen and Staub (2015) rely on an analysis of intraindividual consistency in strategy use. Thereby, they substantiate the earlier classification of interindividual differences in strategies by Zhu and Gigerenzer (2006): In their studies with fourth to sixth graders and adults, they also found strategies focusing on one probability. Subjects either considered only the priors P(H) (called conservatism, Edwards, 1968; or base rate only, Gigerenzer and Hoffrage, 1995) or only the likelihood of the evidence at hand P(E|H) (called representative thinking or Fisherian, Gigerenzer and Hoffrage, 1995; inverse fallacy, Villejoubert and Mandel, 2002). In their studies, no one used the joint occurrence of the evidence (P(E|H)⋅P(H) = P(E∧H)), a strategy found by Gigerenzer and Hoffrage (1995). Subjects who actually computed a weighted sum focused only on the evidence [e.g., P(E|H)/ΣP(E|Hi)], called evidence only (Zhu and Gigerenzer, 2006). These subjects took the likelihoods of the evidence under all hypotheses into account (i.e., true and false positive rate) but disregarded the base rate. Thus, this strategy can also be considered a type of base-rate neglect (Tversky and Kahneman, 1974; Bar-Hillel, 1983). Gigerenzer and Hoffrage (1995) found another similar strategy (likelihood subtraction), in which subjects take into account more than a single likelihood in their computation in a subtractive fashion and ignore the base rate [P(E|H)−P(¬E|¬H)]. Zhu and Gigerenzer (2006) found an additional strategy, not reported elsewhere, which they called “Pre-Bayes.” It corresponds to taking the correct denominator but focusing on the positive-when-true rate as numerator. While the children in their study frequently used this strategy, it may have been triggered by the presentation of the Bayes problems with natural frequencies, which makes the positive-when-true rate salient. Table 1 provides an overview of the most common strategies. From the point of view of information processing, they can be categorized as prior-only strategies (POS), single evidence strategies (SES), combined evidence strategies (CES), and the Bayesian update strategy (BUS).


TABLE 1. Overview of most common update strategies.

[image: Table 1]The multitude of erroneous strategies appears to suggest that humans do not succeed well in situations of Bayesian reasoning, even when the situation is presented in an accessible way, using natural frequencies and visual representations (Weber et al., 2018). Nevertheless, Martins (2006) argued that humans do take uncertainties into account by revising their judgments based on new information in a way that resembles the rational Bayesian strategy. Similarly, Nickerson (1999) stated that the refinement of one’s knowledge on people relies on an ongoing adjustment process and is based on evidence that one collects. The facts that Bayesian reasoning has been identified at least for some situations, groups, and cases by prior research (e.g., Gigerenzer and Hoffrage, 1995; Zhu and Gigerenzer, 2006; Cohen and Staub, 2015) and that any form of reduction of numerical calculation and information saliency of presentation appears to be effective (see section “Supporting the Application of the Bayesian Update Strategy”) support the assumption that humans are, in principle, capable of intuitively applying the essence of the Bayes’ rule, depending on the situational conditions.

In a nutshell, the strategies differ in the amount and type of processed information. While research has shown individual differences with regard to the use of the available information (Cohen and Staub, 2015), the perception and processing of information also depend on the representation of the situation and the amount of support, which we will analyze in the next section.



Supporting the Application of the Bayesian Update Strategy

How individuals process the relevant information for Bayesian reasoning highly depends on the situation (cf. McDowell and Jacobs, 2017). During the last decades, research has investigated how to represent the information in a way that supports individuals in applying the Bayes update strategy. The common idea is to assist the individuals in gathering the relevant information and constructing an adequate structural mental model of the situation. The most prominent representation strategies that have been shown to be effective are (a) using natural frequencies instead of probabilities (cf. meta-analysis by McDowell and Jacobs, 2017) and (b) visualizations that increase the salience of the structure (e.g., Khan et al., 2015; Böcherer-Linder and Eichler, 2017).

Multiple studies have shown that people are better in solving Bayesian tasks that are represented with natural frequencies (also called natural sampling) than tasks that present the information in the form of probabilities (e.g., Zhu and Gigerenzer, 2006; Hill and Brase, 2012; for a meta-analysis, see McDowell and Jacobs, 2017). The Bayesian update strategy is computationally simpler if probabilities are represented as joint frequencies because the base rate is already contained in the joint frequencies, and, therefore, there is no need to additionally include the base rate in the calculation. However, this advantage is only relevant in settings with numerical representations and calculation demands. In addition to the reduced computational load, it has been argued that, in Bayesian tasks with natural frequencies, the information is given in the same chronological order in which information is naturally acquired (ecological rationality framework, Gigerenzer and Hoffrage, 1995). Moreover, the way the information is provided highlights the structure of the task (i.e., the nested-set relations, Sloman et al., 2003) and thereby facilitates the construction of an adequate situation model.

Another way to increase the salience of the structure of the situation (i.e., nested-set relation) is to provide adequate visualizations (for an overview, see Khan et al., 2015), such as tree diagrams (Yamagishi, 2003; Weber et al., 2018) or unit squares (Böcherer-Linder and Eichler, 2017; Pfannkuch and Budgett, 2017). Notably, visualizations increase the performance not only for tasks presented with probabilities but also for tasks presented with natural frequencies (McDowell and Jacobs, 2017), indicating an added value in additionally presenting the nested-set structure with visualizations. When comparing different visualizations, Böcherer-Linder and Eichler (2017) argue that the tree diagram reveals the nested-set relation only in a numerical way, whereas the unit square adds a geometrical, qualitative representation. This assumption receives support by the finding that the unit square supported the correct application of the Bayes’ rule more than the tree diagram. One can assume that such nonnumerical representations, which render saliency to relevant information (to overall structure and to the relative sizes) support Bayesian reasoning. However, so far, visualizations have only been provided in addition to the numerical values, not in isolation.

Another potential way of supporting the use of the available information would be to highlight the relevance of the information. In a different area of teachers’ diagnostic skills (noticing students’ beliefs), Zeeb et al. (2019) have shown that highlighting the relevance of integrating different types of knowledge (and giving an example) significantly improved the integrated used of different types of knowledge. It seems reasonable that such an instruction on the relevance of integration could also be beneficial in the context of judgment under uncertainty by fostering the use and integration of all available information.



Modeling Bayesian Reasoning in Nonnumerical Settings

In our study, the focus on teachers’ diagnostic judgments is accompanied by two central premises for the theoretical framing and the ensuing investigations.

As first premise, we recognize that the literature on Bayesian reasoning focuses – by always providing numerical information – on applying the Bayes rule by (more or less extensive) calculation. While the numerical information is often accompanied with graphical representation to visualize the structure of the situation (e.g., Böcherer-Linder and Eichler, 2017), no study solely relied on qualitative, nonnumerical information. However, in the context of teachers who update their judgments regarding their students’ misconceptions based on the students’ solution, the pieces of information are rather not represented by numbers but only by qualitative estimations, and thus, the process of Bayesian reasoning also relies on processing such information in a qualitative and approximative way.

As a second premise, we note that research explains the fact that humans often fail to apply the Bayesian update strategy appropriately on the basis that they often do not use (perceive and process) all relevant information and instead apply different biased strategies. While such strategies have been found in the context of numerical Bayesian reasoning, it seems reasonable to assume that similar strategies also appear in processing the available qualitative (i.e., nonnumerical) information in the context of judgments under uncertainty. More precisely, the following strategies (known from the literature on numerical Bayesian reasoning) can also be expected in nonnumerical settings, considered here:

(a) the rational (i.e., mathematically correct) BUS, that is, processing the conditional probabilities of a student’s solutions under all plausible hypotheses (likelihoods of evidence) and the prior probabilities of these hypotheses,

(b) a CES (cf. evidence only: Zhu and Gigerenzer, 2006; Likelihood subtraction: Gigerenzer and Hoffrage, 1995), that is, ignoring the prior probabilities, but combining the data likelihoods regarding all hypotheses (by considering a normalized, relative size),

(c) a SES (cf. representative thinking: Zhu and Gigerenzer, 2006; Fisherian: Gigerenzer and Hoffrage, 1995; inverse fallacy: Villejoubert and Mandel, 2002), that is, only considering the data likelihood regarding the most probable hypothesis (i.e., ignoring both the data likelihoods regarding the alternative (less likely) hypotheses and the prior probabilities).

However, a POS (cf. conservatism: Edwards, 1968; Zhu and Gigerenzer, 2006; base rate only: Gigerenzer and Hoffrage, 1995), that is, not updating the judgment at all, seems less likely as teachers generally focus on and react to their students’ responses and, thereby, naturally process the evidence.

Since we are interested in the use of information rather than the mere perception, we aim at constructing a situation in which all information necessary for the individual to generate a judgment is available and maximally salient. We then investigate whether individuals under these circumstances actually perform judgments that resemble Bayesian reasoning. To specify a scenario for our investigation, we first describe the types of hypotheses and evidence on students that we restrict our investigation to (see section “Decimal Strategies and their Diagnostics”) and then specify the environment (diagnostic situation) which frames the judgments processes of the participants (see section “A Computer-Based Setting for Nonnumerical Diagnostic Strategies”).



Decimal Strategies and Their Diagnostics

In order to investigate the expected updating strategies described above in a single coherent framework of teachers’ diagnostic strategies, we use the case of diagnostic judgment on students’ decimal comparison misconceptions, since in this area, a theory on students’ (mis)conceptions is empirically well founded (e.g., Moloney and Stacey, 1997).

Although these misconceptions are sometimes called strategies, in the following, we prefer using the term misconceptions to reduce confusion with the strategies applied by teachers during the diagnostic judgment process.

The three most prevalent decimal-comparing misconceptions are shown in Table 2. The table also presents examples for the most frequent types of diagnostic tasks to detect the misconceptions.


TABLE 2. Common misconceptions when comparing decimal fractions (cf. Moloney and Stacey, 1997).
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A Computer-Based Setting for Nonnumerical Diagnostic Strategies

In section “Teachers’ Diagnostic Judgments Under Uncertainty – Through the Lens of Bayesian Reasoning,” we obtained an overview on Bayesian judgment in order to generate plausible assumptions on teachers’ information processing strategies during diagnostic judgments. In section “Decimal Strategies and Their Diagnostics,” we analyzed a content area (comparing decimals) in order to define a research-based knowledge base on students’ misconceptions, diagnostic tasks, and the uncertainties connected to this topic, initially independently from the teacher using this knowledge.

In order to investigate the genesis of diagnostic judgments (a) under the condition of uncertainty and (b) in a nonnumerical setting, we use this theoretical basis to follow the research strategy of the DiaCoM framework (Loibl et al., 2020), which was designed to generally structure research on diagnostic judgment processes. Its components are the following: (1) specification and systematic variation of the diagnostic situation with regard to perceptible information (here: evidence on students’ solutions to given tasks), (2) specification of relevant diagnostic knowledge (here: prior probabilities and conditional probabilities), (3) specification of diagnostic thinking as cognitive processing of information and knowledge (here: the use of information during Bayesian or non-Bayesian updating), and (4) operationalization of diagnostic judgment (here: posterior probabilities) and prediction of this judgment.

(1) Specification of the Diagnostic Situation

Identifying students’ misconceptions is one key task of teachers in order to address these misconceptions adequately. However, these judgments regarding students’ misconceptions often are not straightforward. As described earlier, students with different misconceptions can come to the very same answer – either because the task cannot distinguish between several misconceptions or because the students do not follow their erroneous strategy with complete consistency. Both factors lead to judgments under uncertainty.

In our study, the students’ misconception space is restricted to the three most frequent decimal comparing misconceptions as described above (see section “Decimal Strategies and their Diagnostics”). This restriction also implies that we do not include students who fully understand decimals and therefore solve all comparison tasks correctly (most of the time). Thus, a teacher in our study assumes to encounter a student who pertains to one of three mutually exclusive misconception groups. This defines the set of three hypotheses (WN, ID, and SL) for the diagnostic judgment.

A piece of evidence that a teacher encounters in our study consists of a student’s response to one of the three diagnostic tasks as presented in Table 3. Each task is assumed to have a sensitivity of 80% throughout all cases. We keep this feature of the diagnostic tasks constant because, in this study, we are not interested in the influence of variation in sensitivity but in the use or disregard of information on evidence in general. Furthermore, assuming the same sensitivity for all tasks reduces the amount of diagnostic information that has to be processed.


TABLE 3. Pattern of most likely response (evidence E) of each task under the condition of a student’s misconception (hypothesis H).

[image: Table 3]A feature that typically arises in diagnostic judgments is the phenomenon that the tasks do not detect students’ misconceptions unambiguously – a situation that has been only rarely addressed in research on Bayesian reasoning. The resulting pattern in the set of evidences (three task types with two responses depending on three misconceptions) used in this study is presented in Table 3. It results from the combination of the (erroneous) mathematical student reasoning pertaining to each misconception and the mathematical structure of the numbers in the task. An in-depth analysis of all conceivable task types to induce erroneous results and detect misconceptions (i.e., varying length of the part before and after comma, position of zeroes, especially leading and trailing zeroes) showed that the task types chosen here are most straightforward to allow diagnosing the misconceptions. Another task type, not used here, would be, e.g., 3.95 > 3.76, which would not allow to differentiate between any two of the misconceptions.

The evidence presented in a single diagnostic situation comprises a diagnostic task and a student’s response, one at a time. To each teacher, several cases of different students are presented in a row.

(2) Specification of Diagnostic Knowledge

In order to achieve adequate judgments (probabilities for possible hypotheses), an individual has to take into account diagnostic knowledge on different probabilities: the prior probabilities for the different misconceptions as well as the likelihoods for each misconception given certain evidence. Figure 2 illustrates how this information can be displayed graphically in a distinct and comprehensive manner.


[image: image]

FIGURE 2. Hypothegon representing a ternary hypothesis space, a judgment as a position in this space, and the evidence likelihoods (conditional probabilities) of the response. In order to make a judgment (posterior), one can drag the point to a new position.


• The three hypotheses (WN, DL, SL) are represented as vertices spanning a planar equilateral triangle (see Figure 3).


[image: image]

FIGURE 3. Hypothegon (left hand side) and visualization of update strategies (right hand side).


• The interior and boundary of this triangle comprises all possible distributions of three probabilities: (p1, p2, p3) with p1 + p2 + p3 = 1, and thus constitutes a ternary hypothesis space (or for short “hypothegon”).1 A location at a vertex indicates the certainty of the hypothesis (e.g., p1 = 1); the center point represents a uniform distribution (p1 = p2 = p3 = 1/3).

• The prior distribution is represented twofold: with the position of the “prior point,” the prior distribution and by the length of three bars, pointing to the respective hypotheses. Figure 2 shows the position and bar diagram for a prior probability (base rate) of 60, 30, and 10% of the three misconceptions.

• The likelihoods of the two possible responses (right/wrong) to a given task are represented qualitatively as stacked bars at the corners of the hypothegon. For example, the task 4.8 > 4.63 is responded correctly. The likelihood of a correct response by a student with misconception WN is 20%, same as by a student with misconception ID. The likelihood of a correct response by a student with misconception SL is 80%.

To be able to process the given information, teachers require knowledge on the misconceptions (cf. see section “Decimal Strategies and Their Diagnostics”), and they have to understand the meaning of the probabilities involved (cf. see section “Teachers’ Diagnostic Judgments Under Uncertainty – Through the Lens of Bayesian Reasoning” and Specification of the Diagnostic Situation). Both types of knowledge can be manipulated by instruction. Furthermore, teachers have to pay attention to all information given. As indicated in section “Supporting the Application of the Bayesian Update Strategy,” this attention can be manipulated by the representation of the information (especially the nested-set relation) or by relevance instruction.

(3) Operationalization of Observable Diagnostic Judgment

In the same manner in which the prior probabilities for hypotheses are located in the hypothegon, also the updated hypotheses, i.e., the posterior probabilities, can be represented as locus within the hypothegon, and the updating process amounts to moving the point to a new position. The new locus of the point represents the qualitative estimation of the posterior probabilities. In this way, the updating procedure can be executed in an intuitive manner: moving closer towards a hypothesis expresses a strengthened belief, positioning the point between two hypotheses expresses (subjective) ambiguity (see Figure 2).

(4) Specification of Diagnostic Thinking

With diagnostic thinking, Loibl et al. (2020) refer to the assumed processing of information. As summarized in section “Modeling Bayesian Reasoning in Nonnumerical Settings,” we assume that teachers process all or only part of the information given (i.e., evidence, prior probabilities, and/or likelihoods), corresponding to the update strategies discussed in section “Teachers’ Diagnostic Judgments Under Uncertainty – Through the Lens of Bayesian Reasoning.” Although teachers are not assumed to mathematically calculate the posterior probabilities, the four update strategies can still be presented by formulas. The formulas as well as the results of the three update strategies for the example given above are displayed at the right side of Figure 3. The fourth strategy (prior only) is excluded from our analysis, since it would be realized by not moving the point – which is an improbable behavior under the circumstances of the study. The green dots in the triangle in Figure 3 correspond to the locus of the point for the posterior probabilities, when teachers judge according to one of the three strategies:

(a) They may only process the likelihood of the hypothesis with the highest likelihood (SES). In the example, this is SL with a likelihood of 80%. When no further information is processed, this likelihood is taken as probability of the hypothesis. We assume that the remaining probability of 20% is (possibly implicitly) distributed over the remaining hypotheses. This strategy leads to the locus of the smallest green dot.

(b) They may process and balance the likelihoods of all three hypotheses (CES), i.e., they consider the following values: WN 20%, ID 20%, and SL 80%. The relative sizes (i.e., normalized to give a sum of 1) are taken as probabilities of the hypotheses. This would result in WN 17%, ID 17%, and SL 67%. These posterior probabilities are represented by the locus of the middle green dot.

(c) They may process all relevant information following the Bayes’ rule (BUS), which leads to the following posterior probabilities: WN 46%, ID 23%, and SL 31%, represented by the locus of the biggest green dot.



RESEARCH QUESTIONS

When people update their hypotheses based on uncertain evidence (e.g., teachers’ updating their assumptions based on students’ solutions), they may only have access to nonnumerical information. When only part of the information on relevant probabilities is processed, this may result in updating strategies different from Bayesian reasoning. We investigate the following research question (RQ1):

Can common types of updating strategies known from numerical settings also be detected in a nonnumerical setting?

H1: We hypothesize that the following strategies are identifiable within the nonnumerical setting described above:

• a Bayesian update strategy (BUS), that is, processing all probabilities (priors and likelihoods),

• a combined evidence strategy (CES), that is, ignoring the prior probabilities (also known as base rate neglect), but taking into account the likelihoods of the evidence under all hypotheses,

• a single evidence strategy (SES), that is, ignoring the prior probabilities (base-rate neglect) and only using the likelihood of the most probable hypothesis (also known as inverse fallacy).

In our setting, the nonnumerical information on the probabilities relevant for Bayesian reasoning is represented in a salient manner. However, the existence of non-Bayesian updating strategies within this setting (as commonly found in other settings, see above) suggests that not all individuals use all of this information. In numerical settings, this can be influenced by means of instruction or representation. Therefore, we investigate the following research question (RQ2):

Does instruction on the relevance of using all probabilities (priors and likelihoods) increases the processing of more information represented in the nonnumerical setting?

H2: We hypothesize that the instruction increases the individuals’ processing of information, leading to an increase in the BUS and a decrease in the SES.



METHODS


Participants

The 26 preservice teachers who participated in the study all completed their bachelor in teaching mathematics and took courses in a master program on teaching mathematics at the time of the study. Participants were randomly assigned to two conditions: one condition with a salient presentation of priors and likelihoods (“control condition”) and one condition with an additional instruction on the relevance of priors and likelihoods (“relevance instruction condition”, see section “Influence of instruction (RQ2)”]. With these conditions, we aim to increase the variance of the different strategies in order to identify strategy types (RQ1) and to test our assumptions regarding the processing of information (RQ2). The descriptive statistics of the participants are presented in Table 4.


TABLE 4. Descriptive statistics of participants of study 1 and study 2 [means (SD)].

[image: Table 4]


Generating Evidence on Updating Strategies (RQ1) – The Nonnumerical Setting

In our study, the investigation of Bayesian reasoning in nonnumerical settings is framed by a scenario of diagnostic judgment as described in section “A Computer-Based Setting for Nonnumerical Diagnostic Strategies.” It is a complex judgment situation with

• three possible hypotheses (on students’ misconceptions),

• two possible outcomes (right/wrong responses),

• three task types with limited diagnosticity.

All relevant pieces of information (prior probabilities, conditional probabilities, updating procedure) are represented graphically and qualitatively, i.e., without numerical representations or formulas, within the hypothegon on a computer screen (Figure 3). Thus, the updating of an initial judgment does not rely on mathematical procedures. As preservice teachers are not assumed to be familiar with this representation, they first received an oral step-by-step instruction (about 20 min) that included showing the different features of the diagnostic environment. The instruction provided information about the misconceptions and the diagnostic tasks (including the sensitivity) and explained the meanings of the hypothegon, i.e., the triangle, the bar charts, and the positions of the judgment point. We also informed that we did not include students who fully understand decimals and solve comparison tasks correctly. A comprehension test with three items tested the understanding of the representation.

After the instruction, the participants had to judge 12 cases by moving the point and thus updating the probabilities for the three hypotheses. Each case represented a student (by a gender-neutral name), a task and the students’ response (with a reminder if the response was right or wrong). The prior probabilities were set to 60% for WN, 30% for ID, and 10% for SL in all cases for two reasons: First, these percentages fit to the frequencies found in studies with different age groups (see section “Decimal Strategies and Their Diagnostics”). Second, these percentages allow to differentiate between different update strategies.

As our pilot studies showed that participants need several cases to get used to the representation and stabilize their updating strategy, we implemented two analogous sequences of six task-response combinations and only analyzed the updating strategy of the second sequence. The cases were balanced with respect to the pattern of misconception–task–response combination (see Table 5): Three task responses had a high likelihood only for one misconception; three task responses had high likelihoods for two misconceptions.


TABLE 5. Description of the six analyzed cases in the order of the presentation.

[image: Table 5]


Updating Strategies (RQ1) – A Bayesian Classification Approach

In order to assess and compare the subjects’ use of update strategies, we constructed cases with values for the probabilities (priors and likelihoods) that allow for distinguishing the subjects’ diagnostic thinking (i.e., use of information, update strategy) by evaluating the evidence on their diagnostic judgment behavior (i.e., choice of posterior probabilities via location in the hypothegon).

The judgment of a subject, represented by his or her choice of position (Figure 4, left hand side) may, in some cases, be attributed unambiguously to one update strategy but may, in other cases, be consistent with more than one update strategy (Figure 4, right hand side).


[image: image]

FIGURE 4. Calculated positions of the exact strategies Bayesian update strategy (BUS), combined evidence strategy (CES), single evidence strategy (SES), and a teachers’ actual judgment J for two task–response configurations. The circles define areas of similar likelihoods in 10% percentile steps. On the left hand side, judgment J has highest likelihood for BUS; on the right hand side, it can be regarded as evidence for SES, but also for CES and less for BUS.


In order to account for this uncertainty in interpreting a subject’s judgment, we used an analysis based on a Bayesian classification approach: We assume that each subject had a consistent update strategy and model our knowledge on the subject’s strategy by a set of probabilities:

[image: image]

We then account for the fact that subjects only approximately determine their updated posterior in the qualitative approach, by attributing to the evidence [image: image] (i.e., the subjects’ chosen locus of a judgment) the likelihood [image: image] under the condition of him or her having a strategy (e.g., BUS) with the following Gaussian distribution

[image: image]

[image: image] is represented by the probability vector belonging to the location of the actual judgment and [image: image] by the probability vector belonging to the location when applying the BUS. Using this model to update the probability of the hypotheses pi [image: image], pi [image: image], and pi [image: image] on each subject with the evidence [image: image] from the cases j = 1…6 as described above, we define a naive Bayesian classification procedure (Duda et al., 2012). This approach has proven valid also in many cases with dependencies between the likelihoods (Domingos and Pazzani, 1997).

The normalization factor N of this probability density need not be calculated, since it cancels out when we evaluate ratios of probabilities. The parameter d represents the radius within the probability density decreases to [image: image]≈ 37% from its maximum. We chose d = 0.1 as a value that allows for an efficient distinction and reflects the imprecision of approximative nonnumerical judgments. For the numerical analysis of the data, we used a discrete approximation on 1,250 points in a hexagonal lattice within the hypothegon.3

Figure 4 illustrates the probability distribution for two cases and demonstrates how the Bayesian classification approach accounts for the fact that evidence can be considered to support more than one hypothesis on the subjects’ strategies.

When a subject judges consistently by applying one strategy in all six cases, e.g., BUS, the evidence should lead to a considerable increase in the respective posterior probability for this strategy

[image: image]

and a decrease in the posterior probabilities for the other strategies. The classification of the subject i as having strategy BUS vs. CES vs. SES is then supported by the amount of change in the probability ratios. These changes of probability based on evidence are typically expressed by Bayes factors. In the present analysis, there are six possible ratios of two hypothesis, of which two are independent. BFBUS:CES(i), for example, is defined by

[image: image]

To substantiate the classification decision for each subject, we recur to (a) the ratio of the dominant hypothesis to the subsequent one, e.g., BFBUS:CES(i) = 100:1 and (b) the highest posterior probability, when assuming equally distributed priors, e.g., [image: image] [image: image] = 99.9%.



Influence of Instruction (RQ2)

To test our hypotheses with regard to research question 2, we designed a relevance instruction. Participants were randomly assigned to one of two conditions. Participants in the control condition did not receive further instruction and proceeded as described above. Participants in the relevance instruction condition received verbal explanations on how to incorporate all relevant information in the update following the Bayesian update strategy (without explicit reference to Bayes):

Use all the information given to you by the different bars. This works best in the following way: First, note the probabilities for the three misconceptions. Most students have the WN misconception; very few have the SL misconception. Second, look at how well each of the three misconceptions fit to the student’s response: If a student solves the problem 4.8 > 4.63 correctly, SL fits because these students are likely to solve the task correctly. Thus, the SL misconception becomes more likely. However, that does not rule out the other misconceptions: For instance, the WN misconception does not fit. Nevertheless, it is possible that the student has the WN misconception but does not answer consistently. This is quite likely because, in general, it is highly probable that a student has the WN misconception. Thus, you should consider the probabilities for the misconceptions again. (1) First, look at all the probabilities for the misconceptions. (2) Then, lock at the misconceptions that fit to the response, which ones are more likely. (3) Then, also look at the misconceptions that do not to the response, which ones are still probable [(1)–(3) was also repeated as reminder].

The instruction did not include an example of the procedure in order to avoid superficial copying of the updating strategy. In both conditions, there was a short reminder to use all information (control condition) and to remember the instruction (relevance instruction condition) just before the last six cases (i.e., before the cases chosen for the analysis).

Differences in the distribution of the three update strategies between the conditions are analyzed using a Bayesian contingency tables test (with a joint multinomial model) (Gunel and Dickey, 1974).



RESULTS


Distribution of Strategies (RQ1)

The evaluation of the judgments according to the Bayesian classification approach described in section “Generating Evidence on Updating Strategies (RQ1) – The Nonnumerical Setting” resulted in a set of parameters for each participant, which allow for a classification decision:

(a) The Bayes factor BFBUS:CES(i) indicates the increase of the likelihood of one classification over the other (here, BUS over CES). Here, we focus for each subject on the ratio of the dominant hypothesis to the subsequent one, e.g., BF1:2(i) = 100:1.

(b) The posterior probabilities [image: image][image: image], [image: image] [image: image], and [image: image][image: image] describe the certainty of the classification under the assumption of equal priors. For example, [image: image] = 99.9% can be regarded as a 99.9% certainty of explaining a participants’ judgments by the Bayesian update strategy.

The certainty for the classification [described by both, BF1:2(i) and [image: image]] of the 26 participants to one of the three assumed types of updating strategy (BUS, CES, and SES) is listed in Table 6. We indeed identified the assumed types of updating strategies known from numerical settings in our nonnumerical setting (cf. H1), with most participants classified as following either CES or SES. Only four participants were classified as using the BUS. Notably, all of these four participants were classified with very strong evidence.


TABLE 6. Certainty of classification.

[image: Table 6]Overall, most participants could be classified with strong evidence. However, four participants could only be classified with weak evidence (BF1:2(i) between 1 and 3), all of these classified as CES or SES.



Effect of Relevance Instruction on Information Processing (RQ2)

To test whether the instruction on the relevance of priors and likelihoods (relevance instruction condition) increased the likelihood of processing more information, we compared the distribution of the three assumed strategies (BUS, CES, and SES) across the two conditions. Descriptively (see Table 7), fewer participants of the relevance instruction condition were classified as using the SES strategy in comparison to their counterparts in the control condition (cf. hypothesis 2). However, the Bayesian contingency tables test revealed a Bayes factor (BF10) of only 3.139. Following the interpretation of Lee and Wagenmakers (2014), a Bayes factor of 3 can be regarded as only anecdotal (or at most moderate) evidence for different distributions across the conditions.


TABLE 7. Distribution of strategies across conditions.

[image: Table 7]


DISCUSSION


Classification of Updating Strategies (RQ1)

In our study, we attempted to theoretically distinguish and empirically detect the types of updating strategies, which are suggested by the general literature on Bayesian reasoning, also in a nonnumerical setting of diagnostic judgments. As shown in Table 1, we classified these strategies with respect to different levels of information use (priors, single, or combined evidence). For most subjects in our sample, we could produce very strong evidence for their use of a BUS, CES, or SES. Overall, our results support the plausibility of the classification of strategies by the level of information use. The relatively low number of participants (4 out of 26), which included all information in their judgment and therefore can be assumed as performing (nonnumerical) Bayesian reasoning, is in line with previous findings (McDowell and Jacobs, 2017).

Notably, the only subjects (4 out of 26) with weak evidence were classified as CES or SES. This is explainable by the fact that, in our realization (i.e., with the given priors and likelihoods), these two strategies lead to less distinct posterior probabilities (cf. Figure 4). Furthermore, our classification approach was based on the assumption of a relative stability of the strategy use by each individual (cf. Cohen and Staub, 2015). It therefore does not allow to investigate any intra-individual variation of the strategy use in a similar approach as Cohen and Staub (2015).

In our study, we used a specific nonnumerical, graphical, and computer-based realization for assessment of reasoning strategies, applying a triangular representation of a ternary hypothesis space, the “hypothegon.” We consider our findings as indicative of the feasibility of this approach and envision to use the “hypothegon” paradigm for further investigations of nonnumerical reasoning (see section “Overall Discussion”).

Admittedly, there are limitations connected to the concrete realization: The approach requires a theoretically justified selection of hypothesis prior to the analysis. We chose three fundamental strategy types (BUS, CES, and SES). However, we cannot exclude that other, quite different strategy types – or mixtures of strategies – may be found to explain the subjects’ behavior. This could be investigated by further validation studies recurring either to think aloud data or to experimental variation.

Our classification of the strategies draws on a naive Bayesian classifier procedure, which allowed to rationally deal with the multiple evidence (on subjects’ judgments on different cases) and the relative contributions of each evidence to multiple hypotheses (on subjects’ possible updating strategies).

However, the robustness of the results with respect to the assumptions of this classification procedure should be reflected. We checked that a variation of the “gaussian classification radius” (d = 0.1) within reasonable limits (0.05 < d < 0.20) had no essential influence on the classification results. Furthermore, the assumption of independence of the consecutive judgments, which is essential to naive Bayesian classification, was not empirically tested within our framework but made theoretically plausible by varying and balancing the cases.



Impact of Relevance Instruction on Information Use (RQ2)

The prevalence of non-Bayesian updating strategies (22 out of 26 subjects) suggests that (although all relevant information was presented in a salient manner) not all individuals use all information. Moreover, our results showed that the instruction on the relevance of using all probabilities (priors and likelihoods) did not substantially increase the likelihood of processing more information. Our study revealed only anecdotal evidence of an increase in the BUS and a decrease in the SES in the relevance instruction condition in comparison to the control condition. To explain this finding, we consulted literature and compared our relevance instruction to the most common approaches of supporting Bayesian reasoning in numerical settings: using frequencies instead of probabilities (e.g., Zhu and Gigerenzer, 2006; Hill and Brase, 2012) and using visual representations (Böcherer-Linder and Eichler, 2017; Pfannkuch and Budgett, 2017). These approaches can also be interpreted as setting a focus on the subset of possibilities defined by new evidence (cf. Baratgin and Politzer, 2010 for a differentiation between focusing and other revision processes). The deeper analysis of these support approaches revealed that they do not only highlight the relevance of using all information (as in our relevance instruction) but also explicitly show how these pieces of information are connected. More specifically, they display the interaction (i.e., multiplication) of likelihoods and priors as follows.

If likelihoods are presented as joint frequencies (e.g., 2 of the 10 students with SL solve this task correctly), the priors (for this example 10 of 100 students) are already contained in the joint frequencies. In addition, joint frequencies verbally highlight the interaction of the likelihoods and priors (i.e., 2 of 10 of 100, called nested-set relations, Sloman et al., 2003) and thereby facilitate the construction of an adequate situation model of the prior–likelihood interaction. Another way to increase the salience of the multiplicative prior–likelihood interaction is to provide adequate visualizations (for an overview, see Khan et al., 2015). Research has shown that complementing the numerical values with nonnumerical representations that render salience to the prior–likelihood interaction (such as the unit square, e.g., Böcherer-Linder and Eichler, 2017) support Bayesian reasoning. Against this background, we devised a visual representation of the prior–likelihood interaction in our nonnumerical setting (see Figure 5) and investigated its effect on the processing of all information in a second study. By scaling the length of the likelihood bars in relation to the size of the priors, the multiplicative nature of the prior–likelihood interaction is explicitly shown and – similar as in the unit square – allows to compare the absolute lengths of the likelihood bars as direct representations of the posteriors.


[image: image]

FIGURE 5. Hypothegon with visual explication of the interaction of priors and likelihoods.




RESEARCH QUESTION OF STUDY 2

The finding of the predominance of non-Bayesian updating strategies within our setting, even in the relevance instruction condition, suggests that not all individuals are able to process the interaction of the information (priors and likelihoods). In numerical settings, this can be influenced by means of representations that make the interaction explicit. Therefore, we investigate the following research question (RQ3):

Does a visual explication of the prior–likelihood interaction in the nonnumerical setting increases the processing of the information in the sense of Bayesian reasoning?

H3: We hypothesize that a visual explication of the prior–likelihood interaction in an interaction explication condition leads to an increase in the BUS and a decrease in the SES in comparison to the control condition of study 1.



DESIGN OF STUDY 2

Additional 16 preservice teachers from the same cohort as study 1 participated in the study. The descriptive statistics are presented in Table 4.

To test our hypotheses with regard to research question 3, we designed a visualization that makes the interaction of the probabilities (priors and likelihoods) explicit (see Figure 5).

Participants in the interaction explication condition received the same instruction as participants in the relevance instruction condition from study 1. In addition, at the end, the visualization was explained as follows: “We can see that the smaller green portion of the bar for the WN misconception is about the same size as the larger green portion of the bar for the SL misconception. Thus, if a student solves the problem correctly, it is equally likely that he or she has the WN or the SL misconception.”



RESULTS OF STUDY 2

We first analyzed the certainty for the classification [both BF1:2(i) and [image: image]] of the 16 new participants to one of the three assumed types of updating strategy (BUS, CES, and SES). As shown in Table 8, all participants could be classified with strong or extreme evidence. As further support for hypothesis 1 (H1), we again identified all three assumed types of updating strategies, now with most participants classified as using the BUS.


TABLE 8. Certainty of classification of participants in interaction explication condition.

[image: Table 8]To test whether the explication of the prior–likelihood interaction (interaction explication condition) increased the likelihood of processing the interaction of all relevant information, we compared the interaction explication condition to the control condition (study 1) with regard to the distribution of the three assumed strategies (BUS, CES, and SES). Descriptively (see Table 9), participants of the interaction explication condition were less often classified as using the SES and more often classified as using the BUS in comparison to their counterparts in the control condition (cf. hypothesis 3). The Bayesian contingency tables test revealed a Bayes factor (BF10) of 327.993, which can be regarded as extreme evidence for different distributions across the conditions. The results of this study are discussed within the section “Overall Discussion.”


TABLE 9. Distribution of strategies across conditions.

[image: Table 9]


OVERALL DISCUSSION


Identifying Update Strategies in a Nonnumerical Setting

In this work, we analyzed how people update their hypotheses based on uncertain evidence (e.g., teachers’ updating their assumptions based on students’ solutions), when they only have access to nonnumerical information. Based on the results from numerical settings, we assumed that people tend to process only part of the information on relevant probabilities, resulting in updating strategies different from Bayesian reasoning. With regard to RQ1, we showed that the three assumed updating strategies (BUS, CES, and SES), which are known from numerical settings, are indeed also identifiable within the nonnumerical setting investigated in our studies.

Moreover, in line with findings from numerical settings, most participants did not follow the BUS when no further support was given. This finding supports the notion that subjects do not process and integrate all available information. Thus, we consider these findings as a validation of an information processing account of Bayesian (or non-Bayesian) reasoning. In numerical settings, the processing of information has been effectively influenced by means of instruction or representation (e.g., Khan et al., 2015; Böcherer-Linder and Eichler, 2017). In this vein, we devised similar interventions in the nonnumerical setting and conducted two studies. In study 1, an instruction on the relevance of using all probabilities (priors and likelihoods) increased the processing of more information represented in the nonnumerical setting only weakly (RQ2).

A deeper analysis of research on Bayesian reasoning revealed that not only the quantity of information use is relevant but also its specific quality, more specifically the interaction (i.e., multiplication) of likelihoods and priors in the judgment process. Therefore, we supplemented the intervention by explicit instruction and representation of this interaction (similar to the representations used in numerical studies, e.g., Böcherer-Linder and Eichler, 2017). In study 2, we found very strong evidence that the visual explication of the prior–likelihood interaction led to an increase in processing the interaction of all relevant information (RQ3).

These divergent effects of the two interventions suggest that many individuals do not merely fail to process all information (possibly altered by relevance instruction) but are missing to account for the interaction of these pieces of information correctly. This issue can only be influenced by reducing the necessity to convert the information. In numerical settings, this has been done effectively by presenting the probabilities as joint frequencies that already contain the priors, which automatically highlights the structure of the task (i.e., the nested-set relations, Sloman et al., 2003). Nonnumerical settings allow providing visualizations to increase the salience of the structure of the situation. This approach has already been shown effective in supporting the calculation in numerical settings (e.g., Böcherer-Linder and Eichler, 2017) and has now also proven effective in a nonnumerical setting.

To better understand this effect and also the interplay between numerical and nonnumerical information, further research with systematic combination and variation of the type of displayed information should be conducted.



Benefits and Limitations of the Specific Nonnumerical Setting (“Hypothegon”)

The environment to investigate Bayesian reasoning in nonnumerical settings is framed and supported by the specific choice of a graphical representation, which we dubbed “hypothegon.” It comprises the triangular representation of a ternary hypothesis space and allows for the intuitive localization of probability distributions (priors and posteriors) and their change (updating). This has proven an effective setting for the nonnumerical presentation of probability information and investigation of updating strategies.

Although the hypothegon heavily relies on the ternary situation of three hypotheses (represented in two dimensions), it can be extended in two directions: Two hypotheses can be represented along a line segment (which has already been done frequently); four and more hypotheses can be represented by multiple projections of subspaces. However, the intuitive interpretation probably is limited by the ternary case. In our specific setting, we could demonstrate that it is possible to render it sufficiently comprehensible, at least to adults (cf. Table 4, Understanding of setting).

Of course, the hypothegon can be further shaped and used in research within and beyond the context of teacher judgements. In addition, within the context of teacher judgement, there are many aspects that we excluded from our studies. For example, it is plausible that teachers do not only perceive and process one piece of evidence at a time (i.e., one task–response case), but rather integrate the information from several responses from one student in order to form a decision. In the current studies, we refrained from such multistep cases to reduce complexity. However, a better understanding of how several pieces of evidence on a student interact and how teachers process this information would allow to investigate research questions such as: How much evidence do teacher process before feeling confident in the decision (cf. Codreanu et al., 2019)? Do other teacher variables, such as his or her mindset alter the number of processed evidence (cf. Weinhuber et al., 2019)?

Furthermore, teacher judgment also relies on the context of judgment and on teachers’ knowledge and goals. While in our study with student teachers, the restriction of contextual information helped to model and identify basic strategies, a more realistic setting can be expected to have considerable influence on the information processing.



The Ecological Rationality of (Non)Bayesian Reasoning in Diagnostic Judgments

We characterized the BUS by a complete (approximate) use of probability information and Bayesian reasoning – which from a mathematical point of view can be regarded as optimal. From this point of view, the contrasting strategies (CES and SES) are characterized by a prior neglect and thus suboptimal.

By modeling the situation in a nonnumerical way (probabilities as bars, uncertainty as prior position between hypotheses), we tried to avoid the normative framing of mathematically correct statistical reasoning, which is often applied in research in Bayesian reasoning (Mandel, 2014). However, in our experimental framework, we instructed the subjects with respect to the intended interpretation of the external representation. Thus, we did not investigate their mental reasoning processes, e.g., when accepting or discarding given base rates as priors or when interpreting the change of position as update. Therefore, we would not consider judgments, which we classify as CES or SES, categorically as non-Bayesian reasoning. Baratgin (2002) as well as Baratgin and Politzer (2010) distinguish between focusing and updating. They refer to focusing when – given that all information is known and conforming to the Bayesian rule – humans revise their probability estimation by focusing on the relevant subset of the initial probability space. They refer to updating when humans’ posterior probability estimation is coherent with a revision of their beliefs about the situation. While we assume focusing processes when investigating the BUS strategy, our nonnumerical setting also provides an opportunity to explore subjective belief revisions more deeply.

Furthermore, we do not assume that these strategies, when applied in the diagnostic context of teachers judging students, necessarily imply better or worse performance. There may be many reasons why also normatively deficient strategies can be regarded as cognitively successful, thus reflecting perspective of ecological rationality (Simon, 1972; Kozyreva and Hertwig, 2019). As a heuristic, SES and CES may be adapted to relevant situations. For example, teachers may use a first judgment as orientation for gaining further information on the student, e.g., by selecting more specific tasks or by eliciting verbal explanations. More generally speaking, when diagnostic judgments are integrated in complex instructions, their adequacy cannot be evaluated by their local optimality. Finally, in reality, priors (base rates) may be either much less extreme and therefore less relevant than assumed here, or the probabilities used here may even be partially known or unknown to the teacher so that a more fundamental type of uncertainty arises (Gigerenzer, 2008).

In this respect, there are still many open questions as to the status of the investigated strategies within the ecology of realistic settings. A first step of investigating such question could be the analysis of the boundary conditions of “optimality” with respect to parameters and types of heuristics.
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FOOTNOTES

1Each hypothesis triple (p1, p2, p3) with p1 + p2 + p3 = 1 can be found at a unique point within the hypothegon with the sizes of each pi as its relative height from the side opposite to the vertex. Mathematically, this is formalized by so-called “barycentric homogeneous coordinates” (or “convex combinations”), introduced by Möbius (1827). Beyond applications in physics, chemistry, or biology, the ternary diagram (sometimes called De Finetti diagram) is occasionally used in social science to visualize normalized triples of quantified cognitive constructs (e.g., De Finetti, 1971, 2017 for distributions of subjective probability; Susmaga and Szczêch, 2015 for interestingness measures, Jøsang, 2016 for formalized subjective logic).

2We use the circumflex accent to avoid confusion between the subjects’ (i.e., teachers’) hypotheses H on students’ misconceptions with our (i.e., the researchers’) hypotheses [image: image] on the teachers’ strategies.

3The calculations were programmed by the first author in CindyScript (Richter-Gebert and Kortenkamp, 2000; www.cinderella.org), the code can be made available by request.
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Cognition is both empowered and limited by representations. The matrix lens model explicates tasks that are based on frequency counts, conditional probabilities, and binary contingencies in a general fashion. Based on a structural analysis of such tasks, the model links several problems and semantic domains and provides a new perspective on representational accounts of cognition that recognizes representational isomorphs as opportunities, rather than as problems. The shared structural construct of a 2×2 matrix supports a set of generic tasks and semantic mappings that provide a unifying framework for understanding problems and defining scientific measures. Our model's key explanatory mechanism is the adoption of particular perspectives on a 2×2 matrix that categorizes the frequency counts of cases by some condition, treatment, risk, or outcome factor. By the selective steps of filtering, framing, and focusing on specific aspects, the measures used in various semantic domains negotiate distinct trade-offs between abstraction and specialization. As a consequence, the transparent communication of such measures must explicate the perspectives encapsulated in their derivation. To demonstrate the explanatory scope of our model, we use it to clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and to integrate the scientific measures from various semantic domains within a unifying framework. A better understanding of problem structures, representational transparency, and the role of perspectives in the scientific process yields both theoretical insights and practical applications.

Keywords: 2x2 matrix, contingency table, framing effects, Bayesian reasoning, problem solving, scientific measurement, transparency, visualization


1. INTRODUCTION

Solving a problem simply means representing it so as to make the solution transparent.

(Simon, 1981, p. 153)

Human cognition is both empowered and limited by representations. Some of the greatest scientific discoveries—like the heliocentric cosmos, the Indo-Arabic number system, and the double-helix structure of the DNA molecule—involve fundamental changes in representations (Kuhn, 1962). Problems in logic and mathematics essentially ask for the explication of information that is provided in the problem formulation and are solved, or dissolved, by finding a superior problem representation (Polya, 1957). Although the history of psychology is littered with representational effects, the demands and rigidity of mental constructs are typically portrayed as a source of problems, rather than as opportunities for insight and solutions.

This article promotes a representational account for solving problems based on frequency counts and conditional probabilities that gravitates around the notion of a 2×2 matrix as its core construct. Just like the logical conditional (Wason and Johnson-Laird, 1972, p. 92), the humble 2×2 matrix is a chameleon that appears in many guises. Its structural simplicity is deceiving, as it accommodates an enormous manifold of measures and meanings. By explicating their shared structure, the model developed here integrates a wide variety of measures from different semantic domains in a unifying framework. As we will see, highly selective steps of filtering, framing, and focusing on particular parts of a 2×2 matrix eventually capture some scientific measure. Our model explicates this process and highlights the key role of adopting particular perspectives for gaining insights. Understanding how this mechanism simultaneously reveals and encapsulates some aspect of information that was implied by the original matrix builds conceptual bridges between domains and enables the transparent communication of scientific results. Before introducing our model, we recapitulate the role of representations in psychology and introduce a problem that we will revisit repeatedly throughout this article.


1.1. Reframing Representational Effects

The history of psychology is reflected in its representational constructs. Classic studies have lamented the rigidity of mental representations, and attributed their damaging effects to some lack of mental dexterity known as Einstellung (Luchins, 1942), functional fixedness (Duncker, 1945), or negative transfer (Bartlett, 1958). By contrast, desirable traits like creativity and productive thinking were seen as requiring a flexible reorganization of problem parts (Wertheimer, 1959). When the right representation is found, both chimpanzees and humans appear to stumble upon the problem's solution in a sudden flash of insight (Köhler, 1925).

Representations also provide the foundations for cognitive theories of thinking and problem solving. In the psychology of reasoning, people's responses to logical puzzles are based on a dynamic interplay of structure and content (Wason and Johnson-Laird, 1972). Beyond purely formal aspects of arguments, it has been shown that mental models of tasks and domains, the plausibility of premises, and concerns for relevance and linguistic pragmatics can both facilitate and inhibit logical thinking (Gentner and Stevens, 1983; Johnson-Laird, 1983; Sperber and Wilson, 1986; Nickerson, 1998). When specific contents increase the likelihood of valid conclusions, so-called facilitation effects were often attributed to the availability of particular representations (e.g., pragmatic reasoning schemas, Cheng and Holyoak, 1985), or to the evolution of domain-specific inference algorithms (e.g., a cheater detection module, Cosmides and Tooby, 1992).

Psychological investigations of judgment and decision making have been dominated by research on heuristics and biases (Tversky and Kahneman, 1974) and documented striking framing effects on decisions (Tversky and Kahneman, 1981). Early research on human problem solving was shaped by the problem space hypothesis (Newell and Simon, 1972), which postulates that we search and traverse a space of mental states until reaching our goal. Subsequent work addressed the benefits of diagrams (Larkin and Simon, 1987), contrasted the difficulty of representational isomorphs (Kotovsky et al., 1985), and studied tasks that distribute information across the mind and the external environment (Hutchins, 1995). Overall, researchers accumulated ample evidence for representational effects (Zhang and Norman, 1994): Different representations of a shared problem structure can cause dramatic differences in cognition and behavior.

A problem with representational accounts of cognition is that their explanations can be too narrow and specific. Although some explanation may be perfectly obvious, they remain hard to verbalize or generalize. When an ambiguous image can be viewed as either a rabbit or a duck (see Figure 1), a hint that the duck's beak can be seen as the rabbit's ears may ease the mental flip, but provides no material for scientific theories. Just as being too narrow is a problem, representational accounts that aspire to be general can easily get vacuous. For instance, when any possible conclusion can be explained as a valid deduction based on implicit premises (Henle, 1962) or in reference to “other things the speaker knows” (Braine and O'Brien, 1991, p. 192), overly wide and flexible explanations risk becoming circular (Smedslund, 1970). Similarly, most biases and fallacies can be explained as the result of improper representations or as resulting from deficient information processing (Fiedler and Juslin, 2006). Consequently, accounts that blur the boundaries between representational structures and processes are too permissive and vague to be useful. And although Simon (1981) rightly insists that problems are solved by making their solution transparent, it is far from simple to explicate a problem's mental representation, let alone its transparent solution.


[image: Figure 1]
FIGURE 1. The rabbit-duck illusion (Jastrow, 1899).


How can we capitalize on Simon's insight that transparent representations are solving problems? In this article, we essentially promote a notion of positive framing effects. In our view, a productive representational account requires a revolution, in the literal sense that implies a reversal or shift in perspective. Rather than gravitating around a particular problem and examining its possible representations, we must anchor our investigations in the analysis of shared representational structures. Shifting from focusing primarily on tasks to pivoting around particular representations has immediate benefits: Starting from the representation avoids getting trapped in problem-specific trivialities and allows for non-circular accounts of representational transparency. Instead of serving as convenient post-hoc explanations for observed behavior, representational constructs can be studied independently and prior to specific tasks. Ideally, this will illuminate aspects that were obscured before and replace retrospective explanations by genuine predictions. And rather than portraying representational isomorphs as problems to-be-solved, the discovery of a common underlying structure provides opportunities for clarifications and builds conceptual bridges between semantic variants of tasks and domains.

To illustrate this approach, this article proposes an abstract model for analyzing problems that rely on binary frequency counts and probabilistic measures derived from them. Our model is anchored in the representational construct of a 2×2 matrix, which we employ to reframe a variety of measures and problems. As this construct is shared across many semantic domains, explicating its structural features and the mechanisms operating upon them illuminates and links many concepts and tasks that are typically treated in isolation. Before we can unfold this model, we introduce a problem that allows illustrating the steps and tasks involved in our approach. But rather than merely serving as a sandbox, this problem has provoked intense theoretical debates within psychology and beyond, and will be rendered more transparent by our framework.



1.2. The Mammography Problem

The mammography problem(Eddy, 1982) is the drosophila of a research tradition that has been haunting both psychology and clinical diagnostics for decades. Typical problems in this tradition ask for inferring the probability of a potential cause (e.g., some medical condition C) given an observed effect (e.g., a positive test result T). In its standard form, the problem provides a condition's base rate (e.g., the prevalence of cancer, p(C) = 1%), the conditional probability of correctly detecting the condition's presence (e.g., the mammography test's sensitivity, p(T|C) = 80%), and the conditional probability of falsely detecting the condition in its absence (e.g., the test's false positive rate, p(T|¬C) = 9.6%). Solving the problem consists in computing the value of the conditional probability p(C|T), which denotes the test's positive predictive value (PPV). Such problems are often framed as requiring “Bayesian reasoning,” as their mathematical solution can be derived by Bayes' theorem:

[image: image]

In a seminal paper, Gigerenzer and Hoffrage (1995) devised 15 variants of this problem and presented them in different formats (see Table 1). Importantly, they reported facilitation effects for two types of representational changes: Both expressing the problem in frequency formats (or natural frequencies) and using a short version containing fewer numbers (aka. short menu) boosts the rate of correct solutions (see the meta-analysis by McDowell and Jacobs, 2017). Whereas, Gigerenzer and Hoffrage (1995) describe their manipulations in terms of information representation, they explain the observed effects primarily as computational facilitation. For instance, the algorithm for solving the problem in frequency formats simplifies to:

[image: image]

The mammography problem's notoriety has many reasons. For both experimental participants and medical professionals, the problem seems of high practical relevance, but is frustratingly difficult. Most naïve respondents estimate its solution to be around 70 or 80%, thus misjudging the true value by an order of magnitude. Theoretically, the error committed in the context of such problems has been described by a confusing array of concepts—including base rate neglect (Kahneman and Tversky, 1973), base rate fallacy (Bar-Hillel, 1980), and insensitivity to prior probability (Tversky and Kahneman, 1981)—and attributed to an inverse fallacy (Eddy, 1982) or a heuristic of representativeness (Kahneman and Tversky, 1972b). Even when the problem's solution is known, the discrepancy between the mammography's high sensitivity and its low PPV remains perplexing. In addition to the theoretical challenge of explaining people's poor performance, researchers in applied psychology, clinical diagnostics, and information visualization face the practical challenge of improving it. In numerous attempts to train people (e.g., Sedlmeier and Gigerenzer, 2001; Ruscio, 2003; Sirota et al., 2015) or support their performance by visual aids (e.g., Brase, 2008; Moro et al., 2011; Garcia-Retamero and Hoffrage, 2013; Binder et al., 2015, 2020; Böcherer-Linder and Eichler, 2017; Eichler et al., 2020), solutions rates remained frustratingly low (e.g., Micallef et al., 2012; Khan et al., 2015; Weber et al., 2018). Thus, despite considerable progress, it is still controversial to what extent humans are able to solve such problems, how they perform the required calculations, and which aspects of the task, person, or task environment help or hinder their performance (see Navarrete and Mandel, 2016; McDowell and Jacobs, 2017, for reviews).


Table 1. Three versions of the mammography problem (from Gigerenzer and Hoffrage, 1995, Table 1, p. 688), and an overview of the information provided and required for solving each version (probabilities p in [image: image], frequencies n in [image: image], and parts of required solutions in [image: image]).

[image: Table 1]

We contribute to these debates by proposing new perspectives on the problem. Rather than focusing on differences between representational formats, we explicate the steps and processes that lead from the provided information (i.e., probabilities or frequencies) to the measures required for solving the problem. As we will show, this illuminates the geometric nature of the underlying problem representation in ways that explain both the problem's difficulty and the observed facilitation effects. As a collateral benefit, our analysis can be applied to related problems and allows defining a large variety of scientific measures from seemingly distinct domains in a unified framework. Our account is embedded in a broader model that emphasizes the role of 2×2 matrices as a key construct of scientific inquiry.




2. THE MATRIX LENS MODEL

This article introduces an abstract matrix lens model of scientific inquiry. As an analytic device, this model explicates the steps and processes that we perform when solving problems based on frequency counts, binary contingencies, and probabilistic measures derived from them. The core representational component of our model is the structural construct of a 2×2 matrix that frames and sculpts a large variety of measures in seemingly distinct tasks and domains. The key mechanism invoked by our framework is the adoption of particular perspectives on parts of this matrix. By selectively focusing on some aspects while ignoring others, highly specialized measures trade-off gains in depth and resolution with losses in context and scope. As a consequence, the transparent communication of such measures must explicate the perspectives encapsulated in their derivation.

Figure 2 illustrates the steps of our model as a pipeline of adopting increasingly specific perspectives. When providing a numeric answer to a scientific question, we dramatically reduce the world's complexity by selecting and zooming into relevant aspects to eventually capture the value of some measure (e.g., PPV). An initial step of filtering (P1) categorizes some population of elements on binary dimensions to yield a binary grid of frequency counts as a prerequisite for the model's two main steps, whose geometric nature corresponds to the visual process of adopting particular perspectives. A second framing step (P2) selects and arranges dimensions to construct a specific 2×2 matrix. Given this matrix, a focusing step (P3) further selects and highlights some particular aspect to derive a quantitative measure. The value of this measure implicitly contains the entire chain of transformations and thus encapsulates the perspectives adopted in the measure's derivation. An additional step of presenting (P4) communicates the measure as a scientific result. Whereas, the model's three initial steps (P1–P3) reduce complexity—by selectively carving out, organizing and compressing information—its final step (P4) widens the scope by adding information and providing an interpretation. As a prescriptive consequence, a measure's verbal or visual presentation is transparent when explicating the perspectives that were encapsulated in its derivation.
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FIGURE 2. The matrix lens model describes scientific inquiries that reduce complexity in several steps by adopting increasingly specific perspectives on particular aspects of the world. Its initial steps reduce the dimensions of explicitly represented information by filtering, framing, and focusing (P1–P3) to capture a particular measure (e.g., a diagnostic test's positive predictive value, PPV). By contrast, the final step of presenting (P4) can widen the scope by creating representations that are transparent when explicating the perspectives adopted during the measure's derivation.


Capturing some noteworthy aspect of the world by viewing it through the lens of a 2×2 matrix requires a mix of numeric and representational skills. Selecting the right measure out of a large variety of options typically requires both task-related experience and domain-specific knowledge. Although the measures deemed relevant and their labels vary between tasks and domains, the basic steps and mechanisms mostly remain the same. In the following, we first illuminate the structural elements of each step by abstracting from the content and semantics of specific tasks. This will portray the act of scientific measurement as a deliberate, strategic, and intricately coordinated process that encompasses different levels, decisions, and parameters. Just like a photographer is not merely pointing a lens in the direction of an object of interest and then randomly triggers the shutter, a scientist aiming to answer a question is not randomly screening data and computing metrics that may or may not answer a question. In practice, and particularly in experts, this process may nevertheless unfold in an automatic and intuitive fashion. This allows for glitches and errors, if something breaks down or is led astray, as well as for systematic biases, due to schematic processes and preferred perspectives. Overall, our model emphasizes the selective and directional elements of scientific investigations and reveals scientific insights as a matter of adopting and presenting particular perspectives.


2.1. Filtering

The reductionist nature of our model is most obvious in its initial step of filtering, which categorizes a population of elements on binary dimensions and acts as a sieve for all subsequent steps. The object being filtered is defined as some population of elements that can be measured on our dimensions of interest. Although this population can comprise any well-defined set of elements, we usually encounter subsets of samples and elements that represent events or individuals. Measuring elements requires a dimension of interest and a scale that assigns values to elements. An elementary type of measurement is categorization, which uses some rule to assign or arrange elements into groups.

The elements of a population can be categorized in many different ways. In this paper, we limit ourselves to cases of binary categorization in which the categories employed are dichotomous, exhaustive, and mutually exclusive, so that each element falls into exactly one of two categories on any dimension of interest. As an example, suppose we aimed to investigate what may have contributed to surviving the sinking of the RMS Titanic in 1912. Our population of elements consists of the N = 2, 201 passengers on board of the Titanic on its fatal maiden voyage. Suitable dimensions of interest could be the age, sex, or class of each passenger (see Dawson, 1995). To satisfy the constraint of binary dimensions, any variable describing the passengers must be dichotomous. Although the variable Age is continuous when expressed in terms of years, it can be categorized into Adult vs. Child. Similarly, the variable Sex is often categorized into Female vs. Male, despite allowing for finer distinctions. A key outcome variable in this example is each passenger's Survival, categorized into Alive vs. Dead. Cross-classifying all elements on d binary dimensions arranges them in a d-dimensional grid. The top cube of Figure 3 illustrates this for d = 3 dimensions. As each of three variables contains two categories and all of their 2d = 8 possible combinations exist, the population is dissected into eight sub-cubes that show the frequency counts of individuals for every category combination. Interestingly, any two-dimensional visualization of a three-dimensional problem introduces artifacts that are based on properties of the representation, rather than the problem. For instance, depicting categories as the cells of a cube implies an element of spatial clustering that mere classification does not provide. Similarly, an issue of arranging categories arises due to constraints of viewing a 3d-object from a particular perspective. Here, the sub-cube in the hidden lower corner of the population cube—which is obscured by the currently adopted angle of view and thus drawn separately, shifted to the right—shows that 338 male adults survived the disaster. The tension between the properties of a represented object and the effect of highlighting or occluding some aspects by choosing a particular representation forms a recurring theme throughout this article: Whereas, some subjective elements—like choosing particular dimensions or binary cut-off values—are an inevitable consequence of reducing a multi-faceted world to a 2d-grid, merely representational constraints often occur as side-effects and can be mitigated by choosing other representations.
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FIGURE 3. Filtering the population of N = 2, 201 passengers of the RMS Titanic on d = 3 binary dimensions and framing the resulting frequency grid as three distinct 2×2 matrices. The top cube shows the frequency counts of eight subgroups resulting from categorizing all elements by the binary variables Age, Sex, and Survival. Due to aggregation, all arrows are uni-directional. Arrows from cube to matrices show the three possible two-dimensional projections along each of the cube's axes. The three 2×2 matrices (A–C) result from adding the frequency counts of the collapsed dimension. (Color marks Adult category; pattern marks Female category; bold font marks Alive category. Titanic image adapted from: https://commons.wikimedia.org/wiki/File:RMS_Titanic_3.jpg).


Overall, the initial step of filtering imposes a binary perspective upon the world. Although the range of questions that can be addressed within this framework remains substantial, it is clear that this step is highly selective and reduces complexity by many orders of magnitude. By rendering chosen variables from shades of gray as either black or white, certain aspects of the world are emphasized while others are ignored. For instance, if the variable of a passenger's Class is available but not considered in this step, it is lost and cannot be recovered later.



2.2. Framing

A second step of framing reduces our object of inquiry to two dimensions by transforming the binary grid into a 2×2 matrix. When the elements of our population are clustered as a three-dimensional cube, adopting perspectives on this cube corresponds to viewing it from particular directions. Figure 3 illustrates this step geometrically as projections along each of the cube's dimensions. Crucially, each of the three resulting 2×2 matrices (Figures 3A–C) is an abstraction of the categorical information that achieves simplification by further aggregating over one of the cube's dimensions. As the three projections are orthogonal, any two 2×2 matrices provide the marginal sums of the third matrix, but do not allow reconstructing it without additional information. Again, our Titanic example illustrates that adopting particular perspectives on an object implies both reduction and specialization. Switching to a different representation can sacrifice, hide, or reveal information that was implicit before. Additionally, changing representations imposes new constraints that can illuminate or obscure particular aspects, but may also introduce representational artifacts. As we shall see, each 2×2 matrix allows answering a wide range of questions. But all insights provided by increasingly detailed comparisons and metrics come at the price that other aspects are obscured or lost. Thus, the benefits of adopting any particular perspective incur potential costs of neglecting or abandoning alternative view-points and interpretations.

When categorizing the elements of a population on two binary dimensions, their cross-tabulation as a 2 × 2 matrix provides “the crudest possible division” (Pearson, 1904, p. 21) into four sub-groups, with each table cell displaying the frequency count of the corresponding category combination. The core construct of our model is also known as a binary contingency table (e.g., Everitt, 1977; Powers, 2011)—a term coined by Karl Pearson, who pioneered its statistical analysis (in Pearson, 1904). Alternatively, the same four-fold table is also known as confusion matrix (e.g., Fawcett, 2006; Ting, 2011; Chicco, 2017) or error matrix (e.g., Stehman, 1997). To anyone familiar with the literature on the subject, these latter terms seem uncannily appropriate, as they not only apply to the table itself, but also characterize the plethora of measures and interpretations it subsequently spawned, and even provide an apt description of the state of mind of many of its students. We see three types of reasons for the confusing nature of 2×2 matrices:

1. Structural reasons: A first source of errors is the deceptive simplicity of its structure. While any 2×2 matrix provides a “simple four-fold division of the universe” (Pearson, 1904, p. 3), actually framing this construct implies (a) the selection of two binary dimensions, and (b) their arrangement in a spatial layout. As there exists no standard layout of a given 2×2 matrix, swapping the order of its dimensions and their categories allows for 23 = 8 different ways of representing the same information (see Supplementary Figure 1). Although all these spatial variants are mirror images or rotations of a single 2×2 matrix, this flexibility in expression allows for a multiplicity of surface structures that differ between authors, applications, and domains.

2. Semantic reasons: A second source of confusion is that seemingly similar surface structures vary substantially in their semantic interpretations. Both the specific dimensions mapped to the axes of a 2×2 matrix and the relations between their categories influence its meaning. For instance, many binary distinctions (e.g., Alive/Dead, Adult/Child) imply preferences that carry over to the perception of corresponding matrix cells. Similarly, particular combinations of categories (e.g., Adult/Alive vs. Child/Dead) give rise to further evaluations. Thus, the four cells of an interpreted matrix can vary both categorically (e.g., positive/negative, correct/incorrect, etc.) and as matters of degree (e.g., some cells are more relevant than others). Within our visual metaphor, we can think of these semantic aspects as re-introducing colors, patterns, or shades to a 2×2 matrix, and exuding substantial implications beyond its binary structure.

3. Terminological reasons: A third and particularly vexing type of reasons for the confusing nature of 2×2 matrices is that different semantic domains not only frame different matrices, but also label the resulting measures by distinct concepts. As a consequence, the same measures often appear in different terminological disguises, rendering their identification and selection difficult and error-prone.

Fortunately, these structural, semantic, and terminological sources of confusion can be reduced by adopting an analytic and functional perspective on a shared representational construct. In the following sections, we use a framed 2×2 matrix as a foundation for tackling each of the confusions in turn. From a functional viewpoint, we can ask: Which generic goals or tasks are supported by a 2×2 matrix? Regarding semantic issues, we will explicate the typical mappings and terminologies of different domains. Before addressing the semantic and terminological issues (in sections 3, 4), the next step of focusing provides the key mechanism of our model.



2.3. Focusing

Given a well-defined 2×2 matrix, focusing on parts of this structure supports distinct tasks that reveal increasingly specific aspects. These tasks remain implicit when using mathematical concepts and formulas to define measures based on the contents of matrix cells. By contrast, our model explicates these tasks and shows how the measures arise by adopting particular perspectives on the 2×2 matrix. Whereas, a numeric value encapsulates the perspective adopted in its derivation, our structural approach illuminates both the specific detail provided by each measure and its limits due to ignoring all other aspects.

Before explicating the mammography problem in our model, we introduce some abstract nomenclature. The highlighted panel of Figure 4 provides abstract labels for the dimensions, categories, and cells of a 2×2 matrix. In the absence of any semantic interpretation, the lowercase letters a, b, c, and d describe a 2×2 matrix by denoting the frequency counts of its top-left, top-right, bottom-left, and bottom-right cell, respectively. Using a matrix-based framework for structuring our analysis primarily provides us with a methodological tool. Thus, rather than claiming that the 2×2 matrix provides a superior type of visualization (see e.g., Binder et al., 2020; Eichler et al., 2020, for comparisons between alternatives), we use its geometric potential for distinguishing between locations and directions.
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FIGURE 4. The structure of the 2×2 matrix and labels for its dimensions, categories, and cells. Numbered panels express the mammography problem in a 2×2 matrix framework to illustrate the transformations of cell values from frequency counts (I), to probabilities (II), and conditional probabilities (III). Arrows represent the direction of adopted perspectives and numeric transformations, with curved exits indicating information that is lost by a transformation and needs to be added when moving in the opposite direction. Cell background color marks category C (cancer present); pattern marks category T (positive test outcome); bold font marks category correspondence (correct cases). Numbers shown in [image: image], [image: image], and [image: image] mark the provided probabilities, corresponding frequencies, and the solution of the problem, respectively.


As a result of framing, we can refer to the dimensions and categories of a 2×2 matrix by combining the corresponding labels. Figure 4I cross-tabulates the primary dimension of a True condition (consisting in the presence or absence of cancer, C vs. ¬C) with a secondary dimension of a positive or negative Test outcome (T vs. ¬T) to yield a 2×2 matrix containing the four possible combinations of all category levels. Thus, the cell label ‘a' and the number of elements in set C ∩ T are two ways of referring to the same frequency count. The numeric values in Figure 4I result from reconstructing the mammography problem's probability information in terms of frequencies. When assuming a sample of N = 1, 000 women of the target population, a cancer prevalence of P(C) = 1% implies that 10 of them are expected to have cancer [N·P(C) = 1, 000·0.01 = 10]. Next, the sensitivity of the screening test p(T|C) = 0.80 suggests that a = 10·0.80 = 8 of the women with cancer also test positively (C ∩ T). For the N−10 = 990 women without cancer, the probability for a positive test is p(T|¬C) = 0.096, so that b = 990·0.096 ≈ 95 receive a false positive test result (¬C ∩ T). All other frequencies of the 2×2 matrix can then be computed, as the four elementary cells add up to the total number of individuals in the population (i.e., N = a + b + c + d = 1, 000 women), as do the sums of its row and column margins (e.g., N = 103 positive + 897 negative test outcomes). Thus, Figure 4I provides a well-defined 2×2 matrix that estimates the frequency counts of the mammography problem for a sample of N = 1, 000 women.

Which types of tasks are supported by a 2×2 matrix? And which numeric transformations are required to address these tasks? The panels of Figure 4 identify five types of tasks in a generic fashion:

1. Frequencies: The only type of task directly supported by a 2×2 matrix is the evaluation of frequencies. For instance, Figure 4I shows that—given a population of N = 1, 000 women—a majority of d = 895 of them do not have cancer and receive a correct negative test result (¬C ∩ ¬T). Adding cells of joint frequencies across rows or columns allows comparing frequency counts between category levels. For instance, the marginal sums reflect that there are fewer women with than without cancer (10 vs. 990), and fewer with a positive than with a negative test result (103 vs. 897).

2. Proportions and probabilities: A second type of task supported by the 2×2 matrix is the assessment and comparison of proportions. Expressing frequencies in terms of proportions facilitates comparisons of relative magnitudes by standardizing cell values and their sums to a reference value. As the frequency counts of the four original cell values add up to the population size N, dividing them by N normalizes their values to a sum of 1, allowing for their interpretation as the probability of each category combination (see Figure 4II). As this transformation leaves all relative proportions within the 2×2 matrix intact, all row and column values still add up to their marginal sums. Some of these marginal sums convey interesting facts about the original 2×2 matrix. For instance, adding the probabilities of the left column yields the prevalence of cancer in the population [P(C) = 1%], and adding those of the top row reflects the test's bias for positive outcomes [P(T) = 10.3%]. However, the benefits of convenient expression and comparison of cell values come at the cost that all information regarding the population size N is lost in the transformation.

3. Correspondence: The tabular structure of the 2×2 matrix primarily suggests combining rows or columns of cell values, but combining other configurations is often informative. A special type of aggregation consists in adding the diagonals of a 2×2 matrix (i.e., the frequencies a + d vs. b + c in Figure 4I, or their corresponding proportions in Figure 4II). In the mammography problem, the diagonals mark the correspondence between a woman's true condition and her test outcome. Any instance in the top-left or bottom-right cells (i.e., the counts of a and d) represents a woman with a correct test result (due to the correspondence C ∩ T or ¬C ∩ ¬T), while any element in the top-right or bottom-left cells (i.e., b and c) represents a woman with an incorrect test result (due to a lack of correspondence, ¬C ∩ T or C ∩ ¬T). Whereas, correctness is a categorical property of each individual (Rescher, 1998), accumulating the groups of all correctly diagnosed women (a + d = 903) and all incorrectly diagnosed women (b + c = 97), and computing their proportion (by dividing both sums by N), yields continuous measures of accuracy (90.3%) and error rate (9.7%). Both measures fit into our increasingly familiar pattern of gaining abstraction while sacrificing detail: On one hand, they provide easily interpretable values on a convenient scale from 0 to 1. On the other hand, the normalization and aggregation in their derivation obscure not just the population size N, but all differences between accurate instances (a vs. d) or inaccurate instances (b vs. c) have also vanished.

4. Conditional probabilities: A key transformation of a 2×2 matrix consists in dividing its cell values by its marginal sums to obtain conditional probabilities (see Figure 4III). The three sub-panels A–C differ in the reference class on which the cell values (of Figures 4I,II) were conditionalized. Adopting a by row, by column, or by diagonal perspective on a 2×2 matrix normalizes its values in the corresponding direction (i.e., the rows, columns, or diagonals of Panels A, B, and C, add to a sum of 1).

As we explicate the semantics of diagnostic measures and other domains later (in sections 3, 4), we only contrast two conditional probabilities that matter in the context of the mammography problem here. By adopting a by column perspective on the 2×2 matrix, Panel B normalizes cell values on the presence or absence of cancer (C vs. ¬C). Thus, the top-left cell of Panel B shows that the conditional probability of receiving a positive test result given that a woman has cancer is P(T|C) = 80.0%. This is the sensitivity of the mammography test provided by the original problem formulation (in [image: image]). By contrast, Panel A adopts a by row perspective and normalizes its values on the possible outcomes of a mammography test (T vs. ¬T). Thus, the top-left cell of Panel A shows that the conditional probability of having cancer given a positive test result is P(C|T) = 7.8% (in red). This is the test's positive predicted value (PPV) and the solution to the original problem.

As with previous transformations, computing probabilities that normalize values by a particular perspective yields highly specialized measures that render comparisons in one direction simple and transparent, but drop any information regarding the base rates of rows, columns, and diagonals. For instance, whereas Figures 4I,II show that women with cancer (C) and with a positive test result (T) are clear minorities, this information is lost in the transformations to Figure 4III.

5. Contingencies: Detecting the degree of covariation or contingency between events is an important adaptive task. In the context of a 2×2 matrix, detecting contingency concerns the relation between its dimensions. In the absence of contingency, both dimensions are independent of each other, whereas the presence of contingency implies a dependency, association, or correlation between them. Contingency-related questions are answered by assessing differences in conditional probabilities (e.g., by subtracting or dividing two conditional probabilities) or computing more comprehensive metrics (e.g., the χ2-score, or the Matthews correlation coefficient, MCC). We discuss some of these metrics in the context of classification and diagnostics (in section 4.1).

Importantly, any measure based solely on the values of a transformed 2×2 matrix inherits both the benefits and limitations of its origin. Hence, any measure based exclusively on the conditional probabilities of Panel A may be highly informative for answering questions that are conditionalized on a specific Test outcome, but is useless or misleading for addressing tasks that require the absolute frequency or proportion of women with vs. without cancer or with vs. without a particular test outcome.

The five types of tasks enabled by a 2×2 matrix reach from relatively simple comparisons (based on the frequency or probability of cells or cell combinations) to more complex judgments (involving assessments of correspondence, conditional probability, and contingency). However, solving a specific problem does typically not recruit all of these tasks. For instance, solving the mammography problem primarily requires adopting a particular perspective on a 2×2 matrix that cross-classifies the target population's health condition C by test outcomes T. Comparing the values provided and required in Figures 4II,III reveals the essence of the mammography problem: The test's sensitivity for detecting cancer p(T|C) is conditionalized on a low cancer prevalence P(C), whereas the required PPV p(C|T) is conditionalized on a proportion of positive test results P(T) that is more than ten times higher than the prevalence. More generally, a conditional probability p(C|T) typically differs (a) from the unconditional probability P(C)—unless C and T are independent—and (b) from the inverse conditional probability p(T|C)—unless P(C) and P(T) are equal. Thus, both the meaning and the value of a conditional probability vary drastically as a function of its reference class1.

Our model solves the mammography problem by framing a 2×2 matrix and focusing on a particular location in a larger framework of probabilistic measures. Before exploring the semantics and labels of additional locations, we should realize that even relatively simple scientific problems are typically not solved by providing a measure and its value (“The PPV is 7.8%.”). Instead, successfully answering a question by deriving a suitable measure is not the end of a scientific enterprize, but the beginning of its dissemination and interpretation. While it is non-controversial that communicating scientific results in a transparent fashion is desirable, explaining what this means and how it can be achieved is far from clear. Interestingly, our model implies a non-circular and non-trivial notion of representational transparency.



2.4. Presenting

How can we communicate scientific results in a transparent fashion? For probabilistic measures, the standard solution is to either assume that one's audience is familiar with the measure's definition or to provide it as a mathematical formula. This is perfectly transparent to anyone at ease with the notation and the axioms governing their interpretation, but opaque and intimidating to anyone else. Alternatively, visualizations can be powerful tools for communicating abstract information. While most people agree that most presentations of scientific findings benefit from clear and transparent visualizations (e.g., Tufte, 2001), precisely explaining why visualization help remains challenging (see Streeb et al., 2020, for a systematic review). A full-fledged theory of visualizing metrics derived from 2×2 matrices is still lacking (though see, e.g., Micallef et al., 2012; Binder et al., 2015, 2020; Khan et al., 2015; Böcherer-Linder and Eichler, 2017, 2019; Eichler et al., 2020, for studies contrasting specific types of visualizations). But as we began this article with Simon's (1981) notion that a problem's solution lies in its transparent representation, we owe an account of what renders representations transparent. Our model suggests a non-circular definition of representational transparency:

A representation is transparent with respect to a specific task when it explicates the perspective required for solving the task.

When applying this definition to measures derived from a 2×2 matrix, we obtain:

A particular measure's representation is transparent when it explicates the perspective adopted during the measure's derivation.

Several aspects of these definitions are noteworthy: First, both definitions of transparency are explicitly constrained to a specific task. If this task consists in quantifying some aspect of a 2×2 matrix, a transparent representation of the resulting value must explicate the perspective adopted in the measure's derivation. Seeking a more general definition of representational transparency (i.e., beyond the tasks considered in section 2.3 and the measures defined in section 4.2) would need to consider the representation's ecological rationality (see Todd et al., 2012, for details).

Second, the definitions are applicable, but not limited to visualizations. They specifically allow for verbal explications or mathematical notations. Similarly, the definitions are deliberately silent and agnostic about specific types of graphs and the visual feature(s) to which a measure is being mapped. For instance, a measure's numeric value can be expressed by an angle, area, coordinate, or length. Which of those features is most appropriate depends on many factors, including the task to be performed (e.g., does it require a qualitative judgment or a quantitative comparison?), a value's context and magnitude, and the viewer's perception, graph literacy, and motivation.

Third, explicating a measure's perspective typically requires that the measure is being shown, rather than merely being implied by other representational elements. However, merely depicting some measure in a visualization is not sufficient for achieving transparency. For instance, mapping the values of probabilities (e.g., accuracy, PPV, or the effects of risks or treatments) to spatial locations or the heights of bars may explicate their numeric magnitude, but provides no information on how the values were derived. In fact, visualizations that invite comparisons between non-transparent measures may even obscure and manipulate information, rather than reveal it (see section 5.3 for examples).

How can we explicate the perspectives adopted in the derivation of a particular measure? Although mathematical definitions help explicating how measures are computed, we believe that visualizations are more accessible to a wider audience. Our definition of representational transparency can be read as providing prescriptive guidance, but there is no simple recipe for turning it into a procedure for creating transparent visualizations. Given a vast repertoire of options, we can only provide some examples here. In fact, most of the figures in this article explicate perspectives adopted on a shared representation of a 2×2 matrix. For instance, Figure 4 illustrates how probabilities and conditional probabilities are derived from the joint frequencies of a 2×2 matrix. In sections 3, 4, we extend this approach to additional visualizations (e.g., hierarchical trees in Figure 5) and more complex measures (e.g., of contingency and odds in Figure 6). Similarly, the perspectives adopted on a 2×2 matrix for deriving the sensitivity or PPV of a diagnostic test can be expressed in the form of an icon. Given the 2×2 matrix of the mammography problem (shown in Figure 4I), the contrast between the test's sensitivity (sens) and its positive predictive value (PPV) can be depicted as: sens = [image: yes] = 80% vs. PPV = [image: yes] = 7.8%. Although such icons seem suitable for expressing frequencies, probabilities, and conditional probabilities in a compact fashion, they assume a framed 2×2 matrix and reach their limits for more complex measures (e.g., the aggregate scores of Figure 6 or Table 3). Additional options for visually explicating particular perspectives on tasks involving probabilistic measures include icon arrays, unit squares, tables, tree diagrams, and frequency nets (see Neth et al., 2018, for generating different visualizations from a shared representation, and Binder et al., 2015, 2020, and Böcherer-Linder at al., 2019, 2020 for empirical comparisons).

While this article promotes the matrix lens model as an analytic device, a 2×2 matrix may also turn out to be a useful visualization for many problems. For instance, a key structural feature of a 2×2 matrix—as an external representation—is that it explicates two orthogonal dimensions. If this also is an important feature of a problem, representing it as a 2×2 matrix may facilitate solving it. However, if the task's structure or semantics impose an order on two dimensions, a hierarchical representation (like a unit square or tree) may provide a better fit. Thus, rather than suggesting that the 2×2 matrix is the right representation for all problems, we emphasize that evaluating a visualization's degree of fit to a particular task pre-supposes an analysis of the task's structural and semantic aspects. In section 3, we will see that the semantics of many tasks and domains imply a three-dimensional structure. As a consequence, any two-dimensional visualization contains visual artifacts that select and emphasize some aspects while omitting or obscuring others. Although visualizations can be tailored to fit to specific tasks, the downside of any such specialization is a loss of generality. Thus, if problems or domains require transfers between measures or tasks, the costs of tailored visualizations may outweigh their benefits. Overall, the question which visualization fits best for which task—and for which audience—remains an important challenge for future research.




3. SEMANTICS

The previous section introduced the matrix lens model as a general approach for solving tasks based on frequency counts, conditional probabilities, and binary contingencies. The model's steps were illustrated by framing specific 2×2 matrices of Titanic passengers and deriving some measures of the mammography problem. However, the model was expressed in abstract terms, involving simple geometric transformations, and a set of basic tasks that could be applied on any population of elements that is filtered into binary dimensions and viewed through the structural construct of a 2×2 matrix. Its key mechanism of adopting particular perspectives on this construct derived measures as locations in a matrix-based framework. The meanings of these matrices seemed arbitrary, merely motivated by examples, and did not matter much.

In practice, scientific problems are rarely posed in a semantic vacuum, but rather embedded in specific contexts. As people typically solve problems within particular domains, the concepts and categories used to frame 2×2 matrices vary as a function of domain-specific contents. Similarly, the preferred perspectives adopted on 2×2 matrices and the terminology of corresponding measures differ substantially between domains.

Semantic questions address issues of meaning, interpretation, and relevance. To clarify semantic sources of confusion in the context of 2×2 matrices, we first describe typical task domains and then identify some standard mappings of matrix dimensions and categories in these domains (in section 3.1). Discovering a shared structural feature will then allow us to propose a simplified model that explicates the structure that underlies a range of problems in several domains (in section 3.2).


3.1. Mapping Meanings to Dimensions

Due to their structural simplicity, 2×2 matrices feature prominently in many tasks and domains. Unfortunately, the commonalities between these uses are obscured by the flexibility in arranging a given 2×2 matrix (see section 2.2) and the distinct terminologies of scientific fields (see section 4.2). We use the term task domain to denote a discipline or field with a common set of questions and applications. As the questions that can be addressed by a 2×2 matrix crucially depend on its dimensions, we characterize task domains by the semantic categories of their typical dimensions.

Table 2 lists the task domains considered in this paper and defines a default mapping of their dimensions. For instance, the mammography problem stems from the task domain of medical diagnostics. The corresponding 2×2 matrix (shown in Figure 4) mapped each patient's true condition to X and the test outcome to Y. Table 2 also notes the origins of the matrix dimensions and the dependencies between them (in the rightmost three columns). When using an existing test to diagnose a disease, the true condition X is given by the environment and the test outcome Y is given by the test. As discussed in section 2.3, the matrix diagonal represents the correspondence between the other two dimensions. In the context of diagnostics, this correspondence implies the correctness of a test result and is listed as a third dimension Z.


Table 2. Semantic mappings of concepts to three dimensions of 2×2 matrices in different task domains or disciplines.
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Beyond medical diagnostics, Table 2 provides default mappings for 2×2 matrices of additional task domains that we cannot cover in detail in this paper. In classification, the criteria of a true class X and a predicted class Y can both be freely chosen by the analyst during training, but the identity of X is externally given when applying a classifier. The field of information retrieval combines notions from signal detection theory and categorization to search for relevant documents, but uses a distinctive terminology for its metrics (e.g., precision vs. recall). Its signature task typically implies large numbers of irrelevant documents that are to be ignored (i.e., high values in cell d or joint category ¬X ∩ ¬Y) as, for instance, expressed in the null invariance property by Tan et al. (2004).

The domains of risk and treatment are similar insofar as both freely set or define the levels of some (independent) Factor X and measure or observe the environmental consequences on some (dependent) Factor Y. As treatment effects are often measured as increases or decreases of medical conditions, such conditions can also be mapped to dimension Y of 2×2 matrices (resulting in rotations by 90°, relative to the standard 2×2 matrix of medical diagnostics). Consequently, the referents of the medical terms prevalence and incidence should always be noted.

Importantly, all domains considered in Table 2 share a structural element: Whereas, the semantic contents mapped to dimensions X or Y can be chosen freely or are given by external factors, dimension Z is always determined by X and Y. Inspecting the semantics of dimension Z—noted as “correctness,” “class match,” or “correspondence”—reveals that they all imply some notion of accuracy. As a consequence of this regularity, the 2×2 matrix {X, Y} (i.e., with an implicit dimension Z) fits closely to the semantic structure of the task domains considered here. In the absence of a specific task, this particular 2×2 matrix is semantically privileged, but some tasks may benefit from an explication of Z. Applying the correspondence constraint to a 3D-grid (from section 2.1) yields a modified geometric model that gives rise to more specialized perspectives that explicate particular dimensions and introduce representational constraints.



3.2. The Structure of Task Domains

All problems mapped by the task domains of Table 2 correspond to a shared three-dimensional structure. This partial cube model (see Figure 5) is created by three orthogonal binary dimensions X, Y, and Z, under the constraint that Z represents the correspondence between X and Y. In contrast to our initial Titanic example (in Figure 3), the partial cube model only contains four cells with frequency counts, as four category combinations are rendered impossible by the constraint on Z (e.g., the triple XY¬Z cannot exist). Thus, the partial cube model is fully determined by the frequency counts a, b, c, and d.


[image: Figure 5]
FIGURE 5. The partial cube model shows the geometry of frequency counts resulting from categorizing a population by two binary dimensions X and Y if a third dimension Z expresses the correspondence between X and Y. Given a population size N, the correspondence constraint reduces the full model (containing 23 cells) to four cells (df = 3). Arrows are bi-directional and show projections from higher- to lower-dimensional spaces, and vice versa. There exist three distinct 2×2 matrices (A–C) and six distinct one-dimensional representations (augmented as trees)—all others are mirror images or rotations of these (see Supplement 1 for details). Although all perspectives are informationally equivalent, the dashed region marks the 2D- and 1D-visualizations that are semantically privileged for tasks in which dimension Z can remain implicit. (Cell color marks category X; pattern marks category Y; bold font marks correct classifications Z.)


As before, viewing the model from the direction of one of its axes collapses the corresponding dimension and frames three distinct 2×2 matrices (A–C). Geometrically, adopting one of these perspectives implies a projection from the 3D-model to a 2D-matrix. But due to the fragmentary nature of the partial cube, these projections no longer require any aggregation over the dimension from which it is being viewed. Thus, each of the three possible 2×2 matrices fully preserves the frequency information of the 3D-model. Although the three matrices only differ in the arrangement of the four frequency counts, they are not identical. Crucially, each 2×2 matrix explicitly represents two of the three original dimensions (as its horizontal and vertical dimensions), whereas the third dimension is implicitly represented (as its diagonal). The 2×2 matrix with two orthogonal dimensions {X, Y} and an implicit dimension Z matches the semantic structure of tasks in which the third dimension is defined as the correspondence of the other two dimensions (as in Table 2). Thus, Matrix A is the most compact 2D-representation that preserves the 3D-structure of the underlying task domain and is semantically privileged over the other matrices, unless a task requires that category correspondence is explicated.

Each 2×2 matrix can be organized further by reading out its four cells in either a by row or by column fashion. Geometrically, this process corresponds to the two possible projections from a 2D-matrix into an ordered list of cells. Collapsing a matrix into a list is also known as stacking dimensions (Mihalisin et al., 1991), and can be augmented as a hierarchical tree that illustrates how each matrix is parsed into the ordered sequence formed by its leaves. Depending on the angle from which a matrix is being viewed, the projection results in two distinct trees and lists per matrix: The left tree below each matrix uses the horizontal dimension as the tree's first branching criterion (i.e., dissecting the matrix in a by column fashion) before using the vertical dimension as the tree's second branching criterion (dissecting the cells of each column by row). The right tree below each matrix assumes a different projection angle, thus reversing the branching criteria of the left tree and reordering the list's four frequency counts into a different order as the tree's leaves. The six trees and lists at the bottom comprise all possible ways of projecting the original frequency counts into one-dimensional lists (see Supplement 1 for details).

To clarify the status of the geometric model shown in Figure 5, note that the top cube explicates the actual structure underlying any task with semantic mappings that define one dimension as the correspondence between two others (i.e., dimension Z in Table 2). More precisely, the image of the partial cube provides a visualization of this structure, but its geometry models the essential aspects of tasks with three orthogonal dimensions and the correspondence constraint. By contrast, all lower-dimensional visualizations (e.g., the 2×2 matrices and trees in Figure 5) selectively depict some particular aspect of this structure. Depending on the current task, such visualizations can both increase and decrease the transparency of particular measures (see section 2.4). As the discovery of a shared representational structure has the potential to integrate the terminologies and metrics used in many different domains, it is important to understand in which sense the representations on the three levels of Figure 5 are identical to and differ from each other. On the one hand, all ten images contained in Figure 5 are informationally equivalent (Larkin and Simon, 1987). In contrast to the projections in Figure 3, every 2×2 matrix, hierarchical tree, or list of counts contains the frequency information of the original cube, and thus can be reconstructed from any other image. (Supplement 1 shows that the three-, two-, and one-dimensional models enable an identical number of 24 distinct projections.) On the other hand, this does not imply that all these images are equal. Instead, they differ substantially in the ways in which they explicate and organize information. Strictly speaking, only the partial 3D-cube faithfully represents the three-dimensional nature of the underlying problem. By adopting particular perspectives, all two- or one-dimensional projections distort this structure by imposing new constraints and introducing representational artifacts that can have both desirable or undesirable consequences, depending on the task to be solved. For instance, framing a 2×2 matrix by selecting and arranging two dimensions not only renders the third dimension implicit, but also alters the proximity relations between cells (as some become neighbors, while others are separated). Similarly, whereas the original cube contains no hierarchy, each tree depicts one dimension as the primary and unconditional branching criterion (dissecting the population into two subsets) and one other dimension as a second branching criterion (appearing to be dependent and conditional upon the first). Importantly, the structure of a matrix or tree is blind to all semantic constraints of specific tasks or domains. Thus, a chosen representation neither needs to correspond to a user's current task (e.g., a 2×2 matrix of X by Y can be shown to ask questions about Z), nor match the causal or statistical properties of a domain (e.g., the second branching criterion of a tree can be independent of its first). As mismatches between the properties of tasks and representational features make problems more difficult, whereas matches can render solutions transparent, it matters which particular representation is chosen. (We elaborate on this point in section 5.)




4. INTEGRATION

We originally motivated the matrix lens model by the mammography problem and showed how it can be solved by framing and focusing on parts of a 2×2 matrix (see section 2). We then added semantic mappings to an abstract model and argued that tasks in various domains share the same underlying structure (section 3). However, both the matrix lens model (shown in Figure 2) and the reduced structural geometry of the partial cube model (Figure 5) seemed ill-motivated if they only allowed to compute the PPV of this particular problem. To justify our investment, we now extend the scope of our model in two ways: First, we show how additional measures of clinical diagnostics can be derived by adopting slightly different perspectives on the same matrix. Locating these measures in our structural account also allows illuminating two key dichotomies in the context of diagnostic testing. In section 4.2, we further generalize our model to additional domains and show how a large variety of measures and terminologies can be understood in a matrix-based framework.


4.1. Integrating Metrics of Classification and Diagnostics

Our model solved the mammography problem by adopting a particular perspective on a 2×2 matrix to derive a test's PPV (Figure 4). As the geometry of the matrix and the abstract tasks performed with this construct are independent of a particular content, we can generalize our analysis to other situations involving classification tasks and diagnostic tests. Figure 6 provides a glimpse of the additional measures that are available by framing and focusing on particular aspects of a 2×2 matrix. Figure 6 uses the same layout as Figure 4, but replaces the four frequencies a, b, c, and d, by the nomenclature of true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN), which is widely used in the domain of classification and clinical diagnostics. As before, Figures 6I–III show frequencies, probabilities, and conditional probabilities, but Figure 6IV adds likelihood ratios (LR+ and LR−) as row-wise ratios of the conditional probabilities in Figure 6IIIB. The highlighted formulas below each matrix compute metrics that summarize its quality in different ways: By computing the diagonal total of correct cases, accuracy (ACC), or two measures of contingency as the difference between conditional probabilities in a particular direction (ΔPR vs. ΔPC). A noteworthy aspect of Figure 6 is that some conditional probabilities (in Figures 6IIIA,B) are not only labeled as “rates” (e.g., TPR, FPR), but carry dedicated names (e.g., sens, spec, PPV, NPV) or even multiple names (e.g., sens ≅ recall, PPV ≅ precision). As we will see in Table 3, this reflects their role and relevance in various domains. But irrespective of semantics, Figure 6 shows dependencies in a diagrammatic fashion. For instance, by conditionalizing the 2×2 matrix by row, all values of Figure IIIA (e.g., PPV, NPV) depend on a condition's prevalence (prev), but not on a test's bias. Conversely, by conditionalizing the 2×2 matrix by column, all values of Figure 6IIIB (e.g., sens, spec) depend on bias, but not on prevalence (prev).


[image: Figure 6]
FIGURE 6. Key metrics for measuring diagnostic classification performance based on a 2×2 matrix of frequency counts that denote true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN). Panels I–III correspond to Figure 4, whereas Panel IV computes likelihood and odds ratios from conditional probabilities (III) or frequencies (I). The diagram explicates the relations and dependencies between metrics, arithmetic transformations (e.g., normalizing, computing conditional probabilities, or odds), and corresponding changes of perspective. (See Figure 4 for a numeric example and Table 3 for definitions and alternative names.)



Table 3. Definition of metrics and corresponding formulas based on the 2×2 matrix, and alternative names in different domains or disciplines.

[image: Table 3]

In addition to the familiar frequencies, probabilities, and conditional probabilities, Figure 6 defines three more comprehensive measures that further combine and transform conditional probabilities. The diagnostic odds ratio (DOR, defined in Figure 6IV) is a global indicator of discriminative performance that allows comparisons between diagnostic tests (see Glas et al., 2003; Šimundić, 2009, for details). Whereas, its formula implies that it integrates all four elementary frequencies of the 2×2 matrix, the geometry of Figure 6 shows that its value depends on a test's sensitivity (sens) and specificity (spec, both in Figure 6IIIB), but decidedly not on a condition's prevalence (prev, Figure 6II), as this information was dropped when adopting a by column perspective on the original matrix before calculating the likelihood ratios2.

Additionally, the lower right panels of Figure 6 define two bi-directional scores that reintegrate the two perspectives adopted by computing conditional probabilities (in Figures 6IIIA,B). The F1-score is the harmonic mean of precision (i.e., PPV) and recall (i.e., sens) and is called triangular (in Figure 6V) as it focuses on the top-left cell and combines two measures that conditionalize the number of true positives (TP) both by row and by column. The χ2-score (Figure 6VI) is even more encompassing by multiplying both directional measures of contingency (i.e., ΔPR and ΔPC) and additionally including the population size N, which otherwise is lost when transforming into probabilities. Finally, the same panel also mentions the popular Matthews correlation coefficient (MCC) as another quadrangular measure closely related to the χ2-score.

Introducing these measures within a structural model of 2×2 matrices—rather than using mathematical notation—has two advantages: First, visually illustrating the perspectives adopted by the measures and separating them from the numerical transformations required for their derivation highlights their dependencies and limitations. For instance, realizing that diagnostic situations usually imply a trade-off between two different errors (i.e., incorrect classifications FP vs. FN), Figure 6 visually explains the inverse relationship between sensitivity and PPV (i.e., recall and precision). Second, explicating the perspectives adopted by otherwise abstract measures and locating them within a structural framework increases their transparency and facilitates their understanding.

The distinction between adopting two perspectives on a 2×2 matrix also helps explaining two key dichotomies in the domain of clinical diagnostics. First, developing a new test adopts a different perspective than applying an existing test (Linn, 2004). Developing a test assumes that each element's true condition (and hence the condition's prevalence in the population) is known. Based on this assumption, developers adopt a by column perspective and aim to design a test that meets certain criteria, typically formulated in terms of sensitivity and specificity. By contrast, applying an existing test assumes that the test's properties are known (as in the mammography problem). Based on this information, we can ask questions about the predictive power of a test result. But in order to adopt the corresponding by row perspective (e.g., for computing the test's PPV or NPV), we need an actual prevalence value (which may diverge from the prevalence value assumed during test development).

An ideal test would exhibit perfect sensitivity and perfect specificity. But given that we typically need to compromise between both measures, shifting perspectives on the 2×2 matrix also illuminates the difference between testing for screening vs. for diagnostic purposes (Morrison, 1998; Streiner, 2003; Trevethan, 2017). In screening an entire population, our primary goal is to reliably detect all diseased individuals (i.e., rule out only healthy individuals, Zakowski et al., 2004). Assuming that the prevalence of the condition is low and we have options for further testing, this implies maximizing sensitivity (sens) by minimizing misses (FN), at the expense of accepting some false positives (FP). Adopting an alternative by row perspective on the 2×2 matrix resulting from such a screening scenario, we realize that minimizing misses (FN) at the expense of false positives (FP) will increase the test's NPV, at the expense of lowering its PPV. By contrast, diagnostic testing typically starts with a suspicion (e.g., the presence of symptoms or a positive test result) and assumes a higher prevalence of disease. Here, our primary goal is to avoid unnecessary treatments by reliably identifying all healthy individuals (i.e., rule in only diseased individuals, Zakowski et al., 2004). This implies maximizing specificity (spec) by minimizing false positives (FP) at the expense of accepting some misses (FN). Viewing the resulting 2×2 matrix from a by row perspective shows that this will increase a test's PPV at the expense of lowering its NPV. In practice, additional factors—like differences in costs, prevalences, and the availability of other tests or treatments—will also matter. Importantly, our model helps rendering these theoretical relationships more transparent.



4.2. Integrating Metrics and Terminologies Across Domains

Beyond the realms of classification and diagnostics, the 2×2 matrix construct features prominently in many additional contexts and domains. While many authors have provided overviews that define and summarize the measures used within a domain, few have explained and linked measures across domains. When realizing that an impressive wealth of important measures is based on the relatively simple construct of a 2×2 matrix, the lack of an integrative account is striking and calls for an explanation. We see three obstacles and corresponding sources of confusion:

1. First, any attempt to bridge domains faces terminological difficulties. For instance, authors from clinical diagnostics (e.g., Selvin, 1996; Massart et al., 1998; Šimundić, 2009) use different names for the same concepts than those rooted in signal detection theory (e.g., Green and Swets, 1974; Stanislaw and Todorov, 1999) or those from machine learning and information retrieval (e.g., Rijsbergen, 1979; Fawcett, 2006; Baeza-Yates and Berthier, 2011; Powers, 2011; Ting, 2011).

2. Domains differ in their conceptual needs and thus develop and use different metrics. Whereas, experts in medical diagnostics primarily focus on the conditional probabilities and odds ratios discussed in section 4.1 (see Figure 6), the merits of triangular scores—like the F- and G-scores, lift, or the Jaccard index—mainly matter in the context of classifier development and information retrieval tasks (e.g., Rijsbergen, 1979; Powers, 2011).

3. A subtle but pervasive barrier to an integrative account is of a functional nature: Whereas, most domains mentioned so far primarily address some variant of a classification task (e.g., “Which of two classes does an individual belong to?” or “What would be a good criterion to distinguish between these two categories?”), the domains of risk and treatment primarily evaluate the consequences of some categorical distinction (e.g., “Which outcomes are observed if the risk factor is present?” or “What are the effects of being treated?”). Although such questions can readily be addressed in a 2×2 matrix framework, the corresponding research traditions differ substantially in their constraints and study designs. Importantly, the usefulness of any particular measure cannot be determined solely from its formula or label, but depends on boundary conditions. An example is the measure of relative risk (RR), which corresponds to the positive likelihood ratio (LR+) defined in Figure 6: RR can be a useful measure for comparing the outcomes for individuals exposed to some risk factor to those of unexposed individuals (Sauerbrei and Blettner, 2009), a deceptive and misleading measure that inflates the absolute magnitude of effects (Gigerenzer et al., 2007; Noordzij et al., 2017), or an un-informative and nonsensical measure if the risk factor's prevalence was fixed by the study design (Sauerbrei and Blettner, 2009). Thus, choosing and using measures in a sensible manner requires more than just knowing their names and definitions—it requires understanding their roles in answering particular questions and their match to the study design that generated the 2×2 matrix.

Despite these obstacles, Table 3 provides an overview of metrics across domains. Previous accounts mostly focused on covering one domain (see, e.g., Hasenclever and Scholz, 2016, for a mathematical/statistical approach, or Todeschini et al., 2012, for an extensive comparison from a bio-chemical point of view) or on connecting two domains (e.g., Powers, 2011). By contrast, our model integrates a wide variety of measures from different domains in a uniform approach and provides—to the best of our knowledge—the most encompassing account so far. Beyond satisfying an encyclopedic ambition to collect key measures from different domains in one place, Table 3 organizes them in a systematic fashion and links various domains and terminologies.

Overall, successful focusing on a single measure reduces the complexity of the world to a one-dimensional answer (see Figure 2). As we have seen, any measure provided as such an answer is a highly specialized tool that—given precise boundary conditions—serves particular purposes. By abstracting from the original data and combining many aspects, the more complex measures gain generality, but simultaneously obscure and encapsulate the perspectives adopted during their derivation.

Besides defining each measure in terms of frequencies and probabilities, Table 3 also provides visual icons that show the perspective adopted on a 2×2 matrix when deriving the measure and thus implicitly contained in it. We trust that readers will find these visual and diagrammatic illustrations more illuminating than a purely mathematical treatment. Ideally, locating measures and their inter-relations in a shared 2×2 matrix framework will facilitate their comprehension and, hopefully, help to choose and use them more responsibly. To illustrate how the 2×2 matrix construct can clarify theoretical debates, the next section applies our approach to some problems that are known to puzzle and perplex people when expressed in conventional form.




5. APPLICATIONS

Our model views the world through the lens of a 2×2 matrix. Being a theoretical framework, its primary purpose is to enable insights by explicating the process that reduces selected aspects of a complex and continuous world to a numeric measure. Whereas, such measures are typically defined in terms of mathematical formulas, our structural account reveals them as particular perspectives on a 2×2 matrix. Showing how the measures of different domains are based on a common construct and a shared set of basic tasks allows an integrative view of their assumptions and terminologies.

Beyond a better understanding of theoretical concepts and their relations, a practical benefit of our model lies in its potential for clarifying familiar problems. In the following, we provide three case studies that demonstrate how our model can be applied to ongoing debates regarding the difficulty and facilitation of Bayesian reasoning tasks (sections 5.1, 5.2), and to address the question whether the women and children of the Titanic were successfully rescued first (section 5.3). True to its analytic nature, our model will not solve these debates, but increase transparency by providing alternative perspectives.


5.1. Perspectives on Natural Frequencies and Nested Sets

How can we render the mammography problem more transparent? We argue that our model makes three inter-related contributions that help to clarify the theoretical debate surrounding this problem. First, we provide a representational explanation of the problem's difficulty. As we have shown (in sections 1.2, 2.3), the mammography problem revolves around three conditional probabilities: Whereas, the test's sensitivity p(T|C) and false positive rate p(T|¬C) are given, the problem asks for the test's PPV p(C|T). When arranging the problem's joint frequencies or probabilities in a 2×2 matrix (as in Figures 4, 6) we see that the two conditional probabilities provided adopt a by column perspective on the matrix (Figures 4IIIB, 6IIIB), whereas the problem's solution requires adopting a by row perspective on the same matrix (Figures 4IIIA, 6IIIA). Geometrically, the problem requires the reversal of an adopted perspective before adopting an alternative perspective. Mathematically, providing the prevalence p(C) renders the reversal possible (i.e., we can re-construct Panel II from Panel IIIB). In practice, however, this requires first computing two joint probabilities [i.e., p(C ∩ T) = p(C)p(T|C) and p(¬C ∩ T) = p(¬C)p(T|¬C)] before Bayes' theorem can be used to compute the desired solution p(C|T). Thus, within our 2×2 matrix framework, the crux of the Bayesian inversion task are its representational demands, which are reflected in its computational complexity. Even when fully understanding the information provided and the question asked, solving the standard mammography problem requires two representational shifts: Reversing an implicit perspective and pivoting to an alternative perspective.

As a second contribution, our model partially explains why expressing the problem in the standard frequency format makes its solution much easier. We propose two representational reasons for the facilitative effect of natural frequencies on Bayesian inference. First, let us assume that the four basic frequencies (a–d) are framed as a 2×2 matrix (as in Figures 4I, 6I). Given this matrix, the desired PPV p(C|T) can be derived in a straight-forward manner—by focusing on the top row (i.e., women with a positive test result T) and computing the ratio [image: image]. Arithmetically, this operation is identical to the computationally simple solution based on a natural sampling process (e.g., Gigerenzer and Hoffrage, 1995; Hoffrage et al., 2000, 2002). Comparing the representational complexity of this process to the one outlined for the probability format reveals a stark contrast: Instead of reversing an implicit perspective before switching to another, we only need to adopt a single right perspective on the 2×2 matrix. But what if natural frequencies are not already framed neatly in 2×2 matrix form? Interestingly, assuming the absence of a 2×2 structure may render the adoption of the right perspective even easier. Our second representational reason for the higher likelihood of correct solutions when expressing the problem in the standard frequency format considers the identities and semantics of the joint frequencies provided. Note that the problem statement explicitly provides only two of four joint frequencies: a = 8 and b = 95. The semantic category shared by these frequencies is T (i.e., women with a positive test outcome). Noticing this common element is the mental equivalent of adopting a by row perspective on the 2×2 matrix, or constructing an hierarchical tree that uses the Test outcome dimension as its first branching criterion. (As we will see in Figure 7B, adopting this perspective essentially solves the problem.) Thus, framing the joint frequencies as a 2×2 matrix facilitates the solution by requiring fewer perspective changes than starting from two conditional probabilities and a prior. And providing only the two joint frequencies that need to be combined for deriving the correct solution may even act like a mental nudge into the right direction.
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FIGURE 7. A 2×2 matrix of the mammography problem and two trees resulting from adopting a by column vs. a by row perspective on it. Computing the PPV from natural frequencies for a population of N = 1, 000 women requires realizing that 8 out of 103 women with a positive test result also have cancer. Irrespective of its format, the information provided by the Bayesian problem (probabilities in [image: image], frequencies in [image: image] or [image: image]) only allows the direct construction of Tree A. However, only Tree B explicitly represents both frequencies required for solving the task (in [image: image]). Thus, while Tree A provides a transparent representation of the problem, Tree B renders its solution transparent.


Given abundant evidence for the facilitative effects of natural frequencies on Bayesian reasoning, a puzzling finding from decades of research is that about 75% of the participants facing such problems still fail to provide the correct solution (McDowell and Jacobs, 2017). Thus, a very good question (raised by Weber et al., 2018) is: Why is Bayesian reasoning in frequency formats still so difficult? Our third contribution builds on the previous two and provides an analytic answer to this question. As we have seen, the mammography problem in its standard probability format provides sufficient information for applying Bayes' theorem or for translating the problem into an alternative representation using natural frequencies. By specifying the cancer prevalence p(C), the test's sensitivity p(T|C), and its false positive rate p(T|¬C), the three measures typically provided adopt a by column perspective on a 2×2 matrix framed by True condition as its Dimension X (see Figures 4, 6). As a consequence, reconstructing the frequency matrix from the probabilities provided implies building a hierarchical tree that first dissects the population by True condition before branching by Test outcome (see Tree A of Figure 7, which shows provided probabilities as [image: image] edges). Importantly, expressing the problem in the standard frequency format provides five key nodes of the same tree (in [image: image] and in [image: image]). Thus, although the underlying problem structure actually enables three 2×2 matrices and six hierarchical trees (see Figure 5), the only tree that can directly be constructed from the provided information splits the population by True condition (i.e., adopts a by column perspective on the matrix). By contrast, the PPV measure solving the problem adopts a by row perspective on the same matrix. Hence, instructing a representation of Tree A for computing the PPV still requires a change in perspective: Rather than combining tree leaves by True condition, they must be combined by Test outcome (to see that the number of women with positive tests is 8+95 = 103). Making this change effectively constructs an alternative tree that corresponds to adopting a by row perspective on the 2×2 matrix (see Tree B of Figure 7, which explicitly represents both frequencies required for computing the PPV in red). Importantly, both trees are perfectly transparent, but with respect to different tasks. Both standard formats instruct Tree A which transparently represents the information provided by the problem. The task remains difficult because its solution is not obvious in this representation—only Tree B adopts the perspective required for deriving the PPV and thus provides a transparent representation of the task's solution. Thus, our geometric analysis shows that Bayesian reasoning is and remains vexing as long as it requires a crucial representational shift between problem statement and solution. Even when expressing the Bayesian problem in terms of natural frequencies, the perspective implicitly adopted by the provided information has problem solvers, metaphorically, and literally, barking up the wrong tree. Taking (Simon, 1981) seriously, we suggest: By making the problem's solution transparent, the right tree solves the problem.

Accepting this insight raises an intriguing conundrum: If the crux of Bayesian problem solving consists in the representational shift, what remains when we provide people with a transparent representation of the solution? Removing the need for a perspective change essentially dissolves the Bayesian aspect of the original problem3. Thus, it should not surprise us that providing participants with the crucial elements of Tree B (as in the short menu formats by Gigerenzer and Hoffrage, 1995) or both trees (as in the double tree by Wassner, 2004) improves the likelihood of correct solutions. What should surprise us, however, is that their rate fails to reach 100%. Based on our representational analysis, instructing the problem in a short menu format (or one of its visual analogs) essentially tests participants' ability to recognize the solution when its key elements are provided to them. As the term “facilitation effect” seems misleading in the absence of a Bayesian problem, it may be more appropriate to view this experimental condition as providing an upper performance benchmark (in the sense of Neth et al., 2016), which assess people's ability or willingness for deriving and reporting a conditional probability when the representational demands of the Bayesian problem have been removed. The empirical finding that the solution rates in conditions with short menu formats only rise by about 12% (McDowell and Jacobs, 2017) suggests that participants suffer from additional difficulties that prevail beyond the representational demands of Bayesian reasoning (e.g., lack of comprehension, motivation, or numerical skills. See Brase, 2009a; Ferguson and Starmer, 2013; Weber et al., 2018, for suggestions).

Figure 8 summarizes our arguments on the representational demands of Bayesian reasoning and the facilitation effects of natural frequencies and short menu formats. Beyond the computational differences (shown in the lower right panel), the information provided by the problem and the perspectives required and suggested for solving it differ substantially between the three problem versions. The probability format (Figure 8I) mixes a marginal probability and two conditional probabilities that both adopt a by column perspective. The two joint probabilities of the 2×2 matrix containing probabilities (marked as missing parts of the Solution in Figure 8) are necessary for solving the problem, but first need to be computed from the probabilities provided. The natural frequencies format (Figure 8II) presents information in the same (by column) perspective as the probability format (as indicated by the vertical arrows), but provides frequencies instead of probabilities. Reducing this difference to a mere change in representational format ignores the representational differences between both panels. Figure 8II renders it obvious why the problem's solution is facilitated: The two joint frequencies that are explicitly mentioned in the problem are also required for computing its solution and suggest the right by row perspective. Finally, the short frequencies format (Figure 8III) abandons the by column perspective of the other panels. By providing a joint and a marginal frequency, the alternative by row perspective is suggested and implies the solution. Especially if the answer asks for frequencies (i.e., 8 out of 103), the short frequency format essentially becomes a search task that does not require any calculation.
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FIGURE 8. A matrix-based account explicating the difficulty of Bayesian reasoning and two types of facilitation effects (on the example of the mammography problem, as studied by Gigerenzer and Hoffrage, 1995, p. 688). (Color coding and lowercase letters next to arrows in Panels I–III refer to the problem descriptions in the three formats shown in Table 1.)


To clarify, our representational account does not compromise the key argument of Gigerenzer and Hoffrage (1995), who demonstrate the facilitative effects of frequency formats on Bayesian reasoning. But whereas previous authors saw the benefits of short menu formats primarily in reducing computational complexity (e.g., Ferguson and Starmer, 2013; Fiedler et al., 2000; Mellers and McGraw, 1999), we argue that removing the need for a perspective change fundamentally alters the problem. Whereas, natural frequencies only facilitate performance by implying a more goal-directed representation of the Bayesian problem, the short menu format suggests this alternative perspective, thereby explicating the problem's solution in a transparent fashion. Despite these contributions, any attempt to explain all existing data solely on the structure of a 2×2 matrix would inevitably fall short, as its geometry remains silent about the difference between joint frequencies and joint probabilities (i.e., Figures 4I,II, 6I,II). Studies demonstrating the impact of representation formats (e.g., Sedlmeier and Gigerenzer, 2001; Brase, 2008) and the relevance of analytical abilities (e.g., Sirota et al., 2014) show that representation format, problem content and context, and individual differences jointly matter for performance in Bayesian reasoning.

Our analysis has both theoretical and practical implications for investigations of Bayesian reasoning. Theoretically, our account is compatible with the basic tenets of nested-sets theory, which claims that Bayesian inference is facilitated by rendering certain subset relations and their reference classes more transparent (e.g., Mellers and McGraw, 1999; Sloman et al., 2003; Yamagishi, 2003; Barbey and Sloman, 2007). But advocates of nested-sets theory have been criticized that “the mechanism by which the subset structure is revealed has not been specified. Nor is it clear how the joint event formats help participants to visualize the nested structure.” (McDowell and Jacobs, 2017, p. 1293). By contrast, our model provides concrete suggestions how specific sets are made accessible (by filtering and framing) and how subset structures are revealed (by focusing on different parts of a shared representational structure). In fact, our notion of adopting particular perspectives provides a mechanism that explains why some formats or menus facilitate the problem's solution more than others: Given a 2×2 matrix, both natural frequencies and short menu formats enhance the salience of the perspective that renders the problem's solution transparent. Various authors have expressed similar ideas—see, for instance, the notion of backward reasoning by Johnson and Tubau (2015), the problem-representation transfer hypothesis by Sirota et al. (2015), or ideas on the importance of task-compatible reference classes by Ayal and Beyth-Marom (2014) and Talboy and Schneider (2018)—but anchoring their hypotheses in a structural account makes these notions more specific and concrete. Finally, the apparent discord between natural frequencies and a nested-sets account dissolves within our model: Natural frequencies are an implicit result of filtering and framing (see sections 2.1, 2.2). Nested-sets theory describes how natural frequencies are selected and explicated, which our model depicts as particular ways of focusing (section 2.3).

As a practical implication, our representational account appoints a key role to the systematic study of visualizations for improving Bayesian reasoning. Researchers in both visualization (e.g., Cleveland and McGill, 1985; Ziemkiewicz and Kosara, 2010) and psychology (e.g., Talboy and Schneider, 2017; Böcherer-Linder and Eichler, 2019) agree that proportional visual mappings are essential for providing useful visual aids. However, our analysis suggests that experimental designs should move beyond comparing performance with and without visual aids (e.g., Brase, 2009b; Garcia-Retamero and Hoffrage, 2013) or contrasting seemingly haphazard selections of graphical representations (e.g., Micallef et al., 2012; Khan et al., 2015). As a comprehensive study of visualizations for Bayesian reasoning is still lacking, existing classifications of visual representations are typically described as collections of examples (e.g., Binder et al., 2015, Figure 1, p. 3; McDowell and Jacobs, 2017, Figure 2, p. 1283; and Böcherer-Linder and Eichler, 2019, Figure 3, p. 3). Although some noteworthy structural accounts of visualizations exist (e.g., Khan et al., 2015; Böcherer-Linder and Eichler, 2017, 2019), they were mostly framed in terms of nested-sets. Lacking the mechanisms of adopting particular perspectives on a shared representation, they could not benefit from the three-dimensional structure underlying all Bayesian reasoning problems (see Figure 5) or justify why some representations are privileged, while others are misleading. As we have shown (in sections 2, 3), contrasting different visualization types risks comparing apples with oranges (e.g., a 2×2 matrix with two optional perspectives, with the particular perspective of a tree or unit square). To be aware of such categorical distinctions, we must always specify: Which particular version of each visualization is being shown? A methodological consequence of our model is that researchers can identify a visualization's exact role: Which problem representation does it imply and which perspective does it adopt or suggest? Does a visualization merely explicate the information provided by the problem, or does it show the problem's solution? By mapping particular aspects of the Bayesian problem space to specific visual features, future studies of visual aids can measure the interplay between the task's psychological demands, visual features of representations, and viewers' background knowledge and graphical literacy much more precisely.



5.2. Perspectives on Bayesian Brain Teasers

Psychology has a long tradition of studying Bayesian problem solving with toy tasks that serve as entertaining brain teasers and appear to show people's inability for straight thinking (e.g., Kahneman and Tversky, 1973; Bar-Hillel, 1980; Bar-Hillel and Falk, 1982). Such tasks let probabilistic events unfold within some narrative and lure most naïve participants into providing an intuitive, but false solution.

To demonstrate the generality of our model, we first use it to explicate another notorious instance of base rate neglect (e.g., Kahneman and Tversky, 1973; Tversky and Kahneman, 1974). A famous problem in this area is the cab problem (originally introduced by Kahneman and Tversky, 1972a, and extensively analyzed by Bar-Hillel, 1980; Birnbaum, 1983; Macchi, 1995):

A cab was involved in a hit-and-run accident at night. Two cab companies, the Green and the Blue, operate in the city. You are given the following data:

1. 85% of the cabs in the city are Green and 15% are Blue.

2. A witness identified the cab as a Blue cab. The court tested his ability to identify cabs under the appropriate visibility conditions. When presented with a sample of cabs (half of which were Blue and half of which were Green) the witness correctly identified each color in 80% of the cases and erred in 20% of the cases.

What is the probability that the cab involved in the accident was Blue rather than Green?

This problem description provides base-rate information [i.e., the prevalence of both types of cabs: p(Green) = 0.85, p(Blue) = 0.15], diagnostic information (i.e., the reliability of the witness testimony: p(blue|Blue) = p(green|Green) = 0.80), and asks for an inverse conditional probability (i.e., p(Blue|blue)). The problem's correct solution is 41%, but the median and mode of participants' answers in empirical studies is 80%, thus coinciding with the credibility of the witness and appearing to neglect the base rate information.

The problem information can be used to frame a 2×2 matrix that cross-tabulates an actual condition (Was the cab Blue or Green?) with two alternative witness testimonies (Does the witness report a blue or green cab?). Figure 9 locates the details provided by the problem (shown in [image: image]) in our explanatory framework. This reveals the close correspondence of the cab problem to the mammography problem (see Figure 4). Again, the provided conditional probabilities (in Figure 4III) adopt a by column perspective on an implicit 2×2 matrix that can be reconstructed by multiplying each condition's specific information (i.e., the sensitivity and specificity of the witness) by the corresponding base rates (for Blue vs. Green cabs). Geometrically, solving the problem by Bayes' theorem requires first reversing the implicit by column perspective (to compute the joint probabilities of Panel I) and then adopting an orthogonal by row perspective (to derive the desired conditional probability p(Blue|blue), shown in [image: image], and corresponding to the mammography's PPV).


[image: Figure 9]
FIGURE 9. The cab problem (Kahneman and Tversky, 1972a) corresponds closely to the mammography problem by providing base rate information [e.g., the prevalence of p(Blue) = 0.15] and two types of diagnostic information (p(blue|Blue) = p(green|Green) = 0.80, indicating the testimony's sensitivity and specificity). The problem's solution is p(Blue|blue) = 0.41, which is the inverse conditional probability of the given sensitivity p(blue|Blue) = 0.80, and corresponds to the PPV of the mammography problem. The analysis explains the problem's difficulty and reveals two ways of erroneously answering 80% (E1 vs. E2) that explicate the informal notions of base rate neglect and representativeness. Panel I contains probabilities, whereas Panels II and III contain conditional probabilities. (Blue cells mark Blue cabs; shaded cells mark testimonies of “blue”; red areas mark potential errors; yellow areas highlight the solution's perspective.)


Interestingly, this analysis reveals two distinct rationales for erroneously answering 80%. First, participants could divide the top-left cell by the row sum, but erroneously use the conditional probabilities (of Figure 4III), rather than the unconditional probabilities (of Figure 4I). This error of false inputs (E1) explicates the essence of base rate neglect as performing the right calculation with the wrong inputs. A merely informal account of this notion could easily confuse it with another error, which also ignores all base rates. This second error fails to distinguish p(Blue|blue) from its inverse p(blue|Blue) and reports the testimony's sensitivity or specificity as the desired answer. Mistakenly reporting a false measure (E2) as the solution has been labeled as an inverse fallacy (Eddy, 1982; Koehler, 1996) and attributed to using a Fisherian algorithm (Gigerenzer and Hoffrage, 1995) or representative thinking (Dawes, 1986; Zhu and Gigerenzer, 2006). The prominent hypothesis that a representativeness heuristic, which uses similarity or the degree of correspondence of an instance to a category as a proxy for judging its probability, may cause and explain the observed errors (Kahneman and Tversky, 1972b, 1973), has been criticized as overly narrow and vague (Gigerenzer, 1991, 1996). As accounts of representativeness typically invoke notions of saliency and correspondence, they can be consolidated with our structural attempt for rendering task representations and problem solutions more obvious. The fact that our model is much narrower than an arguably vague notion may actually be a benefit: Not only does it allow us to pin-point the precise location of potential errors, but also offers a new role for representativeness as explaining why people preferentially adopt the mis-leading by column perspective.

Our framework can accommodate problems that feature more than two options. For instance, the three-door or Monty Hall problem (Selvin, 1975; vos Savant, 1990) is named after a TV show in which a contestant faces a choice between three doors (D1–D3). Behind one random door lurks the grand price of a car, whereas each of the other two doors conceals a goat. After the contestant selects a door (e.g., D1), the host (who knows all objects' locations) opens another door (e.g., D3) to reveal a goat. The question whether the contestant should now switch to the other door (D2) has sparked an intense public debate and inspired extensive studies (e.g., Granberg and Brown, 1995; Krauss and Wang, 2003; Baratgin, 2009).

Explicating the Monty Hall problem by our model extends the previous examples in two ways: First, accounting for a probabilistic task with three options renders the mapping from narrative to diagnostic scenario more challenging. Second, the standard two-door scenario of the problem (in which the host reveals a goat and the contestant thus seems to face a choice between two remaining doors, Krauss and Wang, 2003) departs from the problems discussed so far by requiring that the interplay between the situation and the host's options must be taken into account. Figure 10 depicts the standard scenario as a 3 ×3 matrix (on the left): Its X-dimension denotes the three possible locations of the car (C1–C3) and its Y-dimension denotes the three doors that the host can open (D1–D3). Figure 10I indicates the number of possible cases as the host's options for opening doors given the contestant's initial choice and the car's actual location. As there are N = 3! = 6 possible arrangements of a car and two distinct goats and each car location is equiprobable (i.e., U{C1, C2, C3}), each column contains two cases. If the contestant initially selects D1, only D2 or D3 can be opened. Which of these doors is opened depends mostly on the car's location: If the car is at C2 or C3, the host must open D3 or D2, respectively, to reveal a goat. If the car is at C1, both D2 or D3 hide goats and could be opened, but we assume that the host has no preference and hence opens both doors equally often in those cases. The lower 3 ×3 matrix (Figure 10III) expresses the same setup in terms of probabilities that are conditionalized on car location (i.e., by column). Whereas, only the host can know which of the four possible combinations (i.e., non-zero cells in Figures 10I,III) is realized in an actual game, a savvy contestant could reconstruct all possible cases and their probabilities from the problem description. But even if an appropriate matrix is framed, a crucial element for solving the problem consists in adopting the right perspective on it.


[image: Figure 10]
FIGURE 10. Explicating the Monty Hall problem (vos Savant, 1990) in its standard two-door scenario (Krauss and Wang, 2003). The 3 ×3 matrices map three equiprobable car locations (C1–C3) to the three doors that the host can open (D1–D3) and depict all possible combinations after the contestant selects D1 in terms of frequencies (I) and conditional probabilities (III). Removing the distinction between C2 and C3 and the impossible row D1 frames a 2×2 matrix that illustrates the contestant's dilemma (II). Adopting a by row perspective yields the solution p(C1|D3)[image: image] and p(C2∨3|D3)[image: image], indicating that the contestant should switch doors. Adopting a by column perspective on the same matrix yields p(Di|Cj) =.50 for all combinations (IV), indicating that conditionalizing the host's action on the car's location is uninformative. The fact that three potential errors (i.e., false framing, E1, false inputs, E2, and reporting a false measure, E3) all yield the same erroneous value of 50% explains why this false intuition is so compelling. (Blue cells mark the contestant's initial choice; red areas mark potential errors; yellow areas highlight the solution's perspective.)


To further clarify the contestant's dilemma, we frame the initial 3 ×3 matrix as a 2×2 matrix that collapses C2 and C3 into one column (to only distinguish C1 from C2∨3) and removes the impossible row D1 (Figure 10II). As in our previous examples, we can now adopt a by row or a by column perspective on this matrix. The problem's solution is derived by conditionalizing C1 on the identity of the opened door (i.e., by row). Using either a 3 ×3 or the 2×2 matrix (Figures 10I–III), this shows that [image: image]. Thus, the conditional probability that the car is at C1 given that either D3 or D2 has been opened is identical to its original probability [image: image]. By contrast, adopting the same perspective on any alternative door shows that [image: image], implying that the contestant should switch in both cases.

Although switching doors would double the contestant's chances for winning the car, 87% of naïve participants prefer to stick with their initial choice (Granberg and Brown, 1995). A key argument for their inertia is the intuition that the host's elimination of a losing option creates a new situation that implies a 50–50 chance of winning with each of the remaining doors. This uniformity belief (Falk, 1992, p. 202) ignores that the host's action depends on both the contestant's choice and the car's location and falsely assumes that the game is re-set after a goat has been revealed (see Baratgin, 2009, for an analysis of this updating interpretation). In our model, the false assumption of two equiprobable options (i.e., U{C1, C2∨3}) would frame an erroneous 2×2 matrix in which all cell values were equal. As such a matrix would fail to reflect the actual situation, we refer to this error as false framing (E1). Once such a misleading 2×2 matrix has been framed, the illusion that the chance of winning is 50% for either option is inevitable, as it would follow from adopting any arbitrary perspective on it.

Interestingly, our analysis shows two additional options for the same conclusion. Adopting a by column perspective on the correct 2×2 matrix (Figure 10II) yields a 2×2 matrix that contains values of 0.50 in all of its cells p(Di|Cj) (Figure 10IV). This essentially means that the door opened by the host is an uninformative diagnostic test when conditionalizing on the car's location (by column), rather than on the identity of the open door (by row). Assuming this unhelpful perspective on a correct 2×2 matrix, the error of false inputs (E2) would perform the right calculation on the wrong inputs and constitute another instance of base rate neglect. Similarly, computing the inverse of the actually relevant conditional probability [i.e., p(D3|C1), rather than p(C1|D3)] would report a false measure (E3) and could be described as an inverse fallacy or resulting from a Fisherian algorithm or representative thinking (see above). However, the fact that all of these errors yield the same value of 50% may explain why this false intuition is so compelling.

Having explicated three notorious problems of Bayesian reasoning by our framework, we trust that analogous accounts could illuminate related problems—like the engineer-lawyer problem (Kahneman and Tversky, 1973), the conjunction fallacy (Tversky and Kahneman, 1983), or the three-prisoners problem (Falk, 1992)—and more remote phenomena, like the class-inclusion task (Politzer, 2016), or Simpson's paradox (Simpson, 1951). Our model explains their difficulty by the interplay of two factors: (a) the challenge of constructing an appropriate problem representation, and (b) a discrepancy between an implicit perspective adopted by the problem information and the perspective required for the solution. The first obstacle lies in framing an appropriate 2×2 matrix. This is particularly challenging when the problem involves three or more options that obscure the binary nature of the underlying diagnostic test. But even if an appropriate 2×2 matrix has been framed, the specific information provided by the problem can still be misinterpreted or may shift the reasoner's focus into a misleading direction. A purely analytic account can reveal and distinguish between potential errors, but not disentangle them any further. While adopting the right perspective on an appropriate representation may also make a problem's solution transparent, our model's main purpose consists in explicating problems structures and pinpointing potential errors, rather than resolving them.

Despite their theoretical appeal and practical ramifications, textbook problems of Bayesian reasoning require only a small part of our overall framework. In fact, the scope of the matrix lens model also extends beyond the domain of classification and clinical diagnostics that comprise the majority of measures defined in Table 3. To illustrate its generality, we now address a pertinent question raised in our introductory example.



5.3. Perspectives on Surviving the Titanic

When using the population of Titanic passengers to illustrate the initial steps of our model (in sections 2.1, 2.2), we evaded the most obvious question: Who survived the disaster? A more nuanced version of this query would aim to identify factors that contribute to a passenger's survival. Given that an emergency protocol known as the Birkenhead drill demands the preferential rescue of women and children when abandoning a ship, a seemingly straightforward question would ask: Were women and children successfully rescued first?

Before addressing this question, we need to prohibit two simplistic answers. For instance, a categorical interpretation of the drill would require that all women and children must be saved prior to rescuing any adult male. However, given that the disaster killed over two thirds of the ship's population (67.7%, see Figure 3), demanding that the victims must not contain a single female or child seems overly conservative. Similarly, adopting a continuous approach but merely counting the victims or survivors per group would ignore their base rates, which are heavily skewed toward adults and males. Rather than comparing the frequencies of individual cells, our model should enable us to derive a comprehensive measure that provides a quantitative answer to the question: To what degree was the policy implemented? Interestingly, this is surprisingly difficult and implies making several choices that substantially shape our answer.

Our analysis assumes a binary grid of the Titanic's population (see section 2.1) and begins by framing an appropriate 2×2 matrix (section 2.2). Although Figures 3A–C provide three alternative perspectives on the three-dimensional Titanic data, none of them allows answering our question. For rather than expressing Survival as a function of Age (Figure 3B) or Sex (Figure 3C), measuring the drill's success requires a 2×2 matrix that collapses female adults and children of both sexes into a combined Rescue category and contrasts their Survival status with that of male adults. This matrix can be constructed from the binary grid and is shown in Figure 11. Evaluating this matrix is a matter of perspective: For an individual of either group, being Alive is certainly better than being Dead. However, viewing the 2×2 matrix from the drill's normative angle implies that saving a female or child is preferable to saving a male adult. If there are victims among female and children, any adult male survivor may face misgivings. Due to this constellation, the diagonal of the 2×2 matrix does not denote accuracy, but rather whether a category combination can or cannot conflict with the policy. Our model's crucial step of focusing (section 2.3) adopts a particular perspective on the 2×2 matrix to derive a measure that captures the desired aspect. To illustrate that this step includes important choices, we adopt two distinct perspectives:

1. Comparing survival rates: To control for the base rates of both Rescue categories, we adopt a by column perspective on the 2×2 matrix and compute each group's chances of survival (see the measures of absolute risk, AR, in Table 3). This reveals that the survival rate of male adults was only 20%, whereas the survival rate among women and children was 70% (or mortality risks of 80 and 30%, respectively). The difference between both risks can be expressed as an absolute risk reduction (ARR) of 50% for women and children or—possibly inflating the effect—as an increase of the relative survival rate of women and children by a factor of 2.5 (relative to adult males). As relative risks are notoriously misleading (Gigerenzer et al., 2007), simply contrasting the absolute magnitude of both survival rates suggests that women and children were prioritized.

2. Computing odds for conflict cases: An alternative perspective on the same matrix directly contrasts the cells that can conflict with the rescue policy. Re-framing the matrix arranges it so that its former diagonals form its rows. Focusing exclusively on the top row contrasts 161 women and children who died with 338 adult men who survived. Importantly, the larger number of the latter group implies that there was sufficient rescue capacity for saving all women and children. Computing the odds between both numbers reveals that for any dead woman or child there were 2.1 seats in lifeboats occupied by adult men. Although the magnitude of this value seems similar to the relative risk factor of 2.5 (in 1), it points in the opposite direction and suggests that women and children were not prioritized.


[image: Figure 11]
FIGURE 11. Applying the matrix lens model to evaluate whether women and children on the Titanic were successfully rescued first. Any answer depends on the policy's interpretation and the perspectives adopted on the data. Comparing survival rates between groups suggests that women and children received preferential treatment, but computing row odds for cases in conflict with the policy supports the opposite conclusion. Presenting only one measure in a non-transparent fashion (as in A vs. B) would obfuscate the problem, rather than solving it.


Obtaining two results with opposite conclusions presents us with a puzzle: Which answer is correct? Actually, as either result is incomplete, rather than wrong, both results together allow for a more balanced assessment of the rule's success: While women and children survived at a considerably higher rate than male adults, a better allocation of seats in lifeboats would have boosted their survival chances even further. Interestingly, each individual result could easily be mistaken as the only one and be used to mislead people. By accurately reflecting a particular aspect of the problem, each result obscures the original information and prevents an alternative perspective. Especially when only communicating the value of some cryptic measure and showing a seemingly informative, but decidedly non-transparent visualization (see Figures 11A,B), the manipulative potential of any such analysis is substantial.

The lesson to be learned here is not to stop analyzing data or to avoid drawing conclusions. Instead, we must learn to be skeptical about seemingly objective measures that remain non-transparent. As we have shown, adopting perspectives is an inevitable part of the scientific process and the price to be paid for the benefits of abstraction and specialization that come with particular measures. Thus, the antidotes to ignorance and pseudo-scientific propaganda are not doubts or disdain for highly-specialized scientific tools, but their profound comprehension and transparent communication within a risk-savvy society (Gigerenzer and Gray, 2011; Gigerenzer, 2014). Dealing flexibly and responsibly with alternative perspectives and results requires a level of insight into the meaning and limits of measures that goes beyond mere rote learning of definitions and formulas. While our theoretical model may contribute to a better understanding of metrics and their proper interpretation, the key challenge for educators and instructors is to design effective training programs that render scientific insights more transparent for scientists, their audiences, and students (Martignon and Hoffrage, 2019).




6. DISCUSSION

In this article, we link the basic construct of a 2×2 matrix to the typical semantic interpretations of binary dimensions that are of interest in different domains. This explains a large variety of scientific measures in a unifying framework. We illustrate how our model can be applied to explicate notorious problems of Bayesian reasoning, as well as to address scientific questions of a more general nature. While this highlights the problems' structural similarities and pinpoints potential errors more precisely than previous explanations, it also reveals that the selective and organizational processes of filtering, framing, and focusing imply characteristic trade-offs: The price of increasing resolution on some particular aspect is a loss of detail and context. Importantly, any perspective adopted in the derivation of a measure is rendered implicit and encapsulated in its numeric value. Thus, a transparent communication and visualization of scientific results needs to explicate the perspective adopted in their derivation.

Although we trust that our approach makes contributions to various fields, some caveats may help to pre-empt possible misunderstandings. Rather than providing a unique account. our model stands in a long tradition of expressing cognitive phenomena in visual metaphors (see Supplement 2). Regarding our goals, we provide an analytic tool for studying problems, not a recipe for resolving them. Although our model is abstract and flexible enough to be applied to other problems, its structural mapping to a specific problem is not always straightforward. Thus, our approach may help others in solving similar problems, but such benefits are not automatic and yet to be shown. Similarly, this article uses visualizations to render our model's steps and processes more concrete (see Figures 2–5), but the model itself is abstract, rather than visual in nature. Whereas, most steps of our model (i.e., the steps of filtering, framing, and focusing) are descriptive, its final step (presenting) allows for prescriptive applications. But even when using our notion of transparency for evaluating visualizations of numeric measures, there is no guarantee that those that conform to our definition will yield benefits in comprehension or performance. Thus, our model can be used to generate hypotheses, but their success and reach remains to be tested in empirical studies.

Overall, analyzing tasks in the form and terms of 2×2 matrices is primarily a methodological tool for revealing structural similarities between problems and suggests where to look for possible errors and solutions. By contrast, our framework is silent about which perspective solves a given problem, nor provides us with a magic potion that adopts the right perspective on all problems. As all models are wrong on some level, ours must prove its worth by changing our reader's perspectives on related problems.



7. CONCLUSION

Could you restate the problem?

Could you restate it still differently?

(Polya, 1957, p. 75)

In the 1999 science fiction movie The Matrix, swallowing a red pill reveals the world as a technological projection: Everything perceived to be real turns out to be a mere illusion. Real science is less spectacular, but also full of projections. And in sharp contrast to the action thriller, adopting particular perspectives is in fact a theoretical tool for gaining insights and discovering meaningful relations about the world.

The matrix lens model illustrates a sequence of steps that filter information, frame it as a 2×2 matrix, and focus on increasingly specific aspects of the world. Adopting distinct perspectives on the shared structural construct of the 2×2 matrix yields a rich variety of measures that enable high levels of abstraction and specialization. But any gain in the resolution of details comes at the cost of reducing generality and limiting the scope of possible conclusions. Beyond explicating the dialectic epistemology of scientific measures, the model integrates a rich variety of concepts into a common framework. Our geometric approach shows the shared underlying structure of many semantic domains, highlights links between a confusing range of measures, and may help to clarify or resolve several academic debates.

Applying our model to both theoretical and practical problems provides new perspectives on them. From a theoretical stance, our model suggests structural explanations for the well-known facilitation effects of frequency formats, and precisely describes potential errors in related problems of Bayesian reasoning. By explicating the representational nature of such problems, we show how a shift in perspective essentially solves them. With regard to solving scientific problems by analyzing data, our model reveals the choices inherent in the selection of measures and cautions against drawing premature conclusions on the basis of seemingly objective values. As any quantitative measure selectively illuminates some aspect of the world and encapsulates the perspective adopted in its derivation, we should be skeptical whenever facing results that we do not fully understand or are not presented in a transparent fashion.

Visual illusions do not disappear by explaining them. But once we become aware that an ambiguous image can alternatively be seen as a rabbit or a duck, our familiarity with the image can ease the flip between both interpretations. Consequently, it should not surprise us that representational problems persist even when their underlying mechanisms become transparent. For students of clinical diagnostics, it will remain perplexing that medical tests with high sensitivity and specificity can still exhibit poor predictive values. Similarly, it will continue to seem peculiar and vexing when two measures that adopt different angles on the same data support opposite conclusions. But realizing that such phenomena are neither paradoxical nor inconsistent is an intellectual step that requires instruction and training. Thus, understanding that conflicts between measures—or between people reporting them as facts—are an inevitable consequence of their inherent perspectives is an important insight on the path to scientific literacy.

The red pill to swallow for the scientific enlightenment of modern societies lies in translating these insights into an educational strategy. Given the key role of perspectives for the meaning and interpretation of scientific measures, understanding how measures encapsulate particular viewpoints is an important skill for scientists and their audiences. The costs incurred by this explication are outweighed by the fact that scientists stand to benefit twice from embracing the representational nature of their investigations: Beyond enabling them to choose their measures more responsibly and wisely, a more transparent communication of their results may also enable more trust in their findings.

The notion of insight implies suddenly seeing a solution. As we have shown, adopting the right perspective on a problem makes its solution obvious—it becomes simple and transparent. We show that capturing scientific measures and explicating problems in terms of adopting particular perspectives on the structural construct of a 2×2 matrix reveals aspects that remain obscure in any isolated treatment. We trust that readers will discover additional opportunities for framing problems in this form and hope that viewing them through the lens of a 2×2 matrix will render their solutions more transparent.
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FOOTNOTES

1While the non-reversible nature of conditional probabilities seems puzzling in the abstract, an example makes it obvious: Given the population of all U.S. citizens from 1789 to 2020, the conditional probability P(male|U.S. president) = 1, but the inverse conditional probability P(U.S. president|male) is almost zero.

2DOR is a quadrangular score (see its definition in Figure 6IV) that can also be calculated by first adopting a by row perspective on the matrix, computing two column-wise likelihood ratios, and then their odds ratio. Thus, DOR values are also independent of bias.

3In technical terms, providing p(T) and p(C ∩ T)—or the corresponding joint frequencies—no longer requires Bayes' theorem for computing the posterior probability p(C|T) from a prior p(C) and the likelihoods p(T|C) and p(T|eg C).
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Graphs are useful tools to communicate meaningful patterns in data, but their efficacy varies considerably based on the figure’s construction and presentation medium. Specifically, a digital format figure can be dynamic, allowing the reader to manipulate it and little is known about the efficacy of dynamic figures. This present study compared how effectively static and dynamic graphical formats convey relationship information, and in particular variable interactions. Undergraduates (N = 128, 56% female, Mage = 18.9) were given a brief tutorial on main effects and interactions in data and then answered 48 multiple-choice questions about specific graphs. Each question involved one of four figure types and one of four relationship types (main effect only, interaction only, main effect and interaction, or no relationship), with relationship types and graphical formats fully crossed. Multilevel logistic regression analysis revealed that participants were fairly accurate at detecting main effects and null relationships but struggled with interaction effects. Additionally, the static 3D graph lowered performance for detecting main effects, although this negative effect disappeared when participants were allowed to rotate the 3D graph. These results suggest that dynamic figures in digital publications are a potential tool to effectively communicate data, but they are not a panacea. Undergraduates continued to struggle with more complicated relationships (e.g., interactions) regardless of graph type. Future studies will need to examine more experienced populations and additional dynamic graph formats, especially ones tailored for demonstrating interactions (e.g., profiler plots).

Keywords: graphs, data interpretation, main effects, interaction effects, graph design


INTRODUCTION

The information processing limitations of the human brain make unaided interpretations of large datasets impractical. This is particularly problematic in science where researchers attempt to identify trends, covariances, and interdependences within large sets of data in order to gain insights about variables of interest. Quantitative, theoretically driven research requires effective ways to meaningfully consolidate and interpret data. One common way to simplify the complexity of data is through graphical representation (graphs). However, there is no consensus on a “best” way to graph data and plenty of evidence of frequent misinterpretations of graphs and figures. This research investigates the efficacy of various graph formats, specifically including both simple and more complex relationships between variables and including graph formats beyond traditional print representation (e.g., interactive figures).

The purpose of graphical data representations is to condense the information in the data set, and in particular the relevant properties (e.g., trends or covariations), while faithfully maintaining the integrity of the overall dataset representation. This can aid the researcher both in data analysis and in the communication of results. However, not all graphs achieve these goals. Mistakes in the transmission of information via graphs can either be a consequence of presentation error, in which false or misleading information is depicted (i.e., lying with statistics) or they can be the result of misinterpretation of a “correct” graph on the part of the reader. The willful production of false or misleading graphs is a matter for ethical discussions. The present research is concerned with the ability to interpret faithfully presented graphs with different constructions.

The following subsections briefly describe some known influential considerations in graph construction and the necessity of certain graph elements. This leads to the issues associated with multidimensionality; how one should graph data that co-vary in more than two dimensions (i.e., two-way and higher interactions). Higher-order relationships are, by their nature, more complex and difficult to comprehend. As such, difficulty of building effective graphs increases, but so does the utility of graphs to facilitate the interpretation of these relationships.


Principles of Effective Graphs

A seminal review of the essentials of effective graph design comes from Kosslyn (2006), which includes eight fundamental principles that will be used in this paper. The first two of these principles are the principle of Relevance (graphs should have no more and no less information than necessary to convey the intended message) and the principle of Appropriate Knowledge (graph efficacy is contingent on the appropriate prior knowledge of the reader). The next two principles are those of Salience (the greatest perceptible differences in a graph should direct the reader to the most relevant components) and Discriminability (meaningful differences should differ by large enough margins to be visually distinguished; e.g., see supporting research by Hollands and Spence, 2001). The next two principles are the principle of Compatibility (the information format should map intuitively onto the intended message; e.g., see supporting work by Gattis and Holyoak, 1996) and the principle of Information Changes (the graph display should remain constant to intuitively signify unchanging information, and should change to signifying that the information is changing). The final two principles rest a bit more on the inherent mental characteristics of people’s memory and visual cognition. The principle of Capacity Limitations says that graphs should not ask people to balance more than about four pieces of information simultaneously, due to the limitations of human working memory capacity (Cowan, 2010; see also work by Meyer et al., 1997). Lastly, the principle of Perceptual Organization says that graphs should utilize the tendencies of the visual system to group objects by their proximity, orientation, and visual similarity to each other.

Early research, naturally, focused on more straightforward and clear possible implications of these principles (e.g., graphs showing a simple difference between two means or a single correlation). Traditional graphing methods, if they follow the recommendations detailed above, are well-suited to portray single effects. A difference between two groups could, for example, easily be illustrated in a graph of two columns (Principle of Relevance), and a large effect should be reflected in the difference between the two columns being easily discriminable (Principle of Discriminability). Furthermore, it is relatively easy to make the bars prominent against a plain background (Principle of Salience), and visually similar in shape and color (Principle of Compatibility). Such a graph also proffers only a few pieces of information (per the Principle of Capacity Limitations).

Many research findings, however, are more complex and nuanced than the basic example described above. A simple finding often leads to further research that branches and narrows, with potential moderating and mediating factors or other complications. As the research shifts to these more contingent relationships there is a need for graphical representations that can clearly and effectively portray those complex situations.



Multidimensionality in Graphs

How data are portrayed graphically should reflect the information those data represent. One would not reasonably use a line graph to depict the proportion of a population that likes lemon meringue (a pie chart would surely be better for this). The challenge that arises when the information is complex, multivariate, and involves interactions is to have a graph portrayal that faithfully and effectively conveys those relationships.

As a starting point, suppose we have data that includes a simple categorization of people by sex (i.e., male or female) that can be denoted by two numbers, and also people’s height that can be defined on a numerical scale. All of the information about each person is contained in a simple pair of numbers so far: x (sex) and y (height). Every unique pair of x and y values in this sample could then be plotted on a Cartesian plane and the result would be a scatterplot. If one plots the averages of the y values (height) for both categories of x (sex) and draw bars from the x-axis up to those points, then the result is the traditional bar graph described earlier. If one replaces the bars with a line connecting the two average values, then the result is an illustration of the bivariate correlation between the two variables. Regardless of the graphical format, one can see that at the gross level of examination the number of dimensions used to display information is equal to the number of dimensions used to define each participant. The inclusion of additional variables to the description of the individual therefore complicates the graph construction.

What happens when we extend this example by incorporating a third variable? Whereas before each participant was defined only by a score on x (sex) and y (height), now each can additionally be described on a third dimension, z, that could signify the participant’s age. The analysis must consequently be expanded, as the inclusion of this second predictor variable increases the number of potential effects from one to three: the main effect of sex on height, the main effect of age on height, and the interaction effect of sex and age on height. After examination of the two main effects, one sees that age is positively correlated with height and that males are taller on average than females. However, both of these effects are qualified by the contingency between them (i.e., their interaction). While males are on average taller than females at maturity, females tend to reach their full height at an earlier age than males. In this example, age acts as a moderating variable and describes why, during adolescence, it not uncommon that males tend to be shorter than females of the same age, a detail lost in the earlier, simpler example.

For the graphs described thus far, the information can be displayed in a two-dimensional (2D) format without violation of Kosslyn’s principles. However, this is only because one of the predictors in this scenario, sex, is categorical. Commonly, three or more of the variables of interest are continuous. In such cases a researcher faces the choice of either subdividing the continuum into sections (categorize by section in order to simplify analyses) or retaining the full continuum. The subdividing tactic is very common in psychological research (Young, 2016), but research suggests that maintaining the continuous integrity of one’s data is almost always the preferable choice. This is because the categorization of continuous data unnecessarily reduces the power of the study and masks underlying contingencies/non-linearities, the discoveries of which may require an intact continuum (Young, 2016). One way to resolve the conflicting objectives of clear graph communication is to explore some more advanced graph options. Three or more continuous variables are difficult to present and interpret graphically in traditional 2D formats that impose visuo-spatial constraints. The current research examined the efficacy of four different graph formats in displaying different types of relationships between three continuous variables (see Figure 1).
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FIGURE 1. Examples of the four graph types, each displaying the same main effects(s) only relationship. Clockwise from top left: 2D Color Plot, Contour Plot, 3D Rotatable Plot, and 3D Static Plot.



Two-Dimensional Scatterplot With Delineating Color Bar

The top-left graph in Figure 1 shows a 2D x-y scatterplot and allows the third variable to vary as a function of color. Color is easily displayed along a continuum for color (a color scale) that can be consulted alongside the scatterplot of data points, allowing for more immediately accurate observations of each data point’s level on the 3rd dimension. This method is compatible with all color-enabled print and digital media, but it does not involve any interactive elements for user manipulation of graphs.



Color Contour Plot

Though strictly for displaying general trends/relationships among variables rather than the entire set of individual data points, a color contour plot (top-right in Figure 1) is a natural extrusion of the 2D scatterplot of predictor variables into a third dimension (color). The result is a topographical surface that denotes how a region’s “height” (the level of the dependent variable, coded by a color continuum) is differentially affected by various combinations of the values of the two predictor variables (i.e., “height” fluctuates across graphical regions). This method may permit a more intuitive interpretation of trend than that of the above method, given that both predictor variables are assigned to the 2D space while the dependent variable is afforded its own, unique dimension. Indeed, there is evidence that interpretation accuracy depends upon the assignment of the variables to either the x-axis or legend space (Ali and Peebles, 2013). This method also requires color-enabled media but does not make use of interactive elements.



Three-Dimensional Static Graph in Perspective

The third graph type (Figure 1, bottom-left) is a 3D scatterplot on which the three continuous variables are plotted along the x-, y-, and z-axes. This image is static and is “tilted” at an angle to give the illusion of depth perception. This perspective mimics the visual sense of depth and should facilitate discrimination of distances and relationships among data points in a graph. By nature, a 3D graph requires observers to make use of such depth cues as occlusion, proximity, and gridline reference (Dosher et al., 1986). However, consigned to a single static viewpoint, the observer may have trouble resolving the overall trend depending on how much variability is present and how well any one particular viewpoint can capture it. Even though this method may pose a more viable option to traditional outlets that lack color-enabled media, the loss of informative function is costly.



Three-Dimensional Rotatable Graph in Perspective

The last graph type (Figure 1, bottom-right) is a rotatable variant of the 3D perspective graph and takes advantage of digital publishing’s capability to mitigate some of the weaknesses of the static variant. With this version readers can utilize cues such as motion parallax to better judge the distances and relative positions of data points as they rotate the graph. However, this method’s ostensible functional advantages over static graphs are hampered by its compatibility shortcomings; only certain types of media (e.g., interactive digital outlets) will be able to employ it.

The 3D rotatable graphs are by far the most versatile of these four options in terms of functionality; they display all variables along three principle axes and so avoid the relegation of any variable to a symbolic space like a legend (Principle of Capacity Limitations). The intuitive correspondence between a number line and a continuum of numerical data also, in principle, makes the changes in values of each variable easier to grasp (Principle of Compatibility). Inasmuch as humans are biologically accustomed to localizing and tracking objects through 3D space, people should be very capable of discerning relationships among those data points (Principle of Perceptual Organization). The complication for the 3D rotatable graph is that it runs up against the limitations of traditional (2D paper) media.

Two-dimensional color graphs are currently common for several reasons: they are easily constructed, similar to bar and line graph formats (Principle of Appropriate Knowledge) and the overall relationship between the x- and y-axis variables can be quickly gauged. Ali and Peebles (2013) found that people perform well in discerning the relationship between the dependent y variable and a legend-bound z variable delineated by color. Interactions between the two independent variables, however, may present a greater difficulty for 2D color graphs than for the 3D rotatable format. It is not immediately clear, for instance, how the effect on y of any specific x value would be modulated by color shifts (the representative z value), or vice versa. Indeed, unless the observer knows to scrutinize specific patterns (“twisting” or “spreading” in the data points), she may be at a loss. It should also be noted that inspection of spatial patterns alone does not give one much insight into the specifics of an interaction. One must attend to color changes while also attending to spatial patterns if one is to discover anything of import about the interaction, and this can overtax one’s working memory (Principle of Capacity Limitations).

Although lacking actual rotatable functionality, the 3D static graph has been utilized in research media (e.g., Khemlani et al., 2012). The features of a 3D rotatable graph (described above) similarly apply to the static version, except the critical element of rotation functionality. This one missing element, though, can critically hamper an observer’s understanding of data sets containing important interactions that cannot be orientated in such a way that guarantees the visibility of all relationships and interactions (Principle of Salience).

There is relatively little precedence for 2D contour plots in the psychological literature. There is, however, reason to believe that the discernibility of main effect relationships is differentially affected by the assignment of the independent variables to either the axis or the legend (Ali and Peebles, 2013). From this, it is not unreasonable to assume that a similar phenomenon may exist for the assignment of the dependent variable. The unconventionality of this graph type, however, may impair its being accurately interpreted.



Hypotheses

Two hypotheses guided the following research. The first hypothesis is that there will be an effect of graph type on accurate interpretation, with average accuracy being, from best-to-worst: 3D rotatable, 2D color, 3D static, and 2D contour. This hypothesis is consistent with Kosslyn’s principles, Ali and Peebles (2013), and most people’s intuitions. The second hypothesis is that there will be an effect of relationship type on accurate interpretation, with accuracy being, from best-to-worst: no relationship, main effect(s) only, interaction only, and main effect(s) with an interaction. This order follows directly from the increasing level of complexity across these four types.



METHOD


Participants

A total of 179 undergraduate students enrolled at a state university in the Midwest participated in the study. Of these, responses from 51 participants were dropped due to failing a priori exclusion criteria (38 were removed for completing the study in under 5 min, two for completing less than 75% of the study, and 11 for answering correctly at or below chance levels, all indicators of low-quality responding). Therefore, data from 128 participants (56% female, Mage = 18.9) were analyzed. All participants were recruited from a general psychology course that required participation in their choice of research studies at the university. This study was carried out in accordance with the recommendations and with the approval of the researchers’ Institutional Review Board (IRB).



Design and Materials

Participants all completed a randomized series of graph interpretation tasks, followed by basic demographic questions (age, sex, education, major, and standardized test scores). The graph interpretation task consisted of 48 different graphs that varied by type and depicted relationship, but that all exhibited three continuous variables labeled x, y, and z. For the sake of simplicity, participants were instructed to treat y as the dependent variable and x and z as the two independent variables. Each graph was one of four possible types (2D Color Plot, 2D Contour Plot, 3D Static, or 3D Rotatable; see Figure 1) and depicted one of four possible relationships:(1) only main effect(s); (2) only an interaction; (3) main effect(s) and an interaction; and (4) no main effects and no interaction (see Figure 2 for examples). In the 2D contour plot, the x-axis was the horizontal axis, the z-axis was the vertical axis, and the y-axis was a vertically presented color gradient located to the right of the graph. In the other three graphs, the x- and y-axes denoted the horizontal and vertical axes, respectively, while the z-axis denoted an axis orthogonal to the first two in the 3D graphs and a color gradient in the 2D color plot graph similar to that of the contour plot. This effectively split the stimuli into 16 type/relationship pairings, and three distinct sets of randomly generated data were utilized across the graph types for each of the four relationships, resulting in a total of 48 tasks. All stimuli were created using the Plotly graphing website1. The study design thus was a repeated-measures experiment (per the criteria in Keppel, 1991; Shadish et al., 2002; Rosenthal and Rosnow, 2008).
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FIGURE 2. Examples of the four relationship types, each displayed by a 2D Color Plot. Clockwise from top left: Main Effect Only, Main Effect with Interaction, no Effects, and Interaction only.




Procedure

The survey was presented through an online survey software (Qualtrics) and included an informed consent process and instructions about the nature of the task. Prior to the actual tasks, participants were shown a tutorial page with definitions for “main effect” and “interaction”, followed by two examples (one containing only a main effect and one containing a main effect and an interaction). The examples displayed the data sets in each of the four representative graph types and were accompanied by a brief explanation of how one could go about interpreting the correct relationship.

During the test itself a small key containing shorter definitions of the terms “main effect” and “interaction” was located above each graph so that participants could reference these during the test. Graphs were presented one at a time in conjunction with four response options (the four possible relationships), from which participants were told to choose the option that best described what they saw in the data. Afterward, participants supplied demographics information and were debriefed.



RESULTS

The data were analyzed using multilevel logistic regression in order to model the within-subject dependencies inherent in repeated-measure data and to appropriately account for the dichotomous nature of the outcome variable (i.e., correct or incorrect). When using multilevel modeling, it is important to determine the appropriate random effects structure for the model before analyzing any fixed effects. To do this, the Akaike information criteria (AIC) of three models were compared to assess random effect model fit (Burnham and Anderson, 2004). These models were: (1) a random effects structure that only allowed the intercepts to vary by participant; (2) a random effects structure that allowed both the intercepts and slopes (i.e., main effects) to vary by participant and; 3) a random effects structure that allowed the intercepts, slopes, and interactions between slopes to vary by participant. The AIC with the lowest value indicates the best-fitting model (Burnham and Anderson, 2004), with a difference of 10+ units demonstrating considerable evidence for a superior fit. The three random effect structures had AICs of 8224.31, 7566.23, and 7629.04, respectively, providing strong evidence that the random effects structure allowing both the slope and intercepts to vary by participant fits best.

Subsequently, the fixed effects were added to the random effect structure to examine any effects of the predictor variables (i.e., graph type and relationship type) on the outcome variable (participant performance). This was done by comparing the fit of two models, again using the AIC. The first model contained the main effects of both graph type and relationship type only. (Both predictors were included simultaneously based on two considerations: (a) both are experimentally manipulated variables with associated hypotheses, and (b) atheoretically testing all possible models would needlessly increase the likelihood of spurious results.) The second model tested was identical to the first with the addition of an interaction coefficient between graph type and relationship type.

When the AICs of these models were compared, the second model containing both main effects and the interaction had a considerably lower AIC (AIC = 7456.42) than did the simpler model lacking the interaction term (AIC = 7494.61) suggesting the more complex model fits the data better. Figure 3 displays participants’ overall performance across the different graph types by relationship type and Table 1 displays the model coefficients. Performance decreased as a function of relationship complexity, supporting Hypothesis 2. Performance generally did not vary across graph type, however, with the exception that the interpretation of main effects was significantly worse on the static 3D scatterplots and this negative effect was mitigated when participants could rotate the 3D scatterplot. Thus, graph type did not affect performance in most cases, contrary to Hypothesis 1. The results suggest that the efficacy of a particular graph format may, in some situations, depend on the type of relationship it is intended to communicate, and specifics of this conjecture should be pursued in further research.
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FIGURE 3. Proportion of questions answered correctly by Graph and Relationship Type. “ME” indicates a main effect and “I” indicates an interaction effect (i.e., “ME”+“I” is a main effect and an interaction. Note error bars represent 95% confidence intervals.



TABLE 1. The effects of graph type, relationship type, and their interaction on participant performance.

[image: Table 1]


DISCUSSION

Interpreting interactions in data is difficult, as many research methods and statistics instructors know well, yet there is scant work directly addressing how to improve this issue. Conventional wisdom is that graphical representations help in recognizing interaction effects. Kosslyn’s (2006) eight principles can serve as a useful foundation for basic graph construction, but these principles are insufficient when building a graph to portray higher dimensions. There are unresolved disagreements at this level about fundamental properties of visual displays and the efficacy with which different graphs convey the requisite information. It is also imperative to remember that the most effective methods of communicating complex results may be emerging methods that leverage modern technologies and graphing methods. An empirical and experimental approach to graph optimization can help identify better methods and thereby help to make those methods a part of standard research practices.

The present study found that the lack of any effect is decently perceivable by people, and interactions (either alone or with a main effect) remain difficult to perceive across all graph formats used in the present study (Table 1). Main effects are relatively difficult to perceive in static 3D graphs, relative to other graph formats (see Figure 3). Unfortunately, static 3D graphs seem to also be a currently popular presentation option because it does not require dynamic- or color-enabled media. An implication of the present study, however, is that 3D static graphs should be discarded in favor of either their 2D counterparts or, format permitting, their 3D rotatable variants. Further study is warranted for graphs of more complex relationships, for which the results were inconclusive.

The present study points toward a few future research directions. Overall performance, though above chance, was poor. Introductory psychology undergraduates (and perhaps people in general) are ill-equipped to identify complex continuous relationships in graphs. Graphical literacy should be a concern for educators and employers across all fields that work with data. The poor overall performance in the current study also limits the extent to which broader effects of graph and relationship type on statistical interpretation can be measured. Assessing a more graph-savvy population (e.g., researchers in a quantitative field) could reveal clearer effects with greater variability in performance ability. Additionally, there is clear potential for creating and implementing novel graph types that are geared to facilitate the interpretation of interactions (e.g., a profiler plot).
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We report on a study on syllogistic reasoning conceived with the idea that subjects' performance in experiments is highly dependent on the communicative situations in which the particular task is framed. From this perspective, we describe the results of Experiment 1 comparing the performance of undergraduate students in 5 different tasks. This between-subjects comparison inspires a within-subject intervention design (Experiment 2). The variations introduced on traditional experimental tasks and settings include two main dimensions. The first one focuses on reshaping the context (the pragmatics of the communication situations faced) along the dimension of cooperative vs. adversarial attitudes. The second one consists of rendering explicit the construction/representation of counterexamples, a crucial aspect in the definition of deduction (in the classical semantic sense). We obtain evidence on the possibility of a significant switch in students' performance and the strategies they follow. Syllogistic reasoning is seen here as a controlled microcosm informative enough to provide insights and we suggest strategies for wider contexts of reasoning, argumentation and proof.

Keywords: syllogisms, deductive reasoning, logic, counterexamples, argumentation, situated cognition, mathematics education, proof


INTRODUCTION

The acquisition of reasoning proficiency according to logical standards is a central topic in regard to the development of critical thinking competencies. It inheres also in the development of mathematical argumentation and proof. Even so, the experimental evidence from the psychology of reasoning and from mathematics education has widely documented well-rooted difficulties concerning the reasoning skills of students (and humans, in general). In this context, syllogistic reasoning is a paradigmatic case which can provide pre-eminent insights for several reasons: first, the study of the topic accumulates more than a 100 years of experimental study [starting with (Störring, 1908)] with the corresponding corpus of experimental approaches, robustness of observed phenomena and variety of theoretical explanations (Khemlani and Johnson-Laird, 2012). Second, syllogisms clearly illustrate the dichotomy between normative standards and the actual performance of subjects. Moreover, even in this very restricted context, it is possible to observe a full spectrum of diversity in performance, from some syllogisms that are almost always correctly answered, to some others that are practically always wrong. Third, from a historical perspective, the topic has clearly emerged in a very specific context of argumentation and disputation and has been for centuries a characteristic model for this kind of reasoning. Finally, during more than two millennia, we can see a diversity of theoretical, and didactic approaches to the subject including a diversity of semiotic registers.

Given the relevance of the subject to the issues alluded to before, and the experimental evidence so far, two natural questions emerge: what can explain the fact that typical performance in the usual syllogistic tasks does not adhere to Classical Logic? Are there other situations or experimental settings which can elicit reasoning closer to this logical standard?

Following the path of Vargas et al. (submitted), the proposal of the present paper is to show how, even if we have chosen a tiny fragment of full first-order classical logic, in regard to syllogisms we can already see important changes in reasoning tied to the use of representations and the pragmatic situations from which particular reasoning mechanisms emerge. We report on two subsequent experiments. In the first one we compare how undergraduate subjects perform on 5 different tasks intended to understand how different thinking strategies are followed by subjects depending on the communicative situations. The second experiment, more educationally oriented, is based on the insights provided by the first experiment. It studies the trajectories of students in a sequence of tests and short interventions. These are intended to lead them to a shift in their performance based on their understanding of the kind of reasoning that they are expected to attain normatively.

In what follows, we first elaborate on the theoretical background just outlined focusing on the two fundamental aspects which support the design: the importance of communicative settings for reasoning, and the use of the construction of counterexamples in argumentation and proof (Sections Plurality of Goals in Communication and Reasoning and Construction of Counterexamples: Modeling and Countermodeling as Tools for Syllogistic Reasoning). We describe and report then on Experiments 1 and 2 (Sections Experiment 1: Recognizing the Diversity of Communication Contexts and Goals and Experiment 2: Integrating the Tasks as a Didactic Sequence). In the final discussion (Section Results) we develop connections with the psychology of reasoning and the implications for education, particularly in regard to the literature on argumentation and proof in mathematics education.



PLURALITY OF GOALS IN COMMUNICATION AND REASONING

Experimental study of Aristotelian syllogisms has led to a very neat conclusion: answers of untrained subjects in the customary tasks are very far from being correct from the point of view of the intended, classical interpretation. There have been different kinds of explanations in the psychological literature that try to give an account of experimental data [see (Khemlani and Johnson-Laird, 2012) for an overview].1 A natural suggestion is that syllogisms are a kind of task limited to academic environments and for which we show no capacity beyond this, i.e., without instruction or specific training. An extreme illustration is offered by Luria (1976) experiments in the 1930s showing how illiterate subjects had a tendency to refuse the endorsement of any conclusion at all about facts not known to them beforehand, just from the information provided by premises. According to him, they tended not to rely on information beyond their personal experience (as is essential in hypothetical reasoning) and not to accept premises as having general validity. Furthermore, they even conceived syllogisms not as unified wholes, but as unintegrated pieces of information. A later study carried on in Liberia by Scribner (1975), showed similar dispositions, which were in fact interpreted as a case of an “empirical bias” (Scribner, 1977). This illustrates how syllogisms (and logic in general) are not context independent mechanisms but emerge from the analysis of particular communicative/pragmatic situations. It therefore seems natural to consider experimentally the kind of situation and discourse in which syllogistic arguments first appeared in philosophy, namely, the context of argumentation, discussion and refutation. They are not, in short, a description of deductive processes executed in abstracto by individual minds. Syllogistic arguments are originally about a context of adversarial communication. What we do primarily in communication, instead, has a cooperative character determined by a fundamental “verbal contract.” Hence, very commonly, we are not strictly limited by what the speaker makes explicit, but most of the times we “complete” the message with a background given by intended common assumptions. We do not communicate just what is explicit or concluding what is “entailed” (in the strict sense) by the externalized sentences. We infer, in addition to this, also a series of “implicatures,” as they are known after Grice (1975) and, more widely, we frame the information in order to convey a message or interpret available information. Here we take the general view that different communicative or pragmatic demands may put into action different reasoning strategies and mechanisms, and that considering a plurality of logics may give us appropriate tools for their description (Stenning and van Lambalgen, 2008). From this point of view, what are often considered simply as “mistakes” are frequently sensible conclusions which may even adhere to the rules of a particular logic. This is highly relevant for educational purposes because of the prevalence of categories such as “correct” or “incorrect” often used as if having absolute character.

The previous discussion connects at different points with research in education. On one side, the general view that human cognition, and mathematical cognition, in particular, happens as a social and communicational phenomenon, challenges more traditional, internalistic views on thinking and learning which ignore, both experimentally and educationally, their essential character. Inspired largely by Vigotsky, this view has been stressed repeatedly in mathematics education research, since its “social turn” (Lerman, 2000; Sfard, 2008; Roth and Radford, 2011).

On the other side, an important point of connection relates to the literatures on argumentation and proof. Our view on the context/communicational dependency of reasoning is in line in fact with integrating the “social dimension” of proof (Balacheff, 1987) and with the “shift to a pragmatic view of proof” (Hanna and Jahnke, 1993). Which particular communicational activities relate to the logic behind argumentation and proof? How can we contextualize proof so that it emerges more in continuity with other human practices, and not as an epistemological rupture with them (Duval, 1991, 1992)? Even if the birth of the concept of mathematical proof in Ancient Greece is still debated, philological evidence suggests that it originated from the development of argumentative and dialogic discourse as seen in philosophy and that “the practice of a rational discourse provided a model for the organization of a mathematical theory according to the axiomatic-deductive method. In sum, proof is rooted in communication” (Jahnke, 2010).2 This communication, given its dialectical nature, is adversarial at a fundamental level and in a technical sense. These historical origins continue to be present in the practice of proof production, which requires a dialectics with (real or potential) refutations (Lakatos, 1976). In this sense, an adversarial disposition is skeptically oriented leading an “opponent” to look for countermodels or counterexamples to what the “proponent” says (Dutilh Novaes, 2018). It is in fact, primarily, through the exhibition of individual counterexamples that an argument is refuted, as we will elaborate next.



CONSTRUCTION OF COUNTEREXAMPLES: MODELING AND COUNTERMODELING AS TOOLS FOR SYLLOGISTIC REASONING

As noted before, in syllogistic reasoning the usual instructions do not prompt answers according to what “logically follows.” As with many other reasoning tasks, simple rephrasing or emphasis in the instructions do not lead to substantial changes in performance. This way, asking for “necessary conclusions” or deductions “valid in general” does not usually lead to substantial improvement or disambiguation. We propose a change in the contextualization of the materials which may encourage an integration of what precisely “logically” or “necessary” means in this practice. Even if experimental evidence seems to indicate that we are not “naturally” capable of syllogistic reasoning in general, we are more inclined to see here what may be expressed using the competence vs. performance dichotomy, but with more than one competence possible. Actual low performance may be caused because performance deviates from the competence that is normatively established. But performance has to be measured against the right competence, and performance aimed at other norms may be successfully elicited by appropriate contexts which invoke their ecological source (Simon, 1956, 1990).

What do we logically expect when asking if a conclusion “logically follows” from some premises? Even if in some traditions still influential in education “logical” is conceived from this definition of a deductive system or a set of syntactic transformations (or inference rules), we believe that, in the context of ‘naive' untrained reasoners, a more accessible approach is semantic. In classical logic (Tarski, 1936), the definition of the entailment relation establishes that a sentence ϕ follows from set of sentences Γ (indicated as Γ⊨φ) if and only if every model of Γ is also a model of ϕ.3 This may be rephrased by saying that there is not a model for Γ that is a countermodel for ϕ (a counterexample). The validity of a deduction is equivalent to the impossibility of getting a counterexample for it.

The problem of the exploration of possible counterexamples and their generation may not be finite or even decidable in general. This may be overcome in the particular case of syllogistic reasoning where we deal only with a vocabulary of three monadic predicates. In this case models are sets of a certain number of individuals, with interpretations for the predicates.4 Problems with valid conclusions have always 1-element models.5 This property (“case identifiability”), leads in fact to an algorithm for extracting conclusions from a pair of premises (Stenning and Yule, 1997). In this way, for valid problems we limit ourselves to the case of 1-element models. This is not the case in general for the premises of non-valid problems: pairs of premises here may need 2-elements to be modeled. Therefore, when we come to the problem of the construction of counterexamples, at least 2 elements may be indispensable. In general, in fact, we have that a conclusion fails to follow from a pair of premises if and only if there is a countermodel. And we also know that countermodels never require more than 2 elements (1-element models would not suffice, in general). Moreover, if there is not such a countermodel, as can be established by an exhaustive examination, the inference is valid (the conclusion follows from the premises). It is worth noticing that refutation by countermodeling is in general a separate and distinct process from proof. Syllogisms are exceptional in that examination of 2-element models leads both to a refutation method and to a decision method for validity. We propose that psychologically, these processes remain distinct for naive subjects in the syllogism.

