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Editorial on Research Topic
 Improving Diagnosis, Treatment, and Prognosis of Neuropsychiatric Disorders by Leveraging Neuroimaging-based Machine Learning



Recently, there has been increasing attempt that leveraged machine learning techniques to improve the diagnosis, treatment, and prognosis of diseases with medical images. Pioneering work has consistently demonstrated the promise of machine learning in a variety of clinical settings, such as detection of diabetic retinopathy using retinal fundus photographs (Gulshan et al., 2016), identification of axillary lymph node metastasis with magnetic resonance imaging (MRI) radiomics in patients with breast cancer (Yu et al., 2020), prediction of the risk of patients' sudden cardiac death with MRI and positron-emission tomography (PET) images (Shade et al., 2021), etc. The employment of machine learning techniques in these clinical settings has substantially advanced the development of computer-assisted systems for disease diagnosis and treatment.

Machine learning has also demonstrated its great potential in the diagnosis and treatment of neuropsychiatric disorders. Many of these diseases are now redefined as “disorders of brain circuits” (Insel et al., 2010). As for mental disorders, traditional diagnosis of these disorders is merely based on subjective symptoms and signs. In 2010, the National Institute of Mental Health (NIMH) launched the Research Domain Criteria (RDoC) project, which aims to establish a framework for classification of mental disorders based on underlying biological mechanisms with data from genetics and clinical neuroscience (Insel et al., 2010). This initiative has changed our understanding of mental disorders and may hopefully promote “precision medicine for psychiatry” (Insel et al., 2010; Insel and Cuthbert, 2015). Indeed, recent studies have shown the feasibility of redefining and subtyping of mental disorders according to patterns of brain activity and connectivity obtained from neuroimaging data with the help machine learning. For example, Drysdale and the colleagues identified four neurophysiological subtypes of depression according to patients' functional connectivity profiles with hierarchical clustering (Drysdale et al., 2017). Later, Li et al. reported that functional striatal abnormalities could be used to reliably identify schizophrenia patients with a high accuracy, as well as predict patients' response to antipsychotic treatment (Li et al., 2020).

This Research Topic aims to advance our understanding of healthy and diseased brains by leveraging neuroimaging-based machine learning, in order to improve diagnosis, treatment, and prognosis of neuropsychiatric disorders. We thus invited world-renowned experts to present their recent work that have employed novel machine learning approaches in studies of neuropsychiatric disorders. Of the 25 papers published in this Research Topic, the majority focused on the diagnosis of neuropsychiatric disorders. Due to the relatively small sample size of the datasets, support vector machine (SVM) was the most widely used machine learning method in these papers. Noninvasive neuroimaging data, including structural and functional MRI images, electroencephalography and magnetoencephalography were collected and the classifiers were generally trained and tested with features generated by a traditional morphological analysis or brain connectivity analysis. Now with the help of machine learning techniques, we are capable of detecting subtle and complex abnormalities in brain structure and function in patients with neuropsychiatric disorders. It is worth noting that the functional connectivity profiles are now considered to constitute a fingerprint of the brain which could be used to reliably differentiate a subject from others (Finn et al., 2015).

We will see in this Research Topic that Pan et al. achieved an accuracy of higher than 80% in differentiating patients with cervical dystonia and healthy controls, using voxel-wise resting-state functional connectivity and SVM. Similar framework was used to identify patients with Parkinson's disease, type 2 diabetes mellitus induced cognitive impairment, major depression, obsessive-compulsive disorder, bipolar disorder, internet addiction, as well as High-Risk First-Degree Relatives of Patients With Schizophrenia. In addition, Zhao et al. established a novel pipeline for epileptogenic zone identification with convolutional neural network. Kung et al. showed that morphological features could be employed to identify the conversion from mild cognitive impairment to Alzheimer's disease with multilayer perceptron classifier. Moreover, Inglese et al. established a self-supervised contrastive learning model for subtyping of patient with systemic lupus erythematosus.

In addition to disease diagnosis, This Research Topic also includes novel and interesting findings on the application of machine learning in treatment and prognosis of diseases. Li et al. showed that neuroimaging features could be used to predict response to treatment in patients with idiopathic generalized epilepsy with tonic–clonic seizures. Xi et al. showed that brain structure-based signature could be used to identify responders and non-responders to a treatment with combined ECT and antipsychotics in patients with schizophrenia. Bohaterewicz et al. proposed a framework to predict suicide risk in patients with schizophrenia. Xu et al. established a nomogram model for the prediction of intracerebral hematoma expansion with radiomic features extracted from CT images.

Looking into the future, the reproducibility of the findings and the generalization of the classifiers may need to be tested with large datasets from multiple independent sites. The sample size in most of the papers published in this Research topic is relatively small and whether findings could be reproduced with large datasets remains to be tested. More importantly, the majority of studies in this Research Topic have trained and tested the model with data from a single site. Whether these models could still achieve high classification accuracy when tested with data collected from another independent site remains unclear. Unfortunately, due to the high heterogeneity of neuropsychiatric disorders, machine learning models built on the data from a single site usually demonstrated poor performances when tested with data from multiple independent sites. To ensure the robustness and generalization of the classifiers, future studies may need to further train the model with multi-site dataset and systematically tested the generalization of the models with leave-one-site-out cross validation.
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Background: Altered functional connectivity (FC) is related to pathophysiology of patients with cervical dystonia (CD). However, inconsistent results may be obtained due to different selected regions of interest. We explored voxel-wise brain-wide FC changes in patients with CD at rest in an unbiased manner and analyzed their correlations with symptomatic severity using the Tsui scale.

Method: A total of 19 patients with CD and 21 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. Global-brain FC (GFC) was applied to analyze the images. Support vector machine was used to distinguish the patients from the controls.

Results: Patients with CD exhibited decreased GFC in the right precentral gyrus and right supplementary motor area (SMA) that belonged to the M1-SMA motor network. Significantly negative correlation was observed between GFC values in the right precentral gyrus and symptomatic severity in the patients (r = −0.476, p = 0.039, uncorrected). Decreased GFC values in these two brain regions could be utilized to differentiate the patients from the controls with good accuracies, sensitivities and specificities (83.33, 85.71, and 80.95% in the right precentral gyrus; and 87.59, 89.49, and 85.71% in the right SMA).

Conclusions: Our investigation suggests that patients with CD show reduced GFC in brain regions of the M1-SMA motor network and provides further insights into the pathophysiology of CD. GFC values in the right precentral gyrus and right SMA may be used as potential biomarkers to recognize the patients from the controls.

Keywords: cervical dystonia, global-brain functional connectivity, precentral gyrus, supplementary motor area, network


INTRODUCTION

Cervical dystonia (CD), known as spasmodic torticollis, is the most common type of focal dystonia with estimated prevalence of 28–183 cases per million individuals (1, 2). CD is caused by abnormal impulse of central nervous system (CNS) resulting in cervical muscle group paroxysmal involuntary contraction, and thus presents abnormal posture of head and neck. Simple rotatory torticollis is the most common type occurring in >50% of cases (3). Other types can be classified into laterocollis, anterocollis, retrocollos, or tremor (4). Patients with CD are often accompanied with neck or shoulder pain and tremor (5, 6). The chronic neck pain caused by CD leads to disability or low quality of life. Thus, it is meaningful to accurately identify patients with CD and provide them with effective treatment in clinical trials. However, no curative treatment is available at present, and the pathophysiology underlying the disorder remains poorly understood.

Rapid advances in neuroimaging techniques suggest that CD is not a disease with abnormality in an isolated brain region but a chronic disorder involving damage in multiple brain networks (7). Patients with CD showed structural alterations in lentiform nucleus, basal ganglia (8, 9), internal globus pallidus (10), thalamus, cerebellum, motor cortex, and supplementary motor area (SMA), putamen, right visual cortex, and right dorsal lateral prefrontal cortex (11). Altered functional connectivity (FC) was observed in brain regions including premotor cortex, prefrontal cortex, parietal cortex, middle temporal gyrus, SMA, primary motor area (M1), secondary somatosensory cortex, right supramarginal gyrus, and a network that comprised anterior cingulate cortex (12–16).

However, findings of the above-mentioned studies are inconsistent in terms of special brain regions. For example, conflicting results of an enhancement in gray matter volume in the motor cortex and SMA but a reduction in gray matter were reported in the same areas (11). Several analyses on regions of interest (ROI) revealed alterations in cerebellar gray matter volume (11), but other researchers found no such abnormality in patients with CD (13). Patients with CD displayed increased connectivity in the premotor, prefrontal cortex, and parietal cortex but had decreased paradox connectivity in the same regions (7, 13). The inconsistency may be partly due to a seed-based FC method (ROI) or an independent component analysis approach used to explore the brain mechanisms in patients with CD. These approach are useful in testing hypotheses regarding specific regions or networks but do not provide a comprehensive method for examining connectivity outside of the predetermine areas (17, 18).

Given this background, a voxel-wise global-brain FC (GFC) approach was utilized to examine the difference in large-scale functional organization in patients with CD. GFC uses a metric that does not require a priori seed or network selection and provides a measure of the connectivity of all voxels in the brain relative to all other voxels (19–24). GFC has been proven to be a powerful and replicable data-driven analysis for the identification of major intrinsic networks (18, 25). The goals of this GFC study conducted in patients with CD included the following: (1) to explore GFC differences between patients with CD and healthy controls; (2) to probe relationship between altered FC and clinical measurements in patients with CD; and (3) to examine whether GFC values in relevant brain areas may be considered potential image biomarkers in differentiating patients from healthy controls using support vector machine (SVM).



MATERIALS AND METHODS


Subjects

A total of 21 right-handed patients with CD were referred from the First Affiliated Hospital of Guangxi Medical University. CD was diagnosed based on criteria of the dystonia diagnostic and treatment guidelines of Chinese Medical Association of neurology branch of Parkinson's disease and movement disorders group. A total of 21 right-handed healthy controls without symptoms of neurologic diseases were recruited by advertisements from local community at the same time. All participants aged from 18 to 60 years old, and healthy controls were group-matched with the patients in terms of age and sex ratio.

Patients with CD shared the following exclusion criteria: (1) consistent with diagnosis of primary CD with rotatory torticollis but obvious dystonia existed in other parts of the body except the cervical region, (2) any other neurological with the exception of dystonia, (3) other causes of secondary spasmodic torticollis that are definitely diagnosed, (4) history of related medical treatment or operation therapy within 3 months before the treatment such as Botulinum-A toxin injection (26, 27), and (5) any history of serious medical or neurological illness. The exclusion criteria for healthy controls were as follows: (1) any history of severe neuropsychiatric diseases, (2) any history of serious surgery or internal medicine diseases, and (3) any family history of severe neurological disorders in their first-degree relatives. The participants that did not reach the standard for MRI or showed alterations under conventional MRI scans were also excluded.

All patients were assessed with the Tsui scale (28) to measure symptomatic severity of CD. The study was approved by the Local Ethics Committee of the First Affiliated Hospital of Guangxi Medical University. All participants provided a written informed consent prior to the experiment.



Image Acquisition and Preprocessing

A Siemens 3.0 T scanner was used to capture resting-state scans. All participants were required to lie still, close their eyes, and stay awake. The participants used soft earplugs and foam pads to reduce the scanning noise and head motion. The acquisition slice-order type was ascend with the following parameters: repetition time/echo time = 2,000 ms/30 ms, inversion time = 900 ms, 30 slices, 64 × 64 matrix, 90° flip angle, 240 mm field of view, 4 mm slice thickness, 0.4 mm gap, and 250 volumes lasting for 500 s. After scanning, participants were asked whether they fell asleep during the fMRI scanning, and all participants confirmed wakefulness.

Functional image data were preprocessed automatically using the DPABI software (29). The first 10 volumes were removed to ensure a steady-state condition. The fMRI time series was first corrected for within-scan acquisition time differences between slices and head motion. We excluded the participants whose head movement exceeded 2 mm of translation or 2° of rotation in any directions. All realigned images were spatially normalized to the Montreal Neurological Institute EPI template in SPM8 and resampled to 3 mm × 3 mm × 3 mm voxels (30). After normalization, the images were smoothed with a 4 mm full width on the half-maximum Gaussian kernel. The time series were further band-pass filtered (0.01–0.08 Hz) and linearly detrended. Afterward, several covariates, including Friston-24 head motion parameters acquired by rigid body correction, signal from a region centered in white matter, and signal from cerebrospinal fluid were removed. Global signal was not removed as indicated in a previous study (31). The frame-wise displacement (FD) value for each participant was calculated according to a previous study (32). Scrubbing (removing time points with FD > 0.2 mm) was also used to control the effect of head motion.



GFC Analysis

The GFC method was similar to that used in our previous study (24). For each participant, we calculated average values of correlations between each voxel's time series and every other voxel in gray matter of the whole brain in MATLAB, which was defined as GFC of this voxel (18). The threshold setting classified voxel with probability of >0.2 as gray matter, and the gray matter mask would be produced by the gray matter probability map in SPM8 (33). The GFC values were converted into Fisher z-scores (21, 24, 34). The GFC maps were generated by combining GFC of all voxels. Thereafter, two-sample t-tests were conducted on the GFC maps between patients with CD and controls after the normality of the data being checked. The mean FD and age were used as covariates of no interest to limit the possible effects of these variables. The significance level was set as p < 0.05 by using the family wise error (FWE) correction method.



Correlation Analysis

We extracted mean z values from brain clusters with abnormal GFC. After checking normality of the data, Pearson correlations were performed to determine the relationship between GFC values and Tsui total scores in the patients. The significance level was set at p < 0.05.



Classification Analysis by Using SVM

SVM was applied to examine whether decreased GFC in several brain regions could be used to distinguish the patients from the controls (35). The LIBSVM software adopted a “leave-one-out” (LOO) approach that was cross-validated to obtain good sensitivity and specificity. In our study, given a dataset of 19 samples, the LOO-based validation was performed with 19 iteration. In each iteration, the classifier was trained with 19-1 samples and tested on the remaining sample. The type of kernel was the default Gaussian kernel in LIBSVM (33).

We adopted a 5-fold cross-validation method to validate the SVM results. Each sample was randomly divided into five subgroups. The first 4 subgroups were taken as training sets and the fifth subgroup was taken as a test set to obtain a global accuracy. Moreover, results were validated by a permutation test, which ran 10,000 times for each sample to get a global accuracy.




RESULTS


Characteristics of the Subjects

The data of 2 patients were excluded due to excessive head movement. Consequently, the final sample included 19 patients and 21 controls. Continuous variables, including age, years of education, and FD, were analyzed with two-sample t-tests after the normality of the data being checked. A Chi-squared test was used for sex distribution.

The differences in age (p = 0.75), sex ratio (p = 0.22), and FD (p = 0.51) between the patients and controls were not statistically significant. The information of demographic and clinical characteristics of the included subjects were listed in Table 1.


Table 1. Characteristics of participants.

[image: Table 1]



Group Differences in GFC

Compared with the controls, patients with CD exhibited decreased GFC in the right precentral gyrus and right SMA (Figure 1 and Table 2). No brain region exhibited increased GFC in the patients relative to the controls.


[image: Figure 1]
FIGURE 1. Reduced GFC in patients with cervical dystonia relative to healthy controls. GFC, global-brain functional connectivity.



Table 2. Regions with decreased GFC in patients.
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Correlations Between GFC and Clinical Variables

As shown in Figure 2, a negative correlation was observed between GFC values in the right precentral gyrus and symptomatic severity in the patients (r = −0.476, p = 0.039, uncorrected). The correlation was not significant at Bonferroni corrected p < 0.05/2 = 0.025 (for the two clusters).


[image: Figure 2]
FIGURE 2. A negative correlation (r = −0.476, p = 0.039, uncorrected) between GFC values in the right precentral gyrus and symptomatic severity in patients with cervical dystonia. GFC, global-brain functional connectivity.




SVM Results

SVM analysis was conducted to determine whether GFC values in these brain areas could distinguish patients with CD from healthy controls with good sensitivity and specificity. The decreased GFC values in two brain regions exhibited high accuracies, sensitivities and specificities (83.33, 85.71, and 80.95% in the right precentral gyrus; and 87.59, 89.49, and 85.71% in the right SMA) in differentiating patients with CD from healthy controls (Figure 3).


[image: Figure 3]
FIGURE 3. 3D view of classified accuracy with the best parameters using GFC values in the right precentral gyrus and right SMA to differentiate the patients from the controls. The results were obtained in LIBSVM using a “leave-one-out” approach with default Gaussian kernel. Left: Using decreased GFC values in the right SMA to differentiate the patients from the controls. Right: Using decreased GFC values in the right precentral gyrus to differentiate the patients from the controls. SVM, support vector machine; GFC, global-brain functional connectivity; SMA, supplementary motor area.


We used both the 5-fold cross-validation and permutation test methods to validate the SVM results. The global balanced accuracy was 80.00 and 68.42% in the right precentral gyrus and right SMA using the 5-fold cross-validation method. By contrast, the global accuracy was 0.8023 (p < 0.001) and 0.8071 (p < 0.001) in the right precentral gyrus and right SMA using the permutation test.




DISCUSSION

Patients with CD exhibited significantly decreased GFC values in brain regions of the M1-SMA motor network compared with healthy controls. Moreover, GFC values in the right precentral gyrus were negatively correlated with symptomatic severity in the patients. GFC values in these areas could correctly identify patients from healthy controls with good sensitivity, specificity, and accuracy.

Previous studies indicate that dystonia is a disorder of motor organization, programming, execution, and sensorimotor integration (36). The precentral gyrus (as the M1), located between the central sulcus and anterior central sulcus on the dorsolateral side of the frontal lobe, is closely related to motor preparation and execution. The main function of precentral gyrus is to convert programmed behavioral instructions from other brain regions into signals that encode various movements, such as muscle contractions, strength and duration. Precentral gyrus receives projections from postcentral gyrus and part of the secondary somatosensory cortex of the dominant hemisphere, which contain information on the contralateral derma, muscle and arthrosis, and subsequently corrects movement (37). The abnormality in this motor system may show reduced surround inhibition, resulting in unnecessary and redundant muscle contractions beyond specific behavior (12). Therefore, decreased GFC in the right precentral gyrus of patients with CD may lead to impaired movement preparation or movement inhibition, resulting in symptoms of uncontrolled muscle contraction in shoulder and neck.

GFC values in the right precentral gyrus were negatively correlated with symptomatic severity of the patients. Significantly decreased gray matter volume in the right precentral gyrus was observed in patients with cervical spondylotic myelopathy, and increased gray matter volume was found in the same area after surgery compared with baseline data (38). One possible explanation for increased gray matter volume in the motor cortex was cortical plasticity. Meanwhile, an fMRI study revealed an abnormally low cortical activity in precentral gyrus in patients with focal dystonia (39). The pathological involuntary twisting and contraction of the cervical muscles in patients with CD might increase frequency of muscle activity, which was equivalent to passive and orderly movement training. Dystonia excessive muscle spasm would cause low GFC values in the right precentral gyrus, thereby resulting in the negative correlation between GFC values in the right precentral gyrus and symptomatic severity in the patients. The negative correlation observed in the present study indicated that decreased GFC values in the right precentral gyrus could serve as a quantitative marker for evaluation of clinical symptomatic severity in the patients.

The SMA, located at the medial wall of superior frontal gyrus, is a brain region associated with voluntary movement (40). It is associated with high motor regulations, such as initiation of movement. Several clinical observations (41, 42) revealed that patients with impaired function in the SMA showed delayed movement initiation, difficulty in acting smoothly, and poorly organized movements. Functional changes observed in the SMA were associated with increasing upper extremity function scores during rehabilitation (43). Hence, decreased GFC values in the SMA may be associated with the involuntary spasm of the focal muscle in the patients.

Kasess et al. proposed a closed-loop control circuit composed of basal ganglia thalamic neurons connecting M1 and SMA to subserve motor task execution interactively (44, 45). Reciprocal interconnections between M1 and SMA were found in patients with epilepsy with focal seizures as the main clinical manifestation (46), and fMRI revealed a reduced coupling between M1 and SMA in subcortical pathology. We also examined whether there were abnormal reciprocal interconnections between M1 and SMA in patients with CD, and found decreased FC between right M1 and right SMA in patients with CD compared with healthy controls (p = 0.036, Table S2). Abnormal correlation between M1 and SMA in patients with CD suggests that decreased GFC in these loops may be related to limb dyskinesia in the present study.

SVM analysis exhibited that sensitivities, specificities, and accuracies of GFC values in the right precentral gyrus and right SMA in differentiating the patients from the controls were >0.8, which were good for the established diagnostic indicators (47). These results were further validated by the 5-fold cross-validation and permutation test methods. Also, GFC values from 116 brain regions of the Anatomical Automatic Labeling (AAL) templates were extracted, and SVM was conducted to examine whether GFC values of 116 brain regions could differentiate the patients from the controls with good accuracies, sensitivities and specificities. As shown in Table S1, the accuracies, sensitivities and specificities of GFC values in the right precentral gyrus and right SMA were among the highest ones. Thus, decreased GFC values in these brain regions may be utilized as potential image biomarkers to discriminate patients with CD from healthy controls.

This study has some limitations. First, all patients had minimal or absent dystonic posturing in the supine during scanning. Muscle spasms in this position lead to difficult determination of whether this condition is a secondary spasm. Therefore, the influences of sensory deception in the analysis cannot be easily eliminated. Second, data on age of onset and other relevant clinical characteristics were collected retrospectively, which might have limited the accuracy of the information. Finally, due to the small sample size, this study has insufficient capacity to subdivide patients into different groups based on head rotation.



CONCLUSIONS

The present study indicates that reduced GFC exists in brain areas of the M1-SMA motor network in patients with CD. GFC values in the right precentral gyrus and right SMA may be used as potential biomarkers to differentiate the patients from the controls. Thus, this study provides new insights into the pathological changes of GFC in CD.
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Object: The purpose of our study was to investigate the microstructural changes of the medial temporal cortex in mild cognitive impairment (MCI) patients with cerebral small vascular disease (cSVD) using diffusion kurtosis imaging (DKI) and to examine whether DKI parameters are correlated with MCI.

Method: A total of 82 cSVD patients admitted to the Department of Neurology Beijing Chaoyang Hospital, Capital Medical University, were retrospectively enrolled in this study. The Montreal cognitive assessment scale (MoCA) score was used to assess overall cognitive function. According to the presence or absence of MCI, these patients were divided into an MCI group (n = 48) and a non-MCI group (n = 34). The general clinical data of the two groups were collected and analyzed. The regions of interest (ROIs) in the medial temporal cortex were selected for investigation. The averaged values of DKI parameters were measured in each ROI and compared between the two groups, and the correlations between DKI parameters and MoCA score and between diffusion and kurtosis parameters were examined.

Results: Compared to the non-MCI group, MCI patients showed significantly increased mean diffusion (MD) and radial diffusion (RD) and significantly decreased mean kurtosis (MK) in the left hippocampus (P = 0.005, 0.006, 0.002, respectively). In the left hippocampus, fractional anisotropy (FA), MK, radial kurtosis (RK), and kurtosis fractional anisotropy (KFA) showed significantly positive correlations with MoCA score (r = 0.374, 0.37, 0.392, 0.242, respectively, all P < 0.05), while MK and RD were negatively correlated with MoCA score (r = −0.227, −0.255, respectively, both P < 0.05). In the left parahippocampal region, axial kurtosis (AK) and KFA were positively correlated with MoCA score (r = 0.228, 0.282, respectively, both P < 0.05), while RK was positively correlated with MoCA score in the right parahippocampal region (r = 0.231, P < 0.05). Significant correlations of MD with MK, RD with RK, and FA with KFA were observed in the medial temporal cortex (r = −0.254, −0.395, 0.807, respectively, all P < 0.05) but not of axial diffusion (AD) with AK.

Conclusion: The DKI technique can be used to observe microstructural changes of the medial temporal cortex in MCI patients with cSVD. The DKI-derived parameters might be a feasible means of evaluating patients with MCI.

Keywords: mild cognitive impairment, cerebral small vascular disease, medial temporal cortex, diffusion kurtosis imaging, changes


INTRODUCTION

Mild cognitive impairment (MCI) is a condition in which patients demonstrate cognitive impairment with minimal impairment of the instrumental activities of daily living and that does not meet the diagnostic criteria for dementia (1). MCI is common in senior adults, and its prevalence increases with age and lower social/educational status. Patients with MCI are at higher risk of dementia than age-matched controls (2). Studies have shown that the medial temporal cortex is likely to be more vulnerable to MCI and have revealed a 2.2-fold higher volume loss in the hippocampus, 1.8-fold loss in the whole brain, and 1.5-fold loss in the olfactory cortex in MCI patients (3). Takahashi et al. found that a low MoCA score of 22 or less was associated with medial temporal cortex atrophy in patients with amnestic cognitive impairment after stroke (4). The meta-analysis also revealed that the early changes in the olfactory cortex are a good imaging biomarker that can be used to discriminate individuals with MCI from normal control subjects and that a larger degree of atrophy in the olfactory cortex predicts increased disease severity (5). In recent years, many studies have been published on diagnostic applications of diffusion tensor imaging (DTI) (6–10). However, the simplified description of the diffusion process assumed in DTI does not permit complex microstructures to be completely mapped because the cellular components and structures hinder and restrict the diffusion properties of water molecules. These limitations can be partially overcome by DKI, and DKI parameters have been found to be very sensitive in identifying some alterations that characterize many neurological diseases (11, 12). These changes are appreciable with DKI even before any imaging findings through conventional imaging and in a better way than with conventional DTI (13). However, few DKI study results are available with which to comprehensively investigate the changes in the medial temporal cortex in patients with MCI. This study aimed to identify the early microstructural alterations in the medial temporal cortex in MCI patients with cSVD by DKI and further examine the relationship between these parameters and MoCA score, which may provide neuroimaging evidence for the evaluation of MCI patients.



METHODS


Subjects

We retrospectively collected 82 patients with cSVD who were admitted to the Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University from January to December 2018, and the diagnosis was confirmed by conventional MRI scan (including MRA) of the head (14). Inclusion criteria were: age of ≥50 years, cranial MRI confirmed the presence of cSVD (15), evaluation of daily life showed no functional disability, evaluation of overall cognitive function performed using the MoCA score. Exclusion criteria were: patients with severe medical diseases, such as heart diseases, liver diseases, renal failure, tumors, or other systemic diseases; patients with severe neurological diseases, such as white matter lesions unrelated to vascular diseases, tumor, Parkinson's disease, and brain trauma; patients with severe neuropsychological disorders, mental disease, or medicated with drugs affecting cognition within the prior 24 h; patients with contradictions to MRI or who were unable to receive cranial MRI.



Cognitive Function and Neuropsychological Assessment

All patients were assessed on the neuropsychological scale at admission. We use the MoCA score to assess overall cognitive function, which included attention and concentration, executive function, memory, language, visual-spatial structure skills, abstract thinking, calculation, and orientation. According to their social/educational status, those in the illiterate group with ≤13 points, in the primary school group with ≤19 points, and in the junior high school and above group with ≤24 points were considered to have objective cognitive impairment (16). The 24 stems of the Hamilton Depression Scale (HAMD) and the Hamilton Anxiety Scale (HAMA) were also performed to assess the severity of depressive or anxiety disorders. All subjects underwent routine blood biochemical tests and glycosylated hemoglobin and serum homocysteine tests. The baseline data collected for all subjects were age, gender, education, hypertension, diabetes mellitus, hyperlipidemia, smoking, and drinking history.



General Criteria for MCI

First, the patient is neither normal nor demented; second, there is evidence of cognitive deterioration, shown by either an objectively measured decline over time and/or subjective report of decline by self and/or informant in conjunction with objective cognitive deficits; third, activities of daily living are preserved, and complex instrumental functions are either intact or minimally impaired (17).




MRI DATA COLLECTION


MRI Scanning

All patients were scanned on a 3 Tesla whole-body MR system (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) with a 20-channel phased-array head coil. The head was fixed with a sponge mat. T1-weighted images (T1WI) were scanned using a 3D magnetization-prepared rapid acquisition gradient echo (MPRAGE). The sequence parameters were set as follows: repetition time (TR) = 2,300 ms, inversion time (TI) = 900 ms, echo time (TE) = 89 ms, flip angle (FA) = 8°, field-of-view (FOV) = 240 × 240 mm, voxel size = 0.9 mm isotropic, parallel acceleration factor (PAT) = 2, and acquisition time = 5 min 21 s. The diffusion imaging was performed using spin-echo echo-planar imaging (SE-EPI) and was scanned in two blocks. The parameters of the first block were TR = 7,700 ms, TE = 89 ms, imaging matrix = 74 × 74, FOV = 222 × 222 mm, number of slices = 50, slice thickness = 3 mm, b = 0, 1,000, 2,000 s/mm2, 1 average, 30 gradient direction, PAT = 2, and the acquisition time was 8 min 14 s. The parameters of the second block were the same as for the first except only b = 0 s/mm2 was used, 9 average, and acquisition time was 1 min 34 s. The total scan time of the diffusion scan was 9 min 48 s.



