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Exposure of developing rats to noise has shown to induce hippocampal-related
behavioral alterations that were prevented after a week of housing in an enriched
environment. However, neither the effect of repeated exposures nor its impact on key
endogenous antioxidants had been studied yet. Thus, the aim of the present work
was to reveal novel data about hippocampal oxidative state through the measurement
of possible age-related differences in the levels of hippocampal thioredoxins in rats
exposed to noise at different developmental ages and subjected to different schemes
and housing conditions. In addition, the possibility that oxidative changes could underlie
hippocampal-related behavioral changes was also analyzed. Developing male Wistar rats
were exposed to noise for 2 h, either once or for 5 days. Upon weaning, some animals
were transferred to an enriched cage for 1 week, whereas others were kept in standard
cages. One week later, auditory and behavioral assessments, as well as measurement of
hippocampal thioredoxin, were performed. Whereas no changes in the auditory function
were observed, significant behavioral differences were found, that varied according to
the age, scheme of exposure and housing condition. In addition, a significant increase in
Trx-1 levels was found in all noise-exposed groups housed in standard cages. Housing
animals in an enriched environment for 1 week was effective in preventing most of
these changes. These findings suggest that animals become less susceptible to undergo
behavioral alterations after repeated exposure to an environmental challenge, probably
due to the ability of adaptation to an unfavorable condition. Moreover, it could be
hypothesized that damage to younger individuals could be more easily prevented by
a housing manipulation.

Keywords: noise, thioredoxin, behavior, hippocampus, enriched environment

Abbreviations: HC, Hippocampus; PND7, Rats exposed to noise at 7 days of age; PND15, Rats exposed to noise at
15 days of age; N1/N5, Exposure schemes: 1 day and 5 days, respectively; St, Standard cage; EE, Enriched environment;
Trx-1, Trx-2, Thioredoxin-1 and Thioredoxin-2, respectively; CNS, Central Nervous System.
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INTRODUCTION

Data from the literature have shown that exposure to noise could
be capable to induce damage to the auditory system (Frenzilli
et al., 2004; Gourévitch et al., 2014) as well as to structures
of different extra-auditory tissues, such as brain structures
(prefrontal cortex and hippocampus), cardiac tissues or adrenal
and thyroid glands (Trapanotto et al., 2004; Manikandan et al.,
2006; Uran et al., 2010; Gannouni et al., 2013;Molina et al., 2016a;
Miceli et al., 2018). However, whereas exposure to occupational
noise seems to be one of the main causes of disabling hearing
loss, limited data are available concerning the effects of noise
exposure on everyday lives of the ordinary population (Kopke
et al., 2007). Actually, people living in big cities should be aware
that they might be involuntarily exposed to high levels of noise
coming from different sources. The urban traffic, the use of noisy
household appliances or the attendance to concerts venues and
discotheques might be examples of some of the many health-
threatening environments.

It is well known that several environmental challenges
increase the production of reactive oxygen species (ROS)
in different tissues, which may overwhelm the endogenous
antioxidant defenses and trigger a disturbance in the redox
homeostasis (Erkal et al., 2006; Halliwell, 2006). In particular,
it has been reported that exposure to noise was able to induce
changes in the cochlear oxidative state (Yamane et al., 1995;
Yamasoba et al., 1998; Dehne et al., 2000; Yamashita et al., 2004;
Fetoni et al., 2015). In addition, Ohlemiller et al. (1999) reported
a significant increase in ROS cochlear levels 1 h after exposure
to noise, even when the acoustic stimulus is no longer present
and Tamura et al. (2012) found that oxidative stress might be
induced in the Corti organ of the inner ear after noise exposure
in a rodent animal model. Finally, Kurioka et al. (2014) reported
an increase in mitochondrial ROS production and excitotoxicity
in the cochlea of rats exposed to noise.

ROS are unstable molecular species that contain one or more
unpaired electrons that make them highly reactive (Halliwell,
1992). Hydrogen peroxide (H2O2), superoxide anion (O2

•−)
or hydroxyl radicals (OH•) are ROS that have the ability
to damage cellular lipids, proteins and to mitochondrial and
nuclear genome through oxidative mechanisms, leading to
mutations and cellular death (Halliwell and Gutteridge, 1991;
Halliwell, 1992, 2006; Harman, 1992; Uttara et al., 2009; Massaad
and Klann, 2011; Hanschmann et al., 2013). Although these
species are persistently generated during aerobic respiration as
derivatives of redox reactions and considering that even low
amounts are required to regulate certain signaling pathways,
an imbalance between the production of ROS and the system
of endogenous antioxidants (i.e., a disproportionate increase in
ROS levels and/or excessive decrease in antioxidant enzymes
activities) might lead to cell damage (Jones, 2006). In fact,
although the classic definition of oxidative stress focuses on
an imbalance between pro- and anti-oxidative molecules in a
given structure, at present this definition has been approached
to a new concept in which oxidative stress is defined as
the disruption of normally occurring redox signaling events
(Jones, 2006).

It should be highlighted that brain is more susceptible to
oxidative damage when compared with other tissues for different
reasons. First, it consumes higher oxygen amounts; second, it
has more iron content; third, it has high levels of unsaturated
fatty acids and finally, it has lower activities of antioxidant
enzymes such as superoxide dismutase and catalase. The high
vulnerability can be observed after hypoxia (Romero et al., 2015;
Ten and Starkov, 2012), ionizing radiation exposure (Caceres
et al., 2009, 2010) and different nervous system disorders (Chen
et al., 2010; Ma et al., 2012). Of importance, it has been reported
that an environmental threat such as noise was able to induce an
oxidative imbalance in different tissues (Cassarino and Bennett,
1999; Sathyasaikumar et al., 2007; Samson et al., 2008; Uran et al.,
2010, 2012; Massaad and Klann, 2011; Molina et al., 2016b).
A study of Zheng and Ariizumi (2007) showed an increase in
oxidative stress and a suppression of the immune function after
noise exposure during 28 days, whereas Cheng et al. (2011)
found that only 1 week of moderate noise was capable to induce
oxidative stress in different structures of mice brain. Cui and Li
(2013) reported an increase in brain oxidative stress, as well as
alterations of spatial memory in adult animals exposed to noise.
Finally, several behavioral and biochemical changes were found
in extra-auditory tissues of noise-exposed animals, including
impairment of hippocampal-dependent reference and working
spatial memory as well as changes in hippocampal antioxidant
enzymes activities (Manikandan et al., 2006; Rabat et al., 2006)
and a decrease in the number of hippocampal neurons (Jáuregui-
Huerta et al., 2011).

Thioredoxins (Trx) are part of an endogenous family of
oxido-reductases, recognized as the major reductant among a
variety of antioxidant enzymes (Lillig and Holmgren, 2007; Lillig
et al., 2008; Romero et al., 2015). Even though the Trx family
includes various proteins, the main Trx isoforms are the cytosolic
Trx-1 and the mitochondrial Trx-2 (Lillig et al., 2008; Aon-
Bertolino et al., 2011; Godoy et al., 2011). Trx-1 is a regulator
of cellular functions that take place in response to redox signals
and modulates various signaling pathways. Different literature
data show an increase in Trx-1 when an oxidative imbalance
is induced in different nervous areas of animals subjected to
neonatal hypoxia (Romero et al., 2015), intended to maintain a
reduced environment to protect cells and tissues from oxidative
damage (Silva-Adaya et al., 2014). In addition, Cunningham
et al. (2015) showed that Trx-1 overexpression extended lifespan
of transgenic mice by protecting against oxidative stress and
Wu et al. (2015) found that a treatment with Trx-1 siRNA
induced behavioral deficits. Therefore, it could be hypothesized
that under physiological conditions the balance between
ROS generation and antioxidant activity is highly controlled.
However, when an injury is going on, an activation of the
endogenous antioxidant defense systems can primarily occur as
an attempt to counteract the oxidative process. Nevertheless, the
endogenous antioxidant system often can fail in restoring redox
homeostasis and the defense activity might result insufficient to
prevent damage.

Last, a non-pharmacological neuroprotective strategy, the
enriched environment (Laviola et al., 2008) has shown to be an
effective tool that could be protective against different central
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nervous system (CNS) injuries (Lores-Arnaiz et al., 2006). It
consists of a cage larger than the standard, which contains
different toys, ramps and wheels. Although we have reported that
EE was able to prevent noise-induced behavioral alterations in
PND28 animals exposed at PND7 and PND15 to noise for 2 h
(Molina et al., 2016a), data in animals exposed for 5 days have
not been obtained yet.

Unfortunately, data obtained from developing animals
exposed to noise are very scarce in the literature. The results
from our laboratory showed different behavioral, biochemical
and histological alterations when immature rats were exposed
to noise. In addition, housing in an enriched environment has
demonstrated to be an effective neuroprotective tool when
rats were exposed to noise for a single day (Molina et al.,
2016a). However, a comparison between the effects of single
or repeated exposures to noise, at different developmental
ages and/or housing conditions, as well as a possible
relationship with the hippocampal oxidative state, has not
been made yet.

Thus, themain hypothesis was that hippocampal thioredoxins
might be responsible, at least in part, of the behavioral
changes induced in developing rats after exposure to noise.
Therefore, the aim of the present work was to reveal novel data
about hippocampal oxidative state through the measurement
of possible age-related differences in the levels of hippocampal
Trx-1 and Trx-2, the major members of the thioredoxin family
of endogenous antioxidants, in animals exposed to noise at
7 and 15 days according to different schemes. In addition, the
possibility that oxidative changes could underlie hippocampal-
related behavioral changes was also analyzed. Finally, the impact
of housing conditions on noise-induced changes was additionally
evaluated. To discard hearing alterations, the auditory pathway
function was assessed.

MATERIALS AND METHODS

Animals
Healthy male and female albino Wistar rats were obtained
from the animal facilities of the Biochemistry and Pharmacy
School, University of Buenos Aires, Argentina. A total of
30 multiparous females and 10 males were used for mating
procedures. Pregnant rats were isolated and left undisturbed
until delivery. The day of birth was designated as postnatal day

(PND) 0. In average, 10 pups per litter were delivered and only
male rats (usually 4–6 per litter) were used for the different
experimental procedures.

To prevent from litter effects, no more than one animal from
each litter was used to measure each parameter.

After behavioral and auditory experiments at PND28, animals
were euthanized under a CO2 chamber for final disposal. Those
animals assigned to western blot experiments were sacrificed
through guillotine decapitation, the brain was exposed and the
hippocampus was subsequently dissected.

PND7 and PND15 littermates were randomly assigned to four
experimental groups: sham (control) at PND7, sham (control)
at PND15, noise-exposed at PND7 and noise-exposed at PND15
(n = 84 each group). In turn, within each group, animals received
one of the following exposure schemes: single (N1) or five
consecutive daily sessions (N5; n = 42 each group). Finally,
each subgroup was divided into standard (St) or enriched (EE)
cages housing, conforming 16 experimental groups (n = 21 each
group). To reduce confounding factors, animals within each
group were randomly assigned to the different measurements,
being different those animals used for behavioral experiments
(with some rats performing two behavioral tests, usually seven for
OF and elevated plus maze (EPM) and other seven animals for
IA) western blot experiments (four rats for each group) and
auditory assessment (three rats for each group). Figure 1 depicts
the experimental groups used.

All littermates were kept with their dams until weaning,
at 21 days of age. Then, rats were separated and were put
in groups of 2–3 in standard and 3–4 in enriched cage for
1 week with food and water ad libitum, on 12 h light-dark
cycles (lights on at 7 A.M.) at 21 ± 2◦C and mashed cornflower
for bedding.

Animals were handled and sacrificed according to the
Institutional Committee for the Use and Care of Laboratory
Animal rules (CICUAL, School of Medicine, University of
Buenos Aires, Argentina). The present experimental protocol
was approved by this Committee and registered with the number
53679/16. The CICUAL adheres to the rules of the ‘‘Guide for
the Care and Use of Laboratory Animals’’ (NIH; 2011 revision)
and to the EC Directive 86/609/EEC (2010 revision) for animal
experiments.

To avoid circadian rhythm alterations, noise exposures were
performed in the intermediate phase of the light cycle, between

FIGURE 1 | Experimental design. Sham: non-exposed animals; N1: single noise exposure; N5: five-daily noise exposure. St: standard housing. EE: enriched
environment.
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10 A.M. and 2 P.M. All experiments were performed in
PND28 animals.

Noise Exposure
For this procedure, the computer software TrueRTA was chosen
to produce white noise, using a bandwidth from 20 Hz to
20,000 Hz in octave bands. For sound amplification, an active
2 way monitor (SKP, SK150A, 40 W RMS per channel) was
used, located 30 cm above the animal cage, placed in an
‘‘ad hoc’’ wooden sound chamber of 1 m × 1 m × 1 m fitted
with a ventilated top as reported by Cui et al. (2009). Before
exposure, noise intensity was measured with an omnidirectional
measurement condenser microphone (Behringer ECM 8000) by
positioning the microphone in the sound chamber at several
locations and taking an average of the different readings. Animals
were kept in their home cages and the entire litter was assigned
to the same group so that they were not handled throughout the
exposure period. Sham animals were placed in the same chamber,
but without being exposed to noise. Given that experimental
animals were still being breastfed and mothers had to be
transiently removed for the period in which the pups were being
exposed to noise, this action was carried out also in non-exposed
sham animals in order to discard possible changes that could be
attributed to mother separation.

Based on previous publications of our laboratory (Uran
et al., 2010) with further modifications (Molina et al., 2016a),
PND7 and PND15 animals were exposed for 2 h to white noise at
95–97 dB SPL (20–20,000 Hz), either a single day (N1) or for five
consecutive days (N5). Background noise level ranged between
50 and 55 dB SPL, being within the harmless interval suggested
by the WHO guidelines (NIOSH, 1998) and by others (Campeau
et al., 2002; Sasse et al., 2008). Lighting was provided by a 20 W
lamp located in the upper left corner of the sound chamber. In
addition, the chamber had a sound attenuation systemmade with
CelotexTM.

The intensity and duration of noise used in the present work
were chosen considering its potential translational value, as it
could be comparable to the intensity and duration perceived
in various workplaces, mainly induced by different machines,
data that can be found even in the earliest WHO report
(WHO, 1999).

Enriched Environment (EE)
At weaning (PND21), a subset of animals was housed in an
EE with 3–4 animals residing together whereas a subset of
2–3 was accommodated in standard cages (St). In contrast to
St, conventional top-wired, stainless steel rectangular cages of
40 cm× 25 cm× 16 cm, EE consisted of 54 cm× 40 cm× 41 cm
plastic cages with two levels, containing two connecting ramps.
Different plastic toys and tunnels, as well as a running
wheel, were placed in the cage. A palatable food, such as
Froot Loopsr, was added regularly in small quantities in
addition to the conventional balanced food. It should be
highlighted that the minimal sugar and fat amounts of the
Froot Loopsr offered are much below those contained in a
‘‘cafeteria diet,’’ known to induce per semetabolic and behavioral
changes (Zeeni et al., 2015). The objects were changed every

2 days to ensure continued novelty. Rats were maintained
in their housing condition (St or EE) for 1 week, prior to
behavioral studies.

Auditory Pathway Assessment (ABR)
The auditory brainstem responses (ABRs) are sound-evoked
potentials generated by neuronal circuits in the ascending
auditory pathways and consequently require functional integrity
of hair cells, as well as their afferent neurons.

PND28 animals were anesthetized with ketamine (100 mg/kg,
i.p.) and xylazine (20 mg/kg, i.p.) and placed in an acoustically
electrically shielded chamber maintained at 30◦C. Methods for
measuring ABRs were essentially as described (Kujawa and
Liberman, 2009; Maison et al., 2013). Briefly, acoustic stimuli
were delivered through an acoustic system consisting of two
miniature dynamic earphones used as sound sources and an
electret condenser microphone coupled to a probe tube to
measure sound pressure near the eardrum. Digital stimulus
generation and response processing were handled by digital I-O
boards from National Instruments driven by custom software
written in LabVIEW. ABRs were recorded with needle electrodes
inserted at vertex and pinna with a ground reference near the tail.
Auditory responses were evoked with 5 ms tone pips, amplified
(10,000×), filtered to six different frequencies (0.1–3 kHz), and
acquired on a computer. The sound level was raised in 10 dB steps
and ‘‘threshold’’ was defined as the lowest SPL level at which a
wave is detected.

To avoid potential data misinterpretation, animals assigned
to ABR assessments were not subjected to further behavioral or
biochemical evaluations and were euthanized in a CO2 chamber
for final disposal.

Behavioral Assessment
PND28 animals were used for all behavioral experiments. To
control for variables that could significantly alter physiological
and behavioral indicators of stress (Walf and Frye, 2007), animals
remained in their home cage and placed in a separate area
of the main housing room for 30 min prior to the behavioral
assessments. Thereafter, they were individually housed for 5 min
in the same area and finally were taken to the adjacent
testing room, which had identical environmental conditions, for
additional 3 min to complete the acclimation period, prior to the
behavioral assessments.

Open Field Task (OF)
An open field device was used to analyze habituation memory
and exploratory activity, behaviors known to depend on the
hippocampus (Vianna et al., 2000; Barros et al., 2006). In this
task, the reduction of locomotor activity triggered by a repeated
exposure to the same environment can be taken as a measure
of preservation of habituation memory (Vianna et al., 2000;
Pereira et al., 2011). In addition, the activity in the first session
of the OF can be used to assess changes in emotionality induced
by exposure to a novel environment. In consequence, vertical
exploratory activity can be quantified by recording the number of
rearing and climbing, holding on the hind legs. The activity was
recorded using a camcorder (Handycam DCR-DVD810, Sony).
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- Apparatus: OF device consists of a 50 cm × 50 cm × 50 cm
wooden box, with a floor divided into 25 equal squares by
black lines.

- First session: rats were withdrawn from the cage, placed on
the center rear quadrant of the OF box and allowed to freely
explore the box for 5 min. The number of crossed lines as well
as the number of rearing and climbing, were recorded over
the session.

- Second session: after 1 h inter-trial in their home cages,
animals were acclimatized to the behavioral room and allowed
to explore the apparatus for another 5 min. The number of
crossed lines was recorded and compared with the number
crossed in the first session to evaluate habituation to the device
(Barros et al., 2000).

Elevated Plus Maze (EPM)
This task was used to evaluate anxiety-related behaviors that
depend on the integrity of the hippocampus (Montgomery, 1955;
Brenes et al., 2009; Violle et al., 2009).

Anxiety-related behaviors are calculated as the number of
entries to the open arms as well as the latency required to access
the open arms. When an increase in the first and a decrease
in the latter are observed, it could be stated that a decrease in
anxiety-like behaviors could have occurred.

Additionally, some ethological parameters can be evaluated
using this task (Carobrez and Bertoglio, 2005), designated as
risk assessment behavior because they have been associated
to detection and analysis of threats or threatening situations
(Rodgers and Cole, 1993). One of these parameters is called
head dipping (HD). As closed arms and center platform
were designated as ‘‘protected’’ areas (i.e., offering relative
security), the percentage of head-dipping in closed arms (%HD
in closed arms) was calculated as the percentage of these
behaviors displayed in or from the protected areas. Therefore,
this parameter describes the action of the animal when it is
positioned on a closed arm and, at the junction with the open
arm, stretches the head over the ledge of an open arm and
bends down.

- Apparatus: the wooden apparatus consists of four arms of
equal dimensions (50 cm × 10 cm) and raises 50 cm above
the floor. Two arms, enclosed by walls 40 cm high, are
perpendicular to the two other opposed open arms.

- Session: rats were placed in one of the closed arms, facing
the center of the maze, and were recorded for 5 min using a
camcorder (Handycam DCR-DVD810, Sony). The number of
entries to open arms, the latency to reach the open arms, as
well as the percent of HD in closed arms, were calculated. Only
few rats randomly distributed across experimental groups fell
when they walked along the open arms; these animals were
excluded from the study.

Inhibitory Avoidance Task (IA)
Inhibitory avoidance task was used to measure the memory of an
aversive experience through the simple avoidance of a location in
which the unpleasant experience occurred. This task is thought to
depend heavily on the dorsal hippocampus and is a reliable index

of associative memory (Ennaceur and Delacour, 1988; Izquierdo
and Medina, 1997).

- Apparatus: the apparatus consists of a box
(60 cm × 60 cm × 40 cm), divided into two compartments:
one is illuminated while the other is equipped with a
removable cover to allow it to be dark, as described by
Roozendaal (2002). A removable partition divides the two
compartments. The floor of the dark compartment consists
of a stainless steel grid at the bottom, through which a
continuous current could be delivered.

- Habituation session: the rat was placed into the lit box and
allowed to freely explore the apparatus. Either after passing
three times to the dark side or after 3 min staying in the dark
side, the rat was removed from the apparatus. After 10min, the
rat was placed again in the lit side and when it entered the dark
side, the doors were closed and the rat was retained for 10 s on
this side.

- Training session (T1): after 1 h, each rat was placed in the lit
compartment, facing away from the dark compartment; the
latency to move into the dark compartment was recorded.
When the rat stepped with all four paws in the dark
compartment, a foot shock (1.2 mA, 2 s) was delivered. The
rat was quickly removed from the apparatus and returned to
its home cage.

- Retention session (T2): retention test was performed 1 h after
the training session by following a similar procedure, except
for the fact that no footshock was delivered. The ratio between
the latency tomove into the dark compartment in the retention
and the training sessions (T2 and T1, respectively) was taken
as a measure of associative memory retention (T2/T1).

Western Blot Experiments
The levels of the Trx-1 and Trx-2 were determined in
hippocampal homogenates of rats from all experimental
groups through Western blot experiments. To prevent from
confounding influences, those animals destined to western blot
experiments were not previously used for behavioral or auditory
measurements. Animals were euthanized through guillotine
decapitation, brain was exposed, and hippocampus dissected.
Briefly, tissues were homogenized in ice-cold lysis buffer (25 mM
Hepes, 6 mM MgCl, 1 mM EDTA, mix of protease inhibitors)
and centrifuged at 10,000 g. The supernatants were analyzed
for total protein concentration using Bradford solution, with
bovine serum albumin (BSA) as standard. According to the
determined protein concentration, the samples were diluted
with sample buffer solution (6×: 0.346 M SDS, 30% glycerol,
6% 2-mercaptoethanol, 0.179 mM bromophenol blue, 0.998 M
Tris–HCl, pH 6.8) in order to have 10 µg of tissue/ml. Therefore,
homogenates were preincubated with 1 µl DTT 1 M per 10 µl
of sample for 30 min at room temperature and then heated to
94◦C for 10 min. Then, samples were run on 14% polyacrylamide
gels under denaturing conditions. The samples were electro-
transferred to PVDF membranes which were blocked with 5%
non-fat milk and 1% BSA and incubated overnight with the
primary antibody at 4◦C [Trx-1 and Trx-2 rabbit antibodies, used
in a dilution of 1:1,000, were a generous gift of Dr. Lillig from
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University of Greifswald, Germany; sc-32233 GAPDH (load
control) rabbit antibody from Santa Cruz Biotech. was used in
a dilution of 1:5,000]. After that, samples were incubated at room
temperature with the secondary anti-rabbit HRP-conjugated
antibody (sc-2768 Santa Cruz Biotech., diluted 1:5,000) for 2 h
under shaking, scanned densitometrically by the Image Quant
analyzer and quantified using ImageJ software.

Statistical Analysis
Normality test was performed for each group (KS-test).
Significant differences between groups were analyzed through
one-, two- or three-way analysis of variance (ANOVA) tests with
LSD post hoc comparisons using the Infostat/L software. When
the normality tests failed, a non-parametric analysis was made,
using the Kruskal–Wallis test. Different letters (a, b, c, d) were
used to depict significant differences between the means, being
significantly different one bar from another when they have no
common letters. For example, if a bar received an ‘‘a’’ score
and another a ‘‘b’’ score, it means that they differ statistically
with p < 0.05. Considering the large number of groups to be
compared, with the consequent difficulties in data interpretation,
the differences between the results of PND7 and PND15-exposed
animals were analyzed separately. A probability < 0.05 was
accepted as significant.

When interactions were significant, a simple effect
analysis was performed, through which one-way ANOVA
analyses were performed. The results were expressed as mean
values ± standard error of the mean (SEM) and graphs were
performed with Prism Graphpad software v5.

RESULTS

Auditory Function
No significant changes in ABRs thresholds in any of the
frequencies tested were observed in PND28 animals exposed
to noise at PND7 and PND15 [non-parametric Kruskall–Wallis
test, H < 4 and p > 0.05 (NS) for all frequencies, Figures 2A,B].

Open Field (OF) Task
(i) The number of lines crossed in two sessions of 5 min in an
OF, separated by an interval of 1 h, was taken as an index of
short-term habituation to a new environment.

Data show that exposure to noise at PND7, according to N1
and N5 schemes, induced a decrease in the number of lines
crossed in the second session of the OF when compared with
the first session, both in standard or in enriched conditions,
that resulted similar to what was observed in sham animals,
when evaluated at PND28 [Figure 3A, N1: Three-way ANOVA,
F(7,65) = 7.77, p < 0.01. Between factors: exposure (sham or
noise), F(1,65) = 0.22, NS; housing (St or EE), F(1,65) = 5.4,
p < 0.05; within factor: session (first or second), F(1,65) = 43.88,
p < 0.01. post hoc comparisons: first vs. second session:
all groups, p < 0.01. Figure 3B, N5: Three-way ANOVA,
F(7,67) = 6.29, p < 0.01. Between factors: exposure (sham or
noise), F(1,67) = 0.04, NS; housing (St or EE), F(1.67) = 0.23,
NS; within factor: session (first or second) F(1,67) = 41.79,

FIGURE 2 | Auditory brainstem responses (ABRs) in PND28 animals
exposed at (A) PND7 and (B) PND15. Sham: non- exposed animals; N1:
single noise exposure; N5: five-daily noise exposure. St: standard housing.
EE: enriched environment. Data represent the mean ± standard error of the
mean (SEM) of the ABR, n = 3 for each group.

p < 0.01. Post hoc comparisons: first vs. second session: all
groups, p < 0.05].

In addition, most groups showed a decrease in the lines
crossed in the second session of the OF when the animals were
exposed at PND15 according toN1 scheme [Three-way ANOVA,
F(7,47) = 9.65, p < 0.01. Between factors: exposure (sham or
noise), F(1,47) = 9.49, p < 0.01; housing (St or EE), F(1,47) = 3.67,
NS; within factor: session (first or second), F(1,47) = 38.91,
p < 0.01]. However, given that a significant interaction between
exposure and session was found (F(1,47) = 10.14, p < 0.01), a
simple effect analysis was performed. Data show that whereas
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FIGURE 3 | Number of lines crossed in the first and second session of the
OF by PND28 animals exposed to noise at PND7. (A) PND7 animals exposed
according to N1; (B) PND7 animals exposed according to N5. Sham: non-
exposed animals; N1: single noise exposure; N5: five-daily noise exposure.
St: standard housing. EE: enriched environment. Different letters (a, b, c, d)
symbolize significant differences with p < 0.05. Data represent the
mean ± SEM of the number of lines crossed in the first and second session
of the OF, n = 7 for each group.

significant differences were observed between the first and
second session in most groups, non-significant differences were
observed in animals exposed to noise according to N1 scheme
and housed in St conditions (Figure 4A, Sham: Two-way
ANOVA, F(3,21) = 9.34, p < 0.01, post hoc comparisons: first
session vs. second session, St and EE, p < 0.05. Noise: Two-way
ANOVA, F(3,25) = 8.21, p < 0.01. Post hoc comparisons: first
session vs. second session, St, NS; EE, p < 0.05). Finally,
when animals exposed at PND15 according to N5 scheme were
evaluated, significant differences were observed between the lines
crossed in the first and second session of the OF in all groups
[Figure 4B, N5: Three-way ANOVA, F(7,59) = 5.81, p < 0.01.
Between factors: exposure (sham or noise), F(1,59) = 5.68,
p < 0.05; housing (St or EE), F(1,59) = 5.97, p < 0.05; within
factor: session (first or second) F(1,59) = 26.81, p < 0.01. Post
hoc comparisons: first vs. second session: St (sham and noise),
p < 0.01; EE (sham and noise), p < 0.05].

In summary, results show a significant decrease in the number
of lines crossed in the second session of the OF when compared
with the first session in most groups, both exposed at PND7 and

FIGURE 4 | Number of lines crossed in the first and second session of the
OF by PND28 animals exposed to noise at PND15. (A) PND15 animals
exposed according to N1; (B) PND15 animals exposed according to N5.
Sham: non-exposed animals; N1: single noise exposure; N5: five-daily noise
exposure. St: standard housing. EE: enriched environment. Different letters
(a, b, c, d) symbolize significant differences with p < 0.05. Data represent the
mean ± SEM of the number of lines crossed in the first and second session
of the OF, n = 7 for each group.

PND15, except for animals exposed to noise at PND15 according
to N1 scheme and housed in St conditions.

(ii) The number of forelimb elevations (i.e., rearing and
climbing) made in the first session of the OF task was taken as
an index of exploratory activity.

Data show a significant main effect in this parameter
[Figure 5A, Three-way ANOVA, F(7,85) = 3.42, p< 0.01. Between
factors: exposure (sham or noise), F(1,85) = 0.57, NS; housing
(St or EE), F = 13.08, p < 0.01; within factors: scheme of
exposure (N1 or N5) F(1,85) = 0.55, NS]. As the interaction
between exposure and housing was significant (F(1,85) = 8.43,
p < 0.01), a simple effect analysis was performed [St: Two-way
ANOVA, F(3,46) = 2.09, NS. Between factor: scheme (N1 or
N5), NS; within factor: exposure (sham or noise), p < 0.05.
EE: Two-way ANOVA, F(3,38) = 1.53, NS]. The results show a
significant increase in animals exposed at PND7 according to N1
and housed in St conditions when compared to their respective
controls. In contrast, no changes were observed after EE housing
of N1-exposed rats. Finally, exploration activity of N5-exposed
animals (both after St and EE housing) remained unaltered [post
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FIGURE 5 | Number of elevations (climbing and rearing) made by
PND28 animals exposed to noise at PND7 and PND15 in the OF task. (A)
PND28 animals exposed at PND7; (B) PND28 animals exposed at PND15.
Sham: non- exposed animals; N1: single noise exposure; N5: five-daily noise
exposure. St: standard housing. EE: enriched environment. Different letters (a,
b, c) symbolize significant differences with p < 0.05. Data represent the
mean ± SEM of the number of elevations (climbing and rearing) made in the
OF task, n = 7 for each group.

hoc comparisons: sham vs. noise: N1: St, p < 0.05; EE, NS; N5 (St
and EE), NS].

On the other hand, a significant main effect was found in
animals exposed at PND15 (Figure 5B, Three-way ANOVA,
F(7,77) = 2.69, p < 0.05). As the interaction between exposure and
scheme was significant (F(1,77) = 12.65, p < 0.01), a simple effect
analysis was performed [N1: Two-way ANOVA, F(3,38) = 1.29,
NS. N5: Two-way ANOVA, F(3,37) = 6.35, p < 0.01. Between
factor: exposure (sham or noise), F(1,37) = 17.29, p < 0.01; within
factor: scheme (St or EE), F(1,37) = 1.74, NS, post hoc comparisons:
sham vs. noise: N1: St, NS; EE, p< 0.05; N5 (St and EE), p< 0.05].

In summary, results show an increase in the number of
forelimb elevations in animals exposed at PND7 according to
N1 scheme housed in St when compared to the sham group.
In contrast, no changes were observed when these animals were
housed in EE or in groups exposed to N5 scheme (both after St
and EE housing). On the other hand, results show that whereas
no changes were observed in this parameter after exposure of
PND15 animals to noise according to N1 scheme and St housing,
a significant decrease was observed when exposed animals were

housed in EE. In contrast, a significant increase was observed in
animals repeatedly exposed to noise, both after St or EE housing.

Elevated Plus Maze (EPM) Task
Open arms-related parameters measured in the EPM, such as the
decrease in the latency to enter and an increase in the number
of entries, are thought to be associated with a reduction of
anxiety-like behaviors. HD in an open arm might be related with
risk assessment behaviors.

Latency to Enter to the Open Arms in the Elevated
Plus Maze (EPM) Task
Figure 6A shows a significant main effect on the latency to enter
the open arms of the EPM when animals exposed at PND7 were
evaluated [Three-way ANOVA, F(7,52) = 10.69, p< 0.01; between
factors: exposure (sham or noise), F(1,52) = 23.35, p < 0.01;
housing (St or EE), F(1,52) = 15.60, p < 0.01; within factors:
scheme of exposure (N1 or N5), F(1,52) = 30.63, p < 0.01]. The
results show a significant decrease in animals exposed to noise
according to N1 scheme, both in St and EE housing conditions,
without changes when exposure was done according to N5 (post
hoc comparisons: sham vs. noise, St: N1, p < 0.05; N5, NS. EE:
N1, p < 0.05; N5, NS).

When PND15 animals were exposed, a significant main
effect was observed [Figure 6B, Three-way ANOVA,
F(7,55) = 5.85, p < 0.01; between factors: exposure (sham or
noise), F(1,55) = 5.59, p < 0.01; housing (St or EE), F(1,55) = 0.45,
NS; within factor: scheme (N1 or N5), F(1,55) = 3.25, NS]. As
a significant interaction was observed between exposure and
scheme (F(1,55) = 28.12, p < 0.01), a simple effect analysis was
performed. A significant increase in the latency to open arms
was found in noise-exposed animals according to N1, both in
St and EE housing [Two-way ANOVA, F(3,28) = 7.07, p < 0.01;
between factor: exposure (sham or noise), F(1,28) = 19.61,
p < 0.01; within factor: housing (St or EE), F(1,28) = 1.40, NS.
Post hoc comparisons: sham vs. noise: St and EE, p < 0.05].
As a significant main effect was observed after N5 scheme
[Two-way ANOVA, F(3,26) = 4.67, p < 0.01; between factor:
exposure (sham or noise), F(1,26) = 8.18, p < 0.01; within factor:
housing (St or EE), F(1,26) = 0.03, NS] and an interaction was
observed (F(1,26) = 5.79, p < 0.05), a simple effect analysis was
performed, which showed a significant decrease in noise-exposed
animals housed in St cages when compared with their respective
controls (p < 0.05).

In summary, results show a decrease in the latency to enter
to the open arms in noise-exposed animals according to N1 at
PND7 and an increase in this parameter when animals were
exposed to N1 at PND15, after St and EE housing conditions.
On the other hand, no changes were found when exposure was
done according to N5 at PND7 whereas a significant decrease
was observed when animals were exposed to N5 at PND15 and
housed in St, without changes when animals were housed in EE.

Number of Entries to the Open Arms in the Elevated
Plus Maze (EPM) Task
Figure 6C shows a significant main effect on the number of
entries to the open arms of the EPM in animals exposed at
PND7 (Three-way ANOVA, F(7,55) = 4.19, p < 0.01). As some

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 18212

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Molina et al. Behavioral Alterations in Noise-Exposed Developing Rats

FIGURE 6 | Anxiety-related behaviors measured in the elevated plus maze (EPM; latency and number of entries to open arms) of PND28 animals exposed to noise
at PND7 and PND15 in the EPM task. Latency to open arms (in seconds): (A) PND28 animals exposed at PND7; (B) PND28 animals exposed at PND15. Entries to
open arms: (C) PND28 animals exposed at PND7; (D) PND28 animals exposed at PND15. Sham: non- exposed animals; N1: single noise exposure; N5: five-daily
noise exposure. St: standard housing. EE: enriched environment. Different letters (a, b, c) symbolize significant differences with p < 0.05. Data represent the
mean ± SEM of latency (seconds) or entries to open arms made in the EPM task, n = 7 for each group.

interactions were significant (between exposure and housing:
F(1,55) = 18.31, p < 0.01; between exposure, housing and scheme:
F(1,55) = 4.47, p < 0.05) a simple effect analysis was performed
[St: Two-way ANOVA, F(3,28) = 3.82, p < 0.05. Between factor:
exposure (sham or noise), p < 0.01; within factor: scheme (N1 or
N5), NS. Post hoc comparisons: sham vs. noise: St, p < 0.05; EE,
p< 0.01. EE: Two-way ANOVA, F(3,26) = 8.61, p< 0.01. Between
factor: exposure (sham or noise), p < 0.01; within factor: scheme
(N1 or N5), NS].

Data show a significant increase in St-housed animals exposed
according to N1 scheme and a decrease when exposed animals
were housed in EE (post hoc comparisons: sham vs. noise: St,
p < 0.05; EE, p < 0.01). No changes were observed in rats
exposed for 5 days [between factors: exposure (sham or noise)
or housing (St or EE), NS; within factors: scheme of exposure
(N1 or N5), NS]. However, as the interaction between exposure
and scheme in rats housed within EE group was significant
(F(1,26) = 13.27, p< 0.01), a simple effect analysis was performed.
In summary, results show a significant increase in noise-exposed
animals according to N1 (p < 0.05) and no changes in rats
exposed according to N5.

Figure 6D shows a significant main effect on the number
of entries to the open arms of the EPM in animals exposed
at PND15 (Three-way ANOVA, F(7,60) = 4.77, p < 0.01). A
decrease in this parameter was observed in animals housed in
St and EE conditions and exposed according to N1 scheme. In

contrast, no changes were observed in animals exposed according
to N5 scheme [Between factors: exposure (sham or noise) or
housing (St or EE), NS; within factors: scheme of exposure
(N1 or N5), NS]. As some interactions were significant (between
exposure and scheme: F(1,60) = 12.19, p< 0.01; between exposure,
scheme and housing: F(1,60) = 15.21, p < 0.01), a simple effect
analysis was performed [St: Two-way ANOVA, F(3,30) = 5.15,
p < 0.01. Between factor: exposure (sham or noise), NS; within
factor: scheme (N1 or N5), F(1,30) = 8.81, p < 0.01. EE: Two-way
ANOVA, F(3,29) = 4.85, p< 0.01. Between factor: exposure (sham
or noise), NS. Within factor: scheme (N1 or N5), F(1,29) = 5.83,
p < 0.05. Post hoc comparisons: sham or noise: St: N1, p < 0.05;
N5, NS. EE: N1, p < 0.05; N5, NS]. As a significant interaction
was found between exposure and scheme, both within St and
EE-housed animals (St: F(1,30) = 4.63, p < 0.05; EE: F(1,29) = 8.56,
p < 0.01), simple effect analysis were performed. Data show
a significant decrease in noise-exposed animals according to
N1 scheme, both in St and EE conditions (p < 0.05).

In summary, results show significant differences in the
number of entries to the open arms in noise-exposed animals
when compared to their controls according to N1 scheme,
without changes after N5 noise-exposure scheme. When animals
were exposed to N1 at PND7, an increase in this parameter in
St-housed animals and a decrease when animals were housed
in EE were observed. Moreover, when animals were exposed at
PND15 a decrease was observed, both for St and EE housing.
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FIGURE 7 | Percentage of head dipping (HD) in closed arms in the EPM
task made by PND28 animals exposed to noise at PND7 and PND15. (A)
PND28 animals exposed at PND7; (B) PND28 animals exposed at PND15.
Sham: non- exposed animals; N1: single noise exposure; N5: five-daily noise
exposure. St: standard housing. EE: enriched environment. Different letters (a,
b) symbolize significant differences with p < 0.05. Data represent the
mean ± SEM of the % of HD in closed arms made in the EPM task, n = 7 for
each group.

Head Dipping (HD)
When HD was analyzed, a significant main effect was observed
when animals were exposed at PND7 (Figure 7A, Three-way
ANOVA, F(7,56) = 8.38, p < 0.01). Data show a significant
increase in percentage of HD in closed (protected) arms
(%HD in closed arms) between animals exposed to noise
at PND7 according to N1 scheme and housed in standard
conditions and sham animals, without changes when animals
were housed in EE. No changes were observed when animals
were exposed according to N5 scheme in comparison with the
corresponding sham group [Between factors: exposure (sham or
noise), NS; housing (St or EE), F(1,56) = 36.86, p < 0.01; within
factors: scheme of exposure (N1 or N5), F(1,56) = 13, p < 0.01].
As the interaction between exposure and scheme was significant
(F(1,56) = 5.29, p < 0.05), a simple effect analysis was performed
[N1: Two-way ANOVA, F(3,29) = 6.62, p < 0.01. Between factor:
exposure (sham or noise), p < 0.05. Within factor: housing (St or
EE), p < 0.01. N5: Two-way ANOVA, F(3,26) = 7.26, p < 0.01.
Between factor: exposure (sham or noise), NS; within factor:

housing (St or EE), p < 0.01. Post hoc comparisons, sham vs.
noise, N1: St, p < 0.05; EE, NS. N5: St and EE, NS].

Finally, non-significant differences were observed betweenN1
and N5 noise-exposed and the corresponding sham group in
PND15 animals, both in standard and EE conditions (Figure 7B,
Three-way ANOVA, F(7,63) = 1.08, NS).

In summary, results show no significant changes in %HD in
closed arms in most groups, both exposed at PND7 and PND15,
except from animals exposed to noise at PND7 according to
N1 scheme and housed in St conditions, which showed an
increase in this parameter when compared to their sham group.

Inhibitory Avoidance (IA) Task: Ratio
Between the Latency to Enter the Dark
Compartment in the Retention and the
Training Sessions
In the IA task, T1 is defined as the time required to enter the
dark compartment (i.e., the side in which an electric shock,
an aversive stimulus, was delivered) in the training session and
T2 is the time required to enter the same compartment in the
retention session, after an interval of 1 h. The ratio T2/T1 is
the relationship between the seconds measured in the retention
and the training sessions and might be taken as an index of
associative memory. Figure 8A shows a significant main effect in
the T2/T1 ratio in rats exposed at PND7 (Three-way ANOVA,
F(7,50) = 5.49, p < 0.01).Whereas non-significant differences
were induced after exposure to noise under standard conditions
according to N1 scheme when compared with sham animals, a
significant increase was observed under EE housing [between
factors: exposure (sham or noise), F(1,50) = 9.92, p < 0.01;
housing (St or EE), NS; within factors: scheme of exposure
(N1 or N5), NS]. In contrast, an increase in this ratio was
observed after repeated exposures to noise of animals housed
in standard cages, without changes observed after housing in
EE when compared with the corresponding sham rats. As some
interactions were significant (between housing and scheme:
F(1,50) = 5.50, p < 0.05; between exposure, scheme and housing:
F(1,50) = 20.32, p < 0.01), a simple effect analysis was performed
[St: Two-way ANOVA, F(3,24) = 5.36 p < 0.01. Between factor:
exposure (sham or noise), NS; within factor: scheme (N1 or N5),
NS. EE: Two-way ANOVA, F(3,25) = 6.85, p < 0.01. Between
factor: exposure (sham or noise), F(1,25) = 7.71, p < 0.01; within
factor: scheme (N1 or N5), NS]. As the interaction between
exposure and scheme was significant both in St and EE animals
(St: F(1,24) = 10.43, p < 0.01; EE: F(1,25) = 10.36, p < 0.01), simple
effect analyses were performed. Post hoc comparisons show a
significant increase in the T2/T1 ratio of N5, St-housed, noise-
exposed animals (p< 0.05) and in N1, EE-housed, noise-exposed
animals (p < 0.05).

Finally, noise exposure at PND15 induced a significant main
effect in the T2/T1 ratio (Figure 8B, Three-way ANOVA,
F(7,53) = 2.79, p < 0.01). Although a significant increase was
observed in St housed animals exposed according to N1 scheme,
five consecutive daily exposures did not produce changes in this
parameter. Housing in an EE induced a significant increase only
when rats were exposed once daily, for five consecutive days,
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FIGURE 8 | Ratio between the latency to enter the dark compartment (in
seconds) in the retention session and the training session (T2/T1) in the
inhibitory avoidance (IA) task in PND28 animals exposed to noise at
PND7 and PND15. (A) PND28 animals exposed at PND7; (B)
PND28 animals exposed at PND15. Sham: non-exposed animals; N1: single
noise exposure; N5: five-daily noise exposure. St: standard housing. EE:
enriched environment. Different letters (a, b) symbolize significant differences
with p < 0.05. Data represent the mean ± SEM of T2/T1in the IA task,
n = 7 for each group.

without changes observed after N1 scheme [between factors:
exposure (sham or noise), F(1,53) = 7.84, p < 0.01; housing
(St or EE), NS; within factors: scheme (N1 or N5), NS]. As
the interaction between exposure, housing and scheme was
significant (F(1,53) = 7.89, p < 0.01), a simple effect analysis
was performed [St: Two-way ANOVA, F(3,26) = 3.30, p < 0.05.
Between factors: exposure (sham or noise), F(1,26) = 2.42, NS;
within factor: scheme (N1 or N5), NS. EE: Two-way ANOVA,
F(3,26) = 3.20, p < 0.05. Between factors: exposure (sham or
noise), F(1,26) = 5.62, p < 0.05; within factor: scheme (N1 or
N5), NS. Post hoc comparisons: sham vs. noise, EE: N1, NS; N5,
p < 0.05]. As the interaction between exposure and scheme was
significant in St animals (F(1,26) = 4.16, p < 0.05), a simple effect
analysis was performed. Data show a significant increase in the
T2/T1 ratio of N1 St-housed, noise-exposed animals (p < 0.05),

without changes observed in animals exposed according to
N5 scheme.

In summary, data showed an increase in the ratio between
the latency to enter the dark compartment in the retention
and the training sessions in noise-exposed animals housed in St
conditions according to N5 at PND7 and N1 at PND15, when
compared with the respective controls, without changes in these
groups after housing in an EE. On the other hand, an increase
in noise-exposed animals was observed when compared to their
sham groups, only when animals were housed in EE, according
to N1 at PND7 and N5 at PND15, without changes when housed
in standard cages.

Hippocampal Trx1 and Trx2 Levels
Figure 9A shows that noise exposure at PND7 induced a
significant increase in hippocampal Trx-1 levels, when exposed
according to both N1 or N5 schemes [Three-way ANOVA,
F(7,42) = 2.82, p < 0.05. Between factors: exposure (sham or
noise), F(1,42) = 6.08, p < 0.05; housing (St or EE), F(1,42) = 4.17,
p < 0.05; within factors: scheme (N1 or N5), NS], that remained
similar to the corresponding sham levels when animals were
housed in an EE. As interaction between exposure and housing
was significant (F(1,42) = 8.32, p < 0.01), a simple effect analysis
was performed [St: Two-way ANOVA, F(3,20) = 5.47, p < 0.01.
Between factor: exposure (sham or noise), F(1,20) = 16.05,
p < 0.01; within factor: scheme (N1 or N5), NS. EE: Two-way
ANOVA, F(3,21) = 0.27, NS. Between factor: exposure (sham
or noise), NS; within factor: scheme (N1 or N5), NS. Post hoc
comparisons: St: sham vs. noise: N1 and N5, p< 0.05. EE: N1 and
N5, NS].

Similarly, animals exposed to noise at PND15 showed a
significant increase, according to N1 or N5 schemes and housed
in St conditions, that remained similar to the corresponding
sham values when housed in EE [Figure 9B, Three-way ANOVA,
F(7,36) = 2.67, p < 0.05. Between factors: exposure (sham or
noise), F(1,36) = 4.18, p < 0.05; housing (St or EE), F(1,36) = 4.76,
p < 0.05; within factors: scheme (N1 or N5), NS]. As interaction
between exposure and housing was significant (F(1,36) = 9.72,
p < 0.01), a simple effect analysis was performed [St: Two-way
ANOVA, F(3,19) = 3.47, p< 0.05. Between factor: exposure (sham
or noise), F(1,19) = 10.41, p < 0.01; within factor: scheme (N1 or
N5), NS. EE: Two-way ANOVA, F(3,16) = 0.40, NS. Between
factor: exposure (sham or noise), NS; within factor: scheme
(N1 or N5), NS. Post hoc comparisons: sham vs. noise: St: N1 and
N5, p < 0.05. EE: N1 and N5, NS].

Figure 9C shows a significant main effect on Trx-2 in animals
exposed at PND7, although significant differences between
sham and noise-exposed animals were observed only after five
repeated exposures in standard housing [Three-way ANOVA,
F(7,36) = 6.05, p < 0.01. Between factors: exposure (sham or
noise), F(1,36) = 3.17, NS; housing (St or EE), F(1,36) = 1.80, NS;
within factors: scheme (N1 or N5), F(1,36) = 28.17, p < 0.01.
Post hoc comparisons: sham vs. noise: N1: St and EE, NS; N5: St,
p < 0.05; EE, NS]. In contrast, non-significant main effects were
observed in animals exposed at PND15 (Figure 9D, Three-way
ANOVA, F(7,34) = 1.34, NS). However, as a significant interaction
was found between exposure, housing and scheme (F(1,34) = 4.43,
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FIGURE 9 | Hippocampal Thioredoxin (Trx) levels.Trx-1: (A) PND28 animals exposed at PND7; (B) PND28 animals exposed at PND15. Trx-2: (C) PND28 animals
exposed at PND7; (D) PND28 animals exposed at PND15. Sham: non- exposed animals; N1: single noise exposure; N5: five-daily noise exposure. St: standard
housing. EE: enriched environment. Different letters (a, b) symbolize significant differences with p < 0.05. Data represent the mean ± SEM of the levels of
hippocampal Trx-1 or Trx-2, n = 4 for each group.

p < 0.05), a simple effect analysis was performed. In addition,
although no changes were induced in rats housed both in St
and EE conditions (Two-way ANOVA, St: F(3,17) = 0.40, NS; EE:
F(3,16) = 2.47, NS), a significant interaction was found between
exposure and scheme in rats housed in EE (F(1,16) = 4.42,
p < 0.05), with a significant decrease only in rats exposed
according to N1 scheme (p < 0.05).

In summary, results show an increase in hippocampal
Trx1 levels in all noise-exposed animals when compared to their
respective sham groups, according to both schemes (N1 and
N5) and ages of exposure (PND7 and PND15), when animals
were housed in St condition, without changes after EE housing.
Moreover, data show an increase in hippocampal Trx2 levels in
PND7 noise-exposed animals only after five repeated exposures
in standard housing when compared to their sham group,
without changes after EE housing. Finally, although no changes
inHippocampal Trx2 levels were induced in rats exposed to noise
according to N1 scheme and housed both in St and EE conditions
at PND15, a significant decrease was observed in animals exposed
to noise according to N1 and housed in EE when compared to the
sham group.

DISCUSSION

Present results show that exposure of 7 and 15-days-old animals
to moderate levels of white noise (95–97 dB SPL, 2 h), using
single or repeated session’s exposures, was capable to trigger
hippocampal-related behavioral alterations as well as oxidative-
related molecular changes when evaluated after several days,
that differed according to the scheme used. In addition, animals
were not uniformly affected when different ages of exposure

were compared. The housing in an enriched environment, a
non-pharmacological strategy of neuroprotection, was effective
in preventing some of these changes that differed between the
different groups. Finally, non-significant changes in auditory
function were found in neither group.

Auditory Pathway Evaluation
No changes in the auditory thresholds were induced, neither
when the rats were exposed at PND7 nor at PND15, supporting
results in other animal models (Pienkowski and Eggermont,
2012; Gourévitch et al., 2014). The fact that auditory system
become mature at approximately PND12, could explain why
there were no significant changes in the auditory threshold of
animals exposed at PND7, considering that auditory pathway
was not functional at the age of exposure. For this reason, the
observation of damage when exposure was done at PND7, an age
at which the auditory pathway is still immature, might suggest
that moderate noise exposure can produce the behavioral and
biochemical effects through a direct rather than an indirect
mechanism, as hypothesized by Säljö et al. (2011). Otherwise,
it is possible that in the case of rats exposed at PND15, which
already had a functional auditory pathway, the intensity of noise
used was not high enough to generate an effect on the auditory
thresholds at PND28. However, it should not be discarded that
animals’ auditory system could be affected after PND 12 and
prior to PND28, age at which animals were evaluated.

Behavioral Assessment
The behavioral alterations found in PND15 animals exposed
according to N5 scheme differed from those observed in
PND7 rats subjected to the same noise scheme, as was previously
found for animals exposed at PND7 and PND15 according
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to N1 scheme (Uran et al., 2010, 2012, 2014; Molina et al.,
2016a). Even more, when exposed animals were housed in an
EE, prevention of most behavioral alterations was observed
in all groups. These data suggest that a prompt housing
intervention, soon after single or multiple exposures to an
environmental potentially hazardous agent, could be effective to
avoid unfavorable effects, mainly if it is implemented in early
stages of development (Smith et al., 2018; Gong et al., 2018).

It is important to highlight that habituation memory refers
to behavioral changes that could be triggered in response to
repeated exposure to novelty (Leussis and Bolivar, 2006). In
addition, fear conditioning (i.e., inhibitory avoidance) implies
a predictive relationship between a stimulus and an event
(Ennaceur and Delacour, 1988). Interestingly, both depend
on the hippocampal integrity (Vianna et al., 2000; Leussis
and Bolivar, 2006). Finally, exploration is a behavior that can
be measured in the OF and is triggered by novel stimuli:
consists of behavioral acts and postures that permit an animal
to collect information about new aspects of the environment
(Barros et al., 2006). However, there are some debate in the
literature (Ennaceur, 2014), as several authors suggested that
as the anxiety-like behavior decreases, the animals increase the
exploration of the environment (Escorihuela et al., 1999; Prut
and Belzung, 2003; Lever et al., 2006; Kalouda and Pitsikas,
2015), whereas others postulated that it may be interpreted as
an anxiogenic-like behavior (Barnett and Cowan, 1976; Lamprea
et al., 2008).

Habituation Memory
When a rodent is placed in a novel environment, it begins to
form an internal representation of the surrounding spatial
information. Once this hippocampal-dependent map is
‘‘complete,’’ the animal decreases the exploration of the
environment because it would be considered habituated to the
new context (O’Keefe and Nadel, 1979; Leussis and Andersen,
2008). Given that impairment in this parameter was observed
only in PND15N1 animals and considering that the deficit
was not evident when younger animals were exposed to noise,
habituation memory might be used as a marker of vulnerability.
Therefore, as the auditory system becomes active between
PND7 and PND15 (de Villers-Sidani et al., 2008; Säljö et al.,
2011), it could be postulated that more immature animals could
be refractory to the damaging effects of noise on this type of
memory, probably due to the impossibility of noise to affect
CNS by means of a functional auditory system. As no effect was
observed when PND15 animals were exposed to noise for 5 days,
it could be suggested that repeated exposures might trigger
adaptive mechanisms intended to counteract potential damage
(Febbraro et al., 2017; Scott et al., 2017). The ability of EE to
prevent noise-induced changes in PND15N1 animals might
depend on the same adaptive mechanisms.

Exploratory Activity
Significant differences among groups were observed in
exploratory activity, with an increase in those exposed to
noise at PND7N1 and PND15N5 and without changes in the
other groups. As a decrease in the latency and/or an increase
in the number of entrances to open arms of the EPM was also

observed in both groups, it could be suggested that greater
exploration might be associated with decreased anxiety-like
behavior, supporting Kalouda and Pitsikas (2015) and Wright
et al.’s (2011) results. In addition, it could be claimed that an
increase in exploratory activity with the consequent collection
of information from the environment can favor the habituation
and adaptability of these animals. Furthermore, an increase in
novelty anxiety triggered by the new environment might affect
exploration and habituation (Leussis and Bolivar, 2006), because
shared mechanisms might be involved (Izquierdo and Medina,
1997; Salomons et al., 2012).

Conversely, animals with impairment in habituation memory
(i.e., those exposed at PND15N1) did not exhibit changes
exploratory activity. Even more, the increase in anxiety-related
observed in animals exposed at PND15N1 might be related to
a deficit in habituation memory (Venero et al., 2005; Barzegar
et al., 2015). Furthermore, rats exposed at PND15N1 could have
an increased fear response, which would imply that these animals
would have greater emotional reactivity.

However, whereas housing in an EE prevented the changes
in exploration, as observed in PND7N1 rats, no prevention was
observed when animals exposed at PND15N5 were evaluated.
These data suggest that there would seem to be a window of
opportunity to intervene using a neuroprotection strategy that
depends on the developmental stage at which the injury took
place (Smith et al., 2018; Gong et al., 2018).

Emotional Reactivity: Anxiety-Like Behavior and Risk
Assessment Behavior
It should be considered that decreased anxiety-like behavior
could be interpreted as a behavioral improvement. However,
it could not be true in the wild, because certain minimal
anxiety levels might be required to cope with eventual dangerous
situations. In contrast, although low or moderate levels of anxiety
may be positive for learning and memory processes, it has been
shown that high levels could lead to a cognitive deficit (Silva and
Brandão, 2000).

A decrease in the entries to open arms of the EPM might
be taken as a sign of an increase in anxiety-like behavior, as
observed in animals exposed at PND15N1 and supported by
Angrini and Leslie (2012). Conversely, an increase in the entries
might imply a decrease in anxiety-like behavior, as observed
in PND7N1 and supported by Eraslan et al. (2015). Therefore,
it could be suggested that not only the developmental stage at
which the animals are exposed to the environmental agent but
also the scheme of exposure come into play to determine the
development of emotional alterations. The lack of change of
anxiety-like behavior in animals subjected to five daily noise
sessions (PND7N5 and PND15N5) could be explained by a
possible compensation that could be triggered as a consequence
of the repeated exposure to the environmental challenge.

%HD in closed arms is a significant behavioral dimension
whose biological function is to inform behavioral strategies
in potentially dangerous situations (Carobrez and Bertoglio,
2005). Noise was capable to increase this parameter only when
animals were exposed at PND7N1. Actually, animals with
decreased anxiety-like behaviors would be less cautious and
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could be more exposed to potential hazards. As a decrease
in anxiety-like behaviors was observed in the group exposed
at PND7N1, the finding of an increase in risk assessment
behavior might not support this hypothesis. This result implies
that at an early developmental age noise exposure increased
the consciousness against potential dangers, such as the open
environment of the OF task (Rodgers and Cole, 1993). Neither
repeated exposure sessions nor maturation was able to induce
changes, suggesting that this unique defensive behavior in
mammals that reduces the chances of the animal to being
harmedmight be more important in helpless animals and tend to
disappear with the advancement of CNS maturation. In contrast,
the increases in this behavior observed in PND7N1 animals
can be effectively prevented by housing in EE, suggesting that
animals exposed to noise at earlier ages could be handled through
the modification of rearing conditions when subjected to a
threatening situation.

Interestingly, EE has shown ‘‘per se’’ to increase %HD
when non-exposed PND7N1 rats were tested, when compared
with the respective groups housed in standard conditions,
indicating that these ethological readings might be altered
through an environmental intervention, supporting results of
Pietropaolo et al. (2004a) using a mice model of housing in
an enriched environment. Usually, an increase in this risk
assessment behavior is correlated with a decrease in anxiety-like
behaviors (Cole and Rodgers, 1995). In contrast, non-exposed
PND15 animals housed in EE cages showed unchanged %HD
when compared with those animals housed under standard
conditions, suggesting that the age of exposure is critical to
driving this emotional output.

Associative Memory
Associative memory can be evaluated through the IA task by
means of the ratio between the seconds taken to enter the dark
compartment in the retention and the training sessions (T2/T1,
Roozendaal, 2002). Although all animals retained associative
memory in this task, the performance in the associative memory
task was increased in rats exposed at PND7N5 and PND15N1,
suggesting that these animals would have a more detailed
representation of the traumatic event, as reported by Atucha and
Roozendaal (2015). Again, the lack of change in the other groups
might be related to either immature associative mechanisms
(PND7N1) or to adaptive mechanisms (PND15N5) that could be
triggered by repeated exposures, intended to counteract potential
damage, as observed in different stress models (Febbraro et al.,
2017; Scott et al., 2017). However, as memory retention has
been observed in both groups, it should not be discarded
that PND7N5 and PND15N1 rats experimented an increase in
fear sense instead of an improvement in associative memory
(i.e., there seems not to be a memory acquisition trouble). It
must be underlined that fear can be distinguished from anxiety
as it occurs in response to threats perceived as imminent, while
anxiety could occur in response to potential or sustained threats
(Izquierdo et al., 2016). In other words, a greater fear sense
that could explain the increase in T2 in the IA task could be
distinguished from the anxiety in response to a potential danger
that occurs in the EPM test. There is also evidence supporting

this statement, demonstrating that anxiety and fear response
could depend on different CNS structures (Kjelstrup et al., 2002;
Pentkowski et al., 2006).

In consequence, it could be suggested that the longer latency
to enter into the dark compartment might be related to an
increased emotional reactivity, a non-adaptive response, as
suggested by Costanzi et al. (2011) that might be also related
to the increase in anxiety-related behavior, as observed in
humans (Michael et al., 2007; Ponomarev et al., 2010). Therefore,
although fear is essential for survival, destined to learn about a
potential danger, the lack of behavioral flexibility might expose
individuals to environmental changes that might affect not only
hippocampus but also other structures-related behaviors (Barros
et al., 2000; Izquierdo et al., 2016).

In addition, whereas EE was able to prevent the noise-
induced changes in the associative memory of PND7N5 and
PND15N1 groups, this housing condition induced an
improvement in the performance of noise-exposed PND7N1 and
PND15N5 groups, suggesting that differences in environmental
stimulation could favor different behavioral phenotypes in the
presence of an unfavorable previous condition, such as exposure
to noise.

EE as a Neuroprotective Strategy
The EE has shown to be an effective tool to protect against
CNS injury (Lores-Arnaiz et al., 2006), obtaining benefits on
learning and memory (Schrijver et al., 2002; Baraldi et al., 2013)
as well as on anxiety-like behaviors (Friske and Gammie, 2005;
Lima et al., 2014).

It should be highlighted that short periods of housing in
an enriched environment appeared to be enough to produce
brain changes in young, but not in adults rats, suggesting
that in rodent species adolescence is a highly sensitive period
likely to be modified by environmental challenges (Spear, 2000).
Actually, only 1 week of EE used in the present experimental
model as a neuroprotective strategy contrasts with the long
periods required to be protective when adult animals are the
experimental subjects, supporting this hypothesis.

In addition, housing in EE generated changes on its own in
some behavioral parameters. For example, behavioral differences
were observed between control groups depending on the type
of housing in parameters such as anxiety-like behavior, %HD
and exploratory activity. In addition, in some cases, exposed
animals presented changes in their behavior when compared
with their respective sham group only when they were housed in
an EE, whereas no differences were observed when housed under
standard conditions. Supporting these observations, several
authors found behavioral changes in untreated animals after
housing in EE, even during short periods (van Praag et al., 1999;
Nithianantharajah and Hannan, 2006; Mitra and Sapolsky, 2012;
Sampedro-Piquero and Begega, 2017). It has been postulated
that beneficial effects of EE could be due to the novelty and
increased social contact and exercise, which are rewarding for
animals as well as efficacious in supplying for their ethological
needs (Pietropaolo et al., 2004b; Crofton et al., 2015).

Therefore, it could be suggested that housing for a week in an
EE was able to generate behavioral changes by itself, as well as to
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unmask differences between exposed animals and their controls,
which highlight the importance of the interaction with the
environment that surrounds the animal, given that differences in
environmental stimulation may favor the development of certain
behavioral phenotypes (Nithianantharajah and Hannan, 2006;
Mychasiuk et al., 2012).

Is Hippocampal Oxidative State Involved?
Finally, it is known that the balance of cellular oxidative
status might be affected after several insults (Bendix et al.,
2012; Sies, 2015). A significant increase in the antioxidant
enzymes activities might indicate that a prior increase in ROS
production could have been triggered, suggesting that the brain
endogenous antioxidant defense system is capable of being
activated in response to excessive ROS generation. As some
changes in hippocampal oxidative status were observed after
noise exposure of PND15N1 animals (Uran et al., 2010, 2014),
the measurement of Trx, an endogenous antioxidant often
involved in brain injuries, could be taken as a marker of
damage in the present model that could underlie behavioral
changes. However, although a similar increase in hippocampal
Trx-1 levels was found in all groups, dissimilar changes in the
behavioral parameters in each group were observed. This lack of
correlation suggests that this endogenous antioxidant could not
be the main responsible for the behavioral changes. Although,
Trxs are a part of the vast antioxidant machinery, these key
enzymes are frequently altered in oxidative-related pathologies.
Nevertheless, other markers should be measured to confirm
these findings.

CONCLUSION

In conclusion, noise exposure using single or repeated session’s
schemes was capable to trigger hippocampal-related behavioral
alterations as well as oxidative-related molecular changes in
animals exposed at PND 7 and PND15 and evaluated after
several days that differed according to the scheme used and
the age of exposure. Housing in an enriched environment, a
non-pharmacological strategy of neuroprotection, was effective
in preventing some of these changes. In addition, an oxidative
imbalance might be triggered in the hippocampus of rats from all
groups, without changes in the auditory function.

The different ages of exposure, as well as the different
schemes applied, might predispose animals to undergo different
alterations: more behavioral alterations were observed in younger
animals, exposed for a single day. Therefore, it could be suggested
that immature animals might be more vulnerable to noise impact

and that the alterations induced by repeated exposures might be
more effectively compensated in younger animals.

Therefore, these findings suggest that after repeated exposure
to an environmental challenge animals become less susceptible
to noise-induced behavioral changes, probably due to the ability
of adaptation to an unfavorable condition. Moreover, it could be
hypothesized that damage to younger individuals could be more
easily prevented by an environmental manipulation.

The knowledge of the mechanisms involved in the damage,
as well as the strategies aimed to prevent them, is of clinical
relevance considering noise exposure as a public health problem
that is increasing in urbanized societies.
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∆9-Tetrahydrocannabinol During
Adolescence Attenuates Disruption
of Dopamine Function Induced in
Rats by Maternal Immune Activation
Salvatore Lecca 1†‡, Antonio Luchicchi 1†‡, Maria Scherma 1, Paola Fadda 1,2,
Anna Lisa Muntoni 2 and Marco Pistis 1,2*
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The combination of prenatal, such as maternal infections, and postnatal environmental
insults (e.g., adolescent drug abuse) increases risks for psychosis, as predicted
by the two-hit hypothesis of schizophrenia. Cannabis abuse during adolescence is
widespread and is associated with increased risk of psychoses later in life. Here, we
hypothesized that adolescent ∆9-tetrahydrocannabinol (THC) worsens the impact of
prenatal maternal immune activation (MIA) on ventral tegmental area (VTA) dopamine
cells in rat offspring. Additionally, since substance abuse disorder is particularly prevalent
among schizophrenia patients, we also tested how VTA dopamine neurons in MIA
offspring respond to acute nicotine and cocaine administration. We used a model of
neurodevelopmental disruption based on prenatal administration of the polyriboinosinic-
polyribocytidilic acid [poly (I:C)] in rats, which activates the maternal immune system
by mimicking a viral infection and induces behavioral abnormalities and disruption of
dopamine transmission relevant to psychiatric disorders in the offspring. Male offspring
were administered THC (or vehicle) during adolescence (PND 45–55). Once adult (PND
70–90), we recorded the spontaneous activity of dopamine neurons in the VTA and
their responses to nicotine and cocaine. MIA male offspring displayed reduced number,
firing rate and altered activity pattern of VTA dopamine cells. Adolescent THC attenuated
several MIA-induced effects. Both prenatal [poly (I:C)] and postnatal (THC) treatments
affected the response to nicotine but not to cocaine. Contrary to our expectations,
adolescent THC did not worsen MIA-induced deficits. Results indicate that the impact
of cannabinoids in psychosis models is complex.

Keywords: dopamine neurons, maternal immune activation, cannabinoids, adolescence, electrophysiology,
schizophrenia

INTRODUCTION

Environmental factors, such as prenatal exposure to a variety of infectious agents and consequent
maternal immune activation (MIA), can lead to aberrant brain development, emerging in
pathological phenotypes, such as autism and schizophrenia (Hornig et al., 2018). An association
between MIA and increased risks of developing psychiatric disorders in offspring later in
life has been reported by preclinical investigations and epidemiological studies in humans
(Meyer et al., 2011).
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In utero exposure to polyriboinosinic-polyribocytidylic acid
(Poly I:C), a double-stranded synthetic RNA that activates an
innate immune response, induces MIA in rodents by mimicking
a viral infection and has been shown to induce schizophrenia-
or autism-like phenotypes in rodents (Zuckerman et al.,
2003). Hence, offspring display behavioral abnormalities, e.g.,
impairment in recognition memory, in social interactions and in
sensorimotor gating as well as alterations in brain regions key
in the neuropathology of psychoses, such as the dopaminergic
ventral tegmental area (VTA; Patterson, 2002, 2009; Meyer
et al., 2005; Boksa, 2010). Indeed, previous studies reported an
increase in the number of TH-immunoreactive neurons in the
VTA, TH-positive terminals in the striatum (Meyer et al., 2008;
Winter et al., 2009; Vuillermot et al., 2010), increases in evoked
striatal dopamine release ex vivo (Zuckerman et al., 2003) and
enhanced dopamine levels in the prefrontal cortex and lateral
globus pallidus (Winter et al., 2009). In our previous studies
we observed a marked alteration of VTA dopamine neuron
activity (reduced firing rate, reduced number of spontaneously
active cells and altered firing pattern) in male but not female
offspring coupled with disruption of sensorimotor gating and
of cognitive and social behavior, and increase in dopamine
levels in the nucleus accumbens (Luchicchi et al., 2016;
De Felice et al., 2019).

Besides the prenatal period, adolescence is also a critical
window of enhanced vulnerability. During adolescence the brain
is particularly susceptible to perturbations, such as exposure to
drugs of abuse, which can disrupt cognitive, emotional, and social
maturation (Crews et al., 2007). Cannabis is the most widely
used illegal drug during adolescence and its consumption might
induce neurobiological changes that affect adult brain function
(Rubino and Parolaro, 2016).

The dopamine system is particularly sensitive to
cannabinoids. Both ∆9-tetrahydrocannabinol (THC) and
synthetic cannabinoids induce increases in firing rate of
mesolimbic and mesocortical VTA dopamine cells (Diana
et al., 1998; Gessa et al., 1998) and in extracellular dopamine
levels in terminal regions (Tanda et al., 1997). Accordingly, in
humans, THC reduces [11C]raclopride binding in the ventral
striatum, consistent with a modest increase in dopamine
release (Bossong et al., 2009, 2015) and exacerbates psychotic
symptoms (Mason et al., 2009). We and others reported that
adolescent THC administration induced long-lasting changes in
the response to dopamine cells to drugs of abuse and enhanced
behavioral responses and self-administration (Pistis et al., 2004;
Scherma et al., 2016) which might extend across generations
(Vassoler et al., 2013). Moreover, adolescent administration of
cannabinoids is associated with schizophrenia-like deficits in
adult rodents (Rubino et al., 2009; Leweke and Schneider, 2011).

Considering that in humans early marijuana intake is
associated with increased risk of psychoses later in life
(Arseneault et al., 2004; Fergusson, 2004; Degenhardt and
Hall, 2006), our hypothesis is that cannabinoid administration
during adolescence in male rats exposed to MIA would worsen
the outcome, as the two-hits hypothesis of schizophrenia
(genetic/prenatal plus postnatal environment factors) predicts.
Additionally, since substance abuse disorder, specifically heavy

tobacco smoking (Winterer, 2010) and stimulant use disorder
(Hunt et al., 2018), is particularly prevalent among schizophrenia
patients we also tested how VTA dopamine neurons in MIA
offspring treated with THC and their controls respond to acute
nicotine and cocaine administration.

MATERIALS AND METHODS

All procedures were performed in accordance with the European
legislation EU Directive 2010/63 and were approved by the
Animal Ethics Committee of the University of Cagliari and
by Italian Ministry of Health (auth. n. 658/2015-PR). Animals
were housed in groups of three to six in standard conditions
of temperature (21 ± 1◦C) and humidity (60%) under a 12 h
light/dark cycle (lights on at 7:00 A.M.) with food and water
available ad libitum. We made all efforts to minimize animal
discomfort and to reduce the number of animals used.

Prenatal Treatment
Female Sprague–Dawley rats (Envigo, Italy) were mated at
the age of 3 months. The first day after the copulation was
defined as gestational day 1 (GD 1). MIA was induced at GD
15, following the procedure described by Zuckerman et al.
(2003). Dams were anesthetized with isoflurane 2% and a
single dose of Poly I:C (4.0 mg/kg, i.v.; InvivoGen, San Diego,
CA, USA) or an equivalent volume of endotoxin-free saline
solution was administered in the lateral vein of the tail. To
assess the efficacy of Poly I:C injection, all pregnant rats were
weighed for the first 3 days after the administration of either
Poly I:C or saline to evaluate weight loss as underlined by
previous investigations (Zuckerman et al., 2003; Wolff and
Bilkey, 2010). After weaning, male offspring were housed
with littermates and maintained undisturbed until adolescent
treatment (PND 45–55) and experiments in adulthood (PND
70–90). Male rats were randomly assigned to the experimental
procedures and care was taken to avoid assigningmore than three
animals from the same litter to the same experimental group
(Kentner et al., 2019).

Adolescent Treatment
Male rats were intraperitoneally injected with THC (THC-Pharm
GmbH) or vehicle (1% ethanol, 2% Tween 80 and saline) at
PND 45, in the mid-adolescence period. Increasing doses of THC
(2.5 mg/kg, PND 45–47; 5 mg/kg, PND 48–51; 10 mg/kg, PND
52–55) or vehicle were given twice/day for 11 consecutive days.
Theses doses of THC were chosen according to the literature
(Scherma et al., 2016). Body weight and food intake were
monitored for the entire period of treatment.

In vivo Electrophysiological Experiments
In vivo electrophysiology experiments were carried out at PND
70–90. This age window, which corresponds to the young
adulthood in humans, was selected as it is the most vulnerable
age for the onset of schizophrenia (Häfner, 2003). Moreover,
studies on the ontogeny of MIA-induced deficits showed that
these are evident at PND 70 (Romero et al., 2010; Vuillermot
et al., 2010).
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In vivo electrophysiological recordings were performed as
described previously (Melis et al., 2008, 2009; Luchicchi et al.,
2016). At PND 70–90, male rats were anesthetized with urethane
(1.3 g/kg, i.p.) and placed in the stereotaxic apparatus (Kopf,
Tujunga, CA, USA) with their body temperature maintained at
37 ± 1◦C by a heating pad.

For the placement of a recording electrode, the scalp was
retracted, and one burr hole was drilled above the parabrachial
pigmented nucleus (PBP) of the posterior VTA (AP, 5.8–6.2 mm
posterior from Bregma, L, 0.4–0.6 mm lateral from midline)
according to the Atlas of Rat Brain (Paxinos and Watson, 2007).
We selected this subregion as it contains the largest density of
dopamine cells as compared to the more medial portions of the
posterior VTA.

Extracellular single-unit activity of dopamine neurons located
in the VTA (V, 7.0–8.0 mm from the cortical surface) was
recorded with glass micropipettes filled with 2% Pontamine
sky blue (PSB) dissolved in 0.5 M sodium acetate (impedance
2.5–5 MΩ). The population spontaneous activity of VTA
dopamine cells was determined in 6–9 predetermined tracks
separated by 200 µm each other. Putative VTA dopamine
neurons were selected when all criteria for identification
were fulfilled: firing rate <10 Hz and duration of action
potential >2.5 ms as measured from start to end (Grace and
Bunney, 1983). At the end of the experimental session, inhibition
of spontaneous activity by dopamine receptor agonists and
subsequent reversal by dopamine receptor antagonists was tested.
Bursts were defined as the occurrence of two spikes at interspike
interval <80 ms, and terminated when the interspike interval
exceeded 160 ms (Grace and Bunney, 1984). The electrical
activity of each neuron was recorded for 2–3 min. Single-unit
activity was filtered (bandpass 0.1–10,000 Hz) and individual
action potentials were isolated and amplified (Neurolog System,
Digitimer, Hertfordshire, UK), displayed on a digital storage
oscilloscope (TDS 3012, Tektronics, Marlow, UK) and digitally
recorded. Experiments were sampled on-line and off-line with
Spike2 software (Cambridge Electronic Design, Cambridge, UK)
by a computer connected to CED 1401 interface (Cambridge
Electronic Design, Cambridge, UK). At the end of recording
sessions, DC current (15 mA for 5 min) was passed through the
recording micropipette in order to eject PSB for marking the
recording site. Brains were then rapidly removed and frozen in
isopentane cooled to −40◦C. The position of the electrodes was
microscopically identified on serial 60 µm sections stained with
Neutral Red.

In separate experiments where the effects of nicotine and
cocaine were assessed, after 5 min of stable baseline activity,
cocaine (Akzo Pharma Division Diosynth, Oss, Netherlands) was
administered i.v. at exponentially increasing cumulative doses
(0.25–2 mg/kg) every 2 min or nicotine [(-)-nicotine hydrogen
tartrate), Sigma-Aldrich, Italy] at a bolus dose of 0.2 mg/kg.

Statistical Analysis
Averaged data from different experiments are given as
mean ± SEM. Data were checked for outliers (ROUT test)
and statistical significance was assessed using Student’s t-test,
one-way ANOVA, two-way ANOVA and two-way ANCOVA,

where appropriate. Post hoc multiple comparisons were made
using the Sidak’s test. Data were analyzed using GraphPad Prism
(San Diego, CA, USA). The significance level was established at
P < 0.05.

RESULTS

In agreement with previous studies (Zuckerman et al., 2003), rat
dams underwent a significant weight loss in the 24 h following
Poly I:C systemic administration (−4.9 ± 2.8 g n = 8; vs.
controls +7.5 ± 2.4 g n = 7; P < 0.01, Student’s t-test; data
not shown). This weight loss indicates that Poly I:C treatment
induced a flu-like syndrome in treated rats (Kentner et al.,
2019). However, Poly I:C treatment did not affect litter size
(controls: 11.6 ± 1.8 pups, n = 8; Poly I:C: 12.4 ± 1.2 pups, n = 7,
P = 0.72, Student’s t-test). As our previous studies determined
that detrimental effects induced by MIA were only evident in
males (De Felice et al., 2019), we evaluated the effect of pubertal
THC solely in male rats. Hence, prenatal Poly I:C or vehicle male
offspring were randomly assigned to the adolescent THC or
vehicle groups, taking care that no more than three animals from
the same litter were assigned to the same experimental group or
procedure (Kentner et al., 2019). Therefore, electrophysiological
experiments were carried out in four experimental
groups: vehicle-vehicle, vehicle-THC, Poly I:C-vehicle and
Poly I:C-THC.

We next determined if Poly I:C prenatal and THC postnatal
treatments affect spontaneous activity of dopamine cells, by
carrying out a population sample in the VTA. For these
experiments we utilized n = 14 vehicle-vehicle (from 6 litters),
n = 19 Poly I:C-vehicle (from 8 litters), n = 8 vehicle-THC (from
4 litters) and n = 10 Poly I:C-THC (from 5 litters) male offspring.

The number of cells/track (Figure 1A), which is an index
of population activity of dopamine neurons in the VTA, was
significantly reduced by Poly I:C treatment in vehicle-treated
but not in THC-treated male offspring [two-way ANOVA:
effect of Poly I:C, F(1,45) = 9.49, P < 0.01; effect of THC,
F(1,45) = 14.78, P < 0.001; interaction between treatments,
F(1,45) = 0.66, P > 0.05; post hoc Sidak’s test: significant
effect only between vehicle-vehicle and Poly I:C-vehicle rats
(t(45) = 3.2, P < 0.05, Figure 1A)]. The firing rate was reduced
by Poly I:C treatment in both vehicle- and THC-treated rats
(Figure 1B; two-way ANOVA: effect of Poly I:C, F(1,454) = 13.53,
P < 0.01; effect of THC, F(1,454) = 1.98, P > 0.05; interaction
between treatments, F(1,454) = 0.10, P > 0.05). The percentage
of spikes per burst was reduced by both Poly I:C and THC
treatments (Figure 1C) [two-way ANOVA: effect of Poly I:C,
F(1,386) = 26.28, P < 0.001; effect of THC, F(1,386) = 9.92, P < 0.01;
interaction between treatments, F(1,386) = 4.67, P < 0.05; post
hoc Sidak’s test: significant effect between vehicle-vehicle and
all other groups: (t(386) = 5.5, t(386) = 3.9, t(386) = 6.1 for
vehicle-vehicle vs. Poly I:C-vehicle, vehicle-THC, Poly I:C-THC,
respectively, P < 0.001 for all comparisons, Figure 1C)]. The
number of spikes per burst (Figure 1D) was significantly reduced
by Poly I:C treatment only in vehicle-treated rats [two-way
ANOVA: effect of Poly I:C, F(1,334) = 20.85, P < 0.0001;
effect of THC, F(1,334) = 6.32, P < 0.05; interaction between
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FIGURE 1 | Effects of maternal immune activation (MIA) and adolescent
∆9-tetrahydrocannabinol (THC) administration on ventral tegmental area (VTA)
dopamine neuron activity in vivo. Adolescent THC administration prevented
the Poly I:C-induced decrease in the number of spontaneously active VTA
dopamine neurons (A) but not the decrease in firing rate (B). Graphs show
the effect of poly IC and THC (or vehicles) in the percentage of spikes in burst
(C), mean burst duration (D), mean number of spikes in bursts (E) and
intra-burst frequency (F). Superimposed colored diamonds show the
averages for each individual rat. Both Poly I:C and THC, or their combination,
induced a reduction in the percentage of spikes in bursts (C), whereas THC
prevented alterations induced by Poly I:C in the other electrophysiological
parameters (D,E). The number of cells for each group is: veh-veh, n = 156;
Poly I:C-veh, n = 121; veh-THC, n = 101; Poly I:C-THC, n = 117. The
horizontal blue line represents the mean. Statistical analysis was conducted
with two-way ANOVA (Poly I:C and THC treatments as factors) and Sidak’s
multiple comparison test. Asterisks on graphs represent the result of the
Sidak’s multiple comparison test: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

treatments, F(1,334) = 9.30, P < 0.01; post hoc Sidak’s test:
significant effect only between vehicle-vehicle and Poly I:C-
vehicle rats (t(334) = 5.4, P < 0.0001, Figure 1D)]. The mean
burst duration (Figure 1E) was also significantly reduced by
Poly I:C treatment in vehicle-treated but not in THC-treated rats
[two-way ANOVA: effect of Poly I:C, F(1,367) = 3.58, P > 0.05;
effect of THC, F(1,367) = 3.42, P > 0.05; interaction between
treatments, F(1,367) = 5.62, P < 0.05; post hoc Sidak’s test:
significant effect only between vehicle-vehicle and Poly I:C-
vehicle rats (t(367) = 3.2, P < 0.01, Figure 1E)]. Similarly,
the mean intraburst frequency (Figure 1F) was significantly

reduced by Poly I:C treatment in vehicle-treated but not in
THC-treated offspring [two-way ANOVA: effect of Poly I:C,
F(1,338) = 7.87, P < 0.01; effect of THC, F(1,338) = 3.26,
P > 0.05; interaction between treatments, F(1,338) = 4.25,
P < 0.05; post hoc Sidak’s test: significant effect only
between vehicle-vehicle and Poly I:C-vehicle rats (t(338) = 3.6,
P < 0.01, Figure 1F)].