Despite this crucial role that the construction of counterexamples may play in regard to the analysis of syllogistic thinking, the topic has been almost completely absent from experimental testing in the psychology literature. One exception is Bucciarelli and Johnson-Laird (1999) where the authors performed an experiment asking for the construction of counterexamples. In fact, according to the basic tenets of mental models theory, people make deductions by building “models” and searching for counterexamples (Johnson-Laird and Byrne, 1991). Bucciarelli and Johnson-Laird consider the counterexamples of their experiment as a means to “externalize the process of thought” concluding that individuals are capable of generating them. Our results suggest that beyond being a simple externalization of internal processes, asking for this kind of external representation may modify strategies of reasoning or, even more, the goals themselves pursued in reasoning and the corresponding logic. This is more clearly the case if, as in our case, the counterexamples construction is embedded in adversarial communication (in contrast to cooperative communication that, we claim, usually predominates in the conventional experiments). As we will see, results show a remarkable difference of performance between our counterexample tasks and more traditional ones.

Besides psychological experiments and theories, the use of examples (and counterexamples) in the learning and teaching of mathematics has been widely acknowledged (as well as in mathematicians' practices). The mathematics education literature has recently addressed the role of examples and counterexamples [see, e.g., (Watson and Mason, 2005), or the special issues on “The Role and Use of Examples in Mathematics Education” (Bills and Watson, 2008) and “Examples in mathematical thinking and learning from an educational perspective” (Antonini et al., 2011)]. The formation and exploration of an “example space” (Watson and Mason, 2005) is essential to mathematical thought, and fundamental for learning:

“Examples can therefore usefully be seen as cultural mediating tools between learners and mathematical concepts, theorems, and techniques. They are a major means for ‘making contact' with abstract ideas and a major means of mathematical communication, whether ‘with oneself', or with others. Examples can also provide context, while the variation in examples can help learners distinguish essential from incidental features and, if well-selected, the range over which that variation is permitted.” (Goldenberg and Mason, 2008).

A change in disposition already occurs when we deal with the exploration of examples and counterexamples. This is reflected in our Experiment 1 results. Nevertheless, grasping the sense of counterexamples and adjusting the relevant conventions in the semiotic representation used in each particular situation is not something automatic or easy. This is the case in mathematical contexts, in general, but we will face the same obstacles in our study. Our Experiment 2 addresses these difficulties proposing strategies on how they can be dealt with.



EXPERIMENT 1: RECOGNIZING THE DIVERSITY OF COMMUNICATION CONTEXTS AND GOALS

The aim in Experiment 1 was to explore the effects that countermodeling in an adversarial setting produces in syllogistic reasoning. This is done comparing performance across 5 tasks described below. Most of the studies of syllogistic reasoning present pairs of premises and ask the subject for a conclusion of syllogistic form from a menu including the option “none of the above” either explicitly from a menu presented in each trial, or from instructions at the beginning about the constraints on the form of conclusions (the generation paradigm). In some cases experiments propose, besides the pair of premises, a conclusion whose validity, given the premises, is to be judged (the evaluation paradigm). We use both approaches in our tasks.


Methods


Materials and Procedure

Each subject answered a booklet in just one of the conditions described next. Subjects were assigned conditions in a random order. So, these five conditions are essentially separate experiments with random subject sampling from the same population. They had 60 min to do this even if in practice many of the participants finished before, predominantly around 45 min. The booklets had 16 problems for all tasks, aside from the evaluation task which was substantially less demanding. For this task, participants had to answer the whole set of 32 problems studied. The order of presentation of the problems was also random, with three different such orders for each set of problems. The tasks studied are the following (for the exact phrasing of the instructions see the Supplementary Material):

• Conventional (CV): The draw-a-conclusion task usually considered in the literature [see e.g., (Johnson-Laird and Steedman, 1978) or (Khemlani and Johnson-Laird, 2012)]. Given a pair of premises, participants are asked to decide what follows. Conclusions are selected from a menu offering the eight classical possibilities plus a “none of the above” option.

• Evaluation task (EV): This task has been also extensively present in the literature (see, for example, Rips, 1994 for a large experiment comprising 256 of the 512 possible syllogisms). The two premises of a syllogism and a conclusion are presented to participants. They are asked to evaluate whether the conclusion follows or not. Here the proposed conclusions are the same as in the CMA and CMA2 tasks described next. The aim here is to provide a task that is similar to CV, in the sense that no countermodel construction is asked and that is not an adversarial situation, but that at the same time is directly comparable with the results of the countermodels tasks. In this sense, the EV task is crucial in the experiment because it can either confirm or disconfirm the differences already noticed between CV and other tasks (Vargas et al., submitted) and see if they are really attributable to other differences such as the collaborative/ adversarial context, the active construction of models, the subjects' involvement in justifying their own judgment, or if they are only by-products of the format of the questions (e.g., nine options choice vs. a Yes/No answer).

• Countermodels Adversarial (CMA): This is essentially the “Syllogistic Dispute” task in Vargas et al. (submitted) which proposes the construction of countermodels in a betting situation against Harry-the-snake. Participants are presented a pair of premises and a proposed conclusion. They have to bet whether this conclusion is valid or not. They are thus in competition with Harry, the nefarious character who proposes the bets and who is trying to empty their wallets. We apply a small variation to the countermodel construction: 2-element countermodels were requested. Syllogism AI3 will serve as an example. Suppose the following premises are given:

All the students taking linguistics are taking Arabic.

Some of the students taking geometry are taking Arabic

Harry proposes the following bet:

Some of the students taking geometry are taking linguistics.

Besides having to judge whether this follows or not, participants must provide the counterexample in this last case by ticking or crossing each course if the student is taking it or not:

Student 1:

Linguistics

Arabic

Geometry

Student 2:

Linguistics

Arabic

Geometry

• Countermodels Adversarial 2 (CMA2): With the same structure of CMA (a proposed conclusion from two given premises, and the construction of counterexamples when possible) but in this case with another story/context. Instead of a betting situation and Harry-the-snake, participants are asked to play the role of a professor who must correct the answers (conclusions) offered by students as valid inferences in an exam. If the conclusion does not follow (i.e., if the exam script that they are correcting presents a mistake) participants must provide a counterexample as a didactic tool for their imaginary pupil in order to explain why it does not follow. This is a familiar, technically adversarial, situation: an examination.

• Communication-conclusions task (COMM-C) This task is proposed with the idea that what participants actually do in CV is to play a cooperative game which the task is an attempt to mimic. Here subjects are introduced into a game: each participant has an imaginary team-mate who wants to communicate to her an assigned statement. Following the syllogistic structure (with b the middle term and a and c the other ones) this statement is about terms a and c. This communication cannot be done directly: the team-mate can only express something about a and b, and something about b and c. The participant is presented with two statements (which play the role of “premises”) which “come from her teammate.” The task is to decide which sentence is it most likely that the team-mate is trying to communicate from a menu of nine possibilities (a possibility for: “no favorite guess” is included). It is emphasized that this is a cooperative task in the precise sense that the subject should think of him or herself as working in a team with the source of the premises. The team-mate is trying to communicate a sentence, and our participant is trying to guess it. Both of them are scored as teams (pairs) according to how often they succeed in their mutual goal. The instructions assert that “If you can guess what sentence he has in mind from the pair of premises (s)he gives you, then your team win five points. If you guess wrong, then you both lose 1 point. There is also the option: ‘Have no preferred guess,' in which case you neither win, nor lose any points.” In this game the points are established in order to encourage a preferred option rather than “Have no preferred guess” if the participant is not sure. But in the case of total indifference, choosing this last option has greater expected value than random selection of some other answer.

It is important to emphasize, for comparison purposes, that, in their structure, CV and COMM-C tasks follow the generation paradigm, whereas EV, CMA, and CMA2 tasks follow the evaluation paradigm.

Tasks CMA and CMA2 require, besides an evaluation of validity, the construction of counterexamples. For the reason explained in Section Construction of Counterexamples: Modeling and Countermodeling as Tools for Syllogistic Reasoning (with two elements it is always possible to construct a counterexample, if one exists), we standardized the required countermodels to 2-element ones.



Problem Selection

As indicated above, beyond purely historical interest, syllogisms constitute a microcosm complex enough to reveal wide variation in typical performance from subjects. So, it is a topic revealing a wide spectrum at the level of misalignment from normative expectations. Studying the whole set of 512 possible pairs of premises and proposed conclusions was not feasible in the time. We limited ourselves to a subset of 32 of these possibilities, presenting 16 to each of our participants. The selection of these problems was heavily biased toward the ones which could reveal the use or absence of classically valid reasoning, and therefore, those which turn out to be solved by other strategies. This is revealed by traditional performance in the CV task, already well-documented in the literature. Our choice was therefore focused on those problems which turn out to be “difficult” in the CV task. A prominent phenomenon in this task is a clear incapacity for detecting that the majority of the problems (out of 64 pairs of premises) have no valid conclusions. Those problems with no valid conclusions which are judged by subjects as having one, reveal a tendency to reason cooperatively. Table 1 rehearses the basic properties that motivated the selection of the 32 problems used. They were divided in two sets (indicated in the last column of the table), balanced according to these properties, both logical and psychological, namely:

• Validity rate: an equal number of logically valid and non-valid problems in both sets. This number is in proportion with the number of valid/non valid problems among the 64 problems (seven valid and nine with no valid conclusion in each set, which reflects the fact that among the 64 possible pairs of premises there are 27 with valid and 37 with no valid conclusions). In the 4th column of Table 1 (“VC/NVC”), we indicate for each problem if it has any valid conclusion (a “VC problem”) or if it has no valid conclusion (an “NVC problem”).

• Difficulty: the main measure of this is given by the typical performance of subjects in the conventional task. We used for this the results from the meta-analysis in Khemlani and Johnson-Laird (2012) which are reported in the 6th column in the table. This performance motivates also the “empty-sets”6 classification (ES classification) introduced in Vargas et al. (submitted). This classification reflects and provides explanations for the variation of VC problem difficulty in the drawing of valid conclusions in the CV task (NVC problems are all classified 0 by ES). This will be also used repeatedly in our graphs. The ES classification sorts all syllogisms with any valid conclusions into five classes7 on the basis of their quantifiers and whether the conclusion quantifier is already used in one or more premises. Starting from the “easiest,” problems with:

1. one existential and one universal premise and a valid conclusion with a positive quantifier from a premise;

2. two universal quantifiers and a valid universal conclusion;

3. one existential premise and one universal premise, and a conclusion with a negative quantifier from a premise;

4. one existential and one universal premise with a valid conclusion requiring a quantifier not in the premises; and

5. two universal premises, but only existential valid conclusions.8


Table 1. The 32 problems selected in the study, their premises, existence, or absence of valid conclusions, the proposed conclusions in the tasks following the evaluation paradigm, percentage of correct answers in the literature CV task, the ES classification, the matched vs. mismatched classification and our two sets subdivision.

[image: Table 1]

Matched/mismatched rate: a pair of premises is matched if the middle term is either positive in both premises or negative in both premises. Otherwise it is mismatched. Problem AE2, for instance, is mismatched because in the premises All b are a, No c are b, the term b appears, respectively, as positive and negative (rephrasing No c are b as “c implies not b”). We considered this property to be important in the problems selection and balancing because it is related to the ease in constructing counterexamples. With matched problems we can naturally produce 1-element models9 of the two premises in which the conclusions proposed are automatically also true, so changes are necessary in order to produce counterexamples. These 1-element models can be produced for mismatched problems only by using the truth of universal statements with antecedents defining empty sets, i.e., by rejecting the existential import of universal statements. The 1-element models that result from integrating the premises using empty-antecedent reasoning are immediately countermodels of the most popular conclusions. This regularity holds only because the bets were chosen as the commonest invalid conclusions in the meta-analysis data, and those have a particular property of “figurality” defined in Vargas et al. (submitted).

The conclusions in the table (5th column) were used in tasks under the evaluation paradigm, namely, EV, CMA, and CMA2, where they are proposed after the two premises. Participants should either accept or reject that the conclusion necessarily follows from the premises. The conclusions presented were selected according to the following criteria: for VC problems the conclusion is chosen to be valid. If more than one conclusion is valid, we chose the most frequently selected in the CV task, according to the meta-analysis in Khemlani and Johnson-Laird (2012). This last criterion was also applied for non-valid problems, namely, we chose the most popular specific conclusion for each problem, in this case obviously a non-valid one. This makes it as difficult as possible for our subjects to detect the invalidity of the proposed conclusions.



Participants

A total of 244 undergraduate students (mean age = 22.4) from first to third-year courses in the Ludwigsburg University of Education distributed thus: CV: 82, EV: 22, CMA: 54, CMA2:44 COMM-C: 42. The difficulty of the two countermodeling tasks (CMA and CMA2) led in some cases either to the non-comprehension of the task or to failure to comply with instructions. We excluded from all our analyses the answers of a total of 3 and 5 participants, respectively, in CMA and CMA2. These are subjects who did not provide any complete construction of countermodels. We did not consider their answers evaluating the validity of the conclusion because the counterexamples part was crucial in our experiment as an exploration of the effects obtained with this construction. This made these data uninterpretable for us. We take the systematic failure to provide counterexamples in these subjects as a clear indication that it was by far more demanding than the other tasks, but also more difficult to grasp without further indications or explanations.10



Evaluation of Problems and Countermodels

Universal statements can be interpreted in different ways and models can be considered to be adequate for them according to two well-known options. On one hand, since Aristotle, a long-established convention determines that universal statements are false when the antecedent property is empty in the domain because they are considered to have existential import. So, a universal statement does presuppose in this interpretation the existence of something to which the predicate is applicable. On the other hand, according to modern semantics, truth does not require existence for universal statements. Given, e.g., the syllogistic problem AA1 (All A are B, all B are C) the universal conclusion All A are C is a valid one (the type Barbara). Now, if we consider the particular conclusion Some A is C, it is validly inferred only if the universal first premise has existential import leading to type Barbari. This inference is not valid under the modern interpretation and, from this perspective is an example of the “existential fallacy.”

The traditional Aristotelian view is adopted in most of the psychological literature, notably in the criterion for scoring accuracy. We follow this convention even if it is not clear that either of the interpretations should be adopted from a psychological point of view, or that it should be absolutely mandatory in education from a normative stance. For this reason, we will consider the modern interpretation in some of our analyses and will emphasize that some of our subjects in Experiment 2 do follow it explicitly.11 Even if our focus here will be on the evaluation judgment of the tasks and not on the counterexamples produced, the construction of counterexamples allows us to observe where the divergence between the interpretations is present, since we can see where subjects use empty sets for interpreting their terms (see Vargas et al., submitted).





RESULTS


The CV Task

As a first consideration Figure 1 compares the performance in the CV task across the 32 problems of our experiment 1 subjects with what we know from the meta-analysis (Khemlani and Johnson-Laird, 2012). Our participants present similar patterns in their answers in comparison with the literature, as seen by the high correlation (Spearman coefficient of 0.78, p < 0.001). As seen in the scatterplot, our participants have a performance slightly lower in most of the problems, but the tendencies are clearly the same. We may also see in the figure different clusters of problems confirming that the ES classification captures to a great extent the degree of difficulty of the problems in this task remaining stable across groups. This stratified analysis of the problems based on their structural characteristics gives us suggestive insights into the different strategies used by subjects. Problems in group 5, for instance, have a valid conclusion whose type (kind of quantifier) is an existential one not present in the premises (both universal) i.e., they require existential presuppositions. This makes these problems particularly difficult in this task leading to correct answers being practically absent, according to the traditional scoring with existential presuppositions, both in the literature and in our subjects, as is evident in Figure 1. The commonest responses in these problems are actually universal, which are invalid.


[image: Figure 1]
FIGURE 1. Comparison of the CV task performance across the 32 problems between the literature and Experiment 1 groups. Colors follow the ES classification.




The EV Task

This task is also present in the literature (Rips, 1994). Our results indicate that, as expected, there are important differences with the CV task even if conclusions must be drawn with care given their different structure. In principle the tasks are not comparable, so it is difficult to interpret the apparent increase in the overall accuracy between CV and EV from 27.6 to 46.4 % (see Figure 2). The difference in performance between both tasks is more evident in groups 4 and 5 of the ES-classification (see Figure 3) for natural reasons: these problems are commonly incorrect in CV because participants prefer to generate conclusions different from the correct ones (which are not valid with the premises). In EV, instead, these conclusions are presented without other possible options which enter in competition with them. In the class 2 of the ES-classification, the two tasks are closer.


[image: Figure 2]
FIGURE 2. Five tasks comparison in performance. Generation paradigm (left) and evaluation paradigm tasks (right).



[image: Figure 3]
FIGURE 3. Comparison between the CV and the EV tasks. Performance across the 32 problems. Colors follow the ES classification.


It is worth also noticing that there is in EV a strong asymmetry between valid and non-valid problems which is reflected in a percentage difference of almost 25 points in favor of the former.



The CMA and CMA2 Tasks

As explained before, the CMA and CMA2 tasks share the same structure: a deduction evaluation, followed by counterexample construction when possible, in an adversarial setting. In them we obtained an overall improvement in accuracy and reduction of the imbalance in determining the validity vs. non-validity of conclusions, as seen in Figure 2. We have an accuracy improvement in regard to the EV task: mean scores pass from 46.4 in EV to 55.7 and to 65.1, respectively, in CMA and CMA2 (p = 0.0004348 between EV and CMA and p = 1.598e-11 between EV and CMA2). The difference between valid and invalid problems decreases from 24.7 to 19 and to 16.7 points in EV, CMA and CMA2. This reduction in the imbalance is also significant: p = 0.004586 between EV and CMA and p = 0.0002718 between EV and CMA2.

We compare CMA and CMA2 with EV, respectively, in Figures 4, 5. It is noticeable here that the improvement is not just in the means, but also present for almost all problems taken individually.


[image: Figure 4]
FIGURE 4. Comparison between the EV and the CMA tasks. Performance across the 32 problems. Colors follow the ES classification.



[image: Figure 5]
FIGURE 5. Comparison between the EV and the CMA2 tasks. Performance across the 32 problems. Colors follow the ES classification.


CMA and CMA2 offer the additional countermodel data which deserves separate analysis which will not be done here. Nevertheless, it is worth mentioning that, despite the improvement in conclusion evaluation, the generation of countermodels is far from perfect: in these tasks the percentage of correct countermodels is 20 and 31% of possible ones (namely, for each participant the 9 non-valid problems out of 16 presented to her). Calculating the chance levels of correct countermodeling is complex. There are 64 possible 2-element models different in principle among which 28 avoiding reorderings and repetitions of elements. For each problem there are different subsets which are correct. On the other hand there are relatively simple properties of problems that will filter out possibilities. The psychological process of countermodel construction is also complex the most direct evidence being that participants take around three to four times as long per problem. The analysis in Vargas et al. (submitted) provides strong evidence that its subjects are trying to do classical logical countermodeling despite their many errors. The construction of counterexamples poses difficulties due to high demands on executive functions (working memory in particular). Besides this, it poses a number of problems difficult to clarify by means of test instructions alone. This motivated a different approach in Experiment 2.



The COMM-C Task

The purpose of this task was to substantiate the idea that what participants do in the CV task is essentially framed in a context of cooperative communication. If instructions ask subjects explicitly to do precisely this, we obtain in fact very similar results. Correlation between CV and COMM-C is 0.75 (Spearman coefficient, p < 0.00005). This is in fact the highest correlation obtained between all tasks (Table 2). As shown in the scatterplot in Figure 6, the ES classification is also essentially respected. Subjects perform similarly as in CV, only that the collaborative attitude leads even more to the extreme, so to speak. We can see this in the fact that the conclusions of the problems in ES class 2 are endorsed even more frequently. In general, subjects extract more valid conclusions for VC problems in COMM-C than in CV (average scores 38.2 and 34.2% in generating valid conclusions). Similarly, a conclusion for NVC problems is “guessed” even more frequently without exception in any of the problems, a characteristic collaborative strategy. This leads to an even increased asymmetry between VC and NVC problems. According to our instructions for COMM-C, under a situation of complete uncertainty, the payoffs of selecting “no preferred guess” would be larger. This means that the conclusions they select seem at least to some extent plausible for them in the communicative game.


Table 2. Correlations (Spearman coefficients) between the 5 tasks in Experiment 1.
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[image: Figure 6]
FIGURE 6. Comparison between the CV and the COMM-C tasks. Performance across the 32 problems. Colors follow the ES classification.




What Does Countermodeling Elicit?

Our comparison across tasks is guided by the idea that there is a change in disposition: CV, EV, and COMM-C tasks on the one hand (cooperative), and CMA and CMA2 on the other (adversarial). From the point of view of the answer format we have on the one hand the CV and COMM-C tasks (choose from a menu of conclusions), and on the other, the CMA, CMA 2, and EV tasks (determine the validity given a proposed conclusion). Even if all tasks are all positively correlated (Table 2), some significant differences are obtained as can be seen in Figure 2. On the one hand, both in CMA and CMA2 we see an improvement in the overall accuracy across problems. Here, the more direct comparison is with EV. Particularly salient is the improvement with regard to NVC problems (red columns) which leads to a large reduction of the VC/NVC performance asymmetry. The spectrum varies from large differences in the COMM-C and CV tasks. In these we see differences of 27.4 and 11.6 percentage points, but the strong asymmetry in these tasks is more evident if we re-score these tasks in a way that bisects the possibilities (any valid conclusion vs. no valid conclusion). This is designed to capture the over-inferencing which is so characteristic of the NVC problems in the conventional task. In this way, the generation paradigm tasks are evaluated in a bivalent way which makes them at least approximately comparable with those of the evaluation paradigm. If we consider the judgment that “something follows” in valid problems, accuracy rates for CV and COMM-C are of 84.2% and 93.8%. The difference between valid and non-valid problems is therefore striking: 61.6 and 83 percentage points.

Under the evaluation paradigm the differences range from 24.7 (EV task) to 19 (CMA task) and 16.7 (CMA2 task). These effects of countermodeling are significant, as reported in subsection The CMA and CMA2 Tasks.

Back to the comparison between CV and COMM-C, we noticed in subsection The COMM-C Task how close they are. Participants in the conventional task do not answer following classical norms consistently, leading to an extremely irregular performance across problems (Figure 1). This may be attributed to a great extent to the fact that they do not interpret the task goal in the same way the experimenter does. The purpose of the COMM-C task is to clarify what those aims may be. The very large correlation between the two tasks indicates that what subjects do in both is very similar: they understand the CV task essentially as a communication task, from a cooperative stance. As may be expected, this cooperative disposition is more extreme in COMM-C: a higher tendency to believe that valid conclusions do follow from premises, and the correspondent difficulty of refraining from endorsing conclusions from the menu (low performance in NVC problems). We see COMM-C as a caricature of CV in the sense that its more striking characteristics are exaggerated, though perhaps not by much. This tells us that participants in CV are not attempting but failing to do the intended task, but that they are really doing another, fundamentally different task. To get them to do the required classical logical task is an important educational goal, but one first has to communicate the goal, before resorting to accusations of poor performance.

The cooperative task of interpreting and understanding discourse can be approached through logical tools (van Lambalgen and Hamm, 2005; Stenning and van Lambalgen, 2008). We interpret the data as indicating that subjects understand the CV task by assimilating it to this logic of discourse interpretation which radically differs from classical logic. Nevertheless, results are usually evaluated from the perspective of the latter which leads to the conclusion that subjects have “poor reasoning” competence. The COMM-C task attempts to understand what the team-mate is conveying. This is something very close to cooperative discourse interpretation: an attempt to reconstruct the intended situation described (the intended or “preferred” model, in the technical sense).12




EXPERIMENT 2: INTEGRATING THE TASKS AS A DIDACTIC SEQUENCE

The effects obtained in Experiment 1 indicate clear tendencies when we take (as experimenters and educators usually do) classical logic as our benchmark. The results obtained comparing the spectrum of tasks suggest that there are good reasons why “naive” subjects deviate from this particular logic and suggest also in which direction we should move if our goal is to obtain results according to it. Again, the goals pursued matter. Experiment 2 explores what we can obtain from an intervention designed in this direction. We implement three successive tests (pretest, posttest 1, and posttest 2) with the idea of facilitating the transition from an initial (cooperative) point, toward an adversarial classical logic one.

We start from the observation that, as noticed in subsection The CMA and CMA2 Tasks, the countermodeling tasks are highly demanding and that even if we see a change in disposition and performance, correct countermodel production is generally not attained. Understanding the construction of counterexamples needs in general more than the bare written instructions of the usual experiments. We focus then on the clarification of this notion, crucial for us as an external tool supporting the definition of the (classical) inference relation, as already explained in Section Construction of Counterexamples: Modeling and Countermodeling as Tools for Syllogistic Reasoning.


Methods


Materials

We focused here on a within-subjects comparison of the tasks EV and CMA2 (the one that seemed most promising from Experiment 1 to obtain a shift toward classical reasoning). The instructions were the same as in Experiment 1 but in this case instructions (including the countermodeling explanation) were carefully explained and not just provided in the booklets: see the procedure.

The problem selection was the same as in Experiment 1. In the pretest and posttest 1 the problems were the 16 of set 1 (see Table 1). In posttest 2 we applied the problems both of set 1 and set 2, each to half of the participants. This allowed us to test the trajectories of problems of set 1 (comparing along the three tests). At the same time, we applied set 2 problems in the third test in order to control for possible plain memory or training effects along the three trials with the same set of problems, using a set with similar characteristics (as discussed above in section Materials and Procedure). As in Experiment 1, the order of presentation of the problems in all the booklets was randomly generated and different these orders were randomly distributed to the participants.



Participants

These were 36 1st and 2nd year mathematics students at University El Bosque in Bogotá. The mean age was 20.3. They were beginning their studies with introductory courses. From the point of view of logic, their knowledge was limited to a basic semi-formal logic course (partially or totally completed by the time of the experiments), mostly focused on propositional logic, truth tables and quantifiers notation for mathematical statements. The experiment was conducted separately in a total of 5 small groups (from 5 to 9 students each) during class hours with students from different courses.



Procedure

The sequence was designed with alternating tests and short interventions over three sessions based on the following stages:

• First session: After a very short, 5 min introduction the pretest was administered. The purpose was explained as to complement their knowledge of logic with learning about syllogisms. The starting point was the EV task. As we explained, we were interested in their initial answers previous to any instruction. Typically, students finished the 16 problems within 30 min.

• Second session: We implemented the first intervention, comprising some quick history of Aristotelian logic and syllogisms. We provided instructions on the countermodeling technique, which were explained in detail. We passed then to some practice with 2 or 3 example problems which they worked on individually. Their counterexample proposals were discussed and corrected in the group. Questions were clarified by the experimenter. This intervention took around 45 min. We then conducted posttest 1 with the framework of CMA2. In this experiment we introduced a variation with regard to Experiment 1: in order to emphasize that the source of the answers was really a student, we selected some of the answered booklets from the first session and presented them in an anonymized and randomized way. An hour was assigned for the test but most of the students finished in 40 min.

• Third session: A second intervention consisted in giving back to participants their corrected pretest and posttest 1. Special attention was given to providing individual feedback on the counterexamples constructed. This was facilitated by the fact that the groups were small. Pretest and posttest 1 were given back not only in order to correct the mistakes and clarify concepts, but also with the didactic aim of making participants aware of how far their starting point was from classical validity, and how substantial improvement could be attained by the use of counterexamples (a means for reaching the concept of entailment, as explained in Section Construction of Counterexamples: Modeling and Countermodeling as Tools for Syllogistic Reasoning). Additional time for questions was given. In total, this took around 30 min. Next, posttest 2 was administered, again asking to evaluate the validity of a deduction, and to construct a counterexample when possible. Here again, an hour was assigned for the 16 problems. Most of the students took around 40 min in order to complete the test. A total of four participants missed this last session.

The three sessions were held a week apart. At the end, all the results of the three tests were shown to the participants, with a reflection on the didactic effect obtained by them individually and as a group.





RESULTS

If we take the mean performance, we have a mean of 44, 59.2, and 85.3% for validity judgements, respectively, in the pretest, posttest 1 and posttest 2 (Figure 7).


[image: Figure 7]
FIGURE 7. Performance on the 3 tests of Experiment 2.


We interpret these results as a progressive attainment of our intended target. This can be seen also examining the distribution of individual scores (over 16 problems) attained by each of the participants on each of the tests (Figure 8; see also the table in the Supplementary Material).


[image: Figure 8]
FIGURE 8. Boxplots showing the subjects' performance distribution in the three stages of Experiment 2. Left: performance in problems evaluation. Right: performance in correct countermodel construction in the two last stages.


In the pretest the mean score (7.04), the median (6), and 22 out of 36 participants had scores not greater than 8. With 16 problems, this means chance level or below. There were extreme cases of seven students with 25% or less correct answers, reflecting how misleading intuition can be in this task (they were providing answers almost opposite to the task that was required).

In posttest 1 we obtain a large improvement in the evaluation of the conclusions (Figures 7, 8). We attribute this, in part, to the change of perspective by taking over the position of a professor correcting a test from a student. This, together with the countermodel construction, led, as expected, to results similar to the ones observed in Experiment 1 comparing EV with CMA2 (44 and 59.2% of pretest, and posttest 1 are very close to the 46.4 and 65.1% obtained in EV and CMA2 in Experiment 1).

As observed in Experiment 1, this is an already important change which reflects an adversarial context. Even so, there is still clearly place for improvement. Above all, countermodeling constructions in posttest 1 are very frequently wrong. Seven participants provided two or less correct countermodels (out of nine possible); four did not construct even one. This alone confirms the difficulties involved in the process of understanding and performing well with the notion of counterexample, as already observed in Experiment 1. This motivated the necessity of a further stage for feedback and clarification, as addressed in our third session. The results obtained confirm this hypothesis and are close to being optimal. In posttest two we achieved another important improvement in evaluating the validity of the proposed conclusions, but more revealing than this, an improvement in the construction of the countermodels (mean score = 6.47 over nine possible countermodels with nine subjects having all of them correct; see also Figure 8-right). This improvement was present both with the same set of problems (set 1), or with a changed one (set 2). There is no significant difference between students with the two sets (p = 0.5178).

Figures 9, 10 provide a comparison between the different stages across the 16 problems of set 1. The first one is a close analog of comparing EV with CMA2 in Experiment 1 (Figure 4). In contrast, the comparison in Figure 10 shows an improvement absent in all the other tests considered in both experiments. On the one hand, all the problems have mean scores above 65%, with OI3 and OI2 having even 100%. On the other hand, we can see that all invalid problems clearly “move upwards” As we see in Figure 7, accuracy differences between valid and invalid problems decline from round 25–15 percentage points between the pretest and posttest 1. In posttest 2 the asymmetry is completely eliminated (with mean performance in non-valid problems even higher). This is supported by the fact that the pretest and posttest 2 are uncorrelated (Table 3).


[image: Figure 9]
FIGURE 9. Comparison between the pretest (EV task) and posttest 1 (CMA2 task) in Experiment 2. Performance across the 16 problems of set 1. Colors follow the ES classification.



[image: Figure 10]
FIGURE 10. Comparison between the pretest (N = 36) and posttest 2 (N = 15) in Experiment 2. Performance across the 16 problems of set 1. Colors follow the ES classification. Problems in class 5 (AE2 and AE4) are hidden behind OA1.



Table 3. Correlations (Spearman coefficients) between the 3 stages in Experiment 2.

[image: Table 3]

With few exceptions participants presented a sustained improvement in evaluating correctness of problems across the three trials (see the table in the Supplementary Material). Even the clearest exception (student S05) was an extremely revealing case. He was the oldest student (45), well above all the others (mean age = 20.3). He already had a professional qualification and had some knowledge of the topic. In the first test, in fact, he made use of Euler-Venn diagrams as a support and obtained the highest score. In the second test, he performed worse than before. In the third session, when receiving his feedback, he manifested his discomfort with having to use a different technique from that already known to him in dealing with syllogistic reasoning. In posttest 2 he performed even worse. He passed successively from 13 to 11 and to 9 correct answers. From the conversation with him, it was clear that he was trying to accommodate our counterexamples construction within the scheme of his knowledge of diagrams, already consolidated. What the other students learned along the process is apparently more directly acquired starting only from their intuitive knowledge, than with a previously existing scheme which could not easily be abandoned because the participant already felt confident using it.


Some Typical Strategies, Interpretation Obstacles, and Disambiguations

Experiment 2 allowed us also to obtain further information besides that provided from the data from the tests. After each session, notes on the arguments and questions from the students were taken. We present next some of the more salient phenomena revealed.


Strategies of Countermodeling Construction

Among the notions introduced in the tests, probably the most difficult one to acquire fully is that of countermodeling and how it can be used in regard to validity: a deduction is not valid if there is a model of the premises which is not a model of the conclusion. The double negative character of this procedure places heavy demands on subjects' attention needed for forcing premises to be true, forcing the conclusion to be false, and integrating the existence of such a construction with a judgment of the invalidity of the deduction. In fact, two salient tendencies in countermodeling (Vargas et al., submitted) are either, (1) to provide a model of the premises forgetting that the conclusion should not hold in order to have a countermodel, or (2) to then change the model to make the bet false, but not notice that one of the premises is then not true, so the countermodel fails because it is not a premise model. These can be calculation problems without conceptual confusion.

Another kind of misunderstanding observed here was about what a countermodel (or a counterexample) is. Given that we asked for universes with two elements, participants often considered that the validity or invalidity of the statements should be evaluated on each of the elements of the structure or the universe, and not globally. Typically, in their first encounter with having to construct counterexamples (in the intervention of our session 2) a conclusion such as Some of the students taking geometry are taking linguistics, was confronted with a situation such as:

Student 1:

Linguistics ✗

Arab ✓

Geometry ✓

Student 2:

Linguistics ✓

Arab ✓

Geometry ✓

In this case, some participants understand that Student 1 constitutes a counterexample whereas Student 2 constitutes an example, leading to the belief that a counterexample is provided. This is incorrect because the particular affirmative statement is true in the model: there is some student taking both geometry and linguistics, namely, Student 2. In the vocabulary of model theory, they are confusing the notion of a structure not being a model for a statement, with the notion of there being an instance, within the structure, of the negation of the statement. An explanation emphasizing that truth in a structure must take it as a whole turns out to be very useful in clarifying such misconceptions.

Which algorithm do individuals follow for countermodeling construction? Participant S20 was very conscious about what he did, and about the fact that he switched during posttest 1. First, he began constructing a model of the premises and only then tried to provide a countermodel of the conclusion. At the end, he noticed that for him it was easier to begin countermodeling the conclusion and then try to satisfy the premises. In fact, there was an improvement over the test: his only three mistakes were in the problems presented in position 3, 5, and 12, with no mistakes in his last 4 problems. Also, in his final test, after making this explicit remark, he performed perfectly both in conclusions evaluation (16/16) and correct countermodeling construction (9/9 possible countermodels). He changed his strategy because, as he indicated, it was easier, then, to remember that the conclusion had to be false in order to obtain a countermodel. We point to this case because, even if we believe that such a conscious metalevel monitoring as exhibited by S20 was not generally present, it indicates that countermodel construction may put into action clearly different algorithmic strategies even with such simple models as these.



Interpretation of the Quantifiers

Two well-known concerns regarding the interpretation of the quantifiers involved in the statements were posed by our students.

The first was about the “conversational” use of the existential (or “particular”) statements. Student S33 said, during the feedback on session 3, that some of his “mistakes” in posttest 1 were occasioned because he interpreted all existential assertions (Some A are B) as affirming also that Some A are not B. This implicature (Grice, 1975), is usually explained in terms of informativeness (“Make your contribution as informative as is required”).

Student S29 made explicit the same interpretation during the feedback session. In fact, she did so as an explanation of the fact that in some cases she added a third element to the countermodels. Two elements, in fact, are not always enough when assuming such an interpretation.

A second perplexity was about universal statements. For example, during the explanation of session 2, we used Syllogism AI3 as an example:

All the students taking linguistics are taking Arabic.

Some of the students taking geometry are taking Arabic

Conclusion:

Some of the students taking geometry are taking linguistics.

Participant S25 proposed the following counterexample:

Student 1:

Linguistics ✗

Arabic ✓

Geometry ✓

Student 2:

Linguistics ✗

Arabic ✓

Geometry ✓

She argued that the first premise is true in this case, because if there is no student taking linguistics, then the universal statement holds. This led to a debate in class. It is well-known that this is the key feature that distinguishes the Aristotelian and the modern interpretation of the universal quantifier. As explained in section “Evaluation of Problems and Countermodels,” for Aristotle, universal statements have existential import whereas modern interpretations do not require this. Was the premise true or not? We clarified the point emphasizing the historical development just mentioned. We did not commit to any of these conventions as “the correct” one, explaining that the interest of their answers in the tests was not in adhering to one or other of these normative positions, but to analyze how they reason. Educationally, it was an opportunity for us for emphasizing the conventional and historical character of some logical rules. Therefore, they were “allowed” to construct counterexamples according to their choice. Interestingly, in both posttest 1 and posttest 2 student S25 presented a systematic tendency in modeling all the universal affirmative statements in the premises using “empty antecedents” (interpreting the universal as an implication). This one was an extreme case, but seven other participants stated explicitly (when interrogated) that they had used this feature in at least some of the problems. In the table in the Supplementary Material we report in separate columns the scores from the two normative standpoints (“traditional” vs. “modern”). The countermodels data provide us here with strong evidence of reasoning with empty sets, indicating that a unique logical standpoint (as traditionally used) may hide other reasoning strategies equally legitimate.



Decidability and Proof

A final aspect that emerged during the discussions with participants that we want to emphasize, is that some of the questions and concerns reflected their conceptions about proof and mathematical procedures.

Student S09, for instance, was looking for an algorithmic mechanism for constructing counterexamples. He realized that at some point not everything was completely determined at each step of the construction about the two elements of the models. Some of the features were usually underdetermined by the premises. Part of the work was an exploration, sometimes hypothetical, which could eventually lead to a counterexample. The fact of having two or more possibilities and having to suppose something without knowing the final result produced a manifest anxiety in him. His conception about mathematics was procedural and he expected to reduce argumentation and proof to this level.

Two different students commented independently that a procedure for establishing validity of conclusions is needed. Counterexample construction is in fact a means which in principle leads only to showing invalidity.

As student S01 asked in session 3: “Professor: is there any way to be sure that the conclusion follows? Counterexamples tell you that a conclusion does not follow, but what about correct conclusions?” From this, it could be made clear to them that in this particular case, the combinatorial exhaustive search in the space of models with two elements led to the establishing of validity (as explained in Section Construction of Counterexamples: Modeling and Countermodeling as Tools for Syllogistic Reasoning), and that this was feasible in a reasonable time. In this case, the situation led naturally to the implicit understanding of the metalogical notions we wanted to reach such as the concept of logical necessity.13





GENERAL DISCUSSION

The fields of cognitive psychology and mathematics education meet at different points in their subject of study. Even if their particular aims do not always coincide and mutual communication is not straightforward, there is a recognized need for interaction between them [see e.g., (Gillard et al., 2009; Star and Rittle-Johnson, 2016)].

The present study is an attempt at such an interaction. Its focus is on the crossroad of cognitive psychology (the topic of study, the design of the tests), educational psychology (class-based interventions, the learnability and teachability of a topic) and mathematics education (the role of counterexamples for mathematical reasoning, the emergence of the notion of proof and refutation). We see the two experiments presented as complementing each other taking into account the strengths and weaknesses of each discipline.

We see such an interaction taking place at the fundamental levels that guided our study: the role of counterexamples in reasoning, and the communicative goals pursued at the base of this process.

On the one hand, as already indicated in Section Construction of Counterexamples: Modeling and Countermodeling as Tools for Syllogistic Reasoning, the theme of examples and counterexamples plays a role both in psychology and mathematics education and can be addressed from the logical point of view, where “models” and “countermodels” have a precise definition. We addressed the problem here, in a very constrained situation, with this level of precision. This allows us to conclude that the process of generating a preferred model12 in reasoning is not necessarily accompanied by a subsequent search for counterexamples (as proposed by the mental models theory). And that mental models explanations of the conventional tasks do not fit the evidence—it is not just that countermodeling does not take place—what does take place is interpretable as inference in a different logic. The explicit generation of counterexamples leads in our experiments to completely different results compared with tasks which do not require this generation. It leads also, in our view, to a completely different notion of deduction and the logic underlying it.14 We think that this difference is more generally crucial in mathematical reasoning.

As we can infer from our second experiment, the generation of counterexamples requires in many respects a process of familiarization, disambiguation and mastery. We could see this process in a relatively simple situation (2-element models, 3 monadic predicates, a limited non-recursive syntax). It is even more necessary in the far more complex range of mathematical contexts.

On the other hand, context and communication determine the kind of reasoning that is elicited. The issue of context dependency has been widely documented in the psychological literature, and acknowledged in different ways from approaches such as ecological rationality or situated cognition. It is also present to a large extent in educational contexts, in particular in mathematics. The communicational situations may vary the goals pursued to the point of representing completely different “games” (Wittgenstein, 2003). The game of cooperative communication and construction of an intended model, differs completely from the adversarial search for possible counterexamples that attempt to defeat a statement or argument, as illustrated by the results presented here. We interpret these results as suggesting that adversarial argumentation, classical logic deduction, and mathematical proof may be seen as linked in a continuum if appropriate contextual prompts are provided. These prompts can materialize in communities of practice as emerging from particular communicative situations and dispositional attitudes. In this sense, the question of whether there is continuity or rupture between argumentation and proof (Duval, 1991, 1992) cannot be answered in general terms, but only within a context. The answer is contingent on how the kind of communication and argumentation operating in a particular setting is interpreted by subjects. If this interpretation is based on a cooperative disposition or “game”15, then there is indeed a rupture. The contrary occurs if it is experienced as an adversarial one. In this case we obtain a skeptically guided, oppositional search in the “example space.” As Balacheff (1987) put it: “intellectual proof mobilizes a meaning against another, a relevance against another, a rationality against another”.16 We see in the different tasks studied here indications of the presence of these two dispositions: CV, COMM-C, and EV show a primary tendency toward a cooperative setting, whereas our countermodeling tasks are tied to an adversarial stance, both when it is a manifest competition (CMA) or when it is an “adversarial cooperation” (CMA2). These are, even in the limited contexts of our experimental settings, cases of “engagement structures” (Goldin et al., 2011). We see in particular the “Let Me Teach You” structure operating in CMA2 in order to help students grasp the game being played from a situation that they know well.

Given this contextual character of communication and reasoning and how the diversity of situations leads to different processes and outcomes we want to stress that it inheres not only the descriptive, but also the normative aspect of logic and its role in psychology. We believe that both the cognitive psychology and the mathematics education literatures still miss and require pluralistic accounts on how we reason. These should go beyond the crude dichotomy between “correct” and “incorrect”17 answers in reasoning tasks, usually evaluated exclusively by standards of classical logic. This manifests itself in psychological experiments, where participants may well be trying to do a task different from the one intended by experimenters (Stenning and van Lambalgen, 2008). The situation is analogous in education, where the notion of “error” is often considered as more clear-cut than it is. Reasoning is a manifold process which may require different norms18 in different situations and, accordingly, “errors” may be sensible inferences depending on the interpretation adopted. They are not primarily something to be “eliminated,” an attitude that in traditional education often involves emotional and even moral implications (Oser and Spychiger, 2005). We believe, on the contrary, that to a large extent, learning to reason is learning the particular communicative conventions at use in a particular discourse, a process which usually also requires appropriate support through modes of representation.19 From this perspective we believe that pluralistic accounts which integrate this diversity of communication and cognitive situations are needed. The results of our study indicate how tasks comparable from their “formal” structure prompt in practice different kind of answers. Rationality should not be thought of just as something abstractly and generally either possessed or not, but as emerging in particular ecological contexts (Simon, 1956), here of a communicational kind.
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FOOTNOTES

1Among these different accounts of performance in syllogistic reasoning there is probability, see e.g., (Chater and Oaksford, 1999). Our general attitude to this is “the more the merrier”: classical logic, preferred model nonmonotonic logic, probability, … A multiple logics approach can embrace other bits of mathematics too. Probability is often taken to be a monolithic replacement for classical logic as a normative standard. This we absolutely reject. But there are also often misinterpretations of probability going on. A probabilistic interpretation of a situation is very close to a classical logical one. From our point of view, the most important point is that it cannot be the logic within which interpretations are developed— that requires a logic like the version of LP used in (Stenning and van Lambalgen, 2008), which can model our narrative ability to accommodate new information into the interpretation at every sentence by importing general knowledge (see Stenning and van Lambalgen, 2010 for extended discussion). A further general issue is whether the full force of probability is required to model what may be conditional frequency reasoning. If the mathematical/logical framework is taken to be involved in the mental computations (not merely providing some externally imposed normative standard), then there are real issues how these probabilities are computed, whereas conditional frequencies could be made available in, for example, the LP nets of semantic memory in (Stenning and van Lambalgen, 2008), and may well be the basis of the judgements made in experiments on “probabilistic models” of the syllogism, and possibly the explanation of the well-known frailties of naive probabilistic reasoning.

2See also, e.g., (Lloyd, 1979) and, more recently, (Netz, 2003) on this topic.

3The notion has been further elaborated more recently through Etchemendy (1990) distinction between “interpretational” and “representational” semantics. The approach in our experiments is closer to the last one. See also the distinction between formal vs. material consequence in (Read, 1994).

4The fact that the identification of individuals with a particular one of eight possible types (corresponding to the assertions and negations of the three monadic predicates present in a syllogism) may be used to decide the validity of an argument is in fact already present in Aristotle's works, namely through the ekthesis technique of proof [(Kneale and Kneale, 1962), p. 77]. According to Hintikka (2004), ekthesis operates like the rules of instantiation in modern logic. It consists of choosing a particular individual (or, in another interpretation, a sub-class) to represent a general term. This is the sense that “ekthesis” also had in geometry, extensively used by Euclid in passing from a general statement into consideration of a particular object be it a point, a line or a triangle. Once this step is done, it is usually followed by the characteristic use of auxiliary constructions.

5See Section Problem Selection for this notion.

6The name is explained by the fact that a first criterion for the classification of problems arises from the observation that existential presuppositions are traditionally assumed in the field and this leads to a clear performance divergence from problems that require this assumption in order to have a valid conclusion and problems that do not. This substantial difference occurs with double universal problems (our classes 2 and 5).

7All problems without any valid conclusions are conventionally assigned the number “0.”

8This simple classification is motivated by the fact that it correlates highly with the percentage of correct answers of the valid problems in the Conventional Task meta-analysis 0.94, p = 2.288e-12.

9Logical models are here sets of elements, each element of which represents a type of individual defined by the three properties and their negations. This is because the syllogism has no identity relation to distinguish individuals of the same type. So there are eight types of element which can be notated: ABC, ¬ABC, A¬BC, AB¬C, ¬A¬BC, A¬B¬C, ¬AB¬C, ¬A¬B¬C. Because these are types of thing, repetition of the same type in a model is redundant. So, there are just these eight types of element in any models of the syllogism. 1-element models contain just one of these eight types; 2-element models contain two (distinct types), up to a maximum of eight types i.e. the single 8-element model. We are only concerned with models of up to two elements because they are always sufficient for countermodeling. NB. Models and elements are semantic objects—sets of things. But they can either be thought of as collections of things (shoes and ships and tins of sealing wax …) with their relevant element labels from the possibilities above stuck on. Or their elements can be represented by sentences composed of conjunctions of three atomic propositions, such as say (¬A∧B∧¬C). Models are then sets of these sentences. The syllogism is so simple a fragment of classical logic that syntactic representation in the mind is hard to distinguish from semantic representation. This becomes important for assessing some psychological theories of the syllogism.

10It is also worth clarifying that in EV we had only 22 participants, given that (as planned in the design) booklets included twice the number of problems in comparison to the other tasks. We used this design since EV was by far the less demanding task in time. Finally, the sample size in the CV task is remarkably larger because in this case we could include the data from a previous experiment. In this experiment we had a booklet generation mistake in the tasks different from CV. This experiment was conducted a semester before in the same institution and courses at the same university level (from first to third year).

11Vargas et al. (submitted) presents some evidence, based on counterexample analysis, that existential presuppositions are not compatible with the results of the CMA task (compatible instead with modern interpretation of classical logic). Even so, they can well be present in the Conventional Task.

12Here the term is used informally, but we mention that it has a technical counterpart in the preferential semantics (Shoham, 1987) for non-monotonic logics.

13This was probably obtained owing to the fact that our participants were mathematics students and their particular involvement with mathematical proofs even at their early stage.

14It is clear, as also confirmed here, that participants do not primarily follow classical logic in traditional syllogistic tasks. Actual performance on them may be approached more properly with non-monotonic logics (Stenning and van Lambalgen, 2008).

15“Game” not only in Wittgenstein's sense, but also in the Games Theory sense that it can be cooperative or adversarial (zero-sum or non-zero-sum).

16Our translation and emphasis.

17Other labels such as “biases” or “fallacies” are equally contestable when understood in absolute terms.

18These diverging norms may be approached through different logical systems. This presupposes logical pluralism: “the view that there is more than one genuine deductive consequence relation, and that this plurality arises not merely because there are different languages, but rather arises even within the kinds of claims expressed in the one language.” (Beall and Restall, 2006, p. 3)

19This is far from conceptions in math education which see, for example, an opposition between “Child's Logic” and “Math Logic” (O'Brien et al., 1971) as if students' naïve performance were only a poor man's version of a supposedly ideal stage. We also deviate from the search for “The right notion” of logical concepts (Durand-Guerrier, 2003). Different logical interpretations are required in reasoning and even in mathematical practice.
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This study aimed to examine the specific means and internal processes through which mathematical understanding is achieved by focusing on the process of understanding three new mathematical concepts. For this purpose interviews were conducted with 54 junior high school students. The results revealed that mathematical understanding can be achieved when new concepts are connected to at least two existing concepts within a student’s cognitive structure of. One of these two concepts should be the superordinate concept of the new concept or, more accurately, the superordinate concept that is closest to the new concept. The other concept should be convertible, so that a specific example can be derived by changing or transforming its examples. Moreover, the process of understanding a new concept was found to involve two processes, namely, “going” and “coming.” “Going” refers to the process by which a connection is established between a new concept and its closest superordinate concept. In contrast, “coming” is a process by which a connection is established between an existing convertible concept and a new concept. Therefore the connection leading to understanding should include two types of connections: belonging and transforming. These new findings enrich the literature on mathematical understanding and encourage further exploration. The findings suggest that, in order to help students fully understand new mathematical concepts, teachers should first explain the definition of a given concept to students and subsequently teach them how to create a specific example based on examples of an existing concept.
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INTRODUCTION

Mathematical understanding entails knowing, perceiving, comprehending, and making sense of the meaning and connotation of mathematical knowledge. Acquiring mathematical understanding plays an important and crucial role in mathematics learning. Bartlett contended that mathematical understanding can reduce the burden of memory, filter out invalid information in the brain, and maintain the longevity of memory (Bartlett, 1932). Further, Davis observed that it can help students assimilate and transfer knowledge by improving their transferability (Davis, 1992). Pasnak et al. (2016) asserted that it can improve students’ capacity for inductive and deductive reasoning, thereby enhancing their ability to solve mathematical problems fluently. Moreover, Huang and Yu (2002) and Zhang and Wang (2005) emphasized that it can motivate students to acquire additional knowledge (Huang and Yu, 2002; Zhang and Wang, 2005). Lv (2012) argued that by enhancing their ability to solve mathematical problems it can improve students’ ability to solve social problems. Xu (2014) posited that it can improve students’ overall academic performance. Consequently, mathematical understanding has always been a popular topic in the field of mathematics education, and it has attracted the attention of many mathematics education researchers (Hiebert and Carpenter, 1992; Cai and Ding, 2015). In 1989 the National Association of Mathematics Teachers clearly stated that “the focus of the mathematics curriculum should be “mathematical concepts and understanding,” and mathematical education researchers and instructional designers must take mathematical understanding as the primary focus of mathematical research” (Hirsch, 1989). Therefore an exploration of the characteristics of mathematical understanding, especially its internal characteristics, is important and valuable. Accordingly, to extend this line of inquiry, this study aimed to examine the internal processes through which mathematical understanding is achieved in order to enhance mathematics teaching and student learning.



LITERATURE REVIEW

Because mathematical understanding is very important and valuable, it has been widely researched since the middle of the last century (Pasnak et al., 2016). However, a review of these studies revealed that the literature focused primarily on the overall characteristics (Skemp, 1976; Li, 2009; Bi et al., 2011; Lv, 2013; Wang and Qi, 2014), types (Greeno and Riley, 1987; Zhou, 1998; Zheng, 2001; Wang G. M., 2006; Xu, 2012; Yang, 2012; Lv, 2013), and levels (Buxton, 1978; Herscovics and Bergeron, 1983; Tian, 1993; Pirie and Kieren, 1994; Ma, 2001; Wiggins and McTighe, 2005; Yu and Yang, 2005; Yu, 2006; Xiang, 2007; Martin, 2008; Liu, 2011; Wang and Qi, 2014) of mathematical understanding and the factors that affect it (Perkins and Blythe, 1994; Kong, 2001; Lin and Wen, 2001; Cheng and Huang, 2003; Yuan, 2005; Yu and Yang, 2005; Su, 2006; Yu, 2006; Lei, 2007; Stylianides and Stylianides, 2007; He, 2009; Shi, 2011; Zhang, 2011; Li, 2012; Xu, 2012; Liu, 2015; Zhao, 2016), which correspond the external characteristics of mathematical understanding. Only a few studies have focused on its internal characteristics, i.e., its internal psychological characteristics, especially the internal processes of mathematical understanding.

Reviewing these few studies on the internal characteristics of mathematical understanding, especially on the characteristics of the internal psychological process of mathematical understanding, it can be seen that there are four different views at present. The first view, which is also the earliest one, holds that the internal process of mathematical understanding is one in which mathematical knowledge is comprehended and represented in the learners’ minds and links with each other are established. For example, Lesh et al. (1980) contended that the process of mathematical understanding refers to the state and process in which mathematical knowledge is represented in different ways, and associations between or within these representations are made (Lesh et al., 1980; Post et al., 1982; Wang et al., 2012a).

The second view is that the process of mathematical understanding refers to the transformation of mathematical knowledge representation For instance, Mayer (1989) contended that the process of mathematical understanding involves transmission, reflection, reception, measurement, and transformation. Anderson (2008) conceptualized this in the process of mathematical understanding; an individual changes mathematics knowledge from one representation to another.

The third view believes that the internal process of mathematical understanding is a comprehensive, complex, and iterative process. The most famous scholars who hold this view are Pirie and Kieren (1994). They proposed a theory of mathematical understanding characterized by transcendent recursion. They contended that mathematical understanding is a holistic, dynamic, hierarchical, non-linear, recursive, and internalized psychological process. “Holistic” means that mathematical understanding is a process that involves not only knowledge of mathematics but also knowledge about other domains (e.g., life skills) and practical knowledge. “Dynamic” indicates that mathematical understanding is a process in which many different types of knowledge are integrated. “Hierarchical” suggests that the process of mathematical understanding can be divided into several levels. “Non-linear” implies that mathematical understanding progresses through different routes. “Transcendent recursion” indicates that mathematical understanding is a multi-threaded repetitive process (Pirie and Kieren, 1994; Ma, 2001; Li and Zhang, 2002; Martin, 2008). Additionally, Liu (2009) holds similar views and conceptualizes mathematical understanding as a process that involves the ongoing, dynamic, sublevel, non-linear, and repeated organization and reorganization of knowledge.

The fourth point of view is the most widely held one, which proposes that in the internal process of mathematical understanding, knowledge enters the learner’s brain and interacts with the original knowledge to form a new cognitive structure, which means that it is a cognitive activity. For instance, Davis (1992) contended that in the internal process of mathematical understanding, a new idea is incorporated into a larger framework that has previously existed in the learner’s mind. Zheng (2001) contended that, from a traditional point of view, mathematical understanding refers to the ability to grasp the essence of an object, while from a broader point of view or from the viewpoint of modern psychological perspectives, it is a process of incorporating an object into an appropriate schema. Huang and Yu (2002) conceptualized mathematical understanding as a dynamic process of constructing cognitive structures and assigning meaning to knowledge. Chen and Weng (2003) posited that mathematical understanding involves restructuring, reorganizing, and rebalancing pre-existing cognitions. Wang (2004) believed that mathematical understanding is a cognitive activity that helps individuals gradually understand the essence and laws of mathematics by combining their own knowledge and experience. Yu and Yang (2005) conceptualized that mathematical understanding involves assimilation and adaptation, whereby new mathematical information is incorporated into existing cognitive structures. Zhang and Wang (2005) regarded mathematical understanding as a dynamic process of creating representations and knowledge networks based on existing knowledge. Zhang and Guo (2007) proposed that mathematical understanding is a process by which learners establish links between different domains of knowledge and modify or expand the cognitive structures of their knowledge in these domains. According to Li and Wu (2011), in the process of mathematical understanding, mathematical knowledge enters a cognitive structure and forms an internal network with pre-existing knowledge.

Apparently the above four views are different, although they all address the issue of the internal psychological process of mathematical understanding. The first view emphasizes representation and the connection between representations; the second emphasizes the transformation of representation; the third emphasizes comprehensive regression; and the fourth emphasizes the formation of new cognitive structures. However, they are undoubtedly of great help to our comprehension of mathematical understanding because they help us gain a more in-depth understanding of the internal process of mathematical understanding and shed light on methods for examining mathematical understanding.

Additionally, it is also obvious that these views fail to provide more specific and detailed information about the process of mathematical understanding to help us understand it completely. For instance, the second view believes that mathematical understanding is the process of transformation of mathematical knowledge or its representation, but how is such a representation transformed? What kind of transformation is most conducive to the generation of mathematical understanding? The fourth view insists that in the internal process of mathematical understanding, knowledge “enters” the learner’s brain and interacts with the original knowledge to form a new cognitive structure. But what kind of original knowledge is invoked to interact with the new knowledge? What are the characteristics of the new cognitive structure after the formation of a new mathematical understanding etc.? Due to the existence of such unmapped zones, many mathematics teachers find it difficult to apply these views to practical mathematics teaching (Zhang, 2006; Zhang and Ning, 2006). Therefore it is necessary to undertake an in-depth investigation of this construct to delineate the concrete processes that underlie mathematical understanding and create a detailed profile of the internal characteristics of mathematical understanding. This study contributes to this research area by exploring the internal psychological processes that underlie mathematical understanding. It focuses on the following two research questions:


(a). When new mathematical knowledge is processed, under what specific internal situations does the understanding of it take place?

(b). What kind of previously acquired knowledge present in the cognitive structure is essential for the formation of new mathematical knowledge?





THEORETICAL BASIS

Understanding is a word that educators and researchers often use during the process of teaching and conducting educational research. However, very different perspectives on understanding have been documented in the literature (Cai and Ding, 2015). Greeno (1987) contended that understanding is a method of comprehending a knowledge structure. Chen (1995) observed that understanding is a kind of cognitive activity that involves a search for connections and relationships between things until their essential laws are ascertained. Wiske (1998) conceptualized understanding as the act of transcending available information and creatively using one’s knowledge. Zhu (2004) pointed out that understanding refers to the process of knowing and restructuring experiences to achieve rational control over them.

It is therefore possible that the diverse perspectives on mathematical understanding reflect the various ways in which understanding has been conceptualized. For example, Sierpinska (1987, 1990, 1994) contended that mathematical understanding is an action that helps one understand the meaning of knowledge. According to Simmons (1988), mathematical understanding refers to the unique and profound manner in which individuals perceive, reflect upon, and interpret a subject and express it in different ways. Wang (2006) emphasized that understanding refers to the process in which one uses his/her own experiences and cognitive processes to deal with new things, integrate new knowledge, solve new problems, and, thus, constantly construct and improve his/her own cognitive structure. Zhang and Guo (2007) posited that understanding is a reflection of learning activities, different from memorization and memory. When it comes to the interpretation of the internal process of mathematical understanding, the above-mentioned four viewpoints emerge.

However, most scholars and researchers generally agree that mathematical understanding falls within the purview of mathematics learning. Mathematical understanding is closely related to mathematical cognitive structures and processes. It is the process by which new mathematics knowledge becomes part of an individual’s internal cognitive structure by connecting with previously acquired mathematics knowledge and integrating it with the internal network (Mayer, 1989; Davis, 1992; Huang and Yu, 2002; Yu and Yang, 2005; Zhang and Wang, 2005; Zhang and Guo, 2007; Li and Wu, 2011; Cai and Ding, 2015). In other words, most scholars and researchers generally agree with the fourth view mentioned above. Hiebert and Carpenter (1992) observed that “[a] mathematical idea, procedure, or fact is understood if it is part of an internal network. More specifically, mathematics is understood if its mental representation is part of a network of representations.” In this regard, they made the following observations.

The idea that understanding mathematics makes connections between ideas, facts, or procedures is not new. It is a theme that runs through classic works within mathematics education literature and emerges frequently in more recent discussions of representation and understanding in mathematics. Many of those who study mathematics learning agree that understanding involves recognizing relationships between pieces of information (Hiebert and Carpenter, 1992). In accordance with this perspective, scholars and researchers generally believe that mathematical understanding evolves as representations of mathematical knowledge become interwoven into increasingly structured and cohesive networks. Subsequently, as networks of mental representations of mathematical knowledge grow larger and more organized when new representations are incorporated or new associations are made, one’s understanding is also enhanced (Zhang and Wang, 2005; Li and Wu, 2011). Overall, this growth process is holistic, dynamic, hierarchical, non-linear, transcendent recursive, and an internalized psychological process (Pirie and Kieren, 1994; Ma, 2001; Martin, 2008). During this process an individual will try to represent mathematical concepts in different ways and draw connections between or within representations (Post and Reys, 1979; Post et al., 1982; Anderson, 2008). Therefore the first three views mentioned above are still widely accepted by scholars and researchers.

Many scholars and researchers have contended that as individuals continue to grow and develop, their level of mathematical understanding will transform accordingly. Indeed, “the degree of understanding is determined by the number and strength of the connections. A mathematical idea, procedure, or fact is understood thoroughly if it is linked to existing networks with stronger or more numerous connections” (Hiebert and Carpenter, 1992). For example, Skemp (1976) classified mathematical understanding into two types: instrumental and relational. Instrumental understanding refers to knowledge about what a symbol represents; relational understanding includes not only the knowledge about what symbols represent but also a comprehensive understanding of their nature and relationships (Skemp, 1986). Buxton (1978) divided mathematical understanding into four levels: rote memorization, observation, deep understanding, and logical understanding. Herscovics and Bergeron (1983) divided it into four levels: intuitive, procedural, abstract, and formal. Greeno and Riley (1987) divided it into three types: compliance, implicit, and explicit understanding. Pirie and Kieren (1994) classified it as eight levels: primitive knowing, image making, image having, property noticing, formalizing, observing, structuring, and inventizing (Martin, 2008). Wiggins and McTighe (2005) divided it into five dimensions: explanation, interpretation, application, insight, empathy, and self-awareness. Recently, Yu and Yang (2005) divided it into five levels: zero, common sense, logical, conceptual, and endless. The zero level is characterized by a lack of understanding, which is the beginning of the process of understanding. The common sense level is characterized by rudimentary understanding. The logic level entails deep understanding, which refers to the process of connecting old and new knowledge to form a structure through logical thinking. The conceptual level is a deeper understanding, which refers to the emergence of new concepts on the basis of the formation of new cognitive structures. The endless level is characterized by the acquisition of more meanings or knowledge on the basis of previous understanding after thinking or applying the new knowledge again (Yu and Yang, 2005).

The easiest means to enlarge a network of mental representations is to connect a representation of a new fact or procedure to an existing network. Another method is reorganization, in which [R]epresentations are rearranged, new connections are formed, and old connections may be modified or abandoned. The construction of new relationships may force the reconfiguration of the affected networks. The reorganizations may be local, widespread, and dramatic, reverberating across numerous related networks. Reorganizations are manifested both as new insights, local or global, and as temporary confusion. Ultimately, understanding increases as the reorganization yields more richly connected cohesive networks Hiebert and Carpenter (1992). Existing networks are crucial factors that affect mathematical networks. They affect the relationships that are constructed and their subsequent understanding. Hiebert and Carpenter (1992) observed that “the notion of building understanding by constructing relationships that yield larger, more cohesive internal networks is useful in analyzing a number of issues related to understanding mathematics.”

How are networks of mental representations configured? Current scholars and researchers believe that it consists of many nodes and connections and is very complex. The nodes in this network include elements such as concepts, signs, figures, formulae, axioms, and theorems (Papert, 1993; Wilkerson-Jerde and Wilensky, 2011). The connections are the relationships that exist between nodes. Such networks can be divided into three basic types: linear, tree, and net. A combination of these three basic structures can yield a three-dimensional synthetic structure (Li and Wu, 2011). There are individual differences in the number of nodes and connections, the strength of the connections, and the way in which nodes are connected. The number of nodes and connections has been found to be larger in gifted students, and the distribution of their nodes is uneven (Yang et al., 2018). Regarding the organization of these nodes, many researchers have contended that they can be divided into many different layers (Wo, 2000).

Regarding the relationships that enhance mathematical understanding and those that are formed by the connections drawn between newly and previously acquired mathematics knowledge within an individual’s internal cognitive structure, scholars have contended that they can be classified as two types depending on whether they are based on (a) similarities and differences or (b) inclusion. The former type of relationship is established within a representation form by the noting of the correspondences between different external representational forms and within a given form. They are likely to be found in networks that resemble webs because the delineation of similarities and differences does not necessarily result in the emergence of higher-order relationships. The second type of relationship emerges when one mathematical fact or procedure is perceived to be a special case of another and is based on the notion of inclusion or general and specific cases. Accordingly, such relationships are likely to be found in hierarchical networks (Hiebert and Carpenter, 1992).

In accordance with this perspective, for a long time scholars and educators have always emphasized that, in order to help students understand mathematical concepts appropriately, definitions and specific examples should be presented and explained to students as a part of the teaching process. A definition of a mathematical concept is a statement or description of its connotation and characteristics, and it represents a generic construct that subsumes other lower-order constructs. It indicates the position of a concept within the entire conceptual system, its similarities to other domains, and the differences between them (Cao and Cai, 1989). For example, the following is a definition of a right triangle: a triangle with a right angle is a right triangle. This definition specifies the geometric figure of a right triangle and delineates the difference between a triangle and a right triangle. A specific example of a concept is obviously subsumed by this concept in accordance with its denotation (Cao, 2008). For this reason, many scholars and researchers often examine mathematical understanding by focusing on mathematical concepts as their units of interest (Pirie and Kieren, 1994).

Mathematical understanding is an internal process. Therefore, how can we judge whether an individual has achieved mathematical understanding following mathematical learning, and how can we evaluate his/her degree and level of mathematical understanding? In general, scholars and researchers contend that this can be inferred based on external performance because internal psychological activities always manifest themselves externally (Michell, 1999; Thorndike and Thorndike-Christ, 2009). Additionally, they proposed that an individual’s mathematical understanding should be judged based on his/her comprehensive performance because a single task can be performed correctly even by an individual who lacks adequate understanding. For example, Hiebert and Carpenter proposed that all the following aspects should be assessed to determine an individual’s mathematical understanding: (a) student errors, (b) the relationship between symbols and symbolic programs and corresponding references, (c) the relationship between symbolic procedures and informal problem-solving situations, and (d) the connection between different symbolic systems (Hiebert and Carpenter, 1992).

However, scholars and researchers most commonly use the oral report method to ascertain an individual’s current level of mathematical understanding (Pirie and Kieren, 1994). This method requires students to describe the meaning of their mathematical knowledge in their own words after mathematical learning has occurred; subsequently, experts judge whether their understanding is correct or incorrect (Nickerson, 1985). Evidently, it not only meets the afore-mentioned criteria and operationalizability but is also easier to use than the other methods proposed by Hiebert and Carpenter (1992). For this reason, many scholars and researchers consider it to be an ideal way to assess mathematical understanding accurately (Borgen, 1998; Wang et al., 2012b).

The general criteria for judging mathematical understanding using the oral report method are accuracy and clarity of an individual describing newly acquired knowledge in his/her own words and his/her awareness of the sources of this knowledge. Specifically, if an individual describes the meaning of newly acquired mathematics knowledge in their own words clearly and accurately and can also specify how they acquired this new mathematics knowledge, then they are considered to have understood the respective piece of knowledge. Otherwise, they are considered to have not adequately understood it (Mao et al., 2015). Many existing studies have shown that this is an obvious hallmark of one’s true understanding of knowledge (National Governors Association Center for Best Practices [NGA Center], and Council of Chief State School Officers [CCSSO], 2009). According to Shao (1997), the objective of this method is to ascertain whether an individual is capable of describing a piece of mathematics knowledge in their own words, irrespective of their level of understanding. To ascertain whether an individual has arrived at a deep understanding of a concept, it is necessary to examine whether their narrative of knowledge is detailed, accurate, comprehensive, and systematic (Shao, 1997).

In accordance with the above views and approaches toward mathematical understanding and the practical situation of teaching mathematical understanding, this study adopted the oral report method to assess students’ understanding of mathematical knowledge and hypothesized that: (1) mathematical understanding will be achieved when newly acquired mathematics knowledge is connected to multiple (rather than single) mathematics knowledge acquired previously. The newly acquired mathematics knowledge cannot be understood by merely drawing connections between itself and a single piece of previously acquired knowledge, even though it has entered an existing network and a new network is formed; and (2) one piece of previously acquired mathematics knowledge should be superordinate knowledge of the newly acquired mathematics knowledge. The connections between arbitrary previously acquired mathematics knowledge and newly acquired mathematics knowledge cannot help to realize a complete mathematical understanding.



MATERIALS AND METHODS


Participants

We recruited 54 second-grade students from a junior high school in Jinan, China. Moreover, the academic performance of 14, 27, and 13 students was excellent, average, and poor, respectively. Participant characteristics are summarized in Table 1. Their average age was 13.24 years (SD = 0.4).


TABLE 1. Students’ information.

[image: Table 1]We recruited second-grade junior high school students because they are older than primary school students and possess foundational mathematics knowledge. Conversely, they are younger than high school students and are yet to acquire substantial amounts of mathematics knowledge. Therefore we speculated that it may be easier and more convenient to teach new mathematics knowledge and examine the extent of their understanding and the underlying processes.

The participants were divided into different groups based on their academic performance. Specifically, they had taken two-semester examinations in the past. The average of the two examination scores was computed and ranked. Using these ranks, they were divided into the following categories: excellent (top 25%), average (between 25 and 75%), and poor (bottom 25%). Because of the simplicity of such an operationalization, this is the most popular means of classifying school students (Maker, 1982; Johnson, 2000; National Council of Teachers of Mathematics, 2000).

This study was conducted in accordance with the recommendations of “The Guidelines of the International Committee of Medical Journal Editors” and “The Adolescent Mental Health Specialized Committee of Chinese Mental Health Association.” Prior to data collection, we obtained written informed consent from all the parents of non-adult participants and all adult participants (i.e., 37 teachers who participated in subsequent interviews). The parents and adult participants provided written informed consent in accordance with the Declaration of Helsinki. This study was approved by the ethics committee of the School of Psychology of Shandong Normal University.



Instrument

Based on the discussion we had with the students’ mathematics teachers and analysis of previously acquired mathematics knowledge, we chose to focus on the following three mathematical concepts in this study: a twin prime (TP), a hetero-plane straight line (HPSL), and a semi-regular polyhedron (SRP). A TP is a pair of prime numbers with a numerical difference of 2. The HPSL consists of two straight lines in two different planes. The SRP is a convex geometrical figure enclosed by two or more types of polygons. In addition to the afore-mentioned explanations, another reason for focusing on mathematical concepts to study students’ mathematical understanding is that not only are they commonly found in mathematics textbooks for junior high school students, but they also constitute a major proportion of the mathematics knowledge contained in them.

As, according to the mathematics curriculum in China, junior high school students are yet to learn these concepts, we chose to focus on these three concepts. However, our discussions with five junior high school mathematics teachers revealed that it would not be difficult for junior high school students to learn these three concepts because they are closely related to the concepts that they have previously learned.

In order to enhance the brevity and effectiveness of the research instruments, we refined the questions that were used in the study based on the results of a preliminary investigation, in which we conducted interviews with 37 experienced junior high school mathematics teachers (the durations for which they had been teaching mathematics were > 10 years).

The main question that we used in the preliminary investigation was as follows: To help students understand mathematical concepts, what knowledge is it important to teach? Their responses included the names of concepts, their definitions, specific examples, the method of creating examples, graphics, relevant historical knowledge, relevant exercises, and practical applications. These results are consistent with those of Cai and Ding (2015). The details are presented in Table 2.


TABLE 2. The frequency of teachers’ answers.

[image: Table 2]The method of creating examples is a concrete means of generating an example for a new concept based on examples of previous concepts. For example, the following means of deriving an ellipse is a method of creating an example: we can create an oblique section by using a plane to cut a cylinder obliquely. The edges of this oblique section are elliptical; therefore, an ellipse can be derived from a cylinder.

It can be inferred from Table 2 that definitions of concepts, concrete examples, and the method of creating examples were all frequently reported. Therefore we focused on these elements in this study.

For TP, we provided the following method of creating examples: (a) find a prime number and (b) add 2 (larger number) and subtract 2 (smaller number) from this number. If the resultant larger (or smaller) number is also a prime number, then you have identified a pair of TPs. If this larger (or smaller) number is not a prime number, then try another prime number. With regard to the HPSL, we provided the following method of creating examples: (a) first finding a cuboid, (b) drawing two straight lines in their two adjacent planes, and (c) ensuring that they do not intersect on the intersection line of the two adjacent planes and have different angles when compared to the intersection line. The following method of creating examples of an SRP is provided by: (a) finding a cube, (b) connecting the midpoint of each edge, and (c) cutting off eight peripheral triangular pyramids with a plane. The resultant figure is an SRP because it is a convex geometrical figure that is enclosed by two types of polygons (i.e., a regular triangle and square).



Data Collection


Procedure

We defined the three afore-mentioned mathematical concepts and generated three concrete examples and methods for creating concrete examples by interviewing five junior high school mathematics teachers. On four different cards, we wrote down the name of a concept (card A), its definition (card B), a specific example (card C), and a method of creating a specific example (card D). Twelve cards were used.

Individual interviews for collecting information on mathematical understanding were conducted in accordance with the following steps:


(1) One of 54 students was chosen randomly.

(2) One of the three afore-mentioned concepts was selected randomly. The student was shown the card with its name (card A) and asked if they have previously learned about this concept or can understand it. If they had learned about this concept or could understand it, then further exploration was terminated, another concept from the remaining cards was then randomly selected and the student was asked the above question again. If the student could understand all three concepts, the interview was terminated, and we reverted to step (1) choosing another student. This continued until all the students were interviewed. If they did not understand the mathematical concept, only then did we proceed to the next step.

(3) One of the three study plans was randomly selected, namely, α, β, and γ (a detailed description of plans α, β, and γ are presented at the end of this section. Each plan was divided into two parts). The chosen study plan was executed in the following steps:


(a) Implementation of the first part of the plan. When students finished the learning process, they were asked if they had understood the concept. If they said “yes,” they were asked to describe the meaning of this concept in their own words. Then we proceeded to step (b). If they said “no,” then we proceeded directly to step (b).

(b) Implementation of the second part of the plan. When students finished the learning process, they were asked if they have understood the concept. If they said “yes,” they were asked to describe the meaning of this concept in their own words again. If they said “no” again, then the interview that focused on this concept was terminated and we proceeded to step (2) to choose another concept. This continued until all three concepts had been tested.

(c) Students were asked to recount how they transitioned from a state of not understanding the mathematical concept to a state of understanding. They were asked to identify the cards that helped them understand the mathematical concepts, describe the role the contents on that card played in their learning, and how it helped them understand the concept.

(d) Students were asked to identify any other content that helped them understand the concepts. If their responses were valid, they were asked to describe the role played by the specific content and how it helped them understand the concepts.

(e) Students were asked to identify the contents that were unnecessary, and explain why they considered them to be unnecessary.

(f) Students were asked to prioritize the presented content to help other students learn and understand this concept completely.





After the students finished it, the interview that focused on this concept was terminated.


(4) Step (2) to choose another concept was proceeded to. This continued until all three concepts were tested. During this process, the concepts and plans to be used earlier were abandoned.

(5) Once an interview with a student had been terminated, the interviewer reverted to step (1), chose another student, and repeated the afore-mentioned steps. This continued until all the students had been interviewed.





Plans

There are six types of complete permutations for cards B, C, and D. To enhance the efficiency of the research (under the condition of ensuring the effect), we chose three of these permutations according to the results of an advance investigation with 37 experienced junior high school mathematics teachers. They are permutations in BCD, BDC, and CDB. They are considered by most teachers to be helpful for students to understand mathematical concepts compared with the other three permutations. For these three selected permutations, we designed the following plans for the interview:

Plan α

Part 1: The student was shown card B, which contained a definition of the mathematical concept, and card C, which presented a specific example of the concept. The student was allowed to read the contents and think about it aloud in order to understand the concept independently.

Part 2: The student was shown card D, which described a method of creating an example of a concept, and allowed the student to read the contents and think about it aloud in order to understand the concept independently.

Plan β

Part 1: The student was shown card B, which contained a definition of the mathematical concept, and card D, which described the method of creating an example of the concept. The student was allowed to read the contents and think about it aloud in order to understand the concept independently.

Part 2: The student was shown card C, which presented conceptual examples, and allowed the student to read the contents and think about it aloud in order to understand the concept independently.

Plan γ

Part 1: The student was shown card C, which contained a specific example of the concept, and card D, which described a method of creating an example of the concept. The student was allowed to read the contents and think about it aloud in order to understand the concept independently.

Part 2: The student was shown card B, which contained a definition of the mathematical concept. The student was allowed to read the contents and think about it aloud in order to understand the concept independently.

The above procedures and plans are somewhat complicated; however, they can help researchers to identify the specific factors that affect students’ mathematical understanding and explore the internal processes that underlie their mathematical understanding. In view of this, this study firmly adopted them.

Three or four students were interviewed each day after class (i.e., in the afternoons) for a total duration of 3 weeks. Their mathematics teachers determined the order in which they would be interviewed. They were interviewed in a school campus activity room. Four mathematics teachers and four graduate students majoring in mathematics education served as research assistants with their consents. They were required to maintain a detailed and comprehensive record of the selected and used plans and the responses and behaviors of the students.



Assessment of Mathematical Understanding

After the interviews were completed, we collected and collated the records of all the research assistants and validated each student’s answers and behaviors. Then we analyzed each student’s description of the concept they had learned in steps (a) and (b) and classified the extent of their understanding of the new concepts. To ensure the objectivity and reliability of the analytic process, we invited two experienced researchers (experts in the assessment of mathematical understanding) to independently analyze the data. Next, the other researchers checked and reviewed their results and discussed the combined results with the two expert researchers. The criteria used to assess students’ mathematical understanding were the accuracy, clarity, and comprehensiveness of their descriptions of the meanings of the newly learned concepts in their own words. If a student’s description of the meaning of a new concept was accurate, clear, and comprehensive, then he/she was considered to have understood the respective concept adequately. If a student’s description of the meaning of a new concept was inaccurate, unclear, or incomprehensive, then he/she was considered to have not understood it adequately. If a student could not describe the meaning of a new concept or his/her description was completely wrong or extremely unclear, then he/she was considered to have not understood it yet. Finally, we examined all the student responses that pertained to the contents they considered important for mathematical understanding and their priorities and analyzed the underlying meanings.



RESULTS

All the students completed their interviews within 30 min (M = 23.13, SD = 6.47). When the names of the new concepts were presented to the students, none of them mentioned that they had seen or heard of them before. This indicated that the three afore-mentioned mathematical concepts were new to the 54 students and were suitable for this study.


Students’ Understanding of the New Concepts Post-implementation of Part 1 of the Study Plans

Following the implementation of part 1 of plan α, only 12.5 and 17.65% of students had fully understood the new concepts of TP and HPSL, respectively. Most of the students understood the new concepts only partially. Following the implementation of part 1 of plan β, about 70% of students (mainly students with excellent and average academic performance) fully understood the new concepts. Only some students (mainly students with poor academic performance) did not fully understand the concepts, and a few students had not yet understood the concepts. Following the implementation of part 1 of plan γ, only 10.53% of students had fully understood the concepts, and over 71% of students (mainly students with excellent academic performance) partially understood the concepts. In other words, almost none of the students fully understood the new concepts. The students’ understanding of the new concepts following the implementation of part 1 of the plans is summarized in Table 3.


TABLE 3. Students’ understanding after part 1 of the study plan.

[image: Table 3]Moreover, group comparisons of their level of understanding post-implementation of part 1 of the three plans for each new concept revealed no significant differences between male and female students and between students with excellent, average, and poor academic performance.



Students’ Understanding of the New Concepts Post-implementation of Part 2 of the Study Plans

Following the implementation of part 2 of plans α, β, and γ, it could be seen that over 71.43% of the students had fully understood the new concepts. Only a few students (mainly students with poor academic performance) had not yet fully understood the new concepts. The students’ understanding of the new concepts post-implementation of part 2 of the plans is shown in Table 4.


TABLE 4. Students’ understanding after part 2 of the study plan.

[image: Table 4]Additionally, group comparisons of their level of understanding post-implementation of the second part of the three plans for each new concept revealed no significant differences between male and female students and between students with excellent, average, and poor academic performance.



The Contents That Play the Most Important Role in Understanding New Concepts

The cards that students selected when they were required to identify the contents that played the most important role in helping them understand the new concepts were recorded. After collecting statistics and analysis, we found that all students (including students with excellent, average, and poor academic performance) considered the definitions of new concepts, examples, and the method of creating a specific example, to have played a very important role in helping them understand the new concepts. In particular, about 40% of students believed that definitions and over 31% of students believed that the method of creating a specific example, were important factors that facilitated this process. The statistical results are presented in Table 5.


TABLE 5. The most important contents for understanding.

[image: Table 5]Group comparisons of what the students considered to be the most important content that had helped them understand the new concepts revealed no significant differences between male and female students and between students with excellent, average, and poor academic performance.



The Prioritization of Contents That Facilitate the Understanding of New Concepts

The responses that students provided when they were required to prioritize the relevant contents that enhanced the understanding of learners, were recorded and analyzed. According to the results, over 50% of the students (including students with excellent, average, and poor academic performance) considered the order “A, B, C, and D” to be the best sequence of presentation of the contents pertaining to new concepts. In other words, they believed that successively presenting the names of concepts, their definitions, specific examples, and the method of creating a specific example would be the most helpful and effective means of helping learners understand a new concept. The detailed results are presented in Table 6.


TABLE 6. The best understanding priority.

[image: Table 6]Group differences in the prioritization of the contents that pertained to each new concept revealed no significant differences between male and female students and between students with excellent, average, and poor academic performance.



The Students’ Oral Reaction During the Implementation of Part 1 of the Plans

In the process of implementing part 1 of plan α, after reading the definition, most students looked at the following examples, and then returned to the description of definition, and started to repeat the keywords in a low voice several times “a pair,” “difference,” “straight line,” “two planes,” “two or more,” and “polyhedrons,” and then said “it should be like this,” “it should be correct,” “that is it.” In the process of implementing part 1 of plan β, after most students had read the definitions and methods continuously, most students turned to the definitions, read them silently again, and then whispered the keywords “a pair,” “different,” “straight line,” “two planes,” “more than two,” and “polygon,” then turned to the method, read it silently again, and then said “this way, this way., understand,” “this way.um., understood.” In the process of implementing part 1 of plan γ, most students went through the examples at first, then turned to the method, read it silently over and over, while whispering “this way. this way. um.,” “somewhat understanding” and “some understanding.”



Students’ Oral Reaction During the Implementation of the Second Part of the Plans

In the process of implementing part 2 of plan α, after reading the description of the method, most students stared at the description, paused for a while, and then said “Oh, I understand,” “Oh, that’s it. I get it.” At this time, most students raised their heads and looked at the examiner with a smile. In the process of implementing part 2 of plan β, after reading the example, most students said “Well, yes, I understand,” “Yes, no problem. I understand.” In the process of implementing part 2 of plan γ, after reading the definition, most students stared at the definition narrative, and then confidently said, “I understand” At this point, students often looked up and leaned back.



DISCUSSION

Based on existing studies on mathematical understanding, this study aimed to explore the internal processes underlying mathematical understanding to enhance mathematics teaching and student learning. Using three mathematical concepts as instruments to investigate 54 students, we obtained many results and gained some insights.


The Important Factors That Affect Mathematical Understanding

The results showed that all students were able to understand the three new concepts following the implementation of parts 1 and 2 of the plans. This finding indicates that the definitions of concepts, use of examples, and the method of creating a specific example enabled students to transition from a state of not understanding to a state of understanding; consequently, these were the important contents that helped students understand the new concepts. This is consistent with the preliminary investigation results and confirms the perspective of Cai and Ding (2015).

A careful analysis of the mathematical understanding of students post-implementation of part 1 of plans α, β, and γ revealed that the definitions of concepts and the method of creating a specific example were not only important but also necessary and indispensable. This is consistent with the findings of some researchers (Cao, 2008; Li and Wu, 2011). Following the implementation of plan α, it could be seen that almost none of the students had fully understood the concept because this plan did not include the presentation of the method of creating a specific example. Following the implementation of plan β, it could be seen that most of the students had fully understood the concept even though this plan did not include the presentation of examples of the new concept. However, it included the method of creating a specific example. Following the implementation of plan γ, it was found that almost none of the students had fully understood the concept because this plan did not include the presentation of the definitions of concepts.

Similar conclusions can be drawn from the contents that the students considered important to their learning and the students’ oral reactions during the implementation of the plans. When they were asked to identify the contents that had played the most important role in helping them understand the new concepts, about 40% of the students named the definitions of the concepts, and over 31% of them named the method of creating a specific example. During the implementation of the plans, when the students learned the definitions of concepts and the method of creating a specific example, most of them said, “I understand,” especially when the definitions of concepts and the method of creating a specific example were arranged occurred after other contents.



The Role of Definitions and Methods in Mathematical Understanding

As mentioned earlier, the definition of a mathematical concept is a statement or description of its connotations and characteristics. It indicates the position of a concept within the entire conceptual system, the concept that it is similar to, and the differences between them (Cao and Cai, 1989). Accordingly, it reveals the relationship, connection, and difference between a given concept and its superordinate concept (Ausubel et al., 1978).

The same is true for the method of creating a specific example. In this method, an example of a new concept is created based on an example of a known concept. Consequently, the new example also reveals the relationship or connection between a related known concept and a new one, which promotes mathematical understanding. The only difference is that the relationship or connection here, was made through the process of creating a specific example that shows the link between the new concept and the known one (which shares a juxtaposed relationship with the new concept) (Ausubel et al., 1978).

Therefore it is the relationships, connections, and juxtapositions between new concepts and their superordinate concepts that promote mathematical understanding among students. This finding is consistent with previous studies (Mayer, 1989; Davis, 1992; Hiebert and Carpenter, 1992; Huang and Yu, 2002; Yu and Yang, 2005; Zhang and Wang, 2005; Zhang and Guo, 2007; Li and Wu, 2011).



The Process of Understanding New Mathematical Concepts

If we further analyze the connection between the definitions of mathematical concepts and the method of creating a specific example, we find that they not only made the objects of connection of new concepts different but also altered the direction of its (connection. Definitions of mathematical concepts specify the superordinate concept category to which a new concept belongs; thus the resulting connection delineates the link between the new concepts and their superordinate concepts. When students learn the definition of a mathematical concept, they engage in superordinate learning activities (Ausubel et al., 1978). Consequently, students generally connect new concepts to older ones in their minds. The method of creating an example involves creating an example of an existing concept, from which an example of a new concept can be derived. Thus the resulting connection here is the link between the existing and new concepts. When students learn how to create a specific example, they engage in juxtaposed learning activities (Ausubel et al., 1978). Consequently, students generally relate existing concepts to new ones in their minds.

Therefore the process of understanding new mathematical concepts should be based on the establishment of a connection between new and existing concepts in the minds of learners. This process can be accomplished in two different ways, namely, “going” and “coming.” “Going” refers to the process of connecting a new concept with an existing one whose inclusive level is higher than that of the new concept (which is a superordinate concept). Its connection direction is from a new concept to an existing concept. In contrast, “coming” refers to the process of connecting an existing concept (which is juxtaposed with the new concept) with the new concept. Its connection direction is from the old concept to the new concept.

The students indicated what they considered to be the best sequence of learning mathematical concepts after they had specified the contents that had played an important role in helping them understand the concepts. The results of statistical analyses of their responses revealed that most of the students considered the following sequence to be the most helpful to their process of understanding a new concept: learning the definition of a mathematical concept and then learning the method of creating a specific example. This means that to promote mathematical understanding among students, it may be best to allow them to connect new mathematical concepts to (a) the superordinate concepts and, subsequently, (b) existing juxtaposed concepts. Mathematical understanding is supposed to be a process of “going” proceeding “coming”.

Previous studies have shown that mathematical understanding is a process in which new concepts enter an individual’s cognitive structure, become a part of it, and form a network of relationships with previously acquired knowledge within the cognitive structure (Hiebert and Lefevre, 1986; Davis, 1992; Li and Wu, 2011). In this regard, Hiebert and Carpenter (1992) observed that “the mathematical understanding occurs as representations get connected into increasingly structured and cohesive networks.” However, the present findings reveal that mathematical understanding, especially complete mathematical understanding, does not result from the mere entry of a new concept into the cognitive structure of an individual and its integration within this structure, which is attributable to the connections that are formed between new and arbitrary pieces of previously acquired mathematical knowledge. Instead, connections must be drawn between the new concept and at least two existing concepts within the cognitive structure of an individual. This result supports hypothesis (1) formulated in this study. With regard to the two existing concepts, one should be a superordinate concept, to which the new concept belongs, and the other should be convertible so that a specific example of the new concept can be derived by means of changing or transforming its examples. This result supports hypothesis and (2) formulated in this study.

Additionally, Hiebert and Carpenter (1992) contended that the relationships that result in mathematical understanding primarily include similarities, differences, and inclusion. However, the present findings show that the relationships that result in mathematical understanding should include a new dimension, namely, the dimension of “change” or “transformation.”



CONCLUSION

Mathematical understanding plays an important role in promoting student learning and the application of mathematical knowledge. Within the field of mathematics education, research on mathematical understanding has always been a popular topic (Cai and Ding, 2015). Grounded in the existing literature, especially cognitive network theory (Hiebert and Carpenter, 1992), this study focused on three new mathematical concepts to explore the processes that underlie mathematical understanding by using a sample of 54 junior high school students and the oral report method. The results showed that among the many contents that pertained to the mathematical concepts, their definitions, examples, and the method of creating a specific example were considered to be the most important. Notably, the definitions and the method of creating a specific example were considered particularly important.

Based on the contributions of (a) the meaning and role of the definitions of new concepts and (b) the method of creating a specific example of the processes that underlie mathematical understanding, several conclusions can be drawn. First, mathematical understanding is achieved when a connection between new concepts and at least two previously learned concepts is established within the cognitive structure of a learner. One of these two existing concepts should be the superordinate concept of the new concept, or more accurately, the superordinate concept that is most proximal to the new concept. The other concept should be convertible so that a specific example can be derived by changing or transforming its examples. Second, the process of understanding a new concept involves two processes, namely, “going” and “coming.” “Going” is the process in which a connection is established between a new concept and its closest superordinate concept. In contrast, “coming” is a process in which a connection is drawn between an existing convertible concept and a new one. Third, for a new concept to be understood, it should be situated in the middle of a connection between at least two concepts. Finally, in addition to the three dimensions that have been identified by Hiebert and Carpenter (1992), the relationships that result in mathematical understanding should also include a new dimension: change or transformation.

The present findings therefore suggest that in order to help students understand new mathematical concepts, teachers should first present students with the definition and subsequently teach them how to create a specific example based on an example of a previously learned concept. This will facilitate the formation of an interconnected network of new concepts in the minds of students. When teachers explain new concepts to their students, they should emphasize the superordinate concept to which the new concept belongs. Similarly, when teaching students the method of creating an example, they should emphasize that the example can be derived from the example of a previously learned concept.

The present findings (a) delineate the concrete processes that underlie mathematical understanding, (b) clarify the specific ways in which new concepts should connect to existing concepts so that mathematical understanding can be achieved, (c) illustrate the specific form of an internal network following the achievement of mathematical understanding, and (d) enrich the existing literature on mathematical understanding.

Although the mathematical concepts that were selected and examined in this study were all new to the participants, they were all closely linked to the mathematical knowledge that they had previously acquired. Will similar results be obtained if the mathematical concepts that are distant from previously acquired knowledge are presented to students? This is a noteworthy question for further study.
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Deductive and logical reasoning is a crucial topic for cognitive psychology and has largely been investigated in adults, concluding that humans are apparently irrational. Yet, from a pragmatic approach, the logical level of meaning is only one of possible communicative interpretations, and the least likely to be assigned if the intent of the task is not adequately transmitted. Indeed, new formulations of the mathematical tasks (syllogisms, selection task, class inclusion task, problem solving) of greater relevance to the problem and to its aim, greatly improved adults’ logical performance. The current study tested whether pragmatic manipulations of task instructions influenced in a similar way children’s performance in deductive and logical tasks (Experiment 1) and in insight problems (Experiment 2). We found that, when task instructions were in accordance with the conversational rules of communication, 10-year-old children substantially improved their performance. We suggest that language use imposes constraints in terms of informativeness and relevance which are crucial in teaching logic and mathematics.
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INTRODUCTION

Natural language and logic are both intended to transmit meaning effectively or, in other words, to express thoughts. However, they are fundamentally different. In logic, the speaker wants to convey a univocal meaning, and any possible acceptation interfering with it is eliminated. Conversely, in natural language, the speaker constantly exploits the expressive richness of words, and the intended meaning of an utterance can be understood only by considering the relevant context.

Thus, the context, the identity of the speaker and the listener, the shared knowledge, and the aims of the communicative act all contribute to determine the interpretation of an utterance through sophisticated intention-attribution and inferential processes. The study of these processes pertains to the field of pragmatics (Grice, 1989; Mosconi, 1990, 2016; Levinson, 1995; Sperber and Wilson, 1995). Everything that the text communicates concurs in the representation of its meaning: not only what literally is said (the sentence), but also what is implied (the utterance). The distinction between sentence and utterance is the core of Grice’s communication theory, according to which phrases mean more than they literally say. What is implied is inferred from the intentions attributed to the speaker and the context through conversational implicatures. The central idea is that communication is achieved when a recipient recognizes the special kind of intention with which a communicative act is produced. More generally, the Gricean theory of implicature postulates that meaning should be reduced to intention and, therefore, that semantics has to be reduced to psychology (Grice, 1975).

In most occasions, human reasoning has a verbal input in natural language and, contrary to the case of formal languages, there is no univocal interpretation of a sentence. Hence, the view that the verbal input to human mental activity is well defined like in formal logic is an idealization. The consequences for the study and the assessment of human reasoning, judgment, and problem solving are straightforward: a pragmatic approach to the study of thinking and reasoning must consider the relationships between language, communication, and thought (Mosconi and D’Urso, 1974; Mosconi, 1990; Hilton, 1995; Politzer and Macchi, 2000; Bagassi and Macchi, 2016). Communication and thinking could be considered as two sides of the same cognitive process, which realizes in the discourse.

Accordingly, analysis of the discourse is the proper methodology for studying reasoning and teaching how to improve reasoning. Numerous studies (Dulany and Hilton, 1991; Sperber et al., 1995; Macchi, 2000; Politzer and Macchi, 2000; Mosconi and Macchi, 2001; Van der Henst et al., 2002; Macchi and Bagassi, 2006; Baratgin and Politzer, 2010) have shown the importance of the pragmatic approach to the study of adults thinking and reasoning, from problem solving, conditional reasoning, and deductive reasoning to probabilistic reasoning, in which Mosconi (1990), with his analysis of discourse, has been a pioneer.

For instance, in recent studies on deductive reasoning with syllogisms and material implication (Macchi et al., 2019, 2020), we showed that, in adults, poor performance in logic tasks is not necessarily caused by poor logical abilities. Rather, it is caused by the lack of clear communication between the experimenter and participants. The experimenter expects participants to solve a task following the rules of logic, but participants are unaware of it and thus respond adhering to the rules of natural language. Indeed, we found that when the experimenter expresses the task instructions and aim clearly, participants’ performance greatly improves.

Furthermore, many developmental studies on reasoning provide evidence of children’s sensitivity in recognizing the intentions of the speaker, even in the absence of facilitating communicative contexts (Rose and Blank, 1974; McGarrigle and Donaldson, 1975; Kagan, 1981; Markman and Wachtel, 1988; Politzer, 1993, 2016; Gelman and Bloom, 2000; Diesendruck and Markson, 2001; Mosconi and Macchi, 2001). Likewise, many studies (Papafragou and Musolino, 2003; Feeney et al., 2004; Noveck and Sperber, 2004; Sala et al., 2006; Pouscoulous et al., 2007) found that children are able to derive the scalar implicature for “some” if the task is framed in ecological contexts (i.e., movies, storyboards, etc.), which clarify its aim.

Therefore, children’s reasoning performance may depend on their expectations concerning other people’s communicative behavior, as they learn language in a natural context in which conversational implications are an integral part of the meaning conveyed by the statements. This pragmatic hypothesis is supported by the results of a number of experiments concerning class inclusion, conditional reasoning, conservation of numbers, reasoning with quantifiers and connectives (McGarrigle and Donaldson, 1975; Hughes and Donaldson, 1979; Girotto et al., 1989; Politzer, 1993; Politzer and Macchi, 2000; Mosconi and Macchi, 2001; Bagassi et al., 2009).

Another factor that influences adult–child communicative interaction is children’s “attitude of trust” in adults (Harris, 2002; Koenig et al., 2004). In this regard, it has been found that when children have doubts about a given topic, due to their limited epistemic state and the ambiguity of the instructions “they recourse to an important precautionary strategy: attend to the accuracy of what you hear and trust in (previously) reliable informants” and therefore agree with the adult-experimenter (Koenig et al., 2004, p. 698). So, children’s attitude of trust could be a factor masking their reasoning abilities when the task is ambiguous.

In the current study, we argue that for a better understanding of children’s difficulties in solving logical tasks and insight problems, it is crucial to consider that children as well as (or even more than) adults can encounter interpretative difficulties linked to the adoption of natural language and conversational rules. Pragmatic factors can lead them to a misinterpretation of the task instructions. Since pragmatic factors can lead to misinterpretation of task demands, we postulate that by manipulating the instructions, making them clearer, an improvement in children’s performance in logical tasks and understanding problems can be achieved. Pragmatic manipulations not only consist of verbal aspects of the text but also in everything that constitutes the problem: i.e., all those aspects that can create misunderstanding. In the following experiment, the pragmatic manipulation will take place on the figure of the problem in task 1, and on the text of the problem in task 2.



EXPERIMENT 1. THE ATTRIBUTION OF INTENTIONS IN THE ASSESSMENT TESTS OF MATHEMATICAL LEARNING

In the light of what has been discussed above, we assume that the problem formulations proposed to school-age children must take into consideration their pragmatic skills, the role exercised by the experimenter–child interaction, and, consequently, the actual message transmitted by the task. If the correspondence between what is said and what is communicated is not fully guaranteed, the wrong answers of the children can be attributed to factors that go beyond the logical–mathematical ability that the task intends to measure. However, the impact that instructions understanding has on task performance is often disregarded. Here, we show that.

For this purpose, two logical tasks were selected from the MAT-2 (a mathematics test for elementary school, see Amoretti et al., 2007), in order to verify the presence of a possible mismatch between the emitted message and the received message. One task involved the understanding of probabilities, while the other concerned geometry.

Notably, this test fits well with recent advances in cognitive psychology supporting the idea that the human mind is inherently probabilistic and works under uncertainty (Baratgin and Politzer, 2006, 2007, 2016). Indeed, children’s inferential abilities are not assessed only with regard to logical axioms, but also in reference to probability theory.


Task 1—Probability


Methods


Participants

In the first task, 60 children attending the fifth grade of a primary school (mean age: 10.4 years; SD: 0.35; F = 27) were randomly assigned to one of two groups. The task was performed as a single activity, without a practice task before. Participants received the instruction by written. One group was administered with the original version of the task, while the other was tested on the experimental version1.



Materials and procedure

The original version, included in the Logic and Probability section of the MAT-2, presents a series of five urns. Each urn contains white and black balls in different proportions. Participants are asked to identify the urn from which it is more convenient to extract, blindfolded, a white ball. The urns are rectangular and contain seven balls, disposed in two rows, except for an urn in which the balls are arranged in three rows (Figure 1). This arrangement seems to be potentially misleading, shifting the attention of the children from probability calculation to perceptive and contextual reasoning.


[image: image]

FIGURE 1. Stimuli as originally reported in the MAT-2.


Even if the task aims to assess skills related to probabilistic reasoning, it does not request from which urn it is more probable to extract a white ball; rather, it asks to identify from which urn it is more convenient to catch a white ball. In the urn A, a white ball is shown on the top left corner, in a position that seems more easily reachable than any other ball. Hence, it might mislead children into thinking that urn A offers an easier opportunity to catch a white ball. Even if the experimenter expects children to make decisions based on probabilities, the arrangement of the balls (i.e., the perceptual characteristics of the stimuli) offers a different way of deciding, which is entirely justifiable from the children’s point of view.

The perceptual stimulus, therefore, enters into competition with the probabilistic task and the participant should be able to exclude the answer that derives from the perceptual analysis of the stimulus. However, given the request of the task (“from which urn is it more convenient to extract a white ball?”), the perceptual analysis can become crucial and consequently lead to a mismatch between the request of the experimenter and the request as perceived by the participant. In other words, the task seems to draw the attention of the participants on the accessibility of the white ball to be caught, thus making crucial the position of the balls in the urns, rather than their number.

In the experimental version (Figure 2), we propose to overcome these limitations by making urns round and by arranging the seven balls with no specific order.


[image: image]

FIGURE 2. Experimental version of the stimuli.


With this new disposition, the perceptual stimulus does not conflict with the probabilistic task and thus it allows the emergence of the actual logical and mathematical competences of the child.

Each participant was tested individually in order to record, in addition to the answers, the verbal protocols spontaneously expressed, accompanying the solution process2.



Results

The results indicate that, with the original version, only 50% of the participants responded correctly to the question; this percentage increased to 76.7% with the modified version, registering a statistically significant difference between the two versions [χ2(1) = 4.59, p < 0.032, φ = 0.28]. However, what is most interesting concerns the distribution of the answers among the various alternatives (see Table 1).


TABLE 1. Percentages of choices of each urn recorded with the two versions of the task.

[image: Table 1]The experimental version led to an increase in the proportion of correct answers because the number of children selecting the perceptually misleading urn decreased significantly [χ2(1) = 7.92, p < 0.004, φ = 0.36]. Hence, as hypothesized, the disposition of the balls in the urn A in the original version transmitted a misleading message: it was more “convenient” for participants to extract from the urn A not because it was more likely to draw a white ball, but rather just because extracting the white ball was easier. This was confirmed by the analysis of the verbal protocols, which showed that participants are led into thinking that there is a reason why the balls are arranged differently only in urn A (so as to make the white balls more accessible only in this urn) and, consequently, believe they must take this information into account. With the modified version of the task, it emerges that children of 10 years of age can correctly solve this type of probabilistic task to a greater extent than would have been detectable with the original version.



Task 2—Geometry and Fractions


Methods


Participants

The second task was administrated to another group of 60 students from the fifth grade of primary school (mean age: 10.6 years; SD: 0.37; F = 32), who were randomly assigned to one of two versions of the task: an original version and an experimental version3. The task was performed as a single activity, without a practice task before. Participants received the instruction by written.



Materials and procedure

The task consists of a geometry problem, which also introduces the concept of fraction and percentage (Figure 3):

Sketch in three different ways a part of the figure corresponding to the 1/2 fraction.
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FIGURE 3. Stimuli and instructions as originally presented in the MAT-2.


The correct answer consists in filling in half of each figure, each time using different parts from those already indicated in the previous figures. However, the instruction presents a series of ambiguities from a communicative point of view, which makes it unsuitable to clearly and unequivocally convey its aim. First, it is unclear what “in three different ways” is referring to. It could refer to the ways in which the triangle can be split into halves, as intended by the experimenter, but it could also refer to different ways of shading the triangle (e.g., different types of lines or colors). Furthermore, the triangles are already subdivided in different parts, but it is not made clear to participants whether they should use such subdivisions. Finally, it is asked to outline “a part of the figure”: this aspect is potentially ambiguous too, since the term figure can be referred to each triangle, but also to the set of three triangles which, being presented all together, and being all identical, can be considered as a whole.

Therefore, an alternative version of the question has been formulated to resolve the ambiguities in the transmission of the task goal:

Color 1/2 of the area of each triangle. To color half of the area, use the parts drawn in the triangle, in order to always have different combinations for each of the three triangles.

This version explicitly introduces the concept of “area” of the triangle, a concept necessary to understand that the parts of the figure are symmetrical and can be inverted to build the half of the triangle. In addition, it makes direct reference to the use of the parts in which each triangle has already been divided and to their combined use in different ways.

Each version has been individually submitted to 30 participants. In order to detect the reason for the errors, we also collected verbal protocols spontaneously expressed.



Results

Results indicate a very high percentage of errors in the original version of the task (93.33%). From the analysis of the responses, it was possible to identify some types of recurring errors (see Table 2).


TABLE 2. Frequencies of the types of errors recorded in the original version of the task.

[image: Table 2]As reported in Table 2, in the original version, the task errors are strictly related to the use of the term “sketch.” Moreover, the wording outlines in three different ways is interpreted by participants in numerous different ways. In the case of errors of type a) and b), participants understand the hatching as drawing a line that divides the triangle or its parts in half. In the case of the error of type d), participants adopt different hatch styles to highlight half of the triangle, without changing the choice of the parts selected, since the type of line varies. Overall, the errors attributable to the participants’ incompetence in identifying three different ways to divide a triangle in half represent only 23.33% of the total errors (answers type f and g).

On the contrary, the results indicate that 70% of correct answers have been obtained with the experimental version of the task. The difference between the correct responses in the original version compared with those obtained in the experimental version is statistically significant [χ2(1) = 20.84, p < 0.001, φ = 0.59].



EXPERIMENT 2. INSIGHT PROBLEM SOLVING IN CHILDREN

In the second experiment, we investigated the source of problem forming, for the impact that this issue has in problem solving. Sometimes the difficulty in problem solving lies in the calculations to be made, the number of operations to be performed, and the quantity of data to be processed and remembered (procedural problems, for instance, the well-known problem of the Tower of Hanoi). There are, however, other problems in which the difficulty does not lie in the complexity of the calculations, but rather in one or more critical points of the text-problem that are susceptible to misunderstanding (insight problem solving, for instance, the nine-dots problem, see Macchi and Bagassi, 2015).

We will focus on this second type of problems since they allow us to explore our hypothesis regarding the close interconnection between text and solution understanding. In our view, the way of thinking involved in insight problem solving is very close to the process involved in the understanding of an utterance when a misunderstanding occurs. In both cases, a more appropriate meaning has to be selected to resolve the misunderstanding that produced an “impasse.” The default interpretation (i.e., the “fixation”) has to be dropped in order to “restructure,” to grasp another meaning which appears more relevant to the context and the speaker’s intention.

Many studies have already demonstrated the influence of pragmatic factors on insight problem solving in adults (Mosconi, 1990, 2016; Macchi and Bagassi, 2012, 2015, 2018; Bagassi and Macchi, 2016). According to our hypothesis, the difficulty of these problems is never objective and computational, but instead subjective and interpretative. The difficulty of the problem is given by how it is formulated since this brings to the activation of the default interpretation which obscures the solution. A re-formulation of the text, more relevant to the aim of the task, should reduce the problem knot. This time, language and thought would work together in an interrelated interpretative “game.” The importance of how the problem is phrased should not be underestimated, both from the point of view of how the problem is formed in the solver’s mind and how it is solved.

We have examined insight problems with children, exploring as well the hypothesis that a relevant understanding of the text would promote the resolution of this particular type of problems. Three well-known insight problems have been investigated (Dow and Mayer, 2004; Frederick, 2005; Gilhooly and Murphy, 2005) by submitting a new experimental version for each problem where we removed pragmatically unfelicitous factors that could hinder the interpretation relevant to the aim of the task, but leaving the rest unchanged.


Methods


Participants and Procedure

The participants were 82 children (mean age: 10.45 years, SD: 0.49; F = 46) attending the fifth class of primary school4.

Children were randomly assigned to the control group and to the experimental group. They were submitted only one version of each problem to be solved individually, in a randomized order. The task was performed as a single activity, without a practice task before. Participants received the instruction by written. All the children had access to paper and pencil to perform the calculations and to answer the questions. There was no time limit.



Materials

The three problems used in our study are listed below.

(1) The Zoo problem:

Yesterday I went to the zoo and I saw giraffes and ostriches. Altogether they had 30 eyes and 44 legs. How many animals were there?

(2) The Two Coins problem:

In my pocket, I have two Italian coins that together are 70 cents, but one is not 20 cents. How could it be?

(3) The Bat and Ball problem:

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than the ball.

How much does the ball cost?___cents.

For what concerns the first problem, we hypothesized that the critical issue was the irrelevant information (in this case, the “44 legs”), that was necessary to inhibit to reach the proper solution. We have thus reformulated the problem (the Zoo Experimental version) in order to point out that not all the given data are relevant to respond correctly:

Yesterday I went to the zoo and saw giraffes and ostriches. Altogether they had 30 eyes and 44 legs. How many animals were there? Try to use the data of the problem that more than others are important to decide how many animals there were.

In the Two Coins problem, the use of “but” seems to rule out the possibility that any 20-cent coins are present. So, in the experimental version, we have removed “but” in order to eliminate the conversational implicature underlying this function word:

In my pocket I have two Italian coins that together are 70 cents; one is not 20 cents. How could it be?

For what concerns the Bat and Ball problem, the answer which immediately comes to mind is 10 cents, which is incorrect as, in this case, the difference between $ 1.00 and 10 cents is only 90 cents, not $1.00 as the problem stipulates. The correct response is 5 cents. Number physiognomics and the plausibility of the cost are traditionally considered responsible for this kind of error (Kahneman, 2003; Frederick, 2005).

These factors aside, we argue that if the rhetoric structure of the text is analyzed, the question concerns only the ball, implying that the cost of the bat is already known. The question gives the key to the interpretation of what has been said in the problem and the given data is thus interpreted in the light of the question. Hence, “The bat costs $ 1.00 more than” becomes “The bat costs $ 1.00,” by leaving out “more than” (as already shown with adults, see Macchi and Bagassi, 2012).

Consequently, we reformulated the text to eliminate this misleading inference:

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than the ball.

How much does the ball cost? How much does the bat cost?



Results

Table 3 shows the percentages of children who have provided the correct answer to the problems presented in their original and modified versions. For all the problems, in the experimental conditions, there is statistically significant increase in the number of participants who correctly solved the problems, respectively, for the Zoo problem [χ2(1) 29.99, p < 0.001, φ = 0.60], for the Two Coins problem [χ2(1) 37.29, p < 0.001, φ = 0.67], and for the Bat and Ball problem [χ2(1) 47.74, p < 0.001, φ = 0.76].


TABLE 3. Percentages of correct responses.

[image: Table 3]


CONCLUSION

In the current paper, we have addressed the role that pragmatic and communicative factors play when solving logical and insight problems. Previous research on adults showed that manipulating the task instructions of logical problems systematically lead to a substantial improvement in their performance (Macchi et al., 2020). However, whether these facilitatory effects extended to children was still unknown. Here, we showed that 10-year-old children’s problem-solving skills are usually underrated, and that when task instructions adhere to conversational rules, children’s logical abilities can emerge.

Experiment 1 focused on two tasks concerning the concepts of probability and geometry. The original versions of the task instructions presented potentially misleading formulations. In the first task, the concept of probability was not mentioned in the instructions, leading participants into thinking that the task could be solved by taking into account the perceptual accessibility of the elements rather than the statistical properties of the environment. Simply by changing the perceptual appearance of the task, we successfully communicated the intention to reason about probability and we obtained a significantly greater number of correct answers. In the second task, the question was ambiguously formulated and thus it did not adequately convey the experimenter’s intention. Our pragmatically valid variation of the task instruction eliminated the types of errors that were typically found in the original version. Overall, considering the communicative aspects of the tasks, we were able to obtain a more effective measure of the mathematical competence of the participants.

In experiment 2, we investigated the influence of pragmatic factors on children’s ability to solve insight problems. Insight problems are fundamentally different from mathematical problems. The latter are usually solved following a step-by-step procedure that gradually leads to the solution (Mosconi, 1990). Conversely, insight problems are often solved with a sudden a-ha! experience. Yet, also insight problems heavily depend on communicative factors, as the cognitive process that leads to the solution shares the interpretative nature that belongs to intention-attribution, which is pivotal in communication (Macchi and Bagassi, 2015). We tested 10-year-old children on classic insight tasks (the Zoo problem, the Two Coins problem, and the Bat and Ball problem) with the original version of the instructions or with a novel version that was devised keeping into account the pragmatic factors at play. The results reported a heavy improvement in children’s performance with the modified version of the task instructions, across all problems. The improved performance that occurred after the reformulations showed that the difficulty in problem solving arose from difficulties in understanding the text.

The studies that have examined problem solving in children have rarely included insight problems (Davidson and Sternberg, 1984, 1998; Sternberg and Davidson, 1995; Bermejo et al., 1996), presumably considering them too complex. However, children often find themselves in new situations in which they must restructure the surrounding context to be able to negotiate it adaptively. Often, too, these situations require children to use their creativity and apply alternative or unconventional thinking. Insight problem solving, given its nature, encourages divergent thinking to a greater extent than procedural tasks (Wertheimer, 1945; Guilford, 1959; Gilhooly, 2016) and is thus crucial to reach a wider understanding of the development of problem-solving skills.

On the educational side, the teaching practices implemented in classes play an essential role in the nature and quality of students’ learning (Good and Brophy, 1972; Dupriez and Dumay, 2009; Slavin, 2009). Future research should thus investigate if a pragmatic approach in teaching practices could alleviate many of the difficulties that students face, especially in mathematics. The need to encourage pragmatic-interpretative skills might also benefit students with learning disabilities, that have been shown to have important developmental gaps in metacognition (Palincsar and Brown, 1987; Wang et al., 1993; Cornoldi and Oakhill, 2013). Precisely for this reason, future studies should explore the relationships among metacognition, pragmatic abilities, and problem solving.
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Research on Bayesian reasoning suggests that humans make good use of available information. Similarly, research on human information acquisition suggests that Optimal Experimental Design models predict human queries well. This perspective contrasts starkly with educational research on help seeking, which suggests that many students wait excessively long to ask for help, or even decline help when it is offered. We bring these lines of work together, exploring when people seek help as a function of problem state in the Entropy Mastermind code breaking game. The Entropy Mastermind game is a probabilistic version of the classic code breaking game, involving inductive, deductive and scientific reasoning. Whether help in the form of a hint was available was manipulated within subjects. Results showed that participants tended to ask for help late in the game play, often when they already had all the necessary information needed to crack the code. These results pose a challenge for some versions of Bayesian and Optimal Experimental Design frameworks. Possible theoretical frameworks to understand the results, including from computer science approaches to the Mastermind game, are considered.
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INTRODUCTION

Help seeking is an important aspect of the learning process in allowing an individual to advance their understanding (Nelson-Le Gall, 1985), and develop their independent skill and abilities (Newman, 1994). Once an individual reaches an impasse – a situation where no progress is possible – the initiation of help seeking behavior can be valuable for allowing them to move beyond their impasse (Price et al., 2017).

Interestingly, research also suggests that people often do not effectively utilize opportunities for help or even ignore them altogether (Aleven et al., 2003). Educational research has suggested that many students do not know when to ask for help and tend to wait, trying to work something out for themselves for a relatively long time before asking for hints (Aleven and Koedinger, 2000). In an analysis of students’ help seeking behavior through completing computer tasks, a clear pattern emerged: students would attempt a task, they would be provided with feedback and the offer of help, and then they would decline the help (du Boulay et al., 1999). These findings highlight the importance of establishing when people ask for help and what factors may influence the help seeking process.

In this paper, we bring the phenomena of help-seeking and theoretical models of cognition together, in the context of a mathematical game. Although many types of models of reasoning and decision making processes exist (Roberts, 1993; Smith, 2001), we largely focus on probabilistic Bayesian models. Bayesian models posit that humans make sense of the world by reasoning inductively about how alternative hypotheses give rise to observable data. A common assumption is that people are motivated to find the best explanation to explain the available data (Chater et al., 2006; Kharratzadeh and Shultz, 2016). In studies of human information acquisition in this framework, it has frequently been found that people have good intuitions about which pieces of information are most informative (Oaksford and Chater, 1994; Nelson, 2005; Coenen et al., 2018). It is also important to keep in mind that people are constantly presented with large amounts of information, of which only some is useful, and must appropriately identify what information is useful in order to respond and act appropriately (Hopfinger and Mangun, 2001).

In psychology, mathematics style games and game-like experimental designs have been influential in models of human decision making and reasoning. Chess (Burgoyne et al., 2016) is perhaps the most famous example. One game that has been suggested for use in teaching scientific reasoning is the popular code breaking game Mastermind (Strom and Barolo, 2011). The game was originally designed as a two-player board game in 1970 by Mordecai Meirowitz. Theoretically, Mastermind can be viewed as a kind of concept learning game, with connections to work by Bruner et al. (1956), Wason (1960) and others. One might also relate the deductive logical aspects of the game to logical reasoning tasks such as Wason’s (1968) Selection Task and THOG (Wason, 1977) experimental paradigms. Recent work on Deductive Mastermind (Gierasimczuk et al., 2012, 2013; Zhao et al., 2018) uses versions of the game in which the participant is given all the information to uniquely infer the hidden code. Mastermind can also be viewed as a problem-solving task (e.g., Simon and Newell, 1971; Newell and Simon, 1988) and analyzed accordingly.

Here we use a computer-based, single-player version of the Mastermind game. In the computer-based game, the aim is to guess the secret code generated by the computer using as few guesses as possible. For each guess made by the player they receive feedback regarding the colors and positions of the items in their guess. The player is then expected to learn from the feedback and to use that feedback to make another guess which will add to the amount of information they have about the code. From their guesses the player then tries to deduce the correct color and position of every item in the code. We use an app-based version of Entropy Mastermind, a recently developed, customizable computer-based version of the game (Schulz et al., 2019). Figure 1 displays the gameplay and feedback in more detail.
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FIGURE 1. Example of the app version of the Entropy Mastermind game. Participants make guesses by dragging the colors into the gray circles in the order they choose and then click the make guess button. This generates the feedback displayed on the right-hand side in the form of either a black circle, white circle or cross. A cross means that the item in the code is wrong in both position and color, a white circle means that the item is correct in color but not position and a black circle means that the item is correct in both position and color. The position of the feedback does not correspond with the position of the items in the guess. The first three lines of this example demonstrates that there are no orange colors in the code but there are two green and two blue. Guess number four shows that only two of the colors are in the right place and guess number five shows that none of the items are placed correctly. This information was used to decipher the correct position of the colors as shown in guess six.


Can probabilistic models explain how people’s knowledge and beliefs develop when they play Mastermind? Are people’s queries optimal, or at least highly informative? Bayesian models suggest that humans are rational about learning and inference and will use information to ask questions that will maximize their knowledge (Eberhardt and Danks, 2011). However, Bayesian models have been criticized on a number of theoretical and practical points (Jones and Love, 2011), and human probabilistic reasoning can deviate from Bayesian accounts (Eddy, 1982). One perplexing phenomenon, not yet related in the literature to Bayesian reasoning, is that when acquiring and processing information, people can feel they are at an impasse, are “stuck” (Weisberg, 2015), and be unsure of how to proceed.

The primary aim of this study was to provide the first quantitative empirical investigation of help-seeking as a function of problem state, using the Mastermind code-breaking game. Theoretically, from a purely information-theoretic perspective, help would be most informative at the beginning of the game, when the largest number of codes are possible, and the underlying entropy in the probability distribution corresponding to the true code is highest. In other words, in the beginning of the game, help (in the form of a hint, as we describe below) would tend to provide much more information, as quantified in bits or otherwise, than help later in the game. On the other hand, alternate models that are not purely information-theoretic– for instance, because they take into account the agent’s resource limitations– may find help more valuable later on in the game. This applies to both resource-rational models that operate within the Bayesian framework (Griffiths et al., 2015) as well as heuristic models in computer science (e.g., see Cotta et al., 2010, for an evolutionary algorithm-based approach that maintain less than a complete representation of the problem state).

When will people ask for help when playing Mastermind? Will people ask for help when from a mathematical perspective help is most needed, i.e., early on in the game? Or will people first seek help when they feel stuck (at an impasse), perhaps late in the game? We also consider the points at which people ask for help, and how receiving help influences game play. To investigate these issues across a variety of experimental conditions, the difficulty of the game (1296 possible codes, with 4 items and 6 colors; or 4096 possible codes, with 6 items and 4 colors) and whether or not it was possible to obtain extra help were manipulated within participants.

Two specific research hypotheses were examined:

Hypothesis (1): The point at which an individual will ask for help will be predicted by the number of possible codes remaining, and the number of previous guesses made.

Hypothesis (2): Participants will need fewer guesses to complete the code in the help condition compared to the normal gameplay condition.



MATERIALS AND METHODS


Participants

We aimed to recruit 20 participants through the University of Surrey’s participation website SONA. The experiment was expected to take around 60 min to complete, thus participants were each compensated two lab tokens for their time (if applicable) and entered into a prize draw for one of two £50 Amazon vouchers. (University of Surrey Psychology students can earn lab tokens by participating in experiments, which they can then spend to obtain participation in their own experiments). Participants gave informed consent, following University of Surrey procedures.



Materials

The experiment took place in a laboratory room at the University of Surrey. The participant was given a laptop on which the Mastermind app was installed and displayed. The laptop was connected to a second screen so that the experimenter could observe game play and also had access to a statistics output box showing the number of possible codes remaining, the entropy of the set after each guess, and the true code. Next to the computer was a bell that participants were asked to ring in the help condition, when they felt stuck and would like to receive a hint.



Design

The experiment used a within-subjects design with two experimental conditions: normal game play and help offered. Some participants completed the “normal game play” condition first before being offered a short break and were then asked to complete the “help offered” condition of the experiment. The remaining participants completed the conditions in reverse order.

In each condition participants played four games. The first two games involved completing an easy (4-item) code made up of six equally probable colors (thus containing 6^4 = 1296 possible codes), and the second two games involved completing a difficult (6-item) code made up of four equally probable colors (thus containing 4^6 = 4096 possible codes). Uniform probability distributions across the possible colors were used in all games; each item in the code was drawn with replacement. Note that from one game to the next, for a particular (e.g., 4-item) code length, the difficulty– with respect to any particular guessing strategy– may vary. However, because games are generated at random with equal probability, experimental condition (help available or not) should not be confounded with idiosyncracies of individual games’ difficulty.



Procedure

Before the experiment, the experimenter showed the participant the Entropy Mastermind game and explained the rules and gameplay. Participants were asked to complete a short quiz to ensure that they understood the rules and were then asked to play a simple version of the game (3-item code generated with white, blue, and green appearing with equal probability) to ensure that they understood.

After this, the experimenter explained that the aim of the game was to complete the code with the smallest possible number of guesses. For each game the experimenter recorded: the true code, how many guesses the participant needed to complete the code, and the point at which the code could have been deciphered according to the participant’s guesses and the feedback given. Participants had up to 18 guesses to break the code in each game. If the participant was unable to decipher the code within the 18 guesses available, the total number of guesses needed was recorded as 19 guesses, for the purposes of statistical analyses.

In the “help” condition, participants were told to ring the bell when they felt stuck, and that the experimenter would offer them help, by telling them the color and position of one item in the code of their choice. There was no limit on the number of times participants could ask for help per game. Thus, it would be allowed, if a participant wished, to ask for help multiple times, from the beginning until the code was solved. In each instance that help was asked for, the experimenter recorded: the guess number, the specific guess and feedback of the previous line, the number of possible codes remaining, the Shannon entropy of the probabilities of the possible codes at that time, and which item of the code the participant asked the experimenter to tell them.



RESULTS

Seventeen participants (13 female, 4 male) completed the experiment. Fifteen of these participants reported their ages as ranging from 18 to 52 (median 22, mean 20). Full demographic information is provided together with the study data at https://osf.io/q5rct/.

Each participant had both help available and easy conditions. In each condition each participant played four games: two games involved looking for an easy (4-item) code and two games involved a difficult (6-item) code. Therefore a total of 136 games of Mastermind were played, including 68 games each in the help available and normal gameplay conditions, by the 17 participants. Note that due to experimenter error the order of conditions– within a particular game length– in which help was offered was not randomized throughout the experiment. Rather, the first ten participants completed two games of each code length of normal gameplay, followed by two games of each code length of help-available game play. The remaining participants completed the help offered games first followed by the games of normal gameplay. Visual inspection of the data suggested no differences according to the order in which conditions were completed.

The number of guesses needed to complete the code aggregating across four and six item codes in each condition were as follows: normal game play condition (M = 10.66, SD = 2.51); help condition (M = 9.28, SD = 2.15). A paired samples t-test shows a marginally significant difference for the number of guesses needed to complete the code in the help condition vs. the normal gameplay condition [t(16) = −2.05, two-tail p = 0.056]. A 95% bootstrap confidence interval for the difference in number of queries suggested that the availability of help reduced the number of queries between [0.12, 2.68] guesses per game.

Of the 68 games where help was available to participants, help was accepted in 25 games a total of 38 times. Help was requested much more frequently in the six-item-code games, as in the four-item-code games. For a four-item code, help was accepted in 8 games a total of 8 times; for a six-item code help was accepted in 17 games a total of 30 times. A paired t-test confirmed that participants had a greater tendency to ask for help in 6-item games than in 4-item games [t(16) = 3.10, two-tail p = 0.007]. A bootstrap 95% confidence interval for the difference in number of times each participant requested help in the 6-item games, minus in the 4-item games, was [0.53, 2.12], corroborating the descriptive statistics and the t-test results.

For the 4-item code, participants always guessed the true code within the 18 guesses. In 14 of the games with the 6-item code, participants did not guess the code within the 18 guesses allowed. The 14 instances of not being able to complete the 6-item code were split across 8 participants; the maximum number of games a single participant was unable to complete was 4. In all games where the participant was unable to complete the code, the code had already been mathematically determined based on the feedback from the prior 18 guesses.

Histograms were produced to relate the points when help was asked for to the number of possible codes remaining (Figure 2) and the number of previous guesses made so far (Figure 3) at the point when help was asked for. Visual inspection of the histogram displaying the number of possible codes remaining (Figure 2) showed that participants had a strong tendency to ask for help when the code was already determined, and they had already received the necessary information to decipher the code. Interpreting the relationship between the number of guesses made so far to the tendency to ask for help (Figure 3) is more difficult, because help tended to be asked for only very late in the game, and the number of guesses varied by game and code length. Figure 3 does however suggest that people did not tend to ask for help early in the game, at which point (from a purely mathematical standpoint) help would be most valuable. To test whether help is asked for at a random point in the game, the point at which help was asked for was coded in terms of the quartile of the total number of queries in each individual game. Figure 4 shows a histogram displaying this analysis. Visual inspection of this histogram (Figure 4) showed that participants tended to ask for help late in the game, with most help being asked for in the fourth quartile of gameplay.
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FIGURE 2. Histogram showing the distribution of the number of remaining possible codes at the points in which help was asked for. For purposes of plotting this histogram, if there were more than 10 possible codes remaining, the number was truncated to 10.
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FIGURE 3. Histogram showing the distribution of the number of guesses made so far at the points in which help was asked for.
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FIGURE 4. Histogram showing the distribution of the number of previous guesses as represented by quartile of game play at the point that help was asked for.


A chi square test of independence was conducted to assess whether the quartile of gameplay was a statistically significant predictor of when people asked for help. This test compared the observed number of times help was asked for in each quartile of gameplay with the number of times we would expect help to be asked for in each quartile of gameplay if participants asked for help with equal probability in each quartile. The chi square was conducted on the combined data for both four and six item codes to ensure that the assumption of cell frequencies above five was met. The analysis showed a strong association between quartile of gameplay and when help was asked for, χ2(3) = 30.29, p < 0.001, suggesting that the stage of gameplay is a significant predictor of when people ask for help when playing the mastermind game.


Game Strategies

Participants appeared to adopt one of two qualitatively different strategies when playing the mastermind game. We think of these strategies as the “systematic strategy” and the “random strategy.” The systematic strategy involved testing each color to find out how many items of the code consisted of that color. (Note that participants’ frequent use of the systematic strategy effectively rules out chance responding, despite the fact that people needed more queries than strategies characterized in the computer science literature). After the first query, in the systematic strategy, the participant would then either use a color not included in the code (if applicable) or another color to decipher the position of all the items of one color in the code. This strategy was used until all items in the code had been deciphered; a stylized example is displayed in Figure 5. The other strategy appears to be much more random; a stylized example is displayed in Figure 6. In this strategy participants would test a number of colors in each guess and did not appear to have any set ways of deciphering the specific position of each color.
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FIGURE 5. Stylized example (not from actual gameplay) of the systematic strategy when playing the Mastermind game.
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FIGURE 6. Stylized example (not from actual gameplay) of the random strategy when playing the Mastermind game.


To address this quantitatively, we (NT) went through the dataset and classified each of the 136 games according to whether it seemed qualitatively closer to the “systematic” or “random” strategy. It turns out that our qualitative understanding was almost perfectly predicted by whether the first query was all the same color (systematic strategy) or not (random strategy). Therefore, we operationally defined the systematic strategy as starting with all the same color in the first query, and the random strategy as everything else. Of the 136 games played, 71 were thus classified as random and 65 as systematic.

There was no meaningful difference between the average of 9.74 queries required to identify the true code with a systematic strategy, vs. the average of 10.12 queries for a random strategy [t(134) = 0.54, n.s., two-tailed t-test]. However, because the code length 4 games always occurred in the first part of the experiment, and there was a slightly greater tendency to use a random strategy with the code length 4 games, any harm from using the random strategy might have been counterbalanced by the intrinsically easier nature of the 4-item games.

A more meaningful measure may be the number of additional queries required, beyond when the true code was mathematically determined, for a person to identify the true code. We can in turn ask whether this additional number of (zero-information-gain) queries differed according to the strategy used. By this measure, the code was more quickly identified by the participant when a systematic strategy was used than when a random strategy was used [t(134) = 2.27, p = 0.025, two-tailed t-test; 95% CI for difference 0.23–3.13, by bootstrap sampling].

Interestingly, however, from a purely information-theoretical mathematical standpoint, it appears that the random strategy is more efficient than the systematic strategy. (Here it is important to keep in mind that we mean the participants’ queries in games in which the first query was not all of a single item, which could differ from a theoretical strategy of picking among all feasible codes with equal probability). The code was mathematically determined with a smaller number of queries in games with the random strategy, as compared to the systematic strategy [t(134) = −4.17, p < 0.0001, two-tailed t-test; 95% CI for difference 0.66 to 1.83, by bootstrap sampling].

It is thus something of a paradox that the most informative queries for people are not those that lead mathematically to identifying the true code in the most efficient manner. We consider possible explanations below.



DISCUSSION


Help Seeking Behavior

Of the 68 games in which help was offered, help was accepted in only 30 games. This supports the findings of previous research that students don’t always utilize opportunities for help (Aleven and Koedinger, 2000) or even recognize that help would be beneficial (Aleven et al., 2003).

Some possible explanations for this finding draw upon research around threat to identity and self-concept. For some participants asking for or accepting help may be harmful to their self-concept (Delacruz, 2011), thus discouraging them from engaging in help seeking strategies, to the detriment of their learning (Nelson-Le Gall, 1985). It is often the most able learners who seek help when they reach an impasse, perhaps as their academic self-concept is more robust, whereas those with lower abilities appear to have a lower academic self-concept and subsequently, less awareness of their need for help and/or less willingness to accept help when offered (Wood and Wood, 1999).

Alternatively, stereotype threat should also be considered as a possible explanation for the paucity of help seeking we observed. It is possible that participants may have associated the Mastermind game with mathematics, either through previous knowledge, or through the language used by the experimenter, for instance when mentioning “probabilities” while explaining the game. It is thought that girls perform more poorly at tasks associated with maths due to the activation of the stereotype that boys are more competent at maths (Casad et al., 2017). Our participants were mostly female; therefore, it is possible that their help seeking behaviors were blocked due to believing that Mastermind was a maths game.



Limitations

A caveat is that in the present study, although participants were told that the aim of the game is to complete the code in as few guesses as possible, there was no explicit external incentive for doing so. It is thus possible that participants may have chosen to continue figuring the code out for themselves because they enjoyed playing the game.

A further consideration is that participants may have been primed to ask for help due to the experimenter telling them help was available if they felt stuck in the help condition. Participants were allowed to ask for help at any point, however, and our results are consistent with prior help seeking research.



Educational Implications

Due to the strong links between help seeking behavior and learning and educational attainment (Ryan et al., 1998), our findings have strong implications for educational practice. The findings show that when help is asked for, in many situations all the necessary information had been obtained. Thus, help is not needed for acquiring the necessary information but rather for deciphering the information that had already been obtained. An interesting direction for further research would be to investigate the effects of different types of help. One possibility would be to offer help in the form of highlighting aspects of previous queries and feedback to help the participant decipher the information, rather than giving the position of a specific item in the code. Another possibility would be to have help available from a computer, rather than from a person.

The present study also supported previous research that highlights that help is not always taken advantage of by students, even though it would be beneficial to advance their learning. Further research is needed to determine the influence of stereotype threat, threat to self-concept, and other variables on help-seeking behavior and to identify other factors that may also be important. One idea for further studies is to investigate whether rewarding participants for completing the code in the fewest number of guesses (e.g., paying them according to performance, or giving the participant with the fewest average number of guesses £50) may lead to different patterns of help seeking. These manipulations would clarify whether willingness to ask for help can be increased if the stakes are high enough, thus informing educational practices to improve help seeking and overall student attainment.



Implications for Theory and Modeling

One theme in Bayesian modeling is that people will find the best fitting hypothesis for the data available to them. When our participants asked for help they typically already had all the necessary information to complete the code. Why is this? It is something of a paradox that despite being in possession of all of the information needed to decipher the code, participants were in many cases unable to do so.

Research on human queries and human assessments of queries’ expected usefulness, in the Optimal Experimental Design perspective (Baron et al., 1988; Oaksford and Chater, 1994; Coenen et al., 2018) has usually found that people have a very good, if not necessarily a perfect, sense of the relative usefulness of possible queries. From this standpoint it is surprising that participants tended to ask for help late in the game, rather than early in the game, when help would– from a mathematical standpoint– provide the most information. One crucial point is that this research, in the vast majority of experimental tasks, including Schulz et al.’s (2019) information-theoretic model of Entropy Mastermind, uses the complete probability distribution when modeling human behavior.

Interestingly, computer science approaches to Mastermind, except for fairly small versions of the task (e.g., Knuth, 1976), do not attempt to represent the full probability distribution over possible codes. Here we focus on computer-science approaches; for a more mathematical treatment of bounds on the efficiency of possible solutions, see Doerr et al. (2013). Computer science approaches typically focus on finding one or more possible codes from the feasible set of codes that are consistent with the queries and feedback to date. Berghman et al. (2009) use genetic algorithms to find codes in the feasible set. Cotta et al. (2010) use a similar approach, but specifically attempt to find feasible codes that will maximize obtained information, thus building on Bestavros and Belal’s (1986) ideas. Merelo et al. (2011) further introduce the idea of endgames, namely looking for particular game situations in which known strategies can be used. Merelo-Guervós et al. (2013) combine an improved genetic algorithm with an entropy-based fitness score to evaluate the usefulness of possible queries.

If people (as we strongly suspect) are not fully representing the possible codes in smaller versions (e.g., with 6^4 = 1296 possible codes) of the game, it would be sensible in the future to see whether these computer science approaches might offer good insight into human behavior. For instance, unless guesses are repeated, the proportion of feasible codes relative to possible codes is guaranteed to decrease over the course of a game. Of particular note will be to check whether these approaches therefore take longer to find items to test in later stages of the game, thus providing a possible resolution to the paradox of humans’ greater tendency to ask for help when there is less information (in terms of bits) to be obtained.

Model variants along these lines would very much be in the spirit of boundedly Bayesian models (Griffiths et al., 2015; Lieder and Griffiths, 2019), in which the focus is on keeping models within the broadly probabilistic framework but incorporating computational resource limitations. On other concept learning tasks, for instance the Shepard et al. (1961) task, participants also need many more learning trials than would be mathematically required if they have perfect memory (Rehder and Hoffman, 2005); some models (Nelson and Cottrell, 2007) use conservative (Edwards, 1968) belief updating to model this process. If Mastermind is viewed as a concept learning task, then the fact that some participants require additional queries, beyond those mathematically necessary to infer the code, is not necessarily surprising. As a point of comparison, Merelo-Guervós et al. (2013) report a variety of algorithms that can solve a larger version of the game than we used, namely with codelength 6 and 9 possible colors (i.e., with 9^6 = 531,441 possible codes), with a mean of less than 7 queries, achieving much better performance than our participants.

A further potential connection between human psychology and computer science approaches starts with research on information foraging (Pirelli and Card, 1999). Information foraging describes the decision-making process in problem solving when the information is incomplete and the probabilities are unclear (Murdock et al., 2017). Attempts to solve these types of cognitive problems involve tradeoffs between “exploration” of novel information and using or “exploiting” knowledge to improve performance (Berger-Tal et al., 2014). How does this relate to Mastermind? Mastermind, from a purely mathematical standpoint involves a well-defined problem: both how the hidden code is generated, and the processes by which one can find the code, are known and disclosed to the player. (We refer here to non-strategic versions of Mastermind). However, people may not have this full information (such as a probability distribution over several thousand possible codes) ready at hand. One possible point of connection to information foraging theory is in the search for new items to possibly test. Many computer science models use genetic algorithms with populations of possible query items which are thought or known to be in the feasible set. An issue in the computer science literature is when to try to improve the population of known query items through genetic algorithms, and when to search for new items altogether. This parallels issues of search in human memory (Hills et al., 2008), when people either try to exploit a current semantic region (e.g., to continue finding feline animals, after they have found cat, lion, tiger, lynx) or to explore for a new region altogether.

Then there is the paradox that among the two qualitative strategies that we identified, namely the systematic strategy and the random strategy, the systematic strategy was perhaps more useful for human participants, but the random strategy was clearly more useful from a purely information-theoretic standpoint, leading to the true code being determined with fewer queries. Our finding on this parallels earlier work by Laughlin et al. (1982), who studied a reduced version of Mastermind with 3 possible colors and 4 positions, entailing 3^4 = 81 possible codes. They found that human players did better when their first query was all of a single color, even though computers could solve the game more quickly when the first query had two items of one color, and one item of each of two other colors. Why do we find these discrepancies between theoretical usefulness (for computers) of particular strategies, and those strategies’ actual usefulness to human game players? What makes particular queries– or more precisely, particular query-feedback combinations– easier or harder for people to assimilate? Are there parallels between what queries are easier or harder for people to assimilate, and what is easier or harder for particular computer science approaches to the task? One possibility to consider is that people may have their beliefs in a psychological feature space, and may best assimilate query-feedback combinations that are directly relevant to that feature space. A prominent possibility here would be that people appear to focus on figuring out the counts of each color (or type of item), and all-same-color queries are easily suited to this kind of belief update. A focus on psychological feature spaces would be analogous to the successful (Bramley et al., 2017) approach to causal learning. It would also be worthwhile to investigate whether the epistemic logical model of inference in Deductive Mastermind (Zhao et al., 2018), in which participants are given a game state that uniquely identifies the true code, also finds the random strategy to be more difficult than the systematic strategy.

Finally, why is it that many (but not all) participants tended to need several additional queries, beyond the point where the code was mathematically determined? This is a kind of opposite result to Wason’s (1960) finding that participants tended to prematurely announce that they had figured out the hidden rule in his “2-4-6” scientific inference task, suggesting that participants on that task overestimated the information value of the information they had received. For Mastermind, it seems that imperfect memory or conservative belief updating (Edwards, 1968; Dasgupta et al., 2020) needs to be incorporated into probabilistic task models.

Ultimately, whereas the focus of the present work was on empirically characterizing help-seeking behavior in Entropy Mastermind, we hope that it will be possible to build probabilistic or other cognitively meaningful models of people’s behavior on this task. Such models may also serve development of individually customized, adaptive tutoring systems, which is a pressing issue in cognitive science and educational research alike (Anderson et al., 1995; Bertram, in press).
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Solving or attempting to solve problems is the typical and, hence, general function of thought. A theory of problem solving must first explain how the problem is constituted, and then how the solution happens, but also how it happens that it is not solved; it must explain the correct answer and with the same means the failure. The identification of the way in which the problem is formatted should help to understand how the solution of the problems happens, but even before that, the source of the difficulty. Sometimes the difficulty lies in the calculation, the number of operations to be performed, and the quantity of data to be processed and remembered. There are, however, other problems – the insight problems – in which the difficulty does not lie so much in the complexity of the calculations, but in one or more critical points that are susceptible to misinterpretation, incompatible with the solution. In our view, the way of thinking involved in insight problem solving is very close to the process involved in the understanding of an utterance, when a misunderstanding occurs. In this case, a more appropriate meaning has to be selected to resolve the misunderstanding (the “impasse”), the default interpretation (the “fixation”) has to be dropped in order to “restructure.” to grasp another meaning which appears more relevant to the context and the speaker’s intention (the “aim of the task”). In this article we support our view with experimental evidence, focusing on how a misunderstanding is formed. We have studied a paradigmatic insight problem, an apparent trivial arithmetical task, the Ties problem. We also reviewed other classical insight problems, reconsidering in particular one of the most intriguing one, which at first sight appears impossible to solve, the Study Window problem. By identifying the problem knots that alter the aim of the task, the reformulation technique has made it possible to eliminate misunderstanding, without changing the mathematical nature of the problem. With the experimental versions of the problems exposed we have obtained a significant increase in correct answers. Studying how an insight problem is formed, and not just how it is solved, may well become an important topic in education. We focus on undergraduate students’ strategies and their errors while solving problems, and the specific cognitive processes involved in misunderstanding, which are crucial to better exploit what could be beneficial to reach the solution and to teach how to improve the ability to solve problems.

Keywords: creative problem solving, insight, misunderstanding, pragmatics, language and thought


INTRODUCTION

“A problem arises when a living creature has a goal but does not know how this goal is to be reached. Whenever one cannot go from the given situation to the desired situation simply by action, then there has to be recourse to thinking. (…) Such thinking has the task of devising some action which may mediate between the existing and the desired situations.” (Duncker, 1945, p. 1). We agree with Duncker’s general description of every situation we call a problem: the problem solving activity takes a central role in the general function of thought, if not even identifies with it.

So far, psychologists have been mainly interested in the solution and the solvers. But the formation of the problem remained in the shadows.

Let’s consider for example the two fundamental theoretical approaches to the study of problem solving. “What questions should a theory of problem solving answer? First, it should predict the performance of a problem solver handling specified tasks. It should explain how human problem solving takes place: what processes are used, and what mechanisms perform these processes.” (Newell et al., 1958, p. 151). In turn, authors of different orientations indicate as central in their research “How does the solution arise from the problem situation? In what ways is the solution of a problem attained?” (Duncker, 1945, p. 1) or that of what happens when you solve a problem, when you suddenly see the point (Wertheimer, 1959). It is obvious, and it was inevitable, that the formation of the problem would remain in the shadows.

A theory of problem solving must first explain how the problem is constituted, and then how the solution happens, but also how it happens that it is not solved; it must explain the correct answer and with the same means the failure. The identification of the way in which the problem is constituted – the formation of the problem – and the awareness that this moment is decisive for everything that follows imply that failures are considered in a new way, the study of which should help to understand how the solution of the problems happens, but even before that, the source of the difficulty.

Sometimes the difficulty lies in the calculation, the number of operations to be performed, and the quantity of data to be processed and remembered. Take the well-known problems studied by Simon, Crypto-arithmetic task, for example, or the Cannibals and Missionaries problem (Simon, 1979). The difficulty in these problems lies in the complexity of the calculation which characterizes them. But, the text and the request of the problem is univocally understood by the experimenter and by the participant in both the explicit (said)and implicit (implied) parts.1 As Simon says, “Subjects do not initially choose deliberately among problem representations, but almost always adopt the representation suggested by the verbal problem statement” (Kaplan and Simon, 1990, p. 376). The verbal problem statement determines a problem representation, implicit presuppositions of which are shared by both.

There are, however, other problems where the usual (generalized) interpretation of the text of the problem (and/or the associated figure) prevents and does not allow a solution to be found, so that we are soon faced with an impasse. We’ll call this kind of problems insight problems. “In these cases, where the complexity of the calculations does not play a relevant part in the difficulty of the problem, a misunderstanding would appear to be a more appropriate abstract model than the labyrinth” (Mosconi, 2016, p. 356). Insight problems do not arise from a fortuitous misunderstanding, but from a deliberate violation of Gricean conversational rules, since the implicit layer of the discourse (the implied) is not shared both by experimenter and participant. Take for example the problem of how to remove a one-hundred dollar bill without causing a pyramid balanced atop the bill to topple: “A giant inverted steel pyramid is perfectly balanced on its point. Any movement of the pyramid will cause it to topple over. Underneath the pyramid is a $100 bill. How would you remove the bill without disturbing the pyramid?” (Schooler et al., 1993, p. 183). The solution is burn or tear the dollar bill but people assume that the 100 dollar bill must not be damaged, but contrary to his assumption, this is in fact the solution. Obviously this is not a trivial error of understanding between the two parties, but rather a misunderstanding due to social conventions, and dictated by conversational rules. It is the essential condition for the forming of the problem and the experimenter has played on the very fact that the condition was not explicitly stated (see also Bulbrook, 1932).

When insight problems are used in research, it could be said that the researcher sets a trap, more or less intentionally, inducing an interpretation that appears to be pertinent to the data and to the text; this interpretation is adopted more or less automatically because it has been validated by use but the default interpretation does not support understanding, and misunderstanding is inevitable; as a result, sooner or later we come up against an impasse. The theory of misunderstanding is supported by experimental evidence obtained by Mosconi in his research on insight problem solving (Mosconi, 1990), and by Bagassi and Macchi on problem solving, decision making and probabilistic reasoning (Bagassi and Macchi, 2006, 2016; Macchi and Bagassi, 2012, 2014, 2015, 2020; Macchi, 1995, 2000; Mosconi and Macchi, 2001; Politzer and Macchi, 2000).

The implication of the focus on problem forming for education is remarkable: everything we say generates a communicative and therefore interpretative context, which is given by cultural and social assumptions, default interpretations, and attribution of intention to the speaker. Since the text of the problem is expressed in natural language, it is affected, it shares the characteristics of the language itself. Natural language is ambiguous in itself, differently from specialized languages (i.e., logical and statistical ones), which presuppose a univocal, unambiguous interpretation. The understanding of what a speaker means requires a disambiguation process centered on the intention attribution.



RESTRUCTURING AS REINTERPRETING

Traditionally, according to the Gestaltists, finding the solution to an insight problem is an example of “productive thought.” In addition to the reproductive activities of thought, there are processes which create, “produce” that which does not yet exist. It is characterized by a switch in direction which occurs together with the transformation of the problem or a change in our understanding of an essential relationship. The famous “aha!” experience of genuine insight accompanies this change in representation, or restructuring. As Wertheimer says: “… Solution becomes possible only when the central features of the problem are clearly recognized, and paths to a possible approach emerge. Irrelevant features must be stripped away, core features must become salient, and some representation must be developed that accurately reflects how various parts of the problem fit together; relevant relations among parts, and between parts and whole, must be understood, must make sense” (Wertheimer, 1985, p. 23).

The restructuring process circumscribed by the Gestaltists to the representation of the perceptual stimulus is actually a general feature of every human cognitive activity and, in particular, of communicative interaction, which allows the understanding, the attribution of meaning, thus extending to the solution of verbal insight problems. In this sense, restructuring becomes a process of reinterpretation.

We are able to get out of the impasse by neglecting the default interpretation and looking for another one that is more pertinent to the situation and which helps us grasp the meaning that matches both the context and the speaker’s intention; this requires continuous adjustments until all makes sense.

In our perspective, this interpretative function is a characteristic inherent to all reasoning processes and is an adaptive characteristic of the human cognitive system in general (Levinson, 1995, 2013; Macchi and Bagassi, 2019; Mercier and Sperber, 2011; Sperber and Wilson, 1986/1995; Tomasello, 2009). It guarantees cognitive economy when meanings and relations are familiar, permitting recognition in a “blink of an eye.” This same process becomes much more arduous when meanings and relations are unfamiliar, obliging us to face the novel. When this happens, we have to come to terms with the fact that the usual, default interpretation will not work, and this is a necessary condition for exploring other ways of interpreting the situation. A restless, conscious and unconscious search for other possible relations between the parts and the whole ensues until everything falls into place and nothing is left unexplained, with an interpretative heuristic-type process. Indeed, the solution restructuring – is a re-interpretation of the relationship between the data and the aim of the task, a search for the appropriate meaning carried out at a deeper level, not by automaticity. If this is true, then a disambiguant reformulation of the problem that eliminates the trap into which the subject has fallen, should produce restructuring and the way to the solution.



INSIGHT PROBLEM SOLVING AS THE OVERCOMING OF A MISUNDERSTANDING: THE EFFECT OF REFORMULATION

In this article we support our view with experimental evidence, focusing on how a misunderstanding is formed, and how a pragmatic reformulation of the problem, more relevant to the aim of the task, allows the text of the problem to be interpreted in accordance with the solution.

We consider two paradigmatic insight problems, the intriguing Study Window problem, which at first sight appears impossible to solve, and an apparent trivial arithmetical task, the Ties problem (Mosconi and D’Urso, 1974).


The Study Window problem

The study window measures 1 m in height and 1 m wide. The owner decides to enlarge it and calls in a workman. He instructs the man to double the area of the window without changing its shape and so that it still measures 1 m by 1 m. The workman carried out the commission. How did he do it?

This problem was investigated in a previous study (Macchi and Bagassi, 2015). For all the participants the problem appeared impossible to solve, and nobody actually solved it. The explanation we gave for the difficulty was the following: “The information provided regarding the dimensions brings a square form to mind. The problem solver interprets the window to be a square 1 m high by 1 m wide, resting on one side. Furthermore, the problem states “without changing its shape,” intending geometric shape of the two windows (square, independently of the orientation of the window), while the problem solver interprets this as meaning the phenomenic shape of the two windows (two squares with the same orthogonal orientation)” (Macchi and Bagassi, 2015, p. 156). And this is where the difficulty of the problem lies, in the mental representation of the window and the concurrent interpretation of the text of the problem. Actually, spatial orientation is a decisive factor in the perception of forms. “Two identical shapes seen from different orientations take on a different phenomenic identity” (Mach, 1914).

The solution is to be found in a square (geometric form) that “rests” on one of its angles, thus becoming a rhombus (phenomenic form). Now the dimensions given are those of the two diagonals of the represented rhombus (ABCD).

Figure 1
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FIGURE 1. The study window problem solution.



The “inverted” version of the problem gave less trouble:

[…] The owner decides to make it smaller and calls in a workman. He instructs the man to halve the area of the window […].

Figure 2
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FIGURE 2. The inverted version.



With this version, 30% of the participants solved the problem (n = 30). They started from the representation of the orthogonal square (ABCD) and looked for the solution within the square, trying to respect the required height and width of the window, and inevitably changing the orientation of the internal square. This time the height and width are the diagonals, rather than the side (base and height) of the square.

Eventually, in another version (the “orientation” version) it was explicit that orientation was not a mandatory attribute of the shape, and this time 66% of the participants found the solution immediately (n = 30). This confirms the hypothesis that an inappropriate representation of the relation between the orthogonal orientation of the square and its geometric shape is the origin of the misunderstanding.

The “orientation” version:

A study window measures 1 m in height and 1 m wide. The owner decides to make it smaller and calls in a workman. He instructs the man to halve the area of the window: the workman can change the orientation of the window, but not its shape and in such a way that it still measures one meter by one meter. The workman carries out the commission. How did he do it?

While with the Study window problem the subjects who do not arrive at the solution, and who are the totality, know they are wrong, with the problem we are now going to examine, the Ties problem, those who are wrong do not realize it at all and the solution they propose is experienced as the correct solution.



The Ties Problem (Mosconi and D’Urso, 1974)

Peter and John have the same number of ties.

Peter gives John five of his ties.

How many ties does John have now more than Peter?

We believe that the seemingly trivial problem is actually the result of the simultaneous activation and mutual interference of complex cognitive processes that prevent its solution.

The problem has been submitted to 50 undergraduate students of the Humanities Faculty of the University of Milano-Bicocca. The participants were tested individually and were randomly assigned to three groups: control version (n = 50), experimental version 2 (n = 20), and experimental version 3 (n = 23). All groups were tested in Italian. Each participant was randomly assigned to one of the conditions and received a form containing only one version of the two assigned problems. There was no time limit. They were invited to think aloud and their spontaneous justifications were recorded and then transcribed.

The correct answer is obviously “ten,” but it must not be so obvious if it is given by only one third of the subjects (32%), while the remaining two thirds give the wrong answer “five,” which is so dominant.

If we consider the text of the problem from the point of view of the information explicitly transmitted (said), we have that it only theoretically provides the necessary information to reach the solution and precisely that: (a) the number of ties initially owned by P. and J. is equal, (b) P. gives J. five of his ties. However, the subjects are wrong. What emerges, however, from the spontaneous justifications given by the subjects who give the wrong answer is that they see only the increase of J. and not the consequent loss of P. by five ties. We report two typical justifications: “P. gives five of his to J., J. has five more ties than P., the five P. gave him” and also “They started from the same number of ties, so if P. gives J. five ties, J. should have five more than P.”

Slightly different from the previous ones is the following recurrent answer, in which the participants also consider the decrease of P. as well as the increase of J.: “I see five ties at stake, which are the ones that move,” or also “There are these five ties that go from one to the other, so one has five ties less and the other has five more,” reaching however the conclusion similar to the previous one that “J. has five ties more, because the other gave them to him.”2

Almost always the participants who answer “five” use a numerical example to justify the answer given or to find a solution to the problem, after some unsuccessful attempts. It is paradoxical how many of these participants accept that the problem has two solutions, one “five ties” obtained by reasoning without considering a concrete number of initial ties, owned by P. and J., the other “ten ties” obtained by using a numerical example. So, for example, we read in the protocol of a participant who, after having answered “five more ties,” using a numerical example, finds “ten” of difference between the ties of P. and those of J.: “Well! I think the “five” is still more and more exact; for me this one has five more, period and that’s it.” “Making the concrete example: “ten” – he chases another subject on an abstract level. I would be more inclined to another formula, to five.”

About half of the subjects who give the answer “five,” in fact, at first refuse to answer because “we don’t know the initial number and therefore we can’t know how many ties J. has more than P.,” or at the most they answer: “J. has five ties more, P. five less, more we can’t know, because a data is missing.”

Even before this difficulty, so to speak, operational, the text of the problem is difficult because in it the quantity relative to the decrease of P. remains implicit (−5). The resulting misunderstanding is that if the quantity transferred is five ties, the resulting difference is only five ties: if the ties that P. gives to J. are five, how can J. have 10 ties more than P.?

So the difficulty of the problem lies in the discrepancy between the quantity transferred and the bidirectional effect that this quantity determines with its displacement. Resolving implies a restructuring of the sentence: “Peter gives John five of his ties (and therefore he loses five).” And this is precisely the reasoning carried out by those subjects who give the right answer “ten.”

We have therefore formulated a new version in which a pair of verbs should make explicit the loss of P.:

Version 2

Peter loses five of his ties and John takes them.

However, the results obtained with this version, submitted to 20 other subjects, substantially confirm the results obtained with the original version: the correct answers are 17% (3/20) and the wrong ones 75% (15/20). From a Chi-square test (χ2 = 2,088 p = 0.148) it results no significant difference between the two versions.

If we go to read the spontaneous justifications, we find that the subjects who give the answer “five” motivate it in a similar way to the subjects of the original version. So, for example: “P. loses five, J. gets them, so J. has five ties more than P.”

The decrease of P. is still not perceived, and the discrepancy between the lost amount of ties and the double effect that this quantity determines with its displacement persists.

Therefore, a new version has been realized in which the amount of ties lost by P. has nothing to do with J’s acquisition of five ties, the two amounts of ties are different and then they are perceived as decoupled, so as to neutralize the perceptual-conceptual factor underlying it.

Version 3

Peter loses five of his ties and John buys five new ones.

It was submitted to 23 participants. Of them, 17 (74%) gave the answer “ten” and only 3 (13%) the answer “five.” There was a significant difference (χ2 = 16,104 p = 0.000) between the results obtained using the present experimental version and the results from the control version. The participants who give the correct solution “ten” mostly motivate their answer as follows: “P. loses five and therefore J. has also those five that P. lost; he buys another five, there are ten,” declaring that he “added to the five that P. had lost the five that J. had bought.” The effectiveness of the experimental manipulation adopted is confirmed.3

The satisfactory results obtained with this version cannot be attributed to the use of two different verbs, which proved to be ineffective (see version 2), but to the splitting, and consequent differentiation (J. has in addition five new ties), of the two quantities.

This time, the increase of J. and the decrease of P. are grasped as simultaneous and distinct and their combined effect is not identified with one or the other, but is equal to the sum of +5 and −5 in absolute terms.

The hypothesis regarding the effect of reformulation has also been confirmed in classical insight problems such as the Square and the Parallelogram (Wertheimer, 1925), the Pigs in a Pen (Schooler et al., 1993), the Bat & Ball (Frederick, 2005) in recent studies (Macchi and Bagassi, 2012, 2015) which showed a dramatic increase in the number of solutions.

In their original version these problems are true brain teasers, and the majority of participants in these studies needed them to be reformulated in order to reach the solution. In Appendix B we present in detail the results obtained (see Table 1). Below we report, for each problem, the text of the original version in comparison with the reformulated experimental version.



TABLE 1. Percentages of correct solutions with reformulated experimental versions.
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Square and Parallelogram Problem (Wertheimer, 1925)

Given that AB = a and AG = b, find the sum of the areas of square ABCD and parallelogram EBGD (Figures 3, 4).
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FIGURE 3. The square and parallelogram problem.
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FIGURE 4. Solution.




Experimental Version

Given that AB = a and AG = b, find the sum of the areas of the two partially overlapping figures.




Pigs in a Pen Problem (Schooler et al., 1993)

Nine pigs are kept in a square pen. Build two more square enclosures that would put each pig in a pen by itself (Figures 5, 6).


[image: image]


FIGURE 5. The pigs in a pen problem.
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FIGURE 6. Solution.




Experimental Version

Nine pigs are kept in a square pen. Build two more squares that would put each pig in a by itself.



Bat and Ball Problem (Frederick, 2005)

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than the ball. How much does the ball cost? ___cents.



Experimental Version

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than the ball. Find the cost of the bat and of the ball.

Once the problem knots that alter the aim of the task have been identified, the reformulation technique can be a valid didactic tool, as it allows to reveal the misunderstanding and to eliminate it without changing the mathematical nature of the problem. The training to creativity would consist in this sense in training to have interpretative keys different from the usual, when the difficulty cannot be addressed through computational techniques.



Closing Thoughts

By identifying the misunderstanding in problem solving, the reformulation technique has made it possible to eliminate the problem knots, without changing the mathematical nature of the problem. With the experimental reformulated versions of paradigmatic problems, both apparent trivial tasks or brain teasers have obtained a significant increase in correct answers.

Studying how an insight problem is formed, and not just how it is solved, may well become an important topic in education. We focus on undergraduate students’ strategies and their errors while solving problems, and the specific cognitive processes involved in misunderstanding, which are crucial to better exploit what could be beneficial to reach the solution and to teach how to improve the ability to solve problems.

Without violating the need for the necessary rigor of a demonstration, for example, it is possible to organize the problem-demonstration discourse according to a different criterion, precisely by favoring the psychological needs of the subject to whom the explanation discourse is addressed, taking care to organize the explanation with regard to the way his mind works, to what can favor its comprehension and facilitate its memory.

On the other hand, one of the criteria traditionally followed by mathematicians in constructing, for example, demonstrations, or at least in explaining them, is to never make any statement that is not supported by the elements provided above. In essence, in the course of the demonstration nothing is anticipated, and indeed it happens frequently that the propositions directly relevant and relevant to the development of the reasoning (for example, the steps of a geometric demonstration) are preceded by digressions intended to introduce and deal with the elements that legitimize them. As a consequence of such an expositive formalism, the recipient of the speech (the student) often finds himself in the situation of being led to the final conclusion a bit like a blind man who, even though he knows the goal, does not see the way, but can only control step by step the road he is walking along and with difficulty becomes aware of the itinerary.

The text of every problem, if formulated in natural language, has a psychorhetoric dimension, in the sense that in every speech, that is in the production and reception of every speech, there are aspects related to the way the mind works – and therefore psychological and rhetorical – that are decisive for comprehensibility, expressive adequacy and communicative effectiveness. It is precisely to these aspects that we refer to when we talk about the psychorhetoric dimension. Rhetoric, from the point of view of the broadcaster, has studied discourse in relation to the recipient, and therefore to its acceptability, comprehensibility and effectiveness, so that we can say that rhetoric has studied discourse “psychologically.”

Adopting this perspective, the commonplace that the rhetorical dimension only concerns the common discourse, i.e., the discourse that concerns debatable issues, and not the scientific discourse (logical-mathematical-demonstrative), which would be exempt from it, is falling away. The matter dealt with, the truth of what is actually said, is not sufficient to guarantee comprehension.
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FOOTNOTES

1 The theoretical framework assumed here is Paul Grice’s theory of communication (1975) based on the existence in communication of the explicit layer (said) and of the implicit (implied), so that the recognition of the communicative intention of the speaker by the interlocutor is crucial for comprehension.

2 A participant who after having given the solution “five” corrects himself in “ten” explains the first answer as follows: “it is more immediate, in my opinion, to see the real five ties that are moved, because they are five things that are moved; then as a more immediate answer is ‘five,’ because it is something more real, less mathematical.”

3 The factor indicated is certainly the main responsible for the answer “five,” but not the only one (see the Appendix for a pragmatic analysis of the text).

4 Versions and results of the problems exposed are already published in Macchi e Bagassi 2012, 2014, 2015.
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Appendix A


Pragmatic analysis of the problematic loci of the Ties problem, which emerged from the spontaneous verbalizations of the participants:

- “the same number of ties”

This expression is understood as a neutral information, a kind of base or sliding plane on which the transfer of the five ties takes place and, in fact, these subjects motivate their answer “five” with: “there is this transfer of five ties from P. to J. ….”

- “5 more, 5 less”

We frequently resort to similar expressions in situations where, if I have five units more than another, the other has five less than me and the difference between us is five.

Consider, for example, the case of the years: say that J. is five years older than P. means to say that P. is five years younger than J. and that the difference in years between the two is five, not ten.

In comparisons, we evaluate the difference with something used as a term of reference, for example the age of P., which serves as a basis, the benchmark, precisely.

- “he gives”

The verb “to give” conveys the concept of the growth of the recipient, not the decrease of the giver, therefore, contributes to the crystallization of the “same number,” preventing to grasp the decrease of P.



Appendix B4


Square and Parallelogram Problem (Wertheimer, 1925)

Given that AB = a and AG = b, find the sum of the areas of square ABCD and parallelogram EBGD.
Typically, problem solvers find the problem difficult and fail to see that a is also the altitude of parallelogram EBGD. They tend to calculate its area with onerous and futile methods, while the solution can be reached with a smart method, consisting of restructuring the entire given shape into two partially overlapping triangles ABG and ECD. The sum of their areas is 2 x a b/2 = a b. Moreover, by shifting one of the triangles so that DE coincides with GB, the answer is “a b,” which is the area of the resultant rectangle. Referring to a square and a parallelogram fixes a favored interpretation of the perceptive stimuli, according to those principles of perceptive organization thoroughly studied by the Gestalt Theory. It firmly sets the calculation of the area on the sum of the two specific shapes dealt with in the text, while, the problem actually requires calculation of the area of the shape, however organized, as the sum of two triangles rectangles, or the area of only one rectangle, as well as the sum of square and parallelogram. Hence, the process of restructuring is quite difficult.
To test our hypotheses we formulated an experimental version:



Experimental Version

Given that AB = a and AG = b, find the sum of the areas of the two partially overlapping figures.

In this formulation of the problem, the text does not impose constraints on the interpretation/organization of the figure, and the spontaneous, default interpretation is no longer fixed. Instead of asking for “the areas of square and parallelogram,” the problem asks for the areas of “the two partially overlapping figures.” We predicted that the experimental version would allow the subjects to see and consider the two triangles also.

Actually, we found that 80% of the participants (28 out of 35) gave a correct answer, and most of them (21 out of 28) gave the smart “two triangles” solution. In the control version, on the other hand, only 19% (9 out of 47) gave the correct response, and of these only two gave the “two triangles” solution.

The findings were replicated in the “Pigs in a pen” problem:



Pigs in a Pen Problem (Schooler et al., 1993)

Nine pigs are kept in a square pen. Build two more square enclosures that would put each pig in a pen by itself.

The difficulty of this problem lies in the interpretation of the request, nine pigs each individually enclosed in a square pen, having only two more square enclosures. This interpretation is supported by the favored, orthogonal reference scheme, with which we represent the square. This privileged organization, according to our hypothesis, is fixed by the text which transmits the implicature that the pens in which the piglets are individually isolated must be square in shape too. The function of enclosure wrongfully implies the concept of a square. The task, on the contrary, only requires to pen each pig.

Once again, we created an experimental version by reformulating the problem, eliminating the word “enclosure” and the phrase “in a pen.” The implicit inference that the pen is necessarily square is not drawn.



Experimental Version

Nine pigs are kept in a square pen. Build two more squares that would put each pig in a by itself.

The experimental version yielded 87% correct answers (20 out of 23), while the control version yielded only 38% correct answers (8 out of 25).

The formulation of the experimental versions was more relevant to the aim of the task, and allowed the perceptual stimuli to be interpreted in accordance with the solution.

The relevance of text and the re-interpretation of perceptual stimuli, goal oriented to the aim of the task, were worked out in unison in an interrelated interpretative “game.”

We further investigated the interpretative activity of thinking, by studying the “Bat and ball” problem, which is part of the CRT. Correct performance is usually considered to be evidence of reflective cognitive ability (correlated with high IQ scores), versus intuitive, erroneous answers to the problem (Frederick, 2005).



Bat and Ball problem

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than the ball. How much does the ball cost?___cents

Of course the answer which immediately comes to mind is 10 cents, which is incorrect as, in this case, the difference between $ 1.00 and 10 cents is only 90 cents, not $1.00 as the problem stipulates. The correct response is 5 cents.

Number physiognomics and the plausibility of the cost are traditionally considered responsible for this kind of error (Frederick, 2005; Kahneman, 2003).

These factors aside, we argue that if the rhetoric structure of the text is analyzed, the question as formulated concerns only the ball, implying that the cost of the bat is already known. The question gives the key to the interpretation of what has been said in each problem and, generally speaking, in every discourse. Given data, therefore, is interpreted in the light of the question. Hence, “The bat costs $ 1.00 more than” becomes “The bat costs $ 1.00,” by leaving out “more than.”

According to our hypothesis, independently of the different cognitive styles, erroneous responses could be the effect of the rhetorical structure of the text, where the question is not adequate to the aim of the task. Consequently, we predicted that if the question were to be reformulated to become more relevant, the subjects would find it easier to grasp the correct response. In the light of our perspective, the cognitive abilities involved in the correct response were also reinterpreted. Consequently, we reformulated the text as follows in order to eliminate this misleading inference:



Experimental Version

A bat and a ball cost $1.10 in total. The bat costs $ 1.00 more than the ball. Find the cost of the bat and of the ball.

This time we predicted an increase in the number of correct answers. The difference in the percentages of correct solutions was significant: in the experimental version 90% of the participants gave a correct answer (28 out of 31), and only 10% (2 out of 20) answered correctly in the control condition.

The simple reformulation of the question, which expresses the real aim of the task (to find the cost of both items), does not favor the “short circuit” of considering the cost of the bat as already known (“$1,” by leaving out part of the phrase “more than”).

It still remains to be verified if those subjects who gave the correct response in the control version have a higher level of cognitive reflexive ability compared to the “intuitive” respondents. This has been the general interpretation given in the literature to the difference in performance.