Processing of DKI Data

Two radiologists (KL with 10 years' experience in neuroimaging, ZP with 20 years' experience in neuroimaging) viewed the images. The medial temporal cortex mainly includes the hippocampus, and olfactory and parahippocampal regions, and the label indices of 21, 22, 37, 38, 39, 40 were selected as ROIs according to the Anatomical Automatic Labeling (AAL) template (18). The scanned diffusion-weighted images were first transformed to NII file format using the dcm2nii tool and then supplied to the diffusional kurtosis estimator (DKE) to generate DKI parameter maps. However, during the acquisition, to reduce the eddy current (EC) effect, we applied the vendor-provided EC sensitivity reduction and dynamic field correction option in the protocol. The T1W images acquired by MP-RAGE were supplied to the SPM12 toolbox (19). The AAL template was non-linearly registered to T1W images, and the AAL labels were aligned to the T1W image space using the generated wrapping field and transformation matrix. The DWI images (b = 0 s/mm2) were rigidly aligned to the T1WI space, and the transformed matrix was applied onto the DKI parameter maps. The average values of MD, AD, RD, FA, MK, AK, RK, and KFA in these segmented ROIs were then automatically calculated using MATLAB (2017a, The MathWorks, Inc., Natick, MA). Although, in gray matter, due to its near isotropic diffusion, the independent parameters were considered to contain only MD and MK (12), we presented the preliminary results in this study for all parameters including the directional ones to provide a comprehensive perspective with potential findings. MK is calculated as the average of the kurtosis along all directions of diffusion gradients (20), and AK, RK, and KFA are calculated similarly to AD, RD, and FA, which are of interest for white matter bundles since they give additional information on the axonal and myelin integrity (21).



Statistical Analyses

Statistical analyses were performed using SPSS (version 22.0, IBM Corp., Armonk, NY). The one-sample Kolmogorov–Smirnov test was applied to test the normality of the data distribution. Data were expressed as mean ± standard deviation ([image: image] ± SD) when normality assumptions were satisfied. Otherwise, data were expressed in terms of quartile. The independent sample t-test, Mann–Whitney U-test, or the χ2-tests were used appropriately for comparison between the two groups. Multivariate logistic regression was applied to determine the risk factors for patients with MCI. We corrected multiple comparisons using the Šídák-Bonferroni method, and the corrected P-value was statistically significant when P < 0.0083 (0.05/6 = 0.0083). Correlation between the MoCA score and the DKI diffusivity and kurtosis parameters were analyzed. Pearson correlation analysis was applied when normality assumptions were satisfied; otherwise, Spearman correlation analysis was used. A value of P < 0.05 was considered statistically significant.




RESULTS


General Characteristics and Cognitive Functions

Of the 82 patients, 47 were male and 35 were female. The age ranged from 50 to 88 years, with a median age of 64 (59, 69) years old. The length of education was from 0 to 18 years, and the median length was 8 (8, 11) years. According to the presence or absence of MCI, the 82 patients were divided into an MCI group (48 cases) and a non-MCI group (34 cases). There were 28 males and 20 females in the MCI group, their ages ranged from 50 to 88 years old, with a median age of 64 (60, 71) years old, their education period was from 0 to 18 years, and the median duration of education was 8 (7, 10) years. There were 19 males and 15 females in the non-MCI group, their ages ranged from 50 to 78 years old, with a median age of 63 (57, 67) years old, their duration of education was from 8 to 11 years, and the median duration of education was 9.5 (8, 11) years. There were no significant differences in gender, age, and years of education between the two groups (P > 0.05).

The risk factors of cerebrovascular disease (such as hypertension, diabetes mellitus, hyperlipidemia, and history of smoking and drinking), the blood test results (such as total cholesterol, serum glucose, serum homocysteine, etc.), the MoCA score, and the HAMA and HAMD score were also comparable between the groups. MCI patients had evident cognitive impairment and shared significant reductions in MoCA score (P < 0.01). Patients with non-MCI had more type 2 diabetes mellitus. However, there was no significant difference between the two groups after multivariate logistic regression was applied (see Table 1). We have also evaluated the enlarged perivascular space (EPVS) and white matter hyperintensities (WMHs) according to cranial MRI (see Supplementary Figures 1, 2). We found patients with MCI had more severe total WMHs, however, there were no significant differences between the two groups in the severity of EPVS. Logistic regression was performed to determine risk factors for patients with MCI, and found that the severity of WMHs was an independent risk factor for MCI patients (see Supplementary Tables 1, 2).


Table 1. General characteristics and cognitive function of MCI and non-MCI patients.
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Comparison of DKI Parameters in the Medial Temporal Cortex Between the MCI and Non-MCI Groups

Compared to the non-MCI group, the MCI group showed significantly increased MD and RD (P = 0.005, 0.006, respectively) and significantly decreased FA, AK, MK, RK, and KFA in the left hippocampal region (P = 0.017, 0.01, 0.002, 0.016, and 0.023, respectively). In the right olfactory region, AK and MK were significantly lower in patients with MCI (P = 0.027 and 0.037, respectively), while in the left parahippocampal region, AK was significantly lower in patients with MCI (P = 0.044). No parameters were found to be significantly different between the two groups in the left olfactory, right hippocampus, and right parahippocampal regions. The Šídák-Bonferroni method was applied for multiple comparisons, and MD, RD, and MK still remained statistically significantly different in the left hippocampal region (P = 0.005, 0.006, and 0.002, respectively; see Tables 2–4).


Table 2. Comparison of DKI parameters in the hippocampus between patients in the MCI and non-MCI groups.
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Table 3. Comparison of DKI parameters in the olfactory region between patients in the MCI and non-MCI groups.
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Table 4. Comparison of DKI parameters in the parahippocampus between patients in the MCI and non-MCI groups.

[image: Table 4]



Spearman Correlations With DKI Parameters and MoCA Score

In the left hippocampal region, FA, MK, RK, and KFA were positively correlated with MoCA score (r = 0.374, 0.370, 0.392, and 0.242, respectively, all P < 0.05), while MD and RD were negatively correlated with MoCA score (r = −0.227 and −0.255, respectively, both P < 0.05). In the left parahippocampal region, AK and KFA were positively correlated with MoCA score (r = 0.228 and 0.282, respectively, both P < 0.05), and RK was positively correlated with MoCA score in the right parahippocampal region (r = 0.231, P < 0.05), while the other parameters had no correlation with MoCA score (detailed Spearman coefficients are summarized in Table 5 and Figure 1).


Table 5. Spearson's correlations of DKI parameters with MoCA score.
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[image: Figure 1]
FIGURE 1. Correlations between DKI parameters and MoCA score in left Hippocampus.




Pearson Correlations Between Diffusivity and Kurtosis Parameters

Considering the values of parameters obtained from all patients for the medial temporal regions, there were significant positive correlations between FA and KFA (r = 0.807, P < 0.001), and RD was found to negatively correlate with RK (r = −0.395, P < 0.001). Similar inverse correlation was observed between MD and MK (r = −0.254, P = 0.021), but there were no significant correlations between the AD and AK parameters (Figure 2 presents the correlations mentioned above).


[image: Figure 2]
FIGURE 2. Correlations between diffusivity and kurtosis parameters from all ROIs.





DISCUSSION

Our study mainly found that compared to the non-MCI group, the MCI group showed significantly increased MD and RD and significantly decreased MK in the left hippocampal region. In the left hippocampal region, FA, MK, RK, and KFA were significantly positively correlated with MoCA score, while MD and RD were significantly negatively correlated with MoCA score. In the left parahippocampal region, AK and KFA were significantly positively correlated with MoCA score, while RK was significantly positively correlated with MoCA score in the right parahippocampal region. With the exception of AD and AK, significant correlations were observed between the other three diffusion and kurtosis parameters in the medial temporal cortex.

In our study, the results showed that compared to non-MCI patients, the values of MK in the left hippocampal region was significantly lower in MCI patients, while the values of MD and RD were significantly increased. Consistent with our results, earlier studies comparing MCI, Alzheimer's disease, and controls also found decreased values of MK in MCI and Alzheimer's disease (12, 22). Falangola et al. demonstrated that MCI and Alzheimer's disease patients showed statistically significant differences in kurtosis parameters in selected brain regions (segmented prefrontal white matter, prefrontal oval, genu of the corpus callosum, anterior corona radiate, segmented temporal white matter, temporal oval, and hippocampus) compared to controls (22). Ryu et al. also found that patients with subjective memory impairment (SMI) exhibited DTI changes (lower FA and higher MD in SMI) in the hippocampal body and olfactory white matter compared to controls (23). The decrease of MK and elevated MD and RD suggests a change in the gray matter microstructure in the medial temporal cortex. This may be due to the loss of neuron cell bodies, synapses, and dendrites, which would increase the extracellular space and result in elevated mean diffusivity and radial diffusivity.

Our study also found that in the left hippocampal region, FA, MK, RK, and KFA were positively correlated with MoCA score, while MD and RD were negatively correlated with MoCA score. In the left parahippocampal region, AK and KFA were positively correlated with MoCA score, and in the right parahippocampal, RK was positively correlated with MoCA score, while the other parameters were observed have no correlation with MoCA score. NJ G etc. found no significant correlations between MMSE score and any of the kurtosis parameters in the gray matter of the temporal cortex (12); this may have been due to the small number of cases, as their study had only 18 Alzheimer's disease patients and 12 MCI patients. We also found that, with the exception of AD and AK, significant correlations were observed between kurtosis and diffusivity parameters (between MK and MD, between FA and KFA, and between RK and RD), which is consistent with the study of NJ G. The results suggested that the changes in diffusivity were accompanied by a change in diffusional non-gaussianity, and kurtosis parameters were suggested to be at least complementary to, if not more sensitive than diffusivity parameters for detecting microstructural changes in the medial temporal cortex.

In addition, our study revealed bilateral asymmetry in the microstructural changes of the medial temporal cortex in patients with MCI. Compared to non-MCI patients, the microstructural changes in the left hippocampus were more obvious than in the right in MCI patients. The possible reason for this is that, in normal people, the hippocampal cortex shows asymmetry. A meta-analysis of asymmetry of the hippocampus and amygdala revealed that both the hippocampus and the amygdala are reliably asymmetrical structures in normal adults, with larger right hippocampal and right amygdala volumes (24). This finding was also supported by Yue et al. in a study of subjective cognitive decline among community-dwelling Chinese (25). De Toledo-Morrell et al. found that the right olfactory cortex may be more vulnerable to the aging process than the left because it was smaller in elderly subjects (26). A recent longitudinal study showed that a smaller thickness in the right olfactory region predicted the onset of symptoms (27). Therefore, we speculated that the left hippocampus is smaller than the right, and the left hippocampal microstructural changes are more vulnerable in MCI patients.

Our study also has several limitations. First, the relatively small sample size may have contributed to the significant group differences. Second, our study lacks a normal healthy control group and long-term follow-up, which has a certain impact on the results of the study. Third, due to the small number of MCI patients in this study, we did not further analyze the subtypes of MCI. Fourth, although interesting findings regarding kurtosis parameters were observed in the medial temporal cortex, their underlying pathophysiological significance must be examined in further studies.



CONCLUSION

It is feasible to use DKI to observe the microstructural changes of the medial temporal cortex in MCI patients with cSVD. Compared to the non-MCI group, DKI-derived parameters of the medial temporal cortex were significantly different in the MCI group. Furthermore, some of the DKI parameters showed heterogeneous patterns of correlations with the clinical evaluation score of MCI patients, which might provide insights into the imaging evaluation of MCI patients with cSVD.
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INTRODUCTION

Independent Component Analysis (ICA) is a widely used, unsupervised, exploratory machine learning method (Comon, 1994) and is often applied to resting-state fMRI (rsfMRI) data (Nickerson et al., 2017). Though its usefulness is apparent, the most common applications of ICA involve substantial subjectivity. For example, the spatial components extracted through individual or group-level ICA are never identical between studies and are often labeled by visual inspection and expert opinion. The goal of this study was to establish a spatial component approach based on well-documented atlases derived from large-scale investigations. These components can subsequently be used in place of components tailored to fit each individual study's dataset.

The utility of ICA to extract meaningful functional connectivity patterns without the need for prior knowledge has been established by its application to large-scale studies like Human Connectome Project (HCP) and United Kingdom (UK) BioBank cohort (Miller et al., 2016; Smitha et al., 2017). Although ICA has been successfully applied to a wide range of applications in rsfMRI, there have long been some concerns about reproducibility and the subjectivity of ICA results (Friston, 1998). Also, ICA is a computationally-demanding approach, which may provide a barrier to researchers with limited resources or exceptionally large datasets. We present an approach that has the potential to substantially decrease both the subjectivity of ICA and its computational burden.



THE CRITIQUE ON ICA

Performing ICA-based rsfMRI studies involves: data preprocessing and clean-up (sometimes through subject-level ICA or SICA), group-level ICA (GICA) on the entire dataset (usually with temporal concatenation), separating signal from noise independent components (ICs), network labeling, and time-series and spatial map extraction based on selected ICs for all subjects (Nickerson et al., 2017). Because ICA is a time-consuming and computationally resource-demanding procedure, a significant reduction in runtime may be worthwhile, especially in large-scale studies. Runtime issues aside, our main objective for improving this analysis pipeline focuses on producing objective, reproducible science. Furthermore, a main concern of the ICA pipeline lies in network labeling, where ICs representing potential resting-state networks (RSNs) of interest must be inspected by contextually-experienced brain anatomist(s) to be safeguarded against any misidentification. This limitation may challenge reproducibility of the results since this process could be quite arbitrary (Storti et al., 2013; Salimi-Khorshidi et al., 2014; Pruim et al., 2015). Also, running GICA on different datasets will not yield exactly the same components, and will output results that may not be closely matched with the results from other analyses (e.g., a single network may be split into 2 or 3 components, depending on the idiosyncrasies of the datasets used) (Wang and Li, 2015).



CURRENT REMEDIES

One approach to this problem is to utilize machine learning and deep learning solutions to compare the GICA results with established reference RSNs (Kozák et al., 2017; Zhao et al., 2018). Although this classification method categorizes the ICs objectively based on the provided template, replicability, and stability of this approach have yet to be benchmarked by large-scale studies and relies on large amounts of training data. Deep learning approaches involve additional concerns such as slow convergence and over-fitting, especially in MRI modalities (Srivastava et al., 2017).

Another method is “semi-blind ICA”, which uses prior knowledge in the form of a “template” that is entered at the beginning of each run of GICA to guide and improve estimation of network-related components (Lin et al., 2010). This method also requires well-established knowledge on the expected activation patterns in fMRI data, especially in task-based fMRI studies.

The alternative approach presented here may allow ICA pipelines to be more stable, faster and reproducible, in terms of extracting time-series of network(s) of interest from the subjects' data in a shorter time and with less computational resources. This is the case especially in time-constrained, resource-limited studies where access to experts for interpreting the GICA results may be a challenge.



A SOLUTION

We propose to use the ICs resulting from prior studies, such as the UK Biobank and HCP, in an “atlas-like” manner. Because such ICs are already published (Miller et al., 2016), they could be well-studied and agreed upon by the experts across the field. Following agreement, it would be possible to use the ICs as a reference to extract the time-series of subjects in matched groups, similar to an atlas, and interpret the ICs from other studies more objectively through automated, semi-automated, or conventional manual approaches.

Results of GICA would have the potential be re-used in other studies (Bijsterbosch et al., 2017). The idea of using a reference in analyses is not novel. The use of references such as Montreal Neurological Institute (MNI) standard spaces or Harvard-Oxford cortical and subcortical structural atlases in preprocessing and analysis of imaging data is also based on the same concept of grouping data together to have a common frame of reference. This approach would be beneficial to ICA pipelines as well. This solution is depicted in Figure 1. In order to elaborate on this proposal, it is demonstrated by following the solution recommended by the widely-used FMRIB Software Library (FSL) package from Functional Magnetic Resonance Imaging Modeling (FMRIB) lab (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).


[image: Figure 1]
FIGURE 1. Conventional ICA pipeline vs. the proposed solution.


After preprocessing the data, it is common to use cleaned data to perform GICA to detect ICs and then inspect the results to label and select RSNs (ICs) of interest. By means of dual regression, candidate ICs are mapped to each subject's functional data to extract subject-specific time-series and spatial maps of desired RSNs for use in subsequent analyses (Beckmann et al., 2009; Nickerson et al., 2017).

To alleviate the issues mentioned above, a more efficient approach would be to use previously labeled ICs from a large-scale study as an atlas of ICs to be applied in dual regression rather than performing GICA. This strategy reduces study-specific GICA to a regression method. As a candidate application for this improved approach, it would be possible to use the set of ICs from GICA obtained in one study to get the time-series of matched subjects in another demographically comparable study in a cross-site investigational manner. Also, investigating a subset group from the original dataset would be more efficient this way by eliminating the need to run GICA again on the subset. Although running GICA in this scenario may lead to a better model fit to the data this may not outweigh the benefit of having a more objective way of extracting the spatial maps and time-series. Also, using GICA can provide additional improvements of noise components, that would not be possible using a standard atlas. This may not be much of a concern, since sufficient preprocessing and noise removal can be performed at the individual subject level.

Atlas-based ICA would also benefit smaller-sized studies since the analysis pipeline would improve stability and allow results to be more readily comparable to other studies. In a conventional pipeline, the whole dataset must be preprocessed and ready before running GICA, therefore performing analysis on a subset before data collection is complete is not feasible and will not produce the same components as when the entire dataset is available. In addition, if a participant's data was excluded, re-running the GICA again would be necessary, instead of simply removing those records from the group analysis. The proposed approach would address these issues as well.

We tested our approach on an rsfMRI dataset from a recent within-subjects study (Le et al., 2018) with 20 individuals that completed three sessions of functional scans (60 scans in total). Following preprocessing we investigated the difference between the conventional ICA pipeline and our proposed pipeline and applied the GICA atlas from a subset of the Tulsa 1,000 study cohort (Victor et al., 2018) using a MacBook Pro machine with a 2.9 Ghz Intel Core i7 processor and 16 GB of memory. In the proposed pipeline, the time-series of the ICs for each subject (Stage 1 output from dual regression) were ready to use in 57 mins. Alternatively, performing GICA followed by dual regression in order to extract the time-series for each subject took 9 h and 33 min. The additional runtime required for running GICA is reasonable in this case, but would be of greater concern with a larger dataset. Additionally, GICA on the 60 scans produced a substantially different set of components, which makes it difficult or impossible to compute the same components as from the atlas.

Currently, there are published reference atlases on well-studied resting-state networks (Yeo et al., 2011). These atlases are useful for labeling the networks, yet they are binary network masks and lack components' voxel-wise weights, which are necessary for subject-wise time-course extraction. To the best of our knowledge, no atlas has been published with this information.

There are some limitations of this new proposed approach. Similar to other studies that use a common atlas, the subject population should be a reasonable representation of the subject group recruited in the reference studies. Since most large public datasets are from normal populations, one might question the practice of applying components derived from them to patient populations. This is a valid concern, which could be addressed by comparing GICA results from the target population with the standard atlas components. Similarly, there may be systematic differences introduced by machine types and scanning parameters, which warrants a thorough investigation. Regardless, it would be surprising if factors such as scanning parameters impacted large-scale functional organization of the brain. Also, across the field there is no standard procedure for preprocessing the data, so careful consideration must be taken when applying an IC atlas and preprocessing procedures must be compatible (Wetherill et al., 2018), as different preprocessing methods may result in a different set of outcomes. In addition, performing preprocessing on the data before comparing the results to IC atlas is necessary. For example, if an atlas uses 2 mm resolution maps, applying it to studies with different set of rules would require auxiliary processing steps.

To the best of our knowledge, there are several ICA results published and available in the literature (Beckmann et al., 2005; Smith et al., 2009; Laird et al., 2011) including from the UK Biobank cohort (Miller et al., 2016). Such references have the potential to be applied as “Atlases of ICs” on other studies, but only with extensive documentation. Publishing group-level ICA results and documenting them in an atlas-like manner would also allow researchers to keep their (testing) data separate from the training data used to build the models, which is another consideration that has garnered increased attention recently (Scheinost et al., 2019), along with the need for more open, externally validated science.
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Abnormal functional connectivity (FC) within discrete brain networks is involved in the pathophysiology of obsessive-compulsive disorder (OCD) with inconsistent results. In the present study, we investigated the FC patterns of 40 drug-naive patients with OCD and 38 healthy controls (HCs) through an unbiased voxel-wise global brain FC (GFC) analysis at rest. Compared with HCs, patients with OCD showed decreased GFC within the default mode network (DMN) (i.e., left posterior cingulate cortex/lingual gyrus) and sensorimotor network (i.e., left precentral gyrus/postcentral gyrus) and increased GFC within the executive control network (ECN) (i.e., left dorsal lateral prefrontal cortex and left inferior parietal lobule). Receiver operating characteristic curve analyses further indicated that the altered GFC values within the DMN, ECN, and sensorimotor network may be used as neuroimaging markers to differentiate patients with OCD from HCs. These findings indicated the aberrant FC patterns of the DMN, ECN, and sensorimotor network associated with the pathophysiology of OCD and provided new insights into the changes in brain organization function in OCD.
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Introduction

Obsessive-compulsive disorder (OCD) is a common and chronic psychiatric disorder involving intrusive, unwanted thoughts, and/or repetitive behavior, anxiety, and social dysfunction. OCD has a lifetime prevalence of 2%–3% worldwide (1), but the underlying neurobiological mechanisms remain unclear.

Neuroimaging studies have shown that OCD may be caused by distortions within large-scale brain networks rather than from independent brain regions (2). A “triple network” model emphasizes the abnormal intrinsic functional connectivity (FC) patterns within and between the executive control network (ECN), salience network (SN), and default mode network (DMN) as essential features of psychiatric disorders including OCD (3). DMN is composed of posterior cingulate cortex (PCC), medial prefrontal cortex (PFC), and lateral posterior cortices, which is involved in reﬂective and introspective self-awareness processes (4). ECN is composed of dorsal lateral PFC (DLPFC) and posterior parietal cortex, which is crucial for cognitive control (such as planning and response inhibition) (5, 6). SN is composed of anterior insular cortices and dorsal anterior cingulate, which plays an important role in regulating external and internal salient information (3, 7). The DMN deactivates during cognitive demanding tasks and shows increased activities during resting state, and is considered as a task-negative network. The ECN shows elevated co-activation during the cognitive performance, and is a task-positive network. The SN is involved in monitoring the interactions between the DMN and ECN (8). FC within and between the DMN, ECN, and SN was reported to be altered in patients with OCD, and dysfunction of the triple networks may be related to obsessive thoughts and/or compulsive behavior in OCD (2).

Considerable neuroimaging studies have observed altered FC and/or regional activity in brain regions within the DMN, ECN, and SN with inconsistent results. Increased FC and/or regional homogeneity within the DMN, ECN, and SN at rest were found through using the independent component analysis and regions of interest (ROI) seed-based FC approaches (8–12). By contrast, neuroimaging studies have reported decreased FC within the DMN, ECN, and SN at rest in OCD (2, 13–15). Two main factors may explain the inconsistency of the findings. One factor may be the sample heterogeneity regarding medication use. Selective serotonin reuptake inhibitors (SSRIs) may modulate the neural condition and are known to have a remarkable inﬂuence on FC at rest in patients with OCD (16, 17). Therefore, drug-naive patients with OCD should be employed to obtain primitive FC information of the neurobiological mechanisms in OCD. Another important factor may be that numerous neuroimaging studies have concentrated on FC between brain regions of an appointed network rather than using a whole brain assessment (18). Thus, FC based on the assumptive network of interest may lead to biased results and limits the investigation of the most remarkably altered brain areas that may represent the essential abnormality in the neurobiological mechanisms of OCD (19). Voxel-wise global brain FC (GFC) analysis is a model-free method used to investigate functional interactions across the whole brain regions with an unbiased hypothesis-driven manner, and has been applied to obtain whole brain FC in patients with major depressive disorder (19), schizophrenia (20), and somatization disorder (21).

In this study, we compared GFC differences between drug-naive patients with OCD and healthy controls (HCs) using resting-state fMRI. On the basis of the aforementioned studies, we hypothesized that patients with OCD would show altered GFC in some brain regions, peculiarly in brain regions of the DMN, ECN, and SN. We also hypothesized that these alterations would be related to clinical variables in OCD.



Materials and Methods


Participants

Forty drug-naive patients with OCD were recruited from the Fourth Affiliated Hospital of Qiqihar Medical University and Qiqihar Mental Health Center. Patients with OCD were diagnosed using the Structured Clinical Interview for DMS-IV (SCID), patient version. Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), 17-item Hamilton Rating Scale for Depression (HAMD), and Hamilton Anxiety Rating Scale (HAMA) were used to assess the severity of OCD, depression symptoms, and anxiety symptoms, respectively. Patients with OCD should have a score of higher than 16 on Y-BOCS and score of less than 18 on HAMD. In current OCD sample, 4 patients were with obsessions, 4 patients were with compulsion, and 32 patients were with both obsessions and compulsion. Forty HCs were recruited from the community and screened using the SCID, nonpatient version. The participants shared the following exclusion criteria: (1) diagnosis of other Axis I and II disorders; (2) a history of major physical diseases and neurological disorders; and (3) nicotine/caffeine dependence or substance/alcohol use disorder. Moreover, HCs with a family history of major psychiatric disorders were excluded. All participants were right-handed and aged from 18 to 60 years old.

This study was approved by the Research Ethics Committee at Qiqihar Medical University, China. All participants were informed regarding the procedures, and signed an informed consent.



Image Acquisition and Preprocessing

Images were acquired by using a 3.0-Tesla GE 750 Signa-HDX scanner (General Electric Healthcare, Waukesha, WI, USA) at the Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang, China. The subjects were instructed to relax, remain motionless (especially the head), keep eyes closed, and stay awake. An echo-planar imaging (EPI) sequence was used to acquire resting-state functional magnetic resonance imaging (RS-fMRI). The parameters were as follows: 33 axial slices, TR = 2,000 ms, TE = 30 ms, FA = 90°, thickness/gap = 3.5 mm/0.6 mm, FOV = 200 × 200 mm, and in-plane resolution = 64 × 64. A total of 240 volumes were collected for 8 min.

The images were manually check to ensure good coverage for all voxels included in a whole-braingray matter mask. Data Processing & Analysis for Brain Imaging (DPABI) software was used to preprocess the imaging data (22). After signal stabilization, slice timing determination and head-motion correction were conducted. The subjects included in the analysis should have a maximum displacement ≤ 2 mm in x, y, or z direction and an angular rotation < 2° on each axis. Two HCs were excluded from further analysis because of excessive head motion. The functional images were normalized to the standard EPI template in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and spatially resampled to a voxel size of 3 mm × 3 mm × 3 mm. The processed images were smoothed with a Gaussian kernel of 4 mm full width at the half maximum. The signal was linearly detrended and band-pass filtered (0.01–0.08 Hz) to reduce high-frequency physiological noise and low-frequency drift. The 24 head motion parameters obtained by rigid body correction, white matter, and cerebrospinal fluid time courses were removed from the images by linear regression. The global signal was included because removing it in the preprocessed RS-fMRI FC data remains debatable. Resting-state fMRI is highly susceptible to head motion and that simply regressing out the effects of the 24 head motion parameters is not sufficient to deal with this issue (23, 24). The analyses were therefore using scrubbing with a framewise displacement (FD) measure, which indexes volume-to-volume changes in head position using a threshold of 0.2 together with one preceding and two subsequent volumes (25).



Global-Brain Functional Connectivity (GFC) Analysis

Voxel-wise GFC was calculated in MATLAB within a gray matter mask, which was created by thresholding (probability > 0.2) the gray matter probability map in SPM8 (26). GFC values for a given voxel of each participant were computed between this voxel and all other voxels within the gray matter mask. The formula used to calculate the GFC values was described by Cui et al. (19) as follows:

	

In this formula, the symbols a and b stand for the given voxels a and b, n represents number, r means the Pearson' s correlation coefficient, Ta and Tb are the time series of voxel a and voxel b. The coefficient r was computed and transformed to z values with Fisher r-to-z transformation (27). GFC of a voxel was defined as the mean coefficient of the given voxel with all other voxels, and GFC maps were created by combining the GFC of all voxels.



Statistical Analysis

Imaging data and demographics were compared between OCD and HCs. Two-sample t-tests were used to analyze the continuous variables, and chi-square tests were used to analyze the categorical data.

GFC analysis was conducted with two-sample t-tests between patients with OCD and HCs. The FD values of each participant were calculated based on the study of Power et al. (25) by indexing volume-to-volume changes in head position. The mean FD values and age were used as covariates to minimize the potential effects of these variables. The signiﬁcance level was set at the corrected p < 0.05 for multiple comparisons using the Gaussian Random Field (GRF) method (voxel significance: p < 0.001, cluster significance: p < 0.05).

Pearson and Spearman correlation analyses were used to assess the relationship between the GFC values showing signiﬁcant group differences (mean z values of GFC were extracted) and clinical variables in the patients with OCD. A partial correlation analysis was also calculated between the altered GFC values and clinical variables in OCD, the mean FD values and age were used as covariates. The significance level was Bonferroni corrected at p < 0.05.