In summary, in Poly I:C-vehicle male offspring we detected a
reduced number of spontaneously active cells, lower frequency,
shorter bursts, a lower number of action potentials per burst,
when compared with vehicle-vehicle offspring. Adolescent THC
treatment in vehicle-THC rats did not exert significant effects,
except for the percentage of spikes in burst, which was reduced
when compared to vehicle-vehicle offspring, whereas in Poly I:C-
THC offspring, THC reversed the effects of MIA on cells/track
index, mean spikes/burst, mean burst duration and mean intra-
burst frequency. Our data indicate that dopamine cells in
prepubertal THC-treated offspring are less affected byMIAwhen
compared with Poly I:C-vehicle rats.

Considering that we recorded several neurons from each
individual rat and that each cell was considered as an
independent replicate, a two-way ANCOVAwas carried out with
treatments as factors and individual subjects as covariate, to
exclude that differences among individual rats had significant
effects. The results indicated that individual subjects had no
significant effect overall (two-way ANCOVA P > 0.05 for
all parameters).

We next examined the response of VTA dopamine cells to a
nicotine challenge and to cumulative doses of cocaine.

Figure 2A shows that pre- and postnatal treatments affect
the response of VTA dopamine cells to nicotine (0.2 mg/kg,
i.v.). The dose of nicotine was selected as it approximately
corresponds to the i.p. dose of nicotine (0.4 mg/kg) that induces
a robust conditioned place preference and, consistently, induces
also a strong increase in firing rate of VTA dopamine cells
in control animals (Melis et al., 2008; Mascia et al., 2011;
Sagheddu et al., 2019). Spontaneous activity of VTA neurons
was recorded for 5 min then a bolus dose of nicotine was
injected intravenously. In vehicle-vehicle rats nicotine induced
a robust increase in firing rate, amounting to ∼165% of baseline
(F(4,7) = 6.7, P < 0.05, one-way ANOVA), which remained stable
across the recording time. On the other hand, nicotine did not
significantly affect firing rate of VTA cells either in Poly I:C-
vehicle, vehicle-THC nor in Poly I:C-THC rats (F(4,5) = 3.6,
F(4,5) = 2.8, F(4,5) = 0.4, respectively, P > 0.05, one-way ANOVA
for all comparisons). When curves were compared across groups,
two-way ANOVA revealed a significant interaction between
factors (time and treatments; F(12,88) = 2.10, P < 0.05) and
post hoc analysis indicates that nicotine-induced effects were
significantly different in Poly I:C-THC rats when compared to
the vehicle-vehicle group (t(110) = 2.5, P < 0.05, Sidak’s multiple
comparison test).

It is well established that cocaine inhibits dopamine neurons
via increased somatodendritic dopamine release acting on
D2 autoreceptors (Einhorn et al., 1988). As illustrated in
Figure 2B, we confirmed that cocaine (0.25, 0.5, 1.0 and
2.0 mg/kg, i.v., expressed as the final cumulative doses at
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FIGURE 2 | Effects of nicotine and cocaine on firing rate of VTA dopamine
neurons in prenatal Poly I:C and adolescent THC treated offspring and their
controls. (A) Representative firing rate histograms of VTA dopamine neurons
recorded from vehicle-vehicle, Poly I:C-vehicle, vehicle-THC and Poly I:C-THC
rats showing the effects of a bolus dose of nicotine (0.2 mg/kg, i.v.). Arrows
indicate the times of nicotine injection. The graph shows that the combination
of prenatal Poly I:C and adolescent THC prevented nicotine-induced increase
of firing rate (vehicle-vehicle, n = 8; Poly I:C-vehicle, n = 6; vehicle-THC,
n = 6 and Poly I:C-THC, n = 6; two-way ANOVA and Sidak’s test, ∗P < 0.05).
(B) Representative firing rate histograms of VTA dopamine neurons recorded
from vehicle-vehicle, Poly I:C-vehicle, vehicle-THC and Poly I:C-THC rats
showing the effects of cumulative doses of cocaine (0.25–2.0 mg/kg, i.v.).
Arrows indicate the times of cocaine injections (0.25, 0.25, 0.5, 1.0 mg/kg).
The bottom graph displays the dose–response curves of the effect of
cumulative doses of cocaine on the firing rate of VTA DA neurons recorded
from vehicle-vehicle (n = 5), Poly I:C-vehicle (n = 6), vehicle THC (n = 4) and
Poly I:C-THC (n = 4). Results are presented as mean ± SEM of firing rate
expressed as a percentage of baseline levels.

each point, as we injected 0.25, 0.25, 0.5 and 1 mg/kg,
i.v.), dose-dependently reduced firing rate of dopamine cell
to approximately 50% in vehicle-vehicle rats (F(4,5) = 17.29,
P < 0.001, one-way ANOVA). This inhibitory effect was
similar to the control group and statistically significant also
in Poly I:C-vehicle (F(4,5) = 4.5, P < 0.05, one-way ANOVA),
vehicle-THC (F(4,3) = 29.9, P < 0.01, one-way ANOVA)
and Poly I:C-THC rats (F(4,3) = 81.6, P < 0.01, one-way
ANOVA). The comparison across groups revealed that neither
Poly I:C nor THC treatments, or their interaction with the
doses of cocaine, changed the inhibitory effect of cumulative

doses of cocaine onto VTA dopamine cells (F(12,64) = 0.63,
P = 0.8, two-way ANOVA).

DISCUSSION

The present findings confirm our previous studies that
MIA, evoked by maternal exposure to Poly I:C, induces
harmful effects in offspring, namely disruption of dopamine
cell electrophysiological activity: (i) reduced number of
spontaneously active cells; (ii) decrease in their firing rate;
and (iii) profound alterations in their firing pattern (Luchicchi
et al., 2016; De Felice et al., 2019). We and other groups
showed that changes in dopamine transmission translate into
abnormal behavior such as disrupted sensorimotor gating,
deficits in cognition and social interactions (Zuckerman et al.,
2003; Meyer et al., 2011; Luchicchi et al., 2016). The risk to
develop schizophrenia has often been hypothesized with models
requiring two hits in order to induce the clinical phenotype: an
early priming in a genetically/prenatally predisposed individual
and a second, likely environmental, insult (Davis et al., 2016).
Consistent with this scenario, combining exposure to prenatal
immune challenge and peripubertal stress in mice was shown
to induce synergistic pathological effects on adult behavior and
neurochemistry (Giovanoli et al., 2013, 2016).

Cannabis exposure during adolescence is consistently
associated with an increased risk to develop schizophrenia
later in life and with an earlier onset of the disease (Arseneault
et al., 2004; Fergusson, 2004; Degenhardt and Hall, 2006).
Preclinical findings consistently indicate that adolescent
cannabinoid agonist intake induces long-term behavioral
impairment and depressive-like signs (Rubino et al., 2009;
Rubino and Parolaro, 2016). Therefore, it may represent a risk
factor for developing psychotic-like symptoms in adulthood
(Rubino et al., 2008).

Thus, our hypothesis was that exposure to THC during
adolescence might exacerbate the disruption in VTA dopamine
cell activity observed in offspring followingMIA. Contrary to our
expectations, adolescent THC did not induce effects in prenatal
vehicle-treated animals, apart from a decrease in the bursting
activity of dopamine cells, whereas in Poly I:C-treated offspring
it attenuated several alterations induced by MIA. Notably, MIA
with Poly I:C was shown to induce in rats persistent increases
in cannabinoid CB1 receptor expression in adulthood in sensory
cortex and hypothalamus assessed by PET (Verdurand et al.,
2014). These findings indicate that prenatal Poly I:C leads
to region-specific long-term alterations in the integrity of the
endocannabinoid system that mirror those observed in patients
with schizophrenia in post-mortem and in vivo PET studies
(Köfalvi and Fritzsche, 2008). It is tempting to speculate that
THC in adolescence might induce changes in CB1 receptor
expression that, in our model, counteract those induced by MIA.
As an example, in MIA-exposed male offspring we observed a
decrease in the probability of glutamate and GABA release onto
dopamine cells, indexed by an increase in the paired-pulse ratio
of excitatory and inhibitory currents coupled with a reduced
frequency of miniature inhibitory and excitatory postsynaptic
currents (De Felice et al., 2019). As the release of GABA and
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glutamate is tightly regulated by 2-arachidonoylglicerol (2-AG)
acting on presynaptic CB1 receptors (Melis et al., 2004, 2014), we
can speculate that this reduced neurotransmitter release might
be caused by an increased expression or activity of CB1 receptors
on GABA or glutamate terminals, consistent with the study by
Verdurand et al. (2014). Alternatively, one possibility is that of
an enhanced biosynthesis of 2-AG by DAG-lipase in dopamine
cells or reduced degradation by MAG-lipase. How adolescent
THC might reverse these changes is not known. One intriguing
possibility is that adolescent subchronic THC might induce
a long-lasting tolerance by reducing expression or activity of
CB1 receptors, as shown in our previous studies (Pistis et al.,
2004; Dudok et al., 2015).

To the best of our knowledge, this is the very first study
carried out in a neurodevelopmental schizophrenia model with
the phytocannabinoid THC and not with synthetic cannabinoids
(Gomes et al., 2014; Aguilar et al., 2018). Interestingly, in
line with our findings, the study by Gomes et al. (2014)
reported that administration of the synthetic cannabinoid
WIN55212 during adolescence did not exacerbate the behavioral
and electrophysiological changes in methylazoxymethanol
acetate (MAM)-treated rats but attenuated the enhanced
locomotor response to amphetamine. On the other hand, in the
study by Aguilar et al. (2018), pubertal exposure toWIN55212 or
to the fatty acid amide hydrolase (FAAH) inhibitor URB597,
which increases endogenous anandamide levels, augmented
the proportion of second-generation MAM rats that develop
schizophrenia-like deficits. In both studies, the synthetic
cannabinoid treatment was able to increase the number of
spontaneously active dopamine cells in vehicle-treated animals.
Although we observed a trend toward an increase in the cell/track
index in vehicle-THC offspring (Figure 1A), this effect did not
reach statistical significance. These divergent results with our
study might be due to different pharmacology of the cannabinoid
agonists used (full vs. partial agonist), to the different length and
protocol of adolescent cannabinoid treatment (11 vs. 25 days,
continuous vs. intermittent), or to different neurodevelopmental
models (MAM vs. MIA).

Epidemiological studies confirm that schizophrenia patients
show enhanced prevalence of substance use disorders,
particularly concerning nicotine dependence, psychostimulant
and cannabis abuse (Kalman et al., 2005; Swendsen et al.,
2010). In animal models of psychiatric disorders, responses to
psychostimulant or nicotine is altered: locomotor response to
psychostimulants is enhanced in neurodevelopmental models
of schizophrenia (Gomes et al., 2014; Aguilar et al., 2018),
whereas nicotine is more self-administered and ameliorated
cognitive deficits in a lipopolysaccharide MIA model of
schizophrenia (Waterhouse et al., 2018). Here we tested if
prenatal and/or postnatal treatments affected responses of
VTA dopamine neurons to nicotine and cocaine. We found
a blunted effect of nicotine on VTA dopamine cells in all
groups when compared to vehicle-vehicle animals, although
this difference reached a statistical significance only in Poly
I:C-THC offspring. These results suggest that adolescent
THC and MIA, or the combination of both factors, induce
persistent changes in neuronal response to nicotine. The

reason for this effect requires further investigation. It can be
speculated that a reduced response to nicotine in both THC-
or MIA-exposed rats might be relevant for the high prevalence
of heavy tobacco smoking reported in both cannabis abusers
or schizophrenia patients (Kalman et al., 2005; Swendsen
et al., 2010), as higher nicotine doses might be required to
attain positive subjective effects. On the other hand, the
inhibitory effect of cocaine did not change among the four
experimental groups.

Our results, together with other previous studies, confirm that
the effects of adolescent cannabinoid exposure in MIA-exposed
individuals are more complex than expected and that the
combination of prenatal and postnatal insults (the double hit
hypothesis of schizophrenia) in neurodevelopmental models of
schizophrenia needs to be further explored.
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The results from epidemiologic studies linking blood folate concentrations, folic acid

supplementation, or dietary folate to the risk of preterm birth are inconsistent. In this

study, we aimed to summarize the available evidence on these associations. A systematic

search of the PubMed/MEDLINE, Google Scholar, Web of Science, and Cochrane Library

databases up to October 20, 2018 was performed and reference lists of retrieved articles

were screened. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for the

highest vs. the lowest levels of folate concentrations, folic acid supplementation, and

dietary folate were calculated using random-effects models. Subgroup analyses and

univariate meta-regression were performed to explore the sources of heterogeneity. Ten

studies (six prospective cohort studies and four case-control studies) were included on

folate concentrations, 13 cohort studies were included about folic acid supplementation,

and 4 cohort studies were included regarding dietary folate intake. Higher maternal folate

levels were associated with a 28% reduction in the risk of preterm birth (OR 0.72, 95%

CI 0.56–0.93). Higher folic acid supplementation was associated with 10% lower risk of

preterm birth (OR 0.90, 95% CI 0.85–0.95). In addition, a significant negative association

was observed between dietary folate intake and the risk of preterm birth (OR 0.68, 95%

CI 0.55–0.84), but no significant relation was seen between dietary folate and the risk

of spontaneous preterm birth (OR 0.89, 95% CI 0.57–1.41). In the subgroup analysis,

higher maternal folate levels in the third trimester were associated with a lower risk of

preterm birth (OR 0.58, 95% CI 0.36–0.94). To initiate taking folic acid supplementation

early before conception was adversely associated with preterm birth risk (OR 0.89, 95%

CI 0.83–0.95). In conclusion, higher maternal folate levels and folic acid supplementation

were significantly associated with a lower risk of preterm birth. The limited data currently

available suggest that dietary folate is associated with a significantly decreased risk of

preterm birth.

Keywords: folate levels, folic acid supplementation, dietary folate intake, meta-analysis, preterm birth, preterm

brain injury, sequelae of preterm birth
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INTRODUCTION

Preterm birth (PTB) and its associated complications, which
include brain injury, retinopathy of prematurity, cerebral palsy,
and developmental disabilities, are among the most serious
global health issues. These complications directly affect the
child’s quality of life and are a huge burden both socially and
economically (Goldenberg et al., 2008; Song et al., 2016; WHO,
2018). Thus, prevention of PTB is a global priority (Blencowe
et al., 2013). Recent estimates of the incidence of PTB in most
Europe countries range from 3.7 to 7.5% of live births (Poulsen
et al., 2015). In the United States, the incidence is higher at about
9.62% (The Lancet, 2016). In Australia, the incidence was at 8.7%
according to the latest annual report in 2015 (Hoh et al., 2019).
In China, the incidence was at ∼7% in 2016 (Chen et al., 2018).
However, despite ongoing research, there has been no significant
reduction in PTB rates. This might be a result of an inadequate
understanding of the pathological processes contributing to PTB.
PTB is considered a multifactorial syndrome, with almost 70%
of PTBs resulting from spontaneous labor and/or rupture of
membranes and the remainder from iatrogenic causes. Hence,
it can be broadly categorized into spontaneous PTB (sPTB) and
indicated PTB (Goldenberg et al., 2008). It has been recognized
that there are numerous biological mechanisms that vary between
individuals and that might lead to PTB (Frey and Klebanoff,
2016). Therefore, the identification of modifiable risk factors is
of great importance for PTB management and prevention.

Maternal nutrition is an important determinant of the
duration of pregnancy and fetal growth, and thereby influences
pregnancy outcomes. Experimental data from animal studies
suggest that maternal nutritional status such as folate status
might play a role in PTB (Zhao et al., 2013; Scholl and Chen,
2015). Folate is an essential B vitamin that plays a role in
DNA synthesis and cell division to support growth and fetal
development (Lucock, 2000). During pregnancy, there is an
increased demand for folate due to the rapid fetal growth.
A previous study reported that pregnant women had a 5- to
10-fold higher folate requirement than non-pregnant women
(Antony, 2007). Blood folate levels, including serum/plasma or
red blood cell (RBC) folate, are considered reliable indicators of
folate status (World Health Organization, 2015). Some recent
epidemiological studies have indicated that low blood folate
levels during pregnancy are associated with an increased risk of
PTB (Bergen et al., 2012; Chen et al., 2014), while some other
studies have shown no association between blood folate levels
and PTB (Dunlop et al., 2012; Heeraman, 2016). In addition,
a meta-analysis has not yet been conducted to summarize the
epidemiological evidence on this association.

Folate cannot be synthesized by the body, and humans are
entirely dependent on dietary sources or dietary supplements
for their folate supply. There have been a large number of
studies describing the association between folate intake and
preterm birth (Vahratian et al., 2004; Lassi et al., 2013; Li et al.,
2014; Mantovani et al., 2014; Martinussen et al., 2015; Zheng
et al., 2016); however, their results are conflicting. Two meta-
analyses from 2015 assessed the possible association between folic
acid supplementation and the risk of PTB. One incorporated

data from five randomized trials and reported no statistically
significant effects (Saccone and Berghella, 2016), while the other
identified nine observational studies and showed a decreased
risk of PTB when initiating folic acid supplementation after
conception (Zhang et al., 2017). Additional larger cohort studies
have been published since then that might enhance the statistical
power (Liu et al., 2016; Zheng et al., 2016), and thus an updated
meta-analysis is needed.

In this study, we aimed to evaluate the available evidence on
the associations between blood folate levels, dietary folate intake,
and folic acid supplementation and the risk of PTB.

MATERIALS AND METHODS

Literature Search
We conducted a literature search of PubMed (Medline), Google
Scholar, Web of Science, and the Cochrane Library from their
inception through October 2018. The search terms included
“folic acid,” “vitamin B9,” “folate,” “folate status,” “folate levels,”
“folate concentrations,” “serum folate,” “red blood cell folate,”
“folic acid consumption,” “folic acid supplementation,” “folic
acid intake,” “food folate,” or “dietary folate” combined with
“preterm delivery,” “premature birth,” or “preterm birth.” We
adhered to the Meta-analysis Of Observational Studies in
Epidemiology (MOOSE) guidelines when undertaking this study
(Stroup et al., 2000).

Inclusion Criteria
Articles were included if (1) the study design was observational,
(2) the population was healthy women who had the intention
to become pregnant or who were pregnant, (3) the exposure of
interest was folate levels or dietary folate intake or folic acid
supplementation, (4) the outcome of interest was preterm birth,
which was defined as delivery at <37 weeks gestation, (5) the
association between folate levels or dietary folate intake or folic
acid supplementation and risk of PTB was evaluated, and (6)
adjusted risk estimates [relative risks (RRs), hazard risks (HRs),
or odds ratios (ORs)] with their corresponding 95% confidence
intervals (CIs) or standard errors were reported. Additionally,
we excluded reviews, editorials, non-human studies, randomized
clinical trials, and letters without sufficient data. We excluded
randomized clinical trials without folic acid in a control group
because of limited publications and ethical issues. Whenmultiple
reports based on the same study were published, only the most
recent or complete report was used.

Data Extraction
We extracted the following data from the included articles: the
name of the first author, year of publication, country, study
design, sample size, follow-up period, study period, assessment
methods of folate levels, or dietary folate intake or folic acid
supplementation, ascertainment of PTB, ORs and corresponding
95% CIs, and the confounding factors used for adjustment
of the ORs. The ORs with more adjusted confounders were
chosen when studies had different models for the calculation of
estimated risks.
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Quality Assessment
Two reviewers independently performed the quality assessment
using the Newcastle-Ottawa Scale (for cohort and case-control
studies; Stang, 2010), which is a nine-point system including
the selection process of studies (0–4 points), the comparability
of studies (0–2 points), and the identification of the exposure
and the outcomes of the study participants (0–3 points). The
quality of articles was first evaluated according to the established
questions, which were scored as 1 if the item was considered
in the study or 0 if the item was not considered or if it was
impossible to determine whether it was considered or not. We
assigned scores of 0–3, 4–6, and 7–9 points for low, moderate,
and high-quality studies, respectively (Supplementary Table 1).

Statistical Analysis
Because most of included studies reported risk estimates as ORs,
and because it was previously reported that ORs, HRs, and RRs

provide similar estimates of risk when the incidence of outcome
is very low (<10%) (Greenland, 1987), we chose ORs as the
common effect size and combined HRs and RRs with ORs in the
meta-analysis. The statistical analyses for the overall association
between folate levels, folic acid supplementation/dietary folate
intake, and PTB risk were based on comparisons of the highest
category with the lowest. If the original studies did not provide
corresponding data, the OR and its 95% CI were recalculated.

The ORs and corresponding 95% CIs were pooled using the
DerSimonian and Laird random-effects model (DerSimonian
and Laird, 1986), which considers both within-study and
between-study variations. The summary measures were
presented as forest plots where the sizes of the data markers
(squares) correspond to the inverse of the variance of the natural
logarithm of the OR from each study and the diamond indicates
the pooled OR. Statistical heterogeneity among studies was
quantified using the I2 statistic (Higgins et al., 2003).

FIGURE 1 | Flow chart for study selection (through October 20, 2018).
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To further evaluate the effects of heterogeneity, univariate
meta-regression analyses were performed examining the effects
of several key study characteristics. Stratified analyses by
specimen gestational age, sample type, initiation time of folic
acid supplementation, and dosage of folic acid were conducted
to assess their impact on our estimates. Sensitivity analyses
were employed to find potential origins of heterogeneity
and to examine the influence of various exclusions on the
combined OR. Funnel plots were used to assess small-
study effects. Publication bias was assessed through the visual
inspection of funnel plots and with tests of Begg rank
correlation (Begg and Mazumdar, 1994). P < 0.05 was
considered to be representative of a statistically significant
publication bias. Forest plots were created to assess the overall
association between folate levels, dietary folate, folic acid
supplementation, and PTB.

All statistical analyses were performed with STATA version
12.0 software (Stata Corporation, College Station, TX, US). All

reported probabilities (P-values) were two-sided, with P < 0.05
considered statistically significant, except for the Cochran’s Q
statistic in the heterogeneity test, in which the significance level
was 0.10.

RESULTS

Characteristics of the Studies
A total of 25 articles were included. The process of study
selection is depicted in Figure 1. A total of 9 studies assessed the
association between blood folate levels and the risk of PTB, 12
examined folic acid supplementation and the risk of PTB, and 2
studies assessed the association between dietary folate intake and
the risk of PTB. Moreover, 1 study examined the association of
folic acid supplementation and dietary folate and the risk of PTB,
and 1 study assessed the association of blood and dietary folate
with the risk of PTB.

FIGURE 2 | Forest plot of the meta-analysis of PTB risk in relation to blood folate levels, comparing the highest category with the lowest. The solid diamonds and

horizontal lines indicate the study-specific ORs and 95% CIs. The size of the gray area reflects the study-specific statistical weight. The hollow diamonds represent the

pooled ORs and 95% CIs of each subgroup and the overall population. The vertical solid line shows the OR of 1, and the vertical red dashed line represents the

combined effect estimate.
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Blood Folate Levels and Risk of PTB
For the overall risk of PTB in relation to blood folate levels,
we included 6 prospective cohort studies (Scholl et al., 1996;
Siega-Riz et al., 2004; Bodnar et al., 2010; Bergen et al., 2012;
Dunlop et al., 2012; Chen et al., 2014) and 4 case-control studies
(Ronnenberg et al., 2002; Martí-Carvajal et al., 2004; Furness
et al., 2012; Heeraman, 2016). A total of 7 studies measured
folate levels in plasma/serum, and 3 studies measured folate
levels in RBCs. Among these studies, 3 were sampled in the first
trimester, 3 in the second trimester, and 3 in the third trimester.
The main characteristics of these studies are summarized in
Supplementary Tables 2, 3.

Overall, a significant negative association between blood
folate levels and PTB risk was observed. The pooled OR (95%
CI) for PTB risk in individuals with the highest level of
blood folate compared with the lowest level was 0.72 (95%
CI, 0.56–0.93) with a moderate to high degree of statistical
heterogeneity (I2 = 68.6%; Figure 2). For the 6 cohort studies,
the negative association was consistent and the combined OR
was 0.68 (95% CI, 0.50–0.92) with a high heterogeneity (I2 =

78%). For the 4 case-control studies, no significant association
was found between blood folate levels and the risk of PTB
(OR 0.88, 95% CI 0.50–1.56). Heterogeneity was observed
between studies (I2 = 41%). To examine this heterogeneity,
we conducted meta-regression analyses with type of design,
gestational age of the specimen, geographical region, year of
publication, and sample type as the independent variables. As
shown in Table 1, no significant differences were found among
these groups. No evidence of publication bias was observed
when assessing the association between maternal folate levels

TABLE 1 | Blood folate levels and the risk of preterm birth analyzed by univariate

meta-regression model.

Covariate Number of

studies

β-coefficient P-value

Type of design

Cohort study, Case-control

study

10 0.266 0.429

Specimen gestational age

First trimester vs. Second

trimester vs. Third trimester

vs. preconception

10 −0.021 0.927

Geographical region

Asia vs. US vs. Europe vs.

Australia

10 0.084 0.597

Sample size

≥1,000 vs. <1,000 10 0.444 0.083

Year of publication

≥2010 vs. <2010 10 0.089 0.756

Type of control

Hospital vs. Population 10 0.418 0.077

Sample type

Serum/Plasma vs. Red

blood cells

10 0.216 0.534

The β-coefficient represents the change in log OR per unit increase in the relevant variable.

and PTB (Begg’s test, P = 0.592). A sensitivity analysis by
omitting one study at a time did not dramatically influence
the pooled ORs, suggesting that the combined OR was valid
and credible.

Subgroup analysis of specimen gestational age suggested no
association between blood folate levels in the first (OR = 0.68,
95% CI 0.27–1.66, P = 0.393) and second trimester (OR = 0.82,
95% CI 0.63–1.07, P = 0.139) and the risk of PTB. However, the
blood folate level in the third trimester was significantly inversely
associated with the risk of PTB (OR = 0.58, 95% CI 0.36–0.94,
P = 0.026; Figure 3A).

Subgroup analysis showed that higher plasma/serum folate
was associated with 30% lower risk of PTB (OR = 0.70,
95% CI 0.52–0.93, P = 0.014), while RBC folate was not
associated with the risk of PTB (OR = 0.89, 95% CI 0.45–1.79,
P = 0.75; Figure 3B).

Folic Acid Supplementation and Risk of
PTB
Of the 13 cohort studies that assessed folic acid supplementation
and the overall risk of PTB (Scholl et al., 1997; Vahratian et al.,
2004; Catov et al., 2007, 2011; Timmermans et al., 2009; Alwan
et al., 2010; Czeizel et al., 2010; Papadopoulou et al., 2013; Li et al.,
2014; Martinussen et al., 2015; Liu et al., 2016; Zheng et al., 2016;
Baron et al., 2017), 6 studies reported two separate outcomes
stratified by initiation time of supplementation (preconception
and postconception). In this case, each of studies could be
considered as two independent reports. Thus, there were 19
independent reports included in this meta-analysis. Among
these studies, 4 used folic acid alone and the rest used folic
acid containing multivitamins. A total of 9 stated the exact
content of folic acid supplements, and 7 out of the 9 studies
used folic acid at 400 µg daily (as suggested by WHO), and
2 used high doses of folic acid of more than 1,000 µg daily.
Overall, the lowest category (reference category) observed in
the included studies ranged from 0 to 200 µg daily, and the
highest category ranged from any folic acid/folic acid-containing
supplements consumption to ≥1,000 µg daily. Because we used
the categories reported by the studies, these categories were not
mutually exclusive. None of the studies described the mutual
effects associated with multivitamins. The main characteristics of
these studies are summarized in Supplementary Table 4.

The results combining the ORs comparing the highest and
lowest category of folic acid supplementation for the risk of PTB
are shown in Figure 4. An inverse association was found (OR
= 0.90, 95% CI 0.86–0.95), and low to moderate heterogeneity
across the studies was found (I2 = 30.1%). To examine this
heterogeneity, we conducted meta-regression analyses with
initiation time of supplementation, geographical region, source
of cohorts, and ascertainment of PTB, sample size, year of
publication and dosage of folic acid intake. As shown in Table 2,
no significant differences were observed among these subgroups.
Visual inspection of the funnel plot showed little asymmetry for
studies on folic acid supplementation and PTB risk (Figure 5).
No evidence of publication bias was found across the included
studies (Begg’s test, P = 0.284), and sensitivity analyses using
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FIGURE 3 | Forest plot of the meta-analysis of PTB risk in relation to blood folate stratified by gestational age of the specimen (A) and sample type (B), comparing the

highest category with the lowest. The diamonds and horizontal lines indicate the subgroup-specific ORs and 95% CIs. The size of the gray area reflects the

study-specific statistical weight. The vertical solid line shows the OR of 1.
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FIGURE 4 | Forest plot of the meta-analysis of PTB risk in relation to folic acid supplementation, comparing the highest category with the lowest. The diamonds and

horizontal lines indicate the corresponding ORs and 95% CIs. The size of the gray area reflects the study-specific statistical weight. The vertical solid line shows the

OR of 1, and the vertical red dashed line represents the combined effect estimate. The suffix “a” or “b” after the studies indicates two separate outcomes stratified by

the initiation time of supplementation (preconception and post-conception) in the same study.

a fixed-effect model or omitting one study at a time did not
substantially alter the pooled results.

Subgroup analysis of initiation time of folic acid
supplementation showed that initiating folic acid supplements
before conception was associated with a significant decreased
risk of PTB (OR = 0.87, 95% CI: 0.84–0.91, P < 0.001), while
starting folic acid supplementation at post-conception was
associated with a marginal decreased risk of PTB (OR = 0.90,
95% CI: 0.80–1.00, P = 0.049; Figure 6A).

In the analysis stratified by dose of folic acid intake, a
statistically significant protective effect was noted between folic
acid supplementation at a daily dosage of <1,000 µg and PTB
risk (OR = 0.90, 95% CI: 0.85–0.95, P < 0.001). However, taking
folic acid supplementation at a daily dosage of more than 1,000

µg was not significantly associated with the risk of PTB (OR =

0.95, 95% CI: 0.74–1.20, P = 0.65; Figure 6B).

Dietary Folate Intake and Risk of PTB
Of the 4 cohort studies that assessed dietary folate intake and
risk of PTB (Siega-Riz et al., 2004; Shaw et al., 2011; Sengpiel
et al., 2014; Liu et al., 2016), 1 study reported two separate
outcomes stratified by the initiation time of supplementation
(preconception and post-conception). Thus, there were 5
independent reports, including 95,448 participants, in our meta-
analysis. Out of these 5 studies, 2 studies reported the outcome
of sPTB in addition to overall PTB, 2 studies just reported sPTB,
and 1 study just reported overall PTB. In total, 3 studies reported
the overall risk of PTB in relation to dietary folate intake, and 4
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TABLE 2 | Folic acid supplementation and the risk of preterm birth analyzed by

univariate meta-regression model.

Covariate Number of

studies

β-coefficient P-value

Time of FA intake

Preconception vs.

Postconception vs.

Periconception

19 0.014 0.829

Geographical region

Asia vs. US vs. Europe 18* −0.0008 0.98

Sample size

≥1,000 vs. <1,000 19 −0.012 0.877

Year of publication

≥2010 vs. <2010 19 −0.054 0.565

Source of Cohort

Hospital vs. Population 19 0.012 0.875

Definition of GA

LMP vs. Ultrasound vs. Both 19 −0.009 0.977

Dose of intake

Moderate vs. High 19 0.067 0.571

*One study did not provide data for geographical region. The β-coefficient represents the

change in log OR per unit increase in the relevant variable. FA, folic acid; LMP, the last

normal menstrual period; GA, gestational age.

studies reported sPTB. The main characteristics of these studies
are summarized in Supplementary Tables 5, 6.

For the 3 studies about overall PTB, there was a significant
inverse association observed between dietary folate intake and
the overall risk of PTB, and the pooled OR and 95% CI for PTB
when comparing the highest with the lowest levels of dietary
folate intake was 0.68 (95% CI 0.55–0.84) with a moderate
heterogeneity (I2 = 67.8%; Figure 7A). For the 4 studies about
sPTB, a non-significant association was observed. The summary
OR and 95% CI was 0.89 (95% CI 0.57–1.41) with a high
heterogeneity (I2 = 88.1%; Figure 7B). We did not perform
subgroup analysis or sensitivity analysis due to the small number
of studies.

DISCUSSION

Principal Findings of This Study
The currentmeta-analysis is the first time to assess the association
of PTB risk with blood folate levels and dietary folate intake. We
found that blood folate levels, folic acid supplementation, and
dietary folate intake were negatively associated with the overall
risk of PTB. Furthermore, we found that dietary folate intake was
not significantly associated with the risk of sPTB.

Compared to the previous meta-analysis on folic acid
supplementation and risk of PTB, which included 9 studies,
this updated meta-analysis included 13 studies and increased
the sample size from 306,695 to 562,068 participants, which
increased the statistical power of our analysis. Moreover,
the included studies used modern methods of multivariate
adjustment rather than raw data.

Evidence from biological studies supports a role of folate
in PTB. First, folate contributes to oocyte maturation and
early placentation (Jongbloet et al., 2008; Koukoura et al.,
2012). Folate deficiency may lead to poor placentation and

influence the development of and maintenance of uteroplacental
circulation (Baker et al., 2017), which subsequently triggers
poor pregnancy outcomes including PTB (Engel et al., 2006;
Bailey, 2009). It has been observed that folate transporters,
which transfer folate from maternal circulation to the fetus, are
present at lower concentrations in preterm placentas compared
to term placentas (Castaño et al., 2017). Second, folate is also
a cofactor in the metabolism of homocysteine, which might be
a contributing factor for placental vascular disease (Van der
Molen et al., 2000), and epidemiological studies have shown
that elevated homocysteine concentrations are associated with
PTB (Bergen et al., 2012; Chen et al., 2014). Third, folate status
during pregnancy might play an anti-inflammatory role. Many
cases of PTB are associated with an abnormal inflammatory
response, which is often caused by intrauterine infection and
inflammation (Goldenberg et al., 2000). In a mouse model of
lipopolysaccharide-induced PTB, folate reduced the levels of
circulating biomarkers of inflammation, including interleukin
(IL)-6 and keratinocyte-derived cytokine in the amniotic fluid of
mice (Zhao et al., 2013).

Blood Folate Levels and Risk of PTB
We found an inverse association between blood folate levels in
the third trimester and the risk of PTB, while no significant
association was observed in the first and second trimester. This
might be explained by the following mechanisms. Placental
dysfunction is one of the risk factors for PTB (Romero et al.,
2014), and it was observed that maternal blood folate levels
decreased from the fifth month of pregnancy and plasma
homocysteine concentrations increased in later pregnancy
(Wang et al., 2016). Thus, we hypothesized that inadequate
third trimester maternal folate levels impact fetal development
by adversely affecting placental function during the period of
maximal fetal development. Previous studies have reported that
the persistence of placental dysfunction from the 24th week of
pregnancy is associated with increased risks of adverse pregnancy
outcomes (López-Quesada et al., 2004; Gaillard et al., 2013).
On the other hand, folate might also be indirectly involved
in placental development through its role in the homocysteine
cycle. Folate deficiency may disrupt the function of the enzymes
in homocysteine metabolism and lead to an increase in
homocysteine levels. It was reported that elevated homocysteine
concentration is also associated with oxidative stress, arteriolar
constriction, endothelial damage, and placental thrombosis, all of
which increase the risk of pregnancy complications (Maged et al.,
2017). Moreover, folate is an important methyl-group vitamin,
and maternal plasma folate levels are associated with offspring
DNA methylation, which is in turn related to fetal development.
It was reported that maternal folate levels in late pregnancy are
more important than folate levels in early pregnancy for overall
fetal growth (Sulaiman et al., 2017). Thus, an inverse association
was evident between maternal folate levels in the third trimester
and the risk of PTB, and maternal folate levels in the third
trimester might be an indirect predictor of PTB.

In general, the RBC folate concentration is generally
considered to reflect folate status during the preceding 3–4
months, and plasma or serum folate is a short-term measure
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FIGURE 5 | Funnel plot for studies of folic acid supplementation in relation to PTB risk. The vertical solid line represents the summary effect estimates, and the dotted

lines are pseudo 95% CIs.

reflecting fluctuation of dietary/supplement intakes over the past
month (He et al., 2016). Theoretically, the two different folate
indicators are likely to be one source of heterogeneity. Although
no evidence was found that the sample type might have affected
results, our meta-analysis suggested that there was no significant
association between RBC folate and PTB risk, but a negative
association was identified between plasma/serum folate and PTB
risk. Additionally, the higher I2 for the plasma/serum subgroup
compared to RBCs suggests that different methods for measuring
blood folate might be potential reasons for the heterogeneity,
and the difference between serum/plasma and RBCs might had
affected the I2 results to some degree.

Folic Acid Supplementation and Risk of
PTB
In accordance with a previous meta-analysis of observational
studies, we found that folic acid supplementation reduced
the risk for PTB. Moreover, we found that starting folic
acid supplementation before conception was more effective
in reducing the risk of PTB compared with post-conception.
A population-based mega-cohort study came to the same
conclusion as us (Nijhout et al., 2004). This seems biologically
plausible given that folate has a half-life of 100 days (Tamura
and Picciano, 2006). It has been well-established that folate
concentrations in the circulation decline as pregnancy advances

(Pickell et al., 2011), and it has been shown that starting folic
acid supplementation before conception significantly increases
maternal RBC folate concentrations and prevents the decline in
serum folate concentration after pregnancy, and this might be
beneficial to fetal growth (Bailey, 2009).

There have been concerns that high folic acid intake might
be linked to abnormal embryonic development and long-term
negative health outcomes in the offspring of mice (Dwarkanath
et al., 2013) and humans (Shaw et al., 2004), therefore, it
is necessary to evaluate the association between high folic
acid intake and the risk of PTB. However, a meta-analysis
of randomized controlled trials found that higher folic acid
supplementation had no significant reduction of PTB risk
(Saccone and Berghella, 2016). Another meta-analysis found that
high folic acid reduced the risk of PTB (Zhang et al., 2017).
In this meta-analysis, we found that folic acid supplementation
was effective in reducing the risk of PTB only if the daily
dose was <1,000 µg (moderate dose group), and folic acid
supplementation ≥1,000 µg per day (high dose group) did not
influence the risk of PTB. The cutoff of 1,000 µg of folic acid
supplementation was chosen because most prenatal vitamins
contain <1,000 µg folic acid (Bailey, 2009).

Dietary Folate Intake and Risk of PTB
In this meta-analysis, the included 3 studies were unable to
differentiate between spontaneous preterm birth and iatrogenic
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FIGURE 6 | Forest plot of the meta-analysis of PTB risk in relation to folic acid supplementation stratified by initiation time (A) and dose of folic acid intake (B),

comparing the highest category with the lowest. The diamonds and horizontal lines indicate the subgroup-specific ORs and 95%CIs. The size of the gray area reflects

the study-specific statistical weight. The vertical solid line shows the OR of 1. The suffix “a” or “b” after the studies indicates two separate outcomes stratified by

initiation time of supplementation (preconception and post-conception) in the same study.
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FIGURE 7 | Forest plot of the meta-analysis of PTB risk (A) and sPTB risk (B) in relation to dietary folate, comparing the highest category with the lowest. The

diamonds and horizontal lines indicate the corresponding ORs and 95% CIs. The size of the gray area reflects the study-specific statistical weight. The vertical solid

line shows the OR of 1, and the vertical red dashed line represents the combined effect estimate.

preterm birth and thus the two were equated. We found that
dietary folate intake showed a strong inverse association with
the overall risk of PTB, which was consistent with a previous a
cross-sectional study (Deniz et al., 2018). As for the 4 studies
specifically examining sPTB, dietary folate intake showed no
significant reduction in the risk of sPTB. These results should be
interpreted with caution due to the limited data, however, and
future studies are required to address these issues.

Limitations of the Study
There were several limitations in the present meta-analysis.
First, we did not include RCTs in the current meta-
analysis. Because of ethical issues, few RCTs have been
conducted that have studied the association between folic
acid supplementation and PTB compared to placebo or to
no supplementation. Second, there were not enough studies
to explore the dose-response trend of blood folate levels and
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folic acid supplementation in relation to PTB risk. Third,
only a relatively small number of studies on the association
between dietary folate intake and PTB risk have been published,
so conclusions should be drawn with caution. Moreover,
we defined folic acid supplementation as folic acid alone
or folic acid-containing vitamins, and this might have led
to the introduction of clinical heterogeneity. We were also
unable to assess the mutual effect of multivitamins because
of insufficient information. In addition, major risk factors for
PTB, including socioeconomic status, lifestyle factors, and
adverse health behaviors were difficult to control for in the
included studies.

CONCLUSIONS

In summary, the results of the present meta-analysis suggest
that higher folate levels and folic acid supplementation are
significantly associated with a lower overall risk of overall PTB.
Dietary folate intake seemed to be significantly associated with a
decreased risk of overall PTB and was not associated with risk of
sPTB. However, this should be interpreted with caution because
of the small number of studies. Subgroup analyses indicated that
higher maternal folate levels in late pregnancy are associated with
lower PTB risk and that initiating folic acid supplementation
early before conception has a significant protective effect
against PTB.

Therefore, considering the increasing numbers of preterm
infants and recent reports on the neuroprotective effect of folate
intake during pregnancy (Julvez et al., 2009), pregnant women
should reinforce and start folate intake early before conception
in order to reduce the risk of PTB and subsequent risks
for long-lasting neurodevelopmental impairments. Additionally,
moderately decreased folate levels in late pregnancy might
increase the risk of PTB, and this will help with clinical risk
stratification and patient counseling.
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Polysubstance use (PSU) is highly prevalent among college students. Recent evidence
indicates that PSU is based on gene x environment (G×E) interactions, yet the specific
biosocial factors underlying this problem remain elusive. We recently reported that lifetime
use of tobacco and cannabis in college students is influenced by the interaction of the X-
linked MAOA (monoamine oxidase A) gene and child maltreatment. Building on these
premises, here we evaluated whether the same G×E interaction may also predict PSU in
this population. Students of a large Midwestern university (n = 470; 50.9% females) took
part in a computer survey for substance use, as well as childhood trauma exposure, using
the Child Trauma Questionnaire (CTQ). DNA was extracted from their saliva samples and
genotyped for MAOA variable-number of tandem repeat (VNTR) variants. Findings
indicated that the highest number of substances were used by male students
harboring low-activity MAOA alleles with a history of childhood emotional abuse. In
contrast, female homozygous high-activity MAOA carriers with a history of emotional
and physical abuse reported consumption of the greatest number of substances. Our
results indicate that PSU among college students is influenced by the interaction ofMAOA
and child maltreatment in a sex-specific fashion. Further studies are warranted to
understand the mechanisms of sex differences in the biosocial interplays underlying
PSU in this at-risk group.

Keywords: polysubstance use, MAOA, child maltreatment, sex differences, gene × environment interactions
INTRODUCTION

Polysubstance use (PSU) is a major health concern that has garnered much attention from clinicians
and researchers, due to its robust association with substance use disorders and other negative
outcomes throughout the lifespan (McCabe et al., 2006; Trenz et al., 2012; Moss et al., 2014). Recent
surveys have ascertained that PSU risk is particularly high among college students (Gledhill-Hoyt
et al., 2000; Johnston et al., 2004; Mohler-Kuo et al., 2003; Barrett et al., 2006; National Center on
January 2020 | Volume 10 | Article 1314146
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Addiction and Substance Abuse at Columbia University, 2007;
O'Grady et al., 2008) with alcohol, tobacco, and cannabis being
the three most widely used substances in this population (Lipari
and Jean-Francois, 2016). Indeed, these drugs share similar
trajectories of use among emerging adults, with high rates of
comorbidity (Jackson et al., 2008) and simultaneous
consumption (Martin et al., 1992; Baggio et al., 2014).

Vulnerability to PSU, and more generally to substance use
disorders and related behavioral phenotypes (including
externalizing psychopathology), is strongly influenced by both
genetic (Uhl et al., 2001; Dick et al., 2009) and environmental
factors. Several genes implicated in the predisposition to
substance use disorders have been shown to be related to
monoamine neurotransmitters, such as serotonin, dopamine,
and norepinephrine (Guo et al., 2007; Ducci and Goldman,
2012); these molecules are known to serve a pivotal role in the
pathophysiology of drug abuse (Volkow et al., 2007; Fitzgerald,
2013; Müller and Homberg, 2015). Early-life adversity, and
particularly child maltreatment is another well-known variable
associated with high risk of PSU (Galaif et al., 2001; Leeb et al.,
2008; Goldstein et al., 2013; Cohen et al., 2017). It has been
estimated that ~70% of adolescents receiving substance abuse
treatment have a history of trauma (Funk et al., 2003), and that
maltreated children are 300% more likely to develop substance
abuse (Kilpatrick et al., 2003). According to recent conceptual
frameworks, the pathogenic influence of child maltreatment and
other forms of early stress on PSU is moderated by genetic
factors (Vink, 2016). However, only limited data are available on
the specific interactions of heritable factors and child
maltreatment with respect to PSU predisposition.

We recently showed that, among college students, tobacco
and cannabis consumption is influenced by the interaction of
child maltreatment and the gene MAOA, the X-linked gene
encoding for monoamine oxidase A (Fite et al., 2018). In line
with our report, Stogner and Gibson (2013) also documented
that the interplay of this gene with lifetime stress increases the
risk for initiation to alcohol and cannabis use in male
adolescents. Monoamine oxidase A catalyzes the degradation
of serotonin, norepinephrine and dopamine (Bortolato et al.,
2008). The best-characterized MAOA functional polymorphism
is a 30-bp variable number tandem repeat located in its promoter
region (uVNTR) (Sabol et al., 1998). The six alleles of this
genotype feature different numbers of repeats (2, 3, 3.5, 4, 5,
and 6) (Huang et al., 2004), in association with different
transcriptional efficiency and enzyme activity. The two- and
three-repeat variants, which are associated with low activity
(Sabol et al., 1998; Deckert et al., 1998; Denney et al., 1999),
confer a greater risk for externalizing psychopathology in male
carriers with a history of maltreatment (Caspi et al., 2002; Kim-
Cohen et al., 2006; Williams et al., 2009; Fergusson et al., 2011).

A large body of evidence has documented thatMAOA uVNTR
variants exert a sex-dimorphic influence on the overall risk and
specific clinical manifestations of alcohol use disorders, both per
se and in interaction with early-life adversity (Samochowiec et al.,
1999; Schmidt et al., 2000; Vanyukov et al., 2004; Guindalini
et al., 2005; Herman et al., 2005; Ducci et al., 2008; Nilsson et al.,
Frontiers in Genetics | www.frontiersin.org 247
2011). Low-activity uVNTR alleles (hereafter designated as
MAOA-L), for example, are associated with a younger age of
onset of alcohol dependence (Vanyukov et al., 1995; Vanyukov
et al., 2004) and antisocial alcoholism (Samochowiec et al., 1999)
in males. A history of maltreatment predisposes female carriers of
high-activity alleles (MAOA-H) or male MAOA-L carriers to a
greater risk of alcohol use (Nilsson et al., 2011). In alignment with
these findings, we found that greater lifetime tobacco use was
predicted by the interaction of childhood maltreatment and
MAOA-L variants in males and MAOA-H alleles in females
(Fite et al., 2018).

Given these premises, the present study tested the hypothesis
that the same gene x environment (G×E) interactions may
predispose to PSU in college students and analyzed whether
the influence of these biosocial interplays may follow a sex-
dimorphic pattern.
METHODS

Participants
Participants were 470 students (239 females and 231 males; see
Table 1) enrolled in undergraduate psychology courses at a large
Midwestern university. Recruitment was based on SONA, an
online system that allows students to electronically sign up to
participate in active studies at the university. Most students
(71.1%) identified as Caucasians, attended the first year of
college (61.1%) and reported that their parents had a higher
educational level than high school (80.9% of fathers and 79.7%
of mothers).

Procedures
All study procedures were approved by the researchers'
Institutional Review Board. All participants were instructed to
abstain from eating for 1 h before the study, and refrain from the
use of any drug (including prescription medicines and
caffeinated beverages) for at least 3 h before the study. Upon
arrival, they were given a complete summary of the study and
provided informed consent. Subsequently, participants rinsed
their mouth with water and, ten minutes later, were instructed to
give 2 ml of saliva in a tube for genetic analyses. Then, they
provided demographic information, including their age and race/
ethnicity, and completed a Qualtrics online survey in about 1 h.
At the end of the study, participants were compensated with a $5
debit card for the saliva sample and 3 SONA credits for the
survey. To keep the identity of participants anonymous, survey
responses and saliva samples were assigned a unique ID without
any identifying information.

Questionnaires
The survey included the following questionnaires:

1. the Child Trauma Questionnaire (CTQ), a standardized self-
report instrument for the retrospective assessment of trauma
exposure during childhood (Bernstein and Fink, 1998). The
CTQ consists of 5 subscales of trauma (physical abuse,
January 2020 | Volume 10 | Article 1314
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emotional abuse, sexual abuse, physical neglect, and emotional
neglect) with multiple items based on a 5-point Likert scale
format. Mean scores for each subscale, as well as an overall
child maltreatment score, were calculated. The physical
neglect subscale yielded the lowest reliability coefficient (a =
0.56) in the current sample; internal consistencies for the
remaining four subscales were good (with all a's > 0.81);

2. A substance use questionnaire. based on three items from the
Center for Substance Abuse Prevention (CSAP) Student
Survey (Pentz et al., 1989), a self-report instrument assessing
lifetime tobacco (i.e., “Have you ever smoked a cigarette, even
just a few puffs, or used chewing tobacco, snuff, or dip),
alcohol (i.e., “Have you ever had a drink of alcohol?”), and
cannabis use (i.e., “Have you ever tried marijuana?”). The
number of substances used by each participant was calculated
(ranging from 0 to 3).

MAOA uVNTR Variants Genotyping
DNA extracted and MAOA-uVNTR genotyping were performed
as previously described (Fite et al., 2018). All laboratory
procedures were carried out by personnel blind to the
demographic and psychological characteristics of the subject
(other than gender). All genotype data of participants are
shown in Table 2. Given that the MAOA gene is located on
the X chromosome, males were designated as either low-activity
(MAOA-L) or high-activity (MAOA-H) hemizygous, depending
on the number of repeats of their allelic variant (2 and 3 vs 3.5
and 4, respectively). Conversely, females were either
homozygous for either allele (MAOA-LL or MAOA-HH) or
heterozygous carriers (MAOA-LH). In line with previous
studies on MAOA (Byrd and Manuck, 2014), carriers of 5-
repeat uVNTR alleles were excluded from the analyses, as the
actual functional significance of this variant remains
controversial (Sabol et al., 1998; Deckert et al., 1998). To allow
Frontiers in Genetics | www.frontiersin.org 348
for comparability between males and females, MAOA-LL and
MAOA-LH female participants were combined (n = 165), in
agreement with previous functional studies on sex-dimorphic
effects of MAOA uVNTR variants (Fan et al., 2003; Meyer-
Lindenberg et al., 2006; Frazzetto et al., 2007; Buckholtz et al.,
2008; Dannlowski et al., 2009) The validity of this approach was
confirmed by analyzing the interactions of MAOA genotype
variants (MAOA-LL, MAOA-HH, and MAOA-LH) and
maltreatment types in female participants. The results of these
analyses indicated that MAOA-LH genotype operated consistent
with the MAOA-LL genotype in its interaction with
maltreatment types to predict PSU. All genotypic and
phenotypic data are presented as Supplementary Materials.

Data Analysis
Of the original 500 students recruited for the study, MAOA
genotyping could not be performed for 11 participants, while 11
participants were missing CTQ and/or substance use data. We
further excluded 8 participants (4 males and 4 females) carrying
5-repeat uVNTR alleles. Based on power tables (Aiken and West,
1991), it was determined that the current sample had adequate
power (a = 0.80) to detect moderate to large, but not small,
MAOA × maltreatment interaction effects for males and females.
No differences in sex or age (ps > 0.48) or in child maltreatment
scores (ps > 0.16) were found in the comparison between the
participants included in and excluded from the analyses.
Multiple regression models were used to evaluate proposed
associations. Substance use count was the dependent variable
in each model, with sex, MAOA variant, and maltreatment types
included as independent variables. All five maltreatment types
were included in each model to evaluate unique associations.
Three-way interactions (e.g., sex × MAOA variant ×
maltreatment type) were then evaluated one at a time to
determine if child maltreatment-MAOA interactive effects
TABLE 1 | Participant demographics and descriptive statistics.

Overall Sample (n = 470) Males (n = 231) Females (n = 239)

M (SD) Age 18.95 (1.19) 19.14 (1.25) 18.76 (1.10)
Year in school
% 1st year student 61.1 55.8 66.1
% 2nd year student 27.4 29.4 25.5
% 3rd year student 8.9 11.7 6.3
% 4th year student 1.9 2.6 1.3
% 5th year or more student 0.7 0.5 0.8
Race/Ethnicity
% Caucasian 71.1 72.7 69.5
% African American 3.6 3.0 4.2
% Hispanic/Latino 6.2 4.8 7.5
% Native American 1.3 .9 1.7
% Asian 10.6 10.4 10.9
% Mixed or other 7.2 8.2 6.2
Medical History
% Psychological Disorder 13.2 10.4 15.9
% Current Illness/Injury 3.4 3.5 3.3
% Currently Medications 43.4 25.1 61.1
Parental Education at birth
% Fathers greater than high school 80.9 81.0 78.4
% Mothers greater than high school 79.7 83.8 78.2
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depended on sex. All independent variables were mean centered
prior to analyses to aid in the interpretation of interaction effects.
Statistically significant interactions were probed based on sex
(male vs. female) and for MAOA variants to determine the
nature of the interactions, consistent with standard procedures
(Aiken and West, 1991).
RESULTS

Approximately 11.5% of the sample had not used any substance,
28.9% of the sample had used one substance, 23.2% had used two
substances, and 36.4% of the sample had used three substances.
Based on the clinical cutoff scores recommended by Bernstein
and Fink (1998), ~46.5% of the sample reported at least low levels
of one or more maltreatment types. This percentage is consistent
with previous data on undergraduate, emerging adult samples
(Reichert and Flannery-Schroeder, 2014).

Regression analyses indicated a significant three-way interaction
when examining any experience of maltreatment (B = 1.36, p = 0.00;
see Table 3). Additionally, a significant three -way interaction was
found for physical abuse (B = 1.37, p = 0.00) as well as emotional
abuse (B = 0.58, p = 0.04). However, no significant three -way
interactions were found for any other child maltreatment type:
physical neglect (B = 0.54, p = 0.26), emotional neglect (B = 0.40, p =
0.15), or sexual abuse (B = 0.43, p = 0.39). Additionally, no
significant two-way interactions between maltreatment variables
and MAOA alleles were evident (ps > 0.12).
Frontiers in Genetics | www.frontiersin.org 449
The statistically significant three -way interactions with any
maltreatment type, physical abuse, and emotional abuse were
further evaluated by conducting tests of the simple slopes
(Table 4). Specifically, the models were conditioned at MAOA-H
andMAOA-L for both males and females to determine the patterns
of associations. For MAOA-L males, there was a marginally
statistically trend for any maltreatment type (B = 0.42, p = 0.08)
(Figure 1A) and statistically significant effect for and emotional
abuse (B = 0.38, p = 0.03) (Figure 1C) to be positively associated
with the number of substances used. However, an association
between physical abuse and number of substances used was not
found (B = 0.26, p = 0.17) (Figure 1B). For MAOA-H males, any
maltreatment type was marginally statistically negatively associated
(B = -0.42, p = 0.07) (Figure 1A) and physical abuse was statistically
negatively associated (B = -0.33, p = 0.03) with the number of
substances used (Figure 1B). Emotional abuse (B = -0.05, p = 0.77)
TABLE 2 | Genotypic data of all participants. Genotypes containing 5-repeat variants were not included in either MAOA low-activity (MAOA-L) or high-activity (MAOA-H)
allele groups. For more details, see text.

MALES

Number of repeats Number Percentage

MAOA-L 2 1 0.43%
3 93 39.57%

MAOA-H 3.5 10 4.26%
4 127 54.04%

Excluded genotypes 5 4 1.70%

FEMALES

Number of repeats Number Percentage

MAOA-LL 2-2 1 0.41%
2-3 1 0.41%
3-3 42 17.28%

MAOA-LH 2-3.5 0 0%
2-4 1 0.41%
3-3.5 2 0.82%

3-4 118 48.56%

MAOA-HH 3.5-3.5 0 0%
3.5-4 4 1.65%
4-4 70 28.81%

Excluded genotypes 2-5 0 0%
3-5 0 0%
3.5-5 0 0%
4-5 4 1.65%
January 2020 | Volume 10
TABLE 3 | Three-way interaction regression analyses. Significant results are
indicated in bold.

SU Count

B p

Sexual Abuse 0.43 0.39
Emotional Neglect 0.40 0.15
Physical Abuse 1.37 0.00
Emotional Abuse 0.58 0.04
Physical Neglect 0.54 0.26
Any Maltreatment 1.36 0.00
| Article
 1314

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Fite et al. Gene–Environment Interactions in Polydrug Use
was statistically unrelated to number of substances used for
MAOA-H males (Figure 1C).

In contrast, for female carriers of low-activity MAOA variants
(MAOA-LL and MAOA-LH), there was no association evident
between any maltreatment type (B = 0.00, p = 0.99) (Figure 1A),
physical abuse (B = -0.25, p = 0.18) (Figure 1B), or emotional
abuse (B = 0.19, p = 0.17) (Figure 1C) and number of substances
used. For homozygousMAOA-H females, there was a statistically
significant positive association between any maltreatment type
(B = 0.52, p = 0.04) (Figure 1A), and physical abuse (B = 0.54, p =
0.03) (Figure 1B), and emotional abuse (B = 0.34, p = 0.04)
(Figure 1C) and number of substances used.
DISCUSSION

The results of the current study showed that, in a sample of students
enrolled in a large Midwestern university, PSU was predicted by the
interaction ofMAOA uVNTR allelic variants, sex, and specific child
maltreatment types. The highest number of substances used was
found in MAOA-L male and MAOA-HH female carriers with a
history of emotional abuse (as well as physical abuse in women). To
our knowledge, this is the first report documenting a key role of
MAOA as a mediator of child maltreatment with respect to PSU.
While previous studies have shown the importance of G×E
interactions in PSU (Vaughn et al., 2009; Rende, 2011), the
specific genetic factors implicated in such biosocial interplays
Frontiers in Genetics | www.frontiersin.org 550
remain mostly elusive; if confirmed by future studies, our results
may point to MAOA as a key molecular basis for PSU.

The present findings extend our previous report of sex-
dimorphic influences of G×E interactions in the lifetime use of
tobacco (Fite et al., 2018) among college students. Furthermore,
these results are consistent with previous evidence indicating sex
differences in the interactive influence of these G×E interactions
with respect to antisocial conduct (Nikulina et al., 2012; Stogner and
Gibson, 2013; Byrd and Manuck, 2014; Harro and Oreland, 2016)
and alcohol use (Nilsson et al., 2011). The interaction of MAOA
alleles and child maltreatment can be interpreted from the
perspective of the diathesis-stress model, which postulates that
the predisposition to specific neurobehavioral deficits is the result
of a synergistic combination of genetic and environmental
untoward factors (Zuckerman, 1999). Another alternative
interpretation follows the differential susceptibility hypothesis,
which posits that specific genetic variables may sensitize to both
the positive and the negative influence of early experiences (Ellis
et al., 2011). This possibility is partially supported by Belsky and
colleagues (Belsky et al., 2009; Belsky and Beaver, 2011), who
have conceptualized that MAOA variants may act as plasticity
factors in the predisposition to substance use and other
psychopathological conditions.

In line with previous data (Armour et al., 2014), the current
results highlight the importance of examining specific
maltreatment types in relation to PSU. Our findings suggest
that, although physical abuse and emotional abuse interact with
MAOA variants to predict PSU even when statistically controlling
FIGURE 1 | Associations between child maltreatment types and substance use count for male and female carriers of MAOA uVNTR variants. (A) Overall
associations with child maltreatment scores. (B) Associations with physical abuse scores. (C) Associations with emotional abuse scores.
TABLE 4 | Simple-slope analyses of three-way interactions. SE, standard error. *p < 0.05; +p < 0.09.

Males Females

MAOA – L MAOA – H MAOA – LL+ MAOA-LH MAOA – HH

B SE B SE B SE B SE

Any Maltreatment 0.42+ 0.24 –0.42+ 0.23 0.00 0.16 0.52* 0.26
Physical Abuse 0.26 0.19 –0.33* 0.15 –0.25 0.19 0.54* 0.24
Emotional Abuse 0.38* 0.17 –0.05 0.17 0.19 0.14 0.34* 0.17
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for the other maltreatment types, no interaction effects were
found for sexual abuse, physical neglect, or emotional neglect.
This evidence is partially consistent with a previous study by
Nikulina and colleagues (2012) suggesting that MAOA does not
serve as a protective or risk factor for substance use outcomes
among individuals who have experienced childhood sexual abuse.
However, in contrast with our results, the results of that
investigation showed that alcohol use was not predicted by the
interaction ofMAOA with either physical abuse or neglect. Given
that the participants of that study ranged between 31 and 51 years
of age, it is possible that the discrepancy with those results may
reflect age differences; accordingly, the moderating effect of
MAOA on child maltreatment and negative outcomes has been
hypothesized to be age-dependent (Huizinga et al., 2006).
Alternatively, these divergent findings may result from other
differences between our studies, including the substance use
outcomes (i.e., PSU vs alcohol abuse) and measurement of child
maltreatment (i.e., self-report vs official records). Nevertheless,
research shows that experiences of child maltreatment are
associated with decreased propensity for reward selection,
which could be due to lower reward sensitivity (Guyer et al.,
2006). In turn, this dual risk might increase the risk of PSU. Thus,
child maltreatment types, physical abuse and emotional abuse
may be more saliently associated with blunted reward sensitivity.

The existence of sex-dimorphic G×E interactions involving
MAOA uVNTR a l le les has been at tes ted in other
psychopathological states. For example, male carriers of
MAOA-L alleles with a history of child maltreatment have a
significantly higher risk of antisocial, aggressive, and violent
behavior (Caspi et al., 2002; Kim-Cohen et al., 2006; Beaver
et al., 2010; Aslund et al., 2011; Fergusson et al., 2011; Fergusson
et al., 2012; Byrd and Manuck, 2014; Godar et al., 2016). Notably,
the same G×E interaction has been reproduced in mouse models,
further supporting the biological nature of this biosocial interplay
(Godar et al., 2019). Conversely, female carriers of MAOA-H
alleles with a positive history for early-life adversity display a
higher proclivity for antisocial and violent responses (Sjöberg
et al., 2007; McGrath et al., 2012; Verhoeven et al., 2012). It has
been hypothesized that this effect may reflect the enhancement of
emotional reactivity during adolescence (Byrd et al., 2018).
Furthermore, these effects may reflect sex- and genotype-
specific differences in the effects of MAOA on monoamine
metabolism (Jönsson et al., 2000; Aklillu et al., 2009). Notably,
aggression and delinquency have been extensively linked to PSU,
particularly in boys (McCormick and Smith, 1995; Mason and
Windle, 2002; Martinotti et al., 2009). This concurrence strongly
suggests that the G×E interaction of MAOA genotype and child
maltreatment may predispose to a broad set of externalizing
responses, ranging from antisocial personality to PSU
propensity. In line with this interpretation, neuroimaging
studies have pointed to MAOA as a key molecule to influence
the function of the anterior cingulate cortex (ACC) (Passamonti
et al., 2008). This region plays a major role in the regulation of
self-regulation (Posner et al., 2007), the key domain implicated in
the ontogeny of antisocial behavior (Gardner et al., 2008;
Frontiers in Genetics | www.frontiersin.org 651
Trentacosta and Shaw, 2009; Gillespie et al., 2018), as well as
in the role of G×E interactions in PSU (Vaughn et al., 2009). The
effects of MAOA on ACC activation patterns are sex-dimorphic;
specifically, MAOA-L male and MAOA-H female carriers with a
history of early stress display impairments in the activation of the
ACC in response inhibition (Holz et al., 2016), a process directly
related to self-regulation (Posner and Rothbart, 1998; Blair and
Ursache, 2011; Hofmann et al., 2012). It should be noted that
functional deficits of the ACC are associated with a reduction in
inhibitory control (Bush et al., 2000; Chan et al., 2011), as well as
a facilitation of ventral striatal responses to incentive stimuli,
which in turn increases drug use propensity (Holmes et al., 2016;
Koyama et al., 2017). Notably, these deficits may be particularly
overt in young individuals (and therefore highly relevant in the
age range of college students), due to their incomplete
myelination of the ACC as well as the development of the
dopaminergic system, which further exacerbates their proclivity
to engage in impulsive and risky actions and heightens their
reward sensitivity (Casey et al., 2008; Steinberg, 2008). At least in
females, the presence of MAOA-H alleles may further reduce
dopamine levels, ultimately promoting the ontogeny of reward
deficiency syndrome (Blum, 2017; Blum et al., 2018). From this
perspective, these results suggest that the interaction ofMAOA-L
alleles in males and MAOA-H in females and early-life
maltreatment may interfere with the development of inhibitory
control in emerging adulthood, ultimately increasing PSU risk.

Several limitations of this study should be acknowledged.
Firs t , our analyses focused exc lus ive ly on MAOA
polymorphisms, yet several studies point to the importance of
many other genes in the vulnerability to PSU, such as those
encoding for dopamine receptor 2 and 4 as well as dopamine and
serotonin transporters (Blum et al., 2010); further studies are
needed to evaluate the potential interaction of child
maltreatment with these vulnerability factors. Second, although
rich literature has documented thatMAOA variants interact with
childhood maltreatment to increase the propensity for
externalizing behaviors, our findings need to be replicated in
larger samples frommultiple colleges and with less skewed ethnic
distribution. Indeed, our sample comprised of predominantly
Caucasian youth, which may limit the generalizability of current
results. Second, this study relied solely on self-reports of
constructs, with a low internal consistency associated with our
measure of physical neglect. Future research examining
associations in other samples (e.g., clinical and criminal) using
multiple, psychometrically sound assessments of constructs
would be useful for establishing generalizability of findings.
Finally, our research combined two- and three-repeat variant
carriers in the MAOA-L group; however, previous studies,
however, have shown that, in males, two-repeat alleles resulted
in much lower levels of promoter activity as well as stronger
phenotypic effects than the three-repeat genotype (Sabol et al.,
1998; Guo et al., 2008). Notably, two-repeat variants have shown
to increase antisocial phenotypes, including the propensity to
engage in particularly violent conduct (such as shooting and
stabbing), in African-American males (Beaver et al., 2013; Beaver
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https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Fite et al. Gene–Environment Interactions in Polydrug Use
et al., 2014). Unfortunately, given that only one male participant
was found to carry the two-repeat alleles, our analyses were not
sufficiently powered to differentiate across specific genotypes;
however, future studies will be needed to verify whether specific
differences may be identified with respect to the interaction of
specific variants with early maltreatment.

Despite these limitations, the current study contributes to the
growing literature indicating sex differences in genetic risk of
MAOA in addition to the importance of the interactive
influences of genetic and environmental risk for PSU. Further,
findings indicate the importance of evaluating specific
maltreatment types to better understand MAOA and
maltreatment interactive risks for substance use.
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Exposure to environmental tobacco smoke (ETS) is associated with high morbidity and
mortality, mainly in childhood. Our aim was to evaluate the effects of postnatal ETS
exposure in the brain 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) uptake of mice by
positron emission tomography (PET) neuroimaging in a longitudinal study. C57BL/6J
mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal
day 3 (P3) to P14. PET analyses were performed in male and female mice during
infancy (P15), adolescence (P35), and adulthood (P65). We observed that ETS exposure
decreased 18F-FDG uptake in the whole brain, both left and right hemispheres, and
frontal cortex in both male and female infant mice, while female infant mice exposed
to ETS showed decreased 18F-FDG uptake in the cerebellum. In addition, all mice
showed reduced 18F-FDG uptake in infancy, compared to adulthood in all analyzed
VOIs. In adulthood, ETS exposure during the early postnatal period decreased brain 18F-
FDG uptake in adult male mice in the cortex, striatum, hippocampus, cingulate cortex,
and thalamus when compared to control group. ETS induced an increase in 18F-FDG
uptake in adult female mice when compared to control group in the brainstem and
cingulate cortex. Moreover, male ETS-exposed animals showed decreased 18F-FDG
uptake when compared to female ETS-exposed in the whole brain, brainstem, cortex,
left amygdala, striatum, hippocampus, cingulate cortex, basal forebrain and septum,
thalamus, hypothalamus, and midbrain. The present study shows that several brain
regions are vulnerable to ETS exposure during the early postnatal period and these
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effects on 18F-FDG uptake are observed even a long time after the last exposure.
This study corroborates our previous findings, strengthening the idea that exposure to
tobacco smoke in a critical period interferes with brain development of mice from late
infancy to early adulthood.

Keywords: environmental tobacco smoke, passive smoke, neuroimaging, positron emission tomography,
18F-FDG uptake, glucose metabolism, longitudinal study, brain

INTRODUCTION

Exposure to environmental tobacco smoke (ETS), one of the most
common indoor pollutants, is composed of both mainstream and
sidestream smoke. Approximately 40% of children in the world
are exposed to ETS, which is related to allergic reactions in the
short-term, while it is associated to acute myocardial infarction,
lung cancer, and chronic obstructive pulmonary disease in the
long term (Oberg et al., 2011).

Clinical studies show that ETS leads to behavioral disorders
and deleterious effects on the brain. The exposure to ETS is
related to attention deficits and hyperactive behavior during
childhood (Pagani, 2014), while maternal smoke during lactation
causes sleep and wake disruption (Banderali et al., 2015). Also,
paternal smoke in the early postnatal period of childhood
has been linked with perinatal mortality, respiratory disease,
neurobehavioral problems, decreased academic performance,
and brain tumors (Plichart et al., 2008; Hwang et al., 2012).
Adolescents exposed to tobacco smoke during prenatal period
show distinct brain function in the working memory and
alterations in the brain volume, especially in the cerebellum (de
Zeeuw et al., 2012; Bennett et al., 2013). In rodents, exposure to
mainstream smoke during a critical period of brain development
leads to hyperactivity and aggressive behavior (Yochum et al.,
2014), while exposure to ETS disturbs cognitive functions,
synaptic proteins, and myelination process from late infancy to
early adulthood (Torres et al., 2015a,b).

Positron emission tomography (PET) is a molecular imaging
technique that enables studying brain function in vivo. The 2-
deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) has been widely used
to evaluate changes in cerebral glucose metabolism. 18F-FDG
is required in metabolically active tissues, and the metabolic
activity of a brain region is directly proportional to the amount
of 18F-FDG that accumulates in this region (Sokoloff et al., 1977;
Welch et al., 2013).

Relatively few studies evaluated the effects of tobacco smoke
on brain glucose metabolism by PET imaging and focuses
on dependence by nicotine in humans. In a context of
tobacco craving and exposure to cues that are related to
tobacco, heavy smokers showed rise in glucose metabolism in
the anterior cingulate gyrus, orbitofrontal cortex, dorsolateral
prefrontal cortex, anterior insula, and sensorimotor cortex
(Brody et al., 2002). In addition, smokers treated with bupropion,
a norepinephrine and dopamine reuptake inhibitor, showed
decrease in glucose metabolism in the anterior cingulate cortex
(Brody et al., 2004). Costello et al. (2010) reported that bupropion
and practical group counseling reduce glucose metabolism in
the posterior cingulate gyrus, with association between cigarette

use and 18F-FDG uptake in the occipital gyrus and parietal–
temporal junction (Costello et al., 2010). However, there is
still a lack of studies evaluating the effects of tobacco smoke
on glucose metabolism during the brain development period.
Thus, our aim was to investigate the effects of ETS during the
early postnatal period on glucose metabolism in a longitudinal
preclinical study, by 18F-FDG PET imaging during mice infancy,
adolescence, and adulthood.

MATERIALS AND METHODS

Animals
C57BL/6 mice were obtained from the animal facility of the
School of Medicine of University of São Paulo and were housed
at 20–22◦C with a 12 h/12 h light/dark cycle with water and
commercial pellet food for small rodents from Nuvital (Nuvilab
CR-1; Colombo, Brazil) ad libitum. All of the procedures were
approved by the Ethics Committee of the School of Medicine
(027/14) and the School of Pharmaceutical Sciences (P446/14),
University of São Paulo.

Experimental Design
The size of each litter was randomly adjusted to six to seven
pups within the first day after delivery, as previously described
by Torres et al. (2015b). The C57BL/6 pups were exposed to
ETS as described by Lobo-Torres et al. (2012). Briefly, the pups,
together with their mothers, were subjected to two exposure
sessions per day of 1-h each (1 h at 8 a.m. and 1 h at 5 p.m.)
to a mixture of mainstream and sidestream tobacco smoke from
reference cigarettes 3R4F (College of Agriculture, University of
Kentucky). The exposure was performed from the 3rd (P3)
to the 14th (P14) days of life, within a chamber measuring
564 × 385 × 371 mm. The levels of CO in the chamber during
the exposure (470.2 ± 90.93 ppm) and measurements of the
exposure biomarkers (COHb: 21.62 ± 1.80%; plasma nicotine:
139.94 ± 13.02 ng/mL; plasma cotinine: 113.65 ± 16.78 ng/mL)
were similar to previous studies from our group (Torres et al.,
2015a,b). Control subjects were exposed to the same experimental
conditions but inhaled compressed air only.

Based on Vanhove et al. (2015), the number of animals
required for imaging studies for changes about 20–25% is four
to six animals. Thus, in the present study, we opted to use five
animals of each sex in each group. Nonetheless, we used the
isogenic C57Bl/6 mice in order to reduce intra-animal variability.

After the exposure period, 19 animals were used from P15
to P65 to evaluate the regional brain metabolism of the animals
with 18F-FDG on PET/CT during infancy (P15; n = 5 females
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ETS-exposed and n = 4 females control; n = 5 males ETS-exposed
and n = 5 males control), adolescence (P35; n = 4 females ETS-
exposed and n = 4 females control; n = 5 males ETS-exposed and

n = 5 males control), and adulthood (P65; n = 5 females ETS-
exposed and n = 4 females control; n = 5 males ETS-exposed and
n = 5 males control) in a longitudinal study.

FIGURE 1 | 18F-FDG uptake in the whole brain (A), left hemisphere (B), right hemisphere (C), frontal cortex (D), and cerebellum (E) for female and male infant (n = 5
females ETS-exposed and n = 4 females control; n = 5 males ETS-exposed and n = 5 males control), adolescent (n = 4 females ETS-exposed and n = 4 females
control; n = 5 males ETS-exposed and n = 5 males control), and adult (n = 5 females ETS-exposed and n = 4 females control; n = 5 males ETS-exposed and n = 5
males control) mice exposed to ETS during the early postnatal period. Three-way mixed ANOVA with repeated measures (groups × VOIs) and post hoc paired t-test
(Bonferroni) with multiple comparison correction. Continuous bar: p < 0.05. Dashed bar: trend toward statistical significance.
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18F-FDG-PET/CT Imaging
Positron emission tomography/CT images were acquired
using a protocol modified from Welch et al. (2013). Briefly,
animals received about 19 MBq (18.86 ± 2.70) of 18F-FDG
intraperitoneally (i.p.). After 65 (67 ± 5) min of injection
(biodistribution period of the radiotracer), animals were
anesthetized with isoflurane (2% in O2) and positioned in an
equipment bed with the brain in the center of the field of view
(FOV). The scanner used was an Albira PET-SPECT-CT (Bruker
Biospin, Valencia, Spain), for small animals. The static PET
image was acquired for 50 min with 94.4 mm of trans-axial
FOV. A CT scan was acquired immediately after, with 400
projections, 45 kVp, and 400 µA and magnification factor of
1.46. After acquisitions, PET images were reconstructed using
maximum-likelihood expectation–maximization (MLEM), with
12 iterations, and corrected for radioactive decay, scatter, and
random, but not for attenuation. CT was reconstructed using
filtered back projection (FBP) algorithm.

PET Image Analysis
Positron emission tomography image analysis was performed
with PMOD 3.4 software (PMODTM Technologies Ltd.,
Switzerland). The scans were manually co-registered to: (1) own
animal CT for analysis in the different animals’ age and (2) to
a T2 weighted MRI template (available in the PMOD software)
in the adult animals’ analysis to facilitate the identification of
different brain regions.

In the analysis of the brain in the different ages, manual
volumes of interest (VOIs) were drawn in the PET images fused
to the CT (Zovein et al., 2004). Due to the small size of the
infant animals’ brain, to allow comparison with adolescent and
adult mice, the VOIs for all ages were defined as whole brain,
left and right brain hemispheres, frontal cortex, and cerebellum,
always using the skull defined by the CT as a border line.
When analysis was restricted to adult animals, PET image was
co-registered to the MRI template and different brain regions
considered in the analysis (whole brain, brainstem, cortex,
cerebellum, left and right amygdala left and right striatum, left
and right hippocampus, cingulate cortex, basal forebrain and
septum, thalamus, hypothalamus, and left and right midbrain).

The 18F-FDG uptake is presented as a standardized uptake
value (SUV) which is calculated as radioactivity concentration
(kBq/cc) divided by the ratio between injected dose (kBq) and
animal body weight (g).

Statistical Analysis
As in young animals it is difficult to analyze small brain
areas, due to the limited PET imaging spatial resolution, and
in order to compare infancy, adolescence, and adulthood,
we analyzed brain glucose metabolism in the following brain
areas: whole brain, left and right brain hemispheres, frontal
cortex, and cerebellum. Thus, we performed a three-way mixed
ANOVA with repeated measures, considering groups as between
and time and VOIs (whole brain, frontal cortex, cerebellum,
right hemisphere, and left hemisphere) in infancy, adolescence,
and adulthood as within-subject factors. Bonferroni post hoc

test with multiple comparison correction was performed to
test 18F-FDG uptake differences between the time points
and groups for each VOI (Figure 1). PET imaging of adult
animals was analyzed by a two-way ANOVA, considering
groups as between and VOIs (whole brain, brainstem, cortex,
cerebellum, amygdala, striatum, hippocampus, cingulate cortex,
basal forebrain and septum, thalamus, hypothalamus, and
midbrain) as within-subject factors. Bonferroni post hoc with
multiple comparison correction was performed to test 18F-
FDG uptake differences between the groups for each VOI
(Figure 3). The data were analyzed using SPSS Statistics 20
Software, Armonk, NY: IBM Corp., United States and data
were plotted using GraphPad Prism 6 Software, La Jolla, CA,
United States. Results are presented as mean ± standard error.
Differences with a probability of 95% (p < 0.05) were considered
statistically significant.

RESULTS

ETS During the Early Postnatal Period
Decreased Brain 18F-FDG Uptake in
Infant Mice
Positron emission tomography scan data of glucose uptake for
male and female infant, adolescent, and adult mice exposed to
ETS during the early postnatal period were analyzed by a three-
way mixed ANOVA with repeated measures (groups × VOIs)

TABLE 1 | Detailed description of the statistical analysis of 18F-FDG uptake in
infancy, adolescence, and adulthood mice in distinct brain regions.

VOI 18F-FDG uptake

ETS-exposed ETS-exposed vs. control

Male vs. female Male Female

Infancy

Whole brain ns ↓ p = 0.020 ↓ p = 0.013

Left hemisphere ns ↓ p = 0.010 ↓ p = 0.026

Right hemisphere ns ↓ p = 0.013 ↓ p = 0.036

Frontal cortex ns ↓ p = 0.010 ↓ p = 0.031

Cerebellum ↓ p = 0.014 ns ↓ p = 0.021

Adolescence

Whole brain ns ns ns

Left hemisphere ns ns ns

Right hemisphere ns ns ns

Frontal cortex ns ns ns

Cerebellum ns ns ns

Adulthood

Whole brain ↓ p = 0.060 ↓ p = 0.019 ↑ p = 0.068

Left hemisphere ↓ p = 0.060 ↓ p = 0.011 ↑ p = 0.072

Right hemisphere ↓ p = 0.015 ↓ p = 0.024 ns

Frontal cortex ↓ p = 0.026 ↓ p = 0.015 ns

Cerebellum ↓ p = 0.040 ↓ p = 0.062 ↑ p = 0.029

Each p-value is adjusted for multiple comparisons. ↓, decreased 18F-FDG uptake;
↑, increased 18F-FDG uptake.
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and Bonferroni post hoc test with multiple comparison
correction. We found a significant effect for the factors VOIs
(F4,56 = 33.7333; p< 0.00010) and time (F2,8 = 10.99; p< 0.0001),
and a significant VOIs × time interaction (F8,112 = 4.592,
p < 0.0001). We also had a significant VOIs × time × group
interaction (F24,112 = 1.753; p < 0.05).

The post hoc analysis revealed that all mice showed reduced
18F-FDG uptake in infancy, compared to adulthood in all
analyzed VOIs. Regarding the females of ETS group, the 18F-
FDG uptake was also lower during infancy when compared
to adolescence. As detailed at Table 1, in infancy, both male
and female mice ETS-exposed had lower 18F-FDG uptake

in the whole brain, left and right hemisphere and frontal
cortex, compared to the control group. Females showed
decreased 18F-FDG uptake in the cerebellum (Figure 1 and
Table 1). When mice reached adulthood, males showed a
reduction in 18F-FDG uptake when compared to controls
in all VOIs analyzed (Figure 1 and Table 1). However, in
the females a different pattern occurred, as they had higher
18F-FDG uptake in the whole brain, left hemisphere, and
cerebellum, when compared to the control group (Figure 1
and Table 1). When both ETS-exposed groups were compared,
the post hoc analysis showed a reduction in 18F-FDG uptake
in the males in all the VOIs evaluated when compared to

FIGURE 2 | Representative PET/CT brain images of male and female mice exposed to ETS during the early postnatal period and the control group. (A) CT images in
different anatomical planes in the top left, and CT with the drawn volumes of interest (VOIs) used for quantification in the top right (whole brain, left hemisphere, right
hemisphere, frontal cortex, and cerebellum). (B) PET images fused to the CT images of infant (Day 15), adolescent (Day 35), and adult (Day 65) male and female
mice of the control and ETS groups.
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females (Figure 1 and Table 1). Figure 2 shows a representative
brain PET/CT scans of mice exposed to ETS during the
early postnatal period and the control group during infancy,
adolescence, and adulthood.

ETS During the Early Postnatal Period
Decreased 18F-FDG Uptake in Adult Male
Mice in Distinct Brain Regions
Positron emission tomography scan data of glucose uptake
for male and female adult mice exposed to ETS during the
early postnatal period were analyzed by two-way ANOVA
(VOIs × treatment) with Bonferroni post hoc test with p-values
corrected for multiplicity. We found a significant effect for VOIs
(F15,240 = 7.101, p < 0.0001) and treatment (F3,240 = 59.5,
p < 0.0001) factors; however, the interaction between them was
not significant (F45,240 = 0.033, p> 0.999; see Table 2 for detailed
description of the statistical analysis).