We think it is a matter of a particular kind of reflexive ability, due to which the task is interpreted in the light of the context and not abstracting from it. The difficulty which the problem implicates does not so much involve a high level of abstract reasoning ability as high levels of pragmatic competence, which disambiguates the text. So much so that, intervening only on the pragmatic level, keeping numbers physiognomics and maintaining the plausible costs identical, the problem becomes a trivial arithmetical task.
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Conceptual descriptions and measures of information and entropy were established in the twentieth century with the emergence of a science of communication and information. Today these concepts have come to pervade modern science and society, and are increasingly being recommended as topics for science and mathematics education. We introduce a set of playful activities aimed at fostering intuitions about entropy and describe a primary school intervention that was conducted according to this plan. Fourth grade schoolchildren (8–10 years) played a version of Entropy Mastermind with jars and colored marbles, in which a hidden code to be deciphered was generated at random from an urn with a known, visually presented probability distribution of marble colors. Children prepared urns according to specified recipes, drew marbles from the urns, generated codes and guessed codes. Despite not being formally instructed in probability or entropy, children were able to estimate and compare the difficulty of different probability distributions used for generating possible codes.
Keywords: information, entropy, uncertainty, Max-Ent, codemaking, codebreaking, gamified learning
INTRODUCTION
Information is a concept employed by everyone. Intuitively, the lack of information is uncertainty, which can be reduced by the acquisition of information. Formalizing these intuitive notions requires concepts from stochastics (Information and Entropy). Beyond the concept of information content itself, the concept of average information content, or probabilistic entropy, translates into measures of the amount of uncertainty in a situation.
Finding sound methodologies for assessing and taming uncertainty (Hertwig et al., 2019) is an ongoing scientific process, which began formally in the seventeenth and eighteenth centuries when Pascal, Laplace, Fermat, de Moivre and Bayes began writing down the axioms of probability. This early work set the foundation for work in philosophy of science and statistics toward modern Bayesian Optimal Experimental Design theories (Chamberlin, 1897; Good, 1950; Lindley, 1956; Platt, 1964; Nelson, 2005). Probabilistic entropy is often defined as expected surprise (or expected information content); the particular way in which surprise and expectation are formulated determines how entropy is calculated. Many different formulations of entropy, including and beyond Shannon, have been used in mathematics, physics, neuroscience, ecology, and other disciplines (Crupi et al., 2018). Many different axioms have been employed in defining mathematical measures of probabilistic entropy (Csiszár, 2008). Examples of key ideas include that only the set probabilities, and not the labeling of possible results, affects entropy (these are sometimes called symmetry or permutability axioms); that entropy is zero if a possible result has probability one; and that addition or removal of a zero-probability result does not change the entropy of a distribution. An important idea is that entropy is maximum if all possible results are equally probable. This idea traces back to Laplace's recommendation for dealing formally with uncertainty, known as the principle of indifference:
If you have no information about the probabilities on the results of an experiment, assume they are evenly distributed (Laplace, 1814).
This principle is fundamental for establishing what is called the prior distribution on the results of experiments before any additional information or evidence on these results leads to an eventual updating of the prior, typically by means of Bayesian inference. However, in most experimental situations there is already some knowledge before the experiment is conducted, and the problem becomes how to choose an adequate prior that embodies this partial knowledge, without adding superfluous information. One and a half centuries later, Jaynes in 1957 observed that Entropy is the key concept for generalizing Laplace’s attitude, in what is today called the Max-Ent principle:
If you havesomeinformation about a distribution, construct your a priori distribution to maximize entropy among all distributions that embody that information.
Applying this principle has become possible and extremely fruitful since the discovery of efficient, implementable algorithms for constructing Max-Ent distributions. These algorithms began being developed already in the early twentieth century without rigorous proofs. Csiszár (1975) was the first to prove a convergence theorem of what is now called the “iterative proportional fitting procedure”, or IPFP, for constructing the Max-Ent distribution consistent with partial information. Recently computers have become powerful enough to permit the swift application of the Max-Ent Principle to real world problems both for statistical estimation and pattern recognition. Today maximum-likelihood approaches for automatically constructing Max-Ent models are easily accessible and used successfully in many domains: in the experimental sciences, particularly in the science of vision; in language processing; in data analysis; and in neuroscience (see, for instance, Martignon et al., 2000). The real-world applicability of the Max-Ent Principle is thus an important reason for promoting teaching information, entropy, and related concepts in school.
Today there is agreement in Germany that the concepts of “information”, “bit”, and “code” are relevant and should be introduced in secondary education, and that first intuitions on these concepts should be fostered even earlier in primary education (Ministerium für Kultus and Jugend und Sport, 2016). However, this is not easy. Given that mathematically simpler ideas, for instance of generalized proportions, can themselves be difficult to convey (see, for instance, Prenzel and PISA Konsortium Deutschland, 2004), how can one go about teaching concepts of entropy and information to children? Our work is guided by the question of how to introduce concepts from information theory in the spirit of the “learning by playing” paradigm (Hirsh-Pasek and Golinkoff, 2004). We describe playful exercises for fostering children’s intuitions of information content, code, bit and entropy. In previous work (Nelson et al., 2014; Knauber et al., 2017), described in Asking Useful Questions, Coding and Decoding, we investigated whether fourth graders are sensitive to the relative usefulness of questions in a sequential search task in which the goal is to identify an unknown target item by asking yes-no questions about its features (Nelson et al., 2014). The results showed that children are indeed sensitive to properties of the environment, in the sense that they adapt their question-asking to these properties. Our goal is now to move on from information content to average information content, i.e., entropy; we develop a more comprehensive educational intervention to foster children’s intuitions and competencies in dealing with the concepts of entropy, encoding, decoding, and search (for an outline of the success of this kind of approach, see Polya, 1973). This educational intervention is guided and inspired by the Entropy Mastermind game (Özel 2019; Schulz et al., 2019). Because the requisite mathematical concept of proportion largely develops by approximately fourth grade (Martignon and Krauss, 2009), we chose to work with fourth-grade (ages 8–10) children. The intervention study we present here is in the spirit of (Bruner, 1966; Bruner, 1970) enactive-iconic-symbolic (E-I-S) framework. In the E-I-S framework, children first play enactively with materials and games. Then they proceed to an iconic (image-based) representational phase on the blackboard and on notebooks. Finally, they work with symbolic representations again on the blackboard and notebook.
INFORMATION AND ENTROPY
Information, as some educational texts propose (e.g., Devlin, 1991, p.6), should be described and taught as a fundamental characteristic of the universe, like energy and matter. Average information, i.e., entropy, can be described and taught as a measure of the order and structure of parts of the universe or of its whole. Thus, information can be seen as that element that reduces or even eliminates uncertainty in a given situation (Attneave, 1959). This description is deliberately linked with the physical entropy concept of thermodynamics. The more formal conceptualization of this loose description corresponds to Claude Shannon’s information theory (Devlin, 1991, p.16).
Thus, a widely used educational practice, for instance in basic thermodynamics, is to connect entropy with disorder and exemplify it by means of “search problems”, such as searching for a lost item. This can be modeled using the concept of entropy: a search is particularly complicated when the entropy is high, which means that there is little information about the approximate location of the searched item and the object can therefore be located at all possible locations with approximately the same probability. At the other extreme, if entropy is low, as for a distribution that is 1 on one event and 0 on all others, we have almost absolute certainty. Another educational approach is to describe information as a concept comparable to matter and energy. In this approach matter and energy are described as carriers of information.
A slightly more precise way of thinking about information is by imagining it as transported through an information channel. A communication system, also called channel, can be described by its four basic components, namely a source of information, a transmitter, a possible noise source, and a receiver. This is illustrated in Figure 1.
[image: Figure 1]FIGURE 1 | Diagram of an information channel (this is an adaptation of the standard diagram that goes back to Shannon and Weaver, 1949; from Martignon, 2015).
What is the information contained in a message that is communicated through the channel? This depends on the distribution of possible messages. An important approach to information theory, understood as a component of the science of communication, was formulated by Shannon in the late forties (Shannon and Weaver, 1949). We illustrate this approach as follows:
The basic idea behind Shannon’s information is inspired by the “Parlor game”, the classical version of the “Guess Who?” game we play today see Figure 2, below, which was well-known at the beginning of the 20th century. In this game a player has to guess a certain item by asking Yes-No questions of the other player, who knows what the item is. Consider an example: If the message describes one of the locations of a chess board then the player needs 6 questions to determine the field, if the questions she asks are well chosen. The same applies for guessing an integer between 1 and 64 if the player knows that the numbers are all equally probable. The first question can be: “Is the number larger than or equal to 32?”. According to the answer, either the interval of numbers between 0 and 31 or the interval between 32 and 64 will be eliminated. The next question will split the remaining interval in halves again. In 6 steps of this kind the player will determine the number. Now, 6 is the logarithm in base 2 of 64, or –log2 (1/64). This negative logarithm of the probability of one of the equally probable numbers between 1 and 64 allows for many generalizations. Shannon’s definition of information content is illustrated in Figure 2:
[image: Figure 2]FIGURE 2 | Generalizing the paradigm for defining information (from Martignon, 2015).
Here the event with probability p has an information content of -log p, just like one square of the chess board has an information content of −log (1/64) = 6.
The next step is to examine the expected information content of a distribution on a finite partition of events. This best-known formulation of average information is what Shannon called entropy. One of the fundamental outcomes of information theory was the derivation of a formula for the expected value of information content on the background of a probabilistic setting delivered by the information source. For a given probability distribution p and partition F, the Shannon entropy is
[image: image]
Shannon entropy is habitually written with the above formula; note that it can be written equivalently as follows:
[image: image]
The final formulation of Shannon entropy can be more helpful for intuitively understanding entropy as a kind of expected information content, sometimes also called expected surprise (Crupi et al., 2018). Shannon entropy can be measured in various units; for instance, the bit (an abbreviation of binary digit; Rényi, 1982, p. 19) is used for base 2 logarithms; the nat is used for base e logarithms. A constant multiple can convert from one base to another; for instance, one nat is log2(e) ≈ 1.44 bits.
We have previously conducted studies that established that children have intuitions about the value of information, and that children can adapt question strategies to statistical properties of the environments in question (Nelson et al., 2014; Meder et al., 2019). Although probabilistic models of the value of information are based on the concept of entropy, a number of simple heuristic strategies could also have been used by children in our previous work to assess the value of questions. Many heuristic strategies may not require having intuitions about entropy per se.
In this paper we explore whether primary school students have the potential to intuitively understand the concept of entropy itself. We emphasize that in primary school we do not envision using technical terms such as entropy or probability at all; rather, the goal is to treat all of these concepts intuitively. Our hope is that intuitive early familiarization of concepts related to entropy, coding, information, and decoding may facilitate future formal learning of these concepts, when (hopefully in secondary school) informatics and mathematics curricula can start to explicitly treat concepts such as probability and expected value. A further point here is that one does not need to be a mathematician to be able to use the Entropy Mastermind game as an educational device in their primary or secondary school classroom.
The learning environments we propose are based on enactive playing either with jars and colored cubes or with cards. As a concrete example consider a jar like the one illustrated in Figures 3A–C. Mathematically, the average information or entropy of the distribution of colors in the jar in Figure 3A is.[image: FX 1]If a jar contains only blue cubes, as in Figure 3B, then pblue = 1 and the entropy of the distribution is defined as 0. The entropy is larger in a jar with many different colors, if those colors are similarly frequent, as in Figure 3C: Here the entropy of the distribution of the jar is [image: image].
[image: Figure 3]FIGURE 3 | Three jars with three different distributions and corresponding entropies.
A theorem of information theory closely related to Laplace’s Principle (see Information and Entropy) states that maximal entropy is attained by uniform distribution. A key question is whether primary-school children can learn this implicitly, when it is presented in a meaningful gemified context.
ASKING USEFUL QUESTIONS, CODING AND DECODING
Jars with cubes of different colors make a good environment for guiding children to develop good strategies for asking questions. This can happen when the aim is to determine the color of a particular cube. A more sophisticated learning environment is also just based on jars with colored cubes where children are led to strategizing at a metacognitive level on how the distribution of colors in a jar relates to the difficulty in determining the composition of the jar. The concepts behind the two learning environments just described are information content and entropy. Both activities, asking good questions and assessing the difficulty determining the composition of a jar, are prototypical competencies in dealing with uncertainty.
As we mentioned at the beginning of the preceding section, the game “Guess Who?” is tightly connected to the concepts of information content and entropy. In that game, just as when guessing a number between 1 and 64 (see Information and Entropy) by means of posing yes-no questions, a good strategy is the split-half heuristic, which consists of formulating at each step yes-no questions whose answers systematically divide the remaining items in halves, or as close as possible to halves.
Consider the following arrangement of cards for playing the “Guess Who?” game in Figure 4:
[image: Figure 4]FIGURE 4 | The grid of the Person Game used in the study reported in (Nelson et al., 2014); the stimuli are reprinted with permission of Hasbro. The optimal question strategy (from Nelson et al., 2014).
Which is the best sequential question strategy in this game? This can be solved mathematically: it is the one illustrated by the tree in Figure 4, where branches to the right correspond to the answer “yes”, while branches to the left correspond to the answer “no”:
We have previously investigated children's intuitions and behavior in connection with these fundamental games. Some studies investigated whether children in fourth grade are able to adapt their question strategies to the features of the environment (Nelson et al., 2014; Meder et al., 2019). Other studies investigated a variety of tasks, including number-guessing tasks and information-encoding tasks (Knauber et al., 2017; Knauber, 2018).
The Foundation of the Present Study: Asking Good Questions About the Composition of Jars Containing Cubes of Different Colors
The common feature of the study using the “Guess Who?” game and the study presented here is the investigation of question-asking strategies. We exemplify question-asking strategies analogous to those used in the Guess-Who game using jars filled with colored cubes. One of the cubes is drawn blindly, as in Figure 5, blindly and the goal of the question asker is to find out which cube it was. Importantly, only binary yes/no questions are allowed. Figure 5 shows a jar and its corresponding question-asking strategy, visualized as tree.
[image: Figure 5]FIGURE 5 | A jar filled with colored cubes and the corresponding illustration of a question asking strategy and the associated probabilities.
AN EDUCATIONAL UNIT USING ENTROPY MASTERMIND FOR FOSTERING INTUITIONS ABOUT ENTROPY
We now describe a novel game-based mathematics intervention for fostering children’s intuitions about entropy and probabilities using Entropy Mastermind. Entropy Mastermind (Schulz et al., 2019) is a code breaking game based on the classic game Mastermind. In Entropy Mastermind a secret code is generated from a probability distribution by random drawing and replacement. For example, the probability distribution can be a code jar filled with cubes of different colors. The cubes in the jar are mixed, an item drawn and its color noted. Then, the item is put back into the jar. The jar is mixed again, another item is drawn, its color noted and the item is put back into the jar. The procedure is repeated until the code (for example a three-item code) is guessed correctly. This code is the secret code the player, also referred to as code braker, has to guess. To guess the secret code, the code breaker can make queries. In each query, a specific code can be tested. For each tested code, the codebreaker receives feedback about the correctness of the guessed code. Depending on the context and version of the game, the feedback can be given by another player, the general game master or the teacher or, in the case of a digital version of the game, the software. The feedback consists of three different kinds of smileys: A happy smiley indicates a guessed item is correct in kind (in our example the color) and position (in our example position 1, 2 or 3) in the code; a neutral smiley indicates that a guessed item is the correct kind but not in the correct position; and a sad smiley indicates that a guessed item is incorrect in both kind and position. The feedback smileys are arranged in an array. Importantly, the order of smileys in the feedback array is always the same: happy smileys come first, then neutral and lastly sad smileys. Note that the position of smileys in the feedback array are not indicative of the positions of items in the code. For example, a smiley in position one of the feedback array could mean that position one, two or three of the guess is correct. To figure out which feedback item belongs to which code item is a crucial component of the problem-solving process players have to engage in when guessing the secret code.
But where does entropy come into play in Entropy Mastermind? Between rounds of the game (one round refers to a code being generated, the process of guessing until the correct code is guessed) code jars may differ in their composition. For example, in one round of the game the probability distribution may be 99 blue: 1 red and in another game it may be 50 blue: 50 red. Under the assumption that exactly two colors comprise the code jar, the entropy of the first code jar is minimal, whereas the entropy in the second code jar is maximal. Children experience different levels of entropy in the form of game difficulty. Empirical data from adult game play shows that in high entropy rounds of the game more queries are needed to guess the secret code than in the low entropy rounds (Schulz et al., 2019).
The research question guiding the present work is whether fourth grade students’ intuitions about the mathematical concept of entropy can be fostered by a classroom intervention using Entropy Mastermind. In the following section we present a road map for a pedagogical intervention on entropy and probabilities for fourth graders. In An Implementation of “Embodied Entropy Mastermind” in Fourth Grade we will then report first results on the effectiveness of Entropy Mastermind following precisely this road map from an intervention study.
The Entropy Mastermind intervention consists of two instruction units, each consisting of two regular hours of class. The first unit is designed to give children the opportunity to familiarize themselves with the rules of the game. The goal of this first unit is to convey the important properties of entropy via game play. Although these properties connect strongly to specific axioms in mathematical theories of entropy (Csiszár, 2008), technical terms are not explicitly used in the first unit. The jargon should be accessible and not intimidating for children at elementary school level. Students play the game first in the plenary session with the teacher and then in pairs. The main goal of the first unit is to convey to students an understanding of maximum entropy and minimum entropy. The associated questions students should be able to answer after game-play include:
• Given a number of different code jars (differing in entropy), with which jar is it hardest to play Entropy Mastermind?
• With which jar is it easiest to play Entropy Mastermind?
• Students also get the task to generate differently entropic code jars themselves by coloring black-white code jars themselves, so as to answer: Which color distribution would you choose to make Entropy Mastermind as easy/hard as possible?
The second unit is devoted to an in-depth discussion of the contents developed in the first unit. In addition, other aspects of the entropy concept are included in the discussion. For example, how do additional colors affect the entropy of the jar? What role does the distribution of colors play and what happens if the secret code contains more or less positions?
An important method to evaluate the effectiveness of interventions are a pre- and a post-test of the skills or knowledge intended to train in the intervention. In our first intervention using the Entropy Mastermind game the pre- and post-test were designed in the following way: In the pre-test we recorded to what extent the children already had a prior understanding of proportions and entropy. As entropy is based on proportions and children have not encountered the game yet (and thus may not be able to understand questions phrased in the context of Entropy Mastermind), testing children’s knowledge of proportions in the pretest sets a baseline for the assessment of learning progress through game-play.
In the post-test the actual understanding of entropy was assessed. The post-test allows for phrasing questions in the Entropy Mastermind context, where more detailed and targeted questions about entropy can be asked.
Again, the key goals are for children to learn how to maximize or minimize the entropy of a jar, how to identify the minimum and maximum entropy jar among a number of jars differing in proportions, how entropy is affected by changing the number or the relative proportions of colors in the jar, and that the entropy of a jar does not change if the color ratios remain the same but the colors are replaced by others. The data collected in the pre- and post-test were first evaluated to see whether the tasks were solved correctly or incorrectly. In addition, the children's responses were qualitatively analyzed in order to develop categories for classifying children’s answers. The aim of this analysis was to find out whether the given answers were indicative of a deeper understanding of entropy and which misconceptions arose. In addition, an analysis of the children's solutions was conducted, which was developed within the framework of the teaching units, in order to establish how the strategies for dealing with entropy had been developed during the unit.
INSTRUCTION ACTIVITY
Implementing Entropy Mastermind as an activity in the classroom can be done in at least two ways: by means of an “embodied approach” having children play with jars and cubes of different colors or with a more digital approach, in which they play with an Entropy Mastermind app. We describe here a roadmap for a classroom activity based on playing the “jar game”, which is a physically enactive version of Entropy Mastermind. The different steps of the intervention are presented as a possible road map for implementing the embodied Mastermind activity.
First Unit: Introducing Entropy Mastermind
The first step for the teacher following our roadmap is to introduce the modified Entropy Mastermind game by means of an example. The teacher uses a code jar, and several small plastic cubes of equal size and form, differing only in color. She asks a student to act as her assistant.
The teacher and (his/)her assistant demonstrate and explain the following activity:
The teacher (the coder) verifiably and exactly fills a 10 × 10 grid with 100 cubes of a specific color (green) and puts them into a fully transparent “code jar” so that the children can see the corresponding proportions. Then she fills the 10 × 10 grid again with 100 cubes of the same color and places them also into the jar. Finally she fills the 10 × 10 grid with cubes of another color (yellow). The teacher notes that it can sometimes be helpful to look at the code jar when all the cubes are inside, before they get mixed up. After the cubes have been put in the code jar, they get mixed up.
Drawing Cubes to Generate a Code
The teacher can work with a worksheet dedicated to codes and coding, which she/he projects on the whiteboard.
Guessing the Code:
The assistant, “the guesser”, determines the code by filling in each square on the worksheet in the “Guess 1” position (see Figure 6): For the first query, the guesser chooses yellow, yellow, yellow. The idea that guesses should be minimized is emphasized by having images of a 1 euro coin next to each guess; after a guess is made, the teacher crosses out the corresponding 1 euro coin. The aim of the game is to guess the code as quickly as possible using an efficient question strategy. The coder gives feedback consisting of one smiley face and two frowny faces (see Figure 6). The smiley face means that one of the squares, we don’t know which one, is exactly right: the right color and the right position. The two frowny faces mean that two items in the true code match neither the color nor the position in the guess. Now the guesser knows that the code contains exactly one yellow cube. Because the only other color is green, the code must also contain two green cubes. For the second query the guesser chooses yellow, green, green, as in Figure 6. The feedback for this guess is one smiley face and two neutral faces. Again, the order of the feedback smileys does not correspond to positions in the code; they only tell you how many positions in the guesses are exactly right (smiley face), partly right (neutral face) or completely wrong (frowny face). Explaining the feedback is a crucial point in the classroom. The teacher must ensure that the feedback terminology is understood. In guess 3 the guesser guesses the rightmost location of the yellow cube, and is correct, obtaining all smiley faces in the feedback. The guesser gets a score of 5, because he had to pay for each of the 3 guesses (include the guess when he had figured the right code out). There are 5 of 8 “Euros” left.
[image: Figure 6]FIGURE 6 | The Worksheet for playing Entropy Mastermind, completed following an example as illustrated in Guessing the Code.
This process is repeated with new code jars and recipes and corresponding worksheets projected on the whiteboard until the children understand the rules of the game.
Self-Guided Play: Entropy Mastermind in Pairs
The next step for the children is to play the game with small jars against each other. They are grouped in pairs. A coin toss decides which of the children in each pair is going to be the first guesser and who is going to be the first coder.
Filling the Code Jar and Getting the Worksheets
The teacher asks the coder to come to the front. A coin flip determines whether each pair starts with the 1:2 or 1:12 distribution. According to the distribution, the coder obtains a previously filled-and-labeled small jar or cup, for example with 20 yellow cubes and 40 green cubes. Furthermore, the coder picks up four corresponding worksheets, for the three-item-code-length game, that are already labeled with the corresponding recipe. The coder goes back to her place in order to play with her partner (guesser).
Verifying the Proportions
Each pair takes the cubes out of their code jar, verifies that the proportions are correct, puts the cubes back in, and mixes up the cubes in the code jar.
Blindly Generating and Guessing the Code
The coder and guesser switch roles and repeat the steps described in 4. They play the game twice more. Afterward the children turn in the code jars and the completed worksheets. The teacher adds up the scores (in euros) for all the children, who played the game with the 1:2 and the 1:12 code jars. She presents the scores for each of the two distributions and asks the children about the connection between the scores and the distributions. We describe this discussion in the following paragraph.
Discussion With the Children
The teacher leads the classroom discussion. The main topics/questions are: Which jar was ‘easier’ and which jar was ‘harder’ to play with? It should be clear that the scores are higher for the 1:12 jar than for the 1:2 jar, without using the word entropy. Furthermore, the teacher asks: Imagine you could code your own jar. You have two colors available. How would you choose the proportions to make the game as easy as possible (minimum entropy), and how would you choose the proportions to make the game as hard as possible (maximum entropy)? This discussion is a good opportunity to see whether children have figured out that the hardest jar (maximum entropy) in the case of two colors has a 50:50 distribution, and that the easiest (minimum entropy) jar in the case of two colors has all (or almost all--perhaps task pragmatics require having at least one jar of each color) cubes of the same color.
The following questions are intended to prepare students for the next intervention, while also encouraging them to intuitively think further about the concept of entropy intuitively:
• What would happen if there were more than two colors in the code jar?
• Would this make it easier or harder to guess the code?
• Would it depend on the proportions of each color?
• Would it be easier or harder to play if a code jar were made with small scoops or with large scoops, but using the same recipe?
• Would it be easier or harder or the same to guess the code if the jar contained blue and pink cubes, as opposed to green and yellow cubes?
• Would increasing the code length from three to four make the game easier or harder?
Summing up, the goal of the first intervention unit is to introduce the Entropy Mastermind game, to consolidate children’s understanding of proportions, and to highlight some principles of entropy that will apply irrespective of the number of different colors. In the following, we give an overview of the second unit.
Second Unit: Varying Code Lengths and Multiple Colors
The procedure of the second unit is similar to that of the first unit. However, the focus is on fostering children’s intuitions about how the code length and the number of colors impact on the difficulty of game play. For this unit, new jars are introduced. One code jar has three colors with the recipe (2:1:1). This could mean, for instance, that if four cubes are red, then two cubes are blue and two cubes are green. Another code jar has six colors with the recipe proportions of 35 cubes of one color and one cube each of the five other colors (35:1:1:1:1:1). During the independent self-guided group work, the teacher becomes an assistant to the pupils. Pupils have the opportunity to ask questions whenever something is unclear to them, thereby giving the teacher insight into the pupils’ strategies. Following the game play, the teacher conducts a discussion by asking questions testing students’ understanding of entropy, such as:
• How many colors are represented?
• What is the relative proportion of each color?
• If you could change the color of a cube in the 2:1:1 jar, to make it easier/harder, what would you do?
• Would you do the same thing if you could only use specific colors, or if you could use any color?
• If you had six available colors and wanted to make a code jar as easy/hard as possible, how would you do that?
The above procedure gives some guidelines for using these enactive activities and group discussion to foster intuitive understanding of Entropy. The teachers who implement these units can devise their own pre-tests and post-test to assess measures of success. In the next section we describe one such intervention that we have tested ourselves.
AN IMPLEMENTATION OF “EMBODIED ENTROPY MASTERMIND” IN FOURTH GRADE
We now report here on a concrete implementation of Entropy Mastermind with jars and cubes in fourth grade in an empirical study based on intervention with N = 42 students (22 girls and 20 boys between the ages of 9 and 10, including 2 students with learning difficulties) from two fourth-grade classes in an elementary school.
In this intervention children were tested before and after the instruction units which were performed following the roadmap described above. Here we describe the contents of the pre- and post-test chosen in this particular case. The first author, who implemented the interventions, analyzed and evaluated the pre- and post-test. She also analyzed the children’s worksheets during the instruction unit. The aim of this analysis was to evaluate children’s strategies when dealing with entropy, and how they evolved during the unit.
Pre-Test: Building Blocks of Entropy
Because, prior to the Entropy Mastermind unit, children would not be in a position to answer questions about code jars being easier or harder for Entropy Mastermind, we decided to have a pre-test dedicated to the essential implicit competencies required for understanding entropy, namely dealing with proportions. For instance, a basic competency for both probability and entropy is that of being able to grasp whether 8 out of 11 is more than 23 out of 25. Thus, the tasks chosen for the pre-test (see Figure 7) allowed us to assess children's understanding of proportions prior to the intervention. The tasks used in the pre-test were inspired by tasks of the PISA Tests of 2003 (Prenzel and PISA Konsortium Deutschland, 2004), and also from the pre-test of a previous intervention study performed by two of the authors of this paper and (Knauber et al., 2017; Knauber, 2018). As an example of such tasks involving proportions, we present Task 1 in Figure 7A and we also present a proportion task with a text cover story (Task 3 in the pre-test) in Figure 7B:
[image: Figure 7]FIGURE 7 | (A) Task 1 of the Pre-test. (B) Task 3 of the Pre-test.
Children’s answers to the Pre-test were quantified and analyzed.
The Post-Test: Assessing Intuitions About Entropy
In the post-test, Entropy Mastermind-specific knowledge introduced in the teaching units could be taken into consideration for the design of the questions. Moreover, the rules introduced during the instruction unit made it possible to ask detailed and targeted questions. These questions were devoted to assessing the way children deal with entropy. It was possible to assess to what extent children understood how to maximize or minimize the entropy of a jar, whether they could design code jars according to predefined distributions, and how they dealt with comparing jars with different ratios and numbers of elements. They also made it possible to measure the extent to which children understood how entropy is affected by the number of colors in the code jar and that replacing colors without changing color ratios does not affect entropy. Some examples of the post-test tasks are given in Figure 8:
[image: Figure 8]FIGURE 8 | Selected tasks from the Post-test: 1, 3, 8, 10, 12.
Children’s answers to the post-test tasks were also quantified and analyzed.
We analyzed the results of the pre- and post-test, as well as of results of a detailed analysis of children’s answers during the instruction units. Data collected in the pre-test and post-test were first analyzed quantitatively to determine whether the tasks were solved correctly or incorrectly. Children’s' answers were then analyzed qualitatively by establishing categories and classifying answers accordingly. The aim of this categorization was to find features that show to what extent the answers given are actually based on a correct underlying theoretical understanding, and what difficulties arose in dealing with entropy.
Results of the Pre-Test
71.4% of the students chose the correct answer in Task 1 (see Figure 9, top; here the orange bars represent correct argumentation). Because this percentage does not reveal features of children’s thinking and understanding while solving the task, a finer classification is also presented in the bottom panel of Figure 9. A closer look at reasons students gave for choosing this answer showed that only 2 children out of 42 related the task to proportional thinking. All the other 40 children argued in a way that suggests that proportional thinking did not take place and thus no intuitions about entropy in the jars; this is made clear by Figure 9. In particular, children tended to think that it is easier to draw a white marble in the jar with a smaller total number of marbles.
[image: Figure 9]FIGURE 9 | Percentages and classification of children’s answers on Task 1.
Some answers of the children according to the categories will be shown below:
Answer 1 in Figure 10 presents a child’s response who reasoned correctly. Here the distributions of the given jars were compared by multiplying the number of elements of the smaller jar so as to make it comparable to the number of the larger quantity.
[image: Figure 10]FIGURE 10 | Children’s answers according to the categories depicted in Figure 9.
Answer 2, 3 and 4 are examples of wrong reasoning. The child’s reasoning in answer 2 corresponds to the category of children who argued based on the total number of marbles in a jar: It is easier to draw a white marble out of a jar with less marbles than the other jar.
The third answer is an example of the following way of thinking: The less often a marble appears, the greater is the probability of drawing this ball.
About half of the children’s responses correspond to preferring a jar with the higher absolute number of convenient preferred-color marbles.
We show also the answers to Task 2, which was similar to Task 1 with 2 white and 3 black marbles in jar 1, and 6 white and 8 black marbles in jar 2. The rationales that the children gave mostly corresponded to those of Task 1.
Approximately half of all (47.6%) children chose the correct answer in Task 2 (see Figure 11). The dominant argument for Task 2 was, as in Task 1, based on the total number of marbles in the respective jars, not on the ratio. This shows that children in the pre-test had poor intuitions on proportions, which form a building block of the understanding of entropy.
[image: Figure 11]FIGURE 11 | Percentages and classification of children’s answers on task 2.
Because not all children’s responses could be assigned to the previously formed categories, the category system of Task 1 was expanded by one category. Statements that relate exclusively to the arrangement of the marbles in a jar, but do not consider probabilities, are assigned to this category.
As mentioned before, with the increased number of marbles in jar 2, additional naive arguments were added to the categorization system: Because there are more marbles in jar 2, it may happen that the convenient marbles are covered by the unfavorable marbles. Due to this fact, one has to reach deeper into the jar to get the desired marble. Proportions are not considered in this line of thinking.
Task 3 on lettuce, which explicitly tests proportional thinking, was correctly solved by 23 children (54.8% of the sample). 19% of the correctly chosen answers presented arguments by reference to proportions (see student example in Figure 12A); all other children gave answers which indicate that proportions were not considered (see Figure 12B).
[image: Figure 12]FIGURE 12 | (A). Explanation based on comparison. (B) A solution with no comparison of proportions of proportions.
All children’s responses for Task 3 could be assigned to the categories established for the children’s answers in the previous tasks. Figure 13 shows the distribution of the given answers:
[image: Figure 13]FIGURE 13 | Categories for the analysis of answers to Task 3 in the pre-test.
Results of the Posttest
We give for each task in the posttest a short description and present the corresponding results. Task 1 requires an understanding of proportions. The children had to complete code jars by coloring squares as specified and according to given distributions. 57.1% of the children (24 children) fulfilled the requirements and painted all given jars correctly. 23.8% (10 children) completed two of three jars correctly, 11.9% (5 children) completed one jar correctly and 7.1% (3 children) colored the squares incorrectly (see task 1 in Figure 14).
[image: Figure 14]FIGURE 14 | Results of the post-test.
In Task 2, 3 and 4 the children had to identify the jar with the highest entropy (the “hardest”) out of the three. The jars in Task 2 are made up of cubes of two different colors, while in Task 3 and 4 the number of colors varies between two and five. These tasks required an understanding of how the level of entropy depends on the number of colors and their proportions. Task 2 was solved correctly by 92.9% of the children, task 3 by 81% and Task 4 by 88.1% (see Task 2, 3 and 4 in Figures 14).
In Task 5 and 8 the children had to complete jars by coloring squares according to a list of colors. They had to maximize entropy under given conditions. Only 50% of the children solved task 5 correctly. Nevertheless, 33% of the children who solved the task incorrectly, distributed their chosen colors equally, satisfying the requirement that entropy should be maximal. However, they did not use all the listed colors (see Tasks 5 and 5 Z in Figure 14).
Task 8 was correctly solved by 73.8% of the children (Figure 14).
In Task 6, 7 and 9 the children also had to complete jars by coloring in squares with listed colors. But this time they had to minimize the entropy under given conditions. These tasks also differ in the number of listed colors. Observe that Entropy Mastermind is easiest to play if the jar is coded with only one color. In this case the entropy is 0 bit. In task 6, four of the given twelve squares are colored orange and orange is among the listed colors. 59.5% of the children solved this task correctly by coloring in the remaining squares in orange as well. 40.5% of the children solved the task incorrectly: They reduced entropy by coloring all the squares orange except one. In this solution, entropy is very low, but not minimal (see Tasks 6 and 6 Z in Figure 14).
Task 7 was solved correctly by 88.1% of the children and Task 9 by 64.3% (see Task 7 and 9 in Figure 14).
Tasks 10 and 11 require an understanding of proportions. Two jars with different basic quantities and color distributions have to be compared. 92.8% of the children solved Task 10 correctly and 95.2% solved Task 11 correctly (Figure 14).
Task 12 shows two jars. Both of them have the same number of squares and the distributions of the colors are identical. They differ only in the choice of color. This task requires the understanding that the choice of color does not influence the entropy of a jar. 90.4% of all children solved this task correctly (Figure 14).
Comparison Between the Pre-Test and the Post-Test in Proportion Comparison
In summary, although an average of 57.9% of all tasks were correctly solved in the pre-test, the analysis of children's reasoning shows that only 9.5% of the answers were actually based on an intuitive understanding of proportion comparison. Many children showed misconceptions, such as the incorrect additive strategy in proportional thinking. Similarly, relationships between two basic sets were often not considered, and reasoning was mainly based on the absolute frequency of favorable or unfavorable marbles.
In the Post-test an average of 77.6% of the tasks were solved correctly. Nine of the 12 tasks had been designed with the goal that an understanding of proportion comparison on the one hand, and entropy on the other, was essential for correct answers. For the three other multiple-choice tasks, a correct answer by guessing cannot be excluded, but the solution rates for these tasks are not conspicuously higher than for the other tasks.
As we mentioned, the data collected in the pre-test and post-test were evaluated in order to determine whether the tasks were solved correctly or incorrectly. In addition, students' answers were analyzed qualitatively by establishing categories, to which the answers could be clearly and unambiguously assigned. As we already explained, the categories were based on similarities and differences between answers: the aim was to assess the extent to which the answers given were actually based on understanding. Another issue of interest was the type of difficulty that arose in dealing intuitively with the concept of entropy.
The most relevant aspect of our comparison was the following: while in the pre-test, children gave answers that indicate incorrect additive comparisons with regard to proportions, this seldom occurred in the post-test. Given that the pre- and post-test items were not exactly the same (because the pre-test could not contain Entropy-Mastermind-specific questions), some caution needs to be made in interpreting these results. However--especially given the much greater theoretical difficulty of the post-test items--we take the results as very positive evidence for the educational efficacy of the Entropy Mastermind unit.
CONCLUSION
Competence in the mathematics of uncertainty is key for everything from personal health and financial decisions to scientific reasoning; it is indispensable for a modern society. A fundamental idea here is the concept of probabilistic entropy. In fact, we see entropy both as “artificial” in the sense that it emerges from abstract considerations on structures imposed on uncertain situations, and as “natural” as suggested by our interaction with the environment around us. We propose that Entropy as a measure of uncertainty is fundamental in consideration of the physical order and symmetry of environmental structures around us (Bomashenko, 2020).
After having played Entropy Mastermind, the majority of fourth-grade students (77.6%) correctly assessed the color distribution of code jars in their responses. This can be interpreted as showing that children were able to develop an intuitive understanding of the mathematical concept of entropy. The analysis of the students’ written rationales for their answers gave further insight into how their strategies and intuitions developed during game-play. It seems that with increasing game experience children tended to regard Entropy-Mastermind as a strategy game, and not only as a game of chance. By developing strategies for gameplay, the children were able to increase the chance of cracking the code, despite the partly random nature of the game. Many strategies that were used are based on an understanding of the properties of entropy. It was impressive how the children engaged in gameplay and improved their strategies as they played the game. Although we did not include the post-test items in the pre-test, for the reasons explained above, and thus direct comparisons between the pre- and post-test are not straightforward, we infer that children’s high scores in the post-test are at least partly attributable to their experiences during the Entropy Mastermind unit.
Qualitatively, children reported that the game Entropy Mastermind was fun, and their verbal reports give evidence that the game fostered their intuitions about entropy: students repeatedly asked whether they could play the game again. This observation corroborates the finding in the literature that students enjoy gamified learning experiences (Bertram, 2020) and suggests that games can foster intuitive understanding of abstract concepts such as mathematical entropy. It is remarkable that we found this positive learning outcome in elementary school students, whose mathematical proficiency was far from understanding formulas as abstract as mathematical entropy at the time of data collection.
Building on the road map described here, we are extending the Entropy Mastermind unit to include a digital version of the game and additional questionnaires and test items in the pre- and post-test (Schulz et al., 2019; Bertram et al., 2020). We have developed a single-player app (internet-based) version in which children can play Entropy Mastermind with differently entropic code jars and varying code lengths. This makes the Entropy Mastermind App a malleable learning medium which can be adapted to children’s strengths and needs. A key issue in future work will be to identify how best to make the app-based version of Entropy Mastermind adapt to the characteristics of individual learners, to maximize desired learning and attitudinal outcomes. The digital Entropy Mastermind unit is well suited for digital learning in various learning contexts, for example for remote schooling during the Covid-19 pandemic. At the same time, the extended pre- and post-test, including psychological questionnaires and a variety of entropy-related questions, allows us to generate a better understanding of the psychology of game-based learning about entropy.
Summing up, using Entropy Mastermind as a case study, we showed that gamified learning of abstract mathematical concepts in the elementary school classroom is feasible and that learning outcomes are high. We are happy to consult with teachers who would like to introduce lesson plans based on Entropy Mastermind in their classrooms. Although our focus in this article is on Entropy Mastermind, we hope that our results will inspire work to develop gamified instructional units to convey a wide range of concepts in informatics and mathematics.
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An increasing number of learning goals refer to the acquisition of cognitive skills that can be described as ‘resource-based,’ as they require the availability, coordination, and integration of multiple underlying resources such as skills and knowledge facets. However, research on the support of cognitive skills rarely takes this resource-based nature explicitly into account. This is mirrored in prior research on mathematical argumentation and proof skills: Although repeatedly highlighted as resource-based, for example relying on mathematical topic knowledge, methodological knowledge, mathematical strategic knowledge, and problem-solving skills, little evidence exists on how to support mathematical argumentation and proof skills based on its resources. To address this gap, a quasi-experimental intervention study with undergraduate mathematics students examined the effectiveness of different approaches to support both mathematical argumentation and proof skills and four of its resources. Based on the part-/whole-task debate from instructional design, two approaches were implemented during students’ work on proof construction tasks: (i) a sequential approach focusing and supporting each resource of mathematical argumentation and proof skills sequentially after each other and (ii) a concurrent approach focusing and supporting multiple resources concurrently. Empirical analyses show pronounced effects of both approaches regarding the resources underlying mathematical argumentation and proof skills. However, the effects of both approaches are mostly comparable, and only mathematical strategic knowledge benefits significantly more from the concurrent approach. Regarding mathematical argumentation and proof skills, short-term effects of both approaches are at best mixed and show differing effects based on prior attainment, possibly indicating an expertise reversal effect of the relatively short intervention. Data suggests that students with low prior attainment benefited most from the intervention, specifically from the concurrent approach. A supplementary qualitative analysis showcases how supporting multiple resources concurrently alongside mathematical argumentation and proof skills can lead to a synergistic integration of these during proof construction and can be beneficial yet demanding for students. Although results require further empirical underpinning, both approaches appear promising to support the resources underlying mathematical argumentation and proof skills and likely also show positive long-term effects on mathematical argumentation and proof skills, especially for initially weaker students.
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INTRODUCTION

Today, educators in formal and informal learning settings deal with increasingly complex skills as learning goals, such as argumentation or complex problem solving (e.g., National Research Council, 2012; Osborne, 2013; Greiff et al., 2014), which require the availability, coordination, and integration of multiple underlying cognitive resources.

Research from educational psychology focusing on the support of complex skills has long been examining part- and whole-task approaches for learning (e.g., Naylor and Briggs, 1963; Anderson, 1968; Lim et al., 2009). Here, part-task approaches focus on the acquisition of individual part tasks or steps within a larger task to later integrate these into the whole task, whereas whole-task approaches focus on the immediate acquisition of the larger, entire task. Cumulative evidence from corresponding research of the last decades generally points to a higher effectiveness of whole-task approaches to support complex skills (e.g., van Merriënboer and Kester, 2007; Melo and Miranda, 2016).

Respective research has focused on different parts of larger, complex tasks, which can be decomposed into a number of discrete subtasks, and how those can be learned and transferred to the overall task. It did not focus on different (dispositional) resources possibly required for a specific skill. Still, research from (educational) psychology and mathematics education (e.g., Koeppen et al., 2008; Schoenfeld, 2010; Blömeke et al., 2015) has increasingly stressed the fact that many skills currently focused as educational goals, such as mathematical argumentation and proof skills, rely heavily on several underlying resources that need to be coordinated and integrated to solve problems or successfully meet situations requiring the skill. Researchers increasingly acknowledge that these skills should be conceptualized as resource-based cognitive skills. However, these underlying resources are rarely considered in the design of learning environments. Although the idea of supporting a resource-based cognitive skill by “simply” supporting its resources and their application is compelling, an instructional dilemma arises: To foster the overarching skill, is it favorable to focus on each resource and the support of its acquisition sequentially? Or should the focus rather be on all resources and their joint application, concurrently? Both approaches appear to have advantages: The first approach benefits from a higher decomposition and instructional clarity as all resources are addressed individually, yet also requires the later transfer from the individual resources to the overall skill. In contrast, the second approach may overwhelm students with the resource-based cognitive skill and its underlying resources all at once, yet allows an integrated learning of the resources in authentic settings that support the integration of the resources and already trains their concurrent application within mathematical argumentation and proof tasks.

The dilemma mirrors the part-/whole-task debate (see Figure 1), as (i) supporting each resource underlying a resource-based cognitive skill sequentially is analog to the part-task approach, whereas (ii) supporting the resources concurrently is analog to the whole-task approach. However, the resources underlying a resource-based cognitive skill go beyond individual steps or subtasks, may have to be purposefully applied within multiple steps, and require more than a sequential enchainment as compared to the individual part tasks. Thus, the transfer of the central tenet from the part-/whole-task debate, that whole-task learning is generally more effective for complex skills, appears questionable and has yet to be investigated thoroughly. In particular, it is generally unclear how effective both approaches for supporting the resources are regarding a complex cognitive skill such as mathematical argumentation and proof skills and whether any learning gains on the resources can be instantly transferred or used for mathematical argumentation and proof.


[image: image]

FIGURE 1. Structural equivalence between the part-/whole-task debate (upper part) and the sequential and concurrent approach to support a resource-based cognitive skill and its resources (lower part).


Over the last decades, increasing evidence suggests that mathematical argumentation and proof skills should be considered as a resource-based cognitive skill. For example, mathematical topic knowledge, methodological knowledge, or problem-solving skills have been proposed by prior research as underlying resources (e.g., Schoenfeld, 1985; Heinze and Reiss, 2003; Ufer et al., 2008; Chinnappan et al., 2012), for example needed in common proof construction tasks (see Figure 2).
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FIGURE 2. Mathematical proof construction task including solution and exemplary highlights for required resources.


The present contribution addresses the question how mathematical argumentation and proof skills, as a prototype of a resource-based cognitive skill, as well as its underlying resources can be effectively supported. We therefore contrast two (resource-based) instructional approaches to support the development of mathematical argumentation and proof skills: a sequential approach, focusing and supporting each resource individually one after the other, and a concurrent approach, focusing and supporting multiple resources concurrently. We compare students’ learning outcomes in both approaches, regarding both the resources and overall argumentation and proof skills, to give first insights into the effects of both approaches and their feasibility in the context of mathematical argumentation and proof skills and more generally.



THEORETICAL BACKGROUND


Instructional Approaches for Complex Skills

The idea that instructional strategies to support the learning of less complex skills may differ from those to support more complex skills has been raised repeatedly by educators and prior research (e.g., Branch and Merrill, 2011). Yet, the idea entails serious intricacies, starting with the notion of skill complexity, which is ill-defined.

Naylor and Briggs (1963) gave a seminal account of task difficulty, differentiating two independent dimensions: task complexity, accounting for the individual complexity of the subtasks, and task organization, describing the demands posed by the interrelationship between the various subtasks and their integration into the whole task. Their experimental study (Naylor and Briggs, 1963) suggests that tasks with a high subtask complexity but low task organization benefit from part-task training. That is, individual subtasks are trained and afterward connected using different sequencing strategies. In contrast, tasks with low subtask complexity but high task organization benefit from whole-task training, as combining individually learned subtasks is more complex for these tasks. Further, tasks that require not only enchaining but also integrating several subtasks can be more effectively taught using whole-task approaches (Naylor and Briggs, 1963).

Subsequent research contrived plausible theoretical arguments and empirical evidence for both approaches: Arguments for the part-task approach are mostly based on classical learning theories from psychology research like Adaptive Control of Thought (ACT; Anderson, 1996) that assume the decomposability of complex skills into less complex part skills (Anderson, 2002). Based on these assumptions, for example, multiple computer-based approaches like cognitive tutors (Anderson et al., 1995) were developed to support mathematical skills and at least partially proven to be successful. This atomistic approach has been challenged by sociocultural and situated conceptions of learning that highlight the situatedness of learning (e.g., Brown et al., 1989; Lave and Wenger, 1991). The superior effectiveness of whole-task approaches also gained empirical support by evidence pointing to difficulties associated with attempts to transfer and integrate part tasks to the whole task (see Anderson et al., 1996 for a critical discussion).

Several studies and reviews (e.g., Lim et al., 2009; Melo and Miranda, 2015; see van Merriënboer and Kester, 2007 for an overview) document the advantages of whole-task learning for a broad range of learning goals. For example, a meta-analysis on the effects of four-component instructional design (4C/ID) learning environments on school students’ learning (Melo and Miranda, 2016) revealed high positive effects on reproduction (d = 0.70) and transfer (d = 0.65). Today, many educational theories assume that learning is evoked and supported best by rich, meaningful tasks (van Merriënboer, 2002), which are hard to achieve by focusing on an atomistic approach dissecting whole tasks.

However, empirical studies highlight that, in some situations, the benefits of learning the resources separately may be higher than the challenges of integrating and coordinating the tools in the complex goal task (So et al., 2013) and that additional research may identify which aspects of a skill influence how effective different learning approaches are (Lim et al., 2009; Wickens et al., 2013). For example, Wickens et al. (2013) were able to show that the effectiveness of part-task training depends not only on task difficulty but that the approach for segmenting the whole task into part tasks plays a decisive role. Here, segmenting into parts that have to be used concurrently in the whole task showed a particularly negative effect on the transfer of part-task learning gains to the whole task. Although not prominent in the analysis by Wickens et al. (2013), another aspect discussed repeatedly is prior knowledge or attainment (Salden et al., 2006), as with low prior attainment, both the part tasks and their integration have to be learned.

Still, what has been described as a complex skill in earlier research (c.f., Gagné and Merrill, 1990; van Merriënboer, 1997) seems quite incomparable to skills like argumentation. For example, creating spreadsheets for monthly sales figures (Merrill, 2002) or handling a mechanic excavator (So et al., 2013) cannot be seen as equivalent to argumentation skills, since here not only the integration of several subtasks or subskills in the sense of manual skills, operations, or activities is required but also an integration of various resources underlying the skill, which have to be monitored, coordinated, and regulated. Further, the resources have to be utilized in different ways (for example, when analyzing the task, when creating a plan to solve the task, when solving the task, and when validating the solution), cannot be sequentially enchained, and have to be used concurrently, interacting with each other. It is thus unclear if and how according research can be transferred to more complex cognitive skills and their resources.



Resource-Based Cognitive Skills

Cognitive skills are often conceptualized in the sense of Koeppen et al. (2008) as latent cognitive dispositions underlying a person’s performance in a range of specified situations. For example, mathematical argumentation and proof skills refer to the cognitive disposition necessary to handle proof-related situations and activities (e.g., Mejía-Ramos and Inglis, 2009). Such situations may ask an individual to construct a valid mathematical proof for a claim or to read a purported proof and judge its correctness. However, judging a person’s success in handling these situations is not straightforward but depends on certain norms to evaluate success. Although norms and values regarding mathematical proofs are generally seen as quite consistent (e.g., Heinze and Reiss, 2003; Dawkins and Weber, 2016), research has still repeatedly shown that they vary to a certain extent (e.g., Inglis et al., 2013; Andersen, 2018) and should be regarded as a social construct that varies depending on the community (e.g., Sommerhoff and Ufer, 2019; see Method for a more specific operationalization in the context of this study).

Generally, cognitive skills are not conceived as monolithic, indecomposable latent constructs. Several theoretical, as well as empirical, accounts underline that cognitive skills may heavily require multiple, correlated but potentially independent underlying resources. For example, Shulman (1987) discusses several knowledge facets (e.g., content knowledge, pedagogical knowledge), as underlying teaching skills and, for example, also problem-solving skills are assumed to have underlying resources such as heuristics (e.g., Schoenfeld, 1985; Abel, 2003). A similar conception can be found in vocational education, where Mulder et al. (2009) speak of an “integrated set of capabilities consisting of clusters of knowledge, skills, and attitudes.” The theoretical discussion and framework by Blömeke et al. (2015) integrate these ideas and conceptions, emphasizing the relations between the resources underlying the resource-based cognitive skill and task performance.

This conception of cognitive skills creates a situation that is structurally equivalent to the part-/whole-task debate (see Figure 1). Here, students’ resource-based cognitive skill (e.g., mathematical argumentation and proof skills) can be regarded as analog to the ability to solve whole tasks, whereas the different resources underlying the resource-based cognitive skill (e.g., mathematical topic knowledge) are analog to the ability to solve the part tasks. This analogy substantially extends the part-/whole-task debate, bringing up the question whether the results from the part-/whole-task debate can be transferred to resource-based cognitive skills. Here, the primary question will be, if (i) the resource-based cognitive task can be effectively supported by supporting the resources and (ii) the resources should be supported sequentially one after the other (similar to learning individual part tasks) or whether a concurrent approach (which allows to acquire the resources in a more integrated manner) is more effective. The answers to these questions are highly relevant for the teaching and learning of any resource-based cognitive skill.

Unfortunately, results from prior research (e.g., Salden et al., 2006; Lim et al., 2009) suggest that there might not be one answer to this question but that various other aspects, such as students’ prior attainment, might cause differential effects. For example, in an intervention study, Lim et al. (2009) were able to show significant main and interaction effects regarding low vs. high prior attainment and part- vs. whole-task learning for some of their posttest measures, while other measures did not show these effects.



Mathematical Argumentation and Proof Skills and Its Underlying Resources

Mathematics educators and educational psychologists widely agree that mathematical argumentation and proof skills can be seen as a resource-based cognitive skill (e.g., Schoenfeld, 1985; Ufer et al., 2008; Chinnappan et al., 2012). For example (see also Figure 2), students faced with a mathematical proof task need mathematical topic knowledge to identify the mathematical objects within the task and unpack their definitions and meanings. Further, problem-solving skills may be needed to guide students’ search for a solution and to purposefully apply heuristics to construct a proof.

Several resources of mathematical argumentation and proof skills have been proposed over the last decades (see Sommerhoff et al., 2015 for a review): They have been partly derived from models for more general skills like problem-solving (resources, heuristics, control, belief systems; Schoenfeld, 1985) or self-regulated learning (domain-specific knowledge base, heuristic methods, metaknowledge, self-regulatory skills, beliefs; De Corte et al., 2000) or have been proposed by qualitative studies (mathematical strategic knowledge; Weber, 2001). Moreover, multiple resources have been partially empirically validated (e.g., Ufer et al., 2008; Chinnappan et al., 2012) and shown to account for a large share of students’ variance in mathematical argumentation skills [41.6% explained variance in Ufer et al. (2008) by basic knowledge and problem-solving skills; 72.6% explained variance in Chinnappan et al. (2012) by content knowledge, problem-solving skills, and reasoning skills]. Although quite some research indicates various possible resources of mathematical argumentation skills via theoretical analyses, qualitative analyses, or correlational research, currently no concluding list of such resources, no ranking of their importance, and mostly not even causal evidence justifying their status exist.

Still, based on various frameworks and findings, the following four resources appear to represent important cognitive resources for students’ mathematical argumentation and proof skills:


Mathematical Topic Knowledge

One of the most fundamental and best-researched resources is mathematical topic knowledge (MTK). Following widely accepted conceptions (e.g., Hiebert, 1986; Anderson, 1996; Star and Stylianides, 2013), it entails two facets, namely, conceptual mathematical topic knowledge, that is, a network of knowledge about mathematical facts, theorems, objects, and their properties, as well as procedural mathematical topic knowledge, that is, partly tacit knowledge, exercised in the accomplishment of a task (Hiebert and Lefevre, 1986). Both were shown to have a substantial impact on students’ mathematical argumentation and proof skills (Ufer et al., 2008; Chinnappan et al., 2012), matching more general research findings on scientific reasoning (e.g., Schunn and Anderson, 1999; Kuhn, 2002) from psychology.



Methodological Knowledge

Meta-knowledge on mathematical argumentation and proof, also called methodological knowledge (MK) (Heinze and Reiss, 2003; Ufer et al., 2009; Sommerhoff and Ufer, 2019), is considered another important resource underlying mathematical argumentation and proof skills. It comprises knowledge about acceptance criteria for mathematical proofs (e.g., the rejection of circular reasoning or the need for an explicit reference to an underlying theoretical background) as well as knowledge about different types of proofs, both of which appear particularly essential for constructing and validating proofs.



Mathematical Strategic Knowledge

In a qualitative study with mathematics students from different academic levels, Weber (2001) observed that mathematical topic knowledge alone is not sufficient to successfully construct proofs. Students were often unable to identify concepts or methods necessary for a task or had problems applying them purposefully. For example, students could not purposefully apply their (available) knowledge about the fundamental theorem on homomorphisms, as they did not recognize the theorem as purposeful in the specific situation, although the given task included multiple cues implying its usefulness. Data from several other studies (e.g., Reiss and Heinze, 2004; Selden and Selden, 2013) support this finding, implying students’ need for mathematical strategic knowledge (MSK), that is, domain-specific knowledge linking specific cues and hints within mathematical tasks with the mathematical methods and concepts that can be useful for solving the respective task (Weber, 2001). In the broader context of research, mathematical strategic knowledge can be seen as a domain-specific version of general problem-solving heuristics.

In contrast to methodological knowledge, which relates to meta-knowledge about norms and values in the context of mathematical proofs and different types of proofs, mathematical strategic knowledge relates to specific knowledge about how to approach a specific task and discovering cues for such approaches. In particular, similar to the observations by Weber (2001), students may have methodological knowledge about proofs and thus know what the desired proof should look like in terms of its acceptance and features but may still be unable to construct the proof, as they do not know how to approach the given task, implying a need for mathematical strategic knowledge beyond methodological knowledge.



Problem-Solving Skills

Next to these three domain-specific resources, problem-solving skills refer to the cognitive disposition to succeed in various problem situations, that is, situations in which an undesired initial state has to be transformed into a goal state, yet the needed operation to achieve this is not at hand (e.g., Dörner, 1979; Mayer and Wittrock, 2006). The specific relation of mathematical proof-construction skills and problem-solving skills as well as the respective processes has been repeatedly discussed (e.g., Mamona-Downs and Downs, 2005; Weber, 2005), resulting in the identification of differences and similarities, and is still a matter of debate. However, based on the definition of problems (e.g., Schoenfeld, 1985) as non-routine tasks for which a learner has no immediate solution strategy, mathematical proofs have often been conceptualized as problems (e.g., Weber, 2005). The construction of a proof can thus be seen as a multistep problem-solving process that, if successful, generates a deductive chain of arguments as a solution for the problem (e.g., Weber, 2005; Heinze et al., 2008). Despite differences between problem solving and proof construction and the fact that today content knowledge is seen as a more important resource, it thus appears plausible that (general) problem solving skills (PSS) are a resource for mathematical argumentation and proof skills, which has been underlined repeatedly by prior research (e.g., Polya, 1945; Schoenfeld, 1985; Reiss and Renkl, 2002) and also partially quantitatively underpinned by studies on secondary school students’ geometry proof skills (Ufer et al., 2008; Chinnappan et al., 2012). Simultaneously, the use of problem-solving heuristics, that is, strategies or rules-of-thumb for problem-solving processes, have also been proposed as important for mathematical argumentation and proof skills. These are mostly conceptualized in a way that they are employed when solving a problem and accordingly represent an important resource for problem-solving skills themselves (e.g., Schoenfeld, 1985; Abel, 2003).

Prior research has generally underlined the importance of these four cognitive resources for students’ mathematical argumentation and proof skills. In particular, their importance is supported by quantitative research results for mathematical topic knowledge and problem-solving skills (Ufer et al., 2008; Chinnappan et al., 2012), for methodological knowledge (Ufer et al., 2009) in the context of secondary school geometry, as well as for mathematical strategic knowledge by first studies in undergraduate contexts (Sommerhoff et al., submitted).

Corresponding research thus underlines the status of mathematical argumentation and proof skills as a resource-based cognitive skill. However, it is currently unclear what this implies for educational strategies to support mathematical argumentation and proof skills and its resources. In particular, prior research has underlined that training mathematical argumentation and proofs skills directly by working on proof (construction) tasks is not particularly effective (e.g., Weber, 2003; Selden and Selden, 2008, 2012). This result is often attributed to the lack of required resources (see Selden and Selden, 2008). Moreover, it appears possible but rather intricate to acquire the lacking resources while working on proof tasks without explicitly addressing them—solving respective tasks is already demanding for students. It thus appears more likely that approaches explicitly focusing and supporting the different resources as well as their application in the context of proof tasks may be an effective way of supporting students’ resources as well as their mathematical argumentation and proof skills.



THE CURRENT STUDY

As pointed out in Theoretical Background, mathematical argumentation and proof skills represent a resource-based skill that has multiple underlying skills whose availability is important. Our study is a first step to explore how acknowledging the resources underlying a resource-based cognitive skill can be functional in supporting the learning of the underlying resources as well as the resource-based cognitive skill itself. For this, we take up the part-/whole-task debate from instructional design (Anderson et al., 1996; Lim et al., 2009; Branch and Merrill, 2011) in the pursuit of evidence for the feasibility and respective benefits of a sequential (analog to the part-task approach) and concurrent (analog to the whole-task approach) approach for supporting students’ resource-based cognitive skill and its underlying resources.

This is done by examining students’ mathematical argumentation and proof skills, which comprise a resource-based cognitive skill with mathematical topic knowledge (MTK), methodological knowledge (MK), mathematical strategic knowledge (MSK), and problem-solving skills (PSS) as underlying resources as suggested by prior research. In a quasi-experimental study with university mathematics students, we investigated whether supporting each of the four resources sequentially one after the other or supporting the resources concurrently in the context of mathematical proofs yields (higher) learning gains on the resources as well as on overall mathematical argumentation and proof skills.

The research questions driving the study are the following:

RQ1 What are the effects of a sequential vs. a concurrent instructional approach on the resources of mathematical argumentation and proof skills?

Hypothesis: We expected positive effects on the resources for both approaches. Moreover, we expected that the sequential approach is superior to the concurrent approach in supporting the resources of a resource-based cognitive skill.

Argument: Each of the resources for mathematical argumentation and proof skills as well as their utilization within argumentation and proof processes are already quite complex. Shortcomings of students regarding prior knowledge, problem-solving skills, and other aspects have repeatedly been reported (e.g., Harel and Sowder, 1998; Selden, 2011; OECD, 2014). Based on this high complexity of the “parts,” the results by Naylor and Briggs (1963) imply that a sequential approach should be better suited to support these resources. This appears highly plausible, as acquiring multiple complex resources at the same time may prove overly demanding for students as they have to process too much information for too many different resources simultaneously. The idea of instructional clarity supports this, as the sequential condition covers each resource individually and thus should lead to a higher instructional clarity, which in turn should be beneficial for the improvement of students’ resources.

RQ2 What are the effects of a sequential vs. a concurrent instructional approach on overall mathematical argumentation and proof skills?

Hypothesis: We expected the concurrent approach to yield higher or at least comparable learning gains compared to the sequential approach.

Argument: The hypothesis is implied by the results from Naylor and Briggs (1963), as overall mathematical argumentation and proof skills require a high degree of task or rather “resource organization,” that is, the underlying resources need to be purposefully combined and applied when working on mathematical proof tasks. Accordingly, an approach integrating the resources and thereby allowing students to directly experience the concurrent coordination and application of the resources within mathematical proof tasks should be favorable and lead to integrated learning. This is further supported by a prior review on part-task practice (Wickens et al., 2013) that revealed smaller effects of part-task training when parts have to be used concurrently, which holds for the resources underlying mathematical argumentation and proof skills.

Furthermore, the sequential approach requires students to later, that is, after learning about each resource, integrate the various resources and apply them purposefully when constructing mathematical proofs. As this does not arise as naturally as in the concurrent approach, where the resources are already used in an integrated way during training, this could pose another obstacle for students following a sequential approach and may actually hinder learning overall mathematical argumentation and proof skills. In line with this argumentation, situated learning theories (Brown et al., 1989; Lave and Wenger, 1991) also suggest that students should rather benefit from the authentic, meaningful combination of resources as opposed to addressing them individually.

Beyond these research questions quantitatively comparing both approaches, we were interested in how the expected learning gains on the resources could shape participants’ proof construction attempts and lead to the observed results for the research questions. Here, we were primarily interested in qualitative insights as to how the resources can be used and integrated by students in the concurrent condition and if this integration could lead to productive synergistic effects.



METHOD1


Design, Participants, and Context

We adopted a quasi-experimental pre–post design with two conditions, corresponding to the sequential and concurrent approach. The intervention was offered as a voluntary course for mathematics university students from one of the largest German universities and was entitled “Mathematical proofs: That’s how to do it!,” which was aimed toward undergraduate students after their first semester. A total of 45 students (18 male, 27 female, mage = 20.82) participated in the study. Of these, 36 were first year and 9 were second year students who were either enrolled in a mathematics bachelor’s program or a teaching degree for secondary education. One can assume that all participants had participated in proof-based real analysis lectures, giving the students the necessary foundation for the course. In contrast to mostly calculation-based ‘calculus’ courses that include only some proofs, these lectures are purely proof based and focus on the creation of an axiomatic, deductively derived theory. However, the courses are not explicitly designed to be ‘introduction to proof’ courses, but mathematical proofs are mostly introduced in a ‘learning by observing/doing’ manner, mostly without explicitly covering or even disentangling different aspects of proofs or different resources needed for proofs. A typical book reflecting the lectures is from Amann and Escher (2005).

Twenty-one students participated in the sequential condition, while 24 students participated in the concurrent condition. Participants’ final school qualification grade (M = 1.922, SD = 0.52), as well as their final high-school grades in mathematics (M = 1.86, SD = 0.56), were in between the best and second-best grade.



Procedure

The course was scheduled across three consecutive days and consisted of four 2-h intervention sessions plus two sessions for pretest and posttest (i.e., two sessions per day). Without being aware of the difference, participants could choose to participate in one of both parallel groups, each representing one of the instructional conditions. The course was conducted by two experienced instructors with a mathematics and mathematics education background. Instructors swapped groups in the middle of the intervention to counter instructor effects.

The content of the course was based on topics and proofs from proof-based real analysis, an introductory topic in undergraduate mathematics. Both conditions covered the same teacher input, content, tasks, and time on task. Yet, tasks and content were arranged in a different order according to both conditions.

To teach the individual resources in both conditions, we adopted a 4C/ID-inspired instructional design (van Merriënboer and Kirschner, 2007; van Merriënboer, 2013). Following this design, the teaching of the resources consisted of an initial input phase with information on the resources, giving both a theoretical background as well as information on why, how, and when they are important during activities related to mathematical argumentation and proof. This was combined with a short list of elaboration and monitoring prompts that were distributed to the students (e.g., MTK: “Excerpt all important objects and properties from the task, explain these in your own words, and compare them to the formal definition.;” MSK: “Search the task for keywords that you know from other tasks. What methods did you use there?”). The prompts represented procedural information that students could use while solving proof construction tasks. They were intended to scaffold the use and application of the individual resources during these tasks, to enhance students’ analysis of the tasks according to each resource, and to stimulate students to elaborate and reflect on each resource. To show how these prompts can be purposefully applied, the instructor demonstrated and trained their use with the students based on an example task (for each resource individually on one task in the sequential condition; simultaneously in each of the four tasks in the concurrent condition). After these input and training phases, which lasted about 15 min per resource (distributed over four sessions in the sequential condition; clustered in two parts in the concurrent condition; see Figure 3), students worked on proof construction tasks individually trying to implement what they had just learned and find more effective approaches to proof construction than they had before.
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FIGURE 3. Instructional design used for both conditions within the intervention.


The 4C/ID-inspired instructional design was used for two reasons: First, each of the resources is characterized by a lower task organization, that is, the aspects within the resources require less organization as compared to mathematical argumentation and proof tasks and therefore should benefit from a rather comprehensive instructional approach (Naylor and Briggs, 1963). Second, we parallelized instruction on the individual resources for both conditions, as the research questions relate to effects of their sequential or concurrent teaching, that is, the arrangement of the resources within the course, and differences regarding the teaching of the individual resources between both conditions may have biased results.


The Sequential Condition

The sequential condition was intended to support each of the four different resources separately. Accordingly, the course was split into four sessions of 2 h each for this approach, which each focused only one of the four resources (Figure 3, upper section).

After the input phase, students worked on exactly four tasks in each session and analyzed them, focusing on the one resource that was covered during that session. Each task was then picked up in a second session and analyzed regarding the resource covered during that session. Additionally, students solved the task itself and created an overall solution of the task (including the correct solution of the task as well as the analyses regarding each of the two resources), which was discussed with the instructor.

During students’ analyses and their work on the tasks, the instructor gave guidance, provided procedural information, and gave students hints to use specific prompts from the provided list.



The Concurrent Condition

The concurrent condition also consisted of four 2-h sessions to have similar learning times/time on task for both conditions. However, each session included all four resources, providing students with the opportunity to integrate the individual resources and see connections among them.

In this condition, the content of the four input phases in the sequential condition were rearranged to two input phases at the beginning of the first and third session (Figure 3, lower section). As all resources were covered during each session, it was necessary to give a basic amount of supportive information on all resources in the first session, so that students could work purposefully with all four resources. The remaining information was then introduced at the beginning of the third session.

Throughout the course, students from this condition worked on the same eight proof tasks used in the sequential condition, yet always analyzed them regarding two of the resources concurrently within one session. The tasks were distributed over the sessions so each resource would be covered in every session and each combination of two resources (e.g., MTK and PSS, MTK and MK, or MSK and PSS) would occur equally often. The tasks that had already been analyzed and solved (e.g., Task 3 in Session 1) were reconsidered briefly in the next session as repetitions so that each student worked on each task twice as in the sequential condition to ensure similar coverage.

The students from the concurrent condition received the same amount and kind of guidance as the students in the sequential condition.



Instruments

Pretest and posttest of the study included scales for each of the four resources, one for students’ mathematical argumentation and proof skills, as well as for covariates and demographic data. The employed scales were adapted to the content, translated from English, or self-created if no suitable published scales were available in the literature. Except for the covariates, which were only assessed in the pretest, we used non-identic, parallelized tasks for the pre- and posttest to avoid repetition effects. We chose this approach over using identical tasks, as it was especially important for the items within the problem solving and the mathematical argumentation and proof scale to be unknown and therefore retain a problem character (e.g., Dörner, 1979; Schoenfeld, 1985).

The employed scales had been piloted prior to the reported study. Their reliability was 0.58 < α < 0.81, with 0.58 corresponding to the only scale below 0.6 (mathematical strategic knowledge) that had been assessed using only four items. As a newly developed scale for a construct that has not been assessed quantitatively before, we decided to retain the scale despite of the low reliability. This decision was backed up by better reliabilities in the pre- and posttest of the reported study (see below).

The scales contained open as well as closed items. Closed items were evaluated using mark-recognition software with a subsequent manual control. Open items were coded by two raters following theory-based coding schemes. Double coding of over 15% of the data led to an interrater reliability of κ > 0.78 (M = 0.93; SD = 0.10). For each scale, sum scores were calculated and scaled to values between 0 (worst) and 1 (best).


Dependent Variables

Mathematical Topic Knowledge. The scale was adapted from existing tests in the context of university mathematics (Wagner, 2011; Rach and Ufer, 2020) and slightly modified to fit the content area of the study. It contained eight items focusing on conceptual topic knowledge, assessing fundamental knowledge such as definitions, theorems, and properties of objects as well as their connections. It further contained five items focusing on procedural topic knowledge, assessing routine procedures as solving equations or using the formula for the geometric sum, which were required in the employed proofs throughout the course and the corresponding scale.

Methodological Knowledge. The scale for students’ methodological knowledge was taken from a parallel research project on the conception of proof (Sommerhoff and Ufer, 2019) and was initially based on existing scales from secondary school contexts (Healy and Hoyles, 2000; Heinze and Reiss, 2003; Ufer et al., 2009). It contained four purported proofs that included different possible shortcomings related to the nature and concept of proof (e.g., circular reasoning, unwarranted implications). Students were required to judge the validity of the purported proofs and justify their judgments.

Mathematical Strategic Knowledge. Mathematical strategic knowledge has, to our knowledge, not been quantitatively measured up to now. Building on the definition of the construct, we chose four typical tasks, the real analysis as the foundation for four items. The tasks were presented to students alongside four excerpts of the same task description. In a multiple-choice format, students were asked to select those excerpts that indicate a certain concept or method that would be purposeful to solve the task. In a subsequent open question, students were asked to explain their choice and describe what the excerpts would imply. Closed and open items for each task description were combined using a dichotomous consistency rating, evaluating whether the selected excerpts combined with the given explanation matched the given task.

Problem-Solving Skills. Students’ problem-solving skills were measured using four open items, asking students to solve problems that did not require domain-specific knowledge (neither mathematical nor from another domain), except for everyday knowledge and basic arithmetic skills. The items were then scored on a scale from 0 to 4, evaluating if the main steps for solving the problem were given and justified adequately. As heuristics are an important resource for problem solving, students’ knowledge about and their use of problem-solving heuristics was additionally assessed. Hence, students were asked how often they made use of 12 different, prototypical problem-solving strategies (e.g., means-end analysis, creating a sketch) taken from the literature (Polya, 1945) during proof construction. Each of the strategies was reflected in four Likert-scale items. Data from both aspects were combined and rescaled to 0 (minimum) to 1 (maximum).

Mathematical Argumentation and Proof Skills. Besides the resources, a scale for assessing students’ mathematical argumentation and proof skills consisting of four proof construction items (four tasks in the pretest, four parallelized tasks in the posttest; see Supplementary Material) was included. The tasks were chosen to be novel to the students yet reflecting prototypical tasks from real analysis lectures as well as those used within the intervention itself. The items were scored on a scale from 0 to 4, evaluating if the main ideas or steps needed for a valid proof were given and adequately justified. 0 was assigned for purported proofs that did not include a single main idea, 1 was given when at least one of the main ideas was presented, whereas the codes 2 and 3 were given if the majority and if all main ideas were present, while 4 was only given for proofs including all main ideas as well as a clear overall structure and reasoning. The scoring was (i) based on a theoretical analysis of possible solutions and important steps within these solutions and (ii) explicitly adapted to the norms established within participants’ mathematics lectures, thus reflecting the mathematical norms of early undergraduate mathematics rather than our norms as researchers.



Further Variables

Besides the scales for the dependent variables (resources and mathematical argumentation and proof skills), we also included a shortened scale for conditional reasoning skills from the literature (Inglis and Simpson, 2008) with 16 items. As conditional reasoning skills are considered fundamental for any kind of reasoning activity, important for scholarly activities across disciplines, and were also shown to significantly predict certain aspects of mathematical argumentation and proof skills (Leighton and Sternberg, 2004; Alcock et al., 2014), they were included to be used as a covariate in the later comparisons between conditions.

Finally, we gathered demographic data including gender, degree program, final school qualification grade, and final high-school mathematics grade.



Implementation Check and Process Data

To check the implementation within both conditions and to survey process data, students received prefabricated exercise sheets to work with for all tasks and analyses regarding the resources. The sheets were gathered and digitalized after every session throughout the intervention (see Figure 4 for an excerpt of an exercise sheet showing the analysis of a task regarding mathematical strategic knowledge). Subsequently, it was checked whether students had explicitly analyzed the task regarding the resources and whether the analysis was done on a meaningful or a superficial level (dichotomous rating).
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FIGURE 4. Excerpt of a student’s exercise sheet showing an analysis regarding mathematical strategic knowledge (translated).


Additionally, a reflection scale on the content covered by the course was created for the posttest, probing students about several topics that may or may not have been covered by the course (e.g., “I think I learned a lot regarding problem solving”). To check that both conditions did indeed convey an individual respectively concurrent conception of the resources, students were also asked how separated they perceived the different resources during the intervention (“I think the course separated the individual prerequisites of proving well.”).



Statistical Analysis

Analyses of covariance (ANCOVAs) were calculated for each resource including conditional reasoning skills and the pretest results of the respective resource as covariates to examine the effectiveness of both approaches regarding the four resources. We refrained from calculating an overall multivariate ANCOVA (MANCOVA) as both, not including the pretest scores on the resources as well as “throwing in” all pretest scores as covariates seemed inappropriate, both theoretically and from a methodological point of view.

The second research question was examined similarly by using an ANCOVA with students’ mathematical argumentation and proof skills as dependent variable and conditional reasoning skills and the corresponding pretest results as covariates. To further analyze the possible influence of prior attainment on the learning gains, a median split based on the pretest results on mathematical argumentation and proof skills was calculated, and the effects of each condition on each subgroup were examined.

Additionally, we calculated Hedges’ gav as a measure for longitudinal effect sizes (Lakens, 2013) to estimate the effectiveness of either approach on the resources and on mathematical argumentation and proof skills beyond their mere significance, as the number of participants in each group was low, especially regarding the median split.

For the supplementary qualitative analysis on how the concurrent approach can shape participants’ proof construction attempts, a prototypical (based on the pretest scores) participant of the concurrent condition was randomly selected. Her proof construction attempts from Task 7 (see Figure 6), which was covered in the second last and last intervention sessions, were then qualitatively analyzed to showcase the possible effects of the concurrent approach, however, not implying any generality of these exemplary findings. The qualitative analysis should thus be understood as an existence proof on how the different resources can be synergistically integrated in the concurrent condition.



RESULTS


Implementation Check

An analysis of the documents used throughout the intervention confirmed that students in both conditions actively analyzed the tasks regarding the respective resources and used the provided prompts to elaborate and reflect on the resources. Overall, 92.5% of the suggested analyses regarding the resources were completed, 1.9% were missing, and 5.6% were done on a superficial level.

This indication of a correct implementation was further supported by the results of the posttest: A related samples Friedman two-way analysis of variance by ranks on the reflection scale, which probed students about several topics that may or may not have been covered by the course, showed overall significant differences between students’ answers on the covered topics [χ2(6) = 89.048, p < 0.001). Post hoc Dunn–Bonferroni tests showed significantly lower values for both topics not covered during the course (“beliefs,” “quantifier logic”) in comparison to those covered by the course.

Furthermore, a Mann–Whitney U test on students’ rating of the perceived separateness of the resources showed the expected significant difference (U = 327.0, p = 0.029; Msequential = 3.0 and Mconcurrent = 3.3), indicating that the participants of the sequential condition perceived the resources as more separated than students from the concurrent condition.



Descriptive Results

The employed scales in the pre- and posttest (Table 1) showed acceptable values and variances as well as no signs of floor or ceiling effects. Cronbach’s alpha was acceptable 0.64 < α < 0.84 for all scales in pre- and posttest, in particular showing better values for mathematical strategic knowledge (pretest: 0.64; posttest: 0.71). No indications for violations against normal distribution or equality of variances were found for resources and mathematical argumentation and proof skills.


TABLE 1. Mean values for the scales obtained for both conditions in pre- and posttest.

[image: Table 1]
Pearson correlations for each pair of parallelized scales [MTK, MK, MSK, PS, MA&P] were calculated to safeguard against possible problems regarding the comparability of the parallelized pre- and posttest scales. These showed moderate to strong, highly significant correlations [r(43) = 0.48 − 0.69, p ≤ 0.001].

The results of the pretest regarding the dependent variables, that is, the resources as well as students’ mathematical argumentation and proof skills, suggested that both conditions were comparable prior to the intervention (Table 1). This was confirmed by calculating independent samples t-tests comparing both conditions for each of the resources and mathematical argumentation and proof skills. None of the tests gained significance [t(43) < 1.60, p > 0.118], solely methodological knowledge slightly approached significance [t(43) = 1.75, p = 0.088] in favor of the participants in the concurrent condition.

The same insignificant differences were found for students’ conditional reasoning skills [t(43) = 0.36, p = 0.720], which were subsequently used as a covariate, as well as for the demographic data gathered.



Effects on the Resources (RQ1)

The descriptive results of the posttest (Table 1) showed learning gains within both conditions for most resources, leading to pre–posttest effect sizes of gav = 0.35 − 1.73 (Table 2). Solely students’ problem solving showed small to no gains depending on the experimental condition (gsequential,av = 0.00 and gconcurrent,av = 0.25).


TABLE 2. Longitudinal effect sizes (Hedges’ gav) for both conditions.

[image: Table 2]Comparing the descriptive results of the posttest between both conditions (Table 1), slightly higher mean scores for all resources within the concurrent condition could be observed, which could be an indication for higher learning gains in this condition. To statistically control these descriptive findings, univariate ANCOVAs on the posttest results of each resource were calculated while controlling for conditional reasoning skills and the respective pretest score. Results revealed a significant difference on mathematical strategic knowledge [F(1,41) = 5.19, p = 0.028, η2 = 0.112], confirming significantly higher learning gains in the concurrent condition. All other ANCOVAs were insignificant [F(1,41) < 1.538, p > 0.222], thus not confirming the descriptive differences between both conditions. The significant result of the ANCOVA for mathematical strategic knowledge was also reflected in the (significant) longitudinal learning gains [paired samples t-tests: sequential: t(20) = −10.19, p < 0.001; concurrent: t(23) = −7.48, p < 0.001]. Although the concurrent condition showed larger effects (gsequential,av = 1.36 and gconcurrent,av = 1.73; Figure 5, left side), adding an interaction in the ANCOVA turned out insignificant [F(1,40) = 2.56, p = 0.118, η2 = 0.060], thus not confirming the descriptive differences in pre–post effect sizes.
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FIGURE 5. Effects of both approaches on methodological knowledge (left) and mathematical strategic knowledge (right).


Although no statistically significant effect in the ANCOVA for methodological knowledge was found, descriptive data and effect sizes gave a first indication for a between-conditions effect (Figure 5, right side): The gains in the sequential condition [gsequential,av = 0.90; t(20) = −4.238, p < 0.001] appear to be larger than in the concurrent condition [gconcurrent,av = 0.35; t(23) = −1.66, p = 0.110], indicating that students in the sequential condition caught up with the students from the concurrent condition. Adding an interaction in the ANCOVA again turned out insignificant [F(1,40) = 1.21, p = 0.278, η2 = 0.030].



Effect on Students’ Argumentation and Proof Skills (RQ2)

The descriptive results of the pretest and posttest for students’ mathematical argumentation and proof skills (see Table 1) and the corresponding longitudinal effect sizes in both conditions (gsequential,av = −0.30 and gconcurrent,av = −0.27) showed slightly lower scores. Descriptive data thus suggests that the tasks in the posttest were more difficult for students, although they had been designed to be parallel in structure and comparable in difficulty to the pretest (see also Discussion; see Supplementary Material for the items). A one-way ANCOVA on students’ mathematical argumentation and proof skills in the posttest, controlling for students’ conditional reasoning skills and their pretest results on mathematical argumentation and proof skills, showed no significant difference between both conditions [F(1,41) = 0.144, p = 0.706].

To examine the longitudinal effects on mathematical argumentation and proof skills in more detail, we performed an exploratory analysis comparing students with different prior attainment, as prior research suggested its possible role for the effectiveness of either condition (Salden et al., 2006; Lim et al., 2009). For this purpose, two groups were formed using a median split according to students’ pretest results on mathematical argumentation and proof skills. The split resulted in four groups, a weaker and a stronger group for both instructional approaches. Calculating the longitudinal effects for the four groups showed mixed effects of the intervention (Table 3).


TABLE 3. Longitudinal effect sizes (Hedges’ gav) on students’ mathematical argumentation and proof skills for the median-split groups.

[image: Table 3]Data suggest that students’ prior attainment had an impact on the effectiveness of the instructional approaches and may indicate an expertise reversal effect: Initially, stronger students actually showed a negative development regarding their mathematical argumentation and proof skills from pre- to posttest, whereas initially weaker students outperformed them. Although group sizes are small, the initially weaker students from the concurrent condition show a quite positive development (gav = 0.71) with a medium to large positive effect, whereas the initially weaker students’ mathematical argumentation and proof skills did not change profoundly in the sequential condition (gav = −0.06). In contrast, differences between both conditions for the initially stronger students appear to be much smaller.



The Concurrent Condition—An Illustration of Effects

The exploratory analysis based on the median split revealed first signs of an expertise reversal effect regarding students’ mathematical argumentation and proof skills (not for the resources), that is, initially stronger students benefit less and even show a negative development based on the resource-based interventions as compared to initially weaker students. Especially weaker students in the concurrent condition seemed to benefit from the intervention, as the concurrent focus on multiple resources may have led to a better integration and handling of the resources in argumentation and proof tasks. Even though data does not allow a further statistical underpinning of this claim, a qualitative examination may provide insights into the possible effects of the concurrent approach for students with lower initial argumentation and proof skills. For this purpose, we provide a deeper analysis of a proof construction attempt by Leia (ficticious name), a prototypical student (based on her pretest scores) from the “weaker–concurrent” group, which she had created during the second last session of the intervention. Leia was 23 years old, in the first year of her bachelor mathematics studies. She failed both exams from the first semester, which drew heavily on proof construction.

Leia’s work on the analysis of the given proof task regarding the resource problem solving (Figure 6) shows three main thoughts, each fitting to one of the elaboration and monitoring prompts given to the students. The first two mirror her attempts to make sense of the meaning of the property of the given sequence, which seems to work out to a certain degree as the second point correctly reflects the given property. The third point shows that she has created a plan for solving the task, even before actively trying to do so in her actual proof attempt. That is, she plans to use the general problem-solving heuristic of working backwards, here starting from the defining property of a Cauchy sequence (given in mathematical notation). This strategy matches her work regarding mathematical strategic knowledge (Figure 7; called “cues and tricks” in the intervention), which focuses on the analysis of the task formulation and its consequences for the solution of the task. By concentrating on the structural parts of the given task, Leia unveils its type, referring to it as a “Show, that something is X” task. She then lays out a broad idea on how to solve this type of task by finding the properties that have to hold for an object to be a member of class “X” and then showing that these properties hold. Her work regarding this resource only represents a small aspect of mathematical strategic knowledge and is very procedural (regarding the solution of the task). However, it mirrors the heuristic of working backwards mentioned in her problem-solving analysis from a mathematical strategic perspective, thus aligning domain-specific and domain-general strategies.
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FIGURE 6. Task description and Leia’s notes regarding problem solving (translated).
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FIGURE 7. Leia’s notes regarding mathematical strategic knowledge (translated).


After carrying out both analyses, Leia starts her proof attempt (Figure 8). Apparently, she jumps quickly into the proof but is unsatisfied by her first approach and crosses it out (Line 1). As the crossed-out line is correct and resembles a reasonable approach for the task, it may be assumed that Leia hesitates because she wants to stick to the information and procedures given to her in the intervention, asking her to clarify what is given and, in particular, her goal. Leia’s behavior may thus be interpreted as a hesitation or conflict to pursue her prior approaches to proof construction, which may be even more profound and difficult for students with higher prior attainment, who are more convinced of their prior approaches.


[image: image]

FIGURE 8. Leia’s proof attempt (translated; line numbers added).


Starting in her third line, she then lays out the definition of a Cauchy sequence (with one minor error in Line 4), which she then uses in her actual proof attempt, starting from Line 6. Here, she can successfully reduce the property of a Cauchy sequence to the property of the given sequence (Lines 8–10) but fails to explicate the last proof step and conclude that the resulting term converges to zero as n increases.

Leia’s work exemplifies that especially low-attaining students may have benefitted from a structured approach to mathematical argumentation and proof tasks. In her case, the explicit discussion of aspects of the task related to the resources required for the task appear to have helped her to plan her problem-solving process and to purposefully integrate and apply her mathematical topic knowledge about Cauchy sequences in her planning process. This may be seen as a result of the concurrent focus on two resources, problem-solving skills and mathematical strategic knowledge, as the conjunction of the results regarding both resources appear to have shaped her solution.

Leia’s work thus highlights that the intervention had a learning effect and that she implemented her new knowledge on how to approach mathematical proof construction tasks. Still, her work also highlights that this newly acquired, resource-based approach can also constrain solution processes to a certain degree. She did not pursue her first approach to proving the statement (Line 1) but seems to have changed her approach. Apparently, the newly acquired knowledge was not sufficient for her to adequately judge how productive her attempt in Line 1 was. This may point to an insufficient integration of the new knowledge and skills and that using them in specific proof construction tasks was still challenging enough to prevent complete and efficient success, something that may be expected after such a short intervention and may eventually disappear with more practice and routine.



DISCUSSION

Our intervention study examined two instructional approaches to support the learning of mathematical argumentation and proof skills as a resource-based skill while also aiming at learning benefits for the included underlying resources themselves. For this, a sequential approach focusing on each resource individually one after the other and a concurrent approach focusing on the resources concurrently, both which were inspired by the part-/whole-task debate from instructional design (see e.g., Lim et al., 2009), were compared. Due to the low sample size, especially in the median split groups, the study’s results have to be handled with care and can only be interpreted as first evidence regarding the effectiveness of resource-based instructional approaches. However, power analysis confirms that the ANCOVAs employed in this study to compare effects between conditions should have been suited to identify large effects (f > 0.43) with more than 80% power. Moreover, results from this study—even if some are only tentative—will be essential for further research, as multiple effects and possible mechanisms have been highlighted, which can now be addressed more specifically by future research.


Effects on the Resources

The analyses of the results revealed that explicit training of the included resources of mathematical argumentation and proof skills lead to notable learning gains regarding some of the resources, while others only showed a slightly positive development. The longitudinal effect sizes indicate especially high positive effects for mathematical strategic knowledge. These may reflect that mathematical strategic knowledge was not explicitly covered during the participants’ university instruction on mathematics so that initial learning gains are easy to achieve. They may, however, also be an indication that mathematical strategic knowledge is indeed an important, so far under researched resource of mathematical argumentation and proof skills.

Comparing the impact of both approaches on the four resources, no overall significant differences for students’ resources could be found. Solely students’ mathematical strategic knowledge showed a significant difference in favor for the concurrent condition. Although our assumption was that the sequential approach would be superior for the learning of the resources, this result appears reasonable: Mathematical strategic knowledge refers to knowledge about cues within mathematical tasks that lead to promising methods or concepts to tackle the tasks and further refers to knowledge about strategies to solve these tasks (Weber, 2001). It therefore is related to creating the problem space, identifying operators therein, and choosing an operator that may be useful to accomplish the task (see Newell and Simon, 1972). The successful use of mathematical strategic knowledge therefore corresponds to a rather comprehensive view of tasks and is not only limited to certain aspects of the task. In particular, mathematical strategic knowledge shows multiple connections to the other resources, as for example, mathematical topic knowledge is needed to create the problem space and identify the operators. Further, methodological knowledge is needed to identify what a goal state for the problem is supposed to entail. Accordingly, the concurrent approach may be especially beneficial for mathematical strategic knowledge as implied by the data, as it may emphasize and strengthen relations to other resources.



Effects on Mathematical Argumentation and Proof Skills

Results on mathematical argumentation and proof skills are quite surprising, as longitudinal effect sizes suggest a slightly negative (yet not significant) development based on the intervention. Multiple possible explanations for this effect arise, each of which will have to be addressed by future research: The effect may be a methodological artifact of a more difficult posttest. It may however, also reflect that mathematical argumentation and proof skills are highly complex (especially compared to those skills usually addressed in the part-/whole-task debate) and that the relatively short intervention may not have sufficed to transfer the observed learning gains on the resources to mathematical argumentation and proof skills. Finally, the observed expertise reversal effect (e.g., Kalyuga et al., 2003) may be responsible for this overall development as the approach is simply better suited for even weaker students.

Despite the inconclusive overall development, data are still suitable to compare the effects of both approaches on mathematical argumentation and proof skills as intended by the study. Here, an ANCOVA comparing the posttest results did not show a significant difference between both approaches regarding students’ mathematical argumentation and proof skills. Still, examining this result more closely by forming groups of differing prior attainment revealed interesting effects: Compared to initially stronger students, weaker students showed a better development regarding their mathematical argumentation and proof skills. Here, especially the students from the concurrent approach could benefit, suggesting that at least for initially weaker students, the integration of the individual resources and their concurrent application within mathematical proof tasks is important to support overall mathematical argumentation and proof skills. This is also exemplified in the qualitative analysis of Leia, an initially weaker student from the concurrent approach. Her work on the resources and the overall task suggests that working concurrently on both resources was beneficial for her to derive a solution for the task and that she was able benefit from the structured approach to the task by using the resources.



CONCLUSION AND OUTLOOK

The current study highlights that acknowledging the resource-based nature of a cognitive skill can inspire instruction and raises new questions for mathematics research and education. Our study creates first knowledge on the effectiveness of two resource-based instructional approaches, both of which explicitly acknowledge the resources underlying a cognitive skill, in the context of mathematical argumentation and proof skills.

Results suggest that, in the case of mathematical argumentation and proof skills, the sequential and the concurrent approach can both be used to support students, at least regarding the resources. Here, the approaches yielded mostly similar learning gains, both regarding the substantial short-term learning gains for mathematical strategic knowledge as well as regarding the positive, yet less pronounced, effects for the other resources. Regarding mathematical argumentation and proof skills, results of the short intervention do not show the expected learning gains, and both approaches did not show large differences as implied by the part-/whole-task debate (van Merriënboer and Kester, 2007; Branch and Merrill, 2011) but are mostly comparable in learning gains. In particular, the concurrent work on the resources appears to not have led to the expected superior integration of the resources and their better application within mathematical proof tasks in comparison to the sequential condition. This may be due to participants’ struggles to implement the new approach and focus explicitly on the resources while solving the tasks so shortly after the intervention. This is also highlighted by the qualitative example of Leia: Even for those successful in implementing the approach, there appear to be certain struggles when starting to solve the task and shifting from former proof-construction approaches to rather resource-based approaches.

However, contrary to these short-term findings, long-term learning effects may be more positive when students have been better trained and internalized the approaches. Although this hypothesis will have to be confirmed by future research, it is supported by somewhat similar research from educational psychology (Rittle-Johnson and Star, 2011; Ziegler and Stern, 2014) focusing on sequenced learning (similar to the sequential condition) and contrasting learning (similar to the concurrent condition). Results reveal that the contrasting condition showed equal short-term learning as the sequenced condition but improved long-term learning. It thus appears plausible that the concurrent approach may be more effective regarding long-term learning.

Overall, further studies exploring the effectiveness of resource-based instructional approaches are needed: (i) quantitative studies with larger samples to obtain higher statistical power, (ii) qualitative studies focusing on the processes during the intervention as well as students’ proof construction processes after the intervention in order to identify how learning gains on the resources can be transferred to overall mathematical argumentation and proof skills, and (iii) long-term studies examining the observed differences regarding prior attainment and the benefits for weaker students in the long run. Finally, further studies should put even more focus on mathematical strategic knowledge, which showed high learning gains in this study but has the weak point that it was quantitatively operationalized for the first time in this study.

Another reason for further research and a possible limitation of this study is the selection and operationalization of the resources included in the reported study. As pointed out in the theoretical background and method section of this paper, there is reasonable evidence to assume that the four included resources actually are resources of mathematical argumentation and proof skills and explain the majority of variance in students’ mathematical argumentation and proof skills. However, other resources, for example, beliefs (e.g., Schoenfeld, 1985), could also have been investigated, and also other operationalizations of the resources could have been used. Future studies focusing on different sets of resources and different operationalizations could strengthen the results, both regarding the effectiveness of the instructional approaches as well as regarding the status of the resources.

Finally, including a control condition would be desirable in future studies to consolidate the results of this study, especially regarding the possibly negative development of mathematical argumentation and proof skills. However, there is no generic choice how to implement such a control group, as most resources are not explicitly taught in “regular” university mathematics courses in Germany. We would therefore rather propose to compare intervention approaches acknowledging the underlying resources with several other approaches, not explicitly taking the resources into account (e.g., Moore, 1994; Selden and Selden, 1995; Heinze et al., 2008). Outcomes could show whether acknowledging the underlying resources is beneficial for supporting students’ learning or whether other approaches show superior effects. Here, special attention should be paid to the comparability of the interventions, for example, by using academic learning time, time on task, or equivalent as a general measure.

Our studies’ main goal was to explore whether two different approaches inspired by research from instructional design (sequential and concurrent approach) could be purposefully transferred to mathematics education and the context to mathematical proofs in order to support mathematical learning. In this regard, we were interested if both approaches would yield different learning gains regarding a resource-based skill and its resources. Findings reveal that the tenet of the part-/whole-task debate (Anderson et al., 1996; Branch and Merrill, 2011), that whole-task approaches are favorable in the context of complex skills, cannot be transferred directly, at least not regarding short-term effects.

However, the study indicates that including the resources into instruction supporting mathematical argumentation and proof skills as a prototypical resource-based skill is highly valuable for the learning of the resources. Moreover, the effects for the initially weaker students in the concurrent condition underline that supporting these resources can have substantial positive effects on students’ mathematical argumentation and proof skills. In this regard, it appears as if the concurrent approach investigated in this study may be especially suitable to support students that struggle substantially with learning proof construction.
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FOOTNOTES

1 Further details regarding the design of the study, the teaching materials, the employed instruments, and the obtained data can be requested for research purposes (e.g., replication/reanalysis) from the authors.

2 Grades are scaled from 1 to 4, with 1 being the best grade.
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In the present paper we empirically investigate the psychometric properties of some of the most famous statistical and logical cognitive illusions from the “heuristics and biases” research program by Daniel Kahneman and Amos Tversky, who nearly 50 years ago introduced fascinating brain teasers such as the famous Linda problem, the Wason card selection task, and so-called Bayesian reasoning problems (e.g., the mammography task). In the meantime, a great number of articles has been published that empirically examine single cognitive illusions, theoretically explaining people’s faulty thinking, or proposing and experimentally implementing measures to foster insight and to make these problems accessible to the human mind. Yet these problems have thus far usually been empirically analyzed on an individual-item level only (e.g., by experimentally comparing participants’ performance on various versions of one of these problems). In this paper, by contrast, we examine these illusions as a group and look at the ability to solve them as a psychological construct. Based on an sample of N = 2,643 Luxembourgian school students of age 16–18 we investigate the internal psychometric structure of these illusions (i.e., Are they substantially correlated? Do they form a reflexive or a formative construct?), their connection to related constructs (e.g., Are they distinguishable from intelligence or mathematical competence in a confirmatory factor analysis?), and the question of which of a person’s abilities can predict the correct solution of these brain teasers (by means of a regression analysis).
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INTRODUCTION

Daniel Kahneman and Amos Tversky demonstrated with numerous examples of what are known as “cognitive illusions” the psychologically, linguistically, and mathematically possible explanations for human error in statistical and logical judgment (Tversky and Kahneman, 1974; Kahneman et al., 1982). The cognitive illusions that they introduced then delivered empirical evidence that people’s reasoning abilities are deficient with respect to the laws of logic and probability. Empirically examined and at this point well-known brain teasers are, for instance, the Linda problem, the hospital problem, the Wason selection task, or typical Bayesian Reasoning problems. Newer cognitive illusions like the Monty Hall problem appeared on the stage at a later date, adding further empirical evidence demonstrating people’s faulty reasoning strategies. The heuristics and biases program attracted the attention of many researchers from various disciplines (e.g., psychology, mathematics [education], logic, and philosophy) and also greatly influenced important applied domains such as medicine, jurisprudence, and economics as it became clear that even experts in those fields are capable of such logical and statistical fallacies even in their own domains (e.g., in medicine: Garcia-Retamero and Hoffrage, 2013; Binder et al., 2018; in economy: Kahneman and Tversky, 1979; Thaler, 1994; or in law: Hoffrage et al., 2000; Schneps and Colmez, 2013).

In the 1990s a countermovement to the heuristics and biases program was started, which was mainly initiated by the German psychologist Gerd Gigerenzer. In the framework of his research groups’ “enlightening program,” cognitive tools were developed in order to equip people to understand cognitive illusions and statistical brain teasers. The idea behind this research was not to train people in problem-solving prior to presenting a problem but simply to change the representation of the presented information. The most famous example of that is to replace probabilities in Bayesian reasoning problems (e.g., “80%”) by so-called natural frequencies (e.g., “8 out of 10”), which leads to substantially better performance by participants (McDowell and Jacobs, 2017). This countermovement eventually led to the formation of two “camps,” one of them developing and implementing “facilitated versions” of cognitive illusions and arguing for the importance of problem representation (e.g., Hoffrage et al., 2002; Hertwig et al., 2008; McDowell et al., 2018), and the other insisting on people’s general deficiencies regarding statistical and logical reasoning (e.g., Kahneman and Tversky, 1996; Pighin et al., 2016).

Notably, all of the above-mentioned famous cognitive illusions are usually studied experimentally on just an individual-item level by cognitive researchers. This was true in the program of Kahneman and Tversky (e.g., Kahneman et al., 1982), but also holds for nearly all authors addressing these brain teasers ever since. Furthermore, this seems to be true regardless of which of the two camps a scholar belongs to. Interestingly, experimental researchers from both camps have yet to investigate whether these cognitive illusions form a (reflexive or formative) psychometric construct (in the following: cogIll) in either structure.

At least from a theoretical point of view, there are already approaches for considering such problems together. For instance, Stanovich and West (2000) developed the framework CART (Comprehensive Assessment of Rational Thinking; e.g., Stanovich, 2016), which describes different types of tasks and aims to comprehensively assess rational thinking as clearly distinct from intelligence or corresponding established constructs. CART includes, for example, items of probabilistic and statistical reasoning, scientific reasoning, and probabilistic numeracy. However, it is still “only” a systematic, theoretically based compilation of (several hundred) items to capture reasoning; comprehensive results based on their joint empirical measurement are not yet published—in Stanovich’s words: “Now, that we have the CART, we could, in theory, begin to assess rationality as systematically as we do IQ.” (Stanovich, 2016, p. 32).

In the present study we empirically examine the internal structure of some prominent cognitive illusions (i.e., the most famous ones) when they are considered and implemented simultaneously in one study. The tasks chosen for the present study (see Figure 1) furthermore have the advantage of representing a wide range of problem types and thus entailing a variety of aspects of statistical thinking and logical reasoning.
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FIGURE 1. All items of cogIll.


For example, by means of psychometry we try to answer the question of whether there is a general ability in humans to master such brain teasers or whether the (very few) correct answers given for these problems are rather “random” responses by participants. In addition, we try to explore the relationship of such a supposed ability to seemingly similar competencies like mathematical capacity or general intelligence, and furthermore, whether (and which of) such related capabilities might predict the understanding of statistical and logical brain teasers in regression analyses. By doing so, we will look for possible interactions with respect to the facilitating representations of cognitive illusions mentioned above.

To answer our research questions, we use the data of the large-scale study PISA 2009 in Luxembourg. PISA regularly includes the assessment of mathematics literacy, reading literacy, and intelligence, and in Luxembourg in the year 2009, we were able to supplement tasks in these areas with numerous brain teasers from Tversky and Kahneman’s heuristics and biases program. Thus we not only merge distinguished single cognitive illusions empirically, but also three research traditions theoretically, namely cognitive psychology (here: judgment under uncertainty), teaching of mathematics (here: education of probability theory and statistics), and intelligence research (here: logical and deductive reasoning).



THEORETICAL BACKGROUND

We first unfold the world of Tversky and Kahneman’s heuristics and biases program by presenting examples of concrete illusions (section “Cognitive Illusions From the “Heuristics and Biases” Program (cogIll)”), and then theoretically shed light on some established constructs that might come close to cogIll, such as mathematical ability or intelligence (section “Person-Related and Task-Related Characteristics Associated With the Ability to Solve Cognitive Illusions”).


Cognitive Illusions From the “Heuristics and Biases” Program (cogIll)

In the following, we present the “traditional” versions of five famous brain teasers that were also addressed in our study (the versions finally implemented in the present study can be found in Figure 1). The names of the problems in the headings will each be followed by the respective logical or statistical concept (in parentheses) that was identified as being difficult to grasp with human intuitive thinking. Regarding each single cognitive illusion, we present and explain the correct solution (including reporting typical solution rates), describe the underlying faulty heuristic that most people follow (according to Kahneman and Tversky), summarize corresponding subsequent research findings, and introduce—if available—didactic tools that can be used to make the original tasks easier to understand.


Wason Task (Logical Implication)

The “Wason selection task” is a logical problem containing four cards and one rule. Its traditional version reads as follows (cf. Wason, 1968; for the versions implemented see Figure 1):


You see four cards showing the signs or symbols A, K, 4, and 7 on the front side of the cards. The experimenter claims: “If there is a vowel on one side of the card, then there is an even number on the other side.”

The experimenter then asks: “Which card(s) must be turned over to check whether the rule applies?”



In order to check the rule, the cards showing the A and the 7 (but not the 4) have to be turned, since only these cards have the potential to violate the rule (see below). Originally introduced by Wason (1966), his selection task—also called the “Wason card-sorting problem”—has been the subject of dozens of empirical studies since then (e.g., Cosmides, 1989; Evans and Over, 1996; Johnson-Laird, 1999; West et al., 2008; Fiddick and Erlich, 2010; Fitelson and Hawthorne, 2010).

The reason for the enormous interest in this task is that barely 10% of Wason’s participants came up with the right solution to this seemingly simple problem. Of the 128 students to whom Wason first posed this problem, only five gave the correct answer. 46% of the students wanted to turn A and 4, and 33% gave just A as the answer. Indeed, it is usually clear to everyone that the card showing A has to be turned: if there were an odd number on the other side, the rule would be violated. Turning the 4, however, is unnecessary, since even a consonant on the other side would not violate the rule (note that the rule says nothing about the back side of consonants). Yet it is crucial to look at the back side of the card with the 7 because, if there were a vowel on the other side, the rule would be violated, too.

The problem involves reasoning as to how an “if-A-then-B” statement can be falsified (cf. West et al., 2008). Logically, this rule corresponds to the so-called contraposition law, meaning that the implications “If A, then B” and “If not B, then not A” are equivalent to each other (and thus, only the conditions “A” and “not B” have the capacity to violate the rule). Not only is the correct response to Wason’s selection task usually given by very few participants, but Wason (1968) noticed that when he tried to convince participants of their errors, he encountered unexpected resistance. Interestingly, even when he asked them to turn the card with the 7, and they discovered an A on the other side, they claimed that choosing the 7 was unnecessary.

One cognitive explanation for this error is that most people tend to want to confirm their assumptions with new information rather than try to refute them. Whoever turns card A has the possibility of confirming the rule “if vowel, then even number,” while whoever turns card 7 can at most refute it. There are multiple instances of confirmation biases in the literature, according to which such tendencies are deeply human. Since then, these tendencies have even been proposed to be responsible for belief in pseudosciences and conspiracy theories (cf. Shermer, 2002; Majima, 2015).

The solution rate for the Wason task can be significantly increased, however, by replacing the abstract signs or symbols on the cards with real-world contextualizations, for example by displaying franked letters with different destinations where it is necessary to find out whether a specific franking rule is correctly applied (see Figure 1, right-hand side above). With respect to the contraposition law, it becomes intuitively evident when, for instance, considering the following true, real-world implication: “If I am standing on the Tower Bridge, I must be in London.” The corresponding reverse (and also true) implication is then: “If I am not in London, I cannot be on the Tower Bridge.” Such concrete contextualizations allow even very young students to intuitively grasp the logic behind the rule and to solve analog tasks correctly (e.g., compare the “cheating detection paradigm”; Fiddick et al., 2000; Gummerum and Keller, 2008).



Bayesian Reasoning Problems (Inversion of Conditional Probability)

So-called “Bayesian reasoning” problems deal with the inversion of conditional probabilities (well-known examples are, e.g., the cab problem, the AIDS task, or the economics problem). The most famous Bayesian reasoning task is certainly what is known as the “mammography problem” (adapted from Eddy, 1982):


The probability of breast cancer is 1% for a woman of a particular age group who participates in a routine screening. If a woman who participates in a routine screening has breast cancer, the probability is 80% that she will have a positive mammogram. If a woman who participates in a routine screening does not have breast cancer, the probability is 10% that she will have a false-positive mammogram.

What is the probability that a woman of this age group who participates in a routine screening and has a positive mammogram actually has breast cancer?



The correct answer to the question above—about 8%—requires Bayesian reasoning, that is, mathematically inverting the given conditional probabilities in accordance with the formula of Bayes. According to Bayes’ theorem, the resulting a posteriori probability p(B| M +) is:
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The correct result is much lower than most people, even physicians, would expect (Eddy, 1982). The mathematical reason for the counterintuitive low positive predictive value here is the extreme base rate (1%) of the disease that might be neglected by participants (“base-rate neglect”; for alternative explanations see, e.g., Binder et al., 2018; Weber et al., 2018).

Faulty Bayesian reasoning is of high practical relevance. For example, several studies show that even medical doctors (Hoffrage and Gigerenzer, 1998), but patients as well (Garcia-Retamero and Hoffrage, 2013) have difficulties with similar situations. Also, most AIDS counselors, for instance, operate under an illusory belief that positive HIV test results indicate certainty (see Gigerenzer et al., 1998; Ellis and Brase, 2015; Prinz et al., 2015). But in fact, a positive medical test result usually cannot “prove” the presence of a disease. Because sound Bayesian reasoning is not only crucial in the medical domain—inversions of conditional probabilities, for example, are also of relevance in the courts or in the economy—articles on Bayesian reasoning even appear repeatedly in the highly distinguished journals Science (Tversky and Kahneman, 1974; Hoffrage et al., 2000; Spiegelhalter et al., 2011; Operskalski and Barbey, 2016) and Nature (Goodie and Fantino, 1996).

There are at least two effective strategies that can foster insight into such Bayesian problem situations: (1) translating the statistical information from probabilities (“80%”) into natural frequencies (e.g., “8 out of 10”; Gigerenzer and Hoffrage, 1995; see also Figure 1, right), and/or (2) visualizing the statistical information (for both tools see section “Visualizations”). Meta-analyses confirm the beneficial effect of both measures (McDowell and Jacobs, 2017). A detailed theoretical (psychological and mathematical) discussion on both Bayesian reasoning and natural frequencies can be found in Krauss et al. (2020).



Hospital Problem (Empirical Law of Large Numbers)

The so-called “hospital problem” (e.g., Tversky and Kahneman, 1974) is mathematically based on the law of large numbers and reads as follows (cf. Kahneman et al., 1982):


A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day, and in the smaller hospital about 15 babies are born each day. As you know, about 50 percent of all babies are boys. However, the exact percentage varies from day to day. Sometimes it may be higher than 50 percent, sometimes lower.

For a period of 1 year, each hospital recorded the days on which more than 60 percent of the babies born were boys. Which hospital do you think recorded more such days?

The larger hospital

The smaller hospital

About the same (that is, within 5 percent of each other)



Sampling theory entails that the expected number of days on which more than 60 percent of the babies are boys in general is (much) greater in a small hospital than in a large one because a large sample is less likely to stray from 50 percent. More precisely, it follows from the law of large numbers that a big sample is more suitable than a small to estimate the parameters of the population (cf. Sedlmeier and Gigerenzer, 1997; West et al., 2008)—although the absolute deviation from the expected value increases the larger the sample is. Interestingly, the mathematician Jacob Bernoulli claimed in 1736 that the law of large numbers is a rule that “even the stupidest man knows by some instinct of nature per se and by no previous instruction” (see Gigerenzer et al., 1989, p. 29).

According to Tversky and Kahneman (1974), this fundamental notion of statistics is not a part of people’s repertoire of intuitions. In order to evaluate the probability of obtaining a particular result in a sample drawn from a specified population, people typically rather apply the “representativeness heuristic.” That is, they assess the likelihood of a sample result, for example that the average height in a random sample of ten men will be six feet (183 centimeters), using only the “similarity” of this result to the corresponding parameter (that is, to the average height of, e.g., 180 centimeters in the population of men). Because this similarity does not depend on the size of the sample, people following the representativeness heuristic will ignore sample size. Indeed, when Tversky and Kahneman’s (1974) participants assessed the distributions of average height for samples of various sizes, they produced identical distributions. For example, the probability of obtaining an average height greater than six feet was assigned the same value for samples of 1000, 100, and 10 men. Moreover, their participants failed to appreciate the role of sample size even when it was emphasized in the formulation of the problem.

With respect to the hospital problem, most of Tversky and Kahneman’s participants judged the probability of obtaining more than 60 percent boys to be the same in the small and in the large hospital, presumably because these events are described by the same statistic and are therefore equally representative of the general population (Tversky and Kahneman call it “insensitivity to sample size”). However, surprisingly, the solution rates for the hospital problem have been very different since then. According to Weixler et al. (2019), performances range between 0% (Fischbein and Schnarch, 1997) and 85% (Evans and Dusoir, 1977), the authors attributing the wide range of solution rates to the fact that the tasks used usually varied in one or more features and that the groups of people investigated were different. In disentangling the effects of concrete task and participant characteristics (see below; e.g., grades: Roth et al., 2015; gender: Watson, 2000; see also section “Person-Related and Task-Related Characteristics Associated With the Ability to Solve Cognitive Illusions”), Weixler et al. (2019) found that, for example, problem-solving is facilitated in particular when the deviation from the expected relative frequency is maximal (cf. Lem, 2015), the ratio between the large and the small sample is large (cf. Murray et al., 1987), and/or the order of presented options is “first large, then small sample” (for smaller first: Rubel, 2009, in contrast to the order in Kahneman and Tversky’s, 1972; for other contexts: Fischbein and Schnarch, 1997; Watson and Callingham, 2013). These differences in performance eventually led to contradictory explanations and interpretations of people’s reasoning (in this regard, e.g., Lem et al., 2011).



Linda Task (Conjunction Rule for Multiplying Probabilities)

The so-called “Linda task” is based on the conjunction rule for probabilities (cf. Tversky and Kahneman, 1983; Fiedler, 1988; Hertwig and Gigerenzer, 1999):


Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which statement is more probable?




(a) Linda is a bank teller (B).

(b) Linda is a bank teller (B) and is active in the feminist movement (F).



The probability of the simultaneous occurrence of two events—for example, p(B∩F)—can be mathematically obtained by multiplying the two involved single probabilities, that is, p(B) ⋅ p(F), or—in the case of the stochastical dependency of B and F—p(B) ⋅ p(F|B). However, the product of two numbers between 0 and 1 always becomes smaller than each of both factors, which is why (a) is the correct option. The description of Linda turns out to be irrelevant here, since it is always more unlikely that two events will happen simultaneously than that only one of both constituents will (thus the content of the events is irrelevant here, too). All that counts are the terms “probability” and “and,” which the conjunction rule interprets, respectively, as mathematical probability and the logical operator “and” (Hertwig, 1995; Gigerenzer and Regier, 1996; Hertwig et al., 2008).

Yet Tversky and Kahneman (1983) found that about 80–90% of participants judged the second option (B∩F) to be more probable than the first option (B). In terms of the heuristics and biases program, the Linda problem is another instance of the representativeness heuristic, since the second option seems to be more representative of Linda than the first. The so-called “conjunction fallacy” in the form of the Linda task or similar problems has also been examined extensively since then (e.g., Fiedler, 1988; Reeves and Lockhart, 1993; Donovan and Epstein, 1997; Hertwig et al., 2008; Wedell and Moro, 2008; Charness et al., 2010). Hertwig and Chase (1998), for instance, found that the proportion of conjunction fallacies could be substantially reduced (from 78% to 42%) by changing the response format from ranking to concrete probability estimation. Interestingly, although there is no concrete probability given, the Linda problem can also be understood more easily using the natural frequency concept introduced in the context of Bayesian reasoning problems (see above). When participants are simply instructed to imagine 200 women who fit Linda’s description, they realize that there must be more women who are bank tellers than women who are both bank tellers and feminists (for details see, e.g., Fiedler, 1988; Hertwig and Gigerenzer, 1999).



Monty Hall Problem (Inversion of Conditional Probabilities; Extended Bayesian Reasoning)

The Monty Hall problem (or “three-door problem” or “goat problem”), which had not yet been formulated at the time of Tversky and Kahneman’s first publications but today is one of the most famous examples of a cognitive illusion, is sometimes even considered the “queen” of statistical brain teasers (e.g., Gilovich et al., 2002; Krauss and Wang, 2003; Risen and Gilovich, 2007; Tubau et al., 2015). The traditional formulation of the Monty Hall problem (in the real TV game show, the host Monty Hall played several variations of this setting; see Friedman, 1998) reads as follows:


Suppose you’re on a game show and you’re given the choice of three doors. Behind one door is a car; behind the others, goats. You pick a door, say Number 1, and the host, who knows what’s behind the doors, opens another door, say, Number 3, which has a goat.

He then says to you, “Do you want to switch to Door Number 2?” Is it to your advantage to switch your choice?



The intended rules and conditions of the problem are (e.g., Krauss and Wang, 2003): After the candidate has chosen a door, this door stays locked for the time being. The game show host, who knows behind which door the car is, then opens one of the two remaining doors, which has a goat behind it. Afterward, he offers the player the option of either sticking with his original choice or changing his decision and switching to the other closed door.

Most people think it does not matter whether the candidate changes to the last remaining door or stays with his/her first choice because s/he still has two equally good alternatives to choose from. However, this reasoning ignores the information provided by the open door. Indeed, the probability of winning the car by sticking with the original choice is only 1/3, while the probability of winning by switching to the last remaining door is 2/3. In fact, the mathematical solution to the Monty Hall problem turns out to be a (very) special case of Bayesian reasoning, since the probability that the car is behind Door 2 can be expressed in terms of Bayes’ rule as follows (assuming that the player first chooses Door 1 and that Monty Hall then opens Door 3, which is the standard version):

[image: image]

where Ci = car is located behind door i, i = 1, 2, 3, and M3 = Monty opens Door 3. Note that the solution of course holds regardless of the door specifications given in the standard version.

As with the illusions (1–4) presented thus far, not only do most people misjudge this assessment, but the wrong intuition—“both remaining alternatives have a 50% chance of winning”—often appears to them to be “obvious” (Paley, 2005), and they even dare to offer a higher wager as a result of that belief (vos Savant, 1997).

Many researchers have explored possible reasons for this cognitive fallacy and proposed didactical strategies that could help people to realize the underlying mathematical structure of this situation. For instance, Krauss and Wang (2003) added a frequency question in order to exploit the natural frequency concept, and subsequently Krauss and Atmaca (2004) made the option of a frequency algorithm even more salient by clearly depicting the three possible car-goat constellations (see Figure 1, right). For a recent review of literature addressing why humans systematically fail to react optimally to the Monty Hall problem, see Saenen et al. (2018).

While problems 2–5 theoretically belong to probability theory, problem 1 (the Wason selection task) belongs to the world of logic (note, however, that logic can be considered a restriction of probability theory to the values 0 and 1). In the next section (“Person-Related and Task-Related Characteristics Associated With the Ability to Solve Cognitive Illusions”), we will take a closer look at both individual and task-related characteristics as possible predictors for solving such cognitive illusions.



Person-Related and Task-Related Characteristics Associated With the Ability to Solve Cognitive Illusions

When research on cognitive illusions began, their generality and their independence from higher education were both praised (e.g., Slovic et al., 1976; Thaler, 1985). For example, Gould (1992) says, “Tversky and Kahneman argue, correctly, I think, that our minds are not built (for whatever reason) to work by the rules of probability” (Gould, 1992, p. 469). And Piattelli-Palmarini (1991) summarizes, “We are a species that is uniformly probability-blind, from the humble janitor to the Surgeon General […]. We should not wait until Tversky and Kahneman receive a Nobel prize1 for economics. Our self-deliberation from cognitive illusions ought to start even sooner.”

Yet since then, these considerations and analyses have become more differentiated, and constructs such as numeracy or intelligence have come to be considered covariates in the framework of cognitive illusions. In the following we will discuss factors that might influence performance on statistical and logical cognitive illusions, first at the individual level of participants (sections “Mathematical Competence” to “Further Individual Prerequisites”) and second at the level of the task (sections “Contextualization” to “Visualizations”).


Person-Related Prerequisites

Stanovich (2012), for instance, claims that individual differences have largely been ignored in the rationality debate opened up by the heuristics and biases program (also see Evans et al., 1993; Stanovich and West, 1998, 2008). The following individual preconditions have thus far been considered as producing variability in responding to brain teasers.



Mathematical Competence

Obviously, it is reasonable to assume that mathematical competence might play an essential role in solving cognitive illusions of this kind. And indeed, the relevance of mathematical skills in solving individual brain teasers has already been documented in several studies. For example, Inglis and Simpson (2004, 2005) administered a version of the Wason selection task to three groups, mathematics undergraduates, mathematics academic staff, and history undergraduates (whom Inglis and Simpson chose to represent the general population), finding that both mathematics staff and students were significantly more likely to make the correct selection (and significantly less likely to make the standard mistake). The authors conclude that there is a significant difference between mathematical and non-mathematical cognition. Regarding tasks about the law of large numbers (cf. the hospital problem), even Kahneman and Frederick (2002, p. 50) state that the “mathematical psychologists who participated in the survey not only should have known better—they did know better.”

Regarding Bayesian reasoning, Hill and Brase (2012) examined whether a basic level of numeracy is needed (the so-called “threshold hypothesis”). Although the highly numerate tend to perform better across formats, results are mixed regarding the interaction of the effect of numeracy and the effect of information format (Chapman and Liu, 2009; Hill and Brase, 2012; Johnson and Tubau, 2013). Moreover, Galesic et al. (2009) found that natural frequencies, for instance, can facilitate performance even for individuals with low numerical ability. Finally, regarding the Monty Hall problem, there is evidence that high numeracy level is helpful for recognizing the correct solution after the problem is simulated many times (Lee and Burns, 2015).



Reading Competence

Understanding and solving cognitive illusions could also require a certain degree of reading competence. Especially for text-heavy tasks such as typical Bayesian reasoning problems, reading skills might be essential for correctly interpreting the given information. Also, the understanding of logical operators (such as the correct mathematical meaning of “and” in the Linda task; see, e.g., Hertwig et al., 2008) or statements (such as the “if-then structure” in the Wason task; Liu et al., 1996) requires linguistic skills. At the same time, there have also been numerous empirical findings on the influence of text complexity and the tasks’ exact linguistic formulations on solution rates. For example, it has been shown that the complexity and length of the text (Macchi, 2000) and the use of implicit or explicit questions (Böcherer-Linder et al., 2018) can substantially impact solution rates (see also Gigerenzer and Hoffrage, 1999; Mellers and McGraw, 1999; Girotto and Gonzalez, 2002; Johnson and Tubau, 2013).

Moreover, many studies have of course investigated with school students the role of reading skills on mathematics ability in general, where empirical findings also show that students’ mathematical performance is significantly related to general language competence and text comprehension ability (Duarte et al., 2011; Vukovic and Lesaux, 2013; Prediger et al., 2015; Paetsch et al., 2016; Plath and Leiss, 2018). In particular, reading and understanding the text of the task poses problems for many students and can lead to difficulties and errors in the subsequent mathematical task work (Clarkson, 1991; Mayer and Hegarty, 1996; Wijaya et al., 2014). Aside from the basic requirements of the subject of mathematics (i.e., technical terms and academic language), increased verbal complexity in problem presentation was shown to reduce performance (Johnson and Tubau, 2013), suggesting a role for basic text comprehension abilities in performance on Bayesian reasoning problems as well. In an overview, Schleppegrell (2007) synthesizes research by linguists and mathematics educators to highlight the linguistic challenges of mathematics.



General Intelligence (Reasoning)

It is very plausible that correctly solving cognitive illusions may depend on general cognitive skills (i.e., g). A number of studies—especially from the research group around Stanovich—have shown that individual differences in g have been associated with the ability to find normatively correct solutions across a range of decision-making tasks (e.g., Stanovich and West, 2000; Kokis et al., 2002). Some researchers have argued that this is just further evidence of the consistent positive correlations found across diverse measures of abstract cognitive ability (e.g., Hunt, 2000), whereas other researchers (e.g., Stanovich and West, 1998) have suggested that g will play the strongest role in abstract or decontextualized forms of reasoning (cf. Kaufman et al., 2011; see also section “Contextualization”). Regarding cognitive illusions in general, Stanovich (2012) argues that there are few consistent individual differences in intuitive, heuristic reasoning, while explicit, knowledge-based reasoning about such tasks may be connected to both crystallized intelligence (i.e., learned knowledge) and fluid intelligence (which is close to g). In sum, Stanovich (2012) claims that one should expect a correlation between intelligence and solving cognitive illusions because mindware gaps most often arise from lack of education or experience.

Also, specifically with respect to Bayesian reasoning, empirical evidence is mixed, especially concerning interactions with information format (for details see section “Natural Frequencies”). Regarding tasks in probability format, Stanovich and West (2000) did not find any systematic correlations with cognitive capacity measures (cf. Barbey and Sloman, 2007). On Bayesian tasks in natural frequency format, a higher proportion of correct responses was observed in experiments that selected participants with a higher level of general intelligence as indexed by the academic selectivity of the university the participant attended (Cosmides and Tooby, 1996; Brase et al., 2006). Along the same lines, Sirota et al. (2014) empirically found that cognitive abilities indeed predicted Bayesian performance, especially in the natural frequency format. However, there is also evidence that with respect to Bayesian reasoning tasks, higher general intelligence is linked to improved performance across formats (Sirota and Juanchich, 2011; Lesage et al., 2013; McNair, 2015).

According to Stanovich (2012), fluid intelligence reflects reasoning abilities operating across a variety of domains—in particular novel ones. Since it is measured by tasks of abstract reasoning, fluid intelligence will, of course, in some way be related to rationality (here: mastering cognitive illusions) because it indexes the computational power of the algorithmic mind to sustain decoupling. He also argues that individual differences in fluid intelligence are a key indicator of the variability across individuals in the ability to sustain decoupling operations (Stanovich, 2009, p. 353).

Regarding the Monty Hall problem, De Neys and Verschueren (2006) examined whether the notorious difficulty of this special Bayesian task is associated with limitations in working memory resources (which some researchers again equate with g). They found that participants who solved the Monty Hall problem correctly had a significantly higher working memory capacity than those who responded erroneously. In addition, correct responding decreased under the mental load of a second parallel task.



Further Individual Prerequisites

Other possible personality traits that might also be considered in this context are, for instance, gender, age, educational background (which for students, e.g., is usually measured by the socioeconomic status, SES), and prior experience. The role of gender in mathematics ability has been discussed for decades. Now there are arguments that similarities between the sexes take precedence over differences (e.g., Hyde, 2014). For instance, a meta-analysis shows a large variability in both the size and the direction of gender effects in mathematics performance (Else-Quest et al., 2010; but see Brunner et al., 2008). Concerning stochastics in particular, Engel and Sedlmeier (2005) found no gender difference. Regarding the hospital problem, however, where only a few studies report data on gender at all (e.g., Rasfeld, 2004; Watson and Callingham, 2013), only Watson (2000) explicitly considered gender effects and found very few differences between females and males (in favor of males). Thus there is still a necessity for investigating possible gender differences regarding stochastic tasks in general or cognitive illusions specifically (Roth et al., 2015).

Empirical studies so far provide mixed findings on whether greater age or prior stochastics education (Reagan, 1989) increases solution rates in statistical reasoning in general (e.g., Batanero et al., 1996; Rasfeld, 2004; Brase, 2014; Siegrist and Keller, 2011). However, it was found that the closer the data presented in the task were to self-reported experiences, the more accurate people’s answers were, indicating that the subjective a priori estimate (of the probability of a certain event) developed through lived experience had a substantial impact on the reasoning process (Reani et al., 2019).



Task-Related Features

In addition to individual factors, of course, characteristics of the task play a role with respect to performance as well. In the following, we will explain in detail some “didactical simplifications” of specific cognitive illusions (already briefly addressed above).



Contextualization (Wason Selection Task)

Cosmides and Tooby (1992) showed that a change of the abstract rule (i.e., “p → q”) in a problem accommodated in a more natural and familiar context than the mere card-checking setup significantly increases the number of correct answers of participants (cf. Besold, 2013). To date, many different modified versions have been used along with the classical abstract problem formulation (e.g., Gigerenzer and Hug, 1992; also see Figure 1, right), for example:


Imagine you are working for the post office. You are responsible for checking whether the right stamp is stuck on a letter. The following rule applies: If a letter is sent to the United States, at least one 90-cent stamp must be stuck on it. There are four letters in front of you, of which you can see either the front or the back (front of letter with “50 cent” and “90 cent,” back of letter with “Italy” and “United States”).

Which of the letters do you have to turn over if you want to check compliance with this rule?



As Gigerenzer and colleagues were able to demonstrate, the solution rate increased substantially with the use of this representation, even though, from the point of view of logic, the situation was unchanged from the original version (Gigerenzer and Hug, 1992; Fiddick et al., 2000). In similar scenarios, even very young people can understand the logic behind a puzzle based on real contexts in the sense of a “cheating detection paradigm” (e.g., “If Maxi cleans up her room, she is allowed to go to the playground,” cf. Gummerum and Keller, 2008). The same holds true in an analogous way for other cognitive illusions. In this respect, the solution rate for Bayesian reasoning tasks, for example, would be even lower if the context were removed and replaced by abstract letters (instead of concrete events) and mathematical symbols, such as “p(A),” etc.

It should be noted that such contextualization in mathematics education research corresponds to the aspect of modeling (i.e., considering problems formulated in a real-world context; e.g., Kaiser and Sriraman, 2006). Within this framework, sometimes even previously purely inner-mathematical, abstract tasks are consciously enriched by being related to a reality that is as close as possible to the student’s everyday life in order to make them more accessible and appealing to students (for an overview, see Niss and Blum, 2020).



Natural Frequencies (Bayesian Reasoning Tasks)

In a seminal paper, Gigerenzer and Hoffrage (1995) translated the numbers in the breast-cancer screening problem (see section “Cognitive Illusions From the “Heuristics and Biases” Program (cogIll)”) into natural frequencies:


Mammography problem (natural frequency format):

100 out of 10,000 women of a particular age group who participate in a routine screening have breast cancer. 80 out of 100 women who participate in a routine screening and have breast cancer will have a positive mammogram. 950 out of 9,900 women who participate in a routine screening and have no breast cancer will have a false-positive mammogram.

How many of the women who participate in a routine screening and receive positive mammograms have breast cancer?



This mode of representation of the statistical information makes it possible to imagine concrete persons; the nested-set relations become transparent, and thus the solution algorithm becomes simpler. Given the natural frequency version, significantly more people are able to make the correct inference (Gigerenzer and Hoffrage, 1995; Siegrist and Keller, 2011) because only the proportion of women with breast cancer among those who have a positive mammogram (i.e., “80 out of 80 + 950” = “80 out of 1,030” = 7.8%) has to be calculated. A meta-analysis by McDowell and Jacobs (2017) summarized 35 studies that implemented natural frequencies and found an average performance increase in such versions of Bayesian reasoning problems of about 24%, compared to only 4% in probability versions.

The concept of natural frequencies can be extended to diagnostic situations with more than one medical test available (Krauss et al., 1999), but it is also applicable to other statistical problems (regarding the Linda problem, e.g., see Fiedler, 1988). In the context of the Monty Hall problem, for instance, a frequency algorithm can be applied to the three possible car-goat constellations (see Figure 1, right-hand side; Krauss and Wang, 2003).



Visualizations

Pagin (2019), for instance, investigated the Linda problem by using a task version in which the situation was presented with a Venn diagram. As a consequence, the rate of the conjunction fallacy in a group of participants was substantially lower.

With respect to the Wason task and the corresponding visualizations (see Figure 1 left or right, respectively), Gummerum and Keller (2008) have also successfully worked with pictures of, for example, the (un)tidy room of their protagonist “Maxi” to offer a visualization of the corresponding context.

There are many types of visualizations that can improve Bayesian reasoning, for example, 2 × 2 tables (e.g., Steckelberg et al., 2004; Binder et al., 2015), tree diagrams (e.g., Sedlmeier and Gigerenzer, 2001; Budgett et al., 2016; Bruckmaier et al., 2019), double-trees (Khan et al., 2015; Böcherer-Linder and Eichler, 2019), icon arrays (e.g., Zikmund-Fisher et al., 2014; contrary findings by Reani et al., 2018), different kinds of set diagrams (e.g., Euler diagram, or Venn diagram; e.g., Reani et al., 2018), roulette-wheel diagrams (e.g., Brase, 2014), frequency grids (e.g., Garcia-Retamero et al., 2015), Eikosograms (also called unit squares or mosaic plots; e.g., Böcherer-Linder and Eichler, 2017), and frequency nets (Binder et al., 2020); for an overview see, for example, Binder et al. (2015).

Regarding the specific Bayesian situation of the Monty Hall problem, the triggering of a counting algorithm by a frequency question (Krauss and Wang, 2003) can be supported by explicitly depicting the three possible car-goat constellations (Krauss and Atmaca, 2004), and thus combining didactic simplifications (see sections “Natural Frequencies” and “Visualizations”) is possible in this case as well.



THE CURRENT STUDY AND RESEARCH QUESTIONS

In the present study we initially examine, on the basis of the responses of Luxembourgian school students of age 16–18, whether various cognitive illusions (cogIll) from Tversky and Kahneman’s heuristics and biases program form a (reflexive or formative) construct in a psychometric sense (RQ 1a). In addition, by means of confirmatory factor analysis, we investigate how such a supposed competence is related to mathematical literacy (ml) and intelligence (g) and whether these three abilities are distinct constructs (RQ 1b). Finally, we explore by means of regression models (including Bayesian models) which student abilities and which task characteristics can predict the mastering of cognitive illusions, both at the construct level and in terms of the singular illusions (besides ml and g, we here include further possible predictors such as reading literacy (rl), RQ2). In sum:

Research question 1a (reliability and correlational analysis):

Do the tasks of the heuristics and biases program (cogIll) form a reflexive or a formative construct? What intercorrelations do individual tasks have and what causes can be found for differential correlations (e.g., What role do facilitations of cognitive illusions play with respect to their mutual correlations)?

Research question 1b (latent confirmatory factor analysis):

Is cogIll unidimensional? What is the relationship (i.e., the latent correlations) between cogIll, ml, and g? Can three correlated yet still distinct constructs be corroborated by means of this method?

Research question 2 (regression analysis):

Which abilities and/or task characteristics can predict cogIll (or the individual brain teasers)? In addition to the constructs considered in RQ 1b, we will add further predictors like reading literacy here.



METHOD


Design

PROLOG was a study conducted as an accompanying study of the Luxembourgian PISA 2009 study (cf. Organisation for Economic Co-operation and Development [OECD], 2010). The key idea was to add famous brain teasers to the PISA scales in order to analyze probabilistic (“PRO”) and logical (“LOG”) thinking as well as their determinants by using a large and representative sample of school students of age 16 (and older).

Note that due to the size of Luxembourg, PISA is a mandatory complete survey for all 15-year-old students in the country. Therefore, all 15-year-old students from grade nine and ten must participate, while their younger or older classmates do not have to (the older students usually have no required activity while PISA is administered). Making use of this special situation in Luxembourg, PROLOG was administered to both ninth- and tenth-graders above the age of 15 (N = 2,643) while their 15-year-old classmates were working on PISA 2009. Note that in order not to endanger the integrity of the actual PISA 2009 study, we implemented items from the PISA 2000 mathematics and reading test in PROLOG.



Instruments

In the following we describe the items of all constructs implemented.


Cognitive Illusions (cogIll)

Figure 1 displays all eight cognitive illusions implemented by PROLOG: (1) two versions of the Wason task: (1a) classic version and (1b) facilitated version; (2) three different versions of a Bayesian reasoning problem, namely the AIDS task: (2a) probability version, (2b) frequency version with tree diagram, and (2c) frequency version with double-tree diagram as delineated in Figure 1); (3) the hospital problem; (4) the Linda problem; and (5) the Monty Hall problem. While both versions of the Wason task were provided to the participants simultaneously (i.e., first traditional and then facilitated), only one of the three versions of the AIDS task was presented to each student. The reason for this was that both versions of the Wason task (see Figure 1 on the left for the original and on the right for the contextualized version) seem distinctly different at first sight, in other words, because of the different context not immediately recognizable as basically identical tasks. For the AIDS task, however, the contexts of all three versions are the same, so that it makes no sense to deliver the same task more than once (the only difference being information format). The hospital problem, the Monty Hall problem, and the Linda problem were only presented in one version in general. Figure 1 displays the traditional versions implemented on the left and the facilitated versions on the right.

All traditional versions (Wason, AIDS, Linda, hospital problem) were only slightly modified in order to avoid guessing on the one hand and floor effects on the other. In the Wason task, for instance, we adjusted the wording (i.e., minor linguistic changes) of both well-known versions (i.e., the classic, context-free version with letters and numbers, and the contextualized version with stamped letters) in order to make the problem more easily understandable to students. Regarding the Bayesian reasoning task, we replaced the famous mammography context (which is usually not of relevance for 16-year-old students) by a context dealing with HIV tests. In addition, we added a tree diagram, which school students are familiar with (because in the probability version without a visualization, floor effects would be expected; Gigerenzer, 2004; Eichler and Vogel, 2015).

For the hospital problem, we changed the numerical values slightly and somewhat adapted the answer options to the question (students were instructed to check the boxes of three statements as to whether they were right or wrong). For the Linda task, in deviation from the traditional version, the students in our sample were asked to rank three available statements (instead of just naming the more probable statement out of two) and tick the boxes accordingly; this somewhat diminished the 50% probability of guessing the right answer.

However, we do not consider these changes systematic theoretical facilitations, which is why the Wason task (traditional), the hospital problem, and the Linda task are still displayed in Figure 1 on the left. In contrast, the reason for only presenting a facilitated version of the Monty Hall problem (right side of Figure 1) was that the original problem was simply too difficult and would probably yield floor effects (e.g., Krauss and Wang, 2003; Saenen et al., 2015). Instead, all three possible constellations (namely, where the main prize could be) were visualized according to Krauss and Atmaca (2004) and the cognitive illusion was further mitigated by specifying intermediate cognitive steps (e.g., in front of and to the right of the visualization) in which participants were explicitly asked for the number of constellations for which it would be worthwhile to change the door selection (i.e., thus triggering a frequency algorithm).

The order of the cogIll items in the questionnaire was as follows: First all four traditional (i.e., not facilitated) tasks were given, namely Wason classical, AIDS probability version (optional), hospital, and Linda, then the four simplified tasks, namely Monty Hall, Wason context, and AIDS frequency version 1 or 2 (if AIDS probability version was not provided). Since the implemented cognitive illusions, with the exception of the two Wason tasks (which were clearly separated from each other in the test booklet), differ substantially from each other in terms of mathematical structure and solution strategy, we refrained from randomizing the tasks for test economic reasons.



Mathematical Literacy (ml)

Mathematical competence was assessed using items from the mathematical literacy test (ml) originally implemented in PISA 2000 (Organisation for Economic Co-operation and Development (OECD), 2003). In more detail, ml was covered by items from the four areas of algebra (12 items), arithmetics (8 items), geometry (10 items), and stochastics (7 items) (see Figure 2 for a sample item). A complete compilation of all items covering ml can be found in the electronic Supplementary Material (ESM). For statistical analyses, four parcels (i.e., sum scores) of algebra, arithmetics, geometry, and stochastics form the manifest indicators for ml.
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FIGURE 2. Mathematical task “Speed of Racing Car” [with one out of five questions; subscale “algebra”; from Organisation for Economic Co-operation and Development (OECD), 2003].




Intelligence (g)

To cover general intelligence (g), we implemented established reasoning items from the “Berliner Intelligence Structure test” (BIS; Jäger et al., 1997). Three different statements concerning different topics were provided (Vacations, Traffic, and Smoking; see Figure 3 for a sample statement). Then four possible conclusions were presented, each of which tested whether the statement was understood logically (i.e., there were four items per scenario). The three resulting sum scores regarding each of the three topics form the respective manifest parcels that were used as indicators for g. A complete compilation of all items covering g can be found in the ESM.
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FIGURE 3. General intelligence items on the topic “Vacations” (from parcel 1; from Jäger et al., 1997).




Reading Literacy (rl)

Since some of the brain teasers are formulated in a linguistically demanding way, reading literacy (rl) was also included in the present study. Four situations from the PISA 2000 reading test including a question and possible answer options in each scenario were implemented, resulting in 18 corresponding items altogether (for a sample scenario, see Figure 4). In more detail, rl was covered by items regarding the four descriptive texts Lake Tchad (three items), Flu (three items), Labor (eight items), and Police (four items). Unlike g, the items on rl require reading and in-depth comprehension of longer and more complex texts. A complete compilation of all items covering rl can be found in the ESM. For statistical analyses, four parcels (i.e., sum scores) of the items belonging to each of the four situations form the manifest indicators for rl.
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FIGURE 4. Reading task “Police” [with one out of 4 questions; from Organisation for Economic Co-operation and Development (OECD), 2003].




Further Individual Covariates

In addition, further individual student characteristics were collected. They included sociodemographic background features (gender, age, etc.), learning motivation (e.g., interests and self-image), life goals, and life satisfaction.



Participants

PROLOG was administered to Luxembourgian school students of age 16–18 in grades nine or ten who did not take part in the PISA study in 2009. In more detail, a total of 2,643 pupils (56% girls) from 19 different Luxembourgian schools participated in PROLOG. The average age M (SD) of the students was 16.31 (0.57) years. About half of the students completed the Enseignement Secondaire Technique (“EST”; the Luxembourgian non-academic vocational track), and the other half of the students the Enseignement Secondaire (“ES”; the Luxembourgian academic track required for university studies). 68% of the students attended grade nine (63% EST, 37% ES), while the other 32% attended grade ten (34% EST, 66% ES). Note that only the AIDS task (see section “Cognitive Illusions”), which was applied in three different versions, is an exception in terms of sample size. Each of the three AIDS versions was processed by only approximately 880 students of the total sample.



Procedure

PROLOG took place in April and May 2009 during regular school hours. In the run-up to PROLOG, the research program was presented to all Luxembourgian secondary schools (i.e., the principals) in the form of a letter and the schools were encouraged to allow their students to participate. However, participation was not compulsory and remained optional for the schools on a voluntary basis.

In addition to the cognitive illusions and demographic questions, the PROLOG study included some scales of PISA 2000 and in total lasted about three and a quarter hours (test duration: 2 h 40 min, exclusive of an initial briefing of 15 min and two breaks, one 5 min and the other 15 min, during the test). The students were assured that the evaluation of the questionnaire would be anonymous and that the results of the study would in no way influence the grades of the individual student.

All measuring instruments were distributed in the form of one test booklet. PROLOG was conducted by teachers whose 15-year-old students were participating in PISA and who therefore were not teaching at the time. Those teachers distributed the test material, read out standardized instructions on how to fill in the PROLOG instruments, kept the students quiet during the test, and finally collected the PROLOG materials and handed it over to the PISA school coordinators for return.



Statistical Analysis

While ml, g, and rl were treated as reflexive constructs based on manifest indicators (which in turn were parcels consisting of single items, see above), in the following, cogIll will be treated as a construct, but will also be considered at the individual item level.

All analyses were conducted using the open statistical software R (R Development Core Team, 2020). Regarding RQ 2, an unconditional random effects model (UREM) was used to estimate the between-task-type, between-participant, and between-school variances of the binary task results of the cogIll items, and to compare these three sources within class variance. Subsequently, to take nesting into account, the “lme4” package (Bates et al., 2015) and the “blme” package (Chung et al., 2013) were used to create separate frequentist and Bayesian generalized mixed regression models. More specifically, mixed logistic regressions were modeled, which used the following (logistic) link function to relate the linear term η to the probability of solving a task (meaning a result of X = 1):

[image: image]

All models allowed for random intercepts, and the following indicators of model fit were estimated: R2Marginal represents the variance explained by the fixed effects, and R2Conditional represents the variance explained by both fixed and random effects as estimated using the “MuMIn” package (Barton, 2016).

Regarding RQ 2, four predictors were included in all models to predict outcomes concerning cogIll: ml, g, rl, and “task difficulty” d (i.e., facilitated or not), which was dummy-coded (0: facilitated; 1: traditional version).

A first model included these predictors in additive fashion within the linear term γ00 as intercept:

[image: image]

Possible interaction effects between d (task difficulty) and the other three predictors were modeled via the inclusion of additional multiplication terms of the form Predictor x Difficulty. For a detailed description of the interpretation of such error terms with dummy-coded binary predictors in mixed models, see Hilbert et al. (2019). Type-I error probabilities for the significance of the regression estimates were corrected for sevenfold multiple testing according to Bonferroni, as a maximum of seven predictors was used for the models, meaning that p < 0.05/7 = 0.007 was regarded as statistically significant.



RESULTS

In the following, the results are presented according to the three research questions RQ 1a, RQ 1b, and RQ 2.


Descriptives of cogIll and Reliability Analysis (RQ 1a)

All items of cogIll were coded dichotomously (0 = wrong; 1 = correct). Overall, the traditional versions (Figure 1, on the left) of the cognitive illusions, which were processed by N = 2,643 students, yielded expectedly low solution rates (Table 1). The four “original” items (i.e., without substantial facilitation) were only correctly solved by 8–16% of the students, specifically the Wason task (based on letters and numbers) by 14%, the hospital problem by 10%, the Linda task by 16%, and, finally, the AIDS task in probability format—despite the additional tree diagram—by only 2% (note that each of the three AIDS task versions was only handled by N ≈ 880 students). Regarding the “facilitated” versions (Figure 1, on the right), both natural frequency versions of the AIDS task were solved at a significantly higher rate (yet with solution rates still not over 10% or 11%). The facilitated Wason task (with the letter-stamp context) was solved by 29% and the Monty Hall problem, including various facilitations, by 67%.


TABLE 1. # correct solutions (in percent), standard deviations, and manifest intercorrelations of cogIll items including Cronbach’s alpha if item deleted.

[image: Table 1]According to RQ 1a, the statistical analysis of the data showed a reliability of Cronbach’s α = 0.21 of cogIll (Table 1). The low value means that the individual brain teasers are only weakly related to each other, and there seems to be no distinguished general ability to “see through cognitive illusions.” Although the internal consistency could be increased up to an alpha of 0.27 by, for instance, deleting the Linda task, there is no way to arrive at the satisfying reliability level usually requested for reflexive constructs (e.g., Bühner and Ziegler, 2017). However, keep in mind that the chosen famous brain teasers cover different contents, require cognitively varying solution strategies, and tempt to different traps.

Table 1 (in which all items are listed according to the administration order) shows that the correlations between the cogIll items are at a very low level and in some cases even show—at least descriptively—negative values. The significant, but small correlation effect between the two versions of the Wason task of r = 0.14 indicates that it was reasonable to implement both tasks simultaneously (note that due to the large sample size, small correlations can also become significant). No mutual intercorrelations between the three AIDS task variants can be obtained because each participant only had to solve one of them (also see legend of Table 1).

A closer inspection of Table 1 reveals a remarkable result: Facilitated items show substantial correlations to each other. Separating both problem modes yields the corresponding reliabilities αcogIll orig. = −0.01 compared to αcogIll facilit. = 0.30. Thus, interestingly, while the original problems indeed seem to be solved only randomly, the facilitations are what make the problems somehow accessible to consistent cognitive processing. This result is strengthened by the fact that while the natural frequency versions of the AIDS task display substantial correlations to other facilitated items, the corresponding AIDS probability version does not.



Relationship and Confirmatory Factor Analysis of cogIll, ml, and g (RQ 1b)

In order to address the relationship between cogIll, ml, g, and rl, we first present the descriptive results on the four constructs, including their manifest mutual intercorrelations. Although it will not be part of the confirmatory factor analysis, we include rl here because it will be used later as an additional predictor in the regression analyses with respect to RQ 2. Student performance regarding the three constructs ml, g, and rl (see Table 2) lies, as expected and in contrast to cogIll, at an average level (i.e., students solved about half of the items concerning all three abilities). The internal consistencies were—except for intelligence g—satisfactory (and all clearly above the reliability of cogIll). However, αg = 0.43 for g also corresponds to an acceptable value given the fact that it is a rather broad scale including three completely different scenarios and statements. As is abundantly clear from many PISA cycles, ml and rl are strongly correlated (r = 0.69), and each is also correlated with g, though less strongly (Table 2).


TABLE 2. Descriptives (M, SD, α) of and mutual (manifest) intercorrelations r (according to Spearman) between the constructs cogIll, ml, g, and rl.

[image: Table 2]Most importantly, despite the low internal consistency of cogIll, taken as a construct it displays significant (manifest) correlations with the other three constructs (the highest with ml, the lowest with g). Interestingly, ml and rl relate approximately equally to cogIll. However, since cogIll is not a homogeneous scale (cf. RQ 1a), correlations with cogIll cannot be generalized to individual tasks (see also next paragraph; Cohen, 1992). Considering the small reliability of cogIll (αcogIll = 0.21), it is rather informative to consider in addition the differential relationships of ml, g, and rl to each individual item of cogIll.

Regarding Table 3, the following three results are interesting: First, each single item of cogIll correlates very similarly with ml and with rl (only the hospital problem clearly depends more on ml than on rl). Second, for most (but not all) items of cogIll, the correlation with g lies below the correlations with ml and rl (which can only partly be explained with the medium reliability of g). And third (and most importantly), the facilitated versions correlate more strongly not only with each other (RQ1a), but also with the three constructs ml, g, and rl.


TABLE 3. Correlations of individual items from cogIll with ml, g, and rl.

[image: Table 3]This third—and most intriguing—result means that mathematical and reading skills (and also, to a lesser extent, intelligence) can only help when cognitive illusions are simplified with didactic measures and thereby made more accessible to those abilities. Regarding the cogIll items presented in their traditional versions, there are weaker and mostly not significant correlations throughout (r = −0.05–0.11), meaning that neither ml nor g nor rl can be effective here. This is in line with the provocative statements from Piattelli-Palmarini (1991) and Gould (1992; see section “Person-Related and Task-Related Characteristics Associated With the Ability to Solve Cognitive Illusions”) but contradicts, for instance, the threshold hypothesis regarding numeracy (Hill and Brase, 2012) and related findings from Stanovich (2012), who reported correlations between probabilistic reasoning abilities (even though not specifically concerning cognitive illusions) and cognitive ability (g) to be roughly in the range of 0.20–0.35.

With these results in mind, we now turn to the inspection of the dimensionality of cogIll, ml, and g with a latent confirmatory factor analysis (CFA, RQ1b). Note that rl was only intended as a moderator in the study, since according to the literature, statistical and logical reasoning is much more closely related to intelligence and mathematics abilities (thus rl was not of theoretical interest with respect to a common model2). The three included constructs (Figure 5) were formed from the manifest values of the six single items of cogIll (Wason classic, Wason context, Monty Hall problem, AIDS task, hospital problem, and Linda task), the four facets of ml (parcels: algebra, arithmetics, geometry, and stochastics) and the three facets of g (parcels: Vacations, Traffic, and Smoking). The CFA revealed adequate local and global fit [χ2(2,508, 51) = 103.796, p = 0.001, CFI = 0.990, TLI = 0.987, RMSEA = 0.017, SRMR = 0.084].


[image: image]

FIGURE 5. Three-factor measurement model of cogIll, ml, and g. Model fit: N = 2,508, T [χ2] = 103.796, df = 51, p = 0.001, CFI = 0.990, TLI = 0.987, RMSEA = 0.017, SRMR = 0.084. The values display latent correlation or standardized coefficients, respectively. Values of χ2 ≤ 3df (df = degrees of freedom), p ≥ 0.01, CFI (Comparative Fit Index) ≥ 0.95, TLI (Tucker-Lewis Index) ≥ 0.95, RMSEA (Root-Mean-Square Error of Approximation) ≤ 0.05, and SRMR (Standardized Root Mean Residual) ≤ 0.05 indicate a good model fit. cogIll: cognitive illusions, ml: mathematical literacy, g: general intelligence. *indicates p < 0.05; **indicates p < 0.01.


As can be seen in Figure 5, cogIll and ml display a strong latent correlation (r = 0.64), while the other two latent correlations are substantially lower. The magnitude of the individual factor loadings of cogIll illustrate that again it is mainly the simplified tasks that contribute to the construct, while the loadings for ml and g are consistently high or moderate, respectively. Note that the fit indices remain pretty much the same if the Linda task were excluded from the model [model fit: N = 2,508, T (χ2) = 120.786, df = 51, p = 0.000, CFI = 0.986, TLI = 0.982, RMSEA = 0.023, SRMR = 0.036; see Appendix Figure A1].



Predicting the Ability to Solve Brain Teasers (RQ 2)

Finally, we will predict the solution of the brain teasers of cogIll—each as a construct and individually—by means of regression models. In contrast to the correlational analyses (section “Relationship and Confirmatory Factor Analysis of cogIll, ml, and g”), the modeled predictors can now statistically control for each other.


Preliminary Models

First, an unconditional random effects model (UREM) was estimated to compare the degrees of variance of the three nesting levels (task difficulty, participant, and school). The highest variance accounted for was difficulty d (σ2 = 1.23), followed by participant-specific differences (σ2 = 0.18) and differences between the schools (σ2 = 0.09), with R2Conditional = 0.38. This means that the most significant factor explaining differences in performance regarding cognitive illusions relates to the “facilitation factor” d (separating between traditional and facilitated versions), which is why we include this dummy variable into the following models in addition to ml, g, and rl.



Direct Effect of Change Factors on cogIll

We then investigated the direct influence of ml, g, rl, and d on the solution of cognitive illusions using several models (see Table 4). Because standard frequentist regression models showed convergence problems, the standard optimizer was exchanged for the “bobyqa” optimizer, and the convergence tolerance was set to 0.01. These convergence problems usually stem from multicollinearity and are likely to be due to the strong correlation of the covariates ml and rl (see Table 2). To double-check the results obtained from these models, additional Bayesian mixed regression models with Wishart priors for the covariance distributions were estimated, using the same sets of predictor variables. As can be seen in Table 4 and Appendix Table A1 (where the corresponding Bayesian models can be found), both types of regression models show identical patterns of significant predictors for performance in cogIll.


TABLE 4. Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in two different frequentist models (with and without interactions).

[image: Table 4]
The results in Table 4 show three significant factors of influence for cogIll: specifically, the models using only the additive linear term (i.e., without interaction effects) show that ml, rl, and g significantly predicted the probability of solving a cognitive illusion, while the item difficulty d interestingly showed no significant impact. Additionally, the models including the interaction terms showed a significant negative interaction effect of both ml x d and rl x d (whereas also due to the interaction effect of rl x d, the direct effect of rl is no longer predictive). This means that higher mathematical and reading skills were associated with less of an influence of task difficulty or, in other words, the facilitating measures taken to help the participants to solve the brain teasers were more helpful for (or needed by) those students with lower mathematical and reading skills.

To check the possible influence of the exclusion or inclusion of the Linda task, we also calculated the identical regression models (i.e., with and without interaction terms) without the Linda task (cf. Appendix Table A2). In the linear model, both ml and g (but not rl) were significant predictors of the probability of solving cognitive illusions. In the model with interaction terms, all effects except for the interaction effect ml x d, which was no longer predictive, remained the same compared to the models including the Linda task.

Because of the low correlations of the cognitive illusions with each other (see Table 1), it is reasonable to consider the prediction of solving the individual brain teasers in addition. Corresponding regression models (not depicted in Table 4) revealed differential regression coefficients, especially regarding reading literacy rl. While rl had almost no effect on, for instance, performance on the hospital task, it was a relatively strong predictor on text-intensive or context-rich problem formulations like the Monty Hall problem or the Wason selection task (with the letter-stamp context).



DISCUSSION

In this paper we inspect famous statistical and logical cognitive illusions from the heuristics and biases research program of Daniel Kahneman and Amos Tversky from a psychometrical perspective. With a sample of N = 2,643 Luxembourgian students of age 16 to 18, we implemented the Wason card selection task (on the understanding of logical implication and its reversion), the hospital problem (on the empirical law of large numbers), the Linda task (on the conjunction rule for multiplying probabilities), the AIDS task (a Bayesian reasoning problem analogous to the famous mammography task), and the Monty Hall problem (a special case of a Bayesian reasoning problem, which was not part of the heuristics and biases program by Kahneman and Tversky).

Over the last few decades, many researchers (especially from the research group of the German psychologist Gerd Gigerenzer) have made attempts to modify information representation and in that way make these kinds of brain teasers more accessible to human thinking processes. These variations were acknowledged as an experimental factor, meaning that some of the brain teasers were implemented in a version very close to their original formulations (e.g., the Linda and the hospital problem), and some in a facilitated way, in order to avoid both guessing and floor effects (e.g., the Monty Hall problem). Because the contexts of the classical Wason task (based on numbers and letters) and the corresponding facilitated version (based on stamps and letters) substantially differ in the present study, it was possible to implement both versions simultaneously for all participants. Regarding the Bayesian AIDS task, a traditional version (based on probability format) and two facilitated versions (based on frequency format) were implemented, yet (in contrast to the Wason task) only one of these versions was presented to each participant.

So far, these cognitive illusions have been described together within the theoretical framework of the heuristics and biases program (and explained, e.g., by representativeness or confirmation bias) or the more comprehensive framework CART. Yet, experiments astoundingly have usually only implemented one of these brain teasers empirically at the same time. Explicitly addressing this research desideratum, our design included all mentioned illusions simultaneously.

Based on our sample of Luxembourgian students of age 16–18, we found that these brain teasers were only moderately correlated to each other, yielding a low reliability of an assumed reflexive construct cogIll (α = 0.21, or a maximum of 0.27 without the Linda task). Interestingly, this (small) amount of shared variance was exclusively due to the facilitated versions, while the reliability of the remaining traditional versions was almost zero. Analyses of manifest correlations revealed that cogIll was substantially correlated to intelligence (g) and mathematical and reading competence (the correlations to the two latter ones, ml and rl, which were operationalized by parts of the corresponding PISA tests, were even higher than for g). On the individual item level, these correlations were again much higher for the facilitated versions, giving a first hint that the above-mentioned literacies (ml and rl) and the general cognitive ability (g) cannot be applied properly to the traditional versions. In a subsequent confirmatory factor analysis (where rl was excluded because of multicollinearity), a latent construct cogIll could be modeled and distinguished from g and ml, yet still displaying a high latent correlation to ml.

Finally, we ran a series of frequentist and Bayesian regression models (both with and without interaction terms) in order to predict the correct solving of the brain teasers both on construct and on individual item level. The best predictor across all implemented models was mathematical competence, followed by intelligence. Interestingly, the (negative) interaction effect of rl x d (with d being the dummy variable indicating whether the problem representation was facilitated or not) suggests that the systematic facilitating measures taken to help the participants to solve the brain teasers were more helpful for (or needed by) those students with lower reading skills. Since the original versions of the cognitive illusions obviously make it very difficult to extract the relevant information and then to infer the correct answer, it seems that these traditional formulations (and not the tasks or the underlying mathematical structure per se) in a way trigger cognitive bias. Thus “facilitation” is about translating information into a more accessible form, which partially “disarms the trap” and thus makes it easier for people to apply their general or content-specific skills to the tasks. Furthermore, considering the individual item level of cogIll, reading literacy was particularly necessary for text-intensive and context-rich problems such as the Monty Hall problem.

Of course, the present study can only shed a first light on psychometric properties of the brain teasers, on their mutual correlations, and on connections to related constructs. Empirically examining some of these brain teasers together, however, the study goes beyond comprehensive but more theoretical compilations of reasoning items (cf. CART; Stanovich, 2016). Future studies could (1) implement further cognitive illusions of the heuristics and biases program, (2) vary the facilitation manipulation more systematically, (3) use additional constructs for both confirmatory factor and regression analyses, or (4) administer similar studies with adult samples. However, we hope to have opened a path toward the consideration and empirical investigation of statistical and logical cognitive illusions not only at an individual item level, but also at the level of a psychometric construct.
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FOOTNOTES

1 In 2002, Daniel Kahneman was indeed awarded with the Nobel prize in economics.

2 Furthermore, including rl in the latent CFA would also lead to convergence problems due to its strong correlation with ml.
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FIGURE A1. Three-factor measurement model of cogIll, ml, and g. Model fit: N = 2,508, T [χ2] = 120.786, df = 51, p = 0.000, CFI = 0.986, TLI = 0.982, RMSEA = 0.023, SRMR = 0.036. The values display latent correlation or standardized coefficients, respectively. Values of χ2 ≤ 3df (df = degrees of freedom), p ≥ 0.01, CFI (Comparative Fit Index) ≥ 0.95, TLI (Tucker-Lewis Index) ≥ 0.95, RMSEA (Root-Mean-Square Error of Approximation) ≤ 0.05, and SRMR (Standardized Root Mean Residual) ≤ 0.05 indicate a good model fit. cogIll: cognitive illusions, ml: mathematical literacy, g: general intelligence. *indicates p < 0.05; **indicates p < 0.01.



TABLE A1. Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in two different Bayesian models (with and without interactions) including the Linda task.
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TABLE A2. Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in four different models (frequentist and Bayesian, both with and without interactions) without the Linda task.
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In the field of mathematics education, one of the main questions remaining under debate is whether students’ development of mathematical reasoning and problem-solving is aided more by solving tasks with given instructions or by solving them without instructions. It has been argued, that providing little or no instruction for a mathematical task generates a mathematical struggle, which can facilitate learning. This view in contrast, tasks in which routine procedures can be applied can lead to mechanical repetition with little or no conceptual understanding. This study contrasts Creative Mathematical Reasoning (CMR), in which students must construct the mathematical method, with Algorithmic Reasoning (AR), in which predetermined methods and procedures on how to solve the task are given. Moreover, measures of fluid intelligence and working memory capacity are included in the analyses alongside the students’ math tracks. The results show that practicing with CMR tasks was superior to practicing with AR tasks in terms of students’ performance on practiced test tasks and transfer test tasks. Cognitive proficiency was shown to have an effect on students’ learning for both CMR and AR learning conditions. However, math tracks (advanced versus a more basic level) showed no significant effect. It is argued that going beyond step-by-step textbook solutions is essential and that students need to be presented with mathematical activities involving a struggle. In the CMR approach, students must focus on the relevant information in order to solve the task, and the characteristics of CMR tasks can guide students to the structural features that are critical for aiding comprehension.

Keywords: creative mathematical reasoning, cognitive proficiency, working memory, fluid intelligence, rote learning


INTRODUCTION

Supporting students’ mathematical reasoning and problem-solving has been pointed out as important by the National Council of Teachers of Mathematics (NCTM; 26T1). This philosophy is reflected in the wide range of mathematics education research focusing on the impact different teaching designs might have on students’ reasoning, problem-solving ability, and conceptual understanding (e.g., Coles and Brown, 2016; Lithner, 2017). One of the recurrent questions in this field is whether students learn more by solving tasks with given instructions or without them: “The contrast between the two positions is best understood as a continuum, and both ends appear to have their own strengths and weaknesses” (Lee and Anderson, 2013, p. 446).

It has been argued that providing students with instructions for solving tasks lowers the cognitive demand and frees up resources that students can use to develop a conceptual understanding (e.g., worked example design; Sweller et al., 2011). In contrast, other approaches argue that students should not be given instructions for solving tasks; one example is Kapur (2008, 2010) suggestion of “ill-structured” task design. With respect to the latter approach, Hiebert and Grouws (2007) and Niss (2007) emphasize that providing students with little or no instruction generates a struggle (in a positive sense) with important mathematics, which in turn facilitates learning. According to Hiebert (2003) and Lithner (2008, 2017), one of the most challenging aspects of mathematical education is that the teaching models used in schools are commonly based on mechanical repetition, following step-by-step methods, and using predefined algorithms—methods that are commonly viewed as rote learning. Rote learning (i.e., learning facts and procedures) can be positive, as it can reduce the load on the working memory and free up cognitive resources, which can be used for more cognitively demanding activities (Wirebring et al., 2015). A typical example of rote learning is knowledge of the multiplication table, which involves the ability to immediately retrieve “7 × 9 = 63” from the long-term memory; this is much less cognitively demanding than calculating 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7. However, if teaching and/or learning strategies are solely based on rote learning, students will be prevented from developing their ability to struggle with important mathematics, forming an interest in such struggles, gaining conceptual understanding, and finding their own solution methods.

Indeed, several studies have shown that students are mainly given tasks that promote the use of predetermined algorithms, procedures, and/or examples of how to solve the task rather than opportunities to engage in a problem-solving struggle without instruction (Stacey and Vincent, 2009; Denisse et al., 2012; Boesen et al., 2014; Jäder et al., 2019). For example, Jäder et al. (2019) examined mathematics textbooks from 12 countries and found that 79% of the textbook tasks could be solved by merely following provided procedures, 13% could be solved by minor adjustments of the procedure, and only 9% required students to create (parts of) their own methods (for similar findings, also see Pointon and Sangwin, 2003; Bergqvist, 2007; Mac an Bhaird et al., 2017). In response to these findings, Lithner (2008, 2017) developed a framework arguing that the use of instructions in terms of predefined algorithms has negative long-term consequences for the development of students’ conceptual understanding. To develop their conceptual understanding, students must instead engage in creating (parts of) the methods by themselves. This framework, which addresses algorithmic and creative reasoning, guides the present study.


Research Framework: Algorithmic and Creative Mathematical Reasoning

In the Lithner (2008) framework, task design, students’ reasoning, and students’ learning opportunities are related. When students solve tasks using provided methods/algorithms, their reasoning is likely to become imitative (i.e., using the provided method/algorithm without any reflection). Lithner (2008) defines this kind of reasoning as Algorithmic Reasoning (AR), and argues that AR is likely to lead to rote learning. In contrast, when students solve tasks without a provided method or algorithm, they are “forced” to struggle, and their reasoning needs to be—and will become—more creative. Lithner denotes this way of reasoning as Creative Mathematical Reasoning (CMR) and suggests that CMR is beneficial for the development of conceptual understanding. It is important to note that creativity in this context is neither “genius” nor “exceptional novelty;” rather, creativity is defined as “the creation of mathematical task solutions that are original to the individual who creates them, though the solutions can be modest” (Jonsson et al., 2014, p. 22; see also Silver, 1997; Lithner, 2008; for similar reasoning). Lithner (2008) argues that the reasoning inherent in CMR must fulfill three criteria: (i) creativity, as the learner creates a previously unexperienced reasoning sequence or recreates a forgotten one; (ii) plausibility, as there are predictive arguments supporting strategy choice and verification arguments explaining why the strategy implementation and conclusions are true or plausible; and (iii) anchoring, as the learner’s arguments are anchored in the intrinsic mathematical properties of the reasoning components.

Previous studies have shown that students practicing with CMR outperform students practicing with AR on test tasks (Jonsson et al., 2014; Jonsson et al., 2016; Norqvist, 2017; Norqvist et al., 2019). Jonsson et al. (2016) investigated whether the effects of effortful struggle or overlapping processes based on task similarity (denoted as transfer appropriate processing, or TAP; Franks et al., 2000) underlie the effects of using CMR and AR. The results did reveal effects of TAP for both CMR and AR tasks, with an average effect size (Cohens d; Cohen, 1992) of d = 0.27. While for effortful struggle, which characterizes CMR, the average effect size was d = 1.34. It was concluded that effortful struggle is a more likely explanation for the positive effects of using CMR than TAP.

In sum, the use of instructions in terms of predefined algorithms (AR) is argued to have negative long-term consequences on students’ development of conceptual understanding and to deteriorate students’ interest in struggling with important mathematics (e.g., Jäder et al., 2019). In contrast, the CMR approach requires students to engage in a effortful and productive struggle when performing CMR (e.g., Lithner, 2017). However, since the students that participated in previous studies were only given practiced test tasks (albeit with different numbers), the results may “merely” reflect memory consolidation without a corresponding conceptual understanding. If, after practice, students can apply their acquired reasoning to tasks not previously practiced, this would indicate a conceptual understanding.

In the present study, we investigate the effects of using AR and CMR tasks during practice, on subsequent test tasks, including both practiced test tasks and transfer test tasks. We are familiar with the large amount of transfer research in the literature and are aware that a distinction has been made between near transfer and far transfer tasks (e.g., Barnett and Ceci, 2002; Butler et al., 2017). In the present study, no attempt to distinguish between transfer and near transfer is made, we define transfer tasks as tasks that require a new reasoning sequence in order to be solved (see Mac an Bhaird et al., 2017 for a similar argument). These tasks are further described in the Methods section in conjunction with examples of tasks.


Mathematics and Individual Differences in Cognition

Domain-general abilities, such as general intelligence, influence learning across many academic domains, with mathematics being no exception (Carroll, 1993). General intelligence, which is commonly denoted as the ability to think logically and systematically, was explored in a prospective study of 70,000 students. Overall, it was found that general intelligence could explain 58.6% of the variation in performance on national tests at 16 years of age (Deary et al., 2007). Others have found slightly lower correlations. In a survey by Mackintosh and Mackintosh (2011), the correlations between intelligence quotient (IQ) scores and school grades were between 0.4 and 0.7. Fluid intelligence is both part of and closely related to general intelligence (Primi et al., 2010), and is recognized as a causal factor in an individual’s response when encountering new situations (Watkins et al., 2007; Valentin Kvist and Gustafsson, 2008) and solving mathematical tasks (Floyd et al., 2003; Taub et al., 2008). Moreover, there is a high degree of similarity between the mathematics problems used in schools and those commonly administered during intelligence tests that measure fluid cognitive skills (Blair et al., 2005).

Solving arithmetic task places demands on our working memory because of the multiple steps that often characterize math. When doing math, we use our working memory to retrieve the information needed to solve the math task, keep relevant information about the problem salient, and inhibit irrelevant information. Baddeley (2000, 2010) multicomponent working memory model is a common model used to describe the working memory. This model consists of the phonological loop and the visuospatial sketchpad, which, respectively, handle visuospatial and phonological information. These two sub-systems are controlled by the central executive and its executive components, updating, shifting, and inhibition (Miyake et al., 2000). In his model, Baddeley (2000) added the episodic buffer, which is alleged to be responsible for the temporary storage of information from the two sub-systems and the long-term memory. Individual differences in the performance of complex working memory tasks, which are commonly defined as measures of the working memory capacity (WMC), arise from differences in an individual’s cognitive ability to actively store, actively process, and selectively consider the information required to produce an output in a setting with potentially interfering distractions (Shah and Miyake, 1996; Wiklund-Hörnqvist et al., 2016).

There is a wealth of evidence and a general consensus in the field that working memory directly influences math performance (Passolunghi et al., 2008; De Smedt et al., 2009; Raghubar et al., 2010; Passolunghi and Costa, 2019). In addition, many studies have shown that children with low WMC have more difficulty doing math (Adam and Hitch, 1997; McLean and Hitch, 1999; Andersson and Lyxell, 2007; Szücs et al., 2014). Moreover, children with low WMC are overrepresented among students with various other problems, including problems with reading and writing (Adam and Hitch, 1997; Gathercole et al., 2003; Alloway, 2009). Raghubar et al. (2010) concluded that “Research on working memory and math across experimental, disability, and cross-sectional and longitudinal developmental studies reveal that working memory is indeed related to mathematical performance in adults and in typically developing children and in children with difficulties in math” (p. 119; for similar reasoning, also see Geary et al., 2017).



Math Tracks

A math track is a specific series of courses students follow in their mathematics studies. Examples might include a basic or low-level math track in comparison with an advanced math track. In Sweden, there are five levels of math, each of which is subdivided into parts a--c, ranging from basic (a) to advanced (c). That is, course 1c is more advanced than course 1b, and course 1b is more advanced than course 1a. In comparison with social science students, natural science students study math on a higher level and move through the curriculum at a faster pace. At the end of year one, natural science students have gone through courses 1c and 2c, while social science students have gone through course 1b. Moreover, natural science students that are starting upper secondary school typically have higher grades from lower secondary school than social science students2. Therefore, in the present study, it is reasonable to assume that natural science students as a group have better, more advanced mathematical pre-knowledge than social science students.

In the present study, we acknowledge the importance of both fluid intelligence and working memory and thus include a complex working task and a general fluid intelligence task as measures of cognitive proficiency. Furthermore, based on their curriculum, the students in this study were divided according to their mathematical tracks (basic and advanced), with the aim of capturing differences in mathematical skills.

This study’s hypotheses were guided by previous theoretical arguments (Lithner, 2008, 2017) and empirical findings (Jonsson et al., 2014, 2016; Norqvist et al., 2019). On this basis, we hypothesized that:


1.Practicing with CMR tasks would to a greater extent facilitate performance on practiced tests tasks than practicing with AR tasks.

2.Practice with CMR tasks would to a greater extent facilitate performance on transfer test tasks than practice with AR tasks.

3.Students that are more cognitively proficient would outperform those who are less cognitively proficient on both practiced test tasks and transfer test tasks

4.Students enrolled in advanced math tracks are likely to outperform those enrolled in basic math tracks on both practiced test tasks and transfer test tasks.






Rationales for the Experiments

The three separate experiments presented below were conducted over a period of 2 years and encompassed 270 students. The overall aim was to contrast CMR with AR with respect to mathematical understanding. An additional aim was to contrast more cognitively proficient students with less cognitively proficient students and investigate potential interactions. The experiments progressed as a function of the experimental finding obtained in each experiment and were as such, not fully planned ahead. Experiment 1 was designed to replicate a previous study on practiced test tasks (Jonsson et al., 2014), and also introduced transfer test tasks with the aim of better capturing conceptual understanding. However, when running a between-subject design, as in experiment 1, there is a risk of non-equivalent group bias when compared with using a within-subject design. It was also hypothesized that the findings (CMR > AR) could be challenged if the students were provided with an easier response mode. It was therefore decided that experiment 2 should employ a within-subject design and use multiple-choice (MC) questions as the test format. After experiment 2, it was discussed whether the eight transfer test tasks used in experiment 2 were too few to build appropriate statistics and whether the MC test format did not fully capture students’ conceptual understanding because of the possibility of students using response elimination and/or guessing. Moreover, the total number of test tasks was 32 (24 practiced test tasks and eight transfer test tasks), and some students complained that there were too many test tasks, which may have affected their performance. It was therefore decided that experiment 3 should focus solely on transfer test tasks, thereby decreasing the total number of test tasks but increase the number of transfer test tasks without introducing fatigue. In experiment 3, we returned to short answers as a test format, thus restricting the possibility of students using response elimination and/or guessing.




MATERIALS AND METHODS


Practice Tasks

A set of 35 tasks were pilot tested by 50 upper secondary school students. The aim was to establish a set of novel and challenging tasks that were not so complex that the students would have difficulty understanding what was requested. Twenty-eight of the 35 tasks fulfilled the criteria and were selected for the interventions. Each of the 28 tasks was then written as an AR task and as a CMR task, respectively (Figures 1A,B). The AR tasks were designed to resemble the design of everyday mathematical textbook tasks. Hence, each AR task provided the student with a method (a formula) for solving the task, an example of how to apply the formula, and a numerical test question (Figure 1A). The CMR tasks did not include any formulas, examples, or explanations, and the students were only asked to solve the numerical test questions (Figure 1B). Each of the 2 × 28 task sets (AR and CMR) included 10 subtasks, which only differed with respect to the numerical value used for the calculation. Although the number of task sets differed between the three experiments, there were 10 subtasks in each task set in all three experiments. Moreover, in each CMR task set, the third subtask asked students to construct a formula (Figure 1C). If the students completed all 10 subtasks, the software randomly resampled new numerical tasks until the session ended. This resampling ensured that the CMR and AR practice conditions lasted for the same length of time in all three experiments.
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FIGURE 1. (A–C) Examples of AR and CMR practice tasks and how they were presented to the students on their laptop screen. (A) AR practice task; (B) CMR practice task; (C) CMR task asking for the formula.





Test Tasks

Test tasks that were the same as the practice tasks (albeit with different numbers) are denoted as “practiced test tasks” while the tasks that were different from the practice tasks are denoted as “transfer test tasks.”


Practiced Test Tasks

The layout of the practiced test tasks consisting of numerical- and formula tasks and can be seen in Figures 2A,C. The similarities between practice tasks and practiced test tasks may promote overlapping processing activities (Franks et al., 2000) or, according to the encoding specificity principle, provide contextual cues during practice that can aid later test performance (Tulving and Thomson, 1973). Transfer test tasks were therefore developed.
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FIGURE 2. (A–D) Examples of test tasks and how they were presented to the students on their laptop screen. (A,C) Practiced test tasks and (B,D) transfer test task.