Moreover, receiver-operating characteristic curve (ROC) analysis was conducted to determine whether the altered GFC values of these ROIs could be used to differentiate patients with OCD from HCs. A “leave-one-out” method was applied to conduct the ROC. Furthermore, a permutation test was used to validate the ROC results, which ran 10,000 times for each sample (OCD/HCs) and a global accuracy could be obtained for each sample.




Results


Characteristics of the Participants

Supplementary Table S1 indicates the clinical characteristics of all participants. The patients had a mean age of 27.28 ± 8.16 years, a mean duration of illness of 66.68 ± 75.54 months, and a mean education of 13.40 ± 2.87 years. The controls had a mean age of 27.18 ± 8.33 years and a mean education of 13.74 ± 3.03 years. No significant difference was found regarding gender (x2 = 0.32, p = 1.00), age (t = 0.05, p = 0.71), education (t = -0.50, p = 0.83), and FD values (t = 1.25, p = 0.13) between OCD and HC groups. However, significant group differences were found in Y-BOCS total (t = 25.27, p < 0.001) and subscale scores (obsessive thinking, t = 17.98, p < 0.001; compulsive behavior, t = 14.92, p < 0.001), HAMD scores (t = 9.04, p < 0.001), and HAMA scores (t = 9.00, p < 0.001) (Supplementary Table S1).



Group Differences in GFC

As shown in Table 1 and Figure 1, patients with OCD showed significantly decreased GFC values in the left PCC/lingual gyrus and left precentral gyrus/postcentral gyrus and significantly increased GFC values in the left DLPFC and left inferior parietal lobule (IPL). A plot of the extracted cluster values with the raw data points of samples (OCD/HCs) was presented in Figure 2. A sagittal view of the left PCC/lingual gyrus cluster was presented in Supplementary Figure S1.


Table 1 | Regions with abnormal GFC in the patients with OCD.






Figure 1 | Brain regions with abnormal GFC in patients with OCD. The threshold was set at p < 0.05 corrected by the GRF method. Red and blue denote increased and decreased GFC values respectively. Colour bar indicates t values from two-sample t-tests. L, left side; R, right side; GFC, global-brain functional connectivity; OCD, obsessive-compulsive disorder; GRF, Gaussian Random Field.






Figure 2 | A plot of the extracted cluster values with the raw data points of samples. DLPFC, dorsal lateral prefrontal cortex; IPL, inferior parietal lobule; PCC, posterior cingulate cortex.



There is a debate in whether global signal should be removed. We reanalyzed the data with global signal removal, and obtained the similar results (Supplementary Table S2 and Supplementary Figure S2).



Correlations Between GFC Values and Clinical Variables in Patients With OCD

No correlations were observed between abnormal GFC values and Y-BOCS, HAMD, and HAMA scores in the OCD group with Pearson and Spearman correlation analyses. These correlations were also not significant using the mean FD values and age as covariates with partial correlation analysis.



ROC Analysis in Patients With OCD and HCs

ROC curves were conducted with false positive rate (1-specificity) as X-axis and true-positive rate (sensitivity) as Y-axis and were created by connecting all the points on the graph (each cut-off level generated a point) (Figure 3). Area under the curve (AUC) is an assessment of the entire diagnostic accuracy of the test, and was computed with SPSS 20.0 software (SPSS Inc., Chicago, Illinois, USA). The AUC values of the left PCC/lingual gyrus, left precentral gyrus/postcentral gyrus, left DLPFC, and left IPL were 0.868, 0.830, 0.804, and 0.814, respectively (Table 2).




Figure 3 | Receiver operating characteristic (ROC) curves using the mean GFC values in the left PCC/lingual gyrus, left precentral gyrus/postcentral gyrus, left DLPFC and left IPL to separate patients with OCD from healthy controls. GFC, global-brain functional connectivity; PCC, posterior cingulate cortex; DLPFC, dorsal lateral prefrontal cortex; IPL, inferior parietal lobule.




Table 2 | ROC analysis for differentiating the patients from the controls by using the GFC values.



The results manifested that the GFC value of the left PCC/lingual gyrus could differentiate patients with OCD from HCs with a sensitivity of 72.50% and a specificity of 84.21%. The GFC value of the left precentral gyrus/postcentral gyrus could differentiate patients with OCD from HCs with a sensitivity of 85.00% and a specificity of 76.32%. The GFC value of the left DLPFC could differentiate patients with OCD from HCs with a sensitivity of 75.00% and a specificity of 78.95%. The GFC value of the left IPL could differentiate patients with OCD from HCs with a sensitivity of 72.50% and a specificity of 81.58% (Table 2).

The global balanced accuracies of the left PCC/lingual gyrus, left precentral gyrus/postcentral gyrus, left DLPFC and left IPL were 0.7815 (p < 0.001), 0.7797 (p < 0.001), 0.6826 (p < 0.001), 0.6932 (p < 0.001) respectively for classifying patients with OCD from HCs using the permutation tests.




Discussion

In this study, we investigated the GFC alterations in drug-naive patients with OCD with an unbiased method at rest. The primary results showed that patients with OCD exhibited decreased GFC in the region within the DMN (left PCC/lingual gyrus) and increased GFC in the regions within the ECN (left DLPFC and left IPL), which were consistent with our hypothesis. Moreover, ROC analyses indicated that decreased GFC in the left PCC/lingual gyrus and increased GFC in the left DLPFC and left IPL might be used as candidate neuroimaging markers to differentiate patients with OCD from HCs. Inconsistent with our hypothesis, we found decreased GFC in the region within the sensorimotor network, including the left precentral gyrus/postcentral gyrus, and no signiﬁcant relationship was observed between abnormal GFC and clinical variables in the OCD group.

Many previous studies have evaluated FC based on assumptive seed definitions with an ROI method, which may acquire different result patterns. Diverse studies typically generate inconsistent results (2). Furthermore, some studies have focused on the networks of interest and ignored the most crucial brain areas involved in the core pathological abnormalities in OCD (12, 13, 15, 28–30). By contrast, in the present research, we used a voxel-wise brain-wide method to focus on FC alterations in drug-naive patients with OCD at rest. Therefore, the present findings were revealed in an unbiased manner and may detect the potential FC abnormalities involved in the core pathological abnormalities of OCD.

The present study found altered GFC in the left PCC/lingual gyrus, left DLPFC, and left IPL, which indicated that there were disrupted functional interactions within the DMN and ECN in patients with OCD. As a neural substrate for human awareness, the PCC/lingual gyrus regulates arousal and attention, and is a crucial brain region in the DMN (31, 32). Reduced FC in the PCC within the DMN was found in previous studies in patients with OCD (28, 29, 33). Reduced negative correlations between the PCC and the fronto-parietal network were discovered in patients with OCD (33). DLPFC and IPL are the core brain regions in the ECN, which are involved in cognitive task switching, response inhibition, and executive planning (34, 35). In our previous study, high regional homogeneity in the DLPFC and IPL (peaking in angular gyrus) and increased FC between DLPFC and IPL at rest in OCD were found with a different sample (12). Decreased GFC in the DMN and increased GFC in the ECN at rest may be related to low self-awareness and focus on controlling external stimuli in patients with OCD. Furthermore, altered GFC in the DMN and ECN may break the balance of the “triple network” model and leads to the difficulty on switching between task-negative and task-positive processing in patients with OCD (8). In conclusion, our findings suggested that disrupted GFC in the DMN and ECN might contribute to the pathophysiology of OCD.

We also observed decreased GFC in regions within the sensorimotor network (i.e., left precentral gyrus/postcentral gyrus), which indicated that altered GFC within the sensorimotor network might be associated with OCD. Patients with OCD have damaged sensory gating and sensory-motor integration, which demonstrate that the deviance of the sensorimotor network may be involved in the inability of patients with OCD to suppress internally repetitive and intrusive thoughts and behavior (36, 37). Meanwhile, the activation in brain regions within the sensorimotor network in the inhibitory control processes may explain the essence of inhibitory control deficits of OCD (38). Furthermore, a recent study revealed that the amplitude of low-frequency ﬂuctuations of the precentral gyrus showed a large discriminative power to identify patients with OCD from HCs (39).

The diagnostic accuracy is high when AUC is above 0.9, medium when AUC is 0.7–0.9, and low when AUC is 0.5–0.7. On this basis, the accuracies of altered GFC values in the left PCC/lingual gyrus, left precentral gyrus/postcentral gyrus, left DLPFC, and left IPL for differentiating patients with OCD from HCs are moderate. Moreover, the sensitivity and specificity of altered GFC values in these brain regions are relatively high. The ROC results are also validated by permutation tests. Therefore, the ROC results of the present study indicate that the decreased GFC in the left PCC/lingual gyrus and left precentral gyrus/postcentral gyrus and increased GFC in the left DLPFC and left IPL may be used as candidate neuroimaging markers for patients with OCD.

Previous studies have reported correlations between abnormal FC and clinical variables, such as obsessive-compulsive severity and illness duration in patients with OCD (2). However, no relationships were found between abnormal GFC and clinical variables in the OCD group in the current study, which indicated that abnormal GFC values might be trait changes independent of clinical variables for patients with OCD (40).

Surprisingly, we did not obtain abnormal GFC values in the regions within the SN. As an important member in the triple network model, the SN filters and detects the external and internal salient information, and has an important role in supervising the interactions between the DMN and ECN (8). In our previous study, decreased FC strength within the SN, between the SN and ECN, and the DMN in OCD at rest was revealed (15). In that study, we only focused on the SN and ignored other important brain regions involved in OCD. However, in the present study, we explored the entire brain FC with an unbiased voxel-wise method, and the present results were related with the core pathological alterations of OCD.

Global brain connectivity (GBC) has been used to study OCD in a few studies. For example, Anticevic et al. found decreased GBC in the left lateral prefrontal cortex and increased GBC in the right putamen and left cerebellar cortex (41). Moreover, weighted degree centrality (DC), a very similar measure to GBC, has been utilized in some studies. Beucke et al. demonstrated higher DC values in the orbitofrontal cortex and basal ganglia (42). Tian et al. discovered increased DC values distributed in the cortico–striato–thalamo-cortical (CSTC) circuits and parietal, occipital, temporal, and cerebellar regions (43). Shin et al. found that changes of DC value in the right ventral frontal cortex were correlated with improvement of obsessive-compulsive symptoms in patients with OCD after SSRIs treatment (16). Gottlich et al. reported that the lower DC value in the bilateral superficial amygdala could predict treatment outcome of cognitive-behavior therapy in OCD (44). The diverse findings may be due to differences across studies such as global signal regression, head motion, and medication use (2, 45).

Another interesting finding in the current study is that all brain regions with altered GFC values are in the left hemisphere. Brain lateralization is implied in the pathogenesis of psychiatric disorders including OCD (46). Previous studies have found that regional alterations of white matter, gray matter volume, and cortical thickness are mainly located in the left hemisphere, including the middle frontal gyrus, IPL, and precentral gyrus, which may be the foundation for GFC abnormalities in the left hemisphere in patients with OCD (47–49). Combining with previous studies and our results, we inferred that GFC abnormalities in the left hemisphere might contribute to the core pathophysiology of OCD. However, several studies have discovered that the changes of structural and functional asymmetry in patients with OCD are mostly distributed to the right hemisphere (50–52). Sample selection including age, sex, illness duration, medication use, comorbidities, and data analysis, including ROI locations, may account for this discrepancy (2).

This study has several limitations apart from the relatively small sample size. First, we did not collect fMRI data with specific tasks, and abnormal GFC at rest might reveal the general pathological changes in OCD. Second, white and gray matter alterations that may underlie the mechanism of GFC are not evaluated in our research. Thirdly, OCD samples were not divided into different subtypes based on different clinical symptoms due to the sample characteristics (i.e., most patients (32/40) are mixed with both obsession and compulsion) and relatively small sample size. Different OCD subtypes may have different GFC patterns at rest (53). Future studies should consider these issues. Finally, the ROIs were first used as differing in OCD vs HCs, and then used in the ROC analysis, which may lead to double dipping. Therefore, the present candidate neuroimaging markers for OCD should be interpreted cautiously.

Despite these limitations, the current study is the first to evaluate voxel-wise brain-wide FC in OCD in an unbiased manner. The results manifest that abnormal FC patterns of the DMN, ECN, and sensorimotor network may account for the pathophysiology of OCD. The current study provides new insights into the alterations in brain organization function in OCD.
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Threatening faces are potent cues in social anxiety disorder (SAD); therefore, neural response to threatening faces, particularly regions in the “fear” circuit such as amygdala, may classify individuals with SAD. Previous studies of indirect/implicit processing of threatening faces have shown that support vector machine (SVM) pattern recognition significantly differentiates individuals with SAD from healthy participants, though evidence for the role of the fear circuit in classification has been inconsistent. We extend this literature by using SVM during direct face processing. Individuals with SAD (n=47) and healthy controls (n=46) completed a validated emotional face matching task during functional MRI, which included a matching shapes control condition. SVM was based on brain response to threat (vs. happy) faces, threat faces (vs. shapes), and threat/happy faces (vs. shapes) in 90 regions encompassing frontal, limbic, parietal, temporal, and occipital systems. Recursive feature elimination (RFE) was used for feature selection and to rank the contribution of regions in predicting SAD diagnosis. SVM results for threat (vs. happy) faces revealed satisfactory accuracy (e.g., area under the curve=0.72); results with shapes as “baseline” yielded less optimal classification. RFE for threat (vs. happy) indicated that all 90 brain regions were necessary for classification. RFE-based ranking suggested diffuse neurofunctional activation to threat (vs. happy) faces in classification. When using an RFE cut-point, regions implicated in sensory and goal-directed processes contributed relatively more in differentiating SAD from controls than other regions. Results suggest that neural activity across large-scale systems, as opposed to fear circuitry alone, may aid in the diagnosis of SAD.
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Introduction

Social anxiety disorder (SAD) is one of the most common anxiety disorders in the United States (1) and a major public health problem. It is characterized by excessive fear and avoidance in a range of situations that involve potential negative judgment by others (2) and is associated with severe impairment (3–5). Yet, SAD is frequently underdiagnosed or misdiagnosed due in part to the shame and social evaluative fears intrinsic to the disorder (6, 7). Given that diagnostic accuracy is fundamental to appropriate treatment, an objective diagnostic approach has the potential to greatly reduce the burden and costs associated with SAD.

Extant functional magnetic resonance imaging (fMRI) studies have demonstrated aberrant activity in SAD relative to healthy controls (HC), suggesting that neurofunctional activity could serve as a classifier. In light of social fears, this work has generally used threatening facial expressions and focused on brain regions central to threat processing and the mediation of fear responses (e.g., amygdala, insula, infralimbic cortex) (8–10). While findings consistently point to exaggerated activity to threatening faces in the “fear circuit” in SAD relative to HC, atypical brain response (e.g., hyper- or hypoactivation) has also been observed in occipital, parietal, frontal, and subcortical regions in SAD [for reviews, see (11, 12)]. Findings suggest that disturbances in an array of regions implicated in emotion, sensory processes, and emotion regulation distinguish SAD from HC. However, neuroimaging results based on group effects (e.g., SAD vs. controls) do not delineate which regions predict SAD status at the individual level, the objective of brain-based markers of SAD.

The identification of neuromarkers for disease classification has both mechanistic and clinical utility. Subtle anomalies in the brain not detected with univariate model-driven methods may be captured with support vector machine (SVM) analysis, a data-driven, multivariate approach (13, 14). SVM employs a pattern recognition algorithm where a classifier trained on a subset of the data is used to predict the categories (e.g., patients or HC) according to new observations (i.e., “test” data).

SVM has demonstrated that neural activity during indirect face processing differentiates individuals with SAD from HC. A study by Frick and colleagues (15) consisted of 12 healthy male participants and 14 males with a primary diagnosis of SAD, without a comorbid depressive disorder. Whole-brain informed SVM results showed that activation when identifying the gender (male/female) of a threatening face significantly differentiated SAD from HC [area under the curve (AUC) = 0.70]. Additionally, SVM was performed with selected regions such as fear network (amygdala, anterior cingulate cortex, hippocampus, insula) and parietal lobe. Results showed that activation in the fear network also distinguished SAD from HC (AUC = 0.75), though its association with symptom severity is not clear as such data were not reported. In contrast to the fear network, parietal lobe responses were less effective in classifying SAD (AUC = 0.45) (15).

In a separate study, 16 individuals with SAD (16) and 16 individuals with panic disorder (without a comorbid depressive disorder) along with 19 HC completed an indirect face processing task where threatening and neutral faces were colored in red, yellow, or blue and participants were instructed to name the color of the face. For feature selection, leave-one-out cross-validation was used. Namely, one subject was withheld from the data set and a two-sample t-test was performed for the remaining training data. The features were ranked by absolute t-score, and the top number of features selected were used to predict the class of the withheld test data during the classification stage. Findings were not significant for face-color identification (AUC < 0.55). However, the feature selection approach ranking connectivity by the t-score of the two-sample t-test identified functional connectivity between the hippocampus and temporal pole and functional connectivity between middle temporal gyrus and frontal orbital cortex as key classifiers in distinguishing SAD participants from those with panic disorder (AUC = 0.81) and HC (AUC = 0.88) (16). Despite evidence that such functional connectivity served as classifiers, there were no associations with anxiety symptoms among participants with SAD.

Although inconsistencies were possibly due to methodological differences across studies including participant sample characteristics, findings suggest that neural activity during indirect/implicit face processing predicts SAD diagnosis. Also, despite small sample sizes, overall accuracy as represented by AUC ranged from 0.70 to 0.88, indicating adequate classification as 1 signifies perfect classification and 0.50 is no better than guessing (17). Altogether, SVM is a promising approach toward identifying brain-based biomarkers to detect SAD at the single-subject level.

The objective of the current study was to expand on the literature by conducting SVM classification with neural activity during direct threat face processing, an ecologically valid stimulus. Based on previous studies and contemporary models of SAD (11), we hypothesized that neural activity to threatening facial expressions in occipital, parietal, frontal, and subcortical regions would predict SAD diagnosis and that classification performance would be largely determined by regions (i.e., features) central to the fear circuit (e.g., amygdala, insula).

Although SVM is relatively insensitive to the size of features (18), overfitting commonly occurs in SVM and other machine learning models when the number of the features (e.g., brain regions) is similar or higher than the number of observations (e.g., participants). Thus, we used recursive feature elimination (RFE) in conjunction with SVM to test whether feature selection improved classification (19, 20). Lastly, we tested for potential relationships between brain regions that largely contributed to classification and symptom severity in the SAD group.



Methods


Participants

The study comprised 48 participants with SAD and 46 demographically matched HC, who met criteria for quality via visual inspection (e.g., integrity of coregistration) and quantitative parameters (e.g., movements were < 3 mm and < 3 degrees rotation in any one direction) during fMRI. However, one SAD participant was excluded due to a technical error during fMRI; thus, the SAD group comprised 47 participants. Exclusion criteria for all participants included: treatment (pharmacotherapy or psychotherapy), a comorbid depressive disorder, presence of a medical or neurological illness, less than 18 or more than 65 years of age, contraindications to magnetic resonance imaging (e.g., pregnancy, ferrous objects), current substance dependence (within 6 months of the study), or current or history of cognitive dysfunction (e.g., traumatic brain injury, pervasive developmental disorder). Additional exclusion criteria for HCs included a current or past Axis I disorder. A trained master's-level clinician performed the Structured Clinical Interview for DSM-5 (“SCID-5”) (21) and other clinician-administered measures. The clinician-administered Liebowitz Social Anxiety Scale (LSAS) (22) was used to assess social anxiety, and the Hamilton Anxiety Rating Scale (HAM-A) (23) and Hamilton Depression Rating Scale (HAM-D) (24) were used to evaluate anxiety and depression levels, respectively. All measures were collected within two weeks of the fMRI scan. All participants tested negative on a urine toxicology screen before the scan.

Procedures were approved by the local Institutional Review Board at the University of Illinois at Chicago and complied with the Helsinki Declaration, and participants were compensated for their time.



fMRI Task

During scanning, all participants performed a validated emotional face matching task (EFMT, see Figure 1 for schematic), which has been used in studies involving SAD participants (26, 27) and is designed to probe brain response to signals of threat (i.e., angry, fearful faces) against those that do not convey threat (i.e., happy faces). The task comprised photographs from a validated set of face stimuli (25) presented in a block design, during which participants viewed a trio of faces (one target at top, two probes on bottom) and selected by right-handed button press which probe matched the target facial expression. The target and congruent probe face displayed one of three expressions (fearful, angry, or happy), whereas the incongruent probe face always displayed a neutral expression. Trials with emotional faces (fearful, angry, or happy) were interleaved with blocks of shapes (triangles, circles, squares) as a sensorimotor control condition, counterbalanced across a run. Three angry, three fearful, and three happy blocks of trials were interspersed with nine shape-matching blocks. Each block lasted 20 s and consisted of four back-to-back 5-s trials.




Figure 1 | Schematic of Emotional Face Matching Task conditions (25).



To maximize threat signal, angry and fearful faces were collapsed. While the primary contrast of interest was threat (vs. happy) faces, since happy faces as a “baseline” to threat has high ecological validity, classification was also performed for threat (vs. shapes) and all emotional faces (vs. shapes) to explore whether neural activity against a sensorimotor control condition improved classification.

Previous studies have shown that SAD and healthy participants are similar in task performance for the EFMT (26, 27). Nonetheless, to explore potential group differences, accuracy and reaction time for target threat (angry/fearful) and happy faces were submitted to a mixed 2 (Group: SAD, HC) x 2 (Emotion: threat, happy) analysis of variance (ANOVA) with repeated measures on the last factor.

To evaluate relationships between neural predictors and symptom severity, two-tailed Pearson's correlations were performed. All analyses were performed in the Statistical Package for the Social Sciences (SPSS, Version 24) unless otherwise stated.



fMRI Data Acquisition and Preprocessing

Scanning was conducted on a 3 Tesla GE Discovery System (General Electric Healthcare; Waukesha, WI) with an 8-channel head coil. Functional data were acquired using gradient-echo echo planar imaging (EPI) sequence with the following parameters: TR = 2 s, TE = min Full [~25 ms], flip angle = 90°, FOV = 22 x 22 cm2, acquisition matrix 64 x 64, 3-mm slice thickness, 44 axial slices, 180 volumes per run. For anatomical localization, a high-resolution, T1-weighted volumetric anatomical scan was acquired.

The first four volumes from each run were discarded to allow for T1 equilibration effects. Conventional preprocessing steps were used in the Statistical Parametric Mapping (SPM8) software package (Wellcome Trust Centre for Neuroimaging, London www.fil.ion.ucl.ac.uk/spm). Briefly, images were temporally corrected to account for slice time acquisition differences and spatially realigned to the mean image to correct for head movement, while six motion parameters were entered as regressors of no-interest to control for minimal head movement during scanning. Images were then normalized to a Montreal Neurological Institute (MNI) template using the echo-planar imaging template, resampled to 2 x 2 x 2 voxels and smoothed with an 8 mm isotropic Gaussian kernel.

A general linear model was applied to the time series, convolved with the canonical hemodynamic response function and with a 128s high-pass filter. Using a box-car model, the contrasts of interest—threat (vs. happy) faces, threat (vs. shapes), and all faces (vs. shapes)—were generated for each participant.



Classification

The Automated Anatomical Labelling atlas with MarsBar for SPM8 (28, 29) was used to generate regions of interest (ROIs) within the frontal, parietal, temporal, and occipital cortices, and subcortical system, which totaled 90 regions. An SVM classification model that was constructed with brain activation [β weights, arbitrary units (a.u.)] derived from each of these anatomy-based ROIs was in Python 3.6 [Guido van Rossum, Centrum Wiskunde & Informatica (CWI), Netherlands]. Linear kernel was selected to define the support vector (i.e., hyperplane) with default settings in scikit-learn (30). Classifier performance was examined with AUC, sensitivity, and specificity.

Feature selection was performed with RFE. If RFE eliminated brain regions, a nonparametric permutation test was used to test whether AUC between the original SVM model and SVM+RFE model significantly differed from each other. Regardless as to whether RFE eliminated brain regions or not, RFE yields a Fisher score (31) to rank the importance of the feature (i.e., brain region). Therefore, the Fisher score was used to examine the contribution of brain regions in classification. To test the generalizability for classification results, 10-fold cross-validation (leave one out) was performed.




Results


Participants

Two-tailed independent t-tests and chi-square tests were performed to evaluate participant characteristics. Results showed that the SAD group was more socially anxious [LSAS; t(91) = 24.01, p < 0.001], generally anxious [HAM-A; t(91) = 11.21, p<0.001], and depressed [HAM-D; t(91) = 0.99, p < 0.001] than the HC group. However, groups were similar in age [t(91)=0.03, p = 0.97] and education in years [t(91) = 0.27, p = 0.79]. The distribution of gender χ2 = 0.12, p = 0.81 and race/ethnicity χ2 = 3.45 p = 0.75 were also comparable between groups. See Table 1 for demographics and clinical details.


Table 1 | Demographic and clinical characteristics and task performance.





Behavioral Results

The ANOVA for accuracy revealed a main effect of Emotion [F(1, 91) = 75.06, p<0.001] but no main effect of Group [F(1, 91) = 0.00, p = 0.99] or Emotion x Group interaction [F(1, 91)=0.01, p = 0.94]. Follow-up paired t-tests showed that accuracy was lower when identifying target threatening faces than happy faces [t(92) = 8.71, p<0.005]. The same analysis for reaction time for accurate trials did not yield a main effect of Emotion [F(1, 91) = 0.27, p = 0.61], Group [F(1, 91) = 2.63, p = 0.11], or Emotion x Group interaction [F(1, 91) = 0.05, p = 0.83]. Details are reported in Table 1.



Feature Selection and Support Vector Machine Performance

For the primary contrast of interest, threat (vs. happy) faces, no regions were excluded based on RFE. Results for the original SVM model with 90 ROIs achieved a cross-validated accuracy of 69.98%, with AUC = 0.72 (p<0.001); sensitivity = 0.71 and specificity = 0.69. RFE feature importance (i.e., Fischer score) results yielded a smooth decay across ROIs as opposed to a robust inflection separating high and low feature importance (Figure 2). Due to the smooth decay, we used an arbitrary cut-point of 0.10 based on the Fisher score to evaluate relationships between brain regions (i.e., features) that contributed relatively more to classification and symptom severity. Regions with a relatively high Fisher score (i.e., >0.10) were bilateral Heschl's gyrus, right inferior occipital gyrus, left middle orbitofrontal gyrus, bilateral superior parietal gyrus, and right fusiform gyrus. Pearson's correlations within the SAD group did not reveal significant relationships between activity in these regions and social anxiety severity (LSAS) or general anxiety level (HAM-A) (all p's > 0.05).




Figure 2 | Bar plot of the Fisher score ranks for anatomy-based regions of interest related to brain response to threat (>happy) faces in descending order. Line denotes arbitrary Fisher score cut-point of 0.10 to highlight regions that largely differentiated individuals with social anxiety disorder from healthy controls.



Regarding threat faces (vs. shapes), RFE excluded 73 regions; for all faces (vs. shapes), RFE excluded 29 regions. Yet, when classification was performed with SVM+RFE or SVM alone (i.e., all 90 regions), accuracy was not as high or sensitivity/specificity as balanced as for threat (vs. happy) faces for either threat faces (vs. shapes) or all faces (vs. shapes). See  Supplementary Table 1 for details.




Discussion

This is the first study we are aware of that used SVM to classify individuals with SAD based on brain response during direct threat processing with a validated emotion processing task. With regard to behavioral performance, accuracy was high, verifying that all participants followed task instructions. SAD was predicted by widespread activity to threat (vs. happy faces), and classification accuracy (i.e., AUC), sensitivity, and specificity were satisfactory and consistent with previous neuroimaging studies that used SVM to predict SAD in the context of indirect/implicit face processing (15, 16) in addition to resting state (32).

Findings partially support our hypotheses as brain response to threatening (vs. happy) faces classified SAD participants; however, feature selection did not improve classification as neural activity in all ROIs was required to distinguish SAD participants from HC (i.e., AUC = 0.72, Figure 3), with cross-validation accuracy ~70% and specificity and sensitivity ~0.70%. Findings suggest that neural activation differences between SAD and HC are diffuse; thus, an array of brain regions supporting various functions were needed to identify the underlying patterns for a binary classifier. Results are similar to Frick and colleagues (15) insofar as they also showed that whole brain activity significantly differentiated SAD participants from HC.




Figure 3 | Area under the curve results based on support vector machine analysis for threat (vs. happy) faces.



Evidence that neural activity across occipital, parietal, frontal, and subcortical regions predicted SAD diagnosis supports our hypothesis. However, we also expected regions (i.e. features) that underlie that the fear circuit (e.g., amygdala, insula) would largely contribute to classification that was not observed. Though these regions were needed to obtain satisfactory classification, their Fisher scores were relatively low, indicating that they made a necessary but not substantial contribution. It is possible that SAD patients had similar amygdala hyperreactivity to both threat and happy faces, as an earlier study reported exaggerated amygdala reactivity to threat and happy faces in SAD relative to controls (33). Individual differences in amygdala response to emotional faces in SAD may have reduced the ability for amygdala to robustly predict diagnostic status.