The post hoc analysis showed that exposure to ETS during
the early postnatal period decreased 18F-FDG uptake in adult
male mice when compared with adult female mice in the whole
brain, brainstem, left amygdala, left and right striatum, left and
right hippocampus, cingulate cortex, basal forebrain and septum,
thalamus, hypothalamus, and left and right midbrain. There was
a trend of statistical significance in the cortex (Figure 3 and
Table 2). We also observed that adult male mice exposed to ETS
showed a decrease in glucose metabolism when compared with
male mice from the control group in the left and right striatum,
left hippocampus, cingulate cortex, and thalamus (Figure 3
and Table 2). It was also detected a trend toward statistical

TABLE 2 | Detailed description of the statistical analysis of 18F-FDG uptake in
adult mice in distinct brain regions.

VOI 18F-FDG uptake

ETS-exposed ETS-exposed vs. control

Male vs. female Male Female

Whole brain ↓ p = 0.033 ns ns

Brainstem ↓ p = 0.020 ns ↑ p = 0.021

Cortex ↓ p = 0.058 ↓ p = 0.058 ns

Cerebellum ns ns ns

Left amygdala ↓ p = 0.012 ns ns

Right amygdala ns ns ns

Left striatum ↓ p = 0.003 ↓ p = 0.038 ns

Right striatum ↓ p = 0.019 ↓ p = 0.033 ns

Left hippocampus ↓ p = 0.001 ↓ p = 0.024 ns

Right hippocampus ↓ p = 0.008 ↓ p = 0.053 ns

Cingulate cortex ↓ p = 0.0003 ↓ p = 0.028 ↑ p = 0.069

Basal forebrain and spetum ↓ p = 0.049 ns ns

Thalamus ↓ p = 0.0007 ↓ p = 0.022 ns

Hypothalamus ↓ p = 0.033 ns ns

Left midbrain ↓ p = 0.0008 ns ns

Right midbrain ↓ p = 0.0007 ns ns

Each p-value is adjusted for multiple comparisons. ↓, decreased 18F-FDG uptake;
↑, increased 18F-FDG uptake.

significance in the cortex, and right hippocampus (Figure 3
and Table 2). Regarding adult female mice exposed to ETS, we
observed an increase in glucose uptake when compared with
female mice from the control group in the brainstem, with trend
toward statistical significance in the cingulate cortex. Figure 4
shows brain PET/CT average scans of female and male adult
mice exposed to ETS during the early postnatal period and
the control group.

DISCUSSION

To the best of our knowledge, this is the first study
that investigated the effects of ETS exposure during brain
development on 18F-FDG uptake in the brain of mice. By
PET imaging, we observed that ETS exposure during the early
postnatal period decreased brain 18F-FDG uptake in both male
and female infant mice and in adult male mice in distinct
brain regions and increased 18F-FDG uptake in adult female
mice in the brainstem and cingulate cortex. In addition, male
ETS-exposed mice showed decreased 18F-FDG uptake when
compared to female ETS-exposed. These results are in accordance
with previous studies of our group and with studies that show
that exposure to tobacco smoke during brain development
can affect the central nervous system. Exposure to tobacco
smoke extract during gestational period of Sprague–Dawley rats
decreased nicotinic and serotonin receptors in different brain
regions (Slotkin et al., 2017). In addition, postnatal exposure
to tobacco smoke leads to impairment in the myelination,
learning, and memory, and induces oxidative stress and lower
brain-derived neurotrophic factor (BDNF) and synaptic proteins
levels (Stangherlin et al., 2009; Lobo-Torres et al., 2012;
Torres et al., 2015a,b).

The exposure biomarkers of the present study were similar
to Obot et al. (2004), Amos-Kroohs et al. (2013), and Torres
et al. (2015a,b, 2019a,b). Nwosu and Kum-Nji (2018) suggested
that the classification as passive or active smoking could be
done according to serum cotinine levels. Thus, serum cotinine
levels between 0.05 and 10 ng/mL can be considered as passive
smokers and >10 ng/mL as active smoking. Although cotinine
concentration of the present study could be considered as active
smoker by Nwosu and Kum-Nji (2018), the classification was
based in children and adolescent under 17 years old and not
in rodents. Moreover, the authors did not mention how long
after tobacco smoke exposure the blood was collected. In the
present study, due to the weaker binding affinity of CO for mouse
hemoglobin when compared to that of human hemoglobin
(Watson et al., 1987), blood collection for the quantification
of the biological markers was performed immediately after
the ETS exposure. Thus, the cotinine levels data reflect the
peak of cotinine, as the half-life of plasma nicotine in rodents
is 0.9–1.1 h.

Neuronal activity requires high energy, mainly in the
level of synaptic connections and signaling transduction
pathways (Sokoloff, 1999). In this scenario, 18F-FDG brain
uptake correlates with brain metabolic activity, since we can
predict brain function through the relationship between energy
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FIGURE 3 | 18F-FDG uptake for adult mice (n = 5 females ETS-exposed and n = 4 females control; n = 5 males ETS-exposed and n = 5 males control) in the whole
brain (A), brainstem (B), cortex (C), cerebellum (D), left amygdala (E), right amygdala (F), left striatum (G), right striatum (H), left hippocampus (I), right hippocampus
(J), cingulate cortex (K), basal forebrain and septum (L), thalamus (M), hypothalamus (N), left midbrain (O), and right midbrain (P). Two-way ANOVA with Bonferroni
post hoc test and adjusted p-values for multiple comparisons. Continuous bar: p < 0.05. Dashed bar: trend toward statistical significance.

consumption and neuronal activity (Shulman et al., 2004). Small
animal PET imaging in longitudinal studies allows in vivo
quantification of brain metabolic activity in the same animal
during different periods of life making possible to analyze
how brain behave in different stages and how xenobiotics
might be able to interfere in the homeostatic state. Our
data showed decreased 18F-FDG uptake in infancy, suggesting
that ETS exposure is affecting brain neuronal activity during
this important period of brain development. In fact, it is
known that in humans, childhood is a period in which
the central nervous system is under active development,
maturation, and with open critical periods of synaptic plasticity,
with the higher levels of metabolism, reaching a peak on
the fourth year of life (Chugani and Phelps, 1991). Until

the ninth year of life there is a plateau, followed by a
steady decline until adulthood, in the second decade of life,
when the prefrontal cortex has completed its maturation
(Kennedy and Sokoloff, 1957). During normal aging, brain
passes through structural and function changes in white
and gray matters, reflecting in a declined metabolic activity
(Moeller et al., 1996).

It is interesting to note that even a long time after the
last exposure, adult mice showed changes in 18F-FDG uptake
in distinct brain regions, which were sex dependent. Adult
male mice exposed to ETS during brain development showed
decreased 18F-FDG uptake compared with adult female mice or
with male controls in different brain regions. In fact, sex seems to
be an important factor in brain response to ETS. A clinical study
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FIGURE 4 | PET average images of female and male adult mice exposed to
ETS during the early postnatal period and the control group. On the top, a
MRI template used for drawing volumes of interest (whole brain, brainstem,
cortex, cerebellum, left amygdala, right amygdala, left striatum, right striatum,
left hippocampus, right hippocampus, cingulate cortex, basal forebrain and
septum, thalamus, hypothalamus, left midbrain, and right midbrain). The first
two rows represent PET average images fused to MRI template and the third
row represent the difference of PET average image fused to MRI template
between control group and ETS exposed mice.

showed that nicotine administered by patch induced increased
brain 18F-FDG uptake in females than males during a Continuous
Performance Task or the Bushman Competition and Retaliation
Task tests (Fallon et al., 2005). A previous study of our group
also showed that the effects of ETS exposure during the early
postnatal period are sex-dependent, as infant female mice showed
poorer performance in learning and memory tests than males
(Torres et al., 2015b).

Garcia et al. (2013) revealed that sex is determinant for
post-hypoxic depression and recovery. Persistent post-hypoxic
depression is more recurrent in male mice than female
and glucose supplementation improves post-hypoxic recovery

rhythmogenesis only in female mice (Garcia et al., 2013). These
data are relevant, since post-hypoxic depression is involved in
the pathogenesis of sudden infant death syndrome (SIDS). About
60% of the children affected by SIDS are male (Richardson
et al., 2010). The exposure to ETS is related to higher risk
of SIDS, a syndrome that has no known mechanism, but it
requires immature cardiorespiratory control and impairments in
sleep arousal (Mitchell and Milerad, 2006; Moon et al., 2016).
The brainstem is associated with respiratory and cardiovascular
responses, therefore is related to pathogenesis of SIDS and
it is susceptible to ETS exposure. Previous studies showed
that exposure to ETS in the early postnatal period decreased
myelin-specific proteins and alter receptors and enzymes of
the endocannabinoid system in the brainstem (Torres et al.,
2015a, 2019a). The present study corroborates these findings
since we observed that ETS exposure decreased 18F-FDG
uptake in ETS-exposed male mice compared with female mice
and increased 18F-FDG uptake in ETS-exposed female mice
compared with control group.

Environmental tobacco smoke exposure during the early
postnatal period induced a similar result in the left amygdala,
which have a key role in the acquisition of memory related to
fear conditioning (Fujisaki et al., 2004). Amygdala is associated
to emotional experience, including fear and anxiety (De Bellis
et al., 2000; de Oliveira et al., 2013). In fact, pediatric generalized
anxiety disorder was associated to higher amygdala volumes (De
Bellis et al., 2000). Active smokers have significantly reduced
amygdala volumes compared with non-smokers (Luhar et al.,
2013). In line with these results, preclinical studies have shown
that the exposure to ETS during postnatal periods leads to
anxiety-like behavior in a short- and long-term withdrawal
(Abreu-Villaça et al., 2015; de la Peña et al., 2016; Torres et al.,
2019b). Taken together, these data suggest that the anxiety
behavioral disorders related to tobacco smoke may be associated
with amygdala alterations.

In the present study, we observed that exposure to ETS
decreased 18F-FDG uptake in striatum of adult male mice.
This data are consistent with studies that revealed that
ETS exposure during a critical period induced oxidative
stress, decreased synaptic proteins levels and BDNF, and
modified elements of the endocannabinoid system in the
striatum (Lobo-Torres et al., 2012; Torres et al., 2019a,b). The
striatum, constituted by the caudate nucleus and putamen,
is involved in motor, cognitive, and limbic functions, and
is involved in the neurobiology of addiction (Burton et al.,
2015). Addictive drugs increase dopamine levels in mesolimbic
system, especially in the dorsal and ventral striatum/nucleus
accumbens (Hyman et al., 2006). Romoli et al. (2019)
reported that exposure to nicotine during the early postnatal
period increased nicotine consumption during adulthood, effect
mediated by dopaminergic neurons in the midbrain, that
contains dopaminergic neurons that are located in the ventral
tegmental area and in the substantia nigra, regions that are
important for the development of drug addiction (Björklund and
Dunnett, 2007; Romoli et al., 2019).

Weinstein et al. (2010) observed that smokers showed
increased craving scores after watching a videotape with smoking
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scenes, which were associated with brain 18F-FDG uptake in the
ventral striatum, anterior cingulate, orbitofrontal cortex, middle
temporal lobe, hippocampus, insula, midbrain, and thalamus
(Weinstein et al., 2010). In addition, Domino et al. (2000) showed
that nicotine increases regional cerebral blood flow, evaluated by
PET, in the thalamus, pons, primary visual cortex, and cerebellum
of tobacco smokers. These individuals also showed reduction
in the hippocampal area (Domino et al., 2000; Hanlon et al.,
2014). We observed that ETS decreased glucose metabolism in
ETS-exposed male mice compared with female mice and with
control group in the hippocampus, one of the main areas that
is involved in learning and memory. Indeed, ETS exposure
during the early postnatal period decreased synaptic proteins
and BDNF in hippocampus and induced impairment in the
learning and memory from late infancy to early adulthood
(Torres et al., 2015b).

It is important to point out the limitations of the present
protocol. In order to evaluate the long-lasting effect of
tobacco smoke exposure during the early postnatal period,
we used a longitudinal study to measure 18F-FDG uptake
from infancy to adulthood. Although longitudinal studies have
the advantage of evaluating the same animal throughout life,
this type of protocol does not allow other measures to be
performed, since euthanasia is only done when the animal
reaches adulthood.

In summary, we showed that several brain regions are
vulnerable to ETS exposure during the early postnatal period
and these effects on 18F-FDG uptake were observed even a long
time after the last exposure. This study corroborates our previous
studies, supporting the hypothesis that exposure to tobacco
smoke in a critical period interferes with brain development of
mice from late infancy to early adulthood.
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The perinatal window is a critical developmental time when abnormal gestational
stimuli may alter the development of the stress system that, in turn, influences
behavioral and physiological responses in the newborns. Individual differences in
stress reactivity are also determined by variations in maternal care, resulting from
environmental manipulations. Despite glucocorticoids are the primary programming
factor for the offspring’s stress response, therapeutic corticosteroids are commonly
used during late gestation to prevent preterm negative outcomes, exposing the
offspring to potentially aberrant stress reactivity later in life. Thus, in this study, we
investigated the consequences of one daily s.c. injection of corticosterone (25 mg/kg),
from gestational day (GD) 14–16, and its interaction with offspring early handling,
consisting in a brief 15-min maternal separation until weaning, on: (i) maternal
behavior; and (ii) behavioral reactivity, emotional state and depressive-like behavior in
the adolescent offspring. Corticosterone plasma levels, under non-shock- and shock-
induced conditions, were also assessed. Our results show that gestational exposure
to corticosterone was associated with diminished maternal care, impaired behavioral
reactivity, increased emotional state and depressive-like behavior in the offspring,
associated with an aberrant corticosterone response. The early handling procedure,
which resulted in increased maternal care, was able to counteract the detrimental
effects induced by gestational corticosterone exposure both in the behavioral- and
neurochemical parameters examined. These findings highlight the potentially detrimental
consequences of targeting the stress system during pregnancy as a vulnerability factor
for the occurrence of emotional and affective distress in the adolescent offspring.
Maternal extra-care proves to be a protective strategy that confers resiliency and
restores homeostasis.

Keywords: prenatal exposure, glucocorticoid, early handling, stress reactivity, depressive-like
behavior, emotionality
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INTRODUCTION

Numerous studies across a wide range of species have
shown that prenatal exposure to different conditions such as
infections, nutritional deficiencies, teratogenic substances, and
emotional distress, predisposes the newborns to a spectrum
of different disorders characterized by deficits in cognitive
functioning, motor, and visuospatial abilities and to the genesis
of chronic systemic diseases (Cannizzaro et al., 2002, 2005,
2006b, 2007, 2008; Hellemans et al., 2010; Leggio et al.,
2014; Sarro et al., 2014; Martines et al., 2016; Moukarzel
et al., 2018). Notably, maternal stress during pregnancy could
dispose of the offspring toward vulnerability to neurobehavioral
disorders. As mediators of the stress response, glucocorticoids
are among the main primary programming factors conveying
maternal stress to the fetus via the placenta (Zarrow et al.,
1970; Schmidt et al., 2019), through the activation of the
glucocorticoid receptors (GR), whose ontogenetic pattern has
been detected in human from the early prenatal life stages
(Kitraki et al., 1997; Diaz et al., 1998; Kemp et al., 2016).
Thus, glucocorticoids, by a receptor-mediated regulatory role
during ontogenic development, could affect normal brain
neurogenesis (Cintra et al., 1993). In this regard, prospective
animal- and retrospective human studies have revealed that
antenatal glucocorticoid administration in late gestation can
lead to lifelong alterations on brain structures and functionality
and may produce long-lasting modifications in the maturation
of the hypothalamic-pituitary-adrenal (HPA) axis (Heim et al.,
1997; French et al., 1999, 2004; Sloboda et al., 2005; de
Vries et al., 2007; Charil et al., 2010; Fowden and Forhead,
2015). Indeed, exposure to glucocorticoids during pregnancy,
reducing negative-feedback on HPA axis, increases cortisol
release in the progeny (Alexander et al., 2012): this leads
to a slower recovery from stressors, reducing coping strategy
in aversive situations (Welberg et al., 2001; Plescia et al.,
2013). This evidence represents a key issue in the therapeutic
administration of antenatal corticosteroids, which are commonly
used when at risk of preterm delivery to ensure the survival
of the preterm infant (Singh et al., 2012). Indeed, last-trimester
administration of synthetic glucocorticoids also ‘‘programs’’
outcomes comparable to those elicited by prenatal stress in
humans (Seckl et al., 2000). Accordingly, treating pregnant
rodents with synthetic glucocorticoids leads to offspring with
similar HPA axis- and behavioral changes as prenatally stressed
offspring (Schmidt et al., 2019).

The gestational experiences may also affect the maternal-
infant dyad (Tarullo et al., 2017; Reck et al., 2018). Indeed,
pregnant women who experience social and emotional stress
may divest themselves of maternal bonding (Baker et al.,
2008; Azhari et al., 2019). Importantly, these conditions appear
to have a major impact on child cognitive, emotional and
physical development (Cogill et al., 1986; Bhagwanani et al.,
1997; Smith et al., 2004). Alterations in maternal caregiving
behavior after maternal stress, or exogenous administration
of glucocorticoids, occur also in rodent models (Darnaudéry
et al., 2004; Koehl et al., 2012; Jafari et al., 2017; Gemmel
et al., 2018). For instance, acutely and repeatedly stressed

dams spend less time in activities directed towards the pups
rather than in self-oriented behaviors (Patin et al., 2002; Smith
et al., 2004; Boero et al., 2018). After birth, the infant is
dependent on the primary caregiver, not only for nursing and
protection but also for the normal development of emotional
behavior (Bella et al., 2018). Indeed, deficiency of motherly
care during infancy affects the development of stress reactivity,
contributing to the raising of the individual distinctness in
emotional responses (Cannizzaro et al., 2005, 2006b). On the
other hand, early handling procedures are able to significantly
affect the development of the offspring’s emotional behavior and
HPA axis physiology. In particular, extensive research has shown
that brief periods of maternal separation of the pups during
the nursing stage result in offspring decreased adrenal reactivity
in response to stressors (Liu et al., 1997; Cannizzaro et al.,
2005, 2006b, 2007; Plescia et al., 2014b), as well as fear-oriented
behavior and emotionality (Cannizzaro et al., 2005, 2006b). The
majority of these behavioral and neuroendocrine studies have
been carried out on the adult progeny exposed to repeated
prenatal stress. However, none of them has yet investigated
the influence of the gestational exposure to corticosterone
on emotional behaviors in adolescence, which emerges as a
‘‘critical’’ phase in the development of stress responsiveness
(Cannizzaro et al., 2006b).

Thus, given these premises, the aim of the current study was to
investigate the consequences of prenatal corticosterone exposure
on maternal and offspring outcomes, during a timeframe when
a relatively high expression of GR in multiple brain areas
of the pups occurs (Cintra et al., 1993). In particular, we
assessed maternal behavior, behavioral reactivity, emotionality
and depressive-like behavior in the adolescent male offspring
employing, respectively, the open field test (OFT), the acoustic
startle reflex (ASR) and the forced swim test (FST). Offspring
corticosterone plasma levels, under non-shock- and shock-
induced conditions were evaluated as a measure of HPA axis
activity. Early handling procedure, as a brief maternal separation,
was also carried out as a putative protective strategy able to
restore homeostasis.

MATERIALS AND METHODS

Animals and Pharmacological Treatment
Wistar rats (Harlan, Udine, Italy) housed with free access to food
and water were maintained on a 12 h on/off cycle (8:00–20:00 h)
at a constant temperature (22 ± 2◦C) and humidity (55 ± 10%).
Pairs of primiparous females of 120 days of age were mated
with one male of 150 days of age. The day on which sperm was
detected in the vaginal smear was designed as gestational day
(GD) 1. Pregnancy was determined by weighing and palpation.
The pregnant dams’ weight on GD 14 was approximately 300 g.
From GD 14 through GD 16, a period of time during which
corticosterone can interact with GR expressed in the last week
of gestation, the dams received a single daily subcutaneous
injection of corticosterone (Ct; Sigma–Aldrich, Italy; 25 mg/kg)
or vehicle (Vh; 100 mM DMSO in 0.9% saline solution) in a
volume of 1 ml/kg. The pregnant dams were individually housed
in standard rat cages (40 cm × 60 cm, 20 cm in height) for
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at least 7 days before delivery. All litters born within a 2-day
period were reduced to ten pups (five males and five females)
Forty male pups in total were used in our investigations; they
were divided into the following experimental 10-rat (five rats
per litter) groups: vehicle-non-handled (Vh); corticosterone-
non-handled (Ct); vehicle-handled (Vh-H); corticosterone-
handled (Ct-H). At weaning time, postnatal day (PND) 22,
rats were randomly assigned two per cage accordingly to each
experimental condition. The experiments were performed on
adolescent rats—from PND 32 to 43. On the test day, each
group of rats was brought into the laboratory and allowed to
acclimate for at least 60 min prior to the experimental session.
The experiments were performed in a sound isolated room
between 9:00 and 14:00 and the animals were tested randomly,
regardless of the group they belonged to. Animal performance
during the different experimental sessions was recorded on the
computer and then analyzed by an experimenter unaware of
the different treatments. All the experiments were conducted
in accordance with the regulations of the Committee for the
Protection and Use of Animals of the University of Palermo,
Italy, in accordance with current Italian legislation on animal
experimentation (D.L. 26/2014) and the European Directive
(2010/63/EU) on the care and use of laboratory animals. All
efforts were made to minimize the number of animals used and
possible distress.

Early Handling and Pups Body Weight
Half of Ct- and Vh-treated litters remained undisturbed during
the post-weaning period (i.e., non-handled, Ct and Vh groups),
and half of prenatally Ct- and Vh-treated litters underwent early
handling procedure (Ct-H and Vh-H groups), from PND 2 until
PND 21. Early handling procedure consisted of removing the
dam from the nest for 15 min during which she was temporarily
placed in a separate cage. Simultaneously, pups were moved into
a different room and individually placed into sawdust-containing
small plastic cups for 15 min. In the end, mothers and pups were
brought together in their home cages. Early handling procedure
was performed in the same room, at the same time (10:00 h) and
by the same experimenter. From PND 2 to PND 21 pups’ body
weight was also evaluated.

Maternal Behavior Assessment
Dam’s behavior in the presence of the offspring was assessed
by direct periodic observations under undisturbed conditions
in their home cages (Capone et al., 2005), from PND 2 to
PND 21. Each animal was subjected to four assessments a
day, during the diurnal time (9:00 am, 11:30 am, 01:30 pm,
and 03:00 pm) when animals behave more maternally (Ader
and Grota, 1970); instantaneous 20-s sampling was repeated
three times at each time, for a total of 12 instantaneous
observations per animal per day (3 observations × 4 times
per day × 20 days = 240 observations per dam). The 20-s
time of observation allows for an exact identification of
the on-going behavioral patterns: retrieval, nursing (arched-
back, blanket, passive), pup care (licking, anogenital licking),
dam self-care (self-grooming, eating, drinking), and others
(rearing, moving, resting, standing out of nest). Original

data were recorded using dichotomous scores (0/1): score
0 was assigned when the behavior was not shown in
the interval of observation; score 1 was assigned when
the behavior was performed. Thus, a daily score ranged
between 0 and 12. In order to gain a comprehensive
framework of the behavioral measurements, a daily index of
overall maternal behavior (MB-I) was calculated as follows:
(maternal score) − (non-maternal score)/(maternal score) +
(non-maternal score). The index ranges from −1 (totally
non-maternal behaviors) to +1 (totally maternal behaviors;
Brancato et al., 2016).

Open Field Test
Locomotor activity and explorative behavior were assessed in
the open-field arena with a contrast-sensitive, video tracking
system, ANY MAZE (Ugo Basile, Gemonio, Italy), in a mean
light intensity (100 lx) illuminated room (Brancato et al., 2014).
The apparatus consisted in a square box (44 × 44 × 20 cm)
and produced a quality-quantitative mapping of the ambulatory
patterns, measuring simultaneously: total distance traveled
(TDT) in centimeters, number of transition from peripheral to
central squares of the arena (NCT) and amount of time spent
on the central areas (ATC) in second. The 5-min recording and
measurement of each experimental session started after 1-min
habituation in the arena, to allow the rats to acclimatize, and was
displayed on a personal computer (Cacace et al., 2011). The test
was performed at PND 32.

Acoustic Startle Reflex Test
The ASR provides a useful readout of the neural processing
that might underpin an organism’s response to an emotional
context or stressor (Hoffman, 2016; Hantsoo et al., 2018). The
ASR response was measured using a Responder-X apparatus
(Columbus Instruments, USA) at PND 34. The peak amplitude
of the responses was recorded and displayed on a personal
computer. A 10-min test session started by placing the rat in a
28 cm long, 16 cm wide, 15 cm high device with a stainless-steel
grid floor, into a ventilated, sound-attenuated and darkroom,
in which the animal was left undisturbed for the first 5 min
period and was subsequently subjected to the startle stimulus for
5 min. The startle stimulus consisted of a 110 dB, 8 kHz tone
superimposed on a continuous 50 dB white noise background;
the stimulus duration was 200 ms, with a fixed 10-s interval.
Sound levels in the test room were measured with a Bruel and
Kjaer 2209 sound level meter. The maximum force exerted by
the rat on-grid floor during the 200 ms period was designated as
peak amplitude. The amplitude of ASR was measured in units,
over the range of 60–550 g (1 unit = 2.1 g of force); maximum
output was 255 units. The experimental session consisted of
10 trials.

Forced Swim Test
We employed the FST as described by Porsolt et al. (1977) with
some modifications, in order to test depressive-like behavior at
PND 38. The test was composed of a pre-test stage (15 min)
and, 24 h later, of a test stage (5 min), for both pre-test
and test sessions, conducted under low illumination (12 lx),
the animals were placed inside a transparent Plexiglas cylinder
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(50 cm high, 20 cm inside diameter) filled with tap clean
water at 23 ± 1◦C, adjusting the water depth according to the
rat’s size, so that it cannot touch the bottom of the container
with its hind legs (Yankelevitch-Yahav et al., 2015). A video
camera was placed above the tank and connected to a video
recorder to register each stage for subsequent scoring. An
experimenter, unaware of the different treatments, scored the
specific behavioral parameters from the videotape. Behavioral
categories considered were as follows: immobility time, defined
as floating in the water, making only the movement necessary to
keep the head above water; swimming time, defined as making
swimming motions and moving around the cylinder. Following
either pre-test stage or test stage, the rats were dried with a
towel and kept warm on a heating pad for 30 min in their
home cages.

Stress Procedure
At PND 43, rats from each experimental group were individually
placed in a cage with an electrified grid floor through which
shock could be delivered. The session started immediately after
placing the rat into the shock-delivering apparatus. Rats (five per
group) received an inescapable mild footshock (0.6 mA for 3 s)
every 20 s, along 1 min. Control animals (non-stressed, five per
group) were placed into the apparatus for the same time but were
not shocked (Cannizzaro et al., 2006b).

Plasma Corticosterone Assay
Rats were killed by decapitation 30 min after being placed into
the shock-delivering apparatus. Trunk blood was collected into
heparinized tubes. After centrifugation at 3,000 rpm at 4◦C for
5 min, plasma samples were separated and stored at −80◦C prior
to assay. Plasma corticosterone concentration was assayed in
duplicate using the RIA kit for rats (IDS Limited, Boldon, UK).
The inter-and intra-assay coefficient of variation was 8% and 3%
respectively, with a detection limit of 0.5 ng/mL. All measures
were in the linear range of the standard curve (0.5–62.5 ng/mL).

Statistical Analysis
Statistical data from bodyweight were carried out by a three-way
ANOVA followed by Tukey’s test post-test (α = 0.05).

Statistical analysis of the data from the OFT, ASR, FST,
maternal behavior scores and from non-shock- and shock-
induced corticosterone plasma levels were carried out using
a two-way ANOVA for unpaired measures. When necessary,

post hoc comparisons were calculated with Tukey’s multiple
comparison post-test (α = 0.05). Data are reported as mean± SD.
Statistical significance was set at p < 0.05.

RESULTS

Pups Body Weight
Rats’ body weight was recorded from PND 2 to PND 21 in
order to obtain data related to the influence of a single daily
corticosterone administration and early handling procedure on
weight gain during the pre-weaning period. No significant
differences in number, weight, morbidity or mortality were
observed among the different experimental groups. The results
of a three-way ANOVA performed on body weight as a
dependent variable, and days, prenatal corticosterone exposure
and early handling as independent variables are shown in
Table 1. The table indicates that: the factors days, prenatal
corticosterone treatment, and early handling were significant.
Moreover, the interaction between days- and prenatal treatment-
with early handling was significant. The results of Tukey’s
multiple comparisons test performed on each single day showed
a reduction in body weight in Ct treated rats on days 10, 11 and
12 (q = 6.29, p = 0.04340; q = 6.25; p = 0.0463; q = 6.219,
p = 0.0495), with respect to Vh groups; and a decrease in body
weight on days 19 and 21 (q = 5.825, p = 0.0270; q = 6.341;
p = 0.0380) in Ct with respect to Ct-H groups (Figure 1). No
statistical difference was observed when Ct-H was compared to
Vh and Vh-H groups.

Dams Spontaneous Maternal Behavior
In order to evaluate the impact of gestational manipulation by
corticosterone, the influence of a daily 15-min early handling
procedure on dams spontaneous behavior, retrieval, nursing
(arched-back, blanket, passive), pup care (licking, anogenital
licking, digging), dam self-care (self-grooming, eating, drinking),
and other behaviors (rearing, moving, resting, standing out of
nest) were scored. Results from a two-way ANOVA performed
on MB-I as dependent variable and prenatal corticosterone
and early handling as independent variables, showed that: the
factor prenatal corticosterone (F(1,76) = 19.77; p < 0.0001) early
handling (F(1,76) = 64.58; p < 0.0001) and their interaction
(F(1,76) = 8.646; p = 0.0043) were significant. In detail, post hoc
analysis conducted by Tukey’s multiple comparison post-test
highlighted a significant lower maternal behavior in Ct treated

TABLE 1 | Pups body weight: results of three-way ANOVA performed on body weight as dependent variable and days (1), prenatal treatment with corticosterone (2),
and early handling (3) as independent variables.

Source of Variation DF SS MS F P-level

1-days 19 922,580 48,557 89.39 <0.001
2-prenatal treatment 1 54,686 54,686 100.7.83 <0.001
3-early handling 1 77,176 77,176 142.1.33 <0.001
1:2 19 9,384 492 0.9057 =0.5775
1:3 19 17,917 943 1.736.79.1 =0.0468
2:3 1 42,968 42,968 0.6584 <0.001
1:2:3 19 6,795 357.7 =0.8477
Residuals 80 43,457 543.2

Pups’ body weight (g) was expressed as the weight for the entire litter.
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FIGURE 1 | Graph showing the effect of prenatal corticosterone on body
weight from postnatal day 2 until 21. Each value represents the mean ± SD
of 10 rats. *p < 0.05 vs. Vh, ◦p < 0.05 vs. Vh-H.

FIGURE 2 | Maternal Behavior Index (MB-I). Influence of a daily 15-min early
handling procedure on dams spontaneous behavior (retrieval, nursing, pup
care, dam self-care). Each value represents the mean of ± SD of
20 measures. ***p < 0.001, **p < 0.01, vs. Vh, +++p < 0.001 vs. Ct.

dams (q = 7.386, p< 0.0001) with respect to Vh group.Moreover,
early handling was able to increase dams maternal behavior
in both Vh-H (q = 5.096, p < 0.0031) and Ct-H (q = 10.98,
p < 0.0001) groups, when compared to respective control groups
(Figure 2).

Open Field Test
Rats were tested in the OFT in order to assess the influence
of prenatal corticosterone exposure and early handling on
behavioral reactivity. Results obtained by a two-way ANOVA
performed on total distance travelled, number of transition from
peripheral to central squares of the arena, and amount of time
spent on the central areas as dependent variables, and prenatal
corticosterone and early handling as independent variables,
showed that prenatal corticosterone, early handling and their

interaction were significant for TDT (F(1,36) = 91.79, p < 0.0001;
F(1,36) = 66.16, p < 0.0001; F(1,36) = 8.866, p = 0.0052), and
ATC (F(1,36) = 6.388; p = 0.0160; F(1,36) = 87.15; p < 0.0001;
F(1,36) = 4.494; p = 0.0410). Post hoc analysis conducted by
Tukey’s multiple comparison post-test showed that prenatal
Ct induced a decrease in both TDT and in ATC (q = 12.56;
p < 0.001; q = 4.647; p < 0.0116) when compared to Vh
groups. On the contrary, the early handling procedure induced
an increase in TDT and in ATC in both Vh (q = 5.156, p< 0.0044;
q = 7.216, p < 0.001) and Ct (q = 17.71, p < 0.001; = 11.46,
p < 0.001) treated rats when compared to respective controls
(Figure 3). No statistical difference was observed when Ct-H was
compared to Vh-H group. No statistical differences were found
on a number of transitions from peripheral to central squares of
the arena.

Acoustic Startle Reflex Test
The effects of prenatal corticosterone exposure and the influence
of early handling procedure on the response to an anxiety-
inducing intense stimulus, were evaluated measuring startle
amplitude in the ASR test. The results of a two-way ANOVA
performed on the peak amplitude as dependent variable, and
prenatal corticosterone and early handling as independent
variables, indicated that: the factor prenatal corticosterone
(F(1,36) = 29.48; p < 0.0001) early handling (F(1,36) = 503.4;
p < 0.0001) and their interaction (F(1,36) = 78.57; p < 0.0001)
were significant. In detail, Tukey’s multiple comparison post-test
analysis showed that the prenatal treatment with Ct induced
an increase in startle amplitude (q = 14.29; p < 0.001) when
compared to Vh. Interestingly, early handling was able to reduce
startle amplitude in both Vh (q = 13.57; p < 0.001) and in Ct
(q = 31.30; p < 0.001) treated rats, when compared to respective
controls. No statistical difference was observed when Ct-H was
compared to Vh-H group (q = 16.70; p > 0.05; Figure 4).

Forced Swim Test
Rats were tested in the Porsolt test in order to evaluate the effects
of prenatal exposure to corticosterone and the influence of early
handling procedure on depressive-like behavior. Rats were first
exposed to the pre-stage and, 24 h after, underwent the 5-min
stage test, when immobility-, swimming-time were recorded.
A two-way ANOVA performed on time spent in immobility,
swimming, as a dependent variable, and prenatal corticosterone
and early handling as independent variables. The results indicate
that prenatal corticosterone, early handling and their interaction
were significant for both immobility (F(1,36) = 5.327; p = 0.0269);
(F(1,36) = 299.9; p < 0.0001); (F(1,36) = 10.81; p = 0.0023)
and swimming (F(1,36) = 7.119; p = 0.0114); (F(1,36) = 242.9;
p < 0.0001); (F(1,36) = 11.32; p = 0.0018). Tukey’s multiple
comparison post-test analysis showed that the prenatal treatment
with corticosterone induced an increase in immobility time in
Ct (q = 5.596; p < 0.0019) with respect to Vh, and a significant
decrease on immobility time in both Vh-H (q = 14.03; p < 0.001)
and in Ct-H (q = 20.6; p < 0.001) when compared respectively
with Vh and Ct groups (Figure 5A). In agreement with these
results, post hoc analysis showed a significant decrease in Ct
(q = 6.033; p = 0.0008) compared to Vh-rats and an increase in
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FIGURE 3 | Open field test (OFT). Effects of prenatal corticosterone
exposure and early handling procedure on total distance traveled (TDT), and
amount of time spent (ATC) in the central area of the arena. Each value
represents the mean ± SD of 10 rats. ***p < 0.001, **p < 0.01, vs. Vh,
+++p < 0.001 vs. Ct.

swimming time in both Vh-H (q = 12.22; p < 0.001) and in Ct-H
(q = 18.95; p< 0.001) with respect to their non-handled controls,
and (Figure 5B).

Corticosterone Plasma Levels
The effects of prenatal exposure to corticosterone, early
handling and their mutual influence on corticosterone
plasma levels in rats under non-shock- or shock-induced
stress conditions were also investigated. A two-way ANOVA
performed on the levels of corticosterone under non-shock-
induced conditions as dependent variables, and prenatal
corticosterone treatment, early handling as independent
variables indicate that: prenatal corticosterone (F(1,36) = 5.311;
p = 0.0271) early handling (F(1,36) = 515.9; p < 0.0001) and their
interaction (F(1,36) = 4.502; p = 0.004), were significant under

FIGURE 4 | Effects of prenatal corticosterone exposure and early handling
procedure on the peak amplitude in acoustic startle reflex (ASR). Each value
represents the mean ± SD of 10 rats. ***p < 0.001 vs. Vh,
+++p < 0.001 vs. Ct.

non-shock-induced conditions. The results of Tukey’s multiple
comparisons test showed that non-shock-induced corticosterone
plasma levels increased in Ct-exposed offspring compared to
vehicle group (q = 4.426; p < 0.0174) and that early handling
reduced corticosterone plasma levels in both Vh-H (q = 20.59,
p < 0.0001; q = 24.84, p < 0.0001) and in Ct-H (q = 26.23,
p < 0.001; q = 28.67, p < 0.001) when compared with respective
control groups (Figure 6A).

When rats were exposed to shock-induced stress conditions
in order to evaluate the corticosterone plasma levels under
stressful conditions, the results of a two-way ANOVA performed
respectively on the levels of corticosterone as dependent
variables, and prenatal corticosterone treatment, early handling
as independent variables showed a significant effect for early
handling (F(1,36) = 913.3; p < 0.0001) and interaction between
corticosterone treatment and early handling (F(1,36) = 4.325;
p = 0.0447), but no for prenatal corticosterone treatment
(F(1,36) = 2.584; p = 0.1167). In detail, Tukey’s multiple
comparison post-test analysis showed that; shock exposure
did not modify corticosterone levels in Ct-exposed offspring
(q = 0.472, p = 0.9870), and that early handling reduced
corticosterone plasma levels in both Vh-H (q = 28.14, p< 0.0001)
and in Ct-H (q = 32.30, p < 0.0001) when compared with
respective control groups (Figure 6B).

DISCUSSION

In agreement with previous animal studies, we here show
that exposure to corticosterone, during the 3rd week of rat
gestation, can affect maternal care and program an abnormal
neuroendocrine and behavioral profile of the adolescent
offspring that resembles a vulnerable phenotype for affective
disorders (French et al., 1999; Shoener et al., 2006). Notably,
early handling as a brief maternal separation during the
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FIGURE 5 | Effects of prenatal corticosterone exposure and early handling procedure on immobility (A) and swimming (B) in the Forced swim test (FST). Each value
represents the mean ± SD of 10 rats. ***p < 0.001, *p < 0.05 vs. Vh, +++p < 0.001 vs. Ct.

FIGURE 6 | Effects of prenatal corticosterone exposure and early handling procedure on: non-shock- (A) and shock-induced (B) corticosterone plasma levels.
Each value represents the mean ± SD of five rats. ***p < 0.001, *p < 0.05 vs. Vh, +++p < 0.001 vs. Ct.

early stages of postnatal life, promoted an increase in
maternal care and counterbalanced the detrimental effects
induced by the prenatal glucocorticoid manipulation in all the
investigated parameters.

Effects of Prenatal Exposure to
Corticosterone
The first evidence following the manipulation of the intrauterine
environment by corticosterone injection from GD 14 to
16 was a reduction in weight during the pre-weaning time.
Our data are in accordance with studies showing that
glucocorticoid treatment during pregnancy reduces offspring
birth weight and body weight throughout adolescence (Smith
and Waddell, 2000; Manojlovi ć-Stojanoski et al., 2012) as
well as the reduction on birth weight appears more evident
when glucocorticoids are administered during the 3rd week of
gestation and not earlier, indicating a late gestational window
of sensitivity to glucocorticoids (Nyirenda et al., 1998; Seckl,

2004). Although the reduced body weight of the offspring
as a consequence of gestational corticosterone exposure is
still not fully clear, Iwasa et al. (2014) suggested a possible
alteration of serum leptin and hypothalamic neuropeptide Y
(NPY) mRNA levels, two peptides playing pivotal roles in the
regulation of appetite and calories intake, as well as in the
modulation of emotionality (Velísek, 2006; Iwasa et al., 2014;
Plescia et al., 2014a).

A critical outcome of glucocorticoid exposure in early life is
the programming of emotional and affective homeostasis. In the
rat, in utero glucocorticoids, either from an exogenous source
or via maternal extra-release, induce a decrease in behavioral
reactivity in the open field and an increase in anxiety-like
behavior in the elevated plus-maze in the offspring (Harris
and Seckl, 2011). These alterations may be associated with an
impairment in offspring’s capacity to cope under a stressful
situation in adolescence (Vallée et al., 1997; Dickerson et al.,
2005; Harris and Seckl, 2011), enhancing the risk of emerging
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psychological disorders (Casey et al., 2010). Accordingly, our
data demonstrate that the prenatal Ct-treatment during a
sensitive time window, was able to induce an overall impairment
of locomotor activity in the adolescent offspring, as shown by a
reduction in TDT and in the exploration of the central areas of
the arena. The reduction in behavioral reactivity might reflect
an increased emotional response to the novel environment.
Consistently, adolescent rats exposed in utero to corticosterone
exhibited an increase in the peak amplitude of the ASR, as
a proof of their negative emotional state (Lang et al., 1990;
Lang, 1995; Bradley and Sabatinelli, 2003; McMillan et al.,
2012). Indeed, The ASR, a reflexive movement occurring after
sudden exposure to loud noise, represents a valid behavioral
model to study the emotional response of the animals. An
increase in the amplitude of the ASR is ascribed to a rise
in emotionality, which mirrors a higher sensitivity of the
animals towards an anxiogenic environment (Hijzen et al.,
1995; Cannizzaro et al., 2002). These results are in accordance
with our data on the FST the most commonly used assay to
test the efficacy of chronic antidepressant treatments (Detke
et al., 1997). Our findings indicate that prenatal Ct treatment
was able to increase immobility time and decrease swimming
in the adolescent offspring, promoting the occurrence of a
depressive-like phenotype (Yankelevitch-Yahav et al., 2015).

Indeed, over-exposure to glucocorticoids and impaired GR
signaling can result in degeneration and functional impairment
of brain regions critically involved in mood processing and
contribute to the induction of depressive symptoms later in life
(Anacker et al., 2011; Brancato et al., 2017; Di Liberto et al., 2017;
Shishkina and Dygalo, 2017).

During development, there is a relatively high expression
of GR from midgestation onwards (Diaz et al., 1998), which
are essential for normal brain development and offspring
survival (Kapoor et al., 2008). In the rat, antenatal stress or
maternal administration of glucocorticoids during this time
window results in offspring with decreased expression of
GR mRNA in specific brain areas involved in glucocorticoid
feedback such as the hippocampus, hypothalamus, and pituitary
(Levitt et al., 1996; Liu et al., 2001). This reduction could
promote pups grow up with altered negative feedback response,
manifested as a chronic elevation of corticosterone (Maccari and
Morley-Fletcher, 2007). Indeed, the behavioral outcomes here
observed are supported by the results from plasma corticosterone
level assessment in non-shock-induced conditions. Specifically,
prenatally exposed adolescent offspring showed an increase
in non-shock-induced plasma corticosterone levels, in line
with findings in rodents and non-human primates (Welberg
et al., 2001; de Vries et al., 2007; Rakers et al., 2017). It
has been shown previously that differences in HPA axis
activity are associated with differences in locomotor activity
in response to novelty (Gancarz et al., 2012). Prenatal stress
induces a prolonged corticosterone secretion, which is negatively
correlated with lower levels of explorative behavior in the open
field (Rosecrans, 1970; Iuvone and Van Hartesveldt, 1976; Vallée
et al., 1997). Moreover, a significant correlation between plasma
corticosterone levels and the behavioral scores in the FST was
observed (Morley-Fletcher et al., 2003).

Plasma corticosterone levels in the non-shock-induced group
do not differ from levels in the shock-induced group. This
may be for that non-shocked group plasma corticosterone levels
do not reflect baseline activity of the HPA axis, but rather
HPA axis reactivity in response to novelty of the electrified
grid floor cage (Friedman et al., 1967; Bassett et al., 1973).
Furthermore, differently from plasma corticosterone levels in
shock-induced condition, we found that corticosterone release
after shock administration did not differ between prenatally
exposed adolescent offspring and Vh group. This can be due
to an altered drive of the HPA axis programming that may
result from the combination of in utero Ct-treatment and stress
exposure in adolescence. Indeed, we may speculate that prenatal
corticosterone treatment was able to reduce the density of
corticosteroid receptors that, through the attenuation of HPA
axis feedback sensitivity, set the release of corticosterone to
a ceiling set point already at basal conditions (Pornsawad,
2013). This might prevent the physiological rise in stress-
related glucocorticoid release as we have observed in this study
and might represent a vulnerable factor for the development
of emotional and affective disorders (Harris and Seckl, 2011;
Constantinof et al., 2016).

Effects of Early Brief Maternal Separation
In most mammalian species, the maternal environment
represents the developmental context within which mothers
shape socio-emotional maturation of the progeny, serving
as essential external regulators of infant physiology,
neurodevelopment, and behavioral responses. Thus,
manipulating quality and consistency of maternal care during the
early stages of life can influence and, also revert developmental
processes that set emotional and physiological responses in
adulthood (Drury et al., 2016).

Numerous studies have shown that at least some of
the long-term effects of early-life exposure to an adverse
environment are mediated by low levels of parent-child linking
and decreased parental investment during early childhood.
For instance, poor parental ties are usually associated with
increased risk for several psychological vulnerabilities, whereas
an increase in parental care improved behavioral outcomes,
cognitive performance and also boost resiliency to stress (Canetti
et al., 1997; Meaney, 2001; Kaffman and Meaney, 2007).
Accordingly, early handling procedure, consisting in a short
maternal separation of the mother from the pups, represents a
particular event for the dam that is able to produce higher level
of interest by themother in the offspring and, in turn, elicits more
maternal care upon reunion (Rees and Fleming, 2001; Kosten
and Kehoe, 2010; Zimmerberg and Sageser, 2011; Own and
Patel, 2013; Orso et al., 2018). These observations are consistent
with those obtained in the present research where the effects on
the maternal-infant dyad were investigated. Indeed, our results
show that early handling procedure produced an increase in
maternal care, as shown by a higher MB-I, that in turn, improved
the response to stressful situations and reduced emotionality
in the offspring. Specifically, when compared to non-handled
counterparts, briefly maternal separated adolescent rats showed
increased locomotor activity, reduced avoidance of the center of
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the arena in the open field, and decreased peak amplitude in ASR.
At the same time, early-handled offspring displayed a reduction
in immobility time and an increase in swimming time in the FST,
together with a reduction in corticosterone plasma levels, under
non-shock- and shock-induced conditions.

The mitigated emotional profile observed in early handled
rats in this study may be dependent upon modifications of the
developing HPA axis (Kaffman andMeaney, 2007). In particular,
the effect of early handling on behavioral reactivity and
emotionality may be due to a dampening of HPA axis response
in the progeny that better cope with the task administered
(Cannizzaro et al., 2006b). Indeed, maternal behaviors, such
as licking, grooming and arched-back, lead to increased GR
mRNA expression in the brain, glucocorticoid negative feedback
sensitivity, and decreased hypothalamic corticotropin-releasing
factor mRNA levels (Meaney, 2001; Edelmann et al., 2016).
Taken together these data suggest that postnatal maternal care
is able to affect the magnitude of the HPA axis response
to stress, ‘‘hardening’’ the pups which display a blunting in
corticosterone release and in emotional profile (Meaney et al.,
1985, 1988; Liu et al., 1997). On the other hand, the variations
in the early postnatal environment can interact with the effects
of prenatal exposure to stressors in a complex, mutually
interacting process (Cannizzaro et al., 2006b). Indeed, whether
early exposure to corticosterone is associated with elevation of
non-shock-induced conditions corticosterone release and with a
vulnerable phenotype for emotional and affective disturbances,
early handling procedure induces opposite modifications in the
stress-behavioral responses and corticosterone release that are
associated to the occurrence of a ‘‘rescued’’ profile. Although
we believe that the rodent model used in this study will
be helpful to identify physiological mechanisms underlying
the neuroendocrine functional response to stress induced by
early handling in prenatal corticosterone condition, this issue
deserves further insight in future researches on many distinct
players which may take part to the interplay between maternal
care and the regulation of the HPA axis, such as oxytocin
(Cannizzaro et al., 2006a; Kojima et al., 2012; Cox et al., 2015;
Zinni et al., 2018). However, it is evident that increasing the
intensity of maternal care, could serve as a source for the
enhancement of neuronal plasticity able to promote adaptive
behavioral responses.

CONCLUSION

These findings highlight a brief prenatal exposure to
glucocorticoids during the 3rd week of gestation as a signal
able to produce behavioral and neuroendocrine abnormalities

later in life, contributing to the programming of a vulnerable
phenotype to emotional- and affective-like disorders. This
issue is particularly relevant due to the common practice
of multiple administrations of glucocorticoids to pregnant
women during late gestation to ensure the survival of the
preterm newborns. Even though synthetic glucocorticoids,
such as dexamethasone (DEX) or betamethasone, have been
extensively used rather than cortisol or hydrocortisone (Jobe,
2003; Oliveira et al., 2006; Singh et al., 2012), the natural
glucocorticoid is increasingly considered as an alternative
therapy during pregnancy (Crowther et al., 2019). Therefore, a
long-term follow-up in children who were treated in utero with
glucocorticoids is strongly recommended. As expected, we here
show that enhanced maternal care plays a primary role in setting
pro-adaptive behavioral and neuroendocrine responses and
may re-route aberrant trajectories during neurodevelopment,
emphasizing the role of an optimal mother-infant dyad as a
protective factor for healthy development of the offspring.
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Schizophrenia is a neuropsychiatric disorder characterized by multifactorial etiology
involving complex interactions among genetic and environmental factors. “Multiple-
hit” models of the disorder can explain its variable incidence and prevalence in
related individuals. Hence, there is a dire need to understand these interactions
in the emergence of schizophrenia. To test these factors in the emergence of
schizophrenia-like behaviors, we employed a genetic mouse model of the disorder
(harboring the DISC1 mutation) along with various environmental insults, such as
early life stress (maternal separation of pups) and/or pharmacological interventions
(ketamine injections). When assessed on a battery of behavioral tests, we found that
environmental interventions affect the severity of behavioral phenotypes in terms of
increased negative behavior, as shown by reduced mobility in the forced swim and tail
suspension tests, and changes to positive and cognitive symptoms, such as increased
locomotion and disrupted PPI along with reduced working memory, respectively. Among
the various interventions, the genetic mutation had the most profound effect on
behavioral aberrations, followed by an environmental intervention by ketamine injections
and ketamine-injected animals that were maternally separated during early postnatal
days. We conclude that although environmental factors increased the prevalence of
aberrant behavioral phenotypes, genetic background is still the predominant influence
on phenotypic alterations in these mouse models of schizophrenia.

Keywords: DISC1 (disrupted-in-schizophrenia 1), maternal separation (MS), NMDAR hypofunction, ketamine
injections, schizophrenia-like psychoses, gene-environment (G-E) interaction

INTRODUCTION

Schizophrenia is a neuropsychiatric disorder whose etiology encompasses the interaction of several
genetic and environmental factors. Heritability of the disorder is as high as 80% (Sullivan et al.,
2003), with considerable ecogenetic variation in the prevalence of the disease among related
individuals (Ettinger et al., 2004). Such variation correlates with the degree of genetic relatedness
of affected individuals; prevalence in first degree relatives (4%–8%), second-degree relatives
(2%–3.5%), and children of affected individuals (one parent affected, 13.6%; and both the parents
affected, 37%) is indicative of the genetic heritability of the disorder (Salleh, 2004). The most
pronounced variations exist in twin studies with a concordance of 50% (Cardno and Gottesman,
2000), suggesting a multifactorial etiology for schizophrenia and related disorders beyond
genetic predisposition.
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Epidemiological studies of the disease show pronounced
interactions between genetic and environmental factors, which
can explain variable degrees of onset, prevalence, and severity of
disorders in different individuals with a genetic predisposition
for the disorder (Karl and Arnold, 2014). Among the
environmental factors, maternal separation, early life stress,
drug abuse, and season and place of birth are related to the
clinical presentation of schizophrenia (Tsuang, 2000; Tsuang
et al., 2001; Morgan and Fisher, 2006). Such an interplay of
genetics and environment has given rise to ‘‘multiple-hit’’ models
of schizophrenia and associated psychotic disorders, where
both genes and environment are important factors for disease
expression in humans, as well as in animal models of psychotic
disorders (Bayer et al., 1999; Maynard et al., 2001; McGrath et al.,
2003; Feigenson et al., 2014).

Several candidate genes have been associated with
schizophrenia through genome-wide association (GWA)
and single nucleotide polymorphisms (SNPs) studies (McClellan
et al., 2007; Gejman et al., 2010). Among these, the DISC1
(Disrupted in Schizophrenia 1) gene confers a 2% risk of
schizophrenia in carriers (Callicott et al., 2005; Song et al.,
2008; Williams et al., 2009). DISC1 is a scaffolding protein
that interacts with several genes, such as NDE, NUDEL, PDE4,
ATF4 and PCM etc. (Blackwood et al., 2001; Brandon et al., 2009;
Porteous and Millar, 2009; Bradshaw and Porteous, 2012; Teng
et al., 2018). In particular, its interaction with PDE4 in dendritic
spines serves as a molecular brake to maintain levels of cAMP
to restore synaptic connectivity in the PFC (Soares et al., 2011).
Due to its synaptic localization with PDE4 and HCN channels
it plays a vital role in maintaining working memory and other
related behavioral phenotypes (Niwa et al., 2010; Gamo et al.,
2013; Paspalas et al., 2013).

Several human and animal studies have further demonstrated
the role of mutations in the DISC1 gene that lead to differential
disease phenotypes with variable prevalence (Gottesman and
Shields, 1976; Munafò et al., 2005; Van Winkel et al., 2010;
Uher, 2014). In humans, a focused study of a Scottish family
with this mutation, 33.3% of individuals exhibited symptoms of

schizophrenia, major depression (47%), adolescent misconduct
(9.5%), bipolar and minor depression, respectively (4.7%;
Hennah et al., 2006). Furthermore, a frameshift mutation of
the DISC1 gene in an American family was associated with
schizophrenic and schizotypic affective disorders (Sachs et al.,
2005; Zhang et al., 2006). In animal studies, such as in the 129S
inbred strain of mouse (with a spontaneous, native truncation in
the C-terminal of DISC1), L100 and Q31l mutations of the gene
result in schizophrenia-like phenotypes (Clapcote and Roder,
2006; Clapcote et al., 2007; Niwa et al., 2010; Sultana et al., 2019).
With its relative prevalence and concordant disease expression,
DISC1 mutations are an important genetic factor in the etiology
of schizophrenia pathogenesis.

Despite the advances in understanding the genetic and
environmental factors involved in the etiology of schizophrenia
and a plethora of molecular interactions of DISC1 protein at
presynaptic, synaptic and/or postsynaptic sites (Hikida et al.,
2012; Weng et al., 2018; Barnett et al., 2019) it remains
unclear the degree to which the DISC1 gene interacts with
environmental stressors and how such interactions impact
the disease presentation in affected individuals. Therefore to
understand the behavioral impact of DISC1 interactions with
environmental insults, in the present study, we utilized a
mouse model of schizophrenia (Jones et al., 2011) to test the
effects of an environmental stressor (maternal separation) and/or
pharmacological intervention (ketamine; Table 1) on the severity
of behavioral phenotypes in genetically predisposed animals
(with DISC1 mutation) compared with controls. We found
that although environmental variables increased the number of
animals exhibiting aberrant behaviors, the genetic composition
of the animals was still the major driver in the expression of
schizophrenia-related phenotypes.

MATERIALS AND METHODS

Animal Care and Housing
A total of 12 animals were used in each group: 129SvEv
(129S:∆DISC1) a DISC1 mutation model and C57BL/6J

TABLE 1 | Description of all the intervention groups used.
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(control), and the intervention groups described below. Mice
were obtained from the Jackson Laboratory (Bar Harbor,
ME, USA). These animals were assessed on a battery of
behavioral tests when 8 weeks old, with the least stressful tests
performed first (Sultana et al., 2019). Initially, control and
129S:∆DISC1 animals were characterized by behavior without
any interventions. Animals were housed in a temperature and
humidity-controlled roomwith a 12 h light/dark cycle with lights
on at 7:00 am and food and water provided ad libitum. All
the experiments were conducted according to NIH guidelines
and were approved by the Institutional Animal Care and Use
Committee (IACUC) of the Louisiana State University School of
Veterinary Medicine.

Animal Models and Interventions
Maternal Separation (MS; Early Life Environmental
Stress)
Maternal separation of newborns, young children have shown
a strong correlation with psychotic disorder precipitation in
human subjects (Mäki et al., 2003; Paksarian et al., 2015).
Maternal separation in mouse and rat pups, in particular, has
been used to model and study schizophrenia (Lehmann et al.,
2000; Fabricius et al., 2008). In this study, maternal separation
of pups was performed with slight modifications to previously
described procedures (Roceri et al., 2002; Ellenbroek and Riva,
2003). The pups were separated from dams for 4 h a day
from postnatal day (PND) 3 to PND12 (critical period of brain
development at these stages; Rice and Barone, 2000) daily from
10:00 a.m. to 2:00 p.m. and weaned at PND21. The animals were
tested after PND60.

NMDAR Hypofunction (i.p. Ketamine Injection)
NMDAR hypofunction is a convergent molecular deficit found
in instances of schizophrenia. To induce a pharmacologically
targeted behavioral deficit, we used a previously established
model of schizophrenia (Ogundele and Lee, 2018) To induce
NMDAR hypofunction similar to molecular findings in
schizophrenia, both 129S:∆DISC1 and control animals were
injected with a subanesthetic dose of ketamine (30 mg/kg) for
5 days from day 45–50, as described previously (Becker et al.,
2003; Frohlich and Van Horn, 2014; Ogundele and Lee, 2018)
and were tested behaviorally starting at 5–7 days following the
last ketamine injection.

Maternal Separation (PND3–PND12) With i.p.
Ketamine Injection During Adulthood
Both 129S:∆DISC1 and control animals were separated
maternally (from PND3-PND12; 4 h a day). In adulthood, they
were injected with ketamine (i.p. 30 mg/kg), as described above.
These animals were then tested under the behavioral test battery
as follows.

Behavioral Test Battery
All behavioral experiments were performed by the same
investigator during the late morning. The behavioral procedures
have been described in detail in our previous work (Sultana et al.,
2019). One set of experiments was performed per day over a
16 days period with resting days in between. Experiments were

performed in the order as we have described in our prior study
(Sultana et al., 2019). The following tests were included.

Open Field Test for Thigmotaxis and
Overall Activity
The total distance traveled in the apparatus was calculated and
used as a measure of overall activity (Foshee et al., 1965). In
addition, this test was also used as a measure of anxiety-like
behavior in terms of thigmotaxis, i.e., time spent near the
periphery of the chamber (Simon et al., 1994; Seibenhener and
Wooten, 2015; Walz et al., 2016). Thus, we also determined the
percent time the test animal spent at the periphery vs. center
(Sultana et al., 2019) during the total 5 min test duration.

Sociability and Novelty
As a measure of social interaction, sociability and social novelty
were tested as previously described (Kaidanovich-Beilin et al.,
2011). On the test day, animals were assessed for sociability, as
defined by the percent time that the test animal spent socializing
with stranger 1 (S1) i.e., (S1/S1+E) ∗ 100. Social novelty was
assessed as the percent time spent with stranger 2 (S2) as
(S1/S1+S2) ∗ 100.

Modified Porsolt Forced Swimming Test
As a metric of despair, we utilized the modified Porsolt forced
swimming test, derived from the procedure of Can et al.
(2012a,b). The camera (1080 HD, Logitech, Newark, CA, USA)
was positioned with a side view of the beaker to record the
leg movements of the animal. Scoring of the movements was
done as previously described by Can et al. (2012a,b). Percent
mobility time was calculated from a total 4 min testing period,
following an initial 2 min acclimation period which was later
excluded from calculations. Measurements included when the
animal was actively struggling to escape from the water container,
whereas the propelling movement was not considered in the
mobility calculations.

Tail Suspension Test
This test was used as another metric of negative behavior,
animals were suspended by a custom holder and percent mobility
during suspension was assessed (Can et al., 2012b). The total test
duration was 6 min, but the latter 4 min were analyzed to remove
any bias involving acclimation.

Stress Calls
When interpreted contextually, in certain psychotic disorders
like schizophrenia and schizotypic affective disorders, ultrasonic
vocalization (USV) patterns can provide an indicator of
the affective state of the animal (Knutson et al., 2002;
Schwarting and Wöhr, 2012; Mun et al., 2015). Stress calls
were recorded simultaneously to the tail-suspension test, as
described previously. An AT125 bat call recorder (Binary
Acoustics, Carlisle, PA, USA) and digital recording software
SPECT’R (Binary Acoustics, Carlisle, PA, USA) was used. Calls
were analyzed offline using SCAN’R software (Binary Acoustics,
Carlisle, PA, USA). Calls above 30 kHz (typical of adult mice)
with a minimum duration of 5 ms were considered and analyzed.
The number of calls per 6 min period was calculated along with
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the mean and maximum frequency and the duration of each call.
The entire 6 min period was analyzed since no difference was
found when examining these data compared to the 4 min period
post-acclimation.

Y-Maze Test
Working memory includes the ability to rapidly form a
memory trace and the exclusion of old information from that
which is currently valid. This task was used as a tool to
assess schizophrenia-related cognitive impairment. Videos were
recorded using a Logitech HD 1180 camera and later analyzed
with ANY-maze (ANY-maze, Wood Dale, IL, USA). Percent
entries into the correct arm were calculated using the formula
described previously (Sultana et al., 2019).

Habituation to Acoustic Startle and Pre-pulse
Inhibition (PPI)
As a measure of pre-attentive deficits, this test is also used to
assess sensorimotor gating in human subjects with schizophrenia
(Swerdlow et al., 2006). Following the protocol described by
Valsamis and Schmid (2011), responses to acoustic startle stimuli
were used to measure habituation and pre-pulse inhibition (PPI).
The apparatus and protocols were followed as described in our
prior study (Sultana et al., 2019). For stimulus delivery and
recording of the startle signal, Audacity software 2.2.2 (Carnegie
Mellon University, Pittsburgh, PA, USA) was used. The startle
data were exported into Excel (Microsoft, Redmond, WA, USA)
using Python. Further analysis was done using Excel followed by
statistical analysis with GraphPad Prism 5 (LaJolla, CA, USA).
The data were expressed as mean ± SEM.

Statistical Analysis
ANOVA followed by Tukey’s post hoc test for multiple
comparisons was used to determine significant differences
among groups. All the data were expressed as mean ± SEM. A
p-value < 0.05 was considered statistically significant. Statistical
analysis was performed using GraphPad Prism 5 (GraphPad
Software, La Jolla, CA, USA).

RESULTS

Thigmotaxis, Anxiety-Related Behavior
As noted previously, time spent by animals along the walls
of the open field provides an index of anxiety (Sultana et al.,
2019). Here, we calculated the percent time that animal groups
spent at the periphery. We found that control animals spent a
significantly higher time in the center vs. control+MS+ketamine
(p≤ 0.05; see Figure 1A), while animals with theDISC1mutation
showed a variable degree of time at the periphery differing from
control animals (DISC1 alone at p ≤ 0.001 and DISC1+ketamine
at p ≤ 0.01). Different interventions on the control background
did not affect this behavior, except in the control+MS+ketamine
group (at p ≤ 0.05; Figure 1A). The variable degree of
anxiety-related behavior was intriguing, since not all the
interventions on the DISC1 and/or control group background
exhibited this behavior (37.5% of the population among all
the groups tested here), compared to schizophrenia subjects,
anxiety-related behavior is not the endophenotype, with a 38%

prevalence of this behavior in human schizophrenia patients
(Temmingh and Stein, 2015).

Exploratory Behavior and Activity
While in the open field, the total distance covered by all groups
was assessed. Control animals traveled a significantly greater
distance as compared to other groups, i.e., DISC1 animals
alone and with interventions (p ≤ 0.001; Figure 1B).
Environmental interventions on the DISC1 background
did not affect exploratory behavior when compared to the
DISC1 without intervention animals. Moreover, control
animals with maternal separation, ketamine injection
showed significantly decreased exploration (p ≤ 0.01 and
p ≤ 0.001, respectively). These results support the interpretation
that all the environmental interventions affect animal behavior
differently depending on the genetic background and their
specific interactions.

Sociability and Novelty
Control animals exhibited significantly higher time
socializing compared with other groups, with the exception
of maternally separated (MS) controls (where different
groups differed at p-values control+ketamine at p ≤

0.001, control+MS+ketamine at p ≤ 0.01, DISC1 at
p ≤ 0.01, along with DISC1+MS, DISC1+ketamine,
DISC1+MS+ketamine at p ≤ 0.001, respectively; see
Figure 1C). The intervention groups did not exhibit an
intragroup difference in percent time with S1 (stranger 1) when
compared amongst themselves, as shown in Figure 1C.
These results indicate that environmental interventions
equally affect social withdrawal in all the models, with a
higher degree of social isolation in genetic mutation animals
(significant at p ≤ 0.01 in all DISC1 background groups).
However, environmental interventions on a DISC1 mutation
background did not change the sociability behavior of these
animals significantly.

Social novelty (i.e., percent time with S2) exhibited a
different outcome (Figure 1D), with control animals differing
from the DISC1 (p ≤ 0.05), maternally separated DISC1
(p ≤ 0.01), MS+DISC1 injected with ketamine at adulthood
(p ≤ 0.01), and the DISC1+ ketamine injection animals
exhibited an increased social novelty vs. DISC1 animals alone
(p ≤ 0.01), suggesting a complex interplay in DISC1 animals
with pharmacologically induced NMDAR hypofunction (using
ketamine; Figure 1D). Additionally, other environmental
interventions in DISC1 animals did not differ significantly
from those with no interventions. Control animals did not
show a significant difference when environmental interventions
were imposed on this background, indicating that the genetic
mutation in DISC1 animals influenced their behavior towards
social novelty.

Y Maze: As an Index of Working Memory
In this behavioral task, control animals exhibited significantly
higher percent time in the novel /correct arm (previously
blocked arm) as compared to DISC1 (DISC1 alone and with
interventions at p ≤ 0.001) and other groups (control+MS
and control+MS+ketamine at p ≤ 0.001 and control+MS at

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 2982

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Sultana and Lee Genetic and Environmental Mouse Models of Schizophrenia

FIGURE 1 | Three-chambered test for (A) percent time spent at the center of open field. (B) Total distance traveled throughout the apparatus. (C) Sociability. (D)
Novelty. All data presented here are presented as mean ± SEM, where a∗ compared to control at p ≤ 0.001; a# as compared to control at p ≥ 0.05; a as
compared to control at p ≤ 0.01 and b with above symbols show comparison of groups with DISC1 mutation animals.

p ≤ 0.01; Figure 2). It is important to note that environmental
interventions on a DISC1 mutation background did not
significantly disrupt the results of the working memory task
when compared to DISC1 animals without interventions. These
results demonstrate that working memory is affected in all the
control animal groups with various environmental interventions,
exhibiting the effect of these stressors on the hippocampus
(Malhotra et al., 1997; de Azeredo et al., 2017). Percent novel arm
entries did not show any significant difference among control vs.
intervention groups (data not shown).

Porsolt Forced Swim Test (FST)
Mobility during forced swim test (FST) can be used as a measure
of the degree of despair in animal models of behavioral disorders
(Can et al., 2012a).When test groups were compared for mobility
timing in FST, we found a variation in the number of animals
exhibiting depressive behavior within each group, whereas
when statistically compared, there was a significant reduction
in mobility timing (DISC1, DISC1+MS, DISC1+MS+ketamine
and control+ketamine, control+MS+ketamine at p ≤ 0.001;
and at p ≤ 0.01 for control+MS; as shown in Figure 3). The
environmental factors over a DISC1 mutation background
did not show a significant reduction in mobility time
when compared to DISC1 mutation animals without
intervention. Although maternal separation (Millstein and

FIGURE 2 | Y-maze task for working memory: showing percent time each
group spent in the novel arm. All data presented here are presented as
mean ± SEM, where a∗ as compared to control at p ≤ 0.001; a# as
compared to control at p ≤ 0.05.

Holmes, 2007), ketamine injections, and combinations of
both interventions affect the animals of each group to a
variable degree, these groups still exhibit an overall depressed
phenotype (Elk et al., 1986).
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FIGURE 3 | Forced Swim Test (FST) for depressive behavior: exhibiting the
percent mobility time by all the groups. All the presented here are presented
as mean ± SEM, where a* as compared to controls at p ≤ 0.001; a# as
compared to controls at p ≤ 0.05.

Tail Suspension Test and Stress Calls
The tail suspension test was used as another measure of despair
and resulted in a similar outcome as the FST. Control animals
showed the highest mobility, which was significantly different
from other groups (at p ≤ 0.001 for all the groups and p
≤ 0.01 for DISC1+MS+Ketamine vs. control; see Figure 4A).
DISC1 mutation animals vs. DISC1 with other interventions
did not show significant differences amongst themselves. Thus,
various environmental stressors led to decreased mobility in
the groups which was not significantly different from each
other (Figure 4).

While the animals were suspended, we also recorded the
USV emitted by these animals, as a measure of calls produced
under stress. We found that DISC1 mutation animals produced
fewer calls compared to control animals (p ≤ 0.01; Figure 4B;
Zimmerberg et al., 2003; Yin et al., 2016). Control animals
also differed significantly from DISC1, with maternal separation
and DISC1 maternally separated with ketamine injection (p
≤ 0.01; Figure 4B). Affective vocalizations differed to varying
degrees in control animals that were maternally separated and/or
treated with ketamine (for traces of USVs see also Figure 4C).
On the other hand, DISC1 animals with interventions did not
exhibit a reduction in calls when compared to DISC1 animals
without interventions.

Habituation to Acoustic Startle Response
(ASR)
Habituation to acoustic startle response (ASR) was measured
to determine sensorimotor gating and pre-attentive deficits. As
previously described, the first test block measured habituation
(Sultana et al., 2019). We found that maternal separation of
the control pups and DISC1 pups did not affect habituation
to ASR vs. control, exhibiting habituation of 65%, 53% and
42% (respectively for control, control+MS and DISC1+MS;
Figures 5A,D). The magnitude of habituation was not
significantly different in these animal groups. However, all

other groups (see Figure 5B, control and DISC1 with ketamine,
control and DISC1 with MS+ketamine, and DISC1 alone) did
not show habituation but instead exhibited sensitization to
the acoustic stimulus (Figures 5B,D). The animals exhibited
increased startle, indicating that pharmacologically induced
NMDAR hypofunction might be affecting the ability of the brain
to habituate to the repeated acoustic stimulus.

Prepulse Inhibition (PPI)
Similar to the habituation test, the PPI responses exhibited
a similar pattern of inhibition to different inter-stimulus
interval (ISI) and pre-pulse intensity combinations. We found
that control animals showed inhibition to all trial (ISI-PP
intensity) combinations (see Figures 6A–D), significantly
differing from control+MS+ketamine (p ≤ 0.001), DISC1 (p
≤ 0.05) and DISC1+ketamine (p ≤ 0.01; at ISI of 30 ms with
intensity of 75 dB depicted as 30_75 shown in Figure 6A),
control+ketamine (p ≤ 0.05) and control+MS+ketamine [p
≤ 0.01; at 30 (ISI)_85 (Prepulse intensity); Figure 6B], and
control vs. control+ketamine, control+MS+ketamine [p ≤

0.05 at 100 ms (ISI)_75 dB (Prepulse Intensity); Figure 6C
and p ≤ 0.001 at 100 ms (ISI)_85 dB (Prepulse Intensity)
combinations; Figure 6D]. Control animals also differed from
DISC1+MS [p ≤ 0.01 at 100 ms (ISI)_85 dB (Prepulse Intensity;
Figure 6D)]. Thus, unlike habituation to acoustic startle
stimulus, maternal deprivation alone in these animals did not
cause aberrations in PPI (Ellenbroek and Cools, 2002). Both
control and DISC1 animals with ketamine injections exhibited
aberrations in PPI behavior, showing an impact of NMDAR
hypofunction on sensorimotor gating mechanism of brain
circuitry (Cilia et al., 2007).

DISCUSSION

Schizophrenia is a neuropsychiatric disorder associated with
multiple genetic and environmental etiologies (Tsuang et al.,
2001). Although no single gene or environmental factor is known
to be completely causal (Choi et al., 2009; van de Leemput et al.,
2016; Howes et al., 2017), interactions among multiple factors
increase the emergence of the disorder. We focused our studies
on two different genetic backgrounds, control group (C57BL/6J)
which does not have a genetic predisposition to schizophrenia
or schizotypic disorders, and the test group that is genetically
predisposed (129S strain with C-terminal truncation of DISC1
gene) on a behavioral test battery (Brixey et al., 1993; Krystal
et al., 1994; Ellenbroek and Riva, 2003; Koike et al., 2006).

We have previously observed that this 129S: ∆DISC1 strain
differs behaviorally from several other common inbred and
outbred mouse strains (Sultana et al., 2019). Our prior findings
indicate that the inherent DISC1 mutation in the 129SvEv
mice has a penetrant effect on behavioral phenotype above
various genetic backgrounds. Other mouse strains (Balb/c,
CBA/J, etc.) could potentially serve as an appropriate behavioral
control strain here, since they are all similar behaviorally and
distinct from the 129SvEv strain, putatively as a result of the
DISC1 genetic mutation. This is supported by findings that
DISC1 mutations on the same background strain do not differ
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FIGURE 4 | Tail Suspension Test (TST) for depressive behavior: (A) exhibiting the percent mobility time by all the groups. (B) Stress calls recorded/6 min period
while under tail suspension. (C) Representative stress calls in all the groups; with y-axis showing frequency/call and x-axis showing duration (6 min). All data
presented here are presented as mean ± SEM, where a∗ as compared to control at p ≤ 0.001; a# as compared to control at p ≤ 0.05. a as compared to control at
p ≤ 0.01 and b with above symbols shows comparison of groups with DISC1 mutation animals.

when compared across strains (Lee et al., 2011). Nevertheless,
the comparisons employed here do add a potential caveat to our
results, which must be considered in their interpretation.

DISC1 mutations affect behavior by its interactions with
pathways such as PDE4, upregulation of SK2 (calcium-activated
small potassium channels at the PSD; Sultana et al., 2018),
and HCN (Paspalas et al., 2013). These interactions take place
at the dendritic synaptic densities, where NMDARs acts as a
convergence point for DISC1 and its interacting partners such
as PDE4. NMDAR hypofunction alone or in combination with
DISC1 mutations aggravate behavioral phenotypes, as discussed
below (see also Figures 1–3).

We assessed the effects of genetic predisposition
(DISC1 mutation), environmental factors (maternal separation
and ketamine injections), and interactions of these factors
(see Table 1). Among these factors, our results suggest that
genetic factors play the predominant role in the presentation
of behavioral phenotypes associated with the disease, while
pharmacological intervention (ketamine injections) and
maternal separation showed incremental effects, particularly
on the genetically predisposed animals. Interestingly, maternal
separation did not show a significant effect in terms of sociability

novelty, overall activity (Figure 1), USV (Figure 4B), and
habituation to acoustic startle (Figure 5) on control animals
suggesting that genetic predisposition might be necessary for
this stressor to contribute to disease pathology to exhibit above
mentioned behavioral syndrome.

In many of the behavioral tasks, environmental interventions
on the DISC1 background did not increase the severity of
behavioral phenotypes. We suggest that the severity of symptoms
in many of the behavioral task have a lower/upper limit.
However, an interesting finding from our data is that the
animals harboring the DISC1 mutation often exhibit a bimodal
distribution in the expression of behavioral phenotypes, which
is not found following environmental interventions. Thus, we
propose that the effects of the environmental interventions
may not necessarily be on the magnitude of the behavioral
effects, but rather the probability that these animals may develop
schizophrenia-related behavioral phenotypes.

As models to study schizophrenia, these interventions are
argued to have faced, construct and/or predictive validity
(Jones et al., 2011). The DISC1 mutation is known to associate
with a neurological disorder in about 33.3% of the large Scottish
population where the mutation is present, with members of the
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FIGURE 5 | Habituation to acoustic startle response (ASR). (A) Groups showing habituation; control (black), control+MS (green) and DISC1+MS (pink). (B) Groups
that did not show habituation. (C) Merge showing all the groups with and without habituation. (D) Percent habituation in different groups towards the last tone. All
data presented here are presented as mean ± SEM, where a∗ as compared to control at p ≤ 0.001; a# as compared to control at p ≤ 0.05; a as compared to
control at p ≤ 0.01 and b with above symbols shows comparison of groups with DISC1 mutation animals.

family exhibiting schizophrenia, bipolar and major depression
disorders etc. In the present study, DISC1 mutation animals
exhibited decreased sociability, novelty (Figure 1), mobility time
in forced swim and tail suspension test (Figures 3, 4A). When
compared with prior studies, animal models of DISC1 mutation
produced using various methods, e.g., shRNA, use of chemicals,
backcrossing 129S on C57BL6 background, report similar results
to our findings (Jaaro-Peled, 2009; Johnstone et al., 2011;
Tomoda et al., 2016). Moreover, disruption of sensorimotor
gating has been observed in various models of schizophrenia
including the DISC1 genetic mutation (Tomoda et al., 2017).

Additionally, NMDAR hypofunction is a key finding in
human postmortem studies of schizophrenia and bolsters the
glutamate dysfunction theory of schizophrenia pathogenesis
(Snyder and Gao, 2013). Furthermore, it is known that
DISC1 and NMDARs interact dynamically with each other
(Wang and Zhu, 2014), such that DISC1 dependent changes in
NMDAR synaptic responses are speculated to affect cognition in
individuals with schizophrenia (Ramsey et al., 2011; Wei et al.,
2014). Behaviorally, previous results from our lab also found that
there is a reduced interaction of test mice in terms of sociability,
social novelty, reduced spatial/working memory (Ogundele and
Lee, 2018), similar to our results in ketamine-treated animals
(control as well as DISC1 mutation background). We also found
that ketamine injection in the DISC1 mutation animals resulted
in increased hypo-frontality, leading to enhanced negative signs,
such as more depressed behavior (Figures 3, 4), as indicated by
decreasedmobility in FST and TST as well as the reduced number
of stress calls in these animals.

Genetic mutation and environmental stress affect the
behavioral emergence of schizophrenia. However, when there is
a combination of factors, we found that genetic background has
the biggest influence as shown by reduced sociability and novelty
in the DISC1 mutation background animals (Figures 1C,D),
when compared with the same insults on the control background
highlighted in terms of anxiety-like behavior, stress calls and
habituation to ASR as well as PPI (Figures 1A, 4B, 5, 6).
Environmental factors such as pharmacological interventions
that cause direct NMDAR hypofunction (ketamine injections)
results in similar behavioral outcomes (such as reduced
sociability and mobility in FST and TST) for both control and
DISC1 mutation animals, showing that NMDAR hypofunction
is a convergence point for the molecular mechanism behind
core symptoms of schizophrenia. On the other hand, maternal
separation of pups leads tomore negative symptoms, i.e., reduced
mobility in FST and TST and spatial memory, but it does
not affect the social recognition behavior of these animals
(Figures 1C,D). All other combinations of interventions
influenced the behavioral phenotype to a variable degree with
DISC1+MS+ketamine animals showing more aberrant behaviors
when compared with the control+MS+ketamine group, clearly
indicating the effects of genetic predisposition.

Overall, our study supports the most recent theories of gene-
environment interactions and their effects on the behavioral
phenotype of nervous disorders, such as schizophrenia.
Interactions between multiple components affect behaviors
at various levels for positive (aberrant PPI, reduced habituation
to acoustic startle) and negative symptoms (decreased mobility
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FIGURE 6 | Pre-pulse Inhibition (PPI). Prepulse inhibition at different inter-stimulus interval and pulse intensity. (A) 30_75. (B) 30_85. (C) 100_75. (D)
100_85, respectively. All data presented here are presented as mean ± SEM, where a* as compared to control at p ≤ 0.001; a# as compared to control at p ≤ 0.05;
a as compared to control at p ≤ 0.01 and b with above symbols shows comparison of groups with DISC1 mutation animals.

timing on FST and TST tests; Figures 3, 4), including cognitive
tasks with learning and memory deficits (as shown in Y
maze test; Figure 2; Ellenbroek and Cools, 2002; Powell
and Miyakawa, 2006; Gómez-Sintes et al., 2014). We also
emphasize the finding that, although DISC1 mutation animals
with various environmental interventions did not change
the severity of the behavioral profile of these animals when
compared to DISC1 mutation alone, the prevalence of animals
exhibiting aberrant behavioral phenotype increased due to
gene-environmental interaction. We propose then that this effect
could be due to environmental intervention acting as a second
hit to increase the chances of disease development in genetically
predisposed animals with the DISC1 mutation.

CONCLUSION

These behavioral changes suggest several aberrant molecular
interactions must be occurring at the cellular, subcellular and/or
extracellular levels. Here, we have first attempted to assess the
combination of environment and genetics in the development
of behavioral phenotype. The results of our present study
suggest that the DISC1 genetic mutation predominates over the
environmental factors used in our study in the presentation of
schizophrenia-like behavioral phenotypes. The molecular and
neural factors that lead to these behaviors remain to be examined,

as are any potential epigenetic changes that these stressors may
bring about in healthy individuals (Roth et al., 2009).
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Despite great efforts to warn pregnant women that drugs of abuse impact development
of the embryo and the fetus, the use of legal and illegal drugs by childbearing women
is still a major public health concern. In parallel with well-established teratogenic effects
elicited by some drugs of abuse, epidemiological studies show that certain psychoactive
substances do not induce birth defects but lead to subtle neurobehavioral alterations
in the offspring that manifest as early as during infancy. Although gender differences
in offspring susceptibility have not been fully investigated, a number of longitudinal
studies indicate that male and female progeny exposed in utero to drugs of abuse show
different vulnerabilities to deleterious effects of these substances in cognitive, executive,
and behavioral domains. Here, we briefly review the existing literature focusing on
gender differences in the neurobehavioral consequences of maternal exposure to
drugs of abuse. Overall, the data strongly indicate that male exposed progeny are
more susceptible than female to dysfunctions in cognitive processing and emotional
regulation. However, insights into the mechanisms determining this natural phenomenon
are not currently available. Our analysis prompts future investigations to implement
clinical studies including the influence of gender/sex as a biological variable in the
outcome of offspring prenatally exposed to drugs of abuse.