Transfer Test Tasks

The layout of the transfer test tasks consisting of numerical- and formula tasks can be seen in Figures 2B,D. The rationale underlying why transfer test tasks constitute a more valid measure of exploring students’ conceptual understanding of mathematics is that the solution algorithm (e.g., y = 3x + 1) could have been memorized without any conceptual understanding. For a transfer test tasks the same algorithm cannot be used again, but the same general solution idea (e.g., multiplying the number of squares or rectangles with the number of matches needed for each new square/rectangle, and then adding the number of matches needed to complete the first square/rectangle) can be employed. We argue that knowing this idea of a general solution constitutes a local conceptual understanding of the task.

The Supplementary Material provides more examples of tasks.




Practice and Test Settings

In all three experiments, the practice sessions and test sessions were conducted in the students’ classroom. Both sets of tasks were presented to the students on their laptops. All tasks were solved individually; hence, no teacher or peer support was provided. The students were offered the use of a simple virtual calculator, which was displayed on their laptop screen. After submitting each answer during a practice session, the correct answer was shown to the students. However, no correct answers were provided to tasks that asked the students to construct formulas (i.e., the third CMR task). This was done to prevent students from using a provided formula instead of constructing a method/formula.

The software that was used for presenting practice and test tasks also checked and saved the answers automatically. All students received the same elements of the intervention, which due to the computer presentations, were delivered in the same manner to all the students, ensuring high fidelity (Horner et al., 2006). The Supplementary Material provides additional examples and descriptions of the tasks employed in this study. The three experiments did not include a pre-test due to the risk of an interaction between the pre-test and the learning conditions, making the students more or less responsive to manipulation (for a discussion, see Pasnak, 2018). Moreover, the students were unfamiliar with the mathematical tasks.



Cognitive Measurement

The cognitive measures included cognitive testing of a complex working memory task (operation span; Unsworth et al., 2005) and general fluid intelligence (Raven’s Advanced Progressive Matrices; Raven et al., 2003). Raven’s APM consists of 48 items, including 12 practice items. To capture individual differences and to prevent both ceiling and floor effects, we used the 12 practice items as well as the 36 original test items. The 12 practice items were validated against Raven’s Standard Progressive Matrices (Chiesi et al., 2012). These 48 test items were divided into 24 odd-numbered and 24 even-numbered items. Half of the students were randomly assigned to the odd-numbered items and half were assigned the even-numbered items. The total number of correct solutions was summed, providing a maximum score of 24. The task was self-paced over a maximum of 25 min. The countdown from 25 min was displayed in the upper-right corner of the screen. Initially, the students practiced on three items derived from Raven’s Standard Progressive Matrices. A measure of internal consistency (Cronbach’s alpha) was extracted from a larger pool of data, which encompassed the data obtained from the students in experiments 1 and 2, and was found to be 0.84.

In the operation span task students were asked to perform mathematical operations while retaining specific letters in their memory. After a sequence of mathematical operations and letters, they were asked to recall these letters in the same order as they were presented. The mathematical operations were self-paced (with an upper limit of 2.5 standard deviations above each individual average response time, extracted from an initial practice session). Each letter was presented after each mathematical operation and displayed for 800 ms. The letters to recall were presented in three sets of each set size. Every set size contained three to seven letters. The sum of all entirely recalled sets was used as the student’s WMC score. The measure of internal consistency revealed a Cronbach’s alpha of 0.83. Operation span was also self-paced, but without any time limit.

The operation span task and Raven’s matrices were combined into a composite score denoted as the cognitive proficiency (CP) index. The CP index score was based on a z-transformation of the operation span task performance and Raven’s matrices, thus forming the CP composite scores. These CP composite scores were then used to split (median split) students into lower and higher CP groups, and were used as a factor in the subsequent analyses across all three experiments. The students conducted the cognitive tests in their classrooms approximately 1 week before each of the three experiments.



Experiment 1


Participants

A priori power analysis with effect sizes (d = 0.73) from Jonsson et al. (2014) indicated that with an alpha of 0.05 and a statistical power of 0.80, a sample size of 61 students would obtain a statistical group difference. The students attended a large upper secondary school located in a municipality in a northern region of Sweden. Recruitment of students was conducted in class by the authors. One hundred and forty-four students were included in the experiment. Within each math track (basic, advanced) students were randomly assigned to engage in either the AR or CMR3 groups. Out of those, 137 students (63 boys, 74 girls) with a mean age of 17.13 years (SD = 0.62) were included and subsequently analyzed according to their natural science (advanced level), social science (basic level) math tracks and CP. All students spoke Swedish. Written informed consent was obtained from the students in accordance with the Helsinki declaration. The Regional Ethics Committee at Umeå University, Sweden, approved the study.



Cognitive Measures

The cognitive testing included measures of the working memory task (operation span; Unsworth et al., 2005) and general fluid intelligence (Raven’s matrices; Raven et al., 2003). The mean value for the operation span task was 31.52 (SD = 16.35) and 12.63 (SD = 5.10) for Raven’s matrices, respectively. The correlation between the operation span and the Raven’s matrices was found to be significant, r = 0.42, p < 0.001. A CP composite score was formed based on the operation span and Raven’s matrices scores, and was used to split the students into low and high CP groups; it was also used as a factor in the subsequent analyses.



Tasks

From the 28 designed tasks (see above), 14 practice tasks were randomly chosen for the practice session. The corresponding 14 practiced test tasks together with seven transfer test tasks were used during the test.



Procedure

In a between-group design, the students engaged in either the AR practice (N = 72), which involved solving 14 AR task sets (Figure 1A), or the CMR (N = 65) practice, which involved solving 14 CMR task sets (Figure 1B). The students had 4 min to conclude each of the 14 task sets.

One week later, a test was conducted in which students were asked to solve 14 practiced test tasks, formula and numerical tasks (Figures 2A,C) and seven transfer test tasks, formula and numerical tasks (Figures 2B,D). The first test task for both the practiced test tasks and the transfer test tasks was to write down the formula corresponding to the practice task with a time limit of 30 s. The second test task for both the practiced test tasks and the transfer test tasks was comprised of solving a numerical test task. The students were given 4 min to solve each task. The practiced test tasks were always presented before the transfer test tasks.



Statistical Analysis

A 2 (CP; low, high) × 2 (group; AR, CMR) × 2 (math tracks; basic, advanced) multivariate analysis of variance (MANOVA) was followed by univariate analyses of variance (ANOVAs). The proportions of correct responses on numerical (practiced, transfer) and formula (practiced, transfer) tasks were entered as the dependent variables. Cohens d, and partial eta square (ηp2) were used as index of effect sizes.





RESULTS

Table 1A displays mean values, standard deviations, skewness, kurtosis, and Cronbach’s alpha of proportion correct responses for the test tasks for both AR and CMR learning conditions. Separate independent t-tests revealed that there were no significant differences between students in the AR and CMR learning conditions for operation span, t(135) = 0.48, p = 63, d = 0.08 and for the Raven’s matrices, t(135) = 0.12, p = 0.90, d = 0.02, respectively, showing that these groups were equal with respect to both complex working memory and fluid intelligence. Moreover, a subsequent analysis (independent t-test) of the CP composite score dividing the students into high and low CP groups showed that they could be considered to be cognitively separated, t(135) = 15.71, p < 0.001, d = 2.68.



TABLE 1A. Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning conditions, respectively.


[image: Table 1A]

Table 1B display proportion correct responses for the test tasks divided according to their CP level. The statistical analyses confirmed that the students in the CMR learning condition outperformed those in the AR learning condition, F(4,126) = 4.42, p = 0.002, Wilk’s Λ = 0.40, ηp2 = 0.12. Follow-up ANOVAs for each dependent variable were significant, practiced test task formula, F(1,129) = 15.83, p < 0.001, ηp2 = 0.10; practiced test task numerical, F(1,129) = 12.35, p = 0.001, ηp2 = 0.09; transfer test task formula, F(1,129) = 8.83, p = 0.04, ηp2 = 0.06; and transfer test task numerical, F(1,129) = 5.05, p = 0.03, ηp2 = 0.04. An effect of CP was also obtained, F(4,126) = 7.71, p < 0.001, Wilk’s Λ = 0.80, ηp2 = 0.20, showing that the more cognitively proficient students outperformed those who were less proficient. Follow-up ANOVAs for each dependent variable revealed significant univariate effects of CP for the practiced test task formula, F(1,129) = 12.35, p < 0.001, ηp2 = 0.09; the practiced test task numerical, F(1,129) = 25.72, p < 0.001, ηp2 = 0.17; the transfer test task formula, F(1,129) = 22.63, p < 0.001, ηp2 = 0.15; and the transfer test task numerical, F(1,129) = 22.46, p < 0.01, ηp2 = 0.15. However, no multivariate main effects of math tracks and no multivariate interactions were obtained, with all p’s > 0.10.



TABLE 1B. Mean proportion correct response (M) and standard deviations (SD) for AR and CMR learning conditions across low and high CP groups.
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DISCUSSION

With respect to all four dependent variables, the analyses showed that students practicing with CMR had superior results on the subsequent test 1 week later than students practicing with AR (confirming hypotheses 1 and 2) and that the more cognitively proficient students outperformed their less cognitively proficient counterparts, independent of group (confirming hypothesis 3). Although the natural science students performed, on average, better than social science students on all four dependent variables, no significant main effect was observed for math tracks (disconfirming hypothesis 4).


Experiment 2

The same hypotheses as in experiment 1 were posed in experiment 2. However, as pointed out above, there is a higher risk of non-equivalent group bias when using a between-subject design, and a simpler test format could challenge the differential effects found in experiment 1 (CMR > AR). It was therefore decided that experiment 2 should employ a within-subject design and use MC questions as a test format instead of short answers.


Participants

A priori power analysis based on a within-subjects pilot study (N = 20) indicated that with an alpha of 0.05 and a statistical power of 0.80, a sample size of 50 students would obtain a statistical group difference. The students were from a larger pool of students, of which 82 students were randomly allocated to a functional Magnetic Resonance Imaging (fMRI) study, and the remaining 51 students participated in experiment 2. An independent t-test revealed no differences concerning age, general fluid intelligence (Raven’s matrices), or WMC (operation span), with p-values > 0.37. The separate fMRI experiment is not reported here. Experiment 2 included 51 students (27 girls, 24 boys) from natural science and social science programs in three upper secondary schools located in a municipality in a northern region of Sweden with a mean age of 18.13 years (SD = 0.24). Recruitment of students was conducted in class by the authors, at each school. The natural science students were enrolled in more advanced math track compared with the Social science students; as in experiment 1, math tracks (basic, advanced) were subsequently entered as a factor in the analyses.



Cognitive Measures

As in experiment 1, the cognitive testing included operation span and Raven’s matrices. The mean values and standard deviations of the operation span and Raven’s matrices were similar to those in experiment 1, for the operation span task (M = 38.27, SD = 19.10) and Ravens matrices (M = 14.47, SD = 5.34), respectively. The correlation between operation span and Raven’s matrices was found to be significant, with r = 0.52 and p < 0.001. A CP composite score was formed based on the operation span and Raven’s matrices scores. The CP score was used to split the students into a low CP group and a high CP group, and was also used as a factor in the subsequent analyses.



Tasks

In a within-subject design, each student practice with 12 AR task sets and 12 CMR task sets. The corresponding 24 practice test tasks, together with eight transfer test tasks, were used as test tasks.



Procedure

In this within-subject design, the students first practiced with 12 AR task sets. After a break of a few hours, they then practiced with 12 CMR task sets. This order was chosen to avoid carry-over effects from CMR tasks to AR tasks. The rationale was that starting with CMR tasks would reveal the underlying manipulation, which the students could then use to solve the AR tasks. Hence, constructing the solution without using the provided formula is the critical factor in the manipulation. To prevent item effects in which some tasks were more suitable to be designed as AR or CMR tasks, the tasks that were, respectively, assigned to be CMR and AR tasks were counterbalanced. The students were given 4 min to conclude each of the 12 task sets.

One week later, the students were asked to solve 24 randomly presented practiced test tasks (albeit with different numbers than before), of which 12 had been practiced as CMR tasks and 12 as AR tasks. These tasks were followed by eight transfer test tasks.



Statistical Analyses

A mixed-design ANOVA was conducted with learning condition (AR and CMR) and task type (practiced and transfer) as the within-subject factors and CP (low and high) and math tracks (basic and advanced) as the between-subject factors. The proportions of correct responses on practiced test tasks and transfer test tasks were entered as the dependent variables. Cohens d and partial eta square (ηp2) were used as index of effect sizes. Although a within-subject design was used, the more cognitively proficient students, who are likely to have better metacognitive ability (see Desoete and De Craene, 2019 for an overview), could potentially make use of constructive matching by comparing a possible solution with the response alternatives, response elimination by determining which answer is more likely, or of guessing (Arendasy and Sommer, 2013; see also Gonthier and Roulin, 2020). Therefore, the analysis was corrected using the formula FS = R – W/C – 1, where FS = formula score; R = number of items/questions answered correctly; W = number of items/questions answered incorrectly; and C = number of choices per item/question (e.g., Diamond and Evans, 1973; Stenlund et al., 2014).





RESULTS

Table 2A displays the mean values of proportion correct response (not corrected for guessing), standard errors, and psychometric properties of skewness, kurtosis, and Cronbach’s alpha for the test tasks. An independent t-test of the CP composite score dividing the students into high CP groups and low CP groups showed that the students could be considered to be cognitively separated, t(49) = 12.14, p < 0.001. d = 3.40. The table shows that the mean values for CMR are higher than the corresponding values for AR learning condition for both the practiced test tasks and transfer test tasks. Table 2B display proportion correct responses (not corrected for guessing) for the test tasks divided according to their CP level. The statistical analysis corrected for guessing revealed significant within-subject effects of learning condition, with the CMR condition being superior to the AR condition, F(1,47) = 9.36, p = 0.004, Wilk’s Λ = 0.83, ηp2 = 0.17. However, there was no significant within-subject effect of task type, F(1,47) = 0.77, p = 0.38, Wilk’s Λ = 0.98, ηp2 = 0.012. Moreover, there was no significant between-subject effects of CP, F(1,47) = 0.23, p = 0.64, ηp2 = 0.004, or of math tracks, F(1,47) = 0.84, p = 0.36, ηp22 = 0.005, and there were no interaction effects (p’s > 0.67).



TABLE 2A. Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning conditions, respectively.
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TABLE 2B. Mean proportion correct response (M) and standard deviations (SD) for AR and CMR learning conditions across low and high CP groups.
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The non-significant effect of CP was rather surprising; therefore, it was decided to re-run the analyses without the correction formula. The analyses again revealed a significant within-subject effect of learning condition, with the CMR condition being superior to the AR condition, F(1,47) = 7.80, p = 0.008, Wilk’s Λ = 0.85, ηp2 = 0.14. Again no significant within-subject effects from task type, F(1,47) = 2.3, p = 0.13, Wilk’s Λ = 0.95, ηp2 = 0.02 or between-subject effect of math tracks, F(1,47) = 3.45, p = 0.07, ηp2 = 0.07 were detected. However, the between-subject effect of CP was now clearly significant, F(1,47) = 18.74, p < 0.001, ηp2 = 0.28. Moreover, a learning condition × CP interaction F(1,47) = 9.05, p = 0.004, Wilk’s Λ = 0.83 ηp2 = 0.16 was qualified by a learning condition × task type × CP interaction, F(1,47) = 8.10, p = 0.005, Wilk’s Λ = 0.84, ηp2 = 0.16. The three-way interaction was driven by students with a high CP performing better in the CMR learning condition than in the AR learning condition especially pronounced for the transfer test tasks. No other interaction effects were detected (p’s > 0.70).



DISCUSSION

With respect to both practiced test tasks and transfer test tasks, the analyses showed, as expected, that students who practiced with CMR had superior results on the subsequent tests 1 week later compared to the students who practiced with AR (confirming hypothesis 1 and 2). In comparison with experiment 1, experiment 2 showed notably higher performance levels, which most likely reflected the MC test format. Viewed in relation to previous studies of CMR (e.g., Jonsson et al., 2014) and the significant number of studies showing that educational attainments in math are intimately related to cognitive abilities (e.g., Adam and Hitch, 1997; Andersson and Lyxell, 2007), the non-significant effect of CP was unexpected. The finding that task type was non-significant, albeit in the direction of the practiced test task being easier than the transfer test tasks was also somewhat unexpected. It is possible that the eight transfer test tasks (four AR and four CMR) may have been too few to build reliable statistics. Although no significant effect was obtained for math tracks, the natural science students (advanced math track) performed better than the social science students (basic math track) on average; however, this trend did not reach statistical significance (disconfirming hypothesis 4). After the unexpected non-significant effect of CP, the analysis was re-run without the correction formula. The analysis revealed a main effect of CP (confirming hypothesis 3) and a learning condition × CP interaction that was qualified by a learning condition × task type × CP interaction. The three-way interaction indicates that cognitively stronger students could utilize response elimination or successful guessing in subsequent MC tests more effectively than their lower CP counterparts, especially for the transfer test tasks.

This design, in which the CMR practice tasks were presented shortly after the AR tasks, may have introduced a recency effect and thus facilitated the test performance more for CMR than for AR tasks. However, the CMR practice session contained 12 different task sets, and each new task set was a potential distractor for the previous task sets. Moreover, between the learning session and subsequent test 1 week later, the students attended their regular classes. These activities, viewed in conjunction with the well-known fact that the recency effect is rather transitory (Koppenaal and Glanzer, 1990) and that recall is severely disrupted even by unrelated in-between cognitive activities (Glanzer and Cunitz, 1966; Kuhn et al., 2018), probably eliminated the risk of recency effects. In experiment 2, the total number of test tasks was 32 (24 practiced test tasks and eight transfer test tasks), and some students complained that there were too many tasks, which may have affected their performance, potentially the cognitively more proficient students were less affected by the large number test tasks.


Experiment 3

In experiment 3, the same hypotheses were posed as in experiments 1 and 2. However, as pointed out above, the more cognitively proficient students were potentially less affected by fatigue and gained more from using MC questions as a test format. Therefore, it was decided that experiment 3 should retain the within-subject design but use only transfer test tasks. Moreover, we reintroduced written answers as a response mode to prevent processes of constructive matching and response elimination. To reduce a potential, but unlikely, recency effect, the presentation order for a subsample was reversed, with CMR tasks being presented before AR tasks.


Participants

Experiment 3 included 82 students. The average age of participants was 17.35 years (SD = 0.66), whereof 35 were girls, and 47 boys. The participants were from two upper secondary schools located in a municipality in a northern region of Sweden. Recruitment of students was conducted in class by the authors, at each school. The students were divided into two math tracks. The first was a mathematical track that included year 3 technical students and year 2 natural science students (advanced math tracks); these students were regarded by their schoolteachers as approximately equal in math skill background. The second math track consisted of year 1 natural science students and year 2 social science students (basic math track); these students were also regarded as approximately equal in math skill background. The students were subsequently analyzed according to their math tracks.



Cognitive Measures

The cognitive tests were the same as in experiments 1 and 2. The mean values and standard deviations of the operation span (M = 36.78, SD = 16.07) and Raven’s matrices (M = 14.33, SD = 4.35) were similar to those from experiments 1 and 2. The correlation between operation span and Raven’s matrices was found to be significant, with r = 0.40 and p < 0.001, and a CP composite score based on operation span and Raven’s matrices scores was again formed, used to split the students into a low CP group and a high CP group, and used as a factor in the subsequent analyses.



Tasks

The same practice tasks were used, as in experiment 2. In a within-subject design, the students practiced with 12 AR task sets and 12 CMR task sets, and 24 transfer test tasks were used during the test.



Procedure

The students practiced with the same tasks and setup as in experiment 2, with the exception that the order of presentation was reversed for a subset of students, with AR tasks being practiced before CMR tasks. The students had 4 min to conclude each of the 12 task sets during practice. One week later, the students were asked to solve 24 transfer test tasks. The students were given 130 s to solve each test task.



Statistical Analyses

The initial mixed-design ANOVA analysis, with learning condition (AR and CMR) as the within-subject factor and order of presentation as the between-subject variable and the proportion correct response as the dependent variable, investigated the potential presentation order × learning condition interaction. The analysis revealed that this interaction was non-significant, with F(1,80) = 0.22, p = 0.88, Wilk’s Λ = 0.10, ηp2 = 0.0004. Therefore, the presentation order was excluded from further analyses. Considering that the students differed in age (by approximately 1 year), we controlled for age by conducting a mixed-design analysis of covariance (ANCOVA) with learning condition (AR and CMR) as a within-subject factor and with CP (low and high) and math track (basic and advanced) as the between-subject factors. The proportion of correct responses on the transfer test tasks was entered as the dependent variable, and age was used as a covariate. Cohens d and partial eta square (ηp2) were used as index of effect sizes.





RESULTS

Table 3A displays the mean values, standard deviations, skewness, kurtosis, and Cronbach’s alpha for the test tasks. An independent t-test of the CP composite score used to divide the students into a high CP group and a low CP group showed that the students could be considered as cognitively separated, t(80) = 12.88, p < 0.001, d = 2.84. The table shows that practicing with the CMR tasks was superior to practicing with the AR tasks. Table 3B display proportion correct responses for the transfer test tasks divided according to their CP level. The statistical analysis confirmed a within-subject effect of learning condition, F(1,77) = 20.88, p < 0.001, Wilk’s Λ = 0.78, ηp2 = 0.21. The analysis also revealed a between-subject effect of CP, F(1,76) = 21.50, p < 0.001, ηp2 = 0.22. However, no between-subject effect of math tracks and no interaction effects were obtained, p’s > 0.15.



TABLE 3A. Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning conditions, respectively.


[image: Table 3A]



TABLE 3B. Mean proportion correct response (M) and standard deviations (SD) for AR and CMR learning conditions across low and high CP groups.
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DISCUSSION

The findings from experiment 3 were in line with those from the previous experiments, providing evidence that practicing with CMR tasks was superior to practicing with AR tasks (confirming hypotheses 1 and 2). As expected, the analyses showed that the more cognitively proficient students outperformed those who were less cognitively proficient (confirming hypothesis 3). Again, no significant effect was obtained for math tracks (again disconfirming hypothesis 4).



GENERAL DISCUSSION

This study contrasted CMR with AR across three experiments encompassing 270 students. It was hypothesized that practicing with CMR leads to better performances than practicing with AR on practiced test tasks and transfer test tasks (hypotheses 1 and 2). Experiments 1 and 2 included both practiced test tasks and transfer test tasks, while experiment 3 focused exclusively on transfer test tasks. The practiced test tasks were identical to the tasks that the students had practiced (albeit with different numbers). The transfer test tasks were different from the practice tasks, but they shared an underlying solution idea. To solve the transfer test tasks, the students had to rely on relevant knowledge (a solution idea) acquired during their practice, which is critical in mathematics. If a student has no solution idea to rely on, the transfer test tasks required the student to construct the method from scratch.

Moreover, this study hypothesized that the more cognitively proficient students would outperform those who were less cognitively proficient (hypothesis 3), independent of learning conditions. The upper secondary students were from different student programs with different mathematical backgrounds (i.e., basic and advanced math tracks), which was entered as a factor in the analyses. It was expected that those enrolled in a more advanced math track would outperform those enrolled in a basic math track (hypothesis 4).

Overall, the results confirmed hypotheses 1–3. However, no effects of math tracks were obtained, disconfirming hypothesis 4. Below, these hypotheses are discussed in detail.


Hypotheses 1 and 2

The analysis of both the practiced test tasks in experiment 1 followed the setup of Jonsson et al. (2014), in which the dependent variables included trying to remember specific formulas and solving numerical practiced test tasks. Moreover, experiment 1 also went beyond Jonsson et al. (2014) and added transfer test tasks. The results of experiment 1 were in line with those of Jonsson et al. (2014): Practicing with CMR tasks lead to significantly better performance on the practiced test tasks than practicing with AR tasks. Experiment 1 also found that practicing with CMR lead to significantly better performance on transfer test tasks. In experiment 2, we turned to a within-subject design, with the aim of removing potential non-equivalent group bias, and introduced MC questions as a test format, thereby challenging hypotheses 1 and 2 by using an easier test format. Again, significant CMR > AR effects were detected for both practiced test tasks and transfer test tasks. However, the fact that only four AR and four CMR transfer test tasks were used in experiment 2, the results could be questioned in terms of building adequate statistics. Therefore, using a within-subject design, experiment 3 focused solely on transfer test tasks, which increased the number of transfer test tasks and reduced the total number of tasks and, thus, the risk of fatigue. We also reintroduced written answers as a response mode to prevent processes of response elimination and guessing. The analysis of experiment 3 revealed that practicing with CMR tasks had a more beneficial effect than practicing with AR tasks on the transfer test tasks, again confirming hypothesis 2.



Hypothesis 3

When a short answer format was used, as in experiments 1 and 3, the effects of CP were clear, confirming previous studies and hypothesis 3. The second analysis in experiment 2 also confirmed hypothesis 3. The analysis showed that all participants improved their performance; hence the proportion correct was higher in experiment 2 than in experiments 1 and 3 (Tables 1–3). This performance was most likely due to the MC response mode. The second analysis indicates that the cognitively more proficient students could in addition, use response elimination or successful guessing more effective (Desoete and De Craene, 2019), thereby outperforming the cognitively less proficient. However, when the analysis was corrected for guessing (the first analysis), the benefits of using response elimination or guessing were removed, but the effects of the easier MC response mode remained, which even out the difference between the CP groups and thereby also removed the effect of CP.



Hypothesis 4

The non-significant effect of mathematical track was somewhat surprising, and disconfirmed hypothesis 4. A plausible interpretation is that the students enrolled in more advanced math tracks, which involve (according to the curriculum) better mathematical training, could not make use of their acquired mathematical knowledge when solving the novel experimental test tasks; if this interpretation is correct, it would indicate that the assumption of task novelty was also correct.

Overall, this study provides support for the argument that CMR facilitates learning to a greater degree than AR and confirms the results of previous studies (Jonsson et al., 2014, 2016; Norqvist et al., 2019). Although the effect sizes were rather small, they must be viewed in relation to the short interventions that the students went through. We argue that when students are practicing with CMR tasks, they are “forced” to pay attention to the intrinsic and relevant mathematical components, which develops their conceptual understanding. The effects on transfer test tasks indicate that practicing with CMR tasks—in comparison with practicing with AR tasks—facilitates students’ ability to transfer their knowledge to a greater extent; that is, they can better transfer their solution idea from the practice task to a different task sharing the same underlying solution idea (transfer test tasks). This argument is in line with the findings of the Norqvist et al. (2019) eye-tracking study: When students practiced with AR tasks, they disregarded critical information that could be used to build a more in-depth understanding; in contrast, students that practiced with CMR tasks focused on critical information more frequently. Practice with CMR is most likely associated with more effortful struggle—an argument that shares similarities with the framework of “ill-structured tasks” (Kapur, 2008, 2010). In the ill-structured task approach, students are provided with tasks for which no method or procedure on how to solve the task is available and for which multiple solution paths may exist. Students are required to (try to) solve the ill-structured task by constructing their own methods before the teacher provides instructions on the mathematics to be learned (VanLehn et al., 2003; Kapur, 2010). Those studies showed that the struggle of creating methods was especially beneficial for developing a conceptual understanding of the task, as demonstrated by significantly better performance on transfer test tasks (e.g., Kapur, 2010, 2011). It is argued that the task complexity inherent in the ill-defined tasks was a key factor that helped students to create structures that facilitated their conceptual understanding of mathematics. Furthermore, studies have shown that the more solutions students generate on their own, the better the students’ test performance becomes, even when their methods do not fully solve the practice task (Kapur, 2014). In the CMR tasks used in the present study, no instructions were given. Similar to the ill-structured approach, such tasks may identify knowledge gaps and enable (or “force”) students to search for and perceive in-depth structural problem features (Newman and DeCaro, 2019). Although an excessively high cognitive load may hamper learning, a desirable amount of cognitive load in terms of struggle (in a positive sense) with mathematics may be beneficial for developing conceptual understanding (Hiebert and Grouws, 2007). In the present study, such development of students’ conceptual understanding was seen in the form of better performance on the later test as a function of practicing with CMR tasks relative to AR tasks.

This study provides support for the theoretical link between the learning process using CMR, performance, and conceptual understanding. The results also underscore that although CP was associated with better performance, it did not interact with the learning condition. Hence, both cognitively stronger and cognitively weaker students benefited from using CMR relative to using AR. The theoretical framework (Lithner, 2008, 2017) could potentially be updated with an individual differences perspective with respect to cognitive prerequisites and their implication for the learning process. With respect to the non-significant effect of math tracks, the assumption of task novelty seems to be correct. Moreover, the non-significant effect of math tracks also indicates that students can gain conceptual understanding by using CMR even with tasks for which the students lack or have negligible pre-knowledge, and among students with “only” basic mathematical background.

The results from this study could be discussed from a self-explanation perspective (for an overview, see Rittle-Johnson et al., 2017). According to Rittle-Johnson et al. (2017), the mechanism underlying self-explanation is the integration of new information with previous knowledge. This involves guiding students’ attention to the structural features—rather than the surface features—of the to-be-learned material, and can aid comprehension and transfer. In the CMR assumption, predictive arguments supporting strategy choice and verification arguments explaining why the strategy implementation and conclusions are “true or plausible” are regarded as critical features.

In sum, in the CMR/AR, ill-structured tasks, and self-explanation approaches, the critical aspects are how tasks are designed and how mathematical reasoning is supported. Moreover, in order to move beyond textbooks’ step-by-step solutions and understand the underlying ideas, students need to face (in a positive sense) mathematical struggle activities. Nevertheless, it is not likely that students will take on such effort by themselves. The framework of CMR and ill-structured tasks removes the task-solving methods and requires students to find an underlying idea and to create solutions on their own. Although CMR task solving is more cognitively demanding during practice than AR task solving, it helps the learner to focus on relevant information for solving the task. Moreover, similar to the self-explanation approach, the CMR approach guides students to the structural features that are critical for aiding comprehension.



Limitations

A limitation in the present study is that experiment 3 did not include any practiced test tasks. However, the results from experiments 1 and 2 indicate that using practiced test tasks in experiment 3 would have yielded the same conclusions as in experiments 1 and 2. A further potential limitation is that the presentation format differed in experiment 2 in comparison with experiments 1 and 3. However, it could in fact be argued that this is a strength of the study: Despite the different response formats for the test tasks, the experiments yielded similar results, with CMR consistently outperforming AR. Although the experiments were based on convenience samples, which could potentially narrow the external validity, the students were from four different upper secondary schools, which provided some heterogeneity. The results can also be discussed from the perspective of Hawthorne effects: The awareness of knowing that they were part of a study may have affected the students’ performance, and—although this is unlikely—the findings may not generalize to a regular setting when the researcher is not present.

Moreover, there were no pre-test measures in any of the experiments, as it was argued that a pre-test could make the students more or less responsive to the manipulation (see Pasnak, 2018, for a discussion). On the other hand, pre-tests could have provided insight into how comprehension increased from the pre- to a post-test. In experiment 1, pre-tests would have provided a baseline of student performance, which could have been used to evaluate initial group differences.



Implications and Future Research

The results from the present and previous studies (e.g., Jonsson et al., 2014, 2016; Norqvist et al., 2019) have implications for school settings, as AR tasks (as opposed to CMR tasks) are commonly used in teaching approaches and textbooks (Stacey and Vincent, 2009; Denisse et al., 2012; Shield and Dole, 2013; Boesen et al., 2014; Jäder et al., 2019), but as argued do not promote optimal student learning. We argue that an eclectic perspective in which validated methods that emphasize mathematical struggles—such as task solving using CMR, ill-structured tasks, and self-explanations—should be a part of the mathematical curriculum, in conjunction with approaches that reduce cognitive load, such as worked examples. In future studies, it would be interesting not only to contrast CMR with other approaches, but also to investigate how to combine the CMR approach with, for example, self-explanation (Rittle-Johnson et al., 2017) and, potentially, with worked examples as well (Sweller et al., 2011). Another potential combination could involve retrieval practice, which is a cognitive-based learning strategy based on self-testing. At first glance, retrieval practice is very different from using CMR. Using CMR emphasizes the construction of solutions, while retrieval practice strengthens memory consolidation through the process of retrieving information from long-term memory. For example, retrieving the definition of working memory without the support of written text will enhance one’s ability to remember the definition across long-term retention intervals (Wiklund-Hörnqvist et al., 2014). The performance difference between retrieval practice and other ways of attaining information—most commonly re-reading—is denoted as the “testing effect.” The testing effect is supported by both behavioral and functional fMRI evidence (for overviews, see Dunlosky et al., 2013; van den Broek et al., 2016; Adesope et al., 2017; Antony et al., 2017; Moreira et al., 2019; Jonsson et al., 2020). Research that currently underway shows that measures of brain activity following the testing effect (retrieval practice > study) and the “CMR effect” (CMR > AR) indicate that the same brain areas are activated. It is possible that by adding retrieval practice after formulas or procedures have been established by using CMR, the memory strength of specific formulas may be enhanced. Future studies are planned to pursue this reasoning.

Moreover, as stated in the limitation, the experiments in the present study were based on convenience samples. A purely randomized sampling or a stratified sampling would be preferable in future studies. It is also unclear whether the CMR approach is potent among students with special needs, although the non-significant effects of math tracks found in the present study were encouraging; future studies should pursue this question.
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Research has identified two core difficulties many students have with fractions: first, they often struggle with processing fraction magnitudes, and second, they rely on natural number concepts in fraction problems [“Natural Number Bias” (NNB)]. Yet, the relation between these two difficulties is not well-understood. Moreover, while most studies of the NNB relied on analyses of whole samples, there is empirical evidence that the occurrence of the NNB differs between student subgroups. In the present study, we investigate individual students’ profiles of the occurrence of the NNB and their ability to process fraction magnitude, using a dynamic assessment that utilizes continuous diagrams on touchscreen devices. We analyze data of 234 low-achieving 6th-grade students from Germany who completed a symbolic fraction comparison task, and a fraction magnitude estimation task with continuous circle and tape diagrams. A cluster analysis on the comparison task revealed three distinct clusters: a Typical Bias cluster (better performance on symbolic fraction comparison items congruent to natural number-based reasoning), a Reverse Bias cluster (better performance on items incongruent to natural number-based reasoning), and a No Bias cluster (similar performance on congruent and incongruent items). Only students in the No Bias cluster but not students in the other clusters demonstrated a distance effect in symbolic fraction comparison, suggesting fraction magnitude processing. Linear mixed models on the percent absolute error in the magnitude estimation task revealed significantly lower percent absolute error for students in the No Bias cluster compared to students in the other two clusters. Students in the No Bias cluster were significantly slower to solve both fraction comparison and fraction magnitude estimation tasks than students in the other clusters. The results of this study suggest that the occurrence of the natural number bias and the ability to process fraction magnitude are closely related. The continuous representations used in our digital assessment tools appeared to be suitable for assessing both the natural number bias and fraction magnitude processing.
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INTRODUCTION

Plenty of research has shown that many students struggle with learning of rational numbers, particularly of fractions (e.g., Behr et al., 1983; Siegler et al., 2011; Lortie-Forgues et al., 2015). Two major difficulties seem to be that students (1) are not sufficiently able to understand and process fraction magnitudes, and (2) rely on natural number principles when reasoning about rational numbers, causing Natural Number Bias (see Ni and Zhou, 2005 and see section “The Natural Number Bias as a Source of Individual Errors in Solving Fraction Problems”). While both difficulties have been discussed in the literature, there is still little evidence about the relation between the two. Moreover, most previous studies have used whole-sample analyses to study students’ difficulties, while research about individual students’ profiles is scarce (but see Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte et al., 2019). Another issue is that the tasks that have been used to assess fraction magnitude often allow the use of alternative strategies (e.g., number line estimation task) that may not solely require processing of fraction magnitude, or they actually require processing the magnitudes of two fractions instead of one fraction (e.g., fraction comparison task). Finally, performance on the fraction magnitude task may be affected by the presence of a natural number bias. The present study assesses individual students’ profiles (i.e., student subgroups) of natural number bias and investigates how these profiles are related to students’ ability of processing fraction magnitude.


The Natural Number Bias as a Source of Individual Errors in Solving Fraction Problems

Before students begin learning about rational numbers and fractions, they have acquired intense knowledge about natural numbers, both in informal contexts and in school contexts. Although natural numbers are—from a formal mathematical perspective—a subset of rational numbers, there are several properties that apply within the domain of natural numbers but not within the more general domain of rational numbers. Accordingly, relying on properties that apply within the natural numbers but not rational numbers in solving fraction problems can lead to systematic errors, a phenomenon that has been called Natural Number Bias (NNB, also referred to as Whole Number Bias; see Ni and Zhou, 2005). Researchers have studied the NNB in various dimensions, including the dimensions of representation, operation, density, and size (for an overview, see, for instance, Prediger, 2008; Van Hoof et al., 2015, 2018; Obersteiner et al., 2019a, c): for example, each natural number has a unique symbolic representation, while each rational number has infinitely many symbolic representations (e.g., 1/2 = 2/4 = 3/6 = 0.5, etc.). An example regarding operation is that while multiplying natural numbers always makes numbers bigger, this is not generally true for rational numbers. Regarding density, although there are only infinitely many numbers between any two natural numbers, and every natural number has a unique predecessors and successors, there are infinitely many numbers between any two rational numbers, and rational numbers do not have predecessors or successors.

In this study, we focus on the dimension of size or magnitude. Processing the numerical magnitude of a natural number is fairly straightforward considering the base-ten system, and comparison tasks can be solved with digit-by-digit comparison strategies. For example, 36 is larger than 28 because 3 (tens) is larger than 2 (tens). In contrast, processing the numerical magnitude of a fraction requires reasoning about the numerical relation between two natural numbers, and considering this relationship as another (rational) number. Comparing two fractions requires comparison of two such relationships and considering each fraction as one (holistic) number rather than considering the numerator and denominator as two distinct numbers. Moreover, these comparisons can be counterintuitive, because the fraction with the larger natural numbers is not necessarily the larger fraction (e.g., 7/8 > 2/3) but can also be the smaller fraction (e.g., 3/5 < 2/3). When comparing two fractions, students often rely on simple comparisons of natural number components—the numerators and the denominators—and do not consider the actual fraction magnitudes. Such natural number-based reasoning would lead to correct responses in problems that are “congruent” (i.e., in which the larger fraction is composed of the larger natural numbers), and to incorrect responses in problems that are “incongruent” (i.e., in which the larger fraction is composed of the smaller natural numbers). Many studies found that people are indeed more accurate (e.g., Vamvakoussi and Vosniadou, 2004) and/or faster (e.g., Van Hoof et al., 2013) to solve fraction problems that are congruent than problems that are incongruent. This NNB in fraction comparison seems to be very persistent. It has been documented in younger and older students (e.g., Van Hoof et al., 2018) as well as in college students (e.g., DeWolf and Vosniadou, 2011), university students (Gómez et al., 2017) and—in some types of problems—even in academic mathematicians (Obersteiner et al., 2013).

In most earlier studies, the NNB was assessed as the average performance difference between congruent and incongruent problems across the whole sample. Such an analysis may mask individual profiles that may deviate from the pattern of performance found on the group level. In fact, studies that did use a person-centered approach identified individual differences in bias patterns (Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte et al., 2019): while a fairly large number of students showed a strong typical NNB, i.e., better performance on congruent than incongruent items (Gómez and Dartnell, 2019), other students showed no NNB or even a reverse NNB, i.e., better performance in incongruent than congruent comparison items. Students showing a reverse NNB seem to consider the fractions with smaller components to be the larger fraction. An interpretation for that pattern is that these students have a partial—yet still incomplete—understanding of fraction magnitude. As Rinne et al. (2017, p. 14) argue, these students may “recognize that larger numbers can somehow lead to smaller fraction magnitudes, but they do not fully understand the relationship between numerator and denominator.”

González-Forte et al. (2019) showed that profiles derived from accuracy and response time measures (as reported in the studies above) were highly consistent with students’ verbal explanations they gave in interviews when asked to compare fractions. This suggests that quantitative person-oriented statistical approaches may also be apt for characterizing individual students’ reasoning.

While the studies mentioned above have identified individual differences in NNB profiles, Rinne et al. (2017) studied how these profiles develop within individuals over time. In their longitudinal study, they found that some students changed their bias patterns between grade four and grade six. Most students shifted from a typical NNB to either a reverse NNB or normative, correct reasoning. The authors suggest that NNB patterns—the typical and the reverse—might be usual steps within a learning trajectory from natural numbers to fraction concepts.

In sum, person-centered approaches are necessary to identify meaningful individual differences in NNB patterns. A related—and still open—question is to what extent students with different bias patterns also differ in terms of magnitude processing.



Assessing Fraction Magnitude Processing

There are multiple ways to interpret the meaning of a fraction, for instance, as a ratio, part of a whole, division, or measurement (e.g., Behr et al., 1983). Fraction magnitude refers to the aspect that a fraction represents one numerical value. To assess whether people are able to activate fraction magnitude, researchers have sought to use tasks that actually require fraction magnitude processing. Two frequently used tasks are symbolic fraction magnitude comparison and number line estimation (e.g., Schneider and Siegler, 2010; Schneider et al., 2018a). Performance on both of these tasks was found to correlate with mathematical competence (Schneider et al., 2018b, see also Schneider et al., 2018a for a detailed review of number line estimation regarding fractions, and Schneider et al., 2017 for a detailed review of numerical magnitude processing). Yet, to our knowledge, research comparing the performance between symbolic magnitude comparison and number line estimation regarding fractions is sparse (Schneider et al., 2018b; but see Hamdan and Gunderson, 2017, for evidence of a transfer between number line training and fraction comparison task, suggesting that there is a relation between both tasks at a whole population level).

In the first frequently-used task to assess fraction magnitude processing—symbolic fraction comparison—people are asked to decide which of two fractions represents the larger number. The distance effect is the effect that the smaller the numerical distance between the two to-be-compared fractions, the more difficult the item. The size of this effect is often used as an index of magnitude processing (see Schneider et al., 2017). There is empirical evidence that such a distance effect may be present both regarding accuracy (e.g., Sprute and Temple, 2011) and response times (e.g., Meert et al., 2010). However, empirical evidence is still missing whether a distance effect is present in students showing an NNB. When utilizing symbolic fraction comparison to assess fraction magnitude processing, the following issues should be considered.

As the comparison task involves two fractions by design, the use of certain comparison strategies such as benchmarking may make a distance effect less likely to occur. Benchmarking refers to the use of transitive thinking to compare the two fractions of interest to a third number (Post et al., 1986; Clarke and Roche, 2009). When comparing the size of one proper fraction (those smaller than 1, e.g., 8/9) and one improper fraction (those larger than one, e.g., 7/6), one may easily compare both fractions to 1 (i.e., use a transitive benchmarking to 1 strategy) by simply noticing whether the numerator or the denominator of the respective fraction is bigger, instead of directly comparing the two fraction magnitudes. Although such a strategy relies on fraction magnitude processing to some extent (i.e., noticing that fractions are smaller or larger than 1) comparison items that afford benchmarking to 1 are probably easier to solve regardless of the distance between the two fractions. Thus, participants applying such a benchmarking to 1 strategy may rely on fraction magnitude processing and yet not show a distance effect.

Furthermore, the assumption that students activate fraction magnitudes in fraction comparison tasks may not hold for comparison tasks with common components (e.g., 5/8 vs. 3/8, or 4/9 vs. 4/7). In these tasks, students may rather rely on processing the natural number magnitudes of the non-common components (Obersteiner and Tumpek, 2016). This possible absence of fraction magnitude processing in items with common components may play an important role in distinguishing between students’ response patterns in comparing fractions with and without common components: for instance, Gómez and Dartnell (2019) found that there are students who show a persistent typical NNB when comparing fractions with common components (e.g., 4/15 vs. 4/6) but no NNB when comparing fractions without common components (e.g., 5/6 vs. 8/19). Thus, it may be argued that those students process fraction magnitude only when the fractions do not have common components. This suggests that fraction magnitude processing in symbolic fraction comparison might be dependent on specific problem features (see Obersteiner et al., 2020).

Most important for the present study, it seems possible that students showing a persistent NNB might not use fraction magnitude processing when comparing two fractions, since they do not view fractions as holistic symbols but as distinct numbers in the specific task of symbolic magnitude comparison. This makes the assessment of fraction magnitude processing in students who show a persistent (typical or reverse) NNB a particular challenge: in these students, the absence of a distance effect in the fraction comparison task may suggest that they do not process fraction magnitude when comparing two fractions, but it does not answer the question to what extent they are at all able to process magnitudes of individual fractions. Assessing the extent of fraction magnitude processing in students with diverse NNB patterns (i.e., typical or reverse) is relevant because the study by Rinne et al. (2017) suggests that NNB patterns may go hand in hand with qualitatively different levels of understanding of fraction magnitudes. Therefore, different approaches seem necessary to assess the potentially gradual differences in fraction magnitude processing in low-achieving students that exhibit an NNB (whether typical or reverse). This motivates the use of tasks aiming at processing the magnitudes of single fractions.

The second frequently-used task to assess fraction magnitude processing is number line estimation. In this task, participants are asked to place fractions on an empty number line where only the start and end points but no other numbers are marked. Accordingly, number line estimation requires assessing the magnitude processing of one single fraction at a time. The relevant measure is the percent absolute error, which is the deviation between the student’s estimated position and the correct position of the given fraction divided by the length of the number line (see Schneider et al., 2018a).

Although number line estimation tasks have often been used in research, some researchers have argued that this task may also not be a pure measure of fraction magnitude. One reason is that number line estimation tasks can be solved by dividing the number line and counting the resulting pieces, a strategy that is not directly based on fraction magnitude (i.e., “fractions as measures,” see Kieren, 1976; Novillis-Larson, 1980; Bright et al., 1988; also referred to as “line segmentation,” see Schneider et al., 2018b). Another reason is that one can use strategies such as rounding, counting or proportional reasoning (Jeong et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015). On the other hand, one could argue that these latter strategies also require the processing of fraction magnitude to some extent (Schneider et al., 2018a).

Some of these issues may be overcome by using various visual representations that are more intuitive and less formal than number lines, such as circle and tape diagrams (e.g., Carraher, 1993). Such visual representations can be used in continuous or discretized forms. Continuous representations are diagrams with no given partition (e.g., continuous circle or tape diagram, Hoch et al., 2018b; see also Jeong et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015; DeWolf et al., 2015). Discretized representations are “subdivided into equal-sized units … to render them measurable by counting” (DeWolf et al., 2015, p. 128). Discretized representations do not seem to be appropriate to assess fraction magnitude processing because they are more likely to activate counting schemes and encourage people to “ignore the perceptual relation of the relevant quantities” (Jeong et al., 2007, p. 238). They may thus distract individuals from processing fraction magnitude (DeWolf et al., 2015). Continuous diagrams, on the other hand, do not allow for counting (Jeong et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015)—because there are no countable pieces—and may force students to rely more strongly on fraction magnitude. Visual representations may be presented in dynamic formats, for example, on touchscreen devices (Reinhold et al., 2020; see also Boyer et al., 2008), which allows students to respond with gestures (i.e., drag and drop, see section Magnitude Estimation Task). Compared to paper–pencil assessment, touchscreen devices may prevent students from using procedural part-whole strategies (e.g., calculating the angle of the segment in a circle diagram, or adding auxiliary lines to the representation) that do not rely on fraction magnitude processing (Reinhold, 2019).



The Present Study

In this study, we use a person-oriented approach to compare performance between (1) a symbolic fraction comparison task and (2) estimations of single fraction magnitudes.

We investigate individual profiles of NNB, and the interplay between an NNB and fraction magnitude processing. As assessing gradually different fraction magnitude processing in students showing a persistent NNB may be a particular challenge (see section “Assessing Fraction Magnitude Processing”), and neither one of those frequently-used tasks should be considered a pure measure of magnitude processing (Schneider et al., 2018b), we chose a research approach that involves two different types of assessment.

The study has two specific aims. The first aim is to replicate individual profiles of NNB in symbolic fraction comparison (typical bias, reverse bias, no bias; Rinne et al., 2017; see also Gómez and Dartnell, 2019; González-Forte et al., 2019) in low-achieving students shortly after they have been introduced to fractions in school. We expect to find clusters with typical NNB, with reverse NNB, and without an NNB. We also investigate the relationship between individual students’ NNB profiles and fraction magnitude processing assessed by the distance effect. We expect students without NNB to elicit a distance effect and students with NNB patterns not to elicit a distance effect, because the former students would be better able to process fractions magnitudes than the latter. The second aim is to explore the relationship between individual students’ NNB profiles and their fraction magnitude processing abilities utilizing continuous diagrams in a dynamic assessment on touchscreen devices. We expected to find differences in the percent absolute error between different NNB profiles with students showing no NNB demonstrating lower percent absolute error.



MATERIALS AND METHODS


Sample

The sample consisted of N = 234 6th-grade students (42% female) from 16 classrooms in eight German secondary schools. The schools were of type Hauptschule, which is the lowest school track of secondary school in the German school system. Students in this school track demonstrate below average performance at the end of primary school (i.e., grade 4) in mathematics, language, and science, and show typically low performance in secondary school mathematics (Götz et al., 2013; Sälzer et al., 2013; Reinhold et al., 2020). Thus, we expected to find patterns of NNB in the present sample of low-achieving students. The data was collected within the research project ALICE:fractions (Hoch et al., 2018a; Reinhold et al., 2020), 8 weeks after students received the first introduction to fraction magnitudes in school. Note that according to their curriculum, students had been formally introduced to fractions at the beginning of grade six only.



Material

We used two different scales, the fraction comparison task including both congruent and incongruent fraction pairs, and the magnitude estimation task featuring continuous diagrams.


Fraction Comparison Task

To solve the fraction comparison tasks students had to pick the larger of two fractions that were presented in symbolic representation (Figure 1). Since we expected students to have fairly low competencies with fractions, all fractions had one-digit numerators and one-digit denominators. There were nine items with congruent fraction pairs and 11 items with incongruent fraction pairs (see section “The Natural Number Bias as a Source of Individual Errors in Solving Fraction Problems”). Reliabilities for accuracy on both the congruent and the incongruent comparison scales were high (Cronbach’s αcon = 0.87, 95% CI [0.85,0.90], αinc = 0.94, 95% CI [0.92,0.95]). Items varied in the distance between the two fractions (Table 1), but there was no significant difference in mean distance between congruent (M = 0.31, SD = 0.32) and incongruent (M = 0.27, SD = 0.22) items, t(13.88) = –0.30, p = 0.77. Both the congruent and the incongruent scale contained items where either both fractions were proper (e.g., 2/5 vs. 5/7) or where one fraction was proper and the other fraction was improper (e.g., 2/3 vs. 5/4). Response Time (RT) was measured as the time between the item was displayed on the screen of a touchscreen device and the participant chose the fraction by tapping on the screen. Reliabilities for RTs were sufficiently high as well (αcon = 0.82, 95% CI [0.79,0.86] and αinc = 0.84, 95% CI [0.81,0.87]). All items are displayed in Table 1.
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FIGURE 1. Example fraction comparison task as displayed in the digital assessment environment. Original item in German, translated into English for the purpose of this article.



TABLE 1. Items used in the fraction comparison task.
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Magnitude Estimation Task

In the magnitude estimation task, students had to mark a fraction on a continuous visual representation, which was either a circle or a tape diagram (varying across the task, see Figure 2). Students hat to drag a colored segment from 0 to the desired value within the given representation using finger movement. There were 16 fractions, and each fraction was presented in both representation formats, resulting in a total of 32 items (Table 2). Both the order of the given diagram and the order of the 16 fractions, was randomized for each student. We measured the Percent Absolute Error (PAE) as the absolute deviation from the given value, and Response Time (RT) as the time between the item was displayed and the student pressed the “ok” button after marking the fraction.


[image: image]

FIGURE 2. Example magnitude estimation tasks as displayed in the digital assessment environment (top) circle diagram; (bottom) tape diagram. Original item in German, translated into English for the purpose of this article.



TABLE 2. Items used in the magnitude estimation task.
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Procedure

The responsible local education authority approved the study. School principals, classroom teachers, students and their parents were informed about the goal of the study and the procedure. They all gave informed consent. Participation for students was voluntary and without reimbursement.

Students were presented all tasks on a 10.5-inch iPad. All items had to be solved using the touchscreen with finger input. They were first presented the fraction comparison task, where they had to mark the larger fraction by touching it (Figure 1). After that, the students were presented the magnitude estimation tasks (Figure 2), first with circle diagrams and then with tape diagram, or in the reverse order (randomly assigned). Item order in all three assessments was randomized.

For each task, process data (i.e., task characteristics, student input, and response time) were recorded and saved on the iPad using WebStorage.



Data and Statistical Analyses

Because students’ off-task behavior generated outliers that may affect the results (Kovanoviæ et al., 2015), we preprocessed response time data (Goldhammer et al., 2014; Hoch et al., 2018a): response times that deviated more than two standard deviations from the mean of the corresponding task type (i.e., fraction comparison task and magnitude estimation task) were considered as outliers and were replaced by that bound (i.e., two standard deviations above or below the mean).

To achieve the first aim of this study, we applied a cluster analysis on the fraction comparison tasks based on three dimensions: the accuracy in incongruent tasks (ACCinc), the accuracy in congruent tasks (ACCcon), and the average response time (RT). As response time did not differ significantly between incongruent and congruent tasks on the student level, we used the combined average measure to reduce collinearity in the cluster analysis. Since cluster analysis is sensitive for outliers we used the logarithm of RT and standardized all three measures before clustering. We used a two-step clustering approach, utilizing hierarchical clustering with Ward’s method to identify the appropriate number of clusters according to the majority rule (Charrad et al., 2014). Clusters were then defined with the k-means algorithm (Sharma, 1996; Backhaus et al., 2018). We then used generalized linear mixed models (GLMMs) to estimate effects of congruency, distance, and item type (i.e., one fraction being improper vs. both fractions proper) on students’ probability to give correct responses in the fraction comparison task, for each cluster separately. In this specific case, GLMMs have several advantages over other statistical methods (e.g., handling of unbalanced designs, see Brauer and Curtin, 2018, and handling dichotomous data, see Anderson et al., 2010). The models contained fixed effects for the predictor variables Congruent (0 = incongruent, and 1 = congruent), Distance (numerical value representing the distance between the two given fractions in the item, centered at grand mean), and Type (0 = item contains two proper fractions, 1 = item contains one proper and one improper fraction). The models allowed for random intercepts for Students, Classrooms (to account for the nested data structure), and Items. We give estimates as log-odds which can be transformed to estimated probabilities for giving a correct response. As a consequence of the coding and centering, the Intercepts describe the estimated probability of getting a correct response from an average student within the cluster on an incongruent item of average difficulty that consists of two proper fractions with an average distance.

To achieve the second aim of this study, we firstly validated the circle and tape diagram scales as a single magnitude estimation scale by conducting a confirmatory factor analysis. Secondly, we compared the results from the magnitude estimation task between students belonging to different clusters—using both, percent absolute error and reaction time, as units of analyses. To that end, we used linear mixed models (LMMs) with the resulting Clusters as fixed effect and random intercepts for Students, Fractions, Task type (0 = circle diagram; 1 = tape diagram; to account for different representations), and Classrooms (to account for the nested data structure).

All data preprocessing and analyses were conducted in R (R Core Team, 2008). For cluster analysis, we used the NbClust package (Charrad et al., 2014) and the stats package (R Core Team, 2008). For confirmatory factor analysis, we used the lavaan package (Rosseel, 2012). For GLMMs and LMMs, we used the lme4 package (Bates et al., 2015), and for calculating post hoc Tuckey contrasts between the clusters, we used the multcomp package (Hothorn et al., 2008).



RESULTS


Identifying and Validating Different Student Profiles in Fraction Comparison

We were interested in individual profiles of NNB. The cluster analysis revealed three different profiles. A total of 12 out of 23 stopping rules (among them the Calinski-Harabasz stopping rule and the Silhouette plot) suggested a three-cluster structure, with other cluster structures suggested by only one to three stopping rules. As students are nested within classrooms, the relation between clusters and classrooms is of interest for interpreting the results. A chi-square test showed a significant relation between clusters and classrooms, X2(30, N = 254) = 57.79, p < 0.01. For that reason, we allowed for a Classroom random intercept in all GLMMs and LMMs to account for the nested data structure.

We describe those different clusters of students with regard to their absolute values on ACCinc, ACCcon, and RT. To illustrate the description, cluster centers for the three types of students are displayed in Table 3 and depicted in Figure 3.


TABLE 3. Cluster centers for the three clusters regarding fraction comparison.
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FIGURE 3. Cluster centers of the three Student Types, resulting from the cluster analysis of 254 students based on two solution rates and the logarithmized combined average time on task for students’ responses in items on the fraction comparison task.


Students in the Typical Bias cluster showed high accuracy in congruent items (M = 0.91) and low accuracy in incongruent items (M = 0.07) (Figure 3). One-sample t-tests against μ = 0.5 showed that both accuracy rates differed significantly from chance level (Table 3). In the GLMM model, the effect of congruency was significant, while distance and type were not significant (Table 4), suggesting that students in this cluster relied on natural number thinking and did not process fraction magnitudes. Relative to the total sample, students in this cluster were relatively fast in responding to the tasks (Figure 3), presumably because they did not even try to solve symbolic fraction comparison tasks by processing fraction magnitude but relied solely on simple comparisons of natural number components.


TABLE 4. Parameter estimates for the generalized linear mixed models for getting a correct response in items in the fraction comparison task, reported for each cluster separately.

[image: Table 4]Students in the Reverse Bias cluster showed a response pattern opposite to those in the Typical Bias cluster (Figure 3). These students demonstrated high and significantly above-chance solution rates in incongruent items, M = 0.81, and fairly low and significantly below-chance solution rates in congruent items, M = 0.21 (Table 3). Again, the effect of congruency was significant and the effects of distance or type were not (Table 4). Overall, students in this cluster were also fairly fast in their responses (Figure 3). The results suggest that these students may already have developed a partial—yet still incomplete—understanding of fractions and have overgeneralized their knowledge that larger numbers can lead to smaller fraction.

Students in the No Bias cluster showed a response pattern that was not affected by an NNB (Figure 3). These students demonstrated medium but significantly above-chance solution rates in both incongruent items, M = 0.60, and congruent items, M = 0.64 (Table 3). The GLMM shows that there was no significant effect of item congruency (Table 4). In contrast to students in the two biased clusters, students in this cluster showed a significant effect of distance, with the estimated probabilities of being correct increasing with the distance between the two fractions (Table 4). In addition, there was a significant effect of type, with higher accuracy for items containing two proper fractions than for items containing one proper and one improper fraction (Table 4). On average, students in this cluster took three times as long as both other clusters to solve comparison items (Figure 3), which could be an indicator that these students were aware of the cognitive demand of fraction comparison. The results suggest that these students have started to develop an understanding of fraction magnitudes.



Error and Response Time in Magnitude Estimation

For the following analyses, we had to exclude 20 students (i.e., 7.9% of the sample) because their data on the magnitude estimation task were not saved due to a software problem. We do not believe that this reduction affected the results because the distribution of the remaining 234 students over the three NNB clusters (n = 101 Typical Bias, n = 67 Reverse Bias, and n = 66 No Bias) did not differ significantly from the whole sample, X2(2,234) = 0.32, p = 0.85.


Validating the Scales

Our hypothesis was that the magnitude estimation items assessed the same construct regardless of the specific representation format (circle or tape). Yet, a confirmatory factor analysis showed that a model with two different latent factors for each representation (circle or tape) fit the data significantly better than a model with one latent factor (regardless of the specific representation), X2(1) = 104.8, p < 0.001. However, Cronbach’s Alpha for the unidimensional magnitude estimation scale was high for both the Percent Absolute Error (PAE, α = 0.92, 95% CI [0.91,0.94]) and Response Time (RT, α = 0.86, 95% CI [0.84,0.89]). As for our analysis differences between both representations are not of particular interest, we chose the unidimensional magnitude estimation scale for further analyses, but we allowed for a Task Type random intercept in the following LMMs to account for variance due to the specific representations.



Differences Between Student Profiles

On average, PAE was 14.4% (SE = 1.1). The estimated marginal mean of RT was 8.06 s (SE = 1.35). We were interested in how students in the different NNB clusters differed in these values. Parameter estimates from the LMMs are given in Table 5.


TABLE 5. Parameter estimates for the linear mixed models for percent absolute error and response time in items on the in the magnitude estimation task.

[image: Table 5]Regarding PAE, the random effects in the full model seemed neglectable. Students in the No Bias cluster showed a PAE of 10.8%, 95% CI [8.2, 13.4], which was significantly lower than the PAE of students in the Typical Bias cluster (PAE = 16.6%, 95% CI [14.3, 18.9]), p < 0.001, and significantly lower than the PAE of students in the Reverse Bias cluster (PAE = 14.8%, 95% CI [12.3, 17.3]), p < 0.05 (Table 5). No significant difference between students in the Typical Bias cluster and the Reverse Bias cluster was found, p = 0.32. Thus, students in the No Bias cluster yielded the most accurate estimations of fraction magnitude in the magnitude estimation task.

Regarding RT, the students in the No Bias cluster (RT = 9.17, 95% CI [6.40, 11.94]) took significantly longer to estimate the magnitude of the given fractions than students in the Typical Bias cluster (RT = 7.68, 95% CI [4.94, 10.41]), p < 0.01, or the Reverse Bias cluster (RT = 7.48, 95% CI [4.72, 10.24]), p < 0.01 (Table 5). Again, no significant difference between students in the Typical Bias cluster and the Reverse Bias cluster was found, p = 0.93. Thus, in line with the results from the fraction comparison tasks, students in the No Bias cluster invested more time in solving the items than students in both biased clusters.



DISCUSSION

We were interested in individual profiles of NNB, and in the interplay between an NNB and fraction magnitude processing. In the following, we discuss the results regarding these two aspects. We then discuss the assessment of fraction magnitude processing with continuous diagrams on touchscreen devices, as well as limitations of our study.


Individual Profiles With and Without a Natural Number Bias

We found three distinct profiles of natural number bias in fraction comparison, which is in line with results from recent studies (Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte et al., 2019). Students in the Typical Bias cluster demonstrated a typical NNB (better performance on congruent than incongruent comparison items), while students in the Reverse Bias cluster showed an NNB in the opposite direction (better performance on incongruent than congruent comparison items). Relative to students in the Typical Bias cluster, students in the Reverse Bias cluster seem to have changed their number concepts regarding fractions: they seem to consider a fraction larger when its components are smaller. These two profiles were reported in several studies utilizing person-oriented approaches: Rinne et al. (2017) found them in their longitudinal study with students from grade 4 to grade 6 before and after systematic fractions instruction in school; González-Forte et al. (2019) with seventh graders; and Gómez and Dartnell (2019) with students from grade 5 to grade 7.

In contrast, students in the No Bias cluster did not show NNB patterns. They showed above-chance solution rates in both congruent and incongruent fraction comparison tasks, although solution rates were not very high overall. Again, this cluster was found in other studies as well. For example, Gómez and Dartnell (2019) reported a cluster of non-biased students performing relatively low—yet above chance—in symbolic fraction comparison with non-common components. For students in our No Bias cluster, tasks were more difficult when one improper fraction had to be compared to one proper fraction than when both fractions were improper—a result that Rinne et al. (2017) report for students in the best performing cluster before initial instruction of fractions in school. This suggests that students in our No Bias cluster were not yet able to use benchmarking to 1 as an effective strategy (Clarke and Roche, 2009; Reinhold et al., 2018). In sum, students in the No Bias cluster seemed to show a beginning development of a deeper understanding of fractions.

It is noteworthy that students in the Typical Bias cluster and the Reverse Bias cluster responded considerably faster than students in the No Bias cluster. We interpret this as an indicator that students in both biased clusters were not aware of the difficulty in fraction comparison tasks—and as another empirical evidence for the presence of the (reverse) NNB in specific student profiles: it seems reasonable that responding based on (reverse) NNB thinking—i.e., magnitude processing of natural numbers—is faster than responding based on fraction magnitude processing (Obersteiner et al., 2013; Van Hoof et al., 2013), especially at this early level of fraction magnitude development.

Overall, the strong individual differences in NNB patterns suggest that research on the NNB in particular and research on the development of fraction knowledge in general should utilize person-oriented approaches to account for individual differences (see Rinne et al., 2017; Van Hoof et al., 2018; Gómez and Dartnell, 2019; González-Forte et al., 2019).



Natural Number Bias and Fraction Magnitude

We found empirical evidence for a relation between the presence of an NNB and fraction magnitude processing. This relation was found in both the symbolic fraction comparison task (distance effects) and the magnitude estimation task with continuous diagrams. Regarding the first relation (NNB and symbolic fraction magnitude comparison) students in both clusters that exhibited NNB (typical or reverse) did not show a numerical distance effect in fraction comparison tasks, while students in the No Bias cluster did. This result is in line with the hypothesis that students who are affected by an NNB process fraction components separately and struggle with processing fractions as holistic magnitudes. Secondly, the results from the magnitude estimation task with continuous diagrams showed that the presence of NNB (both typical and reverse) was related to a larger percent absolute error. Like in the symbolic fraction comparison task, students in the No Bias cluster demonstrated significantly longer response times in magnitude estimations than students from both biased clusters. This seems counterintuitive at first sight, but we suggest that students in the No Bias cluster were at an advanced stage of fraction magnitude understanding, but did not yet automatize fraction magnitude processing. In future studies, one could include students at a higher level of fraction understanding and test whether these students show faster responses without biases.

Based on current literature and these findings, we suggest a tentative model of competence in fraction magnitude processing that could be empirically evaluated in further research: (1) On the lowest level, students show a persistent NNB with no fraction magnitude processing (e.g., clusters reported in our study, as well as Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte et al., 2019). (2) On the second level, students show a reverse bias due to misinterpretation of fraction concepts, yet still no fraction magnitude processing (e.g., clusters reported in our study, as well as Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte et al., 2019). (3) On a third level, students do not show an NNB but demonstrate fraction magnitude processing—yet slow and with low accuracy (e.g., clusters reported in our study, as well as Gómez and Dartnell, 2019). (4) On the highest level, students do not show an NNB (regarding accuracy) and are able to process fraction magnitude accurately (e.g., clusters reported in Rinne et al., 2017; Gómez and Dartnell, 2019; González-Forte et al., 2019)—and quickly (e.g., academic mathematicians reported in Obersteiner et al., 2013).

While our study does not yield evidence for a developmental progression (as it is a cross-sectional study from a single population), the results of the longitudinal study of Rinne et al. (2017) may suggest a learning trajectory from level 1 to level 4. This study showed that students do make gradually transitions between those phases during formal fractions instruction in school. Further research is needed regarding students’ development. It seems of particular interest how learning trajectories regarding fraction magnitude processing, suggested for instance by Resnick et al. (2016), and learning trajectories regarding an NNB, suggested for instance by Rinne et al. (2017), fit together.

Regarding developmental progression, the role of the reverse bias is not yet completely clear, as current research gives two different explanations for that pattern. While Rinne et al. (2017) argue that it might be due to overgeneralization of the fact that larger numbers may represent smaller fractions, an alternative explanation for the reverse bias pattern is that students use a specific strategy to compare fractions, which is gap thinking. In this strategy one would argue that the larger the difference between the numerator and the denominator, the smaller the fraction (González-Forte et al., 2019). Consistent application of gap thinking in items with non-common components and proper fractions would result in the reverse bias pattern because it always leads to correct solutions in incongruent items (e.g., 2/3 > 4/9, because 3 – 2 = 1 and 9 – 4 = 5), but it may lead to incorrect solutions in congruent items (e.g., 1/3 > 5/9, because 3 – 1 = 2 and 9 – 5 = 4) (Gómez et al., 2017; see Obersteiner et al., 2020). Considering the short response times of students in the Reverse Bias cluster in our study, it seems unlikely that these students’ reasoning was based on gap thinking, which would require two subtractions. However, further research seems necessary to explore how use of specific strategies is related the occurrence of bias patterns in fraction comparison (Obersteiner et al., 2019b).

It is also not very clear how instruction can best support students in reaching higher levels in fraction magnitude processing, although multiple recommendations on enhancing students’ understanding of fractions exist (e.g., Behr et al., 1983; Butler et al., 2003; Prediger, 2008; Obersteiner et al., 2019a; Reinhold et al., 2020). Further research with longitudinal and/or experimental designs is necessary to identify potential causal effects of instruction on transitions between the suggested levels of fraction magnitude processing. A particularly interesting question is whether a reverse bias is a necessary step, or whether it can be prevented by certain forms of instruction.

Moreover, the role of strategy-use and fraction magnitude processing in the symbolic comparison task is still not completely clear. A study of Fazio et al. (2016) showed that young adults apply a variety of different strategies when comparing the magnitude of two fractions. It is, however, less clear whether this is also the case for students learning the concept of fractions (but see Clarke and Roche, 2009). The study of González-Forte et al. (2019) yields first evidence that students showing a typical NNB do rely on component-based comparison strategies.



Assessing Fraction Magnitude With Continuous Diagrams on Touchscreen Devices

We argued that continuous diagrams presented on touchscreen devices are a suitable way to assess fraction magnitude processing. The results of our study support this argument. The continuous magnitude estimation task yielded similar results regarding fraction magnitude processing as the symbolic fraction comparison task. However, the magnitude estimation task had the advantage that it allowed for a continuous measure of processing a single fraction’s magnitude (the percent absolute error) even in students of the two bias clusters that did not show a distance effect when comparing two fractions.

Further analysis of the data collected with our touchscreen tool could give additional insights into the strategies that students used to determine fraction magnitudes. In particular, finger tracking data may provide detailed information about students’ reasoning. Finger tracking—as used in previous studies (Dotan and Dehaene, 2013; Faulkenberry et al., 2015)—is a fairly natural way of input and may provide a more direct link between hand motions and cognitive processes than mouse tracking.

While our study aimed at assessing fraction magnitude processing, we suggest that our digital assessment tool can be utilized as an effective tool for supporting students’ development of fraction magnitude, when adequate feedback is implemented (Reinhold et al., 2020).



Limitations

Our study included a sample of low-achieving students because we wanted to study a sample with clear NNB patterns. Accordingly, the NNB clusters that we identified may not generalize to other samples. In students with higher mathematical abilities, one would expect to find an additional cluster of students who have higher solution rates and stronger distance effects (comparable to the academic mathematicians in Obersteiner et al., 2013; or the All Correct profile in González-Forte et al., 2019). Future research could investigate whether the same clusters can be found in another sample, and how students make the transition from one cluster to another during development. It would also be interesting to study how other factors (e.g., intelligence, prior informal learning experiences, the quality of instruction) are related to memberships in the different clusters.

We argued that continuous representations may be better apt to assess fraction magnitude processing than discretized representations—especially in studies with students with NNB response patterns. As noted, we cannot rule out that continuous measures also encourage proportional reasoning (e.g., Jeong et al., 2007; Boyer et al., 2008; Boyer and Levine, 2015). However, we would argue that “these accounts [magnitude processing and proportional reasoning] do not exclude each other” (Schneider et al., 2018a, p. 1468) and that, on the contrary, proportional reasoning could be foundational for fraction magnitude processing. Future research could investigate in more detail the relationship between fraction magnitude processing and proportional reasoning. Likewise, studies could investigate potential differences in the cognitive processes involved in magnitude estimation on either circle or tape diagrams. In our study, items in both representations proved to form a reliable scale, although a factor analysis did suggest differences between both representations.

In addition, further studies could systematically investigate the differences in abilities required in estimation tasks with number lines on the one hand and with continuous diagrams on the other. It would also be of interest whether the used continuous diagram stimuli show a mode effect between touch screen assessment and a more traditional paper-based assessment. First evidence by Piatt et al. (2016) suggest that there is no mode effect in number line estimation tasks.



CONCLUSION

We found that a natural number bias (whether typical or reverse) was associated with low fraction magnitude processing, while the absence of bias was associated with moderate magnitude processing in a sample of lower-achieving students. We suggested a way of assessing magnitude processing of individual fractions using continuous visual representations on touchscreen devices that have particular advantages in assessments with low-achieving students. Future research with longitudinal designs and interventions is necessary to better understand students’ fraction magnitude processing and bias patterns, and the factors that influence the relationship between the two.
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Understanding number magnitude is an important prerequisite for children’s mathematical development. One early experience that contributes to this understanding is the common practice of finger counting. Recent research suggested that through repeated finger counting, children internalize their fingers as representations of number magnitude. Furthermore, finger counting habits have been proposed to predict concurrent and future mathematical performance. However, little is known about how finger-based number representations are formed and by which processes they could influence mathematical development. Regarding the emergence of finger-based number representations, it is likely that they result from repeated practice of finger counting. Accordingly, children need sufficient fine motor skills (FMS) to successfully count on their fingers. However, the role that different types of FMS (such as dexterity and graphomotor skills) might play in the development of finger-based number representations is still unknown. In the current study, we investigated (a) whether children’s FMS (dexterity and graphomotor skills) are associated with their emerging finger-based number representations (ordinal and cardinal), (b) whether FMS explain variance in children’s finger-based number representations beyond the influence of general cognitive skills, and (c) whether the association between FMS and numerical skills is mediated by finger-based representations. We tested associations between preschool children’s (N = 80) FMS (dexterity and graphomotor skills), finger-based number representations, and numerical skills. Furthermore, visuo-spatial working memory and nonverbal intelligence were controlled for. Dexterity was related to children’s finger-based number representations as well as numerical skills after controlling for chronological age, but not after also controlling for cognitive skills. Moreover, the relationship between dexterity and numerical skills was mediated by finger-based number representations. No such associations were observed for graphomotor skills. These results suggest that dexterity plays a role in children’s development of finger-based number representations, which in turn contribute to their numerical skills. Possible explanations are discussed.

Keywords: fine motor skills, dexterity, graphomotor skills, finger counting, numerical skills, embodied numerosity, early mathematics


INTRODUCTION

Early in development, children learn implicitly about numerical and mathematical constructs. Even before the beginning of formal instruction, children have their first experiences of magnitude, through enumerations and comparisons (Geary, 2000). Specifically, children are able to discriminate between different amounts, quantities, or magnitudes, perhaps by virtue of possessing what has been referred to as an innate “number sense” (e.g., Dehaene, 1997). As early as six months of age, children have been reported to be capable of discriminating between sets of objects or sequences of sounds that differ in numerosity by a large enough ratio (Xu and Spelke, 2000; Xu et al., 2005). For example, when presented with two auditory sequences, they notice the difference between 8 and 16 sounds, but not between 8 and 12 sounds. This ability improves across early development, with nine month old infants being able to discriminate 8 from 12 dots, but not 8 from 10 [for an overview see Lipton and Spelke (2004)].

Accordingly, children learn their first number words at the age of two years (Wynn, 1992). At this age, they are also capable of rapidly and accurately recognizing the numerosity of small sets of 1-3 objects without counting; a process also referred to as “subitizing” (Kaufman et al., 1949; Hannula et al., 2007). Their numerical abilities then develop further through interactions with the world and experiences with numerical activities, so that children enter school with a surprising amount of what Baroody and Wilkins (1999) called “informal mathematical knowledge” (p. 84).

Especially in these early stages of informal learning, children’s hands play an important role in their interactions with the world. For example, they use their hands to explore and manipulate objects (e.g., Śniegulska and Pisula, 2013). Further, fingers are used when children first conceptualize numerical magnitude, also referred to as numerosity (e.g., Butterworth, 1999). They use their hands to touch objects during counting, but they also use their fingers as a counting aid when learning about number words and remembering the counting sequence (Lafay et al., 2013). As an important basic numerical skill, counting is strongly associated with children’s development of mathematical skills later in life (Pixner et al., 2017).

However, not only basic numerical skills, such as counting, contribute to the development of mathematical skills. Domain general abilities such as fine motor skills (FMS) have also received increasing research interest due to their association with children’s mathematical abilities (Luo et al., 2007; Pitchford et al., 2016). FMS can be defined as “small muscle movements requiring close eye-hand coordination” (Luo et al., 2007, p. 596). However, the working mechanisms by which FMS are associated with mathematical skills are still largely unresearched.

Based on recent findings, we suggest that one possible mechanism by which the association between FMS and mathematical skills could be formed is the procedure of finger counting. We argue that by internalizing and automatizing repeated finger counting procedures, children come to represent numbers as finger patterns. These finger-based representations of number might then form a stable association between finger movements and numerical content (Roesch and Moeller, 2015).

We therefore start by giving an overview of associations between FMS and mathematics, before describing the development of finger-based representations and their implications for mathematical learning. Finally, we present a working model on how FMS and finger-based representations might interact to contribute to the acquisition of numerical and mathematical knowledge, which formed the basis for the current study.


Fine Motor Skills and Mathematical Skills

A growing number of studies suggest that children’s FMS are linked to their mathematical skills (Luo et al., 2007; Roebers et al., 2014; Pitchford et al., 2016; Suggate et al., 2017; Fischer et al., 2018a). Especially in school, children with good FMS display better mathematical performance than their peers with lower FMS.

However, explanations for these findings are sparse and have for the most part been very general. Some of these explanations posit that the association is not specific, but that executive functions or general cognitive skills underlie performance in both FMS and mathematics. For example, growing proficiency in writing/graphomotor skills has been hypothesized to free up working memory capacities for mathematical tasks (Luo et al., 2007). Indeed, many studies have shown that working memory capacity is a relevant predictor for mathematical abilities (Alloway and Passolunghi, 2011; Geary et al., 2013; Li and Geary, 2013), with especially visuo-spatial working memory predicting mathematical outcomes longitudinally. For example, Bull et al. (2008) found that preschoolers’ backward visuo-spatial memory span in a Corsi Block Tapping task significantly predicted their mathematical ability three years later. It has been argued that this association exists because visuo-spatial working memory “functions as a mental blackboard to support number representation, such as place value and alignment in columns, in counting and arithmetic tasks” (Alloway and Passolunghi, 2011, p. 133).

Likewise, verbal working memory has been found to be associated with FMS (i.e., visuomotor skills) as measured with a figure copying task (Becker et al., 2014). However, in the same study, Becker et al. (2014) found that although visuomotor skills were related to mathematical skills, verbal working memory was not. Results such as these imply that visuo-spatial working memory is especially relevant for mathematics performance (Alloway and Passolunghi, 2011), although some studies suggest that verbal working memory becomes more relevant with age (Rasmussen and Bisanz, 2005).

Another common factor hypothesised to underlie the association between both FMS and mathematics are general cognitive abilities (Luo et al., 2007; see also Carlson et al., 2013). General cognitive abilities (i.e., intelligence) play an important role in children’s academic development in more aspects than just mathematics, with research indicating that reading and mathematical skills are influenced to the same degree by intelligence (Schneider and Niklas, 2017). Although working memory has been suggested to be a stronger predictor of academic achievement by some (Alloway and Alloway, 2010), others have reported that in early development, intelligence has a greater impact (Schneider and Niklas, 2017). For mathematics achievement specifically, nonverbal intelligence has repeatedly been identified as predictive (e.g., Manolitsis et al., 2013; Hassinger-Das et al., 2014). Turning to FMS, Davis and colleagues (Davis et al., 2011) found that within the construct of general intelligence, especially visual processing was associated with FMS.

In some of the most recent works, however, it has been argued that the missing link for why an association between FMS and mathematical skills exists might lie in children’s early counting experiences (Suggate et al., 2017; Fischer et al., 2018a). Among all the numerical abilities acquired in early childhood, the mastery of the counting procedure has probably received the greatest research interest (e.g., Gelman and Gallistel, 1978; Wynn, 1992; Dowker, 2008; Colomé and Noël, 2012; Aunio and Räsänen, 2015; Fischer et al., 2018a). One reason for this attention could lie in the high predictive value of children’s counting skills for their later mathematical abilities (e.g., Greeno et al., 1984; Stock et al., 2009; Koponen et al., 2016; Mercader et al., 2018). Therefore, the acquisition of counting skills is well-documented, as is the involvement of fingers in attaining this developmental milestone.

Described by Ifrah (1998) as the ‘earliest calculating machine’, fingers have long been used to aid counting and calculation. Numerous studies suggest that finger use in early counting is almost universal (Butterworth, 1999; Lafay et al., 2013; Crollen and Noël, 2015). As such, finger counting has been suggested to be a necessary step in numerical development (Moeller et al., 2011), or at least a helpful tool for numerical development (Lafay et al., 2013). Finger use not only supports children in learning to count, but might also help them to develop conceptual understanding of the purpose of the counting procedure (Siegler, 1991), and thus, the meaning of numbers (Domahs et al., 2008; Fischer, 2008; Fischer et al., 2018a). Interestingly, the use of fingers for counting and calculating is often prohibited or at least frowned upon in schools, most likely because it is considered an immature strategy that should be replaced early on with more abstract representations of number (Moeller et al., 2011). Furthermore, children with mathematical learning difficulties (or dyscalculia) are often reported to remain active finger counters for much longer than their peers (Geary et al., 2004). However, this might simply be due to these children not progressing from counting strategies to the retrieval of memorized arithmetic facts, rather than being a problem of the use of fingers per se (Geary et al., 2004). Accordingly, the current state of research indicates that the use of fingers for calculation might actually help rather than impede children’s mathematical development (e.g., Kaufmann, 2008; for a discussion see Moeller et al., 2011).

Accordingly, research on associations between FMS and mathematical skills has increasingly focused on counting and finger counting. Stronger links have been observed between children’s finger FMS and their performance on finger-based mathematical tasks, such as finger counting and finger calculation, compared to their performance on non-finger-based tasks, such as object counting and verbal calculation (Suggate et al., 2017). Furthermore, the association seems to be driven by the finger counting procedure rather than the outcome. In a recent study involving German preschool children, Fischer et al. (2018a) observed that FMS were related to children’s procedural counting skills (such as correctly assigning one number word to each counted object), which in turn influenced their conceptual understanding of counting (such as understanding that the last number in the counting sequence represents the numerosity of the counted set). Accordingly, these previous results suggest that FMS are particularly relevant for children to acquire proficiency in correctly counting and that understanding the purpose of the counting procedure seems to result from this increase in counting proficiency.

However, not all aspects of FMS might be equally relevant for children’s acquisition of counting skills. As FMS consist of multiple facets, there might be some aspects that are more strongly associated with mathematical development than others. Generally, previous research suggests that not just for mathematics, but also for other cognitive skills, different facets of FMS are relevant to varying degrees (Suggate et al., 2016; Martzog et al., 2019; Fischer et al., 2018b). Specifically, some of the most recent studies on the association between FMS and numerical skills employed dexterity measures, that is, measures that require precise object manipulation skills (Suggate et al., 2017; Fischer et al., 2018a). However, other facets such as graphomotor or visuomotor skills (i.e., tasks that are performed with a pencil) were not considered, although they are found to be associated with mathematics achievement in elementary school children.

To date, in terms of kindergarten children, only one study in particular differentiated between graphomotor skills and another facet of FMS, specifically finger agility (i.e., tasks that require the ability to move one’s fingers independently, see also Butterworth, 1999). In this study with children who attended the last year of kindergarten, Roesch and colleagues (unpublished study reported in a summative article by Fischer et al., 2018b) investigated associations between graphomotor skills, finger agility, and early calculation skills. In contrast to previous studies, in which finger agility was often operationalized as speeded tapping movements with a single finger (e.g., Penner-Wilger et al., 2007), it was here operationalized as deliberate taps with different fingers without time constraints. The authors found that only finger agility, but not graphomotor skills predicted children’s early calculation skills. One possible explanation for this finding was that the deliberate movement of single fingers is necessary for children’s early finger counting activities, as previously suggested by Butterworth (1999). Likewise, previous observations of associations between dexterity and numerical skills might stem from children either manipulating countable objects or their own fingers with their hands during counting activities. Accordingly, based on this previous research, graphomotor skills might not be relevant for children’s early numerical development, whereas other facets of FMS such as finger agility and dexterity might be. They might however become more important when mathematical skills are taught in school and numbers are interacted with in a written format.



Internalizing Finger-Based Number Representations Through Counting

Finger counting routines are learned by children observing and imitating others’ behavior (Fuson, 1988; Andres and Pesenti, 2015) in a manner typical of a specific culture. Crucially, because these cultural conventions for finger counting are stable within a given culture (i.e., in German finger counting, counting always starts with the thumb for “one”), certain fingers are almost always associated with the same number word during finger counting. This is why it has been suggested that early finger counting experiences lead children to internalize fingers as implicit representations of numbers, in which certain finger constellations are consistently associated with a specific magnitude (Lafay et al., 2013; Adriano et al., 2014; Wasner et al., 2015).

There are different formats in which numbers are mentally represented other than as finger constellations. According to models of numerical processing such as the triple-code model by Dehaene and colleagues (Dehaene, 1992; Dehaene and Cohen, 1995), there are three codes in which humans represent number. The model suggests that adults represent numbers verbally as spoken number words, visually as Arabic numerals, and amodally as magnitudes along a mental number line. In addition to these three codes, Roesch and Moeller (2015) suggested that finger-based representations can be viewed as another representational format of numbers (Roesch and Moeller, 2015). These finger-based representations have been hypothesized to exist in two different forms, the first being an ordinal representation and therefore representing the finger counting process; and the second representing actual cardinal magnitudes rather than a counting sequence in finger-based pictorial form (Wasner et al., 2015). Regarding the order of acquisition of these finger-based representations, researchers argue that ordinal representations are likely acquired before cardinal representations (Roesch and Moeller, 2015; Wasner et al., 2015). However, the literature on the general development of ordinality and cardinality understanding is inconclusive on this issue. Although some have reported that ordinality precedes cardinality (e.g., Siegler, 1991; Bermejo, 1996), later studies find that the development might not be sequential or hierarchical, instead suggesting an iterative development in which both concepts develop in parallel (Rittle-Johnson et al., 2001). One study by Colomé and Noël (Colomé and Noël, 2012) even presents results supporting the opposite view, with children seemingly mastering cardinality before ordinality.

So although the development of these finger-based number representations is not yet fully understood, it is well-established that these representations are permanent. Interestingly, evidence for stable finger-based representations of numbers has been observed not only in children, but also in adult participants (Domahs et al., 2008; Domahs et al., 2010). In these first studies investigating the pervasive influence of finger counting on mathematical cognition, finger-based representations were indirectly measured by assessing how often participants erred by five in arithmetic tasks (Domahs et al., 2008; Klein et al., 2011). The inference of these studies was that errors that deviate by five from the correct result are caused by participants representing numbers in multiples of five, due to their reliance on finger-based representations. Thus, finding that errors of ± 5 were more frequent than errors of ± 4 from the correct result was interpreted to originate from a subconscious activation of finger-based representations (i.e., erring by one hand). However, directly assessing how finger-based representations develop and are associated with numerical skills in early childhood could give further insight into how and when these representations are meaningful for development.



The Current Study

Although previous research has hinted at a possible link between FMS and mathematical skills via finger counting experiences (Suggate et al., 2017; Fischer et al., 2018a), this link has not been tested directly. Although Wasner et al. (2015) suggested that motor constraints might play a role in the development of finger-based numerical representations, no data exist to directly confirm this association.

In this study, we therefore investigated in depth how two types of finger-based number representations (ordinal and cardinal) interact with FMS and numerical skills. Furthermore, building on previous research suggesting different associations based on different facets of FMS (e.g., Fischer et al., 2018b), we measured FMS using both tasks geared more toward measuring finger dexterity in a classical sense as well as a task assessing graphomotor skill via drawing in a line tracing paradigm. Because children’s early counting experiences rarely involve writing or drawing, but might require finger agility and dexterity, this distinction seems paramount when investigating the genesis of finger-based number representations. Accordingly, we differentiate for the first time both between different types of finger-based number representations (ordinal and cardinal) as well as different types of FMS (dexterity and graphomotor skills).

In a correlational design, we tested preschool children on their finger dexterity, graphomotor skill, ordinal and cardinal finger-based representations, and numerical skills. We expected that both children’s ordinal and cardinal finger-based numerical representations should be associated with their dexterity, but not graphomotor skill. Furthermore, we expected that their numerical skills should be associated with their dexterity but not their graphomotor skill. Building on the previously untested hypothesis that finger counting could be the missing link between FMS and mathematical skills, we expected that finger-based number representations would mediate the association between dexterity and numerical skills (see Figure 1). Based on previous theoretical work that suggests that ordinal finger-based representations might be acquired at an earlier developmental stage than cardinal finger-based representations (c.f. Roesch and Moeller, 2015), ordinal finger representations were placed before cardinal finger representations in the model. This should not however imply that cardinal finger representations develop hierarchically from ordinal finger representations.
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FIGURE 1. Hypothetical mediation between dexterity and numerical skills via finger-based number representations.


In addition to investigating these associations, we controlled for maturation, nonverbal intelligence, and visuo-spatial working memory. Thereby, we wanted to account for alternative explanations of the observed associations.

Specifically, we hypothesized that: (a) Dexterity, but not graphomotor skill, is associated with ordinal and cardinal finger-based representations; (b) Dexterity, but not graphomotor skill, is significantly related to both types of finger-based representations, even when controlling for age and other cognitive skills; and (c) the association between dexterity and numerical skills is mediated by finger-based number representations.



MATERIALS AND METHODS


Ethics Approval Statement

This study was carried out in accordance with the recommendations of the Ethical Principles of the German Psychological Society (DGP) and the Association of German Professional Psychologists (BDP). Written informed parental consent was obtained and children gave their verbal assent prior to test administration, in accordance with the Declaration of Helsinki.



Participants

Prior to testing, we conducted an a priori power analysis to determine the necessary number of participants using the program G∗Power 3.1.9.2 (Faul et al., 2009). We assumed a medium effect size of around f = 0.20 for our mediation model and strived to acquire sufficient statistical power of 0.85. Accordingly, for a multiple regression with four predictors in the final model, the power analysis suggested a sample size of at least 73 participants.

Eighty-two German preschool children attending public German kindergartens participated in the study. Because two children (both boys) did not complete either one or both sessions, they were excluded from the analysis due to incomplete data. This resulted in a final sample of 80 children (40 boys; age: M = 4;8 years, SD = 11 months, range: 3;1 – 6;3 years). By year, the sample consisted of 19 three-year-olds, 28 four-year-olds, 27 five-year-olds, and 6 six-year-olds. According to a parent questionnaire, which was handed out to the parents together with the consent forms, 11.3% of children spoke a language other than German at home, and 6.3% of children were born outside of Germany. Also, 43.8% of parents reported having a university degree, which is substantially higher than the national average of around 29% (OECD, 2018).



Test Battery


Finger-Based Number Representations

To assess children’s ordinal and cardinal finger-based number representations, two types of finger-based tasks were administered (comparable to the ordinal and cardinal tasks used by Wasner et al., 2015). Ordinal finger-based number representations were assessed using a finger counting paradigm, whereas cardinal finger-based number representations were assessed using a paradigm in which children were asked to show a number (i.e., finger montring).


Ordinal finger-based representation: finger counting

In the finger counting task, which assessed children’s ordinal finger-based number representation, children were asked to count on their fingers to a given number (e.g., “Please count to four on your fingers.”). All numbers from 1–10 were administered in a pseudo-randomized order: Numbers 1–5 were presented prior to numbers 6–10, as the latter needed to be counted on both hands and switching between one and two hands could have been confusing or too difficult for the younger children in our sample. The experimenter documented the precise order in which the child extended his or her fingers as well as whether the verbal counting sequence was recited correctly, with one number word uttered per extended finger. A trial counted as solved if the child both correctly counted verbally and extended one finger per number word, and the counting resulted in the correct number of extended digits. Which fingers children used did not play a role in the scoring, so children could, for example, start counting with their right or left hand as well as with their pinkie finger or thumb. Children could score a maximum of 10 points in this task.



Cardinal finger-based representation: finger montring

In the finger montring task, children’s cardinal finger-based number representation was assessed. To this end, children were asked to show a certain number with their fingers (e.g., “Please show me four fingers.”). Again, numbers 1–5 were presented prior to numbers 6–10 in a pseudo-randomized order. The experimenter documented which fingers the child extended and whether he or she extended the correct amount of fingers, and also noted whether children extended their fingers simultaneously or consecutively. Because this task was supposed to measure whether children had internalized number magnitudes as finger patterns, a trial only counted as solved if the child extended the fingers simultaneously without counting. Again, the fingers that children used to display each number was not relevant for the scoring. The maximum score was 10 points.



Numerical Tasks

In order to test for the direct influence of both FMS as well as finger-based numerical representations on mathematical skills, we included additional numerical tasks that were not related to finger use. These tasks were chosen to cover the different formats in which numbers can be represented (non-symbolic as concrete magnitudes, visually as Arabic digits, and verbally as number words in the counting sequence), which also correspond to the first three steps of numerical development according to the “Four-step-developmental model of numerical cognition” described by von Aster and Shalev (von Aster and Shalev, 2007). In this model, children acquire understanding of concrete magnitude in infancy, followed by number words in their preschool years, and Arabic digits upon entering school. Accordingly, when combined into a composite score, the varying levels of difficulty of these tasks should allow for an accurate assessment of children’s numerical skills, even given the large age range of our sample. To test whether the tasks measure a common underlying construct that can be combined into a composite score, we entered them into a principal component analysis. This analysis revealed that the three tasks loaded on one unitary factor, which explained 83.0% of the variance in numerical skills, therefore supporting our decision to use a composite score.


Non-symbolic dot comparison

We measured children’s ability to compare non-symbolic magnitudes by means of the numeracy screener (Nosworthy et al., 2013), in which children are required to compare two dot patterns and determine which of two dot patterns contains more dots than the other. This task is timed, so that children are given 120 s to solve as many of the 56 comparisons as possible. Although this task is generally paper-pencil, we adapted it to our young participants and therefore printed it out in double size and had children point at the more numerous array rather than cross it out. This way, graphomotor requirements of the task were minimized as well. The experimenter instead checked on an answer sheet which array the children pointed at. The sum of correctly solved items within the time limit was used in the analysis, with possible scores ranging from 0 to 56. Test-retest reliability for this task after three weeks was previously reported to be r = 0.62, and convergent validity with a computerized non-symbolic comparison task was reported to be r = 0.30 (Nosworthy, 2013).



Symbolic number comparison

The same paradigm was presented a second time in a symbolic version, which was also adapted from the numeracy screener (Nosworthy et al., 2013). Children had to indicate which of two Arabic digits was larger than the other by pointing at it, and the experimenter checked the response on the answer sheet. Although many participants struggled with the task, most of them were familiar with small numbers such as 1 and 2, and accordingly solved more than 50% of the items they attempted correctly. Again, children were asked to solve as many of the 56 comparisons as possible within 120 s. The sum of items they solved correctly was used in the analysis, with possible scores ranging from 0 to 56. The reported test-retest reliability for this task after three weeks was r = 0.67, and convergent validity with a computerized symbolic comparison task was r = 0.61 (Nosworthy, 2013).



Verbal counting sequence

In order to assess whether children were familiar with number words, we tested their knowledge of the verbal counting sequence without the additional requirement of counting objects or fingers. In this task, children were asked to simply count aloud as far as they could. In accordance with instructions given in the standardized test battery TEDI-MATH (Kaufmann et al., 2009), children were given help with starting the sequence if they did not know what to do (“Count like this: one, two, and now you!”) and were stopped at the number 31 if they did get that far. We scored the largest number the child counted correctly before making a mistake. For example, if a child counted ‘1, 2, 3, 5, 6…’, the score would be ‘3’. The maximum score in this task was 31, and was determined by the cut-off criterion.



Fine Motor Skills

To test children’s dexterity and graphomotor skills, the manual dexterity scale of the Movement-ABC 2 (M-ABC 2, Petermann, 2015) was administered. This scale consists of three tasks, two of which were categorized as measuring dexterity (coin posting and bead threading), while the third (Drawing trail) was used as an indicator for graphomotor skills.


Dexterity

Coin posting. Children were asked to insert coins into a slot in a box as quickly as they could. Children from 3-4 years old received 6 coins, whereas children aged 5-6 years received 12 coins. Children were encouraged to use their dominant hand for this task, and were given two trials, the faster of which was scored. To make the scores for 3-4 and 5-6 year-olds comparable, these scores where converted into standardized scores according to the M-ABC 2 manual, which were then used in the analysis. Excellent test-retest reliability after one week was reported for this task in a Greek study, ICC = 0.93 (Ellinoudis et al., 2011).

Bead threading. In the bead-threading task, children were instructed to thread square beads onto a string with a pointed end that made the beading easier. Again, children aged 3-4 years received 6 beads, and children aged 5-6 years received 12 beads. The beads were placed in a line in front of them and children were again instructed to complete the task as fast as possible. Out of two trials, the faster was scored. As in the coin posting task, the time children needed to complete the fastest trial was transformed into standardized scores using the M-ABC 2 manual. Test-retest reliability for this task was also reported to be excellent, ICC = 0.92 (Ellinoudis et al., 2011).



Graphomotor skills

Drawing trail. In the graphomotor portion of the manual dexterity scale, children were presented with a printout of a trail. They were instructed to help a cyclist depicted at the beginning of the trail to reach his house, which was depicted at the end of the trail. Using a red marker, the children had to draw the path for the biker within the boundaries of the trail, preferably without drawing outside the given lines. This procedure was first demonstrated by the experimenter, after which children performed the task twice. Here, children were instructed to work as accurately as possible. The score in this task was calculated by transforming the number of errors children made on the more accurate of the two trials to standardized scores according to the M-ABC 2 manual. For this task, test-retest reliability was reported to be moderate, ICC = 0.66 (Ellinoudis et al., 2011).



Control Variables

To control for children’s nonverbal intelligence and visuo-spatial working memory capacity, we administered a subtest from an intelligence test battery (KABC-II, Kaufman and Kaufman, 2015) as well as a visuo-spatial working memory test (Corsi block-tapping task, adapted from Kessels et al., 2000, 2008). According to test norms for the German version, this subtest showed excellent reliability, αcr > 0.83.


Nonverbal intelligence: conceptual thinking

The conceptual thinking subtest measures children’s ability to reason about classifications of things and objects in a nonverbal format and is part of the problem-solving portion of the KABC-II. In the conceptual thinking subtest, children are presented with 4 or 5 pictures and have to decide which one of the pictures does not fit with the set (e.g., three red umbrellas and one yellow umbrella). Again, children give their response by pointing at the chosen picture and are awarded one point per correct response. In total, the subtest consists of 28 items, but testing stops when a child answers 4 out of 5 consecutive items incorrectly. As for verbal knowledge, a sum score was entered as a covariate in the analysis.



Visuo-spatial working memory

Children’s visuo-spatial working memory was assessed via a Corsi block-tapping task, in which children had to memorize and replicate a visually presented sequence. The task was conducted using a wooden board with 9 wooden cubes (3 cm × 3 cm × 3 cm) glued onto it in a non-geometrical pattern (replicated after the layout presented in Kessels et al., 2000). First, the experimenter tapped the cubes in a certain order at a speed of approximately one cube per second. The child was instructed to wait until after the experimenter was finished, and then tap the cubes either in the same (forward span) or reversed (backward span) order. Two items were presented per span length, with difficulty starting at two blocks and increasing up to seven blocks. If the child successfully replicated at least one of the two items of a given length, testing continued with length increasing by one. As soon as two items of the same length were replicated incorrectly, testing was stopped. The longest successfully replicated span – not the number of correctly remembered items – was used in the analysis as the child’s visuo-spatial working memory span for both the forward and backward span.



Procedure

Parents completed the questionnaire at home and returned it to the kindergarten staff together with the written consent form. Children were then tested individually in their respective kindergartens across two sessions by trained undergraduate students of teaching and the first author. Prior to the beginning of the study, all student testers were familiarized with the procedure and received training by the first author on how to conduct the tests according to the instructions. The first author then conducted the first two testing sessions herself, with the student testers observing. Each tester’s first two testing sessions were conducted under supervision by the first author to ensure that testing procedures were exactly adhered to. The tasks were presented in the same order to each child, and completion of all tasks took approximately 45–60 min per child (two sessions of 20–30 min each).



Analytical Approach

We first tested whether dexterity was associated with finger-based number representations and numerical skills after controlling for covariates (i.e., age and cognitive skills) via correlation analyses and hierarchical regressions. Secondly, a mediation analysis using a bootstrap sampling method was performed to test the final hypothesis that the association between dexterity and numerical skills was mediated by ordinal and cardinal finger-based number representations. Prior to this analysis, all measures were z-standardized and the analysis was conducted using the PROCESS Macro for SPSS (Hayes, 2013).

In this mediation model, depicted in Figure 1, ordinal finger-based representations were modeled as preceding cardinal finger-based representations, although, research on this developmental path is not fully conclusive. Accordingly, an alternative model with cardinal preceding ordinal finger-based representations was also considered, but did not meet the preconditions for mediation. Notably, ordinal finger-based representations did not have a significant effect on numerical skills in this model.




RESULTS


Data Preparation

Because we were specifically interested in associations between finger-based number representations and different facets of FMS, dexterity (i.e., bead threading and coin posting) and graphomotor skill (i.e., drawing trail) were entered separately into the analyses rather than collapsed into a single fine motor score as suggested in the M-ABC 2 manual. The score for dexterity was then calculated as the mean of the bead threading and coin posting scores. Descriptive statistics for the final variables are presented in Table 1.


TABLE 1. Descriptive statistics.
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Hypothesis 1: Dexterity, but Not Graphomotor Skill, Is Associated With Ordinal and Cardinal Finger-Based Representations

In a first step, we conducted partial correlations, controlling for chronological age due to the relatively large age span (3;1 – 6;3 years) of our participants. Both raw and partial correlation results are depicted in Table 2.


TABLE 2. Pearson correlation coefficients between fine motor skills, finger-based number representations, numerical skills, and control variables.
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Correlations of Fine Motor Tasks

As presented in Table 2 above the diagonal, dexterity correlated with ordinal finger-based number representations, r = 0.244, p < 0.05, cardinal finger-based number representations, r = 0.286, p < 0.05, numerical skills, r = 0.269, p < 0.05, and nonverbal intelligence, r = 0.371, p < 0.01. Children’s graphomotor skills were not significantly correlated with any other variables in the partial correlation analysis.



Correlations of Finger-Based Representations

The two types of finger-based representations were highly correlated with each other, r = 0.816, p < 0.001. In addition to dexterity, both the ordinal and cardinal finger-based representation were significantly correlated with numerical skills, ordinal: r = 0.494, p < 0.001, cardinal: r = 0.542, p < 0.001.

Among the control variables, both types of finger-based representations were also significantly correlated with working memory backward span (ordinal: r = 0.359, p < 0.01, cardinal: r = 0.349, p < 0.01) and nonverbal intelligence (ordinal: r = 0.317, p < 0.01, cardinal: r = 0.326, p < 0.01).



Correlations of Numerical Skills

In addition to the above-mentioned correlations, numerical skills were also associated with the working memory backward span, r = 0.522, p < 0.01, and nonverbal intelligence, r = 0.545, p < 0.01. Note that children’s working memory forward span was not significantly correlated with any variables of interest.



Hypothesis 2: Dexterity, but Not Graphomotor Skill, Is Significantly Related to Both Types of Finger-Based Representations, Controlling for Age and Other Cognitive Skills

To test whether dexterity and/or graphomotor skill remained significantly related to finger-based representations when controlling for age and cognitive skills, we conducted hierarchical multiple linear regression analyses. Predicting ordinal and cardinal finger-based representations, we entered dexterity and graphomotor skill in a first step, adding age in the second step. In a third step, we added the control variables visuo-spatial working memory forward and backward span, and nonverbal intelligence. Results for both hierarchical regressions are in Table 3.


TABLE 3. Hierarchical linear regression models predicting ordinal and cardinal finger-based representations.
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Predicting Ordinal Finger-Based Representations

For the model predicting ordinal finger-based representations, dexterity and graphomotor skills did not contribute significantly to the model when entered in the first step, F(2,76) = 2.243, p < 0.05, and explained 5.6% of the variance in ordinal finger-based representations. Adding age to the model significantly increased the explained variance by 46.9%, F(1,75) = 27.274, p < 0.01, with both dexterity and age, but not graphomotor skills, being significant predictors. When adding the control variables in the third step, explained variance increased by another 6.8%, F(3,72) = 17.250, p < 0.01. Out of the three control variables, only the visuo-spatial working memory backward span was a significant predictor in this final model. After the control variables were included, dexterity was no longer a significant predictor, whereas the effect of age remained significant.



Predicting Cardinal Finger-Based Representations

For cardinal finger-based representations, dexterity and graphomotor skills did not contribute significantly to the model in the first step, F(2,76) = 2.702, p = 0.073, explaining only 6.6% of the variance. Dexterity was a marginally significant predictor, β = 0.221, p = 0.054, whereas graphomotor skill was not, β = −0.183, p = 0.110. The explained variance was significantly increased by 48.0%, F(1,75) = 30.060, p < 0.01, when age was entered in the second step, and both dexterity and age, but not graphomotor skill, were significant predictors. In the third step, adding the control variables increased explained variance by 6.2%, F(3,72) = 18.621, p < 0.01. Again, visuo-spatial working memory backward span was a significant predictor in this final model. After the control variables were included, age remained a significant predictor, whereas dexterity was no longer a significant predictor, β = 0.143, p = 0.088, of cardinal finger-based representations.



Hypothesis 3: The Association Between Dexterity and Numerical Skills Is Mediated by Finger-Based Number Representations

For the mediation analysis, we used dexterity as a predictor variable, and both ordinal and cardinal finger representations as mediators to predict numerical skills (see Figure 2). Given that graphomotor skills were neither significantly correlated with numerical skills nor associated with ordinal or cardinal finger-based number representations in the regression analyses, we did not conduct a mediation analysis with graphomotor skill as a predictor. To control for the large age range in our sample, and also because the regression results suggest that age could act as a suppressor for the association between dexterity and finger-based number representations, we controlled for age.
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FIGURE 2. Results of the mediation model for the association between dexterity, finger-based number representations and numerical skills.


The analysis was conducted using the PROCESS Macro Version 3.3 for SPSS (Hayes, 2013), and was based on 10,000 bootstrap samples using percentile 95% confidence intervals (Preacher and Hayes, 2008). Using bootstrapping methods to estimate confidence intervals was necessary due to the sample size being rather small for a mediation analysis (see e.g., Fritz and MacKinnon, 2007), and in such cases, bootstrapping can provide more accurate inferences (Fox, 2015). It is a method in which repeated samples are drawn from the available data in order to estimate the characteristics of the population (Fox, 2015).

Results confirmed our hypothesis (see Figure 2). Controlling for the effects of age, β = 0.357, SE = 0.100, p < 0.01, the total effect of children’s finger dexterity on numerical skills, β = 0.185, SE = 0.077, p < 0.05, was mediated by their finger-based representations as indicated by a significantly reduced, non-significant direct effect after mediation, β = 0.084, SE = 0.070, p = 0.232. This finding was further corroborated by the significant indirect effect of dexterity on numerical skills via ordinal and cardinal finger-based representations, β = 0.101, SE = 0.039, Percentile bootstrap CI [0.033,0.186].

Within this sequential model, two other mediations were observed: The previously significant association between dexterity and cardinal finger-based representations, r = 0.286, p < 0.05, was fully mediated by ordinal finger-based representations and not significant in the full mediation model. Furthermore, ordinal finger-based representations and numerical skills, which had been significantly correlated before, r = 0.494, p < 0.01, were no longer significantly associated in the full mediation model (see Figure 2).



DISCUSSION

In the current study, we investigated for the first time whether FMS are associated with finger-based representations of number, and whether this association might explain the often-observed correlation between FMS and numerical skills (e.g., Luo et al., 2007; Roebers et al., 2014; Pitchford et al., 2016; Suggate et al., 2017; Fischer et al., 2018a). By measuring dexterity, graphomotor skills, finger-based representations of number, and numerical skills, we arrived at a more comprehensive understanding of how these early childhood abilities interact. As the genesis of implicit finger-based representations seems to play a substantial role in children’s numerical development, understanding the underlying working mechanisms was our primary objective.

We observed, as expected, that FMS were associated with finger-based number representations, thereby adding to the growing number of studies findings such links (Luo et al., 2007; Roebers et al., 2014; Pitchford et al., 2016; Suggate et al., 2017; Fischer et al., 2018a). Associations were specific, in that a link was found for dexterity, but not for graphomotor skills. In the hierarchical regressions of ordinal and cardinal finger-based representations, we observed that dexterity explained a small but significant amount of variance in finger-based representations when age was also entered as a predictor. This finding indicates that age might have acted as a suppressor variable, which could be due to the fact that the dexterity tasks were analyzed based on age-normed standard scores, whereas no age-norms were available for the measures of finger-based number representations. Recall that age-norms had to be used for the FMS tasks, as raw scores were not normally distributed. More notably, when control variables were entered into the model in a third step, visuo-spatial working memory backward span explained a significant amount of variance in both types of finger-based representations.

For both ordinal and cardinal finger-based representations, the inclusion of the control variables therefore led to dexterity no longer being significantly related to finger-based representations. It is possible that children’s visuo-spatial working memory plays a larger role in their finger counting / finger montring performance than their FMS. For example, a task analysis of counting and montring would suggest that these require children firstly storing a number concept, secondly finding its corresponding finger-component, and thirdly performing matches between the number concept and fingers. Furthermore, this finding, although not in support of our hypothesis, is consistent with previous research on working memory and finger counting. For example, Dupont-Boime and Thevenot (2018) observed that children with a higher working memory capacity were more likely to spontaneously use their fingers to solve addition problems. These recent findings are in contrast with previous assumptions that children with a lower working memory capacity were more likely to rely on their fingers for finger counting, at least from the middle of primary school (Geary, 1993).

To better understand the unexpected result that dexterity only explained significant variance after including age, we conducted a post-hoc median split for age and repeated the regression analyses for the two resulting age groups (age group 1: 3;0 to 4;8 years, N = 39; age group 2: 4;9 to 6;3 years, N = 41). If age plays such a pivotal role in the associations between dexterity and finger-based representations, the associations might differ for the two age groups. Indeed, these analyses revealed that for the younger age group, dexterity was a significant predictor for ordinal and cardinal finger-based representations in the first step of the regression, as was originally expected for the entire sample (see Supplementary Table 1). More so, this association remained significant in the second step for cardinal finger-based representations when age was added. In the third step, none of the control variables explained significant variance for either ordinal or cardinal representations.

Results were different for the older age group, for whom no predictors were significant in the first and second step (i.e., FMS and age), and only working memory backward span was a significant predictor in the third step (see Supplementary Table 2). While these post-hoc analyses with reduced sample sizes need to be interpreted with caution, they do hint at a developmental shift in the processes involved in the consolidation of finger-based number representation. Younger children might struggle with the motor demands of finger counting/montring, whereas older children might depend more on retrieving the finger patterns for counting/montring from memory.

Perhaps most importantly, the mediation analysis, in which we tested the assumed association between dexterity, ordinal and cardinal finger-based representations, and numerical skills, supported our hypothesis about how dexterity influences numerical development. The results were consistent with the idea that dexterity might contribute to the development of ordinal and cardinal finger-based representations, which then influence numerical skills.


Theoretical Implications

The current study contributes to the growing literature on finger counting and finger-based representations, in that it takes a differentiated look at ordinal and cardinal finger-based number representations and their relationship with FMS and domain-general cognitive skills often associated with numerical skills. Our results are in agreement with previous research that suggested that ordinal and cardinal finger-based representations need to be differentiated (Wasner et al., 2015), as they seem to play different roles in children’s numerical skill development. It is also worth noting that children performed slightly worse on the cardinal finger montring task, averaging 6.84 out of 10 points, whereas they averaged 7.32 out of 10 points in ordinal finger counting. However, seeing as this difference was not statistically significant, further research will be necessary to determine whether the development of ordinal finger-based representations really does precede that of cardinal finger-based representations.

Accordingly, the relative contributions of children’s ordinal and cardinal finger-based representations to their numerical skills cannot be deduced from our data. Although cardinality might be more difficult to master and is often considered an important predictor for mathematical development (Geary et al., 2018), it is possible based on previous findings that ordinality might be a more important predictor than cardinality for certain aspects of numerical development. For example, it has been previously suggested that the (spatial) ordering of numbers plays a large part in children’s understanding of symbolic number (i.e., number words and Arabic digits) (Sella et al., 2019). In a similar vein, training children in the ordinal number sequence transfers to their number ordering and number line estimation performance (Xu and LeFevre, 2016). Accordingly, it could be argued that ordinality might be more relevant for some aspects of numerical development in the early stages of child development studied here.

Also, the development of these finger-based number representations seems to rely on different skill sets, with dexterity playing only a minor part compared to maturation effects and the impact of visuo-spatial working memory capacity, as can be seen in the regression analyses. In the future, longitudinal studies should investigate the timeline in which these skills develop and how they influence each other.

At a general level, our findings add to the accumulating body of work pointing to the importance of dexterity as a key FMS in relation to cognitive outcomes. For example, Martzog et al. (2019) found that dexterity was more closely linked to spatial intelligence than hand-eye coordination or repetitive speed-FMS. On the other hand, some work indicates that graphomotor skills play a greater role in reading performance than dexterity does, presumably due to the functional relevance of graphomotor skills to writing and thereby reading (Suggate et al., 2018, 2019).

Especially with regard to the importance of graphomotor skills for mathematics, studies with elementary school children consistently yield associations between the two domains. For example, Pitchford et al. (2016) reported stable associations between a task in which children had to reproduce drawings of geometric shapes and children’s mathematical reasoning skills in first grade. Likewise, Carlson and colleagues (Carlson et al., 2013) observed that in a sample with a broad age range from five to 18 years, participants’ mathematical skills were significantly associated with their performance in tracing and copy-a-figure tasks, which both rely on graphomotor skills. It is therefore possible that when children enter school, their finger use during counting decreases, whereas writing of Arabic digits increases. Thereby, graphomotor skills might gain importance for mathematical learning and performance over time, whereas dexterity may become less relevant. This interpretation is also in agreement with the age-split post-hoc analyses of our data described above. Dexterity seems to play a significant role in children’s finger-based representations up to a certain stage in development, after which other cognitive processes such as working memory take over.

Taken together, the current study adds to the body of work indicating that children’s FMS relate both functionally (i.e., being able to move fingers as a prerequisite to numerical development) and at a representational level to mathematical development (Penner-Wilger and Anderson, 2013). More work such as the current study examining FMS and mathematics in a detailed way is needed.



Practical Implications for Education and Intervention

The present results highlight the importance in viewing numerical skills in early childhood as a construct influenced by many different facets of children’s cognitive and motor development. Therefore, early childhood professionals and educators should consider children’s FMS as well as their working memory capacity when employing numerical trainings at this early developmental stage. Our results also highlight the positive relationship between children’s finger-based representations and their numerical skills, and thereby adds to previous similar results (e.g., Lafay et al., 2013; Soylu et al., 2018). We therefore argue that fostering children’s early counting skills by encouraging finger use could be beneficial for their later numerical development, and might concurrently train their FMS as well as relieve their working memory load – a notion also suggested by other researchers (e.g., Beller and Bender, 2011).



Limitations and Future Directions

The current results have given us a first exciting look into how fingers and numbers interact. However, further research will be necessary to delve further into which FMS and numerical skills are specifically associated with finger-based number representations. Notably, only dexterity, but not graphomotor skill was associated with the numerical tasks in the age group surveyed in our study. Although this could also indicate that the Movement-Assessment Battery for Children 2 (Petermann, 2015) might not be the ideal measure for investigating finger-number associations, it is also worth taking a closer look at which tasks did correlate. In both the coin posting and bead threading tasks, children have to move one object after another, either into a box or onto a thread. This sequential moving of objects is very similar to many counting activities in which children move the counted objects from one place to another. Also, the coins represent money, which is also often counted and associated with numbers that indicate its value. It is therefore possible that fine motor tasks that mimic a counting movement are more strongly associated with finger-based representations of number, which also originate in counting movements. In contrast, the trail drawing subtest measures a skill that, at least at the age of children in our study, is not associated with the counting procedure. Future studies should therefore look into fine motor tasks which bear different amounts of resemblance to counting movements.

Another possibility for future studies would be to include tasks that cover additional facets of FMS. For example, while graphomotor and visuomotor skills are often not differentiated (e.g., Mayes et al., 2009; Martzog et al., 2019), there are conceptualizations of FMS that see both as distinct constructs. For example, Becker et al. (2014) differentiate between tasks that require motor control (such as the tracing task in the M-ABC 2) and visuomotor tasks that also require spatial abilities. The most prominent example of a test of visuomotor integration is the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI; Beery et al., 2010). In this test, participants have to copy figures into a blank square as accurately as possible. Because this task might require more visuo-spatial integration than say, a tracing task, it might be more strongly associated with numerical skills that also have a strong spatial component, such as locating numbers on a number line (e.g., Ebersbach, 2015). This could also explain previous findings of associations between the Beery VMI and mathematical skills (e.g., Simms et al., 2016).

In our study design, we opted for a combined measure of different numerical skills because we were interested in whether finger-based number representations and FMS generally relate to numerical skills. However, this approach did not allow us to investigate associations with specific numerical skills such as knowledge of the verbal counting sequence or of Arabic digits. To investigate whether finger-based number representations are more strongly associated with certain numerical skills (e.g., those that are closely tied to finger counting, such as knowledge of the verbal counting sequence), two changes would be necessary for future studies: Firstly, children of a smaller age range should be tested that are at a comparable skill level in these numerical skills; and secondly, numerical tasks should be used that consist of more items than those in our study and that also measure both accuracy and fluency for a more precise assessment of the respective numerical skills.

With regard to the origins of finger-based number representations, our results suggest that dexterity contributes to their development. However, it is also worth noting that the amount of variance was comparatively small (5–6%), especially in stark contrast to the amount of variance explained by children’s age (47–48%). Here, future research should consider investigating a smaller age range with a similar or even larger sample size than that of our study. Our post hoc analyses for different age groups suggest that the association is strongest between the ages of 3 and 4.5 years, so this would be a promising age group for further investigations. It could also be useful to consider children’s general level of development in addition to just their chronological age in future projects.

In the same vein, dexterity only became significantly associated with numerical skills when age was also entered in the analysis, suggesting that age might have acted as a suppressor variable. As noted above, this might have been caused by age-normed standard scores being used for the FMS tasks, but not the finger-based number representation tasks. Accordingly, future studies should consider working with fully unstandardized scores to disentangle the contributions of age and FMS to finger-based number representations.

A promising avenue for future studies investigating finger-based number representations lies in longitudinal designs. Especially when attempting to explain the impact that dexterity has on children’s numerical development via their finger-based number representations, it would be preferable to measure children’s skills at multiple time points in addition to concurrent comparisons.



CONCLUSION

In this study, we investigated the link between FMS and children’s early mathematical development, considering children’s finger-based number representations as a potential link between the two. At an age where children use their fingers to interact with numbers and consolidate their finger-based experiences into persistent representations, this is of particular relevance for their mathematical development. Our results highlight that a differentiation between facets of FMS is necessary, as graphomotor skills were not associated with either finger-based number representations or numerical skills. In contrast, links between dexterity, finger-based number representations, and numerical skills were observed; with finger-based number representations mediating the association between dexterity and numerical skills. However, the relationship between dexterity and finger-based number representations was only tentative, depended on children’s age, and was not upheld once visuospatial working memory was controlled for. It seems that the association is stronger for younger children, who rely even more on their fingers to count and depict numerosities. Accordingly, while dexterity might only play a small part in the acquisition of finger-based number representations, this relationship can further our understanding of how dexterity is linked to numerical and mathematical skills.

At a broader level, our findings add to the growing body of work indicating that motor experiences and skills are intimately linked with cognitive skills. Future work is needed to further our understanding of this question of both theoretical and pedagogical significance.
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In the past decade, there has been increasing interest in understanding how and when math anxiety (MA) develops. The incidence and effects of MA in primary school children, and its relations with math achievement, have been investigated. Nevertheless, only a few studies have focused on the first years of primary school, highlighting that initial signs of MA may emerge as early as 6 years of age. Nevertheless, there are some issues with measuring MA in young children. One of these is that, although several scales have been recently developed for this age group, the psychometric properties of most of these instruments have not been adequately tested. There is also no agreement in the number and identity of the factors that underlie MA at this young age. Some scales also consist of several items, which make them impractical to use in multivariate studies, which aim at the simultaneous measurement of several constructs. Finally, most scales have been developed and validated in US populations, and it is unclear if they are appropriate to be used in other countries. In order to address these issues, the current studies aimed at developing a short, new instrument to assess MA in early elementary school students, the Early Elementary School Abbreviated Math Anxiety Scale (the EES-AMAS). This scale is an adapted version of the Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003), which is one of the most commonly used scales to measure MA and has been shown to be a valid and reliable measure across a number of countries and age groups. The psychometric properties of the new scale have been investigated by taking into account its dimensionality, reliability, and validity. Moreover, the gender invariance of the scale has been verified by showing the measurement equivalence of the scale when administered to male and female pupils. We have also demonstrated the equivalence of the scale across languages (Italian and English). Overall, the findings confirmed the validity and reliability of the new scale in assessing the early signs of math anxiety and in measuring differences between genders and educational contexts. We have also shown that MA was already related to math performance, and teacher’s ratings of children’s math ability at this young age. Additionally, we have found no gender differences in MA in our samples of 6- and 7-year-old children, an important finding, given the strong evidence for gender differences in MA in older age groups.

Keywords: AMAS, early elementary school children, confirmatory factor analysis, invariance, gender differences, math anxiety, reliability, validity


INTRODUCTION

Although mathematical proficiency is becoming increasingly important, especially in technological societies, it has been estimated that about 17% of the population (Luttenberger et al., 2018) suffer from more or less severe psychological or physiological symptoms related to feelings of anxiety when confronted with tasks that require the use of numerical information. Data from the Programme for the International Student Assessment (PISA), which tests 15-year-old students, reported that 31% stated that they get very nervous when they do math problems (Organisation for Economic Co-operation and Development, 2013). Math anxiety (MA) has been described as a feeling of tension and anxiety that interferes with the manipulation of numbers in a wide variety of ordinary life and academic situations (Richardson and Suinn, 1972), and it represents an obstacle to mathematical development.

MA has been found to have a negative relationship with mathematics performance and achievement (Hembree, 1990; Ma, 1999). Researchers have reported a consistent, weak to medium negative relationship between math anxiety and performance (ranging from −0.11 to −0.36) indicating that students with higher levels of MA tend to show poorer mathematics performance. Data from the PISA studies confirm these results within and across countries (Organisation for Economic Co-operation and Development, 2013). Additionally, MA may have a number of important indirect effects. Highly math anxious students participate less in math lessons and enjoy them less, they perceive their mathematical abilities to be poorer and are less likely to see the value of learning math (e.g., Hembree, 1990; Ma, 1999). A particularly problematic consequence of MA is that individuals with higher level of anxiety tend to avoid taking high school and college or university mathematics courses. Indeed, similar to other performance-based anxieties, MA involves psychological arousal, negative cognitions, escape and/or avoidance behaviors and, when the individual cannot avoid the situation, performance deficits. MA is also related to reduced cognitive reflection (Morsanyi et al., 2014; Primi et al., 2018), and poorer decision making performance (e.g., Rolison et al., 2016; Rolison et al., 2020).

In the past decade, there has been increasing interest in understanding how and when MA develops (Wu et al., 2012; Harari et al., 2013; Jameson, 2013; Ramirez et al., 2013; Dowker et al., 2016). Studies have investigated the incidence and effects of MA in primary school samples (e.g., Karasel et al., 2010; Galla and Wood, 2012; Wu et al., 2012), and its relation to math achievement (Ramirez et al., 2016). However, only a few studies have focused on younger pupils, although initial signs of MA may emerge as early as 6 years of age (Aarnos and Perkkilä, 2012), and MA has important implications for later development, as it appears fairly stable over time (Ma and Xu, 2004; Krinzinger et al., 2009; Cargnelutti et al., 2017).



THE ASSESSMENT OF MATH ANXIETY IN EARLY PRIMARY SCHOOL

One of the reasons why it is difficult to conduct research into MA in younger children relates to the assessment of MA (see Cipora et al., 2019). Following the first scale, which was developed to exclusively investigate MA, the Mathematical Anxiety Rating Scale – MARS (Richardson and Suinn, 1972), a substantial number of scales have been created. These scales vary in their target population, length, and psychometric properties. In fact, the psychometric properties of many of these scales have not been adequately tested. Limitations include small sample sizes, the weakness of validity data, the lack of test-retest analyses, as well as the lack of confirmatory procedures to assess the dimensionality of the scales, and the absence of normative data (Eden et al., 2013; Harari et al., 2013). Additionally, instruments for children have mostly been adapted from scales for adults and/or have been developed for samples with a limited age range. Finally, cross-national investigations of the psychometric properties of these scales are also lacking.

Focusing on the already existing instruments for younger children (see Table 1), we have prepared an overview of the psychometric properties of these scales. First, we have found that the interest in assessing MA in younger children has only emerged recently. Indeed, all papers regarding the psychometric properties of these scales have been published after 2010. Additionally, among the seven included instruments, only the Children’s Anxiety in Math Scale (CAMS; Jameson, 2013) and the Mathematics Anxiety Questionnaire (MAQ), originally developed by Thomas and Dowker (2000) and examined by Wood et al. (2012) were completely newly developed, whereas the other scales (i.e., the Mathematics Anxiety Rating Scale for Elementary School Children; MARS-E; Suinn et al., 1988; the Mathematics Anxiety Questionnaire; MAQ; Wigfield and Meece, 1988; and the Mathematics Anxiety Scale for Children; MASC; Chiu and Henry, 1990; the Child Math Anxiety Questionnaire (CMAQ; Ramirez et al., 2013) and the Mathematics Anxiety Scale for younger children (MASYC; Harari et al., 2013) have been developed from an already existing tool, the MARS (Richardson and Suinn, 1972). Finally, two scales are revised versions of previously developed instruments for children: the Child Math Anxiety Questionnaire Revised (CMAQ-R; Ramirez et al., 2016) and the Revised Mathematics Anxiety Scale for younger children (MASYC-R; Ganley and McGraw, 2016).


TABLE 1. Psychometric properties of the math anxiety scales for early elementary school children.

[image: Table 1]Concerning the psychometric properties of these scales, information regarding dimensionality has been provided for all scales, except for the CMAQ (Ramirez et al., 2013) and the CMAQ-R (Ramirez et al., 2016). In the case of three scales, the CAMS, the MASYC, and the Scale for Early Mathematics Anxiety (SEMA; Wu et al., 2012), dimensionality has been tested using Exploratory Factor Analysis (EFA), whereas in the case of the MAQ, a multidimensional scaling procedure has been used. There is only one scale (the MASYC-R) where dimensionality has been investigated using Confirmatory Factor Analysis (CFA). Overall, all of these studies showed that MA, even at a young age, is a multidimensional construct. Nevertheless, the number of factors have varied between two and four, and the identity of these factors have also differed between the scales. Concerning the CAMS, EFA has identified three factors, namely General Math Anxiety, Math Performance Anxiety, and Math Error Anxiety; whereas the MAQ consists of four factors (i.e., Self- Perceived Performance, Attitudes in Mathematics, Unhappiness Related to Problems in Mathematics and Anxiety Related to Problems in Mathematics); although multidimensional scaling suggested that these may be combined into two factors (i.e., Self-perceived performance and attitudes, resulting from the combination of the first two factors, and Mathematics Anxiety, resulting from the combination of the other two factors). Moreover, both the MASYC and the MASYC-R have three factors (i.e., Negative Reactions, Numerical Confidence, and Worry). Finally, the SEMA includes two correlated factors: Numerical Processing Anxiety and Situational and Performance Anxiety.

Concerning the reliability of the scales, this has been measured as internal consistency and reliability indices have been provided for all scales. Additionally, Wu et al. (2012) also provided split-half reliability. Following the cut-off criteria for internal consistency proposed by the European Federation of Psychologists’ Associations (Evers et al., 2013), values range from moderate to high for all scales, except for the CMAQ, which is the shortest scale with only eight items, for which Cronbach’s alpha was 0.55. Indeed, Cronbach’s alfa is strongly influenced by the number of items. Nevertheless, scales for early elementary school students must be short, otherwise children get fatigued.

Validity measures have been provided by all studies, although the specific types of validity that were examined varied across studies. Face validity has been considered only by Jameson’s study (2013), as items were independently reviewed by five experts who confirmed the appropriateness of the items.

Criterion validity, which examines the relations between math anxiety and other related constructs, has mostly been investigated in relation to math achievement, and it has been reported for the CAMS, the MASYC, the MASYC-R, and the SEMA. Additionally, it has been investigated in relation to trait and general anxiety (for the SEMA and the MASYC-R, respectively), math reasoning (for the SEMA), and math confidence, math interest and math importance (for the MASYC-R). The relations with computation and counting skills, math concepts and attitude toward mathematics have been investigated for the MASYC (Harari et al., 2013). Moreover, to identify the best predictors of MA, a regression analysis was conducted by Harari et al. (2013), which included general anxiety, math performance and math attitudes. Results regarding the MASYC- R suggest that a substantial proportion of the variance in MA is explained by these variables. Additionally, to investigate the predictive validity of the MAQ, regression analyses entering the four MAQ subscales as predictors of numeric and arithmetic abilities were conducted. Results showed that the “Self-perceived Performance” subscale was a significant predictor of basic and complex arithmetic abilities even after controlling gender, age and verbal and nonverbal short-term memory. Concerning convergent validity, the correlation between instruments that assess the same construct was only reported between the MASYC and the MASYC-R. Our review of the literature has also shown the overall absence of investigations regarding measurement invariance across genders, although gender differences in MA are commonly investigated (Eden et al., 2013; Harari et al., 2013). When studying test invariance, we determine whether a tool functions equivalently in different groups, that is, we test the absence of biases in the measurement process. In other words, the observed scores should depend only on the latent construct, and not on group membership. An observed score is said to measure the construct invariantly, if it depends on the true level of the trait in a specific person, rather than on group membership or context (Meredith, 1993). This means that people belonging to different groups, but with the same level of a trait, are usually expected to display similar response patterns on items that measure the same construct. Unfortunately, the gender invariance of the commonly used measurement tools in the MA literature has not been investigated. Another limitation is the absence of different language versions of the scales. Only one scale (the MAQ) has German and Portuguese versions available; all the other scales only have an English version.

In sum, the psychometric properties of these scales have been, in general, inadequately tested, due to the lack of confirmatory procedures to assess the dimensionality of the scales, and because inadequate measures of validity and reliability were used. In particular, convergent validity has only been investigated in the case of a few scales. The invariance of the scales across genders and languages has also not been confirmed, which makes group comparisons ambiguous, because it makes it difficult to tell whether any group differences are a function of the trait being measured, or artifacts of the measurement process (Vandenberg and Lance, 2000).



THE DEVELOPMENT OF THE EARLY ELEMENTARY SCHOOL STUDENTS – ABBREVIATED MATH ANXIETY SCALE (EES-AMAS)

Starting from these premises, the current work was aimed at developing a new instrument to assess MA in early elementary school students, overcoming some of the limitations of the currently available scales and with the advantage of being short (Widaman et al., 2011). Among the measures of MA used with adults but also recently adapted for children between the ages of 8–11 (Italian version by Caviola et al., 2017) and 8–13 (English version by Carey et al., 2017), the AMAS (Abbreviated Math Anxiety Scale; Hopko et al., 2003) has presented this property with only nine items. It was originally developed using the highest loading items from the MA Rating Scale (MARS; Richardson and Suinn, 1972) and it is considered a parsimonious, reliable, and valid scale for assessing MA, with two factors: Learning Math Anxiety, which relates to anxiety about the process of learning, and Math Evaluation Anxiety, which is more closely related to testing situations. Indeed, it is one of the most commonly used tools to measure MA in college and high school students (for a review, see Eden et al., 2013). It has been translated into several languages, including Polish (Cipora et al., 2015, 2018), Italian (Primi et al., 2014), Persian (Vahedi and Farrokhi, 2011) and German (Dietrich et al., 2015; Schillinger et al., 2018). These translations have been found to be valid and reliable, confirming the cross-cultural applicability of the AMAS.

For these reasons, the AMAS has been chosen as the starting point for developing our instrument, the Early Elementary School Students – Abbreviated Math Anxiety Scale (EES-AMAS), with the aim of also maintaining the two-dimensional structure of the original scale. The adaptation mainly concerned the need to make the scale suitable for young children. Indeed, age-appropriate vocabulary was considered a priority to maximize the comprehensibility of the scale (Ganley and McGraw, 2016). This has been achieved by modifying, when necessary, the content of the items to ensure understanding (i.e., by using simple and familiar words). Additionally, the age-appropriateness and meaningfulness of the content has also been ensured by creating items which were consistent with children’s study habits, mathematics course organization and materials. For example, one of the original items of the Learning Math Anxiety factor was “Having to use the tables in the back of a math book.” This has been changed to: “When you are using the Number Line” One of the original items of the Evaluation Math Anxiety factor was: “Being given a “pop” quiz in math class.” This has been changed to: “When your math teacher asks you to solve a maths sum.”

Subject matter experts (teachers and developmental psychologists) have been asked to evaluate whether the test items assess the intended content and if they are suitable for children. Inter-rater reliability indices (Cohen’s Kappa) have been used to measure the agreement between raters, and adjustments have been made to obtain the final version of the EES -AMAS.

Additionally, the response scale has been modified to suit the target age group. Instead of using a Likert scale with numbers, we have used a pictorial scale, in line with other studies (e.g., Thomas and Dowker, 2000; Wu et al., 2012; Jameson, 2013). However, instead of using smiley faces that children could not interpret correctly (for example, some children assumed that they were expected to choose the face which was the most similar to them), we have created a pictorial scale using boxes (Figure 1). For each item that described a familiar behavior related to the learning or evaluation of math, participants were asked to choose the box with the level of anxiety (from little to much anxiety) that each statement evoked. We have used the word “anxiety” instead of “worry” (e.g., Thomas and Dowker, 2000) or feeling “nervous” (Wu et al., 2012), as teachers confirmed that children at this age were already familiar with the term “anxiety.”
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FIGURE 1. The rating scale used to measure the level of anxiety elicited by each situation described by the items of the EES-AMAS. Children had to respond by pointing at the appropriate box.


In this study, using CFA, we expected to confirm the two-factors structure of the scale even at this young age. Several studies have found that MA, even at a young age, is a multidimensional construct (e.g., Wu et al., 2012; Harari et al., 2013; Jameson, 2013), although the number and identity of these factors differ across instruments. An advantage of adapting the same scale for different age groups is that it makes it easier, and more meaningful, to investigate developmental changes in MA.

Additionally, a short measure is more useful considering that MA is typically investigated together with other related constructs (e.g., math performance). However, it is also important to use scales that are reliable. The Cronbach alfa coefficient is widely used to estimate the reliability of MA. Nevertheless, using an inter-item correlation matrix may lead to an underestimation of reliability, especially when the scale contains a small number of items (Yang and Green, 2011). Indeed, as reported by Deng and Chan (2017), the application of coefficient alpha has been criticized (see, e.g., Green et al., 1977; Raykov, 1997; Sijtsma, 2009; Yang and Green, 2011). This is because, the sample coefficient alpha yields a consistent estimate of reliability only when all items have equal covariance with the true score (i.e., when item scores fit a unidimensional model in which the loadings are set to be equal and errors are uncorrelated). However, this assumption is seldom met in practice by educational and psychological scales (see, e.g., Lord and Novick, 1968; Jöreskog, 1971; Green and Yang, 2009). A measure that overcomes the issues with alpha is coefficient omega (ω) (McDonald, 1978). It is defined as the ratio between the variance due to the common factor and the variance of the total scale scores. In the current study, to overcome the limitations of the Cronbach’s alfa coefficient, we measured the reliability of the EES-AMAS using omega. However, to make it easier to compare the reliability of our scale with other versions of the AMAS, we also report alpha and ordinal alpha (based on polychoric correlations instead of the typical Pearson coefficients), which were used as alternative indices of reliability in previous studies (e.g., Cipora et al., 2015; Pletzer et al., 2016; Carey et al., 2017; Devine et al., 2018).

There is a large body of literature examining whether there are gender differences in MA, but unfortunately the measurement tools that are often employed in research are not necessarily gender-invariant. If observed gender differences have been obtained by employing noninvariant scales across genders, the overall findings might be misleading because it is impossible to tell whether these differences reflect actual differences in MA among males and females or if they reflect differences related to group membership. In order to understand gender differences, it is important to employ instruments where invariance across genders has been verified. Thus, we aimed to test the invariance of the EES-AMAS across genders in young pupils.

Additionally, applying the same method, we also tested the equivalence of the EES-AMAS across languages (Italian versus British English). Testing the invariance of the test concerns the extent to which the psychometric properties of the test generalize across groups or conditions. Indeed, invariance ensures both the fairness and validity of group comparisons while examining a specific psychological construct (Kane, 2013). Therefore, measurement invariance is a prerequisite of the evaluation of substantive hypotheses regarding differences between contexts and groups.

Finally, we tested the validity of the scale by investigating the relations between MA and math achievement. Studies have mainly focused on secondary school and university students, and they have almost always found a negative relationship between these constructs (−0.18 < r < −0.48) (Luttenberger et al., 2018). By contrast, the few studies that were conducted with primary school samples have yielded contradictory results: some did not find a correlation (Thomas and Dowker, 2000), others have found that MA was negatively linked to math achievement (e.g., Wu et al., 2012). However, a limitation of comparing this relation across different studies is that they have used different measures to assess achievement (typically, scores on achievement tests or grades). In this study, to measure math performance, a similar test was developed and administered in the Italian and British samples.1 Additionally, to address the lack of measures of convergent validity, we have tested the relation of the EES-AMAS with another measure of MA developed for this age group, the CMAQ-R (Ramirez et al., 2016). Thus, we expected to find a negative correlation between MA and math achievement and a positive correlation between the two measures of MA in both samples.

In sum, in these studies, we have investigated the psychometric properties of the EES-AMAS, a new scale, which was developed with the purpose of overcoming some of the limitations of MA assessment in young children. In detail, in Study 1, with an Italian sample, we investigated the dimensionality of the scale using a confirmatory procedure, we measured the reliability of the scale with coefficient omega (ω) (McDonald, 1978), and its validity, measuring its relationship with math achievement. Moreover, we tested the invariance of the scale across genders. In Study 2, we investigated the invariance of the scale across languages (Italian and British English) and we tested the validity of the scale in both educational contexts, using measures of both criterion and convergent validity.



STUDY 1


Materials and Methods


Participants

The study involved 150 children (Mean age = 7.1 years; SD = 0.57; 57% female) attending Italian primary schools in central Italy; 73 (49%) were in grade 1 (Mean age = 6.6 years; SD = 0.26; 63% female) and 77 (51%) were in grade 2 (Mean age = 7.6 years; SD = 0.29; 51% female).

A detailed study protocol that explained the aims and methodology of the study was approved by the institutional review boards of the schools. Parental consent was obtained for all children before they took part in the study, which assured them that the data obtained would be handled confidentially and anonymously.



Materials and Procedure

The Early Elementary School Students-MAS (EES-AMAS) contains nine Likert-type items related to two aspects of math anxiety measured by the subscales: Learning Math Anxiety-LMA (5 items, for example “When you are using the number line”) and Math Evaluation Anxiety-MEA (4 items, for example,” When your maths teacher asks you to solve a maths word problem”). Participants responded to the items using a pictorial scale consisting of partially filled boxes with a varying level of content from “little” to “much” anxiety (rated 1–5) (Figure 1).

The scale was individually administered. A trained interviewer presented a brief description of anxiety with some examples (see Appendix) to each child, and explained the response scale with the boxes. After this preliminary introduction, each item was read aloud by the interviewer who recorded each answer that the participant gave by pointing at a box on the response sheet. It took about 10 min to complete the scale.

The AC-MT 6–11 (Cornoldi et al., 2012) was used to measure mathematics achievement. It is a standardized mathematics test designed for first- to fifth-graders to assess calculation procedures and number comprehension. In this study, participants had to solve 4 written multi-digit calculations (two additions, two subtractions) designed for first- and second-graders. The test was paper and pencil administered and it took about 10 min to complete. Both measures were administered individually during class time in a random order.



Results

Item distributions and descriptives were examined to assess normality (Table 2). Skewness and kurtosis indices of some items revealed that the departures from normality were not acceptable (Marcoulides and Hershberger, 1997).


TABLE 2. Means, standard deviations (SDs), skewness, kurtosis, and item- total correlations for each item, and factor loadings of the EES-AMAS.
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Dimensionality

The original factor structure was tested by CFA employing the Mean-Adjusted Maximum Likelihood (MLM) estimator (Mplus software; Muthén and Muthén, 2004). This estimator provides the Satorra– Bentler Scaled chi-square (SBχ2; Satorra and Bentler, 2001), an adjusted and robust measure of fit for non-normal sample data. This is more accurate than the ordinary chi-square statistic (Bentler and Dudgeon, 1996). Criteria for assessing overall model fit were mainly based on practical fit measures: the ratio of chi-square to its degrees of freedom (SBχ2/df), the Comparative Fit Index (CFI; Bentler, 1990), the Tucker–Lewis Index (TLI; Tucker and Lewis, 1973), and the Root Mean Square Error of Approximation (RMSEA; Steiger and Lind, 1980). For the SBχ2/df, values of less than 3 were considered to reflect a fair fit (Kline, 2010). We deemed CFI and TLI values of 0.90 and above a fair fit (Bentler, 1995). For RMSEA, values equal to or less than 0.08 were considered to represent adequate fit (Browne and Cudeck, 1993). Results showed that goodness of fit indices for the two-factor model were all adequate (SBχ2 = 41.67, df26, p < 0.05, SBχ2/df 1.6; CFI = 0.93; TLI = 0.90; RMSEA = 0.06). Standardized factor loadings ranged from 0.45 to 0.74, all significant at the 0.001 level, just as the correlation between the two factors (0.67) (Table 2).



Reliability and Validity

With regard to reliability, the omega for the EES-AMAS was 0.76; 0.72 for the Learning Math Anxiety subscale (LMA), and 0.70 for the Evaluation Math Anxiety subscale (EMA) (see Supplementary Table S1 for the other reliability coefficients). All item-corrected total correlations were above 0.32 (Table 2). Concerning validity, there was a negative correlation between MA and math achievement (–0.21; p < 0.01).



Invariance Across Genders and Gender Differences

A multi-group analysis was conducted to investigate the gender invariance property of the EES-AMAS. It is a step-by-step procedure in which a series of nested models are organized in a hierarchical order. In line with the recommended practice for testing measurement invariance (Little, 1997; Vandenberg and Lance, 2000; Dimitrov, 2010), first the independence model was fitted (SBχ2 = 344.03, df = 72, p < 0.001). As reported in Table 3, the starting point was an unconstrained model to test configural invariance, which was used as a baseline for testing weak or metric factorial invariance. Criteria for assessing the difference between the competing models were based on the scaled difference chi-square test (Satorra and Bentler, 2010). Therefore, Model 1 was compared to Model 2. SBΔχ2 was not significant (SBΔχ2Model 1 – Model 2 = 9.76, p = 0.203), confirming that the factor loadings were equal across genders. Then, the equivalence of structural variances and covariances, which were constrained to be invariant across groups, were also tested (SBΔχ2Model 2 – Model 3 = 4.28, p = 0.233). Finally, taking Model 3 as a reference, the error variances/covariances hypothesis was tested, including constraints in error variances (Model 4). SBΔχ2 was not significant when comparing the two models (SBΔχ2Model 4 – Model 5 = 8.65, p = 0.470) indicating the equality of measurement errors across gender.


TABLE 3. Goodness-of-fit statistics for each level of structural and measurement invariance across genders.

[image: Table 3]Having preliminarily verified the measurement equivalence of the scale across genders, we tested gender differences using the traditional frequentist approach, and also a Bayesian approach. With the traditional frequentist approach, we compared the total score (Mean male = 22.47, SD male = 8.4; Mean female = 21.25, SD female = 7.1) and the scores on each subscale (Learning: Mean male = 11.91, SD male = 5.5; Mean female = 10.47, SD female = 4.3; Evaluation: Mean male = 10.56, SD male = 4.2; Mean female = 10.78, SD female = 4.3). The results showed no significant difference between genders. Using a Bayesian approach makes it clear when a set of observed data is more consistent with the null hypothesis than the alternative. A Bayesian independent samples t-test was conducted using the default Cauchy prior centered on zero and with r = 0.707 (Ly et al., 2016). We conducted this analysis using JASP (JASP Team, 2018). The corresponding Bayes factor for the total score was 3.70 in favor of H0 over the two-sided H1. This indicated that the observed data are 3.71 times more likely under Ho than under H1. All priors suggested moderate evidence for the null hypothesis (i.e., no gender difference in MA), which was relatively stable across a wide range of prior distributions (Figure 2).
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FIGURE 2. (A) Bayesian independent samples t-test for the effect size δ. The dashed line illustrates the prior distribution (default Cauchy prior centered on zero, r = 0.707), the solid line shows the posterior distribution. The two gray dots indicate the prior and posterior density at the test value. The probability wheel on top visualizes the evidence that the data provide for the null hypothesis (H0: effect sizes are equal) and the alternative hypothesis (auburn, H1: effect sizes are different). The median and the 95% central credible interval of the posterior distribution are shown in the top right corner. (B) The Bayes factor robustness plot. The plot indicates the Bayes factor BF01 (in favor of the null hypothesis) for the default prior (r = 0.707), a wide prior (r = 1), and an ultrawide prior (r = 1.414). All priors suggest moderate evidence for the null hypothesis, which is relatively stable across a wide range of prior distributions. Plots taken from JASP.


Considering the subscale scores as dependent measures, the results showed a BF01 = 1.30 for the Learning subscale and a BF01 = 5.39 for the Evaluation subscale (Supplementary Figures S1, S2). Bayes factors between 1 and 3 are considered weak evidence for the Ho (a BF value of 1 would mean that the H0 and H1 are equally likely), and values between 3 and 10 are considered to indicate moderately strong evidence. Overall, these results suggested no gender differences in math anxiety in this age group, although the evidence was somewhat weaker in the case of the Learning subscale.



Discussion

The EES-AMAS was developed in response to the need for a brief and age-appropriate scale to assess MA in early elementary school students. The first aim of this study was to measure the factor structure of the EES-AMAS using a confirmatory procedure. The confirmatory factor analysis provided evidence of the underlying two-factor structure in younger students. Fit indices were good, and the items loaded highly on the expected factors, suggesting that the two dimensions established in the original AMAS (Learning Math Anxiety and Math Evaluation Anxiety) were evident also in the early elementary school student version.

Establishing the factor structure of mathematics anxiety may help with determining at this age whether anxiety pertains to the performance of mathematics in itself or whether anxiety is more related to test situations. Identifying for each student which aspect of MA is higher is also important for designing interventions. Another advantage of the EES-AMAS is its shortness. The administration time is less than 10 min and therefore, in addition to studies focusing primarily on math anxiety, it is also appropriate for multivariate studies in which many tests and scales need to be administered together. Indeed, it is useful to have a short scale. Nevertheless, it is important to balance the need to have a small number of items and the need to have good reliability. For this reason, we have developed the scale taking into consideration item wording and the length of the scale. The results showed good reliability for the EES- AMAS as a whole, and both subscales. Additionally, the scale presented good criterion validity, confirming that students with more severe MA performed less well in math tasks (Devine et al., 2012; Hill et al., 2016).

Finally, we tested invariance across genders (i.e., whether the test functions equivalently for males and females). Concerning gender differences in younger children, the majority of studies found evidence that there are small or non-existent gender differences in children of this age (e.g., Dowker et al., 2012; Harari et al., 2013; Ramirez et al., 2013; Jameson, 2014; Erturan and Jansen, 2015; Hill et al., 2016). However, in the case of most of these studies, a lack of measurement equivalence of the scales makes group comparisons ambiguous (Vandenberg and Lance, 2000). Indeed, the EES-AMAS, due to its gender invariance property, could be a useful tool to better investigate gender differences in young children in future studies. In the current study, we found no significant gender difference in math anxiety in our sample, either in the total math anxiety score or in the subscale scores. We conducted Bayesian analyses to quantify the evidence for the null hypothesis in each case. We found moderate evidence in favor of the null hypothesis in the case of the total score and the Evaluation subscale score. However, the evidence for no gender difference was weaker in the case of the Learning subscale. We will return to this issue in Study 2.



STUDY 2

Although MA is considered a global phenomenon and it is supposed to be a transcultural trait (Ma, 1999), the majority of research on MA has been conducted in North America (cf., Morsanyi et al., 2016; Mammarella et al., 2019). One large-scale attempt to evaluate MA across different countries has been undertaken by the PISA assessment in 2012. Results showed that 33% of 15-year-old students across 65 countries who participated in this assessment reported feeling helpless when solving math problems. However, this study has only compared responses to single items, and did not investigate the structure of MA across countries. Very few studies have assessed the structure of MA in children using the same scale translated into different languages. Ho et al. (2000) tested the dimensionality of the MAQ (Wigfield and Meece, 1988) with 11 year-old children, confirming its two-dimensional structure (i.e., affective and cognitive). Indeed, the structure of MA has been found to be similar in American, Chinese and Taiwaneese students. Only the study of Wood et al. (2012) investigated the structure of MA in early elementary school students (second and third graders) in German and Brazilian samples and showed a similar structure across countries. However, even in this study, the invariance of the scale across countries has not been investigated.

In the current study, the participants were early elementary school pupils, recruited from two countries: Italy and the UK. The UK sample was from Northern Ireland, which has the youngest school starting age (4 years) among the 37 countries participating in Eurydice, the information network on education in Europe (Eurydice at NFER, 2012). In Italy, children start school at 6 years of age. We have recruited 6- and 7-year-old pupils from both countries, which made it possible to test the equivalence of the EES-MAS not only across languages, but also across educational contexts. The aim of this analysis was to test whether observed MA scores depended only on the latent construct, and not on group membership. Similar to Study 1, we have applied multiple group confirmatory factor analysis (MGCFA), in which the theoretical model is compared to the observed structure in two samples. Additionally, in both samples, we tested the criterion validity of the scale, measuring its relations with math achievement (as measured by a math test, and by teacher’s ratings of each child’s achievement). Based on the typical findings in the literature, we expected a small- to medium negative correlation between math anxiety and math performance. Additionally, we tested the convergent validity of the EES-AMAS by measuring its relationship with the CMAQ-R (the Child Math Anxiety Questionnaire –Revised; Ramirez et al., 2016), which has been developed for the same age group as our scale, although it is much longer. We also investigated the relationship between the EES-AMAS and children’s state anxiety after they completed the math test.


Materials and Methods


Participants

The participants were 223 early elementary school students (mean age = 6.7 years; SD = 0.6; 47% female) 46% attending primary school in Forlì (Italy; mean age = 6.41 years; SD = 0.49; 40% female) and 54 % in Belfast (UK; mean age = 7.11 years; SD = 0.66; 52% female).



Materials and Procedure

The Italian version of the EES-AMAS was administered to the Italian pupils. The English version of the EES-AMAS was obtained using a forward-translation method. Two non-professional translators worked independently, and then they compared their translations with the purpose of assessing equivalence. The wording and content of the items was also discussed with schoolteachers to obtain a final version. As in Study 1, an interviewer presented individually a brief description of anxiety with some examples and participants responded to items on a pictorial scale consisting of partially filled boxes with a differing level of content, representing “little” to “much” anxiety.

The CMAQ- R (Ramirez et al., 2016) was designed to be appropriate for first and second grade children. It contains 16 items that ask children how nervous they would feel during various math-related situations. Responses are collected using a 5-point Likert scale ranging from 1 (not nervous at all) to 5 (very, very nervous), which are represented in the form of smiley faces. Children have to respond by pointing at the appropriate smiley face on the scale. High scores on the scale indicate high math anxiety. The Italian version of the CMAQ-R was obtained from the English version using a forward-translation method. Two non-professional translators worked independently, and then they compared their translations with the purpose of assessing equivalence. With regard to reliability, the internal consistency Cronbach’s alpha for the CMAQ-R was 0.83 (CI 0.82–0.87) in the Italian sample and 0.80 (CI 0.74–0.85) in the British sample.

State math anxiety was measured by a single-item scale, which was administered to pupils after they completed the math test. The same smiley face scale was used as in the CMAQ-R (Ramirez et al., 2016). Children were asked to point to one of five smiley faces to indicate how nervous they felt about completing the math problems. The face on the leftmost side indicated that the child was not nervous at all, whilst the face on the rightmost side indicated that the child felt very, very nervous.

Math Performance in both the Italian and the UK sample was measured by a test developed for the purposes of this study. The two tests were developed using the same criteria, but were different in their contents due to the fact that children at age 6 attend the first primary school grade in the Italian school system, and the third grade in Northern Ireland. In detail, the UK test was based on items from the Test of Early Mathematics Ability (TEMA-3; Ginsburg and Baroody, 2003). The test consisted of 38 items, which were administered in a single session in four parts, with short breaks in between. The tasks were read out to children to minimize the effect of reading ability on children’s performance. The items covered addition and subtraction problems including both single- and two-digit numbers, additions and subtractions with multiples of ten, and word problems that also relied on simple addition or subtraction procedures. The items were selected from a set of 50 problems, which were piloted in a separate sample of 27 children. Tasks with accuracy levels between 35 and 75% were retained to ensure a good variability of scores on the test. The same procedure was adopted to develop the test administered to the Italian sample. In the pilot phase, a set of 50 math tasks were used that included addition and subtraction with both single- and two-digit numbers, additions and subtractions with multiples of ten, word problems relying on addition and subtraction, and number sequencing. These tasks were administered to a sample of 37 children. Nineteen items with accuracy levels between 35 and 75% were retained for the final test, including 5 additions, 4 subtractions, 5 word problems with addition, 3 word problems with subtractions, and 2 number sequencing tasks. A single composite score, based on the sum of correct responses, was calculated for both samples. Cronbach’s alpha was 0.92 in the UK sample, and 0.86 in the Italian sample.

Teachers were also asked to provide a rating of each child’s math achievement using a 5-point scale: 1 = working well below the expected level of attainment for his/her age; 2 = working below the expected level of attainment for his/her age; 3 = working toward the expected level of attainment for his/her age; 4 = working within the expected level of attainment for his/her age; 5 = working beyond the expected level of attainment for his/her age.

The study was approved by the School of Psychology ethics committee at Queen’s University Belfast (UK), and by the ethics committee of the University of Bologna (Italy). Informed consent was gained from parents prior to their child’s participation, whilst assent was obtained from the children before they took part in the study. Children were tested in two sessions: in the first session, they were tested in groups of 4–8 in their classes, and they completed the math assessment. The tasks were administered in four parts, with short breaks in between. At the end of the session, children were asked to say how nervous they felt while completing the math tasks. Individual sessions were carried out at least 1 day after the group session and involved children completing the math anxiety questionnaires. The scales were administered in a fixed order with the CMAQ-R always administered first. The reason for this was that the EES-AMAS included detailed instructions, which might have affected responses on the CMAQ-R. Teachers provided ratings of each child’s math achievement in their own time.



Results

First, as a prerequisite, the baseline model was tested separately for each country. For the Italian sample, the two-factor model had goodness of fit indices as follows: SBχ2/df = 1.55, TLI = 0.90, CFI = 0.92; and RMSEA 0.07. Standardized factor loadings ranged from 0.43 to 0.74, all significant at the 0.001 level, just as the correlation between the two factors (0.77). For the British sample, the two-factor model was associated with the following goodness of fit indices: SBχ2/df = 1.45, TLI = 0.90, CFI = 0.91; RMSEA.07. Standardized factor loadings ranged from 0.37 to 0.70, all significant at the 0.001 level, as well as the correlation between the two factors (0.75) (Table 4).


TABLE 4. Means, standard deviations (SDs), item- total correlation for each item and factor loadings of the EES-AMAS for each sample.
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Invariance Across Languages/Educational Contexts

A multi-group analysis was conducted to investigate the cross-language invariance property of the EES-AMAS. It is a step-by-step procedure in which a series of nested models are organized in a hierarchical order. In line with the recommended practice for testing measurement invariance (Little, 1997; Vandenberg and Lance, 2000; Dimitrov, 2010) first the independence model was fitted (SBχ2 = 540.38, df = 72, p ≤ 0.001). As reported in Table 5, the starting point was an unconstrained model to test configural invariance, which was used as a baseline for testing weak or metric factorial invariance. Criteria for assessing the difference between the competing models were based on the scaled difference chi-square test (Satorra and Bentler, 2010). Therefore, Model 1 was compared to Model 2 and SBΔχ2 was not significant (SBΔχ2Model 1 – Model 2 = 13.06, p = 0.071), confirming that the factor loadings were equal across languages. Then, the equivalence of structural variances and covariances which were constrained to be invariant across groups, were also tested (SBΔχ2Model 2 – Model 3 = 1.40, p = 0.703). Finally, taking Model 3 as a reference, the error variances/covariances hypothesis was tested including constraints in error variances (Model 4). SBΔχ2 was not significant when comparing the two models (SBΔχ2Model 4 – Model 5 = 8.31, p = 0.503), indicating the equality of measurement errors across languages.


TABLE 5. Goodness-of-fit statistics for each level of structural and measurement invariance across languages.

[image: Table 5]Having verified the measurement equivalence of the scale, we tested group differences in mean scores on the total score (MeanItalian = 21.01, SD Italian = 7.7; MeanBritish = 20.59, SDBritish = 6.6), and each subscale (Learning: MeanItalian = 10.9, SD Italian = 4.7; MeanBritish = 9.1, SDBritish = 3.5; Evaluation: MeanItalian = 10.9, SD Italian = 4.1; MeanBritish = 11.5, SD female = 4.0). Results showed no significant differences between the groups, indicating that, at 6-years of age, Italian and Northern Irish children experienced similar levels of math anxiety.2

A Bayesian independent samples t-test was conducted using the default Cauchy prior centered on zero and with r = 0.707. The corresponding Bayes factor for the total score was 6.23 in favor of H0 over the two-sided H1. All priors suggest moderate evidence for the null hypothesis, which is relatively stable across a wide range of prior distributions (Figure 3).


[image: image]

FIGURE 3. (A) Bayesian independent samples t-test for the effect size δ. The probability wheel on top visualizes the evidence that the data provide for the null hypothesis (H0: effect sizes are equal) and the alternative hypothesis (auburn, H1: effect sizes are different). The median and the 95% central credible interval of the posterior distribution are shown in the top right corner. (B) The Bayes factor robustness plot. The plot indicates the Bayes factor BF01 (in favor of the null hypothesis) for the default prior (r = 0.707), a wide prior (r = 1), and an ultrawide prior (r = 1.414).


Considering the subscale scores as dependent measures, the results showed a BF01 = 1.38 for the Learning subscale, indicating weak evidence in favor of the null hypothesis. In the case of the Evaluation subscale, a Bayesian independent samples t-test (BF01 = 3.74) indicated moderate evidence in favor of the null hypothesis (Supplementary Figures S3, S4).



Reliability and Validity

With regard to reliability, in the Italian sample omega was 0.79 and in the English sample it was 0.74. In both samples, all item-corrected total correlations were above 0.30 (Table 4).

Concerning validity, to investigate the relationship between MA and math achievement, correlations between the EES-AMAS and math test scores, as well as teacher’s ratings of children’s math achievement were calculated. The results showed that higher levels of MA were associated with poorer math performance in both samples, and the strength of this relationship was moderate (Table 6).


TABLE 6. Descriptive statistics for the measures, and correlations between the measures of math achievement and math anxiety (results for the UK sample are presented in brackets).

[image: Table 6]To analyze convergent validity, we tested the relationship between the EES-AMAS and the CMAQ-R, as well as children’s state anxiety immediately after completing a math test. Strong, positive correlations were found in both samples between the two MA scales. Regarding state math anxiety, there was no relationship between trait and state math anxiety in the Italian sample, but in the UK sample there was a weak positive correlation.

Similar to Study 1, we checked whether there were any gender differences in MA. Additionally, we also made comparisons between girls’ and boys’ math performance based on their math test scores and teacher’s ratings (Table 7). There were no gender differences in MA either in the Italian or in the UK sample (ps> 0.40). This was also the case when we checked separately whether there were gender differences in Learning or Evaluation MA. There were also no gender differences in math performance, although in the Italian sample, there was a non-significant trend toward boys scoring higher on the math test (p = 0.075).


TABLE 7. Gender differences in math anxiety and math performance.

[image: Table 7]Bayesian independent samples t-tests were conducted for the effect size δ (Table 7). The results indicated moderate evidence in favor of the null hypothesis considering gender as the independent variable in each country.



Discussion

Study 2 tested the equivalence of the Italian and English versions of the EES-AMAS, attesting the appropriateness of the scale to be used in both languages and educational contexts. The equivalence of the scale across countries is important for being able to generalize findings obtained with one country/language version of the test to other countries.

Additionally, we tested the validity of the scale in both populations. In particular, we have tested the criterion validity of the scale, using teacher ratings and a math test adapted for both countries. As expected, MA negatively correlated with the measures of math achievement in both countries. Moreover, the strength of this relationship was moderate. This is an important finding, because some previous studies did not find a relationship between math achievement and math performance in young pupils (Cain-Caston, 1993; Thomas and Dowker, 2000; Krinzinger et al., 2009; Dowker et al., 2012). Nevertheless, in line with our findings, other studies have reported a relationship between MA and math performance even in the first school grades (Wu et al., 2012, 2014; Ramirez et al., 2013; Vukovic et al., 2013; Ramirez et al., 2016). It has also been argued that young children generally have positive feelings about mathematics, but their feelings and attitudes deteriorate with age (Wigfield and Meece, 1988; Ma and Kishor, 1997). Related to this point, our findings show that young pupils in both countries tended to report low levels of anxiety (as indicated by their ratings of the scale items). Additionally, similar to Study 1, there were no gender differences in MA in either the Italian or the UK sample in the case of the total score, and no gender difference in either the Learning or the Evaluation subscale, with moderate evidence for the null hypothesis in both samples.

We also investigated the validity of the EES-AMAS by assessing its relationship with a well-known measure of MA developed for this age group, the CMAQ-R. The strong, positive correlation between the two measures confirmed that the two scales measured the same construct. We have also measured the relations between the EES-AMAS and children’s self-reported state math anxiety after completing the math test. We have found a weak positive correlation between state and trait anxiety in the UK sample. However, in the Italian sample, there was no relationship between state and trait anxiety. Additionally, although the CMAQ-R is much longer, the two MA scales showed very similar relations with math performance.

A limitation of this study is that the math assessment was developed specifically for this study, and therefore its validity has not been independently established. However, the math test was based on items from a standardized, curriculum-based test, the TEMA-3, and it had high internal consistency in both samples. We also piloted the test in a separate sample of children in both countries to make sure that the items covered a range of difficulty levels, although very easy or very difficult items were not included. Another limitation is that we used an ad hoc, single item scale to measure state math anxiety. Although state math anxiety was related to MA and math performance in the UK sample, no similar relations were found in the Italian group. Given that this measure has not been used outside this study, these findings are difficult to interpret.



CONCLUSION

MA is a widespread, worldwide problem affecting all age groups. Recent studies have shown that MA affects performance even in the first years of education (Harari et al., 2013; Ramirez et al., 2013). However, to date there are only a few studies that have investigated MA in this age group. One of the problems which contributes to the difficulty of conducting research into MA in young children relates to the question of how MA should be measured in this age group. Based on our review of the psychometric properties (i.e., dimensionality, validity and reliability) of the scales developed for this age group, we have identified areas for improvement in the assessment of MA in young children. In order to address these limitations, the current study aimed at developing a new instrument to assess MA in early elementary school students.

Among the existing measures of MA, the AMAS (Hopko et al., 2003) has been used with adults in different cultural and linguistic contexts, and it showed good psychometric properties. Additionally, it was adapted for primary school children from 8 years of age, and was shown to be a valid and reliable scale for measuring MA in children (Carey et al., 2017; Caviola et al., 2017). For all these reasons, the AMAS was chosen as our starting point to develop the Early Elementary School Students – Abbreviated Math Anxiety Scale (EES-AMAS). Although the EES-AMAS is a short scale (similar to the original AMAS), it showed good validity and reliability, and also maintained the two-factors structure of the original scale, indicating, that from a young age, children experience anxiety (even if it is not too intense) in both math learning and evaluation contexts. Given that the same factors appear to underlie MA in the case of younger and older children, adolescents and adults, it might be possible for future studies to longitudinally track the developmental trajectories of these factors. Indeed, currently very little is known about how MA within the same individual unfolds over time, and there is especially little understanding of the early origins of MA.

The new scale was shown to be invariant across genders and linguistic/educational contexts. Although we have only tested the equivalence of the scale across two countries, the evidence for equivalence is a promising initial result, given the differences between the school systems in Italy and Northern Ireland (most notably, there is a 2-year difference in children’s school starting age).

Using our new scale, we have found no evidence of gender differences in MA, with Bayesian t-tests indicating moderate evidence in favour of the null hypothesis. This finding was consistent across all samples of children (two from Italy and one from the UK) that were included in our studies. This is an important result given the ubiquitous evidence for gender differences in studies with older age groups. This finding also suggests that gender differences in MA are unlikely to have a biological basis, and most likely reflect societal influences, and differences in the experiences of male and female pupils both within and outside of the educational context.

A novelty of our scale is that we have introduced a pictorial rating scale, consisting of partially filled boxes, which was easy to use for children even at this young age, and avoided the problems associated with other rating scales. In particular, when a rating scale consisting of smiley and sad faces is used, young children might be inclined to select faces that they find more attractive instead of selecting a face that best represents their emotional state.

In recent years, the assessment of MA has attracted increasing research attention, and several studies have focussed on young children. Nevertheless, the instruments used in these studies had various shortcomings. The EES-AMAS is a psychometrically sound short scale, which offers several advantages over previously developed scales. Indeed, with the advancement of knowledge about MA, and research questions becoming increasingly complex and involving a growing number of constructs, shorter scales offer added value (Ziegler et al., 2014). The EES-AMAS can be used to investigate the development of MA, as well as to further investigate the presence or absence of gender differences in MA in young children. If the invariance of the scale is further confirmed across different countries and languages, it could also offer support for the claim that the MA construct generalizes across countries, and linguistic and educational contexts. Finally, future studies could also investigate potential differences in the two dimensions of MA (i.e., Evaluation and Learning MA) across countries. Indeed, countries differ in the age at which various forms of assessment are introduced, and in the ways children are given feedback on their performance, which might lead to differences in the development of MA.
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FOOTNOTES

1 These tests did not have exactly the same items, because the children in the two countries attended different school grades. Nevertheless, the types of items were very similar, as well as the overall structure of the assessment and the way the tests were administered.

2 It is of note that the CMAQ-R indicated a significant difference in MA across countries [t(221) = 2.28 p = 0.023]. Nevertheless, given that the measurement equivalence of the CMAQ-R across countries has not been verified, it is possible that this difference was the result of different interpretation of the items by Italian and British children.
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APPENDIX: THE EARLY ELEMENTARY SCHOOL ABBREVIATED MATH ANXIETY SCALE

Now i am going to read you some sentences about situations that can happen at school. For each sentence you should tell me how much anxious you feel.

Do you know what anxiety is?

Feeling anxious means that you feel worried, upset, your hands sweat, you are afraid to give the wrong answer.

For example, if your teacher asks you something, how do you feel? do you feel anxious? Are you worried? are your hands sweating?

Are you afraid to give your teacher the wrong answer?

To tell me how anxious you feel in each situation, you should point at one of these squares:

If you choose the one on your left, that is almost empty, it means that you feel just a little anxious in that situation. if you choose the one on your right, that is completely filled, it means that you feel really anxious in that situation (explain the other squares).

Do you understand? let’s begin.

How much anxiety do you feel:
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In the past few years, many studies have suggested that subjects with high sensory precision in the processing of non-symbolic numerical quantities (approximate number system; ANS) also have higher math abilities. At the same time, there has been interest in another non-cognitive factor affecting mathematical learning: mathematical anxiety (MA). MA is defined as a debilitating emotional reaction to mathematics that interferes with the manipulation of numbers and the solving of mathematical problems. Few studies have been dedicated to uncovering the interplay between ANS and MA and those have provided conflicting evidence. Here we measured ANS precision (numerosity discrimination thresholds) in a cohort of university students with either a high (>75th percentile; n = 49) or low (<25th percentile; n = 39) score on the Abbreviate Math Anxiety Scale (AMAS). We also assessed math proficiency using a standardized test (MPP: Mathematics Prerequisites for Psychometrics), visuo-spatial attention capacity by means of a Multiple Objects Tracking task (MOT) and sensory precision for non-numerical quantities (disk size). Our results confirmed previous studies showing that math abilities and ANS precision correlate in subjects with high math anxiety. Neither precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with math capacities. Interestingly, within the group with high MA, our data also revealed a relationship between ANS precision and MA, with MA playing a key role in mediating the correlation between ANS and math achievement. Taken together, our results suggest an interplay between extreme levels of MA and the sensory precision in the processing of non-symbolic numerosity.

Keywords: approximate number sense (ANS), numerical cognition, math anxiety, math abilities, Weber fraction


INTRODUCTION

Numerical and mathematical competencies are central predictors of an individual’s success in life. Developing adequate numerical and mathematical skills is a prerequisite to accomplishing numerous tasks in daily life, such as setting and keeping to a budget (Parsons and Bynner, 2005), as well as pursuing careers in the STEM fields: science, technology, engineering, and mathematics (STEM; Beilock and Maloney, 2015; Ferguson et al., 2015). Impairments in mathematical skills might be triggered by several factors and, amongst these, mathematical anxiety (MA) has been suggested to play a key role. MA has been defined as feelings of apprehension and increased physiological reactivity when individuals have to manipulate numbers, solve mathematical problems, or when they are exposed to an evaluative situation connected to math (Hembree, 1990; Ashcraft, 2002). Similar to other performance-based anxieties, MA involves psychological arousal, negative cognitions, escape and/or avoidance behaviors and, when the individual cannot avoid the situation, performance deficits. MA is also related to reduced cognitive reflection (Morsanyi et al., 2014; Primi et al., 2018), and poorer decision making performance (e.g., Rolison et al., 2016). In other words, MA is described as a multidimensional construct that is related to, but distinct from, other forms of anxiety, such as trait, social, or test anxiety (Ashcraft and Moore, 2009; Vukovic et al., 2013). MA has been shown to hinder math performance. It has been reported that individuals with higher levels of MA obtain lower scores in math achievement tests, take fewer math courses, and tend to avoid career paths involving mathematics (Ma, 1999; Ashcraft and Krause, 2007; Ashcraft and Moore, 2009).

Two theoretical frameworks have traditionally been proposed to account for the link between MA and math achievements (Carey et al., 2016). The deficit theory posits that poor mathematical performance leads to future high levels of MA. In line with that, it has been suggested that MA could result from low numerical (and/or spatial) skills which compromise the development of high proficiency in mathematical problem solving (Maloney et al., 2011; Maloney, 2016). On the other hand, the cognitive interference theory posits that it is MA that affects subsequent mathematical performance. During the phases of information processing and recall, MA would create cognitive interference which affects mathematical performance. According to this theory, anxiety would generate intrusive thoughts to reduce working memory (WM) capacity, with these thoughts acting as a secondary task draining resources that, otherwise, would have been allocated to solving the mathematical task (Ashcraft and Kirk, 2001). An alternative theory posits that MA and mathematical performance show a bidirectional relationship (Ashcraft and Krause, 2007); past failures and negative experiences in mathematical performance would lead to MA which, subsequently, would lead to poorer mathematical performance and vice versa (Ma and Xu, 2004).