When using an arbitrary cut-point based on Fisher scores generated by RFE feature selection, regions that “largely” contributed to diagnostic classification (i.e., had relatively high Fisher scores) comprised structures involved in sensory functions. Inferior occipital gyrus and fusiform gyrus support higher-order visual processing and face perception (34), parietal superior gyrus responds to visual input and is involved in spatial orientation (35), middle orbitofrontal gyrus has extensive connections with sensory and limbic structures (36) and is implicated in goal-directed attention (e.g., selection of task-relevant stimuli and responses; superior parietal cortex, frontal middle gyrus) (37, 38), and Heschl's gyrus engages to auditory stimuli (39).

Cognitive models propose that biases to negatively valenced stimuli play a critical role in anxiety by forming, or reinforcing, maladaptive views of the self and others (40, 41). In support, behavioral studies consistently demonstrate attentional bias to threat faces in SAD (42–44) and preferential attention to threat is thought to contribute, in part, to the development and maintenance of SAD (45, 46). Consequently, occipital, fusiform, parietal superior, and middle orbitofrontal gyrus activation may factor into predicting SAD diagnosis given the salience of threatening faces when contrasted with a positive/approach socioemotional signal. We speculate that the background scanner noise may explain the Heschl's gyrus finding as such noise has been shown to influence activity in this region in healthy participants (47). For example, SAD patients report poorer attentional control than healthy individuals (48) and thus may be more susceptible to being distracted by vibrations of the gradient coil or other features of the MRI environment. Since our study was not designed to test this, further investigation is needed to understand the role of Heschl's gyrus in predicting SAD diagnosis.

Despite the contribution of these regions in classification, there was no association between neural activity and symptom severity, which is consistent with a prior SVM SAD study that performed correlational analysis (16). The lack of a robust inflection separating high and low Fisher scores may have reduced our ability to detect significant associations. Even so, links between illness severity and neurofunctional activity in SAD may be tenuous. For example, associations between amygdala activity, a region implicated in the neurobiology of SAD (11, 12), and social anxiety severity have been inconsistent (49–51). It is possible that variance in neurofunctional activity may not be strongly tied to psychological measures, which are relatively distal measures of biology and subject to inaccuracy (e.g., negative bias) (52).

In addition to our primary contrast of interest (i.e., threat vs. happy), we explored classification based on neural activity to threat faces (vs. shapes) and emotional faces (vs. shapes). Interestingly, RFE did exclude certain brain regions to improve classification, yet, accuracy for SVM+RFE and SVM alone tended to be lower and there was more imbalance between sensitivity and specificity. Using a sensorimotor control condition as a baseline may have introduced more noise and complexity in classification than a facial expression as baseline.

Altogether, differential neural activity between threatening and positive socioemotional cues may serve as a biomarker to detect SAD at the single-subject level. However, it will be important for future studies to test the extent to which this may (or may not) generalize to other internalizing psychopathologies (e.g., depression, generalized anxiety disorder). Indeed, contemporary models of psychopathology emphasize a transdiagnostic, dimensional approach based on observations that behavioral and neurobiological substrates cut across standard diagnostic categories (53, 54). Accordingly, it may be more impactful to identify biomarkers that map onto constructs shared across disorders, for example, attentional control or executive function, which modulate emotional reactivity (55, 56) and are disrupted to varying degrees in individuals with psychiatric illness (57, 58).

Findings should be considered in light of limitations. Certain comorbidity was permitted; therefore, results may not extend to the classification of SAD alone. In addition, we used an AAL-based atlas in the creation of brain ROIs. Alternative approaches to ROI creation exist (59, 60); consequently, differences in the selection of regions to include in the SVM analysis may have impacted results. Also, findings may not generalize to indirect/implicit face processing or to other stimuli (e.g., images of general negative content, salient words). Further, to standardize the analyses, the classification adopted the default parameter with a linear kernel provided by the toolbox, which may affect the ability in recognizing complex patterns during the feature selection. More complex kernels and parameters can be explored in the future application to potentially enhance the performance during the feature selection. Lastly, we used cross-validation to examine the generalizability of classification performance; however, it will be important to replicate results in an independent sample before drawing firm conclusions.



Conclusions

Despite limitations, the current study provides evidence that SVM based on brain response to threat faces is a promising approach for classifying SAD. Whole-brain activity to threat (vs. happy) faces was required for optimal classification performance. Brain regions showing relatively higher importance in classification highlight the relevance of brain regions outside the fear circuit (e.g., amygdala, insula) in predicting SAD. In particular, results suggest that activity in regions that govern sensory and goal-directed processes may play a role in SAD diagnosis.
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High-Frequency rTMS of the Motor Cortex Modulates Cerebellar and Widespread Activity as Revealed by SVM

Jue Wang1, Xin-Ping Deng2,3,4, Yun-Ying Wu2,3,4, Xiao-Long Li2,3,4, Zi-Jian Feng2,3,4, Hong-Xiao Wang2,3,4, Ying Jing2,3,4, Na Zhao2,3,4, Yu-Feng Zang2,3,4* and Jian Zhang1*

1School of Psychology, Shanghai University of Sport, Shanghai, China

2Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China

3Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China

4Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China

Edited by:
Jun Shi, Shanghai University, China

Reviewed by:
Han Zhang, University of North Carolina at Chapel Hill, United States
Kuangyu Shi, Technical University of Munich, Germany

*Correspondence: Yu-Feng Zang, zangyf@hznu.edu.cn; Jian Zhang, zhangjian@sus.edu.cn

Specialty section: This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

Received: 07 November 2019
Accepted: 20 February 2020
Published: 19 March 2020

Citation: Wang J, Deng X-P, Wu Y-Y, Li X-L, Feng Z-J, Wang H-X, Jing Y, Zhao N, Zang Y-F and Zhang J (2020) High-Frequency rTMS of the Motor Cortex Modulates Cerebellar and Widespread Activity as Revealed by SVM. Front. Neurosci. 14:186. doi: 10.3389/fnins.2020.00186

Functional magnetic resonance imaging (fMRI) studies have shown that the effect of repetitive transcranial magnetic stimulation (rTMS) can induce changes in remote brain regions. In the stimulated regions, low-frequency (≤1 Hz) rTMS induces inhibitory effects, while high-frequency (≥5 Hz) stimulation induces excitatory effects. However, these stereotypical effects arising from low- and high-frequency stimulation are based on measurements of motor evoked potentials (MEPs) induced by pulsed stimulation. To test the effects of rTMS on remote brain regions, the current study recruited 31 young healthy adults who participated in three rTMS sessions (10 Hz high frequency, 1 Hz low frequency, and sham) on three separate days. The stimulation target was based on individual fMRI activation in the motor cortex evoked by a finger movement task. Pre- and post-rTMS resting-state fMRI (RS-fMRI) were acquired. Regional homogeneity (ReHo) and degree centrality (DC) were calculated to measure the local and global connectivity, respectively. Compared with the sham session, high-frequency (10 Hz) rTMS significantly increased ReHo and DC in the right cerebellum, while low-frequency (1 Hz) stimulation did not significantly alter ReHo or DC. Then, using a newly developed PAIR support vector machine (SVM) method, we achieved accuracy of 93.18–97.24% by split-half validation for pairwise comparisons between conditions for ReHo or DC. While the univariate analyses suggest that high-frequency rTMS of the left motor cortex could affect distant brain activity in the right cerebellum, the multivariate SVM results suggest that both high- and low-frequency rTMS significantly modulated widespread brain activity. The current findings are useful for increasing the understanding of the mechanisms of rTMS, as well as guiding precise individualized rTMS treatment of movement disorders.
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INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) is a safe and non-invasive technique for the treatment of brain diseases. It is widely believed that low-frequency (≤1 Hz) rTMS exhibits inhibitory effects and high-frequency (≥5 Hz) rTMS exhibits excitatory effects on brain activity (Lefaucheur, 2019). However, these conclusions are primarily based on measurements of the amplitude of motor evoked potentials (MEPs) elicited by pulsed TMS of the primary motor cortex. In fact, the modulatory effects of rTMS on brain activity are much more complicated.

Resting-state functional magnetic resonance imaging (RS-fMRI) is increasingly being used to detect TMS-induced brain activity at the network level. Many studies using this technique have found that rTMS modulates brain networks or functional connectivity (FC) (Eldaief et al., 2011; Chen et al., 2013; Halko et al., 2014; Nettekoven et al., 2014, 2015; Wang et al., 2014; Watanabe et al., 2014; Andoh et al., 2015; Cocchi et al., 2015, 2016; Ji et al., 2017). While RS-fMRI studies into FC have increased our understanding of the complex mechanisms of the modulatory effects of rTMS on brain activity, there are two limitations for analysis of FC or networks. First, these analyses can only reveal the relationships between brain activity in distinct regions. For example, one study found that rTMS modulated the FC between the lateral parietal cortex with the hippocampus (Wang et al., 2014), but it is not clear whether the local activity in the hippocampus was modulated. An alteration in FC does not indicate a change in brain activity in a specific region. FC is probably a “bridge” to deliver the stimulus to the hippocampus. The second limitation is that there are too many options for the configuration of network or FC analysis. For example, the most popular seed-based FC analysis has countless options for the location of the seed region of interest (ROI). This makes it difficult to compare the results between different studies using network or FC analysis.

In contrast to network or FC analyses that compare activity between distributed brain regions, there are a few RS-fMRI metrics that reflect spontaneous local activity, such as regional homogeneity (ReHo) (Zang et al., 2004). This measures the local synchronization of the nearest neighboring voxels (e.g., 7, 19, or 27 voxels). Another metric, degree centrality (DC), measures the strength of the connectivity of one voxel compared with all other voxels in the brain (Buckner et al., 2009). DC is one of the least computationally consuming metrics of graph theory and can be easily accomplished at the voxel level. Combined measurements of ReHo and DC could reflect both local and global connectivity of a specific voxel. ReHo and DC are metrics of “voxel-level whole-brain” analysis (Zang et al., 2015). In addition, there are far fewer options for their analysis parameters than other FC methods (such as the excess of options for seed selection in seed-based FC analysis). These characteristics of ReHo and DC render them more suitable for coordinate-based meta-analysis (Zang et al., 2015) and are further helpful for precise localization of abnormal activity.

Typical univariate neuroimaging analyses compare differences between groups in a voxel-wise or region-wise manner. Multivariate analyses can be applied using machine learning classification techniques, such as support vector machine (SVM). In most studies where it is applied, machine learning is used for differentiating between two independent groups, for example, comparing patient group to healthy control. Sometimes, machine learning methods are used to differentiate two conditions within a group. Borrowing from the concept of paired t tests, Zhou et al. (2017) proposed a PAIR method for SVM. Compared with conventional UNPAIR SVM (i.e., taking two within-group conditions as independent conditions), PAIR SVM yielded similar performance when applied to an RS-fMRI dataset with two conditions (eyes closed vs. eyes open), but better performance when validating in a completely new dataset (Zhou et al., 2017), suggesting that PAIR SVM could be better generalized.

The motor cortex is one of the most frequently reported stimulation targets for rTMS modulation in both healthy populations (Hartwigsen and Siebner, 2015; Cona et al., 2017) and those with brain disorders including movement disorders (Wagle Shukla et al., 2016; Brabenec et al., 2019), stroke rehabilitation (Ludemann-Podubecka et al., 2016; Lee et al., 2019), and other disorders (Siebner et al., 2003; Odorfer et al., 2019; Pei et al., 2019; Zhang et al., 2019). Some of these studies performed RS-fMRI before and after modulation and analyzed the network changes. However, there is large variation in the analytical methods applied from study to study. These included voxel-to-voxel based dynamic FC (Zhang et al., 2019), graph theory using 24 ROIs (Lee et al., 2019), whole-brain graph theory (Pei et al., 2019), and seed-based FC (Brabenec et al., 2019). While it could be concluded that rTMS of the motor cortex modulates the motor network, such a conclusion appears too general since it is difficult to identify which specific brain areas are modulated.

The current study aimed to investigate the modulatory effects of rTMS on specific brain areas by measuring local RS-fMRI metrics. We compared low-frequency (1 Hz) and high-frequency (10 Hz) rTMS with a sham condition. For precise and individualized localization of rTMS, self-initiated finger movement task was performed and the fMRI activation peak voxel in the motor cortex was taken as the stimulation target for each individual. We hypothesized that local spontaneous activity in motor-related subcortical regions could be modulated. In addition to univariate statistical analyses (ANOVA and t tests), we used PAIR SVM (Zhou et al., 2017) to differentiate between rTMS conditions.



MATERIALS AND METHODS


Participants

Thirty-three healthy right-handed participants were recruited through an online advertisement. Two participants were excluded, one because head motion exceeded 2 mm in translation or 2° in rotation in any direction, and one because there was no task-related activation in the fMRI. A total of 31 participants were included in the final analysis (23 females, mean age ± SD: 23 ± 2.8 years). All participants met the inclusion criteria of no history of neuropsychiatric disorders or head trauma, no substance abuse, and no psychiatric disorders. The whole study was approved by the Ethics Committee of the Center for Cognition and Brain Disorders (CCBD) at Hangzhou Normal University (HZNU). Informed consent was obtained from each participant before the first scanning session.



Experimental Design

Our experiment consisted of a within-subject, single-blinded, and placebo-controlled design. Each participant received three sessions of rTMS intervention (one each of 10 Hz, 1 Hz, and sham stimulation) across three separate days with an interval of more than 1 week between each session. The order of the conditions was balanced across participants. Participants underwent an RS-fMRI scan session, a task fMRI session, and a 3D-T1 session before rTMS. They then received an rTMS intervention in the TMS room near the MRI room. Immediately (less than 30 min) after that, both RS-fMRI and task fMRI were scanned again.

During RS-fMRI scanning, participants were asked to keep their eyes closed, relax, remain as motionless as possible, not think of anything in particular, and not fall asleep.

During the task fMRI session, participants were asked to perform a 4-min block design task consisting of finger tapping. For the finger tapping blocks, participants were asked to press a button with their right index finger with a self-paced rhythm about every 2 s when a picture of clock appeared in the center of the screen. The picture remained visible for the whole 30 s of the block (Figure 1). For the 30-s rest blocks, participants were asked to relax with their eyes fixed on a cross in the center of the screen.


[image: image]

FIGURE 1. Finger tapping, a block design task with a self-paced rhythm at around 2 s, during a 4-min MRI scan.




MRI Data Acquisition

MRI data were acquired on a 3T scanner (MR-750, GE Medical Systems, Milwaukee, WI, United States) at the CCBD of HZNU. The fMRI scanning sessions included an 8-min RS-fMRI session and a 4-min task session with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, 43 slices with no gaps, matrix = 64 × 64, field of view (FOV) = 220 mm × 220 mm, acquisition voxel size = 3.44 mm × 3.44 mm × 3.2 mm. A high-resolution T1 anatomical image was obtained (176 sagittal slices, thickness = 1 mm, TR = 8.1 ms, TE = 3.1 ms, FA = 8°, FOV = 250 × 250 mm).



Data Analysis on Pre-rTMS MRI

The pre-rTMS task fMRI data and T1 image acquired on the first day were used to localize the stimulation target for each individual. Statistical parametric mapping 12 (SPM121) was used for subject-level activation analysis (high-pass filtering, >1/128 Hz, was selected in “fMRI Model specification”) after preprocessing, which included slice timing correction, head motion correction, co-registering the functional images to T1 image, and then spatial smoothing with a Gaussian kernel of 6 mm full width at half maxima (FWHM). Finally, the individual activation map was generated using a linear general model. Then, for each participant, the individual peak activation voxel around “hand knob/M1” (Yousry et al., 1997) was identified as the individualized rTMS stimulation target. The motor cortex was successfully activated in 31 participants (Table 1).


TABLE 1. Peak voxels of finger tapping activation in the motor cortex.
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fMRI-Navigated rTMS

The individual activation map was loaded into BrainSight TMS navigation system (Rogue Research, Montreal, Canada) for fMRI-guided rTMS intervention. TMS (Magstim Rapid2, Magstim Co., Whitland, United Kingdom) was applied with a figure-of-8 coil (diameter = 70 mm). Surface electromyogram (EMG) leads were placed over the right abductor pollicis brevis (APB) muscle. Participants sat in a cozy chair with both arms relaxed on their thighs. Full muscle relaxation was confirmed through visual observation and EMG monitoring. The coil (toward forehead) was firstly placed over the left primary motor area (M1, hand knob) at an angle of 45° from the coronal midline for measuring the MEPs in the target muscle during rTMS sessions. To determine the hotspot, the coil was moved by distances of 0.5 cm around the hand knob area. The resting motor threshold (RMT) was quantified as the lowest intensity that evoked a response (>50 μV) in more than 5 of 10 consecutive trials.

For each stimulation day, 1800 pulses (intensity of 100% RMT, duration 30 min) were delivered (Eldaief et al., 2011). For the low-frequency (1 Hz) stimulation, the pulses were delivered continuously for 1800 s. For the high-frequency (10 Hz) stimulation, the pulses were delivered with 60 trains of stimulation each lasting 3 s, with rest intervals of 27 s in between (total duration: 1800 s). For the sham stimulation, the coil was tilted 90° off the scalp with one wing touching the scalp (Lisanby et al., 2001). Sham stimulation was randomly assigned at 1 Hz with half of participants and 10 Hz with the other half. No side effects of rTMS occurred in the current study.



Data Preprocessing for Group-Level Comparisons of Pre- and Post-rTMS fMRI

The RS-fMRI data preprocessing was conducted using DPABI_V4.02 software (Yan et al., 2016) and included (1) discarding the first 10 volumes to allow the signal to reach equilibrium and the subjects to adapt to the scanning noise, (2) correcting for the acquisition time delay between slices, (3) rigid-body realignment for estimation and correction of motion displacement, (4) co-registering the functional images to the T1 image, (5) normalization to MNI space using the EPI template in SPM12, (6) regressing out 24 head-motion parameters (Yan et al., 2013), (7) removing the linear trend, and (8) band-pass filtering (0.01–0.08 Hz). After the preprocessing, ReHo (Zang et al., 2004) and DC were calculated. For the ReHo calculation, the Kendall concordance coefficient was calculated for the time courses of seven neighboring voxels. We did not use the conventional 27 neighboring voxels because we were interested in subcortical areas, most of which have a small volume. For DC calculation, a correlation coefficient r > 0.25 was set as the threshold, and the negative connections were excluded when calculating weighted DC maps because of their ambiguous interpretation (Murphy et al., 2009; Weissenbacher et al., 2009; Wang et al., 2011). A predefined gray matter mask provided by SPM123, with tissue probability >20%, was used to restrict the DC calculation within the gray matter (Zuo et al., 2012). Spatial smoothing with a Gaussian kernel of 6 mm FWHM was then applied to the mReHo (ReHo value of each voxel divided by the mean ReHo value of the whole gray matter mask) and weighted positive mDC (weighted positive DC value of each voxel divided by the mean weighted positive DC value of the whole gray matter mask) maps.



Statistical Analysis


Univariate Analysis

One-way ANOVAs were conducted on the ReHo change and DC change (post- minus pre-rTMS) to explore differences between the three stimulation conditions (Low, 1 Hz; High, 10 Hz; and Sham) within the predefined gray matter mask. The ANOVA F maps were corrected using Gaussian random field (GRF) correction (single voxel p < 0.001, cluster level p < 0.05). The ReHo and DC values of the peak voxels in the surviving clusters were extracted, and then were entered into SPSS (v204) for further analysis. Paired t tests were performed between stimulation conditions (High vs. Low, High vs. Sham, and Low vs. Sham).



Multivariate Analyses Using SVM


Dimensionality reduction

The F map was thresholded at p < 0.05 (uncorrected) to generate a mask for the feature extraction of each condition (High, Low, and Sham) and each metric (the ReHo and DC value of post- minus pre-rTMS for each condition). Thus, 4267 voxels from the gray matter mask (67,541 voxels) were used for SVM analysis.



Grouping for PAIR SVM

PAIR SVM is a new method for differentiating two conditions in the context of a within-group design. It has been found to show better generalization performance in an independent dataset than using the UNPAIR method (Zhou et al., 2017) and was therefore implemented in the current study. To explain, we take the comparison of ReHo change (ReHo value of post- minus pre-rTMS) between High vs. Sham as an example. The 31 participants were randomly divided into groups A and B (n = 15 and 16, respectively). Group A was assigned to be the “High minus Sham” group (labeled “ + 1”) and group B was assigned to be the “Sham minus High” group (labeled “−1”).



SVM Classification

The linear kernel was used to extract the weight for each feature (Fu et al., 2008). The sequential minimal optimization (SMO) algorithm was used to handle the very large training datasets with high speed (Platt, 1998). For optimal generalization, we used split-half cross-validation, which is more stringent than other methods such as n-fold or leave-one-out validation. Half of the dataset (15 or 16 random samples from group A and group B, respectively) was randomly selected to train the SVM model, and the remaining half was used as test data. We then obtained the classification accuracy and corresponding weighted contribution vector. These calculations were repeated 100 times, and then the mean accuracy and the mean weighted vector were obtained.



RESULTS

ANOVAs showed significant effects between the three conditions (Low, High, and Sham) in the right cerebellum VIII extending to VIIb for both ReHo and DC (Figure 2 and Table 2). Paired t tests showed that the high-frequency stimulation (10 Hz) revealed a significantly larger change than the sham stimulation (mean ± SD = 0.22 ± 0.29, t = 4.22, p = 0.0002, Bonferroni corrected, i.e., 0.05/15 = 0.0033; Figure 3 and Table 3) for ReHo, and was significantly larger change than the sham stimulation (mean ± SD = 0.20 ± 0.22, t = 4.95, p = 0.00003, Bonferroni corrected, i.e., 0.05/15 = 0.0033; Figure 3 and Table 3) for DC. The results of ReHo and DC were similar, while with a bit slightly more regions for ReHo. Post- vs. pre-rTMS effects of each stimulation condition is shown in Figure 4.
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FIGURE 2. Three-level (1 Hz/low frequency, 10 Hz/high frequency, and sham) one-way ANOVA on changes in brain activity (post- minus pre-rTMS). The right cerebellum showed significant differences between the three stimulation conditions (GRF correction, single voxel p < 0.001, cluster level p < 0.05).



TABLE 2. Alterations in activity (post- minus pre-rTMS) in different brain regions for the High, Low, and Sham stimulation conditions from one-way ANOVAs.

[image: Table 2]
[image: image]

FIGURE 3. Pairwise paired t tests between stimulation conditions on the ReHo and DC value of the peak voxel of F maps in the right cerebellum. The coordinates of the peak voxels were the same as Table 2. *Still significant after Bonferroni correction of 0.05/15 = 0.0033.



TABLE 3. Differences between stimulation conditions in the right cerebellum (paired t tests).
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FIGURE 4. Paired t tests between post- and pre-rTMS on ReHo and DC value of the peak voxel of F maps in the right cerebellum. The coordinates of the peak voxels were the same as Table 2. *Still significant after Bonferroni correction of 0.05/15 = 0.0033.


For the SVM, the classification accuracy of the split-half validation ranged from 93.18 to 97.24%, specifically: 94.7% (ReHo) and 93.18% (DC) for the High vs. Low condition, 95.95% (ReHo) and 94.32% (DC) for the High vs. Sham, and 97.24% (ReHo) and 95.57% (DC) for the Low vs. Sham (Table 4). The spatial pattern of voxel-level contribution for discriminative results was very similar to the spatial patterns of paired t tests between stimulation conditions (ReHo: Figure 5, DC: Figure 6).


TABLE 4. The mean classification accuracy of split-half validation and the area under the curve (AUC) of the receiver operating characteristic (ROC) of the peak voxels of the F map of ReHo and DC for pairwise comparison between rTMS conditions.
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FIGURE 5. Left column: Brain regions that showed different contributions between stimulation conditions identified by ReHo maps within the mask of uncorrected F map of ANOVA. Right column: Paired t tests between stimulation conditions on ReHo maps within the mask of uncorrected F map of ANOVA.



[image: image]

FIGURE 6. Left column: Brain regions that showed different contributions between stimulation conditions identified by DC maps within the mask of uncorrected F map of ANOVA. Right column: Paired t tests between stimulation conditions on DC maps within the mask of uncorrected F map of ANOVA.


To compare against the SVM, we calculated the area under the curve (AUC) of the receiver operating characteristic (ROC) of the peak voxels of the F maps of ReHo (x = 39, y = −60, z = −54) and DC (x = 42, y = −57, z = −54), respectively. The pairwise comparisons showed 63–84% accuracy (Figure 7 and Table 4). As expected, the results were similar to the results of the pairwise t tests (Figures 5, 6 and Table 3). The comparison of ReHo and DC values for the high-frequency (10 Hz) condition vs. sham condition showed the most significant difference in the right cerebellum.
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FIGURE 7. The area under the curve (AUC) of the receiver operating characteristic (ROC) of the peak voxels of the F maps of ReHo (x = 39, y = -60, z = -54) and DC (x = 42, y = -57, z = -54).




DISCUSSION


Effects of rTMS in the Cerebellum

The motor cortex is a widely used stimulation target for rTMS (Lefaucheur, 2019). Many studies have claimed that FC alters after rTMS on the motor cortex (Nettekoven et al., 2014; Esterman et al., 2017; Ji et al., 2017; Hawco et al., 2018; Riedel et al., 2019; Shang et al., 2019). The seed selection and candidate networks varied among these studies. Although these findings are helpful for understanding the mechanisms of rTMS modulation, these results are less helpful to precisely localize the changes in activity, and hence are difficult to translate into clinical practice as they do not provide a precisely focused target for brain stimulation. We found significant condition effects of rTMS on local connectivity (ReHo) and global connectivity (DC) in areas VIII/VIIb of the right cerebellum (ipsilateral to the finger movement) in healthy participants. The cerebellum is involved in motor function via the cerebello-thalamo-cortical circuit (Middleton and Strick, 2001). The VIIb region receives projections from neurons in the subthalamic nucleus and input from the contralateral premotor areas (Wu and Hallett, 2013). The current rTMS study stimulated the left motor activation area and found significantly increased ReHo and DC in the right cerebellum in the high-frequency (10 Hz) condition, but not in the low-frequency or sham conditions (Figures 3, 4). The motor cortex has been commonly considered a stimulation target of rTMS treatment of movement disorders (Wagle Shukla et al., 2016). The current finding may therefore have direct importance for the rTMS treatment of movement disorders with dysfunction of the motor-thalamo-cerebellum circuit.



The Classification Accuracy of the PAIR Method for SVM

It has been reported that the PAIR SVM method performs better than the conventional UNPAIR method in generalization to a completely new dataset in a within-group design (Zhou et al., 2017). We found the discriminative accuracy to be 93–97% (Table 4), with no apparent difference in accuracy across pairwise comparisons or across metrics (ReHo vs. DC). The spatial pattern of the weighted contribution identified by the classification was very similar to that of the paired t test maps of pairwise comparison between rTMS conditions (Figures 5, 6). In contrast to the high accuracy of SVM, no any single voxel could correctly differentiate between rTMS conditions, with the highest showing accuracy of only 84% (AUC of the ROC, Table 4). The SVM results suggest that both high- and low-frequency rTMS significantly modulated brain activity in widespread but distinct ways. Although only the right cerebellum survived correction for multiple comparisons, other motor-related regions including the left cerebellum and the bilateral sensorimotor cortices were also modulated by high- and low-frequency rTMS (Figures 5, 6). Although the effect size of these brain regions was small, combinations of these brain regions through the SVM could accurately differentiate between rTMS conditions.



The Metrics ReHo and DC

Regional homogeneity reflects the temporal local synchronization or local connectivity of a given voxel with its nearest neighbors (7, 19, or 27 voxels) (Zang et al., 2004). DC calculates the total number of connections or total weighted connectivity of a given voxel with all other voxels in the brain (Buckner et al., 2009). ReHo has been reported to be decreased in the cerebellum in patients with movement disorders (Jiang et al., 2016; Liu et al., 2017). The current findings demonstrate that the ReHo value in the right cerebellar regions VIII/VIIb can be significantly enhanced by high-frequency rTMS in healthy participants, but not in low-frequency or sham stimulations. Although the patterns of DC and ReHo were very similar (Figure 2 upper vs. lower; Figure 5 vs. Figure 6), they did show slight discrepancies. Future studies should further compare the two methods.