Keywords: development, drugs of abuse, gender, neuropsychiatric, prenatal, sex, vulnerability

INTRODUCTION

As a rule, drugs should not be used during pregnancy unless prescribed, because many can be
toxic to the placenta or the developing fetus. Yet, the use of drugs, including prescription or
non-prescription drugs, medicinal herbs, and licit (tobacco and alcohol) or illicit drugs, during
pregnancy keeps increasing (SAMHSA, 2011). Indeed, objective measurements of xenobiotics in
meconium, amniotic fluid, and cord blood indicate widespread fetal exposure to such agents
during their intrauterine life (for an excellent review see Barr et al., 2007). Such exposure
may induce developmental adaptations that can be interpreted as derangements from normal
development, which not only interfere with the immediate viability of the fetus but may also
result in the individual’s adverse health outcome in the short and long term (Hales and Barker,
2001; Barker, 2007). Hence, the “developmental origin of health and disease” hypothesis (Barker,
2007) stems from epidemiological studies showing that malnutrition, exposure to xenobiotics
(e.g., environmental chemicals and prescription, legal, and illegal drugs), infective diseases, or
stress during specific periods of development might increase the risk of disorders later in life.
This hypothesis also stresses the importance of investigating the mechanisms of fetal exposure to
xenobiotics and further in general to adverse intrauterine and perinatal factors.
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In this minireview, we will provide an up-to-date analysis
of the evidence for a sex differential in the susceptibility
to the consequences of maternal drug use on neurocognitive
and behavioral development of the offspring. Research has
pointed to gender differences in these sequelae, since exposed
males often appear more vulnerable than exposed females.
Insights into the neurobiological mechanisms underlying the
sex bias observed in certain neurobehavioral outcomes remain
unidentified. At this stage, we could only make inferences
from animal studies, although they do not allow for a precise
understanding of the underpinnings, especially in the context of
sex differences. In particular, many factors might moderate the
reported sex dichotomy, including individual (e.g., species, strain,
age) and experimental (e.g., design, drug, dosage, route, regimen)
variables, and objective endpoints (e.g., behavioral paradigm,
experimental technique). Here, we attempt to integrate the
gender difference results across drugs used by pregnant women.
Such integration could be useful for physicians and healthcare
providers when caring for a pregnant substance abusing woman.
Interspecies extrapolations will be carefully avoided to ensure
sound conclusions. The authors refer to excellent preclinical
studies’ reviews (Bruin et al., 2010; Schneider et al., 2011;
Ross et al., 2015; Gkioka et al., 2016; Comasco et al., 2018;
Scheyer et al., 2019).

SUBSTANCE USE IN WOMEN

The historical gap in substance use prevalence between men and
women has gradually narrowed in the past decade, particularly
among adolescents (Keyes et al., 2008; Seedat et al., 2009;
Steingrimsson et al., 2012; EMCDDA, 2019). While women still
exhibit lower rates of drug use disorder than men, prevalence
rates indicate that the number of female drug abusers is on the
rise. A recent snapshot of the European drug use situation shows
that women account for one-quarter of the general population
with drug issues and around one-fifth of all first-time drug abuse
treatment seekers (EMCDDA, 2019). Gender differences are clear
in the pattern of use at each stage of the addiction cycle. Women
typically begin to use substances later in life (Greenfield et al.,
2010; Keyes et al., 2010), misuse prescription drugs (e.g., opioids)
(McHugh et al., 2013), and their rate of consumption increases
more rapidly than that of men (Greenfield et al., 2010; Keyes
et al., 2010). Women also exhibit higher prevalence rates of
comorbidity with other psychiatric disorders as well as of relapse
(Wilcox and Yates, 1993; Conway et al., 2006; Back et al., 2011;
Khan et al., 2013).

DRUG USE DURING PREGNANCY AND
BREASTFEEDING: EFFECTS ON MALE
AND FEMALE OFFSPRING

The consumption of drugs in childbearing women has been
progressively increasing. Women abusing recreational drugs
before pregnancy tend to continue the use even during
gestation (Forray, 2016), and this use is not limited to illegal

drugs but includes prescription and over-the-counter drugs.
Approximately 60% of pregnant women take prescription drugs
and about 13% of them use herbal supplements. Furthermore,
the infographics based on the National Survey on Drug Use and
Health (SAMHSA, 2018) show that 5.4% of pregnant women
have used illicit drugs in the past 30 days, while 9.9 and
11.6% reported past-month alcohol or cigarette smoking use,
respectively. To complicate this issue, many women take drugs
when they are not aware of being pregnant.

Regardless of their legal status, all drugs cross and/or alter the
placental barrier, reach the fetus, and affect infant development.
Additionally, multiple drugs also pass into mother’s breast milk,
thus resulting in prolonged drug exposure of the newborn.
According to the United States Centers for Disease Control and
Prevention, almost 3% of newborns have birth defects because
of genetic, environmental, or other unknown causes (Parker
et al., 2010). Among environmental factors, drug use is the
major cause leading to birth defects ranging from fetal growth
reductions to medical complications such as preterm birth and
infections. Furthermore, the progeny prenatally exposed to drugs
of abuse develop neurobehavioral phenotypes that manifest
during infancy and persist to adolescence and young adulthood.
Research on the effects of prenatal alcohol, tobacco, opioids,
stimulants, and cannabis indicates an association between fetal
exposure to these substances and deficits in cognitive and
behavioral domains. However, in humans, the role of fetal sex
on functional consequences of prenatal exposure to drugs of
abuse remains grossly understudied. Here we present data on
illicit psychostimulants, opioids, cannabis, nicotine, and alcohol
in an attempt to provide a clear picture of neurobehavioral
outcomes in male and female progeny. When gender differences
have not been examined, our interpretation is limited to the
overall outcome.

Effects of in utero Exposure to
Psychostimulants
Psychostimulants, including cocaine and methamphetamine,
are the illicit drugs most commonly used by childbearing
women, though no recent estimate of their consumption during
pregnancy is known. Despite their well-described neurotoxic
effects on central nervous system (CNS) development, only very
few studies have addressed the negative neurobehavioral sequalae
on human offspring, particularly when gender is included as an
additional biological variable (Table 1 and Figure 1).

Longitudinal studies of long-term consequences of cocaine
use during pregnancy on the offspring focusing on emotional
regulation, behavior, and cognition suggest that female gender
is a protective factor (Singer et al., 2004; Dennis et al., 2006;
Accornero et al., 2007; Bennett et al., 2008; Ackerman et al.,
2010; Bridgett and Mayes, 2011). Male progeny exhibit stronger
impairment in inhibitory response, whereas females exhibit only
mild alterations that disappear with age (Carmody et al., 2011).
Accordingly, male offspring exhibit greater emotion regulation
problems and externalizing symptoms (e.g., aggressive and
risky behaviors); lower intellectual capabilities; and deficits in
attention, short-term memory, and problem solving compared
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TABLE 1 | Detailed information on the studies covered in this minireview examining gender as a variable.

Author year Substance Type of
study

Experimental
groups

Neuro
developmental
outcome

Prenatal
polysubstance
exposure

Socioeconomic
status

Age Performed tasks Gender results

Prenatal psychostimulant exposure

Lu et al.,
2009

Meth
amphetamine

Cross-
sectional
study

Methamphetamine
exposed vs alcohol
exposed vs control

Cognitive
abilities

Yes
(methamphetamine,
alcohol)

Matched for
socioeconomic
status

7–15 year Wechsler Intelligence
Scale for Children, 4th
Edition (WISC-4), California
Verbal Learning Test for
Children (CVLT-C)

Impaired verbal learning
capacities in
methamphetamine and
alcohol exposed

Diaz et al.,
2014

Meth
amphetamine

Longitudinal
study

Exposed vs control Cognitive
abilities

Yes
(methamphetamine,
alcohol, cannabis,
tobacco)

Matched for
socioeconomic
status

7.5 year Conners’ Parent Rating
Scale–Revised: Short
Form (CPRS-R:S)

Significantly higher
cognitive problems scores
in exposed children

Piper et al.,
2011

Meth
amphetamine

Cross-
sectional
study

Methamphetamine
and polysubstance
exposed vs
Unexposed

Cognitive
Abilities

Yes
(methamphetamine,
alcohol, tobacco,
cannabis)

Matched for
socioeconomic
status

7–9 year Wechsler Abbreviated
Scale of Intelligence,
Conners’ Continuous
Performance Test II,
Behavioral Rating
Inventory of Executive
Function, the CMS Family
Pictures and Dot Location
tests, the Spatial Span test
from WISC-IV-Integrated,
and a recently developed
spatial learning and
memory measure (Memory
Island)

Exposed children show
deficit in executive
functions (e.g., behavioral
regulation and
metacognition) and spatial
memory

Kiblawi et al.,
2013

Meth
amphetamine

Longitudinal Exposed vs
unexposed

ADHD risk Yes
(methamphetamine,
alcohol, cannabis,
tobacco)

Controlled for
low
socioeconomic
status

5 year Conners’ Kiddie
Continuous Performance
Test (K-CPT)

KCPT scores suggest
higher ADHD risk for
exposed children

LaGasse
et al., 2012

Meth
amphetamine

Longitudinal
study

Exposed vs
unexposed

ADHD risk Yes (methadone,
alcohol and
tobacco, cannabis)

Adjusted for
low
socioeconomic
status

3–5 year Child Behavior Checklist Higher prevalence of ADHD
symptoms in exposed
males than girls

LaGasse
et al., 2012

Meth
amphetamine

Longitudinal
study

Exposed vs
unexposed

Behavioral
problems

Yes (methadone,
alcohol and
tobacco, cannabis)

Adjusted for
low
socioeconomic
status

3–5 year Child Behavior Checklist More externalizing
problems and aggressive
behavior in exposed males
than girls

Bennett
et al., 2008

Cocaine Longitudinal
study

Exposed vs
unexposed

Cognitive
abilities

Yes (cocaine,
alcohol, tobacco,
cannabis)

Measured as
environmental
risk

4, 6,
9 year

Stanford-Binet IV
intelligence test

Lower composite IQ score
(abstract/visual and verbal
reasoning, short-term
memory) in exposed boys
but not girls
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TABLE 1 | Continued

Author year Substance Type of
study

Experimental
groups

Neuro
developmental
outcome

Prenatal
polysubstance
exposure

Socioeconomic
status

Age Performed tasks Gender results

Dennis et al.,
2006

Cocaine Longitudinal
study

Exposed vs
unexposed

Cognitive
abilities

Yes (cocaine,
alcohol, tobacco,
cannabis)

Measured as
environmental
risk

5 year The impossible pulley task More difficulties in problem
solving and altered
reactivity/ regulating
behavior in exposed males
than females

Singer et al.,
2004

Cocaine Longitudinal
study

Exposed vs
non-exposed

Cognitive
abilities

Yes (cocaine,
alcohol, tobacco,
cannabis)

Measured as
caregiving
environmental
risk

0–4 year Wechsler Preschool and
Primary Scales of
Intelligence-Revised

Mild but significant
difficulties in cognitive
abilities (visual-spatial and
arithmetic skills) in exposed
males

Mayes et al.,
2003

Cocaine Longitudinal
study

Exposed vs
non-drug and non-
cocaine-exposed

Cognitive
abilities

Yes (cocaine,
alcohol, tobacco,
cannabis)

Measured as
environmental
risk

0–3 year Bayley Scales of Infant
Development (BSID-II)

Lower BSID-II mental
performance in cocaine
exposed children
compared to both non-drug
and non-cocaine-exposed
children

Accornero
et al., 2007

Cocaine Longitudinal
study

Exposed vs
unexposed

Deficit in
attention and
inhibition
response

Yes Matched for
socioeconomic
status

5–7 year Continuous performance
tests (CPTs)

Deficits in attention
processing in exposed
offspring

Karmel and
Gardner,
1996

Cocaine Longitudinal
study

Exposed vs
unexposed

Attention and
arousal

Yes (cocaine,
alcohol, tobacco)

ND 0–1 year Visual looking preferences Arousal-modulated
attention deficit in exposed
male and female infants

Bennett
et al., 2007

Cocaine Longitudinal
study

Exposed vs
unexposed

Neurobehavioral
problems

Yes (cocaine,
alcohol, tobacco,
cannabis)

Adjusted for
low
socioeconomic
status

10 year Youth Risk Behavior
Survey

Highest scores for
aggression, substance use,
high-risk behavior in
exposed males

Nordstrom
Bailey et al.,
2005

Cocaine Longitudinal
study

Exposed vs
unexposed

Neurobehavioral
problems
(aggressive
behavior)

Yes (cocaine,
alcohol)

Controlled for
socioeconomic
status

6–7 year Achenbach Teacher
Report Form (TRF)

Delinquent behavior and
clinically significant
externalizing behavior
scores in exposed boys

Sood et al.,
2005

Cocaine Historical
prospective
study

Alcohol exposed vs
cocaine and/or
alcohol exposed

Neurobehavioral
problems

Yes (cocaine,
alcohol)

Controlled for
socioeconomic
status

6–7 year Caregiver reported
Achenbach Child Behavior
Checklist (CBCL)

Higher aggressive (in
females) and delinquent
behaviors (in males) scores
in exposed offspring

Bendersky
et al., 2006

Cocaine Longitudinal
study

Exposed vs
unexposed

Neurobehavioral
problems

Yes (cocaine,
alcohol, tobacco,
cannabis)

Measured as
environmental
risk

5 year ACHENBACHChild
Behavior Checklist (CBCL),
LRRH Reinisch Revision,
Teacher Rating of
Aggression (TRA)

Aggressive behavior in
exposed male offspring
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TABLE 1 | Continued

Author year Substance Type of
study

Experimental
groups

Neuro
developmental
outcome

Prenatal
polysubstance
exposure

Socioeconomic
status

Age Performed tasks Gender results

Prenatal opioid exposure

Nygaard
et al., 2015

Heroin Longitudinal
study

Heroin exposed vs
polysubstance
exposed

Cognitive
abilities

Yes (heroin,
benzodiazepines,
alcohol)

Controlled for
low
socioeconomic
status

1–3 year Bayley Scales II (Mental
Development Index, MDI)

Significantly and stably
lower levels of cognitive
functioning in male progeny

Nygaard
et al., 2015

Heroin Longitudinal
study

Heroin exposed vs
polysubstance
exposed

Cognitive
abilities

Yes (heroin,
benzodiazepines,
alcohol)

Controlled for
low
socioeconomic
status

4 year McCarthy Scales of
Children’s Abilities

Significantly and stably
lower levels of cognitive
functioning in male progeny

Nygaard
et al., 2015

Heroin Longitudinal
study

Heroin exposed vs
polysubstance
exposed

Cognitive
abilities

Yes (heroin,
benzodiazepines,
alcohol)

Controlled for
low
socioeconomic
status

8 year The Wechsler Intelligence
Scale for
Children—Revised

Significantly lower cognitive
scores in both exposed
males and females

Nygaard
et al., 2017

Heroin Longitudinal
study

Heroin exposed vs
polysubstance
exposed

Cognitive
abilities

Yes (heroin,
tobacco,
benzodiazepines,
alcohol,
psychopharmaca)

Matched for
socioeconomic
status

17–
21 year

Wechsler Abbreviated
Scale of Intelligence
(WASI), The Rey Complex
Figure Test (RCFT), The
California Verbal Learning
Test – 2nd Ed (CVLT-II),
Wechsler Adult Intelligence
Scale 3rd Ed(WAIS-III)

Significantly worse
cognitive performances in
male and female exposed
offspring compared to
controls

Suffet and
Brotman,
1984

Methadone Longitudinal
study

Exposed males vs
exposed females

Cognitive
abilities

ND ND 0–2 year Bayley Scales (Mental
Development Index, MDI)

Significantly lower cognitive
scores in both male and
female exposed offspring

Ornoy et al.,
2001

Heroin Longitudinal
study

Exposed vs
unexposed

Inattention/
hyperactivity
phenotype or
risk for ADHD

Yes (heroin,
methadone,
benzodiazepines
and other
psychoactive
drugs)

Compared for
socioeconomic
status

8 year (5–
12 year)

The Conners and
Achenbach questionnaires
and the Pollack Taper test

Highest rate of ADHD in
both heroin exposed boys
and girls

Prenatal tobacco exposure

Moe and
Slinning,
2001

Tobacco Longitudinal
study

Exposed vs
unexposed

Cognitive
abilities

Yes (tobacco,
opioids, alcohol,
cannabis,
psychostimulants,
and more)

Compared for
socioeconomic
status

1–3 year Bayley Scales II (Mental
Development Index, MDI)

Lower Mental
Developmental Scores in
exposed male infants

Kotimaa
et al., 2003

Tobacco Longitudinal
study

Exposed vs control Hyperactivity
phenotype
and ADHD
risk

Yes (tobacco and
alcohol)

Adjusted for
socioeconomic
status

8 year Children’s Behavior
Questionnaire (Rutter B2)

Hyperactivity in males and
females prenatally exposed
to nicotine

Willoughby
et al., 2007

Tobacco Epidemiological
Study

Exposed vs control Attention,
reactivity,
irritability

Yes (tobacco,
alcohol)

Adjusted for
socioeconomic
status

0–1 year Infant Behavior Record
(IBR)

Significantly lower cognitive
performances in exposed
males

(Continued)

Frontiers
in

B
ehavioralN

euroscience
|w

w
w

.frontiersin.org
June

2020
|Volum

e
14

|A
rticle

72

95

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00072
June

5,2020
Tim

e:16:50
#

6

Traccis
etal.

G
ender

D
ifference

in
D

rug
E

xposure

TABLE 1 | Continued

Author year Substance Type of
study

Experimental
groups

Neuro
developmental
outcome

Prenatal
polysubstance
exposure

Socioeconomic
status

Age Performed tasks Gender results

Cornelius
et al., 2007

Tobacco Longitudinal
study

Exposed vs
unexposed
offspring from
teenager mothers

Inattention/
hyperactivity
phenotype

Yes (tobacco,
cannabis, alcohol)

Controlled for
socioeconomic
status

6 year Child Behavior Checklist,
RouthActivity Scale, and
the SNAP

Increased activity and
attention problems in both
male and female
exposedoffspring

Gatzke-Kopp
and
Beauchaine,
2007

Tobacco Longitudinal
study

Exposed vs
unexposed

Neurobehavioral
problems,
ADHD and
cognitive
abilities

Yes (tobacco,
alcohol, cannabis,
amphetamines,
heroin)

Controlled for
socioeconomic
status

7–15 year Child Behavior Checklist
(CBCL; Achenbach, 1991),
Child Symptom Inventory
(CSI)

Exposed offspring shows
more severe ADHD
symptoms and cognitive
behavioral problems

Langley et al.,
2007

Tobacco Cross-
sectional
study

Exposed with
ADHD vs
unexposed with
ADHD

ADHD
diagnosis

ND Measured as
environmental
risk

7–8 year Clinical diagnosis Maternal smoking in
pregnancy and high
environmental risk,
independently influence the
clinical presentation of the
ADHDphenotype without
sex-vulnerability

Hutchinson
et al., 2010

Tobacco Longitudinal
study

Exposed vs
unexposed

ADHD risk
and
neurobehavioral
problems

ND Confounding
factor

3 year SDQs Higher risk for conduct and
hyperactivity–inattention
problems in males whose
mothers persistently
smoked throughout
pregnancy

Wakschlag
and Hans,
2002

Tobacco Longitudinal
study

Exposed vs
unexposed

Neurobehavioral
problems
(conduct
disorder)

Yes (tobacco,
alcohol, opioids,
cannabis)

Controlled for
socioeconomic
status

10 year The Diagnostic Interview
for Children and
Adolescents (DICA)

Exposed boys, but not
girls, are significantly more
likely to develop conduct
disorder symptoms

Fergusson
et al., 1998

Tobacco Longitudinal
study

Exposed vs
unexposed

Neurobehavioral
problems
(conduct
disorder)

Yes (tobacco,
alcohol, illicit drugs)

Adjusted for
socioeconomic
status

16–
18 year

Composite International
Diagnostic Interview and
the Self-Report
Delinquency Inventory

More severe conduct
disorders symptoms in
male adolescents than in
females prenatally exposed
to tobacco

Prenatal alcohol exposure

Richardson
et al., 2002

Alcohol Longitudinal
study

Exposed vs control Cognitive
abilities

Yes (alcohol,
cannabis, tobacco,
cocaine)

Controlled for
low
socioeconomic
status

10 year Wisconsin Card Sorting
Test, Wide Range
Assessment of Memory
and Learning (WRAML),
Trail Making

Significantly lower cognitive
scores (learning and
memory) in both male and
female exposed offspring

Howell et al.,
2006

Alcohol Longitudinal
study

Exposed vs control Cognitive
abilities

Yes (alcohol,
cannabis, tobacco,
cocaine)

Controlled for
low
socioeconomic
status

15 year Wechsler Intelligence
Scale for Children
(WISC-III), Wechsler
Individual Achievement
Test (WIAT)

Significantly lower IQ score
and mathematical abilities
in both male and female
exposed offspring
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Author year Substance Type of
study

Experimental
groups

Neuro
developmental
outcome

Prenatal
polysubstance
exposure

Socioeconomic
status

Age Performed tasks Gender results

Kelly et al.,
2009

Alcohol Longitudinal
study

Exposed vs control Cognitive
abilities

Yes (alcohol,
tobacco)

Adjusted for
low
socioeconomic
status

3 year British Ability Scale (BAS),
Bracken School Readiness
Assessment (BSRA)

Significantly lower cognitive
scores in males born to
heavy-drinking mothers
compared to exposed
females

Willford et al.,
2004

Alcohol Longitudinal
study

Exposed vs control Cognitive
abilities

Yes (alcohol,
cannabis, tobacco,
cocaine)

Controlled for
low
socioeconomic
status

14 year Children’s Memory Scale Deficits in learning,
short-term and long-term
memory, specifically in the
verbal domain, in both
exposed males and females

Coles et al.,
2002

Alcohol Longitudinal
study

Exposed vs control Inattention/
hyperactivity
phenotype

Yes (alcohol,
cannabis, tobacco)

Controlled for
low
socioeconomic
status

15 year Continuous performance
task (CPT)

Deficits in sustained
attention, processing in the
visual and auditory modality
in exposed progeny

Herman
et al., 2008

Alcohol Cross-
sectional
study

FASD offspring with
ADHD vs FASD
offspring

ADHD
diagnosis

ND Controlled for
low
socioeconomic
status

6–16 year ADHD diagnosis Higher prevalence of ADHD
diagnosis in exposed males
than females

Kelly et al.,
2009

Alcohol Longitudinal
study

Exposed vs control Behavior
problems
(hyperactivity,
conduct, peer
problems)

Yes (alcohol,
tobacco)

Adjusted for
low
socioeconomic
status

3 year Parent-report version of
the Strengths and
Difficulties Questionnaire
(SDQ)

Exposed males were more
likely to have clinically
relevant high total
difficulties, hyperactivity,
conduct and peer problems
compared to girls

Prenatal cannabis Exposure

Noland et al.,
2005

Cannabis Longitudinal
study

Exposed vs control Cognitive
abilities

Yes (cannabis,
tobacco, alcohol,
cocaine)

Controlled for
low
socioeconomic
status

4 year Picture deletion task (PDT),
continuous performance
task (CPT), Wechsler
Preschool and Primary
Scales of
Intelligence-Revised
(WPPSI-R)

Higher omission error rates
in exposed offspring

El Marroun
et al., 2011

Cannabis Longitudinal
study

Exposed vs control Attention
problems

Yes (cannabis,
tobacco, alcohol)

ND 1–2 year Child Behavior Checklist Prenatal cannabis is
associated with attention
problems specifically in
exposed girls

Richardson
et al., 2002

Cannabis Longitudinal
study

Exposed vs control Cognitive
abilities,
attention and
impulsivity

Yes (alcohol,
cannabis, tobacco,
cocaine)

Controlled for
low
socioeconomic
status

10 year Continuous performance
test

Deficit in memory and
learning, together with
higher impulsivity score in
both males and females
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to female offspring (Bennett et al., 2002, 2007, 2008; Delaney-
Black et al., 2004; Nordstrom Bailey et al., 2005; Sood et al., 2005;
Bendersky et al., 2006; Dennis et al., 2006; Carmody et al., 2011).
In contrast, no gender dichotomy was found in the occurrence
of attention deficit/hyperactivity disorder (ADHD) phenotypes
from infancy to preadolescence (Karmel and Gardner, 1996;
Mayes, 1996; Mayes et al., 1998, 2003; Accornero et al., 2007).

With regard to methamphetamine, the most frequent
outcomes reported in newborns occur during the first year of
life and include motor dysfunctions (e.g., disorganized behaviors
with poor quality of movement), which tend to disappear
with development in boys (LaGasse et al., 2012; Shah et al.,
2012; Zabaneh et al., 2012; Kiblawi et al., 2014), whereas
they persist throughout adolescence in girls (Eriksson and
Zetterström, 1994; Cernerud et al., 1996). In contrast, other
neurobehavioral problems (e.g., anxious/depressive phenotypes,
emotional problems) appear during late infancy and childhood
and do not exhibit sex bias (LaGasse et al., 2012). Similarly,
impairments in cognitive skills occur equally in both female and
male offspring (Lu et al., 2009; Piper et al., 2011; Diaz et al.,
2014). However, deficits in inhibitory control and ADHD-like
symptoms are prevalent in boys (LaGasse et al., 2012; Kiblawi
et al., 2013).

Effects of Prenatal Exposure to Opioids
Regardless of the efforts aimed at discouraging opioid use,
prevalence rates show an increasing trend in pregnant women
(Haight et al., 2018). However, gender was not considered in most
of the human studies on the effects of heroin, methadone, and
other prescription opioids.

Children born to mothers who use opioids during gestation
suffer from the so-called neonatal opioid withdrawal syndrome
(NOWS) (Gomez-Pomar and Finnegan, 2018), characterized
by several signs and symptoms (e.g., tremors, sleep problems,
hyperactive reflexes, vomiting, dehydration, and respiratory
problems), which are more severe in boys than in girls (Jansson
et al., 2007, 2010). Maternal consumption of methadone—the
gold standard for opioid maintenance therapy—is associated
with poorer cognitive performance and lower IQ scores in
exposed males when compared to females during infancy, an
age-dependent effect (Suffet and Brotman, 1984; Nygaard et al.,
2015). However, no gender difference is found in symptoms
related to ADHD and aggressive behavior up to preadolescence
(Ornoy et al., 2001).

Effects of Maternal Tobacco
Nicotine and its related tobacco products are the most studied
substances in relation to long-term neurobehavioral outcomes
in offspring exposed to tobacco during pregnancy. Despite the
limitations due to several environmental confounding factors,
a high degree of consistency exists for the association of
maternal smoking and cognitive and behavioral problems (for an
exhaustive review, see England et al., 2017). From these studies
emerge a male bias toward diverse behavioral and cognitive
domains, depending on age: at 6–8 months, males appear
more vulnerable to deficits in cognitive and executive functions
(e.g., inattention) and in motor functions and to alterations in
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FIGURE 1 | Heatmaps of neurobehavioral outcomes collectively identified as cognitive deficits (including executive function), ADHD risk, and behavioral problems,
with missing information on gender differences shown in gray. Outcome intensities are displayed as colors ranging from pink (female) to blue (male) shown in the key.
Gender differences were not observed in executive functions during childhood in offspring prenatally exposed to cocaine in one study only (Accornero et al., 2007);
therefore, the heatmap displays blue as a result of the larger number of consistent studies reporting that boys are more susceptible to exhibit deficits in cognitive
abilities when compared to girls (see text and also Table 1).

reactivity (Moe and Slinning, 2001; Wakschlag and Hans, 2002;
Willoughby et al., 2007). From infancy through childhood, boys
appear at risk for ADHD (Kotimaa et al., 2003; Cornelius et al.,
2007; Willoughby et al., 2007; Agrawal et al., 2010; Hutchinson
et al., 2010); however, only during infancy do they display
less positive mood (Pickett et al., 2008) than females; during
childhood and adolescence, males present more externalizing and
disruptive behaviors (e.g., conduct disorders, antisocial behavior)
than females (Wakschlag et al., 1997; Fergusson et al., 1998;
Hutchinson et al., 2010). Conversely, parental tobacco exposure
is associated with nicotine dependence and high consumption of
tobacco only in adolescent girls (Rydell et al., 2012). Although
the risk of developing ADHD symptoms in nicotine-exposed
progeny is high during adolescence, no gender differences were
found (Gatzke-Kopp and Beauchaine, 2007; Agrawal et al., 2010;
Sourander et al., 2019).

Effects of Maternal Alcohol
Despite the widely described dose-dependent teratogenic effect
of alcohol (Kodituwakku, 2007; Ornoy and Ergaz, 2010),
approximately 10% of women aged between 15 and 44 years
consume alcohol during pregnancy, with 3% exhibiting a binge-
drinking pattern (SAMHSA, 2011). Irrespective of the amount
and pattern of consumption, a wealth of clinical evidence
describes that prenatal alcohol exposure markedly impairs
cognitive, behavioral, and motor functions of offspring (Mattson
et al., 1998; Coles et al., 2002; Richardson et al., 2002; Willford
et al., 2004; Riley and McGee, 2005; Howell et al., 2006). Maternal
moderate to heavy drinking produces a group of pathological
conditions termed fetal alcohol spectrum disorder (FASD).
Epidemiological studies report sexual dichotomy in FASD, with
prevalence rates and severity being higher in male than in female
patients (May et al., 2007; Astley, 2010; Thanh et al., 2014;
but see May et al., 2014; Fox et al., 2015). A sex bias is also
described for other psychopathological traits, such as elevated
rates of ADHD in 6- to 16-year-old boys but not girls (Coles et al.,
2002; Herman et al., 2008). Boys also exhibit altered responses to
stress, measured as larger changes in cortisol levels induced by

stress-related cues (Haley et al., 2006). In contrast, neuroimaging
studies do not reveal sex differences in long-term abnormalities of
brain morphology because the reduction in both size and volume
of frontal, temporal, cingulate, and striatal regions of offspring
prenatally exposed to alcohol did not differ between genders
(Eckstrand et al., 2012; Treit et al., 2013; De Guio et al., 2014).
These findings suggest that such psychopathological traits cannot
be attributed to these structural changes.

Effects of in utero Cannabis Exposure
In line with the data on general population, the rates of cannabis
use among pregnant women have markedly increased, with
prevalence rates reaching 75% between 2002 and 2016 (Brown
et al., 2017). Despite this alarming scenario, a few studies
have assessed the long-term neurobehavioral repercussions
of maternal cannabis use on the offspring, though gender
differences were not consistently examined: the Ottawa Prenatal
Prospective Study (OPPS), the Maternal Health Practices and
Child Development Project (MHPCDP), the Generation R study,
and Adolescent Brain Cognitive Development (ABCD) study. The
OPPS study included gender as a confounding factor, and it
described a number of long-lasting neurobehavioral alterations,
ranging from heightened tremors and startle responsiveness to
deficits in executive function (e.g., attention, cognitive flexibility,
problem solving, impulse control) (Fried and Makin, 1987;
Fried and Smith, 2001). Similarly, gender was not examined
when assessing performance in memory, verbal, and perceptual
processes as well as the first clinical signs of impulsivity at
childhood (Smith et al., 2006). However, when the same authors
subsequently included the gender factor on clinical signs that
persisted at young adulthood, such as deficits in executive
function tasks that require impulse control, they found no gender
differences (Smith et al., 2004). In the MHPCD study, the
authors seldom included “gender” in their analysis. However,
they reported (1) significant sleep disturbances and deficits
in mental development as well as in short-term memory and
verbal reasoning at both 9 months and 3 years of age; (2)
deficits in attention and memory, increased anxiety/depressive
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symptoms, impulsivity, hyperactivity, and aggression at 6 and
14 years of age (Richardson et al., 1989, 2002; Dahl et al., 1995;
Leech et al., 2006; Day et al., 2011). Gender at 10 years of
age did not affect cognitive deficits (Richardson et al., 2002).
In contrast, the Generation R study showed that girls but not
boys at 18 months of age exhibited increased scores on an
aggressive behavior scale that persisted through childhood (El
Marroun et al., 2011). Notably, this sex bias disappears during
adolescence. Also, during infancy girls appear to be at risk for
the development of ADHD, a susceptibility that is age dependent
(Table 1 and Figure 1). Remarkably, although from Generation R
and ABCD studies maternal cannabis use has been associated to
proneness to psychosis in middle to late childhood, significantly
earlier than the typical onset of first psychotic episode (Bolhuis
et al., 2018; Fine et al., 2019; Paul et al., 2019), again gender
was not considered. Importantly, an independent investigation
showed that prenatal marijuana exposure has an equally negative
effect on sustained attention of the offspring from childhood to
adolescence (Noland et al., 2005).

CONCLUSION

The literature here examined reveals gender differences in
immediate and long-term negative consequences of maternal
drug use on both cognition and behavior. When gender was
included as a variable, irrespective of the drug used, male progeny
appear more vulnerable to cognitive deficits and at risk of ADHD
from infancy through childhood (Table 1 and Figure 1). Notably,
these gender differences tend to disappear with age. However,
we cannot depict a clear picture for internalizing problems,
drug use, and motor function deficits due to the paucity of
data. Regarding the problems in the behavioral domain (i.e.,
externalizing problems), the current scenario is clearer: girls
exposed in utero to cannabis are more vulnerable than boys
up until adolescence, but this conclusion cannot be extended
to other drugs. Remarkably, this is in contrast to what is often
reported in rodent studies (Fernandez-Ruiz et al., 1998; Hurd
et al., 2019; Scheyer et al., 2019; de Salas-Quiroga et al., 2020),
where female sex often acts as a protective factor. Nevertheless,
the advantage of animal studies is to dissect the effects of genetic,
biological, and/or environmental risk factors. The establishment
of a biological causality between prenatal drug exposure and
repercussions on the progeny from animal investigations is
pivotal. These mechanistic insights along with the observations
reported in human studies may help in developing therapeutic
interventions, on a gender-specific basis, which would ultimately
result in more effective treatment outcome.

The longitudinal studies examined have often considered
different factors that might have contributed to gender
differences, including socioeconomic status, lifestyle indicators,
stressful life events, social support (or lack thereof), and
psychiatric comorbidity. In this regard, an additional degree
of complexity arises from the evidence that single drug use
is virtually non-existent. At this stage, we cannot certainly
resolve this issue in human studies, as it deserves as much
attention as neuroimaging and omics analyses to reveal

neurobiological underpinnings of drug-exposed phenotypes. Of
similar importance is the need to study the association between
the perturbations of in utero–placental exchange and adverse
mental health outcome later in life. Indeed, increasing evidence
points to the role of the placenta in fetal programming, which
is altered in response to prenatal insults and contributes to
psychopathology (Burton et al., 2010; Khalife et al., 2012;
Roescher et al., 2014; Park et al., 2018; Kratimenos and Penn,
2019). Notably, the placenta influences in a sex-dependent
manner the outcome for offspring who were exposed to perinatal
malnutrition and stressors (Walsh et al., 2019). However, research
into whether the gender bias results from sex differences
in placental structure and functions or its genes, proteins,
and steroids is surprisingly lacking. Hence, future research
should aim at disentangling how sex impacts neurobiology
from the transfer of maternal drug concentrations across
the placenta to the effect on placental gene transcription or
expression of discrete transporters (e.g., ATP-binding cassette
carriers) in the cord. In fact, to date, such investigations
have been performed only to relate maternal drug use and
placental perturbations to fetal growth and other morphological
abnormalities (Janssen et al., 2015).

Substance (ab)use screening protocols, including
questionnaires and urine toxicology testing, should be established
worldwide as routine to identify pregnant women using drugs.
Public health interventions regarding the awareness of the
harm associated with maternal drug use, and special programs
to enter treatment and/or increase spontaneous quit rates,
should be implemented (Jantzen et al., 1998; Forray, 2016 and
references therein; Patrick et al., 2017). Progress on tailored,
safe, and acceptable pharmacotherapies to restore proper
neurodevelopmental trajectories of the progeny should be
incentivized. Additional preventative outreach programs should
be implemented to raise community awareness and support
and to provide access to treatment for the children who are
prenatally exposed to drugs. Finally, future investigations should
be implemented to include the influence of sex as a biological
variable (for guidelines please refer to (Clayton, 2018; Mannon
et al., 2020) in the outcome of offspring prenatally exposed
to drugs of abuse.
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Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical
and functional long-term abnormalities with limited treatment options. This study
investigated long-term consequences of continuous and intermittent maternal alcohol
drinking on behavioral readouts of cognitive function and alcohol vulnerability in
the offspring. The effects of environmental enrichment (EE) during adolescence
were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or
intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation
periods—equivalent to the whole gestational period in humans. Male offspring were
reared in standard conditions or EE until adulthood and were then assessed for
declarative memory in the novel object recognition test; spatial learning, cognitive
flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption
and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD
decreased locomotor activity, exploratory behavior, and declarative memory with respect
to controls, whereas perinatal IAD displayed impaired declarative memory and spatial
learning and memory. Moreover, both perinatal alcohol-exposed offspring showed
higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal
IAD rats showed a greater alcohol consumption and relapse behavior with respect
to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD,
while it mitigated spatial learning and reference memory impairment in perinatal-IAD
progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal
alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related
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long-term consequences on cognition and vulnerability to alcohol in the offspring.
However, increased positive environmental stimuli during adolescence may curtail the
detrimental effects of developmental alcohol exposure.

Keywords: alcohol, perinatal binge alcohol drinking, perinatal continuous alcohol drinking, declarative memory,
spatial memory, alcohol vulnerability, environmental enrichment

INTRODUCTION

Perinatal exposure to alcohol can affect in utero
neurodevelopment, causing both physical and functional
long-term alterations (Dejong et al., 2019). Despite
pre-conceptional alcohol cessation is recommended, alcohol
drinking during pregnancy is prevalent worldwide, especially
in Europe (Popova et al., 2017). One of the best predictors of
alcohol use throughout the perinatal period is the pattern of
alcohol use before pregnancy; indeed, women who report binge
or heavy drinking prior to pregnancy likely maintain it during
pregnancy and throughout lactation (Davidson et al., 1981;
Ethen et al., 2009; Mallard et al., 2013; Anderson et al., 2014;
Kitsantas et al., 2014), increasing the risk for growth deficits,
facial dysmorphology, and behavioral and neurocognitive
abnormalities in the progeny (Viljoen et al., 2005; May et al.,
2007; Urban et al., 2008). Aside from the more severe fetal
alcohol syndrome (FAS), ‘‘fetal alcohol spectrum disorders’’
(FASD) have been recently characterized as a broad range of
deficits observed in the child when exposed to alcohol at any
time prenatally (Dejong et al., 2019). Those alterations involve
memory, attention, affective and social behavior, abnormal
responses to stress and natural rewards (American Psychiatric
Association, 2013), and susceptibility to drug and alcohol abuse
later in life (Baer et al., 2003; Alati et al., 2006; Glantz and
Chambers, 2006).

While the consequences related to heavy prenatal alcohol
exposure are generally acknowledged, the assessment of the
neurobehavioral alterations potentially produces by low-to-
moderate alcohol exposure in humans displays mixed results
(Kelly et al., 2013; Flak et al., 2014; Kilburn et al., 2015). This may
be due to a number of methodological issues—most of the studies
focus on physical malformations—and confounding variables,
such as the unreliable self-reports about the degree of alcohol
exposure (number of drinks per week rather than amount at
one session) and the underestimation of subtle neurobehavioral
deficits which may appear later in life (Conover and Jones, 2012).

Preclinical models of maternal alcohol drinking can enhance
our understanding of the adverse outcomes secondary to
developmental alcohol exposure. Indeed, fetal alcohol exposure
in humans can be modeled by perinatal alcohol exposure in rats,
since the full gestational period in rodents is equivalent to the
first and second trimesters in humans, while the first 10 postnatal
days in rats correspond to the third trimester in humans (Patten
et al., 2014). Besides, high levels of alcohol consumption can
be induced in Sardinian alcohol-preferring and Wistar female
rats by manipulating the schedule of alcohol access (Loi et al.,
2014; Brancato et al., 2016). First developed and characterized
in male rats (Wise, 1973; Simms et al., 2008), the intermittent

access procedure in the two-bottle choice paradigm, consisting
of cycles of drinking and abstinence, leads to a rapid increase in
voluntary alcohol consumption, in comparison with continuous
access to alcohol (Carnicella et al., 2014). Rats exposed to this
procedure consume the most abundant amount of their daily
total intake within the first hour of availability of the alcohol
bottle, reaching intoxicating blood alcohol levels in a short period
of time (about mg/dl after the first 30 min–1 h, Simms et al.,
2008; Carnicella et al., 2009; Loi et al., 2014). This procedure
models a voluntary binge-like drinking pattern (Crabbe et al.,
2011; Sprow and Thiele, 2012; Sabino et al., 2013; Carnicella
et al., 2014; Spear, 2018; Jeanblanc et al., 2019) and, as such, may
represent a valuable tool to model drinking trajectories during
pregnancy and lactation. Interestingly, when female rats are
exposed to a long-term binge-like intermittent alcohol drinking
(IAD) paradigm, they display a significant decrease in alcohol
consumption during pregnancy and resume excessive alcohol
consumption during the lactation period (Brancato et al., 2016).

Thus, in the present study, we aimed at investigating whether
the binge-like IAD paradigm, resulting in higher and irregular
peaks of blood alcohol levels in the dams, could lead to
distinct long-term consequences on cognition and vulnerability
to alcohol abuse in the offspring, with respect to continuous
alcohol drinking (CAD), which produces steady lower peaks
of blood alcohol levels, even in the face of overall high levels
of exposure. On the other hand, even the exposure to low to
moderate blood alcohol concentrations can cause significant
neuronal damage, when it occurs during the neurodevelopmental
window such as throughout gestation (Patten et al., 2014).
Therefore, it follows that according to time, dosage, and duration
of perinatal alcohol exposure, different developmental alterations
thus, may occur.

The long-term cognitive effects of perinatal alcohol exposure,
either continuous or intermittent, were assessed in the adult
offspring, through a multidimensional behavioral battery,
including declarative memory in the novel object recognition
test, spatial learning, cognitive flexibility, and reference memory
in the Morris water maze (MWM). Vulnerability to excessive
alcohol drinking, in terms of rate of voluntary alcohol
consumption and relapse behavior after a period of forced
abstinence, was assessed using a two-bottle ‘‘alcohol vs. water’’
choice drinking paradigm.

It is worth noting that treatment strategies to prevent or
mitigate perinatal alcohol-related deficits are currently very
limited (Murawski et al., 2015). In this regard, growing evidence
supports a beneficial role of the exposure to positive stimuli
during sensitive time windows of brain development. Indeed,
the environmental-enrichment (EE), experimental paradigm
consisting of housing conditions that include novelty, social

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 September 2020 | Volume 14 | Article 583122106

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Brancato et al. Enrichment Mitigates Perinatal Alcohol-Related Deficits

interaction and exercise, enhances sensory, cognitive, and
motor stimulation, which, in turn, translates into increased
neuroplasticity in brain regions critical for emotional regulation,
cognitive functions and reward sensitivity (Bayat et al., 2015;
Crofton et al., 2015; Morera-Herreras et al., 2019). However,
conflicting evidence is reported when the effect of EE was
evaluated toward motivational effects of drugs of abuse,
including alcohol (Nithianantharajah and Hannan, 2006; Solinas
et al., 2009; Pautassi et al., 2017; Rae et al., 2018). Thus, while it is
critical to identify maternal alcohol consumption as a primary
target to prevent fetal consequences, we investigated whether
EE during adolescence could prevent or mitigate the effects of
perinatal alcohol exposure on behavioral readouts of cognitive
function and alcohol vulnerability.

MATERIALS AND METHODS

Animals, Perinatal Alcohol Exposure,
and Rearing Conditions
The methods used for perinatal alcohol exposure and breeding
have been previously reported in detail (Brancato et al., 2018).

Briefly, adult female Wistar rats (200–220 g, Envigo, Italy)
were housed individually in standard rat cages (40 × 60 cm,
20 cm in height), with ad libitum access to water and food, in
a temperature- (22 ± 2◦C) and humidity- (55 ± 5%) controlled
room, on a 12-h light/dark cycle (08:00–20:00).

Rats were gently handled for 3 min per day for a week before
the experimental procedures, when they were randomly assigned
to one of the three experimental groups, according to the
two-bottle choice self-administration paradigm: water drinking
controls (CTRL), CAD, and IAD. Female rats underwent the
self-administration procedure during pre-gestation (12 weeks),
gestation (3 weeks), and post-gestation (3 weeks) periods,
accordingly to the respective home-cage two-bottle ‘‘alcohol vs.
water’’-choice-drinking paradigm.

Indeed, CTRL rats were given two bottles of tap water. CAD
rats were given a 24-h free choice between one bottle of alcohol
(20% v/v) and one of tap water, 7 days per week; IAD rats were
given 24-h alcohol (20% v/v) access during 3 days per week,
i.e., on Monday, Wednesday, and Friday, while they received
two bottles of tap water on the intervening days.

Plastic bottles (120 ml; metal cap 0.8-mm-diameter hole,
Tecniplast, Italy) were filled every day with 100 ml of 20%
alcohol (daily prepared from alcohol 96◦ (Carlo Erba Reagents,
Italy) diluted with tap water) and presented at lights-off in an
alternative left–right position in order, to avoid side preference.
Rats were weighed daily, and alcohol and water intake was
measured 1 h after lights-off and the day after, immediately
before lights-off, by weighing the bottles. Possible fluid spillage
was monitored by using multiple bottles filled with water and
alcohol 20%, allocated in empty cages interspersed in the racks
(Loi et al., 2014).

At the end of the 12-week two-bottle choice drinking
paradigm, each female rat was housed with a single breeder.
The day when pregnancy was confirmed by vaginal smear
(Cannizzaro et al., 2008; Plescia et al., 2014b), designed as

gestational day 1 (GD1), eight female rats were randomly
selected from each experimental group (n = 12), housed in
standard maternity cages, filled with wood shavings. Dams were
inspected twice daily for delivery until the day of parturition,
considered as postnatal day 0 (PND 0); dams and litters were kept
in a nursery (24± 2◦C) and not separated until weaning, in order
to model the human condition and avoid confounding factors
(Subramanian, 1992; Wilson et al., 1996; Santangeli et al., 2016).
Mean alcohol consumption at 1 h and 24 h by CAD and IAD
rat dams during pre-conception period, gestation, and lactation
was recorded and reported as g/kg ± SEM. After weaning, two
male rats from each litter of the three drinking groups were
randomly assigned to either the standard (SE) or enriched (EE)
rearing environment, so that the experimental groups of
rat offspring were perinatal water-exposed controls
(p-CTRL SE, n = 8); perinatal continuous alcohol-exposed rats
(p-CAD SE, n = 8); perinatal intermittent alcohol-exposed
rats (p-IAD SE, n = 8); perinatal water-exposed controls + EE
(p-CTRL EE, n = 8); perinatal continuous alcohol-exposed rats
+ EE (p-CAD EE, n = 8); and perinatal intermittent alcohol-
exposed rats + EE (p-IAD EE, n = 8). In detail, from PND
21 onward, the rats reared in SE conditions were housed in pair
in standard rat cages and left undisturbed by the experimenters
except for weekly cage change, whereas the EE rats were group-
housed (8/cage) in large cages (60 × 45 × 76 cm) with pet toys,
pots, hideouts, ropes, running wheel, ladder, tunnel and plastic
boxes, etc., which were relocated or changed daily to create
novelty (Griva et al., 2017).

Experiments were approved by the Committee for the
Protection and Use of Animals of the University of Palermo,
in accordance with the current Italian legislation on animal
experimentation (D.L. 26/2014) and the European directive
(2010/63/EU) on care and use of laboratory animals. Every
effort was made to minimize the number of animals used and
their sorrow.

Behavioral Procedures
The offspring were tested for behavioral reactivity in the
open-field test at PND 55, for declarative memory in the
novel object recognition test at PND 56–58, and for spatial
learning, memory, and cognitive flexibility in MWM from
PND 60 to PND 65. Afterward, they were assessed for alcohol
vulnerability, in terms of rate of voluntary alcohol consumption
in the induction and relapse-like phases of the two-bottle choice
drinking paradigm, from PND 66 to PND 143.

The experiments were carried out in a sound-isolated room
between 9:00 and 14:00. On the test days, rats were acclimatized
to the testing room for 60 min before the experimental session.
Rats’ performance was recorded and monitored in an adjacent
room. The equipment was thoroughly cleaned in between each
test, to avoid that rats’ behavior was affected by the detection of
other rats’ scent.

Open-Field Test
Behavioral reactivity in a novel environment was tested
in the open-field test. The open-field arena is a Plexiglas
square box (44 × 44 × 44 cm where locomotor activity
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and explorative behavior were measured) by employing an
automatic video-tracking system (AnyMaze, Ugo Basile,
Italy), in a mean light- (100 lx) illuminated chamber. Each
experimental session lasted 5 min (Cannizzaro et al., 2016).
The video-tracking system produces a quali-quantitative
mapping of the motor pattern, measuring total distance
traveled (TDT, m), as a measure of locomotor activity in a
novel environment.

Novel Object Recognition Test
Declarative learning and memory were tested in the novel
object recognition test, as previously described (Brancato et al.,
2020). On day 1, a 5-min habituation session was performed at
10.00 a.m., in order to let the animals freely explore the arena
(44× 44× 44 cm) in a dim light-illuminated room. Twenty-four
hours after the habituation session, rats underwent a 5-min
training session when they were presented with two identical,
nontoxic objects (i.e., two red metal cans) which were placed
against a wall in the open-field arena. To prevent coercion to
explore the objects, rats were released against the center of the
opposite wall with its back to the objects. The time spent on
exploring each object was recorded by using the AnyMaze video-
tracking system (Stoelting Europe); a 2-cm2 area surrounding
the objects was defined such that nose entries were recorded
as time exploring the object. After the training session, animals
were placed in their home cage for the retention interval. Then,
animals were returned to the arena for the test session, 24 h after
the training session. During the 5-min test session, the arena
was equipped with two objects, one was identical to the one
presented in the training session (i.e., familiar); the other was
a novel object (a yellow hard plastic cup/ a green hard plastic
pepper). Objects were randomized and counterbalanced across
animals. Objects and arena were thoroughly cleaned at the end
of each experimental session. Time spent on exploring familiar
and novel objects was recorded during both training and test
sessions. The recognition index (RI%), i.e., the percentage of
time spent on investigating the novel object, out of the total
object investigation time [RI % = Time novel object /(Time novel
object + Time familiar object)%], is a measure of novel object
recognition and the main index of recognition memory. If RI%
is higher than 50%, it indicates that the rat spent more time
investigating the novel object, thus recalling the memory of the
familiar one.

Morris Water Maze
Spatial learning, cognitive flexibility, and reference memory were
assessed in the MWM, by employing place learning, new place
learning, and probe tasks (Cacace et al., 2011, 2012; Plescia et al.,
2015) as described in detail below.

Apparatus
The MWM apparatus consisted of a circular, light-blue
swimming pool with a diameter of 160 cm, and walls 70 cm
high. It was filled with tap water to a depth of 50 cm. The water
temperature was carefully maintained at 23 ± 2◦C, and no agent
was added to make the water opaque. The pool was divided
into four quadrants of equal size by two imaginary diagonal
lines running through the center, designated NW, NE, SW, and

SE. A removable transparent escape platform (10 cm × 10 cm)
was positioned in the middle of the quadrant, with the center
30 cm away from the wall and 1.5 cm below the water level,
and not visible to the swimming rat. The pool was placed in
an experimental room, decorated with several extra-maze cues
(e.g., bookshelves and posters), and not modified throughout
the entire experimental period. The experimental room was
illuminated by a white light (60 W). The paths taken by the
animals in the pool were monitored by a video camera mounted
in the ceiling and recorded by the automatic video-tracking
system (ANYMAZE, Ugo Basile, Italy).

Experimental Design
Place Learning (Days 1–3)
The Place learning task was employed to assess spatial learning
and consisted of training the rats to escape from the water and
reach the hidden platform placed in the SE zone, where it was
maintained throughout the experimental session. The rat was
introduced into the pool facing the wall of each quadrant, in the
following order of starting points: NE, SW, NW, SE. Each rat
underwent four trials a day, along 3 days, and was allowed to
swim until the escape on the platform for a maximum of 90 s;
escape latency was recorded as a measure of spatial learning and
memory and reported as mean value of the four trials performed
on each day of the experiment.

If the escape platform was reached, the rat was allowed
to remain 15 s on it to reinforce the information on the
visual–spatial cues in the environment. If the rat did not find the
escape platform within 90 s, the experimenter guided gently the
rat to the platform and allowed it to stay on it for 15 s. During the
5-min intertrial interval, rats were placed into their home cages
and warmed under a heating lamp.

New Place Learning (Days 4–5)
The new place learning task was aimed at assessing rats’ cognitive
flexibility. On the first day of task, the position of the escape
platform was moved to the opposite quadrant (NW) compared
to the place learning session. In this task, the rat was required
to learn the new location of the platform during four trials,
and escape latency was recorded as a measure of new spatial
information acquisition, i.e., reversal learning. On the second
day, the position of the platform was maintained in the same
quadrant as in the first day of the new place learning task.
The escape latency was recorded as a measure of acquisition
and retrieval of the spatial information necessary to reach
the platform location. Starting points, trial duration, inter-trial
interval, reinforcement time on the platform, and any other
experimental condition were the same as in the previous days.

Probe Test (Day 6)
Twenty-four hours after the last place learning session, rats were
returned to the water maze for the probe test, aiming at assessing
reference memory at the end of learning. The hidden platform
was removed from the pool, and rats were allowed to swim freely
for 90 s. The amount of time spent in the quadrant where the
platform was previously located (target quadrant) was used as an
index of the rat’s spatial reference memory.
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Two-Bottle “Alcohol vs. Water” Choice
Drinking Paradigm
The offspring underwent the two-bottle ‘‘alcohol vs. water’’-
choice drinking paradigm (modified from Cacace et al., 2011)
and were given 24-h free choice between one bottle of alcohol
(10% v/v) and one of tap water, 7 days per week, for 8 weeks
(induction period), followed by a 2-week relapse period, after
7 days of alcohol deprivation. 10% alcohol was daily prepared by
diluting alcohol 96◦ (Carlo Erba Reagents, Italy) with tap water.

Plastic bottles (120 ml; metal cap 0.8 mm diameter hole,
Tecniplast, Italy) were filled with 100 ml solution every day and
presented at lights-off in an alternative left–right position, to
avoid side preference. Alcohol and water intake were measured
by weighing the bottles. Possible fluid spillage was monitored
by using multiple bottles filled with water and 10% alcohol,
positioned in empty cages interspersed in the cage racks (Loi
et al., 2014). Rats’ body weight was daily monitored, and rats’
consummatory behavior was measured, in terms of g/kg of
alcohol consumed along the drinking paradigm.

Statistical Analysis
Statistical analysis was performed using Prism 8, GraphPad
Software, LLC, and IBMStatistical Package for the Social Sciences
(SPSS) Statistics software (IBM, Armonk, NY, USA). Data
were assessed for variance and normality by employing the
Brown–Forsythe test and D’Agostino–Pearson omnibus K2 test,
respectively, and for sphericity, by the Mauchly test. When data
showed equal variance and normal distribution, the analysis
included two-way analysis of variance (ANOVA), followed by
Tukey’s multiple-comparison test to assess simple effects of
the two different perinatal alcohol exposures, and repeated-
measure ANOVA using the generalized linear model, with
Bonferroni correction for pairwise comparisons. When data did
not show normal distribution or sphericity, log-transformation
and Geisser–Greenhouse correction were employed. Data are
reported as mean ± SEM. Statistical significance was set at
p < 0.05.

RESULTS

Perinatal Alcohol Exposure and
Developmental Data
Alcohol intake of CAD and IAD dams is reported in Table 1.
Alcohol consumption did not affect maternal weight gain, litter
size or pup birth weight, compared to controls.

TABLE 1 | Mean alcohol consumption (g/kg) of continuous alcohol drinking
(CAD) rats and intermittent alcohol drinking (IAD) rats at pre-conception,
gestation, and lactation time.

CAD IAD

Period 1 h 24 h 1 h 24 h
Pre-conception 0.8 ± 0.2 3.5 ± 0.1 3.4 ± 0.2 8.1 ± 0.3
Gestation 2.1 ± 0.2 3.4 ± 0.4 2.6 ± 0.3 5.4 ± 0.6
Lactation 3.1 ± 0.3 5.6 ± 0.6 3.6 ± 0.4 8.5 ± 0.4

Data refer to mean ± SEM of n = 8 female rats along the alcohol drinking paradigm.

EE Prevents Alcohol-Induced Alteration in
Behavioral Reactivity in p-CAD Offspring
Two-way ANOVA on log-transformed TDT data, including
perinatal alcohol exposure and rearing conditions as statistical
factors, highlights a significant main effect of perinatal alcohol
exposure (F(2,42) = 0.6.412, p = 0.01742). The Tukey multiple-
comparison test indicates that p-CAD SE offspring showed a
significant decrease in locomotor activity with respect to p-CTRL
SE rats (q = 5.184, df = 42, p = 0.0019) and p-IAD SE rats
(q = 4.752, df = 42, p = 0.0047). No significant difference was
observed among EE offspring (Figure 1A).

EE Rescues Recognition Memory
in p-CAD Offspring
The results of the two-way ANOVA on the total time spent
on the exploration of the two identical objects during the
sample phase reveal a significant main effect of perinatal alcohol
exposure (F(2,42) = 11.21, p = 0.0001) and EE (F(1,42) = 9.658,
p = 0.0034). Tukey’s post hoc test shows that p-CAD SE offspring
spent significantly less time exploring the objects than p-CTRL
SE rats (q = 4.378, df = 42, p = 0.0382) and p-IAD SE rats
(q = 4.797, df = 42, p = 0.0178). EE rats showed increased
total exploration than SE offspring, with no significant pattern
influence (Figure 1B).

Data analysis from familiar- and novel-object exploration
during the test session included perinatal alcohol exposure
and environmental rearing conditions as the between-subject
factors and object as the within-subject factor. The results
indicate a significant main effect of object (F(1,42) = 62.673,
p< 0.001), perinatal alcohol exposure (F(2,42) = 8.501, p< 0.001),
and rearing environment (F(1,42) = 13.489, p < 0.001) and a
significant interaction between perinatal alcohol exposure and
rearing environment (F(2,42) = 4.796, p = 0.013), object and
perinatal alcohol exposure (F(2,42) 13.506, p < 0.001), and
object, perinatal alcohol exposure, and rearing environment
(F(2,42) = 14.367, p < 0.001). Pairwise comparisons with
Bonferroni correction show that both p-CAD SE and p-IAD SE
rats displayed a significant decrease in the exploration of the
novel object, when compared to p-CTRL SE offspring (p< 0.001;
p < 0.001; Figure 1C). In addition, while p-CTRL EE rats
showed decreased exploration of the novel object, with respect
to p-CTRL SE offspring (p < 0.001), p-CAD EE rats increased
the exploration of the novel object with respect to their SE
counterparts (p < 0.001; Figure 1C).

When RI% values from the test session were analyzed,
two-way ANOVA, considering perinatal alcohol exposure and
EE as statistical factors, showed a significant main effect of
perinatal alcohol exposure (F(2,42) = 6.812, p = 0.0027) and
EE (F(1,42) = 4.577, p = 0.0383) and a significant interaction
(F(2,42) = 6.348, p = 0.0039). In detail, Tukey’s post hoc test
indicates a significant decrease in RI% of p-CAD SE- (q = 6.188,
df = 42, p = 0.0010) and p-IAD SE rats (q = 4.835, df = 42,
p = 0.0165), with respect to p-CTRL SE rats. EE rescued the RI%
deficit in p-CAD rats (q = 5.581, df = 42, p = 0.0038), whereas
no significant difference was observed between SE and EE p-IAD
progeny (q = 1.121, df = 42, p = 0.9673; Figure 1D).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 September 2020 | Volume 14 | Article 583122109

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Brancato et al. Enrichment Mitigates Perinatal Alcohol-Related Deficits

FIGURE 1 | Effects of perinatal alcohol exposure and rearing conditions on locomotor activity and declarative memory. (A) In the open-field test, p-CAD SE
offspring showed a significant decrease in locomotor activity (**p < 0.01 vs. p-CTRL SE, ∧∧p < 0.01 vs. p-IAD SE). (B) In the sample phase of the NOR test, p-CAD
SE progeny showed a significant decrease in total object exploration (*p < 0.05 vs. p-CTRL SE; ∧p < 0.05 vs. p-IAD SE). (C) During the test phase of the NOR test,
p-CAD SE and p-IAD SE rats displayed decreased exploration of the novel object, which was increased by environmental enrichment (EE) only in p-CTRL and p-CAD
rats (◦◦◦p > 0.001 vs. novel–p-CTRL SE; ***p > 0.001 vs. respective SE groups). (D) p-CAD SE and p-IAD SE rats showed decreased object discrimination in terms
of recognition index. EE during adolescence was able to ameliorate the declarative memory performance in p-CAD offspring (*p < 0.05; **p < 0.01 vs. p-CTRL
SE, ��p < 0.01 vs. p-CAD SE). Each bar represents the mean ± SEM of n = 8 rats. p-CTRL, perinatal control; p-CAD, perinatal continuous alcohol drinking; p-IAD,
perinatal intermittent alcohol drinking; SE, standard rearing environment; EE, enriched rearing environment. TDT, total distance travelled; NOR, novel object recognition.

EE Mitigates Spatial Learning and Memory
Deficits in p-IAD Offspring
Spatial Learning in the Place Learning Task
Data analysis performed on escape latency during the place
learning task, when the offspring were trained to find the hidden
platform over 3 days, considered perinatal alcohol exposure
and rearing environment as the between-subject factors, and
days as the repeated-measure factor. The results indicate a
significant main effect of days (F(2,84) = 80.256, p < 0.0001)
and rearing environment (F(1,42) = 5.636, p = 0.022) and a
significant interaction between days and rearing environment
(F(2,84) = 12.319, p < 0.001), perinatal alcohol exposure and
rearing environment (F(2,42) = 5.048, p = 0.011), and among
day, perinatal alcohol exposure, and rearing environment
(F(4,84) = 4.54, p = 0.002). Pairwise comparisons with Bonferroni
correction show that p-IAD SE rats displayed increased escape
latency with respect to p-CTRL SE (p = 0.003) and p-CAD
SE (p = 0.004) offspring on day 1; in addition, p-CAD
EE rats showed a significant decrease in escape latency
with respect to p-CAD SE (p = 0.005) on day 3, whereas
p-IAD EE offspring displayed a significantly decreased latency
with respect to p-IAD SE rats (p < 0.001) on day 1
(Figures 2A–D).

Cognitive Flexibility in the New Place Learning Task
Statistical analysis on escape latency during the new place
learning task, when the platformwasmoved to the NWquadrant,
included perinatal alcohol exposure and rearing environment as
the between-subject factors and days as the repeated-measure
factor. The results reveal a significant main effect of days
(F(1,42) = 14.541, p < 0.001); perinatal alcohol exposure, rearing
environment and their interactions displayed no significant effect
(Figures 2A–D).

Spatial Reference Memory in the Probe Task
Data analysis performed on time spent in each of the MWM
quadrants during the probe task included perinatal alcohol
exposure and rearing environment as the between-subject factors
and quadrant as the within-subject factor. The results show
a significant main effect of quadrant (F(2.250,94.499) = 85.652,
p < 0.001) and a significant interaction between quadrant and
perinatal alcohol exposure (F(4.5,94.499) = 3.889, p = 0.004),
quadrant and rearing environment (F(2.25,94.499) = 3.051,
p = 0.046), and perinatal alcohol exposure and rearing
environment (F(2,42) = 4.667, p = 0.015). Pairwise comparisons
with Bonferroni correction indicate that p-IAD SE offspring
spent significantly less time in the NW quadrant (p = 0.003),
and longer time in the NE quadrant (p = 0.042) than p-CTRL
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FIGURE 2 | Effects of perinatal alcohol exposure and rearing conditions on spatial learning, cognitive flexibility, and reference memory. (A) p-IAD SE offspring
showed a significant impairment in spatial learning (**p > 0.01 vs. p-CTRL SE; ∧∧p < 0.01 vs. p-CAD SE). (B) p-CTRL rats exposed to EE during adolescence did
not differ from their SE counterparts. EE ameliorated the spatial learning performance in (C) p-CAD and (D) p-IAD offspring (**p < 0.01; ***p < 0.001 vs. respective
SE counterparts). In addition, (E) p-IAD SE rats showed a reference memory deficit in the probe task, which was rescued by EE (*p < 0.05; **p < 0.01 vs. p-CTRL
SE; �p < 0.05 vs. p-IAD SE). Each dot and each bar represent the mean ± SEM of n = 8 rats. p-CTRL, perinatal control; p-CAD, perinatal continuous alcohol
drinking; p-IAD, perinatal intermittent alcohol drinking; SE, standard rearing environment; EE, enriched rearing environment. MWM, Morris water maze; NW,
nord—west quadrant; NE, nord—east quadrant; SW, sud—west quadrant; SE, sud—east quadrant.

SE rats. On the other hand, p-IAD EE rats spent increased time
in the NW quadrant with respect to p-IAD SE rats (p = 0.028;
Figure 2E).

EE in Adolescence Blunts Long-Time
Alcohol Vulnerability in p-CAD
and p-IAD Offspring
Induction Period
Data analysis performed on mean alcohol intake along
the 8 weeks of the two-bottle choice paradigm included
perinatal alcohol exposure and rearing environment as the
between-subject factors and weeks as the repeated-measure
factor. The results show a significant main effect of weeks
(F(2.37,99.521) = 14.091, p < 0.001), rearing environment
(F(1,42) = 18.554, p < 0.001), and perinatal alcohol exposure
(F(2,42) = 13.807, p < 0.001) and a significant interaction
between perinatal alcohol exposure and rearing environment
(F(2,42) = 10.225, p < 0.001), weeks and perinatal alcohol
exposure (F(4.739,99.521) = 6.668, p < 0.001), weeks and rearing
environment (F(2.37,99.521) = 9.576, p < 0.0001), and among
weeks, perinatal alcohol exposure, and rearing environment
(F(4.739,99.521) = 7.559, p < 0.001). Pairwise comparisons
with Bonferroni correction indicate that p-CAD SE offspring
displayed decreased alcohol intake on week 1 (p = 0.012)
and increased alcohol consumption on week 6 (p < 0.001), 7
(p = 0.003) and 8 (p = 0.011) with respect to p-CTRL SE rats.

Moreover, p-IAD SE rats showed increased alcohol consumption
on weeks 2 (p< 0.001), 3 (p< 0.001), 5 (p< 0.001), 6 (p< 0.001)
7 (p < 0.001), and 8 (p < 0.001) with respect to p-CTRL SE rats,
along with increased alcohol intake on weeks 1 (p < 0.001), 2
(p < 0.001), and 8 (p < 0.001) with respect to p-CAD SE rats
(Figure 3A).

EE modified alcohol consumption in p-CTRL rats, with a
significant increase on week 2 (p = 0.001) and a decrease on
week 4 (p = 0.001), when compared with the SE rearing condition
(Figure 3B). Similarly, the enriched rearing environment
increased alcohol intake in p-CAD offspring on week 2
(p = 0.007) and significantly decreased it afterward, on weeks 3
(p = 0.005), 4 (p = 0.016), 6 (p < 0.001), and 7 (p = 0.001) with
respect to p-CAD SE rats (Figure 3C).

On the other hand, EE decreased alcohol intake in p-IAD
progeny on weeks 1 (p = 0.021), 5 (p = 0.010), 6 (p < 0.001), 7
(p < 0.001), and 8 (p < 0.001) when compared with p-IAD SE
counterparts (Figure 3D).

Relapse Period
The analysis of data from mean alcohol intake over the 2 weeks
of the relapse paradigm included perinatal alcohol exposure
and rearing environment as the between-subject factors and
weeks as the repeated-measure factor. The results indicate a
significant main effect of weeks (F(1,42) = 76.57, p < 0.001),
rearing environment (F(1,42) = 17.112, p < 0.001), and perinatal
alcohol exposure (F(2,42) = 12.215, p < 0.001) and a significant
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FIGURE 3 | Effects of perinatal alcohol exposure and rearing conditions on alcohol consummatory behavior. (A) Apart from the first week of the two-bottle choice
paradigm, both p-CAD- and p-IAD SE offspring showed increased alcohol intake with respect to p-CTRL SE rats; moreover, p-IAD SE rats displayed increased
alcohol consumption with respect to p-CAD SE offspring (#p < 0.05; ##p < 0.01; ###p < 0.001 p-CAD SE vs. p-CTRL SE; ***p < 0.001 p-IAD SE vs. p-CTRL SE;
∧∧∧p < 0.001 p-IAD SE vs. p-CAD SE). EE exposure during adolescence. (B) Altered alcohol consumption in p-CTRL rats in (C) p-CAD rats and (D) decreased
alcohol consumption p-IAD offspring (*p < 0.05; **p < 0.01; ***p < 0.001 vs. respective SE). (E) When offspring were assessed for alcohol deprivation effect during
the relapse-like weeks, p-IAD-SE offspring showed higher alcohol intake with respect to p-CTRL SE and p-CAD SE rats; ***p < 0.001 vs. p-CTRL SE; ∧∧∧ vs.
p-CAD SE). EE exposure during adolescence (F) decreased alcohol deprivation effect in p-CTRL offspring, (G) did not alter alcohol-related behavior in p-CAD rats,
and (H) prevented alcohol deprivation effect in p-IAD offspring (**p < 0.01; ***p < 0.001 vs. respective SE). Each dot represents the mean ± SEM of n = 8 rats.
p-CTRL, perinatal control; p-CAD, perinatal continuous alcohol drinking; p-IAD, perinatal intermittent alcohol drinking; SE, standard rearing environment; EE,
enriched rearing environment.

interaction between perinatal alcohol exposure and rearing
environment (F(2,42) = 18.4513, p < 0.001), weeks and perinatal
alcohol exposure (F(2,42) = 5.371, p = 0.008), weeks and
rearing environment (F(1,42) = 24.567, p < 0.001), and among
weeks, perinatal alcohol exposure, and rearing environment
(F(2,42) = 5.648, p = 0.007). Pairwise comparisons with Bonferroni
correction indicate that p-IAD SE offspring showed higher
alcohol intake than p-CTRL SE and p-CAD SE rats on week
1 (p < 0.001; p < 0.001) and week 2 (p < 0.001; p < 0.001;
Figure 3E).

EE significantly decreased alcohol consumption in p-CTRL
rats on week 1 (p = 0.008) with respect to their SE counterparts
(Figure 3F) whereas no difference was observed between p-CAD
SE and EE offspring (Figure 3G). On the other hand, p-IAD
EE offspring displayed significantly lower alcohol intake on both
week 1 and 2 (p < 0.001; p < 0.001), when compared to p-IAD
SE rats (Figure 3H).

DISCUSSION

The present study aimed at evaluating the long-term
consequences of maternal continuous- and binge-like
intermittent alcohol drinking, from pre-conceptional time
to lactation, on the adult male offspring’s cognitive behavioral

readouts, including behavioral reactivity, declarative and spatial
learning and memory, and alcohol vulnerability.

Moreover, we also exposed the offspring to an enriched
rearing environment during adolescence, in order to evaluate
whether sensorimotor stimulation and social interaction at that
age could result in a rescue strategy able to mitigate or prevent
perinatal alcohol-induced adverse effects.

In human studies, records on maternal blood alcohol levels
are generally not available; however, estimates suggest that blood
alcohol levels of over 200mg/dl may be responsible for the severe
FAS phenotype, while lower levels (80 mg/dl) may produce
milder forms of FASD (Maier and West, 2001). In addition,
high peaks of blood alcohol concentrations, rather than steady
levels, as a result of both dose and pattern of alcohol exposure
(i.e., binge-drinking vs. daily) during the brain developmental
time-window, are associated with increased neurotoxicity (Ieraci
and Herrera, 2007; Parnell et al., 2009).

In our experimental conditions, female rats were trained
to voluntarily consume 20% alcohol in the drinking water
prior to pregnancy (Patten et al., 2014) and consumed relevant
amounts throughout pregnancy and lactation. In particular,
CAD dams showed a mean daily alcohol consumption of
3.4 ± 0.4 g/kg during pregnancy, and 5.6 ± 0.6 g/kg during
lactation, resulting in a daily low-to-moderate perinatal exposure
for p-CAD offspring (Marquardt and Brigman, 2016). On the
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other hand, IAD dams engaged in a binge-like drinking pattern
by every-other-day intermittent alcohol access to 20% alcohol,
which resulted in mean alcohol consumption of 5.4 ± 0.6 g/kg
during pregnancy and 8.5 ± 0.4 during the postpartum period.
In particular, the IAD dams’ mean alcohol intake during
the lactation period, measured after the first hour following
alcohol presentation, is suggestive of an intermittent exposure
to intoxicating blood alcohol concentrations for p-IAD offspring
(>80 mg/dl, Loi et al., 2014). This evidence is particularly
relevant since the intermittent pattern of exposure causes high
peaks of blood alcohol concentrations during lactation in the
rat dams, and this time window corresponds to the third
developmental trimester in humans (Patten et al., 2014).

Our first data on the behavioral sequelae of perinatal alcohol
exposure show pattern-related consequences on behavioral
reactivity. In detail, p-CAD rats displayed a decrease in
locomotor activity in the novel environment of the open field,
with respect to p-CTRL and p-IAD rats, whereas p-IAD rats
showed no alteration in total distance traveled, in comparison
to p-CTRL. These results confirm early findings from this
laboratory showing that perinatal long-term continuous
exposure to alcohol decreased behavioral reactivity in the
adolescent male offspring (Brancato et al., 2018). While
moderate- and heavy-alcohol exposure during early-middle
pregnancy either increased behavioral reactivity (Riley et al.,
1993; Abel and Berman, 1994; Thomas et al., 2004; Kim
et al., 2013) or did not affect locomotion (Dursun et al., 2006;
Hellemans et al., 2010; Brady et al., 2012), the exposure to
moderate alcohol concentration throughout gestation and the
early postnatal period decreased locomotion in mice (Kleiber
et al., 2011). Our data further suggest that the developmental
effects of alcohol on locomotion and behavioral reactivity are
affected not only by the dose and timing but also by the pattern
of alcohol exposure.

In accordance with our first evidence, the analysis of the
behavior in the sample phase of the novel object recognition test
revealed that p-CAD rats showed a significant decrease in the
exploration of the two identical objects when compared to both
p-CTRL and p-IAD, while p-IAD rats explored the objects at
the same extent as the control group did. Similarly, a decrease
in exploration during the sample phase of the novel object
recognition test was reported in Sardinian alcohol-preferring
rats exposed to 3% alcohol from day 15 of gestation to day
7 after parturition (Tattoli et al., 2001) and interpreted as an
altered responsiveness to situations requiring adaptation to novel
environmental stimuli (Colombo et al., 1995).

On the other hand, the analysis of the test phase of the novel
object recognition test suggested a deficit in declarative explicit
memory, since both prenatal alcohol-exposed groups displayed a
significant decrease in discrimination of the novel object: indeed,
they spent the same time in the exploration of the familiar and
the novel object, and this led to a significant decrease in the
recognition index with respect to control offspring.

Preclinical findings have provided inconsistent evidence
on the consequences of perinatal alcohol exposure on object
discrimination, and the discrepancies are likely dependent on
different times of exposure and blood concentrations.

In detail, alcohol exposure (dose range from 4.00 to 5.25 g/kg)
during the developmental equivalent of the second and/or third
trimesters in humans did not impair recognition memory in rats
(Jablonski et al., 2013; Tattoli et al., 2001; MacIlvane et al., 2016),
but when Sprague–Dawley female rats were given continuous
unlimited access to alcohol from pre-conceptional period until
weaning time, the offspring failed to discriminate the novel object
in the object recognition test (Dandekar et al., 2019; Sanchez
et al., 2019). Interestingly, maternal binge-like drinking during
both gestation and lactation was reported to decrease recognition
memory along with the expression of brain-derived neurotrophic
factor (BDNF), the main neurotrophin involved in learning and
memory (Montagud-Romero et al., 2019). Notably, even low
levels of alcohol administered by oral gavage from GD 10–16 are
able to exert a disruption in object recognition in the NOR,
but not in object-place location; accordingly, this was associated
with alterations in BDNF expression in the perirhinal cortex—a
brain area which plays a crucial role in object discrimination-
—rather than in the hippocampus, which is more involved in
place location (Plescia et al., 2014c; Terasaki and Schwarz, 2017).

In our experimental conditions, perinatal alcohol exposure
induced memory deficits regardless of the drinking pattern,
suggesting an impairment in the regional circuitries
underpinning declarative memory and that deserve attention
from a translational point of view. However, it should not be
overlooked that the recognition memory performance displayed
by p-CAD rats could have been affected by their low behavioral
reactivity and object exploration, rather than a pure deficit in
declarative memory formation.

On the other hand, when offspring were tested for spatial
learning and memory in the MWM, spatial navigation of p-CAD
rats did not differ from control offspring, with no difference in
spatial learning, in terms of latency to find the hidden platform
over the 3 days of place learning, and in cognitive flexibility,
along the 2 days of new place learning task. The evidence of no
impairment in spatial reference memory supports the presence
of regular spatial learning abilities in p-CAD progeny, since they
searched the platform in the target quadrant during the probe
trial, 24 h after the last new place learning session.

Taken together, our data are in line with previous reports
demonstrating that chronic prenatal exposure to low-to-
moderate doses of alcohol is sufficient to induce decreased
behavioral reactivity in the open field (Kleiber et al., 2011) and
declarative memory deficits in the novel object recognition test
(Dandekar et al., 2019), together with a detrimental impact on
the neuroimmune function of the perirhinal cortex (Terasaki
and Schwarz, 2017). On the other hand, repeated low-dose
prenatal alcohol exposure does not produce detrimental effects
on pyramidal cells within the dorsal hippocampus or does not
impair spatial learning and memory performance in the MWM
(Cullen et al., 2014).

When interpreting these data, the stressful nature of the
MWM task needs to be taken into account. The training in
the MWM task increases the neuroendocrine stress response
in rats, inducing high serum corticosterone concentrations that
may affect the cognitive response in accordance with the positive
role of glucocorticoids on learning and memory consolidation
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(Aguilar-Valles et al., 2005). It is reported that chronic alcohol
exposure during pregnancy induces a reduction in ACTH basal
levels while corticosterone secretion is not modified; besides, the
exposure to some stressors induces an increase in corticosterone
and CRH secretion, more than in controls (Lu et al., 2018).
It is therefore reasonable to hypothesize that the stressful
contingency of the MWM may boost the coping strategies of
p-CAD progeny, by an ‘‘ad hoc’’ compensatory response of the
HPA axis that makes p-CAD performance as ‘‘fair’’ as controls’
(Franks et al., 2020).

On the contrary, p-IAD offspring displayed a spatial learning
impairment, in terms of increased latency to reach the hidden
platform in the place learning test on day 1, compared to
control offspring. In addition, p-IAD rats showed reference
memory deficits, since they spent less time in the target
quadrant in the probe trial, compared to p-CTRL groups. The
impairment in spatial learning and reference memory in the
water maze tasks is suggestive of hippocampal dysfunction
likely resulting from the perinatal exposure to the binge-like
alcohol drinking in the intermittent access. Indeed, despite some
inconsistencies about alcohol-induced developmental effects
on BDNF expression in the rat hippocampus (Feng et al.,
2005; Ceccanti et al., 2012), binge-like alcohol exposure from
one-to-third trimester-equivalent causes significant deficits in
hippocampal and cortical neuroplasticity, resulting in alterations
in dendritic arborization, adult, neurogenesis, neuroimmune
activation in the hippocampus, and spatial learning impairment
(Blanchard et al., 1987; Christie et al., 2005; An and Zhang,
2013; Harvey et al., 2019). Thus, due to the strong correlation
between BDNF, hippocampal function and HPA axis reactivity,
it is possible to interpret the current data on the basis of a pattern-
specific effect exerted by the perinatal exposure to IAD on the
stress axis response.

To our knowledge, the study by Wieczorek et al. (2015) is
the only one focusing on HPA axis and behavioral sequelae
of prenatal binge-like alcohol exposure. According to their
findings, male mice exposed to an early binge-like dose of alcohol
on gestational day 7 showed no difference in corticosterone
levels with respect to controls, whereas they observed a
blunted ACTH response to an acute stressor. Thus, it is
reasonable to hypothesize that the exposure to intermittent
alcohol drinking, which produces the cycling repetition of
intoxications and withdrawals (Plescia et al., 2014a), when
‘‘brain growth spurt’’ and synaptogenesis occur (Patten et al.,
2014), may impair spatial learning and memory in the MWM
through a pronounced alteration in the neurodevelopmental
programming of corticosteroid signaling in the hippocampus
(Conrad et al., 1999).

The complex relationship between stress and alcohol is
bidirectional, and the dysregulation of the stress response is a
well-known risk factor for alcohol abuse vulnerability (Lee et al.,
2018). The present data extend our previous findings and show
that perinatal alcohol exposure is able to produce an alcohol-
prone phenotype in adult rats in a pattern-related fashion. While
p-CAD offspring increased their alcohol intake with respect
to controls in the long-term, p-IAD rats showed a higher
vulnerability to alcohol consummatory behavior starting from

the first weeks of the two-bottle choice paradigm. In addition,
while p-CAD-rats did not show higher consumption of alcohol
after a week of deprivation with respect to control offspring,
p-IAD progeny displayed a pronounced relapse behavior, when
compared to both p-CAD and p-CTRL progenies. The alcohol
deprivation effect is a reliable proxy of increased motivation to
seek and consume alcohol, loss of control, and relapse (Spanagel
and Hölter, 2000; Martin-Fardon and Weiss, 2013), and our
data indicate that the perinatal exposure to a drinking pattern
that promotes high peaks of blood alcohol level is discretely
crucial in conferring a permanent vulnerability to alcohol
abuse, whose occurrence can be detected since adolescence
(Brancato et al., 2018).

This evidence supports clinical data showing that prenatally
alcohol-exposed offspring display increased vulnerability to the
rewarding properties of alcohol (Barbier et al., 2008) and risk
for alcohol abuse and drug dependence later in life (Baer
et al., 2003; Alati et al., 2006). This phenotype may result from
morpho-functional alterations in the ventral tegmental area, such
as decreased number of dopamine neurons and spontaneous
action potentials, reduced size of their cell bodies, increased
activated microglia (Shen et al., 1999; Aghaie et al., 2020),
and persistent expression of immature excitatory synapses onto
dopaminergic neurons (Wang et al., 2006). As far as the pattern-
related behavioral abnormalities observed in this study concern,
we could speculate that a dysregulation in the HPA axis may
critically impact memory performance especially in the stressful
setting of the MWM and may predispose to alcohol vulnerability
(Brancato et al., 2014; Maniaci et al., 2015; Lee et al., 2018).