Whatever the nature of the link between MA and low achievement in math learning, several studies have highlighted various factors that might account for the negative relationship between these factors. A possible explanation of the gap in math performance between students with high and low levels of MA derives from behavioral and psychophysiological studies, which provide converging evidence for individual (cognitive, affective/physiological, motivational) and environmental (social/contextual) factors (Chang and Beilock, 2016). Recent reports, focused on genetic and neurophysiological factors, suggested that MA arises from a basic level deficiency in symbolic numerical processing. In particular, genetic studies of MA in twins evidenced that genetic factors accounted for about 40% of the variation in MA, and that 12% of the total variance in MA was associated with genetic influences related to math problem-solving (Wang et al., 2014; Malanchini et al., 2017). Finally, children with high mathematical anxiety (HMA), compared with low mathematical anxiety (LMA) peers, show reduced responses in posterior parietal cortex, including the intraparietal sulcus (IPS) and dorsolateral prefrontal cortex regions, known to play a critical role not only in numerical and mathematical cognition, but also in non-symbolic number evaluation (Dehaene et al., 1999; Eger et al., 2003; Piazza et al., 2004; Young et al., 2012; Castaldi et al., 2016).

Whilst symbolic numerical representation and arithmetic are recent cultural inventions specifically adopted by humans, humans share with many non-human animal species an intuitive “approximate number system” (ANS), which is the core ability to automatically and efficiently process numerical magnitude information (Dehaene, 2011). The sensory precision of this system is refined during development and varies considerably between individuals (Halberda et al., 2008; Halberda et al., 2012; Odic et al., 2013). It is suggested that numerosity represents a primary visual attribute (Anobile et al., 2016b) and, in line with this idea, recent studies showed that numerosity is spontaneously perceived, even by 5-year old children (Cicchini et al., 2016). Interestingly, several studies reported strong correlations between the precision in numerosity judgments and current, future or past formal mathematical skills in children (Halberda et al., 2008; De Smedt et al., 2009; Anobile et al., 2013, 2018a; Feigenson et al., 2013; Starr et al., 2013). Complementary studies carried out on subjects with mathematical disabilities (developmental dyscalculia) show that a deficit in mathematical processing generalizes to yield severe difficulties in estimating and comparing numerosity (Landerl et al., 2004; Piazza et al., 2010; Mazzocco et al., 2011; Pinheiro-Chagas et al., 2014; Anobile et al., 2019b). In light of all these results, some authors suggested that an intact number sense might be a base prerequisite for the later mathematical acquisition or, in other words, that the number sense acted as an early non-symbolic start-up tool for the later development of language-based formal mathematical skills (Butterworth, 1999; Piazza, 2010; Butterworth et al., 2011; Dehaene, 2011).

Given the intimate relationship between MA and mathematical achievements, and the complementary link between these and the ANS, it has also been suggested that there is a possible interplay between ANS and MA. However, evidence collected so far is controversial. In particular, two studies have found that individuals with HMA represent numerical magnitude less precisely than their LMA peers (Maloney et al., 2011; Núñez-Peña and Suárez-Pellicioni, 2014). However, as both studies tested with Arabic digits, they only supported a link between MA and symbolic representation of quantity, not numerosity. Recently Braham and Libertus (2018) showed that the association between precision in perceived numerosity (ANS acuity) and subjects’ performance in applied problem solving was present only in subjects with HMA levels, suggesting that an efficient ANS system might act as a potential protective factor for highly math anxious students. Another study reported a link between non-symbolic numerical processing and MA (Lindskog et al., 2017); these authors found that people with high levels of math anxiety show poorer precision in a non-symbolic numerical comparisons task, compared to those with low levels of math anxiety. They also showed that the correlation between math skills and numerosity precision was fully mediated by participants’ level of MA. However, several studies measuring ANS acuity by means of non-symbolic tasks failed to find a significant correlation between ANS and MA in both adults (Dietrich et al., 2015; Colomé, 2019) as well as children (Gómez-Velázquez et al., 2015; Wang et al., 2015; Hart et al., 2016), leaving open the question of whether this interplay occurs.

The current study aims to assess the role of MA in math skills and numerosity perception. We devised two groups with extremely low or high levels of mathematical anxiety (drawn from a large sample of university students) and measured, in both groups, differences in ANS acuity and math abilities as well as correlations between these variables. We first investigated whether the numerosity thresholds were different in subjects with HMA compared to their LMA peers. Then we addressed the question whether any possible numerosity impairments in HMA participants ware selective for numerosity or whether it was related to a more general perceptual weakness in magnitude judgments. This goal was achieved by measuring discrimination thresholds on a non-numerical magnitude task, in which participants were engaged in an object-size discrimination task. The issue of specificity was also tested by measuring a non-magnitude parietal function, as many studies suggested a key role of parietal cortex in both numerosity perception and math processing. To this aim, we decided to administer a Multiple Object Tracking (MOT) task as it was shown to activate the parietal cortex, which has been found to correlate well with both numerosity and math abilities (Corbetta and Shulman, 2002; Ansari et al., 2007; Steele et al., 2012; Anobile et al., 2013). In order to assess the specific role played by MA in mathematical performance, we measured individuals’ anxiety on a more general dimension, such as performance anxiety (Ashcraft and Ridley, 2005; Lindskog et al., 2017). Finally, we tested for the potential mediation role of MA on the link between ANS and math abilities, using a mediation model in which ANS was associated with math achievement through math anxiety. Mediation implies a situation where the effect of the independent variable (X) on the dependent variable (Y) can be explained using a third mediator variable (M) which is caused by the independent variable and is itself a cause for the dependent variable. By modeling an intermediate variable, the overall effect between X and Y can be decomposed into component parts called the direct effect of X on Y and the indirect effect of X on Y through M (i.e., the mediated effect).

The importance of our study, which took into consideration several possible differences between subjects with high and low math anxiety, relies on the fact that such multidimensional analysis is the most suitable tool to investigate the effect of MA on both low-level quantity processing (ANS) as well as high-level mathematical proficiency. Such an approach is not only likely to allow a full understanding of the interplay between MA, math achievements and ANS, but will also improve understanding of the brain mechanisms underpinning these processes, as well as providing useful information about how to optimize mathematical learning procedures or customized early targeted interventions.



MATERIALS AND METHODS


Participants

Participants were 88 university students attending an introductory statistics course at the School of Psychology of the University of Florence. They were selected from a class of 179 students based on their level of math anxiety. The LMA group comprised 39 participants (69% female; age range 18–22 years, mean = 20.1, SD = 0.7) who scored below the 25th percentile (score range 10–19, mean = 16.3, SD = 2.6) on the Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003). The HMA group comprised 49 participants (82% female; age range 18–37, mean = 20.4, SD = 2.9) who scored above the 75th percentile on the AMAS (score range 27–40, mean = 30.1, SD = 3.2). All students participated on a voluntary basis. The whole procedure was performed in accordance with the declaration of Helsinki.



Measures

The Mathematics Prerequisites for Psychometrics (MPP; Galli et al., 2011) is a test which was developed to measure the mathematical skills of students enrolled in statistics courses. The scale was developed using item response theory (IRT) because it offers a different value of test precision for each specific level of underlying latent variable being measured, and it does not assume that a single estimate of reliability, and corresponding standard error of measurement, is sufficient to describe precision of measurement over all levels of ability (Embretson and Reise, 2000). The scale consists of 30 problems and has a multiple-choice format (one correct response out of four options). For example, “The value 0.05 is” (i) lower than 0; (ii) between − 1 and 0; (iii) higher than 0.1; and (iv) between 0 and 1, and “Knowing that xy = 3 which of the following is true?” (i) y = 3/x; (ii) y = 3x; (iii) c = 3x; and (iv) xy/3. The sum of correct responses gave us a single composite score for each participant. In the present sample, Cronbach’s α was 0.73 (IC:0.70–0.78). We used this measure as an estimate of the students’ math knowledge (Primi et al., 2014).

The Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003; Italian version: Primi et al., 2014) measures MA experienced by students in learning and test situations. Participants were required to respond on the basis of how anxious they would feel during given events (for example, “Listening to another student explain a math formula” or “Starting a new chapter in a math book”) by using a 5-point response scale (ranging from strongly agree to strongly disagree). High scores on the scale indicate HMA. A single composite score was obtained, based on participants’ ratings of each statement. In the present sample, Cronbach’s α was 0.84 (IC:0.80–0.87).

The Test Anxiety Inventory (TAI; Spielberger et al., 1978) was developed to measure anxiety associated with task-performing situations in high school and college students. The test consists of 20 items, which investigate a range of anxiety symptoms occurring before, during or after exams. Responses are collected using a 4-point Likert scale ranging from 1 (almost never) to 4 (always). The TAI yields a total score calculated as the sum of all 20 items, with higher scores corresponding to high test anxiety. In the present sample, Cronbach’s α was 0.94 (IC:0.93–0.96).


Numerosity Discrimination Task

Stimuli consisted of two brief (250 ms) patches of dots, presented on either side of a central fixation point (Figure 1A). Dots were 0.25° in diameter, half white and half black (to balance luminance), presented at 80% contrast on a gray background of 40 cd/m2. They were constrained to fall within a virtual circle of 10° diameter, centered at 10° eccentricity. Standard numerosity (randomly left or right) was fixed at 24 dots while the probe adaptively changed, according to participant responses, with numerosity defined by an adaptive staircase QUEST algorithm (Watson and Pelli, 1983). All participants performed one session of 80 trials. Participants were asked to indicate the side of the screen with more dots. We plotted the proportion of trials where the standard stimulus appeared more numerous than the probe against the probe numerosity (on log axis) and fitted with cumulative Gaussian error functions. We defined the point of subjective equality (PSE) as the physical numerosity of the probe yielding 50% of probe more numerous responses. Then we defined subjects’ precision as just notable difference (JND), that is the numerosity offset defining the 50–75% range of probe more numerous. Finally, normalizing PSE by JND we obtained a single index Weber Fraction (WF), a typical dimensionless psychophysical index for discrimination thresholds.
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FIGURE 1. Illustration of tasks and stimuli. (A) Numerosity Discrimination: two patches of dots were briefly (250 ms) presented to both side of a central fixation point. Subjects were required to select which dots ensemble was more numerous. (B) Size Discrimination: Participants were asked to indicate which of two briefly (250 ms) presented annuli was perceived as being larger (method adapted from Pooresmaeili et al., 2013). (C) Multiple Object Tracking (MOT): At the beginning of the session, some disks (2, 3, or 4) out of twelve were colored in green with the remaining being red. All dots moved randomly on the screen (7°/s) for a period of 2 s then the green disks turned red (like the distracters) and subjects had to track them for 4 s. At the end of the tracking period, all dots stopped and 4 of them turned orange with one of the orange dots being green at the beginning. This dot was the target subjects had to indicate in a 4-alternative forced paradigm (4ACF).




Size Discrimination Task

Stimuli were gratings sinusoidally modulated in luminance with a spatial frequency of 2 cycles per degree and a Michelson contrast of 90% which were vignetted in an annular contrast window (Figure 1B). In each trial, two annuli were simultaneously presented for 250 ms on the left and the right side of the central fixation point, at an eccentricity of 10°. Subjects were required to indicate which stimulus appeared to be larger. The diameter of the test stimulus (presented randomly on the left or right) was 5° or 8° (40 trials each, randomized trial-by-trial), while the probe varied in diameter by a percentage drawn randomly from a Gaussian distribution centered at 0 with SD = 20%. To minimize alternative judging strategies (such as estimating border-to-center of the screen distance), we independently jittered the horizontal eccentricity of the test and the probe between 8.5° and 11.5°, and their distance from the horizontal meridian within ± 3°. After the stimuli presentation, a 100 ms full-screen random noise mask was displayed to cancel out possible afterimages. The proportion of “test largest” trials was plotted against the log-ratio of the test to probe and fitted with cumulative Gaussian error functions. Even for the size discrimination task, the dependent variable which we took into account was Weber Fraction (see above), indicating subjects’ sensory precision in the size discrimination thresholds.



Visual Sustained Attention Task

Visual sustained attention (Figure 1C) was measured by a multiple object tracking task (MOT; Pylyshyn and Storm, 1988). At each trial, a total of twelve disks with a diameter of 0.9° moved randomly on the full screen at 7°/s for a period of 2 s. The green targets could be 2, or 3, or 4 (representing the three conditions) and the remaining stimuli (distractors) were red. After the 2 s, the green targets turned red (like the distractors), and continued to move randomly on the full screen for 4 s. The participants were required to continue to track them with their attention. After this period, the disks stop moving, and 4 of them turned orange. Participants had to identify (using the mouse cursor) which one of the four orange items was a green target at the beginning of the trial (4AFC). Each experimental session had 10 trials and participants performed 2 sessions, for a total of 20 trials. No feedback was provided. We measured the performance of the participants as the proportion of correct responses for each condition (Anobile et al., 2013).



Procedure

Participants were tested individually. Before the testing sessions, students provided informed consent. Math skills (MPP), Math anxiety (AMAS), and Test anxiety (TAI) were all measured before psychophysical experiments. The scales were in a paper-and-pencil format. The psychophysical tasks were then performed in a quiet and dimly illuminated room. Participants sat in front of a BARCO 27” monitor subtending 39° by 29° from the subject’s viewing distance of 57 cm. The monitor resolution was 1024 × 768 and the refresh rate equal to 120 Hz. Stimuli for the psychophysical experiments were all generated and presented with PsychToolbox (Brainard, 1997) routines for MATLAB (ver. 2010a, The Mathworks, Inc.).



Statistical Analysis

Preliminarily, we tested differences within the group (LMA and HMA) on numerosity and size discrimination tasks as well as sustained attention with a mixed 3 (within factor: tasks) × 2 (between factor: groups) ANOVA. Correlations between variables were tested by Pearson’s r. To further enhance the understanding of the mechanisms underlying the relationships among these variables, a mediation model was tested. Specifically, MA was modeled as the intermediate variable (M) between ANS and math proficiency. This procedure allowed us to conclude whether the independent variable influences the dependent variable directly (path c’ in Figure 5) and/or indirectly (path a or b in Figure 5) through the mediator. Obviously, the direct and indirect effects added to the yield of the total effect (path c in Figure 5) of the independent variable on the dependent variable. The mediation model was estimated to derive from the total, direct, and indirect effects of ANS on math achievement through MA. The indirect effect of ANS on math achievement was quantified as the product of the ordinary least squares (OLS) regression coefficient estimating MA from ANS (i.e., path a in Figure 5) and the OLS regression coefficient estimating math achievement from MA when controlling for ANS (i.e., path b in Figure 5). To test the mediation model, we used the INDIRECT macro for SPSS (Hayes, 2013). The INDIRECT macro tested the hypothesized model using a bootstrapping procedure (with 5000 bootstrap samples) to estimate the 95% confidence interval for the indirect (mediated) effect (for more details, see Preacher and Hayes, 2008). Bootstrapping is a resampling strategy for estimation and hypothesis testing. With the bootstrapping method, the sample is conceptualized as a pseudo-population that represents the broader population from which the sample was derived, and the sampling distribution of any statistic can be generated by calculating the statistic of interest in multiple resamples from the dataset. The bootstrapping procedure has been suggested as representing the most trustworthy test for assessing the effects of mediation models, overcoming issues associated with inaccurate p-values which result from violations of parametric assumptions (Hayes and Scharkow, 2013). Indeed, the bootstrapping procedure is advantageous because it does not impose the assumption of normality on the sampling distribution of indirect effects, and it retains high power while maintaining adequate control over Type I error rate (MacKinnon et al., 2002; Mackinnon et al., 2004; Preacher and Hayes, 2008; Hayes, 2009). The bootstrap test is statistically significant (at 0.05) if both confident limits have the same sign (e.g., both positive and both negative). This indicates that zero is not a likely value, and therefore, that the null hypothesis of a null indirect effect has to be rejected.



RESULTS


Differences Between Groups

At first, we measured the difference in math anxiety between the students in the HMA and LMA group that turned out in being highly statistically significant [t(86) = -21.85, p < 0.001]. We then measured performance difference between HMA and LMA groups in the psychophysical tasks (see Table 1 for descriptive statistics). Numerosity and size discrimination thresholds (WF) were measured separately for each participant. Attentional performance in the MOT task was computed as a percentage of correct responses separately for the three experimental conditions (tracking of 2, 3 or 4 dots) however, given all these conditions turned out to be highly correlated to each other (Mot 2 and Mot 3 r = 0.351, p < 0.001; Mot 2 and Mot 4 r = 0.305, p = 0.004; Mot 3 and Mot 4 r = 0.61, p < 0.0001), we computed a single index to estimate the performance in the attentional task by averaging the scores across conditions. Individuals in the low and high math-anxiety groups, showed similar performance across all tasks [F(1, 86) = 0.036, p = 0.85]; the interaction was also not significant [F(2, 172) = 1.539, p = 0.218]. Post hoc t-test confirmed the differences between groups were not significant in both, numerosity and size discrimination tasks [Numerosity Wf: t(86) = −0.444, p = 0.658; Size Wf: t(86) = 1.607, p = 0.112, Figures 2A,B]. Similarly, performance in the attentional task did not turn out to be statistically significant between the two groups considering neither the aggregate index (Figure 2C), nor each experimental condition (defined by the number of objects to track) independently [Mot 2: t(86) = -0.24, p = 0.8; Mot 3: t(86) = -1.95, p = 0.05; Mot 4: t(86) = 0.28, p = 0.78]. Finally, not only the LMA group had statistically higher math proficiency but also lower test anxiety scores compared to the HMA group [t(85) = 2.923, p = 0.004; t(85) = -8.75, p < 0.001 for math performance and test anxiety score respectively].


TABLE 1. Descriptive statistics for LMA and HMA groups.
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FIGURE 2. Performance in the three different psychophysical tasks. (A) Average numerosity discrimination thresholds (Weber fraction) for subjects with high (HMA) and low (LMA) levels of math anxiety. (B) Average object-size discrimination thresholds (Weber fraction) for subjects with high (HMA) and low (LMA) levels of math anxiety. (C) Average proportion of correct response in the Multiple Object Tracking task, for subjects with high (HMA) and low (LMA) levels of math anxiety.




Correlations Between Variables

After showing that the two math-anxiety groups did not differ in their precision to discriminate stimuli numerosity or size and were also comparable in terms of attentional performance, we investigated the relationships between perceptual and non-perceptual measures within the two groups (see Table 2 for full correlation values).


TABLE 2. Pearson correlations between all measured variables in the HMA sub-group (above diagonal) and LMA sub-group (below diagonal).

[image: Table 2]For clarity, we will describe the data separately for the two math-anxiety groups.

Within the HMA group, results demonstrated a significant correlation between MA level and math abilities, with individuals with higher levels of MA having lower math scores (r = − 0.479, p < 0.001; Figure 3). Moreover, participants with worse numerosity thresholds (higher Wf) also showed higher levels of MA (r = 0.48, p < 0.001; Figure 4A) and lower math scores (r = −0.29, p < 0.02; Figure 4B). Interestingly, object size discrimination thresholds were not related to math anxiety level (r = −0.065, p = 0.33, see Table 2) nor to math scores (r = −0.19, p = 0.1, see Table 2). Within the HMA group, participants with better performance in the Multiple Object Tracking task (MOT) also had lower math anxiety levels (r = −0.255, p = 0.04, see Table 2). All the remaining correlations with the MOT task were not statistically significant (p > 0.05). Finally, test anxiety did not significantly correlate with any of the aforesaid variables (p > 0.05, see Table 2). To further assess the specificity of the link between ANS, MA and math scores, we ran a series of partial correlations taking into account, as covariates, size acuity (WF) and attentional performance (attentional index). These analyses were only run within the HMA group, where bivariate correlations turned out to be statistically significant coefficients. Results of partial correlations revealed that the link between ANS acuity and math anxiety, as well as with math performance, remained statistically significant even when simultaneously controlling for the effects of size acuity, attentional performance and test anxiety [(r(partial) = 0.478, p < 0.001, r(partial) = − 0.3, p = 0.019 for math anxiety and math performance respectively].
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FIGURE 3. Correlations between math anxiety and math in participants with LMA (orange) and those with HMA (blue).
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FIGURE 4. (A) Correlations between Numerosity discrimination thresholds and math anxiety or (B) math scores for the low math anxiety participants (in orange) and high math anxiety participants (in blue).


Within the LMA group, the pattern of correlations changed significantly. Despite math anxiety and math abilities being (marginally) negatively correlated (r = − 0.26, p = 0.05; Figure 3) within this group, numerosity discrimination thresholds were not related to math-anxiety levels (r = 0.07, p = 0.33; Figure 4A) nor to math scores (r = − 0.20, p = 0.1; Figure 4B).

In order to check whether the lack of correlations between numerosity thresholds and MA, and math scores in the group with LMA was due to a difference between subject variance for WF between High and Low anxious individuals, we analyzed and compared variance of numerosity thresholds in the LMA and HMA groups by means of a bootstrap technique (Anobile et al., 2019a). On each of 10,000 iterations (sample-with-replacement), we computed Wf average standard deviation in the LMA and HMA groups separately. We then statistically computed the difference between HMA and LMA by counting the number of times that, in each of the 10,000 iterations, the difference between the average in the HMA sample was higher than the average in the LMA sample (one-tailed p-value). The p-value was 0.56, suggesting that the lack of correlations described above did not depend on a different level of variance in the data of the two (LMA and HMA) groups. With the same procedure we also excluded a difference in the degree of variability in the MA scores between the two groups (p = 0.1).



Mediation Analysis

Given the robust link between numerosity perception (ANS) and math abilities in the group with HMA (see right panel in Figure 4), we explored the nature of this link by measuring the mediating role of MA. For this purpose, we ran a mediation model to derive the total, direct, and indirect effects of ANS on math achievement through MA. As shown in Figure 5, results indicate a significant total effect of ANS on math achievement while the direct effect, their relationship not mediated by MA, was found to be not significant. In contrast, a significant negative indirect effect of ANS on math achievement was found when MA was considered as a mediator. Indeed, the bias-corrected bootstrap 95% CI for the product of these paths (ab) did not include zero (point estimate = -0.08, 95% CI = [-0.1459, -0.0109]), indicating an indirect effect (Preacher and Kelley, 2011).
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FIGURE 5. Path coefficients for mediation analysis on achievement; a, b, c, and c′ are unstandardized ordinary least squares (OLS) regression coefficients. *p < 0.05; **p < 0.01.




DISCUSSION

In the current study, we found that numerosity and object size discrimination thresholds, as well as the ability to attentively track objects in space (MOT), did not differ, on average, between university students with high and low levels of math anxiety. Interestingly, within the high math-anxiety group, numerosity (but not object size) thresholds correlated with both math abilities scores and math- anxiety levels. Crucially, the link between numerosity and math was fully mediated by math-anxiety levels. Overall, our data replicates previous studies on the link between math abilities and numerosity perception but also provided innovative information on the key role that math anxiety plays in such a relationship. Moreover, the fact that math anxiety was found not to be related to size discrimination thresholds, nor to the ability to attentively track objects in space (MOT), strongly suggests that the link between numerosity perception and math-anxiety is not generic but reflects a specific relationship within the numerosity-domain.

Several previous studies have shown that individuals with HMA performed worse on several numerical and mathematical tasks, compared with their low math anxious peers (Ashcraft and Faust, 1994; Maloney et al., 2011). Individuals with lower levels of mathematical skills and high levels of math anxiety show the tendency to avoid situations and careers that require mathematical abilities (Hembree, 1990; Ashcraft, 2002). Given the significant impact of MA on an individual’s quality of life, it is important to better understand its nature. Moreover, to devise successful supporting strategies to reduce the level of anxiety related to math procedures, it might be important to find a predictor or a correlated dimension to MA which could be assessed even before the beginning of school. Some studies suggest that such a dimension might be ANS acuity.

In the current study, we tackled this issue by investigating whether the performance in several perceptual tasks concerning parietal driven magnitude processing (discrimination of stimuli numerosity or size) were related to MA as well as math proficiency. We found that MA is an intermediary factor in the link between math abilities and numerosity perception (ANS acuity) in individuals with HMA. The ANS is considered to have evolutionary roots and it appears very early during development (Starkey et al., 1990; Dehaene et al., 1998). Maloney et al. (2010) suggested that a deficit of basic and core numerical knowledge, such as numerical information, could produce MA (Maloney et al., 2011). By taking into account individuals located in the tails of the MA distribution, a procedure exploited by several previous studies (Maloney et al., 2010; Maloney et al., 2011; Suárez-Pellicioni et al., 2013; Núñez-Peña and Suárez-Pellicioni, 2015; Colomé, 2019), and by considering as a measure of ANS acuity the Weber Fractions (Wf; Piazza et al., 2004, 2010; Halberda et al., 2008; Mazzocco et al., 2011), we found that a significant correlation between ANS precision and MA only exists in HMA groups. Our data shows that individuals with very high levels of MA also have a noisy approximate number sense. Notably, the lack of correlation in the LMA group between these two variables was not due to a difference in variability between the two samples. These results are not just important per sè, but also because they are likely to resolve the controversy in the literature about a possible link between MA and ANS precision. For example, Lindskog and Poom (2017) reported that individuals with high levels of MA also show lower ANS precision compared to low mathematics-anxious individuals. However, other studies reported that MA and ANS acuity did not significantly covary in adults (Braham and Libertus, 2018; Dietrich et al., 2015) or in children (Wang et al., 2015; Hart et al., 2016). One possibility is that MA and ANS acuity covaried differently according to the MA level. For example, in the present study a significant correlation between these two dimensions was found just within the group of participants with HMA. On the contrary, by considering all participants as a whole, MA and ANS acuity shows a weaker correlation that turned out to be marginally significant. In other words, ANS precision and MA strongly correlated in the group of HMA individuals but much less in the group of LMA. If so, the statistical significance of the correlation amongst these dimensions, when the two groups are not independently taken into account, depends on the amount of HMA participants and the severity of their anxious levels, variables which robustly differed in the studies reporting conflicting results in the literature.

Our data highlighted another important point: individuals situated in the lower tail of the HMA group performed better in the numerosity task than the individuals situated in the upper tail of the LMA group. This result supports the idea that an “optimum” level of MA might exist which, if exceeded, becomes deleterious not only for math performance (Evans, 2000), but also for discrimination of abstract numerosity. Furthermore, our findings provide supporting evidence to the theory that individuals with a noisy ANS may be more likely to have significant levels of MA. Poor ANS could increase the probability of going through an initial failure and negative learning experience during math education in childhood (Lindskog et al., 2017). One possible explanation of our data is that math abilities and ANS (Weber fraction) are separate (partially independent) predictors of MA, suggesting a bidirectional relationship between MA and math performance, in which a poor ANS induces a low performance in math related tasks and this, in turn, induces MA. This increase in MA might, subsequently, negatively impact math performance, establishing a vicious cycle that dramatically affect an individual’s performance and quality of life.

Math anxiety is strongly correlated with math abilities in individuals with HMA. In line with previous studies, we found that higher levels of MA are linked to lower performance in school or college tests (Hembree, 1990; Ma and Kishor, 1997). MA is at least partly related to fear of failure, so that repeated experiences of failure in mathematics, involving low scores in formal assessments or personal experience of confusion and bewilderment in mathematical activities, may lead to anxiety. Our results are also in line with other studies showing that adults with higher precision in discriminating non-symbolic quantities show higher abilities in math performance (Libertus et al., 2012; Fazio et al., 2014; Lindskog et al., 2017; Schneider et al., 2017; Braham and Libertus, 2018). However, it should be mentioned that, despite many studies which found statistically significant correlations between math abilities and numerosity perception, the literature on this topic is still controversial as other studies report insignificant correlations (Krueger, 1984; Inglis et al., 2011) and the direction of the causal link between ANS and mathematical skills remains highly unclear. While some research suggests that the ANS is a precursor of later mathematical abilities (Gilmore et al., 2010; Piazza, 2010; Anobile et al., 2013; Park and Brannon, 2013) other research failed to find a correlation between ANS precision and mathematical achievements (Krueger, 1984; Inglis et al., 2011; Feigenson et al., 2013; Anobile et al., 2018a). Even if the reasons subtending these discrepancies are still unclear, recent works suggested the important role of the different tests used to assess formal math abilities (Piazza et al., 2010; Lourenco et al., 2012; Anobile et al., 2013; Braham and Libertus, 2018), the numerical ranges used to assess numerosity perception (Anobile et al., 2016a; Anobile et al., 2019a) as well as the age of the participants (Inglis et al., 2011; Anobile et al., 2018a). For example, Braham and Libertus (2018) recently found that students’ ANS acuity did not correlate with their ability to perform mathematical computations in written format, but the correlation occurred with their ability to perform speeded mental arithmetic and quantitative reasoning problems. Similarly, Anobile et al. (2013) found that numerosity thresholds in neurotypical primary school children were related to math tasks requiring the encoding of digit magnitude (e.g., choose the largest among others) but not with those more related to memory (e.g., tables) or transcoding (e.g., number writing or repetition), replicating evidence on dyscalculic children (Piazza et al., 2010). Other recent works suggested that the link between numerosity perception and math is present only for the perception of intermediate numerosity levels and not for very low (Anobile et al., 2019a) or very high (Anobile et al., 2016a) numerous ensembles. The current study makes the general picture even more complicated as we found a significant correlation between math and ANS only among adults with relatively high level of math anxiety. The mathematical test used in the current study, which was developed by Galli et al. (2011), includes 30 multiple-choice questions covering many aspects of arithmetic knowledge, such as probabilistic reasoning, use of fractions, percentages, ratios, calculation, sorting and others. The test, as a whole, is capable of differentiating subjects with low and high MA and also correlates with numerosity thresholds, at least in the high anxiety group. Future studies on larger and more heterogeneous populations than that involved here, could analyze if and which of these 30 items are more specifically related to both anxiety and numerosity perception.

In addition to the controversial literature on the link between numerosity perception and math abilities, an influential recent theory challenged the idea that numerosity can be encoded by a specialized numerical system. This theory suggests that numerosity and other continuous quantities, such as objects sizes, are perceived by a generalized magnitude system (Henik et al., 2017; Leibovich et al., 2017). In the present study we didn’t find a significant correlation between size and numerosity threshold (Weber fractions). Moreover, whilst numerosity WFs were found to be significantly correlated with math scores, the correlation between math performance and size discrimination thresholds turned out in being not significant. These results clearly contradict the generalized magnitude theory and agree with studies suggesting separate mechanisms for the perception of objects’ numerosity and size. Among these, a recent study found similar results, with no correlations between numerosity and size thresholds as well as between numerosity and size sensory adaptation magnitudes, in both children and adults (Anobile et al., 2018b). Regarding the selective link between numerosity and math abilities, Piazza et al. (2013) showed that the exposure of non-schooled indigenous peoples to mathematical knowledge improves the sensitivity to numerosity but not to the size of objects. Similarly, Anobile et al. (2018b) found that discrimination thresholds for numerosity, but not for objects size, is compromised in dyscalculia. Overall, despite being still under debate, our results favor the idea of a specialized numerosity system, specifically linked to math abilities and math anxiety.

We didn’t observe an impairment in the performance of the visual sustained attention task in subjects with HMA, suggesting that they don’t suffer from a general attentional problem despite previous studies in the literature reporting that sustained attention correlates with non-symbolic numerical perception and mathematical skills (Steele et al., 2012; Anobile et al., 2013). Taken together, these results suggest that the link between non-symbolic numerical processing and MA is genuine and does not arise from a generic deficit in the processing of magnitude information or a generic attentional deficit. Even though our approach did not allow us to infer causal connections between the variables we investigated, and the present results cannot be generalized due to the specific sample we chose (students from the Psychology school with un unbalance sampling between male (34%) and female (76%) students), our findings might have important implications in the study of the relationship between ANS and mathematical skills in children with and without mathematical difficulties (e.g., dyscalculia), where MA is meant to play a key role. Indeed, the present results make clear that, in addressing deficits in mathematical performance, low-level aspects such as the ANS acuity as well as high-level aspects as MA have both to be considered. Future research may test the role of MA in the relationship between ANS and mathematical skills in a population of school-age children with a typical development as well as in age-matched subjects affected by dyscalculia, information which would provide a more detailed description of the interplay between MA, ANS and math proficiency.
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In this research the effects of reciprocal peer tutoring on students’ mathematics anxiety levels were examined. A pretest posttest with control group design was used at a public middle school in Spain. A total of 420 students in 7th, 8th, and 9th grades participated in the study, of which 215 were female and 205 were male. Students were randomly assigned and equally distributed by course grade (140 in each course grade) and experimental condition (210 in the experimental group and 210 in the control group). Quantitative data were gathered using the Mathematics Anxiety Scale developed by Chiu and Henry (1990). Qualitative information was gathered during eight focus group sessions that were held with students. Two main factors were analyzed using the quantitative and qualitative information: mathematics learning anxiety and mathematics evaluation anxiety. Results were analyzed by gender and course grade. Statistically significant improvements were reported for both male and female students in the experimental group and for each course grade for both factors. No statistically significant differences were reported for students in the control group in any case. A moderate effect size was reported for mathematics evaluation anxiety (Hedge’s g = 0.42), and a large effect size was reported for mathematics learning anxiety (Hedge’s g = 0.84). Information obtained from the focus groups was consistent with the reported quantitative results. The main conclusion is that peer tutoring may be very beneficial for reducing middle school students’ mathematics anxiety, regardless of their gender or grade.
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INTRODUCTION


State of the Problem and Need for This Research Study

Authors such as Passolunghi et al. (2016), Foley et al. (2017), and Núñez-Peña and Bono (2019) recently addressed the link between mathematics anxiety and mathematics achievement among secondary education students. According to them, mathematics anxiety has a significantly negative impact on students’ achievement in mathematics. Several authors in the educational psychology field, including Holmes and Hwang (2016), Guita and Tan (2018), and Choi-Koh and Ryoo (2019), found that cooperative and active learning methodologies may decrease students’ mathematics anxiety and, as a result, positively impact their academic performance in mathematics. This finding has been long supported by authors like Stodolsky (1985), who attributed students’ high levels of mathematics anxiety to a lack of social support provided through cooperative learning strategies such as peer tutoring. Peer tutoring is one of the learning methodologies that has been studied the most in the field of cooperative learning. Indeed, authors such as Topping (Topping and Whiteley, 1993; Shanahan et al., 1994; Topping et al., 2011; Topping, 2019), Fuchs and Fuchs (Fuchs et al., 1995, 2019; Powell and Fuchs, 2015), and Ginsburg-Block and Fantuzzo (Fantuzzo and Ginsburg-Block, 1998; Ginsburg-Block et al., 2006; Can and Ginsburg-Block, 2013), among others, have been studying the academic, social, and psychological benefits of peer tutoring in mathematics and other subjects for more than three decades. The positive effects of this cooperative learning strategy on variables such as self-concept, attitude toward mathematics, self-esteem, and social integration have been repeatedly documented (Alegre et al., 2020; Moliner and Alegre, 2020). Nevertheless, in spite of the broad range of literature that exists regarding peer tutoring, very few studies have addressed the effects of this methodology on students’ mathematics anxiety. Studies by Reyes and Castillo (2015) and Garba et al. (2019) have shown promising results but are limited in terms of information, and both suggest further research on the effects of peer tutoring on students’ mathematics anxiety. Hence, given the need for students to participate in cooperative and active learning methodologies that lower their mathematics anxiety, and given the proven positive effects of peer tutoring on academic achievement and other psychological variables, a study testing the effects of peer tutoring on students’ mathematics anxiety can not only build on the existing literature, but also inform educators on best practices for helping students with mathematics anxiety to improve their performance.



Mathematics Learning Anxiety vs Mathematics Evaluation Anxiety

In this research two main constructs are analyzed: mathematics learning anxiety and mathematics evaluation anxiety. On one hand, mathematics learning anxiety may be defined as feelings of fear, tension, and apprehension that some people feel during the study and assimilation of mathematics contents (Powell et al., 2019). Authors such as Lazarides and Buchholz (2019) consider that students must control this type of anxiety and highlight its importance as a prerequisite for academic outcome in mathematics and well-being. On the other hand, mathematics evaluation anxiety may be defined as worry brought on by examinations and tests or other evaluation of performance in mathematics (Everingham et al., 2017). Authors such as Lu et al. (2019) highlight its importance as they state that this type of anxiety may be developed even from the earliest years of mathematics instruction in kindergarten. The differences and relationships between these two types of mathematics anxiety has been addressed recently. In this sense, authors such as Schillinger et al. (2018) state that although evaluation anxiety and lerning anxiety have shared variance, they may also be thought of as separable constructs. Authors such as Pizzie and Kraemer (2017) consider that both types of anxiety are highly correlated, play a vital role in students’ performance in mathematics and that must be studied in depth.



Gender and Age Differences Regarding Mathematics Anxiety

The effectiveness of an academic intervention in psychological variables may be influenced by variables such as students’ gender or age. In this sense, previous studies have shown important differences between female and male students regarding mathematics students. Research by Karimi and Venkatesan (2009), Ganley and Vasilyeva (2014), or Stoet et al. (2016) reported significant gender differences in mathematics anxiety in different academic interventions. These authors highlight the importance of analyzing the effects separately and altogether when studying mathematics anxiety. Analogously, authors such as Baloglu and Kocak (2006) or Sidney et al. (2019) state that differences in mathematics anxiety may be reported even within the same educational levels. One of the main conclusion of their studies is that both, age and gender differences should be investigated in the studies of mathematics anxiety and that the multidimensionality of anxiety should be carefully taken into account.



Peer Tutoring: Conceptual Framework

Peer tutoring may be defined as a cooperative and active learning strategy in which students help each other in dyads, while learning at the same time (Alegre Ansuategui and Moliner Miravet, 2017). Zapata (2020) noted that students of different educational levels have very positive perceptions of this learning methodology. Different types of peer tutoring may be implemented, depending on students’ abilities, academic competencies, organizational issues, material, and personal resources. Traditionally during peer tutoring, the most academically competent student serves as the tutor, and the least academically competent student serves as the tutee. When the students do not switch roles during the peer tutoring program, that is, in each pair the tutor is always the tutor and the tutee is always the tutee, the learning method is called fixed peer tutoring. When the students do exchange roles, that is, when the students go from being the tutor to being the tutee and vice versa, depending on the peer tutoring session, then the tutoring method is referred to as reciprocal peer tutoring (Youde, 2020). Moreover, peer tutoring methods may be classified according to the age of the participants: same-age peer tutoring involves a pair of students who are of the same age, while cross-age tutoring involves students of different ages (Zendler and Greiner, 2020). The benefits of peer tutoring have been documented for different subjects and at different educational levels. These benefits are not restricted to competent or proficient students, as struggling, learning disabled, and at-risk learners have also been found to benefit from peer tutoring (Huber and Carter, 2019; Mahoney, 2019; Sarid et al., 2020). Although most of the research in the field has been carried out at the primary and secondary education levels, several recent studies have focused on peer tutoring in higher and continued education (Struk et al., 2019; Ellis and Gershenson, 2020). The variety of tutoring typologies and the different organizational possibilities (for example, duration of the peer tutoring sessions, duration of the peer tutoring program, and number of sessions per week) make this learning method adaptable to different educational contexts, independent of time available for implementation and the students’ educational stages and academic competencies or abilities.



Peer Tutoring in Mathematics: Academic and Psychological Effects

From an academic perspective, the effects of peer tutoring on students’ mathematics achievement seem to be moderate. Alegre-Ansuategui et al. (2018) performed a meta-analysis on peer tutoring and academic achievement in mathematics. The reported average effect size was moderate, and most studies included in the meta-analysis reported statistically significant improvements. The authors who conducted the meta-analysis noted that peer tutoring interventions in primary education seemed to be more effective than those implemented in secondary education. This difference may also be appreciated when considering the results of the meta-analytic reviews conducted in primary education (Alegre et al., 2019a) and secondary education (Alegre et al., 2019b). Although the reported average effect size was moderate in both reviews, it was somewhat larger for the primary education study than for the research that focused on secondary education.

From a psychological perspective, mathematics self-concept is the primary variable that has been analyzed through the years. Studies conducted by Fantuzzo et al. (1995), Lee and Park (2000), Topping et al. (2003), Tsuei (2012), Zeneli et al. (2016a), and Alegre Ansuategui and Moliner Miravet (2017) consistently reported significant improvements in students’ mathematical self-concepts as a result of peer tutoring. Various social, behavioral, and academic meta-analyses in the peer tutoring field all revealed that significant improvements may be found from a psychological perspective when this learning methodology is implemented (Leung et al., 2005; Ginsburg-Block et al., 2006; Bowman-Perrott et al., 2013, 2014).



MATERIALS AND METHODS

The Valencian Ministry of Education institutional review board authorized this research. The board approved the research, but the consent obtained specified that data had to be analyzed anonymously.


Aim of the Study and Hypotheses

The main aim of this research was to determine the effect of peer tutoring on middle school students’ mathematics anxiety. To this purpose, as stated above, two main factors were analyzed: mathematics learning anxiety and mathematics evaluation anxiety. Considering the aim and the analyzed factors, the following three hypotheses were defined.

First, as indicated in the introduction section, significant statistical improvements and moderate effect sizes may be expected when implementing peer tutoring and targeting psychological variables. Hence, hypothesis 1 and 2 were defined as follows.

Hypothesis 1: Statistically significant differences will be reported between the pretest and the posttest for students in the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety and moderate effect sizes will be reported.

Hypothesis 2: Posttest scores for the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety will be significantly lower than the posttest scores for the control group.

Moreover, as previously stated, several authors highlight the importance of addressing age and gender differences in mathematics anxiety studies. Hence, given this fact, hypothesis 3 and hypothesis 4 were defined as follows.

Hypothesis 3: No statistically significant differences will be reported for the posttest scores among 7th, 8th, and 9th grade students’ in the experimental group in mathematics learning anxiety or mathematics evaluation anxiety.

Hypothesis 4: No statistically significant differences will be reported for the pretest or posttest scores between female and male students’ mathematics learning anxiety and mathematics evaluation anxiety.



Research Design

Authors such as Zeneli et al. (2016b) and Alegre et al. (2019a) have highly recommended including control groups when conducting peer tutoring studies in middle school mathematics, noting that the absence of a control group may result in an overestimation of the effect sizes resulting from the study. Hence, following the guidance provided by these authors, a quasi-experimental pretest posttest with control group design was used in this research (Nind and Lewthwaite, 2019).



Sample Access

Weaver and Snaza (2017) and Chen and Reeves (2019) addressed the difficulty in obtaining a proper sample for educational studies. Participants in this research were selected intentional sampling, that is, non-probabilistic sampling technique (Yue and Xu, 2019). One public middle school in Spain was selected for this research after researchers suggested it to the Valencian Educational Government. Written and informed consent was obtained from the parents or guardians of students who participated in the study. Written authorization was also obtained by the School Council and the Valencian Educational Government. Research ethics provided by the Ethics Committee of the Spanish National Research Council (CSIC) were followed during the study.



Participants

A total of 420 students from grades 7–9 participated in the research. Their ages ranged from 12 to 15 years old. The mean age at the beginning of the study was 13.56 years old with a standard deviation of 1.25 years, and the median value was 13.67. Students were equally distributed by course grade, that is, there were 140 students from each of the three participating grade levels. Further, 215 (51.19%) were female, and 205 (48.81%) were male, while 223 (53.10%) were Hispanic, 99 (23.57%) were Rumanian, 68 (16.19%) were African, 5 (1.19%) were Asian, and the other 5.95% were from other ethnic groups. The students were from families of average sociocultural and socioeconomic status, according to national standards. Students were assigned to the experimental or the control group following as follows. Class groups were already established at the beginning of the course. Half of the class groups in each grade were randomly allocated to experimental conditions and the other half acted as control group in each grade. Therefore, half of the students from each grade were randomly allocated to the experimental group and the remaining half to the control group.



Sample Power

StudySize 3.0 software by Creostat HB was used to determine the sample power. A sample power of 0.92 was determined when using inferential statistics (Students’ t-test and Analysis of Variance) with a significance level of 0.05 for 420 participants.



Peer Tutoring Intervention


Academic Content

The mathematical content worked on by the students during the peer tutoring implementation included algebra, geometry, statistics, and probability. This content corresponded to the second and third trimesters of the math courses for each grade. Seventh grade students worked with basic first degree equations, used the Pythagorean theorem, calculated surface areas and regular prism volumes, calculated basic statistical centralization parameters for qualitative and quantitative variables, used the Laplace rule, and completed basic tree diagrams for probability problems. Eighth grade students updated the course content of the previous year as described above and also calculated compound probabilities, standard deviations and variations, and first-degree equations with fractions; performed basic systems of equations; and calculated the volumes of irregular prisms. The ninth grade students also updated the previous content and worked with quartiles, percentiles and box diagrams; developed advanced tree diagrams; applied the Laplace succession rule; calculated complex surfaces and volumes; performed complex systems of equations; and solved third and fourth direct resolution degree equations (using Ruffini’s rule and factorization).



Typology of the Peer Tutoring Intervention

The same-age, reciprocal peer tutoring method was used in this research. This type was selected over other types (cross-age or fixed) for different reasons. First, cross-age tutoring is more complicated than same-age tutoring to implement in middle school settings (Alegre et al., 2019b) for organizational and scheduling reasons, as arranging for students of different ages and from different grades to meet for tutoring sessions can be challenging due to the different schedules followed by the different grades. Moreover, cross-age tutoring most often occurs with the elder student tutoring the youngest student; that is, employing fixed peer tutoring is almost a must for cross-age tutoring. Therefore, cross-age was absolutely discarded as an option. Further, several authors point to reciprocal peer tutoring as providing greater benefits for psychological variables than fixed tutoring (Moeyaert et al., 2019; Sytsma et al., 2019), which they attributed to the students’ exchanging tutor and tutee roles, which does not happen during fixed peer tutoring. Hence, tutees may feel less competent or not as useful as their peers (Gazula et al., 2017). Thus, same-age, reciprocal peer tutoring was deemed most appropriate for this study.



Organization and Scheduling

During the first trimester of the school year, mathematics teachers in all classes used traditional teaching methods. Students sat individually, interactions between them were limited, and the one-way instructional teaching method was employed. All students participating in the study took the pretest right after the first trimester ended. Then, during the second and third trimesters peer tutoring was implemented. Students in the experimental group worked through peer tutoring in their mathematics classes, while students in the control group continued with the one-way traditional learning methods above mentioned (but did not participate in peer tutoring). Students in the control group sat individually and interactions between them were restricted. Students in both, experimental and control group, had the same teacher in each grade. Students in the experimental and control groups were given the same exercises and problems for every session. If a pair of students in the experimental group solved the task correctly, although tutoring was not necessary in these occasions, they were told to share the procedures they had employed to solve the exercises or problems.

In order to maximize the psychological outcomes of the peer tutoring intervention, the organizational issues for this research followed the structure provided by Rees et al. (2016) and Leung (2019a, b). As such, peer tutoring was implemented three times per week for 6 months with students in the experimental group. Interaction between peers lasted no more than 20 min. The same exercises and problems were given to students in both the experimental group and the control group throughout the year in each grade, and both groups used the same type of materials (textbook, worksheets, and online exercises, for example). Moreover, the same teachers taught students in both groups so that teacher effects did not influence the psychological outcomes (Cleary and Kitsantas, 2017).

Distribution of pairs was carried out following the indications by Duran (2017). According to this author, variations in students’ academic achievements must be minimized for students placed in pairs for reciprocal peer tutoring. Hence, in order to arrange the pairs, students were placed from highest to lowest, taking their average mathematics mark of the first trimester. In other words, the first student, that is, the student at the top of the list, was paired with the second student (the student with the second highest score or grade), and then the third was paired with the fourth, and so on. Several authors note that students prefer this way of pairing because they are assigned to work with a peer whose competency in that subject is similar to theirs (Thurston et al., 2019).



Students’ Peer Tutoring Training

Students in the experimental group were trained in two sessions of 1 h each on tutoring skills and procedures the week before the peer tutoring program began. They took place during school hours to ensure students’ attendance. This training was carried out by the same mathematics teachers who taught the students during the year. Although the teachers conducted these sessions, students also participated actively. For example, students were asked to identify those characteristics and qualities that good tutors and good tutees must have to succeed in peer tutoring. In addition, students were instructed on the procedure to follow during the tutoring sessions and on the nature of their interactions. They were given “Pause, Prompt, and Praise” techniques and were advised on the importance of communication during the tutoring sessions (Duran et al., 2019a). Issues like sharing only mathematics content, referring only to the mathematics exercises and problems, and not talking about other non-academic subjects during the peer tutoring sessions were highlighted. Different ways to explain content to a peer and different procedures employed to solve a problem were praised. Patience and respect were emphasized, and a main goal was defined for the tutoring sessions: all students had to understand and finish the exercises and problems by the time the tutoring session was over.



Classroom Dynamics During Peer Tutoring

The dynamics of the classroom were as follows. First, the teacher reviewed the students’ homework, provided the correct answers on the board, and explained the new content, all of which took about 20 min. After that, students had to complete two exercises and one or two problems, depending on the difficulty of the didactic unit. Students were given approximately 15 min to complete these tasks and were instructed to complete the tasks individually, without interacting with their classmates. During this time, the teacher could help students who didn’t know how to complete the exercise or solve a problem. At this point, the teacher also checked to make sure that at least one of the two students in each pair had solved the exercises and problems correctly. If this was not the case, the teacher provided assistance. Afterward, the students participated in the reciprocal peer tutoring sessions for approximately 20 min to check and finalize the work they had done individually. Indications and protocols analogous to those provided by Moliner and Alegre (2020) were followed during peer tutoring. Working in pairs, students had to compare the results they had arrived at when working on their own, share the procedures they had employed to solve the tasks, ask each other questions regarding the exercises and problems, and work together to solve any problems that they hadn’t completed when working independently. If they had different results for any of the work, both tutor and tutee had to try to identify the mistake at the same time. Then the student with the right answer had to help the other student by explaining how to correctly solve the problem. Students were allowed to ask questions regarding the exercises and problems and help each other during tutoring, but individual work and perseverance were a must. Both tutors and tutees had to be able to solve the exercises and problems by themselves by the time the tutoring period was over. If a pair of students finished their work very early, they were given additional problems. When the tutoring session was over, for the last 10 min of class, the teacher provided and explained the correct answers to the exercises and problems on the board.

Interactions between pairs of students were supervised by the teacher. As Duran et al. (2019b) stated, teachers play a vital role during the implementation of peer tutoring. They must ensure that communication between students is respectful and rich in content and that students are effectively working together and helping one another.



Instrument Used to Collect Information

Students’ mathematics anxiety was measured using the Mathematics Anxiety Scale developed by Chiu and Henry (1990). This instrument is based on a 4-point Likert scale with no reversed items. Students were asked to rate each item to document how they felt according to the following scale: 1 (not nervous), 2 (a little bit nervous), 3 (nervous), and 4 (very nervous). The average score indicated students’ anxiety level in mathematics. The higher the average score, the higher the student’s mathematics anxiety level. Two main factors were defined in the questionnaire: mathematics learning anxiety and mathematics evaluation anxiety. The mathematics learning anxiety factor was assessed by six items, such as (item 5) starting a new chapter in a mathematics book or (item 6) watching a teacher work a mathematics problem on the chalkboard. The mathematics evaluation anxiety factor was assessed using eight items, such as (item 10) thinking about a math test the day before the test or (item 12) taking an important test in a mathematics class. This instrument was selected because it is specifically geared toward middle school mathematics students, because its psychometric properties, validity, and reliability have been repeatedly documented (Beasley et al., 2001; Lukowski et al., 2019), and because it has been widely used for decades and continues to be used in the field of educational psychology (Fan et al., 2019; Namkung et al., 2019; Van Mier et al., 2019). The average scores for each of the two factors were calculated and used as measures of students’ mathematics anxiety for use in this study. Students completed the questionnaire individually during tutoring time. It took less than 10 min for almost all students to complete it. Researchers explained to the students how to complete the questionnaire and remained with them while they completed it to answer questions. As the instrument was originally designed in English, each item was translated to Spanish and adapted to the Spanish population by a professional translator. A reliability analysis was performed with SPSS software version 25 to ensure that the psychometrics properties of the instrument had not been significantly altered for this research. The pretest scores for students in both, experimental and control group were used to perform this analysis. A Cronbach’s alpha value of 0.91 was reported for Mathematics learning anxiety factor and a Cronbach’s alpha value of 0.93 was reported was mathematics evaluation anxiety factor. These values were almost identical to the original values reported by Chiu and Henry (1990).

Focus groups were used to collect qualitative information from the students (Carter Andrews and Gutwein, 2020). A total of 28 students (7 focus groups of 4 students each) from the experimental group were randomly selected to participate. The protocol was as follows: a draw was performed including students’ of all grades until 28 students were selected. The first four students selected constituted the first focus group, the next four the second group and so on. Students were told that they had been randomly selected and were asked individually if they wanted to participate in the focus group. Two of the researchers conducted the focus groups (both were present in each of them). The questions asked by the researchers during these focus groups were aimed directly at revealing the anxious feelings students experienced during peer tutoring (Bokhorst-Heng and Marshall, 2019). Specifically, the students’ feelings about learning anxiety and evaluation anxiety were addressed through questions such as “Why do you think that you feel more or less stressed during mathematics classes?” or “How did you feel during the exam after peer tutoring?” These focus group sessions, lasting about 20 min each, were held during tutoring hours in private spaces.

In order to avoid any Hawthorne effect (Greener, 2018), students were not told that research was being conducted or that they were taking part in a study. They were not told they belonged to a experimental or control group. This was done to try that students did not modify their behavior or alter their answers in the questionnaires or during the focus group sessions as a result of being aware that they were being observed (van Alten et al., 2019).



Data Analyses

Quantitative data coming from the Mathematics Anxiety Scale was analyzed using SPSS software version 25. The Kolmogorov Smirnov test was performed to ensure normality of the data for the pretest scores in the experimental and control groups (Fang and Chen, 2019). Means, standard deviations, and Student’s t-test (95% confidence level) were calculated for both mathematics learning anxiety and mathematics evaluation anxiety in order to determine differences between and within groups (Gibbs et al., 2017). Analyses of variance (ANOVAs) were also performed to identify differences among 7th, 8th, and 9th grade students. Given the fact that in this research multiple comparisons are carried out, inferential tests were performed with a notion of correcting for multiple assessments. Hence, the Bonferroni adjustment (Umlauft et al., 2019) implied that differences between and within groups would need a significance level of p < 0.01 instead of p < 0.05 so that they could be considered as significant. Effect sizes were reported for each of the two analyzed factors. Hedge’s g was used as a measure of effect size (Ebner and Gegenfurtner, 2019). Rule of thumb provided by Lee et al. (2019) and Morris (2019) for effect sizes was followed. According to these authors, in educational psychology the following values may be used for interpreting results. A Hedges’ g value of 0.2 indicates a small effect, a value of 0.5 indicates a moderate or medium effect, and a value of 0.8 or higher indicates a large effect size.

Qualitative data from the focus group sessions were analyzed using content analysis (Adler et al., 2019). ATLAS.ti software version 8 was used for this purpose. After the transcription of the conversations from the focus group sessions, researchers analyzed the information and defined two main dimensions: mathematics learning anxiety and mathematics evaluation anxiety. The students’ quotes were codified as number of focus group and grade: for example, FG2_9 refers to focus group number 2 of 9th grade.



RESULTS


Quantitative Results

The Kolmogorov Smirnov test showed that students’ scores followed a normal distribution (p = 0.92). Means, standard deviations (SDs), and number of students (n) by group (experimental or control) and phase of the study (pretest or posttest) are shown in Table 1 for mathematics learning anxiety and in Table 2 for mathematics evaluation anxiety. In order to facilitate readers’ global vision of the results scores for the experimental and control group are represented through a graph in Figure 1 for mathematics learning anxiety and in Figure 2 for mathematics evaluation anxiety.


TABLE 1. Means, standard deviations and number of students by group and phase of the study for mathematics learning anxiety.
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TABLE 2. Means, standard deviations and number of students by group and phase of the study for mathematics evaluation anxiety.
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FIGURE 1. Mathematics learning anxiety pretest and posttest scores and standard deviations for the experimental and control group.
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FIGURE 2. Mathematics evaluation anxiety pretest and posttest scores and standard deviations for the experimental and control group.


Mean differences between groups and Student’s t-test results are reported in Table 3 for mathematics learning anxiety and in Table 4 for mathematics evaluation anxiety. Statistically significant differences were not found between the experimental and control groups for the pretest scores. No statistically significant differences were found between the pretest and posttest scores for the control group. Statistically significant improvements were reported between the pretest and the posttest for the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety. Statistically significant differences were also reported for the posttest scores between the experimental group and the control group. In both cases, mathematics learning anxiety and mathematics evaluation anxiety experimental group posttest scores were significantly lower than control group posttest scores. A moderate effect size was reported for mathematics evaluation anxiety (Hedge’s g = 0.42), and a large effect size was reported for mathematics learning anxiety (Hedge’s g = 0.84). Therefore, hypothesis 1 (statistically significant differences will be reported between the pretest and the posttest for students in the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety and moderate effect sizes will be reported) was rejected since a large effect size was reported for mathematics learning anxiety. On the contrary, hypothesis 2 (posttest scores for the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety will be significantly lower than the posttest scores for the control group) was confirmed.


TABLE 3. Mean differences between groups and Students’ t-test for mathematics learning anxiety.
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TABLE 4. Mean differences between groups and Students’ t-test for mathematics evaluation anxiety.

[image: Table 4]ANOVAs across grades were calculated for the posttest scores of the experimental group for both, mathematics learning anxiety and mathematics evaluation anxiety. No statistical significant differences across grades were reported for mathematics learning anxiety F(2, 207) = 0.87, p = 0.42 nor mathematics evaluation anxiety F(2, 207) = 2.40, p = 0.09. Hence, hypothesis 3 (no statistically significant differences will be reported for the posttest scores among 7th, 8th, and 9th grade students’ in the experimental group in mathematics learning anxiety or mathematics evaluation anxiety) was confirmed.

The results of the analysis by gender for are reported for mathematics learning anxiety in Table 5 and for mathematics evaluation anxiety in Table 6. No statistically significant differences were reported in any case. Hence, hypothesis 4 (no statistically significant differences will be reported for the pretest or posttest scores between female and male students’ mathematics learning anxiety and mathematics evaluation anxiety) was confirmed.


TABLE 5. Student’s t-tests by gender for mathematics learning anxiety.
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TABLE 6. Student’s t-tests by gender for mathematics evaluation anxiety.
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Qualitative Results

Information coming from the focus groups was mostly positive regarding the effects of peer tutoring on students’ mathematics anxiety. As noted in the data analysis section, this information may be classified into two dimensions: mathematics learning anxiety and mathematics evaluation anxiety. The qualitative results confirmed the quantitative information coming from the questionnaires. Regarding the first category, students’ mathematics learning anxiety seemed to have improved substantially. (All names in the following are invented for anonymity reasons.) It’s less stressful when you have a colleague who can help you (FG3_7). They felt less stressed when working with a peer as they had an established routine that facilitated their interactions. I prefer to work with a classmate than alone. It’s kind of relaxing to know that, if you don’t understand something, you can ask him/her at any time (FG2_8); Having Sam with me in mathematics class was great. We learned a lot together, and I feel really secure with him by my side (FG1_9). In addition, they stated that they would like to have more peer tutoring experiences in future courses. I would like to do more peer tutoring next year. You feel less stressed in class if you know that a colleague can help you (FG2_7); Working together is less stressful than doing it alone. I hope next year we do this in more subjects (FG1_9). Regarding the second category, students seemed less anxious when being evaluated, as they had more trust in themselves. The exam is the same, you know, but you trust yourself a little bit more if you see something you have explained before to someone. You think that if you explained it a week or two ago, you can do it now (FG3_8). I had explained a very similar problem to Jessica the week before. When I saw it in the exam, I knew I could do it and that she was going to be able to do it, too. Having a peer that can help when the exam is close also seemed to have a positive effect on students’ evaluation anxiety. I know I had Pete to help me with the exercises the days before the exam. Yeah, you can ask the teacher, but I prefer to ask him (FG1_7). I tried to do Ruffini for homework. No way. Then I was like chill, I’ll ask Allen tomorrow when we work in pairs, and then I’ll know how to do it for the exam (FG8_9). In summary, students seemed to like the evaluation process being integrated into the peer tutoring process, as they did not find it as stressful.



DISCUSSION

The partial confirmation of hypothesis 1 (statistically significant differences will be reported between the pretest and the posttest for students in the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety and moderate effect sizes will be reported) was predictable, considering findings from previous research in the field. Recently, although not specifically in the field of mathematics, several authors, such as Knight et al. (2018) and Garba et al. (2019), documented anxiety improvements through peer tutoring in their respective fields of research. Consequently, it was not surprising that significant improvements were found. In addition, the qualitative information coming from the focus group sessions confirmed these improvements. Nevertheless, the rejection of this hypothesis due to the large effect size reported for mathematics learning anxiety (moderate effect sizes were expected) was not predictable (Hedge’s g = 0.84). Most meta-analyses and literature reviews in the field of peer tutoring in mathematics reported moderate effect sizes for these types of interventions in both psychological and academic outcomes (Bowman-Perrott et al., 2013, 2014; Alegre-Ansuategui et al., 2018). The effect size reported for mathematics evaluation anxiety (Hedge’s g = 0.42) is consistent and similar to findings previously reported in the field. Several authors have stated that mathematics evaluation anxiety is always greater and more difficult to address than mathematics learning anxiety (Ling, 2017; Yáñez-Marquina and Villardón-Gallego, 2017). As such, it was reasonable to find greater improvements for learning anxiety than for evaluation anxiety. Moreover, the qualitative information obtained from the focus groups also reinforced this statement, as students seemed to have experienced larger gains regarding learning than regarding evaluation. Nevertheless, the fact that effect sizes for one factor were double the effect sizes for the other (Hedge’s g = 0.84 vs Hedge’s g = 0.42) is not consistent with previous literature in the field and requires further examination in future research.

The confirmation of hypothesis 2 (posttest scores for the experimental group in both, mathematics learning anxiety and mathematics evaluation anxiety will be significantly lower than the posttest scores for the control group) was predictable taking into account the findings of recent studies in the field of peer tutoring and mathematics (Campbell, 2019; Grove et al., 2019; Moliner and Alegre, 2020; Yoo, 2020). In them, it is reported how the experimental group outscores the control group and statistically significantly differences are found when analyzing other psychological variables such as mathematics self-concepts or mathematics attitude. Hence, it could be expected that the posttest scores for the experimental group would be significantly better than the posttest scores for the control group.

The fact that hypothesis 3 was confirmed (no statistically significant differences will be reported for the posttest scores among 7th, 8th, and 9th grade students’ in the experimental group in mathematics learning anxiety or mathematics evaluation anxiety) is consistent with previous research in the field (Hill et al., 2016; Ramirez et al., 2018; Geary et al., 2019). According to these authors, the differences by gender regarding mathematics anxiety are more likely to appear during students’ high school years and college than during primary school or middle school. Analogously, the fact that hypothesis 4 (no statistically significant differences will be reported for the pretest or posttest scores between female and male students’ mathematics learning anxiety and mathematics evaluation anxiety) is also consistent with previous literature in the field. Authors such as Gresham and Burleigh (2019), Macmull and Ashkenazi (2019), and Morosanova et al. (2020) reported that, although mathematics anxiety increases through the years, differences are difficult to report within the same educational stage. That is, although important differences in mathematics anxiety may be reported between primary school, middle school, high school, and college students, students in middle school are likely to report similar results in mathematics anxiety independent of the course grade they are taking. In this sense and regarding hypotheses 3 and 4, several authors in the mathematics peer tutoring field have found no differences in academic or psychological outcomes by gender or course grade within the same educational stage (Alegre et al., 2019c; Hartini, 2019; McCurdy et al., 2020; Sun et al., 2020). The qualitative information supported these findings, as no important differences in students’ opinions were detected by gender or course grade. Most students seemed to have enjoyed the experience and reduced their mathematics anxiety levels independent of these two variables.


Limitations

Although the potential positive impact of peer tutoring on middle school students’ mathematics anxiety seems quite evident considering the results reported in this research, certain limitations must be considered when interpreting them. First, the sample size, although not considered short or trivial by many researchers in the educational psychology field, cannot be considered large, either (Hendrickson et al., 2019; Sassenberg and Ditrich, 2019). Also, the sample was obtained by means of an intentional sampling (non-probabilistic) and only a single middle school participated in the study, so it is not representative of middle school students in Spain nor students outside the country. Moreover, as noted previously, this peer tutoring experience was designed to optimize the psychological outcome. Future research must test the effects of peer tutoring on mathematics anxiety under different circumstances (low or high sociocultural and socioeconomic status of the students’ families, lower or higher number of peer tutoring sessions, more or fewer months of implementation, more or less time for the tutoring interactions by session, as examples), as it may not be as effective as shown in this research (Funder and Ozer, 2019; Rutkowski et al., 2019). Furthermore, researchers of this manuscript, as stated above, did their best efforts to try to avoid a Hawthorne effect or similar and there is no evidence or record that something similar may have taken place during this research. Nevertheless, the possibility that experimental group students talked with control group students leading to a change in the conduct of some students and therefore to an alteration of the results in the study must be taken into account. Moreover, although the same teachers that taught students in the experimental group also taught in the control group, this study is not immune to the clustering effect, that is, the abilities, competence, experience and knowledge of the middle school teachers that participated in this research may have also influenced the outcome of the experience.



Considerations for Future Research

It would have been interesting to test the simultaneous effects on students’ mathematics achievements and investigate the possible relationships between those factors. Unfortunately, it was impossible to obtain legal consent to include students’ mathematics marks in this research. The School Council only authorize the researchers of this article to measure and report students’ mathematics anxiety, but no permission was obtained to use any academic achievement variable or any related achievement index for this research. One of the main reasons we want to decrease mathematics anxiety is so that students will improve their mathematics achievement. The decrease in anxiety could just be in stated attitudes, with no performance-related change actually taking place. This must be considered as a possible future topic of research, as it is necessary to determine if the reported decreases in students’ mathematics anxiety correlated with an improvement in students’ mathematics achievements.



Conclusion

The main conclusion that can be drawn from this study is that peer tutoring may be very beneficial for middle school students’ (12–15 years old) mathematics anxiety, independent of their gender or their course grade. Considering the results of this research, same-age and reciprocal peer tutoring is recommended for practitioners in the field who want to improve students’ mathematics anxiety. Additionally, from an organizational perspective, same-age and reciprocal tutoring are easier to carry out, as they may be implemented within the same classroom. The promising results of this research as well as of previous research in the field suggest no more than 20 min of interactions between pairs of students by session and no more than three tutoring sessions per week. Including a control group is highly recommended, as effect sizes may be overestimated due to its absence. Furthermore, in light of previous studies in the literature, practitioners in the field may find improvements not only in students’ mathematics anxiety, but also in other academic and psychological variables, such as self-concept or attitude toward mathematics. Students’ mathematics learning anxiety is expected to be lower and easier to reduce than students’ mathematics evaluation anxiety. Although the effect size for students’ mathematics learning anxiety was large in this research and future research is needed regarding this issue, effect sizes in these types of interventions are expected to be moderate, as was the case for mathematics evaluation anxiety. Although results may seem very promising, this research has important limitations (non-probabilistic sampling, quasi-experimental design, sample size…) that must be considered. Caution is required when interpreting the results as more evidence is needed to confirm the potential effects of peer tutoring on middle school students’ mathematics anxiety.
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Mathematical problem-solving and spatial visualization are areas in which performance has been shown to vary with sex. This article describes the impact of gender on spatial relations measured in 331 secondary school students (202 males, 129 females), 145 (105 males, 40 females) of whom had been selected to participate in a mathematical talent stimulation project after passing a complex problem-solving test. In the two tests administered, the Differential Aptitude Tests-Space Relations (DAT-SR) and the Primary Mental Abilities-Space Relations (PMA-SR), performance was assessed on the grounds of both absolute scores and the ratio to the number of items answered. The students participating in the talent program earned higher scores on both tests, although no interaction was identified between mathematical abilities and gender in connection with the differences in spatial habilities observed. In PMA-SR, boys answered more items and scored higher, whereas in DAT-SR girls tended to omit more items. None of the indicators studied exhibited differences between the sexes in both tests and in some cases the differences in the absolute values of the indicators were absent when expressed as ratios.
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INTRODUCTION

Although the importance of visualization in mathematical problem solving has been highlighted in mathematics education (Clements and Battista, 1992; Arcavi, 2003), no consensus has yet been reached on its role in improving performance (Bishop, 1980; Lean and Clements, 1981). Traditional studies concluded that spatial awareness and the capacity to visualize abstract mathematical relationships were not necessarily components of mathematical talent (Krutetskii, 1976), whilst later studies revealed that talented students preferred non-visual methods (Presmeg, 1986). More recent research has found significant evidence of a relationship between visualization and mathematical ability, however (Rivera, 2011; Rabab’h and Veloo, 2015; Ramírez and Flores, 2017). The controversial findings are explained by the existence of different conceptions of mathematical talent and visualization, thereby requiring a clear view on what factors are used in the research to characterize both mathematical talent and visualization. Although there is consensus in that visualization should be considered an inherent ability needed to accomplish certain mathematical tasks, there is still no consensus on what instruments are most appropriate for identification of mathematical talent (Pitta-Pantazi and Christou, 2009).

A number of studies has focused on gender differences in these two areas, suggesting possible relationships between them (Ganley and Vasilyeva, 2011). Gender differences in spatial skills may serve as cognitive predictors of mathematical performance, particularly as regards geometry. Gender differences in spatial reasoning, together with the partial contribution of visual reasoning to problem solving, may have gender-related implications in mathematical contexts. Whilst males and females differ in spatial visualization and performance in high school geometry, however, their logical reasoning skills and use of geometric problem-solving strategies are indistinguishable (Battista, 1990).

This exploration of the effect of gender and mathematical performance on the differences observed in secondary school students’ visual abilities includes a review of the literature on gender differences in the two types of skills.


Gender Differences in Mathematical Performance

Review papers and meta-analyses have identified greater mathematical problem-solving aptitudes among men (Maccoby and Jacklin, 1974; Hyde et al., 1990; Hyde, 2014). Hyde et al. (1990) reported wider differences between male and female secondary school students in complex problem solving than in parameters such as computation or understanding mathematical concepts. They observed no gender difference in arithmetic or algebra. Male superiority in geometry was minor, whilst the widest gender gap was recorded for tests with mixed content. The exercises used to assess mathematical performance have also been deemed to affect the results, with men performing better than women in problems involving mathematical reasoning (Halpern, 2000) and word problems which to be solved must be translated into mathematical terminology (Low and Over, 1993).

Other factors to be considered in gender difference studies is the date they are conducted and the group of people participating. A meta-analysis conducted 18 years later by Hyde et al. (2008) with 2nd to 11th year students in the United States revealed no difference between boys’ and girls’ lower level mathematical skills. When items entailing complex problem solving were included, girls in year 12 performed as well as their male classmates. Similarly, in a meta-analysis of studies conducted from 1990 to 2007, Lindberg et al. (2010) found only a minor difference between the sexes in complex problem solving. Else-Quest et al. (2010) conducted a meta-analysis of gender differences in mathematical performance, reporting substantial inter-country variability while also furnishing further evidence that, on average, males and females differ vary little in mathematics achievement, despite more positive attitudes toward mathematics among the former.

Although women continue to be underrepresented in science, technology, engineering and mathematics (STEM) education and careers (Else-Quest et al., 2013), gender differences in mathematical performance have been less consistently found (Ganley and Vasilyeva, 2011). Unlike other meta-analyses of performance in mathematical tests that reported males to perform more highly than females, a study on classroom gender differences authored by Voyer and Voyer (2014) found women to earn higher marks in all areas. That variability can be attributed to the diversity of the instruments used to measure mathematical performance (Gibbs, 2010). Boys have been perceived to be academically stronger in mathematics and science (Olszewski-Kubilius and Turner, 2002), with more male than female high-achievers in those subjects (Reis and Park, 2001). Gender differences have been recorded in tests assessing mathematical talent in students aged 12 to 14 (Benbow and Stanley, 1996). The decline in the male-female ratio among the highest scoring students in recent years calls for further study, however. Some authors have suggested that the male advantage in mathematical skills may be limited to the upper end of the talent distribution (Halpern et al., 2007).

Further to a meta-analysis of differences between the sexes in mathematics covering a number of countries (Else-Quest et al., 2010), the largest mean effect size was recorded in the PISA (Program for International Student Assessment) space/shape domain, which assesses the understanding of spatial relationships. The population studied, students aged 14 to 16, was deemed old enough to be able to solve complex mathematical problems. The data for that meta-analysis were drawn from the 2003 TIMSS (Trends in International Mathematics and Science Study and the Program for International Student Assessment), however, in which Spanish students did not participate. This study aims to further investigate on this particular group of students.



Gender Differences in Visuospatial Ability: Performance Factors

Meta-analyses have consistently reported males to be more spatially skilled than females (Linn and Petersen, 1985; Hedges and Nowell, 1995; Voyer and Saunders, 2004; Halpern et al., 2007). A host of authors (Strand et al., 2006; Steinmayr and Spinath, 2008; Voyer and Voyer, 2014; Wach et al., 2015) has observed men to score higher than women on visuospatial tests, in particular in connection with mental rotation, where several authors observed a wider gap between men’s and women’s scores than in skills such as spatial perception or visualization (Voyer et al., 1995; Alansari et al., 2008; Geiser et al., 2008; Moè, 2009; Hyde, 2014; Xu et al., 2016). This study aims to look deeper into the prevalent role of mental rotation in gender differences, hence we will compare the results of a mental rotation test with those of another test related to the spatial ability of visualizing an object in three dimensions from a two-dimensional model.

Different performance factors have been identified in the effect of gender on mental rotation results, depending on the measuring instrument used and the conditions in which the tests were administered and scored. In a 3D mental rotation test measuring speed of performance as one such factor, time limits and the use of raw scores were found to benefit males (Goldstein et al., 1990). Loring-Meier and Halpern (1999) found males to answer more rapidly than females, whereas no difference was observed between them in the number of correct answers to items unrelated to mental rotation but involving visuospatial working memory. Robert and Chevrier (2003) reported similar numbers of correct answers among men and women when no time limit was established in mental rotation test, although men answered the items more quickly than women. Whilst some studies showed that such gender differences are more pronounced when the time to do the test is limited in mental rotation test (Voyer and Saunders, 2004; Peters, 2005; Voyer, 2011; Maeda and Yoon, 2016), others designed to assess mental rotation aptitudes reported no statistically significant differences between the sexes in completion time (Yoon and Mann, 2017). A third group observed males to score higher on visual tests irrespective of the existence of time limitations in mental rotation test (Delgado and Prieto, 1996; Geiser et al., 2006) or other figure analogy test (Blum et al., 2015). The use of ratios to score mental rotation performance significantly narrowed gender-related differences (Stumpf, 1993), whereas that approach reduced the gap between the two sexes’ scores for other aptitudes less meaningfully. Subsequent studies questioned the effect of these factors, confirming that the raw score-measured effect size of gender differences was unaffected when longer test times were allowed and that the reluctance to guess was similar for males and females, while males answered correctly to more exercises irrespective of timing (Delgado and Prieto, 1996). Masters (1998) found no evidence that the gender differences in mental rotation tests were affected by the scoring method or the time limit, with men scoring higher than women regardless of the scoring procedure. Other authors reported that the magnitude of gender differences in mental rotation was similar in distinct timing conditions when a conventional scoring method was used (Voyer et al., 2004).

The effect of time is associated with the strategy used to complete tests, with women being shown to be less self-assured when sitting these tests in mental rotation (Cooke-Simpson and Voyer, 2007) or in questionnaires about attitude and belief (Parsons et al., 1982) and as a result to adopt more conservative strategies in mental rotation test of other test (Hong and Aqui, 2004; Voyer and Saunders, 2004; Hirnstein et al., 2009). Research in figure analogy test has found women to be slower to answer and more reluctant to guess at answers in items they deem difficult, and hence to leave more items blank than males (Blum et al., 2015). A study of the impact of response latency, response frequency and time invested on a dynamic spatial test revealed that males outperformed females even when the effects of those performance factors were partial (Contreras et al., 2007). Other factors that may attenuate gender differences in mental rotation have also been identified, such as using the ratio of the correct to the attempted items as an alternative scoring criterion (Goldstein et al., 1990).



Purpose of Study

The literature review conducted for this article revealed wider differences between the sexes in mental rotation than other spatial exercises. No consensus was detected, however, on how such differences may be impacted by scoring criteria, i.e., by the use of absolute values or the ratio of each to the number of items answered. The review also identified the early years of secondary school as the time when gender differences appear in complex mathematical problem solving. No conclusive evidence was found of interaction between spatial skills and complex problem-solving abilities in the differences between the sexes observed, particularly among Spanish students.

With a view to contributing to this issue, the research questions posed in this study were: do gender and the ability to solve complex problems affect the differences observed in the participants of the current study’ spatial aptitudes? If so, what performance measurements reflect that effect? To this end, results of 13- to 16-year old Spanish students are compared in two different test assessing the spatial ability (mental rotation and visualization of an object in three dimensions from a two-dimensional model) as well as the factors related to performance, completion time, and strategies used to answer the items.




MATERIALS AND METHODS


Subjects

A total of 331 s, 2nd, 3rd and 4th -year secondary education students participated in this study. The mean age of the sample was 15 (±0.97) and the range 13 to 16. Part of the sample, 105 males and 40 females from nine provinces in Spain, were selected to participate in ESTALMAT, a project to encourage mathematically talented students, selected on the grounds of a math test in which the problems were divided into sections by level of difficulty. The participants didn’t receive any incentives. The test assessed students’ aptitude for and attitudes around mathematical knowledge. The differences in the number of boys and girls in this group attested to the differences between the sexes in complex problem-solving reported for youths of those ages, especially where the questionnaires combined areas such as geometry, arithmetic and logical reasoning (Hyde et al., 1990; Hyde, 2014). These students (‘’) had proven their ability to solve complex mathematical problems by passing a test with problems such as the following.

‘The vertices of a triangle bear the number 1 or −1 and the product of the three is shown in the middle. If we add the four numbers: (a) What values may the sum take? What combination yields zero? (b) What would the sum be if instead of a triangle we had a square? (c) If we use a polygon with an even number of sides, can the sum be zero? Why? (d) What sort of polygons with an odd number of sides could give us zero? Why?’

The 186 students (97 males and 89 females) in the other group were enrolled in 2nd, 3rd, or 4th-year secondary education in two schools, each in a different Spanish province. According to their teachers, these students (‘NCPs’) had exhibited no complex problem-solving talent.

With a view to exploring the issue in greater depth, this study analyzed the effect of gender and mathematical ability on performance in two spatial tests frequently used to diagnose spatial aptitudes in Spain.



Materials

The following instruments were used in this study:

- The Primary Mental Abilities Test (PMA) – Spatial Relations (SR) (Thurstone and Thurstone, 1976). Thurstone’s initial battery of PMA tests yielded seven ‘primary mental abilities’: verbal comprehension (V), spatial orientation (S), inductive reasoning (I or R), number (N), word fluency (W), associative memory (M), and perceptual speed (P). The Spanish adaptation was created by TEA Ediciones in 1987. This study applied the test for spatial relations, defined in the Spanish edition as ‘the ability to interpret and recognize objects that change their spatial position, while maintaining their internal structure’. Cronbach’s alpha (a measure of reliability or internal consistency) for the SR factor has been shown to be 0.93, whilst the value calculated for the present sample was 0.89.

PMA-SR measures the ability to mentally rotate two-dimensional figures quickly and accurately (Linn and Petersen, 1985; Voyer, 2011). One of its features favored by researchers is the correction for guessing, for the final score is the number of correct minus the number of incorrect answers (Voyer and Saunders, 2004). Another prominent characteristic is the short time allowed, just 5 min, to answer 20 multiple-choice items, each with six options. Subjects consequently have an average of 15 s to analyze the six options in each item, without knowing how many are correct. Differences between the sexes have been identified for PMA-SR, with men scoring higher (Stericker and LeVesconte, 1982; Kail et al., 1984; Campos, 2014).

- The Differential Aptitude Test (DAT-5) – Space Relations (SR) (Bennett et al., 2000). The tests in the fifth version of the DAT assess eight aptitudes: verbal, numerical and abstract reasoning, perceptual speed and accuracy, mechanical reasoning, space relations and spelling and language usage. The Spanish adaptation of the original version was created in 2000 by TEA Ediciones. Level 1 of the space relations (SR) scale was chosen in this study to measure the ability to visualize an object in three dimensions from a two-dimensional model and mentally rotate the object in space. Cronbach’s alpha for groups participating in SR test Level 1 range from 0.86 to 0.93, whilst the value calculated for the present sample was 0.97.

Each test item consists in a two-dimensional drawing, which subjects must match to only one of four three-dimensional figures. This test is often used to study gender differences (Hartlage, 1970; Feingold, 1988; Delgado and Prieto, 1996), which have been identified by some authors (Hall, 1979) and reported by others to be minor only and less accentuated than observed with the mental rotation test (Linn and Petersen, 1985; Voyer et al., 1995; Kaufman, 2007). In this test subjects are given 20 min to choose one of four possible replies to each of 50 items. They must consequently answer each item in an average 24 s, although not all four choices must necessarily be analyzed, for participants know only one is correct.

Hereafter, the two aforementioned tests are referred to as PMA-SR and DAT-SR. The working hypothesis defined to explore the impact of gender differences and mathematical abilities on performance indicators was based on the earlier findings described above. The PMA-SR test was therefore deemed more appropriate to detect gender differences in spatial ability, for it measures mental rotation in a specific plane, whereas the DAT-SR test measures the ability to construct a three-dimensional object from its two-dimensional representation. The PMA-SR test might better identify gender differences in speed-related factors, given the short time afforded subjects to complete the exercise. The DAT-SR test, in turn, might furnish a more reliable measure of strategy-based self-confidence. Since there is only one correct answer to each item in DAT-SR, items left blank are a more sensitive indication of student uncertainty and therefore their level of self-confidence. More self-confident subjects would not need to analyze all the options as intensely and could consequently answer more quickly without leaving items blank.



Procedure

The tests were administered to the original recommendations on instructions and timing. The talented complex problem-solvers sat the tests during one of their ESTALMAT project sessions, routinely conducted outside class time (on Saturday mornings). The PMA-SR instructions were delivered in 5 min, after which students were allowed 5 min to complete the test. After a 30 min break, the DAT-SR test was administered, again with a 5 min explanation followed in this case by 20 min to do the exercise. The same procedure was deployed with the control group students, who participated during normal classroom time.

As students were given no prior information about the scoring procedure, they did not know that the total score in PMA-SR was found as the difference between the number of correct and incorrect answers and in DAT-SR as the number of correct responses. They were, however, told that the number of correct choices per item in PMA-SR was indeterminate and that there was only one per item in DAT-SR.

All the subjects gave their consent to voluntarily participate in the study, which are compliant with the guidelines given by the Bioethics Committee from both UNED and University of Granada in relation to human subjects.



Design and Variables

A 2 × 2, bi-factorial intergroup design was used, in which Gender (categories: male and female) and Ability (categories: CP, talented complex problem-solvers; and NCP, no complex problem-solving talent) were the independent variables. The dependent variables were performance, speed and confidence, measured in terms of the following indicators.

• Number of correct items (A1): in PMA-SR an item was deemed correct only if, of the six options given, all the actual rotations and no others were chosen. In DAT-SR an item was deemed correctly answered if the single correct option was chosen.

• Number of incorrect items (A2): in PMA-SR an item was deemed incorrect if any actual rotation was not chosen, or any non-rotations were. In DAT-SR, items were deemed incorrect when the wrong option was chosen.

• Number of items attempted (B1): the number of items attempted was the number answered: B1 = A1 + A2.

• Number of blank items (C1): blank items were all the ones where students chose none of the options. In PMA-SR, B1 + C1 = 20 and in DAT-SR, B1 + C1 = 50.

• Test score (A3): in PMA-SR the score was found by subtracting the number of incorrect from the number of correct items. In DAT-SR the score was the number of correctly answered items.

• Last item answered (B2): as the items were sorted correlatively, the value was the item answered that was numbered highest.

• Number of omissions (C2): the number of omissions was the number of items left blank prior to the last item answered. For PMA-SR, C2 + (20-B2) = C1 and for DAT-SR C2 + (50-B2) = C1.

Performance is measured by A3 indicator, which in DAT coincides with A1 whereas in PMA it also involves A2 for its calculation. B1 and B2 are speed indicators. C2 and C1 are used for measuring confidence, as they can differentiate whether an item is blank because of doubts in the correct answer or because of lack of time to answer it. The ratios of the number of correct answers and the number of items omitted to the number of items answered were used to infer the effectiveness of the strategy deployed (Goldstein et al., 1990; Delgado and Prieto, 1996):

• Number of correct answers/number of items answered (AR1).

• Number of items omitted/number of items answered (CR2).



Data Analysis

In order to perform statistical analyses of data, those subjects whose protocols were incomplete or showed errors were removed from the analysis. First, the mean and standard deviation in the different scores was calculated (see Table 1), and the Kolmogorov–Smirnov test was used to assess the distribution of the scores. Determining the potential differences between groups in all variables was achieved through bifactorial intergroup 2 × 2 ANOVAs taking Gender and Ability as independent variables, and the scores obtained in PMA-SR and DAT-SR (absolute and ratio values) as dependent variables. Effect size was measured as partial eta-squared ([image: image]) and statistical significance was set at a confidence interval of 95%, with p < 0.05 as the accepted level of significance. All the analyses were performed using SPSS v.19 for Windows.


TABLE 1. Mean, standard deviation, and F-values for the parameters describing dependent variables mathematical talent and gender, expressed as absolute values: PMA-SR and DAT-SR tests.

[image: Table 1]

TABLE 2. Mean, standard deviations, and F-values for the parameters describing dependent variables mathematical talent and gender, expressed as the ratio to the number of items answered: PMA-SR and DAT-SR.

[image: Table 2]



RESULTS


Absolute Values

CPs scored significantly higher than NCPs in all the performance indicators in both tests: more correct answers (A1) [F(1,323) = 77.60, p = 0.000, [image: image] = 0.194 in PMA-SR; F(1,323) = 127.47, p = 0.000, [image: image] = 0.283 in DAT-SR]; fewer incorrect answers (A2) [F(1,323) = 46.60, p = 0.000, [image: image] = 0.126 in PMA-SR; F(1,323) = 116.95, p = 0.000, [image: image] = 0.226 in DAT-SR]; and a higher score (A3) [F(1,323) = 58.41, p = 0.000, [image: image] = 0.153 in PMA-SR; F(1,323) = 127.47, p = 0.000, [image: image] = 0.283 in DAT-SR].

Gender had a significant effect on two of the performance indicators in PMA-SR, with males answering more items correctly (A1) [F(1,323) = 5.86, p = 0.016, [image: image] = 0.016] and scoring higher [F(1,323) = 5.84, p = 0.016, [image: image] = 0.018]. The differences in the number of incorrect responses (A2) were not statistically significant, however. Gender was not observed to prominently affect any of the performance indicators in DAT-SR. Nor was any significant interaction between the independent variables identified in any of the performance indicators in either test.

The CPs scored consistently higher in the speed indicators than the NCPs: more items attempted (B1) [F(1,323) = 12.29, p = 0.001, [image: image] = 0.037 in PMA-SR; F(1,323) = 8.42, p = 0.004, [image: image] = 0.025 in DAT-SR] and a larger number of last items answered (B2) [F(1,323) = 12.55, p = 0.000, [image: image] = 0.037 in PMA-SR; F(1,323) = 10.04, p = 0.002, [image: image] = 0.030 in DAT-SR].

In the PMA-SR test male subjects earned higher speed indicator scores, answered more items (B1) [F(1,323) = 7.36, p = 0.007, [image: image] = 0.022] and completed more of the test by number of items answered (B2) than females [F(1,323) = 4.26, p = 0.040, [image: image] = 0.013]. In contrast, gender had no significant effect on the DAT-SR test speed indicators, nor was any inter-variable interaction observed for speed in either of the two tests.

Problem-solving capacity exerted no prominent effect on the number of items omitted (C2) in either test, although talented complex problem-solvers left significantly fewer items blank (C1) [F(1,323) = 12.29, p = 0.001, [image: image] = 0.037 in PMA-SR; F(1,323) = 8.42, p = 0.004, [image: image] = 0.025 in DAT-SR].

Although no differences were observed between the sexes in the total number of items left blank in the DAT-SR test, obvious differences were recorded in the number omitted (C2) [F(1,323) = 6.85, p = 0.009, [image: image] = 0.021].

The gender differences in the number of speed-related blank items found in PMA-SR were not observed in connection with omissions. In this test the mean number of omissions was less than half an item, an indication that subjects only exceptionally failed to answer due to uncertainty. As in the other indicators, no inter-variable interaction was observed in omissions.



Ratios

CPs exhibited significantly higher AR1 scores than NCPs in both tests, denoting a higher percentage of correct answers and fewer errors [F(1,323) = 78.61, p = 0.000, [image: image] = 0.196 in PMA-SR; F(1,323) = 128.24, p = 0.000, [image: image] = 0.284, in DAT-SR]. Only minor differences were observed between the two groups in the number of items omitted, however, confirming the effectiveness of the non-omission strategy.

Males’ statistically significant higher absolute performance in terms of number of correct answers, scores and number of items answered in the PMA-SR test was absent in the AR1 findings. In other words, the differences between the sexes in the fraction of correct answers relative to the number of items answered were not significant.

In DAT-SR, as in the case of the absolute values which showed no differences in performance by sex, the AR1 ratio revealed the absence of significance between males’ and females’ likelihood of responding correctly to the items answered. In contrast, a significantly higher ratio of items omitted to items answered was observed for females (CR2) [F(1,323) = 5.11, p = 0.024, [image: image] = 0.016].




DISCUSSION

This study used two spatial tests, PMA-SR and DAT-SR, to analyze the effect of gender and the ability to solve complex mathematical problems on performance. Gender (male/female) and mathematical ability (complex problem solvers/non-solvers) were the independent variables, while the performance indicators were score, number of correct and incorrect answers, number of items attempted, number left blank, number omitted and the last item answered, along with the ratios of the number of correct answers and the number of omissions to the total number of items answered. The study’s four major contributions to the effect of gender and mathematical talent on spatial aptitudes are highlighted below.


Performance Was Higher Among Students With Complex Mathematical Problem-Solving Talent Than Among Their Less Talented Peers

CP students performed better and faster than NCPs in both tests administered here. The former were found to score significantly better than the latter in both tests: making fewer mistakes, leaving fewer items blank, answering more items, and exhibiting a higher success rate per item answered. The present findings therefore corroborate the positive relationship between mathematical talent and visual ability reported earlier (Rivera, 2011; Ramírez-Uclés et al., 2013; Rabab’h and Veloo, 2015; Ramírez and Flores, 2017), for the CP students in the sample implemented efficient test strategies, answering rapidly and omitting very few items.



No Interaction Was Identified Between Ability to Solve Complex Problems and Gender

Although gender differences have been frequently and separately reported in studies of mathematical performance and visual skills, no interaction was observed in any of the indicators analyzed here. When explored together, the effect of one variable on the other was not determinant and the differences in mathematical ability were unrelated to the gender differences found in the tests. Nor did gender determine the differences observed in mathematical ability. Unlike other studies, the research conducted here was unable to confirm that differences between the sexes revealed by spatial tests concur with differences in complex problem-solving abilities (Olszewski-Kubilius and Turner, 2002). Nor was evidence found that such differences impact mathematical performance (Ganley and Vasilyeva, 2011). Although differences between the sexes in some indicators were apparently narrower in the CP group than in the sample as a whole, they were not statistically significant.



None of the Indicators Denoted Significant Gender Differences in Both Tests

The inference drawn from the data, according to which none of the indicators denoted gender differences in both tests, is that the differences between the sexes in the performance factors were related to characteristics specific to each test. In other words, this study failed to find males more visually skilled, faster or more confident, for the differences in men’s and women’s scores were not observed consistently across the instruments and assessment criteria applied (Stumpf and Eliot, 1995; Gibbs, 2010). That boys scored significantly higher than girls in the PMA test while sex had no prominent effect of on the DAT test scores would seem to confirm that gender differences are better substantiated in mental rotation tests than in other spatial tests, as often described elsewhere (e.g., Voyer et al., 1995; Moè, 2009; Xu et al., 2016).

In this study, the performance differences observed in the PMA-SR test were speed-related, with males answering more items and completing more of the test, although at a success rate no higher than the females’ in any of the items. In this test, boys implemented a better strategy because it was faster, whereas they did not outperform the females in terms of success per item or number of omissions. Therefore, the strategy of answering more items per unit of time yields more correct responses per unit of time, as reported by other authors for mental rotation tests (Delgado and Prieto, 1996). The fact that only 9% of the subjects completed the PMA-SR test compared to 70% who completed the DAT-SR test attests to the need to answer more speedily to complete the former.

No differences between the sexes were observed in the speed or effectiveness indicators for DAT-SR. Differences were observed in that test with respect to omissions, with females more willing to leave an item blank when they were unsure of the answer. That finding was not consistent with results reported for an abridged version of the DAT-SR test, which revealed significant gender differences in the number of correct answers and items answered, but not in the absolute number of omissions or the ratio of omissions to the items answered (Delgado and Prieto, 1996). The characteristics of the two studies differed, however. Firstly, the earlier authors used an abridged version of DAT-SR (30 items) that was administered to two groups, one of which was allowed 12 and the other 25 min to complete the test. As that difference in timing spawned significant differences in the success rates relative to the items attempted, the effectiveness of the test was conditioned by that parameter. Secondly, in the present study the CPs performed better and faster, confirming that they differed significantly from the NCPs in respect of their mathematical skills. Similarly, 70% of the subjects in this research completed the full version of the DAT-SR (50 items in 20 min), compared to only 27.2% of the students in the earlier study who were given the same amount of time in items per minute.

Gender-related differences in strategy implemented varied depending on the test. In the PMA boys deployed faster strategies, whereas in the DAT test girls proved more reluctant to guess.



Differences Between Absolute Variables and Ratios

The findings for the CP group were the same whether expressed as the absolute value of the variables or the value relative to the number of items attempted. The absolute DAT test results were likewise unchanged in any of the indicators when ratioed to the number of items attempted. In PMA-SR in contrast, the differences observed between the sexes in the absolute number of correct answers were absent when expressed as a fraction of the number of items answered, as observed by earlier authors (Goldstein et al., 1990; Stumpf, 1993). The strategy indicator ‘number of omissions’ yielded the same results in absolute and relative terms, a finding also consistent with other reports (Delgado and Prieto, 1996). In light of such disparity, the use of variable ratios cannot be said to necessarily narrow the gender gap observed.



Implications and Limitations

Two limitations to this study are sample size and the smaller proportion of women. In relation to the sample, the results obtained are specific to the Spanish students who participated in the study, using the ability to solve complex mathematical problems as an indicator of mathematical ability, and the results obtained in PMA and DAT test as an indicator of spatial ability. Further generalization of the results of this study about gender differences in mathematical performance and visualization should take this limitation into account, as well as the heterogeneity of students with mathematical talent (Pitta-Pantazi and Christou, 2009). Another limitation stems from the smaller proportion of women in the sample selected, derived from their lower presence in the group of students selected to solve complex mathematical problems. Again, the results of this study should be interpreted under this limitation, which can itself be considered an indicator of sexes differences as found in certain contexts about mathematical abilities (Hyde et al., 1990; Hyde, 2014). In this sense, we consider that the assumption that females are not as capable in solving complex mathematical problems or spatial visualization tasks compared to males is wide-spread and, moreover, has often the character of a prejudice that may condition girls to not participate in some mathematical programs. It is necessary to investigate the specific factors that motivate these differences and not consider them as a “simple” effect of gender that may influence decisions in educational and social fields.

The inequalities between the CP and control groups were consistent with previous reports (Else-Quest et al., 2013; Hyde, 2014). This line of research would also benefit from a comparison to the results for other spatial tests and performance indicators. The present findings are nonetheless deemed to have significant implications, particularly for identifying gifted students or the direction adopted in future assessments of mathematical performance and visual ability. Affective factors associated with performance, speed or self-confidence have been shown to play different roles. In other words, the effect of greater self-confidence, greater speed or greater reluctance to guess on visual capacity might differ depending on the test. For instance, two subjects who work at different speeds might earn different scores in PMA-SR but the same in DAT-SR. By the same token, if one subject is more reluctant to guess than another, the two might earn the same scores in PMA-SR, but perform differently in DAT-SR. Just as the use of several instruments is recommended to identify gifted students (Pitta-Pantazi and Christou, 2009), the present authors believe a number of instruments should be deployed to assess visual ability and how they are impacted by other factors.

Although some of the test scores attest to differences between the sexes, an analysis of the cognitive aspects associated with such differences is believed to be in order. Despite the dependence of the reluctance to guess on personality factors, the parameter of greatest relevance may be the time invested in mentally rotating objects rather than the speed in answering or the decision to answer an item.
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When learners self-explain, they try to make sense of new information. Although research has shown that bodily actions and written notes are an important part of learning, previous analyses of self-explanations rarely take into account written and non-verbal data produced spontaneously. In this paper, the extent to which interpretations of self-explanations are influenced by the systematic consideration of such data is investigated. The video recordings of 33 undergraduate students, who learned with worked-out examples dealing with complex numbers, were categorized successively including three different data bases: (a) verbal data, (b) verbal and written data, and (c) verbal, written and non-verbal data. Results reveal that including written data (notes) and non-verbal data (gestures and actions) leads to a more accurate analysis of self-explanations than an analysis solely based on verbal data. This influence is even stronger for the categorization of self-explanations as adequate or inadequate.
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INTRODUCTION

Imagine a learner considering a worked-out example that presents the solution of a task dealing with right-angled triangles. The given example includes the complete solution of that task without describing the theorems or principles that were used for the calculations depicted. While reading the worked-out example, the learner thinks aloud: “Ok, this triangle ABC,… the missing side… was calculated. And they made it… the Pythagorean Theorem, I think. This side here… then would be… uhm, square root of. yes, that works.” When confronted with worked-out examples, texts or other instructional material, learners can learn in different ways with worked-out examples, e.g. superficially or thoroughly. The statement above illustrates an advantageous learning approach: The learner explains to herself the calculations in the material drawing on her (activated) prior knowledge of the Pythagorean Theorem, she is self-explaining.

Self-explaining means explaining something to oneself by generating information not provided in the given material and by creating inferences to organize given or new information in order to make sense of the material – it is a generative activity that occurs during learning (Chi, 2000, 2009; Fiorella and Mayer, 2016). Typical examples of self-explaining are activating and integrating prior knowledge, integrating different representations in a text, and clarifying requirements for depicted mathematical operations (Chi et al., 1989; Chi, 2000). To distinguish cognitive processes and overt activities of learners, utterances generated during self-explaining—like the statement depicted above—are called self-explanations (Chi, 2000, 2009).

Self-explaining as a learning strategy can serve to aid learners’ comprehension of a topic (de Koning et al., 2011; Chiu and Chi, 2014; Wylie and Chi, 2014; Fiorella and Mayer, 2016). There are several broadly approved methods to foster self-explaining like different forms of self-explanation prompts (e.g. Chi et al., 1994; Berthold et al., 2009; van der Meij and de Jong, 2011; Hefter et al., 2015) or trainings (McNamara, 2004; Kurby et al., 2012; Hodds et al., 2014), and it has been shown that these methods increase learning outcomes and understanding. In summary, when learning with instructional material, self-explaining is essential to a deep and meaningful understanding (Renkl, 2014; Wylie and Chi, 2014). Self-explanations, quantified and counted based on transcripts or recordings, have been identified as main predictors for learning outcomes in psychometrical designs when investigating the benefits of instructional material, e.g. worked-out examples or instructional texts (e.g. Chi et al., 1989; Butcher, 2006; Griffin et al., 2008).

These findings have been replicated in different domains. Especially, a plethora of studies focusing on instructional material and self-explanations has been conducted with mathematical or mathematically-related content (e.g. Chi et al., 1989; Renkl, 1997; Neuman and Schwarz, 1998; Stark, 1999; Renkl et al., 2004).

Until the 1980s, many researchers thought of mathematics as a purely cognitive and disembodied discipline, “based on the premise of a human mind-body split and of the transcendence of mind over body” (Gerofsky, 2014). Since then, many studies have shown that the whole body and its different modalities are important parts of the communication about and the learning of mathematics (Núñez et al., 1999; Arzarello et al., 2008; Radford, 2009; Gerofsky, 2010).

While there are numerous results of qualitative as well as quantitative studies underlining this importance, it remains unclear so far, how significant the inclusion of further modalities for quantifications of learning processes really is. In how far do individual differences, e.g. in gesturing behavior, influence the quantification of learning processes? Apart from the methodological level, these questions are also relevant when estimating privacy issues (audio recordings vs. video recordings) and necessary resources (duration of data analysis, expensive digital tools for data analysis) for empirical studies. Since quantifying self-explanations is an important and frequently used approach in studies analyzing meaningful learning, self-explaining is a fruitful concept for further investigations. Previous research on self-explanations mostly rely solely on verbal transcripts of think-aloud sessions (Ericsson and Simon, 1993; Chi, 1997) and exclude non-verbal or written data. In most cases, thinking aloud in self-explanation studies refers to the recording of verbal utterances, (i) without giving learners the opportunity to take notes, respectively, without considering written notes or their use during the learning sessions, and (ii) without considering gestures, actions or other non-verbal data during analysis.

The main question this paper intends to answer can, therefore, be stated as follows: In what way does considering written notes and gestures influence the analysis of self-explaining in mathematical learning processes?

Pursuing this question, an empirical study was conducted in which undergraduate students performed a learning exercise with worked-out examples from the field of complex numbers. Their learning processes were videotaped and categorized based on different data sources in order to analyze the influence of non-verbal and written data on the reconstruction of learning processes and self-explanations. Besides the results for self-explanations in particular, the design and the data analysis in this paper may be a transferable example for investigations that perform quantitative analyses to show the importance of gestures and notes in learning processes.



LITERATURE REVIEW


Self-Explanations

Adequate use of cognitive strategies and engaging in domain specific cognitive activities are essential to meaningful and deep learning (Swing and Peterson, 1988; Murayama et al., 2012). Since the seminal work of Chi et al. (1989), a large number of empirical works has shown the analytic and predictive power of self-explanations, which constitute a class of meaningful cognitive activities. Self-explanations are the main predictors for learning outcomes when investigating the benefits of instructional material like worked-out examples or instructional texts, and facilitate evaluation of instructional methods (e.g. Chi et al., 1989; Renkl, 1997, 2005; Butcher, 2006; de Koning et al., 2011).

Although both self-explaining and explaining are constructive activities (Chi, 2009), there are clear differences. While self-explaining is a cognitive activity that does not require verbalization (although it can be traced through overt activities and verbalization), explaining is inherently bound to communication. Self-explaining is based on one’s own prior knowledge, whereas explaining must be based on the knowledge of another person. From a cognitive point of view, explaining needs additional selecting and organizing processes to give others a suitable and comprehensible explanation (Fiorella and Mayer, 2016). Typical examples of self-explanations are inferencing from depicted data (Wong et al., 2002), repairing misconceptions (Chi, 2000), explaining solution steps with prior knowledge (Chi et al., 1989), explaining the goals of an operation (Chi et al., 1989; Renkl, 1997; Renkl et al., 1998), and integrating symbolic calculations and iconic representations (Aleven and Koedinger, 2002). By definition, self-explanations can be incomplete, fragmented or even wrong, e.g. explaining the goals of an operation could address the wrong goals (Chi, 2000).

Self-explanation studies apply experiments in different domains, covering topics like the blood flow and the circulatory system (e.g. Ainsworth and Loizou, 2003; de Koning et al., 2011) or LISP programming (Pirolli and Recker, 1994; Bielaczyc et al., 1995). However, one of the domains most often investigated is mathematics. Such studies often deal with mathematical or mathematically-related content on a lower secondary level like elementary probability theory (e.g. Renkl, 1997; Renkl et al., 2004), compound-interest calculations (e.g. Renkl et al., 1998), algebra word problems (e.g. Neuman and Schwarz, 1998; Neuman et al., 2000), elementary geometry (Wong et al., 2002), and Newton’s laws and calculating forces (e.g. Chi et al., 1989; Chi and VanLehn, 1991). To determine the impact of self-explaining on test performance in those domains quantitatively, self-explanations are categorized and quantified based on data that is typically collected in one of two common procedures:1

(1) Coding of written texts produced by learners after or during their work with learning materials or tasks (e.g. Schworm and Renkl, 2006; Berthold et al., 2009);

(2) Coding of protocols from think-aloud sessions that are recorded during or after learners’ work with instructional material or tasks (e.g. Chi et al., 1989; Renkl, 1997; Durkin and Rittle-Johnson, 2012; McEldoon et al., 2013).

In the first case, the participants themselves sum up their learning processes in writing. The resulting products are examined for passages which can be identified as self-explanations. In contrast to the second case, this procedure includes all available data (the written text).

During the second procedure, the participants, working individually, are instructed to think aloud while learning and working with different materials and/or tasks. Typically, the procedure follows the methodological principles of Ericsson and Simon (1993).

In the studies following the second procedure, participants in thinking aloud settings studies were audio- or videotaped. Subsequently, the recorded data was transformed into verbal protocols for further coding procedures.2 When video data was collected, it was not considered in the analyses of verbal protocols (e.g. Bielaczyc et al., 1995; Neuman et al., 2000). If participants were allowed to take notes or sketch diagrams, these written documents were not analyzed synchronously with the verbal protocols and oftentimes not analyzed at all.3

Some authors try to gain insight into the role of incorrect self-explanations for learning (Wilkin, 1997; McNamara, 2004; Butcher, 2006; Ainsworth and Burcham, 2007; de Koning et al., 2011). Both negative and positive effects of incorrect self-explanations are revealed: For less demanding activities such as paraphrasing, the number of incorrect self-explanations correlates negatively with subsequently measured performance; for more demanding activities such as inferencing new information based on given texts, however, positive correlations show the potential benefit of incorrect self-explanations (McNamara, 2004). These findings correspond with results that show the learning potential of incorrect self-explanations (Chi, 2000). However, the majority of studies on self-explanation do not distinguish between correct and incorrect self-explanations, although from a psychological as well as from a domain-specific perspective the differentiation would be an important issue for investigations of learning processes across all domains, especially for mathematics.



Learning and Multimodality

Many studies in the last 30 years have demonstrated that the whole body and its modalities are an important partaker of and a constitutive entity for communication and learning (Lakoff and Johnson, 1999; Núñez and Freeman, 1999; Gerofsky, 2014). Therefore, thoughts and language are created and expressed through many “modalities linked together – sight, hearing, touch, motor-actions, and so on.” (Gallese and Lakoff, 2005, p. 456). Although especially mathematics is typically regarded as a highly cognitive discipline, many researchers have (re-)discovered and verified the body’s importance for mathematical learning (Núñez et al., 1999; Lakoff and Núñez, 2000; Gerofsky, 2014). By emphasizing the importance of bodily modalities and their role for the origination of mathematics, gesturing can be seen as “a key element in communication and conceptualization” (Radford et al., 2009, p. 93).

As an important part of a multimodal perspective, analyses have shown teachers and learners gesturing frequently and intensely when communicating and thinking about mathematics (e.g. Alibali and DiRusso, 1999; Goldin-Meadow and Singer, 2003; Greiffenhagen and Sharrock, 2005; Edwards, 2008; Radford, 2009; Yoon et al., 2011; Kita et al., 2017). Gesturing can support uttered words as well as supplement or contradict them in different ways (e.g. Alibali and Goldin-Meadow, 1993; Alibali and DiRusso, 1999; Goldin-Meadow and Singer, 2003; Hegarty et al., 2005; Robutti, 2006; Arzarello et al., 2008). In combination with notes or other inscriptions, gestures are applied in specific and subtle ways to construct and communicate mathematical knowledge (Krause, 2016; Krause and Salle, 2016, and, more general, Streeck and Kallmeyer, 2001).

Some studies analyze the use of gestures during explanations or think-aloud settings. When learners explain things to each other or to a video camera, their expressions go beyond verbal utterances and are often accompanied by different kinds of gestures (Schwartz and Black, 1996; Emmorey and Casey, 2001; Hegarty et al., 2005; Salle, 2014). In about 50% of all think-aloud sessions with students who solved gear-problems, Schwartz and Black (1996) found that content-related “rotating” and “ticking” gestures could be observed. Hegarty et al. (2005) report that 98.5% of all identified verb phrases in a gear-problem experiment were accompanied by pointing and tracing gestures, revealing “important individual differences in the use of gesture in both communication and inference” (p. 354). Other works show how gestures are used in explanations to depict certain aspects of verbalized parts (Koschmann and LeBaron, 2002; Alibali and Nathan, 2012).

Findings about the role of different modalities in self-explanation analyses are rare. In eye-tracking studies, learners’ direction of gaze while integrating information given in material was analyzed; including data from eye-tracking devices allows for more accurate analyses of self-explanation (Merten, 2002; Conati and Merten, 2007; She and Chen, 2009; Hodds et al., 2014). However, no systematical analysis of self-explanations and the role of bodily modalities and inscriptions in think-aloud settings has been carried out yet. Thus, the extent to which the consideration of spontaneously produced written notes and non-verbal utterances, such as gestures, could influence the identification of self-explanations in think-aloud settings remains unclear. A multimodal analysis could help to identify adequate and inadequate self-explanations, improve explanations for learning gains or optimize the design of learning materials by providing better measures of self-explanation.



CONCEPTUAL FRAMEWORK AND RESEARCH QUESTIONS


Multimodality and Self-Explanations

An utterance is understood as an expressive product in the sense of the multimodal framework of Edwards and Robutti (2014). Hence, expressive products are “physical ‘traces,’ whether permanent or ephemeral, of people’s actions” (p. 13). That includes speech and gestures as bodily based expressive products, and inscriptions like written words, symbols, graphs and visuals as external to the body (ibid.).

Applying this definition, spoken words as well as gestures and written products like sentences or drawings can “become fully partakers of the utterance itself” (Nemirovsky and Ferrara, 2008, p. 162). The different expressive products can be seen as facets of one single underlying mental process (Robutti, 2005; Edwards and Robutti, 2014) and, thus, allow identification of specific cognitive processes. Three main types of utterances (expressive products) can be distinguished:

• Verbal utterances: spoken sentences and words, shouts and other sounds.

• Written utterances: written inscriptions such as characters, words, sentences with specific syntax, drawings, figures, markers.

• Non-verbal utterances: gestures, sign language4, facial expression, gaze, actions like the movements when writing or drawing.

Based on the remarks above, the definition of a self-explanation can be broadened. In the classical definition, self-explanations are defined as “units of utterances” produced by self-explaining (the cognitive activity), whereby utterances are meant to be verbal (Chi, 2000, p. 165). Hence from a multimodal perspective, a self-explanation will refer to a unit of intertwined (verbal, written, and non-verbal) utterances produced by self-explaining. This definition was used for the present study. All forms of verbal, written and non-verbal utterances that were recorded on video are considered in this paper except for gaze and facial expression, which were not included in the analysis.



Gestures

Gestures are bodily based expressive products (Edwards and Robutti, 2014), cognitive processes are mirrored in speech and gesture. Gestures occur in combination with speech, but they also have self-oriented functions that may occur in combination with thought (Alibali et al., 2000; Kita et al., 2017). This paper follows McNeill (1992) and Kita et al. (2017) in their definition of gestures as idiosyncratic spontaneous movements of the hands and arms which depict action, motion, or shape, or indicate location or trajectory, they “include iconic gestures, metaphoric gestures, and deictic gestures” (Kita et al., 2017, p. 245) in the taxonomy described by McNeill (1992) and the differentiation of iconic gestures in mathematics as iconic-physical and iconic-symbolic formulated by Edwards (2008). As long as movement is not part of a functional act (taking notes, measuring something with a ruler), the movement is a gesture; otherwise, it is an action with a purpose (Goldin-Meadow, 2003; Kendon, 2004; Sabena, 2008).

In think-aloud scenarios, gestures can convey important information (Schwartz and Black, 1996; Hegarty et al., 2005; Yammiyavar et al., 2007); they are, therefore, co-thought and/or co-speech gestures. Following the definition of self-explanations from a multimodal perspective, a gesture as well as an action with or without simultaneous speech may allow a coder to identify self-explaining activities.



Inscriptions

An inscription is defined as “an external ‘representation,’ whether symbolic or imagistic, which is non-ephemeral and therefore amenable to reflection, review, and revision” (Edwards and Robutti, 2014). Since mathematics makes much use of external representations like symbols or graphs, inscriptions play an important role in doing, communicating and learning mathematics (Arzarello et al., 2011; Krause, 2016). Learners create and use inscriptions on paper or other mediums to store and highlight important information for themselves (Kiewra, 1989; Kobayashi, 2005, 2006), to organize them in specific ways (e.g. Eppler, 2006; Kenehan, 2007), or to use such collections when studying (Luo et al., 2016).

During think-aloud procedures, learners can refer to inscriptions already present in the instructional setting or produced by the learners themselves; therefore, researchers may identify self-explaining processes by considering inscriptions in combination with speech and gestures or without them.



Adequate and Inadequate Self-Explanations

Whether a self-explanation is “correct” or not depends not only on the utterance itself, but also on the content to be learned and the aims of the instructional setting. For example, the notion of a tangent line as a line that touches a circle at one point is absolutely adequate in elementary Euclidean geometry. When it comes to functions and calculus, however, this conception only holds true for special cases and areas. Tangent lines on graphs of third grade polynomials might not fit this explanation.

Such examples illustrate that a classification into “right” or “wrong” self-explanations is difficult. Hence, a classification that distinguishes between adequate and inadequate self-explanations, always matched to the goals of an intervention and the instructional material itself, fits more precisely and is used throughout the paper.



Research Questions

Two research questions will guide the following analyses:

(1) Does the consideration of non-verbal utterances (e.g. spontaneous gestures and actions) and written utterances (e.g. notes and diagrams) alter or support the coding of self-explanations?

(2) Does the consideration of non-verbal and written utterances alter or support the determination of self-explanations as adequate or inadequate?



MATERIALS AND METHODS


Participants

The subjects were 33 undergraduate students at a German university (22 females, 11 males) who voluntarily participated in this study. The students ranged in age from 21 to 25 years (M = 23.2, SD = 1.1), all of them spoke German fluently. All participants were enrolled in teacher training courses for middle school mathematics at the time of the experiment. They were in the third, fourth or fifth semester of their course. All participants were familiar with worked-out examples and computers.



Materials

The participants worked with three worked-out examples that addressed the multiplication of complex numbers. The chosen topic was new and relevant to them: First, it concerned elementary concepts and objects like polynomials, the fundamental theorem of algebra and trigonometric functions. Dealing with complex numbers helps participants in understanding these contents, which will be relevant for teaching in school, from a more general point of view. Second, this topic represents a foundation for further lectures in algebra, analysis, geometry, etc. Third, the experience of becoming acquainted with a new number system has parallels to school children’s first encounter with rational and real numbers, and, thus, gives future teachers the chance to reflect on certain aspects and obstacles concerning the encounter with new numbers.

Worked-out examples were chosen because they allow a structured investigation of self-explanations and constitute a common format in self-explanation research studies (see literature review). Every used worked-out example (Figure 1) was divided into three parts: (1) transformation of Cartesian coordinates into the trigonometric form of polar coordinates, (2) calculation of the product of two complex numbers represented in the trigonometric form and (3) the geometrical representation of the calculated product.5 The second worked-out example showed a second solution to a similar multiplication task and followed the same structure as the first example. In contrast to the first example, the coefficients of the complex numbers were fractions which represented vectors outside the first quadrant of the coordinate system. The third worked-out example dealt with trigonometrically represented polar coordinates that had to be transformed into Cartesian coordinates. Subsequent to this transformation, the Cartesian coordinates were multiplied and geometrically represented. Furthermore, the material contained different representations (symbolic calculations, geometrical representations and a part where those two were intertwined).


[image: image]

FIGURE 1. First worked-out example that was used in the intervention phase (translated from the German original, scaled-down version).




Objects of the Intervention

The following list provides a selection of favored self-explanations likely to arise during learning with the first worked-out example. They depict general principles of and insights into the mathematical topic and were results of a mathematical-content analysis6 that was based on Hankel (1867) and Courant and Robbins (2010). The complete list forms the basis for the identification of adequate self-explanations (see Supplementary Material and section “Coding of Self-Explanations”). Numbers in parentheses refer to the three parts of the first example. A learner…

(1) explains the calculation of the vector’s length as application of the Pythagorean Theorem.

(1) recognizes the calculation of the angle α as the application of a trigonometric equation in a right-angled triangle.

(1) integrates the symbolic representation of a complex number and its parts with respective characteristics of the geometrical counterpart.

(2) explains the change of the algebraic sign between line four and five of the calculation by the relation i2 = −1.

(2) explains the simplification from line six to seven of the calculation as an application of the addition theorems.

(3) identifies the factor [image: image] as the length of the vector s⋅t.

(3) recognizes that the resulting angle of s⋅t is the sum of α and β.



Procedure

First, participants had to complete a pre-test assessing their prior knowledge and competencies concerning complex numbers, trigonometric calculations and functions, and rules of calculating. The test contained 20 items where students had to draw complex numbers in different representations in coordinate systems (4), simplify simple and more complicated symbolic terms with roots and complex numbers (6), determine sine and cosine on right-angled triangles and in the unit circle (6) and give reasons for properties of real and complex numbers (4). The participants had 45 min to complete the test. On the one hand, the results revealed whether participants had the necessary basic arithmetic and algebraic knowledge for the intervention.7 On the other hand, participants with too much experience in the field of complex numbers and polar coordinates could possibly be excluded from the study.8

In the intervention phase, the participants worked individually with three worked-out examples presented on paper. The assignment given to them was explained in the following way: “Try to understand the worked-out examples. Signal when you have finished. And please think aloud.” After any period of 20 s of silence, the participants were reminded to think aloud. There was no time limit. The participants were permitted to use a prepared ‘cheat sheet’ with definitions and formulas, a pen, a triangle ruler and a calculator application on the computer screen. The think-aloud procedure followed the guidelines of Ericsson and Simon (1993) and Greene et al. (2011). Before the intervention phase there was a short training sequence for the think-aloud procedure. No guidelines on taking notes or gesturing were provided, so all occurrences of gestures and notes were produced spontaneously.



Data

The data base for the analysis of self-explanations consisted of video recordings from the intervention phases of 33 participants. These intervention sequences contained verbal data (participants’ voices) and non-verbal data (recordings of the participants’ upper bodies and bodily actions, recorded by the webcam on top of a computer display, and the recordings of calculations made on the computer screen). Furthermore, written notes, comments and calculations made on the worksheets, the ‘cheat sheets’ or additional blank paper were collected (referred to as written data).



Analysis

To analyze the data, a qualitative content analysis consisting of two phases was conducted (Mayring, 2000; Lamnek, 2010). The units of coding, context and analysis were refined successively.


Pilot Phase

During the pilot phase, preliminary category schemes were derived from a literature review (see section “Coding of Self-Explanations”). Based on two video sequences of students (unit of coding) who did not participate in the main study, the category schemes were revised, refined and adapted to the empirical findings (Mayring, 2000). Specifically, categories were extended to include written and non-verbal data, e.g. regarding the ways in which special examples of self-explanations were uttered through written or non-verbal expressive products, and regarding their intertwining with verbal utterances. The unit of context comprised a learning session of a participant, and the units of analysis comprised verbal utterances including gestures and notes. All codings were based on semantic features.



Main Phase

Data gathered during the main phase consisted of video sequences from 33 participants. The units of context and analysis were identical to those employed during the pilot phase. In order to compare the self-explanations coded on the basis of different data and to follow common frameworks in self-explanation studies, recordings were divided into units of analysis based on verbal data. A unit of analysis was a sentence, a half-sentence or a shorter utterance, separated from other sentences by pauses. The segmentation of the data was done by both coders together. Disagreements were discussed and solved. This division was maintained throughout all coding procedures. The coding procedures are described in the next paragraph.



CODING OF SELF-EXPLANATIONS

The 33 video sequences were coded three times in consecutive coding procedures (described in sections “First Coding Procedure – Verbal Data,” “Second Coding Procedure – Verbal and Written Data,” and “Third Coding Procedure – Verbal, Written and Non-verbal Data”). Using the category schemes resulting from the pilot phase, each coding procedure was applied by a total of two coders familiar with the mathematical content and the research method. These coders coded the video material in all three procedures. 10% of the videos were encoded by both coders to determine the inter-coder reliability (described in section “Inter-Coder Reliability”). The first procedure used only the verbal data from the video recordings to analyze verbal utterances, which included all spoken words, sentences and sounds. During the second procedure, the verbal data from the recordings and the written data were included. During the third procedure, the verbal, written and non-verbal data were included. Facial expressions were omitted from the analysis. The units of analysis were held constant throughout all procedures to allow for a one-to-one comparison between the analyses and thus facilitate quantitative comparisons. Examples of self-explanations identified during each of the three coding procedures can be found in the results section.


First Coding Procedure – Verbal Data

Based on the division into units of analysis, the verbal data was categorized first. The term “verbal data” refers to the audio track of the video recording, the first coding procedure was carried out based on this audio track. Two decisions were made for every unit of analysis: (a) Can a self-explanation be identified? (Identification of self-explanations). (b) If so, can the self-explanation be identified as adequate or inadequate with respect to the mathematical goals of the intervention? (Determination of adequate and inadequate self-explanations).

(a) Identification of self-explanations. Based on the verbal data, it was coded whether a unit of analysis was a self-explanation or not, using the following category scheme:

• (Self-explanation): A unit of analysis was coded as a self-explanation if a generation of inferences and/or a mapping of inferences or information onto the learners’ existing mental models could be identified; hence, if self-explaining could be reconstructed. Typical examples are activating prior knowledge for explanations of solution steps, calculations or representations; integrating different representations, e.g. symbolic and geometrical; and drawing inferences from information depicted in examples or the ‘cheat sheet.’

• (No self-explanation): Examples for passages coded as no self-explanation are: reading a sentence from the instructional material without signs of bringing in new information through written or non-verbal utterances, or mentioning a number and pointing to it without integration of other information.

Category schemes used to develop the scheme for identification of self-explanations in the present study were those published by Chi et al. (1989), Renkl (1997), Wong et al. (2002), de Koning et al. (2011), and Salle (2014). The given categories were collected, merged if necessary and refined based on the results of the pilot phase, including written and non-verbal utterances. Finally, all identified categories were grouped together to the category “self-explanation” given above.

(b) Identification of adequate and inadequate self-explanations. Based on the verbal data, it was decided if a coded self-explanation was adequate or inadequate. If a self-explanation could not be identified as either, it was left unclassified in step (b). The following category scheme was used:

• (Adequate): Self-explanations that matched the goals of the intervention phase were coded as adequate self-explanations, e.g. if a learner identified the vector s as geometrical representation of the symbolically given complex number s (list “Objects of the intervention” in section “Materials and Methods”).

• (Inadequate): With regard to the mathematical subject of complex numbers, self-explanations that revealed misconceptions, misunderstandings or inference errors were coded as inadequate, e.g. if a learner mistakenly explained the form of an equation by a multiplication with i instead of a rearrangement of terms.

(Unclassified): If it could not be derived whether the self-explanation was adequate or not, the self-explanation passage was labeled as unclassified.

Based on the mathematical content analysis described in Section “Materials and Methods,” misconceptions and typical errors were determined. The formulation of the category scheme for adequate and inadequate self-explanations was based on Wilkin (1997), McNamara (2004), Butcher (2006), Ainsworth and Burcham (2007), and de Koning et al. (2011) regarding the remarks in Section “Adequate and Inadequate Self-Explanations.” The categories of adequate and inadequate self-explanations were then supplemented with findings from the pilot phase.



Second Coding Procedure – Verbal and Written Data

The second coding procedure followed the same steps as the first, but was based on the verbal data from the recordings supplemented by the written data. To synchronize the two data sources, the written data was scanned and segmented by time before the second coding procedure. This preliminary segmenting was conducted by a person not involved in the coding procedures. For every unit of analysis, it was checked, based on the written and video data, which written expressive products were present at its end and its beginning. By this comparison, it could be derived which annotations were made during that unit. The set of these annotations constituted the written data belonging to the respective unit of analysis.9

The two decisions described above (identification of self-explanations and identification of adequate and inadequate self-explanations) are supported by a broader data base which includes the intertwining of the two types of utterances (see theoretical framework). Based on these two data sources, coding was carried out simultaneously without knowing the results of the first procedure. Differences between the results of the two coding procedures (units of analysis that were coded as self-explanations in one of the two procedures but not the other) were analyzed again by a second person to avoid coding errors. Discrepancies were then solved by consensus.



Third Coding Procedure – Verbal, Written and Non-verbal Data

For the third coding procedure, the data base was extended to verbal, written and non-verbal data. For every unit of analysis the coders listened to the audio data, read the segmented written products and, additionally, watched the video sequence of the participant’s body, hands, and all objects on the table in front of the participants.

Although the coding procedure applied here is not based on transcriptions of verbal and non-verbal data, methodological advices from McNeill (2005, 263f.) were considered for the coding of the video sequences. Before beginning the coding procedures, the first pass to “facilitate interpretations of gesture productions on later passes,” an analysis of the “product of elicitation” (results of the mathematical content analysis described in “Materials and Methods”), was discussed with all coders (McNeill, 2005, p. 264). Several purposes of the passes 5 and 6 described by Duncan and McNeill were considered for the coding procedure including non-verbal data to identify locations of gestures, beginning and ending of gesture phrases, and the identification of movements as gestures or actions. Hence, during the third coding procedure and based on the interplay of the three data sources, coders answered the following questions before they decided whether a unit of analysis could be counted as a self-explanation, respectively, as an adequate or inadequate self-explanation: is there a relevant movement visible in the non-verbal data? Is the relevant movement a gesture or an action? Is the whole gesture (“gesture phrase”) or action located inside the unit of analysis or does it begin/end in a adjacent unit? The respective answers provided the foundation for the categorization of passages as self-explanations and their classification as adequate or inadequate. Again, discrepancies in the three coding procedures as described above were analyzed by a different person to avoid errors and then solved by consensus.



Inter-Coder Reliability

Inter-coder reliability for all coding procedures was ascertained by two coders based on categorizations of 10% of the data. Because of the small number of categories, all reliability values were calculated with Cohen’s κ, which takes random matches into account (Wirtz and Caspar, 2002). For the coding of self-explanations, the inter-coder reliability was 86.96% for the coding procedure based on verbal data, 88.93% for the procedure based on verbal and written data, and 89.2% for the coding based on all available data. Decisions on adequate and inadequate self-explanations showed an inter-coder reliability of 84.79% based on verbal data, 88.6% based on verbal and written data, and 90.11% for the coding based on all available data. Discrepancies were resolved by consensus.



RESULTS

The results section consists of four parts. Subsections “Coding of Self-Explanations,” “Changes of the Coding Results With Different Data Bases,” and “Alteration of the Interpretation of a Self-Explanation” depict results concerning the first research question (see section “Research Questions”): in what way will the consideration of non-verbal utterances (e.g. spontaneous gestures and actions) and written utterances (e.g. notes and diagrams) alter or support the coding of self-explanations? Subsection “Adequate and Inadequate Self-Explanations” depicts results concerning the second research question: In what way will the consideration of non-verbal and written utterances alter or support the determination of self-explanations as adequate or inadequate?

The pre-test results of the 33 subjects range between 36% and 87% (Figure 2). All participants had the basic knowledge that was necessary for the intervention phase (basic knowledge of sine and cosine, calculations with sine, cosine and real functions, and rearranging equations). There are small correlations between pre-test results and the number of coded self-explanations that increase with additional data sources (Table 1). Therefore, a strong relationship between prior knowledge and coding results could be ruled out.


[image: image]

FIGURE 2. Pre-test results of all participants.



TABLE 1. Correlations (Bravais–Pearson) between pre-test results and coding results.

[image: Table 1]

Coding of Self-Explanations

On average, each one of the 33 data sessions lasted about 24:36 min (standard deviation: 14:28 min). In total, 935 self-explanations were coded based on all available data. Without non-verbal data and based on verbal and written data only, 738 self-explanations were coded, which amounts to a difference of 197 self-explanations. From the 197 self-explanations 31 could be coded because of actions like using the calculator or the ‘cheat sheet.’ The remaining 166 could be coded because of gestures and their intertwining with verbal and written data. In all but three of these 166 passages, participants used gestures that point to or retrace objects depicted in the material. Based on verbal data only, 676 self-explanations were coded; this amounts to a difference of 62 self-explanations that were not coded because written data were not considered. Compared to the coding results based on all available data, 259 self-explanations were not coded based on verbal data (Figure 3).


[image: image]

FIGURE 3. Numbers and percentages of self-explanations coded during the three coding procedures.


The individual results of the self-explanation coding show differences in the number of self-explanations coded during each of the three coding procedures (Figure 4). Some participants’ self-explanations were coded based nearly exclusively on verbal data (no. 8, 16, 17, 26 in Figure 4), while others show more codings based on all available data (no. 1, 10, 11, 24, 25, 33 in Figure 4). Other learners showed greater numbers of self-explanations that were coded based on verbal and written data (no. 3, 10 in Figure 4).
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FIGURE 4. The lengths of the bars depict the individual numbers of self-explanations coded during the three coding procedures. Subjects were ranked with regard to their number of self-explanations that was coded based on verbal, written and non-verbal data.


The following sequence gives an example for a self-explanation that could only be coded during the coding procedure based on all available data.

A self-explanation only coded due to the inclusion of non-verbal data. Leo (participant no. 24 in Figure 4) is reading the lines of the calculation on the first example sheet (see Figure 5). The transcript depicts two units of analysis, divided by the pause in line 2.


[image: image]

FIGURE 5. Snippet of Leo’s example sheet. Leo points at these four positions while she seems to read out parts of the line below.


Leo: At first cosine times cosine (points at #1 and #3) sine times co- (points at #2 and #3).,

ah, at first cosine times sine, (points at #1 and #4) sine times cosine (points at #2 and #3), and sine times sine (points at #2 and #4) with the i square.

Looking only at the verbal protocol without considering the accompanying pointing gestures, it seems as if Leo reads aloud the third line in the snippet, because the words refer almost exactly to the depicted formula (Figure 5). However, the accompanying pointing gestures intertwined with the verbal utterances reveal a self-explanation: She connects line two (the line she is pointing at) and line three (the line she compares her words to) of the calculation by carrying out the expansion of the product with her fingers. Hence, based on all available data, this segment could be coded as a self-explanation in the third coding procedure. During this scene, Leo did not produce written data. This example illustrates a behavior frequently observed during the coding procedures. Verbal utterances that seem to be read aloud text passages become self-explanations when taking accompanying gestures into account.



Changes of the Coding Results With Different Data Bases

On average, 72.3% of all coded self-explanations were coded based on verbal data. Thus, there is an average difference of 28.14% in contrast to the coding based on all available data (see Figure 3). The individual differences between results based on these two data bases vary with a standard deviation of 16.19%. Individual results describing the proportion of self-explanations that were coded based on all available data range between 70% (learner no. 33 in Figure 4: seven out of ten self-explanations were coded based on all available data) and 0% (learners no. 26 and no. 31 in Figure 4: all self-explanations were coded based on verbal data only). Although there is a tendency toward higher differences in higher ranks, higher as well as lower differences can be found across the whole spectrum of ranks.

Although some partial sequences remain the same, there is a non-negligible difference between the different ranks and the different total numbers of self-explanations that could affect, e.g. subsequent statistical calculations predicting individual achievement (see Figure 6).
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FIGURE 6. Results of coding self-explanations with different data bases. The black bars depict the number of coded self-explanations based on verbal data. The light gray bars depict the number of coded-self-explanations based on verbal, written and non-verbal data. Bars are ordered according to the numbers of self-explanations coded based on verbal data (numbers in parentheses). In comparison, the order according to the numbers of self-explanations coded based on verbal, written and non-verbal data is depicted.




Alteration of the Interpretation of a Self-Explanation

The quantitative coding does not consider the concrete interpretation of a self-explanation, e.g. whether a coded self-explanation is an activation of prior knowledge or the identification of a goal of an operation. However, a detailed analysis of certain self-explanations reveals a further aspect regarding the influence of written and non-verbal data on the identification of self-explanations. The following snippet shows in detail how a self-explanation receives an additional meaning when it is interpreted based on all available data. Lena (participant no. 10 in Figure 4) is working on the second example and tries to understand the transformation of [image: image] into polar coordinates (see Figure 7).


[image: image]

FIGURE 7. Snippet corresponding to Lena’s (#1, #2, #3) as well as Emily’s (#4, #5) protocols in Sections “Alteration of the Interpretation of a Self-Explanation” and “Adequate and Inadequate Self-Explanations.”


Lena: Now I ask myself why, where this two by two comes from, (points at #1) but, .ah, exactly, this is here (points at #2) (points at #3). opposite side (lifts the pencil and points at #3 again). by adjacent side.

This self-explanation was coded based on verbal data because the words “opposite side” and “adjacent side” are neither depicted on the worked-out example nor on the ‘cheat sheet.’10 So, without considering the pointing gestures, this self- explanation would be described as an activation of prior knowledge because Lena uses the technical terms she has learned in class. However, considering the pointing gestures leads to an additional interpretation as an integration of geometric and symbolic representations, because the participant combines the fraction and coordinate system using her words and gestures simultaneously. Generally, the additional data often revealed integrations of representations (as can be seen in Lena’s protocol) or links between different information.

Results so far have focused on whether a unit of utterances is a self-explanation or not and how a self-explanation can be interpreted. In the following subsection, the influence of the different data on the categorization of self-explanations as adequate and inadequate will be analyzed.



Adequate and Inadequate Self-Explanations

Of all 935 self-explanations, 835 could be determined as adequate and 68 as inadequate. In the end, 32 self-explanations could not be identified as adequate or inadequate and were left unclassified.


Number of Coded Adequate and Inadequate Self-Explanations

835 adequate self-explanations could be identified by considering all available data. Based on verbal and written data, only 59.9% (500 of 835 self-explanations) were coded as adequate. About 48% (400 of 835 self-explanations) were coded as adequate based on verbal data (Figures 8A,B). Comparing the coding procedure based on verbal data and the coding procedure based on all available data, individual coding results of adequate self-explanations vary with a standard deviation of 20.55% around the mean of 48% (Figure 9). The individual proportion of adequate self-explanations coded based on all available data ranges between 84.8% (learner no. 10: only 5 of 33 adequate self-explanations were coded based on verbal data) and 0% (learners no. 26 and no. 31: all coded adequate self-explanations were coded based on verbal data). Thus again, although there is a tendency toward higher differences in higher ranks, higher differences as well as lower differences can be found across the whole spectrum of ranks. The overall percentages are even more distinct when reconstructing inadequate self-explanations: 68 inadequate self-explanations could be identified by considering all available data (n = 68). Based on verbal and written data, 47.1% (32) self-explanations were categorized as inadequate. Considering verbal data, only 26.5% (18) inadequate self-explanations could be identified.
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FIGURE 8. Data used to code adequate (A) and inadequate (B) self-explanations. The first row depicts the proportion based on verbal, written and non-verbal data. The second row depicts the corresponding proportion based on verbal and written data. The third row depicts the proportion of adequate self-explanations that were coded based on verbal data.



[image: image]

FIGURE 9. Data used to code adequate self-explanations. The subjects are ordered according to the number of self-explanations coded based on verbal, written, and non-verbal data (same order as in Figure 4).


To give an insight into the importance of non-verbal data for the coding of inadequate self-explanations, a typical example is presented in the following paragraph.



An Example of an Inadequate Self-Explanation Coded Based on Verbal and Non-verbal Data

Emily (participant no. 1 in Figure 4) reads out the fourth line of the solution: “The angle between the R-axis and the vector s is.” (Figure 7).

Emily: Ok, the angle between the R-axis,. that’s this one (traces along the i⋅R-axis at #4). and the vector s, this one. (traces along vector s at #5).

Without the pointing gestures, the coder does not know which part of the example her comment “that’s this one” refers to. From the intertwining of speech and gesture it can be recognized that she is identifying the wrong axis. In general, self-explanations like linking of concepts or notions to geometrical representations are often accompanied by written notes or pointing gestures. In order to decide whether a self-explanation is adequate or not, coders have to know the positions, terms and numbers in the given calculation to which participants may refer.



DISCUSSION


Summary of the Findings

Although more than two-thirds of all self-explanations (676 of 935) could be reconstructed solely based on verbal data, the consideration of gestures, actions and written products notably affected individual results distinctly: individual differences in self-explanations coded in the three procedures vary independently of the amount of self-explanations and the resulting ranks. The results underline the key role of video data to link the instructional material and written notes to verbal utterances: taking into account more data results in more distinct changes in the ranking. An analysis including written and non-verbal data seems to fit better to the concept of self-explaining than an analysis without.

The influence of written and non-verbal data is even more important for the coding of self-explanations as adequate or inadequate. Verbal data often leaves the researcher uncertain with regard to objects referred to and connections emphasized by participants. Taking into account the intertwining of verbal utterances, written notes and gestures seems to improve the reconstruction of adequate and inadequate self-explaining and, hence, complex learning processes.

The variability of individual coding results for self-explanations as well as adequate and inadequate self-explanations may have several reasons. Important factors why people gesture more or less are the spoken language (Pika et al., 2006), differences in cognitive abilities (e.g. Hostetter and Alibali, 2007; Wartenburger et al., 2010) or other personal characteristics (Hostetter and Potthoff, 2012). Apart from general differences in gesture frequency, processing difficulties and the strength of mental representations may have an influence on how frequently learners use gestures (Melinger and Kita, 2007; Sassenberg and van der Meer, 2010). Another explanation for the differing coding results based on written data might be the differing use of learning strategies that need paper and pencil, like note-taking (Kiewra et al., 1995; Kobayashi, 2006). Last but not least, the general use of self-explaining activities influence the individual coding results as well; empirical studies show that students have different self-explanation-styles and, therefore, the quality and quantity of spontaneously generated self-explanations may differ distinctly (Renkl, 1997).



Methodological Discussion

The analyses described in this paper tried to thoroughly investigate multimodality and self-explanations, which is a very effortful endeavor. In order to facilitate similar methodological approaches, e.g. the application of tablets could decrease the effort: participants’ written products could be segmented and assigned to specific units of analysis automatically. By omitting facial expressions, the current analysis of non-verbal data was less complex than an analysis including such expressions; however, considering such data could increase the precision of self-explanation analyses. The same holds true for gaze analysis via eye-tracking devices, which may give further insights into learners’ self-explaining activities (e.g. Conati and Merten, 2007; Hodds et al., 2014).

This paper follows a traditional approach to self-explanation analysis as applied in many previous studies (e.g. Chi et al., 1989; Renkl, 1997; McEldoon et al., 2013) and extends this approach by including further modalities. Hence, on the one hand, the constant segmentation used throughout the study provides a reliable frame for a one-to-one comparison of analyses considering different data bases. Furthermore, the results offer some perspectives for methodological variations of traditional self-explanation studies. For example, by consideration of written and non-verbal data, maybe even sparse verbal protocols may reveal self-explaining activities (such sparse protocols were mentioned, e.g. in Renkl, 2002; Renkl et al., 2004). On the other hand, certain characteristics of multimodality could not be considered in the analysis, e.g. in what way different modalities alter the segmentation of the data or whether there are fundamental differences between self-explanations accompanied by gestures or actions and self-explanations unaccompanied by gestures or actions. The use of gestures could be related to the proximity of uttered concepts to practical actions (Kita et al., 2017) or to the use of metaphors that express spatial concepts (Lakoff and Johnson, 1980; Lakoff and Núñez, 2000). Other explanations may refer to the cognitive effort – the more demanding cognitive processes are, e.g. conceptualization, the more often gestures occur (Hostetter et al., 2008) – or to the durability of self-explanations: frequent gesturing will “make learning last” (Wagner Cook et al., 2008).

The fact that in the present study 676 self-explanations could be coded solely based on verbal data does not imply the absence of gestures. Although not necessary for the coding decision, more than two thirds of these 676 self-explanations and about 80% of all 935 coded self-explanations were accompanied by gestures or actions.11 Thinking aloud appears to be strongly connected to gesturing and acting in silence (Schwartz and Black, 1996; Hegarty et al., 2005), particularly if no visible human person is available as a dialogue partner (Emmorey and Casey, 2001).

More detailed analyses regarding the interplay of and emphasis on the modalities involved could provide deeper insights into the learners’ cognitive effort of learners (e.g. more frequent use of gestures when learners engage in more demanding cognitive processes), their specific use of gestures in combination with speech and writing (e.g. lowering cognitive load by locating things with gesture or writing things down; intertwining use of writing and gesturing for themselves) and, more generally, into their generative cognitive activities. In combination with the broadened concept of self-explanation introduced in this paper, answers to these questions may provide a foundation for an intensified conceptual discussion and for the integration of self-explanations and gestures (Alibali and Goldin-Meadow, 1993; Kita et al., 2017). Comparisons to gesture-speech mismatches (Alibali and Goldin-Meadow, 1993), growth points (McNeill, 2002) or, more general, cognitive functions of gesturing like the activation, the manipulation, the packaging or the exploration of spatio-motoric information (Kita et al., 2017) offer promising starting points for further theoretical integration.



Implications for Learning and Instruction

Since instructional learning is an important method in schools and universities around the world, the implementation of self-explaining in such settings is highly relevant (Chiu and Chi, 2014). Considering the results presented in this paper, teachers seeking to identify specific self-explaining processes applied by learners have to carefully consider not only verbal utterances, but all multimodal aspects. Especially the subtle changes expressed by writing, gesturing and their combined use can help determine concrete self-explaining processes carried out more precisely (e.g. distinguishing reading of a passage, activating prior knowledge and integrating different representations) in order to facilitate individual learning processes. Based on the qualitative analyses in this study, it could also be hypothesized that a classification of high quality and low quality self-explanations would be affected distinctly by the consideration of more modalities (cf. Roy and Chi, 2005). This could be of some benefit especially to the identification of successful self-explaining activities and elicitations through self-explanation prompts or trainings in the classroom, and could hereby confirm or alter the scope of such interventions to foster meaningful learning (Chi et al., 1994; Berthold et al., 2009).

Furthermore, teachers often support their explanations by writing, diagrams on a blackboard or a slideshow, and gestures (Alibali et al., 2014; Yeo et al., 2017). Since these teachers’ gestures influence the learners’ understanding of learners and are partly imitated by them (e.g. Goldin-Meadow et al., 1999; Cook and Goldin-Meadow, 2006), teachers’ awareness of how such gestures influence learners’ explanations and self-explaining could lead to a deeper understanding of what’s going on in the learners’ minds. Additionally, for learners as well as teachers, knowing in what way gesturing (to oneself and to others) can influence self-explaining would be of extremely high value for the understanding and improvement of learning. Deeper analyses of the functions and purposes of gestures during self-explaining could, for example, clarify to what extent actions and gestures may decrease cognitive load during learning (Goldin-Meadow, 2010; Alibali et al., 2011; Krause and Salle, 2016; Kita et al., 2017). This information could provide learners with the opportunity to optimize their self-explaining by an adequate use of specific gesturing.



Implications for Further Research

Several questions arise from the results presented. This paper does not address the influence of different coding results on predictions of achievement; to confirm the predictive power of multimodal self-explanations, further studies may quantify the extent to which those predictions vary by the inclusion of additional data sources during analysis. Therefore, multimodal self-explanations may serve as reliable measures for the construction and evaluation of instructional materials (e.g. Renkl, 2005; Butcher, 2006; de Koning et al., 2011). Furthermore, future analyses may reveal the extent to which gestures accompanying self-explanations can be characterized in terms of iconic, metaphorical and deictic gestures (McNeill, 1992; Goodwin, 2003; Edwards, 2008), or, in more detail, as tracing gestures or pointing gestures (cf. Hegarty et al., 2005). Additionally, it remains unclear to what extent these gestures can be found when dealing with geometrical representations instead of symbolic calculations, in what way they are intertwined with simultaneous verbal and written utterances and whether the presence or absence of the learning material and the presentation on paper or screen influence gesturing and learning. Regarding current theories on cognitive functions of gestures, answers to these questions could shed light on more fundamental questions regarding the use of gestures during thinking (Kita et al., 2017).

Although the results discussed here are specific to the mathematical domain, it could be hypothesized that written and non-verbal data may influence the results of self-explanation studies in other domains, too. The analytical approach therefore may provide a promising starting point for a deeper analysis of cognitive activities in general.
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FOOTNOTES

1 Studies reviewed: Chi et al. (1989, 1994), Chi and VanLehn (1991), Pirolli and Recker (1994), Bielaczyc et al. (1995), Recker and Pirolli (1995), Renkl (1997, 2002), Neuman and Schwarz (1998), Renkl et al. (1998), Renkl et al. (2004), Stark (1999), Neuman et al. (2000), Wong et al. (2002), Ainsworth and Loizou (2003), McNamara (2004), Butcher (2006), Ainsworth and Burcham (2007), de Koning et al. (2011), Durkin and Rittle-Johnson (2012), Lin and Atkinson (2013), McEldoon et al. (2013), and Rittle-Johnson et al. (2015).

2 An exception is Stark (1999) who applied a “live coding” during the intervention phase.

3 Although some studies (e.g. Chi et al., 1989) allowed drawing and notetaking, no hints could be found that these documents were considered in the self-explanation data analysis.

4 A language ‘spoken’ through specific gestures (Sfard, 2008).

5 The worked-out examples were constructed based on state-of-the-art guidelines for instructional material (e.g. Mayer, 2014).

6 This mathematical content analysis was carried out by a mathematician and two researchers of mathematics education, one of them being the author.

7 A list summarizing necessary prior knowledge was another result of the mathematical content analysis mentioned above.

8 One student was excluded.

9 This comparison was based on video data (see also the discussion section).

10 In the original protocol, she uses the words “Gegenkathete” for opposite side and “Ankathete” for adjacent side, which are technical terms in German.

11 Details of this analysis are not depicted in this paper.
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Self-efficacy is an important predictor of learning and achievement. By definition, self-efficacy requires a task-specific assessment, in which students are asked to evaluate whether they can solve concrete tasks. An underlying assumption in previous research into such assessments was that self-efficacy is a one-dimensional construct. However, empirical evidence for this assumption is lacking, and research on students’ performance suggests that it depends on various task characteristics (e.g., the representational format). The present study explores the potential multi-dimensionality of self-efficacy in the topic of linear functions. More specifically, we investigate how three task characteristics – (1) the representational format, (2) embedding in a real-life context, or (3) the required operation – are related to students’ self-efficacy. We asked 8th and 9th graders (N = 376) to evaluate their self-efficacy on specific linear function tasks which systematically varied along the three dimensions of task characteristics. Using confirmatory factor analysis, we found that a two-dimensional model which includes the task characteristic of real-life context (i.e., with vs. without a real-life context) fitted the data better than other two-dimensional models or a one-dimensional model. These results suggest that self-efficacy with linear functions is empirically separable with respect to tasks with vs. without a real-life context. This means that in their self-evaluation of linear function tasks students particularly rely on whether or not the linear function task is embedded in a real-life context. This study highlights the fact that even within a specific content domain students’ self-efficacy can be considered a multi-dimensional construct.

Keywords: self-efficacy, linear functions, confirmatory factor analysis, assessment, self-report


INTRODUCTION

Self-efficacy is an important predictor of school learning and it is closely linked to performance (Bandura, 1977; Valentine et al., 2004; Zarch and Kadivar, 2006; Klassen and Usher, 2010; Honicke and Broadbent, 2016; Talsma et al., 2018). Self-efficacy can be understood as “a situational or problem-specific assessment of an individual’s confidence in her or his ability to successfully perform or accomplish a particular task or problem” (Hackett and Betz, 1989, p. 262). In line with this definition, Bandura (2006, 1977) recommended assessing self-efficacy in a task-specific way. One way of conducting task-specific assessments is to confront individuals with concrete mathematical tasks and ask them how well they think they are able to solve them. Another way is to provide an individual with a (more abstract) description of a type of mathematical task (instead of presenting the tasks themselves) and ask them to evaluate their abilities. The former approach seems preferable because it requires less abstraction. However, the caveat to this approach is that it is unclear which characteristic of the tasks presented students will actually rely on when evaluating their own abilities. Previous studies that used task-specific assessments of self-efficacy in mathematics often do so without considering the potential impact of a student’s interpretation of different task characteristics (Kranzler and Pajares, 1997; Krawitz and Schukajlow, 2018). An implicit assumption of such a task-specific definition and assessment is that self-efficacy is a one-dimensional construct. However, it is largely unclear whether and in which cases this is a valid assumption. There are few studies (Street et al., 2017) which have addressed the empirical separability of self-efficacy dimensions in mathematics, and there is no study in the domain of linear functions. The present study investigates the way in which students’ self-efficacy regarding linear functions depends on task characteristics. We chose the mathematical topic of linear functions because in this domain research has identified task characteristics that actually affect performance (Leinhardt et al., 1990; Bayrhuber et al., 2010; Schukajlow et al., 2012; Bock et al., 2015). It is also a key topic in the mathematics curriculum in all grades. As a general goal, this study aims to combine a domain-specific, mathematics-educational perspective with a more psychological perspective on self-efficacy.


Self-Efficacy

Bandura defined self-efficacy as “people’s beliefs about their capabilities to produce designated levels of performance” (Bandura, 1994, p. 2). In comparison to other related constructs, such as the academic self-concept, self-efficacy is related to a specific activity for solving a problem rather than a general evaluation of one’s own competence (Marsh et al., 2018). Self-concept is often conceptualized in a broader way than self-efficacy and it encompasses the entire system of beliefs about oneself and one’s self-evaluation (Shavelson et al., 1976), which includes knowledge about oneself, personal qualities, competences, interests, feelings, and behavior (Rosenberg, 1979). Marsh et al. (2018) distinguished between both constructs on a theoretical and empirical basis using a sample of N = 3350 students. These authors suggest three main distinctions between self-efficacy and self-concept: first, the relation to which the assessment of self-concept or self-efficacy takes place (self-efficacy stands in relation to one’s individual self, self-concept in relation to a social group); second, the temporal orientation of the prediction (self-efficacy is related to the future, self-concept is related to the past); and third, the evaluation or description of the constructs (self-efficacy seems more a description of one’s own abilities whereas self-concept has a higher abstraction). In our study we focus on the construct of self-efficacy.

The concept of self-efficacy is not uniformly used in the literature, which can make interpretations of empirical findings difficult (for an overview see Bong and Skaalvik, 2003; Ferla et al., 2009; Marsh et al., 2018). Roughly, the literature on self-efficacy has differentiated between varying levels of self-efficacy in respect to specificity (Bandura, 2006; Honicke and Broadbent, 2016; Marsh et al., 2018) (see Figure 1 for an overview). At the first and most general level, self-efficacy (largest circle in Figure 1) represents one’s confidence in one’s ability to successfully perform at school, such as in classroom discourse, seatwork, homework or in tests (Mittag et al., 2002). An example of an instrument that assesses self-efficacy at this general level is the frequently used survey by Jerusalem and Satow (1999). An example of a question in their instrument is: “I can solve difficult tasks if I pay attention in class.”
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FIGURE 1. Levels of self-efficacy with varying subject specificity.


At the second, domain-specific, level, self-efficacy depends on certain domains such as school mathematics or writing (two medium-sized circles) (Lewis et al., 2012; Marsh et al., 2018). One example is the frequently used Mathematics Self-Efficacy Scale (MSES) scale by Betz and Hackett (1983) as well as Kranzler and Pajares (1997) with items like: “I feel confident enough to ask questions in my mathematics class.” Other than in the scales of Jerusalem and Satow (1999) described above, items in this instrument explicitly refer to the domain of mathematics.

The MSES scales of Betz and Hackett (1983) also include a sub-scale with concrete tasks, which is a characteristic of the third level of self-efficacy. At this most specific level, self-efficacy is considered in a specific subject area (the smallest circles) such as geometry, algebra (Hackett and Betz, 1989) or functions (Siefer et al., 2020), which are all areas of mathematics. Students have to evaluate their abilities for solving specific tasks. Typically, students are presented with specific tasks and have to indicate for each whether they think they have the ability to solve it successfully. The major difference to the domain-specific level is the use of concrete tasks.

These diverse conceptualizations demonstrate that a theoretical clarification and empirical investigation on the operationalization of self-efficacy seems worthwhile (Pajares and Kranzler, 1995; Bandura, 2006). Bandura (1977) highlighted that there is not only one correct way to measure self-efficacy, but the assessment of self-efficacy should depend on the context. He emphasizes the necessity to be attentive to a variety of demands within a given domain or task. In fact, Bandura (1997) clearly states that, “in developing efficacy scales, researchers must draw on conceptual analysis and expert knowledge of what it takes to succeed in a given pursuit” (p. 43). Therefore, it seems important that instruments take into account the context of what (content) the students are taught in school.

Empirical studies find that the correlations between self-efficacy, when assessed at different levels (task-specific and domain-specific assessment), and self-concept are far from perfect, suggesting that different kinds of self-efficacy assessments may actually tap into different underlying constructs. For example, Marsh et al. (2018) found that the correlation between domain-specific self-efficacy (or “generalized self-efficacy,” p. 21) in mathematics and task-specific self-efficacy (or “test-related self-efficacy,” p. 22) was moderate to high (r = 0.58). Moreover, domain-specific self-efficacy in mathematics correlated more strongly with mathematical self-concept than task-specific self-efficacy. Accordingly, domain-specific self-efficacy seems to be related more closely to a student’s self-concept than task-specific self-efficacy. In conclusion, to assess self-efficacy one should use an operationalization that is linked tightly to the theoretical conceptualization of self-efficacy as a task-specific construct. In the following, we briefly describe different ways to assess self-efficacy in a task-specific way.


Task-Specific Assessment of Self-Efficacy

Some studies used verbal descriptions of tasks to assess self-efficacy, which may be considered an “indirect assessment” (Bofah and Hannula, 2011; Dreher et al., 2020). For example, Dreher et al. (2020) used statements like “I’m sure I can solve tasks with graphs” to assess self-efficacy for graphs.

Another way of using a task-specific assessment of self-efficacy is to present students a concrete mathematical task and to ask them how confident they feel about being able to solve this task (Siefer et al., 2020). Such an assessment may be considered as a more “direct assessment”; indeed, there are some studies which have used such a form of assessment. The frequently used Mathematics Self-Efficacy Scale (MSES) by Hackett and Betz (1989) includes 18 concrete mathematical problems from the fields of arithmetic, algebra and geometry based on Dowling (1978). The reliability of the whole scale of mathematical self-efficacy was high (Cronbach’s alpha = 0.92). Yet the authors did not analyze the dimensionality of self-efficacy further with respect to the different content areas of arithmetic, algebra and geometry. Moreover, the rationale for choosing tasks from these content areas remains unclear and we do not know to what extent specific task characteristics may have affected students’ self-evaluation. Another example of a task-specific assessment is the study by Bonne and Johnston (2016), who used 10 arithmetic problems (reliability not reported).

The studies described above utilized specific tasks and showed good reliabilities. The studies all relied on the assumption that self-efficacy is a one-dimensional construct, and they did not investigate its potential multi-dimensionality. There are few studies focusing on the potential multi-dimensionality of self-efficacy. One example is the study by Bruning et al. (2013), which focused on general self-efficacy in writing with middle school students (N = 696). The authors used confirmatory factor analysis to show that in their sample self-efficacy was a three-dimensional construct. The three dimensions in writing could be classified as idea generation, observing conventions and self-regulation. However, in their study, Bruning et al. (2013) did not use concrete tasks to represent the three dimensions. In contrast, Street et al. (2017) used concrete tasks of a mathematics performance test with 756 Norwegian 5th, 8th, and 9th graders. They also used confirmatory factor analysis to show that a multi-dimensional model fitted the data best. Of course, their results depended on the tasks used and the models tested. The dimensions of confirmatory factor analysis were structured according to the level of difficulty (easy, medium, difficult) in the performance test. However, other task characteristics were not considered. A requirement for the validity of a direct assessment is that tasks are selected carefully in order to cover all relevant parts of the target domain or topic. Students are then supposed to be able to rely on all important task characteristics which may actually affect their performance. It is possible that the same task characteristics which had been shown to affect performance are also relevant to students’ evaluation of their self-efficacy. However, other task characteristics which have not been considered yet may systematically play a role too. In order to explore systematically such influences in the present study, we address the question of dimensionality of self-efficacy within a particular mathematical context: linear functions. Linear functions are a central topic in school mathematics.




Characteristics of Linear Functions

Students develop self-efficacy in mathematics through solving specific mathematical tasks. Students may associate their success or failure in working with these tasks with specific task characteristics (e.g., a specific representation) or, more generally, with the complete content area of the tasks (e.g., functions). The role of task characteristics is well studied in the domain of linear functions. Linear functions are also an interesting topic to study because they are a key concept within the domain of mathematics and within school curricula at all ages (Vollrath, 1989; Elia et al., 2008). Understanding functions is relevant in real-world contexts (Van Dooren and Greer, 2010), and it is correlated with abstract thinking as well as with performance in other mathematical topics like problem solving (Leuders et al., 2017; Krawitz and Schukajlow, 2018). Most importantly, research on linear functions has identified the challenges that students have with respect to specific task characteristics. In the following we describe three task characteristics which research has identified as being challenging for many students. These task characteristics are also typically addressed in the mathematics classroom in line with curricula and standards for school mathematics [e.g., National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010; Ministerium für Kultus, Jugend und Sport in Baden-Württemberg., 2016].

A first task characteristic when working with functions is the representational format. Representation in the field of linear functions includes graphs, tables and algebraic terms as well as situational-verbal representations. Solving function tasks often requires working with these representations. Therefore, this characteristic includes the ability to use different forms of representation (Leinhardt et al., 1990; Ainsworth, 1999; Duval, 2006; Elia et al., 2008). There is broad empirical evidence that the type of representation is relevant for students’ competencies related to functions (including their knowledge, their abilities, their preferences, etc.). Elia et al. (2008) argue that the ability to deal with representations is indispensable for a deep understanding of the concept of functions. Bayrhuber et al. (2010) assessed problem-solving abilities of 872 13–14 year-olds when working with different representations of linear functions. The authors showed with latent class analysis that students have different profiles with respect to graphical, numerical and situational-verbal representations. Studies which investigated students’ preferences (Keller and Hirsch, 1998) found that students tend to prefer certain representations depending on the context of the task. Furthermore, Acevedo Nistal et al. (2013) showed in their think-aloud study that a student’s (age 14–16) justification of his/her choice for using a specific representation (graph, table, term) for solving function tasks could be classified by several dimensions, namely: task-related, subject-related, context-related and representation-related justifications. The result of the study documented a large number of subject-related justifications (operationalized as justifications where students’ subject characteristics influenced the choice itself), but participants hardly ever gave reasons for these subject-related justifications. Students often voiced personal preferences, yet what these preferences were based on remained unclear. It seems possible that students have a particular confidence in their abilities when dealing with, for example, the representational format of the graph. In summary, all these studies show that the representational aspect of task characteristics is very important and influences performance.

A second task characteristic when working with functions relates to the context of the task. Students have to understand the specific context for linear function tasks because these tasks are often embedded in a real-life context (Schukajlow et al., 2012; Van Dooren et al., 2018). For example, determining the slope of a function in an intra-mathematical task may be easier than interpreting the meaning of the slope in the context of a mountain hike (Bell and Janvier, 1981). Bock et al. (2015) showed that students had far fewer problems using a negative slope in an intra-mathematical context than in an extra-mathematical context. In contrast, Schukajlow et al. (2012) used self-reports and different tasks in the context of linear functions as well as Pythagoras’s theorem. The tasks were classified as intra-mathematical tasks, word problems and modeling problems. The authors found no significant difference in self-efficacy between intra-mathematical tasks, word problems and modeling problems. The results are not in line with other research findings by Van Dooren et al. (2018), for example, who found that the context of a task played an important role. A possible reason relates to the method of assessment via self-report or the mix of the two topics of linear functions and Pythagoras’s theorem. The mix of these two topics does not offer the chance to have different self-reports for multiple topics.

A third important task characteristic when solving function tasks is the specific operation that needs to be carried out. For example, tasks may ask students to describe the type of a graph or table, draw a graph from a given equation, interpret a table or complete a table with given information (Nitsch et al., 2015; Rolfes et al., 2018). These types of operations may also affect how difficult a problem is. For example, tasks which require creating a graph may be perceived as more difficult than tasks which require reading off a point on a graph. There are only few empirical studies which focus on the task characteristic of “operations” with regard to linear functions. One rare example is the study by Rolfes et al. (2018), which focused on the interaction between different kinds of operation and different representations (graph, table, bar charts) when solving function tasks. The study found that retrieving information is easier with a table than with a graph, and that interpreting growth is easier with a graph than with a table.

In summary, theoretical considerations and empirical evidence suggest that the three task characteristics of representation, context and operation may affect student performance on linear function tasks. We therefore expect that students rely on different task characteristics when they evaluate their own abilities. Consequently, a student’s self-efficacy may be affected by some task characteristics, but not necessarily by all three task characteristics to the same extent.



The Present Study

In the literature, self-efficacy is assumed to be domain- and task-specific. Accordingly, when students are asked about their self-efficacy in a certain area, they should be presented with concrete tasks. However, in such an assessment using concrete tasks, it is not clear which task characteristics students actually consider in their evaluation. We therefore explore the relevance of different task characteristics in linear function tasks: their representation, the context and the required operation. This selection of task characteristics resulted from previous studies on performance in linear functions. With respect to the representation, we distinguish between graphs and tables. Regarding the context, we consider intra-mathematical and extra-mathematical tasks. With respect to the operation, we distinguish between creating (a graph or a table) and reading off information (from a graph or a table).

Using a task-specific assessment of self-efficacy, we were interested in whether in our data self-efficacy is a one-dimensional construct or whether it is a multi-dimensional one along the dimensions of the task characteristics of representation (graph/table), context (intra-mathematical/extra-mathematical) and/or operation (create/read). We assume that students rely on one or more of these task characteristics to evaluate their abilities. However, the current state of research on self-efficacy does not allow us to make predictions about which task characteristics may play a more or less prominent role for students. Therefore with respect to multi-dimensionality, we were interested in the question of which characteristics (representation, context, operation) best represented the data derived from students’ task-specific self-evaluation.

The specific research questions were:


(1)Is self-efficacy (assessed via task-specific self-evaluation) a one-dimensional construct or a multi-dimensional construct along the three selected dimensions of task characteristics?

(2)Which task characteristics do students rely on most in their evaluation?






MATERIALS AND METHODS


Participants

The Ministry of Education in Germany responsible approved the study. Invitations were sent to medium-track secondary schools (German “Realschule”) in southern Germany. In the end five schools with a total of 376 students (204 males and 172 females) participated in the study. All schools and students participated voluntarily and all participants’ and their parents’ consents were obtained. The students came from 16 different classes in grades 8 (n = 192) and 9 (n = 184). The average age of the students at the time of the assessment was M = 14.96 (SD = 0.91) years. According to the curriculum, all students were familiar with linear functions. The 8th graders had been introduced to the topic about 3 months before the study, the 9th graders had already worked on the topic in the previous school year. Accordingly, we expected that all students were familiar with all the tasks used in the survey. All the classes participating followed the same curriculum and used the same textbooks, according to their teachers.



Materials

To assess self-efficacy in a task-specific way, we selected 20 items from a performance test on linear functions (Leuders et al., 2017). We discussed the selection of items in an expert interview with mathematics teachers and mathematics education researchers. We selected the items from a broad range of topics relating to linear functions. Furthermore, it was taken into account that the students should be familiar with the content of the tasks. The items were systematically selected in such a way that they varied with respect to the task characteristics of representation (graph/table), context (intra-mathematical/extra-mathematical) and operation (creating/reading), as described above. Each dimension was represented by ten items. A total of 14 of these items had been used in a pilot study (N = 120) which assessed students’ self-efficacy and performance. The other six items supplemented these 14 items to get a balanced mixed design. Each of the 20 single items has a distinctive feature in all three dimensions. Table 1 provides an overview of the number of tasks per dimension.


TABLE 1. Overview of the number of tasks per task dimension.

[image: Table 1]
Figure 2 shows a sample item. The item represents an extra-mathematical context, and studens have to create a table. The item in Figure 2 is extra-mathematical although it is only embedded in a context to a limited extent.
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FIGURE 2. Sample Item.




Procedure

The assessment of self-efficacy took place in regular classrooms. Students received a booklet with 20 items. For each item, students were asked to look at the item for 30 s but not to solve it. They were then asked, without any time pressure, to indicate the degree of agreement with the statement “I am sure that I can solve this task correctly” on a ten-point Likert scale (from 1: “I completely disagree” to 10: “I fully agree”). The ten-point Likert scale was chosen in compliance with the procedure of other studies (Pajares et al., 2001; Pajares, 2003; Bandura, 2006). The time span of 30 s was used to prevent students from actually trying to solve the task. Prior pilot interviews suggested that a period of 30 s was suitable for this purpose. Overall, the assessment of self-efficacy took approximately 25 min. The assessment of self-efficacy was followed by a test session, in which students were asked to actually solve the same 20 tasks1.



Data-Analysis

We used SPSS 25 (Arbuckle, 2013) for item analysis and also to provide descriptive statistics. We further used Mplus (Muthén and Muthén, 2017) to conduct confirmatory factor analysis (CFA) with the aim of understanding the theoretically assumed structure of self-efficacy. In this analysis, self-efficacy was modeled as a latent variable (Hu and Bentler, 2000; Kline, 2011). MacCallum (2000) suggests constructing a sequence of models ranging from those with a relatively simple structure (model 1: one latent variable, self-efficacy, underlying participants’ responses on all items, as well as models 2–4 with a between-item multi-dimensionality approach without a particular hierarchy) to those with a relatively complex structure (model 5: a within-item multi-dimensionality approach) (Aish and Jöreskog, 1990).

To determine the model fits, we tested for global and local fit values. The global fit values (also known as goodness of fit values) refer to the entire measurement model and distinguish between absolute Chi-square (CMIN), Root Mean Square Error of Approximation (RMSEA), Standard Root Mean Squared Residual (SRMR), incremental [estimate of comparative fit versus a null relation baseline model, named Comparative Fit Index (CLI) and Tucker Lewis Index (TLI)], and economy fit values (CMIN/df). A limitation of relying on the Chi-square statistics is that the model can be “adapted too closely to the sample at hand and [contain] too many parameters” (Arzheimer, 2016, p. 63). The goodness of fit values are more informative when the sample size increases (Kline, 2011). This is the reason why we mainly refer to the goodness of fit values.

Table 2 shows which values are acceptable and which are “good” according to Kline (2011). A good RMSEA value is lower than 0.05. It represents the proportion of information in the variance-covariance matrix that is not explained by the model. The SRMR-value is the square root of the average deviation of the model-predicted and empirical covariance-variance matrix. It should be lower than 0.05. The TLI and CFI values refer to the information proportions of the variance-covariance matrix compared to the independence model and should be greater than 0.95. The economy fit values CMIN/df should be lower than 1.5 and refer to the economy of a model (Kline, 2011).


TABLE 2. Global fit index according to Kline (2011).
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To test competing models, the model value of the BIC (Bayesian Information Criterion) can be used. Basically, the following applies: a model is considered better when the BIC decreases by about six points compared to another model (Raftery, 1995).

The absolute fit values are not always sufficient to judge whether the data adequately represent a theoretical model. For this reason, local fit values are also relevant; they can distinguish between convergent validity and discriminant validity. The convergent validity includes the indicator reliability, the average variance extracted (AVE), the t-value, and the factor reliability. The standard values are located together with the results in Table 7 (Bagozzi and Baumgartner, 1996). The discriminant validity is tested by means of the Fornell-Lacker criterion. It focuses on the correlation of two constructs and their separability (Fornell and Larcker, 1981). More precisely, on average it is empirically clarified that the variance of a construct is greater than the squared correlations of the construct with all other constructs considered (Kline, 2011).




RESULTS


Descriptive Statistics

Overall, self-efficacy ratings were high for all 20 items (ranging from Mmin = 5.22 to Mmax = 8.90; on a scale from 1 to 10), suggesting that the participants were confident in their ability to solve most of the items correctly. Item-analysis of the distributions indicated that there was a left skewed distribution, which deviated significantly from a normal distribution in nearly all items. For this reason, further analyses were carried out with the Robust Maximum Likelihood estimation (Muthén and Muthén, 2017). Furthermore, item 1 (Pi = 0.83) and item 20 (Pi = 0.89) were excluded from further analyses due to high student ratings2 (Döring and Bortz, 2016). Table 3 shows the mean values, the standard deviation as well as the skewness and item-difficulty of all self-efficacy items3.


TABLE 3. Mean values (manifest), standard deviation (SD), item-difficulty (Pi) and skewness.
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Confirmatory Factor Analysis


Global Fit Values

We first tested a one-dimensional model, which does not include task characteristics as factors (see Figure 3). As displayed in Table 4, the model exhibited acceptable values in all global fit values.
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FIGURE 3. Model 1: one-dimensional. ε = error variances; λ = factor padding loading; I = item = task. For the sake of simplicity, the figure displays only 8 instead of all 18 items included in the analysis.



TABLE 4. Global fit values of the one-dimensional model.
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Next, we tested two-dimensional models, which each include the two dimensions of representation (table/graph; model 2), the context (intra-mathematical/extra-mathematical; model 3), or the operation (create/read; model 4) (see Figure 4).


[image: image]

FIGURE 4. Model 2–4 task characteristic: Model of confirmatory factor analysis task characteristic differentiated in model 2: representation (graph or table), model 3: context (extra-mathematical or intra-mathematical), and model 4: operation (create and read). For simplification, only 8 items are shown. ε = error variances; λ = factor padding loading; I = item = task.


As Table 5 displays, model 3 shows good values in the different global fits. In contrast, model 2 and model 4 only show acceptable global fit values, with better values for model 2 than model 4. The BIC values (lower is better) indicate that all three models had better fit values than the one-dimensional model 1, and that among the three two-dimensional models, model 3 had the best global fit values. Furthermore, the BIC values indicate that in direct comparison of models with acceptable fit indices, model 3 fits the data better because the BIC difference between model 3 and model 2 is lower by the value 43 and the BIC difference between model 3 and model 4 is lower by the value of 51. Furthermore, the likelihood-ratio test (Kline, 2011) showed significantly better results for model 3 (χ2(1) = 42.67, p < 0.001) than model 1, as well as for model 2 than for model 1 (χ2(1) = 10.73 p < 0.001).


TABLE 5. Global fit values of models 2–4 (each two-dimensional) task characteristic.
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Considering the results of models 2–4, which were all between-item multi-dimensionality models, we tested one more complex within-item multi-dimensionality model (model 5). Because models 2 and 3 were the two models with the best global fit among the two-dimensional models, and had better BIC values [differences higher than 6 according to Raftery (1995)] than the one-dimensional model, we included the dimensions of the task characteristics of representation and context in model 5 (see Figure 5).
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FIGURE 5. Complex Model 5: Model of confirmatory factor analysis with two task characteristics context and representation. For simplification, only 8 items and one epsilon are shown. ε = error variances; λ = factor padding loading; I = item = task.


The results (see Table 6) showed that this model did not have acceptable fit values.


TABLE 6. Global fit values model 5 with task characteristic representation and context.
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Finally, for the purpose of comparison, we created a two-dimensional random model in which all items were assigned randomly to one of the two dimensions. The random model showed no better results than models 1–4 (χ2(134) = 251.44 p < 0.001; RMSEA = 0.048; SRMR = 0.044; TLI = 0.929; CFI = 0.938 BIC = 31209.97).

In conclusion, the one-dimensional model 1 along with model 2 (representation) and model 4 (operation) only exhibit acceptable values. The more complex model 5, on the other hand, did not have acceptable fit values. Model 3 (context) showed the best global fit values.



Local Fit Values

We further analyzed the local fit values for those models which had acceptable global fit values (i.e., models 1–4). Table 7 shows that all models have good t-values, factor reliability and AVE. However, the indicator-reliabilities are not acceptable for all models. Model 1 (one-dimensional) and model 2 (representation) have items which are outside the acceptable range of 0.3. These items have a low share of variance for the factor and should be excluded from the model. For model 3 (context) and model 4 (operation), all items have the acceptable value of over 0.3.