Distinct Effects of High- and Low-Frequency rTMS

A recently published review supported the viewpoint that high-frequency rTMS will recruit more neural networks than low-frequency rTMS (Lefaucheur, 2019). Since TMS activates circuits, the neurobiological changes in activity can be observed at areas distant from the stimulation site. For example, stimulating the precentral gyrus contralateral to a source of pain at a frequency of 5–20 Hz induces analgesic effects (Lefaucheur, 2016). Low-frequency (≤1 Hz) and high-frequency (≥5 Hz) stimulation are two classic rTMS paradigms and cause inhibitory effects through long-term depression (LTD) of synaptic transmission, and excitatory effects through long-term potentiation (LTP), respectively (Chen et al., 1997; Pascual-Leone et al., 1998; Post et al., 1999). Low-frequency pulsed TMS reduces the amplitude of MEPs, while high-frequency pulsed TMS enhances MEP amplitude (Lefaucheur, 2019). However, there is no evidence to assume from the MEP amplitude that inhibitory/excitatory effects are due to the LTD/LTP in other rTMS applications, such as rTMS treatment (Lefaucheur, 2019). The rTMS aftereffect highly depends on the property of the brain network and the status of the population (Lefaucheur, 2019). This makes it difficult to say whether low-frequency rTMS induces inhibitory effects, or high-frequency rTMS induces excitatory effects on brain function in remote regions. For instance, increased FC between the left posterior inferior parietal lobule and hippocampal formation was reported after low-frequency rTMS, and decreased FC between default mode network nodes has been reported after high-frequency rTMS (Eldaief et al., 2011). A similar paradox occurs with theta burst stimulation (TBS), another rTMS technique. Intermittent TBS (iTBS) is thought to be excitatory, and continuous TBS (cTBS) is thought to be inhibitory (Rossini et al., 2015). Nevertheless, increased FC was found after stimulation of the prefrontal cortex by cTBS in healthy controls (Dan et al., 2016), and decreased FC has been reported after stimulation of the parieto-occipital vertex by iTBS in patients after stroke (Volz et al., 2016).

The therapeutic importance of rTMS results from the modulatory effects it can mediate on certain abnormal brain areas. The results of the present study provide evidence for one such rTMS paradigm that has these effects: a total of 1800 10-Hz rTMS pulses successfully enhanced the ReHo and DC value in the cerebellum VIII/VIIb. The potential clinical significance is that high-frequency rTMS of the motor cortex could be applied to patients with movement disorders whose pathology is characterized by decreased ReHo or DC in the cerebellum. We also show that self-initiated finger movements are a useful task for individualized target localization. Multi-session rTMS could induce more reinforced and prolonged aftereffects as 5-Hz rTMS of the motor area for 2 weeks provides an improvement in clinical symptoms and increases the rate of return to normal low-frequency fluctuations (ALFF) (Liu et al., 2015). Nevertheless, evidence from neuroimaging studies can only provide us with suggestions for the modulatory effects of rTMS on brain function. Clinical improvement is the ultimate aim of rTMS interventions. More studies should be conducted to outline the underlying mechanisms involved.



CONCLUSION

In conclusion, high-frequency (10 Hz) but not low-frequency (1 Hz) rTMS on the left motor cortex significantly increased ReHo and DC in the right cerebellum VIII/VIIb ipsilateral to the finger movement. SVM multivariate analysis showed 93–97% accuracy. Our results suggest that univariate and multivariate analysis, such as SVM, are mutually complementary. The univariate analysis could precisely localize the rTMS effect at a voxel level, illustrated by the finding that high- but not low-frequency rTMS enhanced ReHo and DC in the right cerebellum. Meanwhile, the multivariate analysis suggested that both high- and low-frequency rTMS significantly modulate brain activity in a widespread but distinct manner. Future studies should investigate which specific symptoms of movement-related disorders could be modulated by high- or low-frequency rTMS.



LIMITATIONS

A few limitations of the current study should be addressed here. (1) It was a small sample study with a single session of stimulation. This could be the reason for the weak effect. (2) Although we used a stringent validation, the split-half test, the feature extraction step of the F map could be considered “double dipping” or circular analysis. Validation in a new dataset will provide a more reliable conclusion.
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Introduction: Developing a machine learning-based approach which could provide quantitative identification of major depressive disorder (MDD) is essential for the diagnosis and intervention of this disorder. However, the performances of traditional algorithms using static functional connectivity (SFC) measures were unsatisfactory. In the present work, we exploit the hidden information embedded in dynamic functional connectivity (DFC) and developed an accurate and objective image-based diagnosis system for MDD.

Methods: MRI images were collected from 99 participants including 56 healthy controls and 43 MDD patients. DFC was calculated using a sliding-window algorithm. A non-linear support vector machine (SVM) approach was then used with the DFC matrices as features to distinguish MDD patients from healthy controls. The spatiotemporal characteristics of the most discriminative features were then investigated.

Results: The area under the curve (AUC) of the SVM classifier with DFC measures reached 0.9913, while this value is only 0.8685 for the algorithm using SFC measures. Spatially, the most discriminative 28 connections distributed in the visual network (VN), somatomotor network (SMN), dorsal attention network (DAN), ventral attention network (VAN), limbic network (LN), frontoparietal network (FPN), and default mode network (DMN), etc. Notably, a large portion of these connections were associated with the FPN, DMN, and VN. Temporally, the most discriminative connections transited from the cortex to deeper regions.

Conclusion: The results clearly suggested that DFC is superior to SFC and provide a reliable quantitative identification method for MDD. Our findings may furnish a better understanding of the neural mechanisms of MDD as well as improve accurate diagnosis and early intervention of this disorder.

Keywords: sliding window, dynamic brain connectivity, static brain connectivity, resting state, machine learning


INTRODUCTION

Major depressive disorder (MDD) is characterized by depressed mood, lack of interest, and motivation, as well as impaired cognitive function and attention, etc. (Friedman and Anderson, 2014; Hamilton et al., 2015; Otte et al., 2016). This disorder represents a major public health issue and has been predicted to be a leading cause of disability (Wiles et al., 2013). Recent studies leveraging neuroimaging techniques have deepened our understanding of the neural mechanisms of MDD and revealed abnormalities in brain function and structure in these patients (Parlar et al., 2017). Current diagnosis of MDD is basically based on structural interview of the patients, which is expert dependent. Developing a machine learning-based approach, which could possibly realize the quantitative characterization of the brain imaging data and achieve an objective prediction of the brain disorders (Gong and He, 2015), deserves more attention.

Neuroimaging studies based on functional magnetic resonance imaging (fMRI) have provided rich evidence of abnormalities in neural activity and functional connectivity of multiple brain regions and networks of patients with MDD, including cingulate cortex, precuneus, and medial prefrontal cortex (mPFC) of the default mode network (DMN), dorsolateral prefrontal cortex (dlPFC) of the central executive network (CEN), insula of the salience network and the amygdala, hippocampus, etc. (Hamilton et al., 2015; Mulders et al., 2015; Otte et al., 2016; Ambrosi et al., 2017). These findings collectively point toward the fact that aberrant functional connectivity can be used as an imaging metric to provide new opportunities for accurate diagnosis of MDD. Likewise, recent studies used fMRI-based functional connectivity measures as eigenvalues to distinguish MDD patients from healthy subjects. Then, after leave-one-out cross validation (LOOCV), it achieved an accuracy over 70% by support vector machine (SVM) or partial least squares (PLSs) classifiers (Cao et al., 2014; Bhaumik et al., 2016; Yoshida et al., 2017).

Previous studies on resting-state functional connectivity were mainly based on the temporal correlation between regional blood oxygen level-dependent (BOLD) time courses, barring an implicit assumption that functional connectivity is temporal stationary (Sporns, 2011; Jie et al., 2018). As a matter of fact, a number of researches have revealed that functional connectivity may experience a dynamic change over time (Calhoun et al., 2014), which, to a certain extent, might be attributed to the neuronal origin and related to the cognitive and vigilance state variations (Chang et al., 2013; Thompson et al., 2013; Jie et al., 2018). By measuring time-varying functional connectivity among brain regions, dynamic functional connectivity (DFC) analysis furnishes a more detailed description of interactions in the brain. Indeed, some studies have found that the DFC analysis produced time-varying co-activation patterns, which the traditional static functional connectivity (SFC) analysis was not able to obtain (Xiao and Duyn, 2013). Thus, DFC has been applied to underlie the pathophysiology of diseases such as autism spectrum disorder (ASD), Parkinson’s disease, migraine, and seizure, etc. For example, increased dynamics of thalamic to sensory network and decreased dynamics of global network were detected in a patient with ASD (Fu et al., 2019). Clustering analysis showed that the stability of weak connection decreased while that of strong connection increased in patients with Parkinson’s disease (Kim et al., 2017), similar results were found in interictal migraine patients (Tu et al., 2019), which imply dysrhythmia in brain connections in these diseases. Besides, a high accuracy was achieved by classifying seizure patients and normal people with DFC analysis, which may help to provide a better understanding of the underlying mechanisms of this disease (Liu et al., 2017). In addition, recent research has shown that the metastable state calculated through DFC analysis was correlated to the stage of consciousness (Hudson et al., 2014; Cavanna et al., 2017), and dynamic fluctuations in functional connectivity were also suggested to be related to individual cognitive states and psychological activities (Shine et al., 2016; Pang et al., 2018).

Dynamic connectivity analysis in patients with depression has provided new insights into the neural mechanisms of this disorder. In particular, Kaiser et al. (2016) found that meditation in depressed patients is associated with abnormal communication patterns of brain fluctuations (Kaiser et al., 2016). Zhi et al. (2018) used the sliding-window algorithm to identify three types of node damage which were related to the severity of depressive symptoms and cognitive ability. Wang et al. (2019) found decreased DFC variability between the anterior DMN and the right CEN compared with controls (Wang et al., 2019). It is noteworthy that initial attempts have been made to validate that the accuracy of a machine learning-based diagnosis system could be largely improved by using DFC metrics, instead of traditional SFC measures (Zheng et al., 2019).

In the present work, we aimed to develop a machine learning-based scheme for discrimination of patients with MDD by leveraging the hidden information embedded in DFC in order to provide accurate, objective, and image-based diagnosis of MDD. Resting-state fMRI data were collected from 56 healthy controls and 43 MDD subjects. DFC was calculated using the sliding-window algorithm which is the most widely used method to investigate DFC by calculating functional connectivity in a succession of neighboring time windows (Hutchison et al., 2013a). Then, a non-linear SVM classifier-based recursive feature elimination (SVM-RFE) approach was performed to select the optimal feature subset for classification model development with a training dataset. The performance of the established model was then validated with a testing dataset and achieved a favorable accuracy and area under the curve (AUC) of receiver operating characteristic (ROC) of 0.9975. Furthermore, we investigated the spatial and temporal characteristics of the most discriminative connections. The results revealed that the most discriminative connections formed core brain networks including the frontoparietal network (FPN), visual network (VN), DMN, etc. The current study demonstrated that by combining features obtained from DFC analysis with advanced machine learning techniques, we can provide an objective and reliable image-based diagnosis system for MDD. More importantly, these findings could also provide novel insights into the underlying neural mechanisms of depression.



MATERIALS AND METHODS


Participants

Forty-three eligible right-handed MDD patients (13 male and 30 female) were recruited from Xijing Hospital. Fifty-six healthy controls (all right-handed, 30 male and 26 female) were recruited via advertising. The baseline demographics of the subjects are shown in Table 1. Two-sample t-tests were performed to verify whether there are significant intergroup differences of age and educational level. A chi-square test was applied to verify whether the constituent ratio of gender was significant between the two groups. Statistical analyses of this study were performed by using IBM SPSS statistics (v. 22.0, Armonk, NY, United States). The level of confidence was kept at 95%, and results with p < 0.05 were considered significant.


TABLE 1. Demographics for the MDD patients and HCs.

[image: Table 1]Patients were tallied with the diagnostic criteria of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) or ASD for a current episode of MDD as assessed by two experienced psychiatrists. The severity of depression and anxiety was assessed by Hamilton Depression Rating Scale (HAMD, 24 items) and Hamilton Anxiety Rating Scale (HAMA), respectively. Exclusion criteria included incomplete HAMD test, relevant medical or neurological disorders, and incorrect head position, etc. Each of the 99 subjects was informed of the aims and procedures of the research and signed an informed consent. The experiment was carried out in strict accordance with the requirements of the Ethics Committee in Xijing Hospital.



Acquisition and Preprocessing fMRI Data

The resting-state fMRI data were acquired at Xijing Hospital using a GE Discovery MR750 3.0 T MRI system. fMRI data were gathered from 99 subjects who completed the functional scan with the parameters set as follows: TR = 2,000 ms, TE = 30 ms, flip angle = 90°, FOV = 240 mm, matrix = 64 × 64, number of slices = 45, slice thickness = 3.5 mm, spacing = 0.0 mm. Except for the functional data, a whole-brain T1 structural image was obtained for each subject with the following parameters: TR = 8.2 ms, TE = 3.2 ms, FOV = 256 mm, matrix = 256 × 256, flip angle = 12°, slice thickness = 1 mm, no spacing.

The procedure of data analysis was shown in Figure 1. Data were preprocessed using Data Processing Assistant for Resting-State fMRI1 (DPARSF, version 2.3) (Yan et al., 2016). The first 10 scans of the resting-state fMRI images were discarded in order to eliminate the effects of magnetic field instability. The remaining 200 fMRI images were then corrected for slice timing, compensating the differences in acquisition time between slices. Then, realignment was performed to correct for head motion between fMRI images at different time points by translation and rotation. The high-resolution structural image was then co-registered with functional images and segmented into gray matter, white matter, and cerebrospinal fluid (CSF) signal. The deformation parameters from the structural image to the MNI template were then used to normalize the resting-state fMRI images into a standard space. Next, a Gaussian filter with a half maximum width of 6 mm was used to smooth the functional images. Then, the linear trends were removed. The effects of white matter signal, CSF signal, and Friston 24 head motion parameters were regressed out. Finally, a band-pass filter of 0.01∼0.1 Hz was used for filtering.
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FIGURE 1. The data analysis pipeline. After data acquisition and preprocessing, sliding-window algorithm was applied with the window width set to 50 time points and the step size set to two time points to calculate dynamic functional connectivity (DFC). For each subject, a 1 × 5,653 DFC matrix was obtained after two sample t-test and employed as features for classification with a non-linear support vector machine (SVM) classifier.




Dynamic Functional Connectivity Analysis

The DFC analysis was performed by GRETNA2 (v2.0.0). The brain was parcellated into 274 regions according to the brainnetome atlas3. However, one of the regions numbered 255 with a low probability density was not identified, thus 273 regions were left. Then, Pearson’s correlation coefficient was used for measuring the functional connectivity. DFC between any pair of these regions was then calculated using a sliding-window algorithm. Sliding-window algorithm is one of the most widely used to evaluate dynamic brain functional connectivity. The functional connectivity between two nodes was first calculated using a subsection of the data within a time window. The window was then slid one step, and the calculation of the functional connectivity was repeated within the new time window. As recommended in previous studies, the window width should be no less than 1/fmin, fmin represents the minimum frequency of the signal (Shakil et al., 2016; Liao et al., 2018; Guo et al., 2020). In the current study,fmin was 0.01 Hz and the TR was 2 s, thus the window width was set to 100 s (50 time points), and the step length was set to two time points. Finally, we obtained 76 DFC matrices for each subject, with 273 × 273 variables from each matrix.



Feature Extraction and Selection

The upper diagonal elements of the functional connectivity matrices were extracted and 76 × 37,128 = 2,821,728 features were left for each subject to constitute the entire feature set. A linear model was used before classification to regress out the effects of gender and educational level. Then, a two-sample t-test (p < 0.001, uncorrected) was applied to select features with significant intergroup differences between the MDD patients and the health controls, resulting in a 1 × 5,635 feature vector for each subject which is the total features used in the classification. Further considering the high-throughput features extracted from the relatively limited subjects would inevitably cause redundancy and over fitting in classification, in this study, a non-linear SVM-RFE approach was employed afterward to find an optimal feature subset with the best discriminative power for MDD identification. Detailed descriptions of this widely applied approach were presented in our recent studies (Xu et al., 2019a, b).



Performance Evaluation Using the Prediction Model Developed by the Selected Features

With the optimal feature subset selected, the prediction model was then developed for MDD identification. The non-linear SVM classifier with the radial basis function kernel was implemented using the widely used LIBSVM toolbox for model construction and performance evaluation (Chang and Lin, 2011). Labels of the patient group were set as “+1,” and that of the healthy controls were set as “–1.” The grid search approach was performed to select the optimal parameters “-c, -g” for the classification model construction. Considering the limited sample-set size, an external 10-fold cross validation (CV) strategy with 100-round classifications was used to fully evaluate the performance. This strategy first randomly and almost evenly divides the entire sample set into 10 subsets. Then, nine subsets are used to train the classifier and the remaining one subset is used to validate the trained classifier. After 10 subsets are successively validated, one round classification is finished and the average performance can be obtained. Owing to the random allocation of the 10-fold subsets, only one round classification may not well reflect the overall performance of the samples. Instead, the procedures above are usually repeated for 100 rounds, and the final average performance after all these rounds classifications can be achieved.

In order to compare the prediction performance of the current results with that of using other brain templates, the widely used Anatomical Automatic Labeling (AAL) template with 116 brain regions was adopted to repeat the steps above, including DFC, SFC feature extraction, and feature selection and classification.

Finally, the extracted DFC and SFC features were combined to classify the MDD patients from the healthy controls in both templates.

In order to verify the reliability, consistency, and generalizability of the proposed method, the database was further divided into the training set (including 73 subjects with 33 MDD patients and 40 healthy controls) and the testing set (including 26 subjects with 10 MDD patients and 16 healthy controls), accounting for about 80 and 20% of the whole datasets, respectively. The baseline demographics of the training set subjects are shown in Supplementary Table S1, the testing set subjects are shown in Supplementary Table S2. Then, a two-sample t-test was applied with all the features in the training set to determine the features with significant intergroup differences between MDD patients and the health controls. After that, these features with significant differences in the training set were further selected using the SVM-RFE to determine an optimal feature subset for model development. The performance of the model was then validated using the testing set.



Relationships Between the Selected Features and Clinical Variables in the Major Depressive Disorder Group

We performed the Pearson’s correlation analysis between the selected features and clinical variables including HAMD and HAMA in the MDD group separately. Before the analysis, a linear model was used before classification to regress out the effects of gender and educational level.



RESULTS


Feature Selection and Performance Evaluation

Considering the imbalance of sample size between the two groups in this study, the AUC value was employed as the criterion for optimal feature subset determination (Xu et al., 2019a, b). Finally, a subset of 28 features with the highest AUC value of 0.9975 was selected as the optimal feature subset for model construction, as shown in Figure 2A.
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FIGURE 2. Feature selection process of using the support vector machine–classifier-based recursive feature elimination (SVM-RFE) algorithm with 5,653 dynamic functional connectivity (DFC)-based variables and 248 static functional connectivity (SFC)-based variables, respectively. Panel (A) represents the curve of the area under the curve (AUC) values using the top n features from the DFC matrices, and the red dot in the local magnification of the curve stands for the highest AUC value of 0.9975 achieved by the top 28 features. Panel (B) displays the curve of the AUC values using the top n features from the SFC matrix, and the blue dot in the local magnification of the curve shows the highest AUC value of 0.8746 achieved by the top 14 features.


At the same time, we compared the performances of the system using features obtained from DFC matrices with that of the system using features extracted from traditional SFC matrices. SFC matrices that measured the average functional connectivity were obtained by calculating the correlation between the whole time-series of any two nodes. Thus, for each subject, SFC analysis only resulted in one 273 × 273 functional connectivity matrix, while DFC analysis obtained 76 273 × 273 matrices. Figure 2B shows the diagnostic performances of the system with SFC matrices. Apparently, the AUC of the system was higher when using DFC matrices (0.9975) which embedded rich information on time-dependent fluctuations in connections than those using static connectivity matrices (0.8746). In addition, with the lack of features extracting time-varying connections, more (14 for static matrices compared with 28 for dynamic matrices) were required for the system to achieve its highest AUC.

We further assessed the performances of the systems with SVM and 10-fold CV (Figure 3 and Table 2). Figure 3 shows the ROCs of models constructed with the most discriminative features selected from the DFC and SFC metrics. The AUC value of the model with 28 optimal DFC features was 0.9913 while that of the model with 14 SFC features was only 0.8685. The results apparently indicated the superiority of the DFC-based classification model for MDD discrimination.
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FIGURE 3. Performance comparison of the 28 selected dynamic functional connectivity (DFC)-based features and 14 selected static functional connectivity (SFC)-based features with a non-linear support vector machine (SVM) classifier and 10-fold cross validation (CV) strategy. The blue and red curves represent the receiver operating characteristic (ROC) curves of using the 28 and 14 optimal features, respectively.



TABLE 2. Performance comparison between the optimal feature subsets determined from DFC and SFC using the non-linear SVM classifier and 10-fold CV with 100-round classifications.

[image: Table 2]Then, we estimated the classification performance using the optimal feature subset selected from the DFC-based features, SFC-based features, and both of the DFC- and SFC-based features with different brain templates.

With the Brainnetome atlas template, the performance of the optimal feature subset selected from the DFC-based features in the training set was much better than that of SFC, while the performance of the optimal feature subset selected from the DFC- and SFC-based features did not witness a dramatic increase, as shown in Supplementary Figures S1, S2 and Supplementary Tables S3, S4. When using the testing data for the performance verification, we observed that the results of the DFC-based optimal features were also the best, whereas the performance of the other two optimal feature subsets received a dramatic decline, indicating the low consistency and generalizability of the models developed by using these two optimal feature subsets.

With the AAL atlas template, the performance of the optimal feature subset selected from the DFC-based features in the training set was also much better than that of SFC, while the performance of the optimal feature subset selected from of the DFC- and SFC-based features was nearly the same with that of the DFC-based optimal features, as shown in Supplementary Figure S3 and Supplementary Table S5. When using the testing data for verification, we also noticed that the performance of the DFC-based optimal features was the best but was severely inconsistent with the performance of using these optimal features in the training set, as shown in Supplementary Figure S4 and Supplementary Table S6.

All the results above conclusively reveal that the classification model developed using the DFC-based optimal features extracted from the brain regions using the Brainnetome atlas template could be more powerful for the discrimination between the MDD patients and the healthy people; the SFC-based features could probably introduce certain feature redundancy that might further impair the discriminative power of the prediction model.



Spatiotemporal Characteristics of the Most Discriminative Dynamic Functional Connections

In fact, the 28 most discriminative DFC connections were 28 abnormal DFCs in patients with MDD compared with healthy controls. We further investigated the spatiotemporal characteristics of the most discriminative dynamic functional connections in patients with MDD. More specifically, the 28 abnormal DFCs involved seven different brain networks and 40 different brain regions, distributed in 24 sliding windows. Figure 4 shows the spatial pattern of these connections which clearly suggested that these connections form brain networks including the VN, somatomotor network (SMN), dorsal attention network (DAN), ventral attention network (VAN), limbic network (LN), FPN, and DMN, etc. Table 3 provided more detailed information on these connections with their discriminative power (weight). According to Table 3, the connections that demonstrated the highest discriminative power included DFC connections between the inferior parietal lobule (IPL) and middle frontal gyrus (MFG), between parahippocampal gyrus and IPL, between cingulate gyrus and orbital gyrus. Figure 5 shows the temporal characteristics of these 28 connections. The most discriminative connections within each time window were depicted. We found that over time, the brain area gradually penetrated from the cortex to the deeper regions of the brain. More importantly, Figure 5 also implicated that the most discriminative connections varied largely from one time window to another. Thus, traditional SFC analysis which is unable to capture the time-dependent variations in functional connections would fail to detect these most discriminative connections.
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FIGURE 4. The spatial distribution of the 28 most discriminative dynamic connections after feature selection. The size of the node represents the node degree, while the color of the node represents the brain network that this node belongs to.



TABLE 3. The 28-dynamic function connectivities.
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FIGURE 5. The temporal distribution of the 28 most discriminative dynamic connections after feature selection. (A–C) The connections in different time windows. (D) The color of the inner circle represents the brain network that the node belongs to. The lines in the circle represent the connections, and the color of the connections represents different windows.




Relationship With Clinical Properties

In the analysis of correlations between the selected features and clinical characteristics in the MDD group, we found that the dynamic functional connection between fusiform gyrus and inferior temporal gyrus was significantly negatively correlated with HAMD scores, connections between basal ganglia and inferior temporal gyrus, the precuneus and superior frontal gyrus (SFG) were significantly positively correlated with HAMA scores, connection between medioventral occipital cortex and the amygdala was significantly negatively correlated with HAMA scores. Figure 6 shows the details of relationships between DFC features and clinical characteristics.
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FIGURE 6. The relationship between the optimal dynamic functional connectivity (DFC) features and clinical characteristics in the major depressive disorder (MDD) group.




DISCUSSION

In this study, we developed a machine learning diagnosis framework for patients with MDD based on subjects’ dynamic resting-state functional connectivity patterns. Three main findings emerged from the current study: (1) Patients with MDD could be reliably differentiated from healthy controls based on the patterns of resting-state DFC with a high accuracy of 0.9913 (10-fold CV). (2) Spatially, the most discriminative connections formed core networks including the VN, SMN, DAN, VAN, LN, FPN, and DMN, etc. (3) Temporally, the most discriminative connections were not stationary as assumed by traditional SFC analysis. On the contrary, these connections varied from the cortex to deeper structures of the brain over time.


Static Functional Connectivity Analysis Versus Dynamic Functional Connectivity Analysis

Although the high-throughput feature set containing 5,635 variables were obtained from the upper diagonal elements of the DFC matrices, they might not contribute equally for the distinction between MDD patients and the healthy controls. In fact, the features highly correlated with each other or less capable of MDD identification would inevitably cause redundancy for the classifier training, impairing the overall discriminative power for MDD patients. Therefore, the SVM-RFE approach was employed to determine an optimal feature subset for prediction model construction (Xu et al., 2019a, b). The classification performance of the model using all the 5,635 variables and a non-linear SVM classifier with LOOCV achieved the sensitivity, specificity, accuracy, and AUC of 53.49, 71.43, 63.64%, and 0.7072, respectively, whereas these metrics were greatly improved to 97.67, 94.64, 95.96%, and 0.9975 using the model constructed by the 28 optimal features and the same classifier with LOOCV. It apparently demonstrates the effectiveness and great potential of SVM-RFE approach for redundancy reduction, optimal feature determination, and performance improvement. Concerning the LOOCV might introduce the overtraining in the classification, the non-linear SVM classifier with 10-fold CV was further employed to evaluate the performance of the optimal features. The results demonstrate the favorable robustness and consistency of the model for MDD diagnosis.

As far as we know, most of the previous studies were based on the resting-state functional connectivity, and the accuracy of the distinction between MDD patients and the healthy controls varied between 76.10 and 91.90% (Bhaumik et al., 2017; Li et al., 2017; Yoshida et al., 2017; Zhong et al., 2017). However, a growing number of studies suggest that resting-state functional connectivity may hide some information, which could be fully reflected in DFC (Zhang et al., 2019; Zheng et al., 2019). In order to compare the capability of the DFC and SFC matrices for the quantitative characterization of patients with MDD, the prediction model using the optimal features extracted from the SFC matrix was also developed. The classification performance was apparently inferior to that of the DFC-based prediction model, denoting that the DFC might effectively describe the network changes associated with the feelings and executive function that closely relate to MDD, thus could obtain more excellent classification performance when used for MDD identification (Zhang et al., 2019).

The potential explanation of the superiority of the DFC-based prediction model is that during the resting-state scanning, subjects were required to simply close their eyes without thinking about anything. However, there still exist mind wandering and attention return. These cognitive processes may lead to huge fluctuations of brain connections during scanning (Chang and Glover, 2010). Such time-varying information of the spontaneous brain activity could not be reflected in SFC but might be captured by DFC using the sliding-window algorithm with appropriate window width and step size.

Besides, the results of the DFC-based prediction model further suggest that the present method could not only improve the classification performance in comparison with state-of-the-art approaches (Demirtas et al., 2016) but also shed light upon the temporal patterns of brain activity and their applications in brain disorder diagnoses.



Spatial Characteristics of the Most Discriminative Connections

Using the SVM-RFE approach, we selected 28 optimal features from 5,635 dynamic functional connections obtained in 76 time windows. The spatiotemporal characteristics of these most discriminative connections were then investigated by mapping these connections into the 76 DFC matrices to reconstruct the spatial patterns and analyze the temporal characteristics of these connections. Interestingly, we noted that although several brain networks were implicated, a large portion of these connections were associated with the FPN, VN, and DMN. The findings indicated that these regions contributed largely to accurate classification of MDD patients with healthy controls and thus may play an important role in the neural mechanisms of MDD.

The most discriminative connections formed several core brain networks including the VN, SMN, DAN, VAN, LN, FPN, and DMN, etc., suggesting that connectivity of these networks may be disrupted in patients with MDD. The results are in line with numerous previous studies that have observed abnormal connectivity of these networks (Wang et al., 2012; Wu et al., 2013, 2017; Hilland et al., 2018; Fan et al., 2019; Yu et al., 2019). Among these networks, the connection between MFG and IPL demonstrated the most significant contribution to the accurate classification of MDD patients with healthy controls. Previous researchers found that MFG and SFG showed decreased functional connectivity in MDD with robustness (Sheng et al., 2018; Yang et al., 2019). Cui et al. (2018) found that the global functional connectivity of the right IPL increased in MDD patients compared with the control group in two distinct datasets, and IPL is one of the discriminative effective connections when distinguishing MDD patients and healthy controls in a classification study with an accuracy of 91.67% (Geng et al., 2018). More importantly, both of the MFG and IPL are subregions of FPN, which is a cognitive control network, especially a goal-directed regulation of attention and emotion, etc. (Marek and Dosenbach, 2018). Leming et al. (2019) found disruption of normative pathways in FPN in MDD, and others found abnormal connections between FPN and some networks such as DMN in MDD (Disner et al., 2011). These results were consistent with those of a cognitive model that disorders of goal-directed attention and emotion can lead to excessive rumination (Kaiser et al., 2015). Besides, another study also reported that three subnetworks in the FPN of MDD patients had increased functional connectivity before treatment and recovered after treatment, which makes it a potential target for antidepressant therapy (He Y. et al., 2018).