Notably, enriched rearing conditions ameliorated the
behavioral performance of p-CAD rats in the novel object
recognition test, likely remodeling p-CAD rats’ behavioral
reactivity, decreasing emotionality and restoring those perceptive
and attentive skills that make them able to overcome the
cognitive impairment resulting from the perinatal continuous
alcohol exposure. Accordingly, previous evidence showed that
EE in early adulthood can recover cognitive impairment due
to alcohol exposure during adolescence (Rico-Barrio et al.,
2019). On the other hand, in our experimental conditions,
declarative memory performance of p-IAD EE rats was not
different from their SE counterparts’ one, suggesting that the
abnormalities in declarative memory formation due to the
perinatal intermittent exposure to alcohol are not rescued by
the EE. Besides, the repeated exposure to environmental stimuli
has been reported to decrease the incentive value of novelty
(Cain et al., 2006; Garcia et al., 2017), suggesting that a lower
interest in the novel object may explain its lower exploration
by the EE offspring. Interestingly, our data show that EE
mitigated the spatial learning and reference memory deficits
induced by the perinatal intermittent alcohol paradigm. These
findings are in agreement with previous reports, indicating
that enriched environment attenuates hippocampal-dependent
memory impairment induced by prenatal alcohol exposure,
via an increase in hippocampal BDNF (Tipyasang et al., 2014;
Di Liberto et al., 2017). The interpretation of the effects of
EE upon alcohol vulnerability in the first weeks of the two-
bottle-choice paradigm is not univocal since we observed
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mixed effects in the control offspring. In this regard, EE has
been reported to promote the formation of conditioned place
preference to alcohol in adolescent mice, likely recruiting
the oxytocin signaling (Pautassi et al., 2017; Rae et al., 2018).
However, the postweaning exposure to EE substantially
rescued the increased vulnerability induced by perinatal
alcohol exposure in p-CAD and p-IAD offspring. Indeed, EE
decreased alcohol consumption in p-CAD and p-IAD rats,
with respect to standard housing, during the last weeks of the
self-administration paradigm. Thus, the increase in alcohol
consumption, as time goes by, is a hallmark feature of early
stages of the addiction cycle and represents a substantial risk
factor predicting the development of alcohol addiction (Crabbe
et al., 2011).

In addition, our data show that the enriched rearing
environment decreases the deprivation effect after a week
of forced abstinence, in p-IAD offspring and in p-CTRL
rats. These observations are consistent with previous reports
showing that exposure to enriched environmental conditions
mitigates VTA dopamine neurons’ dysfunction due to perinatal
alcohol exposure (Wang et al., 2018; Aghaie et al., 2020)
and, overall, decreases the occurrence of an addictive-like
phenotype (Galaj et al., 2020). Notably, the effect of the EE
against the development of excessive alcohol intake seems to be
protective when the exposure occurs during adolescence, while
its protective role is limited when EE occurs during adulthood
(Rodríguez-Ortega et al., 2018). To date, circumstantial evidence
suggests that its protective effect against alcohol drinking
is due to decreased CRH signaling in the amygdala and its
downstream target (Sztainberg et al., 2010). Whether CRH
abnormalities may be the primum movens for the occurrence
of the dysfunctional phenotype consequent to perinatal alcohol
exposure observed in this study, and at what extent alteration in
maternal care can contribute to alcohol developmental effects,

are interesting questions to address in further cross-fostering
experiments. Moreover, studies including female offspring
are needed to explore sex differences in the developmental
effects of alcohol, and their underlying mechanisms. Overall,
subsequent developmental periods, such as adolescence, provide
a window of opportunity for inducing positive experience-
based neuroplasticity in brain regions critical for emotional
regulation, cognitive functions, and reward sensitivity, which
allow curtailing the lifetime consequences of developmental
alcohol exposure.
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Postpartum depression is a complex illness that often occurs in genetically predisposed
individuals. Closely related inbred rat strains are a great resource to identify novel
causative genes and mechanisms underlying complex traits such as postpartum
behavior. We report differences in these behaviors between the inbred depression
model, Wistar Kyoto (WKY) More Immobile (WMI), and the isogenic control Wistar
Kyoto Less Immobile (WLI) dams. WMI dams showed significantly lower litter survival
rate and frequency of arched back and blanket nursing, but increased pup-directed
licking, grooming, and retrieval during postpartum days (PPD) 1–10, compared to control
WLIs. This increased pup-directed behavior and the frequency of self-directed behaviors
segregated during selective breeding of the progenitor strain of WKY, which is also a
depression model. These behaviors are manifested in the WMIs in contrast to those
of WLIs. Furthermore, habitual differences in the self-directed behavior between light
and dark cycles present in WLIs were missing in WMI dams. Hypothalamic transcript
levels of the circadian rhythm-related gene Lysine Demethylase 5A (Kdm5a), period 2
(Per2), and the maternal behavior-related oxytocin receptor (Oxtr), vasopressin (Avp),
and vasopressin receptor 1a (Avpr1a) were significantly greater in the post-weaning WMI
dams at PPD 24 compared to those of WLIs, and also to those of WMI dams whose litter
died before PPD 5. Expression correlation amongst genes differed in WLI and WMI dams
and between the two time-points postpartum, suggesting genetic and litter-survival
differences between these strains affect transcript levels. These data demonstrate that
the genetically close, but behaviorally disparate WMI and WLI strains would be suitable
for investigating the underlying genetic basis of postpartum behavior.

Keywords: Wistar Kyoto More Immobile, oxytocin receptor, vasopressin, vasopressin receptor 1a, lysine
demethylase 5A, period 2

INTRODUCTION

Maternal behavior has long-term effects on the brain development of offspring, and depressive
disorders impair maternal behaviors. One of the largest risk factors for depressive episodes
in the perinatal period is depression before pregnancy (Rich-Edwards et al., 2006; Grant
et al., 2008; Topiwala et al., 2012; Perani and Slattery, 2014). While most animal models
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of postpartum depression focus on mirroring the group of
women who are experiencing depression for the first time
in their life during postpartum (Perani and Slattery, 2014;
Putnam et al., 2017; Eid et al., 2019), the present study employs
a genetic model of depression-like behavior and its isogenic
control strain to begin to investigate characteristics of these
dams during postpartum, modeling the risk factor of depression
before pregnancy.

The genetic rat model of depression-like behaviors, the
Wistar Kyoto (WKY) More Immobile (WMI) rat strain,
was bi-directionally selectively bred from the parental WKY
strain. The WKY rat strain is a well-established model
for depression as its behavior mirrors symptoms of human
major depression and anxiety, including despair-like behavior,
excessive anxiety, learned helplessness, disturbed sleep patterns,
and hypoactivity (Paré and Redei, 1993; Paré, 1994a,b; Dugovic
et al., 2000; Redei et al., 2001; Solberg et al., 2001, 2004;
Malkesman et al., 2005; Baum et al., 2006). Chronic treatments
with antidepressants, electroshock administration (model for
electroconvulsive therapy), and deep-brain stimulation can all
reverse these depression-like behaviors (Jeannotte et al., 2008;
Falowski et al., 2011; Kyeremanteng et al., 2012). The WKY
strain was developed as the normotensive control for the
Spontaneously Hypertensive Rat (SHR) strain. Louis and Howes
(Louis and Howes, 1990) demonstrated that the WKY strain was
distributed to different vendors and universities between F12 and
F17 generations of inbreeding.

The fact that the WKY rats showed genetic and behavioral
differences (Kurtz et al., 1989; Paré and Kluczynski, 1997)
motivated the bi-directional selective breeding using FST
immobility as a functional selector (Will et al., 2003). The
WMIs, now at their 44th generation and completely inbred
after >35 generations of full-sib breeding, show despair-like
behaviors and greater sensitivity to stress compared to their
isogenic control counterparts, the WKY Less Immobile (WLI)
rats (Will et al., 2003; Andrus et al., 2012; Lim et al., 2018b).While
the WMIs show higher immobility behavior in the forced swim
test, which was the original functional selector for this strain,
WLI males and females present immobility behavior comparable
to that of other control strains. In our lab, Sprague–Dawley
and Fischer 344 male rats show immobility very similar to
that of WLI males (Solberg et al., 2003; Wilcoxon et al., 2005;
Andrus et al., 2012; Mehta et al., 2013; Mehta-Raghavan et al.,
2016). WLI female immobility is similar to that of Wistar and
F344 females (Kokras et al., 2018). Through the WMI genetic
model of depression and its WLI control strain, any observed
behavioral and transcriptomic differences may be directly or
indirectly related to the identified <5,000 sequence variations
between the two strains (Chen et al., 2017; Bryant et al., 2020).

During the early postnatal period, adaptive changes occur in
the mothers’ (dam) neuroendocrine system, which enables them
to provide appropriate maternal care. These adaptive changes
are pivotal and brought about by the hormonal alterations
due to parturition (Levy, 2016). The decrease in estrogen
and/or progesterone at parturition may directly affect maternal
behaviors (Hauser and Gandelman, 1985; Glynn et al., 2016;
Murakami, 2016). Changes in estrogen levels alter the expression

of its receptors with subsequent effects on the transcription of
their target genes and their receptors. Clinical trials involving
estrogen as a potential treatment for negative maternal behaviors
are ongoing; for example, one study investigated the potential
use of transdermal estradiol as a treatment for postpartum
depression (Wisner et al., 2015). In addition to hormonal
regulation, several genes and their pathways have been shown to
influence maternal behavior, including those related to oxytocin
(Oxt) and vasopressin (Avp). Oxytocin is released within various
brain regions including the paraventricular nucleus (PVN),
supraoptic nucleus, septum, hippocampus, and olfactory bulb
(Bosch and Neumann, 2012). In humans, mothers with higher
oxytocin expression show increased maternal touch and contact
with their children (Pratt et al., 2015). In rats, Oxt release
leads to mothers fostering more positive interactions with their
offspring (Leng et al., 2008), and central administration of
Oxt receptor antagonist can block the onset of maternal care,
and reduce pup-directed behaviors (Champagne et al., 2001;
Pedersen and Boccia, 2003). The medial preoptic area seems to
be a key brain region of vasopressin (Avp) actions on maternal
care. It receives vasopressinergic input from the suprachiasmatic
nucleus, and diurnal changes in local Avp release have been
described (Kalsbeek and Buijs, 2002). Vasopressin regulates
maternal care and it seems to occur via vasopressin receptor
1a (Avpr1a; Pedersen et al., 1994; Bosch et al., 2007, 2010). As
many of the Oxt- and Avp-relevant brain regions are within
the hypothalamus, which is also intimately involved in affecting
maternal behaviors (Fang et al., 2018), we focused on the
expression of these neuropeptides and their receptors in the
whole hypothalamus in this study.

The purpose of this study is to determine whether a genetic
model of depression, the WMI rat, shows alterations in maternal
functioning compared to its isogenic control strain. Here,
we explore postpartum behaviors and expression of relevant
hypothalamic genes in these strains of inbred rats.

MATERIALS AND METHODS

Animals and Behavioral Assessments
All animal procedures were approved by the Institutional Animal
Care and Use Committee of Northwestern University. The
40th generation WLI and WMI inbred strains were housed
under temperature and humidity-control with food and water
ad libitum on a 12:12 LD cycle, lights on at 06:00 h. During the
experiment, red lights were on between 18:00 and 23:00 h to allow
video recording during the dark phase.

Females of both strains (18 for WLI and 28 for WMI) were
mated for this study. Maternal behavior of dams (six WLI and
six WMI) that birthed litters that survived to wean (postpartum
day 24: PPD 24) was monitored and recorded daily. Maternal
behavior was observed for 10 days PPD 1–PPD 10, as described
before (Ahmadiyeh et al., 2004), which was a modification
of previous studies (Myers et al., 1989; Francis et al., 2003).
Behaviors were automatically recorded for an hour under light
(11:00–14:00 h) and dark (18:00–23:00 h) conditions, starting
at PPD 1, the day after birth. Behavioral analyses were scored
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manually. Blind scoring was not feasible as the WMI strain had
manymoremating pairs (to account for litter loss) and, therefore,
the experimenter was aware of which strain was giving birth at
any given time. The following behaviors were scored every 3 min:
arched-back nursing; blanket nursing (mother lies over pups);
proximity to pups, which is either passive nursing (mother is on
the side or back with pups feeding) or just resting with pups very
close by; licking/grooming of pups and pup retrieval; no contact
(mother leaves pup alone more than half a cage length away); or
self-directed behaviors (eating and drinking; Ahmadiyeh et al.,
2004). Arched back nursing and blanket nursing categories were
combined, and also licking/grooming of pups and pup retrieval
behaviors. Behavioral measures were shown as a frequency of
observations for each hour of monitoring.

Litter deaths were observed during a previous 8-month
mating period, and results from this period prompted the
investigation of maternal behavior in this study. Litter death was
also recorded in the current study. Although we have not made
a quantitative assessment, most pups that died before weaning
either died from cannibalism by the mother or showed signs of
undernourishment with no milk in their stomachs.

Dams were euthanized, either before PPD 5 after their litters
died (four WLI and six WMI) or at PPD 24 (six WLI and
six WMI) after the pups were weaned, during lights on at
11:00–14:00 h by fast decapitation.

Brain Dissection and RNA Isolation
Hypothalami were dissected with a brain matrix according
to Paxinos coordinates (anterior-posterior, −0.30 to −4.16;
medial-lateral, 0–2.2; dorsal-ventral, −0.40 to −2.8) and were
temporarily stored in RNAlater (Ambion, Austin, TX, USA)
at −80◦C. Tissue samples were homogenized using a TRIzol
reagent (Ambion, Austin, TX, USA) and total RNA from
each hypothalamic sample was isolated with Direct-zol RNA
MiniPrep Kit (Zymo Research, Irvine, CA, USA) following the
manufacturer’s protocol. Once isolated, 1 µg of the total RNA
was reverse transcribed using the SuperScript VILO cDNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA).
All of these methods have been described previously (Raghavan
et al., 2017; Lim et al., 2018a,b; Meckes et al., 2018).

Real-Time Reverse
Transcription-Polymerase Chain Reaction
(RT-qPCR)
For each experimental group, RT-qPCR was performed to
compare the hypothalamic target gene expression levels between
strains (WLI vs. WMI). Primers for each target gene were
designed using Applied Biosystems Primer Express software
(version 3.0, PE Applied Biosystems, Foster City, CA, USA); the

primer sequences can be found in Supplementary Table 1. Five
ng of cDNA was amplified in a 20 µl reaction using SYBR Green
Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) in
the QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA, USA). Triplicates of reactions were
performed and reached threshold amplification within 34 cycles.
Target transcript levels were quantified relative to Gapdh, a
housekeeping gene previously demonstrated to show similar
expression across strains and conditions, and to a general WLI
male hypothalamic calibrator using the 2(−∆∆CT) method.

Statistical Analysis
Data are presented as mean ± standard error of the mean. All
statistical analyses were performed using GraphPad Prism v8.0
(GraphPad Software, La Jolla, CA, USA). Behavioral observations
were analyzed across postpartum days for the light and the dark
phase by two-way ANOVA with repeated measures or mixed
effect models, followed by Sidak’s post hoc analysis for multiple
comparisons. Cohen’s d values were calculated by using the
Cohen’s d = (M2−M1)/SDpooled equation, whereM1 andM2 are
means of the groups to be compared. Gene expression differences
were analyzed by two-way ANOVA followed by Tukey’s multiple
comparison test. Pearson correlation of the gene expression
data was corrected for multiple comparisons. Technical outliers,
when multiple days of behavioral observations were lost or when
RT-qPCR data were marked by the program as technical outliers,
were omitted from the analysis.

ANOVAs, mixed effect analyses, and Cohen’s d effect sizes
are described in the results, while post hoc analyses are shown
on the figures.

RESULTS

Litter Statistics
Body weights of adult female WLIs were significantly higher
compared to those of same age WMI females before mating
(175.3 ± 2.3 g vs. 134.7 ± 1.6 g; p = 1.9e-15).

WLI and WMI litters differed significantly in their rate of
survival to weaning (p = 0.044; Table 1). While the WLI litters
had a survival rate of 50%, theirWMI counterparts had a survival
rate of less than half, 21.4%. This survival rate is in agreement
with the one observed during a previous 8-month mating period
(13 WLI litters survived out of 22 total litters for a 59% rate
compared to 10 WMI litters survived from a total of 37 litters,
27% survival rate; p = 0.014). Additionally,WMI litters seemed to
be smaller at birth compared to WLI litters, based on the counts
without disturbing the cage. Due to the high pup mortality, the
exact number of pups at birth was not determined since we did
not want to disturb the dams and litters after birth. WMI litters

TABLE 1 | Litter characteristics.

Strain Litters survived/total; %
survival

Days survived by litters
not weaned

Number of pups at
weaning

Male : female ratio at
weaning

WLI 9/18, 50% 5.22 ± 2.17 8.50 ± 0.68 4.41 ± 0.55 : 4.08 ± 0.41
WMI 6/28∗, 21.4% 3.375 ± 0.63 5.92 ± 0.47∗∗ 2.83 ± 0.44∗: 3.08 ± 0.35

Values are mean ± SEM; ∗p < 0.05, ∗∗p < 0.01 strain differences.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 October 2020 | Volume 14 | Article 589967121

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Luo et al. Postpartum Characteristics of Depression Model

had significantly fewer pups than the WLI litters at weaning
(t(22) = 3.13, p = 0.005; Cohen’s d = 1.28), and the numbers were
uneven between the sexes with less male WMI pups survived
compared to WLI males (males, t(22) = 2.29, p = 0.036; Cohen’s
d = 0.91; females, t(22) = 1.82, p = 0.082; Cohen’s d = 0.74;
Table 1).

Maternal Behavior
Maternal and self-directed behaviors were assessed for 10 days
postpartum and their distribution is shown in Figure 1A. The
figure shows the percentage of different behaviors in both strains,
measured as the average frequency observed during the 1-h
observation period in the light and the dark phase. A significant
strain difference was observed in arched-back and blanket
nursing (strain, F(1,18) = 7.77, p = 0.012), with no differences
between light and dark phases (Figure 1B). Large effect sizes
were detected for the strain comparisons (Cohen’s d, light: 1.23;
dark: 1.28). Similarly, there were strain differences in licking,
grooming, and pup retrieval (F(1,19) = 4.61, p = 0.045; Figure 1B),
with WMIs showing the greater of these pup-directed behaviors.
The effect sizes revealed that this strain difference originated
more from the dark phase comparison (Cohen’s d, light: 0.76;
dark: 1.24). Both strains of dams showed a lower frequency of
these pup-directed behaviors during the dark phase (time of day,
F(1,19) = 8.79, p = 0.008). Self-directed behaviors such as eating,
drinking, and self-grooming, also differed by strain and time of
day (strain, F(1,19) = 6.12, p = 0.023; time of day F(1,19) = 10.29,
p = 0.005; Figure 1B). Interestingly, the diurnal change in this
behavior was only seen in the WLI dams (strain × time of
day, F(1,19) = 6.19, p = 0.022). This is confirmed by the large
effect size in strain comparisons at the dark phase (Cohen’s d,
light: 0.02; dark: 1.59).

Figure 1C shows self-directed behaviors across the 10 days
observation period for both WLI and WMI dams. WLI dams
showed day by day differences in self-directed behaviors across
the observation period, and also between the light and dark
phases (time of day, F(1,3) = 23.42, p = 0.017; days × time of day,
F(9,27) = 2.45, p = 0.035). Specifically, self-directed behaviors were
significantly greater in the dark phase than the light phase on
PPD 5–7 and 10 (PPD 5, t(30) = 3.56, p = 0.013; PPD 6, t(30) = 4.07,
p = 0.003; PPD 7, t(30) = 3.56, p = 0.013, and PPD 10, t(30) = 4.07,
p = 0.003). In contrast, there were no significant differences in
self-directed behaviors across the days of observation in WMIs,
but light, dark phase differences tended to occur postpartum
day 5 (days × time of day, F(9,35) = 2.12, p = 0.054; PPD 5,
t(39) = 3.07, p = 0.038).

Hypothalamic Target Gene Expression
The observation of the lack of circadian rhythm in the
self-directed behaviors of WMI dams prompted us to
examine any potential causative genetic differences in circadian
rhythm-regulating genes between WLI and WMI. The Lysine
Demethylase 5A (Kdm5a or Jumonji/ARID domain-containing
protein1A: JARID1A) is connected to the circadian epigenome
(Masri and Sassone-Corsi, 2013). We first identified the
Arg745Cys variation in the Kdm5a gene between WMI and
WLI strains from whole-genome sequencing data. This was

validated using Sanger Sequencing (Supplementary Figure 1).
Therefore, the hypothalamic expression of Kdm5a and the
transcribed clock genes period 1 and 2 (Per1, Per2) was
measured. Transcript levels of Kdm5a differed significantly
between WLI and WMI females, regardless of postpartum
days (Kdm5a, F(1,15) = 68.77, p < 0.0001), with WMI dams
showing higher expression (Figure 2). Transcript levels of Per1
and Per2 also differed significantly between WLI and WMI
females (Per1, F(1,15) = 4.63, p = 0.048; Per2, F(1,15) = 8.05,
p = 0.013), with WMI dams showing higher expression
(Figure 2).

Hypothalamic transcript levels of target genes are shown
in Figure 3. Interestingly, while Oxt expression tended to
differ significantly between WLI and WMI dams only by litter
survival (litter survival by strain, F(1,11) = 7, 15, p = 0.022),
expression of Oxtr showed both a clear strain and a strain
by litter survival effect (strain, F(1,13) = 4.80, p = 0.047;
litter survival by strain, F(1,13) = 5.38, p = 0.037). The Avp
system showed major differences between the strains and
litter survival. Specifically, expression of both Avp and Avpr1a
showed strain differences (Avp, F(1,12) = 12.54, p = 0.004;
Avpr1a, F(1,15) = 7.01, p = 0.018). However, while there were
no litter survival and strain by litter survival effects for Avp
expression, Avpr1a expression was greater in PPD 24 WMI
hypothalamus compared to all other groups (litter survival,
F(1,15) = 8.64, p = 0.010; strain by litter survival, F(1,15) = 5.62,
p = 0.032). In contrast, hypothalamic transcript levels of Avpr1b
did not differ between the strains but showed a significant
association with litter survival (F(1,13) = 21.56, p = 0.0005).
Expression of Esr1 differed significantly between the WLI
and WMI hypothalamus (F(1,12) = 5.24, p = 0.041), but the
expression of Esr2 only showed a difference by litter survival
(F(1,15) = 7.97, p < 0.013).

Heatmaps of the correlations between hypothalamic gene
expressions are shown in Supplementary Figure 2 for WLIs
and WMIs. The heatmaps illustrate the differential pattern
of correlations between the strains and between the days
postpartum. Unique strain differences in a significant correlation
are present in WLIs regardless of PPD, such as the correlation
between hypothalamic expression of Oxtr and Avpr1a and
Kdm5a and Per2. These correlations are not present in WMIs,
while the Avp, Per1, Kdm5a, and Avpr1b correlations are
unique to PPD 24 WMI hypothalamus. Correlations unique to
postpartum days or litter survival regardless of strain indicate
that in the PPD <5 groups, hypothalamic expression of Oxt
correlated with Avp, while at PPD 24, Avpr1a correlated with
Esr2 expression.

DISCUSSION

The WMI genetic animal model of depression has shown
major differences during postpartum compared to their isogenic
controls, the WLI strain that does not indicate depression-like
behavior.Many of these characteristics segregated from theWKY
parent phenotype during selective breeding with most behavioral
phenotypes of WMIs being the same as the WKYs, while
WLIs being different. Particularly, WMI dams have reduced
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FIGURE 1 | Maternal and self-directed behaviors of Wistar Kyoto Less Immobile (WLI) and Wistar Kyoto More Immobile (WMI) dams as observed during
postpartum day 1–10. (A) Percentage of average frequency/hr of each category of maternal behaviors in the light and the dark phases of the day are shown.
(B) Frequency per hour of observation of arched-back and blanket nursing is greater in WLI dams compared to WMIs, regardless of the time of day. Pup-directed
behaviors, such as licking, grooming, and retrieval are greater in WMI than WLI dams and differ between the light and the dark phases of the day, the latter being
less. Self-directed behaviors do not differ between WLI and WMI dams during the light phase, but during the dark phase (when nocturnal animals are more active),
WMI dams spend significantly less time eating and drinking compared to WLIs. (C) Self-directed behaviors are greater in the dark phase in WLIs across the 10 days
observation, with only one time of day difference in WMIs. Data are presented as mean ± standard error of the mean. *p < 0.05, ∗∗p < 0.01.

litter survival, smaller litter size and decreased arched-back
and blanket nursing, but increased licking, grooming retrieval
behaviors toward their pups than WLI dams over the
first 10 days postpartum. WMIs self-directed behaviors are
decreased and WMIs show no diurnal rhythm in these
behaviors while WLI dams do. This is similar to the biological

rhythm disturbances observed in patients with depression
compared to healthy controls (Mondin et al., 2017; Ozcelik
and Sahbaz, 2020). Hypothalamic expression of Kdm5a, Per1,
and Per2 is greater in WMIs than WLIs, both in dams
whose litter died before postpartum day 5 and in those
whose litter survived to wean. Hypothalamic transcript levels
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FIGURE 2 | Hypothalamic gene expression of Kdm5a, Per1, and Per2 in WLI and WMI dams who lost their litter before postpartum day 5 (PPD < 5) and in those
whose litter were weaned at PPD 24. Hypothalamic transcript levels were measured by quantitative RT-PCR and shown as Relative Quantification (RQ). Data are
presented as mean ± standard error of the mean. N = 4–6 per group. ∗P < 0.05 and ∗∗P < 0.01 represent post hoc comparisons.

of Oxtr, Avp, and Avpr1a are also increased in the WMI
dams compared to their isogenic control WLIs, but only
in dams whose litter survived to wean. Another parallel to
the human condition is that these gene expression increases
are similar to what was found in the hypothalamus of
depressed patients (Meynen et al., 2006; Wang et al., 2008).
Since WMI dams show characteristics similar to depressed
patients and decreased nursing, but increased pup-directed
behaviors, we propose that the dams of the WMI genetic
animal model of depression are a potential animal model of
postpartum depression.

In prior studies, differences in maternal care were not related
to basic measures of reproductive success, such as litter survival
to weaning (Champagne et al., 2003). The parental strain of
the WLI and WMI, the WKY rat, has an average litter size of
8.16 pups which is similar to litter sizes of the control WLI
dams and other rat strains (Gill Iii et al., 1979). However,
after the establishment of these new inbred strains, the litter
size for the WMI dams became close to half of that of the
WLI dams. Furthermore, although WMI litters were birthed
at the same rate as WLI litters, they showed a significantly
lower survival rate than WLI litters. One of the potential
causes of these findings could be aberrant maternal behavior
of the WMI dam, as more nourishment-directed maternal
behaviors are thought to increase litter survival (Weber et al.,
2016). While dams of both strains show limited arched-back
and blanket nursing behaviors during the observation period,
WMI dams spent significantly less time with arched-back and
blanket nursing of the pups than WLIs. In contrast, WMI
dams spent more time licking, grooming, and retrieval of the
pups than WLIs. Although arched-back, blanket nursing and
licking, grooming and retrieval of the pups often co-occur,
previous studies have found them to vary independently. For
example, undernourished pups elicit increased licking, grooming
from dams regardless of the dam’s ability or frequency of
nursing (Lynch, 1976). It has been suggested that these two
behaviors have distinct developmental roles with distinct effects
on offspring biobehavioral outcomes, and also that arched-back
nursing is typically not a significant predictor of offspring
outcomes (Jensen Peña and Champagne, 2013).

Altered maternal-child interactions are reported when
women suffer from postpartum depression and comorbid
anxiety. Decreased breastfeeding, or premature cessation of
it, has been observed in women with depression before or
during pregnancy (Wallenborn et al., 2018; Jordan et al., 2019).
Genetic rodent models with depression-like behavior show
some of the characteristics of these altered interactions, as
seen with the decreased nursing of WMIs compared to WLIs.
Although maternal behavior has been examined in many inbred
and outbred strains of rats and mice (Perani and Slattery,
2014), findings from the Flinders Sensitive Line (FSL) and the
WKY rats, two different genetic animal models of depression
(Lavi-Avnon et al., 2005; Braw et al., 2009), are particularly
relevant to the current study. FSL dams do not differ from
control Sprague Dawley dams in their maternal behavior, while
WKY dams perform more pup-directed activities and fewer
self-directed activities compared to Wistar controls (Braw et al.,
2009). This again implies that the WKY parental phenotype of
pup-directed and self-directed activities are segregated together
and present in the WMI strain, differently from that of
the litter size phenotype. Interestingly, increased pup-directed
behavior could represent the ‘‘helicopter parenting’’ maternal
phenotype observed in mothers with postpartum depression
and anxiety (Perani and Slattery, 2014). Even more specifically,
maternal anxiety is associated with higher maternal control
and intrusiveness in the mother-infant interaction (Stein et al.,
2012; Parfitt et al., 2013; Hakanen et al., 2019). Since both
WKY (Solberg et al., 2003; Baum et al., 2006) and WMI
females show concurrent increased depression and anxiety-like
phenotypes (Mehta et al., 2013) and more pup-directed
activities compared to their respective controls (Wistar and
WLI; Braw et al., 2009), it is feasible that their behavior
is also associated with maternal anxiety. This is similar to
findings in which women with postpartum depression very
often show comorbid anxiety (Farr et al., 2014). The main
predictor for depressive, anxiety, or psychotic diseases after
delivery is an antenatal episode of the illness (Perani and
Slattery, 2014). Thus, WKY and WMI females do have risk
factors for showing characteristics of postpartum depression
after delivery.
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FIGURE 3 | Hypothalamic gene expression of Oxt, Oxtr, Avp, Avpr1a and Avpr1b, and Esr1 and Esr2 in WLI and WMI dams who lost their litter before postpartum
day 5 (PPD < 5) and in those whose litter were weaned at PPD 24. Hypothalamic transcript levels were measured by quantitative RT-PCR and shown as Relative
Quantification (RQ). Data are presented as mean ± standard error of the mean. N = 4–6 per group. #< 0.10, ∗P < 0.05, and ∗∗P < 0.01 represent
post hoc comparisons.

The decreased self-directed behavior of the WMI dams
became very apparent in this study because we observedmaternal
behavior during both the light and the dark phase for 10 days
postpartum. This is in contrast to some other studies in which
spot check observations were conducted on PPD 4 and 9 only
(Braw et al., 2009), or behaviors were examined on PPD
3–4 and 17–18 only in the light phase (Lavi-Avnon et al.,
2005). Nocturnal animals eat and drink more during the dark,
just as the WLI dams did, but the disturbed rhythm of WMIs
recalls a similar phenomenon in the WKYs. The WKY rats were
found to be less responsive to light, which may cause possible
alterations in daily rhythm patterns of this strain (Rosenwasser,
1993; Solberg et al., 2001). Interestingly, the FSL has shown

a similar phenotype, suggesting that it may be a common
phenotype in animal models of depression (Shiromani and
Overstreet, 1994). Some data demonstrate that patients with
depression may have an altered sensitivity to light (Duncan,
1996). Additionally, greater biological rhythm disturbances have
been observed in patients with depression compared to healthy
controls (Mondin et al., 2017; Ozcelik and Sahbaz, 2020). Sleep
disturbances have also been observed in WKYs (Dugovic et al.,
2000; Dasilva et al., 2011), very similar to those described in
depressed patients (Rosenwasser and Wirz-Justice, 1997). Thus,
the lack of diurnal rhythm of self-directed behaviors in the
WMI dams suggests that this phenotype segregated with the
depression-like behavior.
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Because the WLI and WMI strains are isogenic, we could
peruse the sequences for possible causative sequence variations
that may be associated with the lack of diurnal rhythm
observed in the WMI dams. The confirmed nonsynonymous
sequence variation in the coding region of lysine-specific
demethylase 5A (Kdm5a/Jarid1a) elevated this gene to
a possible causative gene, although the single nucleotide
polymorphism (SNP) was in the WLI strain. Kdm5a forms a
complex with transcription factors Clock and Bmal1, which
results in transcriptional activation of the Period genes and
maintenance of circadian oscillations (DiTacchio et al., 2011).
Interestingly, Kdm5a and Per2 expression were increased
in the WMI compared to WLI, regardless of litter survival
or postpartum days. Increased hypothalamic expression of
Kdm5a and Per2 may contribute to the lack of circadian
rhythm seen in the WMI’s behavior. Constitutive expression
of Per2 abolishes diurnal rhythm (Chen et al., 2009), and
Kdm5a is known to activate Per2 expression (DiTacchio et al.,
2011). Thus, the lack of diurnal variation in self-directed
behaviors of the WMI dam could be related to the increased
expression of Per2 in the hypothalamus. Whether the increased
Per2 is also a molecular characterization of the WMI’s
depressive behavior is not known, but antidepressants are
known to reduce Per2 expression in experimental models
(Orozco-Solis et al., 2017).

Alternatively, the SNP in the Kdm5a gene in the WLIs
could have a loss or gain of function effect. The gain of
function could enhance the circadian rhythm of WLI in
their self-directed behavior, and the Kdm5a-induced negative
regulation of transcription by RNA polymerase II could
suppress the expression of the target genes in WLIs, and
not in WMIs. However, there were no correlations between
the expression of Kdm5a and other genes except for Per2
in the WLIs. In contrast, Kdm5a expression correlated with
Avp, but only in the WMIs, suggesting a loss of function
effect of the WLI SNP. These proposed mechanisms do
not explain the lack of diurnal rhythm in the WMIs
self-directed behavior, as no single regulator can. However,
they implicate that genetic manipulations in these strains
could, potentially, identify causative variations affecting
maternal behavior.

The observed increases in the hypothalamic expression of
Oxtr, Avp, and Avp1ra in the WMI dams compared to WLIs and
also to those WMIs whose litter died are difficult to interpret
in the context of their accepted role in maternal behavior. A
large body of literature supports the role of neuroendocrine
processes in the induction and regulation of maternal behavior
(Bridges, 2015). Both neuropeptides, Oxt and Avp, have been
known to have an impact on maternal behavior (Pedersen and
Prange, 1979; Pedersen et al., 1982; Bosch and Neumann, 2008;
Bayerl and Bosch, 2019). Their receptors, Avpr1a and Oxtr,
have also been implicated in maternal behaviors (Donaldson
and Young, 2008) with complementary expression patterns
in the ventromedial hypothalamus (Raggenbass, 2008). Several
rat and mice studies showed a correlation between Oxtr
and Avpr expression, similar to what is seen in the WLI
dams’ hypothalami. However, more maternal care has been

associated with higher levels of oxytocin binding in relevant
brain regions (Champagne et al., 2001; Curley et al., 2012),
including the paraventricular nucleus of the hypothalamus
(Bayerl et al., 2016). Furthermore, the central administration
of an Oxtr antagonist reduces high levels of pup licking,
grooming, and arched-back nursing in dams (Champagne et al.,
2001). Thus, increased pup licking, grooming behavior of the
WMI dam is in concordance with their increased hypothalamic
expression of Oxtr, but not with their decreased arched-back
and blanket nursing compared to that of WLIs. Administration
of Avp increases pup grooming in rats (Caldwell et al., 1986;
Elkabir et al., 1990), while antagonism of Avpr1a does not
affect arched back nursing and pup retrieval, but decreases
other types of nursing (Bayerl et al., 2016). Thus again, the
increased Avp expression in the WMI hypothalamus is as
per a component of the licking, grooming behavior of WMI
dams, but not with the rest of the observed behavior. These
seeming contradictions suggest that discrete components of
maternal behavior are influenced by different neuropeptidergic
mechanisms or differing neurocircuitry (Bosch and Neumann,
2012). The complexity of the association between maternal
behavioral differences and these neuropeptidergic mechanisms
is exaggerated by the findings that the administration of an
Avpr1a antagonist reduces anxiety/depression-like behavior in
preclinical studies (Wigger et al., 2004). Furthermore, AVP and
AVPR1A expressions are higher in the human hypothalamus of
depressed patients compared to that of controls (Meynen et al.,
2006; Wang et al., 2008). Therefore, the increased hypothalamic
expression of Avp and Avpr1a could be the manifestation of the
depression-like behavior of the WMI dams.

The most thought-provoking findings of the present study,
such as the increased licking, grooming, and retrieval but
decreased arched-back and blanket nursing and self-directed
behaviors of the WMI dams, seem to parallel postpartum
behavior of its progenitor, the WKY strain, which is considered
an animal model of depression. In contrast, these behaviors
are very different in the WLIs, where the inbred strain does
not show depression-like behavior. Thus, some postpartum
behaviors segregated together with depression-like behavior
between the two strains during selective breeding. Genetic
studies using the WKY and another strain with phenotypic
differences are possible, but less likely to produce causative
genes due to the nature of these quantitative trait loci
studies (Solberg et al., 2004). In contrast, exploring the
underlying genetic basis of these behaviors in the isogenic
WLI and WMI strains using the reduced complexity cross
approach would be more meaningful, as we described it
recently (Bryant et al., 2020). The loss of diurnal patterns
in self-directed behaviors and increased hypothalamic
Avp and Avpr1a expression are resonant to findings in
human depressed patients. Future studies could investigate
whether attenuating the WMI’s depression-like behavior
before gestation, by antidepressant treatment (Will et al.,
2003) or by environmental enrichment (Mehta-Raghavan
et al., 2016), would equalize litter survival, maternal and
self-directed behaviors, and neuropeptide receptor expression
in the hypothalamus of WMI and WLI dams. Since the
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greatest risk factor for postpartum depression is a history
of depression before pregnancy (Putnam et al., 2017),
the WLI and WMI rat strains could be valuable tools
to investigate the molecular and genetic underpinning of
this disorder.
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Postnatal Antioxidant and
Anti-inflammatory Treatments
Prevent Early Ketamine-Induced
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Maria Grazia Morgese

Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy

Early brain insult, interfering with its maturation, may result in psychotic-like
disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to
long-term psychiatric consequences due to neurodevelopmental abnormalities. Here,
we investigated the effects of early pharmacological modulation of the redox and
inflammatory states, through celastrol, and indomethacin administration, on reactive
oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant
enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as
well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6,
IL-6, and interleukin-1 beta, IL-1β), in the prefrontal cortex of adult mice exposed
to a neurotoxic insult, i.e. ketamine administration, in postnatal life. Early celastrol or
indomethacin prevented ketamine-induced elevations in cortical ROS production. MDA
levels in ketamine-treated mice, also administered with celastrol, were comparable with
the control ones. Indomethacin also prevented the increase in lipid peroxidation following
early ketamine administration. Whereas no significant differences were detected in
SOD1, GSH, and CAT levels between ketamine and saline-administered mice, celastrol
elevated the cortical amount of these antioxidant enzymes and the same effect was
induced by indomethacin per se. Both celastrol and indomethacin prevented ketamine-
induced enhancement in TNF-α and IL-1β levels, however, they had no effects on
increased IL-6 amount resulting from ketamine exposure in postnatal life. In conclusion,
our data suggest that an early increase in cortical ROS scavenging and reduction of
lipid peroxidation, via the enhancement of antioxidant defense, together with inhibition
of neuroinflammation, may represent a therapeutic opportunity against psychotic-like
disturbances resulting, later in life, from the effects of a neurotoxic insult on the
developing brain.

Keywords: celastrol, indomethacin, ketamine, prefrontal cortex, redox, inflammation, animal models

INTRODUCTION

Early insults affecting the central nervous system (CNS) during crucial phases of its maturation
have been reported to induce neurodevelopmental abnormalities. This has been associated with
increased risk of developing psychotic-like disturbances in adult life (Hussain and Murray,
2015). In this pathological process, the prefrontal cortex (PFC), characterized by highly
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vulnerable cellular populations, has been described as
one of the most consistently implicated brain regions
(Selemon and Zecevic, 2015).

Multiple molecular mechanisms underlying long-term
psychiatric consequences of early brain insults have been
proposed. Among them, dysfunctions of the antioxidant
enzymes, such as superoxide dismutase 1 (SOD1), glutathione
(GSH), and catalase (CAT), have been described (Cabungcal
et al., 2013). The expression and activity of these enzymes
physiologically occur during key neurodevelopmental phases.
Indeed, SOD1, expressed primarily in cortical neurons (Peluffo
et al., 2005), has been shown to reach a peak in the second
postnatal week (Ceballos-Picot et al., 1992). Similarly, CAT
activity in rodent developing CNS has been found to be
higher than in the mature brain (Del Maestro and McDonald,
1987; Hamby-Mason et al., 1997), with a maximum observed
from postnatal day (PND) 5 to PND 10 (Del Maestro and
McDonald, 1987; Aspberg and Tottmar, 1992). Moreover, GSH
has been reported to increase and modify the redox state of
the cells toward a more reduced condition starting from PND
10 until PND 30 (Galkina et al., 2017). Altered antioxidant
defense in the brain may result in increased levels of reactive
oxygen species (ROS) and consequent lipid peroxidation in
neurons. One of the final products of this biochemical process
is malondialdehyde (MDA). Enhanced amount of this highly
reactive compound has been reported in the PFC of young mice
perinatally exposed to a neurotoxic insult (Del Rio et al., 2005;
Tsikas, 2017). The natural compound celastrol, derived from
the root of Tripterygium wilfordii, pharmacologically modulate
ROS amount and antioxidant defense system. It has shown
to be effective for a broad range of pathological conditions,
including neurodegenerative disorders (Kiaei et al., 2005; Paris
et al., 2010; Choi et al., 2014), cerebral ischemia (Li et al., 2012;
Jiang et al., 2018) and traumatic brain injury (Eroglu et al.,
2014). Moreover, it has been reported to prevent psychotic-
like behavioral alterations, oxidative stress and inflammatory
imbalance in adult mice exposed to a neurotoxic insult in their
postnatal life (Schiavone et al., 2019).

Neuroinflammation is a crucial contributor of long-term
psychiatric consequences of early neurodetrimental insults. In
particular, the developing brain is characterized by increased
vulnerability to proinflammatory cytokines, such as Tumor
necrosis factor (TNF)-α, interleukin-6 (IL-6), and interleukin-1
beta (IL-1β) (Hagberg and Mallard, 2005). In this regard, levels of
TNF-A were enhanced in the cerebellum of adult mice postnatally
exposed to a neurotoxic insult (Schiavone et al., 2019). In
addition, non-steroidal anti-inflammatory drugs (NSAIDs) have
been shown to exert protective effects on neurodevelopmental
processes. This occurs via the inhibition of the synthesis of
inflammatory mediators at systemic level and via cyclooxygenase
(COX) inhibition at blood brain barrier site (Favrais et al.,
2007). Among NSAIDs, indomethacin, a non-selective inhibitor
of COX 1 and 2, has been shown to readily pass the blood
brain barrier (Parepally et al., 2006; Novakova et al., 2014). It
also exerted neuroprotective effects in newborn rodents exposed
to hypoxic-ischemic insult (Tutak et al., 2005; Taskin et al.,
2009). Accordingly, clinical evidence showed that indomethacin,

unlike ibuprofen, might be neuroprotective against the long
term effects of cerebral insults, such as ventricular hemorrhage
(Favrais et al., 2014).

Postnatal administration of subanesthetic doses of ketamine,
a NMDA receptor (NMDA-R) antagonist, is a reliable tool
to mimic in rodents an early insult interfering with brain
maturation (Frohlich and Van Horn, 2014). In this regard,
NMDA-Rs reach their maximum expression in the first 2 weeks
of postnatal life. Hence, inhibition of these receptors in
this period is associated with increased neuronal damage
(Bubenikova-Valesova et al., 2008). Indeed, ketamine exposure
during CNS development has been shown to cause a down-
regulation of NMDA-Rs located in the PFC resulting in
psychiatric-like symptoms in rat adult offspring (Ren et al.,
2019). Furthermore, early genetic ablation or ketamine-induced
blockade of NMDA-Rs of cortical parvalbumin-expressing
GABAergic interneurons can induce in adult animals persistent
behavioral deficits, reminiscent of cognitive and negative
psychotic symptoms (Jeevakumar et al., 2015). In addition, we
have demonstrated that ketamine administration at PNDs 7,
9 and 11 caused psychotic-like neurochemical and behavioral
alterations in adult mice (Schiavone et al., 2019, 2020).

Here, we assessed the effects of early pharmacological
modulation of the redox and inflammatory states, through
celastrol and indomethacin administration, on possible alteration
of ROS production, lipid peroxidation, as well as SOD1, GSH,
and CAT levels in the PFC, induced by the exposure to an early
neurotoxic trigger, i.e., ketamine, in postnatal life. Moreover,
celastrol or indomethacin effects on possible ketamine-induced
changes of proinflammatory cytokines levels, i.e., TNF-α, IL-6,
and IL-1β were also assessed in the same brain region.

MATERIALS AND METHODS

Animals
Mice were housed at constant room temperature (22 ± 1◦C)
and relative humidity (55 ± 5%), under a 12 h light/dark
cycle (lights on from 7:00 AM to 7:00 PM). They had free
access to food and water. Experimental procedures involving
animals and their care were performed in conformity with the
institutional guidelines of the Italian Ministry of Health (D.Lgs. n.
26/2014), the Guide for the Care and Use of Laboratory Animals:
Eight Edition, the Guide for the Care and Use of Mammals
in Neuroscience and Behavioral Research (National Research
Council, 2004), the Directive 2010/63/EU of the European
Parliament and of the Council of 22 September 2010 on the
protection of animals used for scientific purposes, as well as the
ARRIVE guidelines. The experimental protocol was approved
by the Italian Ministry of Health (approval number 679/2017-
PR, protocol n. B2EF8.17) Animal welfare was daily monitored
throughout the experimental phase. All efforts were made to
minimize the number of animals used, as well as their suffering.

Experimental Protocol
A total of five C57/Bl6 male mice of 8–10 weeks of age, weighting
25–30 g, and ten age and weight-matched adult females (Envigo,
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San Pietro al Natisone, Italy) were mated (one male and two
females per cage). Male pups were divided into the following
experimental groups, according to the different treatments they
received at PNDs 7, 9, and 11:

(1) Saline (10 ml/kg i.p.);
(2) Ketamine (Sigma-Aldrich Corporation, Saint Louis, MO,

United States; 30 mg/kg i.p., dissolved in saline) (Sorce
et al., 2010; Jeevakumar et al., 2015);

(3) Celastrol (Sigma Aldrich, Milano, Italy; 1 mg/kg i.p.,
dissolved in 50% DMSO/PBS) (Paris et al., 2010; Schiavone
et al., 2019);

(4) A 50% DMSO/PBS solution (5 ml/kg i.p.);
(5) Ketamine (30 mg/kg i.p., dissolved in saline, injected in the

right side of the peritoneum) and celastrol (1 mg/kg i.p.,
dissolved in 50% DMSO/PBS, injected in the left side of the
peritoneum) (Schiavone et al., 2019)-indicated throughout
the text as “ketamine+ celastrol”;

(6) Indomethacin [Promedica, Parma, Italy, 10 mg/kg i.p., (La
Vitola et al., 2018), dissolved in saline];

(7) Ketamine (30 mg/kg i.p., dissolved in saline, injected
in the right side of the peritoneum) and indomethacin
(10 mg/kg i.p., dissolved in saline, injected in the left side
of the peritoneum) – indicated throughout the text as
“ketamine+ indomethacin”.

For ethical reasons, in keeping with the pursuing of 3R
requirements foreseen by the Directive 2010/63/EU of the
European Parliament, as well as of the Council of 22 September
2010 on the protection of animals used for scientific purposes, the
ARRIVE guidelines, and also based on our previous experience
(we did not detect any differences between a double with respect
to single injection of vehicles), the group consisting of double-
vehicle injection was omitted from the experimental protocol.

All pups were grown until adulthood (10 weeks of age). At
this time point, they were euthanized by cervical dislocation
for PFC collection.

PFC Collection
The PFC of 10-weeks mice was collected by using the Mouse
Brain Matrix, making coronal sections of 1 mm of thickness
and dissecting it from the obtained brain slices according to the
Mouse Brain in Stereotaxic Coordinates, 3rd Edition, Franklin
and Paxinos (2015). Immediately after, tissues were frozen in
isopentane and stored at −80◦C, until biomolecular analyses
were performed (Bove et al., 2018).

ROS Measurement
Reactive oxygen species measurement in PFC was performed
as previously described (Baek et al., 2018; Pirozzi et al., 2020),
by using the fluorogenic dye 2′,7′dichlorofluorescein diacetate
(Sigma Aldrich, Milano, Italy) (Kirkland et al., 2007). Briefly,
tissue was homogenized in PBS 1× (pH = 7.4) according to the
following proportion: 500 µl of PBS 1× for 2,5 mg of tissue. The
dye was added to the sample with a final concentration of 5 µM
and incubation was performed for 15 min at 37◦C. Samples were
than centrifuged for 10 min at 4◦C and 12,500 rpm. The pellet

was resuspended in 5 ml PBS 1× and put in ice for 10 min.
After a 1-h incubation at 37◦C, samples were analyzed in 96-well
microplate by using a fluorometer (Filter Max F5, Multi-Mode
Microplate Reader, excitation length 475 nm, emission length
535 nm). Results were expressed as µmol DCF/mg of tissue.

MDA Assay
MDA assay was performed by using a commercially available kit
(Sigma-Aldrich, Milano, Italy) as previously described (Fan et al.,
2019), according to the manufacturer’s instructions. Each sample
and standard analysis was performed in duplicate to avoid intra-
assay variations.

Enzyme-Linked Immunosorbent Assays
Samples were homogenized in 10 volumes of PBS with
protease inhibitors, as previously described (Schiavone et al.,
2019). Commercially available Enzyme-Linked Immunosorbent
Assay (ELISA) kits were used for measurement of SOD1
(Wuhan Fine Biotech Co., Ltd.-FineTest, Wuhan, China),
GSH (Biomatik Life Science Products and Service, Ontario,
Canada), CAT (Wuhan Fine Biotech Co., Ltd.-FineTest, Wuhan,
China), TNF-A (MyBiosource, San Diego, CA, United States),
IL-6 (MyBiosource, San Diego, CA, United States) and IL-
1ß (MyBiosource, San Diego, CA, United States) in the
PFC, according to the manufacturer’s instructions. All samples
and standards were analyzed in duplicate to avoid intra-
assay variations.

Blindness of the Study
Data analysis was performed by researchers who were blind with
respect to the treatment conditions. The blindness of the study
was maintained until data analysis ended.

Statistical Analysis
Statistical analysis was performed by using GraphPad 5.0 software
for Windows. Data were checked for normality by using Bartlett’s
test and then analyzed by One Way ANOVA, followed by
Tukey’s post hoc test or Kruskal-Wallis test, followed by Dunn’s
multiple comparison test. For all tests, a p-value < 0.05 was
considered as statistically significant. Results are expressed as
means ± mean standard error (SEM). No significant differences
in all the considered parameters were detected between saline and
50% DMSO/PBS-treated animals. Therefore, graphs only include
results related to saline-treated animals.

RESULTS

Effects of Early Celastrol or
Indomethacin Administration on ROS
Production and Lipid Peroxidation in the
PFC of Adult Mice Treated With
Ketamine in Postnatal Life
To assess possible effects of early celastrol or indomethacin
administration on ROS production and lipid peroxidation
induced by ketamine exposure in postnatal life, we quantified
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ROS, and MDA levels in the PFC of adult mice. No significant
differences in cortical ROS production were detected between
controls and celastrol-injected animals. Ketamine exposure in
postnatal life resulted in increased ROS production compared to
saline-treated mice which was prevented by ketamine+ celastrol
administration (Figure 1A, One way ANOVA, followed by
Tukey’s Multiple Comparison post hoc test, F(3,12) = 5.742,
p < 0.05). While no significant differences in MDA levels
were observed between animals administered with saline and
the celastrol group, adult mice that received ketamine in
early postnatal life, showed significant MDA elevations in
the considered brain region. Early celastrol administration
was able to prevent ketamine-induced lipid peroxidation
(Figure 1B, Kruskal-Wallis test, followed by Dunn’s multiple
comparison test, Kruskal-Wallis statistic = 9.573, p < 0.05).
Early ketamine + indomethacin administration prevented
ketamine-induced elevation in ROS levels (Figure 2A, One way
ANOVA, followed by Tukey’s Multiple Comparison post hoc
test, F(3,13) = 9.642, p < 0.05, and p < 0.001). Indomethacin
treatment per se was able to significantly lower MDA levels
with respect to both controls and ketamine-exposed mice. Lipid
peroxidation in mice early receiving ketamine + indomethacin
was decreased compared to ketamine-treated mice but did not
reach the same levels than the ones detected in mice early exposed
to indomethacin alone (Figure 2B, One way ANOVA, followed
by Tukey’s Multiple Comparison post hoc test, F(3,18) = 35.10,
p < 0.01 and p < 0.001).

Effects of Early Celastrol or
Indomethacin Administration on
Antioxidant Enzyme Expression in the
PFC of Adult Mice Treated With
Ketamine in Postnatal Life
To investigate the possible impact of early celastrol or
indomethacin administration on antioxidant enzyme expression
following ketamine exposure in postnatal life, we quantified levels
of SOD1, CAT, and GSH in the PFC of adult mice. Whereas
comparable SOD1 amount was detected among saline, ketamine
and celastrol-treated animals, significant increased expression of
this antioxidant enzyme was observed in ketamine + celastrol-
treated animals with respect to both saline and ketamine
groups (Figure 3A, One way ANOVA, followed by Tukey’s
Multiple Comparison post hoc test, F(3,14) = 5.318, p < 0.05).
Early indomethacin treatment per se resulted in an increased
SOD1 expression with respect to both saline and ketamine-
administered mice (Figure 4A, One way ANOVA, followed by
Tukey’s Multiple Comparison post hoc test, F(3,12) = 7.715,
p < 0.05 and p < 0.01).

No significant differences in GSH levels were detected between
early ketamine and saline-treated animals. Increased amount
of this enzyme was observed in celastrol-treated animals with
respect to the saline and ketamine groups and in animals exposed
to ketamine + celastrol compared to ketamine and celastrol-
treated mice (Figure 3B, One way ANOVA, followed by Tukey’s
Multiple Comparison post hoc test, F(3,16) = 29.89, p < 0.01, and
p < 0.001). Administration of indomethacin in early postnatal

FIGURE 1 | Effects of early celastrol administration on ROS production and
MDA levels in the PFC of adult mice, administered with ketamine in postnatal
life. (A) ROS production (µmol DCF/mg of tissue) in the PFC of 10 weeks
mice receiving saline (Sal, n = 4) or ketamine (Ket, n = 4) or celastrol (Cel,
n = 4) or ketamine + celastrol (Ket + Cel, n = 4) at PNDs 7, 9, and 11. One
way ANOVA, followed by Tukey’s Multiple Comparison post hoc test,
F(3,12) = 5.742, *p < 0.05 Ket vs Sal, #p < 0.05 Ket + Cel vs Ket. (B) MDA
levels (nmol/mg tissue) in the PFC of 10 weeks mice receiving saline (Sal,
n = 5) or ketamine (Ket, n = 8) or celastrol (Cel, n = 5) or ketamine + celastrol
(Ket + Cel, n = 6) at PNDs 7, 9, and 11. Kruskal-Wallis test, followed by Dunn’s
multiple comparison test, Kruskal-Wallis statistic = 9.573 *p < 0.05 Ket vs Sal.

life, alone or in combination with ketamine, was able to elevate
GSH expression with respect to controls and ketamine-treated
mice (Figure 4B, One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,16) = 25.59, p < 0.01, p < 0.001).

Whereas early ketamine exposure did not affect CAT levels in
the PFC of adult mice, increased levels of this antioxidant enzyme
were detected in ketamine + celastrol-treated animals compared
to ketamine groups (Figure 3C, One way ANOVA, followed
by Tukey’s Multiple Comparison post hoc test, F(3,13) = 5.095,
p < 0.05). Levels of this enzyme were enhanced following early
administration of indomethacin compared to saline or ketamine-
treated mice and this was prevented by ketamine+ indomethacin
injection (Figure 4C, One way ANOVA, followed by Tukey’s
Multiple Comparison post hoc test, F(3,15) = 7.200, p < 0.05 and
p < 0.01).
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FIGURE 2 | Effects of early indomethacin administration on ROS production
and MDA levels in the PFC of adult mice, administered with ketamine in
postnatal life. (A) ROS production (µmol DCF/mg of tissue) in the PFC of 10
weeks mice receiving saline (Sal, n = 4) or ketamine (Ket, n = 4) or
indomethacin (Ind, n = 5) or ketamine + indomethacin (Ket + Ind, n = 4) at
PNDs 7, 9, and 11. One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,13) = 9.642, *p < 0.05 Ket vs Sal,
###p < 0.001 Ket + Ind vs Ket. (B) MDA levels (nmol/mg tissue) in the PFC of
10 weeks mice receiving saline (Sal, n = 5) or ketamine (Ket, n = 8) or
indomethacin (Ind, n = 4) or ketamine + indomethacin (Ket + Ind, n = 5) at
PNDs 7, 9, and 11. One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,18) = 35.10, **p < 0.01 Ket vs Sal,
***p < 0.001 Ind vs Sal, ###p < 0.001 Ind vs Ket and Ket + Ind vs Ket,
◦◦p < 0.01 Ket + Ind vs Ind.

Effects of Early Celastrol or
Indomethacin Administration on
Pro-inflammatory Cytokines in the PFC
of Adult Mice Treated With Ketamine in
Postnatal Life
To evaluate possible effects of early celastrol or indomethacin
administration on pro-inflammatory cytokines following
ketamine exposure in postnatal life, we quantified levels of
TNF-A, IL-1ß, and IL-6 in the PFC of adult mice. Whereas no
significant differences in TNF-A amount was detected among
saline and celastrol treatments, ketamine administration at

FIGURE 3 | Effects of early celastrol administration on SOD1, GSH, and CAT
levels in the PFC of adult mice, administered with ketamine in postnatal life.
(A) SOD1 levels (ng/ml) in the PFC of 10 weeks mice receiving saline (Sal,
n = 5) or ketamine (Ket, n = 5) or celastrol (Cel, n = 4) or ketamine + celastrol
(Ket + Cel, n = 4) at PNDs 7, 9, and 11. One way ANOVA, followed by Tukey’s
Multiple Comparison post hoc test, F(3,14) = 5.318, *p < 0.05 Ket + Cel vs
Sal, #p < 0.05 Ket + Cel vs Ket. (B) GSH levels (µg/ml) in the PFC of
10 weeks mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 7) or celastrol
(Cel, n = 3) or ketamine + celastrol (Ket + Cel, n = 7) at PNDs 7, 9, and 11.
One way ANOVA, followed by Tukey’s Multiple Comparison post hoc test,
F(3,16) = 29.89, ***p < 0.001 Cel vs Sal, ###p < 0.001 Cel vs Ket and
Ket + Cel vs Ket, §§ p < 0.01 Ket + Cel vs Cel. (C) CAT levels (pg/ml) in the
PFC of 10 weeks mice receiving saline (Sal, n = 4) or ketamine (Ket, n = 5) or
celastrol (Cel, n = 3) or ketamine + celastrol (Ket + Cel, n = 5) at PNDs 7, 9,
and 11. One way ANOVA, followed by Tukey’s Multiple Comparison post hoc
test, F(3,13) = 5.095, #p < 0.05 Ket + Cel vs Ket.

PNDs 7, 9, and 11 resulted in TNF-A elevations, which were
prevented by early celastrol administration (Figure 5A, One way
ANOVA, followed by Tukey’s Multiple Comparison post hoc
test, F(3,14) = 4.708, p < 0.05). Indomethacin, both per se and
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FIGURE 4 | Effects of early indomethacin administration on SOD1, GSH, and
CAT levels in the PFC of adult mice, administered with ketamine in postnatal
life. (A) SOD1 levels (ng/ml) in the PFC of 10 weeks mice receiving saline (Sal,
n = 5) or ketamine (Ket, n = 5) or indomethacin (Ind, n = 3) or
ketamine + indomethacin (Ket + Ind, n = 3). One way ANOVA, followed by
Tukey’s Multiple Comparison post hoc test, F(3,12) = 7.715, *p < 0.05 Ind vs
Sal, ##p < 0.01 Ind vs Ket. (B) GSH levels (µg/ml) in the PFC of 10 weeks
mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 7) or indomethacin (Ind,
n = 5) or ketamine + indomethacin (Ket + Ind, n = 5). One way ANOVA,
followed by Tukey’s Multiple Comparison post hoc test, F(3,16) = 25.59,
***p < 0.001 Ind vs Sal, **p < 0.01 Ket + Ind vs Sal, ###p < 0.001 Ind and
Ket + Ind vs Ket. (C) CAT levels (pg/ml) in the PFC of 10 weeks mice receiving
saline (Sal, n = 4) or ketamine (Ket, n = 5) or indomethacin (Ind, n = 5) or
ketamine + indomethacin (Ket + Ind, n = 5). One way ANOVA, followed by
Tukey’s Multiple Comparison post hoc test, F(3,15) = 7.200, *p < 0.05 Ind vs
Sal,##p < 0.01 Ind vs Ket, p < 0.05 Ind + Ket vs Ind.

FIGURE 5 | Effects of early celastrol administration on TNF-A and IL-1ß levels
in the PFC of adult mice, administered with ketamine in postnatal life.
(A) TNF-A levels (pg/ml) in the PFC of 10 weeks mice receiving saline (Sal,
n = 4) or ketamine (Ket, n = 5) or celastrol (Cel, n = 4) or ketamine + celastrol
(Ket + Cel, n = 5) at PNDs 7, 9, and 11. One way ANOVA, followed by Tukey’s
Multiple Comparison post hoc test, F(3,14) = 4.708; *p < 0.05 Ket vs Sal;
#p < 0.05 Ket + Cel vs Ket. (B) IL-1ß levels (pg/ml) in the PFC of 10 weeks
mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 4) or celastrol (Cel,
n = 3) or ketamine + celastrol (Ket + Cel, n = 4) at PNDs 7, 9, and 11. One
way ANOVA, followed by Tukey’s Multiple Comparison post hoc test,
F(3,10) = 5538, ***p < 0.001 Ket, Cel and Ket + Cel vs Sal; ###p < 0.001 Cel
and Ket + Cel vs Ket. (C) IL-6 levels (pg/ml) in the PFC of 10 weeks mice
receiving saline (Sal, n = 5) or ketamine (Ket, n = 5) or celastrol (Cel, n = 3) or
ketamine + celastrol (Ket + Cel, n = 5) at PNDs 7, 9, and 11. One way
ANOVA, followed by Tukey’s Multiple Comparison post hoc test,
F(3,14) = 20.08, *p < 0.05 Ket vs Sal; **p < 0.01 Cel vs Sal, ###p < 0.001
Cel vs Ket, §§§ p < 0.001 Ket + Cel vs Cel.
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concomitantly administered with ketamine, was able to decrease
TNF-A levels compared to controls and ketamine-exposed mice
(Figure 6A, One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,13) = 45.20, p < 0.05, and
p < 0.001).

Cortical levels of IL-1ß in adult mice were enhanced following
ketamine administration in early life compared to saline-treated
animals. Celastrol treatment was able to significantly decrease
amount of these pro-inflammatory cytokines in the PFC and
this was also observed when it was administered with ketamine
(Figure 5B, One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,10) = 5538, p < 0.001). Despite
IL-1ß amount was significantly lowered by indomethacin per
se compared to both saline and ketamine-treated mice, levels
of this cytokine following early ketamine + indomethacin
administration were comparable to the ones detected in the
saline group, although still significantly decreased with respect to
ketamine-exposed mice (Figure 6B, One way ANOVA, followed
by Tukey’s Multiple Comparison post hoc test, F(3,11) = 39.92,
p < 0.01, and p < 0.001).

Early ketamine treatment resulted in increased IL-6 levels
in the PFC of adult mice. Pups that received only celastrol or
indomethacin showed, at adulthood, a significant decrease of this
cytokine compared to both saline and ketamine-administered
animals. However, in mice concomitantly injected with ketamine,
no significant differences were detected compared to animals that
received saline or ketamine in early life (Figure 5C, One way
ANOVA, followed by Tukey’s Multiple Comparison post hoc test,
F(3,14) = 20.08, p < 0.05, p < 0.01, and p < 0.001 and Figure 6C,
One way ANOVA, followed by Tukey’s Multiple Comparison
post hoc test, F(3,13) = 18.41, p < 0.05, p < 0.01, and p < 0.001).

DISCUSSION

In this work, we demonstrated that administration of
subanesthetic doses of ketamine at PNDs 7, 9, and 11 caused
increased ROS production in the PFC of adult mice. Supporting
these findings, previous observations, obtained on the same
animal model, showed both early and persistent increased levels
of 8-hydroxydeoxyguanosine (8OHdG), an indirect marker of
oxidative stress, and NOX2, a ROS-producing enzyme, in the
same brain region (Schiavone et al., 2020). Accordingly, it has
been reported that, although oxidative stress contributes to the
physiological postnatal brain development in rodents, the effects
of increased ROS levels on the CNS, following an external insult,
might be revealed later in life (Wilhelm et al., 2016). Moreover,
antioxidant treatment with N-acetyl cysteine in mice could
prevent cognitive and behavioral dysfunctions at adulthood,
resulting from ketamine administration at PNDs 7, 9, and 11
(Phensy et al., 2017).

Here, we also observed enhanced lipid peroxidation after
early ketamine exposure. In good agreement with this finding,
ketamine-induced increase in MDA content in the cortex of
young rodents, associated with elevations in levels of indirect
markers of oxidative stress were previously reported (Cheung
and Yew, 2019). Interestingly, changes in brain lipid peroxidation

FIGURE 6 | Effects of early indomethacin administration on TNF-A and IL-1ß
levels in the PFC of adult mice, administered with ketamine in postnatal life.
(A) TNF-A levels (pg/ml) in the PFC of 10 weeks mice receiving saline (Sal,
n = 4) or ketamine (Ket, n = 5) or indomethacin (Ind, n = 4) or
ketamine + indomethacin (Ket + Ind, n = 4) at PNDs 7, 9, and 11. One way
ANOVA, followed by Tukey’s Multiple Comparison post hoc test,
F(3,13) = 45.20, *p < 0.05 Ket vs Sal, ***p < 0.001 Ind and Ket + Ind vs Sal,
###p < 0.001 Ind and Ket + Ind vs Ket. (B) IL-1ß levels (pg/ml) in the PFC of
10 weeks mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 4) or
indomethacin (Ind, n = 4) or ketamine + indomethacin (Ket + Ind, n = 4) at
PNDs 7, 9, and 11. One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,11) = 39.92, **p < 0.01 Ket and Ind vs Sal,
###p < 0.001 Ind and Ket + Ind vs Ket. (C) IL-6 levels (pg/ml) in the PFC of
10 weeks mice receiving saline (Sal, n = 5) or ketamine (Ket, n = 5) or
indomethacin (Ind, n = 4) or ketamine + indomethacin (Ket + Ind, n = 3) at
PNDs 7, 9, and 11. One way ANOVA, followed by Tukey’s Multiple
Comparison post hoc test, F(3,13) = 18.41, *p < 0.05 Ket vs Sal, **p < 0.01
Ind vs Sal, ###p < 0.001 Ind vs Ket, ◦◦p < 0.001 Ket + Ind vs Ind.

have been described during early postnatal development, with
a physiological decrease in adult animals (Galkina et al., 2009).
Indeed, during the neonatal period, brain has been reported
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to have low peroxidation potential corresponding to the
rapid phase of cell proliferation (Pushpendran et al., 1994).
Dysfunctions of this process, induced by an external trigger,
such as the exposure to NMDA-R antagonists, have been
shown to result in the persistence of high levels of lipid
peroxidation at adulthood, contributing to the development of
psychotic-like neuropathological and behavioral dysfunctions
in rodents (de Carvalho Cartágenes et al., 2019), as well as
neuropsychiatric disorders in humans (Joshi and Pratico, 2014;
Romano et al., 2017).

An important finding of our study consists in the lack
of significant differences in cortical amounts of antioxidant
enzymes between early ketamine-treated mice and controls.
This result might appear contrasting with preclinical evidence
describing, instead, a decreased activity of SOD and CAT in
the PFC of ketamine-treated rats (de Oliveira et al., 2009),
as well as a reduction of GSH concentration (Abdel-Salam
et al., 2015). However, in these previously published studies,
ketamine exposure occurred in adult life. Furthermore, the lack
of differences in levels of antioxidant enzymes observed in our
experimental conditions might be also interpreted as a long-
term dysfunction, induced by early ketamine exposure, of the
physiological roles of the antioxidant system in controlling ROS
damage and in regulating ROS signaling (Wang et al., 2018).

Here, we also demonstrated that early celastrol treatment
prevented ketamine-induced increased lipid peroxidation
and ROS production in the PFC of adult mice. Different
mechanisms of action have been proposed to describe celastrol
pharmacological effects. Among these, the induction of the
expression of neuroprotective factors, the block of ROS-induced
cellular apoptosis and the decrease of oxidative stress have been
reported (Chen et al., 2018). In particular, the reduction of
oxidative stress also occurs via the inhibition of the NADPH
oxidase NOX enzymes with an increased potency against NOX1
and NOX2 isoforms, resulting in the lack of the functional
association between the cytosolic subunits and the membrane
flavocytochrome of these enzymes (Jaquet et al., 2011; Tarafdar
and Pula, 2018). The effect of celastrol on ketamine-induced
increase in MDA and ROS levels observed in the present study
is in line with previous evidence obtained on the same animal
model, where celastrol administration in postnatal life was found
to prevent ketamine-induced elevations in cerebellar expression
of 8OHdG, a marker of oxidative damage to DNA, and of the
ROS producing enzyme NADPH oxidase NOX1 (Schiavone
et al., 2019). Intriguingly, in our experimental conditions, the
reduction of cortical ROS amount and lipid peroxidation induced
by early celastrol administration was accompanied by increased
levels of SOD1, GSH and CAT with respect to mice receiving only
ketamine in postnatal life. Supporting our hypothesis, previous
preclinical evidence have reported that celastrol could attenuate
oxidative damage by increasing levels and activity of SOD, GSH,
glutathione peroxidase, glutathione reductase, and CAT (Shaker
et al., 2014; Wang et al., 2014; Boran et al., 2019; Gao et al., 2020).
Although still speculative, the effects of celastrol on cortical
ROS levels and lipid peroxidation, at least in our experimental
conditions, might be explained by a concomitant action of this
compound on ROS production and their degradation, finally
resulting in the recovery of the redox balance, early altered

by ketamine. Indeed, it might be hypothesized that celastrol
administration may inhibit ketamine-induced increase in NOX2
expression observed in the PFC of mice pups and, consequently,
the persistent elevations of this enzyme in adult life (Schiavone
et al., 2020). On the other side of the redox balance, celastrol
exposure in the early phases of postnatal life might result in the
recovery of the physiological role of the antioxidant system in
response to ketamine-induced oxidative stress elevations. Hence,
ketamine-induced increase of ROS production and consequent
lipid peroxidation might be prevented by the synergistic action
of these two hypothesized mechanisms.

We also showed that early administration of indomethacin
per se could decrease MDA levels in the PFC of adult mice
treated with ketamine in early life. This finding might appear in
contrast with a previous report showing an aggravation of lipid
peroxidation, in terms of increased MDA levels, in newborn rats
with hypoxic-ischemic cerebral injury following indomethacin
administration (Taskin et al., 2009). However, the result obtained
in our experimental conditions might be explained by both the
different time point at which this parameter (adult life) was
evaluated and the kind of insult impacting on the developing
brain. Indeed, in this regard, previous evidence reported a
beneficial effect of indomethacin in reducing peripheral and
central MDA levels following rat exposure to other neurotoxic
insult, such as CCl4 (Kadiiska et al., 2005). Moreover, cortical
increase of lipid peroxidation, induced in rats by an infectious
insult, was also found to be reduced following intraperitoneal
indomethacin administration (Guzman et al., 2018). However,
we cannot totally exclude that indomethacin per se could induce
an increase in MDA levels in the early phases of postnatal
life, thus stimulating in the developing brain the activation of
neuroprotective mechanisms that may result in the decreased
lipid peroxidation we observed in adult mice.

Interestingly, indomethacin per se induced elevations in
levels of all the considered antioxidant enzymes compared
to both controls and early ketamine-exposed mice. Thus,
it might be hypothesized that increased antioxidant defense
might be a possible mechanism underlying indomethacin effects
on cortical lipid peroxidation. Supporting our hypothesis,
COX inhibition has been reported to significantly improve
antioxidant defense both at peripheral and central levels (Kumar
et al., 2011; Ahmed et al., 2014). Concomitant administration
of ketamine and indomethacin could prevent the cortical
increase in ROS amount and in MDA levels induced by
early ketamine exposure, suggesting a neuroprotective role of
this compound against the impact that a neurodetrimental
insult might have on the developing brain. In support of
this hypothesis, indomethacin has been reported to prevent
the loss of neurogenesis markers following a neurotoxic
insult, i.e., ethanol in adolescent rodents (Vetreno et al.,
2018). Furthermore, indomethacin was able to regulate the
peripheral expression of neurotrophins, such as BDNF and
NGF (Kemi et al., 2006; Hochstrasser et al., 2013). Hence,
it can be hypothesized that this might also happen at
central level following an early neurotoxic insult affecting CNS
development. Moreover, clinical evidence reported the use of
indomethacin as neuroprotective strategy to prevent the later
consequences of neonatal brain injury (Favrais et al., 2014),
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via the strengthening of the immature blood-brain barrier
(Sims, 2012).

In this manuscript, it is also showed that ketamine
administration in early life stages caused an enhancement of
proinflammatory cytokines, i.e., TNF-α, IL-1ß, and IL-6, at
adulthood. In good agreement with our findings, previous
preclinical and clinical reports highlighted a crucial role of early
and persistent cortical neuroinflammation in the development
of psychotic-like symptoms in rodents (Schiavone et al., 2017;
Ben-Azu et al., 2019; Kogan et al., 2019) as well as of
schizophrenia in humans (Zhang et al., 2016; Barron et al.,
2017). Importantly, it has been reported that dysregulation of the
redox, immune and glutamatergic systems, induced by NMDA-R
antagonists, including ketamine, especially when it occurs during
brain development, represents a “central hub” in schizophrenia
pathophysiology (Steullet et al., 2016). In line with this concept,
in the same animal model, together with increased levels of pro-
inflammatory cytokines, we do observe increased cortical ROS
amount and lipid peroxidation and we previously demonstrated
early and persistent increase of oxidative damage to DNA as well
as alterations of NADPH expression in the same brain region
(Schiavone et al., 2020).

In our experimental conditions, together with an effect
of celastrol per se on IL-1ß and of indomethacin per se
on TNF-α and IL-1ß, we also found that early celastrol or
indomethacin administrations were able to prevent ketamine-
induced elevations in TNF-α and IL-1ß in PFC of adult mice,
suggesting a possible protective role of these two compounds
against the possible long-lasting detrimental effects exerted by
early neuroinflammation on the developing brain (Franceschini
and Zusso, 2019). This result should also be considered in the
light of previous evidence showing a reduction of microglia
activation following celastrol (Dai et al., 2019) or indomethacin
(Lopes et al., 2016) administration, as well as a strict
interrelation between TNF-α and IL-1ß and redox dysregulation
in CNS disorders (Fischer and Maier, 2015; Schiavone and
Trabace, 2017). Indeed, it might be hypothesized that ketamine
administration in postnatal life may cause microglia activation,
with consequent release of TNF-α and IL-1ß which, in turn,
induce ROS production, further sustaining neuroinflammation
and neuronal damage. In addition, the possible inhibition of
ketamine-induced enhancement of microglial NADPH oxidase
NOX2 by celastrol administration might also play a key role
in this process. Hence, in this regard, it has been highlighted
that NOX2 activation in microglia exerts neurotoxic effects via
extracellular ROS production as well as the initiation of microglia
redox signaling, finally resulting in the amplification of the pro-
inflammatory response (Surace and Block, 2012).

Despite the decrease in cortical IL-6 levels detected following
celastrol or indomethacin treatments alone compared to both
controls and ketamine-exposed mice, these two compounds,
administered concomitantly with ketamine, could not prevent
elevations of this pro-inflammatory cytokine in postnatal life.
This result should be considered in the light of the physiological
expression of IL-6 and its receptor in rodent cortex during
postnatal development (Gadient and Otten, 1994), as well
as of the central role reported for this cytokine in the

promotion of postnatal murine CNS development, most likely
being perturbations in its levels the cause of long-lasting and
irreversible damage (Storer et al., 2018). However, we cannot
totally exclude that a possible effects of celastrol or indomethacin
on ketamine-induced dysfunctions of IL-6 levels might have
been detected at different time points from ketamine exposure,
such as during mice adolescence or later than 10 weeks of
life. Further investigations are certainly needed in this sense,
also considering the physiological link existing between IL-6
and anti-inflammatory cytokines (Ropelle et al., 2010), as
well as the role of the pro-inflammatory/anti-inflammatory
balance in neurodevelopmental-related mental disturbances
(Ratnayake et al., 2013).

With respect to a possible translation of the results of the
present study to clinics, a limitation consists in the fact that, in
animals, pharmacological treatments were initiated at the same
time of ketamine administration. Indeed, this same therapeutic
strategy cannot be directly translated into the clinical setting,
because of the impossibility to identify in humans the exact time
of the neurotoxic insult.

In conclusion, our data suggest that both the enhancement
of antioxidant defense, reducing cerebral oxidative stress and
inhibition of inflammatory pathways, may represent a suitable
therapeutic approach preventing psychotic-like disturbances
resulting from the impact of neurotoxic insult during crucial
phases of brain maturation.
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Importance: Children have the highest incidence of mild traumatic brain injury (mTBI)
in the United States. However, mTBI, specifically pediatric patients with mTBI, are
notoriously difficult to detect, and with a reliance on traditional, subjective measurements
of eye movements, the subtle but key oculomotor deficits are often missed.

Objective: The purpose of this project is to determine if the combined measurement
of saccades, smooth pursuit, fixations and reaction time represent a biomarker for
differentiating pediatric patients with mild traumatic brain injury compared to age
matched controls.

Design: This study used cross-sectional design. Each participant took part in a suite of
tests collectively labeled the “Brain Health EyeQ” to measure saccades, smooth pursuit,
fixations and reaction time.

Participants: The present study recruited 231 participants – 91 clinically diagnosed
with a single incident mTBI in the last 2 days as assessed by both the Glasgow Coma
Scale (GCS) and Graded Symptoms Checklist (GSC), and 140 age and gender-matched
controls (n = 165 male, n = 66 female, M age = 14.20, SD = 2.78).

Results: One-way univariate analyses of variance examined the differences in
performance on the tests between participants with mTBI and controls. ROC curve
analysis examined the sensitivity and specificity of the tests. Results indicated that
together, the “Brain Health EyeQ” tests were successfully able to identify participants
with mTBI 75.3% of the time, providing further validation to a growing body of literature
supporting the use of eye tracking technology for mTBI identification and diagnosis.

Keywords: eye-tracking, oculomotor, mTBI, concussion, pediateric case
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INTRODUCTION

Mild traumatic brain injury (mTBI) occurs about once every
15 s, and the excessive frequency of these injuries costs the
United States more than $77 billion dollars annually (Langlois
et al., 2004; Prins et al., 2013). Ninety percent of TBI’s are
classified as mild (Langlois et al., 2004; Howell et al., 2018).
Clinical diagnosis of mTBI is determined by the American
Congress of Rehabilitation Medicine (ACRM) definition in which
“a patient with a mTBI is a person who has had a traumatically
induced physiological disruption of brain function, as induced by
one of the following: a loss of consciousness, any memory loss,
any alteration of mental state, and/or focal neurological deficits
(Bazarian et al., 2005).”

Pediatric head injury is extremely common (Schunk and
Schutzman, 2012). mTBI is the most common form of head
injury accounting for 75–85% of these injuries (Goldstein and
Levin, 1987). Children have the highest incidence of mTBI.
In the United States, mTBI occurs in 692 of 100,000 children
younger than 15 years of age (Guerrero et al., 2000). Identification
of pediatric mTBI differs from adult mTBI due to age-related
anatomical and physiological differences, pattern of injuries
based on the physical ability of the child, and difficulty in
neurological evaluation in children (Araki et al., 2017). Evidence
suggests that children exhibit a specific pathological response
to TBI with distinct accompanying neurological symptoms
(Araki et al., 2017).

An important factor contributing to this epidemic is
the fact that concussions are often hard to diagnose and
therefore treat (Howell et al., 2018). Most symptoms are
relatively subjective and easily attributed to other conditions
(Howell et al., 2018). Therefore, it is essential to build on
established means of mTBI detection that are both objective
and reliable (Howell et al., 2018). Currently, there are three
accepted branches to mTBI diagnosis: neurological, vestibular,
and oculomotor (Sussman et al., 2016). In the past, most
of the oculomotor assessment was carried out subjectively
through examination by clinicians, with objective measurements
of symptoms, rare (Bedell and Stevenson, 2013). Research
suggests that subjective measurements of eye movements are
more likely to miss subtle deficits, which makes the need for
reliable, objective symptom detection increasingly important.
One uniquely powerful method of objectively measuring eye
movements can be achieved through eye-tracking technology
(Bedell and Stevenson, 2013). Eye-tracking can be used to study
neurological function, oculomotor assessment and can detect
abnormalities in neurocircuitry and map oculomotor dysfunction
to damaged sites (Bedell and Stevenson, 2013; Lai et al., 2013;
Johnson et al., 2015).

Oculomotor assessment can be further divided into the
measurement of four specific types of eye movements. These
include saccades, smooth pursuits, fixations, and reaction time
(Land and Tatler, 2009; Leigh and Zee, 2015; Lange et al., 2018).
Saccades are short and fast eye movements between fixed points;
smooth pursuits use predictive tracking to stabilize moving
targets, fixations are even smaller movements that focus an image
on the fovea, and reaction time is the time elapsed between a

sensory stimulus and the response to it (Land and Tatler, 2009;
Leigh and Zee, 2015; Lange et al., 2018). Each of these different
eye movements activates different parts of the brain (Wong, 2007;
Møllenbach et al., 2013).

The Saccadic system focuses on the rapid movements of the
fovea between fixation points (Wong, 2007). Several different
brain structures are involved in the regulation of saccades,
including the brain stem, pons, midbrain, and cerebral cortex
(Wong, 2007). Burst neuron circuits in the brainstem are
responsible for the motor signals that control the extraocular
muscles in the eyes that generate saccades (Wong, 2007). There
is a division of labor between the pons and the midbrain, with the
pons primarily involved in generating horizontal saccades and
the midbrain primarily involved in generating vertical saccades
(Wong, 2007). In addition, because eye movements are closely
related to cognitive behaviors in higher mammals, the cerebral
cortex also plays an important role in the function of saccades
both directly through the burst neuron circuit, and via the
superior colliculus (Wong, 2007).

The smooth pursuit system is what allows humans to
predictively track moving objects (Wong, 2007; Møllenbach
et al., 2013). Because the complete smooth pursuit pathway is
so complex, it is not yet completely understood (Wong, 2007).
First, visual information is relayed from the striate cortex to
the extrastriate areas, which contain specialized neurons that
encode both eye and object movement (Wong, 2007). These
extrastriate areas have connections to the brain stem, which
communicates information to the cerebellum. This explains why
researchers have recently found functional similarity between the
saccadic and smooth pursuit systems (Wong, 2007). Pursuits are
controlled primarily by a network of cortical areas, including
the frontal eye field and other structures such as the superior
colliculus and basal ganglia (Wong, 2007). Vertical smooth
pursuits and horizon pursuits have similar pathways differing
only at a spot in the pons, the y-group, and the cerebellum
(Wong, 2007).