TABLE 7. Local fit values.
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The correlation (r) between the respective latent constructs varies depending on the model. There was a strong correlation between the different latent variables ranging from r = 0.80 (model 3: context) to r = 0.91 (model 2: representation) to 0.96 (model 4: operation). At first glance, the high correlation between the respective latent constructs seems alarming. The high correlation raises the question whether the two dimensions are actually separable. The Fornell-Lacker criterion, which focused on the correlation as compared to the AVE, is not fulfilled in all models. Only for model 2 (representation) and model 3 (context) was the criterion fulfilled. Hence, it appears that a separation of the dimensions (e.g., for context the separation of intra-mathematical from extra-mathematical) is possible.

In conclusion, the results of the local fit values confirm the results of the global fit values. Model 3 (context) seems to be the best model for all values.

Finally, we briefly report the reliabilities for the dimensions in models 2 and 3. A reliability analysis using Cronbach’s alpha showed Cronbach’s alpha = 0.87 for the intra-mathematical items, Cronbach’s alpha = 0.86 for the extra-mathematical items, Cronbach’s alpha = 0.83 for the items with a graph and Cronbach’s alpha = 0.82 for the items with a table.





DISCUSSION

The aim of this study was to explore which task characteristics are relevant when students evaluate their own ability to perform mathematical tasks with linear functions successfully. Bandura (1997) clearly stated that when developing self-efficacy scales, researchers should draw on conceptual analysis and the knowledge of experts to find out what it takes to succeed in a given pursuit. The study draws its data both from a conceptual analysis and the expert knowledge from mathematics educators and learning experts, to construct a self-efficacy scale that takes account of the salient aspects of solving linear functions. The study advances previous research by including multiple task characteristics which have not been considered in combination yet. A distinction was made between three task characteristics, namely those of the representational form (graph and table), the context (intra-mathematical and extra-mathematical), and the operation (create and read). We expected that these three task characteristics potentially affect students’ self-efficacy because all students have gained experience with tasks in these formats. All of these task characteristics should be familiar for students.


Is Self-Efficacy a One-Dimensional Construct or Is It a Multi-Dimensional Construct Along the Dimensions of the Task Characteristic?

Previous research (e.g., Chen and Zimmerman, 2007; Bonne and Johnston, 2016) assumed one-dimensional models of self-efficacy or a multi-dimensionality of self-efficacy (e.g., Bruning et al., 2013; Street et al., 2017) without focusing on concrete tasks or task characteristics. With such a premise, it is not necessary to consider specific task characteristics because students are assumed to relate a presented task to the area of self-efficacy in question. However, in our study the two-dimensional models, which assume that students do in fact assess their self-efficacy differently depending on task characteristics, fit our data better than a one-dimensional model. More specifically, students appear to differentiate in their self-efficacy between tasks with and without context as well as between tasks with different representational forms. As examined in previous studies such as Acevedo Nistal et al. (2013), students who are given a choice of a representational form are clearly influenced by both the subject and choice of the task itself. The subject-related justification could be explained by differences in self-efficacy for different task characteristics. However, the study here provides support that students do not rely on all relevant characteristics (representation, context, and operation) of a task when they evaluate their own abilities. The results underline the complexity of task characteristics in the context of linear functions (Leinhardt et al., 1990).



The Task Characteristics of the Context Represented the Data Best

Model 3 (context) showed the best values at both global and local levels. This can be explained in two ways. Firstly, students may have had learning experiences with the strongest influence on their self-efficacy when tasks contained a context. This would be in line with an often-reported dislike of word-problems (Van Dooren et al., 2018). Secondly, it is also possible that during assessment the task characteristics relating to context were the most salient, so that when evaluating their abilities students tended to perceive these characteristics more easily, whether intra- or extra-mathematical. The results go hand in hand with the important role of context in mathematical situations, as stated above (Bock et al., 2015; Van Dooren et al., 2018). Our results seem to differ from those of Schukajlow et al. (2012) who also assessed self-efficacy in a task-specific manner. In their study, Schukajlow et al. formed three item groups for self-efficacy in modeling problems, intra-mathematical tasks and word problems. In each group they used tasks on linear functions as well as on Pythagoras’s theorem. They found no difference in the mean values of the self-efficacies defined by these three groups of tasks. However, the authors did not perform an analysis of the dimensionality and therefore did not make a statement about whether self-efficacy in their definition was to be considered a one-dimensional or multi-dimensional construct.

Similarly, model 2 (representation) had better global fit values than the one-dimensional model, although some items had to be excluded, and in direct comparison the model 2 had a worse fit than model 3. This emphasizes the fact that representation plays an important role in students’ self-evaluation, and this goes along with the results of research in the role of representational forms for performance (Keller and Hirsch, 1998; Duval, 2006). In direct comparison (BIC) to model 3 (context), model 2 (representation) indicated a worse fit.

Model 4 (operation) had no better BIC values than the one-dimensional model. At the local level it did not seem possible to separate the creating and reading dimensions. This suggests that the operation did not play a similarly important role in students’ self-evaluation as the previous models. Again, two explanations are possible. First, students have not experienced the operation as relevant affordance in tasks during their learning history. Second, it may also be the case that students do not spontaneously perceive the importance of the operation which is required to solve the task. Since research has shown the role of operations in performance situations (Rolfes et al., 2018), one may assume that salience might be a better explanation for our results.

The adequacy of the two-dimensional models 2 and 3, each focusing on one task characteristic, encouraged further analyses in a within-item multi-dimensionality approach. The main assumption of model 5 (representation/context) was that students rely on the context while also taking the representational form into account and then came to conclusions about their abilities. However, the analysis of model 5 showed that there were no acceptable global fit values. This may have been caused by a focusing mechanism: learners do not simultaneously rely on the representational form and the context of a task while evaluating their abilities, but rather rely on only one aspect, i.e., the context in which a mathematical task is embedded. Additionally, the economy fit value CMIN/df of 4.1 was relatively high. It is possible that with an even larger sample, a higher number of degrees of freedom would lead to a better fit value for such a complex model.

In conclusion, the findings with respect to a task-specific assessment of self-efficacy confirm the theoretical assumption that self-efficacy is not a one-dimensional construct. A comparison of the two best models (“representation” and “context”) showed that the context model is a significantly better model.

The results of this study are relevant for future research on self-efficacy with task-specific assessments in at least three ways. First, according to the findings by Marsh et al. (2018) or Pajares and Kranzler (1995), the results suggest that it is very important to use a task-specific assessment because the construct of self-efficacy is inherently dependent not only on the domain but also on the task type. Second, it is important to select tasks carefully and to analyze the required abilities. Third, the mathematical educational perspective showed that subject-related justifications (Acevedo Nistal et al., 2013) on tasks could be explained by self-efficacy.



Limitations

Our study has at least four limitations. First, the sample consisted of N = 376 students of similar age and with a very similar curricular background. It is possible that a variation in cognitive and curricular conditions across, for example, different school types would produce different results. In a similar manner, it could be possible that model 2 (representation) and model 4 (operation) could show a better fit, due to the students’ different learning trajectories. Moreover, the most complex model (model 5) would perhaps show a better fit with an even larger sample (higher value of df).

Second, the study showed that among the models we tested, some fit better than others. Of course, we were not able to test all possible models. Accordingly, we cannot rule out the possibility that even more complex models, or models that include other task characteristics not considered here, fit the data even better. However, we do not think this is very likely because we derived our models from careful theoretical analyses of the content domain (linear functions) and previous empirical findings.

Third, a further limitation may result from our focus on linear functions. It is possible that an assessment in other areas of mathematics would lead to different results. In particular, it remains an open question whether the context of the tasks would also be the most salient task characteristic in a different content area, or whether other characteristics, such as the representational form, would be more salient. One can assume that in areas such as binomial formulae, where extra-mathematical contexts do not typically play an important role, students would rely on other task characteristics to assess their own abilities.

Fourth, it should also be considered that self-efficacy was recorded with the help of a printed booklet. Although students received explicit instructions when to turn pages, it was not possible to ensure that all students actually followed these instructions (e.g., turning pages after 30 s). One way to avoid this issue would be to present problems to the whole class using a projector, or by a computer-based assessment. These assessments would, however, reduce the validity of the assessment, since students commonly solve mathematical problems on paper.



Further Research and Implications

The present study focused on the assessment of students’ self-efficacy, although we also assessed students’ performance on the same tasks. While we identified a multi-dimensional structure in self-efficacy, similar CFA analyses for the performance test suggested a one-dimensional structure. This result requires further investigation, particularly because an earlier study of students’ performance with similar items did detect a multi-dimensional structure of performance as well (Leuders et al., 2017). More generally, further research is needed to better understand the relation between students’ task-specific self-efficacy and their performance on the very same tasks, and the factors that influence this relation (Siefer et al., 2020).

Another issue for further research is in how far the results can be generalized to include other contexts. A worthwhile next step might be to extend the dimensionality analysis to other mathematical domains (e.g., geometry) or to other special topics (e.g., Pythagoras’s theorem). It would then be interesting to see whether it is possible to identify overarching task characteristics (e.g., a real-life context) that are relevant for students’ self-efficacy in all topics.

Within a task-specific assessment, it could be interesting to run validation studies to compare the two forms of task-specific assessments (indirect vs. direct assessment, described above). One can expect that there will not (necessarily) be a high correlation between the different assessments because of the higher abstraction of the different forms. For example, when students respond to the question “I can work with graphs,” they may think of a wide variety of operations in dealing with graphs, while in a task-specific assessment, the concrete operation is presented in the given task. To understand students’ thinking better during their assessment of self-efficacy, one could use qualitative methods. For example, one could ask question such as: “What features of the task have you considered?” A limitation is that such a question could stimulate students to reflect on the tasks, which could lead to a biased measurement of subsequent tasks. Another less invasive method could be eye-tracking, which could provide insights into perception processes (Holmqvist, 2015; Nugteren et al., 2018).

The results of this study may be used to support student learning in different ways. A reflected assessment of one’s own abilities in which all task characteristics can be taken into account may result in higher accuracy (Chen, 2003). The results underline the fact that in spontaneous evaluation processes of abilities, students focus particularly on the context and the representational form of the tasks. Different prompts could encourage students to consider other task characteristics as well, which could result in higher accuracy of the assessment, in relation to actual performance (Chen, 2003).



Conclusion

This study emphasized the importance of task characteristics in the assessment of students’ self-efficacy. Self-efficacy appears to be a multi-dimensional construct even within a specific mathematical topic. The study showed the empirical separability of self-efficacy dimensions related to linear functions according to task characteristics. Future research should consider more strongly the specific demands of a domain when assessing students’ self-efficacy. On a more general note, the study showed the importance of the specificity of the domain and subject-matter when assessing a psychological construct.
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FOOTNOTES

1For the purpose of the present article, we did not systematically analyze the performance data. However, in a preliminary analyses, a confirmatory factor analysis suggested that a confirmatory performance was a one-dimensional construct χ2(170) = 240.40 p < 0.001; RMSEA = 0.033; SRMR = 0.044; TLI = 0.902; CFI = 0.912), that is, students did not differ in their performance due to task characteristics. The one-dimensional model was tested against the same two-dimensional models as for self-efficacy. The BIC values were always found to be better for the one-dimensional model. There were no significant differences in the linear functions test between the 8 and 9 graders t(374) = 0.979; p = 0.328. Hence, merging the classes seemed to have no further effect on the results.

2The higher the value is (max 1), the more students have responded that they are confident about being able to solve this task correctly. So the item was too easy.

3A comparison of self-efficacy for grade levels showed significant differences between 8th and 9th graders (t(359.15) = –2.33; p = 0.02). 9th graders showed slightly higher self-efficacy (M = 7.35; SD = 1.5) than 8th graders (M = 6.93; SD = 1.9). However, the effect size of this difference was fairly small (d = 0.24). Because there were no theoretical reasons to assume grade level differences in the dimensionality of self-efficacy, and in order not to reduce statistical power for our model analyses, we did not include grade level as a factor in our models.
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Purpose: Self-efficacy has been argued theoretically and shown empirically to be an essential construct for students’ improved learning outcomes. However, there is a dearth of studies on its causal effects on performance in mathematics among university students. Meanwhile, it will be erroneous to assume that results from other fields of studies generalize to mathematics learning due to the task-specificity of the construct. As such, attempts are made in the present study to provide evidence for a causal relationship between self-efficacy and performance with a focus on engineering students following a mathematics course at a Norwegian university.

Method: The adopted research design in the present study is a survey type in which collected data from first-year university students are analyzed using structural equation modeling with weighted least square mean and variance adjusted (WLSMV) estimator. Data were generated using mainly questionnaires, a test of prior mathematics knowledge, and the students’ final examination scores in the course. The causal effect of self-efficacy was discerned from disturbance effects on performance by using an innovative instrumental variable approach to structural equation modeling.

Results: The findings confirmed a significant direct effect of the prior mathematics knowledge test (β = 0.52, SE = 0.01, p < 0.001) on self-efficacy, a significant direct effect (β = 0.43, SE = 0.19, p = 0.02) of self-efficacy on performance, and a substantial mediating effect (β = 0.22, SE = 0.10, p = 0.03) of self-efficacy between a prior mathematics knowledge test and performance. Prior mathematics knowledge and self-efficacy explained 30% variance of the performance. These findings are interpreted to be substantial evidence for the causal effect of self-efficacy on students’ performance in an introductory mathematics course.

Conclusion: The findings of the present study provide empirically supports for designing self-efficacy interventions as proxies to improve students’ performance in university mathematics. Further, the findings of the present study confirm some postulates of Bandura’s agentic social cognitive theory.

Keywords: self-efficacy, prior mathematics knowledge, undergraduate learning, causal model analysis, instrumental variable approach


INTRODUCTION

There has been a growing interest in research on students’ affective factors and their contributions to learning outcomes at all levels of education. Apart from the fact that some of these affective factors, e.g., self-efficacy, satisfactorily predict students’ performance, an explanation for the growing interest may be ascribed to the ease of developing interventions that influence such factors (Czocher et al., 2019). For instance, perceived self-efficacy, which has been conceptualized as “beliefs in one’s capabilities to organize and execute the courses of action required to produce given attainments” (Bandura, 1997, p. 3), was shown to predict academic achievement better than intelligence test scores, measures of self-esteem, and personal traits among school children (Zuffianò et al., 2013; Özcan and Eren Gümüş, 2019). With regards to the learning outcomes in undergraduate mathematics, perceived self-efficacy was found to be a better predictor of performance than the usefulness of mathematics, prior mathematics knowledge, self-concept (Pajares and Miller, 1994), mathematics anxiety, and mental ability (Pajares and Kranzler, 1995). A high sense of self-efficacy has also been linked with the adoption of deep approaches to learning, high learning motivation, positive attitude toward mathematics. In contrast, a low sense of self-efficacy has been linked with the adoption of surface approaches to learning, high mathematics anxiety, and low interest in mathematics (Bandura, 1997; Rozgonjuk et al., 2020; Zakariya et al., 2020b). More recently, Schukajlow et al. (2019) demonstrate an approach through which constructing multiple solutions to real-life problems can be used as an intervention to influence students’ self-efficacy in mathematics. Student-centered instructional methods have also been linked with high self-efficacy (Lahdenperä et al., 2019).

Even though the relationship between self-efficacy and students’ performance has been widely studied, little is known about the causal effect of the former on the latter as it concerns the learning of university mathematics. The available studies on self-efficacy with a focus on university mathematics are either relatively old (e.g., Hackett and Betz, 1989; Pajares and Miller, 1994), utilized regression models which make it difficult to evaluate causal hypotheses between self-efficacy and students’ performance in mathematics (e.g., Peters, 2013), or do not account for confounding factors in their structural models (e.g., Roick and Ringeisen, 2018). By a causal effect, the author means, if A is a cause of B then at least all the following conditions are satisfied: (1) A temporarily precedes B, i.e., data on A are collected before data on B or A is theorized to happen before B; (2) There is a substantial correlation between A and B; (3) There should not be a third variable C that explains the relationship between A and B (Antonakis et al., 2010). The third condition is the most difficult to meet, especially in non-experimental research. Such variable C will always exist. The most important question is how well a researcher can control it? Among the several attempts that have been shown empirically to yield satisfactory performance in controlling for an extraneous variable, such as C in non-experimental research, is the use of instrumental variable approach (Antonakis et al., 2010; Bollen, 2019). The basic idea of the instrumental variable approach is to find a fourth variable called an instrument that satisfies some properties (which will be explained in the “Materials and Methods” section) and use it to discern the actual effect of A on B from any confounding effects of C (Greenland, 2000; Bollen, 2019).

As such, the primary purpose of the present study is to investigate the causal effects of perceived self-efficacy on the current students’ performance in mathematics among engineering students with an application of the innovative instrumental variable approach to modeling. Further, the effects of prior mathematics knowledge on the perceived self-efficacy and the current students’ performance are also investigated. An advantage of using the innovative instrumental variable approach in exposing these causal effects lies in a fact that reliable estimates of effects can be justified. Despite the wide application of the instrumental variable approach among epidemiologists and econometricians (Antonakis et al., 2010), it is innovative in the present study because the author is not aware of its previous use in mathematics education research. It is the opinion of the author that policymakers, researchers, and education stakeholders are more interested in studies that explore answers to questions on what brings about improved students’ performance and to what extent? Rather than, in studies that focus on correlations between variables whose findings are either complicated to interpret or beset by unclear conclusions (Pajares and Miller, 1994). The present study, therefore, attempts to address the following research question: What are the direct and indirect causal effects of prior mathematics knowledge and perceived self-efficacy on performance in mathematics among engineering students? The author draws on both theoretical and analytical perspectives to address this question. The statistical analyses in the present article are moderately advanced and up to date. However, the author has deliberately chosen a simple language of presentation with less mathematical abstractions to make the findings more accessible.

The remaining part of the present article is organized as follows: An overview of a theoretical perspective which leads to the formulation of research hypotheses is presented in the next section. Next is the “Materials and Methods” section where research methodological related issues are presented. The fourth section presents analyses and results. The major findings are discussed in the fifth section, including potential limitations and recommendations for further studies. Finally, the article closes with some remarks.



CONCEPTUAL FRAMEWORK

Perceived self-efficacy is firmly rooted in the agentic social cognitive theory (henceforth, social cognitive theory) as propagated by Albert Bandura in his decades of work on the theory (Bandura, 2001, 2012). Bandura, dissatisfied with some ontological and epistemological claims of traditional cognitive theory (cognitive theory), developed the social cognitive theory. The ontological paradigm shift from the cognitive theory lies in a rejection of dualism between personal agent and object of actions. Reciprocal determinism is an epistemological position that differentiates the social cognitive theory from the cognitive theory. Reciprocal determinism is a feedback causal model of the relationship between behavioral factors, personal factors, and environmental factors (Bandura, 2012). That is, an individual’s behavioral changes are consistently being regulated and modified by interacting with social factors in the environment whose feedback influences the next actions and outcomes.

Therefore, it is argued that perceived self-efficacy being an integral part of the personal factors cannot be a fixed trait. It changes in response to changes that occur to the rest of the factors in the reciprocal deterministic system (Bandura, 2012). As it concerns mathematics learning, Borgonovi and Pokropek (2019) conceptualized and described reciprocal determinism as “the sets of relationships underlying the interactions between (a) individuals’ exposure to mathematics tasks, (b) mathematics self-efficacy beliefs, and (c) mathematics ability” (p. 269). Therefore, it follows logically to argue that mathematics perceived self-efficacy (henceforth, self-efficacy) is a task-specific construct and affects the performance of engineering students in calculus tasks. Earlier studies have investigated the task-specificity of self-efficacy and confirm that proper attention to task-specificity is a satisfactory way to improve the predictive power of self-efficacy on students’ performance in mathematics (Pajares and Miller, 1995). In the present study, the implications of the task-specificity of self-efficacy go beyond the prediction of performance but extend to the research focus and adoption of a self-efficacy measure whose detail is presented in the “Materials and Methods” section.

The concept of self-efficacy has emerged from the social cognitive theory to become a theory on its own. According to the self-efficacy theory, there are four primary sources of self-efficacy beliefs: enactive mastery experience, i.e., personal previous task-based achievement, vicarious experience, i.e., experience gained by monitoring peers or people around, verbal/social persuasions, i.e., complementary or contradictory feedback received from others, and physiological or affective states, i.e., physical or emotional situations during the behavioral changes (Bandura, 2008). Among the sources of influence of self-efficacy, previous task-based achievement has been shown empirically to have the most significant impact on students’ self-efficacy on mathematics tasks (e.g., Joët et al., 2011; Zientek et al., 2019). Further, Yurt (2014) showed that, apart from predicting self-efficacy, mastery experience has a highly significant correlation with students’ mathematics achievement as measured by the end of the semester course grades. As such, if pre-university mathematics content knowledge is considered to be part of the personal previous task-based achievement, then a causal effect is expected between prior mathematics knowledge and the self-efficacy of engineering students. Therefore, the following hypothesis is formulated:

Hypothesis one: There is a direct effect of prior mathematics knowledge on self-efficacy among first-year engineering students.

Fundamental goals of self-efficacy theory within the teaching and learning context are to explain, predict and evaluate differences in students’ performance that are brought about by their self-efficacy (Bandura, 2012). A high sense of self-efficacy instills confidence on students’ minds when confronted with difficult and challenging mathematical tasks and as such, enables the students to persevere, so that desired outcomes are achieved. In contrast, students with a low sense of self-efficacy cannot forebear difficult situations, doubt their ability, and as such, perform poorly on the learning material. Roick and Ringeisen (2018) reported a longitudinal study in which the contribution of self-efficacy to students’ performance in mathematics was investigated. They used a structural equation modelling (SEM) approach with a sample of 206 university students and found that self-efficacy predicts students’ performance. Similar corroborative findings on the predictive power of self-efficacy as it concerns university mathematics can be found, elsewhere (e.g., Pajares and Miller, 1994; Pajares and Kranzler, 1995). However, as it is highlighted in the introduction section of the present article, some of these studies have one limitation or the other that makes it difficult to deduce substantial causal claims between self-efficacy and students’ performance in mathematics. More so, it could be erroneous to assume that findings from other fields generalize to the university mathematics context considering the task-specificity of self-efficacy. Instead, the author draws on these studies and some postulates of self-efficacy theory to formulate the following hypotheses:

Hypothesis two: There is a direct effect of self-efficacy on engineering students’ performance in a first-year calculus course.

Hypothesis three: Self-efficacy mediates the effect of engineering students’ prior mathematics knowledge on their performance in a first-year calculus course.



MATERIALS AND METHODS


Research Focus

The present study focuses on the engineering students following a first-year mathematics course at a Norwegian university. Students enrolled in a first-year mathematics course are chosen as participants in the present study for several reasons. First, the author can assess their pre-university mathematics knowledge effectively better than that of students in year two, year three and year four. Second, they are more susceptible to poor performance, high anxiety, and lack of confidence due to their transition from secondary school to university and newness to the university culture. In line with the task-specificity of self-efficacy, data collected from students enrolled on a common mathematics course are more likely to be objective and when analyzed could give a close estimation of the causal relationship between the research constructs. Further, engineering students are the target group in the present study because they form the largest student population following a common mathematics course in the university.



Sample of the Study

An effective sample of 189 engineering students voluntarily participated in the study, most of whom are men (75%). Their age distributions are as follows: 17–20 years (31%), 21–25 years (49%), 26–35 years (15%), and over 36 years (5%). The inclusion and exclusion criteria are based on voluntary consent. As such, the sample can be characterized as a convenient sample. The language of instruction in the course is Norwegian as well as the language used for the mandatory exercises and examinations.



Measures


Prior Mathematics Knowledge

The author adopted a Norwegian mathematics test as a proxy to expose the prior mathematics content knowledge of the participating students in the present study. The test was designed by the Norwegian Mathematical Council to assess pre-university mathematics content knowledge, and it is administered every two years, independent of the present study, to first-year students across several universities and colleges in Norway. It is a 22-item test in which questions are formulated based on the secondary school curriculum. It is assumed that the test is most appropriate in the present study because it has been developed within the Norwegian context and consistently been applied to serve a similar purpose as that of the present study, for the past three decades. Further, the construct validity and the reliability index (using Omega coefficient) of the test have been investigated using a latent variable approach in Mplus 8.3 program, and the latter was found to be 0.92 which together with the unidimensionality of the test show high internal consistency of its items (Zakariya et al., 2020a). However, only a portion of the test (17 items, henceforth, PKMT – prior knowledge of mathematics test) that is of high psychometric properties such as appropriate item difficulty indices (−2.795 to 0.923), item discrimination indices (0.421–1.354), item reliability (0.151–0.646), and unidimensionality, i.e., all the 17 items expose a common latent construct (Zakariya et al., 2020a), is used in the present study. The 17-item PKMT has only two standard multiple-choice questions, and the remaining 15 questions require short answers. All the questions examine the basic knowledge of operations with fractions, decimals, percentages, ratios, similar triangles, speed and distance, and some word problems. A score of 1 point was assigned to a correct answer and a 0 point, otherwise.



Calculus Self-Efficacy

Following the task-specificity of the self-efficacy, the calculus self-efficacy inventory (CSEI) was adopted in the present study. The CSEI was developed with a specific purpose of exposing students’ self-efficacy in solving some mathematical tasks drawn from the first-year introductory calculus course (Zakariya et al., 2019). According to the self-efficacy theory, such an inventory offers the best precision in exposing the construct (Bandura, 2006). The CSEI has two parts: preliminary and main parts. The preliminary part of the CSEI contains questions on gender, age, and grade points of students in the highest upper secondary school mathematics course (HGP) they followed before their enrollment into the university. Responses of students to the question on HGP, in addition to the PMKT, are used as proxies to measure their prior mathematics content knowledge. The response values on this item ranging from 1 to 6 points depending on the grades. Further, the main part of the CSEI contains 13 items on exam-type mathematics tasks in which the contents are drawn from the current course curriculum followed by the students. The responses of students on this part of CSEI are used as proxies to expose the latent construct of self-efficacy. The students rate their confidence, on a scale of 0–100, in their belief that they can successfully solve the mathematics tasks. The conceptualization, operationalization, and psychometric properties of the CSEI have been previously studied using factor analysis in FACTOR program coupled with Spearman’s rank correlation and well documented (Zakariya et al., 2019). The CSEI was found to possess construct and discriminant validity, unidimensionality, and with a reliability index of 0.90 using ordinal coefficient alpha (Zakariya et al., 2019).



Performance

Finally, the current performance of students in the present study is operationalized and measured by their final scores achieved in the first-year introductory calculus course they followed. It is presumed in the present study, and consistent with the literature (e.g., Cano et al., 2018), that such scores offer the best opportunity to compare individual performance in the course.




Data Collection and Ethical Considerations

The data used in the present study are collected mainly through an online platform, SurveyXact. The author together with his research team independently converted the PKMT to an online test after being granted permission to access the test by the Norwegian Mathematical Council. Similarly, an online version of the CSEI was also prepared. The students were informed of the purpose of the study at a class visit before data collection. Their voluntary consent to take part in the study was sought. As such, they were promised of no consequence, whatsoever, for anyone who decides not to participate in the study. The students were informed that their data will be treated with a high level of security and confidentiality in line with the regulations of the Norwegian Centre for Research Data.

The data were collected on three occasions. At the first occasion, the PKMT was administered in which 40 min of class time was used on the test. This test administration took place in the early weeks of the Autumn semester 2019 because the beginning of the semester is the best time to assess pre-university mathematics content knowledge. On the second occasion, toward the last week of lectures in the Autumn semester 2019, the researchers administered the CSEI through students’ registered emails with the university. Because items of the CSEI are drawn from the ongoing mathematics course curriculum, the administration of CSEI was deliberately delayed until the end of the semester. This delay was aimed at ensuring a substantial part of the course curriculum had been covered. The collected data from the two occasions were merged to form an effective sample for the study. In order to ensure the personal data protection regulations are met, the students’ administrative affairs office was involved in the process when it came to collating identifiable data. The researcher simply sent the generated survey data to the examination office where the individual final examination scores in the course were added. Afterward, the examination office removed any identifiable information from the data set, and the researcher was provided with a completely anonymized data set. This procedure constitutes the third occasion of the data collection. The data were screened for out of range values, missing values, and normal distribution, all of which pose no challenge to the analyses.



Data Analysis


The Hypothesized Model and Choice of an Instrument

The hypothesized model of the relationship between the calculus self-efficacy (CSE), prior mathematics knowledge (HGP and PKMT), and students’ performance in the course (Exam) is presented in Figure 1. The main aim of evaluating this model is to estimate the effects of CSE and HGP on Exam. However, there is a challenge with the model. This is because there are some omitted variables, such as the similarity between items on the CSEI and the final examination. The omitted variables act as common causes of both the CSE and the Exam, thereby causing the errors e1 and e2 to correlate. This correlation may bias the estimate of the effect of self-efficacy on performance, and thereby constitutes an endogeneity problem in the model (Antonakis et al., 2010). CSE is an endogenous variable in the model because both HGP and PKMT predict it, and it predicts Exam. A way to circumvent this problem, so that a reliable estimate of the effect of self-efficacy on performance can be found is to introduce an instrumental variable, simply called an instrument, in the model (Greenland, 2000). It is assumed that the omitted variables do not affect both HGP and PKMT because they are exogenous variables, i.e., they are not predicted by any variable in the model, and as such do not need an instrument. The double-headed arrow between HGP and PKMT in Figure 1 is a standard notation for correlation between the variables in the SEM literature. It should not be confused with a feedback effect.
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FIGURE 1. The hypothesized model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus course. Both HGP and PKMT are measures of the prior mathematics knowledge of the students, CSE is a measure of the self-efficacy, and Exam represents a measure of performance. The items of both PKMT and CSE are not included in Figure 1 to enhance the readability of the figure.


An instrument “I” is an exogenous variable that satisfies the following properties: (a) “I” has a direct effect on the endogenous variable (CSE) that needs an instrument; (b) The direct effect of “I” on the outcome variable (Exam) is close to zero or completely negligible in the presence of the endogenous variable; (c) “I” should not correlate with the errors associated with the outcome variable (Greenland, 2000; Antonakis et al., 2010). The preliminary analysis in the present study shows that PKMT is the only variable that satisfies the properties (a)–(c), and thus, it was selected as an instrument to discern the true effect of self-efficacy on the performance from the omitted causes in the model.



The Procedure of Data Analysis

The collected data are analyzed using the SEM approach to evaluate the model presented in Figure 1 and as such, to confirm the plausibility of the research hypotheses. The SEM approach was adopted in the present study because it offers the best and most robust modeling capacity to evaluate causal hypotheses (Bollen and Pearl, 2013). SEM does it better than the path analysis, multiple linear regression, and the partial-least square techniques (Antonakis et al., 2010). Because PKMT was dichotomously scored, the weighted least square mean and variance adjusted (WLSMV) estimator was used which has been shown to provide satisfactory parameter estimates in the analysis of categorical data (Suh, 2015). The author ascertains the “data fitness” of the hypothesized model by looking at both global and local fit indices and parameters. The global fit criteria used are chi-square ratio to the degree of freedom of less than 3, comparative fit (CFI) and Tucker-Lewis indices of greater than or close to 0.90 (Bentler, 1990), and a root mean square error of approximation (RMSEA) value of less than 0.08 (Brown, 2015). The local fits of the model parameters are ascertained by looking at the magnitude and the significant levels of factor loadings, standard errors, and the residual variance, in line with the best practice in SEM literature (Marsh et al., 2004). All the analyses were performed in Mplus 8.3 program.





RESULTS

The first set of results are from the evaluations of one-factor models for each of the prior mathematics knowledge test and the calculus self-efficacy measurement models. These measurement models are evaluated separately before an evaluation of the hypothesized structural model. In this way, the author could detect and correct any local misspecification in each of the measurement models. This two-step of measurement-before-structural model evaluation has been proven efficient and highly recommended in SEM literature (Byrne, 2012). The dichotomously scored 17 items of the PKMT are hypothesized to expose a common latent factor (prior mathematics knowledge) and tested. All the factor loadings are freely estimated, and the factor variance is fixed to 1 so that the model is identified (Zakariya et al., 2020a). Similarly, the 13 items of the CSEI are hypothesized to expose a common latent factor (self-efficacy) and tested. The factor loadings are freely estimated, the factor variance is fixed to 1, two error covariances between item 09 and item 11 as well as between item 12 and item 13 are allowed in the model as recommended by Zakariya et al. (2019). Further, a maximum likelihood with robust standard errors (MLM) estimator was used instead of the WLSMV because the students’ responses on the CSEI are continuous and not categorical. The results from these analyses with regards to the selected global fit indices are presented in Table 1.


TABLE 1. The selected global fit indices for evaluated PKMT and CSEI measurement models.
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The results presented in Table 1 show that the global fit indices are within the recommended ranges for acceptable model fits of the analyzed data. In particular, the ratios of chi-square values to the degrees of freedom, the CFI and the TLI values suggest an acceptable fit for both the PKMT and CSEI models. The RMSEA value and its associated 90% confidence interval with a non-significant p-value of the PKMT model show that there is an excellent agreement between the model and the data (Bentler, 1990). Even though the p-value of the 90% confidence interval for the RMSEA value in CSEI model is significant, the estimate is lower than 0.08, which suggests a good fit (Brown, 2015). The factor loadings are significant and moderately high, the standard and residual errors are low which are suggestive of acceptable local fit statistics for both the PKMT and CSEI models (Marsh et al., 2004). As such, the author proceeds to the evaluation of the hypothesized structural model, as presented in Figure 1, and the resulting global fit indices are presented in Table 2. Further, Figure 2 presents the standardized estimates of the causal effects between the research variables.


TABLE 2. The selected global fit indices of the evaluated hypothesized structural model of the relationship between the research variables.
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FIGURE 2. The evaluated model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus course. Both HGP and PKMT are measures of the prior mathematics knowledge of the students, CSE is a measure of the self-efficacy, and Exam represents a measure of performance. The significant estimates are in bold faces, and the items of both PKMT and CSE are not included in Figure 1 to enhance the readability of the figure. The full figure that contains all the items and the associated model parameters is available in Appendix Figure A1.


The results presented in Table 2 show an excellent model fit of the evaluated hypothesized structural relationship between the research variables. An excellent model fit in the sense that there is a substantial agreement between the hypothesized model and the analyzed data. This model fit can be deduced from the selected global fit indices that are within the recommended ranges. The ratio of chi-square estimate to the degree of freedom is far less than 3. The CFI and TLI indices are greater 0.95, which indicate an excellent model fit according to the cutoff criteria by Hu and Bentler (1999). The RMSEA estimate together with its perfect (p-value = 1.000) 90% confidence interval, suggested that there is a substantial-close fit between the model and analyzed data (Brown, 2015). The global fit indices presented in Table 2 strengthen the plausibility of the standardized estimates of the causal effects presented in Figure 2.

The results presented in Figure 2 show reliable estimates of the standardized causal effects between the research variables. The reliability of these estimates has been strengthened by the excellent global fit indices reported in Table 2. Figure 2 shows a significant direct effect of PKMT (β = 0.52, standard error – SE = 0.01, p < 0.001) on self-efficacy. The direct effect of HGP on self-efficacy is negative and not significant (β = −0.12, SE = 0.09, p > 0.05). Even though, one would have expected a positive effect of HGP on self-efficacy given that students with high grade points in upper secondary school mathematics are expected to have high self-efficacy. The result of the present study does not conform to this expectation. These results show that among the two measures of prior mathematics knowledge, it is only the scores of students on the pre-university mathematics test that have a substantial effect on students’ self-efficacy. As such, Hypothesis one is confirmed. The correlation between PKMT and HGP is significant (r = 0.31, SE = 0.08, p < 0.001), and it is expected. This is because both PKMT and the HGP are hypothesized to expose different facets of a construct. The correlation between these variables was evaluated instead of a causal relationship for two reasons. The first reason is that they expose different facets of a construct while the second reason is to comply with the recommendations of instrumental variable approach for handling endogeneity problem due to omitted variables in the model (e.g., Kenny, 2012).

It is also revealed in Figure 2 that the direct effect of self-efficacy on students’ performance is significant (β = 0.43, SE = 0.19, p = 0.02) and a significant standardized residual estimate of 0.76. These results confirm the plausibility of Hypothesis two. The residual error shows that the prior mathematics knowledge of students explains 24% of the factor variance in self-efficacy. The percentage of the explained factor variance is moderate, considering the limited number of variables that predict self-efficacy in the model. The error covariance between the self-efficacy and students’ performance is not significant (r = 0.10, SE = 0.25, p > 0.05) which is a good result as it confirms the reliability of the estimated effect of self-efficacy on performance after introducing the instrument in the model. Figure 2 also shows that the direct effect of HGP on the students’ performance is significant (β = 0.20, SE = 0.07, p = 0.005).

More so, the results of the mediation analysis show the standardized total effect of prior mathematics knowledge (PKMT and HGP) on performance to be 0.37. A significant indirect effect of PKMT through self-efficacy was found (β = 0.22, SE = 0.10, p = 0.03), and a non-significant indirect of HGP on performance through self-efficacy efficacy (β = −0.05, SE = 0.04, p > 0.05). These results show that self-efficacy mediates the direct effect of PKMT on performance while that of HGP on performance is not mediated, beyond chances. This finding confirms, in part, the plausibility of Hypothesis three. Finally, the significant standardized residual estimate of 0.70 on the Exam variable in Figure 2 shows that 30% of the variability in students’ performance is explained by both the prior mathematics knowledge and self-efficacy. This variability is considered to be moderately high, and more discussion about this is presented in the next section.



DISCUSSION, LIMITATIONS, AND RECOMMENDATIONS


Discussion of Findings

Self-efficacy has been articulated theoretically to be an important construct in explaining variability in students’ performance. Several pieces of empirical evidence have demonstrated its relevance to students’ performance in psychology, sport, and clinical medicine (Bandura, 1997). Meanwhile, due to the task-specificity of self-efficacy, it could be erroneous to assume generalization of findings from other fields to the mathematics learning context. More so, there are limited studies with a focus on mathematics self-efficacy and its effects on students’ performance in university mathematics. As such, attempts are made in the present study to investigate the causal effects of mathematics self-efficacy on students’ performance through an innovative approach of instrumental variable modeling (Greenland, 2000). Prior mathematics knowledge (PKMT and HGP) and self-efficacy (CSEI) are conceptualized and operationalized based on previous studies and the self-efficacy theory. The measurement model of PKMT was evaluated, and it was found to provide reliable estimates of the construct it was hypothesized to expose. The findings of the present study also confirm reliable estimates of the measurement model of CSEI. These findings are consistent with the findings of previous studies on the two measures (Zakariya et al., 2019, 2020a). After establishing acceptable measurement models of the two measures, the hypothesized structural relationship between the research constructs was evaluated. The major findings are discussed in the forthcoming paragraphs.

The results of the present study confirm a direct effect of prior mathematics knowledge test on students’ calculus self-efficacy. This finding can be interpreted to mean that students with high scores on the prior mathematics knowledge test have a high sense of self-efficacy in solving first-year calculus tasks successfully. This finding is consistent with the postulated impact of personal previous task-based achievement on self-efficacy by the self-efficacy theory (Bandura, 2012). It was found that prior mathematics knowledge test alone accounts for 27% (i.e., the square of 0.52 times 100%) of the variability of the self-efficacy. However, this percentage of explained variance reduced to 24% when this direct effect of the test scores is combined with the direct effect of HGP on self-efficacy. The direct effect of prior knowledge of mathematics test on self-efficacy found in the present study is far higher than the effects of high school level, and the college credits (both operationalized to measure prior experience) on students’ self-efficacy in completing mathematics problem-solving tasks reported, elsewhere (Pajares and Miller, 1994; Pajares and Kranzler, 1995). Given that these studies are relatively old and the mathematics curriculum in higher education is changing to catch up with our 21st-century challenges, it is claimed that the present finding is novel and the captures current situation on the causal relation between prior mathematics knowledge and self-efficacy among university students.

Another major finding of the present study is the exposed direct effect of calculus self-efficacy on students’ performance in the course. A unique feature about the estimate of this direct effect lies in the ability of the instrumental variable approach to discern this effect from that of other disturbances which affect students’ performance but are not included in the model. This finding is interpreted to mean a high sense of self-efficacy is a potential cause of high scores of students, beyond chances, in the first-year introductory calculus course. By implication, this finding provides empirical support for designing interventions that foster self-efficacy as proxies to enhance students’ performance in the first-year introductory mathematics course. Such interventions may be in the inform of realistic modeling of the links between previous achievements and self-efficacy, social persuasion by older students who have passed the course, and other related activities that can be traced to the sources of self-efficacy. The magnitude of the estimated causal effect of self-efficacy on students’ performance in the present study is substantially higher than comparable direct effects reported in previous studies (Pajares and Kranzler, 1995; Roick and Ringeisen, 2018). As such, the author claims that the causal relationship exposed between self-efficacy and performance by the findings of the present study has a significant contribution to mathematics education literature.

Apart from the substantial contribution of the calculus self-efficacy to students’ performance exposed in the present study, a major finding is the detected mediating role of self-efficacy between prior knowledge mathematics test and students’ current performance in the course. It was found in the present study that about 46% (i.e., 0.17 out of 0.37) of the total effect of prior mathematics knowledge (PKMT and HGP) on students’ performance is mediated by self-efficacy. On the one hand, this finding may be interpreted to mean students with high scores on both the prior knowledge of mathematics test and the self-efficacy performed, beyond chances, better than the students who do not score high on the two measures. On the other hand, it confirms the mediating role of self-efficacy as postulated by the self-efficacy theory (Bandura, 1997). This finding also corroborates the mediating role of mathematics self-efficacy that is reported, elsewhere, using path analysis (Pajares and Miller, 1994). Despite the limited number of variables the author considered in the evaluated structural model of the relationship between the research constructs, the percentage of the explained variance (30%) in students’ performance is higher than the reported values in studies with several predictor variables (Pajares and Miller, 1994, 1995). It is conjectured that the task-specificity of the self-efficacy measure coupled with the innovative instrumental variable approach used in the present study contributes to the moderately high percentage of explained variance in the students’ performance. Potential variables that could increase the percentage of explained variance, if included in the model, are approaches to learning mathematics, academic motivation, mathematics anxiety, and attitudes toward mathematics learning. Future studies are recommended with this intention.



Potential Limitations and Recommendations

A potential limitation of the present study is attributable to the restriction of sample to first-year engineering students enrolled on a course. Even though this restriction offers several advantages as previously highlighted in the “Materials and Methods” section, it might also hinder the generalization of the findings beyond a similar student population. Future replicated studies are recommended with a focus on students following a variety of courses at different levels of higher education. However, such studies should devise innovative ways or use robust statistical modeling such as multi-level SEM combined with the instrumental variable approach to account for task-specificity of the self-efficacy across diverse populations. Also, the relatively small sample size (189 students) could be a threat to the validity of the SEM results given that some researchers have recommended higher sample sizes (Marsh et al., 1998; Byrne, 2012). However, it has been theoretically argued and empirically shown that a “one size fits all” rule is not tenable for sample sizes of SEM studies (Wolf et al., 2013). As such, sample sizes close to 200 cases are recommended for conducting SEM studies that involve moderately complex models (Kline, 2016). Notwithstanding, future replication studies are recommended with a larger sample size to cross-validate the findings of the present study.

More so, the self-efficacy theory postulates a feedback causal relationship between self-efficacy and students’ performance in mathematics through reciprocal determinism model (Borgonovi and Pokropek, 2019). Nevertheless, the focus of the present study is only on one-directional causal effect from self-efficacy to students’ performance which could also constitute a limitation. The author argues that such a feedback causal relationship is better investigated using a longitudinal research design (e.g., Roick and Ringeisen, 2018) than the survey research design used in the present study. As such, future longitudinal studies are recommended with this intention. The author also acknowledges that a limited number of predictor variables in the evaluated structural model of the present study may constitute another limitation. Had been more relevant variables such as approaches to learning, motivation, and mental ability that have been linked with performance are included in the model (Pajares and Miller, 1994; Zakariya et al., 2020b), the percentage of explained variance in students’ performance would have improved. Future study may also be conducted with this intention.




CONCLUSION

The present study is motivated by the lack of empirical evidence on the causal relationship between self-efficacy and students’ previous and current performance in university mathematics. Therein, attempts are made to fill this gap by investigating hypothesized causal claims between the research constructs using the instrumental variable approach to modeling. The major findings in the present study establish a causal relationship with reliable estimates between self-efficacy and students’ performance in an introductory calculus course at a university in Norway. The author conjectures that these findings are generalizable to similar student populations within and beyond Norwegian borders. This conjecture is based on both theoretical and innovative statistical perspectives adopted in the present study. As such, the author recommends replication of the present study to investigate this conjecture within the quantitative research paradigm. The author declares that an outright discovery of the causal relationship between self-efficacy and students’ performance in mathematics is not claimed in the present study. Instead, it is hoped that foundations are laid for future experimental, randomized-control trial studies with this intention.
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FIGURE A1. The full evaluated model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus course. The significant paths are in bold faces.
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Previous studies suggested that culture have impact on students' mathematics achievement and subjective wellbeing, but few investigated the effects of culture on the balance between them. Drawing on Hofstede's cultural dimensions theory, this study investigated the effects of culture on balance between students' mathematics achievement and subjective wellbeing. Results showed the significant effects of cultural dimensions of long-term orientation vs. short-term orientation and indulgence vs. restraint. Students from countries of high long-term orientation and low indulgence culture were more likely to get both high mathematics achievement and high SWB. Besides, wealth-related variables (family SES and GDP per capita) and gender were also found to influence the odds ratio of balance. The findings confirmed the effects of national culture on the balance between mathematics achievement and SWB. Based on the findings, this study discussed the effects of long-term orientation and restraint culture and Confucian heritage culture's potential benefit. The results indicate that mathematics educators should consider cultural differences in educational practice and stress the importance and meaning of mathematics learning.
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INTRODUCTION

Mathematics achievement and subjective wellbeing (SWB) are both critical indicators of high-performing education systems (OECD, 2019a) and play an essential role in students' lives (Steinmayr et al., 2018). As the saying goes, “all work and no play makes jack a dull boy,” implying to attach importance to balance between achievement and personal subjective wellbeing. However, previous studies revealed that the correlation between mathematics achievement and SWB was weak, which means that high-achieving students do not necessarily report higher SWB than their classmates (for review, see Suldo et al., 2006; Bucker et al., 2018). Under such circumstance, how to prepare students with both high achievement and high SWB? For educators, it is essential to learn about the antecedents of both. Although various studies have explored the determinants of students' academic achievement or SWB separately, few empirical studies investigated their common influential factors. As a result, more research is needed to explore the factors that influence the balance between achievement and SWB.

Moreover, the strives of mathematics education indisputably take place under a specific cultural environment. Consequently, it is essential to understand the potential influence of culture on both mathematics achievement and SWB. Previous comparative studies have discovered that culture plays a role in explaining disparities in mathematical achievement (e.g., Bishop, 1988; Chen and Uttal, 1988; Stevenson et al., 1993; Leung, 2006) and SWB between countries (Veenhoven et al., 1993; Inglehart and Klingemann, 2000; Diener and Biswas-Diener, 2002; Steel et al., 2018). Their conclusions, however, seem to be in conflict. For example, some behaviors valued by the high-achieving countries, such as delaying gratification and working hard, were found to reduce SWB (Oishi and Diener, 2003; Steel et al., 2018). These findings suggested that the “happiness” culture may not be compatible with the “high-achieving” culture. Consequently, it raises the issue of cultural effects on the balance between mathematics achievement and SWB.

In order to address these above issues, the present study will examine the effects of culture on the balance between students' mathematics achievement and subjective wellbeing.



LITERATURE REVIEW

This section will review the related concepts and studies in order to present a picture of current research on the relationship between culture, mathematics achievement, and SWB.


The Construct of Culture

Culture is a broad phrase that encompasses a complex set of concepts (Taras et al., 2009). In previous studies, scholars tend to define culture from different perspectives. For example, it was defined by Hofstede (1980, p. 25) as “the collective programming of the mind that distinguishes the members of one group or category of people from others.” While according to Triandis (1972, p. 4), it refers to “an individual characteristic way of perceiving the man-made part of one's environments … involves the perception of rules, norms, roles, and values.” Moreover, many definitions continue to evolve over time (for reviews, see Taras et al., 2009; Steel et al., 2018).

Among dozens of definitive models of culture, most of them share several common elements. First, it is generally agreed that culture refers to relatively stable values shared by a group or society for a long period (Taras et al., 2009). Second, culture is viewed as a multilevel construct. Many scholars use the “onion” metaphor to separate culture for different layers (Hofstede, 1980; Trompenaars, 1993). According to Hofstede (2001), the different layers of the culture “onion” are values, rituals, heroes, and symbols. The values lie at the center of the “onion,” symbols represent the outer layers, and rituals and heroes form the middle layers. Third, culture is multidimensional. Almost all the existing models comprise various dimensions of values and attitudes (Taras et al., 2009).

In the research field of mathematics education and subjective wellbeing (e.g., Hu et al., 2018; Steel et al., 2018), Hofstede (1980) cultural dimensions theory is the most popular one which combines the aforementioned common features. Hofstede (1980) original model divided culture into four dimensions, including power distance, individualism-collectivism, masculinity-femininity, and uncertainty avoidance. (1) Power distance (PDI) refers to the extent to which members of organizations or countries believe that power is equally distributed. A higher PDI level indicates a well-established societal hierarchy, whereas a lower one shows an equitably distributed power structure. (2) individualism-collectivism (IDV) indicates the extent to which people are integrated into groups. (3) masculinity-femininity (MAS) is a sociocultural trait indicating the division of emotional roles between genders. Higher MAS reveals a society with a preference of achievement, assertiveness, and heroism, while lower MAS reveals a “feminine” society that prefers cooperation, modesty, and caring for the weak. (4) Uncertainty avoidance (UAI) is a term that describes people's aversion toward uncertainty. People from higher UAI countries treat uncertainty as threats, while those from low UAI countries would be more accustomed to unfamiliar situations.

In addition, Hofstede further proposed the other two dimensions in the following research (Hofstede et al., 2010). That is (5), Long-term orientation vs. short-term orientation (LTO). This dimension is halfway between long-term and short-term perspectives. The long-term pole emphasizes the importance of virtues that lead to future rewards, such as perseverance and thrift, whereas the short-term pole emphasizes past and present virtues, such as reverence for tradition and maintaining one's “face.” (6) Indulgence vs. restraint (IND). This dimension refers to the degree of freedom that society allows for human desires. A high IND civilization allows for relatively unrestricted gratification of fulfilling human desires, whereas a low IND society regulates the gratification of needs.

Hofstede's framework is widely accepted by cross-cultural scholars. In the review of Taras et al. (2009), more than 120 existing survey instruments of culture shared one or more common dimensions with Hofstede's approach. The finding reveals that the framework is well-representative of culture when it comes to defining and measuring it. Therefore, the present study will use Hofstede's six cultural dimensions to describe culture. Furthermore, in line with the traditional way in mathematics education (e.g., Stankov, 2010; Leung, 2014), the culture used in this study refers to the cultural value, which belongs to the core module of the “onion” construct of culture.



The Influence of Culture on Mathematics Achievement

International large-scale surveys (e.g., TIMSS and PISA) always reported substantial national differences in mathematics achievement. Such across-national differences have been the focus of mathematics education for a long time (e.g., Hess et al., 1987; Bishop, 1988; McInerney et al., 1997). Among various factors that contribute to the achievement differences, culture is a non-negligible one. For example, when comparing the differences between East-Asian and Western countries, scholars discovered that cultural factors may be more effective than economic determinants in explaining the better performance of East-Asian students (Chen and Uttal, 1988; Stevenson et al., 1993; Leung, 2006).

The effects of culture could take place at the national level. In the study of Hu et al. (2018), the cultural dimension of long-term orientation was significantly related to mathematics achievement. Specifically, countries with a higher level of long-term orientation would outperform in mathematics achievement. Besides, many studies explored the cultural difference in the national curriculum (Leung's, 1992; Li and Ginsburg, 2006). For instance, in Leung's (1992) comparative study, he found that the U.K. curriculum stressed the intrinsic aims, whilst the Chinese curriculum did not, and such a difference could be explained by the cultural differences between individualistic and collectivistic orientations. This explanation is also in line with Hofstede's dimension of individualism-collectivism. In addition, Li and Ginsburg (2006) showed that, compared with the U.S., the East-Asian countries' textbook showed a higher level of classification, but their teachers had a lower level of autonomy in selecting ways for knowledge presentations. The differences were explained by the cultural values of authority relations, which align with the cultural dimension of power distance.

The effects could also take place at the classroom and individual levels. Based on observation of classroom teaching in different cultures, Leung (2001) summarized six differences between the Eastern and Western mathematics educations, such as rote vs. meaningful learning and extrinsic vs. intrinsic motivation, and further argued that the characteristics in East-Asian classrooms could attribute to the Confucian heritage culture. In terms of the individual-level effects, Hu (2019) found that student-espoused cultural values, such as dimensions of individualism-collectivism and power distance, were significantly associated with their mathematics achievement in some cultural groups of China.

In conclusion, culture has gotten a lot of attention in mathematics education, and it's been found to be an important element in explaining pupils' math achievement. However, the effects of culture on mathematics achievement may not be consistent with that on students' subjective wellbeing. As mentioned above, high-achieving students do not necessarily report higher SWB than low-achieving ones (Suldo et al., 2006; Bucker et al., 2018). Moreover, some cultural dimensions contributing to high achievement may sacrifice students' SWB. For instance, Leung (2014) found that East-Asian students had negative attitudes toward mathematics, and the culture could be a possible explanation. Therefore, the influence of culture on SWB will be reviewed in the next section to extend the understanding beyond achievement.



The Influence of Culture on Subjective Wellbeing

Similar to mathematics achievement, previous international surveys also reported consistent differences in SWB across countries (Veenhoven et al., 1993; Inglehart and Klingemann, 2000). The differences could partially attribute to the wealth and related predictors, but not all (Diener et al., 2003). Furthermore, the effects of wealth-related factors on SWB normally decrease as national economic situation improve (Diener and Biswas-Diener, 2002). It was assumed that the wealth-related variables matter most to SWB before meeting basic human needs (Inglehart and Klingemann, 2000). In this way, scholars turned to look for explanatory factors other than wealth. One interesting finding was that the cultural differences seemed to parallel to the SWB differences. For example, European Americans always reported higher life satisfaction and less unhappiness than Asian Americans, though living in the same country (Okazaki, 2000). One explanation of this phenomenon is the cultural differences in self-evaluations and attributions (Diener et al., 2003). It has been found that North Americans tended to judge themselves with self-enhancement, while East Asians tended to do this with self-criticism (Oishi and Diener, 2003). This kind of self-evaluation differences (self-enhancement or self-criticism) was related to the cultural focus on individualism and collectivism.

Another cultural difference exists in people's strategies for tradeoffs. The most common thing would be the tradeoff between immediate happiness and future goals. A previous study suggested that Asian-American students would feel better when pursuing future goals, while Caucasian students preferred immediate hedonic activities (Asakawa and Csikszentmihalyi, 2000). Similar things were also found between European and Asian Americans (Oishi and Diener, 2003). Asian American students were very perseverant in reaching the goal of a particular task, but European Americans would be more likely to give up and switch to other tasks if they cannot do well in a certain task. As a consequence, the switching strategy of European American students would lead to more enjoyment. These findings revealed the difference in cultural dimensions of long-term orientation and indulgence. It seems that culture in favor of immediate happiness would lead to higher enjoyment. However, this tradeoff method may not be beneficial to long-term goals like learning (Diener et al., 2003).

Furthermore, it seems that the “happy” culture may not be consistent with the “high-achieving” culture. In the meta-analysis of Steel et al. (2018), it was found that happy nations had specific features of low power distance, low uncertainty avoidance, high femininity, and high individualism. However, those features seem to contradict East-Asian Culture, which is always featured by high mathematics performance, with relatively high collectivism, high uncertainty avoidance, and high power distance. Moreover, some behaviors valued by Confucian heritage culture, such as delaying gratification and working hard, were found to reduce SWB (Oishi and Diener, 2003; Steel et al., 2018). The findings were also in line with the reports of large-scale assessments, which suggested that East Asian students had negative motivation but high mathematics performance (Mullis et al., 2016).



The Present Study

The different patterns between culture-achievement and culture-SWB relationships may challenge mathematics educators on preparing students with proficient mathematics literacy and abundant SWB. As discussed above, the efforts of mathematics education indisputably take place under a specific cultural environment. Therefore, it is essential to understand the effects of culture on balance between students' mathematics achievement and SWB. Although previous studies explored the effects of culture on mathematics achievement and SWB separately, few focused on the balance. Therefore, this study attempted to bridge the gap by exploring the effects of national culture on the balance between high mathematics achievement and high SWB.




METHODS


Data Source and Sample

In order to operationalize culture for study, every research that attempts to investigate culture-related phenomena of any kind must first define and categorize it correctly. This is a difficult task because culture is a complex and dynamic entity. We used Hofstede's more current six-dimensional model of culture in building our conceptual framework. Despite the fact that Hofstede's culture model is the most generally used and influential model of a nation-centered cultural framework (Steenkamp, 2001; Dwyer et al., 2005), it has been criticized. McSweeney (2002), for example, critiques Hofstede's conceptualization of national culture and points out that culture transcends political borders. As a result, nation states are not an appropriate level of study. Besides, giving an overly simplified dimensional definition of culture and neglecting the presence of cultural variety within countries seems inappropriate (Minkov and Hofstede, 2014).

Despite these concerns, Hofstede's approach has influenced a large number of research that use one or more of the dimensions to explain observed disparities between nationalities (Botero and Van Dyne, 2009; Landau, 2009; Kaasa, 2015). It is still widely regarded as a well-founded method for describing culture in the sense employed in this study (Sivakumar and Nakata, 2001; Secter, 2003; Venaik and Brewer, 2008). Hofstede's framework of national culture is considered to be a valid and useful instrument in quantifying national culture in a relatively large number of countries (Gibson et al., 2006). The data was collected from more than 116,000 respondents in over 50 countries and regions. Subsequent studies validating the earlier results have included respondents such as commercial airline pilots, students, civil service managers, “up-market” consumers and “elites.”

It is worth noting that country-level research, particularly which based on Hofstede's national scores, has been chastised for committing an ecological fallacy (McSweeney, 2002; Sharma, 2009; Henrich et al., 2010). We agree with this criticism, noting that a person's cultural values cannot be defined solely by his or her nationality. Nonetheless, cross-country variances in mean values, as well as considerable intra-country differences, cannot be denied. For example, Huang et al. (2019) founded that the university teachers from China and Spain showed difference on their intentions to use technology, due to their perceived cultural preferences were quite different. Our research takes a multi-level approach. We anticipate that a country-level analysis will provide macrolevel insights into behavior differences between countries, complementing the findings of an individual-level study. Therefore, these criticisms do not undermine the fundamental premise of the current study: culture have impact on students' mathematics achievement, subjective wellbeing, and the balance between them.

The data source consists of records from three databases—PISA 2018 database (OECD, 2019b), Hofstede's cultural database (Hofstede, 2015), and the International Monetary Fund database (IMF, 2018). First, the PISA 2018 database provides information about 15-year-old students' mathematics achievement and family background variables (e.g., family SES) in 79 participating countries/economies. Second, the present study included the GDP per capita records in 2018 from the IMF database to represent each participating country's national economic development. Third, Hofstede's cultural database contains a series of data collected between 1971 and 2015, representing the national culture value from six dimensions. Although the timeslot of the cultural database is different from PISA 2018, it is reasonable to link these databases at the national level (e.g., Chiu and Klassen, 2010; Hu et al., 2018), since the national culture remains very stable for an extended period (Hofstede et al., 2010).

The intersection of PISA 2018 and Hofstede's cultural databases includes 56 countries/economies, in which 10 ones did not participate in the wellbeing survey of PISA 2018. After excluding the 10 countries, the remaining dataset contains 355,042 students from 46 countries/economies. Table 1 demonstrates the descriptive statistics of interested variables for these countries/economies. The missing data of SES (2.3%) and SWB variables (Positive feeling, 8.7%; Life satisfaction, 6.8%; Meaning in life, 8.3%) were imputed with the EM algorithm by SPSS 20.0 (Graham, 2009) (See Appendix for details).


Table 1. Descriptive statistics of variables.
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Variables

The dependent variable is the balance between mathematics achievement and subjective wellbeing. This study defined “balance” as a dichotomous variable, with “1” representing a state of getting both high mathematics achievement and high SWB, and “0” for otherwise. The mathematics achievement and three SWB variables (life satisfaction, positive feeling, and meaning in life) were retrieved from PISA 2018 databases. First, this study classified students into three categories according to their mathematics achievement. That is, high achievement (ranking 0–25%), medium achievement (25–75%), and low achievement (75–100%). Second, the same approach was applied to classified students according to their scores in three dimensions of subjective wellbeing, such as high life satisfaction or medium positive feeling. Students were then classified as high SWB for at least two high scores and one medium score out of three SWB dimensions. Third, the variable balance was assigned to 1 when a student got both high mathematics achievement and high SWB; otherwise, 0.

Independent variables. The independent variables were the six cultural dimensions in Hofstede's cultural databases, including power distance, individualism, masculinity, uncertainty avoidance, long-term orientation, and indulgence.

Control variables. At the national level, this study included the log GDP per capita as the control variable. At the student level, the control variables were gender and family SES (PISA index of economic, social, and cultural status).

The descriptive statistics of all the variables mentioned above were demonstrated in Table 1.



Analysis

Because students were nested in each country/economy, such a clustered structure requires applying the multilevel linear model (Cohen, 1988; Raudenbush and Bryk, 2002). A two-level logistic regression model was established to examine the influence of culture on students' balance between mathematics achievement and subjective wellbeing. In this model, the dependent variable is the balance between mathematics achievement and subjective wellbeing. As aforementioned in the variable section, this variable was assigned to 1 when a student got high mathematics achievement and high SWB; otherwise, 0. That is based on the following considerations:

Firstly, we used the upper Quartile to represent the advantaged students. According to PISA 2018 Technical Report, the students in top quarter are considered as the advantaged. For example, PISA 2018 results point out that socio-economically advantaged students are students in the top quarter of the PISA index of economic, social and cultural status (ESCS) in their country/economy, socio-economically disadvantaged students are students in the bottom quarter of the PISA index of economic, social and cultural status (ESCS) in their country/economy.

Besides, students are classified as high SWB for at least two high scores and one medium score out of three SWB dimensions. The procedure followed methods used by relevant research. For example, Huppert and So (2013) proposed a categorical diagnosis for flourishing that required a strong endorsement of positive emotion, plus a strong endorsement of four out of five “positive characteristic” features and three out of four “positive functioning” feature. It should be noted that selecting thresholds according to data distribution makes Huppert and So's model the only one in which individual flourishing depends on how well others are doing (Hone et al., 2014).

The independent variables were six cultural dimensions, and the control variables were log GDP per capita, gender, and family SES. The multilevel model was conducted by HLM 6.0. Before establishing the model, continuous variables were standardized into Z scores, and the student weight (SENWT) provided by PISA 2018 was used to estimate statistics.




RESULTS


Partitioning Variation in Student Balance Between Mathematics Achievement and SWB

Due to the logistic distribution feature, the level-1 unexplained variation is always equal to π2/3, which is 3.29 (Goldstein et al., 2002). The results of the null model showed that the variation in level-2 is 0.883 (see Table 2). Therefore, the ICC is 0.833/(0.833 + 3.29) = 0.202. According to Cohen (1988), an ICC >0.059 indicates a non-negligible within-cluster dependence. Thus, it is necessary to apply a multilevel model.


Table 2. Two-level logistic regression models for balance between mathematics achievement and subjective wellbeing.
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The Influence of Culture on Balance Between Mathematics Achievement and SWB

The two-level logistic regression model results could indicate which factors would enhance students' probability of reaching a state of balance, that is, getting both high mathematics achievement and high SWB. The control model showed that gender, family SES and GDP per capita were all the significant factors contributing to students' balance. For example, the standardized coefficient of gender (0 = female, 1 = male) is 0.434, suggesting that boys were more likely to reach a balanced state than girls. In more detail, the odds ratio between boys and girls was 1.543 (e0.434). Besides, both family SES and Ln GDP per capita could also enhance the odds of being balanced.

After including cultural variables in the full model, the significance level of Ln GDP per capita declined slightly. In addition, it can be seen that two out of six cultural dimensions were significantly related to the log odds of the balance. Specifically, the dimension of long-term orientation had a positive effect on the state of balance. The odds of the state of balance would increase by 1.38 (e0.323) times for the same student if s/he lived in another country with a one-standard-deviation-higher score on the long-term orientation dimension. Conversely, the indulgence dimension coefficient was negative, indicating that the odds would drop to about four-fifth (0.81, e−0.212) if the scores of indulgences increase by one standard deviation.




DISCUSSION


The Effects of Long-Term Orientation and Restraint Culture

In this study, national culture was found to have strong associations with the balance between mathematics achievement and SWB. Specifically, the cultural dimensions of long-term orientation and restraint were significantly related to better balance.

The result is in line with previous studies on mathematics education. First, in terms of the long-term orientation, comparative studies between East-Asian and Western countries suggested that some behaviors in line with the long-term orientation culture, such as delaying gratification and working hard, may contribute to the high performance of East-Asian students (Li, 2002; Leung, 2014). For example, students from long-term culture societies emphasize the importance of education and believe deeply in their own efforts (Leung, 2014). Moreover, long-term culture could promote people's self-regulation ability and delayed gratification, which are essential for successful learning (Bembenutty and Karabenick, 2013). Second, according to Hofstede's cultural dimensions theory, the restraint culture is the opposite pole to indulgence. A high indulgence society allows relatively free gratification of fulfilling human desires, while high restraint indicates a society of restraint that controls the gratification of needs. Therefore, the restraint culture mechanism may overlap with that of long-term orientation in terms of delaying gratification. It is also interesting to notice that restraint culture was not found to be related to mathematics achievement in previous studies (Hu et al., 2018; Hu, 2019). In this way, the restraint culture may be influential when considering mathematics achievement and SWB simultaneously. That is, the long-term culture could contribute to the value of virtues oriented toward future rewards, but it may need the complement of restraint culture in resisting the short-term desires.

However, the findings revealed some differences with research on SWB. Some previous studies found that culture favoring immediate happiness would lead to higher enjoyment (Diener et al., 2003; Oishi and Diener, 2003), but our study supported the benefits of long-term orientation and restraint cultures. The contradictory results could attribute to the tradeoff between immediate happiness and future goals. It has been suggested that values in favor of immediate happiness may not benefit long-term goals, such as mathematics learning (Diener et al., 2003). According to Maslow's needs theory, subjective wellbeing would be determined by different levels of need-satisfaction. Besides, compared with pursuing lower-level hedonic pleasant, pursuing a meaningful life would produce more desirable results, such as more profound happiness, serenity, and richness of inner life (Maslow, 1981). The goal of pursuing a meaningful life is congruent with the values of long-term orientation and restraint culture (Hofstede et al., 2010). The orientation to pleasure is quite common and easy, but the pursuit of meaning requires more effort and control. To this end, our findings supported the benefit of long-term orientation and restraint culture on the quality of SWB—high SWB along with high mathematics achievement.



The Potential Benefit of Confucian Heritage Culture

Previous studies showed the challenge of keeping a balance between high achievement and high SWB (Suldo et al., 2006; Bucker et al., 2018). The complicated relationship between mathematics achievement and SWB raises concerns on whether there is a tradeoff between mathematics achievement and SWB. On the one hand, it is obvious that the benefits of mathematics learning are not always instantaneous and rely heavily on cumulative effects over time. What is more, the process of learning mathematics is full of obstacles and frustrations (Schoenfeld, 1985; Op't Eynde et al., 2007), which may reduce students' SWB. On the other side, the strategies for immediate happiness may not benefit long-term learning goals (Diener et al., 2003). Therefore, it seems that there is a tradeoff. This study found that both mathematics achievement and SWB were related to the national culture. In more details, students would be more likely to get both high mathematics achievement and high SWB in a society with high long-term orientation and low indulgence culture.

It is worth noting that the two influential cultural dimensions were not included in Hofstede's original model. As a consequence of his subsequent studies in East-Asian countries, Hofstede added the dimensions of long-term orientation vs. short-term orientation and indulgence vs. restraint into his framework (see in Hofstede et al., 2010). To some extent, this interesting finding may indicate the unique value of East-Asian culture, especially the value of Confucian heritage culture. Unlike rational utilitarianism thoughts on the quality of life, Confucian heritage culture stresses more on life's meaning (Sundararajan, 2005). Under the Confucian philosophy, people tend to answer “what is a good life” by a strong evaluation of the meaning (Taylor, 1985). The underlying belief of their evaluation is a moral map. A good example is a Confucian philosopher Mencius's proverb (Legge, 1861), “fish are my favorite; bear's paws are also my favorites. If I cannot have both, I will choose bear's paws over fish,” in which the fish and bear's paws were metaphors of life and righteousness. The emphasis on the meaning of life could provide the horizon for people's evaluation of life quality. In this way, the goal of learning could be consistent with the pursuit of a good life for Confucian heritage culture learners. Besides, different from the happy culture emphasizing on the high emotional arousal, Confucian heritage culture seeks for the balance state between extreme positivity and negativity, such as serenity, inner harmony, and mindfulness (Averill and More, 2000; Kitayama and Markus, 2000). The emphasis on balance may contribute to a better balance between high mathematics and high SWB.

The above discussion is not to demonstrate any exclusive advantage of Confucian heritage culture, but to search for possible explanations from Confucian heritage culture. Moreover, this study's finding was within the 46 participating countries of PISA 2018, which was not limited to Confucian heritage culture countries. Although this study's findings were in line with some Confucian heritage values, it should be noted that those values of long-term orientation and restraint could also be found in other societies, for instance, in Muslim and East European countries. In this way, shared values could be explained through the lens of different cultural perspectives. Therefore, it is more important to establish the indigenous identities for mathematics education based on deep-rooted cultural values (Leung, 2001), which is still the weakness for East Asian countries. The above discussion provides the possibility of establishing the identities of Confucian heritage culture in mathematics education.



The Implications for Mathematics Education

The balance between mathematics achievement and SWB is essential for students, education systems, and societies. Proficient mathematics skills and affluent SWB were found to be STEM leaders' characteristics and contribute a lot to economic development (McCabe et al., 2020). This study explored the effects of national culture and other variables on the balance between mathematics achievement and SWB, which could provide some implications.

First, mathematics educators should stress the importance of education and encourage students to pursue the long-term goal of mathematics learning. As suggested by previous studies, students need to be perseverant in mathematics learning (Schoenfeld, 1985; Op't Eynde et al., 2007), but the process may reduce their SWB (Oishi and Diener, 2003; Steel et al., 2018). This study showed the positive effects of long-term orientation and restraint culture. From the Confucian heritage culture, the positive effects may derive from the emphasis on education and meaning. Specifically, working hard in mathematics learning would be more meaningful if students believe in the value of education, and success in learning could in turn bring them great satisfaction. Therefore, it is important to help students realize the value and meaning of mathematics learning. A variety of studies have investigated the factors that influence students' attitudes toward mathematics learning, such as school-related factors (e.g., teaching materials, classroom management, teacher knowledge, guidance, beliefs) and family-related factors (e.g., educational background, parental expectations) (Cheung, 1988; Mata et al., 2012; Tan, 2017). A common feature of those factors is to help students to find the meaning in mathematics learning. However, there is a widespread problem that mathematics instruction emphasizes too much on developing procedural knowledge, with limited attention to conceptual knowledge (Rittle-Johnson, 2019). Many students do not develop sufficient conceptual knowledge and fail to realize the connections of concepts and relations with their daily lives (Kilpatrick et al., 2001; Rittle-Johnson, 2019). In this aspect, mathematics educators should confirm the importance of developing both types of knowledge and impart the underlying meaning of mathematics knowledge.

Second, mathematics educators should search for the practice and establish theory compatible with indigenous culture. Our findings confirmed the effects of national culture on balance between mathematics achievement and SWB in the sample of 46 countries. Therefore, culture should be a non-negligible factor in the research of mathematics education (Hess et al., 1987; Bishop, 1988; Chen and Uttal, 1988; Stevenson et al., 1993; McInerney et al., 1997; Leung, 2006). Previous studies found large variations between national culture (Hofstede et al., 2010), but the mathematics education worldwide showed the trend of institutional isomorphism (Anderson-Levitt, 2008; George et al., 2019; Kezar and Bernstein-Sierra, 2019). For example, mathematics curriculum around the world has become more uniform (Anderson-Levitt, 2008). Conversely, this study found the culture favoring long-term orientation and restraint could better support students' mathematics achievement and SWB, which indicates the potential benefit of non-western culture, such as Confucian heritage culture. Moreover, borrowing theories may not fit the local culture (e.g., Leung, 2001; Hu, 2019). In this way, mathematics educators should be more confident and humbler to learn from traditions and search for the practice and theory rooted on indigenous cultural values (Leung, 2001).

Third, mathematics educators should focus on the problem of education equity. In this study, students' mathematics achievement and SWB were found to be significantly related to wealth-related variables (family SES and GDP per capita). This result indicates that students from disadvantaged families and regions are more likely to perform worse in mathematics achievement and SWB. In the past, the issue of education equity has received extensive attention in terms of academic achievement. However, the SWB was ignored. This result of this study suggested the importance of research on SWB in providing the full picture of educational equality.




CONCLUSION

This study examined the effects of culture on balance between students' mathematics achievement and subjective wellbeing. Results showed the significant effects of cultural dimensions of long-term orientation vs. short-term orientation and indulgence vs. restraint. Students from countries of high long-term orientation and low indulgence culture were more likely to get both high mathematics achievement and high SWB. Besides, wealth-related variables (family SES and GDP per capita) and gender were also found to influence the odds ratio of balance. The findings confirmed the effects of national culture on the balance between mathematics achievement and SWB. Based on the findings, this study discussed the effects of long-term orientation and restraint culture. The results indicate that mathematics educators should consider cultural differences in educational practice and stress the importance and meaning of mathematics learning.

A Few limitations should be noted in this study. First, this study explored the effects of culture at the national level. The results cannot show how culture influences individual learning and subjective feeling. It remains future studies to examine the influence of culture at the individual level. Second, culture is only one of the many influential factors related to the balance between mathematics achievement and SWB. The effects of culture may rely on interactions with other factors, such as national curriculum, classroom teaching, or motivation. Therefore, although this study found the quantitative relationship between culture, mathematics achievement, and SWB, further research is needed to explain the underlying mechanism. Third, since PISA 2018 involved few Muslim and African countries, it may result in bias at the national level.
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APPENDIX 1


Table 1A. The participating countries and their economic development and cultural values.
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Supporting growth in problem solving is key to capacity development for both teachers and students. When teachers engage in rich academic conversations that inquire deeply into content and pedagogy, they have an opportunity to cultivate student capacity to engage in rich academic discourse, problem solving and mathematical learning. In this study, we examined an intensive professional development training intervention in which teacher participants learned to use and understand the Teaching Learning Community (TLC) approach, design and connect standards-based lessons, and nurture a mindset of learning and thinking like a problem solver among students and teachers alike. We further examined whether there were any differences in students' MAP test scores over time among students whose teachers participated in the intervention and students whose teachers did not participate. Findings from the Analysis of Variance of students' MAP test scores indicated that students whose teachers participated in the intervention demonstrated more growth in mathematical proficiency, particularly in Grade 3. Thus, implementing an intervention like the one described herein that provides the appropriate resources to teachers, education in the form of high-quality professional development, and an opportunity to collaborate with peers and experts can result in direct improvement to student achievement in math.

Keywords: elementary mathematics, mathematics education, content coaching, teacher learning community, mathematical thinking, numeracy


INTRODUCTION

Is it possible to create change in a school mathematics curriculum delivery? What interventions can be provided for teachers to build their own capacity and support their students' building numeracy skills all at the same time? In this study, interviews with four elementary principals revealed a need to build strong student numeracy skills including problem solving in order to provide a smooth transition to fourth grade with higher stakes testing. Vygotsky's (1978) sociocultural theory contends that children grow into the intellectual community that surrounds them. In order to prepare students for life-long learning, the focus of education needs to be on learning to acquire knowledge, create, innovate, communicate, and discern. For teachers, that means facilitating robust learning habits in their students. When teachers engage in rich academic conversations that inquire deeply into content and pedagogy, they have a better shot at cultivating student capacity to engage in rich academic discourse (West and Cameron, 2013). In order to build such capacity, teachers are ideally charged with having deep and flexible knowledge about the content they teach and how their students learn that content.

Ma (2010) describes the development of teachers' understanding of school mathematics as “a process with a series of interactions: between considerations of what one should teach and how to teach it; among colleagues; between teachers and students; and between one's interest in mathematics as a teacher and as a layperson or mathematician” (p. 41). Additionally, building number sense in children is fundamental for their growth in mathematical reasoning. But the extent to which building number sense “becomes an individual's major talent still rests with the type and strength of genetic input and the environment in which the individual grows and learns” (Sousa, 2015, p. 12). Number sense is often discussed in math education, but what is it? Fennell and Landis (1994) state, “Number sense is an awareness and understanding about what numbers are, their relationships, their magnitude, the relative effect of operating on numbers, including the use of mental mathematics and estimation” (Parrish, 2010, p. 35–36). Developing a healthy sense of numbers is essential to building a confident mathematical learner in grades K-3 while connecting with future mathematical productivity.

What about the role of mathematical proficiency? In order to build capacity through building numeracy mathematical proficiency is key. In their book, Kipatrick et al. (2001) reported five “interwoven and interdependent” stands, which have implications for “how students acquire mathematical proficiency, how teachers develop that proficiency in their students, and how teachers are educated to achieve that goal” (p. 5). The five stands are “conceptual understanding,” “procedural fluency,” “strategic competence,” “adaptive reasoning,” and “productive disposition” (Kipatrick et al., 2001, p. 5). Furthermore, when children are in classrooms where these strands of proficiency are developed together, they are able to build a stronger understanding of both mathematical concepts and procedures (Walle et al., 2018). When supported by knowledgeable and caring teachers, mathematical proficiency builds capacity for future learning and connections.

To explore the development of an intervention for building students' numeracy and mathematical proficiency, a Midwestern university implemented a 2-years project, entitled “Supporting Strategies for Building Numeracy in Grades K-3,” that focused on building capacity of educators to identify and support high-level instructional practices that result in improved mathematical learning in the elementary grades. Specifically, the project sought to prepare teachers and students in building numeracy. The 2-years grant project targeted four elementary schools in two rural school districts in the United States. Participants included four administrators and 26 teachers of Grades K-3 in Year 1 of the grant. Year 2 of the grant project included three of the same administrators and one new administrator. Year 2 of the grant retained 17 of the teachers from Year 1 and added eight new teachers.

The focus of the project was initially established through interviews with principals at four schools that revealed patterns of concern regarding a lack of problem-solving skills and a decrease in state testing scores between third and fourth grades. From this, the project investigators identified the following patterns of needs in mathematics education: focusing on number sense in the early grades; preparing K-3 students and their teachers to be problem solvers; and supporting and guiding students in formulating their own mathematical questions. The investigators then designed and implemented the project to meet these needs.

During the 2015 through 2017 school years, teacher participants took part in an intensive training process to acquire and then apply knowledge and skills in mathematics to build numeracy and capacity for productive, meaningful, and successful teaching and learning. Interventions for the teachers included full- and half-day professional development seminars with experts in the mathematical education field. As part of the training, participating teachers experienced co-teaching with mathematics teaching experts, mathematics professors from state universities and their own colleagues. They also took time to slow down and meet in reflective focus groups twice each school year. Substitute teachers were provided for collaborations, allowing the participating teachers to meet and talk, observe each other in the classroom settings, and work in small groups with a mathematical expert to develop and connect strategies to build capacity.


Components of the Intervention

The training intervention involved several important components. The first was helping teachers develop an understanding of the Teaching Learning Community (TLC) approach to building numeracy. The content coaching model of Plan, Teach, and Debrief was utilized. Content coaching is a process designed to cultivate rigorous, collaborative, professional learning habits among adults (West and Cameron, 2013). Throughout the span of the project, participating teachers interacted and processed their new learning through content coaching in their own classrooms with experts. Additionally, the teachers observed colleagues and experts, wrote collaborative lesson plans, shared on a teacher-initiated Facebook page, and completed various formative evaluations. Feedback was provided throughout from the math expert, debriefings, pre-planning collaborative sessions, and the actual collaborating teaching experiences both formal and informal. Timely, specific feedback is one of the most effective ways to ensure learning at any age (Hattie and Timperly, 2007). Providing feedback in non-threatening settings such as small expert groups and in the classroom supports teacher growth in implementing new strategies.

A second component is the mathematical landscape. The mathematical landscape provided many new teaching opportunities for both teachers and their students including teaching with mini-lessons, using new models, landmark strategies, and focusing on the big ideas. Teachers found more opportunities to discuss the math with their colleague and their own students. Teachers began to understand the value of teaching in small groups. These small group lessons provided opportunities to directly see how their students actually interacted and responded to the math questions. Teachers noticed error patterns in these small groups that they had not noticed before in the traditional whole class settings. Teachers could address misconceptions “in the moment” not when they were grading paper later. A few of the strategies that were new to the teachers included bead-strings for counting and grouping, problem solving situations, the use of thinking strategies such as “true or not true,” using “number strings,” use of the open number line, using small group focused mini-lessons, and many more. For example, repetitive drill and practice are typically used to help students master the operations of multiplication. Students need to understand “what it means to multiply and divide before the facts can become automatic, but understanding does not necessary lead to this automaticity” (Uittenbogaard and Fosnot, 2007, p. 6–7). To somewhat counter and support at the same time what Uittenbogarrd stated, Boaler stated, “My lack of memorization has never held me back at any time or place in my life, even though I am a mathematics professor, because I had number sense, which is more important for students to learn and includes learning of math facts along with deep understanding of numbers and the ways they relate to each other” (Boaler, 2016, p. 38). She goes on the say that “for about one-third of students, the onset of timed testing is the beginning of math anxiety” (Boaler, 2016, p. 38). Slowing down in the math process was supported by both teachers and students as they solved problems together.

A third component is standard-based lesson planning. Teacher participants were taught to design and connect standards-based lessons to mathematical learning using the National Council of Teachers of Mathematics (National Council of Teachers of Mathematics, 2014) Process Standards. These standards, which outline the mathematical processes through which pre-K-12 students acquire and use mathematical knowledge, should not be regarded as separate content or strands in the mathematics curriculum; rather, they are integral components of all mathematics learning and teaching (Walle et al., 2016). These direct classroom interventions provided valuable models for the teachers to connect to their own future lessons. Participants then wrote practice lesson plans and submitted them for program evaluation and formative feedback that included the process standards. Not only did they write the plans, but they collaborated in their planning within schools, between schools, and with the experts. This model parallels Schmoker's school reform recommendation: small groups of teachers working in collaborative learning communities focused on day-to-day instruction that leads to short-term goals of student improvement (Stewart and Brendefur, 2005). Teacher participants focused upon incorporating the NCTM's Standards for Mathematical Practice (SMP) into their daily mathematical routines for teaching and learning. The SMP go beyond specifying mathematics content expectations to also outline proficiencies. These tenets are based on the underlying frameworks of the NCTM process standards and the components of mathematical proficiency identified by the National Research Council (Walle et al., 2016). Unfortunately, the SMP are often overlooked because they are not directly embedded into any grade-level standards. They are intended to be overarching standards used and taught throughout all grades (Aungst, 2016). In the intervention project, teacher participants incorporated the SMP in every lesson plan created either solely by the teachers or in collaboration with experts and colleagues. The SMP supported the development and the depth of learning by both teachers and their students.



Building Students' Mathematical Thinking

Teacher participants benefitted from learning to nurture students in developing a mindset of learning and thinking like a problem solver. According to Burns (2015), solving problems is the ultimate reason for students to study mathematics. It is likely that all of today's students will face problems to solve “that call for reasoning mathematically” (Burns, 2015, p. 41). Mathematical learning should focus on “developing understanding of concepts and procedures through problem solving, reasoning, and discourse” (Leinwant et al., 2014, p. 11). The intervention aimed at supporting teacher participants in helping their student to be a lifelong problem solver. Teacher participants were guided in applying mathematical thinking mindset as defined by Dweck (2006) and Boaler (2016) in their own classrooms. A shift in the teacher participants' own willingness to share their mathematical thinking processes through the 2-years period of the grant project was positively noticed in the focus groups with the teachers and in professional development events. In the present study, we examined the effect of enhancing teachers' competence in building numeracy on their students' mathematical thinking as measured by test scores. Our specific research question is as follows: Are there any differences in students' mathematical thinking test scores over time among students whose teachers participated in the intervention and students whose teachers did not participate?




METHODS


Data Source

The project was conducted and reviewed in accordance with the rules and regulations of the funding agency (Kentucky Department of Education). All teacher and administrator participants reviewed the proposed activities related to the project and evaluation, and gave written informed consent to participation, including providing access to student assessment data (anonymous and non-identifiable to project staff). Student assessment was planned and administered by schools independent of their participation in the project. One type of student assessments used by the four participating schools is Measures of Academic Progress (MAP) testing. The MAP is a standardized test used by the participating school districts during the fall, winter, and spring of every school year except one school's kindergarten. Student MAP data was used for the present study. The use of student data did not require further consent to be obtained as these data were provided by the schools to the authors in an anonymous and non-identifiable format. The separate files from each participating school were then merged together using SPSS version 23.0 for further analyses. The merged dataset had 343 students whose teachers participated in the intervention and 53 students whose teachers did not participate in the intervention. Out of the 343 students, 53 students were in kindergarten; 110 first grade; 64 second grade; and 116 third grade. For the 53 students whose teachers did not participate in the intervention (the control group), 18 students were in kindergarten; 21 first grade; 21 second grade; and 23 third grade.



Variables

Student MAP test score. MAP testing is developed by Northwest Evaluation Association (NWEA), a not-for-profit organization that produces assessment solutions that precisely measure growth and proficiency. The student MAP test score ranges from about 100 to 300. The MAP testing is known for its validity and reliability in measuring student mathematical proficiency.

Condition. Students whose teachers participated in the year-long training were placed in the intervention group while students whose teachers did not participate were placed in the control group.

Time. Student MAP test scores (anonymous and non-identifiable) from Fall 2016, Winter 2016, and Spring 2017 were analyzed.




RESULTS

The means and standard deviations of student MAP test scores arranged by grade level (K, 1, 2, and 3) in two different conditions (intervention and control) at the three testing times (fall, winter, and spring) are shown in Table 1. The third-grade treatment group showed more growth in mathematical achievement than its respective control group. The kindergarten and second-grade treatment groups did not show much difference when compared to their control groups. The first-grade treatment group showed a slight advantage over its control group.


Table 1. Means and standard deviations for student MAP test scores by grade levels in intervention and control conditions at three testing times.

[image: Table 1]

A mixed-method ANOVA was conducted with time (Time 1, Time 2, and Time 3) as a within-subjects factor and conditions (intervention vs. control) and grade levels (K, 1, 2, and 3) as between-subjects factors. Table 2 summarizes analysis of variance (ANOVA) results.


Table 2. Analysis of variance results for student MAP test scores.

[image: Table 2]

The ANOVA revealed that the main effect for time was statistically significant: F(1,418) = 1087.72, p < 0.001, η2 = 0.72. The main effect of grade level was also statistically significant: F(31,418) = 229.77, p < 0.001, η2 = 0.62. Further, the within-subjects Time × Grade Levels interaction was statistically significant: F(3,418) = 33.09, p < 0.001, η2 = 0.19. Moreover, the within-subjects Time × Conditions × Grade Levels interaction was statistically significant: F(3,418) = 15.05, p < 0.001, η2 = 0.10. Finally, the between-subjects Conditions × Grade Levels was statistically significant: F(3,418) = 11.96, p < 0.001, η2 = 0.08. All other main effects and interactions were non-significant.



DISCUSSION

In this study, we examined whether there were any differences in students' MAP test scores over time among K-3 students whose teachers participated in the intervention and students whose teachers did not participate. The sample number in each grade groups are not the same. The sample number in the third-grade groups was the highest. Our findings indicated students whose teachers participated in the intervention demonstrated more growth in mathematical proficiency, particularly in Grade 3. One plausible explanation is that the third-grade groups and their teachers had more at stake than the K, 1, or 2 groups since mandated testing and comparisons begin at grade 3 at the state level in the area of mathematics. In a way, testing, especially high-stake testing affects teaching and learning. It could be true that compared with K-2 teachers in our study, the third grade teachers in our study had a higher motivation to help their students in mastering mathematics. However, research also indicated that high-stake testing may lead to negative and undesirable outcomes as well. Possible negative impact includes “the superficial coverage of subject matters, the emphasis on basic skills that are arbitrarily defined and seldom add up to more complex learning, the focus on outcomes and evaluation rather than on assessing for promoting further learning, and the loss of professional standing for teachers and educators, as the provision of external information on students' achievement is prioritized over educators' knowledge and skills (e.g., Darling-Hammond, 1997; Elmore, 2004; Fuhrman, 2004; Afflerbach, 2005)” (Kontovourki and Campis, 2010, p. 236). Informal observations and focus group transcripts seemed to suggest a different explanation. Informal observations and focus group transcripts indicated a higher-level of engagement and collaboration from the third grade teachers overall. it is the authors' perspective that teachers who learned to fluently use the TLC approach, design and connect standards-based lessons, and nurture a mindset of learning and thinking like a problem solving mathematician are more likely to be able to build their students' numeracy.

Providing the appropriate resources and supports to teachers' education in the form of high-quality professional development, and an opportunity to collaborate with peers and experts has potential to make a difference. To replicate the training intervention designed in this project, the authors recommend the following: train teachers in the TLC approach or another Professional Learning Community approach to building numeracy; use the co-teaching model of Plan, Teach, and Debrief as suggested by the TLC approach; provide direct content coaching and side-by-side teaching experiences in an authentic classroom setting; create standards-based lessons incorporating the SMP including collaborative pre-planning, co-teaching, and then debriefing; provide opportunities for teachers to visit the classrooms of other teachers in their schools for math collaborations by placing substitute teachers in classroom for release time; and promote opportunities for teachers to participate in their own math problem solving and mathematical discourse with their peers and math experts. School administrators can support teachers by arranging times for teachers to meet informally to collaborate and have mathematical discourse; and nurture a mindset of thinking like a mathematician for teachers, students, and administrators. Creating a mathematical community of learners working together benefits all.



LIMITATIONS

We utilized non-equivalent control group pretest-posttest quasi-experimental design in the current study. One limitation of this quasi-experimental research design is that it is likely affected by the selection threat to the validity. In the study, teachers and students were not randomly assigned to intervention (the TLC approach) and control groups. Preexisting differences in teachers and students could have contributed to the difference in the MAP test scores in the third grade or the non-significant differences in the MAP test scores in the K-2 grades. Second, students' numeracy in grades K-3 was measured by student MAP test score in this study. Additional instruments could be used to further corroborate the findings of this study. Third, the current study included only K-3 students in two rural school districts in the United States, results on the TLC approach may not be generalized to a larger population elsewhere. For future research, it is recommended that a more diverse sample, coupled with random assignment, could be used to further investigate the effect of the use of the TLC approach on enhancing teachers' competence in building students' numeracy. Moreover, it would be necessary to develop and use other valid and reliable instrument to measure students' numeracy.
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Modern technology offers an increasing number of tools for teaching mathematics, but technology adoption in schools encounters many barriers. The Technology Acceptance Model explains that technology usage is dependent on intentions, which rest on perceived ease of use and perceived usefulness. Less is known about the relationship between intentions and actual behavior. In the current study we show that the level of cognitive investment on the part of the teachers, captured by the construct of Need for Cognition (NC), is crucial in the use of technology in mathematical instruction, while controlling for a variety of background factors. Furthermore NC moderates the relationship between intentions and technology use, such that high NC weakens the relationship between the perceived usefulness of technology in pedagogy and its actual use.
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INTRODUCTION

Technology offers a set of potential tools for pedagogy. In the case of mathematics education, which has traditionally been dominated by pen and paper tasks, several broad categories of instruments are now available. Teachers can use computer algebra systems, numerical analysis software, statistical software, function graphers, and calculators, spreadsheets, geometry packages and many others. These new tools bring many new possibilities to education, but their application is often met with a variety of difficulties (Pierce and Ball, 2009).

Many of those difficulties are general and appear across different areas of technology use. The Technology Acceptance Model (TAM) (Davis, 1989; Venkatesh, 2000; Venkatesh and Davis, 2000) explains that technology use is dependent on intentions. Intentions are a result of two factors: perceived technology usefulness and perceived ease of use. As the data confirming the model show, perceived usefulness has a stronger direct impact on technology use intentions, but this might be due to the fact that perceived ease of use has both a direct and indirect effect on intentions. Directly, user friendly technology increases the intended use. Indirectly, technology which is easy to use is also perceived as more useful. Furthermore research has shown that perceived usefulness is mainly influenced by perceived job relevance of the particular technology, as well as the demonstrability and tangibility of results obtained by its use (Venkatesh and Davis, 2000). Social influence is also a factor in perceived usefulness, especially in relation to innovations. Use of innovative technology is linked to maintenance of a favorable image and status in a social group and this indirectly increases perception of its usefulness (Venkatesh and Davis, 2000). The other TAM factor influencing intentions is perceived ease of use. Ease of use is affected by the levels of general self-efficacy, lack of computer anxiety, computer playfulness as well as the degree of external support (Venkatesh, 2000). In summary, individuals who feel they have both internal control, as well as external support, enjoy dealing with technology and do not express worries about involvement in such a new complex task. They tend to perceive using technology as easy. Individuals who see concrete results and job relevance of technology, as well as feel that using it influences their status, perceive technology as useful.

Although much is already known about determinants of the intentions to use technology, much less is known about a crucial relationship between the intention to use it and actual usage of technology. Many people declare that they intend to use innovative technology, but fewer actually do (Venkatesh and Davis, 2000). In the context of teaching, using new technology requires an in important change in behavior. Often, a departure from the type of teaching that one is used to and has observed in the past. This requires an orchestration of existing pedagogical competences with the novel tools, which can be accomplished in many different ways (Drijvers et al., 2010). This process requires a substantial level of cognitive investment on the part of the teachers. On the basis of research from the field of individual differences, one can predict that people show relatively stable individual differences in the degree to which they are willing to make such investments (von Stumm and Ackerman, 2013). Cacioppo and Petty (1982) use the term Need for Cognition (NC) to describe the differences in the tendency to engage in and enjoy effortful cognitive activity.

Research shows that high levels of NC relate to an increase of cognitive resources spent specifically in response to situations placing high cognitive demands. Merely labeling a message as complex and challenging generates motivational differences in processing of this message by individuals varying in NC (See et al., 2009). High NC therefore results in high effort spent on a complex task, but can actually diminish effort in burdensome tasks, which are perceived as simple and predictable (Cacioppo and Petty, 1982; Mussel et al., 2016). High levels of NC also predict high effort when a complex task seems optional, but not personally relevant for the present moment. For tasks which are highly personally relevant or surprising NC does not moderate effort (Petty and Cacioppo, 2016; Luttrell et al., 2017).

In the context of education it has been shown that there is a significant, but rather modest positive relationship between NC and academic achievement of students, evident especially in the later grades, with a lack of such a relationship in earlier grades (Luong et al., 2017). On the other hand NC strongly predicts the tendency to seek optional education programs which allow for enriched, deep learning (Meier et al., 2014). The choice of such programs is predicted by NC, while controlling for intelligence, academic self-concept, mastery or performance goals.

There is less data on the relationship between NC and adult education, but the results match with what we observe in adolescents and young adults. Recent data shows that NC is positively related to the effectiveness of continuous education, predicting the effects of professional training for medical physicians (Hassan et al., 2015). Additionally NC mediates the relationship between age and numeracy skills. Age related decreases in numeracy can be, to a significant extent, explained by motivational factors, such as a decrease in need for cognition (Bruine de Bruin et al., 2015). These results can be summarized, by a reference to learning styles. High NC is related to engagement in deep learning strategies, critical analysis and content structuring while low NC relates to using low effort strategies such as memorizing and rehearsing (Evans et al., 2003; Cazan and Indreica, 2014).

Taking these results into account it can be argued that NC is the crucial variable responsible for the cognitive investment, which marks the difference between intention to use and actual use of technology in pedagogy. The effect of NC on technology use should be stronger in a context in which certain conditions are met: (a) when use of technology is optional, not required by the teaching curriculum; (b) when technology use is perceived as a complex and challenging task; and (c) when its adaptability and benefits from use in the context of learning are not immediately, personally visible. Stating this hypothesis in the terms of the Technology Acceptance Model: NC influences behavioral engagement in technology use to a greater extent when perceived usefulness and perceived ease of use of technology are low, rather than high. That is, NC moderates the relationship between intentions and use, in such a way that when intentions to use a particular technology in a particular context are low, the effect of NC on actual use of that technology is strong. In a case when intentions to use this technology are high, an individual is already strongly convinced of its benefits and ease of use, the effect of NC on actual technology use is weaker.

It also needs to be noted, that the direct effect of NC on technology use should be supplemented by an indirect effect. NC can be relevant for perceived ease of use of technology. Research by Venkatesh (2000) shows, for example, that computer playfulness is related to perceived ease of use of such technology. Computer playfulness is a construct defined as being specific to the use of computer technology, but it is similar to NC in that both relate to intrinsic motivation and engagement in a task “just for the sake of it.” Being intrinsically motivated to engage in a task lowers the perception of effort spent on the task, despite an objectively greater effort (Ryan and Deci, 2000). Therefore it can be argued that high NC increases the general strength of intentions to use technology, through increased perceived ease of use.


Potential Confounders in the Relationship Between NC and Technology Use

We have argued that NC influences technology use both directly and indirectly, but there are also potential confounders which need to be taken into account when analyzing this relationship. Several variables might cause changes both in NC, as well as in technology use. The list of such contextual variables is large and a particular selection will always be subject to argument. None the less, some assumptions need to be made in order to show the relationship between NC and technology use, while holding potential confounders constant. In the current study we decided to control for (a) selected teaching practices (promotion of comprehension/pupil control); (b) general teaching self-efficacy; (c) peer and supervisor support; and (d) job burnout.


Promotion of Comprehension

Teachers differ in the degree to which they put emphasis on content comprehension and deep learning. It has been shown that promotion of comprehension prevents intellectual helplessness of students (Sȩdek and McIntosh, 1998). Promotion of comprehension is visible in requests of teachers for students to justify their answers, but in such a way that those requests allow for students’ individual interpretations. Therefore these justifications are not just elaborate memorizations, but actually reflect student comprehension and mistakes inherent in early phases of learning. Promotion of comprehension is therefore similar to mastery-approach learning, oriented toward developing new skills and understanding. Positive correlation between mastery goals and NC is very likely (Hoffman and Nadelson, 2010; Ranellucci et al., 2013) as well as a positive relationship between NC and deep learning (Evans et al., 2003; Cazan and Indreica, 2014). Therefore we can expect that teachers who place emphasis on deep learning, will also be likely to exert more effort in information search, as well as engage in mastery of new technological tools.



Student Control Ideology

Teachers have different views as to how much autonomy should be given to students in their school interactions. Autonomy can be defined as the perception of being volitional in one’s behavior (Howard et al., 2017). Autonomy does not necessarily equal independence. Rather, it is a perception of a willing choice to follow certain rules or regulations – treating them as relatively self-given. In the school context this relates to the degree to which children are given the option to influence the regulations, question teacher’s opinion and make decisions regarding course content. Autonomy is inversely related to hierarchical power structure in which the teacher is the sole controller of motivation, rewards and punishments (Howard et al., 2017). Lack of willingness to afford student autonomy is also related with higher teacher burnout (Bas, 2011). The less autonomy a teacher is willing to give the students the more likely he/she views them as irresponsible and potentially undisciplined. With high student control beliefs, order maintenance will be seen as one primary goals, and since introduction of new technology is likely to result in elevated class disturbance, teachers without autonomy preference should be less willing to engage in such behavior. Additionally, as Ryan and Deci (2000) argue, fulfillment of autonomy needs is factor in internal motivation. It is likely that teachers who provide supportive conditions for student autonomy, are themselves more likely to be characterized by internal motivation and need for cognition.



Teaching Self-Efficacy and Burnout

Burnout is a syndrome of interrelated feelings of emotional exhaustion, negative and detached attitude toward the people one works with and reduced feelings of personal accomplishment, as well as negative self-evaluation (Maslach et al., 2001). Teaching is generally considered as an occupation with high levels of job related psychological stress (Johnson et al., 2005) which is likely to result in burnout (Kokkinos, 2007). Self-efficacy is a personal attribute, which helps in coping with challenges (Tschannen-Moran and Hoy, 2001). Differences in self-efficacy are especially visible in responses to a novel task. For example, self-efficacy in computer use can affect perception of the ease of use before any experience with particular software or hardware (Venkatesh and Davis, 1996). Similarly, teaching self-efficacy can influence the intentions to use technology as a pedagogical tool, even without direct, hands-on experience. Teacher self-efficacy is related to teachers’ task persistence and commitment, as well as instructional style (Tschannen-Moran and Hoy, 2001). Research shows that self-efficacy and burnout explain teachers’ motivation to leave their profession. Skaalvik and Skaalvik (2016) have shown that there are two ways in which stressors affect the decision of teachers to quit their profession. Time pressure directly causes burnout and feelings of emotional exhaustion, which then predict the decision to quit. The other route is through lack of social support, especially supervisory support and trust, combined with low student motivation. This results in low-self efficacy and finally predicts the decision to quit. Taking this into account, one can expect that both burnout and teaching self-efficacy can predict general engagement in any complex and novel tasks in teachers’ daily activities.



Social Support

The extent to which people can count on their colleagues and supervisors in their jobs significantly affects their perception of challenges and stress (Widerszal-Bazyl and Cieślak, 2000). Perceived support from the school predicts teacher’s motivation to persist in implementation of project-based learning (Lam et al., 2010). This perception is based on feelings of collegiality as well as autonomy and competence acknowledged by the supervisors. Studies also show that social support predicts higher general control over job related challenges and this explains the negative relationship between social support and burnout (Ben-Zur and Michael, 2007). As previously mentioned, lack of supervisor support and trust is one of the main reasons for leaving the teaching profession (Skaalvik and Skaalvik, 2016). Similarly, as with self-efficacy and burnout, social support is therefore an important determinant of general job engagement and perception of challenges. Specific social support, related to particular technology (IT support) is also included in the TAM, as a factor influencing perceived ease of use (Venkatesh, 2000). In the current study we therefore aim to control for both the perception of supervisor and peer social support. In summary, in the current study we probe the relationship between NC, intentions to use technology and actual use of technology in teaching. We test for two effects. (1) That NC serves as a moderator of the relationship between intentions to use technology in teaching and actual behavior. When intentions are high, NC is not necessary for investment in behavior to take place. On the other hand, when intentions to use technology in teaching are low, NC becomes the regulator of intellectual investment; and (2) That NC is generally, positively related to intentions to use technology. We test those effects while controlling for perceived social support, self-efficacy, burnout and selected pedagogical beliefs.



MATERIALS AND METHODS


Participants and Procedure

A total of 150 mathematics teachers (130 females, Mage = 45,15, SD = 9,5, min = 23, max = 65) from Poland took part in the study. Teachers were employed by institutions from International Standard Classification of Education (ISCED) level 1 - primary (34,7%), ISCED-2 - lower secondary (17,3%), ISCED-3 - upper secondary schools (48%). Mean teachers work experience was 19,7 years (SD = 10,03).


Procedure

The study was conducted in a form of an online questionnaire. Link to the study was distributed through a mailing list of an non-profit foundation, which specializes in education, as well as a publisher of mathematics textbooks in Poland. The mailing list contained about five thousand emails of teachers, mostly teachers of mathematics, who agreed to receive information from the foundation and the publisher. This mailing list was created on the basis of participation in workshops, conferences or textbook sales, related to teaching of mathematics. Data was gathered from 8.02.2018 to 27.03.2018. Questionnaires could be completed on a stationary computer or a mobile phone. There was no scale-related missing data in the study, as the questionnaire required answers to all questions. The study procedure was accepted by the Ethics Committee of the SWPS University of Social Sciences and Humanities (decision nr 31/2017).



Measures


Need for Cognition – Polish, Short Version

Matusz et al. (2011) developed a 36-item scale for measurement of the construct of the Need for Cognition, with two main goals in mind: (a) to measure the universal NC construct using items in Polish which would paraphrase the original items from Cacioppo and Petty (1982); and (b) to create a scale which would include items sensitive to distinctions in a population with an elevated level of NC. The authors noted that some of the original items such as “Thinking is not my idea of fun” or “I only think as hard as I have to” are likely to show low discrimination in a population with elevated NC. Matusz et al. (2011) have shown validity, reliability of their scale, as well as its unitary structure. Unfortunately, a scale measuring a unitary construct with 36 items is not very parsimonious. Therefore, for the purpose of the current study, we created a more efficient version of this scale, similar to Cacioppo et al. (1984). We have contacted the authors and obtained raw data from the studies described in Matusz et al. (2011). Following Guadagnoli and Velicer (1988) we set the criteria which would offer a stable solution for sample size of about 100 and decided to select items with loadings above 0.5. There were 10 items that met this criterion. For full list of items see Supplementary Material. Scale includes questions such as “I like it when my life involves intellectual challenges,” answered on a 5-point scale from 1: “Definitely no” to 5: “Definitely yes.” We also ran a Confirmatory Factor Analysis (CFA) for the current data. CFA was conducted using JASP Team (2019) following Brown (2014) goodness-of-fit indices criteria. Single factor solution produced acceptable indices with SRMR = 0.049, RMSEA = 0.035, CFI = 0.983 TLI = 0.977. Residual covariance was allowed for item pair: 5–10 because of a strong conceptual overlap between these two items, both related to quitting when faced with an intellectual challenge (“I do not attempt to solve complex intellectual problems” and “I quickly give up when I cannot solve a task”). Scale reliability is good with Cronbach’s α = 0.827 (95% CI 0.782–0.865), McDonald’s ω = 0.832.



Teachers Student Control Ideologies

Scale was created by the Educational Research Institute (IBE, 2010) on the basis of Pupil Control Inventory (Willower et al., 1967). Scale includes 13 items and describes beliefs spanning a continuum from high to low student autonomy and hierarchical relations in the educational process e.g., “Students should not be allowed to question the opinions of teachers.” Statements are evaluated on a 5-point scale, from 1: Definitely no, to 5: Definitely yes. Because we lack current data on for the scale psychometric properties, we also CFA for this scale. Single factor model produced acceptable indices with SRMR = 0.051, RMSEA = 0.034, CFI = 0.976, TLI = 0.971. Reliability is also acceptable with α = 0.846 (95% CI 0.808–0.880), ω = 0.85.



Promotion of Comprehension Scale

Scale consists of nine items measuring the degree of emphasis put in pedagogy on content comprehension and deep learning e.g., “When checking what students know I require them to justify their answers” (Sȩdek, 1995). The scale stems out from studies on prevention of intellectual helplessness and teaching styles (Sȩdek and McIntosh, 1998). We lack current data on the scale psychometric properties and therefore we ran CFA. Single factor model produced acceptable indices with SRMR = 0.049, RMSEA = 0.02, CFI = 0.991, TLI = 0.987 although it must be noted that residual covariance was allowed for three item pairs: 4–9; 1–3; 2–5. There was a strong conceptual overlap between these items, which diminishes the conviction that the scale is indeed unidimensional. For example, it’s a logical necessity to “allow students to ask a question if they do not understand” (item 2) if you also declare that you “encourage students to voice out any doubts” (item 5) or in order to analyze “mistakes made during initial problem solving attempts” (item 4) it seems necessary to “allow students to communicate in their own words how they understand the concept” (item 9). The issues with these item pairs should be taken into account in any further uses of the scale and it is recommended to make proper modifications to those items in order to strengthen the evidence for scale unidimensionality. Agreement with scale items is evaluated on a 5-point scale from 1: “Definitely no” to 5: “Definitely yes.” Reliability of the scale is acceptable, with α = 0.702 (95% CI 0.624–0.768), ω = 0.709.



Norwegian Teachers Self-Efficacy

24-item scale measures various aspects of self-efficacy beliefs of teachers (Skaalvik and Skaalvik, 2007). Participants respond to statements starting with “Declare to what degree you are able to…” followed by various aspects of self-efficacy and a 7-point scale from 1:“I am definitely not able” to 7: “I am definitely able.” Results from the Polish adaptation of the Norwegian Teachers Self-Efficacy have shown that the structure of the scale largely differs from the original 6 factor solution and could be simplified to a 3 factor model (Baka, 2017). Because of this discrepancy between original model and the model from the Polish adaptation, for clarification an exploratory factor analysis (EFA) was performed on the current data set. CFA was not performed as it was unclear whether to test the structure of the original version or the Polish adaptation. EFA results converged on suitability of retaining a three factor solution. Three factors explained 58.9% of the variance, which is similar to results obtained by Baka (2017), but with some minor discrepancies in item factor loadings. Extracted factors were: (a) General Teaching Self-Efficacy Scale, α = 0.936 (95% CI 0.902–0.950), ω = 0.937; (b) Relationships Maintenance Self-Efficacy Scale, α = 0.741 (95% CI 0.669–0.801), ω = 0.750; (c) Discipline Maintenance Self-Efficacy Scale, α = 0.864 (95% CI 0.826–0.896), ω = 0.868. See ESM for details of this analysis.



Social Support

Two scales of social support were adopted from the Psychosocial Working Conditions Inventory (Widerszal-Bazyl and Cieślak, 2000). Both scales include the same eight questions, but the questions refer to either “colleagues” or “supervisors,” e.g., “To what extent you can count on your colleagues [supervisors] to help you in some concrete way?” Answers are marked on a 5-point scale from 1: Very little, to 5: Very much. Reliability of both scales is good with α = 0.958 (95% CI 0.947–0.967), ω = 0.958 for peer support and α = 0.967 (95% CI 0.958–0.974), ω = 0.967 for supervisor support.



Oldenburg Burnout Inventory

Inventory is a 16-item measure and includes two sub-scales: exhaustion and distancing (Halbesleben and Demerouti, 2005), with a Polish adaptation by Baka and Basińska (2016). Exhaustion is defined as feelings of intense physical, affective and cognitive strain related to job demands, e.g., “I can tolerate the pressure of my work very well.” Distancing relates to disengagement from work in general or work content; beliefs that one’s work is not interesting, challenging and satisfying and one is not willing to continue in this occupation, e.g., “Lately, I tend to think less at work and do my job almost mechanically.” Agreement with statements is evaluated on a 5-point scale from 1: “Definitely no” to 5: “Definitely yes.” Half of the items are positively and half are negatively worded. Reliability of both sub-scales is good with α = 0.816 (95% CI 0.768–0.857), ω = 0.832 for Disengagement and α = 0.862 (95% CI 0.826–0.893), ω = 0.866 for Exhaustion. Both scales are highly positively correlated, r(150) = 0.765, p < 0.001 and are summarized into one burnout score for further analyses.



ICT Acceptance Scale

ICT acceptance is an 8-item index based on Technology Acceptance Model (Davis, 1989; Venkatesh, 2000). As the study rationale did not require a separation of the intention to use technology, from perceived ease-of-use, as well as perceived usefulness, the scale includes items from all of those components. Usefulness was measured by items such as “Thanks to technology, I have more control over the tasks performed,” perceived ease-of-use: “Learning to use technological tools is easy.” and intention to use technology: “I will often use ICT in the future.” Statements are evaluated on a 5-point scale, from 1: Definitely no, to 5: Definitely yes. Reliability of the scale is good with α = 0.871 (95% CI 0.838–0.900), ω = 0.876. In order to provide data for the structure of the scale an exploratory factor analysis (EFA) was performed. Analysis was done using IBM SPSS Statistics 24 for Windows (IBM Corporation, 2016). Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy was expected to be above.5 (Kaiser, 1974). The Bartlett’s Test of Sphericity was expected to be significant (p < 0.05) for factor analysis to be suitable. For the EFA results for Kaiser–Meyer–Olkin (KMO) = 0.888, Bartlett’s Test of Sphericity was significant, χ2 = 542.8, p < 0.001, therefore principal component analysis (PCA) was run. SPSS R-Menu v2.0 was used for determining the criteria for retaining factors in EFA (Courtney and Gordon, 2013). Velicer’s Squared Minimum Average Partial test suggested a 1 factor solution and Comparative Data test (Ruscio and Roche, 2012) suggested that moving from 1 factor to 2 factor solution did not provide statistically significant improvement to model fit (p = 0.164). In summary, test results converged on the suitability of retaining a 1 factor solution. This factor explains 53.7% of the variance. Cut-off value of 0.40 was used for analysis of factor loadings (Hair et al., 2013). Analysis of coefficients from the component matrix suggests that all items load to a single factor and no coefficient drops below the cut-off value.



Complexity of ICT Use

Complexity of the current use of technology is a self-report declaration, which is composed of four cafeteria questions. (a) What ICT tools do you currently use in teaching?; (b) What do you use ICT for?; (c) Where do you get the content and classroom scenarios from?; (d) How do you communicate with students via ICT? Each cafeteria answer has a hidden weight, which corresponds with the complexity of the use of particular method. Weights were specified by the authors before the start of the study, on the basis of personal experience with technology use in training programs for mathematics teachers in Poland. Main criterion for assigning weights is the complexity, specificity and rarity of the particular technology use. For example sharing educational material on social networks or via e-mail is given less weight than sharing it on one’s own website or other webpages. Creating educational materials from scratch is given more weight than downloading ready-made scripts. Summary of the cafeteria options and weights are described in Table 1.


TABLE 1. Summary of cafeteria answers for the Complexity of ICT Use scale.

[image: Table 1]


RESULTS

Descriptive statistics are presented in Table 2. Main analytical goal was to verify the relationship between NC and ICT Acceptance as well as ICT Use, while controlling for other variables. Minimal p < 0.05 level for significance was adopted in all analyses. Sample size in this study (N = 150) allows for a detection of medium effects with up to 10 predictors in multiple regression (Miles and Shevlin, 2001). Full Correlation Matrix is included in the ESM. Hierarchical multiple regressions with ICT Acceptance and ICT Use as outcomes and 10 predictors were performed with JASP 0.11.1 JASP Team (2019). In each case the null model included 9 predictors (Support_Colleague, Support_Supervisor, Self_efficacy_General, Self_efficacy_Relationships, Self_efficacy_Discipline, General_ Burnout, Comprehension_Promo, Student_Control, Work_ experience_years) and NC was entered in the first step.


TABLE 2. Descriptive statistics.

[image: Table 2]Regression with ICT Acceptance as outcome produced an non-significant null model, F(9,140) = 1,58, n.s. and addition of NC produced a significant final model, F(10,139) = 3,6, p < 0.001, with Adjusted R2 = 0.15. In the final model both NC (standardized beta = 0.41) and Supervisor Support (standardized beta = 0.23) were significant predictors of ICT Acceptance. Collinearity statistics were all within accepted limits of tolerance >0.2 and VIF < 4 (Hair et al., 2010).

Regression with ICT Use as outcome produced a significant model, F(9,140) = 2,45, p < 0.01, with Adjusted R2 = 0.08. Self-Efficacy in Discipline was the only significant predictor with standardized beta = 0.31. Addition of NC produced a significant change in R2 = 0.07 in the final model, F(10,139) = 3,68, p < 0.001. NC (standardized beta = 0.33) and Self-Efficacy in Discipline (standardized beta = 0.27) were significant predictors of ICT Use in the final model. Collinearity statistics were all within accepted limits, with tolerance >0.2 and VIF < 4 (Hair et al., 2010).

Results so far show that NC is an important predictor of both ICT Acceptance and Complexity of ICT Use. Furthermore ICT Acceptance is moderately, positively related to Complexity of ICT Use, r(150) = 0.434, p < 0.05; in the next the step it was verified, using the PROCESS procedure created by Preacher and Hayes (2019), whether NC moderates the relationship between ICT Acceptance and ICT Use. When effect of ICT Acceptance on ICT Use is conditioned at three values of the NC: 16th (low) 50th (medium), and 84th (high) percentile, the effect becomes insignificant at the highest level of the NC (see: Figure 1), there is a significant increase in R2 = 0.02, p < 0.05 attributable to this moderation.
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FIGURE 1. Relationship between ICT Acceptance (mean centered) and ICT Use diminishes with increasing levels of NC (mean centered). Regression lines for low NC (square, dot), b = 4,53, t = 4,79, se = 0,95, p < 0.001, medium (diamond, dash), b = 3,12, t = 3,77, se = 0,83, p < 0.001, high (circle, line), b = 1,72, t = 1,4, se = 1,2, p > 0.05.




DISCUSSION

Results obtained in this study are in accordance with the expectations formed on the basis of previous research on NC and TAM. NC significantly predicts intentions to use ICT as well as actual ICT behavior, while controlling for burnout, self-efficacy, social support and pedagogical beliefs. Furthermore NC acts as a moderator between intentions and behavior, in such a way that the relationship between intentions and behavior is weaker, for higher levels of NC. This suggests that NC influences behavioral engagement to a greater extent when perceived usefulness and perceived ease of use of technology is low. This gives support to research showing that NC moderates effort in a context in which a task is not highly personally relevant or related to important job requirements (Petty and Cacioppo, 2016; Luttrell et al., 2017). NC becomes crucial when introducing innovative technology is not mandatory and it’s not yet clear what the job-related usefulness of the technology will be. The different pace at which changes in school curricula and official job requirements are made and at which technological advancements are made makes it almost certain that this context will be common to education. Introducing technology in teaching makes it a complex task and hard to routinize, because of constant challenges made by the software development process. On the other hand it makes teaching a challenging task, introducing novelty and incorporating the most recent ideas. It should be noted that this is vastly different from another type of change common to education - institutionally caused changes in reorganization of textbooks/learning materials, which provide a cognitive load, but do not add novelty or complexity.

It is also worth relating current results to some of the findings from the Elaboration Likelihood Model (ELM) (Cacioppo et al., 1996). According to ELM high NC leads to a stronger relationship between attitudes and behavior (Cacioppo et al., 1986, Verplanken, 1989). Generally high NC is related to deep processing of incoming information and therefore more elaborated, stronger beliefs are formed, which are then not swayed by situational factors. Greater attitude-behavior consistency is explained by the saliency of well thought of attitudes when an individual is making a decision to engage behaviorally (Pieters and Verplanken, 1995). This is contrary to the results we obtained. The relationship between attitudes and behavior was weaker for high NC individuals. This result can be explained by the finding that the strength of the intention-behavior link is different when we consider an implementation intention for a single action in a particular context or a broader goal (Sheeran, 2002). It appears that high NC is related to a broader goal of engagement in technology use, because of the complexity of this intellectual task. With low NC, there is no such general motivation and therefore what strongly predicts behavior is implementation intention based on pedagogical usefulness of technology.

Secondary results from the current study, for which we did not specify hypotheses, show that there is a lack of relationship between technology use and some important differences in teaching styles: tendency to promote comprehension and preferred degree of student autonomy. This suggests that technology per se does not influence these global teaching styles. Future studies could test whether it is the case that technology can both serve to decrease or increase student autonomy or be used to promote comprehension, but equally likely to promote memorization. It is likely that teachers incorporate technology into their, already established, preferred styles of interaction (Drijvers et al., 2010) and therefore a mere change in the use of technology won’t result in changes of pedagogical approach.

Other secondary results show that supervisor support, but not peer support, predicts intentions to use ICT. This result is in accordance with other studies showing that ICT supportive school leaders influence beliefs about ICT adoption in their institutions (Hatlevik and Arnseth, 2012). It confirms the TAM assumptions about the importance of norm setting in a particular environment. Perhaps surprisingly, self-efficacy beliefs of teachers were generally not related to their technology acceptance or use, apart from beliefs about efficacy in maintaining discipline, which predicted technology use. Future studies should focus on whether this can be explained by the fact that the introduction of any active pedagogical methods often involves an increase of the level of classroom noise and possible disruptions.


Study Limitations

Before we offer some suggestions as for technology adoption in teaching, it should be noted that the current study has several limitations. Data was gathered via self-reports and on one occasion only. This suggests a potential method bias, as the measurement of intentions and declared technology use was done simultaneously. In order to avoid the confounding effect of declared intentions on retrospective of past behavior, we have tried to be as specific and concrete as possible in creating the cafeteria of answers in the Complexity of ICT Use scale. When taking into account that the questionnaire was anonymous and there was no major incentive for lying, we can assume that the self-report of actual technology use was fairly accurate.

It also needs to be mentioned that the sample might have been pre-selected on the basis of at least minimal interest in the use of modern technologies. Additionally, because the questionnaire was voluntary and not related to any governmental institution, we might have obtained a sample characterized by inflated NC in relation to the general population of teachers. Predicting this, we have used a NC scale which was especially designed to be sensitive to distinctions in a population with an elevated level of NC. We are less confident in the lack of impact of the possibly biased sample on the measures for burnout and self-efficacy. Especially for burnout, it is likely that the method of recruitment and therefore the sample, excluded teachers with high levels of this trait, which would diminish the predictive value of burnout on the variables we measured in the current study.

Additional limitation refers to the availability of the intellectual investment measures in Polish. We have used a scale which refers to NC, but there are several personality concepts which affect learning which share crucial aspects of content and definition: curiosity as a feeling of interest, curiosity as a feeling of deprivation, epistemic curiosity, typical intellectual engagement, openness to ideas and need for cognition (Litman, 2008; Mussel, 2010). These constructs share important content, but are not identical. As shown by Mussel (2013) NC is specifically related to the process of seeking and an operation of thinking. Arguably, technology use in pedagogy is also, if not more, related to the operation of learning a new skill, or creating a new artifact, as well as the process of conquering challenges (Mussel, 2013). In future studies its suggested to focus on those distinctions.



CONCLUSION

Despite those limitations, we believe that the current results allow for suggestions for the potential ways to increase the use of technology in pedagogy. It seems that two routes are possible. On one hand any intervention which would increase the general level of NC would also result in an increased level of technology engagement. When thinking about such interventions it should be noted that NC is related to performance on rational thinking tasks, which are not captured by standard intelligence measures, but rather relate to heuristics, biases and critical thinking (Toplak et al., 2014). Examples of such tasks include resistance to contextual affective framing, sensitivity to base-rate information or “otherside thinking” which involves the tendency to consider both reasons consistent and inconsistent with one’s own prior beliefs. Arguably, adoption of ICT and its optimal use in education requires only an investment in technical equipment, but also an investment in the tools of the mind that practitioners in this occupation use. Most commonly education practitioners refer external barriers such as insufficient equipment, lack of software/hardware training or insufficient class time to adopt ICT in teaching (Pelgrum, 2001). However, even when equipment and training is provided, ICT adoption often gives sub-optimal results, in that it does not lead to improvements in students skills or does not bridge the gap between advantaged and disadvantaged students (OECD, 2015; Pérez-Sanagustín et al., 2017). On the other hand, for individuals with low NC, the importance of the perception of the ease of use and usefulness of technology increases as predictor of actual behavioral engagement. As shown by Gray et al. (2015) individuals with low NC might benefit especially from clearly setting a mastery goal structure in the context of technology adoption. Setting a mastery goal structure can be contrasted with setting either a performance approach or a performance avoidance structure. Unfortunately, in the context of school teachers’ performance evaluation, at least in Poland, it is more often the case that a performance avoidance structure is established. Job evaluation is aimed at avoidance of standing out negatively. This leads to enhanced risk-avoidance and challenge-avoidance, especially when perceived competence for a particular task is initially low (Harackiewicz et al., 2002) and a mixture of performance goals and being challenged in a context of low-perceived ability can produce symptoms similar to learned helplessness (Elliott and Dweck, 1988). It should also be noted that studies show that teacher training programs, which include new content, can lead to a temporary decline in teaching effectiveness (Breckwoldt et al., 2014) and time is required for experiences to accumulate which can shift this (Thomas et al., 1996). It is likely that NC can protect against some of the effects of a performance avoidance structure in that it shifts attention away from comparison with others to analysis of own performance, seeing evidence for improvement as well as seeking feedback (Luong et al., 2017). Other studies show that it is crucial the teachers are involved in active development of the learning materials and not only in the enactment of ready-made tasks (Coenders and Terlouw, 2015).

We believe that this study points to the importance of focusing on the typical intellectual investment, or need of cognition of teachers in both recruitment and training. This is likely to result in an increase of the use of ICT dependent active teaching methods in the teaching of mathematics. Active learning methods, such as peer instruction, think-pair-share or minute papers can be introduced without the use of technology (McConnell et al., 2017), but then they rarely answer to the issue raised by Bloom (1984) described as the 2 sigma problem. The problem refers to a large discrepancy in teaching effectiveness between individual tutoring and classic large scale formal education. Technology is seen as a possible vehicle for simulating some effects of individual tutoring while keeping it affordable for public education.
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The problem-solving performance of primary school students depend on their attitudes and beliefs. As it is not easy to change attitudes, we aimed to change the relationship between problem-solving performance and attitudes with a training program. The training was based on the assumption that self-generated external representations support the problem-solving process. Furthermore, we assumed that students who are encouraged to generate representations will be successful, especially when they analyze and reflect on their products. A paper-pencil test of attitudes and beliefs was used to measure the constructs of willingness, perseverance, and self-confidence. We predicted that participation in the training program would attenuate the relationship between attitudes and problem-solving performance and that non-participation would not affect the relationship. The results indicate that students’ attitudes had a positive effect on their problem-solving performance only for students who did not participate in the training.
Keywords: attitudes and beliefs, word problem, training program design, problem-solving, problem-solving success, primary school, moderation effect analysis
INTRODUCTION
Mathematical problem solving is considered to be one of the most difficult tasks primary students have to deal with (Verschaffel et al., 1999) since it requires them to apply multiple skills (De Corte et al., 2000). It is decisive in this respect that “difficulty should be an intellectual impasse rather than a computational one” (Schoenfeld, 1985, p. 74). When solving problems, it is not enough to retrieve procedural knowledge and reproduce a known solution approach. Rather, problem-solving tasks require students to come up with new ways of thinking (Bransford and Stein, 1993). Problem-solvers must activate their existing knowledge network and adapt it to the respective problem situation (van Dijk and Kintsch, 1983). They have to succeed in generating an adequate representation of the problem situation (e.g., Mayer and Hegarty, 1996). This requires conceptual knowledge, which novice problem-solvers have to acquire (Bransford et al., 2000). As problem solving is the foundation for learning mathematics, an important goal of primary school mathematics teaching is to strengthen students’ problem-solving performance. One central problem is that problem-solving performance is highly influenced by students’ attitudes towards problem solving (Reiss et al., 2002; Schoenfeld, 1985; Verschaffel et al., 2000).
Attitudes and beliefs are considered quite stable once they are developed (Hannula, 2002; Goldin, 2003). However, students who are novices in a particular content area are still in the process of development, as are their attitudes and beliefs. It can therefore be assumed that their attitudes change over time (Hannula, 2002). However, such a change does not take place quickly (Higgins, 1997; Mason and Scrivani, 2004). Nevertheless, in a shorter period of time, it might be possible to reduce the influence of attitudes on problem-solving performance (Hannula et al., 2019). In this paper, we present a training program for primary school students, which aims to do exactly that.
Problem-Solving Performance
Successful problem solving can be observed on two levels: problem-solving success and problem-solving skills. Many studies measure the problem-solving performance of students on the basis of correctly or incorrectly solved problem-solving tasks, that is, the product (e.g., Boonen et al., 2013; de Corte et al., 1992; Hegarty et al., 1992; Verschaffel et al., 1999). In this case, only problem-solving success, that is, specifically whether the numerically obtained result is correct or incorrect, is evaluated. This is a strict assessment measure, since the problem-solving process is not taken into account. As a result, the problem-solving performance is only considered from a single, product-oriented perspective. For instance students’ performance is assessed as unsuccessful when they apply an essentially correct procedure or strategy but achieve the wrong result, or it is considered successful when students achieve the right result even though they have misunderstood the problem (Lester and Kroll, 1990). An advantage of this operationalization, however, is that student performance tends to be underestimated rather than overestimated.
A more differentiated view of successful problem solving includes the solver’s problem-solving process (Lester and Kroll, 1990; cf. Adibnia and Putt, 1998). In this way, sub-skills such as understanding the problem, adequately representing the situation, applying strategies, or achieving partial solutions are taken into account. These are then incorporated into the evaluation of performance and, thus, of problem-solving skills (Charles et al., 1987; cf. Sturm, 2019). The advantage of this operationalization option is that it also takes into account smaller advances by the solver, although they may not yet lead to the correct result. It is therefore less likely to underestimate students’ performance. In order to assess and evaluate the problem-solving skills of students in the best way and, thus, avoid over- and under-estimating their skills, direct observation and questioning should be implemented (e.g., Lester and Kroll, 1990). An analysis of written work should not be the only means of assessment (Lester and Kroll, 1990).
Attitudes and Beliefs
Attitudes are dispositions to like or dislike objects, persons, institutions, or events (Ajzen, 2005). They influence behavior (Ajzen, 1991). Therefore, it is not surprising that attitudes–which are sometimes also synonymously referred to as beliefs–are a central construct in psychology (Ajzen, 2005).
Individual attitudes to word problems influence, albeit rather unconsciously, approaches to such problems and willingness to learn mathematics and solve problems (Grigutsch et al., 1998; Awofala, 2014). Research on attitudes of primary students to word problems is scarce. Most research focuses on students with well-established attitudes. However, the importance of the attitudes of younger children is undisputed (Di Martino, 2019). Di Martino (2019) conducted a study on kindergarten children as well as on first-, third-, and fifth-graders and found that, with increasing age, students’ perceived competence in problem solving decreases, and negative emotions towards mathematical problems increase. Whether a solver can overcome problem barriers when dealing with word problems depends not only on his or her previous knowledge, abilities, and skills, but also on his or her attitudes and beliefs (Schoenfeld, 1985; Verschaffel et al., 2000; Reiss et al., 2002). It has been shown many times that attitudes towards problem solving are influencing factors on performance and learning success which should not be underestimated (Charles et al., 1987; Lester et al., 1989; Lester & Kroll, 1990; De Corte et al., 2002; Goldin et al., 2009; Awofala, 2014). Learners associate a specific feeling with an object, in this case with a word problem, triggering a specific emotional state (Grigutsch et al., 1998). The feelings and states generated are subjective and can therefore vary between individuals (Goldin et al., 2009).
Attitudes towards problem solving can be divided into willingness, perseverance, and self-confidence (Charles et al., 1987; Lester et al., 1989). This distinction comes from the Mathematical Problem-Solving Project, in which Webb, Moses, and Kerr (1977) found that willingness to solve problems, perseverance in attempting to find a solution, and self-confidence in the ability to solve problems are the most important influences on problem-solving performance. When students are willing to work on a variety of mathematics tasks and persevere with tasks until they find a solution, they are more task oriented and easier to motivate (Reyes, 1984). Perseverance is defined as the willing pursuit of a goal-oriented behavior even if this involves overcoming obstacles, difficulties, and disappointments (Peterson and Seligman, 2004). Confidence is an individual’s belief in his or her ability to succeed in solving even challenging problems as well as an individual’s belief in his or her own competence with respect to his or her peers (Lester et al., 1989). Students’ lack of confidence in themselves as problem-solvers or their beliefs about mathematics can considerably undermine their ability to solve or even approach problems in a productive way (Shaughnessy, 1985). The division of attitudes into these three sub-categories can also be found in current studies (Zakaria and Yusoff, 2009; Zakaria and Ngah, 2011).
Reducing the Influence of Attitudes and Beliefs
As it seems impossible to change attitudes within a short time frame, we developed a training program to reduce the influence of attitudes on problem solving, on the one hand, and to foster the problem-solving performance of primary-school students, on the other hand.
The training program was an integral part of regular math classes and focused on teaching students to generate and use external representations (Sturm, 2019; Sturm et al., 2016; Sturm and Rasch, 2015; see also Supplementary Appendix A). Such a program that concentrates on the strengths and weaknesses of novices and on their individually generated external representations can be a benefit for primary-school students in two ways. The class discusses how the structure described in the problem can be adequately represented so that the solution can be found, working out multiple approaches based on different student representations. The students are thus exposed to ideas about how a problem can be solved in different ways. Such a training program fulfils, albeit rather implicitly, another essential component. By respectfully considering their individual thoughts and difficulties, the students are made aware of their strengths and their creativity and of the fact that there is not a single correct approach or solution that everyone has to find (Lester and Cai, 2016; Di Martino, 2019). This can counteract fears of failure and lack of self-confidence, and generate positive attitudes (Lester and Cai, 2016; Di Martino, 2019). The teacher pays attention to the solution process rather than to the numerical result in order to reduce the influence of attitudes on performance (Di Martino, 2019). In the same way, experiencing success and perceiving increasing flexibility and agility can reduce the influence of attitudes. As a result, we expected attitudes and beliefs to have a smaller effect on problem-solving performance.
HYPOTHESIS
Based on previous research, our goal was to reduce the influence of attitudes on the problem-solving performance of students (see Figure 1). To this end, the hypothesis was derived that participation in the training program would minimize the effect of attitudes and beliefs on problem-solving success, so that students would succeed at the end of the training despite initial negative attitudes and beliefs.
[image: Figure 1]FIGURE 1 | The moderation model with the single moderator variable training influencing the effect of attitudes and beliefs on problem-solving success.
METHODS
Participants
In total 335 students from 20 Grade 3 classes from eight different primary schools in the German state of Rhineland-Palatinate took part in the intervention study (172 boys and 163 girls). Nineteen students dropped out because of illness during the intervention. The age of the participants ranged between seven and ten years (M = 8.10, SD = 0.47).
Procedure
This investigation was part of a large interdisciplinary project1. A central focus of the project was to investigate whether representation training has a demonstrable effect on the performance of third-graders (cf. Sturm, 2019). For this reason, we implemented a pretest-posttest control group design. The intervention took place between Measurement Points 1 and 2. We measured the problem-solving performance of the students with a word-problem-solving test (WPST) at Measurement Points 1 and 2. All other variables were measured at Measurement Point 1 only (factors to establish comparable experimental conditions: intelligence, text comprehension, and mathematical abilities; co-variates for the mediation model: metacognitive skills, mathematical abilities).
In the intervention, third-grade students worked on challenging word problems for one regular mathematics lesson a week. The intervention was based on six task types with different structures (Sturm and Rasch, 2015): 1) comparison tasks, 2) motion tasks, 3) tasks involving comparisons and balancing items or money, 4) tasks involving combinatorics, 5) tasks in which structure reflects the proportion of spaces and limitations, and 6) tasks with complex information. Two word problems were included for each task type and were presented to all classes in the same random sequence. Each task had to be completed in a maximum of one lesson.
The training was implemented for half of the classes and was conducted by the first author; the other half worked on the tasks with their regular mathematics teacher. They were not informed on the purpose of the intervention and not given any instructions on how to process the tasks. In the lessons for students doing the training, the students were explicitly cognitively stimulated to generate external representations and to use them to develop solutions. They were repeatedly encouraged to persevere and not to give up. The diverse external representations generated by the students were analyzed, discussed, and compared by the class during the training. They jointly identified the characteristics of representations that enabled them to specifically solve the tasks and identified different approaches (for more details about the study, see Sturm and Rasch, 2015). With the goal of reducing the influence of attitudes on performance, the class worked directly on the students’ own representations instead of on prefabricated representations. The aim was that students realized that it was worthwhile investing effort into creating representations and that they were able to solve problem tasks independently.
Thus, the study was composed of two experimental conditions: training program (n = 176; 47% boys) (hereinafter abbreviated to T+) and no training program (n = 159; 58% boys) (hereinafter abbreviated to T-). In order to control potential interindividual differences, the 20 classes were assigned to the experimental conditions by applying parallelization at class level (Breaugh and Arnold, 2007; Myers and Hansen, 2012). The classes were grouped into homogeneous blocks using the R package blockTools Version 0.6-3 and then randomly assigned to the experimental conditions (Greevy et al., 2004; Moore, 2012; see also Supplementary Appendix B for more information).
Measures
Word-Problem-Solving Test
Before the intervention and immediately after it, the students worked on a WPST, which we created. It consisted in each case of three challenging word problems with an open answer format. Each of the three tasks represented a different type of problem. The word problems from the WPST at Measurement Point 1 and the word problems from the WPST at Measurement Point 2 had the same structure. We implemented two parallel versions; only the context was changed by exchanging single words (see Supplementary Appendix C). An example of an item from the test is a task with complex information (Sturm, 2018): Classes 3a and 3b go to the computer room. Some students have to work at a computer in pairs. In total there are 25 computers, but 40 students. How many students work alone at a computer? How many students work at a computer in pairs? Direct observation and questioning could not be conducted due to the large number of participants in the project; only the students’ written work was available for analysis. The problem-solving process of the students could therefore only be assessed indirectly. For this reason, the performance of students in the two tests was evaluated based on problem-solving success, ruling out overestimation of performance.
Problem-Solving Success
The success of the solution was measured dichotomously in two forms: 1) correct solution and (0) incorrect solution. Only the correctness of the result achieved was evaluated. This dependent variable acted as a strict criterion that could be quantified with high observer agreement (κ = 0.97; κmin = 0.93, κmax = 1.00). A confirmatory factor analysis using the R package lavaan version 0.6-7 confirmed that the WPST measured the one-dimensional construct problem-solving success. The one-dimensional model exhibited a good model fit (Nussbeck et al., 2006; Hair et al., 2009): χ2 (27) = 36.613, p = 0.103; χ2/df = 1.356, CFI = 0.985, TLI = 0.981, SRMR = 0.032, RMSEA = 0.033 (p = 0.854). The reliability coefficients at Measurement Point 1 were classified as low (Cronbach’s α = 0.39) because the test consisted of only three items (Eid et al., 2011) and a homogeneous sample was required at this measurement point (Lienert and Raatz, 1998). The Cronbach’s alpha for the second measurement point (α = 0.60) was considered to be sufficient (Hair et al., 2009). The test score represented the mean value of all three task scores.
Attitudes and Beliefs About Problem Solving
The attitudes and beliefs of the learners were recorded with the Attitudes Inventory Items (Webb et al., 1977; Charles et al., 1987). The original questionnaire comprises 20 items, which are measured dichotomously (“I agree” and “I disagree”). The Attitudes Inventory measures the three categories of attitudes and beliefs related to problem solving: a) willingness (six items), b) perseverance (six items), and c) self-confidence (eight items). An example of an item for willingness is: “I will try to solve almost any problem.” An example of an item for perseverance is: “When I do not get the right answer right away, I give up.” An example of an item for self-confidence is: “I am sure I can solve most problems.”
Because the reported reliabilities were only satisfactory to some extent (α = 0.79, mean = 0.64) (Webb et al., 1977), the Attitudes Inventory was initially tested on a smaller sample (n = 74; M = 8.6 years old; 59% girls). A satisfactory Cronbach’s α = 0.86 was achieved (mean α = 0.73). The number of items was reduced to 13 (four items for willingness, four items for perseverance, five items for self-confidence), which had only a minor influence on reliability (α = 0.83). For economic reasons, the shortened questionnaire was used in the study. The three-factor structure of the questionnaire was confirmed with a confirmatory factor analysis using the R package lavaan version 0.6–7. As the fit indices show, the three-factor model had a good model fit: χ2 (62) = 134.856, p < 0.001; χ2/df = 2.175, CFI = 0.948, TLI = 0.935, RMSEA = 0.062 (p = 0.086) (Hair et al., 2009; Brown, 2015). The three-factor model had a better fit than the single-factor model (p = 0.0014): χ2 (65) = 152.121, p < 0.001; χ2/df = 2.340, CFI = 0.938, TLI = 0.926, SRMR = 0.061, RMSEA = 0.066 (p = 0.028). The students were grouped into three groups (M–1 SD; M; M +1SD). The responses were coded in such a way that high scores (M +1SD) indicated positive attitudes and beliefs, and low scores (M–1 SD) indicated negative attitudes and beliefs.
Additional Influencing Factors
In order to ensure the internal validity of the investigation, we collected student-related factors that influence the solution of word problems from a theoretical and empirical point of view. It has been shown that the mathematical abilities and metacognitive skills of students significantly influence their performance (Sturm et al., 2015).
Mathematical Abilities
The basic mathematical abilities were determined using a standardized German-language test as a group test (Heidelberger Rechentest HRT 1–4, Haffner et al., 2005). The test consists of eleven subtests, from which three scale values were determined: calculation operations, numerical-logical and spatial-visual skills as well as the overall performance for all eleven subtests. The reliability was only satisfactory (Cronbach’s α = 0.74). Total performance was included in the study.
Metacognitive Skills
The metacognitive skills of the students were measured using a paper-pencil version of EPA2000, a test to measure metacognitive skills before and/or after the solving of tasks (Clercq et al., 2000). The prediction skills and evaluation skills of the students were collected for all three word problems of the WPST using a 4-point rating scale: 1) “absolutely sure, it’s wrong,” 2) “sure, it’s wrong,” 3) “sure, it’s right,” and 4) “absolutely sure, it’s right” (Clercq et al., 2000). If the students’ assessments of “absolutely sure” matched their solution, they were awarded 2 points. If they agreed with “sure,” they received 1 point. No match was scored with 0 points (Desoete et al., 2003). The reliabilities were only satisfactory (Cronbach’s αtotal=0.74, αprediction=0.56, αevaluation = 0.73). A confirmatory factor analysis revealed that prediction skills and evaluation skills represent a single factor (χ2 (9) = 16.652, p < 0.001; χ2/df = 1.850, CFI = 0.952, TLI = 0.919, RMSEA = 0.053 (p = 0.396)). The aggregated factor was used as a control variable in the moderator analysis.
In addition to the variables considered in this paper, text comprehension and intelligence were also surveyed in the project. However, they are not the focus of this paper; additional information can be found in Sturm et al. (2015).
RESULTS
Descriptive Statistics and Correlations Between the Measures
The descriptive statistics and correlations of all scales are presented in Table 1 (see Supplementary Appendix D for a separate overview for each of the experimental conditions). The signs for all correlations were as expected. The variable training program is not listed because it is the dichotomous moderator variable (T+ and T−).
TABLE 1 | Descriptive statistics and correlations of all variables for both experimental conditions.
[image: Table 1]Moderated Regression Analyses
The hypothesis was tested with a moderated regression analysis using product terms from mean-centered predictor variables (Hayes, 2018). This model imposed the constraint that any effect of attitudes and beliefs was independent of all other variables in the model. This was achieved by controlling for mathematical abilities, metacognitive skills, and problem-solving performance at Measurement Point 1. The estimated main effects and interaction terms are presented in Table 2.
TABLE 2 | Results from the regression analysis examining the moderation of the effect of attitudes and beliefs on problem-solving success (t2) by participation in the training program, controlling for mathematical abilities, metacognitive skills, and problem-solving success from the pretest.
[image: Table 2]When testing the hypothesis, we found a significant main effect of attitudes and beliefs, a significant main effect of the training program, and a significant moderator effect of the training on attitudes and beliefs as a predictor of problem-solving success. The main effect of the training program indicated that students who participated in the training performed better in the second WPST. The main effect of attitudes and beliefs showed that students with more positive attitudes and beliefs were more successful than students with negative attitudes and beliefs.
To further explore the interaction between attitudes and beliefs and the training program, we analyzed simple slopes at values of 1 SD above and 1SD below the means of attitudes and beliefs (Hayes, 2018). As can be seen from the conditional expectations in Figure 2, attitudes and beliefs did not affect the problem-solving success of students who participated in the training program. Attitudes and beliefs only had a positive effect on the problem-solving success of students who did not participate in the training.
[image: Figure 2]FIGURE 2 | Moderator effect of the training program on problem-solving success at Measurement Point 2.
DISCUSSION
Our results confirm previous findings that the attitudes and beliefs of students correlate with their problem-solving performance. They indicate that this correlation can be moderated by student participation in a training program. Negative attitudes and beliefs did not affect the performance of students who participated in a problem-solving training program over several weeks. Whether the training program also causes a change in the attitudes and beliefs of the students over time has to be investigated in a follow-up study, which is planned with a longer intervention period with at least two measurements of attitudes and beliefs. A longer intervention period would have the advantage that attitudes develop depending on the individual experiences of a person (Hannula, 2002; Lim and Chapman, 2015), for instance, when new experience is gathered or new knowledge is acquired (e.g., Ajzen, 2005).
Some limitations need to be considered when interpreting the results of the study. For example, the mitigating processes need to be investigated further. It is also unclear as to which components of the training are ultimately responsible for counteracting the effect of attitudes and beliefs. Although the study did not provide results in this regard, we assume that the following factors might have an effect: generating external representations, reflecting on the representations together as a group, and fostering an appreciative and constructive approach to mistakes. Further studies are needed to show whether and to what extent these factors actually attenuate the effect of attitudes and beliefs.
Furthermore, the measurement instruments for the control variables mathematical abilities and metacognitive skills were rather limited. If researchers are interested in understanding further effects of metacognitive skills, more aspects should be included. Furthermore, according to Lester et al. (1987), investigating attitudes and beliefs using a questionnaire is associated with disadvantages. How accurately students answer the questions depends on how objectively and accurately they can reflect on and assess their own attitudes. Misinterpretations and errors cannot be ruled out. The most serious disadvantage, however, is that data collection using an inventory can easily be assumed to have unjustified validity and reliability. For a deeper insight into the attitudes and beliefs of primary school students, qualitative interviews have to be implemented.
However, for the purpose of this study, it seems sufficient to consider the two control variables mathematical abilities and metacognitive abilities. We were able to ensure that the correlation between attitudes and beliefs and the mathematical performance of students was not influenced by these factors.
Regardless of the limitations, our study has some practical implications. Participation in the training program, independently of the mathematical abilities and text comprehension of students, reduced the influence of attitudes and beliefs on their performance. Thus, for teaching practice, it can be concluded that it is important not only to implement regular problem-solving activities in mathematics lessons, but also to encourage students to externalize and find their own solutions. The aim is to establish a teaching culture that promotes a variety of approaches and procedures, allows mistakes to be made, and makes mistakes a subject for learning. Reflecting on different possible solutions and also on mistakes helps students to progress. Thus, students develop a repertoire of external representations from which they can profit in the long term when solving problems.
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This brief research report presents an experiment investigating how people interpret quantities displayed in pictorial charts. Pictorial charts are a popular form of data visualization in media. They represent different quantities with differently scaled pictures. In the present study, 63 university students answered a 12-item questionnaire containing three different pictorial charts. The study aimed to evaluate how individuals perceive the quantities in the pictorial charts intuitively. Therefore, the students’ answers were not rated as correct or incorrect. Instead, it was analyzed which functional relationship between scale factor and estimated quantity best described people’s interpretation of pictorial charts. The experiment showed that, on average, a model assuming a quadratic relationship fitted best. This result deviates from research that found an overgeneralization of linearity when students compare the areas of two mathematically similar shapes. It may be that the routines for the interpretation of pictures differ considerably depending on whether a person must calculate a quantity arithmetically or is prompted to estimate the quantity based on visual perception.
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INTRODUCTION

Data and data analyses play an important role in decision making in modern society. Consequently, print media try to convey data of public relevance in graphically appealing and reader-friendly data visualizations. These graphics are becoming increasingly popular, graphically elaborate, and complex and are nowadays subsumed within the term information graphics or infographics (e.g., Cairo, 2013).

A specific and popular form of an infographic is a pictorial chart (Huff, 1954). It uses a picture related to the data to make the data presentation more aesthetically pleasing. Different quantities are displayed by scaling the picture up or down. Figure 1, which compares the nitrogen oxide emissions of different types of cars, provides an example of a pictorial chart. White clouds display the threshold values for nitrogen oxide emissions, and gray clouds represent the cars’ actual emission values. The “larger” the cloud, the greater the represented quantity of emissions.


[image: image]

FIGURE 1. Pictorial chart of the nitrogen oxide emission of cars in a German magazine (Allgemeiner Deutscher Automobil-Club, 2017, p. 14). Copyright 2017 by Allgemeiner Deutscher Automobil-Club. Reprinted with permission (Grenzwert Euro: threshold value Euro norm, realer Ausstoβ: actual emission).


An appealing graphical design for a chart can make data more accessible. However, graphical features can create a distorting visual impression and mislead the reader. Therefore, various countries’ curricula and standards in mathematics require students to have the ability to judge statistical data visualizations and to be able to identify misleading data displays (e.g., National Council of Teachers of Mathematics, 2000). Consequently, standardized testing includes the evaluation of pictorial charts (cf. Figure 2). To evaluate whether a pictorial chart is misleading, it is worth knowing how people interpret this form of data visualization. Do individuals base their interpretation on the real-life volume of the garbage can? Do they consider the covered area on the paper? Or do they only compare the height of the garbage cans?


[image: image]

FIGURE 2. Stimulus for a standardized test item in a task: “The picture above is misleading. Explain why” (National Assessment of Educational Progress NAEP, 1992). Material of the National Assessment of Educational Progress is public domain.


First, this brief research report reflects from a theoretical perspective upon how people interpret pictorial charts and reviews empirical results from mathematics education and psychology that could substantiate different assumptions. Subsequently, the paper presents an empirical study investigating how students interpret pictorially displayed quantities in pictorial charts. Finally, in the “Discussion” section, the paper tries to explain the different research results by suggesting that whether people have to assess pictures analytically or perceptually might have a substantial effect. Furthermore, it is argued that given the increasing variety and importance of data visualization in public life, mathematics education should pay more attention to popular or novel forms of data visualizations.



THEORETICAL BACKGROUND

A pictorial chart is based on a similarity transformation. A graphic designer uniformly scales a picture A by a factor to generate a mathematically similar picture B. Tufte (2001) pointed out that in data visualization, the visual representation should be consistent with the numerical representation. For pictorial charts, Tufte’s claim raises the question of how people interpret visual representations and whether people’s interpretation is consistent with the intended numerical representation.

Therefore, one can try to generate assumptions about how people interpret pictorial charts by exemplarily analyzing an item (Figure 2) from a standardized test of the National Assessment of Educational Progress (NAEP). This item (National Assessment of Educational Progress NAEP, 1992) represents two quantities (the number of tons of trash produced in the United States in the years 1960 and 1980) using two perspective drawings of a garbage can. The students had to explain why the chart was misleading. The expected answer was based on mathematical considerations concerning the displayed objects’ volume in the real world. If the length, width, and height of a three-dimensional object are doubled, the volume increases eightfold. In other words, the relationship between the scale factor and the volume is cubic.

While the mathematics of volume is clear, this might not be the way people interpret the pictures of the garbage cans. If readers perceptually evaluate pictures based on the area covered by ink, the garbage can of 1980 extends over four times as much area as the garbage can of 1960. Generally speaking, the area of a shape quadruples if the shape’s length and width are doubled, due to a quadratic relationship between the scale factor and the area. There is also a third manner in which people could interpret the pictorial chart. In Figure 2, one could argue that the garbage cans are just replacing the bars of a bar chart to make the chart more appealing to the reader. Therefore, it might be possible that the reader, in the same way as when reading a bar chart, takes only the garbage cans’ height into account.

This ambiguity begs the question whether empirical research provides evidence of how readers evaluate pictorial charts. Empirical research that explicitly addressed readers’ interpretation of pictorial charts could not be found. However, research results from mathematics education and psychology may substantiate some theoretical assumptions outlined above.


Results From Related Empirical Research

Since most pictorial charts rely on displaying quantities via representations of two- or three-dimensional objects, the reader’s ability and strategies to deal with measures (length, area, and volume) might influence the interpretation of pictorial charts. However, the ability to calculate these measures exactly does not play a significant role when interpreting pictorial charts. Instead, the ability to estimate measures might be crucial.

One strategy for estimating measures is the reference point strategy (Joram et al., 2005), that is, mentally comparing an object whose measurement is known with an object whose measure has to be estimated. When one estimates the length of a line by sight, for example, the empirical results turned out to be relatively clear-cut. Participants perceived lengths in a linear manner: that is, a line twice as long as another line was perceived to be twice as long (Stevens, 1975; Hartley, 1981). When a two-dimensional object was used and the size had to be estimated, the results were ambiguous. Stevens and Guirao (1963) used a square as the stimulus and found that doubling the side of the square resulted in a perceived apparent size 2.6 times as large. In two experiments Schneider and Bissett (1988) found that people estimated areas approximately correctly or slightly underestimated the area, whereas the participants consistently underestimated volumes. Based on his experiments, Morgan (2005) suggested that people apply various heuristics for estimating areas by combining width and height estimates. Investigating bubble charts, Raidvee et al. (2020) concluded that the human visual system does not perceive bubbles or discs in terms of their area but judges their size closer to their radius or diameter. These results indicate that people’s quantity estimation is not stable. Therefore, Joram et al. (1998) concluded that “measurement estimation is a highly volatile process, and easily influenced by the to-be-estimated objects” (p. 417).

A further research strand that relates to the interpretation of pictorial charts is research on problem-solving. In one experiment, De Bock et al. (1998) asked seventh-graders to solve word problems that required comparing areas. The students had to calculate how many hours it would take to fertilize a square piece of land with a side 600 m in length if a square piece of land with a side 200 m in length took 8 h to fertilize. The task was accompanied by scale drawings of the two square pieces of land. The results showed that most students assumed a linear relationship and answered 24 h; only 8% of them detected the quadratic relationship and solved the item correctly by answering 72 h. Solution rates for word problems that required an area comparison of two circles (5%) or two mathematically similar but irregular plane shapes (1%) were even lower than the rates for comparisons based on squares. In a replication study with tenth-graders, the solution rates were higher but still low (square: 39%, circle: 21%, irregular shape: 7%). The assumption of a linear relationship in situations that are based on nonlinear relationships has been termed the illusion of linearity. This phenomenon has been replicated in several studies (e.g., De Bock et al., 2002; Vlahović-Štetić et al., 2010) and could be demonstrated even among university students (Esteley et al., 2010).



Present Study

In summary, the theoretical analyses and the empirical results in mathematics education and psychology show that it is still unclear how people interpret pictorial charts. That is, the question is the quantity Q2 that readers will assign to picture B when a picture A with a known quantity Q1 is uniformly scaled by a factor s and results in picture B. To evaluate whether a pictorial chart is misleading, one should know how people “read” a pictorial chart. Assuming that the processing of pictorial charts in media is based on intuitive heuristics that people quickly perform, the present study focuses on this System 1 (Kahneman, 2011). The study did not assess whether the participants’ cognitive processes were correct or incorrect but aimed to describe the participants’ perception non-judgmentally. Therefore, the study investigated the functional relationship between the scale factor and the individually perceived quantity.

Some assumptions could be derived from the presented theoretical background. If readers apply an approximately linear relationship (as discovered in research about the overgeneralization of linearity) between the scaling factor and the quantity Q2, it results in the rule Q2 ≈ s ⋅ Q1. If people base their judgment on the perceptual aspects of interpreting a picture as a two-dimensional object (cf. summarized research above about the perception of areas), an approximately quadratic relationship could be assumed, that is, Q2 ≈ s2 ⋅ Q1. If a pictorial chart consists of perspective pictures of three-dimensional objects (e.g., photographs or perspective drawings of garbage cans), a spatial interpretation based on an approximately cubic relationship is possible (Q2 ≈ s3 ⋅ Q1). The NAEP coding guide, for example, evaluates this approach as the only correct solution for interpreting three-dimensional pictures. Although these three options would provide a clear-cut theoretical explanation for their occurrence, different exponents (e.g., 1.6 or 2.4) in the power functions could not be ruled out. Therefore, it appears reasonable to replace the exponent with a variable b so that the rule results in the general equation Q2 = sb ⋅ Q1.

The research questions for this study were: (RQ1) When one views a pictorial chart in which a quantity Q2 is displayed via scaling a picture representing the known quantity Q1 with a scaling factor s, which value b in the power function Q2 = sb ⋅ Q1 best describes a person’s interpretation of a quantity Q2? (RQ2) Does the value b vary substantially between persons? (RQ3) Does the value b depend on the picture? (RQ4) Does the value b depend on whether the pictures were enlarged or reduced?



MATERIALS AND METHODS


Participants

This study drew the participation of 63 mathematics teacher-education students from a German university (primary and secondary school education) with an average age of M = 21.5 (SD = 2.0). Since most of the students aspired to the primary school teaching profession, female students predominated in the sample (58 females, 5 males). The students had not received instruction on the study’s topic, nor was the topic explicitly taught in any course. The students were recruited during ordinary course time and did not receive a financial incentive. Ethics approval was obtained from the students.



Materials

The questionnaire consisted of 12 items (three testlets with four items each). A specific picture formed the basis of every testlet. The three pictures differed in their level of realism and the extent to which they can be interpreted two- or three-dimensionally. In the CO2 testlet, a line drawing of a cloud represented the amount of carbon dioxide emitted by a factory. This line drawing could be interpreted two-dimensionally as the cross-section of a cloud. A three-dimensional interpretation was also possible by taking into consideration the real-life nature of a cloud and the overlapping lines. However, how deep the cloud is perceived depends on the reader’s interpretation. In the Garbage testlet (Figure 3), a photograph of a garbage can depicted the amount of garbage produced by a household. The photograph was used to stimulate a three-dimensional interpretation. In the Sugar testlet, a perspective line drawing of a sugar lump in cavalier projection displayed the amount of sugar a person consumes. Like the Garbage testlet, the Sugar testlet should stimulate a three-dimensional interpretation. A picture of a cloud, a garbage can, or a sugar lump on the left-hand side displayed a base quantity of 100 units in each testlet. On the right-hand side, the same picture was uniformly scaled by a specific factor (e.g., 0.7 or 1.6, with the complete item booklet provided in Supplementary Material, File 2, Chapter A). Different scale factors were used to derive general rules from the data about the relationship between scale factors and perceived quantities. The pictorial charts did not contain an ordinate, and the pictures were not placed on a horizontal baseline. The participants had to intuitively estimate the quantity represented by the picture on the right because the aim of the experiment was to determine the readers’ innate interpretation of the pictorial chart. Each testlet comprised four comparisons. The 12 items were presented in a fixed order (CO2, Garbage, Sugar). The scale factor s in the experiment ranged from 0.3 to 1.9.


[image: image]

FIGURE 3. Item of the Garbage test translated into English: The garbage can on the left is scaled by the factor 0.7.




Administration

The students answered the questionnaire with paper and pencil. They were told that the questions dealt with intuitive estimation. Hence, the students were asked to refrain from using a calculator or a ruler and from performing calculations manually. It took the students between 5 and 10 min to complete the questionnaire.



Data Analysis

Each of the three testlets contained four items, resulting in 12 items per person. The data analysis aimed to determine the functional relationship between scale factor and a person’s estimate. It was assumed that the estimation follows a power function Q2 = sb ⋅ Q1 (cf., section “Theoretical Background”). In the experiment, Q1 always equaled 100, so the equation becomes Q2 = 100 sb. Taking logarithms of the equation, we get: [image: image] = b ⋅ log (s). Therefore, to determine the exponent b, we apply a linear regression y = bx + e with the logarithm of the scale factor, log(s), as the independent variable x and the logarithm of Q2 divided by 100, [image: image], as the dependent variable y, and e as the residual. In the equation y = bx + e, the value of the regression slope b equals the exponent b in the power function. The regression intercept is zero.

The data had a multilevel structure because the responses were nested within testlets and persons. Classical regression analysis cannot account for the dependence on the responses within persons. Therefore, multilevel models (cf. Gelman and Hill, 2006) were applied to all analyses.

First, a two-level-approach (responses nested within persons) was applied. To answer the first research question, an average value for the exponent b for all participants across all items was estimated (Model 1: fixed slope). To evaluate whether the exponent b varies among individuals (research question 2), a value for the exponent b for every participant across all 12 items was determined (Model 2: random slope). In Model 3, the testlet structure was taken into account (answers nested within testlets and individuals). That is, this model estimated whether the testlet (CO2, Garbage, and Sugar) had an effect on the exponent b (research question 3). In Model 4, a further fixed effect (enlargement or reduction) was added to Model 3 to evaluate RQ4. A detailed description of the multilevel analyses can be found in Supplementary Material, File 2, Chapter B.

Outliers were replaced with missing values before conducting the multilevel analyses. A value was defined as an outlier if picture B was scaled down, but a student estimated a value bigger than 100 and vice versa.



RESULTS

Every participant answered all 12 items, resulting in 756 item responses (cf. descriptive statistics in Table 1). Six item responses were identified as outliers and replaced with missing values.


TABLE 1. Descriptive information concerning the items.

[image: Table 1]Regarding the first research question, the aim was to identify in the power function Q2 = 100sb the exponent b that best described the participants’ perception of the quantities in the pictorial charts. Using logarithms of the estimation values and the scale factors caused the slopes in the multilevel analyses to equal the searched value b (cf. “Materials and Methods” section). The first multilevel model (Model 1) with fixed slopes (i.e., assuming that the value b did not vary among participants) resulted in a value 1.92 for the exponent b, 95% CI (1.87, 1.96). The explained variance in this model was 91% (Pseudo-R2). That is, on average, the interpretation of the displayed quantities in a pictorial chart followed approximately a quadratic relationship.

The second research question dealt with the question whether the value b varied among participants. The second multilevel model (Model 2) with random slopes showed that the exponent b varied significantly among the participants, as a model comparison between the first and second model showed. The values ranged from the lowest value 1.4 to the highest value 2.7. Thirty-two of the participants (i.e., 51%) had an exponent between 1.75 and 2.25, that is, an approximately quadratic relationship. Several participants showed values in between two whole numbers for the exponent b. Twenty-three participants (37%) had an exponent between 1.25 and 1.75, and 8 participants (13%) had exponents between 2.25 and 2.75.

RQ3 addressed the issue of whether the estimation process depended on the picture in a pictorial chart. Therefore, in a three-level model (Model 3), a testlet effect was estimated by assuming a fixed effect of the testlet. This model fitted significantly better than Model 2, χ2(1) = 100.1, p < 0.001, and the explained variance was enhanced from 93.5 to 95.6%. Although the testlet effect was significant, its size was rather small. This model’s average value for the exponent b also was 1.92, 95% CI (1.83, 2.01). For the CO2 testlet, the value 0.04, 95% CI (0.01, 0.07) has to be added to this exponent; for the Garbage testlet, the value 0.06, 95% CI (–0.10, –0.03), has to be subtracted, and for the Sugar testlet, the value 0.02, 95% CI (–0.01, 0.05), has to be added.

Finally, the question was whether the estimation process was influenced by whether the pictures were enlarged or reduced (RQ 4). Model 4 did not improve the model fit in comparison with Model 3, χ2(1) = 0.13, p = 0.72, and the fixed effect (enlargement or reduction) did not significantly differ from zero, 95% CI (–0.09, 0.06). Detailed information about the results of the multilevel analyses can be found in Supplementary Material, File 2, Chapter B.



DISCUSSION

The study showed that the participants applied, on average, an approximately quadratic relationship (b = 1.92) between the scale factor and the estimated quantity. That is, generally, the participants estimated the quantity in a pictorial graph based on the area of the picture. The b-values, however, differed among participants. None of the 63 participants could be identified to operate with a linear relationship or a cubic relationship when dealing with pictorial charts. The majority based their judgment on an approximately quadratic relationship (51%). A considerable proportion of the students (37%) had an estimation process in between a linear and a quadratic relationship. These students might have intended to estimate the area but did it in a biased manner because research has shown many people underestimate areas (e.g., Stevens, 1975; Raidvee et al., 2020). That means that the interpretation of pictorial charts is probably based on the visual perception of the ink-covered area rather than the result of an analytical process. As for the research question on whether the picture influences the estimation process, the experiment showed that the exponent b varied among testlets, although the difference was relatively small (between 1.84 and 1.95). Therefore, the type of picture (i.e., a perspective or non-perspective line drawing or a photograph) did not substantially influence the estimation process, nor did it have an effect on whether the picture was an enlargement or a reduction.

Within the context of the theoretical considerations presented and prior empirical results from mathematics education and psychology, the experiment revealed some surprising results. First, the assumption that, in general, participants apply spatial considerations to a two-dimensional picture of a three-dimensional object cannot be corroborated. Second, the present study’s results seem to deviate from the results of several experiments that found a robust overgeneralization of linear models when pictures were provided in problem-solving tasks. However, the study’s empirical results align most closely with the findings regarding the perception and estimation of areas.

These results raise the question whether the different results from the research on the illusion of linearity and the present experiment can be reconciled. In research concerning the overgeneralization of linear models, the students were asked to calculate the area or an indirect measure of the area (e.g., the time to fertilize a piece of land). The students had to use arithmetic operations (e.g., addition and multiplication) to solve the problem. Research has shown that students looked for analogies when asked to solve a new problem (Gentner et al., 2001). Proportional reasoning is often successful in mathematics. Students seem to rely on this heuristic in mathematics even when a closer look at the picture of the square of land could reveal its incorrectness. In the present study, however, students were requested to estimate the quantity of the pictures displayed based on their perception. The participants were explicitly asked to refrain from calculations.

The assumption that it matters whether students have to estimate the quantity represented based on visual perception or to calculate the quantities using arithmetic operations can be supported by theories concerning information processing of texts and pictures (e.g., Mayer, 2014). They assume that cognitive processing differs according to whether it occurs on the symbolic (e.g., words, texts, mathematical signs) or the pictorial channel. In research detecting the illusion of linearity, students were urged to work on the symbolic channel because symbolic information was given (e.g., the length of the side of a square of land), and calculations were required. In the present experiment, however, the students were not provided with numerical information about the figure’s length or width. They were nudged to process the pictures on the pictorial channel and to assign quantities based on their visual perception. Therefore, it seems reasonable to assume that the processing channel has a decisive effect on the results.

With respect to the learning and teaching of mathematics, the experiment showed that tasks such as those in Figure 2 are problematic when the aspect of “misleading” is only judged theoretically as the NAEP coding guide does. The present experiment showed that even mathematically inclined persons did not base their quantity interpretations on real-world volume. Therefore, students must be sensitized to this issue on a more sophisticated level. However, further research in this field is necessary to infer more specific knowledge that can be taught in school about the interpretation of novel forms of data visualizations.

However, some limitations should be mentioned. First, the sample with mathematics teacher education students is selective. The question is whether the findings are generalizable to different samples (e.g., younger students or less mathematically educated individuals). It could be possible that mathematically inclined individuals interpret pictorial charts differently from people without a mathematics background. Furthermore, there could have been a priming effect, as the clouds were always presented first and could have prompted an estimate based on areas. Moreover, in future experiments, the picture’s effects in pictorial charts should be investigated further by using diverse types of pictures and varying them systematically. In a subsequent study, the presented results should be replicated using a more diverse sample and different pictures. A possible sequencing effect should be controlled for by permuting the testlets. Furthermore, it would be interesting to investigate whether providing a legend in a pictorial chart would affect the reader’s interpretation.



CONCLUSION

Some conclusions can be drawn from the present study in terms of the design of pictorial charts. Readers do not seem to interpret two-dimensional pictures of three-dimensional objects spatially. Therefore, chart designers probably should refrain from using pictures of three-dimensional objects to display quantities. With regard to the growing popularity of infographics (e.g., Yau, 2011; Cairo, 2013) and software for data visualizations (e.g., GapMinder), the investigation of how individuals perceive these visualizations is also an important educational aspect. Therefore, mathematics education should also integrate teaching and research on nonstandard, novel forms of data visualizations because they are becoming increasingly prevalent in everybody’s life.
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Several meta-analyses suggest that identifiable characteristics of self-regulated learning interventions result in improvement in students' academic performance and self-regulatory competence across content areas. Nevertheless, little is known about recent interventions and about specific characteristics of interventions that may be domain specific. In this systematic review, we targeted mathematics and reviewed 36 self-regulated learning intervention studies conducted with school-aged learners. We examined patterns of effective interventions with identified characteristics, such as theoretical guidance, type of strategies instructed, type of outcome assessments, and targeted outcomes. Findings revealed that those interventions grounded in metacognition-oriented theories and those interventions that targeted multiple strategies including cognitive, metacognitive, and motivational, tended to yield effective increases in both mathematics achievement and self-regulated learning. The review also examined patterns within interventions conducted from 1992 to 2020. Findings indicate recent interventions tend to adopt a social-cognitive SRL model and employ standardized knowledge assessments. Implications for practice and future self-regulated learning interventions in mathematics are discussed.
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INTRODUCTION

One focus of education is to develop self-regulated learners. Self-regulated learners are active agents who use a repertoire of knowledge and strategies to regulate their learning adaptively and efficiently (Zimmerman, 1990, 2002; Schraw and Moshman, 1995). Self-regulated learners also examine their strengths and weakness against academic task standards in order to set appropriate goals, deploy strategies, adapt to varying environments, and to overcome obstacles (Winne and Hadwin, 1998; Zimmerman, 2002). In addition to vast theoretical support that self-regulated learning strategies should result in increased learning (e.g., Zimmerman, 1990), findings from intervention studies establish that effective self-regulated learning (SRL) is associated with improved academic achievement (e.g., Schmitz and Wiese, 2006). Recent systematic reviews and meta-analytic studies (online learning: Broadbent and Poon, 2015; long-term effects of metacognitive strategy training: de Boer et al., 2018; learning strategies: Donker et al., 2014) examined different aspects of SRL interventions. Particularly, in the last decade, Dignath and colleagues conducted two comprehensive meta-analyses and examined the effectiveness of SRL interventions for primary and secondary school students (Dignath and Büttner, 2008; Dignath et al., 2008). Their findings demonstrated that students improved their academic performance as well as their self-regulatory strategy use through SRL interventions. In terms of academic domain, findings supported that SRL interventions were more effective for mathematics than language arts.

Given these previous findings, we were interested in a focused examination of possible unique elements that contribute to effective SRL interventions in mathematics in school-aged learners. School mathematics is a known gatekeeper to future careers in STEM fields (e.g., Douglas and Attewell, 2017; Scott et al., 2017; Woods et al., 2018; Torbey et al., 2020). Achievement and engagement in school mathematics are also critical factors for post-secondary mathematics enrollment (e.g., Byun et al., 2015; McDonald, 2016). Therefore, a specific focus on mathematics SRL interventions is warranted.

While students may benefit from general self-regulated learning interventions, effective SRL is domain- and task-specific. The strategies students employ, their motivational beliefs and efficacy, and the nature of their metacognitive knowledge and regulation would vary given a specific learning task and by academic domain (Rickey and Stacy, 2000). Further, self-regulated learning in mathematics may also present unique challenges. For example, Pape and colleagues recognized the critical and unique role that SRL can play in supporting mathematical thinking in middle school learners (e.g., Pape et al., 2003; Bell and Pape, 2014). Among other scholars, Aminah et al. (2018) also recognized the need for instruction to target SRL elements for effective mathematical thinking. Their work particularly targeted metacognitive teaching and learning in high school students.

However, there are differences in intervention elements for older learners (e.g., middle school and high school students) when compared to younger learners (e.g., kindergarten and young elementary students). Specifically, older learners may need more intense intervention activities and an incorporation of cognitive, motivational, and metacognitive elements to improve their mathematics learning effectively. There are several reasons. First, students in higher grade levels are at a critical time to develop learning in mathematics and to build trajectories toward STEM fields and other career paths (Anderton et al., 2017; Berger et al., 2020; Torbey et al., 2020). Second, students often do not successfully master mathematics content, especially as the demands of higher-level mathematics increase (Cleary and Chen, 2009; Grønmo et al., 2015). Particularly, mathematics may be more challenging for students who are experiencing the difficult transition from elementary to advanced mathematics. Challenges in advanced mathematics curriculum may lead to students' failure, a lack of interest in gaining mathematics achievement, and a detrimental decrease in engagement and subsequent learning in mathematics (Anderton et al., 2017; Berger et al., 2020). Effective self-regulatory strategies may serve to support older learners and mitigate the challenges they face. Young children, in comparison, face different challenges, such as recognizing and writing down mathematical symbols (Hughes, 1986), which requires different teaching and learning strategies.