Default mode network is a central network for MDD which was verified in numerous researches in the last decades, most of results contribute to a conclusion that the aberrant function and structure of it was related to depressive rumination. Kühn et al. (2012) found that rumination was correlated negatively with the volume of gray matter in the anterior cingulate cortex and other regions. In the functional connectivity analysis, a meta-analytic result showed an increased connection between DMN and subgenual prefrontal cortex, which was able to predict rumination level (Hamilton et al., 2015). Besides, a DFC analysis was conducted by Kaiser et al. (2016), and they reported that the increased DFC between the mPFC and the insula was correlated with the level of rumination. However, a recent study applied a multicenter research with 1,642 participants and reached a conclusion that reduced but not increased connection was only in recurrent MDD, and this had a positive relation with symptom severity (Yan et al., 2019). Our result also showed that the DFC between the precuneus and SFG was significantly positively correlated with HAMA scores.

VN was also an important region that contributed to classification. Our findings are consistent with recent studies that have noticed functional and structural abnormalities in the VN in MDD patients. Zeng et al. (2012) used SFC analysis to classify patients with MDD and healthy controls, and they reported that the VN was among the most discriminative regions (Zeng et al., 2012). Latterly, in the study of functional connectivity density (FCD), a decrease in long-term FCD of supraoccipital gyrus was found, suggesting that the visual cortex is a key hub for MDD (Zou et al., 2016). In addition, the structure of the VN was also impaired in the patients. Significantly thinner calcarine gyrus was found in MDD patients than in healthy controls (Suh et al., 2019). Occipital bending is a powerful biomarker for depression, and patients with occipital bending were reported to have abnormal cortical thickness in the posterior occipital lobe (Fullard et al., 2019). Notably, a recent study revealed that brain regions associated with early awakening and visual processing overlap in patients with MDD (Tao et al., 2018). Thus, impairments in the visual areas may result in disruption of sleep rhythms and symptoms of sleep disturbances generally seen in patients with MDD.

When analyzing the temporal characteristics of the most discriminative features, we found that these connections were distributed in different time windows, reflecting the non-stationary characteristics of functional connectivity over time which has been consistently noticed in literature (Xiao and Duyn, 2013; Bi et al., 2016; Demirtas et al., 2016; Kaiser et al., 2016; Du et al., 2018; He C. et al., 2018). These results thus provide an explanation why the classification model with the DFC features could achieve better performances than the model with SFC features, since traditional static analysis may eliminate the contribution of the more volatile connections (Britz et al., 2010; Chang and Glover, 2010; Hutchison et al., 2013b). Furthermore, we noticed that the most discriminative connections gradually changed from cortical regions to deeper structures of the brain over time, suggesting a switch between the cortical and limbic systems in the patients at rest.

To summarize, the current study used a data-driven machine learning approach to demonstrate that by leveraging valuable information embedded in DFC metrics, we could provide an accurate diagnosis scheme for patients with MDD. The spatiotemporal characteristics of those most discriminative connections could provide a novel insight into the neural mechanisms of this disorder.



Limitations

This study has some limitations and caveats to bear in mind. Although sliding-window algorithm is one of the most widely used methods to investigate DFC, a recent study has suggested that this algorithm tends to suppress dynamic correlation, especially those that change rapidly with time (Mokhtari et al., 2019). In addition, the step size and window width should be carefully set for the sliding-window algorithm. For the current study, we set the window width to 50 time points and the step size to two time points as suggested by previous studies (Guo et al., 2020). We will further investigate the effects of different parameter settings in future studies. Finally, we used machine learning to successfully distinguish depression patients from normal people. However, the sample size in the current study is relatively small. Future studies may independently replicate our results on large sample datasets. Despite many limitations, our study suggested that by combining dynamic resting-state functional connectivity analysis and machine learning techniques, we were able to provide a reliable imaging-based quantitative identification of major depression for early intervention in MDD patients.
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The fast Fourier transform (FFT) is a widely used algorithm used to depict the amplitude of low-frequency fluctuation (ALFF) of resting-state functional magnetic resonance imaging (RS-fMRI). Wavelet transform (WT) is more effective in representing the complex waveform due to its adaptivity to non-stationary or local features of data and many varieties of wavelet functions with different shapes being available. However, there is a paucity of RS-fMRI studies that systematically compare between the results of FFT versus WT. The present study employed five cohorts of datasets and compared the sensitivity and reproducibility of FFT-ALFF with those of Wavelet-ALFF based on five mother wavelets (namely, db2, bior4.4, morl, meyr, and sym3). In addition to the conventional frequency band of 0.0117–0.0781 Hz, a comparison was performed in sub-bands, namely, Slow-6 (0–0.0117 Hz), Slow-5 (0.0117–0.0273 Hz), Slow-4 (0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2 (0.1992–0.25 Hz). The results indicated that the Wavelet-ALFF of all five mother wavelets was generally more sensitive and reproducible than FFT-ALFF in all frequency bands. Specifically, in the higher frequency band Slow-2 (0.1992–0.25 Hz), the mean sensitivity of db2-ALFF results was 1.54 times that of FFT-ALFF, and the reproducibility of db2-ALFF results was 2.95 times that of FFT-ALFF. The findings suggest that wavelet-ALFF can replace FFT-ALFF, especially in the higher frequency band. Future studies should test more mother wavelets on other RS-fMRI metrics and multiple datasets.

Keywords: amplitude of low-frequency fluctuation, wavelet transform, resting-state fMRI, sensitivity, reproducibility


INTRODUCTION

Using resting-state functional magnetic resonance imaging (RS-fMRI), Biswal et al. (1995) observed for the first time that the low-frequency (<0.1 Hz) fluctuation (LFF) was highly correlated between sensorimotor cortices. Subsequently, RS-fMRI has attracted significant attraction. While vast majority of RS-fMRI studies investigated brain networks by analyzing the relationship between different brain areas, a few studies focused on the local brain activity.

The amplitude of LFF (ALFF) is the simplest metric to measure the local spontaneous activity of every single time series. While most RS-fMRI studies used a conventional frequency band of 0.01–0.08 Hz, sub-bands were also extensively used in research on brain disorders (Liu et al., 2014; Giménez et al., 2017; Li et al., 2017a, b; Wang et al., 2018) following the study by Zuo et al. (2010) in which a few sub-bands were mentioned including Slow-5 (0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz), and Slow-2 (0.198–0.25 Hz). Although the very low frequency band < 0.01 Hz (Slow-6) was not included in most studies, a few studies indicated that Slow-6 was meaningful either physiologically (Lv et al., 2013; Zhang et al., 2015) or pathophysiologically (Wang et al., 2015). Therefore, frequency-dependent analysis should be included in studies in addition to the conventional frequency band.

The ALFF is calculated with a fast Fourier transform (FFT) (Zang et al., 2007), wherein the energy of a time series is decomposed by Fourier transform (FT) into a set of sinusoidal functions at different frequencies. However, the fMRI signals are complex waveforms, and thus, it is difficult for a set of stationary sinusoidal functions to detect transient phenomena, such as spikes (Bullmore et al., 2004; Mallat, 2009). Patel et al. (2014) mentioned “wavelet analysis offers a powerful set of tools for analyzing the properties of complex time series (Daubechies and Heil, 1992; Mallat, 2009).” The natural adaptivity of the wavelet transform (WT) to local or non-stationary features of data and many varieties of wavelet functions with different shapes being available makes it more effective in depicting complex waveform than the FFT (Bullmore et al., 2004; Zhang et al., 2014).

Currently, many RS-fMRI studies use WT. Most existing WT RS-fMRI studies use WT for functional connectivity analysis (Achard et al., 2006; Deshpande et al., 2010; Spoormaker et al., 2010; Schröter et al., 2012; Yaesoubi et al., 2017; Váša et al., 2018). In functional connectivity analysis domain, some studies have analyzed the transformed wavelet coefficients (Achard et al., 2006), whereas others have analyzed the transformed wavelet-filtered time series (Xu et al., 2016) of certain frequency ranges. As previously mentioned, functional connectivity describes the relationship between different brain areas. ALFF describes the activity of a single time series, and it is widely used for precisely localizing abnormal brain activity. Another similar metric is the power of the time series. It should be noted that the power is proportional to the square of ALFF (Zang et al., 2007). To the best of the authors’ knowledge, all ALFF studies are based on FFT, and only two studies applied WT to analyze the power of a single time series (Salomon et al., 2011; Bajaj et al., 2013). Fox example, a study compared WT-based power between two RS-fMRI conditions, i.e., acute tryptophan depletion diet versus control diet (Salomon et al., 2011). Although theoretically WT is more valid in depicting complex time series than FFT, there is a paucity of studies comparing the WT-based ALFF (Wavelet-ALFF) with the FFT-ALFF. Moreover, there are several mother wavelet bases. However, two existing WT-based power studies did not compare different wavelets.

In the present study, we applied five mother wavelets, namely, Daubechies 2 (db2) (Bullmore et al., 2004; Salomon et al., 2011; Zhang et al., 2016), biorthogonal 4.4 (bior4.4) (Laine, 2000; Van De Ville et al., 2003; Mutihac, 2006), Morlet (morl) (Chang and Glover, 2010; Bajaj et al., 2013; Omidvarnia et al., 2017; Yaesoubi et al., 2017), Meyer (meyr) (Behjat et al., 2015), and Symlets 3 (sym3) (Khullar et al., 2011) to calculate ALFF and compared the sensitivity and reproducibility between Wavelet-ALFF and FFT-ALFF in multiple frequency bands and multiple cohorts to explore whether Wavelet-ALFF is superior to FFT-ALFF and as to which mother wavelet is more superior.



MATERIALS AND METHODS


Subjects and Data Acquisition

In this study, we used two MRI datasets, namely, EOEC and ADHD-200. The reason for using the two datasets is explained in Section “Discussion.” All data acquisitions were approved by the corresponding institutional ethics committees. All subjects provided the informed consent before data collection. Additionally, all subjects did not have a history of neurological disease or psychiatric disorders.

The EOEC dataset consisted of 31 right-handed healthy subjects (21.8 ± 1.8 years old, 15 females). The subjects experienced two 8-min RS-fMRI sessions, namely, one with eyes open (EO) and the other with eyes closed (EC). The order of the two sessions was counterbalanced across subjects. Specifically, MRI data were collected by a GE MR750 3T scanner (GE Healthcare, Milwaukee, WI, United States) with an eight-channel head receiving coil. During data collection, foam cushions were applied to reduce head movement, and earplugs were applied to diminish scanner noise. The scanning parameters of RS-fMRI data were as follows: TR/TE = 2000/30 ms, flip angle = 60°, 43 slices, thickness/gap = 3.4/0 mm, and FOV = 220 mm × 220 mm with an in-plane resolution of 3.44 mm × 3.44 mm. The resting-state BOLD scan lasted for 8 min and produced 240 images. A three-dimensional (3D) T1 was obtained with a spoiled gradient-recalled pulse sequence with the following parameters: TR/TE = 8.1/3.1 ms, flip angle = 9°, 176 sagittal slices, thickness = 1 mm, FOV = 250 mm × 250 mm.

The ADHD-200 dataset was from the publicly available dataset “The ADHD-200 Consortium”.1 The ADHD-200 dataset contains the RS-fMRI and anatomical MRI data of children with attention deficit hyperactivity disorder (ADHD) and typically developing children (TDC). The ADHD-200 dataset was provided by eight independent imaging sites and was divided into the training and test sets by the ADHD-200 Global Competition. The current study only used the data from four imaging sites, i.e., NYU, PKU1, PKU2, and PKU3 as described in a previous study (Wang et al., 2017). Given that the PKU3 only has male subjects, the female subjects in NYU, PKU1, and PKU2 were not analyzed. Additionally, the current study also removed the data from left-handed subjects. Finally, the data from 58 subjects in NYU, 30 subjects in PKU1, 56 subjects in PKU2, and 38 subjects in PKU3 were used after age matching between children with ADHD and TDC (Wang et al., 2017).



Data Preprocessing

All the images were preprocessed via a MATLAB toolbox, Data Processing Assistant for RS-fMRI (DPARSF) (Yan and Zang, 2010) which was based on Statistical Parametric Mapping (SPM8)2 and RS-fMRI Data Processing Toolkit (REST) (Song et al., 2011). The first 10 time points (20 s) were discarded because the subject took time to adapt to the scanning noise and additionally for the scanner to calibrate (Zang et al., 2004; Wang et al., 2017; Yan et al., 2019). Given that there were only 170 time points in NYU data, we retained 170 time points for PKU1, PKU2, and PKU3.

The preprocessing steps included slice time correction, head motion correction, spatial normalization (resampled into 3 mm × 3 mm × 3 mm), spatial smoothing (6-mm isotropic Gaussian kernel), and nuisance covariates regression (head motion effect using Friston 24-parameter model, white matter, and cerebrospinal fluid signal).



Fast Fourier Transform–Amplitude of Low-Frequency Fluctuation Calculation

The FFT-ALFF was calculated by using the DPARSF software (Yan and Zang, 2010). As described in a previous study, the averaged square root of power spectrum obtained with the FFT across the given frequency band was considered as FFT-ALFF (Zang et al., 2007; Zuo et al., 2010). The FFT-ALFF was standardized by dividing each voxel’s FFT-ALFF by the “global” mean FFT-ALFF (Zang et al., 2007). It should be noted that “global” denotes a group mask. Some small parts of the brain were not covered during scanning for some subjects in the ADHD-200 dataset, and thus, we created a group mask in a manner similar to a previous study (Wang et al., 2017) in which the brain area of more than 80% of subjects were covered. The current study calculated FFT-ALFF in the conventional band (0.0117–0.0781 Hz) and five sub-bands as previously defined. These are the Slow-6 (0–0.0117 Hz), Slow-5 (0.0117– 0.0273 Hz), Slow-4 (0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2 (0.1992–0.25 Hz) (Zuo et al., 2010; Wang et al., 2015, 2017; Zhang et al., 2015).



Wavelet–Amplitude of Low-Frequency Fluctuation Calculation

In this study, the continuous WT (CWT) was implemented via MATLAB 2014a Wavelet Toolbox (MathWorks, Natick, MA, United States). The CWT wavelet coefficient is defined as the convolution of the time series x(t) with the scaled and translated version of a mother wavelet function ψk,s(t) (Torrence and Compo, 1998) as shown below:
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where x(t) denotes the time series, ψk,s(t) denotes the mother wavelet function, s denotes wavelet scale (64 frequency bins in the current study, between 0 and 0.25 Hz at an interval of 0.0039 Hz), k denotes the localized time index (k ∈ [1,170] and [1,230] for EOEC dataset and ADHD-200 dataset, respectively), and ∗ denotes the complex conjugate (Poza et al., 2014; Morabito et al., 2017).

We used five mother wavelets which have been used in previous fMRI literature, including db2 (Bullmore et al., 2004; Salomon et al., 2011; Zhang et al., 2016), bior4.4 (Laine, 2000; Van De Ville et al., 2003; Mutihac, 2006), morl (Chang and Glover, 2010; Bajaj et al., 2013; Omidvarnia et al., 2017; Yaesoubi et al., 2017), meyr (Behjat et al., 2015), and sym3 (Khullar et al., 2011). The traces for the five wavelets are shown in Supplementary Figures S1–S5, respectively.

As mentioned in a previous study, “a relatively high value of the coefficient is given in the product with the wavelet if there exists a spectral component of the signal corresponding to the value of s at a location k” (Morabito et al., 2017). Wavelet-ALFF was calculated by first adding up the wavelet coefficients at all time points for each frequency point, and the averaged coefficient across a given frequency band was then obtained as defined below:
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where |CWTi,j| denotes the absolute value of wavelet coefficient at time point i at a given frequency point j; n denotes the total amount of wavelet coefficient at a given frequency point; and m denotes the total number of frequency points across a given frequency band. In the current study, we calculated the Wavelet-ALFF in the conventional frequency band of 0.0117–0.0781 Hz and five sub-bands, i.e., Slow-6 (0–0.0117 Hz), Slow-5 (0.0117–0.0273 Hz), Slow-4 (0.0273–0.0742 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-2 (0.1992–0.25 Hz). For standardization purpose as did for FFT-ALFF, each voxel’s Wavelet-ALFF was divided by the “global” (i.e., a group mask as described in Section “Fast Fourier Transform–Amplitude of Low-Frequency Fluctuation Calculation” mean Wavelet-ALFF.



t-Tests on Amplitude of Low-Frequency Fluctuation Maps of Each Frequency Band

Paired t-tests between EO and EC conditions were performed for the EOEC dataset. Two-sample t-tests between ADHD group and TDC group were performed in each cohort for ADHD-200 dataset. As Jia et al. (2018) have recently reported, stringent or liberal multiple comparison correction could not control the false discoveries across multiple studies when the effect sizes were relatively small. The reproducibility of the results across multiple cohorts is more important for the recovery of the ground truth. In order to detect sensitivity, two relatively liberal thresholds (p < 0.05, cluster size ≥ 10 voxels; p < 0.01, cluster size ≥ 10 voxels) were used. We did not use stringent multiple comparison correction.



Comparison Between Wavelet–Amplitude of Low-Frequency Fluctuation and Fast Fourier Transform–Amplitude of Low-Frequency Fluctuation


Comparison of Sensitivity

To compare the sensitivity between Wavelet-ALFF and FFT-ALFF, we first counted the total number of voxels above the threshold (p < 0.05, cluster size ≥ 10 voxels). We then calculated a ratio in each frequency band as follows:
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where numberWavelet–ALFF denotes the number of voxels detected by Wavelet-ALFF method. Similarly, numberFFT–ALFF denotes the number of voxels detected by FFT-ALFF method. A ratio > 1 implies higher sensitivity for Wavelet-ALFF than FFT-ALFF, and the ratio < 1 implies the opposite.



Comparison of Reproducibility Across Cohorts in the ADHD-200 Dataset

As indicated in Section “Subjects and Data Acquisition,” four cohorts from the ADHD-200 open database were available for the current study (Wang et al., 2017). The number of overlapped voxels above the threshold (p < 0.05, cluster size ≥ 10 voxels) was applied to represent reproducibility. This implies that, although some voxels showed a significant difference between patients and healthy controls, it is unknown to what extent these brain areas are reproducible in other cohorts. To compare the reproducibility of results between Wavelet-ALFF and FFT-ALFF, we calculated a ratio of each frequency band as follows:
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where overlappednumberWavelet–ALFF denotes the number of overlapped voxels above the threshold (p < 0.05, cluster size ≥ 10 voxels) in at least three cohorts in the four ADHD cohorts (NYU, PKU1, PKU2, and PKU3) detected by the Wavelet-ALFF. Similarly, overlappednumberFFT–ALFF is the number of overlapped voxels of at least three cohorts in the four ADHD cohorts (NYU, PKU1, PKU2, and PKU3) detected by FFT-ALFF. A ratio > 1 implies higher reproducibility for Wavelet-ALFF than FFT-ALFF, and the ratio < 1 implies the opposite.



Similarity of Spatial Pattern of Wavelet–Amplitude of Low-Frequency Fluctuation With Fast Fourier Transform–Amplitude of Low-Frequency Fluctuation

We computed the Dice similarity coefficient (DSC) (Dice, 1945; Burunat et al., 2016) to calculate the spatial overlap of Wavelet-ALFF with FFT-ALFF results of each cohort in each frequency band:
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where X, Y, and X∩Y denote the Wavelet-ALFF-based binarized map, corresponding FFT-ALFF-based binarized map, and overlapped map, respectively. Additionally, |⋅| represents the number of voxels in each corresponding map.



RESULTS


Comparison of Sensitivity

Table 1 (liberal threshold of p < 0.05, cluster size ≥ 10 voxels) lists a comparison of sensitivity between Wavelet-ALFF and FFT-ALFF. A ratio > 1 indicates higher sensitivity for Wavelet-ALFF than FFT-ALFF. It indicated that only seven ratios were < 1 among all 150 ratios (not including mean ratio). It implies that the Wavelet-ALFF indicated higher sensitivity in almost all frequency bands in all cohorts than FFT-ALFF.


TABLE 1. Comparison of sensitivity between Wavelet-ALFF and FFT-ALFF [i.e., the ratio, see formula (3) for method] in five cohorts (NYU, PKU1, PKU2, PKU3, and EOEC) by five mother wavelets (db2, bior4.4, morl, meyr, and sym3) in each frequency band.

[image: Table 1]The sensitivity indicated a frequency-dependent difference for Wavelet-ALFF and FFT-ALFF (Figure 1). Specifically, the sensitivity ratio was the lowest in the conventional frequency band (0.0117–0.0781 Hz). The Wavelet-ALFF in lower frequency band Slow-6 (0–0.0117 Hz) and higher frequency band Slow-2 (0.1992–0.25 Hz) exhibited higher sensitivity than in Slow-3, Slow-4, and Slow-5. In Slow-6, db2 exhibited the highest sensitivity among the five mother wavelets. In Slow-2, db2 and sym3 exhibited higher sensitivity than bior4.4, morl, and meyr. The detailed number of voxels is listed in Supplementary Table S1. The brain areas exhibiting a significant difference between EC and EO in Slow-6, Slow-2, and conventional band are shown in Figures 2–4, respectively. The brain areas exhibiting a significant difference between ADHD and TDC of NYU cohort in Slow-6 and Slow-2 are shown in Supplementary Figures S6,S7, respectively. It should be noted that although there were several maps, we only indicated those of FFT-ALFF and db2-ALFF.
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FIGURE 1. The mean sensitivity (ratio of Wavelet-ALFF to FFT-ALFF) across all five cohorts (NYU, PKU1, PKU2, PKU3, and EOEC) of a given frequency band and a given mother wavelet. All mean ratios were greater than 1, i.e., Wavelet-ALFF was more sensitive than FFT-ALFF. ALFF, amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2, Daubechies 2; FFT, fast Fourier transform; meyr, Meyer; morl, Morlet; sym3, Symlets 3.
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FIGURE 2. The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in Slow-6 (0–0.0117 Hz) by FFT-ALFF (A) and db2-ALFF (B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; Pcun_L, left precuneus.
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FIGURE 3. The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in Slow-2 (0.1992–0.25 Hz) by FFT-ALFF (A) and db2-ALFF (B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; SMA_R, right supplementary motor area.
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FIGURE 4. The t map (p < 0.05, cluster size ≥ 10 voxels) of eyes closed (EC) versus eyes open (EO) in the conventional band (0.0117–0.0781 Hz) by FFT-ALFF (A) and db2-ALFF (B), respectively. Warm colors indicate higher ALFF in EC conditions. ALFF, amplitude of low-frequency fluctuation; FFT, fast Fourier transform; PoG_L, left postcentral gyrus.


The aforementioned results of higher sensitivity were consistent when a more stringent threshold (p < 0.01, cluster size ≥ 10 voxels) was used (Supplementary Tables S2, S3). The mean sensitivity of db2-ALFF results was 2.36 times that of FFT-ALFF in the higher frequency band Slow-2.



Comparison of Reproducibility Across Cohorts in the ADHD-200 Dataset

Figure 5 shows a comparison of reproducibility between Wavelet-ALFF result and FFT-ALFF result. A ratio > 1 indicates higher reproducibility of Wavelet-ALFF than FFT-ALFF. Wavelet-ALFF indicated more reproducible results across cohorts in the ADHD-200 dataset than FFT-ALFF in all frequency bands and all mother wavelets.
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FIGURE 5. The reproducibility ratio [see formula (4) for method] of Wavelet-ALFF result to FFT-ALFF result. The reproducibility was defined by overlapped voxels of at least three cohorts in the four ADHD cohorts (NYU, PKU1, PKU2, and PKU3). All reproducibility ratios were greater than 1, i.e., Wavelet-ALFF result was more reproducible than FFT-ALFF result. ALFF, amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2, Daubechies 2; FFT, fast Fourier transform; meyr, Meyer; morl, Morlet; sym3, Symlets 3.


The reproducibility indicated a frequency-dependent difference between Wavelet-ALFF results and FFT-ALFF results (Figure 5). Specifically, the reproducibility ratio was the lowest in the conventional frequency band (0.0117–0.0781 Hz). The Wavelet-ALFF in lower frequency band Slow-6 (0–0.0117 Hz) and higher frequency band Slow-2 (0.1992–0.25 Hz) appeared as more reproducible than in Slow-3, Slow-4, and Slow-5. In Slow-6, db2 appeared as the most reproducible, and in Slow-2, db2 and sym3 were more reproducible than bior4.4, morl, and meyr. The detailed number of overlapped voxels of at least three cohorts in the four ADHD cohorts is listed in Supplementary Table S4. The detailed reproducibility ratio is listed in Supplementary Table S5, and the reproducibility brain maps of Slow-6 and Slow-2 are shown in Supplementary Figures S8, S9.

The aforementioned results of higher reproducibility were overall consistent when a more stringent threshold (p < 0.01, cluster size ≥ 10 voxels) was used (Supplementary Tables S6, S7). The reproducibility of db2-ALFF results was three times that of FFT-ALFF in the higher frequency band Slow-2.



Similarity of Spatial Pattern of Wavelet–Amplitude of Low-Frequency Fluctuation With Fast Fourier Transform–Amplitude of Low-Frequency Fluctuation

Dice similarity coefficient indicated a moderate to high similarity (0.53–0.90) of the spatial patterns detected by FFT-ALFF with those detected by Wavelet-ALFF (Figure 6 and Supplementary Table S8). The overlap of Wavelet-ALFF with FFT-ALFF indicated a frequency-dependent character. Specifically, the overlap was less prominent in the higher frequency band Slow-2 (0.1992–0.25 Hz) and Slow-6 (0–0.0117 Hz), while the Slow-3 and Slow-4 indicated a more prominent overlap.


[image: image]

FIGURE 6. The mean DSC for similarity analysis of spatial pattern calculated from different mother wavelets and FFT-ALFF in different frequency bands. ALFF, amplitude of low-frequency fluctuation; bior4.4, biorthogonal 4.4; db2, Daubechies 2; DSC, Dice similarity coefficient; FFT, fast Fourier transform; meyr, Meyer; morl, Morlet; sym3, Symlets 3.


The five mother wavelets were compared, and db2-ALFF and sym3-ALFF exhibited the least prominent overlap with FFT-ALFF in the higher frequency band Slow-2 (0.1992–0.25 Hz).



DISCUSSION


Why We Used the EOEC Dataset and the ADHD-200 Dataset

RS-fMRI studies include within-condition, between-condition, and between-group comparisons. Studies on a single condition yielded very robust results of networks. For example, the default mode network can be determined in literally each subject. Among the studies of between-condition comparison within a single group of subjects, differences between EO and EC resting conditions are significantly consistent across studies using FFT-ALFF (Yan et al., 2009; Liu et al., 2013; Zou et al., 2015; Zhao et al., 2018). Most clinical studies correspond to between-group comparison. Although a gold standard does not exist in clinical RS-fMRI studies, reproducibility across different studies is a very important index. Unfortunately, only a very limited number of RS-fMRI studies (e.g., Turner et al., 2013; Wang et al., 2017) tested reproducibility across different datasets. Specifically, ADHD-200 is an open-access dataset and is widely utilized. We recently reported the extremely low reproducibility of RS-fMRI results across ADHD datasets. Therefore, the aim of the current study involved exploring whether Wavelet-ALFF can increase the reproducibility of differences between ADHD and healthy controls across datasets from different research centers.



Why We Used the Amplitude of Low-Frequency Fluctuation Among the Resting-State Functional MRI Metrics

There are several metrics for RS-fMRI. However, we only used the simplest metric, i.e., ALFF, in the current study. Other metrics involve significantly more options for parameters. For example, there are countless options for seed selection in seed-based functional connectivity analysis. Additionally, most RS-fMRI network metrics are not suitable for coordinate- or voxel-based meta-analysis. ALFF is a typical metric of single-voxel level or single time series analysis. All the previous ALFF studies were based on FFT. Only two studies mentioned WT and used the power as a metric of local activity (Salomon et al., 2011; Bajaj et al., 2013). It should be noted that the ALFF corresponds to the averaged square root of power. Existing studies have not compared the results between FFT-ALFF and Wavelet-ALFF. In the current study, we compared the results of Wavelet-ALFF of five mother wavelets with that of FFT-ALFF on several RS-fMRI cohorts in the conventional frequency band as well as sub-bands. We compared their sensitivity, reproducibility, and overlap.



Sensitivity and Reproducibility

The sensitivity analysis indicated that Wavelet-ALFF was generally more sensitive than FFT-ALFF to the between-group differences (i.e., ADHD group versus TDC group) and between-condition differences (i.e., EO versus EC) in all frequency bands (Table 1 and Supplementary Table S1). Specifically, db2-ALFF exhibited the highest sensitivity among all the mother wavelets in the very low frequency band Slow-6 (0–0.0117 Hz) and higher frequency band Slow-2 (0.1992–0.25 Hz).