Fixations hold a stationary object on the fovea while the
head is not moving and prevent the image from fading (Wong,
2007; Leigh and Zee, 2015). This process is active and involves
a network of brain regions, including the parietal eye field,
V5 and V5A areas, supplemental eye field, and dorsolateral
prefrontal cortex (Wong, 2007). The brain stem and part of the
basal ganglia and the superior colliculus are involved, although
specific functions are not localized to one area. Instead, they are
distributed across several (Munoz, 2002; Wong, 2007). Fixations
operate like a simple negative feedback loop in which the drifting
movements of the eye (not the actual target) trigger the tracking
mechanism to return the eye to the target (Leigh and Zee, 2015).
This behavior explains the constant microsaccades characteristic
of fixations; it’s simply the gaze repeatedly returning to the target
(Leigh and Zee, 2015).

Reaction time (RT) is a measure of attention (Zomeren and
Brouwer, 1994). However, the applications of RT assessment are
much more numerous than just measuring attention. RT has
been found in numerous studies to be a marker of CNS damage
and neuropathology, including mTBI (Knopman, 1991; Murtha
et al., 2002; Lange et al., 2018). RT can also be used to evaluate
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a person’s motor skill or to determine how well they interact
with their environment. RT itself is the time elapsed between the
presentation of stimuli and the behavioral response (Shelton and
Kumar, 2010). RT assessments can be split up into simple reaction
time (SRT), choice reaction time (CRT) and discriminate reaction
time (DRT) (Lange et al., 2018). SRT is a single response to a
single stimulus, CRT is multiple responses to multiple stimuli
and DRT is a single response to one of the multiple stimuli
(Lange et al., 2018). Traditional measurements of RT often fail to
account for eye-specific RT metrics, including saccadic latency,
visual speed, and visual processing speed (Lange et al., 2018).
Eye-tracking does measure these values, and this greater level
of detail provides valuable information during RT assessment
(Lange et al., 2018).

Currently, pediatric mTBIs are diagnosed using a variety
of measures such as level of consciousness and length of
post-traumatic amnesia (Maruta et al., 2010; Levin and Diaz-
Arrastia, 2015). The Glasgow Coma Score (GCS) is commonly
used to evaluate consciousness on a 13–15 scale for mTBI
that accounts for a motor response, verbal response, and eye-
opening ability (Arbour et al., 2016). However, the GCS is
widely used but not necessarily the best measure of pediatric
mTBI (Ghaffarpasand et al., 2013). Furthermore, clinicians do
not usually use imagining for pediatric mTBI cases (Oakes,
2018). Therefore, The Graded Symptoms Checklist (GSC)
in the Standardized Assessment of Concussion (SAC) was
also used as a secondary clinical tool for measurement of
mTBI as recommended by the Journal of the American
Medical Association Pediatrics clinical guidelines (Adjorlolo,
2018; Lumba-Brown et al., 2018a,b). Though numerous, current
methods of concussion detection are often subjective or lacking in
their oculomotor components (Ventura et al., 2015). Eye tracking
is capable of delivering precise and objective measurements to
assist in mTBI diagnosis, and this is why it is so important to
consider (Komogortsev and Karpov, 2013).

Compromised saccades, smooth pursuits, fixations, and
reaction time have all been linked to mTBI. Numerous studies
have found compromised saccades in patients with mTBI such
as prolonged latencies and directional errors on memory-
guided and antisaccades tasks and impaired self-paced saccades
(Williams et al., 1997; Heitger et al., 2002; Johnson et al., 2015;
DiCesare et al., 2017). Both vertical and horizontal saccades
have been shown to differ in patients with mTBI, and saccades
of patients with mTBI have been found especially deficient
under conditions of high cognitive load (Ettenhofer et al.,
2018; Hunfalvay et al., 2019). Several studies have also found
deficits in smooth pursuits in patients with mTBI (Heitger
et al., 2009; Hoffer et al., 2017). Patients with mTBI have been
shown to have both reduced prediction and more position
errors (Suh et al., 2006a,b; Armstrong, 2018). mTBI patients
have also been found to have increased error and variability in
gaze position and reduced smooth pursuit velocity in tracking
tests (Maruta et al., 2014). Another study found that fixational
errors for mTBI patients were abnormally high with evidence
of increased drift, saccadic intrusions, and nystagmus (Ciuffreda
et al., 2004). Though fixations do not have as much focus in
current literature, this is only further reason to continue to study

them. Several studies exist that consider the impact mTBI has
on reaction time (MacFlynn et al., 1984; Hetherington et al.,
1996; Hugenholtz et al., 1998). mTBI patients have been found
to have reduced processing speed as it relates to reaction time,
along with increased reaction time overall (Suh et al., 2006b;
Lange et al., 2018).

Between the four eye-movements being considered, there are
a plethora of studies the look at the impact of mTBI, however,
none exist that consider all these components together. Nor is
there much research conducted specifically on the oculomotor
behavior of pediatric patients with mTBI. Nevertheless, these
metrics can distinguish between mTBI and Controls, and so
it stands to reason that all together, they represent a superior
method of mTBI detection. Of the four factors considered,
fixations especially are in need of more research. Further
investigation is also necessary to determine how the four metrics
interact with each other, and how the combined ability to
distinguish mTBI differs from the individual capacities. The
purpose of this study was to compare Brain Health EyeQ
score (a composite of saccades, smooth pursuits, fixations, and
reaction time) of pediatric patients with clinically diagnosed
mTBI and age matched controls. A secondary purpose was to
examine the reaction time responses in a choice and discriminate
reaction time task.

MATERIALS AND METHODS

Participants
Data from two-hundred and thirty-one participants were
analyzed. One hundred and sixteen were clinically diagnosed
as having a mTBI within 2 days of the assessment. Twenty-five
of these participants were excluded (see procedure), leaving 91
total participants with mTBI. One-hundred and forty participants
were age and gender matched controls. Participants were between
the ages of 6–18 years (M = 14.20, SD = 2.78); 165 were males
(71.4%), 66 were females (28.6%). Of the 231 participants, 68.8%
were White, 3.0% were Hispanic, 0.4% were Asians, 7.4% were
Black, and 20.4% opted not to report ethnicity. The groups were
matched by age (see Table 1).

Clinical Diagnosis of mTBI for Pediatric Patients
All participants had been clinically assessed by Board Certified
neurologists with at least 5 years’ experience in diagnosing
TBIs. Clinical diagnosis of mTBI was based on the American
Congress of Rehabilitation Medicine (ACRM) definition of mTBI
(Mild Traumatic Brain Injury Committee, 1993). All participants
were examined using the GCS and scored between 13 and
15 on the scale. However, the GCS is widely used but not

TABLE 1 | Demographic data by age and gender.

Group (n) Mean Age (±SD) Females Males

Control (140) 14.31 (2.48) 39 101

mTBI (91) 14.13 (2.97) 27 64

n, Number; SD, Standard Deviation.
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necessarily the best measure of pediatric mTBI (Ghaffarpasand
et al., 2013). Furthermore, clinicians do not usually use imagining
for pediatric mTBI cases (Oakes, 2018). Therefore, The Graded
Symptoms Checklist (GSC) in the Standardized Assessment of
Concussion (SAC) was also used as a secondary clinical tool
for measurement of mTBI as recommended by the Journal of
the American Medical Association Pediatrics clinical guidelines
(Lumba-Brown et al., 2018a,b). Using results from Grubenhoff
et al. (2010) and the American Academy of Neurology concussion
grading scale pediatric patients (6–18 years of age) were evaluated
as having mTBI if their GSC score was between 7.7 and 19.3 (Kelly
et al., 1991; Grubenhoff et al., 2010). According to Grubenhoff
et al. (2010) this yielded a 95% confidence interval for case-
patients with an AAN grade 1 TBI (7.7–10.7) or grade 2 TBI
(11.5–19.3) (Grubenhoff et al., 2010). Therefore, participants in
the mTBI group in this study scored between 13–15 on the GCS
and 7.7–19.3 on the GSC.

Apparatus
The RightEye tests were presented on a Tobii I15 vision 15′′
monitor fitted with a Tobii 90 Hz remote eye tracker and a
Logitech (model Y-R0017) wireless keyboard and mouse. The
participants were seated in a stationary (non-wheeled) chair that
could not be adjusted in height. They sat in front of a desk in
a quiet, private room. Participants’ heads were unconstrained.
The accuracy of the Tobii eye tracker was 0.4◦ within the
desired headbox of 32 cm × 21 cm at 56 cm from the screen.
For standardization of testing, participants were asked to sit
in front of the eye-tracking system at a distance of 56 cm
(ideal positioning within the virtual headbox range of the
eye tracker).

The Brain Health EyeQ Score (BHEQ)
The Brain Health EyeQ Score (BHEQ) includes a combination of
saccade, pursuit, fixation and simple reaction time oculomotor
variables. A total of 58 metrics make-up the testing model.
Weights range from 0.1 to 13% across metrics. More about the
individual tests and metrics can be found in published papers
mentioned above (Lange et al., 2018; Hunfalvay et al., 2019;
Murray et al., 2019). The metrics associated with the BHEQ score
all passed reliability standards (Murray et al., 2019). Extreme
gradient boosting (XGB) was used for the classification task
using the Rworker GitHub repository R language version 3.5.2.
The efficacy of the model was evaluated using accuracy of
classification. This model also outputs the importance (weights)
that each variable has on the classification accuracy. These
weights were then applied to the respective metrics (variables)
to calculate the percentile value of a participant compared to
his/her peers within the same age group. The percentiles are then
aggregated over all metrics that collapse into specific tests to
calculate overall scores and percentile on that test; for example,
all metrics that create circular smooth pursuit (CSP), horizontal
smooth pursuit (HSP), and visual smooth pursuit (VSP) tests
were used to calculate overall percentile and score for the test.
Results revealed pursuit test weighting 60.93% (CSP: 8.4%; HSP:
40.4%; VSP: 12.13%); self-paced saccade test weighted 24.95%
(horizontal saccade (HS): 15.57%; vertical saccade (VS): 9.38%);
and fixation test contributed 14.2% weighting of the model.

Reaction Time Tasks
In addition to the BHEQ, we examined separately Choice
Reaction Time (CRT) and Discriminate Reaction Time (DRT; see
Lange et al., 2018 for further details). In brief, the CRT test, the
participant viewed three stimuli and was asked to provide one
of three responses. In the DRT test, the participant viewed three
stimuli and was required to respond to only one stimulus.

Procedure
Participants were recruited through RightEye clinical providers.
The study was conducted in accordance with the tenets of the
Declaration of Helsinki. The study protocols were approved
by the Institutional Review Board of East Carolina University.
The nature of the study was explained to the participants
and all participants provided written consent to participate.
Participants were excluded from the study they had more than
a single discrete episode of mTBI (n = 21). Following informed
consent, participants were asked to complete a prescreening
questionnaire and an acuity vision screening where they were
required to identify four shapes at 4 mm in diameter. If any of
the prescreening questions were answered positively and any of
the vision screening shapes were not correctly identified, then
the participant was excluded from the study (n= 3). Participants
were excluded from the study if they reported any of the following
conditions, which may have prevented successful test calibration
during the prescreening process: this included vision-related
issues such as extreme tropias, phorias, static visual acuity of
>20/400, nystagmus, cataracts or eyelash impediments or if they
had consumed drugs or alcohol within 24 h of testing (n = 1)
(Han et al., 2010; Holmqvist and Nystrom, 2011; Renard et al.,
2015; Kooiker et al., 2016; Niehorster et al., 2017). Participants
were also excluded if they were unable to pass a nine-point
calibration sequence. Less than 1% of the participants fell into
these categories.

Qualified participants who successfully passed the nine-
point calibration sequence completed the eye-tracking tests. The
calibration sequence required participants to fixate one at a time
on nine points displayed on the screen. The participants had to
successfully fixate on at least eight out of nine points on the screen
to pass the calibration sequence. Written instructions on screen
and animations were provided before each test to demonstrate
appropriate behavior required in each of the tests. The testing
lasted less than 5 min to complete.

Data Analysis
The differences in the groups (control, mTBI) were analyzed
on clinically verified data using JMP PRO 14.0 (SAS Institute,
Cary, NC, United States). The comparison was evaluated using
one-way univariate ANOVAs on the Brain Health EyeQ score,
Choice Reaction Time measures (saccadic latency, visual speed,
processing speed, and reaction time), and Discriminate RT
measures (saccadic latency, visual speed, processing speed, and
reaction time). The alpha level was set at p < 0.05 and
Omega squared (ω2) was used to determine effect size. In
addition, a series of ROC curve analysis were plotted for the
Oculomotor variables. Significant area under the curve (AUC)
with 95% confidence intervals (p < 0.05) was used to indicate
the ability of each variable to differentiate concussed participants
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from non-concussed. We set our criteria for a satisfactorily
accurate area under the curve (AUC) to the standard of least of
0.7 (Adjorlolo, 2018). We calculated cut-off points, sensitivity,
specificity, and positive and negative predictive value (PPV
and NPV, respectively) for each significant AUC. Optimal cut-
off points were determined by visually assessing which score
combines maximum sensitivity and specificity.

RESULTS

The ANOVA results for Brain Health EyeQ Score demonstrated
a significant main effect for Group [F(1,229)= 21.906; p < 0.001,
ω2
= 0.89]. The data revealed a significant difference between

mTBI group (M = 53.98, SD = 20.75) and the Control group
(M = 67.52, SD = 21.92; Figure 1). Further a logistic regression
analysis was conducted to evaluate how well the criterion variable
BHEQ predicted mTBI status (see Figure 2). The mTBI status
was significantly related to the BHEQ, χ2

= 27.31; p < 0.0001,
Nagelkerke R2

= 0.185.

Choice Reaction Time (CRT)
The ANOVA results for Choice Reaction Time test demonstrated
a significant main effect for Saccade Latency [F(1,229) = 19.53;
p < 0.001, ω2

= 0.074] and processing speed [F(1,226) = 4.17;
p < 0.05, ω2

= 0.44]. Further, we examined Visual Speed
[F(1, 226) = 0.182; p = 0.670, ω2

= −0.003] and Reaction
Time [F(1,224) = 0.342; p = 0.559, ω2

= 0.003] which
demonstrated non-significant differences between Control and
mTBI groups (Table 2).

FIGURE 2 | Dot Graph and probability curve for Control group (blue) and TBI
group (red).

Discriminate Reaction Time (DRT)
The ANOVA results for Discrimination Reaction Time
test demonstrated a significant main effect for Saccade
Latency [F(1,226) = 9.483; p < 0.01, ω2

= 0.35]
and Processing Speed [F(1,219) = 15.63; p < 0.001,
ω2
= 0.62]. Similar to Choice Reaction Time test, both

Visual Processing Speed [F(1,226) = 3.544; p = 0.061,
ω2
= 0.011] and Reaction Time [F(1,218) = 0.164;

p = 0.686, ω2
= 0.004] did not differentiate between mTBI

and Control groups in the Discriminate Reaction Time
test (Table 3).

ROC Curve Analysis
Among the RightEye variables, ROC curves were significant
(p < 0.0001) for Brain Health EyeQ score; DRT Saccade

FIGURE 1 | Mean Differences (with standard error) comparing BHEQ score between mTB and Control.
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TABLE 2 | Mean and standard deviation for choice reaction time variables.

Group (n) Saccade latency* Processing speed* Visual speed Reaction time

Control 364.95 (139.83) 609.44 (227.56) 149.01 (143.20) 1123.93 (383.98)

mTBI 288.35 (109.41) 669.91 (203.61) 141.10 (126.54) 1095.77 (304.76)

*p < 0.05.

TABLE 3 | Mean and standard deviation for discriminate reaction time variables.

Group (n) Saccade latency* Processing speed* Visual speed Reaction time

Control 336.81 (108.39) 379.39 (152.68) 142.32 (154.34) 856.98 (290.43)

mTBI 286.62 (136.58) 478.01 (218.24) 106.46 (117.56) 873.75 (316.35)

*p < 0.001.

TABLE 4 | Summarization of outcomes at the ROC curve analysis including: area under the curve (AUC) with standard error (S.E.), p values; cut-off points; sensitivity and
specificity percentages; positive and negative predictive values (PPV and NPV), respectively.

Variables AUC S.E. p Cut-off Sensitivity Specificity PPV NPV

BHEQ 0.704* 0.00618 0.0001 63 75.3% 68.0% 73.7% 81.2%

BHEQ subscale analysis

Fixation Stability 0.640 0.1346 0.0003 5.11 66.3% 67.8% 57.2% 75.4%

Horizontal Saccade Efficiency 0.560 0.0263 0.2691 7.31 59.0% 86.8% 30.6% 33.1%

Vertical Saccade Efficiency 0.597 0.210 0.0688 5.27 85.5% 81.1% 40.3% 65.1%

CSP Saccade percentage 0.68 0.273 0.0027 4.29 84.5% 71.8% 43.3% 73.3%

VSP Saccade percentage 0.55 0.018 0.2218 5.10 57.2% 11.5% 29.8% 31.5%

HSP Saccade percentage 0.42 0.17 0.698 18.45 98.6% 94.5% 40.3% 85.3%

Reaction Time Tasks

DRT Saccade Latency 0.724* 0.00170 0.0039 259 58.8 % 86.4% 75.0% 75.2%

DRT Processing Speed 0.692* 0.00093 0.0004 365 73.2 % 60.7% 76.3% 76.6%

CRT Saccade Latency 0.716* 0.00138 0.0001 248 53.6% 91.4% 81.3% 74.0%

CRT Processing Speed 0.623 0.00062 0.045 578 64.9% 55.7% 70.4% 69.6%

*Represents an acceptable probability that the test differentiates mTBI from no TBI.
Cut-off points (or thresholds) distinguish between a “positive” and a “negative” mTBI result and represents maximum balance between sensitivity and specificity
within each test.
Sensitivity represents confidence that a person has a mTBI or the true positive rate and specificity represents the accuracy of the test or the true negatives.

Latency, DRT Processing Speed, CRT Saccade Latency, CRT
Processing Speed CRT (Table 4 and Figure 3). ROC curves
were not significant or produced low AUC score for the
remaining DRT and CRT variables (Reaction Time and
Visual Speed).

DISCUSSION

The purpose of this article was to examine the oculomotor
behavior of pediatric patients with clinically diagnosed mTBI
versus controls. This was done using a combination of saccade,
pursuit, fixation and reaction time oculomotor variables that
together made up a BHEQ Score. Results revealed a significant
difference between groups, with the mTBI group showing
lower (poorer) oculomotor behavior than the control group.
A mean difference of 13.54% (67.52–53.98) was found. This
result shows that oculomotor behavior of those with mTBI is
poorer, as they scored lower than those of the control group. It
also shows that the BHEQ linear combination score effectively

detects such differences by examining all the major oculomotor
behaviors (fixations, pursuits, and saccades). Furthermore, the
BHEQ score showed a significant 0.7 AUC with a sensitivity
of 75.3%. These scores indicate that the BHEQ score has a
balance of sensitivity and specificity and represents the ability
to discriminate whether a specific condition is present or not
present. It is important to note the sensitivity and specificity
are based on determining appropriate cut-off points which
distinguish between a “positive” and a “negative” outcome. We
utilized our data to determine these appropriate cut-scores,
however, with lower cut-off scores based on minimal clinically
important differences would result in better sensitivity and
specificity in the measure. Furthermore, BHEQ did better overall
considering AUC, p-value, sensitivity, and specificity of the
sub-measures including pursuit test, self-paced saccade test,
and fixation test and the BHEQ score has more precision in
distinguishing those with mTBI and without mTBI.

It is well known that independent tests, such as saccades
tests show differences between those with mTBI and those
without (Hunfalvay et al., 2019). The same is true for
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FIGURE 3 | Receiver Operator Characteristic analysis predicting mTBI Status for all significant variables.

pursuit eye movements (Suh et al., 2006b). However, to
date, there has not been one combination score of all the
major eye movements that a clinician can review as part
of the clinical workflow to determine if there is a global
oculomotor difference for a patient compared to an age matched
control. One global score, one standard of reference in clinical
practice, is an important benchmark for which to determine if
further, more in-depth examination is required. Furthermore,
the RightEye test only require 5 min to complete the test
and are not impacted by acute eye fatigue during the test
(Murray et al., 2019).

A secondary purpose of this article was to examine choice
and discriminate reaction time tests and associated oculomotor
variables between the two groups. Two variables, saccadic latency,
and processing speed were found to be significantly different in
both the CRT and DRT test. mTBI group had faster saccadic
latency and slower processing speed than the Control group.
This is consistent with past research where saccadic latency and
processing speed where found to show differences between mTBI
versus controls and mTBI versus athlete groups (Lange et al.,
2018). Interestingly the previous research showed much larger
standard deviations even with a larger sample size (N = 651)
compared to the current research (N = 91). It is possible that
the 10-day time limit for mTBI patients in the current study
reduced the variability in results. Nevertheless, the same results
were replicated. Both CRT and DRT Saccadic Latency values

show a high specificity 86.4 and 91.4%, respectively. Furthermore,
they showed high positive predictive values (75.0 and 81.3%).
DRT and CRT Processing Speed showed high sensitivity 73.2
and 64.9%, respectively. Taken together, these metrics indicate a
high predictive value, sensitivity and specificity for differentiating
patients with and without mTBI. Such results further validate
the use of eye movements as a biomarker for identification of
mTBI. Limitations of this study include an unequal distribution
of males and females in the sample populations. Past research has
found conflicting evidence of gender differences in mTBI groups
(Farace and Alves, 2000; Brickell et al., 2017) and future research
is needed. A second limitation is that 24.7% of cases that are
potentially missed. However, mTBI describes a broad term that
describes a vast array of injuries and this test indicates visual
motor impairment due to mTBI. Potentially, the missed cases
are result from other symptoms or impairments and additional
measures are needed to account for the diversity of mTBI
especially in pediatric patients. A third limitation is the limited
age group of pediatric patients only. Lastly, very nature of mTBI
is complicated injury with completed tautology.

This study was the first to examine a combined Brain
Health EyeQ score in mTBI pediatric patients. Future research
should examine adults, specifically those over 65 who are the
second largest group of persons who incur mTBIs and is
describe as the “silent epidemic” in older adults according to
Thompson et al. (2006). In conclusion, the results of this study
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show that (a) oculomotor behavior differs between pediatric
patients with mTBI and age matched controls; (b) the BHEQ
score, that combines the major categories of oculomotor
behavior, differentiates pediatric patients with mTBI from
controls, and (c) the CRT and DRT tests results were replicated
from past research supporting the need for RT to be part of a
mTBI assessment (Lange et al., 2018).
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Previous studies suggested a causal link between pre-natal exposure to ionizing

radiation and birth defects such as microphthalmos and exencephaly. In mice, these

defects arise primarily after high-dose X-irradiation during early neurulation. However,

the impact of sublethal (low) X-ray doses during this early developmental time window

on adult behavior and morphology of central nervous system structures is not known.

In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects

and persistent radiation-induced anomalies has remained unexplored. To assess the

efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were

X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented

radiation-induced (1.0Gy) anophthalmos, exencephaly and gastroschisis at E18, and

reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical

vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted

radiation-induced impairments in vision and olfaction, which were evidenced after

exposure to doses≥0.1Gy. These findings coincided with the observation of a reduction

in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial

length of the eye following exposure to 0.5Gy. Finally, MRI studies revealed a volumetric

decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5Gy

irradiation, which could be partially ameliorated after FA food fortification. Altogether, our

study is the first to offer detailed insights into the long-term consequences of X-ray

exposure during neurulation, and supports the use of FA as a radioprotectant and

antiteratogen to counter the detrimental effects of X-ray exposure during this crucial

period of gestation.

Keywords: radiation, radioprotectant, folic acid, birth defect, anophthalmos, agnathia, exencephaly, hyposmia
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INTRODUCTION

Exposure to ionizing radiation during embryonic development
has been linked to an increased risk of birth defects. The
type and severity of these defect are predominantly determined
by the developmental stage during which exposure occurred
(Craenen et al., 2017). Epidemiological studies on Ukrainian
cohorts illustrated an increased prevalence of neural tube defects
(NTDs) and eye defects (EDs) in regions severely contaminated
with radioactive Cs-137 isotopes following the Chernobyl nuclear
accident. Although there are no accurate dose estimates, uptake
of radioactive isotopes is known to be particularly high in
pregnant women living in these regions (Wertelecki et al., 2016).
Initially, it was observed that the more recent Fukushima Daiichi
nuclear power plant accident elicited no increase in birth defects
and pre-natal mortality due to environmental radioisotope
contamination (Fujimori et al., 2014), but subsequent papers
debated this conclusion (Mangano and Sherman, 2015; Scherb
et al., 2016). In contrast to these more recent observations,
reports after the atomic bombings in Japan only mentioned an
increased incidence of microcephaly and intellectual disability
(Plummer, 1952; Neel and Schull, 1956). It is likely that the
discrepancy in health effects of the nuclear accidents and atomic
bombings stems from differences in dose, dose rate, exposure
duration and radiation type. The above highlights the need to
increase our knowledge about the effects of pre-natal irradiation
on biological structures and functions.

Exposure to ionizing radiation during pregnancy most
commonly occurs during clinical radiodiagnostic or therapeutic
procedures (Mettler et al., 2009). Although medical practitioners
advise against irradiation during pregnancy, it may be
unavoidable in medical urgencies (Lazarus et al., 2009). In
terms of radiation protection, conventional shielding methods
are currently being used to partially mitigate the fetal dose
(Chatterson et al., 2014; Moore et al., 2015; Owrangi et al., 2016).
However, depending on the dose or the developmental stage
during which exposure occurs, these conventional shielding
strategies may not suffice. Animal studies have shown that the
neurulation period in the early embryo is especially radiosensitive
with regard to the pathogenesis of radiation-induced NTDs and
ED (Russell, 1950, 1956; Di Majo et al., 1981; Heyer et al., 2000;
Craenen et al., 2017, 2020b), but also in terms of cognitive
disabilities and altered vision. Indeed, a decreased visual acuity
in atomic-bomb survivors, irradiated in the first trimester, and
born from mothers with acute radiation syndrome (≤2 km
from hypocenter) has been reported (Burrow et al., 1964).
Yet, most experimental work has focused on health risks after
radiation exposure during neurogenesis, coinciding with the
second trimester of human pregnancy (Plummer, 1952; Neel and
Schull, 1956; Verreet et al., 2015, 2016a,b). Furthermore, there
are currently no anti-teratogens or radio-protectants available to

Abbreviations: EPM, Elevated plus maze; E, embryonic day; ED, eye defect;

FA, folic acid; MRI, magnetic resonance imaging; MWM, Morris water maze;

NF+GCL, nerve fiber+ retinal ganglionic cell layer; NTD, neural tube defect; NS,

non-social odor; RARE, rapid acquisition relaxation enhancement; RM, repeated

measures; S, social odor; SD-OCT, spectral domain optical coherence tomography.

prevent (congenital) morphological and functional defects that
arise from irradiation during brain development.

Folic acid (FA), a synthetic vitamin, is generally known to
prevent NTDs [reviewed in Imbard et al. (2013)], in addition
to other defects such as heart defects and some skeletal defects
(Kappen, 2013). Besides, FA has been suggested to prevent
the development of age-related neurodegenerative diseases and
overall cognition (Craenen et al., 2020a). Several countries
enforce staple food fortification, whereas others support FA
supplementation during pregnancy (Imbard et al., 2013). Of note
is that FA supplementation/fortification initiatives are currently
lacking in high-risk areas, such as those severely contaminated
with radioisotopes from the Chernobyl disaster. Although FA
food fortification can prevent some defects such as NTDs, its
efficacy depends on the causative teratogens or mutations. For
example, BMS-189453 (a synthetic retinoid) causes anomalies
such as NTDs and heart defects that can be prevented with FA
fortification (Cipollone et al., 2009), whereas arsenate-induced
NTDs do not appear to be responsive (Ferm and Hanlon, 1986).
Interestingly, many of the hallmark consequences of ionizing
radiation exposure, including oxidative stress, DNA damage,
cell cycle arrest, cell death and epigenetic alterations, might be
countered by FA (Heyer et al., 2000; Martin et al., 2014; Reisz
et al., 2014).

This study is the first to offer an in-depth analysis
of the morphological and behavioral consequences of
irradiation during neurulation in mice. To this end, we
used a multidisciplinary approach, including an extensive
behavioral test battery and imaging techniques such as spectral
domain optical coherence tomography (SD-OCT) and magnetic
resonance imaging (MRI). In addition, we assessed the efficacy
of FA food fortification in preventing fetal malformations as well
as adult functional and morphological defects resulting from
X-ray exposure.

MATERIALS AND METHODS

Animals and FA Fortification
All animal experiments were conducted in line with the relevant
guidelines and were approved by the Institutional Ethical
Committees of SCK-CEN/VITO (ref. 02–012) and the Animal
Welfare Committee of the KULeuvenUniversity, and are in strict
accordance with the European Communities Council Directive
of 22 September 2010 (2010/63/EU). C57BL6/J mice (Janvier, Bio
Services, TheNetherlands) were housed in individually ventilated
cages, under standard laboratory conditions (12-h light/dark
cycle) and fed ad libitum. One week before coupling, animals
designated for the macroscopic fetal study were placed on a
control Teklad (Carfil Quality, Oud-Turnhout, Belgium) diet (3.5
mg/kg FA), a FA fortified diet (8 mg/kg FA) or an extra-FA
fortified diet (12 mg/kg FA). The FA concentrations within the
final customized food products were investigated in compliance
with ISO 17025. We selected the dose of 8 mg/kg because it
was observed that this is an effective concentration to achieve
antiteratogenic effects in mice (Gray and Ross, 2009; Harris,
2009). A dose of 12 mg/kg was included based on the assumption

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 January 2021 | Volume 14 | Article 609660152

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Craenen et al. Folic Acid Prevents Radiation-Induced Neuropathologies

TABLE 1 | Sample sizes.

Control diet High FA diet

(8 mg/kg)

High FA diet

(12 mg/kg)

0.0 Gy 0.1 Gy 0.5 Gy 1.0 Gy 0.0 Gy 0.1 Gy 0.5 Gy 1.0 Gy 1.0 Gy

n N n N n N n N n N n N n N n N n N

Macroscopic 126 15 n.a. n.a. 116 18 n.a. n.a. n.a. 114 19 107 16

Skeletal 9 3 n.a. n.a. 9 3 n.a. n.a. n.a. 9 3 9 3

Behavior/OCT 10 4 13 6 12 6 n.a. 12 4 11 6 12 6 n.a. n.a.

MRI 9 4 12 6 5 3 n.a. 5 2 7 5 7 4 n.a. n.a.

N, number of litters; n, number of fetuses.

that some teratogens require higher doses of FA (Gray and Ross,
2009; Harris, 2009).

Animals designated for the behavioral tests and MRI were
limited to the control diet or the 8 mg/kg FA diet, and were
kept on their respective diets until they were euthanized. Timed
couplings were performed during a 2-h period at the start of the
light phase (7:30 a.m.−9:30 a.m.) to attain synchronous timing
of embryonic development. The day of coupling was identified
as E0. At E7.5, animals were placed in a Plexiglas holder and
transported to the irradiation installation. Mice intended for
the macroscopic study were either sham-irradiated or irradiated
with 1.0Gy of X-rays. Animals used for behavioral testing and
MRI were sham-irradiated or received a sub-lethal dose of 0.1
or 0.5Gy of X-rays at E7.5. Irradiation was performed using an
X-strahl 320 kV (0.14 Gy/min, inherent filtration: 0.21 mmAl,
additional filtration: 3.8mm Al + 1.4mm Cu + DAP, tube
voltage: 250 kV, tube current: 12mA,) in accordance to ISO
4037. The number of animals used for the macroscopic, skeletal,
behavioral and MRI experiments is depicted in Table 1, unless
otherwise specified.

Macroscopic Scoring and Skeletal
Stainings
The dissections, macroscopic scorings and alcian blue/alizarin
red skeletal stainings were performed at E18 as previously
described (Craenen et al., 2017). For the skeletal analyses, E18
fetuses were randomly selected from the macroscopic study. The
axial skeleton was analyzed, with a focus on the vertebrae and the
ribs. A subdivision was made between atlas, cervical, thoracic,
lumbar, sacral and caudal vertebrae, whilst also differentiating
between true, false and floating ribs and sternum.

Behavioral Tests
Starting at week (W)5 and ending at W14, behavioral tests were
performed on male mice in the order described below (Table 2).
All experiments were performed under blinded conditions. To
assess visual acuity, optokinetic tracking was performed. We
included cage activity to assess global activity, during both light
and dark-phase, and assessed explorative and social behavior
with the open field and social exploration tests. The elevated
plus maze (EPM) was included to ascertain anxiety, whereas
the accelerating rotarod was used to identify issues in motility.
Next, to explore olfactory performance we used the odor

TABLE 2 | Overview of test order and age at time of testing.

Protocol Age range (weeks)

Optokinetic tracking response W5–W7

Optical coherence tomography W5–W7

Cage activity W7–W9

Open field W7–W9

Social exploration W8–W10

Elevated plus maze W8–W10

Accelerating rotarod W8–W10

Odor habituation/dis-habituation W9–W11

MRI W9–W11

Morris Water Maze W10–W13

Passive avoidance W12–W14

habituation/dis-habituation assay. Finally, two tests for memory
were included: the Morris water maze (MWM) and passive
avoidance, to test spatial and fear-related memory, respectively.

Optokinetic Tracking Response
Using a virtual-reality chamber (OptoMotry, Cerebral
Mechanics, Medicine Hat, AB, Canada), the optokinetic
tracking response was assessed (De Groef et al., 2016; Van
Hove et al., 2016). The animal was placed on the center of an
elevated platform within the optokinetic installation, where a
vertical sine wave pattern was displayed on the monitors. Using a
real-time camera system, visual acuity was scored manually using
a staircase procedure, composed of random spatial frequencies
(100% contrast, 12◦ per second speed).

Cage Activity
The impact of ionizing radiation exposure on ambulatory
behavior was investigated over a 23 h time-period, starting at 4
p.m. until 3:30 p.m. the next day (Verreet et al., 2016a). During
this period, animals were individually housed in transparent
cages (20 × 26 cm) with minimal bedding, chow and water and
placed in a laboratory-built activity logger with three infrared
beams. Beam breaks were recorded over 30min time bins.
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Open Field and Social Exploration
To assess exploration and social interaction, a transparent
Plexiglas arena (50 × 50 cm) was used (Stroobants et al., 2008;
Bollen et al., 2015; Callaerts-Vegh et al., 2015). The arena was
homogenously illuminated and equipped with an Any-maze
(Dublin, Ireland) tracking system. For the open field test, animals
were placed in the empty arena for 1min of acclimatization,
immediately followed by a 10min test phase with active tracking.
The social exploration experiment was identical to the open field
test, except that in the center of the arena a small cage with two
same-sex strange mice was placed.

Elevated Plus Maze
In order to investigate anxiety, animals were subjected to EPM
testing as was previously described (Verreet et al., 2015). The
cross-shaped EPM consisted of two perpendicular open and
closed arms (21 × 5 cm). Five infrared detectors were installed
on the EPM: 2 at the exits out of the closed arms and two at
the entrances to the open arms (entries/exits) and one along the
length of the open arms (time spent on the open section). The
animal was placed in a closed arm and after 1min of adaptation,
beam breaks were recorded for 10 min.

Accelerating Rotarod
General motor function and balance following in utero X-ray
exposure during neurulation were assessed using an accelerating
rotarod (Ugo Basile, Italy), as was described previously (Verreet
et al., 2015). Initially, the animals underwent two adaptation trials
(2min each), each at a constant speed of 4 rpm. In turn, the
mouse was subjected to four subsequent test trials, where during
each 5min trial the rotation speed gradually increased from 4 to
40 rpm. Latency was recorded when the mouse lost its footing
and fell off the rotating beam.

Odor Habituation and Dis-Habituation
To assess the interaction of mice with olfactory cues, i.e.,
habituation and dis-habituation, the animals were subjected to an
odor discrimination test as was described previously (Yang and
Crawley, 2009; Yang et al., 2012; Arbuckle et al., 2015). Animals
were individually placed in a fresh cage with a small amount
of bedding, followed by 30min of acclimatization with a dry
cotton swab fixed to the cover grid (tip ∼5 cm from bottom).
Next, the animals were exposed to a sequence of 15 subsequent
odor exposures (2min each): Three trials with water, three trials
with grape (non-social odor 1 = NS1), three trials with banana
(NS2), three trials with social odor one (S1) and three trials
with social odor two (S2). For the preparation of the NS odor
tests, respectively 1:100 diluted grape extract (SAFC, W26820-8-
K methyl anthranilate ≥98%) and 1:100 diluted banana extract
(Acros Organics, AC269481000 n-Butyl propionate >99%) on
cotton tips was used. For the S odors, cotton tips were dipped
in water and moved in a cross-pattern through the bedding of
soiled cages of same-sex mice. During each trial, sniffing-time
was recorded manually whenever the subject’s nose was within
a 2 cm radius of the cotton swab. The inter-session interval never
exceeded 2 min.

Morris Water Maze
In order to assess whether FA and sub-lethal pre-natal doses of
X-rays during neurulation affected adult spatial learning, MWM
was performed. Animals were tested in a circular pool (diameter
150 cm, height 30 cm), filled with opacified non-toxic water
as previously described (Latif-Hernandez et al., 2016; Verreet
et al., 2016a). For the acquisition trials, a see-through acrylic
platform was consistently placed in the same quadrant, 1 cm
below the water surface. The pool was located in the center of a
homogeneously-lit room, with invariable visual cues. Acquisition
training was performed over a period of 5 days, followed by a 2-
day resting period, followed again by 5 days of training. During
each training day, every mouse was subjected to four trials.
The trial interval was approximately 15-min and the quadrant-
starting positions varied in a semi-random order for every trial.
If the animal was unable to find the platform within 120 s, it was
placed on the platform for 10 s and subsequently removed from
the basin. On day 5 of the acquisition trials and 2 days after
the last acquisition trial, probe trials were performed. During
these probe trials, the platform was removed from the basin
and mice were subjected to a single probe trial of 100 s, where
the starting position was opposite to the target quadrant. Using
an automated video capture and tracking system (EthoVision,
Noldus, The Netherlands), various parameters such as trajectory
and swim speed were recorded. We observed floating behavior
(swim velocity <5 cm/s, more than 30 s per swim) in all groups,
except the control diet + 0.0Gy group. However, for the path
length analysis to determine if the animals covered the same track
during learning, we included all animals due to the low animal
numbers per group. Non-responders (floating>35% of test time)
were excluded for the reference memory test. As such, a reduced
number of animals was included for the reference memory test,
as compared to Table 1. More specifically, for this analysis in
particular we included under control diet condition 29 animals
(9 for 0.0Gy, 11 for 0.1Gy and 9 for 0.5Gy), and 27 under high
FA condition (10 for 0.0Gy, 9 for 0.1Gy and 8 for 0.5 Gy).

Passive Avoidance
We investigated fear-aggravated learning and memory using a
passive avoidance set-up (Lo et al., 2013). Animals were placed
in a brightly lit compartment and the door leading into a dark
adjacent chamber was opened after 5 s. Latency to enter the dark
chamber was timed starting immediately after opening of the
dark chamber and stopped when the animal had all four paws
on the electric grid in the dark room. Next, the door separating
the two compartments was closed and a shock (0.3mA, 2 s) was
administered. The next day, the procedure was repeated, albeit
without the administration of an electric shock.

In vivo Imaging
Optical Coherence Tomography
To assess retinal development and thickness, SD-OCT was
used as was previously discussed (Van Hove et al., 2016). The
animal was anesthetized by intraperitoneal (ip) injection of 75
mg/kg body weight ketamine (Anesketin, Eurovet, Bladel, The
Netherlands) and 1 mg/kg medetomidine (Domitor, Pfizer, NY,
USA). Shortly before imaging, pupils were dilated using topical
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0.5% tropicamide (0.5% Tropicol, Thea Pharma, Wetteren,
Belgium). Next, SD-OCT was performed using an Envisu
R2210 (Bioptigen, Morrisville, NC, USA) via 100 serial B-
scan lines with each line consisting of 1,000 A-scans, in a
1.4 × 1.4mm field. Afterwards, ip injection of atipamezol (1
mg/kg, Antisedan, Pfizer) was applied to reverse the anesthesia.
Thickness of the retina was investigated using InVivoVue Diver
software (Bioptigen).

Magnetic Resonance Imaging
For MRI we used female mice, which originated from the
same litters as the behavioral test mice. When the female mice
were on average W10, in vivo MR imaging of the brain was
performed using a 7 T Bruker Biospec 70/30 MRI scanner (30 cm
horizontal bore with actively shielded gradients (200 mT/m),
Bruker Biospin, Ettlingen, Germany). All data were acquired
using a quadrature volume coil (72mm internal diameter,
transmit, actively decoupled) in combination with a dedicated
mouse brain surface receive coil (Bruker Biospin). To obtain
high resolution 3D images of the entire mouse brain, image
acquisition and animal anesthesia was performed similar to
previously described experiments (Verreet et al., 2016a). In brief,
after the acquisition of localizer scans morphological 3D MR
imaging was performed using a rapid acquisition relaxation
enhancement (RARE) T2-weighted sequence with a RARE factor
of 16 and a repetition time and echo time of 1,000ms and
67ms, respectively. The field of view was 24 × 15 × 8.3mm
with a matrix of 256 × 160 × 88, resulting in an isotropic
resolution of 94µm. The total acquisition time was 16min. The
methodology of image post-processing and the labeled template
was based on previously published work (Verreet et al., 2016a).
Briefly, we first corrected for image intensity inhomogeneity
using the N4 bias field correction algorithm (Tustison et al.,
2010) using an in-house developed MeVislab pipeline (MeVis
Medical Solutions, Germany). Images were affinely registered
to the template used in Verreet et al. (2015, 2016a) to obtain
brain masks for each animal, which were isotropically dilated
by 2 voxels. These brain masks were applied to the raw data
and the bias field correction was repeated. Finally, images were
non-rigidly registered to the template using the Fast Free-Form
Deformation algorithm implemented in Niftyreg (Modat et al.,
2010). Template labels were propagated to the individual study
images using the transformations obtained from this step, and
quantified using an in-house developed Python script (Python
2.7, Python Software Foundation).

Statistics
Statistical analyses were performed with GraphPad Prism 7.02
(GraphPad Software, San Diego, CA, USA). To analyze the
data on the macroscopic and skeletal defects, the Kruskal-Wallis
methodology was used, in combination with Dunn’s post-hoc
testing. Data on pre-natal viability were assessed using two-
way ANOVA and Dunnet testing for multiple comparisons.
For most behavioral tests, MRI and SD-OCT, we used two-
way ANOVA (with pairing where required) in combination with
Dunnet (inter-dose comparisons) and (Holm-)Sidak (inter-diet

comparisons) post-hoc tests. To assess dishabituation, paired t-
testing was done, whilst two-way ANOVA + Sidak was utilized
to investigate habituation. To perform inter-dose and inter-
diet comparisons, one-way ANOVA + Dunnet was used in
conjunction with the first trial of the different odors. For all
statistical tests, a p-value of 0.05 was considered statistically
significant. All values are represented as mean± SEM.

RESULTS

FA Reduces the Prevalence of
Radiation-Induced Anophthalmos,
Exencephaly and Agnathia
First, we examined the prevalence of radiation-induced EDs
and the prevention thereof with FA fortification. The prevalence
of left-eye anophthalmos (Figure 1A), microphthalmos
(Figure 1B) and iris anomaly (Figure 1C) was significantly
increased following X-irradiation (respectively, 28.26 ± 4.72,
23.56 ± 4.28, and 17.92 ± 3.39 %). In contrast, X-irradiation
did not affect the prevalence of the left eye open phenotype
(3.03 ± 1.40%) (Figure 1D). Similar observations were made
for the right eye (respectively 42.41 ± 5.93, 29.32 ± 3.93, and
18.59 ± 4.35%) (Figures 1E–H). Here, the right eye also showed
an increase of the open phenotype (4.55 ± 1.89%). Of interest,
we revealed a partial prevention of radiation-induced left-eye
anophthalmos with both the 8 mg/kg FA (9.02 ± 3.40%) and 12
mg/kg FA (10.62 ± 2.74%) diets (Figure 1A). No such rescue
was observed for the right eye (Figure 1E).

In addition, we determined the number of fetuses with
exencephaly, agnathia, gastroschisis and cleft palate. X-
irradiation increased the prevalence of exencephaly (15.26 ±
3.95%) and agnathia (17.88 ± 4.17%) when the animals were fed
the control diet, whilst 8 and 12 mg/kg FA provided significant
prevention of both exencephaly (respectively, 4.89 ± 2.10 and
4.43 ± 2.03%) (Figure 2A) and agnathia (respectively, 5.41 ±
1.86 and 1.56 ± 1.56%) (Figure 2B). Furthermore, irradiation
also increased the number of fetuses affected by gastroschisis in
mothers on the control diet (11.3 ± 2.83%), but here no rescue
was observed with the FA fortified diets (Figure 2C). Finally,
X-ray exposure at E7.5 did not affect the occurrence of cleft
palate in the fetuses, regardless of the diet (Figure 2D).

FA Counteracts the Effects of X-Ray
Exposure on Pre-natal Survival
In the next part of our study, we investigated the impact of
X-irradiation during neurulation on the number of implants,
pre-natal deaths and fetal weight. Neither X-irradiation nor
FA fortification affected the total number of conceptuses per
pregnant female (Figure 3A). In terms of late fetal deaths (E18
fetuses with no signs of life), an increase was observed after
irradiation in mothers on the control diet, while this increase
was prevented with 8 and 12 mg/kg FA diets (Figure 3B).
Furthermore, we found an increase in resorptions (implantation
site at E18, which holds no developed fetus, and shows evident
embryonic-stage death) after 1.0Gy irradiation, with a notable
rescue after 8 mg/kg, but not after 12 mg/kg FA fortification
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FIGURE 1 | Prevalence of various eye defects observed at E18, following 1.0Gy X-ray exposure at E7.5, and prevention with FA fortification. Radiation significantly

increased the risk for left eye anophthalmos; a defect that could in turn be prevented by both FA fortified diets (8 mg/kg and 12 mg/kg FA) (A). Although both left eye

(Continued)
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FIGURE 1 | microphthalmos (B) and iris anomaly (C) were induced by X-irradiation, no rescue effect of FA was observed on these phenotypes. The left eye open

phenotype was not increased in prevalence following irradiation (D). Although defects of the right eye, including anophthalmos (E), microphthalmos (F), iris anomaly

(G) and open eye (H) were more prevalent following irradiation, we observed no significant prevention of these defects by FA. Data are represented as mean ± SEM,

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

FIGURE 2 | Prevalence of radiation-induced birth defects at E18, affecting the head and abdomen, and the prevention with FA. Irradiation at E7.5 significantly

increased the risk for exencephaly (A), agnathia (B) and gastroschisis (C). The first two of these radiation-induced defects could be partially prevented by FA food

fortification (both 8 and 12 mg/kg) (A,B). Radiation had only minimal impact on the prevalence of cleft palate (D). Data are represented as mean ± SEM, *p ≤ 0.05,

**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

(Figure 3C). Finally, irradiation resulted in a marked fetal weight
loss at E18 (Figure 3D), which was not rescued following FA
fortification. Of note, sham-irradiated fetuses gained weight
when placed on the 12 mg/kg FA diet, as compared to sham-
irradiated animals on the control diet (Figure 3D). Altogether,
we were able to demonstrate a preventive role of FA for radiation-
induced late fetal deaths and resorptions.

Axial Skeletal Defects and Prevention With
FA
To assess general teratogenicity of X-ray exposure on the axial
skeleton, alcian blue/alizarin red staining was utilized, a common
methodology to assess the sub-macroscopic teratogenicity of
chemical and physical agents (Young et al., 2000). X-irradiation
at E7.5 increased the number of defects within the vertebrae,
specifically in the atlas, the cervical vertebrae and the thoracal
vertebrae when the animals were fed the control diet (Figure 4A,
atlas, cervical and thoracal vertebrae). Within the cervical
region, radiation primarily resulted in fused vertebrae and

excessive cartilage (Figures 4B,C). At the thoracic level, the
most common vertebral defects included fusions and excessive
cartilage, whereas ribs were often missing (Figures 4D,E). Here,
we also observed impaired ossification of the ribs (Figure 4F)
and split ossification centers within the vertebrae (Figure 4G).
Of note, irradiation also increased the incidence of a tilted
sternum (Figures 4H,I). To a lesser extent, radiation lead to
tilted vertebrae, displaced ribs, hooked (i.e., bent) ribs and
short-length ribs (Supplementary Figures 1A–C). 8 mg/kg FA
fortification prevented the occurrence of radiation-induced
defects in the cervical region, whilst the 12 mg/kg diet group
also showed a strong trend (henceforth defined as P= 0.05–0.08)
toward prevention (Figure 4, cervical vertebrae). Surprisingly, a
combination of 8 mg/kg FA and 1.0Gy increased the number of
defects within the caudal vertebrae, as compared to the 1.0Gy
irradiated animals that were fed the control diet (Figure 4A,
caudal vertebrae). Furthermore, a trend was observed for the
rescue of defects within the true and false ribs following
fortification with the 8 mg/kg and 12 mg/kg diets (Figure 4A
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FIGURE 3 | Impact of 1.0Gy X-ray exposure at E7.5 and FA on the number of conceptuses (A), late fetal deaths (B), resorptions (C) and fetal weight (D). Neither

radiation nor FA diet (8 and 12 mg/kg FA) had an impact on the number of conceptuses at E18 per litter (A). Irradiation strongly increased the rate of late fetal deaths

when mothers were fed the control diet, whilst FA fortification prevented this (B). A significant increase in resorptions was observed for irradiated mice on the control

diet, which was in turn prevented only by the 12 mg/kg FA diet (C). FA fortification significantly increased fetal weight, whilst irradiation decreased fetal weight (D).

Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001.

true and false ribs). Overall, FA fortification partially prevented
skeletal defects within the cervical and thoracic vertebrae, whilst
a trend toward prevention could be observed within the true and
false ribs.

Abnormal Adult Brain Morphology
Following Pre-natal X-Ray Exposure
We performed volumetric MRI analyses to assess whether the
adult brain is structurally affected following irradiation at E7.5.
Here we also assessed whether FA fortification could prevent
any radiation-induced anomalies with inclusion of the 8 mg/kg
FA diet, which was based on the rescue effect we observed
in view of the radiation-induced fetal defects. We observed
no differences in the volumes of whole brain, the olfactory
system, the frontal cortex, the corpus callosum, the amygdala,
the cerebellum and the corpora quadrigemina in response to
radiation and/or FA (Supplementary Table 1). In contrast, other
brain regions were affected by the radiation dose and the diet.
Ventricles appeared significantly enlarged following irradiation
[F(2, 37) = 6.125; P = 0.0050] (Figure 5A), although no
significance was reached when comparing individual radiation
doses. We also found a radiation-induced reduction in volume
of the hippocampus (Figure 5B), striatum (Figure 5C), thalamus
(Figure 5D), midbrain (Figure 5E) and pons (Figure 5F) when
the mothers were irradiated with 0.5Gy. Of interest, an
interaction effect between irradiation and the diet could be
established for the hippocampus [F(2, 37) = 4.654; P = 0.0157)

(Figure 5B), midbrain [F(2, 37) = 4.654; P = 0.0157] (Figure 5E)
and the pons [F(2, 37) = 3.792; P = 0.0318] (Figure 5F), which
supports an FA-dependent rescue of radiation-induced size
decrease. Furthermore, X-irradiation resulted in a trend toward
a volumetric decrease of the posterior cerebral cortex [F(2, 37) =
2.731; P = 0.0783] (Figure 5G) and the basal ganglia [F(2, 37)
= 2.768; P = 0.0758] (Figure 5H). Unexpectedly, FA food
fortification reduced the size of the basal ganglia [F(1, 37) = 4.961;
P = 0.0321) (Figure 5H) and the striatum [F(1, 37) = 7.067; P =
0.0115] (Figure 5C). A trend toward FA-induced size decrease
was also observed for the anterior commissure [F(1, 37) = 3.796;
P = 0.0590] (Figure 5I).

Irradiation Impairs Vision and Olfaction,
Which Is Ameliorated by FA Fortification
In order to determine whether X-irradiation during neurulation
can affect visual acuity later in life, and whether these effects
could be countered by FA, a virtual optokinetic drum was
used. Here, we observed that radiation decreased visual acuity
[Figure 6A, F(2, 64) = 10.02; P = 0.0002], whilst FA increased
visual performance as compared to animals on the control diet
[Figure 6A, F(1, 64) = 6.565; P = 0.0128]. Furthermore, the
impairment in acuity elicited by 0.1Gy was alleviated by FA
(Figure 6A). SD-OCT analysis did not show any changes in total
retinal thickness following X-ray exposure or FA fortification
(Figure 6B). Yet, a more detailed investigation revealed that the
nerve fiber and retinal ganglionic cell layer (NF+GCL) thickness
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FIGURE 4 | Prevalence and categories of axial skeletal defects at E18,

following 1.0Gy at E7.5 and prevention by FA. (A) Radiation significantly

increased the number of defects in the atlas, cervical and thoracal vertebrae,

while an insignificant trend could be observed in the ribs. FA fortification with 8

mg/kg prevented defects within the cervical vertebrae, with a trend toward

prevention apparent in the true and false ribs. (B–I) In control animals, the

arches of the cervical vertebrae only sporadically demonstrated an anomaly

(B), whereas irradiation lead to a notable presence of vertebral fusions

(affecting two or three arches, shown by an arrow← and arrowhead ◭,

respectively) and excessive cartilage≪ (C). In controls, both the thoracic

vertebrae and ribs never showed any anomalies (D), but irradiated fetuses

often lacked ribs (arrowhead ◭) and depicted excessive cartilage (double

arrowhead≪) and fusions (arrow←) in the vertebrae (E). In addition, the ribs

also showed delayed ossification (arrowhead ◭) (F) and the vertebral bodies

showed split ossification centers (arrowhead ◭) (G). Finally, radiation also

promoted the presence of a tilted sternum (H,I). Data are represented as

mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Asterisks

indicate a significant change as compared to the control FA + 1.0Gy group of

the respective skeletal region.

was decreased following 0.5Gy irradiation [Figure 6C, F(2, 63)
= 7.618; P = 0.0011], which was not alleviated following the
FA-rich diet. On the other hand, the high FA diet was shown

to elicit a protective effect on the radiation-induced decrease in
eye diameter (Figure 6D). Altogether, we showed a radiation-
induced decrease in visual acuity starting from a low dose of
0.1Gy onward, together with a reduced NF and GCL layer
thickness and eye diameter following 0.5Gy. FA prevented the
decreased visual acuity elicited by 0.1Gy, and rescued the 0.5
Gy-induced decrease in axial eye size.

To investigate whether X-ray exposure during neurulation
has an impact on olfactory performance and discrimination,
and whether radiation-induced differences can be rescued by
FA, we performed an olfaction-dependent habituation and
dis-habituation test. When presented with a novel odor, mice
will show specific approach and sniffing behavior (dishabituation,
see Table 3), which increases further in the presence of S odors,
and diminishes over the three time bins of 2min (habituation).
To compare the rate of habituation and dishabituation between
the groups, we calculated the difference in sniffing time between
(a) within the same odor of trial 1 and trial 3 (habituation)
and (b) between odors from old to new odor (dishabituation).
Habituation was observed in all conditions for all odors,
indicating a normal loss of interest for odors over time
(Figures 7A,B, Table 3). Similarly, approach behavior to a novel
odor was observed in both sham and irradiated animals and was
not affected by FA enrichment (Figures 7A,B,Table 3). However,
irradiation reduced the total amount of time spent sniffing
NS odors under control diet conditions compared to sham-
irradiated animals (Figure 7C). Two-way ANOVA for factor diet
(control diet or FA) and dose (sham, 0.1 and 0.5Gy) during
the NS odor presentation, indicated a significant effect for diet
[F(1, 63) = 4.078; P = 0.048] and for dose [F(2, 63) = 3.908; P =
0.025] without significant interaction. Post-hoc analysis revealed
a significant difference between sham- and 0.5 Gy-irradiation in
the control diet group, indicating a reduced approach time to
NS odors after irradiation. This reduced approach was alleviated
when given the high FA diet. Of note, this reduced sniffing
time is not due to an inability to approach, since presentation
of S odors increased the sniffing time, but is possibly due to a
decrease in attractiveness or detection of the odor itself. High
FA diet normalized the sniffing time and approach to novel
odors to baseline levels (Figures 7B,C), which is indicative of a
protective role for FA. A similar trend was observed for S odors,
however, the two way ANOVA did not indicate a significant
effect of either factors. To conclude, irradiation in conjunction
with the control diet resulted in hyposmia (i.e., a decreased
sense of smell) for the NS odors, or a reduced interest in NS
odors. These anomalies were alleviated when the diet was fortified
with FA.

No Changes in Activity and Motor
Performance Following Irradiation of
Animals on the Control Diet
General arousal and changes in circadian activity was assessed in
the 23 h cage test. Under control diet conditions, radiation had no
effect on the spontaneous activity, and all animals displayed the
typical increase in night-time activity. Here, repeated measures
(RM) ANOVA indicated a significant effect for time [F(47, 1504)
= 38.34; P < 0.0001], but not for radiation dose (Figure 8A).
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FIGURE 5 | Volumetric analyses of various brain regions after pre-natal irradiation at E7.5. Ventricles were significantly increased after irradiation (A), whereas the

hippocampus (B), striatum (C), thalamus (D), midbrain (E) and pons (F) were significantly smaller following a dose of 0.5Gy in animals on the control diet. According

to two way ANOVA, the radiation factor was significant in decreasing size of the posterior cerebral cortex (G). FA by itself decreased the size of the basal ganglia (H)

and the anterior commissure (I). Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01.

Animals on the high FA diet also showed a typical increase in
night-time activity [F(47, 1504) = 50.38; P < 0.0001). In addition,
the high FA diet increased night-time activity in mice exposed to
a low dose of 0.1Gy [F(2, 32) = 5.063; P= 0.0123) (Figures 8B,C).
When animals were fed the high FA diet, repeated-measures
(RM) ANOVA revealed a significant interaction effect between
radiation and diet during the dark period [F(2, 64) = 3.485;
P = 0.0366], and post-hoc analysis indicated that only 0.1Gy
was significantly different from the sham-irradiated group (P

= 0.0191). This interaction effect was also observed in the

overall duration of the experiment [F(2, 64) = 4.127; P = 0.0206]

(Figure 8D).

Balance and coordination was tested on the accelerating
rotarod, but radiation had no effect on motor coordination, and
we also saw no effect of FA diet (Supplementary Figure 2).

Radiation Did Not Affect Overall Cognition,
but FA Adversely Altered Social Behavior
Open Field and Social Exploration
The open field test was used to assess exploratory behavior
in a novel and stressful environment. The animals are dark-
adapted and then placed in a brightly illuminated open field
for 10min. Anxious animals will spend their time close to the
walls and will not enter the open center zone. We observed that
all groups spent most of their time close to the wall, and there
was no effect of radiation nor of FA enriched diet on the time
spent in the periphery (Figure 9A). Center visits were frequent
(Figure 9B) but overall rather short (Figure 9C). Furthermore,
the distance the animals traveled over 10min was similar in all
groups (Figure 9D). Likewise, other parameters, such as latency
to enter the center, walking speed or distance traveled in the
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FIGURE 6 | Visual acuity, retinal morphology, eye size and the impairment thereof by X-irradiation during neurulation. Radiation decreased visual acuity in adult mice

(W5-W7) starting from 0.1Gy, according to the optomotor test (A). 8 mg/kg FA increased the irradiation dose required for a significant effect on optokinetic response

to 0.5Gy (A). Irradiation or FA diet did not affect total retinal thickness, according to OCT analysis (B), but a more detailed analysis showed that 0.5Gy significantly

reduced thickness of the nerve fiber + ganglion cell layer (C). Using the MRI images for eye-size measurements, we identified a reduced axial length following 0.5Gy,

which was in turn ameliorated by FA fortification (D). Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

TABLE 3 | Differences in sniff time used to assess habituation and dishabituation.

Control diet 8 mg/kg FA

Dose 0.0Gy 0.1Gy 0.5Gy 0.0Gy 0.1Gy 0.5 Gy

Habituation: difference in sniff time within same odor

Time (s) −26.2

± 3.2

−21.8

± 3.7

−18.7

± 2.1

−24.7

± 2.2

−22.5

± 3.2

−23.0

± 3.3

Dishabituation: difference in sniff time from old to new odor

Time (s) 30.6

± 4.0

13.0

± 3.9

20.4

± 3.2

30.9

± 4.1

25.3

± 4.0

27.4

± 3.2

To quantify habituation (reduction in sniffing time to the same odor) and dishabituation

(changes in sniffing time from old to new odor), we calculated the difference between tx1-

tx = ∆t, and averaged the values across all odors for each animal. All ∆t were different

from 0 and there was no effect of radiation and/or FA. Data are represented as mean

± SEM.

center were also not different between the groups (respectively,
Supplementary Figures 3A–C). We used a modified setup to
evaluate social approach: two stranger mice were placed in
the center of the arena and provide an attraction point for

the test mouse. We observed similar distance covered in all
groups (Figure 10A), but FA fortification decreased the time
spent in the center as compared to animals on the control
diet [Figure 10B, F(1, 63) = 4.316; P = 0.0418]. Factors such as
center distance, center entries, mean speed, time in periphery
and latency to enter the center were unaltered (respectively,
Supplementary Figures 4A–E).

Elevated Plus Maze
The EPM is considered the typical test to assess anxiety related
exploration. We observed no significant difference in total beam
breaks between the different groups. Two-way ANOVA indicated
no effect of factor radiation [F(2, 63) = 0.4912; P = 0.6142]
nor of diet [F(1, 63) = 2.206; P = 0.1424) on total beam breaks
(Figure 11A). Open arm visits (Figure 11B) and open arm dwell
(Figure 11C), both readouts for anxiety, were similar in all
groups. In general, neither radiation exposure nor diet had an
impact on anxiety-related activity.
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FIGURE 7 | Odor habituation and dis-habituation in adult mice (W9–W11) following pre-natal irradiation at E7.5, under control or FA fortified diet. All animals show a

typical approach behavior toward novel odors (dishabituation) and reduction in sniffing over time toward the same odor (habituation) (A,B). Under control diet

condition, irradiated animals show reduced sniffing time to novel odors (A). In contrast, under high FA diet, sniffing time is at sham level (B). The total amount of

sniffing time toward a non-social odor, was reduced in irradiated animals under control diet, while high FA fortification increased the sniffing time to sham levels (C).

Data are represented as mean ± SEM, *p ≤ 0.05 vs. sham (post hoc), $ p ≤ 0.05 control vs. FA diet (two-way ANOVA).

Morris Water Maze
During place learning, under control diet, all groups learned
in a similar way to locate the hidden platform (Figure 12A).
RM ANOVA indicated an effect for day [F(9, 270) = 41.4; P <

0.001], but not for radiation dose and no interaction. In contrast,
under FA conditions, RM ANOVA indicated an effect for day
[F(9, 288) = 37.0; P < 0.001], and an effect of dose [F(2, 288)
= 4.34; P = 0.022), without interaction (Figure 12B). Post-hoc
analysis indicated, as compared to sham-irradiated animals, a
significantly longer path length in 0.5 Gy-irradiated animals only
on the first 2 days [q(3) = 4.0; P = 0.013, and q(3) = 3.6; P
= 0.029] (Figure 12B). However, this finding was considered
biologically irrelevant due to the low number of days affected.
The probe trials were interspersed after day 5 and 10. Target
quadrant preference was evaluated by comparing time spent in
the target quadrant with chance level (25%). Under control diet
conditions, 0.1 Gy-irradiated mice showed a clear lack of target
quadrant preference even after 2 weeks of training, which was
also true for 0.5 Gy-irradiated animals during the first probe
trial (Figure 12C). When the diet was FA fortified, all radiation-
dose groups demonstrated significant target quadrant preference
during the second trial (Figure 12C), suggestive for a FA-induced
amelioration of reference memory and supporting FA to have a
role in learning and memory. Nonetheless, these results are to
be interpreted with caution due to the relatively low numbers of
animals being included in the analysis.

Passive Avoidance
The effect of pre-natal X-ray exposure and FA on amygdala
and hippocampal dependent fear-related memory formation was
tested using the passive avoidance set-up. Animals on the control
diet [F(1, 30) = 86.87; P < 0.0001] and on the high FA diet [F(1, 30)
= 219.7; P < 0.0001] demonstrated an increased latency to enter
the dark chamber after the shock (Supplementary Figure 5A).
A comparison between animals on the control diet and on the

high FA diet revealed no interaction between diet and latency
[Supplementary Figure 5B, F(1, 18) = 0.1248; P= 0.7280]. These
data suggest that neither radiation nor high FA diet has an impact
on passive avoidance learning.

DISCUSSION AND CONCLUSION

Radiation-Induced Anophthalmos,
Exencephaly and Gastroschisis Are
Prevented by FA
X-irradiation at E7.5 induced various congenital eye defects,
exencephaly, agnathia and gastroschisis in the offspring.
Interestingly, the right eye appeared more susceptible toward
radiation-induced anophthalmos as compared to the left eye.
This observation is in line with our previous study (Craenen
et al., 2017) and could be explained by the used mouse strain with
a C57BL6/J genetic background. C57BL6/J mice have a strong
natural tendency toward developing asymmetrical eye defects,
with a bias toward right-eye anophthalmos/microphthalmos
(Smith et al., 1994). Alternatively, in the developing embryo
there are various gestational stages that demonstrate left-
right asymmetry (e.g., various signaling mechanisms). Even
the developing eye is known to exhibit such developmental
asymmetry (Levin, 2005), hypothetically allowing potential
teratogens such as ionizing radiation to interfere with the left-
right axis during embryogenesis. Hence, to assess why radiation
induces an asymmetric eye phenotype, it is of interest to compare
our results to a differentmouse strain, and tomore closely explore
the molecular mechanisms along the embryonic left-right axis
after X-irradiation.

In this study, we demonstrated for the first time that FA
fortification (8 mg/kg FA and 12 mg/kg FA) prevents radiation-
induced anophthalmos, exencephaly and agnathia. Already in the
1960’s a link between FA intake and the incidence of congenital
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FIGURE 8 | Cage activity in adult mice (W7–W9) and the impact of X-irradiation at E7.5 and FA food fortification. When the control diet was fed, no effect of pre-natal

radiation exposure on cage activity was observed (A). When animals were fed the FA diet, irradiation with 0.1Gy at E7.5 significantly increased activity during the dark

period, as tested in adult 7–9 week old mice (B). (C,D) A summarized total of beam breaks during the dark period (C) and the overall experiment (D) confirmed the

observations made in (A,B). Data are represented as mean ± SEM, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

EDs was suggested. For instance, maternal FA-deficiency was
shown to increase the risk of EDs in rats (Armstrong and
Monie, 1966). A later study supported these findings, where

a FA-deficient diet in mice could lead to anomalies such as
anophthalmos and microphthalmos (Maestro-de-las-Casas et al.,
2013). Furthermore, ethanol-induced retinal anomalies were
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FIGURE 9 | Effect of embryonic X-irradiation and FA fortification on exploration behavior in adult mice, according to the open field test. Neither E7.5 irradiation, nor

diet had an impact on the time spent in the periphery (A), entries into the center (B), time spent in the center (C) and the total distance traveled (D). Data are

represented as mean ± SEM.

FIGURE 10 | Social exploration in an adapted open field test was unaffected by 1.0Gy exposure at E7.5, but was impaired by FA fortification. Neither radiation, nor

FA diet had an impact on exploration behavior in adult mice, according to the total distance traveled in the arena (A). In contrast, FA fortification resulted in animals

spending less time in the center, in close proximity to the unknown mouse (B). Data are represented as mean ± SEM, *p ≤ 0.05.

rescued with FA supplementation in zebrafish (Muralidharan
et al., 2015). In contrast, an epidemiological study could
not determine a link between FA intake and the risk for

anophthalmos and microphthalmos. Yet, the authors conceded
that several caveats such as a small case population and the lack
of clinical analyses of key biomarkers may have impaired proper
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FIGURE 11 | Effect of embryonic X-irradiation and FA fortification on anxiety, tested in the elevated plus maze. Neither irradiation at E7.5 nor diet had an effect on the

total number of beam breaks (A), beam breaks in the open arms (B) or time spent in the open arms (C) by adult animals. Data are represented as mean ± SEM.

FIGURE 12 | Spatial place learning and reference memory of adult mice in the MWM, following X-ray exposure at E7.5 and/or FA food fortification (8 mg/kg FA). All

groups learned to located the hidden platform under control diet (A) and FA fortification (B). Reference memory was assessed during interspersed probe trials (C). In

FA enriched diet, all animals displayed significant preference to the target quadrant above chance level (25%). Data are represented as mean ± SEM, *p ≤ 0.05 to

chance level (25 %).

effect estimation (Shaw et al., 2007). The second category of
radiation-induced birth defects that appears folate-responsive,
is exencephaly. The prevention of exencephaly by FA is well-
described in literature, albeit not with ionizing radiation as the
effecting teratogen, but with e.g., ethanol (Yanaguita et al., 2007)
and glucose (Wentzel and Eriksson, 2005; Oyama et al., 2009). Of
note, international FA food fortification initiatives have already
successfully decreased the incidence of NTDs (Blom et al., 2006).
The third category of radiation-induced birth defects, that is
partially preventable by FA, is agnathia. In humans, agnathia
is a very rare congenital disorder, commonly classified within
the otocephaly family of disorders (incidence <1/70 000 births)
(Gekas et al., 2010; Herman et al., 2012; Jagtap et al., 2015;
Sergouniotis et al., 2015). To our knowledge, the only published
observation where FA fortification could prevent agnathia was in
Twisted gastrulation mutant mice, which have a high penetrance
of midline facial defects and jaw defects (Billington et al., 2013).
Even though our study is the first to demonstrate the prevention
of X-ray-induced anophthalmos, exencephaly, and agnathia, the
rescue is only partial. It would be of interest to further explore
the efficacy of other radioprotectant compounds, potentially in
combination with FA, in preventing these defects.

In contrast to the defects discussed above, we observed no
folate-responsiveness of radiation-induced iris anomalies, open

eye and gastroschisis. The iris anomaly observed in our study
was characterized by a strongly decreased pupil size, with the
most severe cases having no apparent pupil at all (Smith et al.,
1994; Craenen et al., 2017). In accordance, in a previous study
on hyperthermia-induced iris anomalies, no protective effect
of FA could be found (Czeizel et al., 2011). Yet, there are
to our knowledge no other publications that have previously
investigated the efficacy of FA in preventing open eye anomalies.
Hereto, it might be worthwhile to investigate the protective effect
of thyroxine supplementation on radiation-induced open eyes,
as some success was already made with this hormone (Juriloff,
1985). With regard to gastroschisis, it remains severely debated
whether these defects can be prevented with FA, with efficacy
strongly depending upon the acting teratogen (Godwin et al.,
2008; Paranjothy et al., 2012; Yang et al., 2016).

Reduced Fetal Weight and Increased
Pre-natal Death Following Irradiation Are
Ameliorated by FA
Aside from gross macroscopic defects, other aspects of pre-
natal development were also assessed. Irradiation significantly
reduced fetal weight at E18, as was also observed in a previous
study (Craenen et al., 2017), which was not notably ameliorated
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by FA. This stands in contrast to the teratogen ethanol, where
embryotoxic weight loss can be prevented by FA (Xu et al.,
2006). However, a potentially adverse outcome observed after
fortification of the highest dose of FA was the increase of
fetal weight at E18. Epidemiological studies already reported
that increased fetal weight is a consequence of FA fortification
(Tamura and Picciano, 2006; Balarajan et al., 2013; Li et al., 2016;
Ramakrishnan et al., 2016), which is linked to type 2 diabetes and
adult obesity (Curhan et al., 1996; Johnsson et al., 2015). Both
the number of late fetal deaths and resorptions were increased
following irradiation, which is consistent with previous work
(Pampfer and Streffer, 1988; Kim et al., 2001; Craenen et al.,
2017). These cases of pre-natal mortality were reduced by FA
fortification, which is in line with epidemiological studies that
focused on fetal loss (Andersen et al., 2010) and miscarriage
(Byrne, 2011).

Radiation-Induced Fetal Morphological
Defects, and Prevention With FA
Since the mid-twentieth century, it has already been known that
exposure to (high) doses of ionizing radiation during pregnancy
can result in a variety of axial and appendicular skeletal
defects (Jarmonenko, 1988). These studies focused mostly on
severe spinal defects such as spina bifida, which are known
to result from exposure to external radiation sources such as
neutrons and γ-rays (A-bombs) and internal contamination
from e.g., depleted uranium (commonly used in munitions)
[reviewed by Hindin et al. (2005)]. In our study, pre-natal
irradiation had the most detrimental impact on the cervical
and thoracic vertebrae. This was also observed in a study by
Russell, who used 2.0Gy of X-rays at E7.5 (Russell, 1956).
A contrasting study described more malformations in the
ribs of CRI mice than in the vertebrae, following 2.0 Gy-γ-
irradiation at E7.5 (Kim et al., 2001). This difference might
be mouse strain dependent, or might result from variations
in radiation dose and type. In further support of our study,
a dose-dependent induction of skeletal malformations after
irradiation (0.5Gy to 4.0Gy) at E11.5 was observed (Kim et al.,
2001). It would therefore be interesting to further investigate
this dose-dependency and the existence of a dose-threshold in
our experimental set-up. Intriguing was the presence of split
spinal ossification centers after irradiation, which could lead
to open vertebral arches and potentially spina bifida occulta
in later life (Regnier et al., 2002). Altogether, we are the first
to explore in such detail developmental defects in the axial
skeleton after irradiation at E7.5, and to demonstrate that FA
fortification can significantly reduce the risk for radiation-
induced skeletal defects.

Although we observed an increase in axial skeletal defects after
1.0Gy irradiation, it appears that the sub-lethal doses (Craenen
et al., 2017) used for the behavioral assays (≤0.5Gy) might have
been too low to elicit any functional detriment. Indeed, in terms
of motor performance, none of the behavioral tests could identify
a clear impairment following irradiation, as is discussed in more
detail below.

Persistent Radiation-Induced Defects in
the Adult Nervous System and the
Preventive Role of FA
Because pre-natal exposure to ionizing radiation can induce gross
congenital central nervous system defects (e.g., microphthalmos
and anophthalmos) at moderate to high X-ray doses (0.5–1.0Gy)
(Craenen et al., 2017), we decided to explore whether this can
elicit functional and morphological neurological defects that
persist into adult age.

We used in vivo MRI to investigate whether X-ray exposure
during neurulation has an effect on adult brain and eye
morphology. Although we observed no global microcephaly, as
was shown after irradiation during neurogenesis (Verreet et al.,
2015, 2016a), volumetric analyses unveiled a decreased volume
of some dedicated brain areas. More specifically, we observed
that 0.5Gy significantly reduces the size of the hippocampus,
striatum, thalamus, midbrain and pons. These structures are
involved in various mechanisms, ranging from cognition to
visual acuity. For example, the thalamus is known for its
importance in processing and relaying visual information (Tyll
et al., 2011). The pons and midbrain are also involved in visual
functioning, as anomalies within these brainstem regions can
result in both horizontal and vertical gaze palsy (Strupp et al.,
2014; Lin et al., 2018). Furthermore, we observed that irradiation
with 0.5Gy decreased the axial length of the adult eye, which can
be relayed directly to an increased incidence of radiation-induced
microphthalmia (Verma and Fitzpatrick, 2007; Craenen et al.,
2017), and can be associated to an increased risk of refractive
errors (Bhardwaj and Rajeshbhai, 2013). Supporting the MRI-
based findings, SD-OCT revealed a decreased thickness of the
NF+GCL layer in the adult eye, following 0.5Gy at E7.5, which
might lead to a decreased visual acuity (Moster et al., 2016).

Concomitant with these radiation-induced alterations in the
brain and the observed eye anomalies, we indeed observed a
decreased visual acuity following E7.5 irradiation. Interestingly,
this was also observed in 0.1 Gy-irradiated animals, that did
not show a decreased eye size and NF+GCL thickness nor a
reduction in brain volumes, suggesting that other mechanisms
might also be involved. Themorphological defects underlying the
radiation-induced loss of visual acuity may thus extend beyond
changes in eye structure and warrants further investigation.

Even though pre-natal irradiation had no marked impact
on the olfactory system in the adult brain, behavioral tests for
olfaction were included in the test battery. This decision was
based on a previous study that showed transient transcriptional
disturbances in the embryonic head following 1.0Gy irradiation
at E7.5 that were related to the development of the olfactory
epithelium (Craenen et al., 2020b). This is an important
observation, as the olfactory system starts to develop during this
neurulation period (Treloar et al., 2010). Besides, the overall
process of olfaction extends well-beyond the olfactory lobe
(Lehmkuhl et al., 2014), with congenital anomalies within the
peripheral olfactory system (e.g., the olfactory epithelium) having
been linked to hyposmia (Bergman et al., 2010). We are the
first to demonstrate a decreased olfactory acuity in adult mice
following 0.5Gy at E7.5. In particular, we could demonstrate a
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more pronounced anosmia for NS than S odors, which could
be attributed to the functional importance of social odors
and/or chemical differences between the respective odorants
(Sinding et al., 2017). Since defects at this level might explain
the observed hyposmia, it is of interest for future studies to
more closely investigate this complex structure following pre-
natal X-irradiation.

In contrast to the morphological and sensory anomalies
discussed above, we observed no effect of irradiation on
cognition. Previous behavioral screenings demonstrated that
irradiation of mice during neurogenesis had a marked effect
on memory-based performance (Verreet et al., 2015, 2016a).
However, when we irradiated animals during neurulation, no
evidence for impaired memory formation or retention could
be observed, both for spatial and fear-dependent learning.
The observation that 0.5Gy irradiation decreases hippocampal
volume may appear paradoxical in that sense, but this volumetric
decrease might not be directly related to a loss in function.
Although irradiated animals had a notable loss of visual acuity,
the defect may have been too small to influence MWM
performance, which depends on large and distinct visual cues
(Lindner et al., 1997; Brown andWong, 2007; Phillips et al., 2013;
Vorhees and Williams, 2014).

Many of the radiation-induced anomalies that were observed
in adult mice could be (in part) prevented by FA fortification.
FA fortification by itself had only a minimal impact on the adult
tests. For instance, we observed a decreased social exploration
in mice on the FA-fortified diet and also identified a lower
volume of the basal ganglia (i.e., caudate putamen and adjacent
structures). This might be related to the social impairments in
these mice, since a decreased basal ganglia volume was already
linked with autism-spectrum disorder (Barua et al., 2014), but
whether FA fortification is a risk factor for abnormal social
behavior remains controversial [reviewed in Wiens and DeSoto
(2017)]. Furthermore, this volumetric loss might have played a
role in the changes in cage activity as well, because the basal
ganglia are involved in the regulation of the sleep-wake cycle (Qiu
et al., 2010) and general activity (Portmann et al., 2014).

It is important to note that, depending on the causative factor,
congenital defects may respond in a dose-dependent manner
to FA fortification, with higher doses of FA yielding lower
defect prevalences (Gray and Ross, 2009). Yet, in our study, the
radioprotective role of FA did not appear dose-responsive and
no added benefit was noted following 12 mg/kg FA fortification.
Hence, we decided to limit the studies in adult animals to the
8 mg/kg FA diet. Radiation-induced volumetric decreases of
the hippocampus, striatum, thalamus, midbrain and pons were
prevented with FA fortification. In addition, FA rescued visual
acuity loss following a dose of 0.1Gy, but not 0.5Gy. Yet, not all
morphological eye anomalies were prevented by FA, for instance
the radiation-induced reduction of NF+GCL thickness. Finally,
radiation-induced hyposmia for NS odors was alleviated by AF.
To the best of our knowledge, were are the first to highlight this
radioprotective/antiteratogenic character of FA. In all, we can
conclude that X-ray exposure during neurulation affects the adult
nervous system at both a morphological and functional level,
from a dose of 0.1Gy onward, and that these defects can be in part

prevented by FA food fortification. In the context of radiation
protection, our study supports the use of FA fortification to
increase the dose threshold required to elicit adult brain and
eye anomalies.

Potential Mechanisms Underlying
FA-Mediated Radioprotection
Although the exact mechanism through which FA elicits its
radioprotective role is currently unknown, it is still of interest
to highlight several likely modes of action. A first hallmark
consequence of ionizing radiation exposure is the generation
of reactive oxygen and nitrogen species, which can in turn
damage various cellular structures. The detrimental impact of
excessive oxidative stress in the developing embryo and pregnant
mother has been repeatedly addressed in literature. Indeed,
it appears that a disturbed redox status is a recurrent theme
in the etiology of birth-defects caused by various chemicals,
including thalidomide, phenytoin and ethanol (Dennery, 2007).
FA is known to have antioxidative properties in vitro, which is
suggestive of its potential radioprotective effect, but it remains
unclear whether this antioxidative role persists at a systemic level
in vivo. A second hallmark consequence of irradiation is DNA-
damage (Reisz et al., 2014), which can theoretically be repaired
more efficiently with an increased access to one-carbon donors
such as FA. A third hallmark consequence of irradiation includes
epigenetic alterations, in particular DNA methylation. Folates
fulfill an important role in DNAmethylation (Crider et al., 2012).
As the key one-carbon donor behind the methylation process,
it stands to reason that changes in the folate pool would affect
this epigenetic process and potentially reverse radiation-induced
DNA hypomethylation. The fourth potential mode-of-action lies
in radiation-induced changes in the transcriptome and proteome.
We previously demonstrated that X-irradiation (1.0Gy) at E7.5
in mice reduced the expression of Lhx2, a key transcription factor
for eye, brain and olfactory development (Craenen et al., 2020b).
Furthermore, mutations in genes associated with Lhx2 are known
to cause birth defects such as exencephaly (Barbera et al., 2002).
As such, it is of interest to assess whether the radiation-induced
suppression of Lhx2 transcription/translation can be alleviated
by FA fortification. Although this study does not address any of
the aforementioned modes-of-action directly, an exploration of
the mechanisms that might be involved in the antiteratogenic
and radioprotective effect of folic acid is warranted. Such novel
insights might contribute to developing even more efficient
means to protect the unborn child from genotoxic hazards such
as radiation.

CONCLUSION

FA food fortification is effective at partially preventing the
embryotoxic effects of X-ray exposure. Specifically severe defects
such as anophthalmos, exencephaly and agnathia were responsive
to FA. In addition, late fetal deaths, the incidence of resorptions,
fetal weight and skeletal defects within the cervical and thoracal
vertebrae were all negatively affected by 1.0Gy X-irradiation at
E7.5, which was in turn partially countered by FA. Behavioral
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studies demonstrated that X-ray exposure to sub-lethal doses
(≤0.5Gy) at E7.5 resulted in a decrease of visual acuity and
olfactory performance in the habituation/dishabituation test.
The impaired visual performance was supported by radiation-
induced loss of NF+GCL thickness and a decreased eye diameter,
at least for the highest dose of 0.5Gy. We can conclude from
our MRI data that irradiation during neurulation has more
site-specific consequences than irradiation during neurogenesis
(Verreet et al., 2015, 2016a). As such, it would be of interest to
follow up this study with more sensitive behavioral tests, tailored
more specifically to those brain regions that are decreased in
volume following X-irradiation.