To our knowledge, there is no previous systematic review of SRL interventions for mathematics targeting both young children and their older peers. With the emergence of new theoretical models of SRL and additional intervention studies, a more refined analyses of SRL interventions in mathematics is warranted. Therefore, in this systematic review, we identified the effective characteristics of existing SRL interventions focused on students' mathematics learning. Our intent is both to inform additional research and to advise effective classroom practice.



THEORETICAL MODELS OF SRL

SRL interventions are guided by theoretical models. SRL theoretical models include those proposed by Boekaerts (1996); Winne and Hadwin (1998); Pintrich (2000); Zimmerman (2000); Efklides (2011). Two theoretical reviews (Puustinen and Pulkkinen, 2001; Panadero, 2017) identified and compared models of SRL. Through their analysis, Puustinen and Pulkkinen (2001) determined SRL models can be categorized as motivation-oriented models, strategy-oriented models, and those with both orientations. Specifically, both Boekaerts' and Pintrich's models of SRL emphasize motivation and examine motivational factors in relation to students' learning. Pintrich, for example, incorporated motivational and affective aspects reflecting learners' self-efficacy and goal orientation during self-regulatory processes. Interventions grounded in these models target varied elements of SRL. For instance, corresponding to the affective component of Pintrich's model, Tzohar-Rozen and Kramarski (2014) examined fifth graders' mathematics achievement and affective self-regulation through a 5 week intervention designed to promote positive emotions with affective self-regulatory strategy use. Students were asked to reflect and self-question their emotions before, during, and after task completion, and to regulate possible negative emotions. Findings demonstrated that students who received the intervention significantly decreased negative emotions.

In comparison, Winne and Hadwin's SRL model is strategy-oriented and emphasizes metacognition. Specifically, this model defines SRL as a metacognition-driven process where learners regulate their learning and use of strategies based upon task context Winne and Hadwin (1998, 2008). Duffy and Azevedo (2015) adopted this model and examined undergraduates' growth in academic achievement and SRL through MetaTutor, a hypermedia tutoring system. MetaTutor aimed to scaffold students' SRL strategy use during their learning of the human circulatory system by providing prompts and feedback from a virtual tutor agent. Students in the experimental condition received prompts and feedback from the virtual tutor and were compared to students who received no prompts nor feedback. The prompts served as a reminder of strategy use and encouraged students to deploy specific SRL strategies for particular learning situations, such as rereading and assessing their own understanding of the human circulatory system, during the learning process. Findings indicated that students in the prompt and feedback condition demonstrated more frequent use of SRL strategies and improved achievement performance. Consistent with Winne and Hadwin's model, they emphasized teaching students' task-specific SRL strategies in context-specific situations.

In contrast, Zimmerman's three-phased cyclical SRL model (i.e., forethought phase, performance phase, and self-reflection phase) is considered both motivation- and strategy-oriented. The forethought phase reflects students' motivational factors (e.g., self-efficacy) in setting goals for a task, and strategic factors in planning use of strategies. The performance phase reflects motivational factors in completing the task and strategic factors in using strategies during task completion. For instance, students may use self-instructions as a strategy, as well as maintain motivation during the performance phase. Finally, the third, self-reflection phase, determines students' satisfaction with their task product, which, in turn, influences their next phases in setting goals, planning, and strategy use. With the interaction between motivation and strategy orientations, Zimmerman's phased cyclical model grounded in social-cognitive theory, provides a framework often adopted by researchers and practitioners. As the model describes self-regulatory processes in detail, it can provide insight into the effective design and testing of interventions for students' SRL and academic achievement (Panadero and Alonso-Tapia, 2014).

A more recent theoretical review by Panadero (2017) further examined SRL models and included newly emerged models and more recent empirical evidence. For instance, Efklides's (2011) model, which considers both metacognitive and affective perspectives [metacognitive and affective model of self-regulated learning (MASRL)] leverages previous theoretical SRL models. Specifically, Efklides' model includes a person level, which refers to a learner's characteristics, and a person-and-task level, referring to the interaction between a learner's characteristics and the nature of the task. The person level reflects Zimmerman's SRL model with a focus on affect; and the person-and-task level reflects Winne and Hadwin's SRL model that focuses on the task context. Dina and Efklides (2009) adopted the preliminary MASRL model and examined relationships among person characteristics, mathematics performance, and emotions by creating individual student profiles. As a result, they identified eight student profiles that reflected various person characteristics, such as self-anxiety, performance ability, and self-concept. The findings of the profiles further indicated that students with varied person characteristics had different task perceptions and varied levels of performance, as expected and supported by the MASRL model.

As such, the theoretical orientation adopted to support an intervention may directly influence elements of the intervention, the instructional strategies employed by the intervention, the degree and nature of scaffolding in an intervention, as well as the role and nature of feedback and assessments employed. Corresponding to Panadero (2017), the impact of interventions varied based upon their theoretical framework and therefore it is critical to consider which theoretical framework was adopted when examining the effectiveness of SRL interventions. In short, all aspects of an intervention may be influenced by the choice of theoretical framework. This review sought to explore these impacts.



EFFECTIVENESS OF SRL INTERVENTIONS

As noted, Dignath et al. (2008) conducted two meta-analyses focused on the effective characteristics of SRL interventions in classrooms. Their work demonstrated general improvement in students' academic performance and SRL through intervention, with an average effect size of 0.69 (Cohen's d). Dignath et al. (2008) first examined the effects of existing interventions on primary school students' SRL and academic performance based upon 48 comparisons resulting from 30 articles across academic content domains. They reported that, based on the included studies, interventions that targeted mathematics performance demonstrated the highest effect (d = 1.00). In comparison, SRL interventions that targeted reading and writing performance demonstrated less effect (d = 0.44). In further analysis, Dignath et al. (2008) categorized the intervention strategies into cognitive strategy, metacognitive strategy, and motivational strategy interventions. Findings showed that students benefited most from the combination of metacognitive and cognitive strategies or metacognitive and motivational strategies, when compared to interventions of cognitive strategies alone. Instruction of motivational strategies alone was also quite effective for both academic performance and SRL outcomes. Dignath and her colleagues further concluded that the most effective SRL interventions were grounded in social cognitive theory, and included instruction or training of combined cognitive, metacognitive, and motivational strategies (2008).

Building upon their previous review, Dignath and Büttner (2008) expanded their meta-analysis to include interventions conducted with secondary school students and drew comparisons to those with primary school students. They included 35 studies and reported that, overall, secondary school students' academic performance (d = 0.71) improved slightly better than primary school students (d = 0.68) through SRL interventions. Specifically, reading and writing performance demonstrated higher effect sizes for secondary school students (d = 0.92) than primary school students (d = 0.44) with the implementation of SRL interventions. In mathematics, however, SRL interventions were more effective for primary school students' mathematics performance (d = 0.96) than secondary school students (d = 0.23). These findings may correspond to the high difficulty and intensity in mathematics that secondary students confront. It also indicated the need to develop effective SRL interventions in mathematics for older students. Importantly, although the effect for secondary students in mathematics was lower than primary students, secondary students were reported to use strategies more effectively (d = 0.88) than primary students (d = 0.72). This finding corresponds to the developmental nature of SRL as secondary students tend to have a larger repertoire of strategies available to support their learning processes (Flavell, 1979; Flavell et al., 1995; Kuhn, 2000; Brown et al., 1996). Consistent with findings from Dignath and her colleagues' previous review, they reported that instruction for secondary school students with combined metacognitive and motivational strategies led to higher effectiveness when compared to cognitive strategies alone. However, little is known about how cognitive, metacognitive, and motivational strategies may affect students' SRL and learning in mathematics specifically. The present review examined how these types of strategies were varied in students' SRL and academic performance in mathematics.

Taking a closer look of strategies included in SRL interventions, a later meta-analysis by Donker et al. (2014) focused on specific types of strategies and substrategies that were implemented in SRL interventions with primary and secondary school students for writing, science, mathematics, and comprehensive reading. With a focus on strategy characteristics that may improve students' academic performance, they reported that, overall, strategy training in mathematics was more effective than comprehensive reading. Interestingly, cognitive strategies were found more effective in mathematics than motivational strategies, in contrast with Dignath et al. (2008). Donker et al. (2014) further examined student characteristics that may affect the effectiveness of interventions. Findings demonstrated that both primary and secondary school students benefited from interventions, however, there was not a significant difference between primary and secondary students. This differs from Dignath and Büttner (2008) where SRL interventions were overall more effective for primary school students when compared to secondary students in mathematics. In the present review, we sought to understand these inconsistent findings and to identify elements that may contribute to effective SRL interventions in mathematics.



SRL IN MATHEMATICS

SRL interventions are beneficial for learners' improved performance in a variety of academic domains. Empirical evidence indicated that SRL was associated with academic performance in general. For instance, Zimmerman and Martinez-Pons (1986) examined high school students' use of 14 SRL strategies by conducting a structured interview procedure across six different learning contexts including learning situations across domains (i.e., writing assignments and mathematics assignments) in classrooms and at home. Through the interviews, Zimmerman and Martinez-Pons (1986) found that, when compared to low-performing students, high-performing students utilized multiple strategies instead of a single strategy. High-performing students also reported more frequent use of SRL strategies than low-performing students who reported rarely using strategies. This evidence supported that SRL strategies were associated with academic achievement across academic domains and task contexts. However, SRL is also considered domain specific as it is related to students' cognitive skills in specific academic domains. For example, Moos and Azevedo (2008) reported that college students with high prior knowledge in biology tended to use monitoring and planning strategies frequently during a learning task with hypermedia when compared to students with low prior knowledge. Schunk (1987) also suggested that the domain specificity of SRL can be explained by the characteristics of self-efficacy. Specifically, self-efficacy refers to students' perceived capabilities to perform a future specific task (Bandura, 1986). Students tend to perceive their capabilities more accurately when more specific information is provided for the task. In SRL, the extent to which students feel self-efficacious about performing a task determines the plans and goals they set before the task, the strategies they use during the task, and the self-evaluation standards they compare against the final task product.

Within the domain of mathematics, Cleary et al. (2017) tested a SRL intervention (SREP) and found increases in middle school students' SRL and mathematics performance. Grounded in Zimmerman's SRL model, the SREP intervention guided students to understand SRL concepts, practice self-regulated strategies, and reflect on their performance. Similarly, Desoete et al. (2003) previously reported students' improvement in mathematics and SRL. In their study, students who were assigned to the metacognition condition received training sessions of metacognitive strategies. Findings demonstrated that students in the metacognition condition improved cognitive and metacognitive skills in mathematics than students in the control condition.

The above evidence is extracted from short-term SRL interventions, while longitudinal studies also showed significant improvement in students' mathematics achievement and SRL. For instance, Núñez et al. (2013) implemented a school-year long mentoring program with teacher mentors that taught 7th graders SRL strategy use to enhance their language and mathematics achievement and their SRL and motivation. Students were asked to read stories about how a story character overcame obstacles and deployed SRL strategies in different learning situations. Mentors then directed students to learn from those stories and self-evaluate their declarative knowledge, procedural knowledge, and conditional knowledge of different SRL strategy use (e.g., taking notes) during learning. Mentors also led discussions about how students could best deploy identified SRL strategies as well as build a larger repertoire of strategies. As a result, Núñez et al. (2013) reported that both students' SRL strategy use and their mathematics achievement were improved. Although these interventions demonstrated effective results in students' SRL and mathematics achievement, an examination of how these intervention activities were designed and delivered to students is in need.

Specifically, a variety of treatment traits of existing interventions can be further examined (e.g., types of strategies implemented). These treatment traits may reveal why existing SRL interventions for older mathematics students were less effective when compared to their younger peers. Further, identification of such treatment traits may also inform future directions in developing effective SRL interventions.

One overall purpose of this systematic review was to identify the effective characteristics of existing SRL interventions in mathematics, with a particular focus on older students relative to young elementary school students. Our second goal was to identify patterns of effective mathematics SRL interventions over time. Since the most recent systematic reviews of SRL interventions were conducted more than 10 years ago (i.e., Dignath and Büttner, 2008; Dignath et al., 2008), a timely update is warranted. Instruction of SRL strategies in classrooms may have changed. Therefore, examination of patterns and changes may reveal strengths and weaknesses of SRL interventions and how these interventions have evolved over time. We sought an in-depth understanding of existing SRL interventions with these goals. Overall, we have two research questions as following:

1. What are the effective characteristics of existing SRL interventions in mathematics for school-aged students?

2. What are the patterns of SRL interventions in mathematics over time?



METHODS


Inclusion Criteria and Search Procedures

This systematic review examined the characteristics of existing and publicly available intervention studies of SRL in mathematics classrooms. We developed a three-tier search strategy through electronic databases including PsycINFO, Educational Resources Information Center (ERIC), ProQuest Education, and Google Scholar. Our search of literature was limited to articles with publication years between 1990 and 2020. We further established specific inclusion criteria in line with the purpose of this review. The inclusion and exclusion criteria for the sampled studies are presented in Table 1. Book chapters were excluded from our search.


Table 1. Inclusion and exclusion criteria.
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We reviewed over 291 articles with our literature search and 36 articles met the inclusion criteria for the present systematic review. Specifically, we carried out the literature search in three tiers: online library database search, referrals search from the identified studies, and individual studies found through search existing review studies. We completed the first tier of search through PsycInfo, ERIC, and ProQuest for peer-reviewed articles using the following search terms: self-regulation, intervention, mathematics, metacognition, middle school students, high school students, learning strategies, motivation, self-regulated learning, school-based intervention. We conducted 10 searches with different combinations of these terms. We also searched the doctoral dissertation studies with the same search terms as we used for journal articles. Detailed search strategies are presented in Table 2.


Table 2. Search strategies.
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The identification of studies included two iterations. Our first identification of studies was conducted in 2017. We reviewed each of the studies from the first-tier search based on the established inclusion criteria. Duplicated studies and studies that did not meet the inclusion criteria were removed. After the first tier of search, we identified 13 studies to include. Through the second tier, we examined the citations of all the identified studies from the first-tier search and recognized studies that might potentially meet our inclusion criteria. We then accessed these studies from citations through Google Scholar. As a result, eight additional studies were identified. In the third tier, we extracted individual studies that met the inclusion criteria from existing meta-analysis and other review studies in the area of self-regulated learning. We identified four additional studies. Thus, the final number of identified studies was 28. We further conducted an updated identification of studies in 2020 including studies published between 2017 and 2020 and eligible doctoral dissertation studies. As a result, we identified 36 studies for the present review. Two independent raters' agreement of excluded articles reached 100%. Figure 1 shows the search and screening procedures and the article delimitation process.


[image: Figure 1]
FIGURE 1. Flowchart of article delimitation.




Coding Scheme

To promote comparisons with existing research and for consistency within existing reviews of SRL interventions, a coding scheme was adapted and expanded based on Dignath and Büttner (2008) to categorize the characteristics of the identified studies. Overall, our coding categories for the identified articles reflected categories and subcategories within six overarching themes: theoretical orientation, characteristics of the sample, characteristics of the treatment, type of the assessment instrument, type of outcome variables, and information for estimated effect sizes. Detailed coding categories including sub-categories are shown in Table 3.


Table 3. Coding scheme for identified studies.
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Theoretical Orientation

As established, the theoretical framework or model is foundational when designing and developing an intervention. Interventions based on different theoretical models may result in varied effects on students' achievement and SRL (Puustinen and Pulkkinen, 2001; Panadero, 2017). Therefore, we coded theoretical models of SRL for each identified study to examine potential differences in intervention effectiveness. Across interventions, the theoretical models of SRL were categorized into three larger theoretical orientations: social-cognitive theory-oriented (e.g., Zimmerman's model), metacognition theory-oriented (e.g., Winne's model), and motivation theory-oriented (e.g., Pintrich's model). Most of the studies were designed based on one theoretical orientation. When a study was grounded in more than one theoretical orientation, it was coded as combination of theoretical orientations. A few studies did not state clearly which theoretical model was adopted. We coded these studies without a clear statement of theory as “unknown.”



Sample Characteristics

Sample characteristics included the total size of a sample, the size of a treatment group, and the size of a control group. This category also included the geographical location where the intervention was implemented and participants' age and grade level information.



Treatment Characteristics

Treatment characteristics specified elements of the design of an intervention or of the training. Coded subcategories included: type of study design, nature of control group, condition assignment, delivery mode, teacher training, type of strategy, and duration of intervention. Specifically, the implementation of a pre- or post-test, and the assignment of a control group as a comparison group were coded as types of study design (e.g., pre-post-control design). When a control group was assigned, the nature of the control group was also categorized. Particularly, a control group was coded as “received nothing,” “received alternative treatment,” or received “other.” Experimental designs and quasi-experimental designs were categorized separately based upon the involvement of random assignment. Furthermore, delivery mode indicated the agent, such as the teacher or a researcher, who delivered the intervention. Moreover, when teachers were the agents, whether they received a training session from authors was coded as Yes or No.

According to Boekaerts (1999), there are three types of self-regulated learning strategy interventions (i.e., cognitive strategies, metacognitive strategies, and motivational strategies). Specifically, cognitive strategies are content-specific or domain-specific in mathematics. Strategies that focus on enhancing students' problem-solving skills or any other content-specific skills were coded as cognitive strategies. Metacognitive strategies were coded when an intervention involved the improvement of certain self-regulatory constructs. For example, strategies that help students to monitor, plan, and regulate their learning processes were coded as metacognitive strategies. Finally, motivational strategies refer to strategies that target students' motivation and affect for learning mathematics. For example, interventions designed to enhance students' self-efficacy or affective self-regulation, were coded as motivational strategies. The duration of interventions was also coded, specifying the number of treatment sessions and the number of total hours from available information provided in the articles.



Types of Achievement Assessment

When a pretest was administered, differences in the pretest were coded as either some group differences or no group differences. The types of assessment that measured mathematics achievement outcomes were coded into three categories based on our review of the identified studies: standardized knowledge test, researcher-developed test, and teacher-developed test. With respect to students' changes in SRL, we specified the type of SRL measure that was used including self-report questionnaires, calibration techniques, students' diaries, think-aloud approach, and mathematics discourse analysis.



Types of Outcome Variables

In line with our purposes for the present systematic review, we focused on two types of outcome variables, mathematics achievement and SRL-related outcomes. Specifically, we examined whether students' mathematics performance and SRL improved through intervention, and therefore statistical significance of results was also coded.



Effect Size Estimates

To compare the effectiveness of the interventions on students' mathematics performance and SRL, effect size estimates of students' math performance scores and scores on SRL measures were calculated with the statistical information provided by the authors of the articles. Information needed for effect size calculations was guided by Lipsey and Wilson (2001)'s coding scheme for effect sizes. Eight studies did not provide adequate information for effect size calculations for mathematics outcomes. Moreover, ten studies did not include adequate information for calculating effect sizes of SRL outcomes. The authors of these studies were contacted; however, the required information was not available and therefore, these studies were excluded for the calculations of effect size estimates.

Effect size estimates were calculated by an effect size calculator developed by David Wilson [read Lipsey and Wilson (2001) for more information]. In particular, Cohen's d was calculated by obtaining the mean difference between the conditions on the posttest (i.e., mean score of experimental condition minus mean scores of the control condition) and then divided by the pooled standard deviation obtained from the study. Thus, a positive Cohen's d indicates an increase on the outcome variable and a negative Cohen's d indicates a decrease on the outcome variable. The extent of effectiveness was determined by the magnitude of the effect size (small effect: d = 0.2; medium effect: d = 0.5; large effect: d = 0.8, Cohen, 1988).

Most of the studies were designed as pre- and post-test control with two groups. Some studies, however, included more than two groups. In these cases, we identified the treatment group with a SRL component and then calculated the effect size based on the difference in outcome between the SRL treatment group and the control group. For instance, Tzohar-Rozen and Kramarski (2017) examined the extent to which fifth graders' mathematics achievement benefited from a self-regulation intervention. Their intervention included three conditions including a metacognitive regulation condition, an affective regulation condition, and a control condition. In the metacognitive regulation condition, students were explicitly trained to ask themselves questions during the mathematics problem-solving process. In comparison, the affective regulation condition had an emphasis on students' emotion, which is not the focus of the present review. Therefore, in this case, we only calculated the effect size for the difference between the metacognitive regulation condition and the control condition. Furthermore, some studies included multiple achievement outcomes to compare with the control condition. For instance, Kramarski and Zoldan (2008) administered two mathematics achievement tests because their intervention addressed two specific content areas: linear functions (e.g., definition of linear functions) and graph interpretation (e.g., interpretation of linear graphs). Therefore, there were two effect sizes calculated for the achievement measures. For such studies, the average of two effect sizes was recorded.

Two independent raters coded the theoretical orientation and type of strategy for each identified article as these two coding categories were considered more likely to contain variation in coding when compared with other categories, such as sample size and location. For instance, some researchers did not explicitly state their strategy was cognitive, metacognitive, or motivational, which required the two raters to identify the type of strategy based on their research experience and other information provided in the study. The exact agreement for the category of theoretical orientation was 0.82 and was 0.71 for the type of strategy between two raters. Discrepancies in coding were resolved by discussion.





RESULTS


Research Question 1: Characteristics of the Existing SRL Interventions in Mathematics

Our overarching purpose was to examine the characteristics of the existing SRL mathematics interventions for school-aged students. The identified studies were published between 1992 and 2020. We particularly focused on five elements: the theoretical orientation that these studies adopted, the characteristics of the sample, the characteristics of the treatment, the assessment of mathematics achievement and SRL, and the estimated effect sizes associated with these four characteristics on outcome variables (i.e., mathematics achievement outcome and SRL outcome) across 28 years. Detailed information about the categories is presented in Table 4. We considered these characteristics as necessary elements to identify and describe SRL interventions in mathematics.


Table 4. Coding information of the identified studies.
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To further address our purpose, we also compared trends with previous meta-analyses (Dignath and Büttner, 2008; Dignath et al., 2008). Dignath and Büttner (2008)'s meta-analysis provided a snapshot of SRL intervention characteristics in promoting self-regulated learning across academic domains at primary and secondary schools. They suggested potential effective training characteristics for SRL and critical implications for classroom practice. The present systematic review focused on the domain of mathematics and drew comparisons to characteristics identified by Dignath and Büttner (2008). We also examined and compared some other characteristics and their effects on mathematics with those previously reported, such as students' participation in cooperative learning and the delivery approach of strategic instructions.


Theoretical Orientation

Overall, the theoretical orientations adopted by the identified studies corresponded to our coding categories and the extant SRL models. Specifically, of the 36 identified studies, design of 15 intervention studies was solely grounded in social-cognitive perspectives, 10 studies solely adopted metacognitive theories, four studies solely adopted motivational theories, five studies were grounded in a combination of theoretical frameworks [i.e., combination of metacognitive and social-cognitive theoretical orientation (n = 3), combination of motivational and social-cognitive theoretical orientations (n = 1), and combination of metacognitive and motivational theoretical orientations (n = 1)]. However, two studies lacked explicit description of the theoretical perspective adopted and were coded as unknown.

Including the studies with combined theoretical orientations, a number of 19 studies were grounded in social-cognitive theories. For instance, Zimmerman's cyclical model was consistently adopted across these studies. Studies grounded in Zimmerman's model, in general, were designed with different stage goals aligned to the three cyclical phases that he proposed. For instance, Otto and Kistner (2017) implemented a training program to enhance fourth-grade students' SRL in mathematics learning. Five training sessions were distributed in three phases: pre-action phase, action phase, and post-action phase. The pre-action phase consisted of two sessions focused on guiding students, for example, to set goals and make plans toward the upcoming tasks. The action phase consisted of two sessions focused on the active process of mathematics problem-solving during task completion. Finally, the post-action phase consisted one session focused on evaluating and reflecting on learning results after task completion. As such, this type of intervention design corresponds to Zimmerman's SRL cyclical model as well as its sub-processes.

In comparison, studies grounded in Pintrich's model an emphasized learners' motivation and affective self-regulation. Specifically, we identified three studies solely grounded in Pintrich's model, which is motivation-oriented, and an additional two grounded in a combination of motivational and metacognitive or social-cognitive theoretical orientation. For instance, Tzohar-Rozen and Kramarski (2014) adopted Pintrich's model (2000) in their study focused on students' emotion regulation, metacognitive regulation, and mathematics achievement. Specifically, in the training sessions, teachers were asked to promote students' positive emotions and to deliver affective self-regulation strategies toward mathematics problem-solving through teacher-student dialogues. Collectively, although Zimmerman's and Pintrich's models both have some social-cognitive and motivational perspectives, they target different foci when guiding the design of interventions.

Notably and interestingly, within the 14 studies (i.e., 10 single metacognitive-oriented theories and four combined metacognitive-oriented theories) grounded in metacognitive theoretical orientation, seven of these studies were conducted by the same research team, Kramarski and her colleagues. These seven studies adopted an established mathematics and metacognition training model called “IMPROVE” developed by Mevarech and Kramarski (1997). The IMPROVE model represented teaching and learning strategies for students' metacognitive development and mathematics learning and specifically included Introduction of new mathematics topics (I), Practicing (P), Reviewing (R), Obtaining mastery skills (O), Verifying learning results (V), and Enriching learning content (E). According to Mevarech and Kramarski (1997), IMPROVE was grounded in a metacognitive perspective and encouraged students to use metacognitive questioning strategies during mathematics task completion to improve their problem-solving and monitoring process. These seven studies were application of the IMPROVE model and produced positive effects for students' metacognition and mathematics learning. These positive effects suggest that interventions grounded in metacognitive theories can be valuable in practice for students' mathematics learning, although more research is needed to examine the degree of generalizability from such interventions.

Effect size estimates indicated that metacognition-oriented interventions resulted in better effects for improving students' mathematics performance and SRL, when compared to social-cognitive theory. This finding supported that the design of an intervention grounded in different theoretical perspectives may produce differential effects on students' mathematics achievement and changes in SRL.

Newer SRL models developed in the recent decade, such as Efklides (2011)'s model (Metacognitive and Affective Model of Self-Regulated Learning-MASRL), were not directly adopted in our identified studies. Notably, however, several authors cited MASRL in their introduction. For instance, when Cleary et al. (2017) described the multidimensional and dynamic nature of SRL in their literature review section and cited Efklide's model to illustrate the refinement of SRL theoretical models in the recent years. Future researchers may investigate person and task level characteristics in promoting students' SRL through intervention grounded in this model.



Sample Characteristics

Across the 36 studies, the sample sizes ranged broadly from 26 to 762 (M = 161.36, SD = 145.29). For instance, Digiacomo and Chen (2016) conducted a metacognitive intervention with 30 middle school students randomly assigned to two conditions and measured students' predictive accuracy and post-dictive accuracy of their performance judgments. They reported insignificant statistical results on mathematics performance and the accuracy of performance judgments. However, the effect size represented a large effect on students' mathematics performance (d = 1.036). This indicated that the statistical significance of this study may be limited by the small sample size when compared to the practical significance. However, some studies that included large samples, such as Cardelle-Elawar (1995) (n = 489), and Stoeger and Ziegler's intervention (2006) (n = 393), demonstrated statistically significant and practically effective results in general. Specifically, Cardelle-Elawar (1995) reported that students in the experimental condition significantly outperformed students in the control condition. Similarly, Stoeger and Ziegler (2006) reported statistically significant improvement on both mathematics and SRL outcomes. A medium effect size was found on students' mathematics achievement between treatment and control conditions (d = 0.32). Nonetheless, these large sample sizes did not always indicate practically effective and statistically significant outcomes on either mathematics achievement or SRL. For instance, with a sample size of 249 students, Perels et al. (2005) (n = 249) reported minimal effects on both students' mathematics performance (d = 0.01) and SRL (d = 0.09), when compared to the control group. This may be explained by the increasing difficulty of implementation as sample size increases. In particular, the treatment fidelity of the studies may be hard to control and maintain, especially when it involves cooperation among multiple teachers and/or schools, as well as consistent training and communication. Thus, it is understandable that there was not a single pattern to describe the effectiveness of an intervention and its sample size.

Although we searched literature across primary and secondary grade levels, the grade levels across samples did not vary widely in our review, ranging from Grade 4 to Grade 9. Specifically, after we read through these excluded studies with very young children, we found that these studies usually tend to have a focus on behavioral self-regulatory strategies and outcomes for students with learning disabilities or difficulties. For instance, Fuchs et al. (2003) delivered a SRL intervention for 3rd graders' mathematics learning focused on children with disabilities. Another longitudinal study conducted by Vauras et al. (1999) focused on Grade 3 students with learning problems. They asked students to complete the word problem solving task by following and repeating a set of steps in order to help them learn the strategies. Studies that focused on younger children also tended to target the behavioral aspect of self-regulation. For example, DeFlorio et al. (2019) assessed kindergarten children' self-regulation by asking them to perform gift wrap tasks. Thus, studies like these with a special group of students and a different focus of SRL from our goals of the systematic review, were excluded from our selection.

We further coded the location where the intervention was implemented. We recognized that more studies were conducted outside of the United States, with many studies conducted in Israel and Germany. For instance, the interventions conducted by Kramaski and her research team, which represent almost one third of our selection, all took place in Israel.



Treatment Characteristics

Among the 36 intervention studies, we identified several distinct characteristics regarding the SRL treatment: the types of strategy implemented, the duration of the intervention, the delivery of training, and students' participation in cooperative learning.

We identified three types of strategies including cognitive strategies, metacognitive strategies, and motivational strategies throughout the selected studies. Some interventions only implemented one type of strategy, while others incorporated multiple strategies. The majority of studies implemented combined strategies (n = 27) and 24 studies included metacognitive strategies. Specifically, 10 studies implemented a combination of all three types of strategies, 14 studies implemented the combination of metacognitive and cognitive strategies, three studies implemented the combination of metacognitive and motivational strategies, six studies implemented metacognitive strategies only, two studies implemented motivational strategies only, and one study implemented cognitive strategies only.

Strategies that were categorized as metacognitive had a focus on training students' metacognitive awareness to be self-regulated learners in mathematics. For instance, Kramarski and Zoldan (2008) implemented both metacognitive and cognitive strategies for ninth graders. In particular, they compared the effects of three metacognitive strategies on students' mathematical reasoning, including error diagnosis, self-questioning, and the combination of the two. Students in the error diagnosis condition were asked to evaluate their answers to math problems and diagnose their incorrect answers with potential justifications. Students assigned in the self-questioning condition were required to ask themselves questions while they were solving math problems. For example, students would ask themselves whether they understood the question before they started to solve the problem. These two strategies both aimed at training students' metacognitive thinking during a mathematical reasoning task. Kramarski and Zoldan (2008) reported that students who received the combination of the two metacognitive strategies demonstrated the most effective improvement on the problem-solving task (d = 0.38) when compared to students who received no strategy training. Furthermore, students who received the combination of the two outperformed students who received either the error diagnosis strategy only or self-questioning strategy only. These strategies demonstrated increased performance in the problem-solving task and but also increased metacognitive monitoring. Specifically, students in the combination condition outperformed students in the control condition on self-monitoring errors in the posttest (d = 2.69).

In comparison, interventions coded as cognitive strategies focused on teaching students for particular mathematical problem-solving tasks. Panaoura (2012) implemented a mathematical model that included six stages to solve a mathematical problem: understanding the phenomenon under investigation, constructing a mathematical model, working through the mathematical model using disciplinary methods, interpreting the outcome of the computational work, evaluating the model by checking the interpreted outcome, and communicating the solution of the problem. Thus, this strategy model focuses on guiding students to perform better on the mathematical problem-solving task. Specifically, students were asked to complete the mathematical problem-solving task on a computer following the six stages corresponding to the model. Panaoura (2012) reported that students demonstrated improved performance and self-regulated strategy use. Information was unavailable to calculate the effect size of the intervention.

Moreover, a few studies implemented motivational strategies combined with other strategies. In particular, these studies focused on enhancing students' self-efficacy and goal setting in mathematics learning. For instance, Perels et al. (2009) implemented an intervention focused on improving students' self-motivation and goal pursuit in mathematics learning. Results showed that students in the experimental group demonstrated improved mathematics achievement performance (d = 0.44) and improved self-regulation overall (d = 1.40).

Throughout the 36 studies, we identified emerging patterns regarding the association between types of strategies and effectiveness. That is, studies that included multiple types of strategies tended to be more effective than studies that included a single strategy. This pattern is consistent with results reported by Dignath and Büttner (2008). Specifically, they reported that interventions for secondary school students that solely include cognitive strategies were less effective than those that combined metacognitive and motivation strategies. Training students with multiple strategies may assist them to better deploy strategies as one strategy may complement students' understanding of others. For instance, learning metacognitive strategies helps students to be better aware of which cognitive or motivational strategy is appropriate for a particular task or situation. However, findings from the present review indicated some exceptions. For example, Perels et al. (2005) implemented a combination of all three types of strategies with limited benefit for mathematics performance or SRL outcomes (i.e., d for math = 0.01, d for SRL = 0.09).

The duration of the intervention also varied among the 36 studies. Specifically, based on the available information provided in the studies, intervention duration ranged from one session to 49 sessions. Overall, there was no consistent pattern in the relationship between the duration of intervention and effect size. For instance, Schmitz and Perels (2011) obtained an effect size of d = 0.22 on students' mathematics performance with their 49 day intervention; while Digiacomo and Chen (2016) obtained an effect size of d = 1.04 with their one session and 3.75 h intervention. Perhaps some interventions tend to produce immediate large effects that may fade as the intervention persists. This idea is not consistent with results reported by Dignath and Büttner (2008). Specifically, Dignath and Büttner (2008) reported that interventions with a longer duration tended to be more effective. Their finding aligns with former research on the development of metacognition and self-regulation as well as the development of strategies (Alexander et al., 1998; Kuhn, 2000). In general, it requires time for students to generalize and master new strategies and providing students with adequate time during intervention allows them to practice newly learned strategies.

Nevertheless, no consistent pattern was identified in the present review. There may be several explanations. First, perhaps, the sample size of studies was small due to our specific inclusion criteria. Second, not all the studies reported specific hours or sessions that interventions were delivered to students. Last, other training characteristics may play a stronger role in intervention effects such that duration of interventions did not form a trend. While counter intuitive, these findings correspond to previous research. de Boer et al. (2018) also reported no effects for intervention duration on students' academic performance when metacognitive strategies were implemented in interventions.

Further, how interventions were delivered was coded as either training delivered by researchers or training delivered by teachers. Dignath and Büttner (2008) reported that interventions had more effective outcomes if the training instructions were delivered by researchers when compared to teacher delivered training. The present review, however, does not support this finding. First, in the studies reviewed here, the majority of interventions were delivered by teachers, with 10 studies delivered by researchers. Therefore, there were not enough cases to determine which delivery approach is more effective. Notably, the intervention (i.e., Cardelle-Elawar, 1992) that had the highest effect size on achievement performance was researcher-delivered. It may be that the majority of interventions were delivered by teachers because SRL interventions in mathematics are highly related to mathematical curricula, thereby making teachers best suited to deliver intervention. Further, most interventions were conducted in classrooms during class sessions and having teachers deliver them may result in both less disruption and greater external validity.

In addition, students' cooperative learning was defined by whether the experimenters or instructors created an environment that encouraged students to discuss or work together. For instance, Perels et al. (2009) designed their intervention with an element of group work. Specifically, in their first two sessions of self-regulation strategy training, they asked students to learn strategies in a group format involving communication with each other. Students were also asked to work together to make posters representing their strategy learning. Results indicated positive effects on both mathematics achievement performance (d = 0.44) and SRL as measured by a questionnaire that the research team constructed (d = 1.40). Findings from Dignath and Büttner (2008) supported benefit for cooperative learning and reported that group work had a positive impact on intervention effect sizes. Similarly, in the present review, interventions that included group work all demonstrated positive effects on mathematics and SRL, with small to large effect sizes (i.e., d = 0.31 to 0.44 for mathematics; d = 0.21 to 1.40 for SRL). Most studies (n = 24) that we identified, however, encouraged students' independent work instead of group work with only 12 studies emphasizing on group work. Nonetheless, given the benefit of group work on the effects of SRL interventions, group work may be a viable way to enhance the outcomes of an intervention.

The type of the mathematics assessment administered was another important characteristic examined in the identified intervention studies. Three types of mathematics assessments were identified and included. Standardized math tests (n = 8), teacher-generated math tests (n = 6), and researcher-generated math tests (n = 21). Three studies administered more than one of these assessments: Tzohar-Rozen and Kramarski (2014), Tzohar-Rozen and Kramarski (2017), and Verschaffel et al. (1999).

Overall, 28 studies had available information for the calculation of effect sizes, as well as explicit information with regard to the type of assessment. Most researcher-generated assessments demonstrated higher effect sizes when compared to teacher-generated and standardized mathematics assessments. Moreover, teacher-generated achievement assessments tended to be associated with lower effect sizes than researcher-generated and standardized assessments. The strength of intervention effects on researcher-generated achievement assessments may be the result of their close association with the elements of the intervention.




Research Question 2: Patterns of SRL Mathematics Interventions Over Time

We were also interested in identifying any patterns of elements of SRL interventions in mathematics over time and examined patterns for theoretical frameworks, treatment characteristics, and types of achievement assessments.


Theoretical Framework

The timeline of theoretical frameworks indicates some interesting trends. First, metacognition was the primary focus of SRL mathematics interventions in the 1990s and early twenty first century. Social cognitive theory, particularly Zimmerman's model, was not a focus of intervention until 2005. Since then, however, the model has been highly influential. Similarly, since 2006, Pintrich's SRL model with a focus on motivation, also became more frequently adopted by SRL researchers. These trends indicate the changing influence of SRL theories, with most of the recent intervention studies in mathematics grounded in Zimmerman's cyclical model rather than previous emphasis on metacognition frameworks.



Treatment Characteristics

We first examined the implementation of strategies developed between 1992 and 2020. Findings show that metacognitive strategies aimed at promoting students' self-regulated learning appeared throughout the entire timeline. Notably, however, motivational strategies were not of focus until 2006, and have since became much more popular, after 2012, especially in combination with cognitive and metacognitive strategies. This increase is likely associated with the development and refinement of SRL theories that more recently include affective factors in more recent SRL models. The inclusion of multiple strategies in SRL interventions for mathematics was quite consistent across time and represented one of the most common features of all interventions.

The types of assessments used in interventions demonstrated some trends across time. Specifically, researcher-generated achievement tests are the most common throughout the timeline. All the identified studies that were published from 1992 to 2004 administered researcher-generated achievement tests only. Notably, teacher-generated achievement tests first appeared in 2005. Then, the administration of standardized achievement tests appeared in 2006. Standardized achievement assessments were more often administered from 2012 to 2018. Moreover, the combination of both researcher-generated achievement tests and standardized achievement tests appeared in more recent years. Interestingly, teacher-generated achievement tests tended to produce a roughly consistent magnitude of effect (Mean of effect sizes d = 0.24) while researcher-generated achievement tests tended vary from the lowest effect at −3.51 to the highest at 5.99.





DISCUSSION

Overall, the characteristics that we identified in this systematic review support the effectiveness of SRL interventions in mathematics for school-aged students. This systematic review contributes to the literature in several ways. First and broadly, to our knowledge, this is the first systematic review focused on SRL interventions in mathematics. The picture generated from this systematic review may directly inform research and practice in mathematics to improve SRL interventions and to support student learning as self-regulation may be best targeted to specific academic domains (Wolters and Pintrich, 1998). Indeed, although mathematics as an academic domain requires domain-general strategies that support students' learning, mathematics also requires specific and unique strategies less employed in other domains or within specific mathematics content or curricula. Further, an updated systematic review of SRL interventions allows researchers to draw comparisons with previous review studies and discern developmental patterns of SRL interventions across the last decades. The present review demonstrates patterns among SRL interventions over time and can inform future research directions in SRL interventions with regard to refinement of theoretical support, implementation of a combination of strategies within intervention, and approaches of delivering the intervention.

While this systematic review provided a critical update to previous reviews and contributed to understanding of effective SRL intervention in mathematics, there are recognized limitations. First, we identified the effective characteristics in mathematics. However, characteristics of SRL interventions may work differently in other academic domains. Updating and investigating intervention characteristics for other domains is a future direction. Second, some intervention studies included in this review did not report adequate information for the calculation of effect size. This may result in an incomplete understanding of the effectiveness of SRL interventions. Future research may address this issue with comprehensive meta-analyses. Third, we acknowledge that there may be characteristics of the interventions that we did not identify or overlooked that may prove important. For instance, the inclusion of psychometric properties of the measures used may be a characteristic to further examine. Thus, future research may expand upon our coding scheme to capture additional intervention characteristics, such as delivery method (e.g., online format of instructions in mathematics courses: Broadbent and Poon, 2015). Finally, a large portion of the studies included in this review were conducted by the same research team (i.e., Kramarski and colleagues). Drawing conclusions from one research model may result in limited understanding of the benefits of interventions more broadly. As more SRL interventions in mathematics are developed from additional perspectives, future research will allow comparison across interventions.
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In today’s digital information society, mathematical and computational skills are becoming increasingly important. With the demand for mathematical and computational literacy rising, the question of how these skills can be effectively taught in schools is among the top priorities in education. Game-based learning promises to diversify education, increase students’ interest and motivation, and offer positive and effective learning experiences. Especially digital game-based learning (DGBL) is considered an effective educational tool for improving education in classrooms of the future. Yet, learning is a complex psychological phenomenon and the effectiveness of digital games for learning cannot be taken for granted. This is partly due to a diversity of methodological approaches in the literature and partly due to theoretical and practical considerations. We present core elements of psychological theories of learning and derive arguments for and against DGBL and non-DGBL. We discuss previous literature on DGBL in mathematics education from a methodological point of view and infer the need for randomized controlled trials for effectiveness evaluations. To increase comparability of empirical results, we propose methodological standards for future educational research. The value of multidisciplinary research projects to advance the field of DGBL is discussed and a synergy of Affective Computing and Optimal Experimental Design (OED) techniques is proposed for the implementation of adaptive technologies in digital learning games. Finally, we make suggestions for game content, which would be suitable for preparing students for university-level mathematics and computer science education, and discuss the potential limitations of DGBL in the classroom.

Keywords: game-based learning, active learning and teaching methodologies, academic emotions, academic motivation, STEM education, computational literacy, research practice


INTRODUCTION

Mathematical and computational skills have become an integral component of basic literacy, and improving students’ proficiency in mathematical and computational thinking plays a key role in many countries’ education strategies (Committee on STEM Education, 2018; European Schoolnet, 2018).

Yet, while over the last decades Organisation for Economic Co-operation and Development (OECD) countries’ expenditure per student increased on average by 15%, students’ performance did not change significantly (OECD, 2019b). Pertaining issues are the significant and robust relationship between socioeconomic status and academic performance, especially in science and mathematics (Thomson, 2018; OECD, 2019b), a negative association between countries’ socioeconomic inequality and performance in the Programme for International Student Assessment (PISA; Parker et al., 2018), and decreasing mobility between socioeconomic backgrounds (OECD, 2018). Students generally tend to lose motivation, competency beliefs, and interest along the educational chain (Wigfield et al., 1991; Jacobs et al., 2002; Frenzel et al., 2010), which in turn affects academic performance (Singh et al., 2002; Arens et al., 2016) and course selection (Köller et al., 2001). Accordingly, educational interventions are needed which effectively decrease achievement gaps, sustain motivation, engagement, and interest in mathematics and computational subjects and provide educational opportunities which all students profit from (van den Hurk et al., 2019).

Playful learning (Hirsh-Pasek et al., 2009) has long been advocated as a promising pedagogical approach for effectively teaching students mathematics and computer science in an engaging, fun and motivating way (Mayo, 2009; Papastergiou, 2009; Zosh et al., 2016). Game-based learning interventions are supposed to offer students active self-guided learning opportunities and positively affect attitudes, emotions, motivation, and engagement (Vandercruysse et al., 2012; Weisberg et al., 2016).

With PISA’s focus for 2024 being on the “ability of students to learn in a digital world,”1 the importance of digital learning, including digital game-based learning (DGBL), can be expected to rise. The anticipated benefits of digital over non-digital learning tools lie in their flexibility, adaptiveness, and interactivity which foster non-linear and self-directed (no preset order, students can actively choose the next step) learning (Hsiao et al., 2010; Brusilovsky, 2012; Kärkkäinen and Vincent-Lancrin, 2013; Committee on STEM Education, 2018). Yet, to ensure the effectiveness of digital learning, the design and development of digital learning environments should be evidence-based and grounded on psychological theory. Furthermore, rigorous scientific evaluations of digital learning tools are required to systematically assess their relative effectiveness regarding learning outcomes and psychological effects (Kickmeier-Rust et al., 2006; Kickmeier-Rust and Albert, 2010; Nussbaumer et al., 2019). In the following, we briefly review key psychological literature on the relationship between emotion, motivation, mode of information acquisition, and learning. Based on the reviewed evidence, we develop our arguments for and against DGBL, infer the need for interdisciplinary research and advanced technology, and propose methodological standards for effectiveness evaluations.



PSYCHOLOGICAL THEORY OF LEARNING

Learning-related cognitive, motivational and emotional processes shape the learning process (Arens et al., 2016; Pekrun et al., 2017), as well as the way information is acquired (Bruner, 1961; Schunk, 1990; Gureckis and Markant, 2012; Ruggeri et al., 2019). These variables are closely interrelated and significantly shape the learning process. Thus, they deserve special consideration in any educational setting.


Academic Emotion

Academic emotions are defined as emotions students experience in an academic setting, i.e., emotions associated with achievement, instruction, and the learning process (Pekrun et al., 2002, 2017). Mathematics emotions are closely related to mathematics achievement: over a 5 years period of annual testing (grades 5–9), mathematics performance, measured by end-of-the-year grades and standardized test scores, and mathematics emotions, measured with the Achievement Emotions Questionnaire (AEQ)-Mathematics (Pekrun et al., 2011), reciprocally affected each other (Pekrun et al., 2017). Mathematics anxiety has been consistently shown to be negatively associated with mathematics performance, with effect sizes being moderate (Ma, 1999; Namkung et al., 2019).

Emotions have a subjective, a cognitive and a behavioral component. Due to their complexity, they often cannot be pinpointed to one concrete sensation. For example, when working on a challenging task, students can be anxious that they might fail, motivated to master the challenge, and proud when they master sub-goals – all at the same time. Given that emotions are associated with other learning-relevant psychological resources such as motivation, attitudes, and interest, stimulating positive academic emotions, accurately detecting students’ emotions, and reacting to them appropriately are of crucial importance in educational settings.



Emotion and Motivation: Control Value Theory of Achievement Emotions

Control value theory of achievement emotions describes the relationship between academic emotions and motivation (Pekrun et al., 2007a; Pekrun and Stephens, 2010). Students’ expectations, attributions, and competency beliefs influence their perceived control, which evokes an emotional reaction. For example, when being asked a question by the teacher, low perceived controllability of the situation may arise from the belief that one is not talented in mathematics. This creates the expectation of being unable to answer the question correctly, which in turn may evoke anxiety, helplessness, or sadness. In contrast, when feeling in control, a student may enjoy the opportunity to answer a question and be the focus of attention. The perceived value of an academic activity shapes the strength of the experienced emotion. For example, a high or low test score in a mathematics exam may not evoke strong emotions in a student who thinks that mathematics is not important for her future life, in contrast to a student who values mathematics very highly.



Active Learning and Flow Theory

Active learning environments give students the opportunity to self-regulate, develop intrinsic motivation, and exert control over the learning process (Bandura, 1991; Zimmerman et al., 1992; Zimmerman, 2002), which are beneficial for children’s psychological development and learning outcomes (Bruner, 1961; Kolb, 1984; Boekaerts, 1997). From a cognitive and computational perspective, active information acquisition and control over the flow of incoming information positively affect efficiency of information acquisition, learning, and memory (Gureckis and Markant, 2012; Ruggeri et al., 2019). Flow theory (Csikszentmihalyi, 1975; Csiksentmihalyi and Schiefele, 1993) states that intrinsically motivated behavior and the experience of flow are fostered in situations, which are shaped by a learner and characterized by a fit between learners’ abilities and the demands of a situation.



A Psychological Argument for Game-Based Learning

This brief discourse into the psychology of learning elucidates the complex interrelation between characteristics of the learning environment, students’ academic motivation and emotions, and learning outcomes. Well-designed learning games are interactive learning environments which give students the opportunity to acquire knowledge and practical skills in a playful and self-directed way, experience engagement and flow and develop positive attitudes, feelings, and competency-beliefs (Gee, 2008; Kapp, 2012; Plass et al., 2015; Weisberg et al., 2016; Becker, 2017). Digital learning games are expected to even expand these positive characteristics of learning games, given their high flexibility, engagement, and fun due to their digital nature (Prensky, 2003). Yet, to successfully exploit the psychological, pedagogical, and academic potentials of games in DGBL environments, not only a firm grounding in psychological and pedagogical theories (Malone, 1981; Ryan et al., 2006; Starks, 2014) but also adherence to standards in digital educational game design (Göbel et al., 2018), advanced technologies and rigorous effectiveness evaluations are of fundamental importance. In the following, we discuss previous literature on DGBL and make methodological suggestions for future research in the field. We stress the need for interdisciplinary research projects and advances in technology research, especially for implementing adaptivity in learning games. We also highlight possible limitations of DGBL and suggest ways to overcome these limitations.




DIGITAL GAME-BASED LEARNING RESEARCH: CURRENT PRACTICE AND FUTURE DEVELOPMENTS

Research on DGBL paints a complex picture: it is generally characterized by a multitude of approaches, terminologies, and methodologies (Connolly et al., 2012; Boyle et al., 2016; de Freitas, 2018). While some studies report overall positive effects of digital game-play on learning outcomes (Chang et al., 2015) and motivational variables (Hung et al., 2014; Partovi and Razavi, 2019), others report no general advantage of digital games over standard teaching methods (Ke, 2008a; Brom et al., 2011). In the context of mathematics education, Erickson (2015) evaluated 30 digital mathematics games and found that only five scored high on all the three identified motivational dimensions (ease of understanding, control, and immersion). The investigated games differed in the degree to which they provided cognitive scaffolding and offered opportunities for proficiency development and reflection upon learning strategies. In a recent meta-analysis which included 17 studies, Byun and Joung (2018) found an overall weighted effect size of d = 0.37 for the relative effectiveness of digital games for learning mathematics. Yet, effect sizes vary largely between the analyzed studies. For example, while an effect size as small as d = 0.13 was reported by Ke (2008b), very high effect sizes above two were found in two studies by Sedig (2007, 2008) and a set of experiments by Shin et al. (2012). Besides these extreme cases, the remaining studies found small (van Eck, 2006; Ke and Grabowski, 2007; Ke, 2008a; Bai et al., 2012; Kolovou et al., 2013; Lin et al., 2013; van den Heuvel-Panhuizen et al., 2013; Pareto, 2014; Bakker et al., 2016), medium (Kebritchi et al., 2010; Plass et al., 2013) or large (Sedig, 2007; Yang and Chen, 2010; Ke, 2013) effects.

The high variability of results in research on DBGL in mathematics education is indicative of differences in research methodologies and practices, which makes general conclusions about the effectiveness of DGBL in mathematics difficult. Among the most striking differences between studies are design and content of the games used, research designs (RCT or quasi-experiment; mixed or quantitative methods), age groups (primary, secondary, or university education), and number of participants as well as effectiveness criteria and instruments employed in the effectiveness evaluation. The most prevalent research design is the quasi-experiment; less often randomly controlled experimental designs are realized (Boyle et al., 2016). Group assignment is usually conducted on a class level (Papastergiou, 2009; Kebritchi et al., 2010; Bai et al., 2012; Kim et al., 2017; Brezovszky et al., 2019) and seldom on a school level (Rutherford et al., 2014), and very few studies follow an experimental approach with randomization on subject level (Plass et al., 2013). Whereas most studies include a control group, studies without a control group can also be found (for example, Iten and Petko, 2016). Often multiple measurement points are reported, differing in time intervals between measurements (Bottino et al., 2007; Kebritchi et al., 2010; Habgood and Ainsworth, 2011; Bai et al., 2012; Shin et al., 2012; Bakker et al., 2015). Methodologies entail qualitative, quantitative, and mixed methods, with the latter two being the most prevalent (for a comprehensive overview, see Byun and Joung, 2018).


The Need for Preregistered Randomly Controlled Trials, Standardized Procedures, and Methods

Even though quasi-experimental research designs and randomization on a class level may be the most feasible approach for educational research, randomly controlled experiments with randomizing on a subject level are fundamental for generating solid empirical evidence. Preregistering experiments (or even using preregistered reports) increase credibility of results and limit questionable research practices (Nosek et al., 2018). Furthermore, standardizing pre‐ and post-test measures raises comparability between studies. We suggest using standardized scales from the international studies PISA and TIMMS if applicable (International Association for the Evaluation of Educational Achievement, 2015; OECD, 2019a) and standardized psychological instruments, for example, scales measuring academic emotion (Pekrun et al., 2011; Lichtenfeld et al., 2012), self-concept (Pekrun et al., 2007b; Arens et al., 2016), and motivation (Schwarzer and Jerusalem, 1995; Midgley et al., 1998). For evaluations of the relative effectiveness of digital learning games for learning outcomes, standardized tests are not always available. These tests should then be developed in collaboration with experts (e.g., cognitive scientists, psychologists, or teachers), validated, and tested for reliability. To further standardize timing of measurements, we suggest conducting the pre-test a week before the intervention to avoid effects of testing on experimental results and to generate a non-biased baseline. The post-test is conducted on the day of the intervention in case of a single intervention to measure immediate effects. In case of a longitudinal study, it may be advisable to have measurements on each intervention day as well as one day after the intervention is completed to balance out daily variability. Follow-up tests are important to evaluate the persistence of effects; their timing depends on the study design and the resulting shape of the forgetting curve, as well as the claims authors make regarding the effectiveness of their intervention (Murre and Dros, 2015; Nussbaumer et al., 2019). Enriching quantitative measures with qualitative measures and classroom discussion can be informative to determine the feasibility of a method, better understand the underlying mechanisms, and solidify students’ learning, yet the core criterion in effectiveness evaluations should be preregistered statistical analyses of experimentally obtained data.



Interdisciplinary Research on Adaptive Game-Based Learning

A promising way to improve learning experiences in digital learning environments is adaptive technology. Adaptive learning tools promise to offer students the learning experiences they need in a given moment by recognizing their cognitive, motivational, and emotional states. International and interdisciplinary research on evidence-based digital education platforms which adapt to students’ individual needs is growing. Projects range from adaptive structuring of learning experiences on digital learning platforms (Hsiao et al., 2010; Brusilovsky, 2012) to adaptive DGBL interventions (Brezovszky et al., 2019), developing sophisticated software components for adaptive learning based on sound psychological and pedagogical principles (Kickmeier-Rust et al., 2006; Maurer et al., 2017; Nussbaumer et al., 2019). The authors distinguish different levels of adaptivity and corresponding software assets:

1. Pre-game adaptation: personalization of the initial stages of the game based on student characteristics, which are measured prior to game-play using standardized instruments.

2. Competence-based in-game adaptivity: monitoring learning progress to adapt learning path, instructions, and support.

3. Psychological in-game adaptivity: monitoring psychological state and adapting game characteristics accordingly (e.g., adapt difficulty level, offer support, and change game design).

As the body of research on adaptive digital learning games is growing, meta-analyses are needed to determine the relative effectiveness of different kinds of adaptivity, e.g., based on performance, motivation and/or emotion, adaptation of game design, instruction, and/or game content. Importantly, adaptive learning games, which are currently available online, are not necessarily scientifically evaluated, and teachers and parents should be made aware of this. A way to give users guidance would be a quality seal, which indicates the level of scientific evidence (research methodology, see “The Need for Preregistered Randomly Controlled Trials, Standardized Procedures, and Methods,” and outcomes) for the effectiveness of an adaptive digital learning game.



Affective Computing and Optimal Experimental Design for Software Adaptivity

One research stream on adaptive digital learning is based on insights from Affective Computing. Affective Computing is defined as “computing that relates to, arises from, or influences emotions” (Picard, 1997, p. 1). It is a relatively young field of research, yet it has rapidly grown over the last decades (Picard, 2015). A recent systematic review (Aranha et al., 2019) revealed that education is the most frequent application area of Affective Computing. A majority of studies investigate affectively adaptive digital games, yet affective learning (Picard et al., 2004) also refers to affectively intelligent tutoring, dialogue, agent-based, and other learning systems (Santos, 2016).

The general goal of affective learning research is to develop software which recognizes users’ affective state and adapts its interactive behavior accordingly, based on sophisticated models of emotion-cognition interaction (D’Mello et al., 2008; Hudlicka, 2008, 2017; Cooper et al., 2011; D’Mello and Graesser, 2015). Despite the theoretical complexity and methodological difficulties in emotion research, advances have been made in the modeling of emotion-cognition interactions (Hudlicka, 2011, 2017) and the development of formal emotion languages (Schröder et al., 2015). The methodologies used for emotion detection include psychophysiological methods (electrodermal activity, heart rate recording, EEG, and EMG measures), camera-based methods (capturing facial expressions, eye-movements, and voice), and behavioral measures (user input and in-game behavior). Emotionally adaptive learning games promise to offer students learning experiences which are tailored to their emotional needs. Yet, emotional adaptivity must be handled with care: adaptivity requires the collection of sensitive data, which may or may not be adequate in a given context. Due to the still low accuracy in emotion detection, predictions may be inaccurate (Aranha et al., 2019), indicating the need for further advances in the development of non-intrusive and reliable emotion detection mechanisms. This also requires improved software infrastructure for interoperability between systems, adequate and contextual feedback, and interaction mechanisms (Santos, 2016). Lastly, educators may prioritize giving students the option to experience a wide range of situations and emotions, including those which are not adapted to their learning profile. Keeping these considerations in mind, how can adaptive technology be enhanced?

Computational methods which have previously been employed to implement adaptivity are supervised classification, probabilistic models, and regression analyses (Santos, 2016). We propose Optimal Experimental Design (OED), a computational method which optimizes experimental designs for discrimination among multiple psychological models (Myung and Pitt, 2009), as a novel tool for effectively implementing software adaptivity in learning games. Game-play situations can be regarded as mini-experiments, and their outcomes can inform the system’s knowledge base about the user. OED confronts the learner with those situations which are most informative for the system’s construction of the learner model. It can be integrated into the system’s profiling asset (Maurer et al., 2017) and support in-game adaptivity based on performance, motivation, engagement, and emotional state of the learner, allowing the system to build an increasingly fine-grained model of the learner and personalize learner-system interactions. A python package, ADOpy (Yang et al., 2019), is available as an open source resource to the public2.



Computational and Mathematical Topics for Game-Based Primary Education

Even though the number of digital educational games for learning mathematics (Erickson, 2015; Byun and Joung, 2018) and programming (Lindberg et al., 2018) has been growing, evidence-based digital learning games for computer science in primary education are rare. In a recent systematic literature review, only two studies were identified which investigated DGBL in elementary computer science education, both of which were of relatively low quality in terms of study design, appropriateness of methods and analyses, generalizability, relevance, and trustworthiness of findings (Hainey et al., 2016).

The university guidelines for undergraduate computer science curricula from ACM and IEEE (2013) include the following topics, which we suggest for game-based learning in primary and secondary education and which have already been successfully implemented in games: basic principles of machine learning (Wallace et al., 2008; Stöckl, 2019), algorithms and complexity (Hong and Kung, 1981; Battistella et al., 2017), information theory (Greeff et al., 2017), and computer architecture (Tlili et al., 2016). In mathematics education, the majority of learning games focus on numbers and operations, algebra, geometry, measurement, and data analysis and probability (Byun and Joung, 2018). Additional topics for game-based learning in mathematics are combinatorics, probabilities, functions, and number systems. Besides educational content, the so-called “21st century skills” (Binkley et al., 2012), which include critical thinking skills such as scientific reasoning, systems thinking, computational thinking, decision making, and problem solving, can be taught in a gamified way (Qian and Clark, 2016).

We are currently developing a game, Entropy Mastermind (Figure 1; Schulz et al., 2019), to promote students’ entropy intuitions by providing experiential access to the relationship between probability distributions and the mathematical concept entropy (Crupi et al., 2018). Entropy is not only an important concept in cognitive science, computer science, mathematics, the philosophy of science, and information theory but it also has many practical applications (Martignon et al., 1991; Mana et al., 2018) and educational relevance (Haglund et al., 2010). The game Entropy Mastermind is an extension of the classic Mastermind game. In Entropy Mastermind, a secret code is generated from a probability distribution by random drawing with replacement. The player (code breaker) has to guess the secret code by testing out codes and getting feedback about the correctness of the guessed code. The feedback is comprised of three different kinds of smileys: a happy smiley indicating that a guessed item is correct in kind and position, a neutral smiley indicating that a guessed item is the correct kind but not in the correct position, and a sad smiley indicating that a guessed item is incorrect regarding both kind and position. Importantly, the order of smileys in the feedback is always the same: happy smileys come first, then neutral, and lastly sad smileys – the position of smileys in the feedback array does not correspond to the positions of items in the guessed code. The entropy of the distributions from which the secret code is generated varies between rounds of the game. Figure 2 displays a low entropy (left game environment) and a high entropy (right game environment) Entropy Mastermind game. The level of entropy in the underlying probability distribution affects the difficulty of the game (the number of queries needed to guess the secret code; Schulz et al., 2019), and the resulting variations in difficulty give experiential access to the concept entropy.
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FIGURE 1. Icon arrays representing two example code jars (in this version of the game fruit bowls) which generated the secret code. Left panel: low entropy code jar. The first guess and the corresponding feedback are displayed. Happy emoticon: correct fruit and correct position; neutral emoticon: correct fruit but wrong position; sad emoticon: incorrect fruit and position. Positions of faces do not correspond to positions in the code. Right panel: high entropy code jar. Game environment before the first guess was entered. Initially, each position of the code is blank, and players can cycle through the fruits by clicking on the blank field. Feedback is provided after players clicked on the “Check” – button. Play the game yourself: http://jonathandnelson.com/curious/masterminding.html.


In the Entropy Mastermind educational intervention, learning about entropy is evaluated using specifically designed test items which quantify entropy intuitions (for example, Figure 2); psychological effects are assessed using the AEQ (Lichtenfeld et al., 2012), the mathematical self-concept scale (Pekrun et al., 2007b; Arens et al., 2016), and the general self-efficacy scale (Schwarzer and Jerusalem, 1995). First studies using Entropy Mastermind in educational contexts have been conducted: these include the development and implementation of a roadmap for an instructional unit aimed at fostering elementary students’ intuitions about entropy using a non-digital version of Entropy Mastermind (Özel et al., n.d., submitted). Based on insights from this first study, a digital version of Entropy Mastermind was developed (Figure 1), and first pilot studies conducted using this digital version of the game (Bertram et al., 2019; Schulz et al., 2019; Bertram et al., 2020). Yet, further research is needed to evaluate the effect of playing Entropy Mastermind on entropy intuitions, knowledge about probabilities, and learning-related psychological variables, and to further validate the developed test items for assessing entropy intuitions.

[image: Figure 2]

FIGURE 2. Example pre‐ and post-test questions testing entropy intuitions. Students are asked for each pair of code jars which of the two would be harder/easier to play with or whether the two urns are equally hard. Answers to these questions quantify entropy intuitions (Crupi et al., 2018).




Possible Limitations of Digital Game-Based Learning

Despite the above described potential benefits of DGBL, it is important to also consider its limitations. Digital worlds are reduced in their dimensionality compared to the physical world, lacking sensual experiences such as touch or smell. Embodied education (Shapiro and Stolz, 2019), an emerging research field rooted in the literature on grounded and embodied cognition (Varela et al., 1991; Clark, 1996; Barsalou, 2008; Barsalou, 2010; Shapiro, 2019), education theory, and learning science (Montessori, 1972; Bresler, 2005), stresses the fundamental role of bodily experiences in the learning process (Hostetter and Alibali, 2008; Tellier, 2008). In digital learning games, students remotely interact with the game environment by touching a display, using a keyboard, mouse, or voice control. This kind of interaction is indirect and mediated (the digital device is the mediator) compared to interactions in physical environments. Physical behavior may not only be reduced to finger, hand, or arm movements, but also be incongruent to the actual behavior carried out in the game environment. This divergence between cognition and behavior may interfere with the learning process (Shapiro and Stolz, 2019). Yet, digital learning games may overcome these limitations by incorporating embodiment principles in the game design (Black et al., 2012): gestural or natural user interfaces can be operated via touch (touch use interfaces) or remotely (free form interfaces), stimulating body movements congruent to the learning content, and thus benefitting learning (Hostetter and Alibali, 2008; Tellier, 2008). For example, Wang et al. (2014) successfully created a natural user interface, operated via body movements, to teach elementary students the projectile motion.

Other limitations arise from the potentially high costs associated with digital game design and the purchase of digital technologies. These costs are justifiable under the assumption that digital learning games significantly improve education. Digitalizing education is also a necessary step toward modernization and improvement of the education system. Yet, in the process of introducing digital learning tools into the classroom – including digital learning games – it is important to realistically assess the relative benefits of these digital learning games and conduct cost-effectiveness evaluations (Tobias et al., 2014). If, for example, an adaptive game turns out to only have little advantage (e.g., regarding learning outcomes or effects on academic emotion and motivation) over its non-adaptive version, the development costs may exceed the benefits. Similarly, a digital learning game may or may not be more effective for learning than its non-digital version. In these cases, it is advisable to consider the use of relatively cost-effective methods to enrich education with games, e.g., using haptic versions (to reduce costs associated with purchasing digital devices) or already programmed digital versions of classic games (to reduce game development costs), such as chess, card games, riddles, board games, code-breaking games, or puzzles. These games are engaging, intrinsically motivating, and fun to play but do not need sophisticated visuals and complex virtual environment simulations.

Also, it should be carefully observed if using digital games in education disadvantages those students who have limited financial capacities and may not have access to digital devices at home. Equal opportunities are a key characteristic of good education systems and must be constantly preserved and improved. Another delicate issue associated with digital learning is students’ digital rights: every student and/or their parents or legal guardians should own their data and be able to decide how their data are used, for example, by giving informed consent about the usage of their data or by having access to their own data via a password. When collecting data is part of digital game-based education interventions, ethical integrity, thoughtful data handling, and strict adherence to data protection regulations are a prerequisite and must be accompanied with transparent communication with parents or legal guardians.




DISCUSSION

In this article, we discussed future directions in research on DGBL in mathematics and computer science education. We highlighted the importance of a sound psychological foundation for the development of learning games and the need for interdisciplinary research projects and randomized controlled experimental designs to evaluate the effectiveness of games and game features. We introduced a new methodology to implement adaptivity, a synergy of Affective Computing and OED techniques and suggested topics for digital mathematics and computer science games. We also presented our own digital educational game, Entropy Mastermind, for fostering students’ intuitions about entropy. Lastly, we discussed limitations of DGBL and suggested ways to overcome potential complications. When keeping in mind these potential limitations and complications, game-based digital and non-digital learning is a fruitful field for systematic interdisciplinary research and a promising practical educational tool for enriching educational methods and realizing equal opportunities in classrooms of the future – giving all students the opportunity to learn at their best.
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Mathematics is a struggle for many. To make it more accessible, behavioral and educational scientists are redesigning how it is taught. To a similar end, a few rogue mathematicians and computer scientists are doing something more radical: they are redesigning mathematics itself, improving its ergonomic features. Charles Peirce, an important contributor to ordinary symbolic logic, also introduced a rigorous but non-symbolic, graphical alternative to it that is easier to picture. In the spirit of this iconic logic, George Spencer-Brown founded iconic mathematics. Performing iconic arithmetic, algebra, and even trigonometry, resembles doing calculations on an abacus, which is still popular in education today, has aided humanity for millennia, helps even when it is merely imagined, and ameliorates severe disability in basic computation. Interestingly, whereas some intellectually disabled individuals excel in very complex numerical tasks, others of normal intelligence fail even in very simple ones. A comparison of their wider psychological profiles suggests that iconic mathematics ought to suit the very people traditional mathematics leaves behind.
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INTRODUCTION: TOWARD A MORE ERGONOMIC MATHEMATICS

In mathematics you don’t understand things, you get used to them.

—attributed to John van Neumann (Zukav, 1979)


Icons Versus Symbols

Mathematics is a widely used and highly effective tool. Yet over the course of some 3,000 years, it has developed more or less organically rather than according to a carefully thought-through, preconceived plan (Kline, 1990). Today, professional mathematicians concern themselves with mathematical problems, rarely with revising the system in which they are expressed, and much less with improving its ergonomic features; those are matters for others to worry about. Yet what those others, including math teachers and behavioral and educational researchers, focus on is not redesigning mathematics but helping people, especially children, become better at it. Indeed, overhauling such an enormous, already well-entrenched system as that of mathematics may seem too daunting a task to take seriously. Consider, however, that its imposing edifice (its derived rules or theorems) is based on a relatively small foundation (its ground rules or axioms). These axioms are not particularly complicated, and a lot can be achieved by tinkering specifically with them.

The present analysis of the concept of iconic mathematics argues that there is an opportunity for the behavioral and educational sciences to contribute to this endeavor. The goal would not be to break new ground in mathematics—let us leave this to the mathematicians—but rather to apply to math what we know about the human mind and make math easier to learn and use, more ergonomic. The point of departure for this project is Spencer-Brown’s (1969) seminal adaptation of Charles Peirce’s iconic logic (Roberts, 1973; Kauffman, 2001; Shin, 2002) that became the cornerstone of iconic mathematics (Kauffman and Varela, 1980; James, 1993; Kauffman, 1995; Bricken, 2019a,b, 2021).

Unlike their traditional counterparts, iconic logic and iconic mathematics shun arbitrary squiggles that have only conventional meanings, like digits and plus, minus, and other abstract symbols. As much as possible, they are “postsymbolic” (Bricken, 2019a), and use icons instead. By definition, icons are more concrete than symbols, and often illustrate their own meaning, are their own mnemonic devices, and hint at their own intended use. Euler and Venn diagrams, which tellingly are still very popular tools in teaching logical and set theoretical relationships today (Trafimow, 2011; Reani et al., 2019), can be seen as precursors of the more versatile, more encompassing systems of iconic logic and iconic mathematics. Here, I limit myself to the latter and offer my take on a recent, particularly substantial contribution to iconic mathematics by computer scientist Bricken (2019a,b, 2021) and his student James (1993). In the process, I introduce an alternative notation to render the original one considerably more concise and even more ergonomic. The goal is to demonstrate that ordinary, symbolic mathematics need not be the only game in town; that, without sacrificing rigor, one can aspire to develop a more user-friendly kind of mathematics that can be used either as a stepping stone to learning ordinary, symbolic mathematics or as an alternative to it.

Iconic mathematics is, as much as possible, an “embodied” mathematics (Bricken, 2019a). To introduce this concept and set the stage, I therefore begin with a brief introduction of embodiment in mathematical cognition and mathematical education, and then, in the main conceptual analysis, show how embodiment permeates the nuts and bolts of iconic mathematics itself. I discuss iconic number representation and iconic addition and subtraction, then iconic multiplication, division, and taking the power or logarithm of numbers, and after that—to demonstrate iconic math’s potential—iconic imaginary numbers and their relationship with trigonometry. After the main analysis, I address why ordinary mathematics, curiously enough, is more difficult for some intelligent individuals than for others deemed intellectually disabled. I lay out how both talent in mathematics, and the near-total lack of it, are related to genetic conflict and patterns in mental disease. On the basis of this material and additional evidence obtained with the abacus, I argue that iconic mathematics promises to be of help especially to those who, with traditional mathematics, tend to struggle the most.



Embodiment Versus Abstraction

Ordinary symbolic mathematics is highly abstract, but mounting evidence suggests that mental number representations and mathematical operations are embodied—that is, grounded in Lakoff and Núñez (2000), or at least shaped or affected by Winter and Yoshimi (2020), the sensory experiences our bodies provide to us (for reviews, see Fischer and Brugger, 2011; Fischer and Shaki, 2018; Soylu et al., 2018; Barrocas et al., 2020; see also especially Fischer et al., 2021; Glenberg, 2021) and other studies not covered by the reviews: Hilton, 2019; Proverbio and Carminati, 2019; van den Berg et al., 2021. For example, whereas Germans are accustomed to counting to ten using two hands, the Chinese manage the same with just one, and as if forced to mentally switch hands, Germans take longer than the Chinese to identify the smaller (or larger) of such numbers as 4 and 6 but not 2 and 4. Likewise, as if numerical distances were physical, numbers are distinguished faster if they are numerically far apart, like 1 and 9, than if they are close together, like 1 and 3 (Dehaene, 2011). And, as if numbers were mentally represented along a number line, in people reading from left to right, numbers are processed quicker if small and presented on the left, or large and presented on the right, rather than the converse (Dehaene, 2011; see for a related review Umiltà et al., 2009 and for related research papers and references therein Ashkenazi and Henik, 2010; Longo and Lourenco, 2010; Pia et al., 2010; Kramer et al., 2011; Thomas et al., 2017; Patro et al., 2018). Relatedly, addition can be pictured as rightward, and subtraction as leftward, movement along this line (Knops et al., 2009; Marghetis et al., 2014). Alternative kinds of the embodiment have been observed in mathematical cognition too (Winter and Yoshimi, 2020).

Embodied math education is tapping into this embodied math cognition by providing students with objects and tools that can help them understand abstract mathematical concepts and operations in more concrete physical or virtual ways (Carbonneau et al., 2013; Abrahamson et al., 2020). To give them a better sense of proportion, ratio, fraction, young students have been asked to keep a screen green while moving two cursors up or down (Hutto et al., 2015). The otherwise red screen turned green whenever the students happened to raise their right hand twice as high as their left one. Trial and error then showed the students how, as their hands move up or down, the distance between them had to be proportionally increased or decreased to keep the screen green. A sense of proportion was thus instilled in the students in terms of not abstract symbols and austere rules but concrete physical action and sensory experience (see also Szkudlarek et al., 2022). Hands-on mathematics has a long history and features prominently in Montessori education (Laski et al., 2015). Earlier in the 20th century, Laisant’s table (Laisant, 1915; Maffia and Mariotti, 2020) allowed students to physically explore—by counting squares—the meaning and validity of the distributive law of multiplication (Figure 1). And physically rearranging simple geometrical shapes has been used as far back as during the Han dynasty, 206 B.C.−220 A.D. (Wang, 2009), to prove the Pythagorean theorem and resolve problems like finding the side of an unknown square that just fits a known right triangle (Figure 2; for video demonstrations, see footnote1).


[image: image]

FIGURE 1. Laisant’s table [adapted from Maffia and Mariotti (2020)]. Each black-framed rectangle represents a multiplication—that of its width in little squares by its height in little squares. The outcome of this multiplication equals the total number of little squares contained within the black-framed rectangle. In the present example, the upper-left black-framed rectangle represents the multiplication 1 × 1, the lower-right one 8 × 8. Now consider, say, the multiplications of 2 × 3, 2 × 4, and 2 × 7. Count the number of little squares inside the black-framed rectangles that correspond to each of these multiplications and note that—as per the distributive law of multiplication—(2 × 3)+(2 × 4) = 2 × 7.
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FIGURE 2. Abstract algebraic expressions as physical geometric puzzles [adapted from Wang (2009)]. (A) Let the areas of, respectively, the dark-gray, black, and white-framed squares be a2, b2, and c2. By placing the triangular parts of the dark-colored squares that fall outside the white frame onto the light-colored triangles inside it, the dark-colored squares exactly cover the area of the white-framed square. That is, a2+b2 = c2 (the Pythagorean theorem). (B) On the left, a dark square is shown that just fits inside a dark-colored triangle. Task: Find the length x of one of the sides of the dark square. Solution: Next to the triangle and square (shown in dark colors) add a copy of it (shown in light colors) so that a rectangle emerges with area ab. Rearrange the pieces (shown on the right) so that another rectangle emerges with area (a+b)x. Compare the rectangle on the left with the one on the right and note that ab = (a+b)x and thus that x = ab/(a+b).


One major problem remains, however, a meta-analysis found that whereas hands-on interaction considerably improves retention of abstract mathematical facts or operations, it does not have as big a positive effect on students’ ability to solve new abstract mathematical problems (Carbonneau et al., 2013). Combining embodied and symbolic mathematics helps establish a link between the two and facilitates the desired transfer of learned skills from the one to the other (Laski et al., 2015; Coles and Sinclair, 2019; Maffia and Mariotti, 2020). Still, there obviously remains a gap between embodied cognition and embodied education on the one hand and un-embodied, formal mathematics on the other. The un-embodied, formal mathematics itself is still as opaque and abstract as it has always been.

Like symbolic math, iconic mathematics is rigorous and formally based on axioms but, unlike symbolic math, it is nonetheless much more embodied. That is, it is expressed with the help of either physical or virtual objects, or iconic depictions of objects, rather than with arbitrary tokens that depict nothing. Iconic mathematics may help students transition from embodied to symbolic math by offering them something in between. Yet more importantly, as a coherent system of mathematics in its own right, iconic mathematics also has the potential to become a valid alternative to symbolic mathematics. As we shall see shortly, doing iconic mathematics resembles performing calculations on an abacus. In the West, this age-old tool has all but fallen out of use. In the East, however, it continues to be popular in math education, and as shown in the last section, it has even been found to improve the mathematical performance of students with a severe numerical disability (dyscalculia). As a kind of extension of the abacus, iconic math thus offers hope for those who struggle with symbolic math.




MAIN CONCEPTUAL ANALYSIS: NUTS AND BOLTS


Iconic Addition and Subtraction

The mathematics we currently have is more abstract, and less user friendly, than it needs to be. The trouble starts with something even more basic than its axioms: its digits. The problem is that the digits of symbolic math offer no clue to either the meaning of the numbers they represent, the interrelationships between these numbers, or the use of these numbers in calculations. For example, none of the tokens used in “3 + 4” suggest in any way that the end result should be “7.” To be able to see that it should, we need to translate the abstract tokens into something more concrete. In fact, in the absence of anything to hold on to, young children and dyscalculics often try to relate abstract digits to the physical ones of their hands (Geary, 2011; Kucian and von Aster, 2015; Tran et al., 2017). Soon they run out of hands and fingers, and thus out of answers. Engaging additional body parts, New Guinean Yupno men count up to 33—a number represented by the penis and referred to as such (Lancy, 1983; see also Butterworth, 1999; Mareschal et al., 2013). Yupno women, reportedly, do not count in public. It is clear, in any case, that the body-parts system inevitably runs up against its limits.

To represent numbers, a more intuitive alternative to the use of digits, and a more practical one to that of body parts, is the use of tally marks—typically bars or dots (Bricken, 2019a; see also Schwenk et al., 2017). Adopting Kauffman’s (1995) “depth-value notation,” Bricken and James use collections of aligned or unaligned dots (Figure 3). To render them more ergonomic and almost as concise as digits, I organize these dots within the standard configurations of what I call “mighty dice,” which are like ordinary dice but can represent the numbers 1−9 rather than merely 1−6 (Figure 3; Krajcsi et al., 2013). Because symbolic digits are abstract, and their meanings established only by convention, their numeric value (cardinality) must be retrieved from memory. Numbers in the mighty-dice notation, instead, can be read in three different ways. First, one can retrieve their cardinality from memory by recognizing the conventional configurations of the dots. Second, one can subitize the dots (enumerate them at a single glance with near-perfect accuracy; Anobile et al., 2019; Liu et al., 2020; Decarli et al., 2021), which is facilitated by the dice-like configurations (Krajcsi et al., 2013; Jansen et al., 2014; Katzin et al., 2019). And third, one can count the dots, which requires more than a single glance but is nonetheless considerably easier and faster when the dots are configured like either dice (Jansen et al., 2014) or mighty dice (Krajcsi et al., 2013; see also Piazza et al., 2002; Ashkenazi et al., 2013).
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FIGURE 3. Iconic number representation. Ordinary symbolic numbers are shown along with their iconic translations based on dot tally-marks. Of the mighty-dice translations, all four columns are shown; of the depth-value ones, only the first three. The three rows underneath the main table show symbolic numbers, corresponding iconic numbers, and corresponding iconic numbers that have been adjusted for readability. In the latter, two nested pairs of brackets are replaced by just one pair of thick ones. The might-dice and thin-fat notations, henceforth together referred to as the “black-and-white notation,” have been developed for easy reading; for easy writing of this notation, ideally some kind of an app would be developed.


Bricken and James represent negative numbers by enclosing them between angle brackets (Figure 3). Yet, black and white are intuitively seen as opposites, and across cultures, perhaps because we are a diurnal rather than nocturnal species, the particularly dark color of black tends to be perceived more negatively than the particularly light color of white (Jonauskaite et al., 2020). Logically, emotional negativity is unrelated to mathematical negativity. Psychologically, however, the former can be exploited as a mnemonic device for the latter. I thus represent positive mighty-dice numbers in black on white, with white as the dominant color, and negative ones in white on black, with black as the dominant color2. This representation, which also happens to be more concise than the original one, I call the “black-and-white notation.”

The depth-value system Bricken and James rely on resembles an abacus—an apparatus that deals with numbers in a particularly concrete and tangible way (Figure 4). The abacus features several rungs of beads, and the higher the rung the larger the numbers it represents. This is fairly intuitive, as high and large go together psychologically in a way that high and small or low and large do not—they have the same polarity (Proctor and Cho, 2006). By arbitrary convention still, ten beads on the abacus’s lower rung can be traded in for exactly one bead with a value of 10 on its next higher rung, ten beads with each a value of 10 can be traded in for one with a value of 100 on the next higher rung, and so on. In both the depth-value and mighty-dice systems, the rungs are replaced with “containers” (here pairs of enclosing round brackets). Like big fish tend to eat smaller ones but not the other way around, containers representing larger numbers can encompass containers representing smaller ones but not the other way around. And like in the case of the abacus, ten dots can be traded in for exactly one dot with a value of 10 in a container, ten dots in containers with each a value of 10 can be traded in for one dot with a value of 100 in a container nested within a container, and so on (Figure 4). The numeric value of dots thus increases with the depth of their nesting within containers. The use of the abacus, and of the depth-value and mighty-dice systems, is only partially intuitive and partially still depends on arbitrary conventions. Importantly, however, by appropriately shifting beads from one side to the other on the abacus’s various rungs, addition and subtraction become transparent mechanical processes before our eyes rather than opaque mysterious ones inside our heads. And, by shifting dots in and out of containers, much the same can be achieved in the depth-value and mighty-dice systems.
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FIGURE 4. Iconic and abacus number representation. (A) Representation of the number 10 with ten beads shifted to the right on the abacus’s lower rung (left) or, equivalently, with one bead with a value of 10 shifted to the right on its next higher rung (right). (B) A similar representation in depth-value notation with ten beads (left) or, equivalently, one bead with a value of 10 in a container (right). (C) A similar representation in black-and-white notation. (D) Representation of the number 100 with ten beads with a value of 10 shifted to the right on the abacus’s second rung (left) or, equivalently, with one bead with a value of 100 shifted to the right on its next higher rung (right). (E,F) Similar representations in the depth-value and black-and-white notations.


In the latter two systems, more specifically, addition and subtraction consist of putting numbers together and rewriting them to obtain as few numbers as possible (typically just one), each containing as few dots as possible (Figure 5; see also Kauffman, 1995; Bricken, 2019a). Provided standard notation is respected (Figure 3), the dots can be moved, binned (put into containers), and unbinned (taken out of containers), and matching pairs of white and black elements can be eliminated (Figure 5). There is no zero in iconic mathematics; the zero is replaced with literally nothing. When clarity demands some kind of token, in the depth-value notation one can use an empty space between a pair of angle brackets: the negative of nothing is still nothing, just like −0 = 0. In the black-and-white notation, I use an empty black die instead. For anyone unaccustomed to it, dealing with iconic digits and iconic addition and subtraction may at first be a challenge. Yet consider how it compares to learning symbolic digits and symbolic addition and subtraction for the first time.
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FIGURE 5. Iconic addition and subtraction. (A) Provides the rules, whereby the first rule on the right can be derived from the first two rules on the left. (B–E) Shows examples of iconic addition and subtraction with—based on the provided rules—a justification for each next step in a calculation (left), the calculation-step itself (middle), and a symbolic interpretation (right). Note the following: First, the brackets that enclose a number need not be adjacent to this number. For instance, in the 432+281-example, the 4 of 432 is enclosed between two pairs of brackets even though the right-most bracket of one of these two pairs appears immediately to the right of the 3 and not the 4. The 3 itself is enclosed by one pair of brackets. Second, the order of iconic digits (mighty dice) within an iconic number is free and space between these digits optional, like in the final two examples. Third, in the end, just for readability, dots are binned, shifted to the right as much as standard notation allows, and compacted. Fourth, the iconic representation of a number and of an addition can coincide. For instance, in the 9+7-example, the iconic notations of 10+6 and of 16 are identical.




Iconic Arithmetic and Algebra

The abacus can handle not only addition and subtraction but also multiplication and division. I will not go into details here but instead lay out a system that reminds one again of the abacus, with its rungs replaced by containers. Unlike the abacus, this system can not only handle arithmetic (with numbers) but also algebra (with at least one variable instead of a number). This James algebra (James, 1993; Bricken, 2019a,b, 2021) features negation, addition, subtraction, exponentiation, and taking logarithms but has no need for explicit multiplication or division.

Multiplication of natural numbers is effectively a shorthand for repeated addition. Starting from 0, for example, adding 10 three times (10 × 3 = 30), or 3 ten times (3 × 10 = 30), gives us 0+10+10+10 = 30 or 0+3+3+3+3+3+3+3+3+3+3 = 30. The inverse of multiplication is division, and division of natural numbers is effectively a shorthand for repeated subtraction3. Starting from 30, subtracting 10 three times (30/10 = 3), or 3 ten times (30/3 = 10), gets us back to 30−10−10−10 = 0 or 30−3−3−3−3−3−3−3−3−3−3 = 0. Exponentiation can function as a shorthand for repeated multiplication—a multiplication by itself of a number (the “base”), repeated as many times as indicated by a another number (its “power”). Starting from 1, for example, multiplying by 10 three times gives us 1 × 10 × 10 × 10 = 103 = 1000, with 10 representing the base of 103 and the superscript 3 its power. The inverse of raising a base to a certain power is taking the logarithm of its outcome: log10(1000) = log10(103) = 3, with 3 representing the logarithm in log10(1000) = 3 and the subscript 10 its base. If the power is not larger than 1 but between 0 and 1, exponentiation can function as a shorthand for repeated division. Starting from 1000, dividing by 10 (10001/3 = 10) three times (log10(1000) = 3) gets us back to ((1000/10)/10)/10 = 1. This kind of exponentiation is also called to taking roots and [image: image].

Note that 1 × 10 × 10 × 10 = 1000 can be written as 100× 101× 101× 101 = 103 and also, without using any multiplication, as 100+1+1+1 = 103. Likewise, ((1000/10)/10)/10 = 1 can be written as ((103/101)/101)/101 = 100 and also, without using any division, as 103–1–1–1 = 100. Log10 is often abbreviated to log, and so, log(10) = 1, log(100) = 2, and log(10 × 100) = log(1000) = 3. What this means is that 100 × 10 can be rewritten as 10log(100 × 10), which equals 10log(1000) and thus 103. Yet, importantly, using addition rather than multiplication, 100 × 10 can also be rewritten as 10log(100)+ log(10), which equals 102+1 and thus also 103. Likewise, 100/10 can be rewritten as 10log(100/10), which equals 101. Yet, importantly, using subtraction rather than division, it can also be rewritten as 10log(100)–log(10), which equals 102–1 and thus also 101. In fact, powers and logarithms can transform any multiplication or division into an addition or subtraction. So, to avoid bringing more operators into play than necessary, James algebra uses the iconic equivalents of powers and logarithms but no equivalents of multiplication or division.

In symbolic mathematical notation, the interrelationships between mathematical operations are not very apparent and must be learned and stored in memory. Instead of a letter string like “log” for logarithm or seemingly unrelated tiny superscript to express the power of a number, James algebra expresses the power or logarithm of a number by putting it into one or another container. This is a rather arbitrary choice, but containers do have the advantage of being concrete and easy to picture rather than abstract and further removed from sensory experience (Figure 6, right; Bricken, 2019a). Indeed, one could in principle use physical containers (and physical mighty dice) instead of their depictions; this might be an especially good idea to let very young children get the hang of their use (Hutto et al., 2015; Tran et al., 2017). Bricken presents various alternatives to containers, including blocks, nodes in networks, and even entire rooms. These can all be turned into physical objects, concrete electronic devices, or immersive virtual-reality worlds. For writing convenience, Bricken most often simply uses pairs of brackets that are merely suggestive of containers. A pair of square brackets, for example, serve as a logarithm operator, a pair of round ones as a power operator (Supplementary Figure 1). Note, however, that round brackets also appear, with a different meaning, in the depth-value notation of numbers (Figure 3). To allow an unambiguous use of the depth-value notation within James algebra, and also to reduce container nesting and enhance readability, I therefore propose an alternative notation that extends the previous section’s black-and-white one.
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FIGURE 6. Definitions. In black on white (left), symbolic operations are shown with their James-algebraic translations. In black or white on gray (right), equivalent symbolic operations are shown with their full black-and-white translations and shorthand versions. These shorthands are merely a convenience and can at any time be replaced by their full versions. (A) Basic operations. (B) Some operations derived from the basic ones. (C) Equivalent fat notations of the exponent of an exponent of A and the logarithm of a logarithm of A (white), as well as their negative versions (black). The logarithms and exponents are assumed to have the same arbitrary base B. Lacking a better alternative, variables are still represented by letters.


The extended black-and-white system relies on two independent binary operators (Figure 6; for an alternative notation, see Supplementary Figure 1). One is a container operator that either takes the logarithm of a number (by putting this number into an upright container) or raises it to a power (by putting it into an upside-down container). The other is a contrast operator that gives a number a value that is either positive (light) or negative (dark). If color can be used, upright containers could, instead of black or white, be yellow or blue (easily distinguished by almost all colorblind people). This would enhance the perceptual difference between upright and upside-down containers and thereby improve readability (see Supplementary Figures 3, 4). Alternatively, hue could also be an interesting option for exploitation as a third operator, should one be desired. In this case, the same container could concurrently express three different operators with its orientation (upright vs. upside down), contrast (light vs. dark), and hue (yellow vs. blue, whereby brown counts as dark yellow).

I will assume that numbers only exist in combination with their operators, just like −1, as a negative number, cannot exist without the negation operator and ½, as a rational number, not without the division operator. Because the container operator is assumed to be binary (as simple as possible and easy to implement in electronic devices), it can only take a logarithm or raise a number to a power, it cannot in addition leave a number unmodified. Yet taking the logarithm of a number (by putting the number into an upright container), and raising the result to a power (by putting the upright container with its content into an upside-down container), gives us something equivalent to A. For convenience and for short, I will label this A-equivalent simply “A” (Figure 6, “shorthand”-column). Conversely, first raising a number to a power and then taking the logarithm of the result also gives us something equivalent to A, which I will therefore also label “A.”

In this line of thought, the mighty-dice numbers should all be considered shorthands. In fact, it is possible to even define the number 1 as an empty upside-down white container (Figure 7; see also Bricken, 2019a); its equivalent in symbolic terms is B0, which—regardless of the value of B—equals 1. Similarly, considering that the logarithm of smaller-and-smaller positive numbers approaches negative infinity, one can define −∞ as a completely empty white upright container and ∞ as a completely empty black upright container (see also Bricken, 2019a).
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FIGURE 7. Iconic math’s axioms and a few iconic theorems. (A) The axioms of James algebra (slightly altered) shown in black-and-white notation (left) and accompanied by a symbolic interpretation (right). The first line says that 1+1>1, which means 1+1 adds up to more than 1 (namely, 2). It follows that 1+1+1 adds up to even more (namely, 3) and so on. (B) Iconic theorems and additional ones added by me myself, derived from the iconic axioms shown in (A) and accompanied by symbolic interpretations. In the last additional iconic theorem, an A with a dot as a subscript should be read as A1, meaning the first copy of A, and An and Am as the nth and mth copies of A. Intervening dots stand for intervening copies of A. So, the theorem shows n copies of A in the first upright container and m copies of A in the second one.


The contrast operator only affects the outer container of a number or mathematical expression, not the container’s contents. This procedure avoids confounding numbers and expressions that need to be distinguished, like for example −A and – –A (Figure 6). Note that, in the black-and-white notation, iconic A and iconic –A differ only in contrast, not in container type; and iconic BA and iconic log(A) only in container type, not in contrast. This demonstrates the independence of the contrast and container operators. In principle, instead of two, just one operator would suffice—an operator that “marks” a single, fundamental distinction between yin and yang, so to speak, between something and nothing, contained and uncontained, black and white, and—in electronic devices—on and off (Spencer-Brown, 1969; see also Kauffman and Varela, 1980; Kauffman, 1995; Bricken, 2019a,b, 2021). However, reducing operator types tends to come at the price of more container nesting or otherwise reduced readability (Bricken, 2019b, Chapter 20.5). For this reason, I will stick to a two-operator system here (see also Kauffman, 1995; Bricken, 2019b). All permissible transformations of iconic mathematical expressions, as well as the meaning of addition, are spelled out in the axioms and theorems provided in Figure 7 (for a proof of the last additional theorem, see Supplementary Figure 2). The application of these axioms and theorems is illustrated with basic arithmetic examples in Figures 8–10 and with an algebraic example in Figure 10C (for another example, see Supplementary Figure 2).
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FIGURE 8. Iconic multiplication and division. (A–D) Show examples with, based on Figure 7 axioms and theorems, the justification of each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (to avoid excessive clutter, the last example has only a few, key symbolic interpretations). The last example shows how to deal with relatively large numbers and with a division’s irreducible remainder. All logarithms and exponents are assumed to have the same arbitrary base.



[image: image]

FIGURE 9. Iconic exponentiation and taking iconic logarithms and roots. (A–D) Show examples with, based on Figure 7 axioms and theorems, the justification of each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (right). In the first example, the logarithm’s base has been left unspecified and the final result cannot be computed. In the third, a base has been specified in the symbolic version, and a base-free equivalent of it in the iconic version; now the final result can be computed.



[image: image]

FIGURE 10. Imaginary number J. (A) An iconic proof of the fact that x = J is a solution of the equation x + x = 0, with, based on Figure 7 axioms and theorems, the justification of each next step toward a problem’s solution (left), the step itself (middle), and a symbolic interpretation (right). (B) An iconic definition of J and iconic definitions, exclusively in terms of J, of the other candidate foundational numbers: –1, 0, 1, and i. (C) An iconic proof of the fact that x = JB solves the equation Bx + 1 = 0, with B being any arbitrary base, which for example can be e. Note that mixing real and imaginary numbers is subject to restrictions (Bricken, 2021), and to prevent inconsistencies, the last axiom in Figure 7 is not used here.


Although James algebra does not use multiplication or division in any explicit way, its iconic power-and-logarithm equivalents of these operations are nonetheless easily interpreted in terms of multiplication and division. For example, two or more white upright containers nested within one white upside-down container represent a multiplication (see the 4 × 2-example in Figure 8). These white upright containers can also be seen as the numerator of a division in which any black upright containers take the role of denominators (see the rest of Figure 8). Iconic formulations, unlike symbolic ones, are thus often easy to interpret in multiple, mathematically equivalent ways, bringing more clearly to the fore the interrelationships between these different interpretations (Figures 8–10).

Powers and logarithms in James algebra differ a little from those most used in symbolic mathematics. In Bx and logB(x), B is the base of these expressions. It so happens, however, that expressions like these can always be rewritten in a form in which the base can have any arbitrary value rather than just a single specific one. For example, log4(16) = logB(16)/logB(4) regardless of the value of B. To keep things simple, James algebra therefore only uses “base-free” expressions in which, for example, log4(16) is replaced—without ever mentioning any base—with an iconic equivalent of logB(16)/logB(4) that does not use explicit division (Figure 9C; see also Figure 10C).

All beginnings are a challenge, and already familiar symbolic mathematics will, of course, be easier than as yet unfamiliar iconic mathematics. To compare them fairly, therefore, put yourself in the shoes of someone to whom both are new. Imagine you know nothing and have to start from scratch.



Iconic Imaginary Numbers and Trigonometry

James algebra can deal not only with mundane topics but also with exotic ones that might seem more challenging to bring down to earth. For example, due to their particular graphical nature, iconic mathematical expressions can sometimes look a bit like modernistic paintings. It is symbolic mathematics, however, that produced a gravity-defying equation that many consider conceptual art: eiπ + 1 = 0 (Euler’s identity). The formula relates to one another no fewer than five mysterious numbers. The first two are 0 and 1, which have rather unusual properties (Bricken, 2019b,2021). The next two are e and π, two numbers that, by definition, are impossible to express as rational ones, and are thus considered irrational, and that cannot even be described with elaborate algebraic operations and are thus also considered transcendental. The letter e stands for “Euler’s number” (the base of the “natural” logarithm, discovered by Bernoulli rather than Euler) and the Greek letter π for the ratio of a circle’s perimeter to its diameter. The fifth number is i, an imaginary number defined as i = √–1. Because i2 = −1, the number i is an imaginary solution to such equations as x2 + 1 = 0.

A less well-known imaginary number that is also associated with Euler’s identity is J, defined as J = log(–1). Defying common sense, J turns out to be a nonzero solution of the equation x + x = 0. Substituting x with J, the equation becomes J + J = log(–1) + log(–1) = log(–1 × –1) = log(1) = 0 (for an iconic proof, see Figure 10; see also Bricken, 2021). Thus, although J is nonzero and therefore certainly counts for something, two Js together add up to nothing (in iconic math) or zero (in symbolic math). Adding two Js together is like going around a circle 180° (something) and then another 180° (something) to get back to 0° (nothing) or like taking a step toward a mirror and then an imaginary step into the mirror, which reflects you back to where you came from—square zero (Bricken, 2021). Although two Js add up to nothing, J can nonetheless function as the very cornerstone of arithmetic, as all other numbers can be derived from it, in particular those that are candidate foundational numbers themselves (Figure 10B; Bricken, 2021). Importantly, just like log2(–1) solves the equation 2x + 1 = 0 and log3(–1) the equation 3x + 1 = 0, loge(–1) solves the equation ex + 1 = 0. This means that eiπ + 1 = 0 (Euler’s identity) is a special case of Bx + 1 = 0, popping up when B = e and x = Je = loge(–1) = iπ (for iconic representations of i, J, and JB see Figure 10; for iconic representations of i, π, e, and Euler’s identity, see Bricken, 2021).

Euler’s identity is better known as a special case of not Bx + 1 = 0 but Euler’s equation: eiα = cos(α) + i sin(α), emerging when α = π. Euler’s equation implies that all three of the fundamental functions of trigonometry can be expressed as exponential ones instead: cos(α) = (eiα + e–iα)/2, sin(α) = (eiα − e–iα)/2i, tan(α) = sin(α)/cos(α). This, in turn, means that James algebra needs no other tools than those already discussed to be able to deal with trigonometry (Bricken, 2021). Very little extra is needed, in fact, to allow it to handle differential calculus as well (Bricken, 2021). This goes to show that there is no reason to dismiss out of hand the idea that, in principle, all of mathematics can be iconized.




BENEFICIARIES: HYPERCALCULICS VERSUS DYSCALCULICS

Now that the background and nuts and bolts of iconic mathematics have been laid out, the question arises who stands to benefit from this alternative, more concrete, more grounded system of mathematics. Who needs it and why? I lay out how a comparison between the broader psychological profiles of hypercalculics and dyscalculics suggests that the people traditional mathematics leaves behind tend to have a problem that, compared to symbolic mathematics, iconic mathematics is better equipped to handle.


The Problem

Intriguingly, whereas some intellectually disabled “savants” can effortlessly perform extraordinary calculations off the top of their heads (Treffert and Christensen, 2005; Baron-Cohen et al., 2007; Bor et al., 2007; Crespi and Badcock, 2008; Badcock, 2009, 2019; Heavey et al., 2012; van Leeuwen et al., 2020), quite a few properly schooled and otherwise intelligent people can hardly manage any math at all. About 3–6% of otherwise normal children, for example, are afflicted with dyscalculia and have unusually poor numerical skills (Dehaene, 2011; Kucian and von Aster, 2015; Butterworth, 2019; see also Kaufmann et al., 2013). Dyscalculics find it difficult to estimate quantities, understand what numbers mean, and perform basic calculations (Kucian and von Aster, 2015). Children with mathematical learning disabilities, who may have dyscalculia, run into trouble in telling ways (Geary, 2011). To solve the equation 5 + 3 = ?, for example, one can count five times “1, 2, 3, 4, and 5” and then three more times: “6, 7, and 8.” This method tends to be preferred by the least talented children. A quicker method lets one start from 5 right away and then count only “6, 7, and 8.” Unlike most of their peers, however, some children undercount with “5, 6, and 7.” Others, trying to subtract a larger number from a smaller one, arrive at 83−44 = 41, subtracting 4 from 8 but 3 from 4 rather than the converse, or they misunderstand “borrowing” and arrive at 92−14 = 88 rather than 78.



The Proximate Cause

The problems of dyscalculics appear related to temporary or permanent weaknesses in one or more cognitive or perceptual domains (and deficits in associated brain regions; Dehaene, 2011; Geary, 2011; Kaufmann et al., 2013; Kucian and von Aster, 2015; Rapin, 2016; Menon and Chang, 2021). The problems concern visual-spatial ability, hence numerical representation; working memory and attention, hence mathematical reasoning and the maintenance and manipulation of quantities (see also Friso-Van den Bos et al., 2013); semantic memory, hence the storage of mathematical facts; and procedural memory, hence the acquisition of mathematical skills, as opposed to knowledge (see also Ullman et al., 2020). Some doubt has even been cast on ordinary people’s mnemonic abilities. At remembering briefly presented symbolic numbers, in fact, most of us are far worse than a well-trained chimpanzee (Matsuzawa, 2009; to take the test, search “chimpanzee memory” on YouTube). Of note, in any case, is that there is substantial comorbidity between dyscalculia and other disorders, in particular dyslexia—delayed and deficient reading despite an otherwise normal cognitive ability (Geary, 2011; Butterworth and Kovas, 2013; Kucian and von Aster, 2015; Ullman et al., 2020).

The talents of hypercalculics are accompanied by a mirror opposite psychological profile to that of dyscalculics. Kim Peek, for example, who inspired the movie “Rain man,” was able to tell within seconds the day of the week on which people were born (superior calculation skill) and remember the contents of more than 9,000 books (superior memory), which he read at a speed of about 9 s per page (hyperlexia: high-speed and precocious reading) (Treffert and Christensen, 2005; Badcock, 2009, 2019; see also Heavey et al., 2012). In contrast, he had poor communication skills, was socially inept, and could not live without his father’s constant help (Treffert and Christensen, 2005; Badcock, 2009, 2019).

Much better adjusted to society, but like most hypercalculics diagnosed with autism (although only in its mild form of Asperger’s) is the savant Daniel Tammet (Baron-Cohen et al., 2007; Bor et al., 2007; Badcock, 2009, 2019; van Leeuwen et al., 2020; see also the BBC documentary “The boy with the incredible brain”). Tammet can learn a new language in a week, perform complex mental calculations in seconds, and recite 22,514 decimals of the number π. To Tammet, abstract numbers are not really abstract; they evoke in him percepts of concrete shapes—a form of synesthesia (sensory experience unprovoked by commensurate sensory input), which is a condition associated with autism (Baron-Cohen et al., 2007; van Leeuwen et al., 2020, 2021). According to Tammet, it is the phantom number-shapes he sees that help him pull off his startling numerical feats. Whether other hypercalculics also visualize abstract numbers in concrete ways is currently unknown but several studies confirm that synesthesia does influence the processing of not only concrete numerosities but also abstract numbers (for a brief review, see Gertner et al., 2013).



The Ultimate Cause

According to the diametric theory of genomic imprinting, people’s mental strengths and weaknesses are shaped by a tug of war between their parents (see Bressan and Kramer, 2021 and references therein, including especially Crespi and Badcock, 2008; Badcock, 2009, 2019; Del Giudice et al., 2010; Crespi, 2020; see also Úbeda, 2008; Úbeda and Gardner, 2015; Mokkonen et al., 2018). As parents bestow their genes onto their children, some of these genes are turned on and others off. Remarkably, in the case of so-called imprinted genes, the maternally and paternally inherited copies show a diametrically opposite pattern of activation and silencing (Moore and Haig, 1991; Haig, 2010; Kotler and Haig, 2018). Genomic imprinting likely evolved for the benefit of the individual parent rather than their offspring (and possibly also to turn off viral DNA that is permanently embedded within the offspring’s own DNA; Kramer and Bressan, 2015). As it normally leaves the genes of only one parent expressed, imprinting locally annuls the offspring’s benefit of inheriting genes from two parents rather than just one. Much the same is true for sex chromosomes, especially in men (Xirocostas et al., 2020). Compared to others, imprinted genes and sex chromosomes are indeed disproportionately often implicated in both physical and mental disease, most prominently in pairs of syndromes that are genetically related but have roughly opposite physical and behavioral characteristics (Bressan and Kramer, 2021).

Some imprinted genes promote the offspring’s consumption of maternal resources during gestation (Moore and Haig, 1991; Haig, 2010; Kotler and Haig, 2018) and the growth of parts of the brain that allow one to deal with the physical environment (Bressan and Kramer, 2021). The paternally inherited copies of these genes tend to be turned on and the maternally inherited ones off. Some imprinted genes promote the growth of parts of the brain that allow the offspring to deal with its social environment, which also facilitates its ability to take the mother’s directions. The maternally inherited copies of these genes tend to be turned on and the paternally inherited ones off. A relatively strong semantic memory for facts (including technical ones) but weak episodic memory for events (including social ones) tends to emerge whenever paternal imprinting dominates; the opposite whenever maternal imprinting does (Bressan and Kramer, 2021). A paternal imprinting bias is associated with a tendency toward autism-spectrum disorders, which besides autism includes hyperlexia (Ostrolenk et al., 2017), despite that other verbal skills tend to be poor. A maternal bias, instead, is associated with a tendency toward psychosis-spectrum disorders, which besides schizophrenia includes dyslexia, despite that other verbal skills tend to be good. Dyslexia is frequently comorbid with dyscalculia and savantism with hypercalculia. This circumstance leads one to suspect that dyscalculia may be a psychosis-spectrum feature and hypercalculia an autism-spectrum one. In fact, because of its strong association with autism, savantism is frequently called “autistic savantism.”

Even disregarding full-blown mental disorders, individuals with just a slight tendency toward autism are more likely to be interested in math, and to be better at it, than individuals with a slight tendency toward psychosis (Bressan and Kramer, 2021). Among people with an autistic tendency, there are relatively many men (Bressan, 2018) and, among those with a psychotic tendency, relatively many women (Bressan and Kramer, 2021). Overall, men do not outperform women in math, but among the best performing are relatively many men (Wang and Degol, 2017). Moreover, better math than verbal performance predicts greater affinity with, and success in, math and the physical sciences (Wang and Degol, 2017; see also Su et al., 2009). Parental and societal expectations and pressures seem important (Wang and Degol, 2017) but the reason behind their existence is still unclear. In fact, countries with the greatest gender equality in such things as income, parliamentary seats, and academic enrollment (Norway, Sweden, and Finland) do not have the highest, but the lowest, percentage of women with college degrees in mathematics and the physical sciences compared to other disciplines (Stoet and Geary, 2018, 2020). What the dyscalculia and hypercalculia research and the diametric theory together suggest, in any case, is that math ought to be easier for the least talented among us if it were less of a burden on reading ability and (non-episodic) memory.



The Solution

Requiring no reading and hardly any memorization, the abacus accommodates these needs perfectly. No wonder it has been in continuous use for more than 4,000 years (Ifrah, 2001). Interestingly, learning to perform mental calculations with an imaginary, rather than a real, abacus has been associated with functional and structural changes in visuospatial and frontoparietal areas of the brain, with related improvements in working and short-term memory, numerical magnitude processing, and calculation performance (review: Wang, 2020; recent papers: Lu et al., 2021; Zhang et al., 2021) as well as with a reduction in dyscalculia (Lu et al., 2020). Several studies found a greater practice effect of abacus-based mental calculation than of additional course work in symbolic mathematics (Wang, 2020). When they compare which of two abacus depictions has more beads, children trained in abacus-based mental calculation are distracted by the beads’ positions on the abacuses’ rungs (Du et al., 2014). These positions are task-irrelevant but do affect the beads’ numerical value. The finding thus demonstrates that bead arrangements can fully automatically invoke associations with cardinality.

The abacus is ill-suited to dealing with powers and logarithms and cannot handle algebra. As a sophisticated kind of abacus, iconic mathematics is much more versatile; yet it can be seen as a natural extension of the abacus and it still mimics the features that brought the abacus success.




DISCUSSION: MAIN BENEFITS OF ICONIC MATHEMATICS

To better understand mathematics, it can help to change one’s perspective of it. The solution of many an algebraic problem, for example, seems more apparent when this problem is rephrased as an equivalent geometric one. Likewise, that nonzero numbers can add up to zero is difficult to wrap one’s head around, until one thinks of them as steps along a circle that bring you back to where you came from. Iconic mathematics offers a different perspective on math than symbolic mathematics does, and this can be instructive for the same reason. Changing perspective also helps keep one’s mathematical thinking flexible.

It is often said that mathematics needs to be understood rather than learned by heart. The more exotic the math, however, the less intuitive its axioms, and more generally, theorems only make sense if one manages to recall their derivations, which can be a tall order. In fact, as laid out in the previous section, remembering abstract mathematical facts that on the surface may seem senseless is a major challenge to those who underperform in math. Iconic mathematics can help out by making mathematical expressions more concrete, more intuitive, easier to picture, or even more tangible, and thus—for all these reasons—more memorable.

Like a game of chess or checkers, math is a rule-based game. The rules of chess and checkers are quite arbitrary. To be able to play, however, one need not make sense of these rules, one merely needs to accept them, get used to them, make them second nature. Some games are, of course, easier to learn than others, and the game of mathematics is quite complex and requires extensive training. Whether in a game-like simulator or for real, flying an airplane is complex and requires extensive training too. Yet it is understood that what suffices to avoid accidents are neither technically perfect airplanes nor optimal pilot training; to keep them in the air, airplanes need to be designed to respect their pilots’ perceptual, attentional, and cognitive limitations. Human factors research has, in fact, greatly improved the design of airplanes and countless other products. Yet, although the faulty use of mathematics can certainly have disastrous consequences, math’s ergonomic design is hardly ever questioned. We put all our eggs in the basket of education and hope for the best. No wonder that even for many intelligent and properly schooled individuals, math is not a pair of wings but merely a plane crash waiting to happen. Iconic mathematics, instead, offers hope that we may be able to mold not only users’ brains to the requirements of mathematics, but also mathematics to the requirements of users’ brains.
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FOOTNOTES

1 https://en.wikipedia.org/wiki/Pythagorean_theorem

2 Perceptually, the surface of the mighty-dice extends behind their dots (a process called amodal completion); the color of this surface thus dominates that of the dots, even in the case of the numbers 9 and −9.

3 Multiplication of fractions (numbers divided by other numbers) represents a mix of repeated addition and subtraction. For example: [image: image] because, to get to zero, one can subtract 9 from 18 twice.
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Heuristics (shortcut solution rules) can help adaptation to uncertainty by leading to sufficiently accurate decisions with little information. However, heuristics would fail under extreme uncertainty where information is so scarce that any heuristic would be highly misleading for accuracy-seeking. Thus, under very high levels of uncertainty, decision-makers rely on heuristics to no avail. We posit that eristic reasoning (i.e., self-serving inferences for hedonic pursuits), rather than heuristic reasoning, is adaptive when uncertainty is extreme, as eristic reasoning produces instant hedonic gratifications helpful for coping. Eristic reasoning aims at hedonic gains (e.g., relief from the anxiety of uncertainty) that can be pursued by self-serving inferences. As such, eristic reasoning does not require any information about the environment as it instead gets cues introspectively from bodily signals informing what the organism hedonically needs as shaped by individual differences. We explain how decision-makers can benefit from heuristic vs. eristic reasoning under different levels of uncertainty. As a result, by integrating the outputs of formerly published empirical research and our conceptual discussions pertaining to eristic reasoning, we conceptually criticize the fast-and-frugal heuristics approach, which implies that heuristics are the only means of adapting to uncertainty.

KEYWORDS
 eristic, biases, hedonic goals, extreme uncertainty, self-serving beliefs


1. Introduction

Heuristics are short-cut solution rules that reduce effort and time for decision-making (Kahneman, 2003; Shah and Oppenheimer, 2008). Heuristics can produce biased decisions in the sense that decisions may be inaccurate due to incongruencies with probability theory (e.g., conjunction rule; Ahmad et al., 2020; Kahneman, 2003). However, heuristics can be crucially less susceptible to noise and inaccuracy in an uncertain environment than complicated probabilistic calculations (Artinger et al., 2015; also see Hertwig and Gigerenzer, 1999). As such, the use of heuristics can be ecologically rational as they can lead to sufficiently accurate, quick and effective decisions under uncertainty (Gigerenzer, 2008). Yet, such effective uses of heuristics depend on sensing critical (non-compensatory) heuristic cues (i.e., cues that can be used by a heuristic), which can compensate for the lack of probabilistic information (Baron, 2006). Heuristic reasoning cannot be the only means of adapting to uncertainty, especially when uncertainty levels are so high that one cannot recognize heuristic cues.

The concept of heuristics is becoming like a garbage bin, as anything that cannot be explained by logic and probability is often attributed to heuristics (Shah and Oppenheimer, 2008). It is possible that people do not always adapt to uncertainty by using heuristics (Newell et al., 2003; Navarrete and Santamaría, 2011). Adaptation is likely to be achieved with a wide variety of strategies involving disparate motivations during judgement and decision-making (Tetlock, 2002). In this respect, we identify eristic reasoning as an adaptation strategy that functions differently than that realized by heuristics. In heuristic decision-making, decisions are made to satisfy desires by intelligently processing the cues in the external environment. As such, the use of heuristics represents an intelligent strategy to deal with uncertainty, as heuristics are tools of intendedly rational decision-making (Simon, 1978, 1990). By intended rationality, we refer to the procedural rationality norm of Simon (1978, 1990), who suggests that a decision-maker is intendedly rational when she follows rationality as a process where she strives to make a judgement based on the calculation of decision consequences. In comparison, in eristic decision-making, decisions are made by blindly following desires through self-serving illusory beliefs. Eristic reasoning serves purely hedonic goals that can be achieved without the need to sense the heuristic cues in the environment. For instance, one can decide eristically by superstitions (Morisseau et al., 2021) or by wishful thinking (Bhattacharya et al., 2018).

Particularly under extreme uncertainty, it is more adaptive to change the intention of reasoning and shift from intelligent and intendedly rational methods to irrational methods where the decision is guided by self-serving hedonic inferences that are shaped by individual differences. In this regard, a neurotic person would have different hedonic needs than a dopaminergic person under extreme uncertainty. A neurotic person is overly anxious, pessimistic and unconfident (Sharma et al., 2014). Such a person would hedonically need anxiety-relieving and risk aversion. By contrast, a dopaminergic person is overly unconcerned about the future, optimistic and confident (Daw et al., 2006). The hedonic needs of a dopaminergic person would be sensation-seeking and risk-seeking. Thus, people with different personalities would react to uncertainty in distinct ways because of their distinct hedonic needs. Likewise, people can respond to stress differently in their risk-taking depending on their level of social anxiety (Hengen and Alpers, 2021). Yet, except for studies on the risk-sensitivity theory that accounts for the varying needs of individuals (Mishra, 2014), the psychological interaction between individual differences and the external environment is often neglected in the literature on decision-making under uncertainty. What we suggest is that human action does not always follow the tenets of the computational theory of mind, where decision-making is assumed to be handled almost exclusively by intelligent calculations, as championed by Simon (1983).

Irrational eristic inferences can be purposeful and, therefore, potentially adaptive, as every human action is goal-driven in some way or another (Mises, 1988). We posit that irrationality is adaptive for its eristic nature, i.e., winning-oriented thinking with disrespect for truth. For instance, acting on untruthful or superstitious beliefs can be adaptive: such beliefs can artificially decrease the anxiety that is caused by uncertainty, which in turn can boost ensuing performance (e.g., Damisch et al., 2010; Risen, 2016). Similarly, wishful thinking (e.g., Seybert and Bloomfield, 2009) and non-accuracy-seeking motivated reasoning (e.g., Gershman, 2019) can be adaptive for providing instant hedonic gratification.

While people usually have multiple goals in their minds when making their decisions, they have to prioritize them in their decision (Kung and Scholer, 2021). As an intendedly rational approach, heuristics serve the goals that can be achieved by solving the problem at hand via truth-seeking. By contrast, eristically made irrational decisions serve the goals that can be achieved without seeking a truthful solution to the problem at hand. In this respect, people preferring eristic reasoning over heuristic reasoning prioritize immediate hedonic goals such as anxiety-relieving, pleasure-seeking, bonding, sensation-seeking, etc., which are shaped by individual differences. While both heuristic and eristic reasoning can eventually serve hedonic goals, eristic reasoning does not involve the first step of the truth-seeking present in heuristic reasoning. As such, eristic reasoning directly targets instant hedonic gratification as opposed to indirect hedonic gratification that can be attained by first pursuing accuracy in problem-solving. For instance, smoking cigarette is an eristic decision to directly satisfy hedonic urges (albeit in a non-adaptive way). Yet, the harms of smoking would normally deter a person from smoking if one rationally considers the long-term hedonic consequences of smoking.

By introducing a novel conceptual distinction between the eristic nature of irrational reasoning and intendedly rational heuristic reasoning, we assert that some of the eminent biases (i.e., the overconfidence bias, the endowment effect, status quo bias, loss aversion, and wishful thinking) are more attributable to eristic reasoning than heuristic reasoning. This is not just a matter of labelling: We posit that eristic reasoning and related biases are adaptive to extreme uncertainty by providing instant hedonic gratifications useful to cope with the unknown. Accordingly, our main theoretical prediction is that individuals are likely to rely on eristic reasoning rather than heuristic reasoning when the uncertainty level is high to extreme. That is to say, when uncertainty approaches extreme levels, accuracy-seeking becomes so infeasible that one needs to listen to her desires blindly as shaped by their personality traits.



2. Eristic vs. heuristic reasoning

The term “eristic” originates from the argumentation literature (Perelman, 1982; Wolf, 2010; Kurdoglu and Ateş, 2022), in which eristic arguments are contrasted with heuristic arguments. The literature suggests that eristic arguments signify reasoning to win a debate with disrespect for truth. Eristic arguments are purely winning-oriented and directly interest-seeking moves. By contrast, heuristic arguments signify reasoning to find a sensible and impartial solution to the problem at hand. For instance, judges are supposed to argue and make their judgements heuristically as a disinterested party, whereas lawyers are predicted to argue eristically to defend the interests of their clients in a one-sided manner. Because individuals mainly use reasoning for arguing (Perelman and Olbrechts-Tyteca, 1969; Mercier and Sperber, 2011; Mercier, 2013), the terms’ heuristic vs. eristic’ can be moved into the realm of individual reasoning and decision-making from the realm of argumentation (Kurdoglu et al., 2022; Kurdoglu and Ateş, 2022).

Eristic reasoning is initiated by myths, passions, prejudices and vested interests (Perelman, 1979, 1982). These factors directly respond to individuals’ psychological or material comfort. Heuristic reasoning is not blind to personal well-being either. However, heuristic reasoning seeks personal well-being indirectly by first aiming at “real” problem-solving that depends on accuracy. Solving problems, in turn, can help to achieve well-being. By contrast, eristic reasoning directly aims at personal well-being by spurious inferences. For instance, myths in the form of superstitions are observed to be helpful for psychological comfort under uncertainty (Tsang, 2011; Hamerman and Morewedge, 2015; Risen, 2016; Walco and Risen, 2017). Myths are unfounded beliefs that are not backed by reliable evidence (such as conspiracy theories or belief in karma), while they can be psychologically comforting or frightening. Similarly, passions deteriorate our capacity to decide impartially regarding what we are passionate about. Passions are strong identity-setting emotional attachments to certain activities, people, objects and ideas (Vallerand et al., 2003). When we are passionate about an activity, idea, person or object, we inherently get pleasure from it (Ho et al., 2011). “Following passions” constitute an eristic shortcut in this respect. Prejudices, such as in-group favoritism and out-group derogation, are almost the opposite of passions in the sense that prejudices create a negative emotional distance to a person, object or idea (Hewstone et al., 2002). Finally, vested interests can cause people to sacrifice seeking accuracy to attain instant hedonic gratification. For instance, if a doctor is afraid of being sued for inaction, she may prescribe drugs without questioning their benefits for a particular case.

In comparison to eristic reasoning, heuristic reasoning is about finding a solution through truth-seeking in an efficient way (Shah and Oppenheimer, 2008). In this regard, fast-and-frugal heuristics advocated by Gigerenzer and his followers (e.g., Gigerenzer and Gaissmaier, 2011; Kruglanski and Gigerenzer, 2011; Gigerenzer et al., 2016), such as recognition, fluency, take-the-best, and tallying heuristics, are obviously practical methods of solving a problem at hand by seeking truth efficiently. As such, these heuristics directly address problem-solving goals such as accuracy of perception or efficiency (Felin et al., 2017; Lieder and Griffiths, 2020).

While heuristics can indirectly help to achieve hedonic goals — after all, solving a problem can also make the decision-maker happy—it is the eristic reasoning that seeks hedonic goals in a direct way without truth-seeking. Unlike intendedly rational heuristics or formally rational logic and probability, eristic reasoning produces pleasurable feelings without pursuing the truth in a calculative manner to resolve the problem at hand. For instance, if a financial analyst is searching for the best stock to invest in a profitable way, the financial analyst can directly aim at hedonic gratifications (e.g., increased sensation or reduced anxiety) by eristically picking a stock of a firm simply because the stock label includes a lucky number. However, a good heuristic solution could eventually make her happy as well. For instance, one could look for a heuristic cue (e.g., past performances of stocks) to solve the investment problem with profitable outcomes, which can eventually make the analyst happy. The issue we would like to highlight is that an eristic solution passes the first step of problem-solving by truth-seeking and directly aims at hedonic gratification.

The use of eristics mainly signifies a change in the goals of reasoning. In comparison to reasoning in heuristics, reasoning in eristics does not engage with external reality, and it does not offer intelligent solutions. By contrast, heuristic reasoning engages with external reality to reach satisficing outcomes, and it involves intelligence in problem-solving (e.g., intelligently ignoring part of available information). Yet, as we outlined above, a change in the reasoning goals implies changes in the prioritization of decision goals.


2.1. Eristic biases

Eristic reasoning underly various well-known biases, such as the overconfidence bias, the endowment effect, status quo bias, loss aversion, and wishful thinking. The endowment effect blinds people to their belongings’ real market value as people can be hedonically tied to their property. Similarly, loss aversion bias stems from emotional attachment to one’s possessions (Kahneman et al., 1991). Likewise, overconfidence bias indicates a tendency to hedonically overestimate one’s own skills, intellect and talent (Berthet, 2022). In a similar fashion, status quo bias represents a tendency to stick with the existing state of affairs with a close-minded attitude toward alternatives (Gunaydin et al., 2018). In this regard, these eristic biases are products of self-serving inferences, which are not helpful for seeking the truth for an intendedly rational calculation. Such biases involve self-deception and distorted reasoning motivations which are explicitly visible in wishful thinking.

In contrast to eristic biases, heuristic biases involve disregarding some part of the available information (Gigerenzer, 2008) while the aim is truth-seeking or an associated problem-solving goal (i.e., morality or efficiency). The fast-and-frugal heuristics advocated by Gigerenzer and his followers (e.g., Gigerenzer and Gaissmaier, 2011) involve that kind of bias. By contrast, the biases mentioned in the preceding paragraph (i.e., the overconfidence bias, the endowment effect, status quo bias, loss aversion, and wishful thinking), which have been studied by the heuristics-and-biases tradition proponents (e.g., Kahneman, 2003) have a different character that cannot be associated with heuristics by definition. They should be instead associated with eristic reasoning, as explained in the preceding paragraph. However, another set of biases associated with the heuristics-and-biases tradition, namely, representativeness (using similarities to estimate probabilities), availability (focusing on easily recallable memories to make judgements), and anchoring (using a benchmark to make predictions) are still examples of heuristic biases as they aim at accurate decision-making, albeit with imprecision, while saving time and effort (Shah and Oppenheimer, 2008). As such, we believe that our distinction between eristic and heuristic biases can be helpful to alleviate the theoretical dispute between the heuristics-and-biases approach and the fast-and-frugal heuristics approach as both approaches paint the heuristic reasoning with a broad-brush conflating heuristic reasoning with eristic reasoning, therefore producing a confusing theoretical debate.



2.2. Abductive calculations of heuristic reasoning vs. self-serving inferences of eristic reasoning

Contrary to the formal rationality of logic and probability, heuristics operate by intendedly rational abductive calculations. Abduction involves using deductive and inductive reasoning iteratively to produce the subjectively most convincing explanation from the available data in a pragmatic fashion (Martela, 2015). As inferences in abductive reasoning do not depend on mathematical or statistical calculations, abductive reasoning makes calculations in a subjective and imperfect way (Behfar and Okhuysen, 2018). By contrast, logic and probability do not allow abductive calculations as they rely on objective calculations driven by deductively built inferences. During the process of abductive reasoning, individuals infer conclusions from their personal knowledge base to make sense of the data they observe (Peirce, 1997). This is consistent with heuristic decision-making processes, in which the drawn knowledge base can be intuitions as well as inductively built experiential and personally or culturally learned knowledge (Denison and Xu, 2019). In comparison to inductive reasoning, in which generalized conclusions are produced from a series of observations, abductive reasoning can produce conclusions even from one observation by heuristically applying prior knowledge to a new situation (Behfar and Okhuysen, 2018).

In comparison to abductive calculations present in heuristic reasoning, eristic inferences operate in a serving inferencing manner to satisfy hedonic goals as shaped by individual differences. The sources of self-serving inferences are the hedonic needs of the individual rather than the heuristic cues present in the environment. Rather than relying on abductive calculations present in heuristic reasoning, eristic reasoning relies on directionally motivated cognition directed to satisfy hedonic urges (e.g., Hughes and Zaki, 2015). While heuristic cues are processed for an intendedly rational abductive search for truth, such as for purposes of foraging (Bella-Fernández et al., 2021), hedonic needs are processed to form self-serving eristic inferences. Overall, rather than responding to goals associated with accuracy-seeking and problem-solving, eristic reasoning responds to hedonic needs, which can be satisfied in a self-serving manner. Yet, eristic reasoning is not a foolish move as it can be adaptive under extreme uncertainty.




3. Extreme uncertainty and adaptiveness of eristic reasoning

We define extremely uncertain environments based on three criteria: (1) Environments that are subjectively new and thus have not yet been experienced or explored by the decision-maker in the past, (2) environments in which not just probabilistic quantitative information seems to be lacking but also qualitative information seems to be scarce for the decision-maker after a thorough information search, and (3) environments in which heuristic cues are either lacking at all or are very weak, and ultimately potentially unreliable as they are untested before in a similar environment. By heuristic cues, we mean cues that are helpful for seeking truth and solving the problem at hand accordingly. For instance, for recruitment decisions in a foreign country, the educational background of candidates constitutes a heuristic cue. Similarly, in medical decisions, symptoms are often primary heuristic cues for diagnosis. In cases of extreme uncertainty, however, heuristic cues can be absent. When heuristic cues are present, they are very ambiguous under extreme uncertainty. For instance, medical doctors may struggle to make a diagnosis after observing the symptoms. Extreme uncertainty can also emerge because of the volatility of the situation (e.g., stock market shocks, war-time conditions), rendering past experiences irrelevant. Similarly, it can happen because of the unprecedented nature of the situation (e.g., pandemic), causing many unknowns. In such circumstances, extreme uncertainty can be resolved if people can seek more information, ask around or familiarize themselves with the issue. Yet, this may not always be possible or affordable during decision-making. As such, people may have to decide without an opportunity to wait for a reduction in the uncertainty levels.

The judgement and decision-making research neglects extremely uncertain environments, despite the fact that they can be related to substantial decisions, while the intendedly rational methods are unfeasible in such environments. For example, a patient may decide on a treatment whose risks are completely unknown (cf., Gigerenzer et al., 2016). Without reliable heuristic cues, a decision for such treatment depends on the feeling of desperation and personality traits rather than an elusive realistic assessment of the treatment. Similarly, decisions about career changes and even long-term mating decisions can also be subject to extreme future uncertainties. Individual differences can precipitate different hedonic goals, such as sensation-seeking or anxiety-relieving. To satisfy such hedonic goals, people can sometimes change their careers without much experience and reliable information about the new job and its future prospects. Likewise, people can choose their partners impulsively. Moreover, entrepreneurs and innovators may sometimes decide to invest in extremely uncertain endeavors because of their impulses stemming from their dopaminergic personalities (Nicolaou et al., 2021). Eristic reasoning is particularly likely to play some role in entrepreneurial decisions under extreme uncertainty, as entrepreneurs often make their investment decisions by following their entrepreneurial passions (Cardon et al., 2009; Mueller et al., 2017; Croce et al., 2020).

Although we do not face highly uncertain decision environments daily, they present frequently enough to be of interest. Moreover, their impact can be substantial for the individuals involved. Since heuristics would be ineffective in forming predictions about outcome performance in such environments, people may need to resort to eristic reasoning to cope with the situation, as will be explained next. In this regard, illuminating what people maximize beyond outcome performance helps to better understand adaptive decision-making in those situations.


3.1. Eristic reasoning is adaptive under extreme uncertainty

We posit that while heuristic reasoning enables adaptation to uncertainty when uncertainty is at moderate levels, eristic reasoning is instead adaptive under extreme uncertainty. According to the fast-and-frugal heuristics approach, the bias that comes with ignoring some relevant variables by heuristics can be advantageous under uncertainty because an alternative probabilistic or mathematical model comprised of many variables can be more fallible (Gigerenzer and Brighton, 2009). Gigerenzer (2008) presents the situation succinctly: When all relevant parameters are added to a decision-making model, predictions can be highly inaccurate under uncertainty because of noise (increased variance when more variables are added to the model). Hence, it is possible to improve decision-making accuracy by being biased in the selection of parameters for the prediction model, as that would reduce the noise. This is called a variance minimization strategy. The idea is that total accuracy errors essentially stem from prediction biases and aggregate variance (Total Error = prediction biases + Aggregate Variance + Unexplained Error). When fewer parameters are added to the prediction model under uncertainty, predictions would be biased (i.e., prediction biases will be high), but the total error would still decrease as the aggregate variance (i.e., aggregation of variance per each variable) will decline sharply because of having fewer parameters to vary (Gigerenzer and Gaissmaier, 2011).

The variance minimization strategy, which justifies the biases of heuristic rules, omits the potential effects of extreme uncertainty. High levels of uncertainty would extremely raise the effect of heuristic biases and make the prediction errors enormously large in comparison to any possible decrease in total variance gained by focusing on a few deciding factors. As such, under extreme uncertainty, truth-seeking will be so elusive that it would be ecologically more adaptive to abandon truth-seeking completely and focus on anxiety reduction or similar hedonic interests by pursuing eristic reasoning. Therefore, we suggest that people can change their goals depending on the level of uncertainty they face and the utilities they drive from each goal. Accordingly, we posit that people can disengage from accuracy-related goals and switch to other goals when they particularly face higher levels of uncertainty. After such a switch, the solutions offered by eristic reasoning do not make sense for the original goal associated with truth-seeking, whereas it makes sense for the new hedonic goal. In this sense, objectives beyond decision accuracy (such as an eristic method’s potential for emotion regulation and stress management) might be relevant for decision-makers in such environments. Accordingly, we argue that the by-products of the motivational processes have been neglected in the heuristic decision-making literature (e.g., Gigerenzer and Gaissmaier, 2011), which focuses almost exclusively on the outcome of a decision.

A person’s eristic method is not intendedly rational as it involves reasoning aiming at the satisfaction of emotional urges rather than calculations of consequences of an action. We also recognize that eristic reasoning is irrational from the perspective of theoretical rationality norms (cf., Audi, 2004), as eristic reasoning is not interested in the truthful representation of reality. Yet, eristic reasoning can be instrumentally justifiable as it leads to, for example, a reduction of anxiety and a reduction of stress in the decision process (e.g., Hengen and Alpers, 2021). As such, while eristic reasoning is not intendedly rational as it does not involve calculative reasoning, we recognize that eristic reasoning can be rational from the point of view of instrumental rationality (cf. Domeier et al., 2018) in the sense that eristic reasoning can be instrumental for hedonic aims. Yet, even hedonic gains such as emotional relief can be more appropriately pursued by solving the problem at hand realistically through intendedly rational methods rather than by producing self-serving conclusions through eristic reasoning. Therefore, only under extreme uncertainty does eristic reasoning becomes the adaptive method by changing the intentions since extreme uncertainty precludes intentions of rationality. In comparison, under moderate uncertainty, heuristic reasoning and its intended rationality offer the most adaptive route as consequences can be calculated heuristically, thanks to the existence of reliable cues to assess future consequences.

On the other hand, we do not suggest that eristic reasoning and its biases (e.g., loss aversion, status quo bias, endowment effect) occur only under extreme uncertainty. Rather, we suggest eristic reasoning is particularly adaptive under extreme uncertainty. As such, when extreme uncertainty is identified, it is possible to predict the use of eristics as an adaptation strategy, while eristic reasoning can also be used maladaptively in different circumstances. For instance, many entrepreneurial decisions are marked by extreme uncertainty (Huang and Pearce, 2015; Packard et al., 2017; Foss, 2020). In such circumstances, eristic reasoning that draws on entrepreneurial passion can be responsible for entrepreneurial decisions (de Mol et al., 2020; Lex et al., 2022) rather than predictions made by heuristics. While following passion does not guarantee entrepreneurial success, it is justified in terms of adaptation when there is extreme uncertainty and a need to satisfy hedonic urges. As very high levels of entrepreneurial failure attest (Hogarth and Karelaia, 2011), many entrepreneurial endeavours are likely to be initiated by eristic reasoning driven by passion and other hedonic factors rather than by truth-seeking heuristics involving calculations of consequences. From an adaptation perspective, however, eristic submission to passion is adaptive if the decision suffers from extreme uncertainty. Poor consequences would not change the adaptive properties of eristic reasoning as its adaptiveness does not involve a calculation of consequences anyway.



3.2. Adaptive utility function

While Gigerenzer and his colleagues (Gigerenzer, 2008, 2018; Gigerenzer and Gaissmaier, 2011; Artinger et al., 2015) extensively explore prediction accuracy advantages of heuristics under uncertainty, they neglect adaptation through eristic strategies aiming at hedonic goals. We would like to make our point by focusing on the adaptiveness of anxiety relief as a hedonic goal. Assume that an individual faces a problem whose resolution is important for the individual. When uncertainty is zero or low, there would be no anxiety owing to uncertainty. In such a situation, it would be adaptive to exploit intendedly rational methods (logic, probability and heuristics) rather than pursuing hedonic goals through eristic reasoning. Assuming that the applicable formally rational methods (analytical methods that depend on logic and probability) are not too time-consuming or unaffordable, the decision-maker would not resort to heuristic reasoning. As such, the adaptive method of decision-making under negligible uncertainty would be analytical methods rather than heuristic methods. On the other hand, when there is a considerable level of uncertainty, heuristics can outperform logical and probabilistic calculations (Gigerenzer and Brighton, 2009; Gigerenzer and Gaissmaier, 2011). The reason is that heuristics depend on a single or a few decision-making variables (cues), thus becoming less vulnerable to variance relative to logical and probabilistic calculations that take many variables into consideration. The elegance of heuristic decision-making is that salient cues are intuitively recognized by the decision-maker (Filevich et al., 2017). However, under extreme uncertainty, heuristics would be as error-prone as random guesses since the salient cues are not perceived by the decision-maker. Under extreme levels of uncertainty, heuristics become useless as predictions by heuristics would be very misleading. Indeed, pursuing truth in any form of rationality, in general, becomes meaningless, while pursuing hedonic gains through eristic reasoning might provide opportunities for exploration, opening up possibilities of serendipitous outcomes and learning, or at least reduced suffering from extreme uncertainty.

To demonstrate the adaptiveness of eristic reasoning, we propose an “adaptive utility” function comprised of the summation of two elements: Gains from problem-solving by accuracy seeking (gains from intended rationality) and hedonic gains from satisfying emotional urges such as anxiety relief in the face of uncertainty. Both types of gains change as a function of uncertainty and the chosen decision-making method. Gains from intended rationality decrease when the uncertainty level is decreased. By contrast, gains from eristically satisfying hedonic urges increase when the uncertainty level is increased. The adaptive utility function can be presented as shown below.
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where,
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[image: image] Gains from problem-solving by accuracy-seeking (intended rationality gains).

[image: image]: Gains from eristically satisfying hedonic urges (e.g., anxiety relief).

Figure 1 demonstrates how adaptive utility changes for each decision-making approach (analytical methods, heuristic methods and eristic methods) under different levels of uncertainty. In Figure 1, the x-axis represents the level of environmental uncertainty, while the y-axis represents the level of adaptive utility. For simplicity, linear relationships are assumed between uncertainty and adaptive utility for three different decision-making approaches. We assume that the maximum adaptive utility, as well as maximum loss out of any decision-making method, is ß in Figure 1. Per each decision-making approach, there are varying adaptive utility values between ß and-ß. We assume that decision-makers aim at satisficing levels of adaptive utility.
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FIGURE 1
 Adaptive utility of decision-making methods under varying uncertainty.


Until the uncertainty level at point a (negligible uncertainty), analytical approaches yield the most adaptive choices as accuracy is easily attainable under low levels of uncertainty. In comparison, at an uncertainty level between point a and point b, heuristic methods are the ecologically adaptive option as the accuracy of heuristics now tends to be better than analytical approaches. Between point b and point c, heuristic methods continue to be ecologically more adaptive than eristic methods, but at point c, the adaptive utility of eristic and heuristic methods are equalized as uncertainty levels are getting high. Between points b and c, eristic methods become increasingly more adaptive for their hedonic gains, while analytical as well as heuristic methods become increasingly less adaptive for their reduced accuracy. This is because, at that interval of uncertainty, the gains attainable from hedonic pursuits (i.e., anxiety relief for this example) are increasing while the gains attainable by pursuing truth are decreasing, although heuristic methods can still outperform eristic methods in terms of producing larger adaptive utility as heuristics methods are still capable of sufficiently accurate predictions. However, further to point c, uncertainty becomes so extreme that it is adaptively more beneficial to pursue decision-making by eristic methods rather than elusively pursuing truth either by heuristic or analytical methods.



3.3. An example from game theory

As Shafir and Tversky’s (1992) experiments of the (single-shot) prisoner’s dilemma game demonstrated, individuals indeed decide eristically under uncertainty. When playing the prisoner’s dilemma game, players can either compete (confess the crime) or cooperate (not confess the crime) with each other under the uncertainty of what the other player will do. (i) If both cooperate, they get a short sentence, (ii) if one competes and the other cooperates, only the cooperating one gets a long sentence, (iii) if both compete, both get a medium sentence. From the logical perspective, self-interested utility-maximizing players in the prisoner dilemma game should both compete due to comparative trade-offs to do so under the uncertainty of the other player’s action. This holds true despite the fact that both players would be both better off if they both cooperated. Yet, as Shafir and Tversky’s experiment reported, 37% of 444 participants cooperated against these expectations.

Shafir and Tversky (1992) interpreted the situation as wishful thinking (thinking that the other participant will cooperate as well) or as non-consequentialist evaluation (principled adherence to certain actions) by participants. We agree with their interpretation, but our framework provides a richer explanation: Some individuals engage in wishful thinking or give up consideration of the outcomes for adapting to perceived extreme uncertainty, as their eristic reasoning provides a hedonic relief. As we mentioned, eristic reasoning directly aims at hedonic satisfaction, whereas heuristic reasoning provides hedonic satisfaction via problem-solving. Participants who decided to compete might have only perceived moderate uncertainty as they might have presumed that the other party was likely to compete, so they would become vulnerable to exploitation if they cooperated instead. Hence, such a problem-solving approach could be relieving for those participants who perceive moderate uncertainty. By contrast, the participants who decided to cooperate might have thought that the situation was unpredictable, where there was no clue about whether the other party would cooperate or compete. These participants who perceived extreme uncertainty might have resorted to eristic reasoning as a matter of blindly following their desire for the better outcome (i.e., both players are cooperating) by wishfully thinking that the other player can cooperate just like them. It is in this way those participants might have eristically chosen to cooperate to adapt to the extreme uncertainty they perceived.

Our interpretation depends on the condition that under the certainty of the other player’s move, eristic reasoning cannot be the adaptive option as there would be no need for a direct route to hedonic satisfaction. Indeed, a simple modification in the experimental study supports our conclusion. In the same study, Shafir and Tversky conducted the same experiment with a little change: uncertainty of the other player’s action was removed in two different scenarios. In the first scenario, participants were informed that the other player had competed. As expected, 97% of the participant chose to compete in response to the “compete” decision of the other player. In the second scenario, participants were informed that the other player was cooperating. This time, 84% of the participants acted by competing and therefore did not reciprocate the cooperation. Only 16% of the participants cooperated as an ethical reciprocation when the other player was known to be also cooperating. However, the 16% cooperation rate is much lower than the 37% cooperation rate in the original experimental scenario, where there is instead uncertainty about whether the other player is cooperating or not. In other words, when uncertainty is removed in the modified experiment, the participants’ cooperation rate unexpectedly declines. This is puzzling as one would normally expect to see increased cooperation rates once the other party is known to be cooperating as well. It seems to us that when uncertainty is removed in the modified experiment, individuals did not feel the need to directly pursue hedonic relief as they did not perceive extreme uncertainty. In that sense, they instead mostly focused on gains from accurate problem-solving. This can explain why participants became unexpectedly less cooperative when uncertainty was removed.

Similar to the situations portrayed in the prisoner’s dilemma game, people face uncertainties in their relationships with others. We posit that just like people can use heuristic reasoning (e.g., tit for tat, using familiarity to choose mates) to rationally manage some of their interactions with other people (cf. Hertwig et al., 2013), they can also use eristic reasoning to irrationally manage their social relationships with side-taking. Such eristic reasoning can be particularly observed in the reasoning of football fanatics, partisan groups, and religious zealots who are moved by a variety of hedonic drives (e.g., Jost et al., 2003; Kruglanski et al., 2021).




4. Some ideas for future research

The distinctions between heuristic and eristic reasoning offer exciting opportunities for future research. First and foremost, future research can study how people are inclined to shift from using heuristics to eristic methods when environmental uncertainty increases. Second, research can identify which eristic methods are preferred under particular scenarios. Third, the roles of eristic reasoning in different domains of decision-making can be explored. For instance, exploring the role of eristic reasoning in moral and political decision-making can be a possible direction for future research. Eristic reasoning can be favorable for political purposes because of its self-serving interest-seeking nature. Yet from a normative perspective, eristic reasoning is not appropriate for principled decision-making that most moral philosophies seek in one way or another. In this respect, while adaptive in some circumstances, eristic methods can nevertheless lead to unethical consequences. As such, further research on eristics can be insightful for studying ethically sensitive issues in different conditions.

As an example of ethical problems, Gigerenzer (2015) mentions how doctors can prescribe unnecessary drugs out of fear of persecution. We believe that such ethically controversial actions are products of the eristic reasoning of doctors who are normally expected to prescribe what is best for the patient. Research can establish antecedents of such eristic moves and thereby identify potential interventions for reducing the application of eristics. Likewise, research on eristic reasoning can shed new light on biases leading to discrimination or misconduct in different contexts, such as hiring at the workplace. As a case of demonstration, we suggest that police misconduct is also possibly related to eristic reasoning. For instance, in shooter-bias experiments (e.g., Johnson et al., 2018), researchers typically present some criminal scenarios to participants where group-based (e.g., racial) stereotypes are the only available distinctive cue for a participant’s decision to shoot or not. In those experiments, racial stereotypes are not heuristically reliable in deciding on using deadly force. Thus, in the absence of any heuristic cue (such as the criminal history of a suspect), an extremely uncertain situation presents itself to participants. In such a situation, the mind may adaptively, though ethically controversially, think eristically and act by following the only available distinctive cue (e.g., race prejudices) that triggers self-serving conclusions. The good news is that in the presence of meaningful heuristic cues, most police officers are unlikely to reason eristically and act solely on their prejudices (Cesario, 2021). In all respects, research can be useful to understand the antecedents and consequences of such ethically controversial uses of eristic reasoning.

At the moment, eristic reasoning can be distinguished from heuristic reasoning by checking for some unique nonlogical elements (i.e., captivating emotions, myths, unfounded prejudices, and vested interests in the reasoning) because these elements have nothing to do with truth-seeking reasoning that is useful for intendedly rational calculations. However, since people may either refuse to accept their true reasoning motivations or they may be unconscious of them, we believe neuroscience methods can be perhaps useful in identifying eristic strategies in decision-making (cf. Volk and Köhler, 2012; Serra, 2021). For instance, as a theoretical possibility, fMRI technology can be utilized to study the changes in the brain’s reward activity during the use of eristic reasoning vs. heuristic reasoning. In particular, through research designs that incorporate economic decision-making games, brain imagining techniques may identify different brain regions that can be associated with eristic and heuristic strategies (Sanfey et al., 2006). As such, it is theoretically possible to discover the neural basis of eristic reasoning. In this respect, neuroscience methods can be perhaps useful to have a definitive biological distinction between heuristic and eristic reasoning. This can be an exciting avenue to explore, particularly for researchers of neuroeconomics (cf. Camerer et al., 2005; Loewenstein et al., 2008; Kable, 2011).



5. Conclusion

In this paper, we explicate a useful distinction for the psychological literature on adaptive decision-making as we outline how eristic reasoning is an adaptive alternative to heuristic reasoning under extreme uncertainty (Kurdoglu et al., 2022, 2023). We argue that heuristic methods are, by definition, intendedly rational, whereas eristic methods are not intendedly rational as they are employed to target hedonic goals with self-serving inferences. Overall, we outline how to distinguish heuristic methods from eristic methods, as well as how to distinguish their adaptiveness under varying uncertainty levels. In this respect, we posit that the adaptiveness of decision-making methods should be judged by their intentions at the moment of decision-making and how these intentions match different levels of uncertainty. Under extreme uncertainties, eristics can be adaptive because rationality intentions could be futile under extreme uncertainty while acting eristically would be more adaptive for achieving hedonic gains precipitated by personality characteristics.

Our view enables us to identify an adaptive utility function where we have introduced a new component (satisfaction of hedonic urges) to recast the ecological rationality framework of Gigerenzer and his colleagues (e.g., Gigerenzer and Gaissmaier, 2011). Our adaptation function demonstrates that extreme environmental uncertainties can justify eristically made decisions. For instance, eristic decisions can be adaptive when there is a need to suppress the fear of death and avoid depression (Vail et al., 2012), such as by self-deception, in the face of extreme uncertainties (Perry-Smith and Mannucci, 2017), as was the case during the initial stages of the Covid-19 epidemic (Eden et al., 2020). Yet, when the level of uncertainty is not that high, it is more adaptive to adopt heuristic methods. Further research can empirically test our view by checking whether individuals indeed adjust their decision-making by shifting from using heuristic methods to eristic methods depending on the level of uncertainty they face. We believe studying eristic methods offers an exciting path for future research on adaptive decision-making.
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The well-documented association between fingers and numbers is not only based on the observation that most children use their fingers for counting and initial calculation, but also on extensive behavioral and neuro-functional evidence. In this article, we critically review developmental studies evaluating the association between finger sensorimotor skills (i.e., finger gnosis and fine motor skills) and numerical abilities. In sum, reviewed studies were found to provide evidential value and indicated that both finger gnosis and fine motor skills predict measures of counting, number system knowledge, number magnitude processing, and calculation ability. Therefore, specific and unique contributions of both finger gnosis and fine motor skills to the development of numerical skills seem to be substantiated. Through critical consideration of the reviewed evidence, we suggest that the association of finger gnosis and fine motor skills with numerical abilities may emerge from a combination of functional and redeployment mechanisms, in which the early use of finger-based numerical strategies during childhood might be the developmental process by which number representations become intertwined with the finger sensorimotor system, which carries an innate predisposition for said association to unfold. Further research is nonetheless necessary to clarify the causal mechanisms underlying this association.
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INTRODUCTION

Fingers and numbers seem to be inextricably associated. Almost all children across different cultures use their fingers for counting and initial calculation (e.g., Carpenter and Moser, 1982; Fuson and Hall, 1983; Fuson, 1988; Butterworth, 1999), and most cultures seem to develop specific finger-based counting strategies and systems (e.g., Butterworth, 1999; Ifrah, 2000; Bender and Beller, 2012). Even blind children use their fingers for counting and displaying numerical magnitudes (Crollen et al., 2011). Moreover, a growing body of literature dedicates itself to examining this association, both on a behavioral and neuro-functional level. Perhaps, one of the most intriguing sets of evidence among these is the well-documented association between finger motor and sensory abilities – that is, the capability of differentially moving and mentally representing one’s fingers [henceforth referred to as fine motor skills (FMS) and finger gnosis, respectively] and basic numerical abilities in early childhood (e.g., Noël, 2005; Grissmer et al., 2010). In this context, one study even found that training of finger gnosis improved numerical performance in first graders (Gracia-Bafalluy and Noël, 2008; but see Fischer, 2010). Although many studies seem to substantiate the existence of this association, its driving mechanisms remain largely unexplained. Disclosing these mechanisms requires a critical evaluation of the existing evidence on the association of fingers and numbers in preschool age. In this article, we briefly review developmental studies evaluating the association of finger gnosis and FMS with basic numerical abilities in preschool age.


Early Numerical Development

The ability to reason with numbers is critical for individual life and career prospects (Dowker, 2005; Duncan et al., 2007; Butterworth et al., 2011; Ritchie and Bates, 2013). Importantly, however, the foundations of numerical development are laid long before children get in contact with formal mathematical instruction (e.g., Siegler and Braithwaite, 2017; for a review). Instead, they begin to unfold in early childhood when children first learn how to count and understand the meaning of number magnitude. These basic, early numerical abilities constitute building blocks for more complex arithmetic and mathematical competences in the future (e.g., Jordan et al., 2009).

Given their importance, it is unsurprising that the development of children’s basic numerical abilities has prompted the interest of researchers across different disciplines. The study of children’s early understanding of number can be traced back to Piaget (1952) constructivist theory, in which he advanced the concept of equinumerosity (i.e., the comprehension that the cardinality of two sets of objects are equivalent only when their components can be paired with each other in one-to-one correspondence) as the cornerstone of numerical understanding.

Expanding on Piaget’s theory, cognitive psychologists Gelman and Gallistel (1978) introduced an influential view on numerical development, which stated that the act of counting following designated counting principles (i.e., stable order, one-to-one correspondence, and cardinality) is already in itself is an indication of children’s ability to represent number. The authors further argue that the acquisition of counting requires the construction of a bi-directional mapping system of innate preverbal, analog magnitudes onto their corresponding symbolic representations (Gallistel and Gelman, 1992). This rationale is also echoed by more recent theories of early numerical development which accentuate the importance of acquiring the ability to map non-symbolic onto symbolic representations of number (e.g., Siegler and Lortie-Forgues, 2014). Furthermore, as children take their initial steps into a numerate world, they learn how to represent non-symbolic magnitudes with increasing precision, acquire number concepts and number words, counting procedures, and cardinality knowledge (Geary, 2007).

However, also authors in the field of mathematics education elaborated on children’s acquisition of counting skills as an important milestone preceding their understanding of number. For instance, Steffe et al. (1982) described three types of counting in which pre-numerical children operate with either perceptual, figural, and/or motor unit items. These procedures differ in their degree of reliance on immediate perception of the to-be-counted objects and are claimed to give rise to different ways of mentally operating on numbers for problem-solving, with counting motor unit items (i.e., by moving fingers or other body parts) being the type with least reliance on the material presence of counting units. Through the acknowledgment of finger use as a sophisticated, effective means of mentally manipulating numerical information, Steffe et al. (1982), alongside Fuson (1982) and later followed up by Brissiaud (1992), considered finger-based strategies in a theoretical framework of early numerical development within the mathematics education literature.



Fingers and Numbers

The importance of fingers for the development of early numerical abilities is reflected in Butterworth’s (1999) claim that numerical representations are partially supported by FMS and finger gnosis. Moreover, finger counting has been argued to be a prototypical instance of embodied cognition (Fischer and Brugger, 2011). This means that numerical representations, once thought to be purely abstract, seem to be rooted in early sensorimotor experiences of finger counting (Moeller et al., 2012), which are assumed to leave a lasting trace on adult number processing in turn (Di Luca and Pesenti, 2011). The embodiment of numerical concepts and processes has been demonstrated by numerous studies dedicated to evaluating sensory and motor biases in adult numerical cognition (e.g., Fischer, 2003; Andres et al., 2004; Badets et al., 2010; Sixtus et al., 2017), as well as studies reporting influences of finger-based numerical representations on number processing. For instance, Domahs et al. (2008) found that second graders tend to commit specific split-five errors (i.e., erroneous answers deviating by ±5, and thus by one hand, from the correct result) when solving mental arithmetic problems. Furthermore, Domahs et al. (2010) reported significant effects of counting habits on magnitude processing of Arabic digits, and finger movement has been found to interfere with mental calculation even in adults (Michaux et al., 2013; Soylu and Newman, 2016).

Beyond this behavioral evidence, results from neurophysiological studies provide converging evidence for an association of fingers and numbers already at the neural level. In this context, numerous functional neuroimaging studies indicated overlapping activation of cortical networks for number processing and finger movement starting from childhood (e.g., Simon et al., 2002, 2004; Krinzinger et al., 2011; Tschentscher et al., 2012; Berteletti and Booth, 2015) – albeit with slight developmental differences. For instance, Kaufmann et al. (2008) observed significantly higher activation of areas responsible for finger-related movements in children than in adults when processing non-symbolic numerosities in addition to areas typically found to be involved in number magnitude processing (i.e., the intraparietal sulcus). Moreover, Rusconi et al. (2005) expanded on these neuroimaging results by applying transcranial magnetic stimulation to the left angular gyrus. They observed this to disrupt both finger gnosis and number processing in adults, which substantiates the assumption of a functional link between the neural representation of fingers and numbers. This idea is further corroborated by electrophysiological evidence indicating increased corticospinal excitability of right-hand muscles on a parity judgment task with small numerals (i.e., 1–4) in participants who started counting on their right thumbs from one to five (Andres et al., 2007). These results suggest that hand motor circuits were activated during non-symbolic number processing in adults (Andres et al., 2007), and this effect seems to be modulated by individual differences in finger counting routines (Sato et al., 2007). Taken together, these findings were argued to be indicative of intertwined cortical representations for numbers and fingers, which may be reminiscent of embodied numerical strategies in childhood.

There are many ways in which the use of fingers may functionally support the acquisition of basic numerical abilities (and thereby engender the embodiment of numerical representations). Considering the three levels of basic numerical development suggested by the model of Krajewski and Schneider (2009) (see Figure 1), the act of counting on one’s fingers may help children get acquainted with the one-to-one correspondence principle (Brissiaud, 1992), as well as convey the counting principles of stable order and ordinality (Crollen et al., 2011). Furthermore, the finger patterns depicting numerical quantities may facilitate the acquisition of the cardinality principle (Brissiaud, 1992) and advance the comprehension of part-whole relations (Gattegno, 1974; Brissiaud, 1992; Krajewski and Schneider, 2009). Additionally, fingers may also help convey a sense of structure (Björklund et al., 2019) and hint at the base-10 structure of the number system. As previously pointed out, these abilities are consensually regarded as fundamental for the development of mature numerical reasoning within both the domain of mathematics education and (cognitive) psychology (see Figure 1).
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FIGURE 1. Schematic depiction of how fingers may support acquisition of basic numerical abilities according to influential theories of early numerical development (Gelman and Gallistel, 1978; Brissiaud, 1992; Geary, 2007; Krajewski and Schneider, 2009). Adapted with permission from Roesch and Moeller (2015).


Nevertheless, as noted by Moeller et al. (2011), the use of fingers in support of numerical learning has been subject of controversy among researchers in the fields of (neuro-cognitive) psychology and mathematics education. The question of whether fingers constitute a scaffold or rather a hinderance for numerical development resides in the epicenter of these discussions. Recently, the notion that finger usage is a strategy adopted mostly by children with mathematical difficulties (e.g., Neuman, 1987) or cognitively low-performing children was challenged by evidence showing that 6-year-old children with high working memory capacity were more likely to use finger-based strategies than children with low working memory capacity – with these strategies also leading to better arithmetic performance (Dupont-Boime and Thevenot, 2018). In conjunction with the body of work supporting the perspective of embodied numerosity, this finding may hint toward the need to shift attention from fingers as putative cognitive crutches to seek a clearer understanding of individual differences in the use of finger-based numerical strategies, as well as likely scenarios in which finger use may be less or more effective in dealing with numerical information.

Crucially, the successful use of finger-based strategies depends not only on the intuition that fingers may be used as tools for representing and computing numerical quantities, but also largely on the ability to perform the intricate, fine-grained movements required for counting and producing specific finger postures. In support of this view, several studies documented an association between FMS and finger gnosis (i.e., the ability to move and mentally represent one’s fingers) and performance in basic numerical abilities in early childhood (e.g., Noël, 2005; Grissmer et al., 2010). Recently, Soylu et al. (2018) provided an interesting review focusing largely on the role of finger gnosis for early mathematics development and not particularly considering FMS. Therefore, considering the influences of basic finger motor in addition to sensory finger abilities on the development of early numerical abilities may be a promising direction for better understanding the almost universal appeal of fingers for supporting learning and processing of numerical content.

In particular, the ability to mentally represent, discriminate between, display and locate one’s fingers is most commonly termed finger gnosis (e.g., Penner-Wilger et al., 2007; Reeve and Humberstone, 2011). Finger gnosis has been claimed to be one of the fundamental competences supporting the development of numerical skills (Butterworth, 1999), and associations between finger gnosis and numeracy have been observed in both typical and clinical populations (e.g., developmental Gerstmann syndrome, Gerstmann, 1940; Benson and Geschwind, 1970; Suresh and Sebastian, 2000). Beyond finger gnosis, FMS have also been argued to support numerical processing and development (Butterworth, 1999). The association between academic achievement and FMS, that is “control and coordination of the distal musculature of the hands and fingers” (Bruininks and Bruininks, 2005), was the subject of numerous studies over the last decades (e.g., Keogh and Smith, 1967). Historically, FMS have also been termed visual-motor integration, perceptual-motor ability or psychomotor skills. The association between FMS and numerical skills has been observed in both typically developing children (e.g., Grissmer et al., 2010) as well as in clinical populations with motor impairments such as cerebral palsy (e.g., van Rooijen et al., 2012, 2016), developmental coordination disorder (e.g., Holsti et al., 2002; Pieters et al., 2012, 2015; Gomez et al., 2015) and spina bifida myelomeningocele (e.g., Barnes et al., 2005, 2011; Raghubar et al., 2015). The origin of this association has been assumed to rely on either simultaneous maturation, subordination of both to general intelligence (Luo et al., 2007), more stimulating home environments corroborating both FMS and cognitive development (McPhillips and Jordan-Black, 2007; Suggate et al., 2017b), a functionally or culturally driven connection (Butterworth, 1999; Fischer et al., 2017), or FMS building the fundamental basis of cognitive development, which has been claimed to be embodied by nature (e.g., Lakoff and Núñez, 2000; Thelen, 2000). The emergence of the intriguing association between fingers and numbers can be interpreted under the light of different explanations (Penner-Wilger and Anderson, 2013): first, according to the functionalist proposition (Butterworth, 1999), fingers and numbers become associated through early developmental experiences of using fingers for counting and initial calculation. In this line of thought, the use of fingers in support of early numerical reasoning during childhood is the driving mechanism of the association of numerical abilities with finger sensorimotor skills (i.e., finger gnosis and FMS). Alternatively, a second explanation to these findings is that both finger and number representations recruit a common neural circuitry. According to the so-called massive redeployment view (Anderson, 2010; Penner-Wilger and Anderson, 2013), some of the neural circuits originally involved in finger representation may have been exapted or re-used through evolutionary mechanisms for supporting numerical cognition.

The key difference between these different accounts on the observed association of fingers and numbers lies in the relative weight attributed to the neurofunctional aspects of this association and the direction of its causality: while the functionalist hypothesis suggests that fingers and numbers may become associated on a neural level through the systematic experience of using fingers in the course of early numerical development, the massive redeployment hypothesis posits that the pre-existence of a shared neural substrate for fingers and numbers drives the use of fingers for numerical reasoning. Despite proposing diametrically different causal explanations, both functionalist and massive redeployment propositions are well-accepted within the literature and seem to gather similar degrees of support from different authors without a clear preponderance of one over the other. Therefore, to this day there is no consensus regarding the precipitating mechanisms of the association of fingers and numbers.

In this context, studies investigating the role of fingers for the acquisition of preschool numerical skills offer particularly relevant insights, as they may shed light on the association between fingers and numbers prior to the onset of functional strategies, that is, before (or around the time) children start using their fingers for counting and representing numerical magnitudes. A critical consideration of these studies’ contributions may be a promising direction to elucidate which causal mechanisms may be responsible for shaping this association, as well as help extricate functionalist and massive redeployment explanations of these findings.

In this article, we review developmental studies evaluating the association between fingers and numerical skills in typically developing preschool children. Drawing partially (but not exclusively) on Butterworth (1999) theoretical framework, we will specifically focus on research targeted at FMS and finger gnosis. After briefly elaborating on our search strategy and describing all thereby obtained studies, we will discuss how both variables relate to children’s numerical development, reflect on their constraints and suggest potential directions for future research. Finally, we discuss the scope and limitations of the two main explanatory propositions of these findings considering current neuro-functional evidence.



Search Strategy and Inclusion Criteria

Studies were searched up to October 2019 in PsycARTICLES and PsycINFO. Search terms included “fingers,” “finger gnosis,” “finger gnosia,” “finger sense,” “fine motor skills,” “finger dexterity,” “finger tapping,” and “finger agility” in combination with the terms “numerical skills,” “numerical development,” “numerical cognition,” and “mathematics achievement,” filtering the results for the age group of preschool. The search produced 543 hits on PsycINFO and PsycArticles. Titles and abstracts of these studies were manually scanned for relevance. All peer-reviewed articles (published in journals or conference proceedings) focusing on the longitudinal and concurrent association between finger-related variables and the development of numerical skills in preschool age through the first school years were considered in this review. References from the relevant studies were further inspected for additional studies to be considered. Research articles focusing on clinical subgroups (e.g., children with cerebral palsy, van Rooijen et al., 2012), adults (Penner-Wilger et al., 2014), older school-aged children (e.g., Carlson et al., 2013) and published in languages other than English or German were not considered for the present review. This resulted in a final set of 20 studies considered in this review.



RESULTS


Finger Gnosis and Numerical Abilities

In recent years, the impact of finger gnosis on typically developing preschoolers’ numerical abilities has been investigated following the idea that – if finger gnosis indeed constitutes a building block for the development of numerical abilities (e.g., Butterworth, 1999) – better finger gnosis should be associated with better numerical abilities.

One of the first studies to investigate this claim found that a composite of sensory-motor measures including finger gnosis assessed in kindergarten was a better predictor of children’s numerical skills in first grade than a measure of their overall cognitive development (assessed by the “Draw-a-Person test,” Fayol et al., 1998). Similarly, Noël (2005) found that preschoolers’ finger gnosis significantly predicted their numerical skills, but not their reading ability, both concurrently and at the end of first grade (see Figure 2 for an illustration of these associations). Along with handwriting and block design, finger gnosis explained about 46% of variance of children’s later numerical skills (see Table 1 for more detailed information on the respective studies).
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FIGURE 2. Overview of developmental studies on the influence of fine motor skills (below the line) and finger gnosis (above the line) on numerical skills and mathematics achievement. Co, counting; N, number knowledge; Ca, calculation; M, magnitude; Math, mathematics achievement. For simplification purposes, children’s mean ages upon assessment of independent and outcome variables were rounded up or down in intervals of 0.5 year ranging from age 5 to 8. Medium to large effect sizes are represented in bold typeface. Outcome variables composed of different numerical measures but expressed in one single score are given in brackets. **Study used a predictor variable based on a composite measure of sensory-motor skills. The studies are, in order: 1. Fayol et al. (1998), 2. Long et al. (2016), 3. Noël (2005), 4. Penner-Wilger et al. (2007), 5. Penner-Wilger et al. (2009), 6. Poltz et al. (2015), 7. Wasner et al. (2016), 8. Asakawa and Sugimura (2014), 9. Cameron et al. (2012), 10. Dinehart and Manfra (2013), 11. Fischer et al. (2017), 12. Gashaj et al. (2019), 13. Grissmer et al. (2010), 14. Kim et al. (2017), 15. Luo et al. (2007), 16. Pagani et al. (2010), 17. Pitchford et al. (2016), 18. Son and Meisels (2006), 19. Suggate et al. (2017a). The study of Gashaj et al. (2018) was not represented in the figure because the predicted association was indirect.



TABLE 1. Overview of studies examining the association between finger gnosis and numerical skills.
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Building on these results, Penner-Wilger et al. (2007) found that finger gnosis assessed in first grade significantly predicted children’s concurrent calculation ability, although only indirectly through number system knowledge. Expanding on these findings longitudinally, Penner-Wilger et al. (2009) observed that children with better finger gnosis scores in first grade performed significantly better in a number magnitude comparison task 1 year later (see Figure 2). Additionally, finger gnosis significantly predicted linearity of estimates in a number line estimation task, claimed to reflect better numerical representations (Siegler and Booth, 2004).

Although these earlier studies seemed to corroborate an association between finger gnosis and numerical skills, it needs to be noted that they have important limitations which preclude a clear understanding of this association. While some lacked an analysis of the unique contribution of finger gnosis to numerical skills (Fayol et al., 1998; Noël, 2005), others used a finger gnosis task which had either a number processing or motor confound: for instance, Fayol et al. (1998) required participants to identify the touched finger by naming the number assigned by the experimenter to the respective finger, whereas Noël (2005); Penner-Wilger et al. (2007), and Long et al. (2016) asked children to point at the touched finger (see Figure 3 for more details on task specifics across studies; see also Guedin et al., 2018, for an alternative paradigm of finger gnosis measurement which may be more suited for younger children). Moreover, most studies did not control for the influence of other important predictors of numerical development such as general cognitive ability (Noël, 2005; Long et al., 2016) or numerical precursor skills (e.g., Fayol et al., 1998).
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FIGURE 3. Response types of finger gnosis assessment paradigms in children. Beyond these differences, tasks also diverged in terms of whether or not the child’s hands were made visible after pointing to the finger to facilitate recognition, as well as in number of trials and whether fingers were pointed at individually, consecutively or simultaneously (or yet a combination of these stimulation modalities). *Although contralateral tapping was not present in any of the here reviewed studies, it was adopted by other authors investigating finger gnosis, such as Newman (2016).


Attempting to tackle these issues, more recent studies found the predictive power of finger gnosis to be weaker than previously thought (Poltz et al., 2015; Long et al., 2016; Wasner et al., 2016). When controlling for numerical precursor skills, nonverbal IQ and other domain-general skills, Poltz et al. (2015) found that 5-year-olds’ finger gnosis was a unique predictor of their numerical skills at age six (see Figure 1), but accounted for only a small part of variance (about 2%). In line with this, Wasner et al. (2016) showed that finger gnosis was associated with first graders’ addition and subtraction performance, but again accounted for no more than 1–2% of variance when the influence of general cognitive ability, short term memory and numerical precursor skills (e.g., symbolic and non-symbolic magnitude comparison) was considered (for similar results see also Long et al., 2016).

Even though these findings seem to substantiate the hypothesis of a parallel development of finger gnosis and numerical abilities, it is important to note that the correlational design of two of these studies (Long et al., 2016; Wasner et al., 2016) does not permit causal interpretations of their results. For instance, in the study of Wasner et al. (2016), the fact that concurrently assessed finger gnosis accounted for little variance on numerical performance after controlling for numerical precursor skills does not rule out the possibility that these very basic numerical abilities being accounted for were acquired with assistance of finger-based strategies in earlier numerical development.

It is also important to acknowledge that, although most studies followed a common parameter for the assessment of finger gnosis (i.e., indicating the finger(s) stimulated by the experimenter; Baron, 2004), task specifics appear to be heterogeneous in what concerns number of trials, way of finger stimulation and response modality (see Figure 3 and Task column in Table 1), which may give rise to comparability issues. For instance, although most studies used a combination of trials comprising stimulation of one individual finger as well as consecutive or simultaneous stimulation of two fingers, some of them (Penner-Wilger et al., 2007, 2009) included only consecutive and simultaneous trials, which increases task difficulty. Moreover, while most experimental procedures allowed children to identify the touched finger(s) by means of visual guidance, one study (Long et al., 2016) required children to point to the touched fingers with their hands still out of sight. Additionally, as pointed out by Wasner et al. (2016), the internal consistency of finger gnosis tests was mostly weak throughout studies (see also Long et al., 2016 for a discussion of this point). Future studies should thus aim at establishing a standard way for measuring finger gnosis to avoid confounds and warrant comparability of research findings.

To evaluate the evidential value of the reviewed findings, we conducted a p-curve analysis (Simonsohn et al., 2014, 2015). This procedure allows for accounting for publication bias and provides an estimate of the true effect size associated with a given set of findings. For this analysis, we selected the significant coefficients based on the following criteria: (1) only one coefficient was chosen from each study (see Table 1 for disclosure); (2) in case coefficients were reported for both concurrent and longitudinal associations, preference was given to the longitudinal test; (3) in case more than one longitudinal coefficient was given, we opted for the association covering the age range and/or test interval closest to the one investigated by other studies; (4) for one study (Wasner et al., 2016) in which test results were provided for both addition and subtraction, we chose the result for addition due to consistency with other studies; (5) when tests from different studies were not independent (i.e., Penner-Wilger et al., 2007, 2009), only one of them was considered.

As evidenced by the right-skewed distribution of the p-curve (see Figure 4), the tests entered into the analysis were considered to provide evidential value and had high statistical power. Therefore, the association of finger gnosis and numerical skills seems to have evidential value and should continue to be investigated for further clarification of underlying mechanisms.
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FIGURE 4. p-curve distribution for tests studying the association between finger gnosis and numerical abilities.


In sum, while recent evidence endorsed the idea that finger gnosis may uniquely predict the development of numerical competences (see Figure 2), it also suggests that its impact may be less conspicuous than thought initially. Although this seems to speak against the claim that well-developed finger gnosis at an early age may be an important advantage for future numerical development, the questions of why and how this association emerges (and yet, is repeatedly evidenced) remains unanswered. In this context, considering the influence of FMS on numerical development might be informative to endorse or refute a functional explanation of these findings.



Fine Motor Skills and Numerical Abilities

Most studies investigating the association between FMS and numerical competences relied on a rather general construct of FMS. For instance, considering six sets of large-scale longitudinal data, Grissmer et al. (2010) found that FMS assessed in kindergarten were a better predictor of later mathematics achievement than measures of attention (see Table 2). Similarly, Luo et al. (2007) found that FMS significantly predicted mathematics achievement at kindergarten entry even after partialling out influences of other background variables such as sex, age, and socioeconomic status (see also Son and Meisels, 2006; Pagani et al., 2010).


TABLE 2. Overview of studies examining the association between fine motor skills and numerical skills.
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However, as these studies derived a single FMS score based on performance on drawing, copying and block building tasks (see Table 2), they lacked differentiation between specific subcomponents which might contribute specifically and differentially to the development of numerical skills. More recent studies aimed at filling this gap. Pitchford et al. (2016), for instance, examined the specific contribution of two types of FMS distinguishable by how much they rely on visual-perceptual processing, namely (a) fine motor integration (which requires coordinated hand-eye movements and visual-perceptual integration for adequate motor output) and (b) fine motor precision (a more pure measure of FMS indexed by tasks of drawing, folding and cutting within given boundaries). Performance on visual-perceptual integration tasks administered in first grade was found to be a better predictor of concurrent mathematics achievement than of reading ability, even after accounting for influences of general cognitive ability (see Figure 2).