With respect to the reproducibility, as shown in Figure 5 and Supplementary Tables S4, S5, the Wavelet-ALFF results of every mother wavelet were more reproducible across the four ADHD cohorts than the FFT-ALFF results in all frequency bands, while more prominent in Slow-6 (0–0.0117 Hz) and Slow-2 (0.1992–0.25 Hz). Among the five mother wavelets, db2-ALFF exhibited the highest reproducibility. Specifically, for the higher frequency band (Slow-2), db2-ALFF results exhibited a better reproducibility of 2.95 times of FFT-ALFF results (Figure 5 and Supplementary Tables S4, S5).

When a more stringent threshold (p < 0.01, cluster size ≥ 10 voxels) was used, the aforementioned results of higher sensitivity and higher reproducibility of Wavelet-ALFF than FFT-ALFF were similarly maintained (Supplementary Tables S2, S3, S6, S7). It should be first noted that high sensitivity does not mean true positive. It merely implies that more voxels were detected. Jia et al. (2018) found that stringent or liberal multiple comparison correction could not control the false discoveries across multiple studies when the effect sizes were relatively small. The reproducibility of the results across multiple cohorts is more important for the recovery of the ground truth. Hence, the reproducibility of the results across four ADHD cohorts was measured. However, higher reproducibility does not always mean a true positive due to the limited number of cohorts. Additional datasets of other disorders should be used in future studies. The current results simply imply that Wavelet-ALFF was slightly better when compared with FFT-ALFF. As shown in the between-condition comparison (i.e., EO versus EC), when compared with those detected by FFT-ALFF, the significantly different voxels detected by db2-ALFF covered more extended physiologically relevant regions albeit similar, such as the precuneus in Slow-6 (Figure 2), supplementary motor area in Slow-2 (Figure 3), and postcentral gyrus in the conventional band (Figure 4), which can be related to alpha waves modulated by the closure of eyes. In the between-group comparison (i.e., ADHD group versus TDC group) for NYU cohort, when compared with FFT-ALFF, db2-ALFF detected more regions that can be associated with ADHD pathophysiology such as the middle frontal gyrus and middle occipital gyrus in Slow-6 (Supplementary Figure S6), superior occipital gyrus, and supplementary motor area in Slow-2 (Supplementary Figure S7). Nevertheless, future studies should focus on the same.

There are two reasons for the superiority of db2 compared to the other mother wavelets. First, the support width of db2 is less than that of the other mother wavelets, and the less support width of db2 makes an increase in the degree of localization of the wavelet coefficients (Zhang et al., 2016), which makes db2 more effective in detecting local or non-stationary features of the signal. Second, db2 appears to be quite similar to the hemodynamic response function (HRF) among the five mother wavelets. A CWT of HRF was implemented with a frequent parameter of 64 (24) scale. If the summation of the absolute value of the wavelet coefficients is larger, the similarity is higher (Rafiee et al., 2011). It was found that the summation of db2 (229.4348) was the largest compared to sym3 (224.7303), bior4.4 (219.8648), meyr (201.7399), and morl (182.8433). Higher similarities may facilitate identification of the signal feature more precisely (Singh and Tiwari, 2006; Rafiee et al., 2011; Ngui et al., 2013).



Very Low Frequency Band Slow-6 and Higher Frequency Band Slow-2

In RS-fMRI studies, the very low frequency band Slow-6 has attracted less attention. Zhang et al. (2015) indicated that the FFT-ALFF of Slow-6 (0–0.0117 Hz) in the basal ganglia was higher during the state of real feedback finger force than during sham feedback state. Beyond the conventional low frequency band (<0.1 Hz), several RS-fMRI studies investigated the higher frequency band (>0.1 Hz) signal. Yuan et al. (2014) used fast sampling (TR = 400 ms) RS-fMRI and suggested that the differences of fluctuation amplitude between EO and EC resting states were in the conventional frequency band (<0.1 Hz) and higher frequency band (up to 0.35 Hz). Two independent RS-fMRI studies on chronic pain used conventional sampling rate (TR = 2 s) and consistently found increased spectral power of patients in the higher frequency band (Malinen et al., 2010; Otti et al., 2013). It should be noted that the amplitude is proportional to the square root of spectral power (Zang et al., 2007). The aforementioned studies all suggested that the very low frequency band Slow-6 and higher frequency band Slow-2 can contain neural-related information. We recommend db2-ALFF to substitute FFT-ALFF in future studies given its higher performance in sensitivity and reproducibility in very low frequency ALFF and higher frequency ALFF of db2 mother wavelet than FFT-ALFF. However, there is no widely accepted gold standard for RS-fMRI results of between- or within-group comparison studies. The current better reproducibility of db2-ALFF when compared to other mother wavelets and FFT-ALFF was obtained in only four ADHD cohorts. Therefore, this should be tested in more datasets in the future.

It should be noted that although db2-ALFF exhibited higher sensitivity and higher reproducibility in the very low frequency and higher frequency band, it does not imply that the very low frequency band and higher frequency band are more physiologically or pathophysiologically meaningful than the conventional frequency band. Specifically, the conventional frequency band detected the largest number of voxels among sub-frequency bands (Supplementary Figure S10). The results simply imply that the performance of db2-ALFF exceeds that of FFT-ALFF.



Overlap of Spatial Pattern by Wavelet–Amplitude of Low-Frequency Fluctuation With Fast Fourier Transform–Amplitude of Low-Frequency Fluctuation

The vast majority of previous ALFF studies have used FFT, and thus we calculated the overlap of spatial pattern of Wavelet-ALFF results with FFT-ALFF results. Generally, the spatial patterns detected by FFT-ALFF with Wavelet-ALFF were very similar in the conventional frequency band (0.0117–0.0781 Hz), Slow-3 (0.0742–0.1992 Hz), and Slow-4 (0.0273–0.0742 Hz) with a DSC of approximately 0.85. The overlap was less prominent in the higher frequency band Slow-2 (0.1992–0.25 Hz) and very low frequency band Slow-6 (0–0.0117 Hz), wherein the db2-ALFF and sym3-ALFF in the higher frequency band Slow-2 (0.1992–0.25 Hz) exhibited less spatial overlap with FFT-ALFF than all other conditions (Figure 6). The lower spatial overlap of results by db2- and sym3-ALFF with those of FFT-ALFF could be attributed to the improved performance of both sensitivity and reproducibility of db2- and sym3-ALFF.



Limitations

First, the study used only five mother wavelets that were used in previous fMRI literature. Future studies should use more mother wavelets. Second, the dynamic character is an advantage of WT. However, there were an excessive number of time points, and thus it is difficult to interpret the results if the t-test was performed on every time point. A future study should propose an integrated metric to characterize its dynamics. Third, db2-ALFF indicated optimal sensitivity and reproducibility in higher frequency Slow-2. However, based on the Shannon–Nyquist sampling theorem, the lower sampling rate (TR = 2 s in the current study) resulted in aliasing effect. This implies that the signal in Slow-2 can be aliased from higher frequency physiological noise of heart beating (around 1.2 Hz) and respiratory (around 0.33 Hz). Future studies could use db2-ALFF in fast sampling rate RS-fMRI dataset. Fourth, we used only four independent datasets of ADHD cohorts to test the reproducibility. It should be noted that higher reproducibility of Wavelet-ALFF in such small number of cohorts does not imply higher specificity. The current results should be tested in more (preferably more than 20) datasets. Fifth, the current study compared only an RS-fMRI metric, i.e., ALFF. Systematic investigations should be performed for other metrics to compare wavelet- and FFT-based analyses. Sixth, many preprocessing parameters may affect the results. Additional datasets of other brain disorders are also important. Future studies will focus on these aspects.



CONCLUSION

In summary, the results indicated that Wavelet-ALFF was generally more sensitive to the between-group and between-condition differences than FFT-ALFF in all frequency bands. More importantly, the Wavelet-ALFF results indicated a better reproducibility across the four ADHD cohorts than the FFT-ALFF results in all frequency bands. Specifically, in the higher frequency band Slow-2 (0.1992–0.25 Hz), the reproducibility of db2-ALFF result was 2.95 times that of FFT-ALFF result. This suggested that Wavelet-ALFF can replace FFT-ALFF as a potentially reliable marker to determine the exact location of local abnormal brain activity in future studies and further help precise intervention such as deep brain stimulation and transcranial magnetic stimulation.
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Objective

Neuroimaging-based brain signatures may be informative in identifying patients with psychosis who will respond to antipsychotics. However, signatures that inform the electroconvulsive therapy (ECT) health care professional about the response likelihood remain unclear in psychosis with radiomics strategy. This study investigated whether brain structure-based signature in the prediction of ECT response in a sample of schizophrenia patients using radiomics approach.



Methods

This high-resolution structural magnetic resonance imaging study included 57 patients at baseline. After ECT combined with antipsychotics, 28 and 29 patients were classified as responders and non-responders. Features of gray matter were extracted and compared. The logistic regression model/support vector machine (LRM/SVM) analysis was used to explore the predictive performance.



Results

The regularized multivariate LRM accurately discriminated responders from non-responders, with an accuracy of 90.91%. The structural features were further confirmed in the validating data set, resulting in an accuracy of 87.59%. The accuracy of the SVM in the training set was 90.91%, and the accuracy in the validation set was 91.78%.



Conclusion

Our results support the possible use of structural brain feature-based radiomics as a potential tool for predicting ECT response in patients with schizophrenia undergoing antipsychotics, paving the way for utilization of markers in psychosis.





Keywords: schizophrenia, electroconvulsive therapy, response, prediction, radiomics



Introduction

Despite progress, how to treat schizophrenia, an overwhelmingly and highly heterogeneous mental disorder, effectively is still to be learnt because of poor response to antipsychotics in as many as 30% of patients (1). From the perspective of stigmatization, genetic etiology of schizophrenia are more frequently linked to stigmatizing attitudes for psychosis, with a higher level of perceived stigmatization in medical students and medical doctors (2). Effective treatments appear to be critical, thereby lessening the impact of the disorder and decreasing the stigma. Holding synergistic effects in combination with antipsychotics, there is growing evidence to support that addition of electroconvulsive therapy (ECT) may be an effective alternative for chronic patients with refractory symptoms, exhibiting the safety and short-term efficacy (3–5). ECT is most commonly considered in patients with schizophrenia only after unsuccessful treatment with antipsychotic medication (6). Also, ECT may be of value in the treatment of acute schizophrenia when used in combination with antipsychotic medications (7).

Previous clinical studies also demonstrate that a small portion of these patients are resistant to substantial improvement with ECT of clozapine augmentation. Overall, 34% non-responder rate has been reported by a meta-analysis recently; 46% non-responder rate across clinical trials (8). Because ECT is liable to provoking cognitive impairment and multi-system adverse effects, much more invasive relative to pharmacotherapy, costly in relation to the procedure, and available for partial hospitals, the ECT health care professional should accurately identify non-responders before treatment. A pressing need of predictive markers exists in clinical management of ECT for schizophrenia, which is of high clinical relevance. A recent review has shown the predictors of response to ECT in schizophrenia, including symptoms, age, duration of illness, family history of schizophrenia, and baseline global functioning and cognitive functions (9), but no further attempts have been made to substantiate the predictors.

Neuroimaging techniques provide promising assessment tools to allow for individualized treatment in psychiatry. However, despite compelling evidence of a biological basis of schizophrenia, research into brain imaging features reflecting its pathophysiology mechanism to guide clinical practice is obviously lagged behind (10). Substantial efforts are still required to identify biomarkers informative in treatment response before reaping the reward of clinical benefit in schizophrenia patients. Decades-long research on structural and functional imaging has accumulated burgeoning evidence for disrupted brain network involving the pathophysiology of schizophrenia. In a previous review by Dazzan et al. (11), structural magnetic resonance imaging (MRI) could be helpful in stratifying patients with schizophrenia into clinically meaningful clusters. Afterward, despite negative results (12), proliferated evidence has provided more support for structural features of responsiveness to antipsychotic drug treatment (see Cui et al. for review) (13).

Promisingly, according to several recent findings, neuroimaging could be helpful identifying the predictive biological markers of depression. Most neuroimaging studies of ECT demonstrate treatment-related increase of hippocampal volume (14) and disturbed white matter integrity (15). In major depressive disorder, Oltedal et al. detected 0.28% hippocampal enlargement per ECT session, and the variety of volume change by electrode placement (i.e., bilateral, right unilateral) in the left hippocampus; Repple et al. found an increased mean diffusivity following ECT in the right hemisphere, and a correlation between seizure duration and decreased fractional anisotropy, suggesting an effect of ECT on the permeability of the blood-brain barrier. A recent structural MRI at baseline has been proven to be successful for predicting responsiveness to ECT in patients with major depressive disorder (16). As for functional MRI, in severe and treatment-resistant depressive patients, a multivariate pattern analysis study suggests that resting-state networks could play an important role in predicting remission from depression following a course of ECT (17). A review by Sanghani et al. summarizes neuroimaging predictors of response to ECT augmentation of antipsychotic medications in schizophrenia, involving structural and functional MRI (4). Also, radiomics approach could play an important role in precision medicine (https://allofus.nih.gov/). In the context of radiomics, it is a method to obtain more high dimensional features that might be options used for machine learning analysis, because medical images are digitally encrypted and hold a number of information involved in pathophysiology (18). It extracts high-throughput information and detects core features for supporting clinical decision making. Radiomics analysis has shown evident capacities for classification and prediction in schizophrenia. Notably, a valid approach by means of MRI to diagnose schizophrenia has been developed using radiomics strategy with an accuracy of 87%, as demonstrated by Cui et al. (19). Taken together, neuroimaging-based brain signatures hold great promise that contributes to supporting decision making to select the proper treatment in psychosis. The structural underpinnings are crucial for underling the pathophysiology of schizophrenia (20–23). It is already plausible that cerebral structure-based neurologic signature could be a potential biomarker associated with treatment response for patients with schizophrenia.

Therefore, in the current study, we aimed to examine whether brain structure-based signature in the prediction of ECT response in a sample of schizophrenia patients using radiomics approach, making a step to improve individualized treatment of schizophrenia using specific, quantitative, and objective biomarker for clinical management. Both logistic regression model and support vector machine (LRM/SVM) analyses were used to explore the predictive performance. In line with Tandon et al. (24), our goal is also “a deeper understanding of the pathophysiology of schizophrenia leading to improved treatment”. We hypothesized patients with a distinct structural feature of the brain would reveal different response to ECT.



Material and Methods


Participants

This study was approved by the local institutional ethics committee. Written informed consent was obtained from all the participants (or their parents for those under age of 18 years) after complete description of the study. A total of 57 patients who would be assigned to take ECT were recruited from the Xi'an Mental Health Center (25). According to clinical practice guidelines and expert consensus, indications for use of ECT include patients with treatment-resistant schizophrenia or with schizophrenia who have suicidal behavior/suicide attempts/acute episode (see the Supplementary Material). Treatment resistance is defined as little or no symptomatic response to multiple (at least two) antipsychotic trials of an adequate duration (at least 6 weeks) and dose (therapeutic range) [American Psychiatric Association (APA) practice guidelines] (26). The consensus diagnoses were made by two experienced clinical psychiatrists on the basis of Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) using all the available information. All patients underwent MRI scanning at baseline. Our study had no influence on the therapy and clinical assessment determined by their clinicians. Positive And Negative Syndrome Scale (PANSS) that evaluated each patient's symptoms at the time of first and second scans were used for the following analysis. The exclusion criteria included: (1) presence of another axis I or axis II psychiatric disorder; (2) history of receiving ECT; (3) history of clinically significant neurological, neurosurgical, or medical illnesses; (4) substance abuse within the prior 30 d or substance dependence within the prior 6 months; (5) pregnancy or other MR imaging contraindications, e.g., cardiac pacemakers and other metallic implants.

Treatment response was assessed using percentage change of symptoms based on PANSS. Responders were defined as 70% reduction in PANSS total scores, an elevated level as high as the criterion of 30% traditionally used (27, 28), as performed by Petrides et al. (29). In our database, only subscale scores were available, we were unable to use the Remission criteria of the Schizophrenia Working Group Consensus (30). Here, we must emphasize the additional complexity and risk associated with ECT, as well as mounted efforts from clinicians and patients, and therefore we increased expectations with which should be met. Dose of antipsychotic medication was converted to defined daily dose (DDD) (31). Patients were divided into two groups randomly, a training set (n = 44, including 22 responders and 22 non-responders) and a validation set (n = 13, including 6 responders and 7 non-responders) using statistical software. Demographic and clinical characteristics are listed in Table 1.


Table 1 | Demographical and clinical characteristics of participants.





Image Acquisition

A GE Discovery MR750 3.0 T scanner was used to acquire images in the Department of Radiology at Xi'an Mental Health Center. As we performed previously, high-resolution T1-weighted structural data were obtained as we performed previously (Table S1) (19). During the scans, all participants were instructed to relax, move and think of nothing in particular as little as possible, keep their eyes closed, and not sleep. We also used a custom-built head cushion to minimize head motion in order to avoid excessive motion, reducing head motion artifacts during acquisition. Thereafter, we carefully checked all the images before the following analysis, thereby ensuring the image quality. Further details about image acquisition are described in the Supplementary Material.



Electroconvulsive Therapy

Unilateral ECT was conducted in all patients three cycles per week within the duration of hospital stay. A total of nine to 12 sessions of ECT were given using an instrument (spECTrum 5000Q). The stimulus current was 800 mA, and the stimulus duration ranged from 3 to 5 s. Stimulus frequency was adapted due to different seizure threshold varied for individuals. Also, electrocardiography, blood pressure, and oxygen saturation examinations were carried out to exclude severe complications. All patients were anesthetized with propofol or etomidate, and a muscle relaxant (succinylcholine) was administered, which were calculated based on the body weight of each patient.



Image Processing

Data processing is described elsewhere previously (Figure 1A). The voxel-based morphometry (VBM) analysis was performed using CAT12 toolbox (C. Gaser, Structural Brain Mapping group, Jena University Hospital, Jena, Germany) implemented in SPM12 (Statistical Parametric Mapping, Institute of Neurology, London, UK) with the default setting. Briefly, All T1-weighted images are normalized using an affine followed by non-linear registration, corrected for bias field in homogeneities. Segmentation into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) (32) and spatially normalization using the DARTEL-algorithm (33) were then applied. In the last step of DARTEL, a non-linear deformation approach was used to modulate the GM tissues for comparing the relative GM volume adjusted for individual brain size. Furthermore, the voxel values in the tissue maps are modulated by the Jacobian determinant that was calculated during spatial normalization (34). To assess the homogeneity of the GM tissues, a quality check was performed using a CAT12 toolbox once the preprocessing pipeline was completed (35). The modulated and normalized GM tissues were not smoothed to avoid loss of image information. The GM tissues were used for subsequent statistical analysis.




Figure 1 | Regions of interest (ROIs) definition and feature extraction. (A) A flowchart for the data processing. (1) The modulated and normalized gray matter (GM) tissues were generated from T1-weighted images of each patient. (2) Patients were divided into two groups randomly, a training set (n = 44) and a validation set (n = 13) using statistical software. (3) Nineteen ROIs were defined using a two-sample t-test and two thresholds. (4), (5) 15 first-order statistics features were extracted from each ROI of patients in both the training and validation sets. (6), (7) A leave-one-out cross-validation (LOOCV) framework was used to perform pattern classification analysis in the training set, and all models were validated on the validation set. (8) We calculated the frequency of each feature and obtained a ranking that characterized the importance of features. (9), (10) three selected features were used to train the radiomic LRM. (B) Nineteen ROIs were defined using a two-sample t-test, a threshold of P < .05 (uncorrected) and an extent threshold of 100 voxels. The anatomical location of each ROI was described using AAL atlas.





Statistical Analysis and ROIs Definition

We used SPM12 for all of the statistical analyses. First, a two-sample t-test was performed to compare the GM volume between responder and non-responder in the training set without covariates. The relative GM volume changes were assessed at a threshold of P < .05 uncorrected. The extent threshold was set at 100 voxels to define the regions of interest (ROIs) which could have enough voxels to calculate features for classification. Focusing on the ROIs from the two-sample t-test is equivalent to initially screening out areas that may be distinguishable, so that their features may have clinically meaningful predictive capacity. The Automated Anatomical Labeling (AAL) atlas (36), which parceled the GM into 90 anatomical regions was adopted to describe the anatomical location of each ROI. If the overlapping percentage of the ROI with a region of AAL is greater than 50%, the anatomical location of it is described as the region (Table S2).



Feature Extraction

Fifteen first-order statistics features calculated from the histogram of each ROI GM volume values were extracted from each ROI of patients in both the training and validation sets (Table S3) (37). The mean, median, standard deviation, and root mean square are the most commonly used and basic statistical metrics. The skewness measures the degree of histogram asymmetry around the mean, and kurtosis is a measure of the histogram sharpness. As measures of histogram randomness we computed the uniformity and entropy of the image histogram. The feature algorithms were implemented in Matlab 2014a (MathWorks, Natick, MA, USA). All features of ROIs for each patient were concatenated into a feature vector and were connected in parallel to form a feature matrix in each data set. All features of the training set were standardized to zero mean and unit variance to avoid model building being affected by the differences in the feature scales, and the validation set were processed with the same standardization criterion to ensure the independence before pattern classification (38).



Pattern Classification Analysis

A leave-one-out cross-validation (LOOCV) framework was used to perform pattern classification analysis in the training set (Figure 2) (39). Specifically, the best features based on univariate statistical tests (two-sample t-test) between responders and non-responders in the remaining patients were selected with P < .05 (uncorrected), and then regularized multivariate logistic regression model (LRM) with the least absolute shrinkage and selection operator (LASSO) penalty was applied to select more important features and to build a classifier (40). Moreover, the support vector machine (SVM) method was used to validate results as an independent classifier using the features selected by LASSO. Performance of the classifiers was measured quantitatively using the area under the receiver operating characteristic (ROC) curve (AUC) (Table S4). Besides, one patient did not receive antipsychotic drugs, which might affect the results. Since there had been a significant difference in antipsychotic dose between responders and non-responders, we excluded this patient and reanalyzed.




Figure 2 | Pattern classification analysis. A leave-one-out cross-validation (LOOCV) framework was used to perform pattern classification analysis in the training set. In the LOOCV, one patient was used as a testing sample, and the remaining patients were applied as training samples to select features and build the classifier to classify the testing sample. Classification performance could be estimated based on all of the testing samples and be validated based on the averaged classification results of validation set. ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve; PHI, phi correlation coefficient.



In order to obtain a model with fixed radiomic features and analyze the impact of clinical factors, we constructed the multivariate LRM based on the training set and validated it on the validation set. Frequency of each feature selected by LASSO across 44 training partitions of the cross-validation setup was calculated to assess feature importance and to obtain a ranking of features (Table S5) (41). Features greater than 50% of the selected frequency were important and used as a feature set for further feature selection (41). To analyze the impact of clinical factors, negative score and antipsychotics dose combined with fixed radiomic features were also used to build the fusion LRM model. For these two LRM, we evaluated the multicollinearity according to the variance inflation factor (VIF) and tested the significance of regression coefficients (β) with t-tests for each independent variable (42). If VIF was less than 4, there was no evidence of a multicollinearity problem (42). The following R packages were used for pattern classification analysis (http://www.R-project.org) (see Supplementary Material for this section).




Results


Participant Characteristics

The demographic and clinical characteristics of the participants are listed in Table 1. In consistence with previous reports (13), 28 and 29 patients were classified as responders (49%) and non-responders (51%) after ECT. No statistically significant difference in baseline demographic characteristics was found between responders and non-responders. Participants who responded had a lower level of PANSS negative score (P = .001) and received more antipsychotics (P = .03) than those who did not respond before treatment.



ROIs Definition and Feature Extraction

Nineteen ROIs were defined, and the details were described in Table S2 and were shown in Figure 1B. Fifteen first-order statistics features were calculated from the histogram of each ROI GM volume values (Table S3). A total of 285 features per patient were used for pattern classification analysis.



Predictive Performance

The regularized multivariate LRM accurately discriminated responders from non-responders on the basis of the ROC curve with an accuracy of 90.91% and AUC value of 0.9318 (Figure 3A and Table S4) and were further confirmed in the validating data set, resulting in an accuracy of 87.59% and AUC value of 0.9031 (Figure 3B and Table S4). To assess possible overfitting, the DeLong test was implemented on the ROC curves and revealed that the differences were not statistically significant among the AUCs of the training set and the validation set, with P values of 0.5804. Moreover, we used the SVM to replicate findings above. The accuracy of the SVM based on all of the testing samples in the training set was 90.91%, and the accuracy in the validation set was 91.78% (Table S4). The ROC curves of the training set and the validation set were shown in Figures 3A, B, and P value of the DeLong test was 0.6443. Moreover, we excluded a patient without receiving antipsychotics and reanalyzed, and there was no significant difference in antipsychotic dose between responders and non-responders (P > 0.05). The accuracy of the LRM based on all of the testing samples in the training set was 90.91%, and the accuracy in the validation set was 87.12% (Table S6). The AUC of the training set and the validation set were 0.9318 and 0.9034 separately, and P value of the DeLong test was 0.5586. The accuracy of the SVM based on all of the testing samples in the training set was 90.91%, and the accuracy in the validation set was 90.91% (Table S6). The AUC of the training set and the validation set were 0.9298 and 0.9407 separately, and P value of the DeLong test was 0.8386.




Figure 3 | Areas under receiver operating characteristic (ROC) curves in the training set (A) and validation set (B).



The fusion LRM with fixed radiomic features was built (Table S7) and the classification performance of the model was shown in Table S8. The ROC curves were shown in Figure S1 and P value of the DeLong test was 0.3785. Negative score and antipsychotics dose combined with fixed radiomic features were also used to build the fusion LRM model for analyzing the impact of clinical factors. However, negative score was removed due to the multicollinearity (VIF > 4), and antipsychotics dose was removed because the regression coefficient was not significant. These two clinical factors could not be left in the final LRM.




Discussion

In this naturalistic study, the principal findings indicated a potential predictive capacity between patients who subsequently responded and did not respond using radiomics approach, with clinically meaningful accuracy (LRM: 90.91% in training and 87.59% in validation; SVM: 90.91% in training and 91.78% in validation). We identified neuroanatomical features with successful level prediction of ECT response, involving cortical (inferior frontal gyrus, cingulate cortex, and temporal and parietal lobes) and subcortical regions (insula, thalamus, and hippocampus).

Although ECT combined with antipsychotics has been included in treatment guidelines (26, 43), the suggestions from radiologists to psychiatrists and patients and their families regarding the treatment efficacy of ECT based on predictive/prognostic markers, as approaches uncovering paths toward delivering precision medicine, is of remarkable clinical significance. In the study by Kupchik et al., there are 33% (n = 12) patients with symptoms resistant to typical antipsychotics who did not benefit in the clozapine-ECT group (44). Then, an open-label prospective study finds that 40% (n = 6) patients with refractory schizophrenia did not meet response criteria after receiving a combination of ECT and clozapine. Furthermore, a prospective randomized study notes 51.3% (n = 20) patients defined as non-responders after treatment of ECT plus clozapine or ECT augmentation (29). In a meta-analysis reporting 46% non-responder rate across clinical trials, the response defined as percentage improvement in scale/subscale score of PANSS/Brief Psychiatric Rating Scale, arranging from 25% to 40% (8). On the contrary, we defined as decrease of ≥ 70% in total PANSS score, resulting in higher level of non-responder rate (51%). Radiomics features in the present study may assist in the treatment selection, allowing for individual differences in treatment algorithms to some extent. Hence, additional remedies need to be considered and much more attention need to be paid in such a setting to ameliorate symptoms of patients, including transcranial magnetic stimulation, and psychological therapy. Biomarkers obtained from the brain such as structural features hold great promise that contributes to better management of patients with refractory schizophrenia.

Of particular interest, in our study, features used for prediction were extracted predominantly from the inferior frontal gyrus, cingulate cortex, temporal and parietal lobes, insula, thalamus, and hippocampus. These identified regions have been implicated in previous studies looking before/after ECT brain changes. Recent MRI studies have detected longitudinal alterations of the brain pre- and post-ECT interventions in patients with schizophrenia. Recent neuroimaging studies have shown an association of ECT in schizophrenia with increase in GM volume within the medial temporal lobe (amygdala, hippocampus, and insula) (45) and increased global functional connectivity density among key regions within default mode network (precuneus and medial prefrontal cortex) (46). ECT exerts therapeutic efficacy via elevating the concentration of N-acetylaspartate in the left prefrontal cortex and thalamus, indicating an antipsychotic effects through neuroprotective mechanism (47). In a sample of schizophrenia and depression, ECT reveals both disorder-specific and transdiagnostic effects. Structural network analysis suggests a volume increase in the lateral prefrontal/cingulate cortical network as schizophrenia-specific changes after ECT (48). On the contrary, transdiagnostic impacts across schizophrenia and depression include an enlargement of the medial temporal lobe (hippocampus, parahippocampus, and amygdala) and insula, together with attenuated functional connectivity involving tempoparietal, prefrontal, and cortical midline structures and augmented hypothalamic functional connectivity (45, 48). It may be why these regions (therapeutic target) predict treatment outcome.