The increasing exposure of humans to ionizing radiation
is a contemporary topic that deserves proper investigation.
The heightened exposure to ionizing radiation finds its roots
in the clinical environment, nuclear disasters, war or terrorist
activities and natural sources such as Radon gas. With this
research paper, the authors wish to address and promote novel
radioprotection strategies such as FA fortification and the future
implementation thereof in high-risk groups that currently do
not have access to FA-fortified staple foods (or FA supplements).
Included in these risk-groups are e.g., pregnant patients who
require radiodiagnostics or radiotherapy and pregnant women
living in radioisotope-contaminated regions. The fetal doses
that can be expected during clinical exposure events (including
conventional radiotherapy, computed tomography and nuclear
medicine) range from 0.01 to 43.9 mGy (Lazarus et al., 2009).
These doses are lower than those used in this study, as we
opted to reduce the number of animals required to observe
significant radiation effects. As such, it is difficult to make a
direct extrapolation from the animal research presented here
to the human exposure scenarios listed above. Nonetheless, as
a proof of concept this study demonstrates the potential for
using FA fortification to protect the unborn child against ionizing
radiation. Protecting the unborn child from the detrimental
effects of ionizing radiation will improve their quality of
life, by preventing radiation-induced birth defects and sensory
deprivation. Although our study in mice indicates that ad libitum
FA food fortification at 8 mg/kg is sufficient to provide a
radioprotective effect, the optimal concentration for humans
remains to be studied in the context of radiation protection.

Considering both the promising results and the limitations of
this study, the authors support larger (epidemiological) studies
(with lower fetal radiation doses) to explore the use of FA as a
radioprotectant in humans.
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Nationwide, opioid misuse among pregnant women has risen four-fold from 1999 to
2014, with commensurate increase in neonates hospitalized for neonatal abstinence
syndrome (NAS). NAS occurs when a fetus exposed to opioids in utero goes into rapid
withdrawal after birth. NAS treatment via continued post-natal opioid exposure has been
suggested to worsen neurodevelopmental outcomes. We developed a novel model to
characterize the impact of in utero and prolonged post-natal oxycodone (Oxy) exposure
on early behavior and development. Via subcutaneous pump implanted before breeding,
C57BL/6J dams were infused with Oxy at 10 mg/kg/day from conception through
pup-weaning. At birth, in utero oxy-exposed pups were either cross-fostered (paired
with non-Oxy exposed dams) to model opioid abstinence (in utero Oxy) or reared by
their biological dams still receiving Oxy to model continued post-natal opioid exposure
(prolonged Oxy). Offspring from vehicle-exposed dams served as cross-fostered (in
utero Veh) or biologically reared (prolonged Veh) controls. In utero Oxy exposure resulted
in sex-dependent weight reductions and altered spectrotemporal features of isolation-
induced ultrasonic vocalization (USV). Meanwhile, prolonged Oxy pups exhibited
reduced weight and sex-differential delays in righting reflex. Specifically, prolonged
Oxy female offspring exhibited increased latency to righting. Prolonged Oxy pups also
showed decreases in number of USV calls and changes to spectrotemporal USV
features. Overall, ontogenetic Oxy exposure was associated with impaired attainment
of gross and sensorimotor milestones, as well as alterations in communication and
affective behaviors, indicating a need for therapeutic interventions. The model developed
here will enable studies of withdrawal physiology and opioid-mediated mechanisms
underlying these neurodevelopmental deficits.

Keywords: opioid, behavior, in utero, post-natal, oxycodone, neonatal abstinence syndrome
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INTRODUCTION

In the past two decades, illicit drug use and prescription opioid
use in the United States have risen to epidemic proportions, with
the United States Department of Health declaring a public health
emergency in 2017. The United States Department of Health
states that 46,802 people died from opioid overdose in 2018 and
an estimated 2 million people have an opioid use disorder (ASPA,
2017). The public health crisis is largely driven by increased
misuse of the prescription opioids hydrocodone, oxycodone
(Oxy), and methadone (Kenan et al., 2012; Haight, 2018).

As a result of the opioid epidemic, the national prevalence
of opioid use disorder among pregnant women has more
than quadrupled, from 1.5 to 6.5 per 1,000 deliveries, from
1999 through 2014 (Haight, 2018). Consequently, there
has been a significant increase in the number of neonates
hospitalized for neonatal abstinence syndrome (NAS), a
constellation of withdrawal symptoms affecting the nervous
system, gastrointestinal tract, and respiratory system following in
utero exposure to opioids (Wiles et al., 2014). Currently, medical
management of NAS involves keeping the infant swaddled in
a low-stimulation environment with promotion of maternal-
infant bonding (Wiles et al., 2014). In cases of moderate-severe
NAS, neonatal withdrawal is managed by opioid replacement
therapy to alleviate withdrawal symptomatology (Wiles et al.,
2014). Overall, clinical studies have not addressed whether
long-term neurobehavioral outcomes are improved by managing
withdrawal or whether continued post-natal exposure to opioids
and adjunct agents used for withdrawal management worsen
long-term outcomes (Hudak et al., 2012).

Epidemiological evidence suggests that in utero opioid
exposure is associated with lower birth weight and adverse
neurodevelopmental outcomes in childhood, including
cognitive deficits, attention deficit hyperactivity disorder
(ADHD), aggression, impaired language development, and
decreased social maturity (Hunt et al., 2008; Azuine et al.,
2019; Conradt et al., 2019). However, large epidemiological
studies evaluating long-term behavioral outcomes of children
exposed to in utero opioids have been difficult to perform due
to confounding environmental variables including genetic and
epigenetic factors, quality of caregiving, continued parental
substance abuse with its impact on the maternal-infant dyad,
and other socioeconomic variables which can significantly
affect neurodevelopmental outcomes (Lutz and Kieffer, 2013).
Consequently, the development of ontogenetic rodent models
of opioid exposure is necessary to enable investigation of the
biological mechanisms mediating deficits as well as testing
alternative treatment avenues for post-natal withdrawal.

To date, there have been a limited number of rodent studies
evaluating early life developmental milestones following in utero
opioid exposure. Current literature on early developmental
effects of in utero opioid exposure in pre-clinical models
demonstrates decreased birth weight following methadone and
buprenorphine exposure (Kunko et al., 1996; Hung et al.,
2013; Chiang et al., 2015). Increased latency to right has
been observed following in utero morphine exposure and
is suggestive of different classes of opioids having variable

effects on developmental outcomes (Slamberová et al., 2005;
Niu et al., 2009). Opioids exert their pharmacologic effects
by activating the endogenous opioid system. While opioids
are prescribed for their analgesic effects, acute activation of
the µ-opioid receptor (MOR) by these medications has also
been associated with feelings of euphoria, award reinforcement,
and increased socio-emotional processing, which are linked
to the drugs’ potential for misuse (Vanderschuren et al.,
1995). Despite the rising incidence of Oxy misuse, there is
a paucity of literature evaluating the effects of Oxy, a µ-
and κ-agonist, on early developmental behaviors. κ-agonists
are of particular interest because over-activation of κ-opioid
receptors (KOR) by dynorphin upregulation has been implicated
in withdrawal physiology and depressed mood in humans, along
with decreased social play in juvenile rodents (Vanderschuren
et al., 1995; Li et al., 2016). In addition, most rodent opioid
exposure models begin exposure mid-pregnancy, which may
explain inconsistently documented or absent developmental
changes (Richardson et al., 2006). To address the above
concerns, we are adopting an ontogenetic model in which
opioid exposure spans preconception through early offspring
development. This new model also enables us to better
understand the ontogenetic impact of short- and long-term
opioid exposure on early development in the absence of
confounding factors present in clinical observational studies.
Specifically, we evaluated the effects of in utero Oxy exposure
on early developmental and behavioral outcomes in male and
female offspring of C57BL/6J mouse dams. We implemented
a cross-fostering approach that allows us to compare the
neurodevelopmental impact of continued post-natal opioid
exposure (prolonged Oxy) to the impact of exposure only until
birth (in utero Oxy) by pairing opioid exposed pups with
non-oxy exposed dams.

Overall, we observed differences in the spectrotemporal
features of affective vocalizations and sex-based differences in
weight gain trajectories in offspring exposed to in utero Oxy.
Continued post-natal Oxy exposure (prolonged Oxy) further
impacted weight, communicative behavior, and sensorimotor
reflexes. Our findings suggest that pups with continued post-
natal opioid exposure showed worse overall developmental
outcomes compared to pups following opioid cessation at
birth, which may have implications regarding the safety
of continued opioid treatment as mitigation for clinical
NAS symptomology.

MATERIALS AND METHODS

Animals
Animal Ethics, Selection, and Welfare
All procedures using mice were approved by the Washington
University Institutional Care and Use Committee and conducted
in accordance with the approved Animal Studies Protocol.
C57BL/6J mice (Jackson Laboratory, stock #: 000664) were
housed in individually ventilated translucent plastic cages (IVC)
measuring 36.2 × 17.1 × 13 cm (Allentown) with corncob
bedding and ad libitum access to standard lab diet and
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TABLE 1 | Litter and group size, including number of pups at the level of litter,
group, and experiment.

Litter ID Group No. of pups

1 Prolonged Oxy 5

2 Prolonged Oxy 4

3 Prolonged Oxy 3

4 Prolonged Oxy 6

5 Prolonged Oxy 6

Total: 24

6 In utero Oxy 5

7 In utero Oxy 6

8 In utero Oxy 6

9 In utero Oxy 6

10 In utero Oxy 6

Total: 29

11 Prolonged Veh 6

12 Prolonged Veh 6

13 Prolonged Veh 6

14 Prolonged Veh 6

15 Prolonged Veh 6

Total: 30

16 In utero Veh 5

17 In utero Veh 6

18 In utero Veh 3

19 In utero Veh 6

20 In utero Veh 5

21 In utero Veh 3

Total: 28

Total pups: 111

water. Animals were kept at 12/12 h light/dark cycle, and
room temperature (20–23◦C) and relative humidity (50%) were
controlled automatically.

Adult male and female mice were used for breeding cohorts
as described below. Sample sizes were determined by power
analyses (f = 0.40, α = 0.05, 1-β = 0.80). A total of 24 dams were
housed in pairs and randomly selected to receive either the Oxy
or Vehicle (Veh) treatment infusion. In addition, another set of
pair-housed, drug-naïve dams served as foster dams. The total
sample size was 111 pups (Table 1). Since an inexperienced dam
can exhibit poor maternal behavior with her first litter, all females
were first bred to an age-matched male at post-natal day (P) 60.
Following weaning of the first litter, treatment dams underwent
surgical subcutaneous pump placement at P95 followed by a 1-
week recovery period (Figure 1A). Afterward, each female dam
was placed into an individual cage containing a male for breeding.
Foster dams were bred at the same time and remained untreated
throughout pregnancy. Following 20 days of co-habitation, cages
were checked daily for pups. Upon detection, dam and litter
were moved to a new cage, without the male, and culled to 6–
8 pups per litter with equal males and females when possible.
To evaluate the behavioral impact of early opioid cessation in
the developing offspring, half of the litters (in utero Oxy and in
utero Veh) were cross-fostered at this time to drug-naïve dams
by removing the pups from their biological dam and transferring

them to the nest of a lactating foster dam with two of her own
pups of the same approximate age (Figure 1B; Lohmiller and
Swing, 2006). The remaining litters were reared by the biological
dam and exposed to post-natal vehicle (prolonged Veh) or Oxy
(prolonged Oxy) through lactation (Figures 1A,B). To control
for litter effects, each group included multiple, independent litters
(Table 1). All mice were weaned at P21 and group-housed by
sex with random assignment for drug/dam. A subset of the
in utero Oxy mice required saline injections at P23-P25 due
to skin tenting, hunched posture, and significant weight loss
concerning for dehydration. Following saline injections, recovery
was noted in two of the three affected mice with one associated
mortality. Experimenters were all female and blinded to group
designations during testing.

Drug Dosage
The dosage of Oxy (Sigma-Aldrich, Saint Louis, MO,
United States; Lot#: SLBX4974) administration was guided
by previous literature with concentrations ranging from 0.5 to
33 mg/kg/day (Enga et al., 2016; Sithisarn et al., 2017; Zanni
et al., 2020). Based on this dosage range, we generated our
own dosage curve through continuous Oxy administration to
pregnant dams at 5, 10, or 15 mg/kg/day using the subcutaneous
Alzet 2006 model pump (Durect Corporation, Cupertino,
CA, United States; Lot #: 10376-17). We chose the dose of
10 mg/kg/day administered at 0.15 ul/h to pregnant dams
as increased concentrations at 15 mg/kg/day resulted in
lower litter success rate (vehicle, 5 and 10 mg/kg/d: 100%
success rate; 15 mg/kg/d: 80% success rate). We chose to
administer a consistent dose of opioids to the dam throughout
pregnancy and lactation to model the current management
of pregnant mothers with opioid use disorder. Women with
opioid use disorder are now encouraged to enroll in opioid
medication-assisted treatment programs with the goal of
attaining a steady-state drug level. Maintaining a consistent
level of opioid administration during pregnancy in mothers
with opioid use disorder limits adverse maternal and fetal
consequences associated with fluctuations related to higher
opioid concentrations. Increases in opioid dosage can result
in maternal respiratory depression and lethal overdose and
may decrease fetal heart rate and variability (Krans et al., 2015;
Rosenthal and Baxter, 2019).

Surgery and Drug Delivery System
Female dams were anesthetized at P95 with isoflurane (5%
induction, 2% maintenance, 0.5 l/min) and placed in the
mouse adapter (Stoelting, Wood Dale, IL, United States). Body
temperature was maintained at 37◦C using a heating pad. The
dorsum of the back was shaved and a ∼1 cm horizontal incision
was made below the scapulae with subsequent formation of
a subcutaneous pocket. The Alzet pump was implanted and
continuously infused with either Oxy or sterile 0.9% NaCl (Veh)
over a period of 60 days. The pump duration allowed for adequate
post-surgical recovery time, breeding, and administration of
treatment through weaning of offspring at P21. In addition, the
use of a subcutaneous pump limited unwanted maternal stress
that can occur with daily injections.
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FIGURE 1 | Ontogenetic model of prolonged and limited maternal Oxy exposure. (A) Schematic of the paradigm for maternal Oxy exposure, including duration of in
utero and prolonged maternal treatment, dam ages at experimental manipulations in yellow, and pup age for behavioral tests in purple. (B) Outline of the four
different experimental groups, including Oxy or Veh exposure, and rearing dam exposure status.

Behavioral Testing
Maternal Isolation-Induced Ultrasonic Vocalization
Recording
Neonates with NAS often exhibit excessively high-pitched
crying, irritability, and prolonged periods of inconsolability
(Anbalagan and Mendez, 2020). Affective characteristics of
ultrasonic vocalizations (USVs) in rodents are generally thought
to communicate different emotional states, such as aggression
or pain. USV quantity, duration, pitch, frequency, and loudness
(dB) of the calls allow for the assessment of call characteristics
following in utero Oxy exposure (Vivian and Miczek, 1993a,b).
USV recordings were performed on P5, P7, P9, and P11
(Figure 1A). Dams were removed from the home cage and
placed into a clean IVC for the duration of testing. The
home cage with the pups in nest was placed into a warming
box (Harvard Apparatus) set to 34◦C for 10 min prior to

the start of testing. We maintained an average pup surface
body temperature of 34◦C prior to placement into the USV
recording chamber, as low pup body temperature increases USV
production (Branchi et al., 2001). The surface body temperature
of all pups was assessed via a non-contact HDE Infrared
Thermometer prior to placement into the recording chamber,
and no differences in body surface temperature were observed
between groups. The recording chamber was maintained at room
temperature (22–23◦C). For recording, pups were individually
removed from the home cage and placed into an empty
standard mouse cage (28.5 × 17.5 × 12 cm) inside a sound-
attenuating chamber (Med Associates). USVs were recorded
via an Avisoft UltraSoundGate CM16 microphone placed 5 cm
away from the top of the cage, Avisoft UltraSoundGate 116H
amplifier, and Avisoft Recorder software (gain = 3 dB, 16 bits,
sampling rate = 250 kHz). Pups were recorded for 3 min,
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after which they were weighed and returned to home cages.
Frequency sonograms were prepared from USV recordings
in MATLAB [frequency range = 25–120 kHz, Fast Fourier
Transform (FFT) size = 512, overlap = 50%, time resolution
1.024 s, frequency resolution = 488.2 Hz]. Individual calls
and other spectrotemporal features were identified from the
sonograms adapted from validated procedures (Holy and Guo,
2005; Maloney et al., 2018a,b).

Developmental Reflexes and Milestones Assessment
Mice were evaluated for achievement of physical and behavioral
milestones from early development through early juvenile stage.
Weight was measured at 10 time points: P5, P7, P9, P11,
P14, P23, P25, P27, and P30. A visual inspection of normal
physical milestone attainment was performed with evaluation for
detached pinnae at P5 and eye opening at P14. Righting reflex
was assessed at P14 as follows: each mouse was placed prone onto
its abdomen and quickly pronated 180◦ to its back in a smooth
motion. The time for the mouse to right itself with all four paws
positioned underneath the abdomen was recorded (Zanni et al.,
2020). Each mouse underwent three timed trials, which were
averaged for analysis.

Statistical Analyses
SPSS (IBM, v.25) was used for all statistical analyses. Data
were screened for missing values, influential outliers, fit between
distributions and the assumptions of normality and homogeneity
of variance. Variables that violated assumptions of normality
(including number of USV calls, mean pitch, pitch range, and
peak power) were square root-transformed. Data were analyzed
using hierarchical linear models with sex clustered within litters
and age clustered within individual pups. Fixed factors were
dam, drug, sex and, where appropriate, age. Age was also treated
as a random repeated effect and was grand mean-centered for
analysis. Interactions between the fixed factors are reported when
significant. If an interaction effect was significant, p-values were
obtained from the hierarchical linear model for simple main
effects and reported for differences between different levels within
the interaction. If sex had a significant main effect, findings are
shown segregated by sex. As litter size can influence behavior and
litter cannot be separated from drug treatment in this study, all
models included litter size as a covariate. Probability value for
all analyses was p < 0.05. Test statistics and analysis details are
provided in Table 2. The datasets generated for this study are
available upon reasonable request to the corresponding author.

RESULTS

Oxycodone Impacted Developmental
Weight Trajectories Differentially by Sex
and Exposure Duration
We examined the effects of Oxy administration on gross and
sensorimotor development in mice from birth throughout the
early juvenile stage (Figures 2A,B). To evaluate general health
and gross development, we assessed the appearance of physical
milestones and weight. No differences were observed between

TABLE 2 | Test statistics from hierarchical linear models.

Variable Factor Output p-value

Weight (g) Sex F (1, 107) = 10.219 p = 0.002

Drug F (1, 109) = 5.448 p = 0.021

Age F (9, 901) = 785.001 p = 0.000

Litter Size F (1,102) = 9.922 p = 0.002

Sex × Dam × Drug × Age F (67, 685) = 4.232 p = 1.2916E−22

Righting
reflex

Dam F (1,24) = 4.630 p = 0.042

Sex × Dam × Drug F (4,74) = 2.518 p = 0.048

Litter Size F (1,26) = 9.335 p = 0.005

Number of
USV calls

Dam F (1,156) = 7.015 p = 0.009

Drug F (1,151) = 12.000 p = 0.001

Dam × Drug F (1,159) = 5.223 p = 0.024

Litter Size F (1, 159) = 3.064 p = 0.082

Pitch range
(Hz)

Drug F (1,169) = 8.456 p = 0.004

Dam × Drug F (1,169) = 13.528 p = 0.000315

Age × Dam × Drug × Sex F (24, 319) = 1.385 p = 0.097

Mean pitch
(Hz)

Drug F (1,160) = 29.552 p = 1.9953E−7

Dam × Sex F (1,160) = 5.373 p = 0.022

Drug × Sex F (1,160) = 5.354 p = 0.022

Sex × Dam × Drug F (1,160) = 8.365 p = 0.004

Sex × Dam × Drug × Age F (24, 301) = 1.617 p = 0.036

Sex F (1, 161) = 3.190 p = 0.076

Peak
power (dB)

Dam F (1,163) = 5.632 p = 0.019

Drug F (1,171) = 10.327 p = 0.002

Dam × Drug F (1,172) = 12.399 p = 0.001

Litter Size F (1,161) = 6.313 p = 0.013

Showing significant main and interaction effects. Age was grand mean-centered
for analysis, where included. Litter size was included as a covariate.

groups for pinnae detachment at P5 or eye opening by P14. In
our analysis of weight, we found male mice weighed significantly
more than females in all groups at all ages, and therefore, weight
data are segregated by sex (Figures 2C,D) from the full factorial
linear mixed model including sex, drug, and duration as factors.

Prolonged Oxy exposure led to an overall decrease in mean
weight compared to prolonged Veh exposure, which was more
pronounced in male offspring. Prolonged Oxy-exposed male
offspring exhibited significantly reduced weights compared to
prolonged Veh offspring post-weaning at P25, P27, and P30, with
non-significant reductions at P23 (Figure 2E). Female prolonged
Oxy offspring showed significantly reduced weight compared
to prolonged Veh controls at P21, P23, and P25, with non-
significant reductions at P27 and P30 (Figure 2F). These data
indicate that overall prolonged Oxy exposure reduces weight
across development in male and female offspring, with the effect
on weight gain compounding once potentially compensatory
maternal care is lost after weaning.

We then evaluated the potential effects of early opioid
cessation (in utero Oxy) on weight gain in male and female
offspring and once more found male offspring susceptible to Oxy
effects. In contrast to prolonged exposure, an overall reduction in
weight was not observed with in utero Oxy exposure compared
to in utero Veh exposure. However, in utero Oxy males showed
a precipitous decrease in weight gain trajectory after weaning
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FIGURE 2 | Prolonged and in utero Oxy exposure, as well as cross-fostering, decreases weight gain after weaning. (A) Schematic of the treatment paradigm for
maternal Oxy exposure and weight measurements throughout development. (B) Line graph of weight in all offspring (sex, p = 0.002; drug, p = 0.021; age,
p < 0.000; sex × dam × drug × age, p = 1.2916E-22). (C,D) Line graph of weight in (C) male and (D) female offspring. (E,F) Prolonged Oxy exposure, relative to
prolonged Veh exposure, led to significantly lower weights post-weaning in (E) male (P23, p = 0.075; P25, p = 0.027; P27, p = 0.011; P30, p = 0.002) and (F)
female offspring (P21, p = 0.010; P23, p = 0.041; P25, p = 0.022; P27, p = 0.075; P30, p = 0.089). (G,H) In utero Oxy exposure, relative to in utero Veh exposure,
led to significantly lower weights post-weaning in (G) male offspring only (P23, p = 0.042; P25, p = 0.001; P27, p = 0.001; P30, p = 0.000018), with no effects in (H)
female offspring. (I,J) In utero Oxy exposure with cross-fostering, relative to prolonged Oxy exposure, led to decreased weight in adolescence in (I) male pups only
(P5, p = 0.049; P25, p = 0.053; P27, p = 0.026; P30, p = 0.002), with no effects in (J) female offspring. (K,L) In utero Veh exposure with cross-fostering, relative to
prolonged Veh exposure, led to decreased weight post-weaning in (K) male (P27, p = 0.063; P30, p = 0.011) and (L) female offspring (P21, p = 0.057; P23,
p = 0.042; P25, p = 0.033; P27, p = 0.064; P30, p = 0.035). Closed circles depict mean weight, with litter size as a covariate (p = 0.002), while open circles depict
individual weights. Gray vertical line indicates date of weaning.

from the foster dam at P23, P25, P27, and P30 as compared to
in utero Veh controls (Figure 2G). Female in utero Oxy offspring
showed no difference in weight across development compared to
in utero Veh controls (Figure 2H). Clinically, male infants are
more susceptible to NAS (Charles et al., 2017), so the precipitous
decrease in weight gain trajectory in the in utero Oxy male
offspring may be associated with withdrawal symptomatology
unmasked by cessation of care under a foster dam.

We also examined weight trajectories between in utero and
prolonged vehicle-exposed groups. In vehicle-exposed males,
cross-fostering was associated with decreased weights in the in
utero Veh group at P30, with a trend toward decreased weight at
P27, relative to the prolonged Veh group (Figure 2K). Of interest,
cross-fostered female pups (in utero Veh) weighed less compared
to prolonged Veh female pups post-weaning at P23, P25, and P30
(Figure 2L). These findings suggest that cross-fostering alone can
influence post-weaning weight trajectories in a sex-dependent
manner. However, it is noteworthy that the decrease of weight
gain trajectories in the male in utero Oxy group persisted above
and beyond the observed decreased weights in male in utero Veh
controls, indicating in utero Oxy exposure affects weight gain
when controlling for cross-fostering (Figure 2G).

We have shown so far that Oxy exposure, compared to Veh,
decreased post-weaning weight following both long and short
exposures. We next sought to determine how the duration of
Oxy exposure influences weight by assessing the weight gain
trajectory differences between prolonged and in utero Oxy pups.
Comparisons between the male mice showed in utero Oxy pups
initially weighed more than prolonged Oxy pups at P5. However,
after the in utero Oxy male pups were weaned at P21, their
weights decreased relative to the prolonged Oxy group at P27 and
P30 (Figure 2I). No differences in weight gain between in utero
and prolonged groups were detected in female Oxy-exposed pups
(Figure 2J). Overall, early Oxy cessation was associated with
increased weights at very early post-natal ages, followed by weight
loss in males at weaning.

Prolonged Oxycodone Exposure Altered
Sensorimotor Reflex in Female Offspring
Only
Righting reflex at P14 was examined as an assessment of
sensorimotor milestones, early gross locomotor abilities, and
general strength (Figures 3A,B). In males, no difference in
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FIGURE 3 | Oxy exposure delays maturing of sensorimotor reflexes. (A) Schematic of the treatment paradigm for maternal Oxy exposure and righting reflex
measurement throughout development. (B) Mean latency to right in all offspring (sex × dam × drug × age, p = 0.048; dam, p = 0.042). (C,D) Mean latency to right
in (C) male and (D) female offspring. Prolonged Oxy exposure led to significantly longer latency to right relative to in utero Oxy (p = 0.032) in (C) male pups and
relative to prolonged Veh (p = 0.024) in (D) female pups. Male pups exposed to prolonged Veh also show longer latency to right relative to in utero Veh (p = 0.036).
Mean latencies, with litter size as a covariate (p = 0.005), while open circles depict individual latencies. Error bars represent standard error.

latency to right was noted between the prolonged Oxy or
prolonged Veh groups (Figure 3C). An increased latency to right
was demonstrated in prolonged Oxy male pups compared to in
utero Oxy. However, cross-fostering may have a confounding
effect on the righting reflex in male pups, since prolonged
Veh males also exhibited an increased latency to right relative
to in utero Veh males. In females, prolonged Oxy pups
exhibited significantly increased latency to right relative to
prolonged Veh controls (Figure 3D). No significant differences
in the righting reflex were observed in the in utero Oxy or
in utero Veh female offspring. Together, these data indicate
that females, but not males, are susceptible to the effects of
prolonged developmental Oxy exposure on attainment of the
sensorimotor reflex.

Oxycodone Exposure Disrupts Early
Communicative Behaviors
Language delays have been demonstrated in toddlers with
prenatal opioid exposure (Conradt et al., 2019). Therefore,
we assessed early affective and communicative behaviors by
evaluating maternal isolation-induced USVs. USVs are an
affective and communicative response that elicits maternal search
and retrieval, lactation, and caretaking behaviors (Haack et al.,
2009; Maloney et al., 2018a). As a result, characterization of
quantity and quality of USV calls has been used in the rodent
literature as a model for investigating early communicative
deficits (Enga et al., 2016). Here, we quantified USV production
and spectrotemporal features to examine the influence of Oxy
on early communicative behaviors during the first 2 weeks of
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life (Figure 4A). Overall, we detected a highly significant effect
of continued Oxy exposure on USV production. Specifically,
prolonged Oxy pups produced significantly fewer USVs relative
to prolonged Veh pups and in utero Oxy pups (Figure 4B), which
persisted from P5 through P11 (Figure 4C), an age at which the
C57Bl/6J strain used here still has a detectable call rate (Rieger
and Dougherty, 2016). While we did not see as substantial of a
peak at P7/P9 as we normally see in these experiments, the effect
of prolonged Oxy was consistent regardless.

Beyond call numbers, spectrotemporal USV features such
as duration, pitch frequency, and power (loudness) inform
of an affective component to USV characteristics (Wöhr and
Schwarting, 2013). In previous analyses of USV spectrotemporal
features in mouse models of intellectual and developmental
disorder risk factors and early drug exposure models, we and
others have demonstrated the vulnerability of these features
to genetic and early environmental insults (Dougherty et al.,
2013; Maloney et al., 2018a,b; Kopp et al., 2019). We examined
call features including call duration, pitch range and mean,
peak power, and fraction of calls with a pitch jump. Prolonged
Oxy administration narrowed the USV pitch range compared
to USVs produced by in utero Oxy pups and prolonged Veh
controls (Figure 5A). Prolonged Oxy exposure also led to a
highly significant reduction in mean pitch of USVs in prolonged
Oxy male pups compared to in utero Oxy and prolonged Veh
males (Figure 5B). Interestingly, USVs produced by prolonged
Oxy female pups did not show a significant difference in pitch

compared to prolonged Veh females (Figure 5C). However,
female in utero Oxy offspring did exhibit USVs with significantly
lower mean pitch relative to in utero Veh. A similar non-
significant reduction in mean pitch was observed in USVs
produced by in utero Oxy males relative to in utero Veh
males (Figure 5B). Thus, in utero Oxy exposure was associated
with changes in affective components of communication, the
significance of which warrants further investigation. Since opioid
withdrawal has been associated with high-pitched crying and
increased agitation, we also assessed for alterations in USV peak
power. In utero Oxy exposure resulted in louder USV calls
compared to those produced by prolonged Oxy pups and in utero
Veh controls (Figure 5D). The increased peak power, or loudness,
in in utero Oxy pup calls only may be temporally related to onset
of withdrawal after drug cessation at P0, relative to the prolonged
Oxy pups which are weaned off the drug at P21.

Overall, prolonged Oxy pups demonstrated significant
decreases in number of USVs along with a narrower pitch
frequency range and mean pitch in male pups. In utero Oxy
pups produced a similar number of USVs compared to controls,
yet those calls were louder than controls and prolonged Oxy
calls, and lower in mean pitch when produced by females.
Together, our ontogenetic model of in utero Oxy exposure
demonstrates some alterations in loudness of affective calls,
while the prolonged Oxy exposure further shows alterations in
number and spectrotemporal features of early communicative
and affective behaviors.
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FIGURE 4 | Prolonged Oxy exposure decreases pup USV call production. (A) Schematic of the treatment paradigm for maternal Oxy exposure and USV
measurements throughout development. (B) Cumulative means number of USV calls (dam, p = 0.009; drug, p = 0.001; dam × drug, p = 0.024). Prolonged Oxy
exposure led to decreased number of calls relative to prolonged Veh (p = 0.000126) and relative to in utero Oxy exposure (p = 0.002). (C) Line graph of mean call
number at all time points. Thick bars and closed circles depict mean call number, with litter size as a covariate, and open circles depict individual call numbers. Error
bars represent standard error.
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FIGURE 5 | Prolonged and in utero Oxy exposure affect spectrotemporal features of pup USV calls. (A) Cumulative means of pitch range (Hz) of USV calls (drug,
p = 0.004; dam × drug, p = 0. 000315; sex × dam × drug × age, p = 0.097). Prolonged Oxy exposure led to lower pitch range relative to prolonged Veh
(p = 0.000012) and relative to in utero Oxy exposure (p = 0.005). (B,C) Cumulative mean pitch (Hz) in (B) male and (C) female offspring (drug, p = 1.9953E-7;
sex × dam, p = 0.022; sex × drug, p = 0.022; sex × dam × drug, p = 0.004; sex × dam × drug × age, p = 0.036; sex, p = 0.076). Prolonged Oxy exposure in (B)
male pups led to decreased pitch relative to prolonged Veh (p = 4.4816E-9) and relative to in utero Oxy (p = 0.015). In utero Oxy exposure led to a marginal decrease
in pitch relative to in utero Veh (p = 0.059) in (B) male pups and a significant decrease in (C) female pups (p = 0.016). (D) Cumulative means of peak power (dB)
(dam, p = 0.019; drug, p = 0.002; dam × drug, p = 0.001). In utero Oxy exposure leads to significantly higher peak power relative to prolonged Oxy exposure
(p = 0.001) and relative to in utero Veh (p = 0.000002). Thick bars depict means, with litter size as a covariate, while open circles depict individual measurements.
Error bars represent standard error.

DISCUSSION

Here we present a novel model to investigate the ontogenetic
impact of in utero only versus prolonged mitigating opioid
exposure on early neurodevelopmental outcomes, while
controlling for confounding factors present in clinical
observational studies. The utilization of a biological dam
and cross-foster dam in our novel model of ontogenetic rodent
exposure was based on an attempt to parallel opioid exposure
through a method most consistent with clinical management
and observations. Active maternal bonding and breast-feeding
has been shown to decrease hospitalization length, decrease rates
of pharmacotherapy administration, and decrease NAS severity
in the NICU (Rosenthal and Baxter, 2019). The prolonged Oxy
group remained with the biological dam and was weaned off
Oxy through lactation, allowing for the assessment of continued

post-natal exposure on early development. However, many
infants with NAS experience decreased bonding time and
skin–skin contact with the biological mother secondary to
socioeconomic barriers and are cared for by healthcare staff
for NAS. This type of setting may result in an environmental
stressor to the neonate due to inconsistent maternal contact,
frequent alteration of caregivers, along with a higher incidence
of foster care placement following hospital discharge in neonates
with maternal history of drug use (Brundage and Levine,
2019). As a result, we rationalized a cross-foster approach
would be a feasible model for evaluating the effects of in utero
opioid exposure on developmental impact in the in utero Oxy
group.

In utero Oxy exposure decreased weight gain trajectory
following weaning from foster dams, in male offspring.
Further, in utero Oxy-exposed male and female pups
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showed alterations in the spectrotemporal features of USVs.
Meanwhile, offspring with prolonged Oxy exposure until
weaning at P21 demonstrated poorer neurodevelopmental
outcomes compared to mice exposed only until birth.
Notably, continued post-natal Oxy exposure was associated
with decreased weight gain trajectory, impaired motor
reflexes, and abnormal early communication behaviors.
Both male and female offspring in prolonged Oxy
exposure groups had decreased weight gain following
weaning at P21, with delayed latency to right observed
in females. In addition, prolonged Oxy-exposed offspring
had significantly reduced USV production and alterations
in spectrotemporal features reflecting affective and early
communicative impairment.

Oxycodone Exposure Impairs Attainment
of Physical and Motor Development
Decreased fetal growth can be used as a general indicator of
harmful in utero drug exposures (Haight, 2018). The association
between birth weight and decreased infant survival is highly
robust, though the underlying biological mechanisms are not
always clearly understood (Basso et al., 2006; Yazdy et al.,
2015). We did not obtain birth weights at P0 in order
to minimize animal handling which can reduce behavioral
and hormonal reactivity to stress and confound behavioral
testing results (Luchetti et al., 2015). Initial weight assessment
occurred at P5 with no observed effect of in utero or
prolonged Oxy exposure relative to Veh controls. Overall,
human literature shows low birth weight in the setting of
maternal methadone use during pregnancy, but no evidence of
low birth weight following in utero exposure to other opioids
including codeine, tramadol, hydrocodone, or Oxy (Yazdy et al.,
2015). Thus, our findings are consistent with existing Oxy
human literature that shows no reported association between
Oxy and low birth weight in neonates (Kelly et al., 2011;
Yazdy et al., 2015).

Interestingly, female offspring exposed to continued Oxy,
relative to Veh controls, showed a significant decrease in
weight after weaning at P21, which persisted through P25,
early juvenile development in mice. Neurodevelopmental
processes occurring at these ages in the rodent occur in the
human at approximately 2–3 years and pre-pubertal juvenile
ages, respectively (Semple et al., 2013). Male weights, after
prolonged exposure, showed a significant decline on P25–
P30 as compared to Veh controls. Since these offspring were
separated from the dam partially through a period during
which they are naturally weaning from nursing (König
and Markl, 1987), it is unclear whether the acute onset of
decreased weight gain after separation from the dam at P21
is related to Oxy withdrawal symptomatology or not. It
is certainly plausible. However, human studies of prenatal
opioid exposure have described decreased adaptive behaviors
during infancy through toddlerhood (Conradt et al., 2019).
Cessation of care from the biological dam may potentially have
uncovered deficiencies in self-care of offspring. The decreased
weight gain post-weaning could also stem from maladaptive

feeding behaviors secondary to Oxy exposure, since the opioid
system has a strong role driving food intake homeostasis
(Valbrun and Zvonarev, 2020).

Early Oxy cessation significantly decreased weight gain
trajectory in a sex-specific manner not observed in the prolonged
Oxy exposure cohort. Interestingly, in utero Oxy exposure led
to significantly higher weight at P5 in males, though both
groups show comparable averages at P21. Female weights
following in utero Oxy exposure do not show any significant
weight differences from controls. Males exposed to Oxy in
utero showed a rapid, significant and persistent decrease in
weight gain following weaning. Since the in utero exposure
group was cross-fostered at birth to a non-drug exposed
dam, normal weight gain trajectory was potentially maintained
through adequate maternal care from the foster dam. A further
explanation could be the “two-hit” hypothesis in which early
life susceptibility, such as abstinence and withdrawal following
in utero Oxy exposure, compounded with the post-natal stress
of weaning precipitated a weight loss phenotype (Nederhof
and Schmidt, 2012; Peña et al., 2019). Perhaps, males are
more sensitive to early life stressors and may have long-
term consequences from in utero opioid exposure compared
to females. Male human neonates are more at risk for
developing NAS compared to females, so long-term changes
in opioid circuitry governing feeding behaviors could explain
the abnormal weight trajectory in male mouse offspring post-
weaning (Charles et al., 2017). Prospective human studies
evaluating the long-term effects of in utero opioid and effects
on weight trajectory during childhood through adulthood have
not been performed to our knowledge. The altered weight
trajectory findings in both the in utero Oxy and prolonged Oxy
suggest a potential role of in utero opioid exposure on long-
term impact on growth that requires further evaluation in the
human literature.

In the vehicle-treated groups, cross-fostered pups showed
decreased weight gain trajectory after weaning relative to pups
reared by a biological dam. Our observation of decreased
weight gain following weaning in Veh-exposed cross-fostered
pups may be related to potential alterations in emotionality
and stress responses secondary to confounders involved with
cross-fostering, such as early handling (Luchetti et al., 2015).
Regardless, the effect of cross-fostering on weight did not mask
our ability to identify effects of in utero Oxy exposure on
weight in males. Indeed, the effect of in utero Oxy exposure
on weight occurred at additional younger ages and with a
larger magnitude than in utero Veh exposure and persisted
when controlling for effects of litter and cross-fostered dam
status. Similarly, in females, weight reduction was observed
following prolonged Oxy exposure compared to prolonged Veh
controls, and in utero Veh exposure compared to the prolonged
Veh exposure control group. Despite the independent effect
on weight by cross-fostering, this method was valuable in
allowing us to cease Oxy exposure at birth and thus observe
effect of Oxy limited to in utero development. Furthermore,
these findings highlight the importance of including proper
cross-foster control groups in study designs for accurate
interpretation of results.
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Prenatal opioid exposure has also been associated with delays
in attainment of motor milestones in children. A meta-analysis
by Yeoh et al. (2019) detected significant delays in motor
outcomes in children aged 0–6 years that experienced prenatal
opioid exposure. We assessed the righting reflex at P14, the
beginning of the visual critical period, and an age at which mice
should be fully ambulatory (Williams and Scott, 1954; Hooks
and Chen, 2007; Feather-Schussler and Ferguson, 2016). The
righting reflex corrects the orientation of the body from an off
axis position (Troiani et al., 2005). Proper execution of the reflex
requires a combination of visual, vestibular, and somatosensory
system inputs to make appropriate postural adjustments through
neural pathways within the brain and cerebellum. Females in
the prolonged Oxy exposure group had significantly increased
latency to right compared to Veh controls. There was no
significant difference in righting reflex latency between females
exposed to Oxy and Veh in utero. Hence, only continued post-
natal Oxy exposure seems to result in delayed sensorimotor
development. Previously, increased latency to right has been
demonstrated with in utero morphine exposure in both male
and female rat pups, but rodent studies evaluating effects of
opioids on the righting reflex have been limited (Slamberová
et al., 2005). Though the exact mechanism of action is unclear,
significant evidence in the literature demonstrates selective
vulnerability of cerebellar granule neuroblasts to opioids, along
with opioids’ negative effects on neuronal somatosensory cortex
development (Seatriz and Hammer, 1993; Hauser et al., 2003).
Multiple studies have further linked opioid exposure to increased
apoptosis and decreased differentiation of Purkinje cells in
the cerebellum (Hauser et al., 2003). Additionally, perinatal
morphine treatment in rats decreased total number of neurons
in the somatosensory cortex (Seatriz and Hammer, 1993).
Thus, it is possible multiple circuits are mediating the effect.
Overall, the sex-specificity of the effect is also interesting. This
observed sex bias could be related to sex-specific dimorphic
alterations in catecholamine levels in the cerebellum as shown
in a previous study of prenatal morphine exposure (Vathy
et al., 1995). Interestingly, cross-fostering resulted in a shorter
latency to exhibit the righting reflex in males compared to
male pups reared by biological dams. This reflex is dependent
on vestibular inputs that sense head movement but lacks
cortical involvement. The righting reflex is frequently used
in studies evaluating anesthesia reversal, sepsis survival or
traumatic brain injuries (Gao and Calderon, 2020). In general,
an increased latency to right is associated with decreased
arousal or underlying neurological impairment but a decreased
latency has not been shown to correlate with any particular
pathophysiological condition or stressed anxiety state (Gao
and Calderon, 2020). Decreased latency to right is unlikely
to be linked to a behavioral or neurological impairment but
could be secondary to a non-pathological increased arousal
state due to cross-fostering in these litters. Overall, the shorter
latency seen to right in the cross-fostered group is likely
not indicative of altered development of sensorimotor reflexes.
However, future studies will be necessary to delineate the
mechanisms underlying this behavioral phenotype, and its sex-
specific expression.

Ontogenetic Oxycodone Exposure May
Delay Early Communicative Behaviors
and Alter Spectrotemporal Features of
USVs
Currently, studies exploring the effects of prenatal opioid
exposure on language development in children demonstrate
equivocal results (Conradt et al., 2019). Previous work has
identified language development impairments following in utero
exposure to methadone or heroin (Conradt et al., 2019).
However, several of these analyses did not control for important
confounders such as socioeconomic status or maternal use
of other substances. In general, large epidemiological studies
evaluating impact of prenatal opioid exposure on language
development have been difficult to perform due to various
confounding environmental variables including quality of
caregiving, parental education level, and socioeconomic factors.
Despite the advantage of limiting confounds through the use
of rodent models, and indications that communicative circuits
are conserved between rodents and humans (Arriaga et al.,
2012), there have been minimal rodent studies evaluating the
effects of prenatal opioid exposure on early communicative
behaviors to date. Isolation-induced USVs are a strongly
conserved adaptive response of young rodent pups to elicit
maternal caregiving responses (Haack et al., 2009). Our observed
collective decrease in mean USV production following prolonged
Oxy exposure, compared to in utero Oxy exposure and
Veh controls, is suggestive of impaired early communication.
Previous studies have shown evidence for neuropharmacological
modulation of USVs through alteration of mood or arousal
state (Vivian and Miczek, 1991, 1993b; Maloney et al., 2018a).
In addition to serving as an analgesic, Oxy is also a sedative
and an anxiolytic agent, which may decrease USV calling
in the prolonged Oxy exposure pups by actively suppressing
USV circuitry secondary to reduced reactivity to surrounding
environmental stressors and decreased respiratory rate (Rao
and Desai, 2002). Furthermore, the interplay between pup
communication and maternal care is complicated. In vocally
impaired pups, decreased USV production has been shown
to result in maternal neglect, because without calls the dams
cannot locate the pups outside of the nest (Hernandez-
Miranda et al., 2017). Thus, maternal care may be reduced in
response to decreased USVs calling by prolonged Oxy-exposed
pups. Maternal care has also been reported to be attenuated
following morphine exposure during pregnancy, with a study
reporting increased time to pup retrieval, decreased nursing
and cleaning of pups, and increased maternal self-care time
(Slamberová et al., 2001). This reduced maternal care could
further disrupt neurodevelopment of the pup, and thus be a
possible indirect influence on later adult behaviors. However,
currently the literature on maternal care following Oxy exposure
is conflicting. Two recent rodent studies found no changes in
maternal behavior or maternal motivation following dam Oxy
exposure (Watters et al., 2020; Zanni et al., 2020). Notably,
in our study, in utero Oxy exposed offspring demonstrated
comparable USV means to Veh controls. Normal USV call
production in the in utero Oxy offspring at P5 suggests that,
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in the prolonged exposure group, Oxy reduces USV production
by acute suppression of USV circuits. Finally, the adequate
weight trajectories before weaning in the Oxy group further
indicate appropriate dam care. Hence, we would hypothesize
that maternal care likely did not result in the behavioral
deficits observed. Still, to our knowledge, the direct impact of
Oxy exposure on maternal behaviors has not been examined.
Furthermore, there is currently scant literature considering
the effect of ongoing Oxy exposure on maternal behavior in
rodents, with even more limited studies utilizing a mouse
model. This warrants an individual study to assess reciprocity of
interactions between pup and dam. Overall, deficits in observed
USV production could be the result of a combination of
factors, including acute drug effects on circuits, influence of
dam care, and opioid-mediated effects on neural development
and communication.

Affective characteristics of USVs in rodents are generally
thought to communicate different emotional states, such as
aggression or pain. Rodent USVs are particularly interesting
as they occur only in salient situations such as exposure to
painful stimuli, maternal behavior, sexual behavior, or aggression.
As has been well-characterized in rats, affective features of
rodent USVs may be reflected by alterations in duration,
pitch, frequency, and loudness (dB) of the calls (Vivian and
Miczek, 1993a,b). In our developmental cohort, pups exposed
to prolonged Oxy demonstrated decreased mean pitch (in males
only), and narrower pitch range. Interestingly, a previous study
administered morphine to adult rats and observed decreased
USV pitch, duration, and rate (Vivian and Miczek, 1993a). The
decreased pitch and pitch range could be a result of Oxy’s
depressive effects on respiration, or of Oxy’s anxiolytic drug
properties which may dampen USV circuity. For the in utero
Oxy exposure group, we predicted increased USV production
along with increased duration, pitch, frequency, and amplitude
of USVs secondary to discomfort associated with withdrawal.
The assumption is based on the current human description
of NAS characterized by human neonates exhibiting prolonged
periods of high-pitched crying and inconsolability secondary to
withdrawal (Anbalagan and Mendez, 2020). However, human
studies do not formally characterize the spectrotemporal features
of crying in infants with NAS, so the description of a high-
pitched cry may be subjective in nature. We found that that
continued opioid exposure during the post-natal period in the
prolonged Oxy group resulted in less USV calls compared to
both the in utero Oxy and vehicle controls. We did not expect
the prolonged Oxy group to be undergoing withdrawal at this
time, thus we did not hypothesize an increase in call rate in this
group. A reduction in call rate is likely more consistent with an
acute dampening of the circuits mediating USV production by
the continued presence of Oxy in these pups during recordings.
Indeed, reduced call rates were observed in rat pups following
injection of µ- or δ-opioid receptor agonists (Carden et al.,
1991). Future studies are needed to evaluate the impact of early
suppression of these social communicative circuits by opioid
agonists on social behavior consequences at older ages.

Our novel Oxy administration paradigm enables future
exploration of withdrawal periods, to determine if NAS following

Oxy cessation can be appropriately modeled in rodents. If so,
testing of novel agents for treatment of withdrawal symptoms
will be possible, with the goal of limiting continued post-natal
opioid exposure given potential long-term side effects of early
post-natal opioid administration on neurodevelopment (Attarian
et al., 2014). Finally, few mouse models of in utero opioid
exposure currently exist, with the majority of the literature
utilizing rat perinatal opioid models. Thus, our model will
facilitate genetic manipulations using established cutting-edge
genetic tools available in the mouse to broaden understanding
of the mechanisms mediating consequences of early opioid
exposure on neurodevelopment.
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Exposure to stress at an early age programs the HPA axis which can lead to cognitive
deficits in adults. However, it is not known whether these deficits emerge in adulthood or
are expressed earlier in life. The aims of the study were to investigate (1) the immediate
effects of early injury-induced stress in one-day-old (P1) and repeated stress on at P1
and P2 rat pups on plasma corticosterone levels; and (2) examine the subsequent
long-term effects of this early stress on spatial learning and memory, and stress
reactivity in early P26-34 and late P45-53 adolescent male and female rats. Intra-plantar
injection of formalin induced prolonged and elevated levels of corticosterone in pups and
impaired spatial learning and short- and long-term memory in late adolescent males
and long-term memory in early adolescent females. There were sex differences in late
adolescence in both learning and short-term memory. Performance on the long-term
memory task was better than that on the short-term memory task for all early adolescent
male and female control and stressed animals. Short-term memory was better in the
late age control rats of both sexes and for formalin treated females as compared with
the early age rats. These results are consistent with an impaired function of structures
involved in memory (the hippocampus, amygdala, prefrontal cortex) after newborn pain.
However, activation of the HPA axis by neonatal pain did not directly correlate with
spatial learning and memory outcomes and the consequences of neonatal pain remain
are likely multi-determined.

Keywords: neonatal pain, corticosterone, adolescence, spatial memory, sex differences, spatial learning

Abbreviations: The HPA axis, the hypothalamo-pituitary-adrenocortical system; the HPG axis, the hypothalamus-pituitary-
gonadal system; MWM, the Morris water maze; CFA, complete Freund’s adjuvant; GD, gestational day; P1, P2, postnatal
day1, postnatal day 2; PVN, paraventricular nucleus; CA1 hippocampus; GR, glucocorticoid receptor; CRH, corticotrophin-
releasing hormone; ACTH, adrenocorticotropic hormone; NMDA receptor, the N-methyl-D-aspartate receptor; PFC,
prefrontal cortex.
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INTRODUCTION

The longitudinal analysis of outcomes of pain for premature
infants in a neonatal clinic found that pain in these infants
resulted in impaired cognitive function in the child and
adolescent (Haley et al., 2006; Grunau et al., 2009; Doesburg
et al., 2013; Vinall et al., 2014; Chau et al., 2017). Whereas the
long-term influence of non-pain stress (e.g., maternal separation,
mother and offspring isolation, early handling or the limited
nesting model) on cognitive behavior and memory in animal
models is abundant in the literature (Krugers and Joëls, 2014;
Schroeder et al., 2018; Bonapersona et al., 2019; Cordier et al.,
2021), the long-term consequences of pain stress have been
understudied (Khawla et al., 2017), especially considering it
prevalence in the clinical setting (Ranger and Grunau, 2014;
Mooney-Leber and Brummelte, 2017) and the strong connection
between neonatal pain and disturbances of central nervous
system maturation (Schwaller and Fitzgerald, 2014; Brewer and
Baccei, 2020; Williams and Lascelles, 2020). The neonatal period
is a critical period of development due to the rapidly changing
neurobiological processes, which result in altered sensitivity to
external stimuli and a high level of plasticity of the nervous
system (Lupien et al., 2009). The nervous system during the
neonatal period is highly sensitive to painful stimuli (Goksan
et al., 2015; Williams and Lascelles, 2020) with the critical period
for later effects on adult pain ending around the end of the
first week of life in the rat (Ren et al., 2004). It is known that
repeated pain in the neonatal period disrupts the balance between
the processes of excitation and inhibition in the central nervous
system (Brewer and Baccei, 2020), modifies brain development
(Schwaller and Fitzgerald, 2014), programming the HPA axis
(Mooney-Leber and Brummelte, 2017), therefore modifying
multiple types of behavior (Williams and Lascelles, 2020).
Moreover, there is a close neuroanatomical and physiological
interaction between pain and the HPA axis, which is regulated
in part by the hypothalamus, amygdala, hippocampus, prefrontal
cortex (PFC), and thalamus (Ulrich-Lai and Herman, 2009;
Victoria et al., 2013; Timmers et al., 2019). The features of
this interaction in response to damaging stimuli at an early age
are poorly understood. Because there are multiple physiological
systems affecting pain and the HPA axis in the neonatal period
(Mooney-Leber and Brummelte, 2017, 2020; Van Bodegom et al.,
2017) the data on the effect of pain on the HPA axis, both in
the clinic and in animals, are incomplete (Walker et al., 2003;
Victoria et al., 2013; Victoria and Murphy, 2016). Moreover, the
effects of stress and pain on the HPA are age dependent, even in
infancy (Van Bodegom et al., 2017). Further research is needed
to clarify the relationship between neonatal pain and the HPA
axis, since there is a multifaceted relationship between the type of
pain, severity, gender, and age of pain exposure and the response
of the HPA axis.

In adolescence, problems of neurodevelopment and behavior
caused by infant stressful influences first appear. To correct the
behavior during the adolescent period, it is important to know the
features of the age-related intervals of an adolescent development
period. Adolescence is characterized by intensive processes of
synaptogenesis and myelinization, especially in the prefrontal

cortex, hippocampus and amygdala (Brenhouse and Andersen,
2011), reorganization in the hormonal, neurotransmitter, and
reproductive systems (McCormick et al., 2004, 2016; Romeo
and McEwen, 2006; Romeo, 2010; McCormick, 2011), and
behavioral and cognitive maturation (McCormick and Mathews,
2010; McCormick et al., 2012; Siddiqui and Romeo, 2019). The
trajectory of these processes in adolescence can be altered by
neonatal stress, including clinically necessary painful procedures
(Amaral et al., 2015; Chen et al., 2016; Mooney-Leber and
Brummelte, 2017; Xia et al., 2020), which can modify behavior
and cognitive abilities in adolescents (Mooney-Leber and
Brummelte, 2020; see Williams and Lascelles, 2020 for a review).
Thus, early-life pain can give rise to numerous clinical, social,
educational problems in adolescents which may differ from those
of adults.

Based on behavioral and the nervous system maturation,
adolescence in rats ranges from 28-48 days (P28-48) with adults
defined as P60 and older (Spear, 2000). A more granular view
of this critical period of development divides adolescence into
three sub-periods: early P21-P34, middle P34-P46 and late P46-
P59 (Tirelli et al., 2003). These epochs within adolescence vary
somewhat depending on which criteria are used (morphogenetic,
behavioral, neurohormonal, and neural). Much attention has
been paid to the different neurobiological systems within the
age-related intervals of adolescence (McCormick et al., 2016,
2020; Bailey et al., 2020; Marcolin et al., 2020; Gore-Langton
et al., 2021). One of the main factors determining the timing
of adolescence is the maturation of the hypothalamic-pituitary-
adrenal system (the HPA axis), and its feedback mechanisms,
which continue to mature during adolescence. Glucocorticoids,
the secretion of which is controlled by the HPA axis, affect
brain development, including neurogenesis, synaptogenesis, and
cell death (McEwen, 2000). The development of the HPA axis
during adolescence may be modified by stress experienced
early in life (Van Bodegom et al., 2017). The timing of
adolescence can also be determined by sexual maturation and
its relationship with the HPA axis (McCormick and Mathews,
2007). The pubertal onset of sexual maturation, determined
by vaginal opening in female rats and preputial separation in
male rats, occurs earlier in females (P35 ± 2) than in males
(P42 ± 2) (McCormick and Mathews, 2007, 2010), making
it important to include males and females at different stages
of adolescence in studies. The peripheral steroid hormone of
the HPA axis, cortisol in humans, corticosterone in rodents,
plays an important role in learning and memory (Akirav et al.,
2004). The effects of inflammatory pain on the secretion of
corticosterone in newborns, and the consequences of these effects
on the development of brain structures involved in cognitive
function and in the formation of HPA axis before puberty
are still largely unknown. Repeated prick needles of the pad
of hind paws have been used as a pain stressor in newborn
rodents (Anand et al., 1999; Walker et al., 2003; Nuseir et al.,
2015, 2017; Ranger et al., 2019); however, the results are often
mixed. For example, repeated needle pricks to the pad of the
hind paws of newborn rodents did not change the level of
corticosterone in adult rats (Anand et al., 1999; Walker et al.,
2003), but did decrease stress reactivity of the HPA axis in
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adolescence, and impaired the ability to retain spatial memory
in prepubertal male rats (Chen et al., 2016). In prepubertal
mice, similar injury impaired spatial learning and short-term
(Nuseir et al., 2015) and long-term (Nuseir et al., 2017) memory,
whereas in adult mice, it impaired short-term memory, but
did not alter spatial learning ability and long-term memory
(Ranger et al., 2019).

We are aware of only a few rodent studies that investigated
the effect of neonatal inflammatory pain on memory. For
instance, inflammatory pain caused by the intraplantar injection
of carrageenan (1%) on the day of birth (P0), resulted in spatial
memory deficits in adult rats (Henderson et al., 2015), and also
changed the regulation of the HPA axis (Victoria et al., 2013);
complete Freund’s adjuvant on P1 did not affect short-or long-
term memory in male or female rats on P60, but resulted in
spatial learning deficits in males (Amaral et al., 2015). Formalin-
induced pain in newborn rats, which produces less prolonged
pain than does carrageenan or CFA, impaired visual-spatial
learning and memory in the radial 8-arm maze, which uses food
reinforcement, in adult rats (Anand et al., 2007).

There are many models of neonatal pain, each with their
advantages and disadvantages. All are meant to model the
experience of the infant in the NICU who experiences many
skin breaking experiences each day (Grunau et al., 2006). The
four most common are repeated needle stabs, or carrageenan,
CFA or formalin injection, although others exist (e.g., paw
incision; local capsaicin treatment). Formalin has the advantage
of producing a reliable short-lived behavioral response (<1 h)
and accompanying edema (Anand et al., 1999), without long-
term immune activation or substantial disruption of mother-pup
interactions, therefore limiting the duration of pain and allowing
precise control over the age of injury.

We previously showed that inflammatory pain on P1and
P2 did not alter spatial learning in 33-day-old adolescent
female rats (Butkevich et al., 2020). A more granular study of
the consequences of inflammatory painful effects on cognitive
abilities and the stress-hormonal system in adolescence is
especially important, since neurobiological and behavioral
changes vary greatly at different stages of adolescence and
these changes, caused by stressful effects at an early age, may
be manifested specifically at one or more of these stages.
Identifying this unique developmental pattern would help
direct efforts to ameliorate any untoward effects of early stress
pain more precisely.

Most of the basic research has been and is being done on males
(Chen et al., 2016; Xia et al., 2020). When both sexes are tested,
females have been found to be more vulnerability to the noxious
influences at an early age by some (Gildawie et al., 2021), whereas
others report increased vulnerability in males (Van Dammen
et al., 2020). Androgens in adults inhibit the activity of the HPA,
whereas estrogens, on the contrary, increase it (Handa et al., 1994;
McCormick et al., 2002). Pain-related sex differences are present
from birth (Verriotis et al., 2018; Gursul et al., 2019). Pain stress is
often presented in the neonatal clinic, and it is important to know
how consequences of pain stress are manifested in different term
intervals of adolescence in order to correct the behavior in this
period of postnatal development.

The aim here was to investigate the immediate effect of
formalin-induced pain in one-day-old and two-day-old (P1, P2)
rat pups on corticosterone level in blood plasma and the long-
term effects of early-life pain stress on spatial learning and
memory in the Morris water maze, and stress reactivity of the
HPA axis in male and female rats of early P26-34 and late P45-53
age groups of adolescence.

MATERIALS AND METHODS

Animals
Subjects were the offspring of Wistar rats (parents: males, n = 35
and females n = 62) from the biocollection of Pavlov Institute of
Physiology of the Russian Academy of Sciences. After two days
of adapting to new quarters, the rats were mated, and a vaginal
smear was examined next morning to verify insemination. The
days of insemination and birth were considered as gestational
day (G) 0 and postnatal day (P) 0, respectively. Pregnant dams
were housed four per cage, then individually after the 17th
day of pregnancy. All animals were maintained under standard
conditions (12 h light, 12 h dark, lights on at 08:00, 20–22◦C)
in standard plastic rat cages with food and water available
ad libitum. The birth of offspring was checked at 8, 13, 17 and
20 h. A day after the birth of the offspring, litters were reduced to
8 rat pups (4 males and 4 females if possible). From each mother,
one male and one female were included in the experiment; in two
cases, two rats of each sex from one dam were used. In the latter
case, data from these two animals were averaged to produce a
“litter” mean (see the statistics section below). The remaining rats
in a litter were used in other experiments. All procedures were
approved by the Local Ethics Committee for Animal Experiments
of the I. P. Pavlov Institute of Physiology, Russian Academy of
Sciences (Saint Petersburg, Russia) and followed the guidelines
published by the Committee for Research and Ethical Issues of
the IASP on ethical standards for investigations of experimental
pain in animals.

Neonatal Inflammatory Pain
On the first and second day of life (P1 and P2) offspring of both
sexes were injected with the inflammatory agent formalin (2.5%,
0.5 µl) into the pad of the left hind paw; as a control, a single prick
needle or saline injection was used. In preliminary experiments,
in which P1 and P2 rat pups were subjected to a single needle
prick (n = 5 in each adolescent age and sex group) or a single
injection of saline solution into the pad of the left hind paw (n = 5
in each adolescent age and sex group), the animals were tested
at P26-34 and P45-53. No differences were evident in spatial
learning and memory in the Morris water maze (MWM) or in
the stress reactivity of corticosterone between the pricked and
saline animals in both age and sex groups (see Supplementary
Figures 1–4), so needle prick rats were used as a control for
formalin injection in the MWM experiments and saline injection
as control for the corticosterone assays in newborn rat pups.
In addition, the rats designed to determine basal corticosterone
levels were handled at the same time as Control or Formalin rats
but otherwise untreated. P1 and P2 in rats roughly correspond
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to extreme prematurity in human (gestation weeks 24), based on
development of the brain and pain system in rats and humans
(Dobbing, 1981; Fitzgerald et al., 1988). All animals in each
litter were randomized to the inflammatory pain (Formalin) and
Control. Formalin rats were labeled with a weak solution of picric
acid along the back, control rats remained unmarked; remaining
rats designed for other experiments, had their heads painted
with picric acid.

Morris Water Maze (MWM)
A modified version of the MWM was used to assess spatial
learning, spatial short-term and long-term memory (Morris,
1981; Vorhees and Williams, 2014). The MWM consisted of a
round tank (120 cm diameter, 72 cm deep) filled to 40 cm with
opaque with chalk-clouded water (24 ± 2◦C) to eliminate the
platform’s visibility. The tank, located in a room with several
strongly contrasting extra maze cues, was visually divided into
four equal quadrants West (W), South (S), East (E) and North
(N). A steel platform (39 cm height, 12 cm diameter) was placed
in the SW quadrant approximately 40 cm from the side wall, and
its location fixed for all the animals during all training days. The
investigator was visible to the rats, and her location was constant
throughout all experiments. The installation was illuminated by
two lamps (250 W), the light from which was directed to the
ceiling to obtain soft diffused lighting.

Spatial Learning Assessment
Spatial learning tests were conducted at two age groups during
the adolescent period: early (P26-34) (formalin rats n = 15 males
and n = 12 females, and control rats n = 16 males and n = 14
females) and late (P45-53) (Formalin rats n = 15 males and n = 15
females, and Control rats n = 16 males and n = 16 females).
Rats tested at the early age were with their mother until the
end of the experiments (on the 34th day of life). The rats of
the late age group were weaned also at 34 days, and males and
females placed in different cages, 3–4 per cage. Both cohorts were
tested identically.

In the MWM, each rat was trained for 5 consecutive days to
locate a platform with eight training trials per day, divided into
four trials with an interval between them of 4 minutes. For each
training trial, the rat was placed in the water facing the tank wall,
in the first training trial into the NW quadrant, then consistently
in the SW, SE and NE quadrants. The rat was allowed to search
for the platform for 60 s. Failing that, the experimenter placed
the rat on a platform, where it remained for 20 s to learn its
location relative to the extra-maze visual cues. Then the rat was
transferred to a dry cage with paper towels as bedding for 15 s,
after which the training trials were continued. The latency (from
when the rat was submerged in the water tank to when it located
the platform) was recorded in each trial. If the rat did not locate
the platform during a trial, it was assigned the maximum trial
duration 60 s as the score for that trial. The average latency in
the first four training trials and the average latency in second four
training trials were used as measures of learning.

In addition to latency, we used the index of acquisition and the
savings index as additional measures of spatial learning during
training tests (Whiting and Kokiko-Cochran, 2016; Tucker et al.,
2018). The index of acquisition describes the learning that

occurs within one day of testing, and is calculated by taking
the difference between the latency in the first and last tests and
averaging this difference for all days of spatial learning. The
savings index is the measure of how well, on the first test of each
day, the rats remember what was learned on the previous day.
This value is calculated as the difference between the latency in
the last test of a given day and the latency in the first test of the
next day and averaged over all days of spatial learning. Thus, the
savings index reflects consolidating and storing memory and/or
its retrieval process.

Spatial Memory Assessment
On the fifth and last training day, the rats were exposed only to
the first four training trials, and then dried and returned to their
cages in a different room. After one hour, each rat was placed back
into the pool and the spatial short-term memory was examined
without the platform. This short-term assessment reflects a
combination of reference and working memory (Vorhees and
Williams, 2014). The NW quadrant start location was used for
short- and long-term memory assessment. Long-term spatial
memory, memory retention, was examined 96 h after the short-
term memory study (34th and 53d days of life in the early and late
age groups), by placing each animal sequentially in water without
a platform. Animals were allowed to swim freely for 60 s in the
water tank without the platform. The latency to locate the spot
where the hidden platform had been previously and the amount
of time the animal spent in the target quadrant (SW quadrant)
were the scores for the short- and long-term memory probe
trials. Behaviors in the short- and long-term memory tests were
recorded using a webcam with automatic focusing (Microsoft
5WH-00002) and also visually in real time.

Blood Collection and Corticosterone
Determination
There were 56 newborn rat pups (basal, n = 19; saline (control)
n = 18; formalin, n = 19) used for determination of corticosterone
in the blood. Blood samples were collected by rapid decapitation
without anesthesia. Basal samples were taken at 9 AM. To
determine the effect of inflammatory pain in newborn rats on the
activity of the HPA axis, blood samples were collected following
decapitation of one female and one male into a single test tube
(the volume of blood from one rat neonate is very small, so we
combined samples from one male and one female in one test
tube) 30 minutes after subcutaneous injection of formalin (2.5%,
0.5 µl) or saline into the pad of the left hind paw. The time course
of the effects of the formalin treatment on corticosterone levels
were evaluated one day and seven days after injection of formalin
or saline. In early adolescent rats (basal, n = 8 males and n = 8
females; control (needle prick), n = 10 males and n = 9 females;
formalin, n = 10 males and n = 8 females) and late adolescent
rats (basal, n = 7 males and n = 11 females; control (needle
prick), n = 6 males and n = 6 females; formalin, n = 6 males and
n = 6 females), corticosterone reactivity to the forcing swimming
was determined 30 min after the long-term spatial memory test
in MWM. Here, unlike the corticosterone assay in newborn
rat pups, blood of males and females was collected in separate
test tubes by rapid decapitation without anesthesia. Following
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collection, blood was centrifuged, and blood plasma was stored
in a freezer (−20◦C). Corticosterone was determined in duplicate
by immune-enzyme analysis, using standard kits (“Xema-Medica
Co” Cat No: K210R; Russia); the intra-assay coefficient was 3.8.

Statistical Analysis
Mixed ANOVA was used for spatial learning Analysis I for the
first four training trials and Analysis II for the second four
training trials, the within-subjects factor was day of testing
(days 1,2,3,4,5), and between-subjects factors were age (26–
30 days/45–49 days), sex (males/females), exposure (formalin
P1 & P2 or needle prick at P1 & P2); when Mauchly’s Test of
Sphericity was significant, we used Greenhouse-Geisser method.
A mixed ANOVA was used for comparison of the first four
and second four training trials, Analysis III, the within-subjects
factors for day number (1,2,3,4 on each of four days), between-
subjects factors were the same as Analyses I and II. For the
index of acquisition, three-way analysis of variance ANOVA
was used; the factors were age, sex, exposure. For the savings
index, three-way (factors: age, sex, exposure) and two-way
(factors: age, exposure) analyses of variance ANOVA were used.
For memory, mixed ANOVA was used, within-subjects factors:
memory (short-time memory, STM/long-term memory LTM) for
latency (time to find platform location) and for time the animal
spent in the target quadrant, and between-subjects factors age
(30 and 34 days for STM and 49 and 53 days for LTM), sex
(males/females) and exposure (formalin P1 & P2/needle prick
P1 & P2). For corticosterone in newborns, a one-dimensional
two-factor analysis of variance ANOVA was used. The dependent
variables were corticosterone, day of test (30 minutes, first day,
seventh day) and exposure (basal level, saline, formalin); for
corticosterone of adolescent rats, three-way univariate analysis of
variance ANOVA was used, and the between factors were day of
test (34 days/53days), sex (males/females), exposure (basal/needle
prick/formalin). Comparison of corticosterone separately for
males and females did not reveal sex differences; therefore, a
variant of paired comparisons was made for males and females in
total. Post hoc comparisons were made with Bonferroni multiple
comparisons test. For two cases, when two rats of each sex from
one dam were used, we averaged the data from littermates (where
they were 2 from a litter) to create a single data point per litter.
We ran the analysis of variance for litters per group, subjected to
the same exposure. The analysis showed that in the majority of
the groups of the rats there is no principal differences between
the results of dimension in different litters, this indicates that the
litters are uniform for the most part and we re-ran the statistical
analysis this way.

RESULTS

Details of the analyses of main experimental data are in Table 1
and summarized below.

Spatial Learning, Latency to Find the
Platform
Both Control and Formalin rats in both age groups and of
both sexes showed spatial learning, since the latency to find the

platform decreased on the fifth training day in all the animals
(Figure 1). However, there were differences in spatial learning
between P26-P34 and P45-P53 rats. For early adolescent period
(P26-P34) (Figures 1A,B) post hoc analysis found no differences
in the latency to find the platform between the Control rats
(males n = 16, females n = 14) and Formalin rats (males n = 15,
females n = 12) in either training trial on each of the 5 training
days. Neonatal formalin pain did not alter the latency to find the
platform. For late adolescent period (P45-P53) (Figures 1C,D)
post hoc analysis found that neonatal pain significantly increased
the latency to find the platform in Formalin males (n = 15)
compared to the latency in Control males (n = 16) (Figure 1C).

Age and sex differences in the latency to find the platform
are presented in Figure 2. The latency was longer in P26-34
rats of both sexes. Age differences were found in Control males
(Figures 2A,C) and Control females (Figures 2B,D) in the first
four (Figures 2A,B) and second four (Figures 2C,D) training
trials. It was found, that in the first training day, that characterizes
the greatest response to the stimulus in MWM (Vorhees and
Williams, 2014), neonatal pain significantly increased the latency
to find the platform in P45-53 males in both four training trials to
the levels of the younger males, whereas in females, similar effects
of formalin were not evident. The greater latency to find the
platform in the late adolescent period in Formalin P45-53 males
compared to the latency in Formalin P45-53 females indicates
their greater vulnerability to the effects of neonatal inflammatory
pain on spatial learning in males than in females (Figure 2C).

The Index of Acquisition (Figure 3A) and
the Savings Index (Figure 3B) for the
Latency
We used the index of acquisition and the savings index as
supplemental ways to assess the effectiveness of spatial learning.
The index of acquisition (Figure 3A) and the savings index
(Figure 3B) support the data presented in Figures 1, 2, indicating
that the spatial learning within a day was more successful (latency
was shorter) in Control P45-53 rats than in Control P25-34 rats
(p < 0.05, males and females). The savings index (Figure 3B)
demonstrated that Control P45-53 females, compared to Control
P25-34 females, (p < 0.05), recalled better on the first trial of
each day what was learned on the last trial of the previous day.
Neonatal formalin pain neutralized these age-related differences.
In the early age group of rats of both sexes, neither index
showed effects in the formalin treated animals. Indeed, the index
of acquisition and the savings index indicated that formalin
treated P45-53 females showed deficits in the both learning
and memory (the latency was greater) compared to Control
females of the same age. These data are not consistent with
those data in Figure 1. It is likely that the scoring mechanism
underlying this alternative method determines these differences,
as reflected in the sex differences in the first four and second four
training trials.

Short- and Long-Term Spatial Memory,
Latency to Find the Platform (Figure 4)
In latency to the target quadrant, there were no age or sex
differences in the treated groups for either the short- and
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TABLE 1 | Details of the statistical analyses.

Spatial learning, latency to find the platform
Main effects for early and late adolescent periods of development for the
first four training trials (Analysis I)
Within subjects effects
day
day X age:
Between subjects effects
age
Main effects for early and late adolescent periods of development for the
second four training trials (Analysis II)
Within subjects effects
day
day X age:
Between subjects effects
age
exposure
age X sex
Analysis III (try1-2)
Age and sex differences in the latency to find the platform
Effect of training day
Effect of training day in X age X sex
Tests of between-subjects effects
Age
Posthoc analysis
The index of acquisition for the latency
age
age X exposure
The savings index for the latency
age X exposure
Short- and long-term spatial memory, latency to find the platform
and time spent in target quadrant
Within subjects effects
memory
memory X age
memory X exposure
Between subjects effects
age
exposure.
Comparison between short- and long-term memory
Within subjects effects
latency
memory X exposure
Within subjects effects
time spent in target quadrant
memory X age
memory X exposure
memory X age X sex
Between subjects effects, latency
age
Between subjects effects,
time spent in target quadrant
age
exposure
In newborn rats, main effects for corticosterone
day of test,
exposure,
day of test X exposure,
In adolescent rats, main effects for corticosterone
day of test,
exposure
day of test X exposure

F(3,1, 342,4) = 224, ***p < 0,001, η2 = 0,670,
F(3,1, 342,4) = 5,724, ***p = 0,001, η2 = 0,049,
Note. Mauchly’s Test of Sphericity p < 0,001,
Greenhouse-Geisser method Df1 = 3,084, Df2 = 342,359.
F(1,111) = 20,208, ***p < 0,001, η2 = 0,154.

F(2,5, 272,4) = 64,1, ***p < 0,001, η2 = 0,366,
F(2,5, 272,4) = 8,9, ***p < 0,001, η2 = 0,074,
Note. Mauchly’s Test of Sphericity p < 0,001,
Greenhouse-Geisser Df1 = 2,454, Df2 = 272,378.
F(1,111) = 20,5, *** p < 0,001, η2 = 0,156,
F(1,111) = 4,3, * p = 0,041, η2 = 0,037,
F(1,111) = 4,7, *p < 0,032, η2 = 0,041.

F(4, 108) = 71, ***p < 0,001, η2 = 0,725
F (4,108) = 2,6, p = 0,04, η2 = 0,088,
F(1, 111) = 12,2, **p = 0,001, η2 = 0,099, F(1, 111) = 25,9,
***p < 0,001, η2 = 0,189, F(1, 111) = 15,9, ***p < 0,001,
η2 = 0,126 (the first, second and third day respectively)
p = 0.042, p = 0.041, p = 0.022, the first, third and fourth
training days
F(1,111) = 4,304, p = 0,040, η2 = 0,037
F(1,111) = 4,416, p = 0,038, η2 = 0,038;
F(1,111) = 4,046, p = 0,046, η2 = 0,035

F(2, 107) = 20,5, ***p < 0,001, η2 = 0,277,
F(2, 107) = 19,48, ***p < 0,001, η2 = 0,267
F(2, 107) = 7,32, ***p = 0,001, η2 = 0,120;
F(2, 107) = 5,87, ***p = 0,004, η2 = 0,099
F(2, 107) = 3,76, *p = 0,026, η2 = 0,06

F(1, 108) = 8,9, **p = 0,003, η2 = 0,076,
F(1, 108) = 13, ** p < 0,001, η2 = 0,107,

F(1, 108) = 37, ***p < 0,001, η2 = 0,255
F(1, 108) = 38,4 ***p < 0,001, η2 = 0,263;
F(1, 108) = 3,4 p = 0,068, η2 = 0,031,
F(1, 108) = 3,1 p = 0,079, η2 = 0,028;

F(1, 108) = 4,51, *p = 0,036, η2 = 0,040

F(1, 108) = 9,17, **p = 0,003, η2 = 0,078,
F(1, 108) = 7,4, **p = 0,008, η2 = 0,064.

F(2,47) = 75,6, p < 0,001, η2 = 0,763;
F(2,47) = 26,3, p < 0,001, η2 = 0,528;
F(4,47) = 9,66, p < 0,001, η2 = 0,451.

F(1,83) = 27,45, ***p < 0,001, η2 = 0,249
F(2,83) = 66,28 ***p < 0,001, η2 = 0,615,
F(2,83) = 10,7 ***p < 0,001, η2 = 0,205.

long-term memory measures. However, the formalin treated
males, but not females, showed long-term memory deficits at
both ages (Figures 4B,B1) with no differences in the short-term
memory task (Figure 4A). Control P26-34 rats of both sexes
found the quadrant where the platform had been previously

more quickly in the long-term compared to the short-term
memory task (p = 0.018 and p = 0.006, males and females
respectively) as did P45-53 females (p = 0.003) (Figures 4A,B).
Thus, neonatal pain impaired long-, but not short-term memory,
in the males, but not females, in both ages. Formalin pain
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FIGURE 1 | Mean (±SEM) latency to find the platform in the first four training trials for 5 days and second four training trials for four training days of spatial learning in
Control and Formalin male and female rats of early (P26-34) and late (P45-53) age groups. Panels (A,B) show data for male and female rats at the early age group.
Panels (C,D) show data for male and female rats at the late age group. The abscissa shows the first and second training four trials (1 and 2) in each of the five
training days. +p < 0.05, ++p < 0.01, +++p < 0.001 significant differences in Control rats between the first four training trials and the second four training trials
each day. ∗p < 0.05, ∗∗p < 0.01 Formalin rats vs Control rats.
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FIGURE 2 | Age and Sex effects in the mean (±SEM) latency to find the platform in Control and Formalin male and female rats in the first four training trials during
five training days [early P26-34 and late P45-53 age groups (A,B)] and in the second four training trials during four training days [early P26-34 and late P45-53 age
groups (C,D)]. ∗p < 0.05, ∗∗p < 0.01 age differences in Formalin rats, +p < 0.05, ++p < 0.01 age differences in Control rats. #p < 0.05 sex differences in P45-P48
Formalin rats. Abscissa, training days. The number of the rats in the groups corresponds to the number of rats in Figure 1.

neutralized the differences in latency between short-term and
long-term memory, which were found in Control animals.

Short- and Long-Term Spatial Memory,
the Time Spent in Target Quadrant
(Figure 5)
For the time in the target quadrant, Formalin P45-53 male rats
spent less time in target quadrant in the short-term memory

task than did the same-age Control males (Figures 5A,A1).
There were age differences in the short-term memory task in
Control males and females and Formalin females (Figure 5A).
In the long-term memory task, less time was spent in target
quadrant in Formalin P45-53 males and Formalin P26-34 females
as compared to the time in Control rats of the same ages
(Figures 5B,B1). There were differences between short-and term-
long memory performance in P26-34 animals, in both Control
and Formalin rats of both sexes (Figures 5A,B). The time spent in
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FIGURE 3 | The index of acquisition (A) and the savings index (B) for latency to find the platform during spatial learning in male and female rats of early (P26-34) and
late (P45-53) age groups. The data are: Mean (±SEM) latency differences between the first and last training trials of each of the five training days of spatial learning
(A). Mean (±SEM) latency differences between the last training trial of a given day and the first training trial of the next day during the five-day spatial learning (B).
Both indices illustrate a decrease of latency to find the platform with age in Control rats; neonatal formalin-induced pain leveled the age differences. ∗p < 0.05
Formalin vs Control (A,B); +p < 0.05 Control P45-49 rats vs Control P26-34 rats (A,B). The number of the rats in the groups corresponds to the number of rats in
Figures 1, 2.

the target quadrant was less in the short-term memory than in the
long-term memory task. Sex differences were found in the short-
term memory test since females spent more the time in the target
quadrant in Formalin P45-53 rats than did males (Figure 5A).

Corticosterone Determination in
Newborn Rats (Figure 6) and Adolescent
Rats (Figure 7)
In newborn rats, 30 min after formalin injection corticosterone
levels were higher in the Control and Formalin pups compared
to basal levels, and higher in the Formalin pups than in
Control pups (Figure 6). Likewise, twenty-four hours after
formalin injection, the Formalin pups had a higher corticosterone
level than the Control and the basal pups. Seven days after
formalin injection, there were no significant differences in the
corticosterone levels among the three groups of pups.

In adolescent rats, there were no sex differences in
corticosterone levels and therefore male and female data were
combined. Thirty min after forced swimming, which rats were
subjected to after long-term memory testing, corticosterone levels
were higher compared to basal levels in both the Control and
Formalin groups in early and late ages (Figure 7). Age differences
were found in both sexes in the Control and Formalin rats with
greater corticosterone levels in early age group.

DISCUSSION

The goal of this work was to examine the acute and subacute
effects of an injury to the pad of the hind paw on plasma
corticosterone, a marker of stress reactivity, in newborn rat

pups. Corticosterone was elevated quickly and that elevation was
maintained for at least 24 h compared to basal levels and saline
injection controls. This suggests that neonatal inflammatory pain
could modify the development of the HPA. We hypothesized
that this could lead to changes in stress reactivity and cognitive
abilities in adolescent rats. Indeed, there were differences in
adolescent rats’ plasma corticosterone in response to a swim
stress and in aspects of spatial learning and memory depending
on whether early and late age rats were tested. In the early
P26-34 and late P45-53 age groups, the effects of repetitive
neonatal peripheral inflammatory pain on spatial learning, short-
term and long-term memory, strongly indicate a pronounced
heterogeneity of the effects of early pain during the adolescent
period of rat development. However, the long-term effects of
early formalin injury and subsequent HPA activation cannot
explain the adolescent effects in any simple way.