An alternative characterization of FMS was suggested by Dinehart and Manfra (2013), who proposed the existence of two highly correlated but distinct subcomponents of FMS: (a) fine motor object manipulation, which requires manual dexterity and is necessary for placing pegs in holes, lacing, and building with blocks; and (b) fine motor writing (i.e., graphomotor skills), a more complex ability which requires several cognitive and neuromotor processes and is necessary for drawing or writing. The authors found that both fine motor object manipulation and fine motor writing skills assessed in kindergarten exerted unique influences on second grade mathematics scores (see Table 2), with a larger effect size for fine motor writing (see also Cameron et al., 2012). Similar results were found by Kim et al. (2017), who found that preschoolers’ visuomotor integration performance was associated with their numerical skills measured at the end of first grade.

In order to isolate FMS from contamination by visual-spatial skills, Penner-Wilger et al. (2007) used a computerized version of a finger tapping task and found that finger agility contributed directly and uniquely to the concurrent prediction of first graders’ number system knowledge, but not calculation skills. Asakawa and Sugimura (2014) also investigated the relationship between FMS and numerical skills more differentially and found that finger dexterity predicted participants’ arithmetic performance more strongly than it predicted their vocabulary skills. Additionally, these authors observed that the association between FMS and numerical skills was already strong in 4-year-old children, suggesting that the relation between finger dexterity and numerical skills emerges very early in life.

More recently, Gashaj et al. (2019) examined the concurrent and longitudinal (Gashaj et al., 2018) associations of FMS (as measured by bead threading, coin posting and drawing within boundaries at age 6), executive functioning and numerical abilities. After accounting for the influence of numerical precursor skills and executive functions, the authors observed that FMS significantly predicted non-symbolic (but not symbolic) number line estimation in 6-year-old children (Gashaj et al., 2019). However, using structural equation modeling, they found that FMS at age 6 only predicted mathematics achievement in second grade indirectly through basic numerical abilities such as magnitude comparison and number line estimation, but not directly (Gashaj et al., 2018).

The evidential value of these findings was also evaluated by means of a p-curve analysis (Simonsohn et al., 2014, 2015). All included tests were selected based on the same criteria previously used for selection of the finger gnosis findings (see Table 2 for disclosure) with two new added criteria: (1) when multiple FMS scores were given (e.g., Cameron et al., 2012), we selected either the more comprehensive score or the one mirroring our operational definition of FMS (e.g., Kim et al., 2017); (2) when tests for multiple numerical dependent variables were provided, we opted for the one with the highest predictive value (expressed by its beta weight in a regression analysis; Suggate et al., 2017a) or largest effect size (expressed by Cohen’s d; Dinehart and Manfra, 2013).

As expected from the large sample sizes of nearly all included studies, the evidential value of these findings was corroborated by a right-skewed distribution of the p-curve (see Figure 5) with again high statistical power. Therefore, the validity of the association of FMS and numerical skills is corroborated and thus merits further investigation.
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FIGURE 5. p-curve distribution for tests studying the association between fine motor skills and numerical abilities.


Taken together, these studies point to a clear contribution of FMS to numerical and mathematical abilities, most specifically in what regards mathematics achievement but also number system knowledge and arithmetic abilities (see Figure 1). Importantly, however, there appear to be subtle differences across studies in what is subsumed under the term FMS as well as some terminological disagreement among researchers. For instance, while some authors use the terms “manual dexterity” and “FMS” interchangeably as having the same meaning (Makofske, 2011), others consider the first to be a specific subtype of FMS (Houwen et al., 2008). Additionally, most studies investigating FMS so far used a composite measure of different subcomponents, including tasks heavily based on visual-motor skills (e.g., Son and Meisels, 2006; Luo et al., 2007; Grissmer et al., 2010; see Table 2). To the best of our knowledge, the few existing studies which attempted to isolate contributions of different aspects of FMS to numerical abilities (Dinehart and Manfra, 2013; Pitchford et al., 2016) still lacked an effective dissociation of a type of fine motor ability which is goal-oriented and visually guided from a second type which consists of the mere motor act of controlling and coordinating finger movements. This distinction may be crucial for understanding the relevance of FMS for numerical development because the first type involves many other (cognitive) processes, such as visual-spatial skills and components of executive function such as planning and inhibition. Recent studies (Gashaj et al., 2018, 2019) tackled this issue by controlling for influences of executive functioning, which may be a further promising direction for disentangling influences of FMS from those of visual-spatial skills in addition to indexing FMS by finger tapping performance (Penner-Wilger et al., 2007). Nevertheless, further studies are needed to further delineate specific connections between finger motor skills and numerical abilities.



Finger Gnosis, Fine Motor Skills, and Finger-Based Numerical Strategies

Although finger gnosis and FMS seem to make specific contributions to the development of numeracy (Penner-Wilger et al., 2007, see Figure 1), it is possible that they reflect different dimensions of finger-based numerical strategies which may be dissociable and stem from different mechanisms. To this date, only one study attempted to disentangle the specific contributions of finger gnosis and FMS (Penner-Wilger et al., 2007) to the development of numerical skills. Results showed that, while finger gnosis seemed to be associated with both number system knowledge and calculation skills, FMS (in this study, finger agility) were only found to relate to number system knowledge. The authors chose finger agility as a proxy for FMS due to its relative independence from visual-motor integration skills, which may be considered a confound. These initial findings hint at the need to further investigate the specific contributions of different FMS components and finger gnosis to the development of numerical skills.

From a functional perspective, it is nonetheless easy to fathom how finger gnosis and FMS may be intertwined. For instance, to effectively count on one’s fingers, one must be able to recognize them as separate entities and assign different numerical magnitudes to each finger while moving them individually. Thus, the success in using one’s fingers to count relies both on good differentiability and adequate movement capacity of fingers. In this line of thought, the existence of a functional relation between both finger gnosis or FMS and numerical abilities may be corroborated. In functionalist proposition Butterworth (1999), fingers and numbers are indirectly related through children’s use of their fingers to represent quantities, extending number processing beyond the subitizing range and serving as functional aids in numerical representation and computation. The role of fingers then would be that of a “missing tool” for the connection of non-symbolic and symbolic number representations which are necessary for numerical computations (Andres et al., 2008, see also Gallistel and Gelman, 1992).

Recent evidence provides further support for this claim. For the case of FMS, Fischer and colleagues (2017) found that the association between FMS (as measured by bead-threading, block turning, and a pegboard task) and conceptual counting knowledge in preschool children was mediated by procedural counting knowledge. This finding suggests that children with better FMS may be more successful at using their fingers for counting procedures, which might in turn facilitate the acquisition of a conceptual understanding of counting.

Similarly, Suggate et al. (2017a) found that preschoolers’ FMS (indexed by bead-threading, block turning, and a pegboard task) were more strongly related to performance in counting and arithmetic tasks that involved the use of finger-based strategies than to those tasks that were solved without help of fingers, even after controlling for the influence of age, vocabulary, and general cognitive ability. Moreover, the association of FMS and non-finger-based numerical tasks was entirely mediated by finger-based numerical skills, supporting the idea of finger-based strategies as a link between FMS and numerical development.

Moreover, for the case of finger gnosis, Reeve and Humberstone (2011) found that preschool children’s finger gnosis was related to whether they used their fingers while performing calculations as well as to their performance in a calculation task. In particular, children with poor finger gnosis barely used their fingers and committed more errors while calculating. Furthermore, Costa et al. (2011) observed that dyscalculic children had significantly poorer finger gnosis, even though their general cognitive ability and working memory were at typical level. In their study, finger gnosis was particularly relevant for solving word problems, which required manipulations of quantities between 1 and 10, for which the use of fingers may be specifically suited. The authors argued that finger gnosis deficits relate to an inability to use fingers to transiently represent magnitudes. Furthermore, a recent study by van Rinsveld et al. (2020) found that preschoolers’ performance in a finger pattern recognition task was a better longitudinal predictor of their number line estimation performance at the beginning of first grade than finger gnosis. In particular, the authors observed that, although finger pattern recognition was concurrently correlated with finger gnosis, only the former predicted children’s later number line estimation. These findings seem to corroborate the idea of a rather indirect role of finger gnosis for the acquisition of number representations in that it may scaffold the emergence of finger-based numerical representations. In sum, this evidence supports the assumption that the association between fingers and numbers may be functional and stem from the usage of fingers for numerical tasks.

Nevertheless, it must be noted that the functionalist proposition is based to a large extent on the behavioral and ethnocultural evidence available at the time of its publication (Butterworth, 1999). In the meantime, neuroimaging methods saw significant improvements and a leap in popularity, giving rise to several neurofunctional and neurostimulation studies capable of specifying the neural correlates of finger gnosis and numerical abilities in more detail. This new evidence provides further insights into how the neural circuits supporting finger and number representations are intertwined. As mentioned above, overlapping activation of cortical networks for number processing and finger movement can be observed in children as young as 8 years old and is still observed in adulthood (e.g., Kaufmann et al., 2008), when fingers are most likely no longer used in aid of numerical processes.

Although this observation speaks in favor of a common neural substrate for representing numbers and fingers, it does not provide clarifying information on the origins of this shared neural circuitry. In lieu of a functionalist explanation, it is in principle likewise possible that the neural circuitry supporting sensorimotor finger function is also at least partially involved in number representation and numerical operations through evolutionarily redeployment mechanisms. Although the massive redeployment hypothesis does not preclude that numerical representations may be in some way grounded in sensorimotor experience (Anderson, 2010), early finger usage is thought to be no more than a useful tool for physically (and spatio-temporally) representing to-be-learned concepts with no semantic grounding resulting from these actions. That is not to say that finger-based strategies are not a useful resource for numerical learning, but rather that their application may be analogous to the purpose of speech-accompanying gesturing, that is, an outlet for conveying ideas not yet suited for verbal expression (Goldin-Meadow, 2003; Anderson, 2010).Finally, it should be noted that the association of fingers and numbers on the neural level may be accounted for by another interpretation, namely, the neuronal recycling hypothesis (e.g., Dehaene, 2009). Although the neuronal recycling hypothesis appears similar to the massive redeployment hypothesis, they differ in their definition of how exactly fingers and numbers come to be served by common neural circuits: while the neuronal recycling perspective posits that this may be the product of learning-driven neuronal plasticity (Dehaene, 2009), the massive redeployment hypothesis pins down the origin of this association to human phylogenesis. In other words, while the first assumes the association of fingers and numbers to be the product of human development, the second attributes it to the repurposing of phylogenetically older neural systems to support evolutionarily recent functions such as numerical reasoning.

While the neuronal recycling account may complement the functionalist hypothesis where the latter does not delve into detail – that is, the neurofunctional network sustaining the finger-number association – assuming a complete independence of these systems prior to the onset of developmental experience may be hasty. After all, as argued by Jones (2018), neural plasticity is a process which may be too slow-paced to satisfactorily explain how neural systems supporting number processing may shift so rapidly in function. Therefore, experiential events connecting fingers to numbers may serve the purpose of increasing connectivity between the respective neural systems, which may already have been associated to some extent to begin with. Yet, on the other hand, it is widely known that learning may lead to considerable changes in functional but also structural aspects of the brain. In the end, the most likely scenario is that all explanatory accounts on the behavioral and neuro-functional association of fingers and numbers may be at least partially correct but also partially incorrect. That is to say that, while there may be an innate disposition for numerical abilities to be grounded in the sensorimotor systems subserving fingers, certain developmental experiences would still be required for said association to unfold.

Although this claim seems to be supported by both behavioral as well as neurophysiological data, further studies are necessary to disentangle the nature vs nurture mechanisms of the association of finger and numbers. Exploring these associations before the onset of “nurture” influences – that is, before children start using their fingers for counting and representing numerical magnitudes – may be one promising direction for disentangling these explanations. To this end, it may also be informative to explore differential neural activation for finger gnosis and FMS, as they may reflect different aspects or degrees of functionality of associations between fingers and numbers. Finally, some additional insights on the innateness of a shared neural circuitry for fingers and numbers may be gained from animal (e.g., Shoham and Grinvald, 2001) or computational models (e.g., De La Cruz et al., 2014; Di Nuovo and McClelland, 2019). Further neurofunctional or electrophysiological studies of people belonging to cultures with non-finger-exclusive embodied counting systems or with a limited to non-existent representational system for exact number (e.g., Pica et al., 2004; Frank et al., 2008) may also be particularly enlightening for elucidating the causality direction of this association.



CONCLUSION AND PERSPECTIVES

Taken together, the studies reviewed above seem to point to a specific and unique contribution of finger-related variables to the development of numerical skills that seems to persist over and above the influence of other important predictors such as general cognitive ability or numerical precursor skills. In particular, finger gnosis and/or FMS were observed to predict measures of counting (Fayol et al., 1998; Noël, 2005; Luo et al., 2007; Penner-Wilger et al., 2009; Poltz et al., 2015), number system knowledge (Fayol et al., 1998; Noël, 2005; Son and Meisels, 2006; Luo et al., 2007; Penner-Wilger et al., 2007, 2009; Poltz et al., 2015), number magnitude processing (Noël, 2005; Son and Meisels, 2006; Luo et al., 2007; Poltz et al., 2015), and calculation ability (Fayol et al., 1998; Noël, 2005; Son and Meisels, 2006; Luo et al., 2007; Penner-Wilger et al., 2007; Dinehart and Manfra, 2013; Asakawa and Sugimura, 2014; Poltz et al., 2015; Long et al., 2016; Pitchford et al., 2016; Wasner et al., 2016). Furthermore, finger gnosis and FMS were found to be better predictors of some numerical outcome measures than of other variables such as reading ability (Noël, 2005) and vocabulary (Asakawa and Sugimura, 2014).

However, the contribution of both finger gnosis and FMS to numerical development seems to be smaller than previously thought with, for instance, finger gnosis explaining about 1–2% of variance of first graders’ calculation skills (e.g., Wasner et al., 2016) after controlling for domain-general skills as well as natural variables such as general cognitive ability and age. Although results from training studies of both FMS (Atsushi et al., 2017) and finger gnosis (Gracia-Bafalluy and Noël, 2008; but see Fischer, 2010 for methodological limitations as well as Jay and Betenson, 2017 for differing results) showed improvements on first graders’ basic numerical and arithmetical skills, the longitudinal evidence presented above is hard to reconcile with the idea of finger gnosis and/or FMS being necessary component skills of numerical abilities. However, this does not imply that finger-related variables are not relevant for children’s numerical development. As suggested by recent evidence, finger gnosis and FMS may be functionally relevant for the acquisition of numerical skills in that they support the successful use of finger-based numerical strategies such as finger counting or calculating (Reeve and Humberstone, 2011; Fischer et al., 2017; Suggate et al., 2017a, but see Lafay et al., 2013).

In line with this, Roesch and Moeller (2015) recently discussed the influence of finger-based numerical strategies in the light of a current model of early numerical development (Krajewski and Schneider, 2009). They argued that fingers do not only help children in counting, reciting number words and grasping the concept of cardinality (for similar conclusions, see also Gunderson et al., 2015), but also serve as a tool for corroborating initial arithmetic operations such as part-whole relations. As such, finger-based numerical strategies may support early numerical development at all stages specified by Krajewski and Schneider (2009) (see also Figure 1) as well as bolster the acquisition of foundational numerical abilities described by influential authors in the field of numerical development (e.g., Gelman and Gallistel, 1978; Butterworth, 1999; Geary, 2007).

Therefore, although using fingers may not be imperative for the acquisition of basic numerical concepts (Nicoladis et al., 2010; Crollen et al., 2011), finger-based strategies constitute a natural scaffold for the development of crucial numerical abilities and may be highly advantageous for most – if not for all – children in early stages of their numerical development. This may be further evidenced by studies specifically designed to detect differences in specific numerical abilities which may be more directly supported by use of fingers, as well as expanding the examined age range to even younger children in order to capture developmental windows in which finger-related abilities may more directly influence the acquisition of numerical skills. Specifically, evaluating whether and if so, how FMS mediate the association between finger gnosis and numerical abilities may be crucial to unraveling the causality controversy. Furthermore, when examining the associations of finger sensory and motor abilities, finger-based strategies and numerical abilities, it would be desirable to investigate not only whether children use their fingers for numerical computations, but how they do so. This may be relevant because finger-based strategies may vary in terms of efficiency and complexity (Björklund et al., 2019) both from a cognitive and from a motor perspective, potentially leading to differential associations between finger sensorimotor skills and numerical outcomes.

Moreover, even if it seems plausible to conclude that higher finger gnosis and FMS may lead to more successful finger usage for counting and initial calculation, it might be that they constitute a consequence rather than a cause of frequent and differential finger use for number processing. In line with this, Poltz et al. (2015) observed a bi-directional relation between finger gnosis and numerical development, as not only children’s numerical ability was longitudinally predicted by finger gnosis, but also finger gnosis was predicted by earlier numerical performance – even though the second association was weaker.

Furthermore, cross-sectional and correlational evidence do not suffice for pinpointing the mechanisms precipitating the association of fingers and numerical representations. As such, the existing evidence may not be sufficient to fully endorse either the functionalist or redeployment explanation of empirical findings. Crucially, the latter regards this association as innate rather than functionally acquired, arguing that the natural inclination to use fingers for representing numerical quantities feels natural because the neural circuits supporting finger motor and sensory skills have been redeployed for supporting numerical representations (Penner-Wilger and Anderson, 2013). In fact, Anderson (2010) argued that “the motor control system is here [for representing numerical information] being used for a specific cognitive purpose not because it is performing semantic grounding or providing metaphorically guided domain structuring, but because it offers an appropriate physical (and spatiotemporal) resource for the task” at hand (p. 256).

However, observed cross-cultural differences in embodied (finger) counting systems appear to reflect the existence of functional mechanisms influencing the association of fingers and numbers to some extent. For instance, although finger counting seems to be culturally universal, non-finger-based embodied strategies were found to be part of the counting system of the new Guinean Oksapmin community (Butterworth, 1999; Ifrah, 2000; Saxe and Esmonde, 2004; Bender and Beller, 2012), who employs body parts such as shoulders, eyes and nose in addition to their fingers for counting. The fact that embodied counting systems may not be entirely limited to fingers is not directly explained by redeployment mechanisms, as shared sensorimotor circuits for number processing seem to be specific to finger movements (e.g., Michaux et al., 2013).

Further evidence supporting a functional association of fingers and numbers can be found in studies employing different research methodologies. For instance, on a behavioral level, it was observed that a certain type of addition and subtraction errors (i.e., getting the answer to a problem wrong by ±5) can be observed in primary school-children at the time when multiplication is introduced to them (Domahs et al., 2008). These so-called split-five errors in mental calculation were interpreted to reflect a failure to account for one full-hand-unit, suggesting that finger-based strategies influence mental calculations specifically. In line with this, sequential finger movements were found to interfere only with arithmetic operations ontogenetically supported by using fingers, that is, in addition but not in multiplication (Michaux et al., 2013).

Moreover, electrophysiological evidence indicates that right-hand muscles were activated on a parity judgment task with small numerals (i.e., 1–4) in participants who started counting on their right hands (Andres et al., 2007), suggesting that the activation of hand motor circuits in number processing seems to be modulated by individual differences in finger counting routines (Sato et al., 2007).

Finally, in a cross-cultural study, Domahs et al. (2010) found that adult symbolic magnitude processing is influenced culture-specific aspects of the respective finger counting habits (i.e., finger postures for numbers from 6 to 10 require both hands in German but only one hand in Chinese finger counting routines). In particular, German participants took more time for magnitude comparisons on pairs of symbolic numbers of which at least one required a two-hand posture as compared to one-hand postures in the Chinese finger counting routine (e.g., 6 vs 9). This finding is particularly compelling because, if number processes were not considered to be somehow shaped by cultural specificities of finger-based numerical strategies, such influences of specific properties of finger counting routines should not be observed on a cross-cultural level. Furthermore, recent developmental findings suggesting that (culture-specific) finger-based numerical strategies (or representations) mediate the association of numerical skills with either finger gnosis or FMS (Costa et al., 2011; Reeve and Humberstone, 2011; Fischer et al., 2017; Suggate et al., 2017a; van Rinsveld et al., 2020) also corroborate a functionalist stance of associations between fingers and numbers.

Finally, on a sensorimotor level, numerical processing seems to be facilitated not only by posturing cardinal finger patterns (Sixtus et al., 2017) but also by ordinal aspects of finger counting, namely by tactile stimulation matching the last finger used to count to a certain number on the respective finger counting routine (Sixtus et al., 2020). Such individual and culture-specific differences may not be directly expected under the massive redeployment hypothesis, at least not in the version described by Penner-Wilger and Anderson (2013). Taken together, these research findings seem to corroborate the idea that the association of fingers and numbers is functionally modulated and may emerge from the use of finger-based numerical strategies in early stages of children’s numerical development.

However, contemplating this (mostly) behavioral evidence does not resolve the chicken-or-egg conundrum involving the functionalist vs redeployment debate, as some functionally driven variability is also to be expected (although to a lesser extent) from the massive redeployment hypothesis (Anderson, 2010). Crucially, we argue that these theoretical accounts are not mutually exclusive and may thus not necessarily need to be treated as an either-or-question. Instead, the motor behavior of finger counting might be the developmental process by which number representations are grounded in the finger sensorimotor system, which may already have a predisposition to accommodate these (Lakoff and Núñez, 2000). Therefore, once these numerical representations become developmentally connected to the finger sensorimotor circuitry, they become permanently associated both on a neurofunctional and on a behavioral level, resulting in widespread associations between fingers and numbers.

Although this proposition seems to render a plausible explanation for associations between fingers and numbers, it needs to be substantiated by future studies. In order to expand on the topic, some research directions may be particularly fruitful. First, on a behavioral level, further longitudinal or training studies may disentangle the relations between early finger gnosis and FMS, finger-based numerical strategies, and early numerical abilities while controlling for the influence of domain-general variables. Moreover, contemplating individual differences in the association of finger gnosis, FMS and numerical abilities may inform why and to what extent some children might prefer and benefit more from strategies other than finger usage. Additionally, future research should aim at establishing a gold standard for measuring finger gnosis as well as increase the reliability of finger gnosis tasks to avoid confounds and ensure comparability between studies. Second, on a neurofunctional level, it may be informative to investigate the neural circuitry subserving numerical representations and finger movements prior to the adoption of functional strategies, as well as explore differential activations for finger gnosis and fine motor ability. Finally, some additional insights into the innateness of a shared neural circuitry for fingers and numbers may be gained from cross-cultural studies, as well as animal and computational modeling. Disclosing the driving mechanisms of the association between finger sensorimotor skills and early numerical development would represent a breakthrough to both psychological and mathematics education research, as it may help establish a common ground on the potentials but also limitations of finger-based numerical strategies for educational practice.
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Based on the dual mechanisms of control (DMC) theory, there are two distinct mechanisms of cognitive control, proactive and reactive control. Importantly, accumulating evidence indicates that there is a developmental shift from predominantly using reactive control to proactive control during childhood, and the engagement of proactive control emerges as early as 5–7 years old. However, less is known about whether and how proactive control at this early age stage is associated with children’s other cognitive abilities such as working memory and math ability. To address this issue, the current study recruited 98 Chinese children under 5–7 years old. Among them, a total of 81 children (mean age = 6.29 years) contributed useable data for the assessments of cognitive control, working memory, and math ability. The results revealed that children at this age period predominantly employed a pattern of proactive control during an AX-Continuous Performance Task (AX-CPT). Moreover, the proactive control index estimated by this task was positively associated with both working memory and math performance. Further regression analysis showed that proactive control accounted for significant additional variance in predicting math performance after controlling for working memory. Most interestingly, mediation analysis showed that proactive control significantly mediated the association between working memory and math performance. This suggests that as working memory increases so does proactive control, which may in turn improve math ability in early childhood. Our findings may have important implications for educational practice.
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INTRODUCTION

Cognitive control, the ability to regulate and coordinate goal-directed behavior so as to allow for flexible adaptation to changing environments, has been considered as one of the most basic cognitive skills in humans (Miller and Cohen, 2001). Previous research has indicated that cognitive control is involved in a wide range of cognitive activities including learning (Abrahamse et al., 2016), comprehension (Ye and Zhou, 2008), theory of mind (Carlson and Moses, 2001), problem solving (Passolunghi and Siegel, 2001), and general fluid intelligence (Benedek et al., 2014). Moreover, measures of cognitive control have been shown to explain a significant amount of variance in academic achievements, above and beyond the effect of general fluid intelligence (Magalhães et al., 2020). Given these critical aspects, the numbers of studies investigating cognitive control have increased dramatically during the past decades. However, to date, much of the prior research has focused on the individual executive skills such as inhibition control, working memory, and mental-set shifting through which cognitive control is exerted (Diamond, 2013; Morra et al., 2018). Relatively few research efforts have been dedicated to examine the temporal dynamics of how cognitive control is used.

Importantly, a recently developed cognitive theory, the dual mechanisms of control (DMC) model, proposes that cognitive control can be implemented with two temporally distinct cognitive processes: proactive control and reactive control, and humans can flexibly shift between these two cognitive control processes for high-order cognition (Braver, 2012). Proactive control refers to the cue-driven and top-down cognitive processes that can allow an individual to maintain task-relevant goals in advance of the stimuli requiring a response. Reactive control, on the other hand, refers to the probe-driven and bottom-up cognitive processes in which relevant information cannot be utilized until an event requiring a response has occurred (Braver et al., 2007). Generally, these two types of cognitive control processes can be assessed using a specific experimental paradigm, the AX-Continuous Performance Task (AX-CPT, Braver et al., 2007). In AX-CPT, cue-probe pairs are presented sequentially. Participants are instructed to make a target response to the probe when an A cue is followed by an X probe (AX trials), and to make a non-target response for all other cue-probe pairs including AY, BX, and BY trials, where Y and B represent any stimuli other than A and X. Considering the high proportion of AX trials during this task, participants who use a proactive form of cognitive control tend to prepare a target response when an A cue appears. Hence, they are inclined to prepare an incorrect target response when an A cue is not followed by an X probe (AY trials). Moreover, the participants are inclined to prepare a correct non-target response when a B cue appears, even if it is followed by an X probe (BX trials). By contrast, participants who use a reactive form of cognitive control do not prepare a response according to the cue presented. Thus, they do not need to overcome the strong target expectancy that an A cue is followed by an X probe, and should make a correct non-target response on AY trials quickly. However, the X probe tends to lure them into incorrect target responses on BX trials. Nowadays, the AX-CPT has been widely used to examine proactive and reactive control in adults, repeatedly showing that young adults rely more on proactive control with worse performance on AY than BX trials (Braver et al., 2007), whereas older adults demonstrate a typical reactive pattern with worse performance on BX than AY trials (Paxton et al., 2008; Braver et al., 2009).

Several recent studies have tried to examine proactive and reactive control in children, and propose that age-related improvements in cognitive control during childhood may be accounted for by a developmental shift from heavy reliance on reactive control to more proactive control (Brahmbhatt et al., 2010; Munakata et al., 2012; Lucenet and Blaye, 2014; Chevalier et al., 2015; Troller-Renfree et al., 2020). In this view, younger children tend to rely almost exclusively on reactive control, a late correction mechanism that involves waiting for a control-demanding event to occur and then implements cognitive control in a just-in-time manner. Conversely, older children can use both forms of cognitive control. As age increases, they tend to rely more on proactive control, through which they could actively maintain goal-relevant information before an event occurs and thereby optimally orient behavior. Compared with reactive control, proactive control poses a greater cognitive demand on working memory, but it is generally more effective, which may explain better behavioral performance in many cognitive skills (Chevalier et al., 2013; Gonthier et al., 2019). To date, the efficiency in proactive control during childhood has been convincingly shown to increase with age, with older children demonstrating more and more advantages on BX than AY trials (Chatham et al., 2009; Lorsbach and Reimer, 2010). Moreover, recent work suggests that the shift from reactive to proactive control begins in early childhood – presumably occur at around 5–7 years of age (Lucenet and Blaye, 2014; Gonthier et al., 2019).

However, it remains unclear whether proactive control in early childhood is associated with other cognitive abilities. The literature has put one possible answer forward: working memory. Critically, working memory requires individuals to actively maintain and manipulate task-related information, and proactive control requires individuals to use proactive cues to prepare for maintaining and manipulating task-related information (Braver, 2012). In addition, neuroimaging studies have consistently reported that proactive control recruits brain regions (e.g., the prefrontal cortex) that are largely overlapping with the working memory network (Müller and Knight, 2006; Aron, 2011). Hence, it is reasonable to speculate that working memory may be related to the use of proactive control. In agreement with this hypothesis, accumulating evidence has demonstrated proactive control is closely related to working memory in adults (Redick, 2014; Richmond et al., 2015; Wiemers and Redick, 2018). For instance, Redick (2014) showed that in young adults, individuals with high working memory capacity tend to use proactive control more often than individuals with low working memory capacity. Additionally, Richmond et al. (2015) reported that in young adults, inter-individual differences in working memory could predict inter-individual differences in the efficiency of proactive control engagement. A few studies also reported similar relationships during childhood (Lorsbach and Reimer, 2010; Troller-Renfree et al., 2020). For instance, individual differences in working memory were found positively related to more proactive control in children at 9 years old (Troller-Renfree et al., 2020). Given the positive relationship between working memory and proactive control reported in both adulthood and late childhood, we hypothesize that working memory may relate to the use of proactive control in early childhood. Investigation of this question would bring us a deeper understanding of the mechanisms underlying cognitive development during early childhood.

A related question is whether proactive control in early childhood could be linked to academic abilities. Of particular interest is the math ability that is critical to many aspects in daily life (Hafer et al., 2002; Shapka et al., 2006; Joensen and Nielsen, 2009). Research has documented numerous cognitive factors that may affect math ability (Clark et al., 2010; Raghubar et al., 2010). One of the most investigated factors is working memory (Raghubar et al., 2010). It is assumed that operational processes in math problem solving involve temporary storage and retrieval of task-relevant information, which greatly consumes working memory resources. Since proactive control and working memory have been suggested to share overlapping cognitive processes and neural resources (Müller and Knight, 2006; Aron, 2011; Braver, 2012; Redick, 2014), the use of proactive control at early childhood may play a critical role in the development of math ability, and even affect the impact of working memory on math ability. To date, only one study specifically focused on the relationship between proactive control and math ability in children, and reported that individual differences in proactive control engagement were positively related to variations in math performance (Kubota et al., 2020). Notably, this relationship was detected in a sample with a wide age range of 6–10 years old, and most of the participants were in middle or late childhood. It remains unclear whether the use of proactive control in early childhood contributes to individual differences in math performance.

Based on the literature mentioned above, the present study aimed to investigate the relationships of proactive control with both working memory and math ability in early childhood. Of particularly, we focused on the age of 5–7 years old because this age period has been suggested as the earliest stage for the emergence of proactive control (Lucenet and Blaye, 2014; Gonthier et al., 2019). Additionally, the testing point in this study was set at the start of primary school. This is a period of interest because it is marked by important changes to both children’s cognitive abilities and external demands of the school environment. Investigating relations in cognitive abilities at this age stage can help us identify the early skills that may have long-term consequences for later cognitive and academic outcomes (Mazzocco and Kover, 2007; De Smedt et al., 2009). Children at this age period performed an animal version of the AX-CPT task that could measure engagement in proactive control. In addition, they completed several cognitive tasks that could measure working memory and math ability. Based on findings in prior research (Lucenet and Blaye, 2014; Gonthier et al., 2019), we hypothesized that children at this age period would show a predominantly proactive pattern of cognitive performance, with worse performance on AY trials than on BX trials in the AX-CPT. Besides, we hypothesized that the proactive control index as measured by the AX-CPT would be positively correlated with both working memory and math performance. Moreover, since prior research has consistently reported that working memory is closely related to math performance (Raghubar et al., 2010), we further tested whether the relationship between proactive control and math performance would be independent from the relationship between working memory and math performance, and whether individual differences in proactive control would mediate the relationship between working memory and math performance. Additionally, the literature has provided some evidence that variations in age, gender, socioeconomic status, and fluid intelligence of the samples may affect behavioral performance in working memory and math ability during childhood (Espy et al., 2004; Noble et al., 2007; Wei et al., 2012; Yeniad et al., 2013). Therefore, these variables would be incorporated into the present study as control variables.



MATERIALS AND METHODS


Participants and Procedures

We enrolled a total of 98 children aged 5–7 years old from a primary school in Chinese Mainland. They were from rural families, had normal hearing and normal visual acuity, had no history of psychiatric or neurological disorders, and had studied the same curriculum with no special educational assistance requirements. At the time of testing, they were all at the beginning of their first-grade years. Specifically, three computer-based cognitive tasks generated using E-Prime 1.1 were used to measure proactive control, and verbal/visual working memory. The children were tested one-by-one in a quiet room at school, and the order of the three computerized tasks was counterbalanced between subjects. After all the computerized tasks, two paper-pencil tests that assessed math and fluid intelligence were administrated in a group manner. Additionally, parents finished a questionnaire including a widely used marker of socioeconomic status – average monthly household income. A total of 15 children were not included in final statistical analyses due to withdrawal from the study after the enrollment (N = 9) or incomplete behavioral assessments (N = 6). Moreover, two children were excluded due to the mean of accuracy in the AX-CPT task being below 50% and 3 SD below the mean accuracy of all participants. Consequently, 81 children constituted the final analytical sample (N = 81, mean age = 6.29 years, SD = 0.35, range = 5.76–7.32, 40 boys, Table 1).



TABLE 1. Mean (SD) and range of all the study variables (N = 81).
[image: Table1]



Cognitive Control

An animal version of the AX-CPT task was used to measure cognitive control (Gonthier et al., 2019). In this task, if an X probe (giraffe) occurred after an A cue (panda), participants were instructed to press the green button with their dominant index finger, but if any other cue-probe pairs (AY, BX, and BY trials, where Y and B represent any animals other than panda and giraffe) occurred, participants were required to press the red button with their other index finger. They were instructed to respond as fast and accurately as possible. Similar to prior research (Lucenet and Blaye, 2014), AX trials made up 70% of the trials, while each of the other three types of cue-probe pairs made up 10% of the trials. There were 16 practice trials, which could be repeated one more time if needed, to make the participants acquainted with this task. The formal testing included four blocks of 80 trials, yielding a total of 320 trials. For each trial, a fixation was firstly displayed in the center of the screen for 500 ms; then a cue animal picture was presented on the screen for 500 ms, followed by a blank interval for 1,500 ms; subsequently, a probe animal picture was presented on the screen up to 1,500 ms or disappeared if a response was given. Error rates and mean reaction time for correct responses were calculated for each condition. Then the proactive behavioral index (PBI) that has been used widely in previous research (Gonthier et al., 2019; Kubota et al., 2020), was calculated to measure the use of proactive control. The PBI score was computed as (AY − BX)/(AY + BX) for both error rates and reaction time. This index could reflect the relative balance of interference between AY and BX trials, where a higher value in PBI scores would reflect more reliance on proactive control.



Working Memory

Both verbal and visual working memory tasks were conducted to obtain a domain-general estimate of working memory ability.

Verbal working memory was measured by a forward digit memory span task that was derived from the Wechsler intelligence scale (Watkins and Smith, 2013). In this task, a set of sequences with single digits (1–9) were presented aurally at a rate of one digit per second. Participants were instructed to repeat those numbers in order immediately after the presentation of the last digit. The task started with a sequence length of two digits, and each length was tested with two independent digit sequences. The sequence length would increase by 1 if either one or both digit sequences for the same length were recalled correctly, otherwise the task would be discontinued. Verbal working memory was determined by the maximum sequence length the subject could recall correctly. If both trials of the maximum sequence length were recalled successfully, verbal working memory was indexed by this sequence length; otherwise verbal working memory was indexed by the maximum length minus 0.5.

Visual working memory was measured by an animal span task adapted from Loosli et al. (2012). The task consisted of two stages. In the encoding stage, a sequence of animals was presented in the center of the screen and participants were asked to identify the orientation of each animal by pressing the left or right button (press the right button for correct presentation and press the left button for upside-down). At the same time, they were required to remember the order in which the animals were presented. If the participants made a wrong response or did not give a response within 3,000 ms, an error feedback was presented. In the recall stage, the participants were required to recall the previously displayed animal sequence by clicking on the appropriate animals from the display without time limits. The task started with a sequence length of two animal pictures. The length on the next animal sequence would increase by 1 if the participant recalled the current animal sequence correctly, otherwise it would remain stable. The task would be discontinued if the participants could not correctly recall two animal sequences with a same length. Visual working memory was assessed by the maximum number of animals that the participant could recall correctly.



Math

Math ability was measured by the arithmetic subscale of the Heidelberg Rechentest (Haffner, 2005), which has been reported to have good reliability for the Chinese population (Wu and Li, 2005). It consisted of four timed subtests: mental addition (e.g., 7+1=_), mental subtraction (e.g., 60−4=_), number equations filling (e.g., 11+_=15–2), and number comparison (e.g., 12+9_20). Problems in each subscale were displayed serially in a list with an order of increasing difficulty. Participants were instructed to solve the math problems with numbers or symbols such as “>,” “<,” and “=” within a time limit of 1 min for each subtest. For each participant, the number of correct answers combined for all subtests was used as an estimate of math ability. Moreover, this math test provides an additional subtest for number writing speed. Children were required to copy as many numbers as possible within 30 s. This measure could be used to control for the effect of general writing speed on math performance.



Fluid Intelligence

Fluid intelligence was measured by Raven’s Standard Progressive Matrices (Raven, 2003). The test has also been reported to show good reliability for the Chinese population (Wang et al., 2007). It includes 72 items and each item consists of a series of geometric figures with one of them missing. Participants were asked to choose the appropriate geometric figure from a set of given figures. To reduce fatigue in the child participants, we split the Raven’s test into odd and even items (36 items per version), and only the version with odd items was used. Participants had 20 min to complete the test, and the number of correct responses was used as a measure of fluid intelligence.




RESULT


Descriptive Analyses

In the AX-CPT task, the mean of reaction time and error rates across all trials were 625 ms (SD = 89, range = 416–945) and 0.21 (SD = 0.06, range = 0.06–0.34), respectively. Mean reaction time was not significantly correlated with error rates (r = 0.012, p = 0.918), indicating no speed-accuracy trade-off in AX-CPT. Consistent with previous studies (Lucenet and Blaye, 2014; Kubota et al., 2020), the children performed more slowly [t(80) = 8.195, p < 0.001, d = 152 ms] and committed more errors [t(80) = 4.613, p < 0.001, d = 0.107] on the AY trials than the BX trials, thereby revealing their use of a proactive mode of cognitive control. To estimate the inter-individual differences in the use of proactive control, the PBI scores in term of both reaction time and error rates were computed for each participant. A higher value would indicate more use in proactive control processes. Then a composite PBI score was computed by standardizing and averaging the reaction time PBI scores and error rates PBI scores, thereby summarizing the use of proactive control with a single index. Regarding to the two working memory measures, verbal working memory was found positively related to visual working memory (r = 0.392, p < 0.001). Then a composite working memory score was computed by standardizing and averaging the scores on these two working memory tasks so as to obtain a domain-general estimate of working memory capacity. The descriptive statistics of all the measures in the present study are displayed in Table 1.



Correlational Analyses

We first examined the potential relations of age, socioeconomic status, fluid intelligence, and number copying speed with our key study variables. As shown in Table 2, significant correlations were detected between fluid intelligence and composite PBI scores (r = 0.228, p = 0.041), between fluid intelligence and visual working memory (r = 0.236, p = 0.034), as well as between fluid intelligence and math ability (r = 0.224, p = 0.045). No other significant relationships with these key study variables were detected. Additionally, none of these key study variables showed any significant gender differences (smallest p = 0.152).



TABLE 2. The correlations of age, socioeconomic status, and fluid intelligence with key study variables.
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Then we examined the relations of proactive control with both working memory and math ability (Table 3). Importantly, both the composite PBI scores (r = 0.392, p < 0.001, Figure 1A) as well as PBI scores in reaction time (r = 0.330, p = 0.003) and error rates (r = 0.264, p = 0.017) were found positively correlated with the composite working memory scores, confirming that children with higher working memory capacity tended to be more proactive. To confirm the stability of this finding, the same analyses were replicated by considering the two working memory tasks separately. Significant or marginal correlations with the PBI scores were also found separately for verbal working memory (composite PBI: r = 0.304, p = 0.006; PBI reaction time: r = 0.259, p = 0.020; PBI error rates: r = 0.203, p = 0.069) and visual working memory (composite PBI: r = 0.349, p = 0.001; PBI reaction time: r = 0.292, p = 0.008; PBI error rates: r = 0.238, p = 0.032), confirming that the relationship between proactive control and working memory was domain general. Moreover, the composite PBI scores were found positively correlated with children’s math performance (r = 0.407, p < 0.001, Figure 1B). Similar correlations were also found between PBI scores in reaction time and math ability (r = 0.325, p = 0.003), as well as between PBI scores in error rates and math ability (r = 0.292, p = 0.008), providing further evidence that proactive shift of cognitive control may be beneficial for math problems solving. Notably, all the above significant correlations remained similar when controlling for the effect of fluid intelligence as well as other factors including age, socioeconomic status, and number copying speed. Additionally, in line with prior research (Raghubar et al., 2010), individual differences in composite working memory were found positively correlated with children’s math performance (r = 0.317, p = 0.004, Figure 1C). Significant correlations were also found between verbal working memory and math performance (r = 0.219, p = 0.049), as well as between visual working memory and math performance (r = 0.311, p = 0.005), indicating that the relationship between working memory and math performance was domain general. Post hoc power analysis using the G-Power Analysis software program (Faul et al., 2007) revealed that with the current sample size of N = 81, and for the observed correlations of the composite PBI scores with both working memory and math performance, the achieved power could reached the standard threshold of 0.80.



TABLE 3. The correlations of proactive control with both working memory and math ability.
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FIGURE 1. Relationships among proactive control, working memory, and math ability. (A) Represents the relationship between proactive control and working memory; (B) represents the relationship between proactive control and math ability; and (C) represents the relationship between working memory and math ability.




Regression and Mediation Analyses

Hierarchical regression analyses were carried out to examine whether proactive control could explain a significant amount of variance in math performance beyond the effect of working memory. As there was a significant correlation between fluid intelligence and math performance, the intelligence score was entered into the model as a covariate in step 1. The composite working memory score was entered into the model in step 2 to control for the effect of working memory. Finally, the composite PBI scores were entered into the model to determine the unique influence of proactive control after controlling for the effects of both fluid intelligence and working memory. Regression results were expressed in term of R-square change (ΔR2) accounted for by the model and standardized regression coefficients (β) of each predictor, which were displayed in Table 4. Our results showed that this final model was significant [F(3,77) = 6.847, p < 0.001, total R2 = 0.211]. The composite PBI scores accounted for additional 7.7% variance increase in explaining individual differences in children’s math performance. The results remained significant when controlling for other factors including age, socioeconomic status, and number copying speed.



TABLE 4. Hierarchical regression analyses predicting math performance.
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Since proactive control, working memory, and math ability were found to be significantly correlated with each other, we further ran a mediation model to test whether individual differences in proactive control could mediate the relationship between working memory and math ability. The mediation effect was evaluated using the PROCESS (Hayes, 2012) implemented in SPSS 22.0. To test the significance of mediation effect, a 95% bootstrapped CI was generated from repeated resampling (10,000 samples) of the observed data. CIs that do not include zero would indicate a significant mediation effect of the predictor (working memory) on the outcome (math performance) through the mediator (proactive control). Given that fluid intelligence scores were found to be significantly correlated with all three measures, it was included as a covariate. The result indicated that the composite PBI scores exerted an indirect mediation effect on the relation between composite working memory and math performance [CI (0.416, 3.569), Figure 2]. The same analyses were conducted with composite working memory scores replaced by verbal or visual working memory scores, respectively. Similarly, the composite PBI scores mediated the relationship between verbal/visual working memory scores and math performance [verbal working memory: CI (0.348, 2.732); visual working memory: CI (0.253, 2.596)]. These results remained significant when controlling for age, intelligence, socioeconomic status, and number copying speed.

[image: Figure 2]

FIGURE 2. The mediation role of proactive control in the relationship between working memory and math ability. Numbers are standardized beta coefficients, and the value after the forward-slash indicates the standardized beta coefficient after the inclusion of the mediator. ***p < 0.001; **p < 0.01.





DISCUSSION

It has been now well accepted that cognitive control improves rapidly during childhood, with one of the dominant changes being a developmental shift from predominantly reactive control to a more planful and sustained pattern of proactive control (Lucenet and Blaye, 2014; Gonthier et al., 2019; Troller-Renfree et al., 2020). However, less is known about whether and how this proactive shift of cognitive control relates to other cognitive abilities. Although several recent studies have provided evidence for significant associations between the use of proactive control and individual differences in working memory and math ability, they focused on adults (Redick, 2014; Wiemers and Redick, 2018), older children (Troller-Renfree et al., 2020), or children with a wide age range (Kubota et al., 2020). It is currently not clear whether and how proactive control at early childhood relates to individual differences in working memory and math ability. The current study tried to address this question in children under 5–7 years of age. First, consistent with prior research (Lucenet and Blaye, 2014; Gonthier et al., 2019), the present study demonstrated that children aged 5–7 years old engaged cognitive control more proactively, as reflected by worse performance in term of both response time and error rates on AY than BX trials. Second, the proactive control index measured by the AX-CPT task was found positively associated with behavioral performance in both working memory and math tasks. Third, hierarchical regression analyses indicated that proactive control accounted for additional variance in predicting math ability beyond the effect of working memory. Finally, a mediation model showed that individual differences in proactive control significantly mediated the relationship between working memory and math ability. Altogether, these findings suggest that proactive control during early childhood is closely related to inter-individual differences in working memory and math ability, which may have important implications for future educational interventions.


The Use of Proactive Control

Previous research has consistently reported that as age increases, children shift from heavy reliance on reactive control to more proactive control during childhood (Brahmbhatt et al., 2010; Munakata et al., 2012; Chevalier et al., 2013; Lucenet and Blaye, 2014; Troller-Renfree et al., 2020). Importantly, a recent study by Gonthier et al. (2019) suggests that this developmental shift begins in early childhood – presumably occur at around 5–7 years of age. In their study, pre-kindergartners (mean age = 4.41 years) showed a clear pattern of reactive control in the AX-CPT, with higher error rates on BX than AY trials. In contrast, kindergartners (mean age = 5.72 years) and first-grade children (mean age = 6.68 years) showed more reliance on proactive control, with both more errors and longer reaction time on AY than BX trials. Interestingly, our study also revealed that children aged 5–7 years old engaged cognitive control more proactively, with higher error rates and longer reaction time on AY than BX trials (Table 1). The sample age in our study was similar to the age of kindergartners and first-grade children in the study by Gonthier et al. (2019). Hence, our study, with a relatively larger sample size, replicated their findings and suggested that children aged 5–7 years old have acquired the ability to use proactive control.



Relationships Between Working Memory and Proactive Control

Previous research has consistently reported that individual differences in working memory are significantly correlated with variations in proactive control, indicating some common cognitive substrates between these two processes (Lorsbach and Reimer, 2010; Richmond et al., 2015; Wiemers and Redick, 2018; Troller-Renfree et al., 2020). It has been suggested that the engagement of proactive control may critically depend on working memory, as proactive control requires continuous and active maintenance of goal-related information in working memory. Accordingly, individuals with higher working memory capacity may be better at using valid cues to prepare their responses to incoming targets, and show more efficiency in proactive control engagement. However, the majority of previous studies have detected this relationship in young adults (Richmond et al., 2015; Wiemers and Redick, 2018) and older children (Lorsbach and Reimer, 2010; Troller-Renfree et al., 2020). Little is known about how this relationship unfolds in early childhood. Importantly, our study extended previous findings by revealing a positive relationship between proactive control and working memory in children at 5–7 years old. Consistent with the study by Gonthier et al. (2019), our study found that both verbal and visual working memory were positively correlated with the use of proactive control. Hence, there may be a domain-general factor of working memory rather than a domain-specific working memory component that could account for the close relationship. However, the study by Gonthier et al. (2019) used a wide age range and the relationships disappeared when controlling for age. Additionally, participants in their study were recruited from different school grades including pre-kindergarten, kindergarten, and first grade. Thus, the associations between working memory and proactive control could be interfered by confounding factors such as schooling effect (Brod et al., 2017). By contrast, our study focused only on the first-grade students and all the tests were administered at the start of the first grade. Hence, our study might provide more clear evidence for the positive relationships between working memory and proactive control in early childhood. Finally, several previous studies in adults have implicated the same brain circuitry (e.g., the prefrontal and parietal regions) in both proactive control and working memory paradigms (Müller and Knight, 2006; Aron, 2011). Hence, it is possible that the relationships between proactive control and working memory observed in the current study were driven by involvement of a shared brain circuitry. Consistent with this conjecture, a previous study reported that the links between proactive control and working memory in 9-year-old children were mediated by increases in parietal activity underlying working memory (Troller-Renfree et al., 2020). However, further study is warranted to identify the neural mechanism underlying the relation between proactive control and working memory in early childhood.



Relationships Between Proactive Control and Math Ability

Another interesting finding of the current study is that individual differences in the use of proactive control at this early age stage were positively correlated with variations in math ability. This adds a new perspective to the field by demonstrating that children may benefit from using proactive control in specific academic skills. A growing body of studies have been dedicated to investigating the potential factors accounting for individual differences in math ability (Bull and Scerif, 2001; De Smedt et al., 2009; Wang et al., 2015). However, the majority of previous studies have tried to explain individual differences in math ability by investigating the impact of specific cognitive skills such as working memory, response inhibition, and task switching (Bull and Scerif, 2001; Raghubar et al., 2010; Wang et al., 2015). Interestingly, the selection and use of appropriate strategies has also been suggested to explain part of the variability in math ability (Imbo et al., 2007; Imbo and Vandierendonck, 2007). And a recent study in adults has shown that the use of proactive control has positive influences on the strategy selection and execution when solving math problems (Hinault et al., 2017). Hence, it is possible that the use of proactive control helps children use cues to prepare appropriate math strategies in advance, and thereby contributes to their improved math performance. Notably, considering that working memory, which was found significantly correlated with the use of proactive control in the present study, has been convincingly shown to play a critical role in the development of math ability in children (De Smedt et al., 2009; Raghubar et al., 2010), one may wonder whether individual differences in working memory accounts for the relationship between proactive control and math ability. Nevertheless, this is unlikely as our hierarchical regression model showed that proactive control still explained a unique portion of math ability after controlling for those explained by working memory. Moreover, the contribution of proactive control to math ability remained significant when the intelligence score was included as a covariate, highlighting the importance of proactive control for math performance.



Proactive Control Mediates the Relationships Between Working Memory and Math Ability

The close relationship between working memory and math ability during childhood has been supported by a growing body of research (Swanson and Sachse-Lee, 2001; Berg, 2008; Raghubar et al., 2010; Van de Weijer-Bergsma et al., 2015). Importantly, the present study found that this relationship at early childhood was mediated by individual variations in the use of proactive control. This mediation effect could be replicated when the verbal/visual working memory scores were used as the dependent variable. Together, these results indicate that working memory may contribute to the early development of math ability through the engagement of proactive control. We speculated that children with higher working memory capacity might engage proactive control more efficiently when solving math problems. As a result, they may be easier to prepare and select appropriate math strategies and thereby accomplish the math tasks in a more efficient manner. A previous neuroimaging study by Taillan et al. (2015) investigated the neural correlates of strategy selection when solving math problems, and showed greater brain activations in the right anterior cingulate cortex, dorsolateral prefrontal cortex, and angular gyrus when selecting the better math strategies. Interestingly, these brain regions were previously observed in both working memory (Owen et al., 2005) and proactive control processes (Müller and Knight, 2006; Aron, 2011). Thus, it is also possible that the shared underlying neural mechanism contributes to the mediation role of proactive control in the effect of working memory on math performance. In the present study, the relationship between working memory and math ability was completely mediated by proactive control. This complete mediation effect might be attributable to the way the math test tested in this study. Although, all the participants in the present study answered the same math problems, children with higher working memory capacity might solve the math problems more efficiently by direct retrieval and progress further through the math test. They might thus encounter increasingly difficult math problems that elicited more procedural strategies. Given that proactive control has been suggested to play a prominent role in adaptive strategy selection such as planning the order of arithmetic operations (Hinault et al., 2017), proactive control might be thus used more frequently when solving these increasingly difficult math problems and thereby exerted a complete mediation effect.



Limitations and Future Directions

The current study had a few limitations that should be considered in future research. First, we employed only an AX-CPT task and a standardized arithmetic test for measuring proactive control and math ability. A broader measurement for proactive control and math ability is recommended for future research to improve the generalization of the findings. Additionally, as the present study only examined a set of very limited variables, it remains unclear whether other cognitive factors untested would affect the results. Future studies should also consider other cognitive measures to address the potential confounding issues more rigorously. Second, the current findings are limited to the age range under investigation. Further study is warranted to investigate whether similar relations exist during preschool, primary school, and adolescence to address the role of proactive control in cognitive development more comprehensively. Third, the current study does not allow for conclusions about the directionality of the relationships of proactive control with working memory and math ability. Future research should consider investigating the causal relationships between proactive control and cognitive functions, for example, by examining whether targeted training on proactive control could improve working memory and math ability in children. Finally, the neural correlates of proactive control in early childhood remain largely unknown. Future research should try to clarify the potential neural mechanism that may underlie the relationships among proactive control, working memory, and math ability in early childhood.




CONCLUSION

To summarize, this study indicated that individual differences in proactive control at early childhood could explain variations in working memory and math ability. Moreover, individual differences in proactive control were found to explain additional variances in math ability beyond the effect of working memory, and were found to significantly mediate the association between working memory and math ability. More rigorous studies are needed to examine the causal relationships between proactive control and various cognitive functions at early childhood, and to identify the neural mechanism underlying these relationships. Lastly, it is tempting to think that targeted training on proactive control at an early age may be helpful in enhancing cognitive and academic skills in children with cognitive deficits, which deserves a further investigation.
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INTRODUCTION

Numeracy is critically associated with personal and vocational life-prospects (Evans et al., 2017; Grotlüschen et al., 2019); yet, many adults and children lack a basic level of proficiency (Jonas, 2018). At the same time, research interest in numerical cognition, and its neuro-cognitive foundations (e.g., Cohen Kadosh and Dowker, 2015), as well as in mathematics education (e.g., Dennis et al., 2016) continues to grow. In this opinion, we argue that more intensive discussion across the disciplines is necessary to answer the question how results from basic research can make it to the classroom, how classroom practices can be validated by research, and discuss a theoretical framework for guiding future transfer endeavors.

Transferring basic research results to educational praxis is not a new challenge. As early as 1899, James (1958) noted the difficulty of directly deriving suggestions for pedagogical practice from psychological research. Even when successful, research in psychology might not be enough to derive effective suggestions or direct conclusions for educational practice without considering environmental challenges and requirements of teaching. Clearly not all basic research aims at informing educational practice; however, failure of important results from research to successfully impact practice reflects missed opportunities at some point during dissemination—as is failing to validate effective existing practices through research to allow for what may be called practice-based evidence.



BASIC RESEARCH, APPLIED RESEARCH, AND USE-INSPIRED BASIC RESEARCH

To illustrate possible barriers for moving basic research results on numerical cognition into the classroom, Stokes' Quadrant Model of Scientific Research (Stokes, 1997) may be considered. Agnostic to a specific discipline, Stokes offered two dimensions to visualize goals of research: research inspired by the quest for fundamental understanding vs. research specifically designed with consideration of use. Stokes emphasized that the two dimensions do not describe two opposite poles on a linear scale because if so, the quest for fundamental understanding and consideration of use would drift apart, or at least would not be connected. Additionally, Stokes described a category syncing basic research with more applied research which he termed use-inspired basic research. Research in this category is inspired by the quest for fundamental understanding, with the idea to explicitly consider usefulness for practical needs.

Disciplinary fields such as the learning sciences, cognitive science, neuroscience, and educational psychology may overlap in terms of more basic or more applied research. For reasons of parsimony, we conceptualized more basic research as that conducted in the disciplines of neuroscience, cognitive science, biology, and genetics. In contrast, we conceptualized more applied research as research in the disciplines of mathematics education, educational psychology, and the learning sciences. Moreover, we operationalized use-inspired basic research as research conducted by any of the above disciplines explicitly for use in educational contexts. Of course, each of these disciplines operates on different levels of observation (e.g., brain, individual, classroom) and therefore contributes considerably to our understanding of numerical cognition from the neuro-cognitive foundations to the acquisition and teaching of numerical skills. In the following, we provide examples of research from several fields.



MORE BASIC AND MORE APPLIED RESEARCH ON NUMERICAL COGNITION

The number of meta-analyses published since 2015 manifests the contributions from both more basic and more applied research. Examples of more applied research on numerical cognition include evaluations of effectiveness of interventions in early childhood (Mononen et al., 2014; Wang et al., 2016; Christodoulou et al., 2017; Nelson and McMaster, 2019); for older students (Jitendra et al., 2018; Stevens et al., 2018); across age groups (Dennis et al., 2016); and across different regions of the world (Conn, 2017). Other examples include interventions for students with emotional difficulties (Losinski et al., 2019); math anxiety (Namkung et al., 2019); or on attitudes toward achievement (Savelsbergh et al., 2016); the impact of homework (Fan et al., 2017); and specific teaching strategies (Capar and Tarim, 2015; Rittle-Johnson et al., 2017; Guillaume and Van Rinsveld, 2018).

On the other hand, meta-analyses of more basic research include synthesized results on the association of numerical and spatial cognition (Hawes et al., 2019); magnitude understanding (Vanbinst and De Smedt, 2016; Sokolowski et al., 2017); rapid automatized naming (Koponen et al., 2017); specific brain regions associated with numerical cognition (Yeo et al., 2017); specific numerical processes (Arsalidou et al., 2018); specific cognitive functions (Peng et al., 2016); different numerical representations (Schneider et al., 2017); and genetic influences (Chen et al., 2017; King et al., 2019).

The above list is far from exhaustive. Synthesizing the entire corpus of work-to-date to create a holistic understanding of what we currently do and do not know on numerical cognition, and then disseminating that work across disciplines and to educators, is a substantial challenge for moving research results into the classroom. Looking at just 15 evidence-based instructional practices, using three different procedures for either early or late implementation, Koedinger et al. (2013) explained that an educator would have to consider 205 trillion options; and the effectiveness of these instructional practices is susceptible to contextual variables (e.g., Dunlosky et al., 2013; Davenport et al., 2019).



RESEARCH AND NOISY APPLICATION IN CLASSROOMS

But how can research then come to influence classroom practice? And how can classroom practice influence what is researched? In our opinion, suggestions for two-way bridges over research-to-practice gaps (e.g., Bowers, 2016; Reynvoet et al., 2016; Mackey, 2019; Thomas, 2019) require more in-depth analysis. Where (Stokes, 1997) provides a macro-view, Connell's Adaptation Loop (2012, see Figure 1) provides a closer look.


[image: Figure 1]
FIGURE 1. Adaptation Loop (Source: Connell et al., 2012, Reproduced with permission of Michael W. Connell ©2010–2014. All rights reserved. Author contact: Michael.W.Connell@gmail.com).


The right chart of Figure 1 reflects research, whereas the left represents educational practice. Moving in clockwise direction, starting at the top left corner of the diagram, the process of research and adaptation illustrates recognizing a problem, translating the problem into research questions, investigating questions by scientific domain, providing explanations, designing solutions, validating solutions in the educational environment, and then repeating the process.

However, within the domain of educational practice, the application loop indicates the iterative nature of changes within educational settings and reflects the necessity for further adaptation during the validation process. We suggest the Application Loop model as an accurate reflection of what occurs within education. Education is not a unitary system, but a system made up of different sub-systems with hierarchies of stakeholders (i.e., policymakers, administrators, teachers, students). Implementation of explanatory models or interventions previously proven effective in basic research often fails to produce similar results in educational practice because, at each hierarchical level, humans make decisions which introduce new variables. While researchers are cognizant of some of these variables, and often consider these as noise with the aim to control these through experimental design or statistical models, this noise may be the key to the comprehension of use-inspired basic research.


Listen to the Noise

Collaboration, whether across disciplines or within educational contexts, with the explicit aim of conducting use-inspired research, is not easy. Berliner claimed that education research “is the hardest science of all” (Berliner, 2002, p. 18). Below we discuss a few issues critical for researchers to consider when planning to conduct use-inspired research.

First, research in the classroom interrupts daily business of teachers and students. Moreover, testing in classrooms and controlled interventions change the typical dynamic of teaching and learning. Evaluating the effectiveness of interventions may necessitate students' absence from the classroom. Such interruptions not only let students miss instruction but may also disturb learning progress of other students. Students may either come to resent being pulled from their classroom or resent not being pulled when not assigned to the treatment group. These circumstances reflect conflicts of goals between the parties involved in use-inspired research, which may lead to tensions.

Additionally, researchers are interested in publishing their work, thus strive for theoretically and methodologically sound but also positive results. Therefore, they have to include multiple and different measures to evaluate effects of interest, or to control for potential moderators, mediators, or confounds. However, time in classrooms is limited and a precious resource. Schools have demands, schedules, and goals, which are different from those of researchers. This discrepancy often leads to a zero-sum game, in which compromises to meet the needs and interests of both schools and researchers may impact outcomes. Careful consideration of the cost/benefit of variables likely to inform research results requires balancing the cost to the students/teachers/schools and the benefits to science.



How to Increase Use-Inspired Basic Research

There have been others advocating for use-inspired basic research with careful consideration of how to increase implementation and ecological validity of research (e.g., Cai et al., 2017, 2018, 2019). For example, Smolkowski et al. (2019) provided suggestions on levels of implementation, and Higgins et al. (2019) focused on how research can become more use-inspired:

• Choose outcome measures that matter to educators in their context

• Include educators and students in the research process (i.e., researching with them not on them)

• Be flexible and sensitive to time and schedules

• Consider that research that was effective in the lab may not be effective in the classroom

• Ask questions educators want and need to have answered

• Disseminate findings in non-academic media (i.e., social media, websites); attend educator specific conferences.

Space limitations do not allow us to provide multiple successful examples of such use-inspired research (e.g., Hawes et al., 2020), of research partnerships (e.g., Kaplan et al., 2019), or of societies actively promoting and including educators during their annual conferences (e.g., The Math Cognition Learning Society, The International Mind, Brain, and Education Society, The Earli SIG 22). We recommend readers consider the above citations as references for how to reframe perspectives of what it means to conduct use-inspired research. Additionally, researchers interested in what teachers are doing in the (math) classroom can follow the Twitter hashtags #mtbos, #iteachmath, and #SwDMathChat. These clearly indicate that educators often ask the same questions as researchers; although usually without the benefit of being able to validate their work beyond their personal and peer experiences. Collaborative work is happening, though not yet at scale. For example, educator Simon Gregg and researcher Tali Leibovich-Raveh co-authored a paper on numerical magnitude understanding after several discussions on Twitter (preprint: https://osf.io/ndyb6/). Sharing preprints via social media, talking to educators face-to-face, going to educator focused conferences, or any other means of closing feedback loops are examples of ways to move research on numerical cognition forward within and across disciplines.




INTERDISCIPLINARY, COLLABORATIVE RESEARCH: A WAY TO BRIDGE THE GAP?

More than 100 years ago, James (1958) not only described the difficulty of directly deriving suggestions from psychological research to pedagogical practice; he also claimed that research must include the expertise of educators to respect the complexity of teaching in classrooms. A first step would be when basic and more applied research on numerical cognition find a shared vocabulary and bring their expertise together to do interdisciplinary use-inspired basic research (i.e., Stokes, 1997). Moreover, going from the lab to the classroom and vice versa could offer new perspectives for teaching and learning. Connell et al. (2012) idea of application loops points to the next steps by indicating the necessity of iterations at the application stage to consider contextual demands of classroom practice. To illustrate, imagine various entities in Connell et al. (2012) as overlapping concentric circles in a Venn Diagram: circles for each domain of applied and basic research, and also circles for the different stakeholders in educational practice. Maybe, any two circles will overlap, or some may overlap with more than one other circle, but in the best case, all circles should overlap at a shared core. Each circle is necessary, but the point at which all circles overlap is where use-inspired, contextually relevant research occurs. There will always be a need for basic research, which may not directly impact use, and many open questions remain for researchers to explore. In contrast, classroom teachers have context-specific and practice-relevant questions for research. We propose that results from research should find their way into classrooms, but we need more integration of different perspectives and fruitful collaborations between researchers of different disciplines with educators. Only then we may have a chance to bring results from basic research into educational practice. However, as Minshall (2009) put it, “knowledge transfer is a ‘contact sport'; it works best when people meet to exchange ideas, … and spot new opportunities.”
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The si1de of square C 1s 12 times as large as the side of square D.

a) Draw square D.
b) Hatch the area of square D using a colored pencil.

Square C Square D
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Experimental items in the V- groups

The side of square C is 12 times as large as the square D. If the area of square C
is 1,440 cm?, what’s the area of square D?

The diameter of a circle E is 11 times as large as the diameter of a circle F. If the
area of circle E is 242 cm?, what's the area of circle F?

The side of a cube G is 13 times as large as the side of a cube H. If the volume of
cube G is 2,197 cmP, what’s the volume of cube H?

The diameter of sphere M is 12 times as large as the diameter of a sphere N. If
the volume of sphere M is 172,800 mm?, what’s the volume of sphere N?

All items were adapted from De Bock et al. (2003). For students in the V+ groups,
the same problems were used but with smaller scaling factors (3, 4, and 5).
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Performance

Perceived
Performance

CG

0.24
(0.39)
0.48
(0.46)
3.73
0.82)

DV-—

0.39
(0.43)
0.27
(0.39)
3.28
(0.78)

DV+

0.49
(0.46)
0.31
(0.44)
3.92
(0.75)

DQv-

0.34
(0.43)
0.22
(0.39)
3.34
(0.88)

DQV+

0.36
(0.43)
0.33
(0.39)
3.76
(0.83)

Total

0.36
(0.43)
0.32
(0.42)
3.60
(0.85)
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Two questions were asked for each of the 16 versions: The first question addressed
a conditional probability and the second question addressed a joint probability.
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Required for answering

Question for a conditional probability/frequency

Question for a joint probability/frequency

Probabilities
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2 x 2 table
double-tree
net diagram

Genuine inference necessary
Genuine inference necessary
Choose a number (probability)
Choose a number (probability)

Genuine inference necessary
Choose a number (probability)
Genuine inference necessary
Choose a number (probability)

Frequencies

Bayesian text
2 x 2 table
double-tree
net diagram

Genuine inference necessary

Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)

Genuine inference necessary

Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)
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Cover story

Visualization

Question 2 - joint prob. | Question 1 - cond. prob.

Mammography problem

Economics problem

Probability version

Natural frequency version

Imagine you are a reporter for a women’s magazine and you want to write an article about breast
cancer. As a part of your research, you focus on mammography as an indicator of breast cancer.
You are especially interested in the question of what it means when a woman has a positive result
(which indicates breast cancer) in such a medical test. A physician explains the situation with the

following information:

e Text only (no visualization):

The probability of breast cancer is 2% for a woman who
participates in routine screening. If a woman who
participates in routine screening has breast cancer, the
probability is 80% that she will have a positive test result. If
a woman who participates in routine screening does not

have breast cancer, the probability is 10% that she will have

a positive test result.

e 2 x 2 table (prob.), or
e double-tree (prob.), or
e net diagram (prob.)

What is the probability that a woman who participates in
routine screening and receives a positive test result has
breast cancer?

Answer: out of

What is the probability that a woman who participates in
routine screening receives a negative test result and has
breast cancer?

Answer:

e Text only (no visualization):

200 out of 10,000 women who participate in
routine screening have breast cancer. Out of
200 women who participate in routine
screening and have breast cancer, 160 will have
a positive result. Out of 9,800 women who
participate in routine screening and have no
breast cancer, 980 will also have a positive

result.
e 2 x 2 table (nat. freq.), or

e double-tree (nat. freq.), or
e net diagram (nat. freq.)

How many of the women who participate in
routine screening and receive a positive test
result have breast cancer?

Answer:

How many of the women who participate in
routine screening receive a negative test result
and have breast cancer?

Answer: out of

Probability version

Natural frequency version

Imagine you are interested in the question, of whether career-oriented students are more
likely to attend an economics course. Therefore the school psychological service evaluates
the correlations between personality characteristics and choice of courses for you. The
following information is available:

e Text only (no visualization):

The probability that a student attends the
economics course is 32%. If a student attends
the economics course, the probability that he is
career-oriented is 64%. If a student does not
attend the economics course, the probability
that he is still career-oriented is 60%.

e 2 x 2 table (prob.), or
e double-tree (prob.), or
e net diagram (prob.)

What is the probability that a student attends
the economics course if he is career-oriented?

Answer: ___ out of

What is the probability that a student attends
the economics course and is not
career-oriented?

Answer:

e Text only (no visualization):

320 out of 1,000 students attend the
economics course. Out of 320 students
who attend the economics course, 205
are career-oriented. Out of 680
students who not attend the economics
course, 408 are still career-oriented.

e 2 x 2 table (nat. freq.), or
e double-tree (nat. freq.), or
e net diagram (nat. freq.)

How many of the students who are
career-oriented attend the economics
course?

Answer:

How many of the students are not
career-oriented and attend the
economics course?

Answer: out of
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Posttest score

Predictor AR? B
Step 1 0.381***

Graph comprehension 0.27
Intelligence 0.37
Intrinsic motivation to learn mathematics 0.28™*
Step 2 0.032*

Contrast 1 (S vs. LD/ID) 0.18™
Contrast 2 (LD vs. ID) 0.02
Total R? 0.413**

N 152

S = static; LD = linear dynamic; ID = interactive dynamic. The coefficients of
determination and the regression coefficients are pooled values based on five
imputations. *p < 0.05, *p < 0.01, **p < 0.001.
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Posttest score

Predictor AR? B
Step 1 0.404**

Graph comprehension 0.33™
Visual-spatial ability 0.31™
Intrinsic motivation to learn mathematics 0.24*
Contrast 1 (S vs. LD/ID) 0.18™
Contrast 2 (LD vs. ID) 0.02
Step 2 0.015

Contrast 1 x Visual-spatial ability 0.09
Contrast 2 x Visual-spatial ability —0.13
Total R? 0.419*

N 152

S = static; LD = linear dynamic; ID = interactive dynamic. The coefficients of
determination and the regression coefficients are pooled values based on five

imputations. ~p < 0.01, **p < 0.001.
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Experimental group ANOVA Levene

S LD ID F® P F® P

Variable nq{ =54 ny =50 nz =48

M (SD) M (SD) M (SD)
Graph comprehension 10.1 (3.4) 9.0 (4.1) 10.4 (4.2) 1.65 0.20 1.40 0.25
Dice rotation 9.4 (3.4) 9.5 (3.3 10.1 (4.0) 0.61 0.54 1.77 0.17
Compounding two-dimensional figures 9.9 (3.5) 10.2 (3.6) 10.7 (3.4) 0.64 0.53 0.09 0.91
Paper-folding test 11.3 (3.8) 10.9 (3.8) 11.9 (3.9) 1.33 0.27 0.09 0.92
Matrices analogies 16.9 (6.8) 15.9 (6.0) 16.8 (6.2) 0.42 0.66 0.43 0.65
Intrinsic motivation to learn mathematics?® 7.8 (2.7) 8.7 (2.7) 8.6 (2.6) 2.02 0.13 0.51 0.60
Attitudes toward computers 11.7 (2.7) 11.3 (2.7) 11.1 (3.9 0.65 0.562 2.40 0.09
Computer-related locus of control® 21.4 (5.0) 21.5(5.2) 20.6 (5.4) 0.44 0.64 0.05 0.95
Mathematics anxiety? 9.8 (3.6) 9.0 (3.4) 8.6 (3.4) 1.67 0.19 0.45 0.64
Mathematics self-efficacy® 23.6 (3.2) 24.0 (3.6) 24.2 (2.9) 0.46 0.63 1.65 0.21

S = static; LD = linear dynamic; ID = interactive dynamic. @The values for these variables represent pooled values based on five imputations. ?Degrees of freedom of the
F values of the variables vary depending on whether missing values have been imputed or whether the answers were complete.





OPS/images/fpsyg-11-00693/fpsyg-11-00693-t002.jpg
Posttest score

Predictor AR? B
Step 1 0.223**

Graph comprehension 0.47
Step 2 0.093**

Dice rotation 0.12
Compounding two-dimensional figures 0.08
Paper-folding test 0.16
Matrices analogies 0.08
Step 3 0i072%

Intrinsic motivation to learn mathematics 0.30™
Mathematics anxiety 0.06
Mathematics self-efficacy 0.09
Step 4 0.013

Attitudes toward computers —0.166
Computer-related locus of control 0.12
Total R? 0.401**

N 152

From step 3 on, the coefficients of determination and the regression coefficients
are pooled values based on five imputations. **p < 0.01, **p < 0.001.
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Linear dynamic visualization

Wait until the animation is loaded into the frame on the left.
It takes about 10 seconds.

Task 1

In this animation, you see an equilateral triangle with the
vertices A, B, and C. An equilateral triangle is a triangle in
which all three sides are of equal length. In this triangle, point
Q moves in the animation. Point P is fixed at point A and does
not move.

Now, animate point Q on the perimeter of the triangle by
clicking on the ‘play’ button. Carefully work out when chord s

is at its longest. Type the solution into the text field.

a) Whenischord s at its longest?

b) Substantiate your answer.

Interactive dynamic visualization

Wait until the applet is loaded into the frame on the left. It
takes about 10 seconds.

Task 1

In this applet, you see an equilateral triangle with the vertices
A, B, and C. An equilateral triangle is a triangle in which all
three sides are of equal length. In this triangle, you can drag
point Q with the mouse. Point P is fixed at point A and cannot
be dragged.

Now, drag point Q with the mouse along the perimeter of the
triangle. Carefully work out when chord s is at its longest.

Type the solution into the text field.

a) Whenischord s at its longest?

b) Substantiate your answer.

Static representation

Wait until the drawing is loaded into the frame on the left. It
takes about 10 seconds.

Task 1

In this drawing, you see an equilateral triangle with the
vertices A, B, and C. An equilateral triangle is a triangle in
which all three sides are of equal length. In this triangle, you
have to move point Q in your mind. Point P is fixed at point A
and cannot be moved.

Now, move point Q in your mind along the perimeter of the
triangle. Carefully work out when chord s is at its longest.

Type the solution into the text field.

a) Whenis chord s at its longest?

b) Substantiate your answer.
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Task 9

What does the graph look like?
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Il.ength of Chord s Path  Length of Chord s Path
b q L 4
Choose the correct answer.
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Advantage

All joint probabilities can be displayed directly

All conditional probabilities can be displayed directly
Probabilities and frequencies can be presented simultaneously
Both “reading directions” are equally evident

2 x 2 table
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Correct solution (Bayesian)
Incorrect Algorithm (Non-Bayesian)
Joint occurrence (Gigerenzer and Hoffrage, 1995)

Fisherian/Representative thinking/Transposed conditional (Gigerenzer and
Hoffrage, 1995; Zhu and Gigerenzer, 2006; Dias and Batanero, 2009)

Base rate only/Conservatism (Gigerenzer and Hoffrage, 1995; Zhu and
Gigerenzer, 2006)

Evidence only (Zhu and Gigerenzer, 2006)

Likelihood substraction (Gigerenzer and Hoffrage, 1995)
Pre-Bayes (Steckelberg et al., 2004; Zhu and Gigerenzer, 2006)
Correct positive rate/false positive rate (Steckelberg et al., 2004)

Probabilities (with b, c, d, etc.)

k =f/d=b-j/bj + m-c)

f=bj=dk
i=fb

d=f+g=bj+cm
j-m=1fb-g/lc

Not applicable

i/m

Frequencies (with A, B, C, etc.)
Fout of D = F out of (F + G)

F out of A
Fout of B

B out of A

Doutof A=(F+ G)outof A
(F out of B) - (G out of C)

B out of D =B out of (F + G)
Not applicable
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Working memory Math

Composite  Verbal Visual
Composite PBI 0,39 0.304" 0.349" 0.407"
PBI ion o 0.330" 0.259" 0202 0325
PB e s 0.264° 0203 0.238' 0202

*p < 0.001; “p < 0.01; 'p < 0.05.
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Age Socioeconomic  Intelligence  Number

status copying
PBl soctontive -0.061 -0.083 0.194 0.082
PBI s ctos 0.008 -0.077 0.151 -0.031
Composite PBI  -0.085 -0.106 0.228" 0.034
Verbal 0031 -0.164 -0.002 0.099
Visual -0081 -016 0.236" 0.048
Composite -0.030 -0.194 0.14 0.088
Math 0.114 -0.095 0.224° 0.106

P<0.05.
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Study variables Mean sD

Age 629 036

Gender boys 49.4%

Monthly household income

(RMB) 5,360 2,711
Fluid inteligence Raw scores 16.35 446
ACCPT
Reaction time AX 584 %
AY 800 129
BX 662 139
BY 702 130
Error rates AX 018 008
AY 038 014
BX 027 013
B8Y 014 009
PBIin reaction
Proactive controlindices  time 010 010
PBI in error
rates 017 035
Composite PBI 000 076
Workingmemory
Verbal working memory 576 094
Visual working mermory 479 1.05
Composite working memory 000 083
Math 4235 11.53
Number copying 2022 694

SD, standard deviation.
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Talented complex problem-solvers Untalented
Male Female Male Female F(1,323)
M SD M SD M SD M SD Ability Gender Interaction
Absolute values PMA-SR
Right (A1) 1140 3.85 10.83 3.67 773 452 595 4.01 77.60" (p=0.000) 5.86* (p=0.016) 1.54 (p =0.216)
Wrong (A2) 222 191 1.88 1.56 4.61 422 488 402 46.60" (p=0.0000 0.012(p=0.911) 0.594 (p =0.911)
Score (A3) 32.26 10.92 30.55 10.06 23.40 1257 1849 11.63 58.41* (p=0.000) 5.84*(p=0.016) 1.36 (p =0.244)
Attempted (B1) 13.62 83.83 12.70 3.66 1234 394 10.82 357 1229 (p=0.000) 7.36" (p=0.007) 0.436 (o =0.510)
Last item (B2) 1396 3.85 13.53 3.95 1283 4.07 1134 386 12.55" (p=0.000) 4.26"(p=0.040) 1.28 (p =0.259)
Blank (C1) 6.38 383 7.30 3.66 766 394 917 357 1229 (p=0.001) 7.36" (p=0.007) 0.436 (o =0.517)
Omitted (C2) 0.34 1.06 0.83 2.37 049 194 0.51 1.69 0.163 (p = 0.687) 1.56 (p =0.212) 1.30 (p = 0.253)
DAT-SR

Right (A1) 4398 7.73 4438 7.92 32.39 11.16 30.77 9.66 127.47**(p=0.000) 0.299 (p =0.585) 0.811 (p =0.369)
Wrong (A2) 433 584 255 2.55 13.73 10.72 1411 887 116.95"* (p=0.0000 0.515(p =0.474) 1.24 (p =0.265)
Score (A3) 43.98 7.73 44.38 7.92 32.39 11.156 30.77 9.61 12747 (p=0.000) 0.299 (p =0.585) 0.811 (p =0.369)
Attempted (B1) 48.31 4.85 46.92 7.06 1.00 6.34 4488 6.78 8.42** (p = 0.004) 3.20 (p =0.074) 0.011 (p =0.916)
Last item (B2) 4857 4.37 47.95 5.04 46.40 6.16 4585 6.70 10.04* (p=0.002) 0.744 (p =0.389) 0.003 (p =0.957)
Blank (C1) 1.69 485 3.08 7.06 389 6.34 511 6.78 8.42** (p = 0.004) 3.20 (p =0.074) 0.011 (p =0.916)
Omitted (C2) 026 1.00 1.03 5.21 0.28 0.91 097 244 0.005 (p =0.946)  6.85™ (p=0.009) 0.021 (p =0.884)

**p < 0.01; *p < 0.05. In the table the exact values of p are presented for each value of F.
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Male vs female t-value P

Experimental group pretest 0.32 0.75
Experimental group posttest 0.66 0.51
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Male vs female t-value P

Experimental group pretest 0.26 079
Experimental group posttest 0.43 0.67
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—0.34
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0.91

0.61
4.28"

5.30"

0 < 0.01.
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Task 1: Transform s = 2 + 2¢ and ¢t = 0.5 + 3¢ into polar coordinates, multiply the complex numbers
and plot s, ¢t and s - ¢ into a coordinate system.

Solution:
1. Transformation into polar coordinates: The length of s is iR
calculated by A
ls| =22 +22 =v8 (~2.83). t = v/9.25 - [cos(80.5°) + i5in(80.5°)]

The angle between the R-axis and the vector s is calculated by o= VB [cos(45°) + isin(45%)]

o =tan™" (;) =tan" (1) = 45°.

Hence, the angle o amounts to o = 45°, the magnitude of s
is |s| = /8. Calculated in a similar way, the angle 3 of t is ,
B =~ 80.5° and the magnitude of ¢ is |t| = +/9.25. Hence, the R
polar coordinates are:

s =8 [cos(45°) + i - sin(45°)] und ¢t = v9.25- [cos(80.5°) + i - sin(80.5°)]

2. Multiply the complex numbers in polar coordinates:

s-t=|s|-(cosa+i-sine)-|t|-(cosB+i-sinpB)
V8 - [cos(45°) + 4 - sin(45°)] - v/9.25 - [cos(80.5°) + i - sin(80.5°)]
V8 -v9.25 - [cos(45°) + 4 - sin(45°)] - [cos(80.5°) + i - sin(80.5°)]
= /8-9.25 - [cos(45°) cos(80.5°) + i - cos(45°) sin(80.5°) + 4 - sin(45°) cos(80.5°) 4 i2 - sin(45°) sin(80.5°)]
= /74 - [cos(45°) cos(80.5°) + i - cos(45°) sin(80.5°) + 4 - sin(45°) cos(80.5°) — sin(45°) sin(80.5°)]
= V74 - [cos(45°) cos(80.5°) — sin(45°) sin(80.5°) + 4 - [cos(45°) sin(80.5°) + sin(45°) cos(80.5°)]]
= /74 - [cos(45° + 80.5°) + i - sin(45° + 80.5°)]
(~ 8.602 - [cos(125.5%) + i - sin(125.5°)] )

3. Geometrical representation:

Ya

V74 [cos(125.5°) + i-sin(125.5°)]

s-t
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Talented complex problem-solvers Untalented
Male Female Male Female F(1,323)
M SD M SD M SD M SD Math Gender Interaction
Ratios PMA-SR
Right (AR1) 083 013 084 0.14 062 029 054 030 78.61 (p=0.000) 150 (p=0.222) 0.250 (p =0.114)
Omitted (CR2)  0.03  0.09 0.09 0.30 0.07 041 005 0.19 0.010 (p = 0.929) 0.456 (p =0.500)  1.25 (o = 0.263)
DAT-SR
Right (AR1) 091 012 093 0.07 070 022 0.68 018 12824 (p=0.000) 0.129(0=0.720) 1.46 (p = 0.228)
Omitted (CR2)  0.007 0.04 0.05 0.31 0.007 0.02 0.02 0.06 1.16 (p = 0.282) 5.11* (p = 0.024) 1.11 (p =0.291)

*p < 0.01; *p < 0.05. In the table the exact values of p are presented for each value of F.
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Absolute Fit

Incremental Fit Economy Comparison
x2 p df RMSEA SRMR TLI CFI CMIN/df BIC
Acceptable >0.05 <0.08 <0.08 >9 >0.9 <2 smallest
Good <0.05 <0.05 >0.95 >0.95 <15

%2, Chi-square; RMSEA, Root Mean Square Error of Approximation; SRMR, Standard Root Mean Squared Residual; TLI, Tucker-Lewis index; CFl, Comparative Fit Index;
CMIN/df, criterion of economy; BIC, Bayesian Information Criterion.
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Context

Representation Operation Intra-mathematical Extra-mathematical

Table create 2 3
read 3 2
Graph create 2 2
read 3 3
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Model 5: within item-multidimensionality
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Model 2: two-dimensional

task characteristic: representation

dimension: graph and table

Model 3: two-dimensional
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Problems Control Version Experimental Version

Square and parallelogram 9(19%) n =47 28 (80%)n =35
Pigs in a pen 8(38%)n =25 20 (87%)n =23
Bat and ball 2(10%)n =20 28 (90%) n = 31
Study window 0(0%)n =230 21 (66%) n = 30
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Every minute 3 litres of water flow into the bucket.
Create a table for the following assignment:

Time x (in min) > Water volume y (in litres)

An empty bucket is filled with water. The bucket has a total capacity of 15 litres.

|
completely
disagree

1 fully
agree

| am sure that | can solve this
task correctly.

o
a
a
o
a
a
o
o
o

Stop! Do not turn the page!
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Absolute Fit Incremental Fit Economy Comparison

x2 P df RMSEA SRMR TLI CFI CMIN/df BIC

model 1: one- 254.16 0.001 135 0.048++ 0.044++ 0.93+ 0.93+ 1.89+ 31208.25
dimensional

For thresholds of acceptable fit see Table 2. Good values are marked with ++-. Acceptable values are marked with +.
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M SD P; Skewness
Item1 8.26 2.33 0.82 —1.58
Iltem2 7.52 2.78 0.75 —0.93
Item3 8.23 2.46 0.82 —1.58
Item4 5.69 3.14 0.57 —0.08
Item5 6.31 3.25 0.63 -0.28
Item6 6.26 2.82 0.63 —0.31
ltem7 5.22 297 0.52 0.17
ltem8 7.70 2.61 0.77 —1.70
ltem9 8.1 2.54 0.80 —-1.32
Item10 6.39 3.23 0.40 -0.34
Iltem11 7.70 2.91 0.77 —1.09
ltem12 7.21 3.06 0.72 -0.77
Item13 6.40 3.02 0.64 -0.38
ltem14 7.21 2.80 0.72 —1.67
ltem15 7.43 2.88 0.74 —0.91
ltem16 714 2.70 0.71 —0.76
ltem17 7.66 2.60 0.7 —1.03
ltem18 122 2.65 0.72 —-0.78
Item19 6.13 2.98 0.61 -0.33
Item20 8.90 223 0.89 -2.38

The minimum of each item is 1, the maximum of each item is 10.
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coded based on verbal, written and nonverbal data 835 (100 %)

coded based on verbal and written data 500 (59.9 %)
coded based on verbal data 400 (47.9 %)
\ \ | | \ \ | | \ \ |
0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

percent of all adequate self-explanations
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% coded based on verbal data / 18 (26.5 %)
O

\ | | \ \ I | \ \ I
0% 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

percent of all inadequate self-explanations
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1. Transformation into polar coordinates: The length of s is
calculated by 74\

Ty . . .
\
s] = + /92 1922 = NG ( ~ 2.83). m' t = v/9:25 - [cos(80.5°) + 4 sin(80.5°)]

The angle between axis and the vector s is calculated by

o =tan~! ;) = tan~'(1) = 45°.

[}

l

|

|

|

|
\
\

\

Hence, the angle of s amounts to a = 45°, the magnitude of
\

s is |s| = v/8. Calculated in a similar way, the angle 3 of ¢ is
B =~ 80.5° and the magnitude of ¢ is |¢| = /9.25. Hence, the
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= V8- [cos(45°) Min(45°)]mﬁ [COE?") T M5°)]
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= V74 [cos(45°) cos(80.5°) + i - cos(45°) sin(80.5°) + 4 - sin(45°) cos(80.5°) — sin(45°)sin
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Verbal Verbal and written Verbal, written, and
non-verbal

Pretest result in % 0.17 0.21 0.27
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N

Gender female/male

Age

Semester

High school diploma, grade 1(best) through 5
Understanding of setting (max. 3 points)

Study 1

Study 2

(1) Control
condition

14
10/4
24.14 (1.66)
7.93(1.14)
2.51 (0.43)
3.00 (0.00)

(2) Relevance instruction
condition

12

7/5
23.25 (1.14)
7.12(0.58)
2.31(0.42)
2.92 (0.29)

Total (1 + 2)

26
17/9
23.73 (1.48)
7.58 (0.99)
2.42 (0.43)
2.96 (0.20)

Interaction explication
condition

16

o7
24.06 (1.61)
8.00(1.32)
2.33(0.52)
2.90(0.30)
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Variable

Work_experience_years
Need_Cognition
Student_Control
Comprehension_Promo
Self_efficacy_General
Self_efficacy_Relationships
Self_efficacy_Discipline
Support_Colleague
Support_Supervisor
General_Burnout
ICT_Acceptance
ICT_Use

19.7
4.09
2.78
4.38
5.38
5.27
5.35
3.67
3.31
2.44
4.11

23.19

Sh

10.03
0.51
0.6
0.39
0.84
0.85
0.98
0.85
1.01
0.64
0.67
7.05

Skewness

—0.11
—0.4
0.4
—0.89
—0.85
—1.03
—1.17
—0.87
—0.57
0.92
-0.72
—-0.22

Kurtosis

—0.67
—0.02
-0.2
1.45
0.92
2.06
1.92
0.58
—0.51
1.38
0.51
-0.37

Min
0.5
2.4
1.46

2.78
2.75

1.8
1.13

1.13
1.5

Max

45

4.23

6.8
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Hypothesis Decimal comparing misconceptions Task 1: 4.8 > 4.63 Task 2: 3.7 > 3.02 Task 3: 3.49 > 3.4

H1 Whole-number misconception (WN) Wrong Right Right
H2 Ignore-decimal-point misconception (ID) Wrong Wrong Right
H3 Shorter-is-larger misconception (SL) Right Right Wrong

The likelihood of the evidence indicated in the table isP (E|H) = 0.8.
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Let (an)nen be a real sequence with the property that |a, — a,—1| < ¢" for 0 < ¢ < 1. Show,
that (an)nen is a Cauchy sequence.
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Question

Which ICT tools do you use in teaching?

What do you use ICT for?

Where do you get your content for ICT classes?

How do you distribute ICT content to your students?

Cafeteria answer options

Office (Word, Excel, Powerpoint)

Libre office or similar open-source package
E-learning platform

Electronic journal

Cloud-based software (e.g., Google, Microsoft)
Communicators (e.g., Skype)

E-mail

[Other]

Using ICT for in class presentations

For communication with students

For communication with parents (e-mail, e-journal)
For communication with other teacher (e,g., Bulletin boards; discussion forums)
For assignment and checking of homework.

For assigning additional tasks, pointing to interesting web-content.
For conducting interactive tasks

For sharing my didactic knowledge, e,g., creating publicly available didactic content for
or with others.

[Other]

| find it online, created by other teachers

From textbooks, or textbook publishers websites
From knowledge portals for teachers (e,g., Scholaris)
From materials obtained at teacher conferences
From materials made at workshops/training sessions
From personally remixed materials

| create my own content from scratch

[Other]

Through social networks

Through e-mail

On schools’ webpage

On an e-learning platform

On my own website

On an international ICT website (e.g., Geogebra.org)
[Other]

Weights

SRR T NG TN 1o TN o TR S (S R (S (R R U g SR S S S

AW WN N 2 4 A WOMNN 2
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Decimal comparing misconceptions

Whole-number misconception (WN)
Ignore-decimal-point misconception (ID)

Shorter-is-larger misconception (SL)

Description

Students interpret the decimal point as a separator
of two numbers and consider the sizes separately
Students ignore the decimal point and proceed as if
they compared natural numbers

Some students consistently choose the number
with fewer decimal places as the larger

Diagnostic task and response

“4.125 > 4.7 because 125 > 7”
“2.45 < 1.328 because 245 < 1328”

“2.3 > 2.67 because tenths are larger than hundredths” or
“because a third is larger than 1/67”
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Mean Score

Methodological Knowledge

1.0
0.8
0.6
0.4
0.2 -

0.0 -

O Sequential
® Concurrent

o———— 0
o

Pre Post
Time

Mean Score

1.0
0.8
0.6
0.4
0.2 -

0.0 -

Mathematical Strategic Knowledge

O Sequential
® Concurrent

g

Pre Post
Time
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Strategy types, variants/denotations

Processed information

Likelihood/positive-

Likelihoods of alternatives/

Prior probabilities/

when-true rate positive-when-positive rate base rate
Prior-only strategy (POS) Conservatism (Edwards, 1968; Zhu and X
Gigerenzer, 2006); base-rate only
(Gigerenzer and Hoffrage, 1995)
Single evidence strategies Representative thinking (Zhu and X
(SES) Gigerenzer, 2006); Fisherian (Gigerenzer
and Hoffrage, 1995); inverse fallacy
(Villejoubert and Mandel, 2002)
Combined evidence Evidence only (Zhu and Gigerenzer, 2006); X X
strategies (CES) likelihood subtraction (Gigerenzer and
Hoffrage, 1995)
Bayesian update strategy Bayesian update (correct application of the X X X

(BUS) Bayes’ rule)
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Source

Between Subjects
Conditions
Grade Levels

Conditions x
Grade Levels

Error 1

Within Subjects
Time

Time x Conditions
Time x Grade
Levels

Time x Conditions
x Grade Levels
Error 2

df Sss

1.00 213
3.00 249017.17
3.00 12960.30

41800 151002.36

1.00 48120.92
1.00 178.10
3.00 4391.39

3.00 1997.41

418.00 18492.41

Ms

213
83006.72
4320.10

361.25

48120.92
178.10
1463.80

665.80

44.24

0.01
220.77
11.96

1087.72
4.03
33.09

15.06

0.94
0.00
0.00

0.00
0.05
0.00

0.00

0.00
0.62
0.08

0.72
0.01
0.19

0.10
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Proposition

Every convergent real sequence is a Cauchy sequence.

Proof:
Let an be an arbitrary convergent sequenceiand ¢ > 0. Using the {definition of convergence, there exists a N € N and a limit
a € R, so that for all n > N the following holds -
i€
—a| <j
lan —a 3!

|an — am| = |an +i(a = @)~ anm|
=(an—a) +(a - am)l

< 5 + 5 since n and m are bigger than IV by definition

=€

All in all we have |an — am| < € for all n,m > N.
According to the definition of a Cauchy sequence, a,, is a Cauchy sequence.

: Methodological G Mathematical-strategic [ 1 Problem-solving

i knowledge —.— knowledge 1~ skills

=71 Mathematical
Legend | ! Topic knowledge
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Testing time Intervention Control

K 1 2 3 K 1 2 3

Time 1

M 137.64 166.81 172.38 199.75 136.39 166.24 174.76 192.30
sD 1206 1460 11.16 1242 1249 1004 887 6.66
n 53 110 64 116 18 21 21 23

Time 2

M 164.72 173.75 179.62 209.11 156.56 174.76 194.86 195.57
sD 1304 1391 1054 1303 1638 887 535 878
n 53 110 64 116 18 21 21 23

Time 3

M 163.77 184.18 186.38 213.57 165.72 179.71 203.43 202.52
sD 1417 1632 1039 10.36 16.45 10.19 672 835

n 53 110 64 116 18 o1 21 23
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Part-task Approach

Task divided
into part-tasks

Sequential Approach

Resource-based
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Whole-task Approach

Task

Concurrent Approach

Resource-based

Cognitive Skill
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Countries/economies.

Argentina
Austria

Brazil

8-5-J-Z (China)
Bulgaria

Chie

Chinese Taipei
Colombia
Croatia

Czech Republic
Estonia

Finland

France
Germany
Greece

Hong Kong
Hungary
Indonesia
Ireland

Japan

Korea

Latvia

Lithuania
Luxembourg
Malaysia

Malta

Mexico
Netherlands
Peru
Philppines
Poland
Portugal
Romania
Russian Federation
Serbia

Slovak Republic
Slovenia

Spain

Sweden
Switzerland
Thailand
Turkey

United Arab Emirates
United Kingdom
United States

GDP

18261.48
46359.70
14347.28
16097.76
20588.08
22837.23
47161.39
13271.72
23331.16
33179.76
30351.51
41404.71
40780.17
46649.52
25833.11
57047.03
28358.2
11759.71
70747.04
39316.95
38467.01
26579.18
30742.25
94521.08
27822.98
40131.92
18319.48
50195.30
12654.90
7946.38
28439.38
28800.89
23501.42
25688.94
16696.91
31221.95
32648.13
35696.63
47674.52
57767.17
17313.34
24920.01
615105
40644.85
55864.78

PDI

49
11
69
80
7
63
58
67
73
57
40
33
68
35
60
68
46
78
28
54
60
44
42
40
104
56
81
38
64
%
68
63
90
)
86
104
71
57
31
34
64
66
80
35
40

DV

46
56
38
20
30
23
17
13
33
58
60
63
7
67
35
25
80
14
70
46
18
70
60
60
26
59
30
80
16
32
60
27
30
39
25
52
2r
51
il
68
20
37
38
89
a1

MAS

56
7
49
66
40

& B

57

26
3
66

BA8382308885839

14

2LRERB

42
36
43
110
19
42

83&RI @

62

uAl

86
70

IXBBBRRSS

59
86

112

82
48

92

3888

36
96
82

87

8381

5838228888288

LTo

20

a4

87

69

31

13

70

588388

61
58
62
24
88
100
69
82
64
“
a7
24
67
25
27
38
28
52
81
52
7
49
48
53
74
32
4
23
51
2

IND

62
63
59
24
16
68
49
83
33
29
16
57
48
40
50
17
31
38
65
42
29
13
16
56
57
66
of
68
46
42
29
33
20
20
28
28
48
44
78
66
45
49
34
69
68

PDI, power distance; IDV, indivicuelism-collectivism; MAS, masculinity-femininity; UA,
uncerteinty avoidance; LTO, long-term orientation vs. short-term; IND, indulgence vs.

restraint.
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Fix effect
Student level

Gender

Famiy SES

Country level

Ln GDP per capita
Power distance
Individualism
Measculinity
Uncertainty avoidance
Long-term orientation
Indulgence

Random effect
Country level

Student level

“p <0.01; "p < 0.001.

Control model

Full model
Est. S.E.
0.434"  0.024
0.819"*  0.049
0.662*  0.167
—0.043  0.090
0174 0.092
-0.083 0.067
0131 0.1
0.323*  0.094
-0.212** 0.071
Variance
0.335
329
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Variables Mean SD  Description

Student-level

Mathematics achievement 47036  97.51  Student mathematics
performance. Min = 5.22, max =
915.10

Life satisfaction 709 249  The fist dimension of subjective
wellbeing. It represents one’s
reflective assessment of general
I satisfaction. Min = 0,
max =10

Positive feeling 009 096 The second dimension of
subjective wellbeing. It
represents one's positive feelings
of happiness, joyfulness, and
cheerful. Min = -3.07,
max = 1.24

Meaning in lite 010 094 The third dimension of subjective
wellbeing. It represents one's
sense of meaning and purpose
inlife. Min = —2.15, max = 1.74

Gender Girl = 49.97% boy = 50.03%
SES ~031 111 PISAindex of economic, social
and cultural status. Min =
~7.75, max = 3.96
Country-level
Log GDP per capita 1020 052 Min=898 max=11.46
Power distance 6028 2089 Min=11, max=104
Individualism 45143 2168 Min= 13, max =91
Masculinity 4920 2144 Min=5,max=110
Uncertainty avoidance 7107 2174 Min=29, max= 112
Long-term orientation 5328 2243 Min= 13, max= 100

Indulgence 4548 2005 Min =13, max =97





OPS/images/fpsyg-11-00678/fpsyg-11-00678-t006.jpg
BF.2 >1 >3 >10 >30 > 100 >1000 Sum
([JfOSt’max) (>50.0%) (> 75.0%) (>90.9%) (> 96.7%) (>99.0%) (> 99.9%)

BUS 0 0 0 1 0 3 4
CES 3 1 0 0 0 6 10
SES 1 2 2 2 1 4 12
Sum 4 3 2 3 1 13 26

Evidence Weak Moderate Strong Very strong Extreme Extreme
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Likelihood of response under the

condition of misconception ... (presented

as bar at the respective vertex)

Case: task and response WN ID SL
1 3.7 > 3.02 Right 80% 20% 80%
2 4.8 <4.63 Wrong 80% 80% 20%
3 3.49 > 3.4 Right 80% 80% 20%
4 37 <802 Wrong 20% 80% 20%
5 4.8 > 4.63 Right 20% 20% 80%
6 3.49 < 3.4 Wrong 20% 20% 80%
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Global fit indices Hypothesized model (Figure 1)

Chi-square

Estimate (x?) 492.432
Degrees of freedom (df) 458
¥2/df 1.075
CFI/TLI

CFl 0.958

TU 0.954
RMSEA

Estimate 0.020

90 per cent confidence interval [<0.001, 0.033]

Probability RMSEA < 0.05 1.000
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Global fit indices

Chi-square

Estimate (x?)

Degrees of freedom (df)
x2/df

CFI/TLI

CFl

TL

RMSEA

Estimate

90 percent confidence interval
Probability RMSEA < 0.05

PKMT model

143.793
119
1.21

0.944
0.936

0.043
[<0.001, 0.066]
0.676

CSEIl model

132.162
64
2.065

0.911
0.892

0.076
[0.057, 0.094]
0.013
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Indicator variable

threshold
model 1:
one-dimensional
model 2: graph
representation
table
model 3: context intra
extra
model 4: operation create
read

Indicator reliability

>0.3
0.24-0.49

0.24-0.50

0.32-0.58

0.30-0.50

t- value

>2
6.47-11.21"*

5.56-11.40"

6.60-11.68"

6.48-11.25™*

Factor reliability

>0.6
0.99

0.98

0.98
0.98
0.98
0.98
0.97

AVE

>0.5
0.83

0.84

0.83
0.83
0.85
0.84
0.82

0.91

0.80

0.96

Fornell-Lacker

fulfilled

fulfilled

fulfilled

fulfilled
not fulfilled
not fulfilled

For thresholds of acceptable fit see Bagozzi and Baumaartner (1996) and Hair (1995). For the Fornell-Lacker criterion see Fornell and Larcker (1981). **p < 0.001.
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Absolute Fit Incremental Fit Economy Comparison

CMIN P df RMSEA SRMR TLI CFI CMIN/df BIC

model 5 representation 480.94 0.001 117 0.09 0.24 0.75 0.81 4.11 31573.01
and context

For thresholds of acceptable fit see Table 2.
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Absolute Fit Incremental Fit Economy Comparison
CMIN p df RMSEA SRMR TLI CFI CMIN/df BIC

model 2: 243.43 0.001 134 0.047++ 0.043++ 0.93+ 0.94+ 1.82+ 31199.22
representation
model 3: 211.49 0.001 134 0.039++ 0.040++ 0.95++ 0.96++ 1.57+ 31156.10++
context
model 4: 251.41 0.001 134 0.048++ 0.044++ 0.93+ 0.94+ 1.90+ 31207.11
operation

For thresholds of acceptable fit see Table 2. Good values are marked with ++-. Acceptable values are marked with +.
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formulated as scaling the determinant (ie., ad — be) of the 2 2 matrix. Superscripts denote the following references: Akobeng (2005), ®Allen (1980), €Andikopoulou and Morgan (2017), 9Baeza-Yates and Berthier (2011), ®Berjamini
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Semantics of dimensions.

Task domain or discipline

Origin and dependencies

X Y z X Y z
Medical diagnostios True condition  Test outcome Correctness Given by environment Given by test Defined by X and Y
Classification (training) True class Predicted class Class match Free distribution RS  Defined by X and Y
Classification (application) True class Predicted class Class match _ Free distribution Defined by X and Y
Information retrieval Relevance Retrieval Correctness Given by interest Defined by X and Y
Risk Risk factor Outcome Correspondence Defined by X and Y
Treatment Treatment factor Effect/condition Correspondence - Defined by X and Y

Some dimensions are given by external factors (), while others can be chosen (M), or are defined by the other two dimensions ().





OPS/images/fpsyg-12-584689/fpsyg-12-584689-t00a2.jpg
Frequentist Model Estimate SE p Explained variance

Without Interactions RPytarginal = 0.131; A2Gongitonal = 0.391
Yoo -2533 065 -39

ml 0.078 0.007 1153

g 0.038 0014 2767

il -0016 0015 ~1.026

d —1.252 1.014 —1.234

With Interactions R2yarginal = 0.123; R2Gonditional = 0.403
Yoo ~3.047 0679 —4.486

ml 0.086 0.008 1.489

g 0.046 0017 2786

l 0.022 0019 1.182

d 0.325 1.07 0304

mix d —002 0013 -1.508

gx d —0.023 0.028 -0815

ix d —0.13 0.031 —a141

Bayesian Model

Without Interactions /
Yoo -2539 0773 -3.285

ml 0.078 0.007 11.365

g 0.038 0014 2735

1 —0.016 0016 ~1.004

d 1255 1.206 -1.04

With Interactions /
Yoo —3.054 081 ~3.769

ml 0.086 0.008 1.451

g 0.046 0017 2783

rv 0.022 0019 1.188

d 0.328 1.28 0256

mlx d —0.021 0013 -1.521

gx d —0.023 0.028 -0.82

ix d -013 0.031 —4.146

Model Fit (Frequentist Model): CFI: 0.990, RMSEA: 0.017.

Estimate, Estimated parameter value; SE, Standard error of the parameter estimate; f, Degrees of freedom; z, z-value; p, Probabilty of committing a Type I Error; yoo,
Intercept of the addltive predictor term; Ryagina, Variance explained by fixed effects; A2 conaiionais Variance explained by both fixed and random effects.

Significant (dlrect or interaction) effects (p < 0.05) are written in bold.
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10 out of 100 women at age forty who participate in a study have
a particular disease. 6 out of 10 women with the disease will have
a positive reaction to a test. 18 out of 90 women without the

disease will also test positive.
Calculate the proportion of having the particular disease given a
positive test result.
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“Estimates of correct answer rates (from McDowell

Problem description

The probability of breast cancer is 1% for a woman at age forty who participates
in routine screening.

If a woman has breast cancer, the probability is 80% that she will get a positive
mammography.

If a woman does not have breast cancer, the probability is 9.6% that she will also
get a positive mammography.

A woman in this age group had a positive mammography in a routine screening.
What is the probability that she actually has breast cancer? %

10 out of every 1,000 women at age forty who participate in routine screening
have cancer.

8 of every 10 women with breast cancer will get a positive mammography.

95 out of every 990 women without breast cancer will also get a positive
mammography.

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect
to actually have breast cancer? _ outof %

103 out of every 1,000 women at age forty get a positive mammography in
routine screening.

8 of every 1,000 women at age forty who participate in routine screening have
breast cancer and a positive mammography.

Here is a new representative sample of women at age forty who got a positive
mammography in routine screening. How many of these women do you expect
to actually have breast cancer? _ outof %

s, 2017) for problems in this format.

Information

P(C)=0.010

P(T10)=0.800

p(T1=~C)=0.096

PCIT=?

no)=10
N=1,000

ncn”=8

ne)=10

n-CNT)=95

1(~C)=990

nTnC)=?
n(n=?

n(N=103
N=1,000
nen”=8
N=1,000
(T NC)=2
nn=2

% correct

4%

24%

36%
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Bayesian Model

Without Interactions
Yoo

ml

g

1

d

With Interactions
Yoo

ml

g

4

d

mix d

gxd

dx d

Estimate

—2.205
0.067
0.039

—0.028

-1.077

—3.045
0.087
0.046
0.022
0.825

—0.042

-0.0156

—0.124

SE

0.664
0.006
0.012
0.014
0.93

0.71
0.008
0.016
0.018
1.002
0.012
0.024
0.027

0.001
<0.001
0.002
0.042
0.247

<0.001
<0.001
0.005
023
0.411
<0.001
0.534
<0.001

Explained variance

/

Estimate, Estimated unstandardized parameter value; SE, Standard error of the parameter estimate; df, Degrees of freedom; p, Probabilty of committing a Type | Error;
Yoo, Intercept of the additive predictor term; FPyerginai, Variance explained by fixed effects; R%Gongiional, Variance explained by both fixed and random effects.

Significant (dlrect or interaction) effects (o < 0.05) are written in bold.
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10% of women at age forty who participate in a study have a
particular disease. 60% of women with the disease will have a
positive reaction to a test. 20% of women without the disease will
also test postitive.

Calculate the probability of having the particular disease given a
positive test result.
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Frequentist Model Estimate SE P Explained variance

Without Interactions R?Marginal = 0.054;
RzCond/t»ona/ =0.040

Yoo 22 0575  <0.001

ml 0.067 0.006 <0.001

g 0.039 0.012 0.001

rl —-0.028 0.014 0.04

d —1.074 0.804 0.182

With Interactions R?Marginal = 0.107;
RzCond/t»ona/ =0.348

Yoo -3.039 0.615 <0.001

ml 0.087 0.008 <0.001

] 0.046 0.016 0.005

rl 0.022 0.018 0.234

d 0.822 0.867 0.343

ml x d —0.042 0.012 <0.001

gxd —-0.015 0.024 0.536

rlx d —-0.124 0.027 <0.001

Model fit: CFI: 0.990, RMSEA: 0.017.

Estimate, Estimated unstandardized parameter value; SE, Standard error of the
parameter estimate; df, Degrees of freedom; p, Probability of committing a Type |
Error; yoo, Intercept of the additive predictor term; RZMarginah Variance explained
by fixed effects; R2 conditional, Variance explained by both fixed and random effects.
Significant (direct or interaction) effects (p < 0.05) are written in bold.
Corresponding Bayesian models as well as models without the Linda task can
be found in Appendix Tables A1, A2.
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Correlations

Traditional versions

Facilitated versions

Task
Competence

ml

g
rl

Wason
(class.)

0.11**
0.03
0.08**

AIDS prob. Hospital
VS. problem
0.01 0.09*

—0.02 0.05*
—0.03 0.00

Linda
problem

—0.01
0.03
—0.05*

Wason
(cont.)

0.30™
0.11*
0.27*

AIDS frequ. AIDS frequ.
vs. 1 vs. 2
0.22* 0.21*
0.09* 0.13**
0.18* 0.20**

Monty Hall

0.33*
0.12**
0.32**

*indlicates p < 0.05; *indicates p < 0.01.
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Theory

Motiv
Socio-cog
Meta
Meta
Socio-cog
Meta
Socio-cog and
Meta
Socio-cog
Socio-cog
Socio-cog
Meta
Meta
Meta
Meta
Meta
Meta + Motiv
Meta
Socio-cog
Socio-cog
Unknown
Meta
Socio-cog
Socio-cog
Meta +
Socio-cog
Socio-cog
Socio-cog
Socio-cog
Meta +
Socio-cog
Socio-cog
Socio-cog +
Motiv
Socio-cog
Socio-cog
Socio-cog
Motiv

Motiv

Unknown

Sample characteristics

348 seventh-grade students
26 ffth-grade students

122 sixth-grade students
463 third to eighth-grade
students

42 seventh-grade students
144 fourth-grade students
30 sixth- and seventh-grade
students

33 high school students

40 high school students

69 high school students
195 eighth-grade students
65 ninth-grade students
384 eighth-grade students
115 ninth-grade students
182 seventh-grade students
61 seventh-grade students
86 seventh-grade students
90 ffth-grade students

135 fourth-grade students
104 second-level students
174 seventh-grade students
94 seventh-grade students.
105 fourth-grade students
255 fifth-grade students
249 eighth-grade students
53 sixth-grade students

195 eighth-grade students
762 fifth- and sixth-grade
students

36 fourth-grade students
393 fourth-grade students
219 fourth-grade students
201 fourth-grade students
107 fiith-grade students
118 fifth-grade students

170 fifth-grade students

232 fifth-grade students

Design

Pre-
post-control
Pre-
post-control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre-post-
control
Pre- post-
control
Pre-post-
control
Pre-post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre-post-
control
Pre- post-
control
Pre- post-
control
Time series.
design
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control
Pre- post-
control

Control
group

Absolute
control
Absolute
control
Absolute
control
Absolute
control
Alternative
treatment
Absolute
control
Absolute
control
Absolute
control
Absolute
control
Absolute
control
Alternative
treatment
Alternative
treatment
Alternative
treatment
Absolute
control
Absolute
control
Alternative
treatment
Alternative
treatment
Absolute
control
Absolute
control
Alternative
treatment
Alternative
treatment
Absolute
control
Alternative
treatment
Absolute
control
Absolute
control
Absolute
control
Absolute
control
Alternative
treatment
Absolute
control
Absolute
control
Absolute
control
Absolute
control
Absolute
control
Alternative
treatment
Absolute
control
Absolute
control

Treatment characteristics

assigned

Not random

Not random

Not random

Random

Random

Random

Random

Not random

Not random

Random

Not random

Random

Random

Random

Random

Random

Random

Random

Not random

Not random

Random

Random

Random

Not random

Random

Not random

Random

Not random

Random

Random

Random

Not random

Random

Random

Random

Not random

Delivery
mode

Teacher
Teacher
Researcher
Teacher
Teacher
Teacher
Researcher
Teacher
Researcher
Researcher
Teacher
Teacher
Teacher
Teacher
Teacher
Teacher
Teacher
Researcher
Teacher
Researcher
Teacher
Teacher
Researcher
Researcher
Researcher
Teacher
Researcher
and Teacher
Teacher
Teacher
Teacher
Teacher
Teacher
Teacher
Teacher
Teacher

Teacher

Teacher
training

Yes

Yes

NA

Yes

Yes

Yes

NA

Yes

NA

NA

Yes

Yes

Yes

Yes

Yes

Yes

NA

No

NA

No

Yes

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Strategy

Motiv

Meta

Meta + Cog
Meta + Cog
Meta + Motiv
+ Cog

Aff + Meta +
Cog

Meta

Meta

Motiv

Meta + Cog +
Motiv

Meta + Cog
Meta + Cog
Meta + Cog
Meta + Cog
Meta + Cog
Meta + Cog
Meta + Cog
Meta + Cog
Meta + Motiv
Meta + Motiv
Meta + Cog
Meta + Motiv
+ Cog

Meta + Motiv
+ Cog

Cog

Meta + Motiv
+ Cog

Meta + Motiv

+Cog
Meta

Meta + Cog

Meta

Meta + Motiv

Meta + Cog

Meta + Motiv
+ Cog

Meta + Motiv
+ Cog

Meta + Motiv
+ Cog

Meta + Motiv
+ Cog

Meta + Cog

12 sessions throughout a
year

36 sessions throughout
12 weeks

7 weeks

1 year

28 sessions throughout a
year

4 sessions throughout 4
weeks

5 sessions throughout 3
weeks

3 sessions throughout 3
weeks

28 sessions throughout
14 weeks

4 sessions throughout 18
weeks

10 sessions throughout 5
weeks

10 sessions throughout 5
weeks

10 sessions throughout 2
weeks

36 sessions throughout
12 weeks

9 sessions throughout 3
weeks

20 sessions for 4 weeks
1 session

6 sessions throughout for
6 wesks

10 sessions for 10 weeks

40 sessions throughout 8
weeks

36 sessions throughout
36 weeks

7 sessions throughout 42
days
20 sessions

24 sessions for 4 weeks
9 sessions for 3 weeks
7 sessions

9 sessions throughout 3
months

6 sessions throughout 6
weeks

30 days
5 weeks
2 weeks

10 sessions throughout 5
weeks
10 sessions throughout 5
weeks
10 sessions throughout 5
weeks

20 sessions throughout 4
months

Math test SRL test
(Effect size) (Effect size)

s Q(-0.15)
R Q(0.36)
(-351)

R .

(6.99)

R =

s Q(0.49)
(0:35)

R Q(0.18)
(087

R [
(1.04)

R CcA(0.21)
(-0.33)

s Q(-0.38)
©0.07)

R Q082
0.01)

R DA (2.27)
©.76)

R Q(21)
(0.44)

R Q(0.36)
(0.85)

R Q(2.86)
082

R Q(1.16)
0.53)

R Q
(0.56)

s Q@67
(1.68)

R cA
(087

s Q(0.26)
(0:68)

- Q(0.16)
R -

(0.44)

s Q(0.98)
(0:84)

R Diary

T Q

R Q(0.09)
0.01)

T Q(1.40)
(0.44)

R Q(0:29)
0:22)

s R

T Q(0.15)
(0.36)

T Q(0.09)
0:82)

T Q(0.11)
(0.40)

T Q(033)
0.37)

s Q(034)
0.62)

S+R Q(-009)
S+R Think aloud
(1.03)

S+R -

0.31)

Meta, metacognitive theory/strategy; Cog, cognitive theory/strategy; Motiv, motivational theory/strategy; dose, dosage; S, standardized test; R, researcher-generated test; T, teacher-generated test; + means a combination of multiple
theoretical frameworks or strategies; Q, questionnaire; CA, calibration accuracy; DA, discourse analysis; not all studies reported available data for effect size calculation; not all studies specify the duration by sessions.
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Competence Theory M (SD) o cogll ml g rl
max.

coglll 6 1.41 (0.99) 0.21 —

Mathematical 34 14.16 (6.10) 0.82 0.42** =

literacy (mi)

General 12 4.82(1.73) 043 0.16* 0.25" -

intelligence (9)

Reading literacy (1) 14 7.01(3.17) 0.74 0.36* 0.69"* 0.23*

*indicates p < 0.01.
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Theoretical framework

Characteristics of
sample
Treatment
characteristics

Type of mathematic
achieverent test

Type of outcome
variables

Information for effect
size estimates

Sub-coding categories or description

social cognitive theoretical framework
metacognitive theoretical framework
unknown theoretical framework

sample sizes

age group

type of design

nature of control group.

condition assignment

delivery mode

teacher training

type of strategy instructed [.e., metacognitive (meta),
cognitive (cog), motivational (motiv]
duration of intervention

standardized instrument (S)

researcher seff-generated instrument (R)
teacher self-generated instrument (T)

oA LPS Po BP

mathematics achievement outcome
SRL outcome

(SR

Specific and relevant information from studies was
extracted for effect size calculation (e.g., means,
standard deviations)
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n
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Median

SD

Min

Max

Cronbach'’s alpha

acc_genN

74
2.79
2.50
1.18
1.00
6.00
0.886

acc_genFig

74
3.67
3.50
1.27
1.00
6.00
0.912

acc_GV

67
296
2.88
1.27
1.00
6.00
0.896

acc_FP

72
5.15
5.63
1.02
1.00
6.00
0.939
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Traditional versions

Facilitated versions

Correlation M (SD) Wason AIDS Hospital Linda Monty Wason AIDS problem AIDS problem  Cronbach’s
N =2.643 task (prob. problem problem Hall task (frequency (frequency o if item
o=0.21 (class.) version) problem (cont.) version 1) version 2) deleted
Wason problem (class.) 0.14 (0.34) - 0.16
AIDS (prob. version) 0.02 (0.15) —0.01 - -2
Hospital problem 0.10 (0.30) 0.03 0.01 - 0.21
Linda problem 0.16 (0.37) 0.01 —0.03 0.01 - 0.27
Monty Hall problem 0.67 (0.47) 0.06** 0.00 0.04 0.00 - 0.16
Wason task (cont.) 0.29 (0.45) 0.14* —0.06 0.02 —0.01 ()05 - 0.12
AIDS (frequ. vs. 1) 0.10 (0.30) 0.04 - 011 0.03 (e () liel - -a
AIDS (frequ. vs. 2) 0.11 (0.31) 0.07* - 0.01 —0.06 ()10 0.19* - - -

*indicates p < 0.05; *indicates p < 0.01. Correlations of facilitated items (cf. Figure 1) with each other are gray-shaded.

The three AIDS versions as an exception were each only processed by ~ 880 students.

aCronbach’s « if item deleted of all versions of the AIDS task combined is 0.18.
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Database  Search Strategy Number

of Article

ERIC Self-regulation (AB) AND Intervention (AB) 31
AND Mathermatis (Al

ERIC “Metacognition AND *Middle school students 2
AND *Learning strategies AND Seff-regulation
(AB)

ERIC “Metacognition AND “Elementary school 9
students AND “Learning strategles AND
Self-regulation (AB)

ERIC “Intervention AND *Metacognition AND 11
“Mathematics skils

PsycNFO  Self-regulation (AB) AND Intervention (AB) 38
AND Mathematics (Al)

PsycINFO  Motivation (IF) AND Intervention (IF) AND 7
Mathematics (IF)

PsydNFO  *Self-regulated learning AND *School-based 3
intervention AND Mathematics (AB)

PsydNFO  Self-regulation (AB) AND High school 30
students (ALL) AND Mathematics (AB)

PsycNFO  Self-regulation (AB) AND Elementary school 23
students (ALL) AND Mathematics (AB)

ProQuest Self-regulation (AB) AND Intervention (AB) a1

Education  AND Mathematics (AB)

AB, keywords show in abstract; AND, multiple keywords; ALL, keywords show in
anywhere; IF, keywords are identifiers; keywords with asterisk retrieved from the thesaurus.
Dissertation studies were searched with the same search strategies through the
dissertation databases.
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Inclusion criteria

1. Studies that were empirical and
peer-reviewed and studies included
in doctoral dissertations

2. Studies that focused on
self-regulated learning,
metacognition, and motivation

3. Studies that focused on students
within general education

4. Studies that focused on the domain
of mathematics

5. Studies that focused on school-aged
students

6. Quantitative or mixed-methods
studies

7. Studies that were reported in the
English language

8. Full text accessible

Exclusion criteria

Book chapters

Studies that focused on other
psychological constructs

Studies that focused on students with
learning disabilities or difficulties

Studies that focused on reading,
language arts, or science

Studies that focused on college
students

Qualitative studies

Studies that were reported in other
languages

Full text is not accessible or preview
accessible only





OPS/images/fpsyg-11-01180/fpsyg-11-01180-t005.jpg
Conviction

Explanatory power

genN genFig GV

FP genN genFig GV FP

74 74 68
3.32 4.38 296
3.00 5.00 3.00
1.664 1.411  1.688

1 1 1

6 6 6

72 74 74 68 72
5.35 3.82 4.50 2.85 5.15
6.00 4.00 5.00 3.00 6.00
1.060 1.511 1274 1730 1.206

2 1 1 1 2

6 6 6 6 6





OPS/images/fpsyg-11-567817/fpsyg-11-567817-g008.gif
I Naural Frequendies Il Shor Frequencies

o conditon
¢ o

o






OPS/images/fpsyg-12-584689/fpsyg-12-584689-g004.jpg
suodeap| 921)04 2UNUBIIS





OPS/images/feduc-05-00058/feduc-05-00058-g001.gif
o

o

Toial potcatlly
eleant

Serched (0~ 291

s puosss

hig e,

Recordsentiicd
rough ERIC.

Recordsieatii
o citions (1

Records denificd
rough evi i

PeyelNFO, ProQucst drug

Educaion n - 196) £ ey
Recordsstr Recordsentifiod
duplicte for it rough dabaseof
e (n- 139) s usertion

Recodsafter flltet
secening (1 32)

Records e follcst
saccing (1~ )

Finaresond deniied
ey






OPS/images/fpsyg-11-567817/fpsyg-11-567817-g007.gif
5






OPS/images/fpsyg-12-584689/fpsyg-12-584689-g003.jpg
Conclusions

What conclusions can be drawn with compelling necessity from a statement without requiring any
additional assumption?

Several conclusions can be correct in one finding.
Decide for each conclusion whether it is right or wrong.
Item 1: “Holidays”

Statement:
At Luxembourg travel agencies, more vacation trips are booked for the summer than for
the winter.

Conclusion:
correct  wrong

Luxembourg vacationers believe that they can relax better in

summer than in winter. = =
The frequency with which vacations are booked in
Luxembourg is not independent of the season. [m] [m]

More people in Luxembourg have vacations in summer than

in winter. [m] o

Luxembourg vacationers tend to prefer to take their holidays
in summer. [m} [m}
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SPEED OF RACING CAR

This graph shows how the speed of a racing car varies along a flat three-kilometer track during
its second lap.

Speed Speed of a racing car along a 3 km track

Wy (second lap)

o0

0

o

i

o

w

m

0

™ os 1 25

o , + +
o o2 0% o5 o5 1o 12 14 is 18 70 22 24 25 28 30
'Slamng line. Distance along the track (km)

Question 1: SPEED OF RACING CAR

What is the approximate distance from the starting line to the beginning of the longest
straight section of the track?

A 0.5km
B 1.5km
C 23km
D 2.6km
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Estimated quantity for Qo

Item No. Test Task Scaling factor If b = 1 (linear) If b = 2 (quadratic) If b = 3 (cubic) N M SD 95% CI

1 CO» a 0.9 90 81 73 63 80.9 7.4 (79.0, 82.7)
2 b 1.3 130 169 220 62 177.5 59.6 (162.4,192.7)
3 (o 0.3 30 9 €} 60 10.9 4.1 9.8,11.9)
4 d 1.6 160 256 410 63 290.2 98.3 (265.4, 314.9)
5 Garbage a 0.7 70 49 34 63 54.5 16.1 (50.4, 58.6)
6 b 1:5 150 225 338 62 189.3 47.0 (177.3,201.2)
7 c 1.9 190 361 686 63 344.4 147.4 (307.2, 381.5)
8 d 0.5 50 25 13 62 28.4 12.0 (256.3, 31.4)
9 Sugar a 1.4 140 196 274 63 195.0 52.1 (181.9, 208.1)
10 b 0.8 80 64 51 63 67.9 13.2 (64.6,71.2)
11 & 0.4 40 16 6 63 19.2 9.0 (16.9, 21.5)
12 d 1.8 180 324 583 63 365.6 180.9 (320.1, 411.2)

The six outliers were eliminated before calculating the descriptive statistics.
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Medical diagnosis test

In a preventive medical check-up, 1000 people are tested. The test
has the following characteristic: 80% of the infected people and 10%
of the uninfected people get a positive test result.

Calculate the proportion of infected people among those testing

positive. Write as a fraction.

disease _no disease

1000 people
P %0 positive
106 300 ’
disease no disease positive Ed
NG N 810 negative
80 0 % 310
positive  negative positive  negative o
1000 people
108 300 i
disease no disease isease N0 Sum
disease
80 20 90 810 positive 80 90 170
positive  negative positive  negative egative| 20 10 230
170" 830 sum 100 900 1000
positive negative

1000 people
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Garbage Production

The garbage cans represent the average garbage of two different households.

Household A: Household B:
100 Liters ? Liters

The garbage can on the left represents 100 liters of garbage. Estimate
intuitively how many liters the garbage can on the right represents?

liters
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BUS CES SES Total

Control condition 1 4 9 14
Interaction explication condition 9 6 1 16
Total 10 10 10 30
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b SE t P

Constant 022 003 827 <0001
Atttudes and beliefs (X) 002 001 407 <0001
Training program (W) 012 003 441 <0001
Attitudes and beliefs x Training program (W)  -0.02 001 -2.94 = 0.004
Mathematical abilities <0.01 <0.01 447 <0.001
Metacogritive skils 023 007 306 =0002
Problem-solving success (t;) 021 002 1227 <0001

Note. R? = 58.75%, MSE = 0.05; F (6, 310) = 73.59, p < 0.001; R? (change) = 1.15%, F (6,
310) = 8.62, p = 0.004.
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BF;.2 >1 >3 > 10 >30 > 100 >1000 Sum
(pf"s"'"a") (>50.0%) (>75.0%) (>90.9%) (>96.7%) (>99.0%) (>99.9%)

BUS 0 0 2 0 0 7 9
CES 0 0 3 0 1 2 6
SES 0 0 0 0 0 1 1
Sum 0 0 5 0 1 10 16
Evidence Weak Moderate Strong Very strong Extreme Extreme
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Number of Pretest Posttest

students
M SD M SD
Weaker  Sequential 11 022 0.09 022 0.10
Concurrent 8 0.15 011 023 0.10
Stronger  Sequential 10 046 0.06 038 0.14
Concurrent 16 0.47 0.08 036 0.14

Effect
size

—0.06

0.71
—0.84
—0.95
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Independent variables
(1) Mathematical abilties
(2) Metacognitive skills
(3) Success (t;)

(4) Atttudes and beliefs

Dependent variable
(5) Success (tz)

#

M
sD
Min
Max

V)

0.39"
0.38"
0.36"

0.48"
"
46.36
10.18
28
80

@

0.39™
0.12™

0.68™
6
0
0.87
-14
21

® @ ©®)
0.22*
0.45* 0.25"

3 13 3

o011 7.92 0.40

0.20 3.48 0.35
0 0 0
1 13 1

Note. # = number of items; t; = Measurement Point 1; t, = Measurement Point 2. 'p <

0.05, **p < 0.01.
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BUS CES SES Total

Control condition 1 4 9 14
Relevance instruction condition 3 6 3 12
Total 4 10 12 26
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MTK MK MSK PSS MA&P

Sequential 0.64 0.90 1.36 0.00 —0.30
Concurrent 0.58 0.35 1.73 0.25 -0.27
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Sequential Concurrent
Pretest Posttest Pretest Posttest
M SD M SD M SD M SD
Mathematical Topic  0.33 0.17 045 021 040 0.16 049 0.14
Knowledge
Methodological 040 0.16 054 014 049 0417 055 0.16
Knowledge
Mathematical 0.35 0.16 057 016 0.39 017 069 0.18
Strategic
Knowledge
Problem-solving 0.563 0.10 053 0.09 054 0.09 057 0.10
Skills
Mathematical 0.34 0.14 029 014 036 018 032 0.14
Argumentation and
Proof Skills

All scales ranged from O (minimum) to 1 (maximum).
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Percent absolute Response time (RT)

error (PAE)

Fixed effects Estimate SE Estimate SE
Intercept 0108w 0.013 9.17 1.41
Cluster

No Bias (baseline) - - - -
Typical Bias 0.058"** 0.013 —1.50" 0.50
Reverse Bias 0.040** 0.014 —1.70* 0.54
Random effects Variance SD Variance SD
Student 0.005 0.073 7.93 2.82
Classroom 0.000 0.018 1.04 1.02
Item 0.001 0.024 0.31 0.56
Task type 0.000 0.005 3.51 1.87

7262 observations, 234 students, 16 classrooms, 16 fractions, 2 task types.
Percent absolute error: estimates are given as the total deviation from the given
value. Time on task: estimates are given in seconds. Levels of significance:
***p < 0.001, *p < 0.01.
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Typical Bias Reverse Bias No Bias

Fixed effects Estimate SE Estimate SE Estimate SE
Intercept —2.74**  0.22 1.54"*  0.14 0.76"*  0.32
Distance —0.49 073 -0.12 0.50 1.62***  0.45
Congruent 518" 027 —293** 0.16 0.05 0.14
Type (one fraction 0.23 0.44 —-0.04 0.29 —-1.00"* 0.26
improper)

Random effects Variance SD  Variance SD Variance SD

Student 0.08 0.29 0.00 0.00 0.46 0.68
Classroom 0.02 0.13 0.00 0.04 0.03 0.17
Item 0.13 0.36 0.02 0.15 0.03 0.17

Typical Bias: 2016 observations, 105 students, 16 classrooms, 20 items; Reverse
Bias: 1399 observations, 75 students, 16 classrooms, 20 items; No Bias: 1379
observations, 74 students, 16 classrooms, 20 items. Estimates are given as log-
odds. Levels of significance: **p < 0.001.
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Accuracy Response time

Incongruent Congruent
Cluster N M SD t M SD t M SD
Typical Bias 105 0.07 0.12 —37.67 081 0.12 35.06% 2.55 1.00
Reverse Bias 75 0.81 0.21 12.66™ 0.21 0.19 —13.156"* 2.37 0.81
No Bias 74 0.60 0.29 2.94* 0.64 0.21 585 6.25 2.60

N = Cluster size, M = Mean value, SD = Standard deviation, t = One-sample t-test against i = 0.5. Time on task is given in seconds. Levels of significance: ***p < 0.001,
**p < 0.01.
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Item Type
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Distance

0.950
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0.029
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0.333
0.028
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0.643
0.311
0.083
0.042
0.067
0.111
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0.222
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Congruent: 0 = item incongruent, and 1

item congruent to natural number

thinking; Item Type: O = item contains one proper and one improper fraction, and
1 = item contains two proper fractions; Distance: numerical value representing the
distance between the two given fractions in the item.
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CP group (low/high) AR CMR
M SD M SD
Low CP!
Transfer test task 0.19 0.15 0.26 0.18
High CP?
Transfer test task 0.34 0.24 0.47 0.22
AR, algorithmic  reasoning; CMR, creative

CR  cognitive  proficiency;
mathematical reasoning.
'n=41.

2n — 41
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Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha
AR

Transfer test task 0.26 0.21 0.78 -0.12 0.78
CMR

Transfer test task 0.36 0.23 0.37 -0.33 0.75

AR = Algorithmic Reasoning, CMR = Creative Mathematical Reasoning.
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CP group (low/high) AR CMR

M SD M SD
Low CP!
Practiced test task 0.35 0.17 0.40 0.21
Transfer test task 0.33 0.28 0.29 0.22
High CP?2
Practiced test task 0.61 0.24 0.76 0.24
Transfer test task 0.58 0.33 0.69 0.30
CR  cognitive proficiency, AR, algorithmic reasoning. CMR, creative

mathematical reasoning.
'n=25
2n — 26
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Learning condition (AR/CMR)

AR
Practiced test task
Transfer test task
CMR
Practiced test task
Transfer test task

AR, algorithmic reasoning, CMR, creative mathematical reasoning.
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CP group (low/high) AR CMR

M SD M SD
Low CP!
Practiced test task formula 0.04 0.11 0.11 0.15
Practiced test task numerical 0.14 0.19 0.29 0.21
Transfer test task formula 0.05 0.10 0.08 0.14
Transfer test task Numerical 0.13 0.16 0.22 0.27
High CP2
Practiced test task formula 0.11 0.15 0.29 0.24
Practiced test task numerical 0.38 0.26 0.54 0.23
Transfer test task formula 0.19 0.21 0.30 0.25
Transfer test task Numerical 0.41 0.27 0.48 0.27

CP, cognitive  proficiency,
mathematical reasoning.

'n=69.
20 — 68

AR,  algorithmic

reasoning. CMR, creative
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Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha
AR
Practiced test task formula 0.08 0.13 213 3.50 0.86
Practiced test task numerical 0.26 0.26 0.95 0.25 0.83
Transfer test task formula 0.12 0.18 1.72 3.07 0.61
Transfer test task numerical 0.27 0.26 0.87 -0.11 0.71
CMR
Practiced test task formula 0.20 0.22 0.97 —-0.11 0.86
Practiced test task numerical 0.42 0.25 0.06 1.06 0.88
Transfer test task formula 0.19 0.22 1.40 1.58 0.62
Transfer test task numerical 0.35 0.30 0.59 —0.68 0.76

AR, algorithmic reasoning, CMR, creative mathematical reasoning.
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A Posttest trained task
When squares are put in a row, it
looks like the figure on the right,

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

B Posttest transfer task
When rectangles are put in a row, it
looks like the figure on the right,

16 matches are needed for three rectangles.

How many matches are needed to get 100 rectangles in a row?

C Posttest formula practice task — Wy V—
When squares are put in a row, it
looks like the figure on the right,

13 matches are needed for four squares.

Suppose that x is the number of squares in a row and y is the number of matches needed to

build the squares.

How could you describe y as a function of x?

D Posttest formula transfer task e e W@
When rectangles are put in a row, it '
looks like the figure on the right, pem—

16 matches are needed for three rectangles.

Suppose that x is the number of rectangles in a row and y is the number of matches needed to

build the rectangles.

How could you describe y as a function of x?
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A Practice AR-task, method provided
When squares are put in a row, it
looks like the figure on the right,

13 matches are needed for four squares.

If x 1s the number of squares then the number of matches y could be calculated by the function
y=3x+1

Example: 1f 4 squares are put in a row then y =3x + 1 = 3:4+1 = 13 matches are needed

How many matches are needed to get 100 squares in a row?

B Practice CMR-task, constructing method e e e
When squares are put in a row, it |

looks like the figure on the right,

13 matches are needed for four squares.
How many matches are needed to get 100 squares in a row?

C Practice CMR-task, constructing formula S — S — —
When squares are put in a row, it I

looks like the figure on the right,

13 matches are needed for four squares.

Suppose that x 1s the number of squares in a row and y is the number of matches needed to

build the squares.

How could you describe y as a function of x?
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“What do you think, which code jar would be harder to play Mastermind with?
That means, in which of the two games would you require more queries to
guess the secret code? Or are they equally hard?"

uestion 1| Question 2

Question 3 Question 4
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EES-AMAS

Learning anxiety

Evaluation aniety

Math test performance

Math achievement (teacher rating)

ltaly
UK
Italy
UK
taly
UK
ltaly
UK
ttaly
UK

Male M (SD)

2073 (7.72)
21.12 (654)
987 (4.59)
928 (3.88)
1085 (4.26)
11.86 (3.77)
23.089.19)
23.46 (7.68)
350 (1.14)
353 (1.17)

Female M (SD)

21.44 (7.86)
2011 (6.65)
10.44 (4.98)
889 (3.20)
11.00 (3.99)
11.24 (4.29)
19.87 (7.87)
21.50 (8.99)
360 (.78)

351 (1.06)

t(dn

—0.456 (101)
0.839 (118)
—0.595 (101)
0.606 (118)
—0.174 (101)
0.839 (118)
1.799 (98)
1217 (118)
—0.486 (100)
0.090 (118)

0.650
0.403
0.553
0.546
0.863
0.403
0.075
0.226
0.628
0.928

BFo;

430
374
4.03
435
4.65
374
112
263
422
511
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EES-AMAS
CMAQ-R

State math anxiety

Math test performance

Math achievement (teacher rating)
M (D) halian

M (SD) UK

"0 < 0.05; **p < 0.01.

EES-AMAS

070" (069")
—0.04 (022
—0.38" (- 0.32")
-0.30" (- 034")
21.01(7.75)
20.59 (6.59)

CMAQ-R

0.09 (0.23)
—0.39" (- 0.43")
-0.32" (- 0.29")

39.16 (11.68)
35.69 (10.96)

State math anxiety  Math test performance

—0.04 (-0.21%) -

—0.09 (- 0.24") 0.53" (0.70")
1.69 (1.20) 21.83 (8.80)
1.83(1.44) 22.47 (8.42)

Math achievement
(teacher rating)

354 (1.01)
352 (1.11)
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Model SBy? (df)

1. Invariance of model configuration 109.57 (52)
2. Invariance of factor loadings 12263 (59)
3. Invariance of structural variances/covariances  124.03 (62)
4. Invariance of measurement error 132.34 (71)

SBy? /(df)

21
21
20
19

CcFl

090
090
089
089

RMSEA

0.07
0.07
007
0.06

Model comparison

Model;-Model>
Model,-Model;
Models -Models

sBAy?

13.06
1.40
831

Adf

7
3
9

P

0.071
0.704
0503

SBY2, chi square test; df, degrees of freedom; CFI, comparative fit index; RMSEA, root mean square error of approximation; SBAx?, Satorra-Bentler scaled difference;
Ad, difference in degrees of freedom between nested models; p, probability value of SBA¥2-test.





OPS/images/fpsyg-11-01897/fpsyg-11-01897-i029.jpg





OPS/images/feduc-05-00028/feduc-05-00028-g002.gif
B vasd B Non Vesd I8 Totst





OPS/images/fpsyg-11-01014/fpsyg-11-01014-t004.jpg
item

@O0 ksNONO WO

Mean (SD)

1.80(1.38)
1.88(1.29)
1.87 (1.31)
202 (1.41)
252(1.61)
2.53(1.49)
226(1.34)
350(1.40)
2,61 (1.40)

Italian sample
Corrected item-total correlations.

047
0.41

044
038
0561

059
046
049
045

LMA

056
047
057
043
074

EMA

0.69
0.56
0.63
0.60

Mean (SD)

1.19(0.67)
1.82(1.45)
1.84(1.95)
1,66 (1.07)
257 (1.45)
281(1.44)
301(1.49)
3.29(1.63)
2.43(1.40)

British sample
Corrected item-total correlations

0.30
052
033
0.38
0.44
0.46
0.45
0.36
053

LMA

037
070
050
0.48
0.41

EMA
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045
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Model SBy? (df)

1. Invariance of model configuration 98.70 (52)
2. Invariance of factor loadings 108.46 (59)
3. Invariance of structural variances/covariances  112.74 (62)
4. Invariance of measurement error 121,39 (71)

SBy? /(df)

19
18
18
17

CcFl

090
090
090
090

RMSEA

0.08
0.08
0.07
0.07

Model comparison

Model;-Model>
Model,-Model;
Models -Models

sBAy?

9.76
428
865

Adf

7
3
9

P

0.203
0.233
0.470

SBy?, chi square test; of, degrees of freedom; CFl, comparative fit index; RMSEA, root mean square error of approximation; SBA x?, Satorra-Bentler scaled difference;
Adf, difference in degrees of freedom between nested models; p, probability value of SBAy2-test.
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Item Mean (SD) Skewness Kurtosis Corrected item-total correlations LMA EMA

1 1.70(1.34) 174 1.46 033 045
3 2.11(1.42) 098 -0.46 055 067
6 254 (1.61) 044 ~1.44 0.46 053
7 2.03(1.36) 1.04 -0.33 038 053
9 271(1.46) 027 -127 053 068
2 2.30(1.36) 077 -063 0.32 053
4 2.49(1.42) 041 -1.20 056 074
5 3.19(1.60) -022 -152 034 047
8 2.70(1.58) 034 -1.42 0.48 054

LMA, Leaming Math Anxiety; EMA, Evaluation Math Anxiety.
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1. When you are using the number line.
2. When you think about a maths test that you have to do soon.

3. When you watch your teacher solving a maths sum on the whiteboard.
4. When you are taking a maths test at school.

5. When your maths teacher gives you homework that is long and difficu.

6. When your maths teacher explains a new topic.

7. When another student solves a sum on the whiteboard.

8. When your maths teacher asks you to solve a maths sum.

9. When you have to learn how to solve a new kind of maths sum.
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References Finger variable Age (Y;M) N Task Control variables Numerical outcome variables! (with

reported effect sizes)

Asakawa and Finger dexterity (FD) T1: 4,8 T2: 33 Pegboard Age, gender, rhythmic hand Ca: addition_ FD 771 r = 0.53 (T1),

Sugimura (2014)k (T1, T2, T3, and T4) 5;2 13: 5;8 movement (T1, T2, T3, and r=0.34 (T2), r=0.48 (T3), r = 0.36 (T4)

T4: 6,2 T4) FD T2 r = 0.58 (T2), r = 0.44 (T3),
r=0.32(T4) FD T3 r = 0.57 (T3),
r=0.38(T4) FD T4 r = 0.55 (T4)

Cameron et al. Fine motor skills T1: 5,0 T2: 213 Block building, Gender, ethnicity, age, Ca: applied problems fine motor

2012k T) 5,4 T3: 5,9 copying, maternal education, composite —r = 0.17 (T2), r = 0.25 (T3)

drawing executive function, gross blocks —r =0.11 (T2), r = 0.17 (T3)
motor skills (T1) design copy —r =0.16 (T2), r = 0.24
(T3) draw-a-person —r = 0.10 (T2),
r=0.08 (T3)

Dinehart and Fine motor object T1:862 12 3234 Block building, Expressive & receptive Math achievement (Ca, T2): FMOM:

Manfra (2013)'—2 Manipulation ~8;2 string weaving, language, matching, counting r=.21, Cohen’'sd = .14 (GPA), r = .22,
(FMOM) and Fine bead stringing; (T1), gender, ethnicity, SES, d =.09 (SAT10) FMW: r = 0.31,
motor writing page turning, school absences Cohen’s d =0.21 (GPA), r=0.33,
(FMW) (T1) pegboard; d=0.11 (SAT10)

cutting; play
dough; paper
folding

Fischer et al. Fine motor skills 4,6 177 Pegboard, General cognitive ability, age, Co: procedural counting r = 0.41,

2017)€ bead- home math, home FMS = 0.31 Conceptual counting r = 0.36,

threading, B =0.21 (total effect)
block turning
Gashaj et al. Fine motor skills T1: 6:5 T2: 136 Bead- Numerical skills, executive M, N:
2018t 8,0 threading, coin functions magnitude comparison (S), number line
posting, estimation (S & NS) g = 0.31
drawing within (concurrent)
boundaries Math achievement (N, Ca): g =0.09
(longitudinal)
Gashaj et al. Fine motor skills 6;5 151 Bead- Numerical skills, executive M, N: magnitude comparison (NS)
(2019)€ threading, coin functions (regression models), r=0.15,
posting, age (correlations) B = 0.14 Magnitude comparison (S)
drawing within r=0.22,
boundaries B = 0.09 Number line estimation (NS)
r=0.42,
B = 0.33 Number line estimation (S)
r=0.36, g =0.02

Grissmer et al. Fine motor skills T1: ~5;0 21.260  Block building, Social skills, attention, gross Math achievement (N, Ca): FMS:

(20102 T) T2: ~6;0° (ECLS- design copying, motor skills, early math, early B =0.14 (ECLS-K, T2) Motor/social:

K) 2714 drawing reading B = 0.05 (NLSY, T2) Copying: p = 0.36,
(NLSY) Drawing:.09 (BCS, T2)

11.200

(BCS)

Kim et al. (201 7)'-4 Fine motor T1:5;6 135 Design Age, gender, SES, treatment Ca, M: mathematics skills (T1, T2, T3)
coordination (FMC) (beginning copying, condition FMC (T1):r =0.24,r=0.23,r=0.21
and visuomotor KG) T2: speeded FMC (T2):r =0.18,r =0.14,r =0.03
integration (VMI) end KG® drawing within FMC (T3): r =0.24,r =0.16,

(T1, T2, and T3) T3: end 18t boundaries r=0.15/8 =0.33 VMI (T1):
grade r=0.57/p=043,r=0.618=0.13,
r=0.58 VMI (T2): r =0.53, r = 0.59,
r=0.58/f = 0.14 VMI (T3): r = 0.54,
r=0.56, r = 0.67
Luo et al. (2007)t2 Fine motor skills T : 57 T2 10060 Block building, Gender, age, mother’s and Math achievement growth rate -
T1) 6,2T3:7;2 9816 design copying,  father’s education, SES, Co,N, Ca(T1,T2,and T3): B= 1.68

EUA® drawing parental educational (intercept) B = 0.09 (slope)

244 expectations

EAAS
Pagani et al. Fine motor skills Tl: 55 [2: 1,145 Object Early math and reading, age, Math achievement (teacher-reported):
(20102 T) ~ 7.5 manipulation gender, ethnicity, health, birth r=0.30(T2)

time and weight, SES (T1)
Penner-Wilger et al. Finger agility 6;10 146 Finger tapping Gender, receptive N:r=.18 Ca:r=.12
(2007)¢ vocabulary,
processing speed

Pitchford et al. Fine motor Study 1: Study Design SES, gender, verbal and Math achievement — Ca: Study 1

(2016)© precision (FMP) and 5,56-6;8 1:62 copying, nonverbal 1Q, verbal STM FMP: r = 0.60/8 = 0.42 FMI:
fine Motor Study 2: Study drawing, folding  (Studies 1 and 2) r =0.57/p = 0.16 Study 2 FMP:
integration (FMI) 4;,0-6;0° 2:34 and cutting r =0.31 FMI: r = 0.50

within
boundaries

Son and Meisels Fine motor skills T1:65T2: 12,583 Block building, Achievement in T1, age, Math Achievement - Co, N. Ca:

(2006)L2 (T1) ~6;11 design copying, gender, ethnicity, SES r=0.44 (T1), r=0.48 (T2)

drawing

Suggate et al. Fine motor skills 49 81 Pegboard, Age, receptive vocabulary Co, Ca: numerical skills (total):

(2017a)C bead- r =0.73/p = 0.34 finger numerical skills:

threading, r=0.69/p = 0.40 non-finger numerical

block turning

skills: r =0.70/ = 0.24

Medium to large effect sizes (Cohen, 1988) are displayed in bold typeface. Regression coefficients were not interpreted in terms of effect size. ~Indicates an approximate
mean age when exact means are not provided. Tests included in the p-curve analysis are underlined. L, longitudinal; C, cross-sectional. 1in order to facilitate comparisons
between studies, we grouped the outcome variables into four different categories whenever possible (\Wyschkon et al., 2015): Co, counting (i.e., forward, backward,
from x to y); N, number (e.g., number reading, symbol-magnitude mapping, cardinality, and place value); Ca, calculation (e.g., addition and subtraction); M, magnitude
(e.g., subitizing, size comparison, and magnitude judgment). Original outcome measure names as described in the studies are cited when different from category names.
2Studies based on large scale assessment data sets. The Early Childhood Longitudinal Study (ECLS-K) was used by Son and Meisels (2006); Luo et al. (2007), and
Grissmer et al. (2010). Additionally, the National Longitudinal Survey of Youth (NLSY) and the British Cohort Study (BCS) were also used by Grissmer et al. (2010). Lastly,
the Miami-Dade School Readiness Project (M-DSRP) was used by Dinehart and Manfra (2013) and the Quebec Longitudinal Study of Child Development (QLSCD) by
Pagani et al. (2010). 31t was not possible to retrieve information regarding mean age at assessment time points. “The studly also included a 1 $-2"4 grade cohort which
was not considered for the present review. Only the Kindergarten (KG) cohort was included. SEuropean American children. 8East Asian American children.
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References Finger variable Age N Task Control variables Numerical outcome variables® (with
(Y;M) reported effect sizes)
Fayol et al. (1998)t Neuropsychological T1: 5,9 177 10 Trials; single and Lozenge and Co: r =0.40 (T1) N: Number writing:
Score? (T1) T2: 65 consecutive touch; human figure r=0.16 (T1); r = 0.27 (T2) Number
pointing and label drawing test, age sequence: r = 0.42 (T1) Ca: Problem
naming (T1) solving; r = 0.40 (T1); r = 0.45 (T2) All:
r=0.50 (T1); r=0.46 (T2)
Long et al. (2016)€ Finger gnosis %1 197 50 Trials; single, Age Co: Dot counting: r = 0.10 N: Symbolic
consecutive and comparison: r =0.06 Ca: r =0.12 M:
simultaneous Non-symbolic comparison: r = 0.38
touch; pointing
Noél (2005)F Finger gnosis (T1 T1:6;8 41 40 Trials; single, Processing speed, Co, N, Ca, M®: Numerical accuracy
and T2) T2: consecutive and hand preference, scorer=-0.48 (FG T1)r = =0.36 (FG
711 simultaneous left-right orientation T2) Numerical speed score r = —0.30
touch; pointing (T1), block design, (FGT1)r==0.01(FGT2)
handwriting (T2)
Penner-Wilger et al. Finger gnosis 6;10 146 20 Trials; Gender, receptive N:r=0.27 Ca:r =0.19
(2007)€ simultaneous or vocabulary,
consecutive touch; processing speed
pointing
Penner-Wilger et al. Finger gnosis (T1) T 100 20 Trials; Gender, processing N: distance effect p = —0.35 (T2) M:
(2009)t 6;10 simultaneous or speed, receptive number line estimation linearity p = 0.27
T2: consecutive touch; vocabulary (T1) (T2)
~7;10 pointing
Poltz et al. (2015)t Finger gnosis (T1 T1:5;3 1,594 16 Trials; single and Nonverbal 1Q, visual FGT1 Co:r=0.26 (T1), r =0.23 (T2)
and T2) T2: 6,0 simultaneous WM, selective N:r=0.26(T1), r=0.18 (T2) Ca:
touch; pointing attention, number r=0.33(T1),r=0.32 (T2) FG T2 Co:
skills T1) r=0.23(T1),r=0.20 (T2) N: r =0.19
(T1),r=0.15 (T2) Ca: r = 0.25 (T1),
r=0.30(T2)
Wasner et al. Finger gnosis 6;5 321 21 Trials; single and Age, gender, Ca: Addition: r = 0.23, 8 =0.14
(2016)C consecutive touch; general cognitive Subtraction: r =0.24, = 0.13
pointing and visual ability, verbal and
recognition visual short-term

memory, numerical
precursor skills

Medium to large effect sizes (Cohen, 1988) are displayed in bold typeface. Regression coefficients were not interpreted in terms of effect size. ~Indicates an approximate
mean age when exact means are not provided. Tests included in the p-curve analysis are underiined. L, longitudinal; C, cross-sectional. ! In order to facilitate comparisons
between studies, we grouped the outcome variables into four different categories whenever possible (\Wyschkon et al., 2015): Co, counting (i.e., forward, backward,
from x to y), N, number (e.g., number reading, symbol-magnitude mapping, cardinality, and place value), Ca, calculation (e.g., addition and subtraction), M, magnitude
(e.g., subitizing, size comparison, and magnitude judgment). Original outcome measure names as described in the studies are cited when different from category names.
2Simultagnosia, finger gnosis, digital discrimination, and graphisthesia. 3Negative association because the study used a finger agnosia score.
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Note: The observed p-curve includes 11 statistically significant (p < .05) results, of which 10 are p < .025.
There were no non-significant results entered.
Binomial Test Continuous Test
(Share of results p<.025) (Aggregate with Stouffer Method)
Full p-curve Half p-curve
(p's<.05) (p's<.025)
1) St_udles contain evidential value. p=.0059 7--14.84, p<.0001 7--15.01, p<.0001
(Right skew)

2) Studies’ evidential value, if any, is
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(Flatter than 33% power)

Statistical Power

Power of tests included in p-curve Estimate: 99%
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There were no non-significant results entered.
Binomial Test Continuous Test
(Share of results p<.025) (Aggregate with Stouffer Method)
Full p-curve Half p-curve
(p's<.05) (p's<.025)
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Ordinal finger-based representation

Cardinal finger-based representation

Variable B SEB B R? pR? B SEB B R? pR?
Step 1 0.056 0.056 0.066 0.066
Dexterity 0.232 0.141 0.188 0.287 0.146 0.221

Graphomotor skill -0.182 0.111 —0.188 —0.186 0.115 —0.183

Step 2 0.525** 0.469** 0.546™* 0.480**
Dexterity 0.220 0.101 0.178* 0.270 0.108 0.209*

Graphomotor skill —0.023 0.081 —0.023 —0.015 0.083 —0.015

Age in months 0.211 0.025 0.704** 0.224 0.025 0.712**

Step 3 0.593** 0.068* 0.608™* 0.062*
Dexterity 0.124 0.105 0.101 0.185 0.107 0.143

Graphomotor skill —0.035 0.078 —0.036 —0.026 0.080 —0.026

Age in months 0.138 0.032 0.463** 0.149 0.033 0.475™

Working memory (forward span) 0.128 0.273 0.045 0.262 0.279 0.087

Working memory (backward span) 0.441 0.189 0.236" 0.397 0.193 0.202*

Nonverbal intelligence 0.093 0.064 0.146 0.090 0.066 0.134

“=p <0.05 *=p <001
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© O N O O~ W N =

1
Dexterity =
Graphomotor skill 0.207
Ordinal finger-based representation 0.150
Cardinal finger-based representation 0.185
Numerical skills 0.185
Working memory forward span —0.072
Working memory backward span 0.159
Nonverbal intelligence 0.315"
Age 0.003

2

0.199
—0.150
—0.139
—0.158
—0.121
—0.004
-0.119
—0.215

3

0.244*
0.018
0.908**
0.751*
0.464**
0.610™
0.563"
0.703*

4

0.286"
0.041
0.816™
0.781*
0.487**
0.604*
0.570™
0.709*

5

0.268*
0.003
0.494**
0.642**
0.513*
0.710**
0.705™
0.728"*

6

—0.075
0.001
0.146
0.182
0.216
0.493*
0.403**
0.531**

7

0.187
0.148
0.359"
0.349"
0.622**
0.274*
0517+
0.681**

8

0.371*
—0.007
0.317*
0.326™
0.545™
0.167
0.297*

0.639™

Raw correlations are presented below the diagonal and partial correlations controlling for chronological age above the diagonal. *=p < 0.05, ** =p < 0.01.
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Dexterity

Graphomotor skill

Finger-based number representations
Ordinal

Cardinal

Numerical skills (Z-score)

Control variables

Age (months)

Visuo-spatial working memory (forward span)
Visuo-spatial working memory (backward span)
Nonverbal intelligence

10.06
9.03

7.32
6.84
0.00

55.56
3.30
2.30

11.73

SD

2.64
3.32

3.25
3.39
1.00

10.92
1.12
1.74
5.10

80
80

78
79
80

80
80
80
80

Min.

1.00
1.00

1.00
0.00
—1.64

37.00
0.00
0.00
0.00

Max.

16.00
16.00

10.00
10.00
1.49

75.00
5.00
6.00

24.00

Skew

—0.57
—1.08

—0.81
—0.69
0.07

—0.13
—1.01

0.23
—0.27

Kurtosis

1.20
0.76

—0.95
—1.056
—1.48

—1.056

1.94
—0.60
—0.07






OPS/images/fpsyg-11-01012/fpsyg-11-01012-g001.jpg
Level I: Counting
Exact number word sequence
Ordinality
One-to-one correspondence
Stable order

1 2 3 4 5

one two three four five

Level II: Cardinality

Mapping of magnitude onto
number word / Arabic digit

N

Level lll: Part-whole

relations
Composition / decomposition
Differences between numbers
Structure

(3 + 2)
three two

/"A'\f_k‘\

five
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Pretest Posttest Follow-up test

Treatment 281(SD=1.48) 420(SD=186)  8.84(SD=1.6)
Control 3.02(SD = 1.44) 3.75(SD = 1.74) 3.64(SD =188
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Control version (N = 47) Experimental version (N = 35)

Z00 18% 80%
Two Coins 10% 7%
Bat and Ball 4% 80%
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Error Description Version
A

Split in the middle of each triangle by hatching
Division in half of each part of each triangle
Hatching/coloring of half triangle in total (one part for each triangle)

A O N b

Hatch of the same half in all the triangles, but in different ways
Coloring of the same half in each triangle -
Hatching/coloring of 2 parts in each triangle
Hatching/coloring of 3 parts in each triangle
Other

SQ Mt o0 o 0 o 9

N A~ W
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Question 1 A B C D E

Original 23.3% 50% 16.7% 3.3% 6.7%
Modified = 76.7% 13.3% 10% —
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Visualization Tree Unit Double- 2 x 2- Sum
diagram square tree table

hi/(dy +dz)>1:  19(9%) 3 (1%) 16 (7%) 5 (2%) 43 (4%)

pre-Bayes

hi/(dy +dg) > 1: 205(91%) 268 (99%) 209 (93%) 265 (98%) 947 (96%)

no pre-Bayes

hi/(dy +ds) <1: 75 (38%) 23 (9%) 48 (24%) 29(10%) 175(19%)

pre-Bayes

hi/(dy +ds) <1: 123 (62%) 232 (91%) 153 (76%) 253 (90%) 761 (81%)

no pre-Bayes
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Visualization (dy as numerator) Tree diagram Unit square Double-tree 2 x 2-table Sum

d + dg as denominator 162 (60%) 312 (70%) 238 (74%) 410 (83%) 1122 (73%)
not dy +dg as denominator 106 (40%) 137 (30%) 82 (26%) 83(17%) 408 (37%)
hy used as denominator 69 (26%) 64 (14%) 35(11%) 56 (11%) 224 (15%)
Other denominator 199 (74%) 385 (86%) 285 (89%) 437 (89%) 1271 (86%)
n used as denominator 22(8%) 44 (10%) 30 (9%) 18 (4%) 114 (7%)

Other denominator 246 (92%) 405 (90%) 290 (91%) 475 (96%) 1416 (93%)
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Visualization Tree Unit

diagram square
di as 268 (62%) 449 (82%)
numerator
Other 166 (38%) 98 (18%)

numerator

Double-
tree

320 (74%)

112 (26%)

2 x 2-
table

493 (87%)

73 (13%)

Sum

1530 (77%)

464 (23%)
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Visualization Tree
(d1 +d3 diagram
indicated), only

cases with

h1/(d1 + d3) < 1)

h1 used as 75
numerator (50%)
hy is not used as 73
numerator (50%)

Unit

square

23
(12%)
176
(88%)

Double-

tree

48
(28%)
121
(72%)

2 x 2-
table

29
(13%)
197
(87%)

Sum

175
(24%)
567
(76%)
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RC TP HPSL SRP Total

F (P) F (P) F (P) F (P)
A,B,C,D 38 (70.37) 28 (51.85) 31 (57.41) 97 (59.89)
A, G, B,D 4 (7.41) 7 (12.96) 5(9.26) 16 (9.88)
A C,D,B 4 (7.41) 6(11.11) 3(5.56) 3(8.02)
AD,B,C 2(3.7) 6(11.11) 5(9.26) 13 (8.02)
C,D,A B 6(11.11) 7 (12.96) 10 (18.52) 3(14.2)

RC, relevant cards; B, percentage; F, frequency.
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Visualization Tree Unit Double- 2 x 2- Sum
(d1 +ds3 diagram square tree table

indicated)

dy as 162 312 238 410 1122
numerator (63%) (92%) (78%) (92%) (83%)
not di as 94 29 66 38 227
numerator (87%) (8%) (22%) (8%) (17%)
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RC TP HPSL SRP Total

F (P) F (P) F (P) F (P)
Card B 24 (44.44) 25 (46.3) 21 (38.89) 70 (43.21)
Card C 13 (24.07) 11(20.37) 12 (22.22) 36 (22.22)
Card D 17 (31.48) 18 (33.39) 21(38.89) 56 (34.57)

RC, relevant cards; B, percentage; F, frequency.
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Comparison Mean difference t-value

Experimental group pretest vs control group 0.02 0.36
pretest

Control group posttest vs control group pretest —0.038 0.33
Experimental group posttest vs experimental —0.43 8.31*
group pretest

Experimental group posttest vs control group —-0.40 7.54*
posttest

0 < 0.01.
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Visualization

d1 + C/g
indicated
dy + ds not
indicated

Tree
diagram

256
(59%)
178
(41%)

Unit
square

341
(62%)
206
(38%)

Double-
tree

304
(70%)
128
(30%)

2 x 2-
table

448
(79%)
118
21%)

Sum

1349
(68%)
630
(32%)
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FULL (P) NOTFULL(P) NOTYET(P) Total

TP Plan o 13 (81.25) 3 (18.75) 0(0) 16
Plan B 20 (83.33) 3(12.5) 1(4.17) 24
Plan y 10 (71.43) 3(21.43) 1(7.14) 14
HPSL  Plana 14 (82.35) 3 (17.65) 0(0) 17
Plan B 14 (87.5) 2 (12.5) 0(0) 16
Plan y 15 (71.43) 4 (19.05) 2 (9.52) 21
SRP  Plana 13 (92.86) 1(7.14) 0(0) 14
Plan B 18 (85.71) 3 (14.29) 0(0) 21
Plan y 15 (78.95) 4 (21.05) 0(0) 19

FULL, fully understood; P, percentage; NOT FULL, not fully understood; NOT YET,
not yet understood.
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Pretest Posttest

Experimental Control Experimental Control

Mean SD n Mean SD n Mean SD n Mean SD n

244 068 210 250 0.67 210 216 066 210 246 0.67 210
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Visualization

Bayesian strategy d/(d + da)
Pre Bayes hy/(d; +da)
Evidence only (d; + da)/n
Representative thinking (dy/h1)
Joint occurrence dy/n
Conservatism hy/n

Pure evidence /1

Likelhood d/dy

Guessing

Missing responses

Tree diagram (n = 122)

162/37.3%
94/21.7%
12/2.8%
69/15.9%
22/51%
14/3.2%
8/1.8%
6/1.4%
58/13.4%
54

Unit square (n = 154)

312/57.0%

26/4.8%
4/0.7%

64/10.7%
44/8.0%
14/2.6%
10/1.8%
19/3.5%
54/9.9%

61

Double-tree (n = 120)

238/55.1%

64/14.8%
71.6%
35/8.1%
30/6.9%
9/2.1%
14/3.2%
2/0.5%

33/7.6%

a8

2 x 2-table (n =

410/72.4%

34/6.0%
1/0.2%

56/9.9%

18/3.2%
3/0.5%
71.2%
1/0.2%

36/6.4%

18

48)

Sum average

1122/56.7%
218/11.0
24/1.2%
224/11.3%
114/5.2%
40/2.0%
39/2.0%
28/1.4%
181/9.1%
181
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TP Plan o
Plan B
Plan y
HPSL  Plana
Plan B
Plan y
SRP Plan o
Plan B
Plan y

FULL (P)

2 (12.5)
17 (70.83)
0(0)
3 (17.65)
11 (68.75)
0(0)
0(0)
15 (71.43)
2 (10.53)

NOT FULL (P)

14 (87.5)
5 (20.83)
12 (85.71)
14 (82.35)
5 (31.25)
15 (71.43)
12 (85.71)
6 (28.57)
17 (89.47)

NOT YET (P)

0 )
2(8.3)

2 (14.29)
0 )

0 )

6 (28.57)
2 (14.29)
0 (0)

0 )

Total

16
24
14
17
16
21
14
21
19

FULL, fully understood; P, percentage, NOT FULL, not fully understood; NOT YET,

not yet understood.
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Pretest Posttest

Experimental Control Experimental Control

Mean SD n Mean SD n Mean SD n Mean SD n

224 055 210 222 059 210 1.81 051 210 219 052 210
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Visualization = Tree diagram  Unit square = Double-tree 2 x 2-table

n 2 235 194 156
k 10 9 8 7
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D SE MME RHK RE PA

Frequency 37 36 23 7 14 15
Percentage 100 97.30 62.12 18.92 37.84 40.54

D, definition; SE, specific examples; MME, method of creating examples; RHK,
relevant historical knowledge; RE, relevant exercises; PA, practical application.
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Mathematics evaluation

anxiety scores

2.6
2.4
2.2

1.8

Experimental vs control scores

Experimental group
O Pretest scores

Control group

@ Posttest scores
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Tree diagram Unit square Double-tree 2 x 2-table

Tree diagram p <0.001: pre-Bayes p <0001 rep. think p <001 pre-Bayes
p <005 evid. only, p <0.001: pre-Bayes evid. only
p <001 rep. think. conserv.
Double-tree p <0.001: pre-Bayes p <0001 pre-Bayes
p <001 joint occ.
2 x 2-table
Unit square P <0.001: joint occ.

p<0.01: conserv.
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Excellent students Average students Poor students

Male 5 13 8
Female 9 14
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Mathematics learning

anxiety scores

2.5

1.5

0.5

Experimental vs control scores

Experimental group
O Pretest scores

Control group

@ Posttest scores
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Authors

Format
Visualization

Strategy
Bayesian strategy d/(d; +dg)
Pre-Bayes hy/(d; + )

Evidence only (d; + da)/n
Representative thinking d/hy
Joint ocourrence di/n
Conservatism, Base rate only /0
Inverse Bayes (d; +da)/dy
Guessing and other strategies

Zhu and Gigerenzer,

Frequency
None

36.9%
115%
46%
1.8%
Not reported
53%
Not reported
39.8%

Gigerenzer and
Hoffrage, n = 405,
univ. students

Frequency
None

45.8%
Not reported
Not reported

12.3%

45%
2.9%
Not reported
33.5%

Bruckmaier,
Kufner,

Frequency
Tree (2 x 2-table)

43.3% (81%)
2.2% (0%)
Not reported
17.4% (4.3%)
21.7% (8.5%)
Not reported
Not reported
16.2% (6.4%)

der, Krauss and
24, university students

Probability

Tree (2 x 2-table)

20.5% (32%)
Not reported
10% (0%)
37.5% (2.1%)
8% (65.3%)
Not reported
Not Reported
15% (10.6%)

Diaz and
Batanero,
and 206

177

Probability
None

Not reported
Not reported
Not reported

Without frequency
Not reported
Not reported

Without frequency
Not reported
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Pretest Posttest 1 Posttest 2
Pretest 1 0.72(p=00018)  0.39 (o =0.1871)
Posttest 0.72 (o = 0.0014) 1 061 (0 =00128)
Posttest2 039 (p=0.1371) 061 (p =00128) 1

p-values in parentheses.
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Measure

1. Math performance

2. ANS acuity

3. Size acuity

4. Attentional index
5. Math anxiety

6. Test anxiety

1 2 3 4

- =0.290* -0.186 —-0.014
—0.205 = —0.062 —-0.082
—0.139 —-0.023 = 0.128
0.242 -0.330* -0.297* -
-0.261 0.073 0.140 —-0.256
0.087 —0.008 —0.108 0.047

5 6

—0.479*** —0.009

0.481*** 0.073
—0.065 —0.156
—0.265* -0.212

& 0.104

0.072 -

*p < 0.05, *p < 0.001. Bold numbers indicate significant correlations.
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cv COMM-C EV CMA CMA2

ov 1 075 050
(p=0.0000) (o =0.0035) (o
COMM-C 075 1 067
(o =0.0000) (o =0.0000) o
BV 050 0.67 1
(0 =0.0085) (p=0.0000) ®
oMA 056 048 066 1 066
(0=0.0008) (o= 0.0087) (o= 0.0000) (b= 0.0000)
cMA2 063 054 070 066 1

(b =0.0001) (p=0.0016) (p=0.0000) (o= 0.0000)

p-values in parentheses.
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LMA HMA

M SD N M SD N
ANS WF (%) 23.57 8.69 39 24.41 9.02 49
Size WF (%) 12.15 8.26 39 9.96 4.27 49
Attentional Index 0.69 0.11 39 0.71 0.1 49
Math performance 23.63 3.51 38 21.33 3.75 49
Math anxiety 16.36 2.57 39 30.08 3.18 49
Test anxiety 34.34 9.42 38 55.20 12.12 49
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Problem Premise 1 Premise 2 VC/NVC Proposed % Correct answers ES classification Matched / Set

conclusion (literature) mismatched
AA3 Aab Acb NVC Aac 31 0 Mat 1
AE1 Aab Ebc Ve Eac 87 2 Mat 1
AE2 Aba Ecb. VG Oac 1 5 Mis 1
AE4 Aba Ebc VG Oac 8 5 Mat 1
AI3 Aab Icb NVC lca 37 0 Mat 1
EN Eab Ibc Ve Oca 8 4 Mis 1
El2 Eba Icb. Ve Oca 37 4 Mat 1
EI3 Eab Icb VG Oca 21 4 Mis 1
El4 Eba Ibc Ve Oca 15 4 Mat 1
A2 lba Acb NvC Ica 12 0 Mat 1
[e}} lab Obc NvVC Oac 33 0 Mat 1
102 lba Ocb NvC Oca 49 0 Mis 1
OA1 Oab Abc NvVC Oac 20 0 Mis 1
o Oab Icb NvVC Oac 49 0 Mis 1
ol Oba Ibc NVC Oca a7 0 Mat 1
001 Oab Obec NvVC Oac 37 0 Mis 1
AE3 Aab Ecb. VG Eca 81 2 Mis 2
Al Aab Ibc NvVC Eac 16 0 Mat 2
AO1 Aab Obe NVC Oac 14 0 Mat 2
AO2 Aba Ocb NvC Oca 17 0 Mis 2
EA1 Eab Abc VG Oca 3 5 Mat 2
EA2 Eba Acb Ve Eca 78 2 Mat 2
EA3 Eab Acb Ve Eac 80 2 Mis 2
EA4 Eba Abc VG Oca 9 5 Mat 2
1A3 lab Acb NVC lac 28 4 Mat 2
IE1 lab Ebc Ve Oac 44 4 Mat 2
IE2 Iba Ecb Ve Oac 13 4 Mis 2
103 lab Ocb NvC Oca 53 0 Mis 2
104 lba Obe NVC Oac 54 0 Mat 2
o Oab Ibc NvC Oac 36 0 Mis @
o2 Oba Icb. NVC Oca 31 0 Mat &
002 Oba Ocb NvVC Oca 42 0 Mis 2
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Math
Anxiety

a=.17%*; SE = .04 b=-.44*%; SE = .17

¢ =-12%; SE = .05
ANS | ;
¢’ =-.05; SE = .06

Math
"|Achievement
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