In neonates, the HPA axis rapidly develops and responds to
strong stressors (Wood and Walker, 2015). We had previously
shown that even during the stress hyporesponsive period of the
HPA axis development, formalin-induced pain caused a gradual
over an hour an increase in plasma corticosterone levels in 7-
day-old male rats; twenty-four hours after injection of formalin
corticosterone still exceeded the basal value (Butkevich et al.,
2013). We also showed that neonatal formalin-induced pain
caused an increase in an inflammatory pain response, depression-
like behavior, and impairment of learning in adolescent male
rats (Butkevich et al., 2016). But the question remains open as
to whether the altered endogenous cortisol following early pain
stress may play a role in learning and memory performance, as
has been suggested in children (Mooney-Leber and Brummelte,
2017), especially in the prepubertal period in both sexes.
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FIGURE 4 | Mean (±SEM) latency to find the platform (A,B) for short-term (A) and long-term (B) spatial memory in the Formalin or Control male and female rats for
the early (P26-34) and late (P45-53) age groups. Differences in latency between short-term and long-term memory were found in the Control male and female rats of
the early age group and in females of the late age group. Formalin vs Control rats; differences between short- and long-term memory: in latency, ∧p < 0.05,
&&p < 0.01, in Control P26-34 males and females, and $$p < 0.001, in Control P45-53 females. The number of the rats in the groups corresponds to the number of
rats in the groups in Figures 1, 2. The graphs on the right illustrate significant results of statistical analysis. ∗p < 0.05 significant effect of exposure.

Weaning is stressful for the offspring. In the present work,
weaning occurred on P34 in both age groups. Experiments with
rats of the early group were conducted before weaning, the pups
after the experiment were in the home nest with their mother,
while the pups of the late group were without the mother, but
with their sisters or brothers. If weaning took place in P25, as
is usual in our laboratory (Butkevich et al., 2017), then testing
with P26 would be more stressful for the early group of rats than
testing with P45 for the late group of rats. So, the rats had weaning
at a later age. The rats of the late age group had enough time
(11 days) for adaptation of life without the mother. In the MWM,
the early age Control rats were capable of spatial learning, which
is consistent with the literature (Vorhees and Williams, 2014),
but which is in contrast to earlier work that found that effective
strategies for spatial learning in the Morris water maze appear
relatively late in adolescence (P42) (Schenk, 1985). Probably, the
differences in the line of rats (Wistar and Hooded rats) and the
testing methodology (in Schenk, 1985, Hooded rats were allowed
to swim only for 30 s) underlie these differences. Formalin treated
males and females of both age groups also demonstrated spatial
learning, as evidenced by the gradual decrease in the latency
of finding the platform during five training days. However,
compared to controls, older male but not younger male formalin-
induced neonatal pain rats took longer to find the platform for
both four training trials. This difference (35%) was particularly
pronounced on the first training day and it is first training day
that is an important criterion for the learning process (Vorhees
and Williams, 2014). In contrast to males, females of neither

age group showed differences between Formalin and Controls
on the first training day. Differences in spatial learning between
age groups in Control and Formalin females only appeared in
the second four trials. These sex differences may be due to
different rates of adolescent sexual maturation which occurs later
in males (∼P42 ± 2), than in females (∼P35 ± 2) (McCormick
and Mathews, 2007, 2010). This suggests that sex hormones can
be one of the reasons for these differences between males and
females. Another reason for these differences may be the different
reactivity of the HPA axis in males and females. However, no
differences in corticosterone reactivity were found between sexes
after assessing long-term memory. Interestingly, when using
other metrics for spatial learning, the index of acquisition and the
savings index (Whiting and Kokiko-Cochran, 2016), we found an
increase in the latency to find the platform, which is impairment
of cognition, in Formalin P45-53 females, as compared to Control
P45-53 females, but not in males of the same age group. The two
different metrics measuring learning and memory can explain
this difference. The index of acquisition – measure of the
learning within one day of testing, and is calculated by taking
the difference between the latency in the first and last tests and
averaging this difference for all days of learning. The savings
index is the measure of how well, on the first test of each
day, the rats remember what was learned on the previous day.
This value is calculated as the difference between the latency in
the last test of a given day and the latency in the first test of
the next day and averaged over all days of learning. However,
the absence of differences in the latency to find the platform
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FIGURE 5 | Mean (±SEM) time in target quadrant (A,B) for short-term (A) and long-term (B) spatial memory in the Formalin or Control male and female rats for the
early (P26-34) and late (P45-53) age groups. Differences in time in target quadrant between short-term and long-term memory were found in Control and Formalin
males and females of early age groups. In all cases, the time in target quadrant was shorter in the short-term memory (A,B). +++p < 0.001, age differences in
Control rats; ###p < 0.001, age differences in Formalin rats. Differences between short- and long-term memory: in time in target quadrant, ∧∧∧p < 0.001,
&&&p < 0.001 in Control P26-34 males and females, vvvp < 0.001, αα p < 0.01, in Formalin P26-34 males and females; 0p < 0.05, sex differences in P45-53
Formalin rats. The number of the rats in the groups corresponds to the number of rats in Figures 1, 2. The graphs below illustrate significant results of statistical
analysis. ∗p < 0.05, ∗∗p < 0.01 significant effect of exposure. Graphs (A1) and (B1) illustrate the significant outcomes of the statistical analyses.
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FIGURE 6 | Mean (±SEM) corticosterone levels in blood plasma in neonatal
pups under basal conditions, or 30 min, 24 h and 7 days after injection of
Formalin (2.5%, 0.5 µl) or Control into the pad of the left hind paw. ∗p < 0.05,
∗∗p < 0.01, Formalin vs saline; +p < 0.05, +++p < 0.001, Formalin vs basal;
∧∧p < 0.01, saline vs basal.

between Formalin and Control rats in the early P26-34 age group
was the same as the results obtained using these indices and
analysis I and II.

When assessing memory by the latency to find the platform,
neonatal pain caused deficits only in long-term memory in males
in both age groups, whereas when assessing memory by the time
spent in the target quadrant, neonatal pain decreased it in males
of the late age group in both short- and long-term memory and
also in females of early age group. Only control rats of both
sexes of the early age group showed differences between short-
and long-term memory in both latency and time spent in the
target quadrant, with shorter latency and longer time spent in
the target quadrant in long-term memory. In the time spent in
the target quadrant, Formalin rats of the early age group, showed
the similar behavior. Note, age differences were found only in
short-term memory in Control rats of both sexes and Formalin
females, and only in the target quadrant, with a longer parameter

in the late age group. Differences identified in memory processes
using latency to find the platform and the duration to stay in the
target quadrant indicate participation of different brain structures
in these behavioral characteristics of memory.

We are aware of only a few rodent studies that investigated the
effect of neonatal inflammatory pain on memory. For instance,
formalin-induced pain in newborn rats impaired visual-spatial
learning and memory in the radial 8-arm maze, which uses food
reinforcement, in adult rats (Anand et al., 2007). Inflammatory
pain caused by the intra-plantar injection of carrageenan (1%)
on the day of birth, P0, resulted in spatial memory deficits also
in adult rats (Henderson et al., 2015), and dysregulated the HPA
axis (Victoria et al., 2013). Complete Freund’s adjuvant on P1
did not affect short-or long-term memory in male or female rats
on P60, but resulted in spatial learning deficits in males (Amaral
et al., 2015). Therefore, although there are some inconsistencies,
in general early experiences of painful injury can disrupt adult
spatial learning/memory processes. When assessed, the single
injection of carrageenan on the day of birth activated the infant
HPA axis in rat pups (Victoria et al., 2014). Daily needle pricks in
each paw at 6-h intervals until P7 (Chen et al., 2016), decreased
serum corticosterone in P24, had no effect at P45 and increased
corticosterone in adult rats. Thus, these early insults can have
long-term effects on subsequent HPA axis function. However,
we know of no comparable data for testing the effects of early
inflammatory injury in adolescence.

We measured HPA reactivity in response to forced swimming
in the rats after testing in the MWM, and found no differences
in corticosterone levels in adolescent rats between Formalin
and Control rats of either sex. Importantly, both Control and
Formalin rats at the early age showed greater corticosterone
levels compared to those of the late age group. The forced swim
test is known to stimulate the HPA activity in rats (Mathews
et al., 2008), and HPA axis reactivity is modified by previous
stress history, especially during critical periods of rapid brain
development (reviewed in Meaney and Szyf, 2005). Stress at
an early age changes adaptive behavior. For example, we have
previously shown that the formalin test preceding the forced
swim test sharply reduced the immobility time only in 7-day-old
rat pups that had been prenatally stressed but not control pups
(Mikhailenko et al., 2010). Our long-term experience with the
forced swim test indicates that the severe physical and emotional
stress experienced by the rat in this test can obviate the effects
of other varied types of stress. It is important to note, that the
absence of differences in the reactivity of the HPA axis between
Formalin and Control rats in our current study could be a
consequence of the cumulative effects of testing in MWM and
forced swimming on the activity of the HPA axis. The interaction
of different types of stress, especially during critical periods of
development, can lead to unexpected results (Sokołowski et al.,
2020). Especially interesting and of practical importance is the
consequence of suppressing the adverse effects of one stress by
another adverse stress (Van Bodegom et al., 2017). Our data using
the formalin pain stress in newborns showed suppression of the
expected pronociceptive effect of prenatal stress in the formalin
test in adolescent rats, but did not reduce depressive-like behavior
(Butkevich et al., 2020).
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FIGURE 7 | Mean (±SEM) corticosterone levels in blood plasma in response to forced swimming in Control and Formalin rats at the age of P34 and P53 after testing
in the Morris Water Maze. +p < 0.05, ++p < 0.01, +++p < 0.001, Formalin vs basal; ∧∧p < 0.01, ∧∧∧p < 0.001 Control vs basal; &p < 0.05, age differences
between Control rats; vvp < 0.01, age differences between Formalin rats. The number of the rats in the groups corresponds to the number of rats in Figures 1, 2.

Our present experiments have shown that the activation of the
HPA axis by neonatal pain has no direct relationship with spatial
learning and memory in rats in adolescence. Other physiological
systems besides the HPA axis may be involved in the effects of
inflammatory pain in newborns, such as the immune system,
which responds to inflammation and stress and can affect brain
neurons and cognitive function. The immune system closely
interacts with the HPA axis (Gaillard, 2003). Sex differences
in microglia, neuroimmune cells, begin to emerge during the
prenatal organizational period for sexual differentiation of the
brain (Schwarz et al., 2012). Immunocompetent cells of the
brain express steroid hormone receptors and are regulated by
hormones and activation of the immune system is determined
by sex hormones (Lombardo et al., 2021). Moreover, the
immune system acts as a regulator of sex differences in brain
development and behavior (Nelson and Lenz, 2017; VanRyzin
et al., 2018). The immune and sexual systems interact with
the HPA axis (Bereshchenko et al., 2018). One can suggest
that the sex differences reported here following neonatal pain

depend on the balance in maturation of the HPA and the
hypothalamus-pituitary-gonadal (the HPG) axis. Neonatal pain,
by disrupting the processes of inhibition or excitation in the
central nervous system, could modify the synchronization of
development of the HPA and HPG systems, which closely interact
and affect the neuroplasticity of learning and memory. The
hippocampus, medial prefrontal cortex, and amygdala, brain
structures implicated in the control of the HPA axis (Herman
et al., 2003) and cognition (Euston et al., 2012; Méndez-Couz
et al., 2014), mature rapidly during adolescence (Spear, 2000) and
can influence sensitivity of the HPA axis to sex hormones and
alter cognitive abilities.

The relatively long-lasting high level of corticosterone evoked
by formalin-induced pain in newborn rat could impair the
development of the PVN. In the newborn rat, the PVN and CA1
of the hippocampus contain GR mRNA expression (Pryce, 2008).
The CRH hippocampal system regulates neurogenesis in the
hippocampus which is involved in spatial learning and memory
(Koutmani et al., 2019). Elevated levels of glucocorticoids have
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also been shown to impair working and reference memory
(Stylianakis et al., 2018). CRH neurosecretory systems release
glutamate, in addition to neuropeptides, into the pericapillary
space of hypophysial portal vessels, and there is expression of
the mRNA for vesicular glutamate transporter-2 in the rat CRH
neurons in the PVH (Hrabovszky et al., 2005). Glutamatergic
neurons are one of the main links in the processes of learning
and memorization (review, Mooney-Leber and Brummelte,
2017). Excessive levels of glucocorticoids enhance the release
of glutamate, causing neurotoxicity, which enhances apoptosis,
as shown in the hippocampus and other brain regions during
the first postnatal week in the rat (Lu et al., 2003; Dührsen
et al., 2013). The role of glutamate during development has been
primarily associated with the NMDA receptor, which is present
at P0 in the rats (Behuet et al., 2019). During normal early
development when the NMDA receptor containing the NR2B
subunit in the hippocampus of the newborn rat is activated,
the corresponding channel remains in the open position much
longer than in the mature receptor. In addition, neurons
with such receptors develop long-term potentiation, a form of
activity-dependent synaptic strengthening, more quickly, which
contributes to memory strengthening. The selective loss of NR2B
protein and subsequent synaptic dysfunction weakens prelimbic
PFC function during development and may underlie early
cognitive impairments (Gulchina et al., 2017). We hypothesize
that the impairment of the NR2B subunit caused by increased
corticosterone in rats with neonatal pain may be associated with
the abnormalities in spatial memory that we found.

Short and long exposures to corticosterone differentially tune
NMDAR signaling in hippocampus by altering the expression
and synaptic presence of NMDAR subunits, allowing adaptations
of glutamate synapses (Mikasova et al., 2017). Taking into
account the different roles of metabotropic and inotropic
glutamatergic and GABAergic receptors in the effect of stress
on learning and memory, as well as the mechanism of co-
transmission of glutamate with GABAergic neurons (Trudeau
and Mestikawy, 2018), it is possible that these complex
relationships are involved both in the differences we found in
the effect of early pain stress on cognitive abilities in adolescent
rats, and in the absence of differences in the reactivity of the
HPA axis to stress in the adolescent Formalin and Control rats.
It is known that the serotonergic, the HPA axis, glutamatergic,
and GABAergic systems are all involved in nociception and are
affected by stress (Goudet et al., 2009; Quintero et al., 2011;
Bannister et al., 2017; Hernández-Vázquez et al., 2019). Formalin-
induced neonatal pain effects various neurotransmitter systems,
disrupts the balance between excitation and inhibition in the
central nervous system, modifies the development of functional
activity of the HPA axis, and thus affects the neurophysiological
mechanisms underlying cognitive processes.

In conclusion, we found that activation of the HPA axis by
neonatal pain did not directly correlate with spatial learning
and memory in adolescence, and therefore the consequences of
newborn pain remain are likely multi-determined. Neonatal pain
impaired spatial learning and long- and short-term memory in
late adolescent males and long-term memory in early adolescent
females. The comparative analysis of the memory scores revealed

that long-term memory performance was more robust than
short-term memory. The differences found in spatial memory
performance in MWM in P25-34 and P45-53 rats provide strong
evidence of the heterogeneity in the development of cognitive
processes in the two age groups of the adolescence. These
behavioral changes suggest that neonatal pain causes changes
in various structures and neurotransmitters involved in spatial
short-term and long-term memory only in P45-53 rats. The effect
of stress at an early age on memory and the HPA axis, as well
as brain structures involved in memory processes in adulthood
are well studied (Krugers and Joëls, 2014; Schroeder et al., 2018;
Bonapersona et al., 2019; Cordier et al., 2021), but information
on the effects of neonatal pain stress on memory and the
participation of the HPA axis in this process is very meager. Our
work is the first, as far as we know, aimed at studying the effects of
early-life inflammatory pain on spatial learning and memory, and
the HPA reactivity at different age intervals within the adolescent
period. It was also important in our study to include male and
female rats, as very few studies have included rats of both sexes in
adolescence, and our results show clear differences in the effects
in males and females that might be accounted for by different
developmental trajectories during adolescence. The limitation of
the work was that we analyzed corticosterone not after MWM,
but after the further stress of the forced swim, to determine the
reactivity of the HPA axis in Formalin and Control rats. We
also conducted that assay only once, and thus did not evaluate
the dynamics of corticosterone change. It will be interesting to
investigate changes in these behavioral and endocrine systems in
adult rats exposed to inflammatory neonatal pain to determine if
the age and sex differences that we identified here continue into
adulthood or are unique features of the adolescent period.
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Nicotine and alcohol use is highly prevalent among patients with serious mental
illness, including those with schizophrenia (SCZ), and this co-occurrence can lead to
a worsening of medical and psychiatric morbidity. While the mechanistic drivers of co-
occurring SCZ, nicotine use and alcohol use are unknown, emerging evidence suggests
that the use of drugs during adolescence may increase the probability of developing
psychiatric disorders. The current study used the neonatal ventral hippocampal lesion
(NVHL) rat model of SCZ, which has previously been shown to have enhanced
nicotine behavioral sensitization and, following adolescent alcohol, increased alcohol
consumption. Given how commonly alcohol is used by adolescents that develop SCZ,
we used the NVHL rat to determine how exposure to adolescent alcohol impacts the
development of nicotine behavioral sensitization in adulthood. Male Sprague-Dawley
rats underwent the NVHL surgery or a sham (control) surgery and subsequently, half
of each group was allowed to drink alcohol during adolescence. Nicotine behavioral
sensitization was assessed in adulthood with rats receiving subcutaneous injections of
nicotine (0.5 mg/kg) each day for 3 weeks followed by a nicotine challenge session
2 weeks later. We demonstrate that all groups of rats became sensitized to nicotine
and there were no NVHL-specific increases in nicotine behavioral sensitization. We
also found that NVHL rats appeared to develop sensitization to the nicotine paired
context and that adolescent alcohol exposure blocked this context sensitization. The
current findings suggest that exposure to alcohol during adolescence can influence
behaviors that manifest in the adult NVHL rat (i.e., context sensitization). Interestingly,
nicotine behavioral sensitization levels were not altered in the NVHL groups regardless
of adolescent alcohol exposure in contrast to prior reports.

Keywords: adolescent alcohol, NVHL, co-occurring disorders, mental illness, smoking, nicotine behavioral
sensitization
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INTRODUCTION

Smoking is highly prevalent among patients with serious mental
illness and this co-occurrence leads to medical and psychiatric
morbidity (Green et al., 1999, 2008; Mallet et al., 2019) as well as
an increased mortality risk (Tran et al., 2009; McGinty et al., 2012;
Dickerson et al., 2018). Specifically, patients with schizophrenia
(SCZ) have higher smoking rates than the general population
(de Leon and Diaz, 2005) with lifetime prevalence reported at
60–90% (Volkow, 2009). In one investigation studying patients
with SCZ or bipolar disorder, current smokers showed worse
cognitive functioning and had poorer functional outcomes than
past or never smokers. These effects were observed regardless
of diagnosis, however, the patients with SCZ were twice as
likely to be smokers compared to those with bipolar disorder
(Depp et al., 2015). Moreover, in a recent study, 31% of current
smokers were readmitted to a psychiatric hospital within 1 year
of discharge compared to 26% of never smokers (Kagabo et al.,
2019). Collectively, these studies indicate a correlation between
smoking in patients with a serious mental illness and increased
psychiatric morbidity and mortality.

The underlying causes of co-occurring mental illness and
substance use disorders are largely unknown. However, there is
evidence indicating that genetic factors combined with prenatal
and/or postnatal developmental insults (including the use of
drugs during adolescence; Khokhar et al., 2017), contribute to
the development of these disorders. A number of studies suggest
cannabis use (Fergusson et al., 2003), and tobacco smoking (Gage
and Munafo, 2015; Kendler et al., 2015) may be associated with
increased psychotic symptoms. Additionally, for many patients
substance use precedes psychosis, with reports finding that
substance use rates among patients with first episode psychosis
are 30–70% (Abdel-Baki et al., 2017). Thus it is important
to study substance use during adolescence and its potential
role in contributing to an individual’s risk of developing a
psychiatric diagnosis.

One developmental insult used in rats that results in several
dysregulated behavioral endophenotypes is the neonatal ventral
hippocampal lesion (NVHL). NVHL rats display symptoms
resembling those occurring across psychiatric disorders, though
they are often used as a model of SCZ (Lipska et al., 1993,
1995; Sams-Dodd et al., 1997; Brady et al., 2010; Gruber et al.,
2010; Placek et al., 2013). Moreover NVHL rats self-administer
drugs, including nicotine, at a higher rate than normal rats
(Chambers and Self, 2002; Berg et al., 2011; Sentir et al., 2020), as
well as demonstrate enhanced nicotine behavioral sensitization
(Berg and Chambers, 2008). Behavioral sensitization is the
progressive increase of drug-induced locomotion with repeated
exposure to a drug (Robinson and Berridge, 1993) and is a
phenomenon documented in both humans and animals (Kalivas
and Stewart, 1991; Robinson and Berridge, 2008). This behavior
is indicative of neuroadaptations occurring in motivation related
brain regions underlying drug-wanting and craving (Robinson
and Berridge, 2008) and can be affected by perturbations
occurring in adolescence (McCormick et al., 2004; Mathews et al.,
2008; McCormick, 2010; Garcia et al., 2017). Furthermore, cross-
sensitization has also been shown, where the repeated exposure

of one drug yields sensitization to another drug (Kalivas and
Stewart, 1991; Steketee and Kalivas, 2011).

Neonatal ventral hippocampal lesion rats have also been
shown to increase alcohol consumption in adulthood after
voluntary adolescent alcohol intake (Jeanblanc et al., 2015).
Alcohol remains one of the most commonly used drugs by
adolescents [Johnston et al., 2020; Substance Abuse and Mental
Health Services Administration (SAMHSA), 2020], and as such,
combining the NVHL developmental insult with adolescent
alcohol exposure can be used to study the complex dynamics
between adolescent drug use, SCZ, and increased smoking. In the
present study, we used the NVHL rat to determine how exposure
to adolescent alcohol affects nicotine behavioral sensitization
in adulthood. In humans, alcohol use during adolescence has
been linked to increased substance use in adulthood (Ellickson
et al., 2003; Grant et al., 2006; Ryan et al., 2019), therefore,
we hypothesized NVHL animals with alcohol exposure would
demonstrate increased nicotine behavioral sensitization.

MATERIALS AND METHODS

Subjects and Housing
Lactating Sprague-Dawley female rats (n = 4) with 10 male
pups each were ordered from Charles River (Wilmington, MA,
United States) and arrived on the pups’ postnatal day (PD) 2. We
specifically chose to use the outbred rat strain Sprague-Dawley
in order to maximize the genetic and epigenetic variability, as
any behavioral signals would likely be more generalizable to other
rats. Additionally, as reports indicate that the prevalence rates of
any current tobacco product use is higher in men than women
in the general population (Higgins et al., 2015; Cornelius et al.,
2020) and in patients with SCZ (Kelly and McCreadie, 1999;
Ohi et al., 2018), we used male rats. All rats were housed on
a reverse 12-h light cycle with ad libitum access to food and
water. All experiments were carried out in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals (NIH Publications No. 80–23) and were
approved by the Institutional Animal Care and Use Committee
of Dartmouth College.

Neonatal Ventral Hippocampal Lesion
Surgery
Neonatal ventral hippocampal lesion or sham (control) surgeries
were carried out following previously published guidelines
(Chambers and Lipska, 2011). On PD 7 when pups weighed
between 15 and 20 g, they were anesthetized via hypothermia and
then placed on a Styrofoam platform attached to a stereotaxic
frame (Kopf Instruments, Tujunga, CA, United States). Half
of the pups (NVHL; n = 20) were bilaterally injected with
0.3 µl excitotoxic ibotenic acid [10 µg/µl ibotenic acid (Tocris,
Minneapolis, MN, United States) in artificial cerebrospinal fluid
(aCSF)] into the ventral hippocampi (from bregma: AP −3.0 mm,
ML ± 3.5 mm, DV −5.0 mm). The remaining pups (Sham;
n = 20) were injected with 0.3 µl of aCSF at the same coordinates.
After surgery, wounds were closed with surgical glue (VetOne
Surgical Adhesive, Boise, ID, United States) and the pups were
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warmed on a heating pad until their activity level was restored,
at which time they were returned to their home cages. In order
to control for litter/dam effects, half of each litter underwent the
NVHL surgery and the other half was sham-operated. Rats were
weaned on PD 21 and housed individually. One sham rat did not
recover after surgery.

Alcohol Drinking in Adolescence
We followed the methods from previously published studies
(Jeanblanc et al., 2015; Khokhar and Todd, 2017), but briefly,
half of each group [NVHL with alcohol exposure (NVHL AE);
sham with alcohol exposure (Sham AE)] was given free access
to 10% v/v ethanol (EtOH) in water solution in their home cage
for 24 h per day from PD 28–42. Alcohol intake, water intake,
and body weights were measured daily and the position of the
alcohol and water bottles was alternated each day to prevent
development of a side preference. At the end of PD 42, the alcohol
bottle was removed, and the rats had access to water only for the
duration of the study.

Nicotine Sensitization
Nicotine behavioral sensitization began on PD 60 and was
performed during the active cycle (the time when the animal
rooms are dark between 0700 and 1,900 h). Nicotine bitartrate
dihydrate (MilliporeSigma, Burlington, MA, United States;
0.5 mg/mL) was dissolved in 0.9% sterile saline, adjusted to 7.4
pH, and administered with a volume of 1 mL/kg bodyweight.
Locomotor activity was assessed in four open field arenas
(60 cm × 60 cm × 33 cm) located in an animal behavior
room, separate from the rats’ housing room. The lights were
turned on in the behavior room during nicotine behavioral
sensitization (average light intensity was 297.7 lux), and the
paradigm was conducted so each round of four animals was
comprised of both NVHL and sham rats. The arena used for
each individual rat remained consistent throughout the entire
experiment and in between each round of four animals, the
arenas were thoroughly cleaned.

The injection series occurred Monday through Friday for
three consecutive weeks (15 sessions). During each session, rats
were first placed in the arena for 30 min (i.e., preinjection).
After 30 min, each rat was given a subcutaneous (s.c.) injection
of nicotine (0.5 mg/kg in 1 mL/kg) and returned to the same
arena for 60 min (i.e., postinjection). After the 15th session, rats

were given a 2 week washout period where they remained in
their home cage. Following the washout period, rats underwent
a challenge session where, again, they had a 30 min preinjection
period, followed by an injection of nicotine (0.5 mg/kg), and
remained in the arena for a 60 min postinjection period
(Figure 1). Every pre- and post-injection session was videotaped
using a Defeway Security camera system (Shenzhen, China)
and analyzed using Noldus EthoVision XT tracking software
(Wageningen, Netherlands) for distance traveled (cm), velocity
(cm/s), and location within the chamber (i.e., center zone).
One NVHL AE rat had to be euthanized after completing the
15 sessions but prior to the challenge session due to seizures.
One NVHL no AE rat died before completing the nicotine
behavioral sensitization paradigm. Final numbers for the four
groups were: NVHL AE = 10; Sham AE = 10; NVHL no AE = 8;
and Sham no AE = 9.

Anxiety-Like Behavior
Anxiety-like behavior was assessed using latency to center,
frequency in center, and total duration in center zone for
preinjection and postinjection on days 1, 5, 10, 15, and challenge.
The center zone (20 cm × 20 cm) was created using EthoVision
XT arena settings by dividing the arena floor into nine equal-sized
zones. The rat was considered in the center zone if the center
tracking point (while using three-point tracking) was within 2 cm
of the defined center zone. In sessions where the rat never entered
the center zone, the variable latency to center was recorded as
the maximum number of seconds for that session (i.e., 1,800 or
3,600 s for preinjection and postinjection, respectively).

Lesion Verification
At the end of the experiment, rats were euthanized by CO2
overdose, brains were extracted and flash frozen using 2-
methylbutane on dry ice. Tissue was stored at −20◦C prior to
being sectioned at 40 µm using a Leica Biosystems CM1850
cryostat (Buffalo Grove, IL, United States) and stained with
thionin. Lesion size was verified using an AmScope light
microscope (Irvine, CA, United States). Lesions include cell loss,
cellular disorganization, and ventricle enlargement (Figure 2).
NVHL rats with extra-hippocampal damage or unilateral damage
were excluded from analysis. One NVHL rat was removed due to
an exceedingly large lesion.

FIGURE 1 | Experimental timeline. NVHL or sham surgery was performed on postnatal day (PD) 7. Half of each group received access to 10% ethanol (EtOH) in their
home cage from PD 28–42. Nicotine sensitization began on PD 60 and occurred Monday through Friday for three consecutive weeks (15 sessions). Each session
had a 30 min preinjection phase before the rat received a subcutaneous injection of 0.5 mg/kg nicotine followed by a 60 min postinjection phase. After a 2 week
washout, all rats had a challenge session on PD 96.
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FIGURE 2 | Representative image of a NVHL (left) and sham (right) brain.
The arrow points to the NVHL lesion in the ventral hippocampus.

Data Analyses
Alcohol Intake
The alcohol intake (g EtOH/kg bodyweight) for each group
(NVHL AE or Sham AE) was averaged for each day. A repeated
measures analyses of variance (RMANOVA) was used to
compare the average alcohol intake between the groups across
alcohol exposure time.

Nicotine Sensitization
Total distance traveled during preinjection and postinjection was
calculated for each day and averaged across groups. To account
for individual differences in locomotor activity and to determine
the level of nicotine behavioral sensitization, the distance traveled
during the first 30 min of postinjection was compared to that
days’ preinjection for each rat and expressed as a percentage
change. A three-way RMANOVA was run with day (day 1–15)
and treatment (preinjection or postinjection) as within-subject
factors and group (NVHL AE, Sham AE, NVHL no AE, Sham
no AE) as the between group factor. Two-way RMANOVAs were
subsequently used to determine group differences in preinjection,
postinjection, and percentage change. ANOVAs were used to
compare distance traveled between the groups on challenge day.
If the assumption of sphericity was violated, the Greenhouse-
Geisser correction was used. Any significant effects were further
analyzed using Bonferroni post hoc tests.

Velocity
A three-way RMANOVA was run with day (day 1, 5, 10,
15) and treatment (preinjection or postinjection) as within-
subject factors and group as the between group factor. Two-
way RMANOVAs were used to compare preinjection and
postinjection average velocity between the groups. ANOVAs were
used to compare preinjection and postinjection velocity between
the groups on challenge day.

Anxiety-Like Behavior
Repeated measures analyses of variances were used to compare
preinjection and postinjection latency to center, center frequency,
and total center duration over days 1, 5, 10, and 15.
ANOVAs were used to compare groups during preinjection
and postinjection on challenge day. To determine the effect

of nicotine on anxiety and to account for an increase in total
distance traveled after nicotine, the ratio of center crosses
to total distance traveled was calculated for preinjection and
postinjection on challenge day. A RMANOVA was used to assess
the preinjection and postinjection ratio between the four groups.

RESULTS

Adolescent Alcohol Intake
As shown in Figure 3, RMANOVA revealed that alcohol intake
during adolescence did not differ between NVHL AE and Sham
AE groups [F (1,16) = 0.068, p = 0.798].

Nicotine Sensitization
Three-way RMANOVA revealed a significant treatment∗day
interaction [F (3.869,127.671) = 73.656, p < 0.001] indicating
that distance traveled during postinjection was greater than
preinjection, demonstrating nicotine behavioral sensitization.
There was also a significant treatment∗day∗group interaction
[F (11.606,127.671) = 2.763, p = 0.003]. Two-way RMANOVA
revealed a significant group effect in distance traveled during
the preinjection phase across the 15 nicotine sessions [F
(3,33) = 4.639, p = 0.008; Figure 4A]. Bonferroni post hoc analyses
showed that the NVHL no AE group traveled significantly further
than every other group: Sham no AE (p = 0.027), NVHL AE
(p = 0.021), and Sham AE (p = 0.027). A similar pattern emerged
when focusing on the postinjection phase. Two-way RMANOVA
showed a significant group effect across the 15 nicotine sessions
[F (3,33) = 10.206, p < 0.001; Figure 4B]. Bonferroni post hoc
analyses showed that the NVHL no AE rats traveled significantly
further following nicotine injection than Sham no AE (p< 0.001),
NVHL AE (p = 0.009), and Sham AE (p < 0.001) rats.

Looking at the challenge day, an ANOVA indicated a
significant difference in distance traveled between groups during
the preinjection phase [F (3,32) = 7.864, p < 0.001; Figure 4C].
Bonferroni post hoc showed that the NVHL no AE group traveled
significantly further than Sham no AE (p = 0.002), NVHL AE
(p = 0.012), and Sham AE (p = 0.001) groups. Additionally,
an ANOVA showed a significant difference in distance traveled
between groups during the postinjection phase on the challenge

FIGURE 3 | Adolescent alcohol intake. Alcohol Intake (g EtOH/kg bodyweight)
from PD 28–42 did not differ between NVHL AE and Sham AE rats. Data is
shown as group mean ± SEM.
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FIGURE 4 | Total distance traveled and average velocity. (A) Total distance
traveled before an injection of 0.5 mg/kg nicotine across the 15 sensitization
sessions. (B) Total distance traveled after an injection of 0.5 mg/kg nicotine
across the 15 sensitization sessions. The NVHL no AE group showed
significantly greater distance traveled compared to the Sham no AE, NVHL
AE, and Sham AE groups during both the preinjection and postinjection
phases. (C) On the preinjection phase of the challenge day, the NVHL no AE
group showed significantly more distance traveled than the other three
groups. (D) During the postinjection phase on the challenge day, the NVHL no

(Continued)

FIGURE 4 | (Continued)
AE group only traveled significantly further than the Sham no AE group.
(E) NVHL no AE rats had significantly elevated average velocity during the
preinjection phase on days 1, 5, 10, and 15. (F) NVHL no AE rats had
significantly elevated average velocity during the postinjection phase on days
1, 5, 10, and 15. (G) Average velocity of the NVHL no AE rats remained
elevated during the preinjection phase on the challenge day. (H) During the
postinjection phase, NVHL no AE rats only had significantly increased velocity
compared to Sham no AE rats. Data is shown as group mean ± SEM.
∗p ≤ 0.05; ∗∗p ≤ 0.01; and ∗∗∗p ≤ 0.001.

day [F (3,32) = 4.051, p = 0.015; Figure 4D]. Bonferroni
post hoc analyses indicated that the NVHL no AE group traveled
significantly further than the Sham no AE group (p = 0.012).
However, the NVHL no AE group was no longer significantly
different from the NVHL AE or the Sham AE group following
the injection of nicotine.

Since the NVHL no AE group showed significantly greater
distance traveled in both the preinjection and postinjection
phase, the level of nicotine behavioral sensitization when
controlling for any nicotine induced context sensitization
was determined by calculating the percentage change in
distance traveled from the preinjection phase to the first
30 min of the postinjection phase on each day for each
rat. RMANOVA revealed no group differences in the level
of nicotine behavioral sensitization across the 15 sessions [F
(3,33) = 0.380, p = 0.768; Figure 5], however, a significant
effect of day using the Greenhouse-Geisser correction again
indicates that all groups did become sensitized to nicotine
[F (3.879,128.006) = 16.872, p < 0.001]. An ANOVA on
percentage change in distance traveled on the challenge day
showed no differences between groups [F (3,32) = 2.259, p = 0.1;
Figure 5].

Velocity
Three-way RMANOVAs revealed significant treatment∗day,
day∗group, and group∗treatment interactions. Two-way
RMANOVAs showed a group effect in average velocity during
the preinjection [F (3,33) = 5.165, p = 0.005; Figure 4E] and
postinjection [F (3,33) = 7.949, p < 0.001; Figure 4F] phase
across days 1, 5, 10, and 15. Bonferroni post hoc analyses showed
that NVHL no AE rats moved with greater average velocity
during both preinjection and postinjection sessions compared to
Sham no AE (p = 0.027 and p = 0.002 for pre- and post-injection,
respectively), NVHL AE (p = 0.006 and p = 0.013), and Sham AE
(p = 0.023 and p = 0.001) groups.

During the challenge day, ANOVA showed a significant
difference in average velocity between groups during the
preinjection phase [F (3,32) = 7.397, p = 0.01; Figure 4G]
and the postinjection phase [F (3,32) = 4.154, p = 0.014;
Figure 4H]. Bonferroni post hoc analyses indicated that during
the preinjection phase NVHL no AE rats had greater average
velocity than all other groups (Sham no AE [p = 0.001],
NVHL AE [p = 0.018], NVHL no AE [p = 0.003]). However,
during the postinjection phase, NVHL no AE rats had
significantly increased velocity compared to only Sham no AE
rats (p = 0.025).
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FIGURE 5 | Percentage change in distance traveled. The level of nicotine
sensitization was determined by calculating the percentage change in
distance traveled from the preinjection phase to the first 30 min of the
postinjection phase across each of the initial 15 sessions and on the challenge
day for each rat. No group differences were observed but a significant effect
of day across the 15 sessions indicates that all groups became sensitized to
nicotine. Data is shown as group mean ± SEM.

Anxiety-Like Behavior
Repeated measures analyses of variances found no significant
differences between groups in latency to center zone
(Supplementary Figures 1A,B), frequency in center
(Figures 6A,B), and total duration in center (Supplementary
Figures 1E,F) in both preinjection and postinjection phases
across days 1, 5, 10, and 15.

Similarly, ANOVAs found no significant differences between
groups in latency to center zone (Supplementary Figures 1C,D)
and total duration in center (Supplementary Figures 1G,H)
during preinjection and postinjection on the challenge day.
However, there was a significant difference between groups in
frequency in center during the preinjection phase on challenge
day [F (3,32) = 5.518, p = 0.004; Figure 6C]. Bonferroni post hoc
analysis showed that NVHL no AE rats entered the center zone
more frequently than Sham no AE (p = 0.027), NVHL AE
(p = 0.028), and Sham AE (p = 0.004). Following the nicotine
injection on challenge day, the significant differences between
groups in center frequency no longer remained (Figure 6D).
To assess the effect of nicotine on anxiety-like behaviors
and to account for an increase in locomotive behavior after
nicotine, the ratio of number of center crosses to total distance
traveled was calculated for preinjection and postinjection on
the challenge day. RMANOVA revealed a significant increase
in the center crosses-to-distance ratio during the postinjection
phase [F (1,32) = 37.161, p < 0.001] with no significant group
differences (Figure 6E).

DISCUSSION

Here, we sought to determine the effects that alcohol exposure
during adolescence would have on nicotine behavioral
sensitization in the NVHL model of SCZ. The results suggest
that adolescent alcohol exposure from PD 28–42 did not alter the
amount of nicotine behavioral sensitization. When controlling
for baseline differences in distance traveled, there were no
differences in the amount of nicotine behavioral sensitization

FIGURE 6 | Center zone frequency. (A) Frequency of center zone crosses
before the injection of nicotine on days 1, 5, 10, and 15. (B) Frequency of
center zone crosses after the injection of nicotine on days 1, 5, 10, and 15.
No significant group differences were observed. (C) NVHL no AE rats had
significantly increased frequency of center crosses during preinjection on the
challenge day. (D) Following the nicotine injection on challenge day, no group
differences were observed. (E) There was a significant increase in the ratio of
frequency of center crosses to distance traveled following nicotine on the
challenge day with no group differences. Data is shown as group
mean ± SEM. ∗p ≤ 0.05; ∗∗p ≤ 0.01; and ∗∗∗p ≤ 0.001.

between NVHL and sham rats, regardless of adolescent alcohol
exposure. Importantly though, all groups did sensitize to
nicotine, as demonstrated by a significant treatment∗day
interaction in distance traveled and the significant increase in
percentage change across the 15 sessions (Figure 5).

The NVHL no AE group showed a significant increase
in distance traveled during the preinjection phase of the 15
sessions (Figure 4A), in addition to a significant increase in
velocity (Figure 4E). While previous studies have found that
postpubertal NVHL rats show spontaneous hyperlocomotion
(Lipska et al., 1993; Sams-Dodd et al., 1997), as well as increased
locomotor response to a novel environment (Berg and Chambers,
2008), we saw no group differences in distance traveled during
the preinjection phase on Day 1. However, we did observe
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that the NVHL no AE group showed significant increases in
distance traveled during the preinjection phase across days once
nicotine injections began, suggesting the development of context
sensitization, a phenomenon that has previously been reported
in the literature in normal rats. Rats treated with nicotine
(0.6 mg/kg) for 9 days showed an increase in locomotor activity
compared to saline treated animals in the 30 min prior to
drug administration (Kosowski and Liljequist, 2005). Similarly,
an environment repeatedly paired with nicotine (0.6 mg/kg)
acquired the ability to elicit increases in activity even in the
absence of nicotine (Walter and Kuschinsky, 1989; Bevins et al.,
2001). These data are the first to report that the NVHL rat has
enhanced context sensitization, possibly pointing to an increase
in the salience of nicotine, and a shift of that salience from
nicotine to the context, in this group. Furthermore, it appears
that adolescent alcohol exposure impairs the formation of context
sensitization, possibly by dampening the salience of nicotine,
in the NVHL AE rat. An increase in the salience of nicotine
is supported by previous work demonstrating that NVHL rats
have increased nicotine seeking behavior during extinction than
their sham counterparts (Berg et al., 2013; Rao et al., 2016; Sentir
et al., 2020). Thus the current results lend further support to the
NVHL rat as a model to better understand SCZ and the increased
prevalence of nicotine use.

While additional research is needed to elucidate the exact
mechanism, one potential reason for the reduction in context
sensitization seen in the NVHL AE group when compared to
the NVHL no AE group, may be the impact that alcohol has
on developing brain regions. Clinical studies show that alcohol
use during adolescence impacts the volume of several brain
regions such as the prefrontal cortex (PFC; De Bellis et al.,
2005), nucleus accumbens (Thayer et al., 2012), hippocampus (De
Bellis et al., 2000; Nagel et al., 2005; Medina et al., 2007), and
amygdala (Wilson et al., 2015). Preclinical studies corroborate
these findings with alcohol causing numerous anatomical and
functional alterations, including decreases in neurogenesis and
region-specific brain damage and cell death (Crews et al.,
2000; Spear, 2015, 2016). As many of these brain regions
play a role in incentive salience, it is possible that disrupted
cortical development stemming from alcohol exposure during
adolescence dampened the salience of nicotine in the NVHL AE
group which prevented the development of context sensitization.

Another neurobiological mechanism that may underlie
behavioral changes within the NVHL rat are disruptions in
nicotinic acetylcholine receptor (nAChR) function. Extensive
literature exists demonstrating that patients with SCZ have
disrupted nAChR function and decreased receptor density
(Freedman et al., 1995; Breese et al., 2000; Durany et al.,
2000; D’Souza and Markou, 2011; Esterlis et al., 2014). These
results are supported by a preclinical study showing that
NVHL rats have a 12% reduction in nAChR binding in the
PFC compared to their sham counterparts (Berg et al., 2015).
Furthermore, additional cholinergic alterations exist in this
model. In vivo acetylcholine release was hyper reactive to
both peripheral and local administration of a dopamine (D)1
agonist in NVHL rats, and receptor autoradiography showed
an increase in muscarinic (M)1-like receptor binding sites in

the PFC (Laplante et al., 2004a). Another study indicated that
tail-pinch stress resulted in a significantly greater increase
in PFC acetylcholine release in the NVHL rats, which was
subsequently blocked by D1 and D2 antagonists (Laplante et al.,
2004b). Interestingly, nAChRs have been shown to be involved
in alcohol-related behaviors where blocking nAChRs partially
prevented alcohol-induced locomotor activity (Blomqvist
et al., 1992). While some preclinical studies suggest that
moderate lengths of alcohol exposure (15–17 days) do not alter
nicotinic receptor binding (de Fiebre and Collins, 1993; Ribeiro-
Carvalho et al., 2009), chronic alcohol treatment (28 weeks)
in rats produced long-lasting reductions in acetylcholine
levels, acetylcholinesterase activity, choline uptake, and
acetylcholinesterase-positive neurons (Arendt et al., 1988,
1989). Similarly, non-human primates chronically treated with
alcohol for 4 weeks had decreased nAChR availability in cortical
and thalamic regions (Cosgrove et al., 2010). Though the NVHL
AE and Sham AE rats in the current study were only exposed to
14 days of alcohol, there is potential that alcohol exposure during
adolescence could alter nAChR function.

Using percentage change as a measure of the amount of
nicotine behavioral sensitization, we found that there were no
differences between NVHL and sham groups, regardless of
whether they received alcohol during adolescence. Our results
contrast previously published results showing that NVHL rats
(without adolescent alcohol exposure) have enhanced nicotine
behavioral sensitization (Berg and Chambers, 2008). A possible
explanation for the discrepancies between these studies is the
post-weaning housing conditions of the animals. The rats in
the current study were singly housed so that alcohol intake
during adolescence could be determined for each individual.
The rats used in the previously published study (Berg and
Chambers, 2008) were pair housed after weaning. Several studies
have shown that housing conditions can influence not only
the locomotor response to a novel environment, but also the
behavioral response to drugs, including nicotine. Rats housed
in isolation show increased locomotor response in a novel
environment compared to those housed in pairs (Garcia et al.,
2017) and those housed in groups (Smith et al., 1997; Cheeta
et al., 2001). Furthermore, rats housed in isolation have enhanced
sensitization to the locomotor effects of repeated administration
of amphetamine (Smith et al., 1997). Additionally, female
rats that underwent chronic social stress during adolescence
(isolation for 1 h each day and then housed with a new
partner) show increased locomotor sensitization in response to
amphetamine (Mathews et al., 2008) and nicotine (McCormick
et al., 2004). Therefore it is reasonable that isolated housing
led to an increase in the nicotine behavioral sensitization of the
sham groups, and combined with a potential ceiling effect in the
nicotine behavioral sensitization of the NVHL groups, any group
differences were masked.

Using measures related to the center zone of the open
field arena as a proxy for anxiety-like behaviors (latency to
enter the center zone and the duration of time spent in the
center zone), we found no differences between NVHL and
sham groups, regardless of alcohol exposure (Supplementary
Figure 1). The NVHL no AE group did have a significantly
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increased number of center entrances compared to the other
groups, but only during the preinjection phase during the
challenge day (Figure 6C). With no other increases in anxiety-
like behaviors and the significant increase in both total distance
traveled and average velocity, it is likely that the significantly
elevated center frequency in the NVHL no AE rats was due to
their increased context sensitization. Previous studies assessing
anxiety-related behaviors in the NVHL rat have found mixed
results based on the method used to measure anxiety. In one
study, male NVHL rats demonstrated persistent anxiety as
adolescents and adults compared to control rats, spending less
time in the central zone of an open field task (Sams-Dodd
et al., 1997). However, several other studies found that male
and female NVHL rats spend more time in the open arm of an
elevated plus maze, suggesting less anxiety (Wood et al., 2003;
Beninger et al., 2009). Although the current results found that
there were no group differences in anxiety-like behavior using
an open field task, future studies assessing anxiety in the NVHL
rat should take into account locomotor differences that may
confound the results.

In order to assess the effect of nicotine treatment on anxiety-
like behaviors and to control for an increase in movement after
an injection of nicotine, the ratio of number of center crosses
to total distance traveled was calculated for preinjection and
postinjection on the challenge day. The significant increase in
this ratio during postinjection demonstrates that nicotine had
an anxiolytic effect on all groups (Figure 6E). This is consistent
with some previous literature showing that 7 days of nicotine
treatment (Irvine et al., 2001) or chronic nicotine administered
via drinking water (Onaivi et al., 1994) both resulted in anxiolytic
effects on elevated plus maze behaviors.

One limitation of the current study was not using both
sexes, though there is variability in the literature as to whether
a sex difference in nicotine behavioral sensitization exists.
Nevertheless, some studies have found that female rats show
more locomotor activity in response to nicotine behavioral
sensitization (Booze et al., 1999; Harrod et al., 2004), while
others find that sex does not have marked influences on this
behavior (Kanyt et al., 1999; Ericson et al., 2010). A limited
number of studies have used both male and female NVHL rats
to assess cognitive abilities (Chambers et al., 1996; Beninger
et al., 2009), neurotransmitter release (Beninger et al., 2009),
and expression of G-protein coupled receptor kinases (Bychkov
et al., 2011). However, to our knowledge, no work has
been done exploring sex differences in nicotine behavioral
sensitization specifically in the NVHL rat. Another limitation
of the current study was the absence of a saline injected
group which would serve to control for any handling and
injection stress. While this is an important control group, many
previous studies have demonstrated that repeated subcutaneous
or intraperitoneal injections of saline do not increase locomotor
activity (McCormick et al., 2004; Kosowski and Liljequist, 2005;
Varvel et al., 2007; Marin et al., 2009; Gomez et al., 2012;
Hamilton et al., 2014; Carrara-Nascimento et al., 2020; Trujillo
and Heller, 2020). Additional studies corroborate these findings
specifically in NVHL rats (Conroy et al., 2007; Berg and
Chambers, 2008; Chambers et al., 2013). Therefore, it is highly

unlikely that repeated saline injections in our hands would cause
behavioral sensitization.

In this study, we found that NVHL rats demonstrated
an apparent sensitization to the nicotine paired context, and
adolescent alcohol exposure prevented the formation of this
context sensitization in the NVHL AE rats. We found that
exposure to alcohol during adolescence did not impact the
amount of nicotine behavioral sensitization in adulthood.
Surprisingly, NVHL rats (regardless of alcohol exposure) did
not show increased nicotine behavioral sensitization as had been
previously reported, potentially due to post-weaning housing
conditions. Nicotine treatment had an anxiolytic effect during the
postinjection phase of the challenge day, however, there were no
group differences. Future studies could more specifically test the
impact of social isolation on nicotine behavioral sensitization and
the development of context sensitization in the NVHL rat, as well
as expand this work to females.
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Supplementary Figure 1 | Latency to and duration in center zone. (A) There
were no significant group differences in latency to center zone during the

preinjection phase on days 1, 5, 10, and 15. (B) There were no significant group
differences in latency to center zone during the postinjection phase on days 1, 5,
10, and 15. (C) There were no significant group differences in latency to center
zone during preinjection phase on the challenge day. (D) There were no significant
group differences in latency to center zone during postinjection phase on the
challenge day. (E) There were no significant group differences in the total duration
of time spent in the center zone during the preinjection phase on days 1, 5, 10,
and 15. (F) There were no significant group differences in the total duration of time
spent in the center zone during the postinjection phase on days 1, 5, 10, and 15.
(G) There were no significant group differences in the total duration of time spent
in the center zone during the preinjection phase of the challenge day. (H) There
were no significant group differences in the total duration of time spent in the
center zone during the postinjection phase of the challenge day. Data is shown as
group mean ± SEM.
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High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that
may be a precursor to behavioral changes, such as those involving anxiety-like behavior.
However, to the best of our knowledge, no study has evaluated the amygdala redox
status after consuming a HS diet in the pre- or postweaning periods. This study aimed
to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after
inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning);
and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats
received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5
males) for 120 days. After mating, females continued to receive the aforementioned
diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and
the male offspring were subdivided: control-control (C-C)—offspring of standard diet
fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—
offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11),
HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–
11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning
(n = 9–11). At adulthood, the male offspring performed the elevated plus maze and
open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the
amygdala was removed for redox state analysis. The HS-HS group showed higher
locomotion and rearing frequency in the open field test. These results indicate that this
group developed hyperactivity. The C-HS group had a higher ratio of entries and time
spent in the open arms of the elevated plus maze test in addition to a higher head-
dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of
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the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric
acid reactive substances (TBARS) in the amygdala were shown in the amygdala of
animals that received a high-salt diet regardless of the period (pre- or postweaning).
In conclusion, the high-salt diet promoted hyperactivity when administered in the pre-
and postweaning periods. In animals that received only in the postweaning period,
the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless
of the period, salt provided amygdala oxidative stress, which may be linked to the
observed behaviors.

Keywords: high-sodium, open-field, elevated plus-maze, pre-natal, post-natal, redox state

INTRODUCTION

Sodium chloride (NaCl), also known worldwide as salt, is one of
the most widely used condiments in food processing (Steffensen
et al., 2018). It is estimated that current salt intake averages are
6 g/day in most countries (86% greater than the optimal amount),
with varying usages ranging from food preservation to flavor
enhancement (Afshin et al., 2019; Tan et al., 2021). Excessive use
of salt in the diet is responsible for the development mainly of
cardiovascular diseases (Huang et al., 2020; Neal et al., 2021), but
also stomach cancer (Ge et al., 2012), kidney diseases (Garofalo
et al., 2018), and osteoporosis (Fatahi et al., 2018). Moreover,
recent data indicates that high-salt diets were directly related
to approximately three million deaths in 1 year, being classified
as one of the top 3 dietary risk factors for health (Bill and
Foundation, 2019; He et al., 2020).

In addition to the known harmful health effects, the use
of high-salt diets has recently been linked to cerebrovascular
diseases and cognitive impairment in humans (Heye et al.,
2016). Studies in rodents that used dietary or water salt
supplementation (2–8%) confirm these findings, reporting
impaired cognition, aggravation of cerebral ischemic injury, and
high-stress responsivity (Ge et al., 2017; Faraco et al., 2018,
2019; Mitchell et al., 2018; Gilman et al., 2019a; Zhang et al.,
2020). Importantly, preclinical studies suggest that the maternal
high-salt diet can also induce changes in locomotion, inhibition,
and anxiety in the offspring, when fed in the preconception,
gestation, or lactation periods (Mcbride et al., 2008; Mecawi
and Almeida, 2017; Dingess et al., 2018). During these periods,
the offspring is highly susceptible to dietary salt, which may
impact on development, potentially leading to lifelong changes
in metabolism and behavior. These changes are related to the
Developmental Origin of Health and Disease (DOHaD), which
proposes that adversities in early life can result in persistent
changes in physiology, leading to an increased risk of developing
diseases in adulthood (O’Donnell and Meaney, 2016; Klein et al.,
2018; de Souza et al., 2020a).

One of the main possible mechanisms for behavioral changes
caused by salt consumption is related to the oxidative stress
(Santisteban and Iadecola, 2018; He et al., 2020). Evidence
indicates that a high-salt diet can reduce nitric oxide (NO)
production (Dong et al., 2011; Kouyoumdzian et al., 2016;
Zheng et al., 2019), suppress the activity of antioxidant enzymes
(Kitiyakara et al., 2003; Huang et al., 2017), and increase the

production of nitrogen and oxygen-free radicals (Kitiyakara
et al., 2003; Huang et al., 2017; Zheng et al., 2019). Also, it is
highlighted that a high-salt diet causes oxidative stress in the
hippocampus, hypothalamus, and cerebellum, important brain
regions for behavior and cognition (Bai et al., 2017; Ge et al.,
2017; Stocher et al., 2018). However, to the best of our knowledge,
there are no studies evaluating the amygdala redox status
after administration of a high-salt diet, either before weaning
(preweaning) or after weaning (postweaning). Noteworthy, the
amygdala is a major brain region in the interpretation of
environmental threats, possibly related to anxiety-like and fear
behaviors in rodents (Calhoon and Tye, 2015; Wilson et al., 2015;
dos Santos et al., 2017).

Therefore, this study aimed to evaluate the effects of the high-
salt diet on amygdala redox status and anxiety-like behaviors
at adulthood, considering: (1) the inclusion of the salt in the
preconception, gestation, and lactation periods (preweaning) and
(2) the addition of salt in the diet only after weaning until
adulthood (postweaning). The main hypothesis was that the
high-salt diet may result in amygdala oxidative stress regardless of
the period, which, in turn, would promote changes in anxiety-like
behaviors at adulthood.

MATERIALS AND METHODS

Ethics
This experimental protocol was approved by the Ethics
Committee on the Use of Animals of Universidade Federal dos
Vales do Jequitinhonha e Mucuri (CEUA-UFVJM) (protocol
025/2018). These are also in agreement to the ethical principles
of the National Institutes of Health Guide for the Care and Use
of Laboratory Animals (NIH Publications No. 80-23). All the
rats (Wistar—Rattus norvegicus) were obtained from Laboratório
de Pós-Graduação e Pesquisa (LPP-UFVJM) and housed in
conditions of natural moisture, temperature of 22 ± 2◦C
(controlled by an air conditioner), and a 12-h cycle of light
and darkness, with the light cycle beginning at 7:00 am. All the
animals had free access to potable water and their respective diets.

Experimental Design
Initially, 18 female and 9 male Wistar rats aged 21 days were
used. The animals were housed in 3 per box according to
sex in order to randomly receive the diets for a duration of
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120 days: control (C): received standard diet (laboratory chow
for rodents: Nuvilab R© CR-1, Quimtia S/A, Paraná, Brazil) (n = 9
females and 4 males) or high-salt (HS) diet: received laboratory
chow with added salt (4% NaCl non-iodized, Mossoró R©—purity
96.04% bought at the local store) (n = 9 females and 5 males).
Copulation was evaluated every morning and confirmed by the
presence of sperm in the vaginal smear, which was considered
the beginning of gestation. All the animals received food and
water ad libitum. After this period, the nulliparous female rats
(141 days old) were placed for mating with males (1 male to 3
females) during the dark cycle (7:00 pm to 7:00 am) every day.
Parents during mating (males and females) and dams during
gestation and lactation continued receiving the aforementioned
diets (control or HS). At birth, the litters were culled to eight pups
(6 males and 2 females).

In the postweaning period, only male offspring were used,
housed 3 animals per box. Male offspring was randomly allocated
to receive either control (laboratory chow Nuvilab R© CR-1) or HS
diets (laboratory chow with added salt 4% NaCl non-iodized).
Therefore, the offspring were subdivided into the following
groups: control-control (C-C)—offspring of standard diet fed
dams who received a standard diet after weaning (n = 9–11),
control-high-salt (C-HS)—offspring of standard diet fed dams
who received a HS diet (laboratory chow with added salt at 4%
NaCl non-iodized) after weaning (n = 9–11), HS-C—offspring
of HS diet fed dams who received a standard diet after weaning
(n = 9–11), and HS-HS—offspring of HS diet fed dams who
received a HS diet (laboratory chow with added salt at 4% NaCl
non-iodized) after weaning (n = 9–11).

The male offspring received the aforementioned diets until
adulthood (141 day-old), when behavioral tests were carried out.
Approximately, 1–2 animals from each litter were used for the
behavioral and redox status analyses, in order to reduce litter
effects. The experimental design is shown in Figure 1.

Offspring Behavior
All the tests were performed in an isolated room (130 lux) and
in a double-blind manner. The offspring performed the elevated
plus maze (EPM) (141 day-old) and open field (OF) (151 day-old)
tests, both during the morning period (7:00–12:00 am). A camera
(Sony Handycam R©) was positioned above the arena and two
independent, blinded, and experienced studies later evaluated the
randomly arranged videos. Between the performances of the two
behavioral tests (EPM and OF), the animals were kept with their
respective diets in the conditions mentioned previously. All the
equipment used was cleaned with 70% ethanol between each test
to eliminate olfactory cues.

The EPM test is based on the aversion to open and high
spaces of the rodents and is a classic test for assessing anxiety-like
behaviors (Pellow et al., 1985; de Souza et al., 2020b). The EPM is
made of wood, with two closed arms (50 cm × 10 cm × 40 cm)
perpendicular to two open arms (50 cm × 10 cm), besides a
central area (10 cm × 10 cm), raised 50 cm high from the floor.
Each rat was placed individually in the central area of the EPM
with its head facing toward one closed arm and its movements
were filmed for 10 min (Teixeira et al., 2020). The ratio of entries
(considered as the animal inserting all the four paws) in each

arm (closed or open) and the time spent in them were evaluated
(Teixeira et al., 2020). In addition, to analyze the risk assessment
of animal, the frequency of head-dipping (the head flexes below
the edge of the open arms), rearing (frequency with which the
animal stands on its hind legs), and grooming (frequency of
time which the animal spent licking or scratching itself while
stationary) was recorded (Plescia et al., 2015; Guedine et al., 2018;
Riul and Almeida, 2020).

The OF test is widely used to check locomotion of animal
through distance covered, but is also used to evaluate anxiety-
like behaviors over the conflict between exploring a new
environment and exposed to an open arena (Montgomery, 1955).
The OF is a square wooden arena, with total dimensions of
70 cm × 70 cm × 50 cm (dimensions of central zone of the
arena: 35 cm × 35 cm), being subdivided into 16 quadrants
(17.5 cm× 17.5 cm). Each animal was placed in the center of the
OF and free exploration was allowed for 10 min (Teixeira et al.,
2020). The parameters of center zone entries frequency (defined
when the animal inserted the four paws in the central zone), time
spent in the center zone, distance covered (quadrants), rearing,
and grooming frequency were observed (Teixeira et al., 2020;
Rocha-Gomes et al., 2021a).

Redox State
The animals were euthanized by decapitation when they
were at 152 day-old. The whole brain was rapidly removed
(<1 min) and submerged on cold (4◦C) phosphate-buffered
saline (PBS) (50 mM; pH 7.0), followed by the amygdala
dissection (Paxinos and Watson, 2014). After, the tissues were
homogenized in cold PBS (4◦C; 50 mM; pH 7.0) and centrifuged
at 750 × g for 10 min at 4◦C (Melo et al., 2019). Both
the sides of the amygdala were used for the analysis of the
total antioxidant capacity, activity of antioxidant enzymes, and
oxidative stress marker.

The total antioxidant capacity was evaluated using the ferric
reducing antioxidant power (FRAP) method (Benzie and Strain,
1996). The assay is based on the ability of the antioxidant
compounds of the sample to reduce the ferric-tripyridyltriazine
complex to ferrous tripyridyltriazine, monitored at 550 nm.
Ferrous sulfate (FeSO4) was used as standard and the results were
reported as nM of FeSO4/mg protein (Freitas et al., 2019).

For the activity of the antioxidant enzyme superoxide
dismutase (SOD), a solution containing 50 mM potassium
dihydrogen phosphate (KH2PO4) and 1 mM diethylene-
triamine-pentaacetic acid (DTPA) was added to the tissue
homogenate. Following this, 0.2 mM of pyrogallol was added and
its oxidation was measured at 420 nm for 250 s at interval of 10 s.
The results were defined as one unit (U) of SOD per mg protein
in the sample (U/mg protein) (Marklund and Marklund, 1974;
Melo et al., 2019).

Catalase (CAT) activity was assessed by metabolizing
hydrogen peroxide (Nelson and Kiesow, 1972). To perform
this test, 5 µl of hydrogen peroxide (0.3 M) was added to a
solution containing potassium phosphate buffer (50 mM; pH
7.0; 25◦C) and 30 µl of sample. The readings were performed in
a microplate reader every 15 s for 1 min (at 25◦C). CAT activity
was expressed in 1E/min/mg of protein (Freitas et al., 2019).
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FIGURE 1 | Representation of the experimental design. Control (standard diet; laboratory chow Nuvilab R© CR-1) or high-salt (HS) (laboratory chow with added salt
4% NaCl non-iodized) diets were provided for parents at 21 day-old. They received their respective diets for 120 days, until they reached adulthood. During the
periods of mating, gestation, and lactation, the dams remained on the aforementioned diets. The preconception, gestation, and lactation periods were classified as
“preweaning.” At 21 day-old, the offspring were weaned and received until adulthood the control or HS diets. The period from weaning to adulthood was classified
as “postweaning.” Therefore, the offspring were subdivided into the groups: control-control (C-C), offspring of standard diet fed dams who received a standard diet
after weaning; control-HS (C-HS), offspring of standard diet fed dams who received a HS diet after weaning; HS-C, offspring of HS diet fed dams who received a
standard diet after weaning; and HS-HS, offspring of HS diet fed dams who received a HS diet after weaning.

Glutathione S-transferase (GST) activity was estimated
spectrophotometrically as previously described (Habig et al.,
1974). The assay occurred according to the formation of
glutathione conjugated with 2,4-dinitrochlorobenzene (molar
coefficient extinction: ε340 = 9.6 mmol × L−1

× cm−1).
One unit of GST activity was defined as the amount of
the enzyme that catalyzed the formation of one µmol of
product×min−1

×mL−1 (Rocha-Gomes et al., 2021a).
The lipid peroxidation evaluation was performed using the

thiobarbituric acid reactive substances (TBARS) method and is
classified as an oxidative stress marker (Ohkawa et al., 1979).
A solution containing acetic acid (2.5 M; pH 3.4), thiobarbituric
acid (0.8%), and sodium dodecyl sulfate (8.1%) was added to
the tissue sample for 90 min at 95◦C. The TBARS formation
was evaluated at 532 nm using malondialdehyde (MDA) (1,1,3,3-
tetramethoxypropane) as the standard. The results are expressed
in nmol MDA/mg protein (Freitas et al., 2019).

All the redox analyses were performed in triplicate using
a plate reader (UV/Visible U-200 L Spectrophotometer).
Protein content was quantified using bovine serum albumin
(BSA) (1 mg/ml) as the standard (Bradford, 1976). The
results of the redox state were corrected for the amount of
protein in the samples.

Statistical Analysis
Statistical analysis was performed with Statistica software
(version 10.0, StatSoft R©, Hamburg, Germany). Graphics were
made using the GraphPad Prism R© version 7.0 (GraphPad,
La Jolla, CA, United States). Sample normality was evaluated
using the Shapiro–Wilk test. Data with normal distribution
were analyzed using the two-way ANOVA, with the factors:
preweaning (received standard or HS diets until weaning) and

postweaning (received standard or HS diets only after weaning).
The Newman–Keuls was used as a post hoc test when appropriate
(p < 0.05). Data with non-normal distributions were analyzed by
the Kruskal–Wallis test with the Dunn’s post hoc test. Results are
expressed as a mean and SEM.

RESULTS

In the EPM test, the ratio of entries in the open arms showed a
significant difference in the preweaning factor [FPRE(1,36) = 9.19,
p < 0.01]. The offspring who received a HS diet until weaning
entered less in the open arms compared to the offspring of
standard diet fed dams (p < 0.01). In addition, an interaction
in the factors pre- and postweaning was observed [FPRE ×

POST(1,36) = 4.93, p < 0.05]. The C-HS group showed higher ratio
of entries in the open arms compared to the C-C (p < 0.05),
HS-C (p < 0.01), and HS-HS (p < 0.01) groups (Figure 2A).
Similarly, the ratio of time spent in the open arms showed a
difference in the preweaning factor [FPRE(1,36) = 4.36, p < 0.05].
The offspring who received a HS diet until weaning spent less
time in the open arms compared to the offspring of standard diet
fed dams (p < 0.05). Also, an interaction in the factors pre- and
postweaning was observed [FPRE × POST(1,36) = 4.28, p < 0.05].
The C-HS group spent more time in the open arms in relation to
the C-C (p < 0.05) and HS-HS (p < 0.05) groups (Figure 2B).
For the head-dipping frequency, a significant difference in the
preweaning factor could be seen [FPRE(1,36) = 12.52, p < 0.01].
The offspring who received a HS diet until weaning showed
lower head-dipping frequency compared to the offspring of
standard diet fed dams (p < 0.01). Moreover, a difference in
the interaction of pre- and postweaning factors was observed
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[FPRE × POST(1,36) = 1.97, p < 0.05]. The C-HS group performed
head-dipping more frequently compared to the HS-C (p < 0.01)
and HS-HS (p < 0.01) groups (Figure 2C). No differences were
found in the evaluation of rearing (p = 0.06) and grooming
frequency (p = 0.73) in the EPM test (Figures 2D,E).

In the evaluation of the time spent in the OF central zone,
a difference was found with respect to the preweaning diet
[FPRE(1,32) = 5.12, p < 0.05]. The offspring who received a
HS diet until weaning remained more time in the central zone
of the OF test compared to the offspring of standard diet fed
dams (p < 0.05) (Figure 3B). The total distance covered in
the OF test showed a difference in the interaction of pre- and
postweaning diets [FPRE × POST(1,32) = 16.59, p < 0.01]. The
HS-HS group reported higher locomotion in relation to the C-C
(p < 0.05), C-HS (p < 0.01), and HS-C (p < 0.01) groups
(Figure 3D). The rearing frequency in the OF test showed a
difference in the interaction of pre- and postweaning diets [FPRE

× POST(1,32) = 0.16, p < 0.05]. The C-HS and HS-C groups
accomplished lower numbers of rearing in relation to the C-C and
HS-HS groups (p < 0.05) (Figure 3E). No differences were shown
in the evaluation of latency to escape of center zone (p = 0.27) and
grooming frequency (p = 0.35) in the OF test (Figures 3A,C,F).

In the amygdala redox state evaluation, a difference with
respect to the postweaning diet factor was shown for SOD
analysis [FPOST(1,20) = 29.92, p < 0.001]. The offspring who
received a HS diet after weaning reported less SOD activity
compared to the offspring of standard diet fed dams (p < 0.001).
In addition, an interaction in the pre- and postweaning diets was
observed [FPRE × POST(1,20) = 0.13, p < 0.05]. The C-HS and
HS-HS groups showed less SOD activity compared to the C-C
and HS-C groups (p < 0.01) (Figure 4B). For GST activity, a
difference was shown in the postweaning diet [FPOST(1,20) = 5.69,
p < 0.05]. The offspring who received a HS diet after weaning
displayed less GST activity compared to the offspring of standard
diet fed dams (p < 0.05). Also, an interaction in the pre- and
postweaning diets was found [FPRE × POST(1,20) = 0.42, p < 0.05].
The HS-HS group reported less GST activity with respect to the
C-C group (Figure 4D). In the TBARS evaluation, a difference
in the postweaning diet was observed [FPOST(1,20) = 5.21,
p < 0.05]. The offspring who received a HS diet after weaning
reported higher TBARS compared to the offspring of standard
diet fed dams (p < 0.05). Moreover, an interaction of pre-
and postweaning diets was observed [FPRE × POST(1,20) = 2.14,
p < 0.05]. The C-HS, HS-C, and HS-HS groups showed the
higher TBARS levels compared to the C-C group (p < 0.05)
(Figure 4E). No differences were reported in the FRAP (p = 0.16)
and CAT (p = 0.57) evaluations (Figures 4A,C).

DISCUSSION

High-salt diets are consumed worldwide and are associated
with cardiovascular morbidity and mortality. Noteworthy, HS
intake has also been linked to behavioral changes in rodents.
This study evaluated differential effects of HS and standard diet
combinations given in the pre- or postweaning period. In this
study, an increase in locomotion was showed in the group of

animals that received a HS diet in, both, the pre- and postweaning
period (HS-HS group). In addition, animals that received the
HS diet only after weaning displayed a decrease in anxiety-like
behaviors (C-HS group). Furthermore, both the groups showed
amygdala oxidative stress, which may explain the behavioral
changes observed.

The HS-HS group received the HS diet in both the periods
(pre- and postweaning) resulting in adulthood hyperactivity
measured by higher locomotion in the OF test. Also, this group
presented an increase in the rearing frequency, which can be
classified as a vertical exploration, confirming a high activity
(Borta and Schwarting, 2005; Wardwell et al., 2020). Interestingly,
with a similar protocol, Mcbride et al. (2008) observed that
both the male Wistar rats treated with HS diet (4% NaCl) in
the pre- (preconception and gestation periods) and postnatal
periods (lactation) had increased locomotion in the OF test.
In combination, these data indicate that a HS diet can induce
hyperactivity in rodents. Moreover, these animals were more
sensitive to the stimulating effect on locomotion produced by
the administration of amphetamine compared to the group
that received a standard diet (Mcbride et al., 2008). This result
leads to the assumption that a HS diet of this study could also
sensitize offspring to the effects of amphetamines. Interestingly,
we have previously showed that cafeteria or calorie-restricted
diets during lactation and postlactation can alter anxiety and
locomotion of offspring after ephedrine (psychostimulant drug)
application, reaffirming the role of diets in sensitization to
some drugs by mechanisms that are not yet clearly established
(Rocha-Gomes et al., 2021b).

Curiously, the spontaneously hypertensive rats (SHR) model
consistently exhibits hyperactivity in the OF test (Botanas
et al., 2016; Aparicio et al., 2019; Chen et al., 2019). This
model was initially developed for the study of deleterious
effects of cardiovascular diseases. However, due to its behavioral
characteristics of hyperactivity, high impulsivity, and learning
disabilities, SHR rats are also used as a model of attention-
deficit/hyperactivity disorder (ADHD) (Leffa et al., 2019). It
is important to note that the excessive salt consumption is
recognized as a risk factor for the development of arterial
hypertension (Valenzuela et al., 2021). In addition, rodents on
HS diets during the pre- or postnatal periods can develop
hypertension in adulthood (Contreras et al., 2000; Swenson et al.,
2004). Although we did not use the SHR model in this study
and did not check the blood pressure of animals, we speculated
in relation to the similarities between the results presented by
the HS-HS group and the SHR model. It is possible that a HS
diet in the HS-HS group has programmed the mechanisms for
controlling blood pressure and also induced hyperactive behavior
in adulthood, similar to that observed in the studies with the
SHR model. Therefore, a hyperactivity phenotype is suggested for
the HS-HS group. However, further studies are needed to assess
whether the phenotype presented by this group may have any
relation to ADHD.

Furthermore, one of our main hypotheses was that a
HS diet could promote changes in anxiety-like behavior at
adulthood. In this study, the C-HS group reported less anxiety-
like behavior in the EPM test, due to the higher ratio of
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FIGURE 2 | Ratio of entries (A) and time spent in the open arms (B); head-dipping (C), rearing (D), and grooming (E) frequency in the elevated plus maze test. C-C,
offspring of standard diet fed dams who received a standard diet after weaning; C-HS, offspring of standard diet fed dams who received a HS diet after weaning;
HS-C, offspring of HS diet fed dams who received a standard diet after weaning; and HS-HS, offspring of HS diet fed dams who received a HS diet after weaning.
Data are shown as mean and SEM; n = 9–11; &p < 0.05 (preweaning factor); *p < 0.05, **p < 0.01 (interaction of the pre- and postweaning factors) using the
ANOVA and the Newman–Keuls tests.

entries and time spent in the open arms, in addition to the
higher head-dipping frequency (Souto et al., 2020). Gilman
et al. (2019a) observed that after a short exposure to a HS
diet (4% NaCl; during 7 days), rodents reduced behavioral
inhibition under relatively low-threat conditions. In particular,
this means that a HS diet can decrease anxiety-like behavior

in situations that would be naturally aversive to rodents,
as in the EPM test. This has important implications; as by
exposing themselves to open or higher spaces, these animals
may be more exposed to risky conditions or even increasing
their visibility to predators (Gilman et al., 2019a). This result
of a higher activity in potentially aversive situations was
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FIGURE 3 | Entries frequency (A), time spent at the central zone (B), latency to leave the center zone (C), distance covered (D), rearing (E), and grooming frequency
(F) in the open field test. C-C, offspring of standard diet fed dams who received a standard diet after weaning; C-HS, offspring of standard diet fed dams who
received a HS diet after weaning; HS-C, offspring of HS diet fed dams who received a standard diet after weaning; and HS-HS, offspring of HS diet fed dams who
received a HS diet after weaning. Data are shown as mean and SEM; n = 9. &p < 0.05 (preweaning factor); *p < 0.05, **p < 0.01 (interaction of the pre- and
postweaning factors) using the ANOVA and the Newman–Keuls tests.

found in male mice (C57BL/6J) using other paradigms after
consuming a HS diet (4% NaCl; during 7 days) such as the
forced swim test (Mitchell et al., 2018; Gilman et al., 2019b).
In addition, the abovementioned studies observed amygdala

inflammation (Mitchell et al., 2018; Gilman et al., 2019b),
possibly establishing a link to a HS intake, low anxiety-like
behavior, and cellular damages in a specific brain region.
Although we cannot distinguish anxiety-like from impulsive
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FIGURE 4 | The ferric reducing antioxidant power (FRAP) total antioxidant capacity (A), superoxide dismutase (SOD) (B), catalase (CAT) (C), glutathione
S-transferase (GST) activity (D), and the thiobarbituric acid reactive substances (TBARS) (E) concentration in the amygdala. C-C, offspring of standard diet fed dams
who received a standard diet after weaning; C-HS, offspring of standard diet fed dams who received a HS diet after weaning; HS-C, offspring of HS diet fed dams
who received a standard diet after weaning; and HS-HS, offspring of HS diet fed dams who received a HS diet after weaning. Data are shown as mean and SEM;
n = 6. #p < 0.05 (postweaning factor); *p < 0.05, **p < 0.01 (interaction of the pre- and postweaning factors) using the ANOVA and the Newman–Keuls tests.

behaviors, increased exploratory (horizontal and vertical) activity
in new environments is a characteristic of impulsive behavior,
which may also be caused by alterations in specific brain areas
related to decision-making in adverse situations (Almeida et al.,
1993). However, the reasons why the C-HS group had a lower
frequency of rearing in the OF and a lower tendency in the

EPM (with no statistical difference) tests remain to be clarified
in future studies.

It is well established that experiences of mother during
preweaning periods can modify the developmental health
trajectory of her offspring. However, in some cases, no significant
deleterious effects are observed, as demonstrated in the EPM test
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by the groups that received a HS diet in the preweaning period
(HS-C and HS-HS). These observations are combined with the
Predictive Adaptive Response (PAR) hypothesis, which argues
that some changes that occur in early life in response to aversive
stimuli are important to provide an advantage later in life.
The PAR hypothesis predicts that these changes occur through
epigenetic programming, which may also bring specific costs in
the adult environment, making the animal maladapted on certain
occasions (Raubenheimer et al., 2012; St-Cyr and McGowan,
2018). However, further studies are suggested to assess epigenetic
changes that may be related to the results obtained here.

Reactive oxygen and nitrogen species can be considered as
essential for the full development of neuronal functions when
occurring in low or moderate amounts. However, at excessive
levels, they are harmful and can lead to oxidative/nitrosative
stress, causing damage to proteins, lipids, and nucleic acids (da
Silva et al., 2014; Salim, 2017). In turn, this can lead to the release
of inflammatory signals, resulting in neuroinflammation, loss of
function, and, consequently, in behavioral changes (Hatanaka
et al., 2016; Cirulli et al., 2020; Dias et al., 2020; Maciel August
et al., 2020). Previous studies in rodents have shown that HS
diets caused an imbalance in the brain redox state, with decreased
cognition (Liu et al., 2014; Ge et al., 2017; Faraco et al., 2019) and
increased reactivity to stressful situations (Bai et al., 2017; Dingess
et al., 2018). Moreover, a HS diet in the preconception, gestation,
and lactation periods has been shown to negatively influence the
redox state of the cerebellum, hypothalamus, and hippocampus
of the offspring (Stocher et al., 2018). These findings indicate
a role of salt-rich diets with respect to the brain redox status,
being able to induce oxidative stress in regions of fundamental
importance for behavior and cognition.

The brain is very vulnerable to the excessive reactive oxygen
and nitrogen species production, due to its high O2 consumption
and modest antioxidant defenses (Bakunina et al., 2015; Salim,
2017). In addition, regions such as the hippocampus and the
amygdala have been reported as the most susceptible to oxidative
stress, consequently being more prone to functional decline
(Bouayed et al., 2009; Salim, 2017). In this study, amygdala
oxidative stress was observed, due to high levels of the TBARS
(C-HS, HS-C, and HS-HS groups), in addition to the low activity
of SOD (C-HS and HS-HS groups) and GST (HS-HS group)
antioxidant enzymes. It is important to note that the amygdala
plays a key role in the interpretation of environmental threats.
Sensory stimuli are received in the amygdala that imbues them
with emotional value and processing the outcomes as negative
or positive valence, directly influencing anxiety-like behaviors
mainly through the serotonergic system (Calhoon and Tye, 2015;
dos Santos et al., 2017; de Lima et al., 2020). It is possible that
diet-associated amygdala oxidative stress may be related to the
behavioral alterations observed in the EPM and the OF tests;
however, no clear patterns linking behavioral and redox readouts
were noticeable in this study. Future studies are needed to better
characterize this hypothetical relationship by also analyzing
potential mediators that could serve as a link between changes
in amygdala redox status and behavior.

In relation to the mechanism by which a HS diet can trigger
oxidative stress of brain tissues, some suggestions based on

previously published data are raised. The nuclear factor erythroid
2-related factor 2 (Nrf2) is a transcription factor that regulates
the expression of several proteins, among them some involved
in antioxidant defense system of cells. For example, antioxidant
enzymes such as CAT, SOD, and GST are produced after
activating the Nrf2 pathway (Iranshahy et al., 2018; Liu et al.,
2020). Previously, Liu et al. (2020) showed a downregulation
of the Nrf2 expression in renal tissue of rats receiving a HS
diet. Similarly, Wang et al. (2020) reported high levels of
reactive oxygen species and low activity of SOD and CAT in
the hippocampus of HS diet rats. This result indicates that
the downregulation of the Nrf2 pathway can occur not only
at the systemic level, but also in the brain after consuming
a HS diet. In addition, a HS diet can provide a reduction
in NO production (Kouyoumdzian et al., 2016; Zheng et al.,
2019). In situations where there is oxidative stress of the tissue,
reactive oxygen species can inactivate NO (NO + O2− →
ONOO−). The radical ONOO− is a very powerful oxidant
and nitrosating agent. Thus, besides generates a toxic molecule
(ONOO−), this reaction decreases the NO availability. NO
plays an important role as a vasodilator, thus reducing it also
contributing to arterial hypertension (Modlinger et al., 2004;
Vaziri and Rodríguez-Iturbe, 2006). Notably, hypertension is
strongly linked to oxidative stress (González et al., 2014; Ahmad
et al., 2017; Guzik and Touyz, 2017; Small et al., 2018).

This study has some limitations. First, to better understand
the relationship between amygdala oxidative stress and observed
behavioral changes, it is necessary in the future the use of
drugs that alter the production of reactive oxygen and nitrogen
species and the evaluation of the Nrf2 expression. Second, the
assessment of inflammation in the amygdala would be important
to understand the real impact of a HS diet at the cellular level and
the extent of tissue damage. Also, it is also important to evaluate
serotonin levels in this brain region, since its concentration in the
amygdala is directly related to anxiety-like behaviors. Third, the
use of females is necessary, since sexual dimorphism is common
in behavioral assessment studies. Females could have different
responses due to other developmental vulnerabilities, altered
neuroendocrine regulation, or placental and epigenetic different
effects. Fourth, the evaluation of other tests related to anxiety-
like (light-dark box and hole-board tests) and hyperactivity (SHR
model; use of drugs that affect locomotion) behaviors must be
performed to better understand the outcomes of this model. Fifth,
finally, the next studies should assess blood pressure and heart
rate, in an attempt to establish a link between these physiological
responses and the observed behaviors.

In summary, this study demonstrated negative effects of a HS
diet on the amygdala redox state. In addition, a HS diet promoted
hyperactivity when administered in the combination of pre-
and postweaning periods and decreased anxiety-like behaviors
when offered only in the postweaning period. To the best of
our knowledge, this is the first study that indicates damage to
the amygdala in addition to behavior changes, regardless of the
period in which salt is added to the diet. This fact is highlighted,
due to the large consumption of salt in the world (Steffensen et al.,
2018), its relationship with the development of cardiovascular
diseases (Bill and Foundation, 2019; He et al., 2020), and with
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the hypotheses of behavioral changes and cognitive deficits after
HS consumption also in humans (Heye et al., 2016; Abdoli, 2017;
Afroz and Alviña, 2019).

CONCLUSION

A HS diet promoted hyperactivity when administered in the pre-
and postweaning periods. In animals that received only in the
postweaning period, the addition of salt induced a reduction in
anxiety-like behaviors. Regardless of the administration period,
salt provided amygdala oxidative stress, which may be linked to
the observed behaviors.
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