Methodologically, both LRM and SVM are linear classifiers. Using both of them demonstrates the validity of results. Machine-learning classification studies will have an influence on precision medicine. The increasing importance of radiomics in medical imaging creates an ideal situation for application of radiomics in psychiatry where there is no “lesion” but there are “features” for mental disorders, i.e., brain structure derived from structural MRI. This step by step analysis could promote our findings transforming clinical practice, which is helpful for the generalizability of the potential marker. Most recently, classification approaches provide a powerful way to promote the translation of neuroimaging-based signature to diagnostic, predictive or prognostic biological markers for mental disorders, including schizophrenia (19). In addition to these structural and functional tests previously discovered, we proposed this novel predictive tool to replenish the existing clusters of potential biomarkers, as an alternative approach. Future research needs to integrate and optimize them, resulting in true cerebral markers for clinical management of schizophrenia.

Nevertheless, there are still several issues that merit comments. The clinical characteristics revealed a variable duration of illness and antipsychotic dose for schizophrenia patients, which might have impact on our results. As a routine and natural clinical phenomenon, we could not modulate patients' duration of illness. In our study, we randomly divided patients in a 3:1 ratio to obtain a training set of 44 patients and a validation set of 13 patients. In order to overcome the issue of sample size and provide reliable prediction results, we used the LOOCV method in the training set to evaluate the classification ability of GM features, and select important features to construct a final model. Likewise, previous machine learning studies used similar sample sizes (25 responders and 13 non-responders in first-episode drug-naive patients with schizophrenia; 13 responders and 10 non-responders in patients with acute major depressive disorder) and got meaningful results (accuracy of 78.6% and 78.3%/73.9%) (16, 49). The number of features is much larger than the sample size, and the training set and validation set are drawn from the same dataset. Although we use the LASSO for feature selection to reduce the number of features and divide the data sets randomly, single-center data may lead to an overly optimistic estimation of classification performance and limit the generalizability of the results. In the future, multi-center datasets with larger samples will be needed to validate and promote these findings. Furthermore, we were unable to analyze the life-time cumulative dosages of antipsychotics that were unavailable in the clinical database at the hospital. The difference is small in the effectiveness of individual antipsychotics (50), and responders and non-responders in this study received antipsychotics in doses recommended by APA Practice Guidelines (olanzapine equivalents, 17.5 ± 5.9 mg/d, 13.8 ± 6.7 mg/d), which proposes that olanzapine in doses of 10–20 mg/d is effective in the acute phase of schizophrenia (26). Despite majority of atypical antipsychotics, patients received heterogeneous drugs, which may be helpful to control for drug dose or treatment type (e.g., typical antipsychotic and atypical antipsychotic) in the future analysis. Additionally, there was a significant difference in the severity of negative symptoms between responders and non-responders before treatment. This difference begs the question: would the baseline PANSS negative score be a predictor of treatment response? But Figure S2 indicates a limited diagnostic performance.



Conclusion

Conclusively, this study implies that radiomics-based structural brain feature could predict response to ECT combined with antipsychotics in schizophrenia patients. Useful neuroanatomical features for prediction involve brain regions modulated by ECT. Additional effort is urgent for longitudinal differences after the ECT series in patients with schizophrenia.
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Objective: During presurgical evaluation for focal epilepsy patients, the evidence supporting the use of high frequency oscillations (HFOs) for delineating the epileptogenic zone (EZ) increased over the past decade. This study aims to develop and validate an integrated automatic detection, classification and imaging pipeline of HFOs with stereoelectroencephalography (SEEG) to narrow the gap between HFOs quantitative analysis and clinical application.

Methods: The proposed pipeline includes stages of channel inclusion, candidate HFOs detection and automatic labeling with four trained convolutional neural network (CNN) classifiers and HFOs sorting based on occurrence rate and imaging. We first evaluated the initial detector using an open simulated dataset. After that, we validated our full algorithm in a 20-patient cohort against three assumptions based on previous studies. Classified HFOs results were compared with seizure onset zone (SOZ) channels for their concordance. The receiver operating characteristic (ROC) curve and the corresponding area under the curve (AUC) were calculated representing the prediction ability of the labeled HFOs outputs for SOZ.

Results: The initial detector demonstrated satisfactory performance on the simulated dataset. The four CNN classifiers converged quickly during training, and the accuracies on the validation dataset were above 95%. The localization value of HFOs was significantly improved by HFOs classification. The AUC values of the 20 testing patients increased after HFO classification, indicating a satisfactory prediction value of the proposed algorithm for EZ identification.

Conclusion: Our detector can provide robust HFOs analysis results revealing EZ at the individual level, which may ultimately push forward the transitioning of HFOs analysis into a meaningful part of the presurgical evaluation and surgical planning.

Keywords: high frequency oscillations, epileptogenic zone, epilepsy surgery, stereoelectroencephalography, convolutional neural network


INTRODUCTION

Although a majority of seizures can be well controlled by antiepileptic drugs, approximately 30% of patients suffer from uncontrolled seizures despite pharmacotherapy, who are potential candidates for presurgical evaluation and subsequent surgery interventions (Devinsky, 1999; Jobst and Cascino, 2015). Accurate localization and safe removal of the EZ are major prognostic factors for good surgical outcomes (Vakharia et al., 2018). Intracranial EEG recordings are often used to identify the epileptogenic regions, especially in MRI negative cases, for their capability of direct recording of epileptogenic discharges from brain parenchyma with high temporal and spatial accuracy, and they have been considered an electrophysiological gold standard for delineating SOZ, which defines EZ to a large extent (Rosenow and Luders, 2001). SEEG using depth electrodes has been more widely adopted in recent years because it is superior for recording deep brain structures and less invasive compared with the subdural grid electrode approach (Nagahama et al., 2018; Zijlmans et al., 2019). Currently, epileptologists mainly focus on ictal SEEG to reveal SOZ; however, interictal HFOs have increased in popularity as a promising biomarker for the EZ over the past decade (Bragin et al., 1999; Jacobs et al., 2008).

It has been well illustrated and replicated that the rates of HFOs were higher within the SOZ than outside (Worrell et al., 2004; Urrestarazu et al., 2007; Jacobs et al., 2008). From a surgical perspective, several studies have shown that tailored resection of HFOs regions predicts better surgical outcomes and that residual HFOs are prognostic markers for seizure recurrence (Wu et al., 2010; van Klink et al., 2014; van ’t Klooster et al., 2015). In addition, a recent meta-analysis also indicated a significant relationship between the removal of tissue with high HFOs rates and surgical outcomes (Holler et al., 2015).

HFOs are characterized as transient small and fast oscillating phenomenon, which typically last 6–30 ms with varied morphometry (Zijlmans et al., 2017). They can also sometimes be mislabeled due to impulse-like artifacts contamination and improper filtering (Benar et al., 2010). Therefore, it is well acknowledged that manual detection of HFOs can be extremely laborious, time-consuming and prone to subjective bias (Lopez-Cuevas et al., 2013; Spring et al., 2018). Under this background, a variety of automated detection algorithms have been developed, which were implemented to help limit the manpower required for HFO analysis significantly and to avoid the bias induced by human raters (Thomschewski et al., 2019). However, most HFO detection algorithms have been conducted through simply thresholding instantaneous frequency traces, which might be vulnerable to the influence of artifacts and the irregular morphometry of HFOs (Chaibi et al., 2013).

During clinical application of HFOs, not only is the detection accuracy important, but the classification of various events is also crucial. HFOs can be categorized into ripples (Rs, 80–250 Hz) and fast ripple (FRs, 250–500 Hz) according to their frequency range (Jacobs et al., 2012). FRs are reported to be more focal and closely linked to epileptogenicity than Rs (Engel et al., 2009; Akiyama et al., 2011). Evidence indicates that HFOs cooccurring with a spike were more closely related to the SOZ (Wang et al., 2013). In addition, artifacts due to muscle activity or bad connections result in significantly more FP findings. Therefore, a two-stage detection and classification framework was proposed and has achieved high sensitivity in recent years while maintaining high specificity by identifying different types of events at the second stage (Zijlmans et al., 2017). Under such a framework, some detectors have been developed as semiautomatic, requiring visual validation (Navarrete et al., 2016), while others have implemented fully automated postprocessing steps such as feature extraction and clustering for the classification problem (Gliske et al., 2016; Liu et al., 2016a).

For discriminating false HFOs or any other events, it has been suggested that time-frequency (TF) representation of HFOs is highly beneficial in distinguishing events of different types (Benar et al., 2010). Therefore, the event discrimination task can be categorized as a two-dimensional time-frequency image classification problem. Convolutional neural network (CNN)-based models are promising techniques that have been applied successfully for classifying images, and they have gained momentum in recent years for their advantageous performance over traditional models (Krizhevsky et al., 2012). Therefore, we hypothesized that CNN image classifiers can also be used for the HFO classification problem with good efficiency.

Although several HFOs detection algorithms have been published, the general validation and clinical value of these approaches are less well addressed in the clinical application aspect (Zijlmans et al., 2017). For ease of clinical use, the following merits should be considered for any efficient HFOs analysis tools. First, it should maintain high sensitivity and specificity when detecting HFOs. Second, the requirement for user input parameters and intervention should be minimized to save labor and reduce bias. Third, the algorithm should have robust classification ability to identify artifacts, subtypes of HFOs and HFOs cooccurring with other interictal epileptiform discharges. Fourth, because the final goal for any HFO detector is to locate the EZ through the distribution of HFOs, the clinical value of the algorithm should be evaluated and validated. Finally, the results should be properly projected on anatomical structures to facilitate surgical planning. Motivated by the clinical need for efficient and reliable HFOs analysis tool, the proposed algorithm attempted to cover the abovementioned properties and provided a comprehensive solution for HFO analysis. The automatic procedures mimic typical manual analysis, which includes channel selection (excluding channels outside the brain, with clear continuous artifacts or located in white matter), HFOs detection, classification and anatomical projection.

Overall, our detection algorithm adopted the two-stage framework containing an initial detector and a CNN-based classifier. We first validated the initial detector through a labeled simulated dataset built by Roehri et al. (2017). To further validate the clinical values of this pipeline, we retrospectively applied the method to intracranial EEG data recorded from 20 patients who underwent resection surgery with good surgical outcomes but with different pathological substrates. Taking advantage of the labeled events after classification, we further validated the results in a real dataset against some established findings in the literature while evaluating its performance for predicting SOZ.



MATERIALS AND METHODS


Stages of the Proposed Pipeline


Channel Selection

Preimplantation 1 mm isotropic T1 weighted MRI images and the coordinates for each depth electrode contact in individual space, which were determined by coregistering the post implantation computerized tomography image with the preimplantation MRI, and raw SEEG data were collected. First, brain extraction was performed by ROBEX (Iglesias et al., 2011) to make a binary brain mask to identify outside brain contacts. Raw SEEG data were first subjected to a notch filter for line noise of 50 Hz and its harmonic up to 450 Hz using a 3-order Butterworth filter and then were re-referenced offline in a bipolar manner. Any bipolar SEEG channel containing outside brain contact was excluded from further analysis to avoid artifacts. Then, a binary gray matter mask was produced by the SPM121 unified segmentation procedure with a threshold of 0.4. A 3 × 3 × 3 voxel cube centered on the middle point of the 2 adjacent contacts was modeled to identify whether the bipolar channel was localized in the white matter. The bipolar channel was labeled as out of gray matter if the 3 × 3 × 3 voxel cube contained fewer than 9 gray matter voxels. The bipolar channel was labeled as low amplitude if the corresponding root mean square (RMS) was below 35% of all channels, formerly excluding those labeled as out brain. Only channels labeled as out of gray matter and low amplitude were excluded for further analysis. Channels with extreme high-amplitude noise (voltage > 1000 uV) lasting for more than 1 s were also excluded from the analysis. This stage ensured that most artifact contaminated channels as well as low-amplitude channels in white matter were screened out from further analysis.



Candidate HFO (cHFO) Detection and Automatic Labeling

After the channel selection described above, the baseline-corrected SEEG segments were first filtered using a 64-order zero-phase forward and reverse bandpass FIR filter in the 80–500 Hz range. Then, the rectified filtered signal envelope was determined using spline interpolation over local maxima. The SDs of the bandpass filtered signal in each 100 ms epoch was calculated for the whole time series with a step length of 100 ms, generating a distribution of SDs for each channel. An amplitude threshold was set to five times the median of SDs (Staba et al., 2002; Liu et al., 2016b). A cHFO was defined if the envelope surpassed the amplitude threshold and lasted more than 6 ms. The maximum envelope peaks of putative HFOs separated by fewer than 20 ms were considered as one event. According to the 1/f law, the amplitude of FRs was lower than Rs, so we repeated the aforementioned procedures with 250–500 Hz bandpass signals and detected extra events to form the final cHFOs for further classification.

The cHFOs were extracted and epoched in 600 ms windows centered on local envelope peaks, and the Morlet wavelet (central frequency equals 1 Hz, and the full-width at half-maximum equals 3 s) TF transform (1–500 Hz with step length equals 1 Hz) was applied to generate the scalograms (Pantazis et al., 2005). To decrease the impact of the 1/f spectrum on the scalogram, we bandpass filtered the raw data with a first-order Butterworth 8–490 Hz while preserving most of the low-frequency features, especially spikes from the raw traces, before the TF transform. The raw power was log-transformed and smoothed for better visualization as TF maps. We extracted the central 200 ms window TF maps as the final training and classification dataset to avoid edge effects during the TF transform. Considering the typical duration of HFOs (6–30 ms) and interictal epileptiform discharges such as spike (30–70 ms) and sharp wave (70–200 ms) (Aanestad et al., 2020), we think that the 200 ms window will sufficiently cover the whole spectrum characteristics of the detected events.

After some trials on a small training and validation subset, ResNet101 was finally chosen since it yielded the best results with the least overfitting out of AlexNet, GoogLeNet, VGG-16 (Alom et al., 2018). Four pretrained convolutional neural network Resnet101 were trained through transfer learning as binary classifiers with purposes of labeling artifacts, spikes, Rs and FRs in sequence order. Details of Resnet101 can be found in He et al. (2016). Transfer learning was implemented by replacing the last 3 layers of the pretrained ResNet101 to a new fully connected layer, softmax layer and class-output layer in sequence. The whole TF image datasets included 29,744 artifacts events against 68,988 non-artifacts events, 30,387 spike events against 23,452 non-spike events, 38,447 R events against 22,152 non-R events, and 26,454 FR events against 27,695 non-FR events. The image dataset was composed of a mix of real signals and simulated data described below except that all the artifact TF images were generated from real data. The main source of artifacts was electromyography and sharp transients. The real training materials were extracted from 12 consecutively selected drug-refractory epilepsy patients in Beijing Tiantan hospital from June 2018 to July 2019 (detailed clinical information is provided in Supplementary Table 1). Two experienced reviewers worked independently to label the events, and only those events with the same conclusion from both reviewers were included in the dataset. We randomly divided the data into training and validation datasets, using 80% of the images for training and 20% for validation. The training process used stochastic gradient descent with a momentum of 0.9. We used cross entropy as a loss function. The minibatch size was set to 32, max epochs to 3 and initial learning rate to 0.0001. To further validate the robustness of the training process, we repeatedly trained the network by using 70% and 90% of the images for training and 30% and 10% for validation. The training processes were stopped manually when the loss/accuracy plateau was reached to avoid overfitting, and the accuracies on the test dataset were recorded. Theoretically, the four consecutive classifiers would output 9 reasonable categories of labels, which were artifacts, spike, R, FR, spike + R, spike + FR, spike + R + FR, R + FR and other (defined by four negative predictions and treated as artifacts). After event labeling, cHFO not concurrent with artifacts were labeled quality HFO (qHFO).



HFOs Occurrence Rate Sorting and Imaging

The occurrence rate was normalized to the highest occurrence rate channel. Normalized value assignment was performed in every voxel included in the volume defined by a 9 × 9 × 9 mm cube model centered on each electrode contact (David et al., 2011). The results were smoothed through a [4 4 4] Gaussian kernel, which was overlayed on volumes. The pipeline was developed in MATLAB 2018a (The MathWorks, Inc., Natick, MA, United States) and illustrated in Figure 1. Codes of the algorithms described in this paper, including the trained neural network, are open-source and openly available2.


[image: image]

FIGURE 1. Schematic illustration of the automatic analytical strategies. (A) Channel selection was performed to exclude electrodes located in white matter, showing low-amplitude fluctuation and located outside brain (plotted in red). (B) Example of an unfiltered bipolar signal in a 400 ms window. (C) Signals were independently subjected to 80 and 250 Hz high-pass filters and were then rectified (black trace) for envelope extraction (yellow trace). Thresholds (red trace) were calculated based on the envelopes. Candidate HFOs were extracted by identifying envelopes surpassing the corresponding threshold of each channel. (D) Morlet wavelet transform was applied to convert the epoched candidate HFO time series to time-frequency domain images, which were further used as input for the CNN classifiers. (E) Example training and validation dataset used for the four binary CNN classifier training. (F) HFOs sorting based on the occurrence rate. The yellow bar suggested the application of thresholding in HFOs occurrence rate that would be overlaid on the anatomical image. (G) The results were then projected to the anatomical structures and shown as a heatmap illustrating the distribution of high-occurrence HFOs. CNN: convolutional neural network; HFOs: high frequency oscillations; Spk: spike; R: ripple; FR: fast ripple.




Evaluation of the Initial Detector Using Simulated Data

The simulated dataset provided an ideal testing environment featured by its artifact-free signals and well-controlled signal-to-noise ratios (SNRs) of HFOs. We adopted the HFOs dataset simulated by Roehri et al. (2017) since it was already tested against four state-of-the-art openly available detectors, namely the Short Time Energy, the Short Line Length, the Hilbert and the MNI detector from RIPPLELAB Toolbox (Navarrete et al., 2016). Thus, the benchmarks of our detector can be directly compared with those open detectors. Specifically, the dataset included 960 channels lasting for 2 min with a sampling rate of 2,048 Hz. Each channel contains 42 inserted events of 7 different types: 1. spike; 2. spike cooccurring with an R; 3. spike cooccurring with an FR; 4. spike cooccurring with an R and an FR; 5. R; 6. FR; 7. R cooccurring with an FR. Following the suggestions by the authors of the dataset, we defined a 100 ms time window centered on each simulated HFO as the CI. CIs containing detections were considered true positives (TP), those without detections were defined as FN, and detections falling outside CIs were labeled as FPs. We used the precision (Precdetection) and sensitivity (Sensdetection) criteria as well as the F1-score, which combines precision and sensitivity, to characterize the detection performance over the SNRs. The precision and F1-score were defined as 1 and 0, respectively, when no event was detected (i.e. TP + FP = 0) in 0 dB channels.
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Testing Cohort and SEEG Recordings

Patients from Beijing Tiantan Hospital and Beijing Fengtai Hospital following the criteria between October 2015 and October 2017, were included in this analysis retrospectively: (1) unifocal epilepsy confirmed by analysis of SEEG seizure onsets; (2) surgical resection after the SEEG; (3) the sampling rate of EEG amplifier >2000 Hz; and (4) postoperative Engel I with at least a 24-month follow-up. Only Engel I patients were included so that we could assume that the EZ was correctly identified. This study was approved by the Ethics Board of the Beijing Tiantan Hospital, Capital Medical University. Informed consent was given by patients or their legal guardian/next of kin about the use of data for research purposes.

The SEEG recording was carried out as part of the clinical routine of the included patients. Intracerebral multiple contact depth electrodes (Huake-Hengsheng Medical Technology, Beijing, China; 8–16 contacts, length: 2 mm, diameter: 0.8 mm, 1.5 mm apart) were placed using a CRW frame-based system (Integra Radionics, Burlington, MA, United States) to record intracranial EEG data. The strategy for electrode placement, independent from the present study, was based on noninvasive information providing clinical hypotheses about the localization of the EZ. Twenty-four hours after electrode implantation, electrophysiological signals were recorded on a video EEG system (Nihon-Kohden, Tokyo, Japan). Long-term SEEG monitoring was carried out to record at least two habitual seizures. The built-in antialiasing hardware bandpass filter of the amplifier was set to 0.08–600 Hz for a 2000 Hz sampling rate. Typical monitoring sessions lasted from 7 days up to 1 month. We randomly selected one 5–10 min clip from each patient without selection of electrode contacts, patient’s state (awake/sleep), or quality of recordings.



Concordance of HFOs Results and SOZ

In clinical situations, all the depth electrodes were implanted according to the consensus reached during the phase I evaluation. The medical history, scalp EEG, ictal semiology, structure MRI and fluorodeoxyglucose-positron emission tomography were reviewed and discussed. In all patients presented here, SOZ was independently visually identified by two senior epileptologists (Xiao-qiu Shao and Wen-han Hu) by reviewing and labeling the channels with the earliest ictal discharge during recorded seizures. The SOZ was taken as the gold standard guiding surgical planning of resection in individual bases.

To evaluate the SOZ prediction ability of this algorithm, sensitivity (SenSOZ), specificity (SpecSOZ) and ROC curve with AUC were calculated and served as quantitative parameters. Sensitivity and specificity were defined as (Burnos et al., 2014):
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We manually set threshold to the first N channels with the highest HFOs rate to be CHHFO and the rest to be CHNon–HFO. The ROC curve was obtained by plotting the SenSOZ as a function of the (1 - SpecSOZ) at each cutoff N, which was increased from one to the number of total contacts in each patient with a step length of one. The corresponding AUC of each patient was calculated using the trapezoid method.

Although the accuracy of the four classifiers was evaluated in the validation set, to further test their efficiency and generalization ability in the clinical environment, we next conducted an additional analysis with hypotheses in relation to the automatic classifier that (1) the localization value of HFOs could be enhanced by eliminating artifacts; (2) HFOs co-occurring with spike have better predictive value for SOZ than those without. (3) HFOs with FR are more closely related to SOZ than those without.



RESULTS


Performance of the Initial Detector on the Simulated Data Set

An accurate initial detector lays a solid foundation for the integrated HFOs detection and classification framework. Taking advantage of the well-established simulated HFOs dataset, we were able to evaluate the overall performance of the initial detector using the 3 metrics described in the “Materials and Method” section. As expected, the performance of the automatic detector increased with SNRs. The median and range of sensitivity, precision and F1-score for different SNRs were 0 dB [5.56%, 0–33.3%], 5 dB [44.44%, 8.33–86.11%], 10 dB [94.44%, 66.67–100%], 15 dB [97.22%, 91.67–100%]; 0 dB [100%, 0–100%], 5 dB [95.12%, 66.67–100%], 10 dB[97.14%, 85.71–100%, 15 dB [97.22%, 87.50–100%]; 0 dB [0%, 0–48.98%], 5 dB [59.45%, 15.00–92.54%], 10 dB [94.44%, 79.37–100%], 15 dB [97.22%, 91.89–100%], respectively. The results suggest satisfactory and stable accuracy of the initial detector, especially when the SNR was high (10 dB and 15 dB). The distributions of the sensitivity, precision and F1-score of different SNRs are shown in Figure 2. Generally speaking, our initial detector outperformed the Short Time Energy, the Short Line Length, the Hilbert and the MNI detector from RIPPLELAB Toolbox and was comparable with Delphos detector (Roehri et al., 2017).
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FIGURE 2. Performance of the initial detector tested on an open simulation dataset. The three metrics were calculated as sensitivity (A), precision (B) and F1 score (C) for different SNRs. The violin plots show the range (minimum to maximum) and distribution of the data. The black dots represent the median values. Different color indicates different SNRs groups. SNRs: signal-to-noise ratios; Sensdetection: sensitivity of the initial detection; Precdetection: precision of the initial detection.




Classification Accuracy of the Trained CNN Classifiers

Four Resnet101 networks, namely, artifacts, spike, R and FR classifiers, were trained. The loss function generally converged quickly, and the loss/accuracy plateaus were reached after 2–3 epochs. Specifically, after the last iteration, the prediction accuracies in the validation set for artifacts, spike, R and FR classifiers of different training/validation split ratios were summarized in Table 1. It is worth noting that we divided the whole dataset into training and validation groups rather than training, validating and testing groups since we adopted a pretrained ResNet-101 network, which did not require intensive structure modification or hyperparameter tuning during training and validation processes. The training process showed robustness across different split ratio and no overfitting problem occurred.


TABLE 1. Training results of different split ratios for ResNet101 classifiers.
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Demographics and HFOs Detection and Classification Results of the Testing Cohort

In general, 20 consecutive patients (4 female) met the inclusion criteria and were included as the testing cohort. Their pathological results varied, including hippocampal sclerosis, focal cortical dysplasia and tuberous sclerosis complex (TSC). Detailed demographics and clinical information are provided in Supplementary Table 2. In total, 2,048 channels (mean 102.4, range 57–187) were fed into the pipeline, and the mean duration of interictal clips for each patient was 9.2 min (range 4.2–11.7 min) for each subject. Based on the channel inclusion criteria automatically implemented by the algorithm, 142 (6.9%), 254 (12.4%) and 22 (1.1%) channels were identified as outside the brain, inside white matter and with extreme amplitude values, respectively, which were excluded from further analysis. A total of 125,567 cHFOs were detected during the first stage. The detailed detection and classification outputs are provided in Table 2. Representing example figures of the labeled artifact, spike + R, spike + R + FR can be found in Figure 1D.


TABLE 2. Detection and classification results and the AUC values regarding SOZ of 20 testing patients.
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Concordance Between Labeled HFOs and SOZ

To a large extent, the ultimate goal for any HFO detector is to provide interpretable results revealing EZ; therefore, we decided to compare the concordance between labeled HFOs and SOZ with the dual purpose of validating the classification results against the assumptions based on previous studies and further evaluating the diagnostic ability of this detector for identifying the EZ in a real dataset.

SOZ channels were visually marked by capturing the earliest ictal epileptic discharges identified by neurologists in 20 patients based on at least one ictal SEEG. In total, 127 channels (mean 6.4, range 1–14) were labeled as SOZ, and detailed SOZ channel information can be found in Supplementary Table 2. Instead of thresholding and simply comparing the overlap between HFO channels and SOZ channels, we chose to calculate the ROC curves and corresponding AUC value for each subject, representing the ability for SOZ localization of this algorithm.

AUC values for different representative event types were compared at the group level. The median (interquartile range) of AUC values for cHFOs and qHFOs were 0.979 (0.106) and 0.988 (0.080) (p = 0.0043, Wilcoxon signed-rank test), suggesting the effect of artifact removal on improving the localization value. After excluding all artifact events, qHFOs with spike versus qHFOs without spike exhibited significant differences (p = 0.0111, Wilcoxon signed-rank test) and the corresponding median (interquartile range) of AUC values were 0.964 (0.073) and 0.899 (0.184), indicating a better prediction value of qHFOs with spike than those without for identifying the EZ. Likewise, we further compared the localization value of qHFO with FR and without, and the median (interquartile range) of AUC values were 0.964 (0.086) and 0.974 (0.087), respectively. The comparison result was statistically insignificant (p = 0.4209, Wilcoxon signed-rank test). See Figure 3 for the statistic comparisons above. We speculate that this phenomenon might partially be attributed to the ceiling effect since the AUC values clustered close to 1 in those 2 groups as well as the theory that FR were generated by more restricted regions compared to ripples (Bragin et al., 2002; Gonzalez Otarula et al., 2019). Although the difference was not significant, separating qHFOs with FR largely increased the two lowermost AUC values from 0.624 and 0.662 to 0.840 and 0.840, resulting in higher mean AUC values for qHFOs with FR.
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FIGURE 3. ROC curves and AUC values of different event types in the testing cohort. ROC curves were plotted for each patient comparing cHFOs and qHFOs, (A) qHFOs with and without spike (B) and qHFOs with and without FR (C). The corresponding AUC values were calculated with the trapezoid method. Significant differences were found between cHFOs and qHFOs (p = 0.0043, Wilcoxon signed-rank test) (D), qHFOs with and without spike (p = 0.0111, Wilcoxon signed-rank test) (E), but not qHFOs with and without FR (p = 0.4209, Wilcoxon signed-rank test) (F). *p < 0.05, **p < 0.01. ROC: receiver operating characteristic; AUC: area under the curve; HFOs: high frequency oscillations; cHFO: candidate HFOs; qHFOs: quality HFOs; FR: fast ripple; w/: with; w/o: without.


Next, we sought to compare the proportion of qHFOs with FR outside and inside SOZ. We hypothesized that the proportion of qHFOs with FR was higher inside SOZ than outside qHFO channels based on previous studies. The results illustrated in Figure 4 confirmed our hypothesis (mean ± SD: 0.503 ± 0.202 versus 0.327 ± 0.146, p = 0.0005, paired t-test). The above significant differences still existed after Bonferroni correction for multiple comparisons. To present an intuitive imaging illustration of the efficacy of classification, we plotted the density map of the HFOs rate on the glass brain in Montreal Neurological Institute space without thresholding as Figure 5.
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FIGURE 4. Percentage of qHFOs with FR inside and out of SOZ. The percentage of qHFOs with FR was significantly higher inside SOZ than outside (p = 0.0005, paired t-test). HFOs: high-frequency oscillations; FR: fast ripple; SOZ: seizure onset zone; qHFOs: quality HFOs.



[image: image]

FIGURE 5. HFOs imaging plotted on a glass brain in Montreal Neurological Institute space showing (A) the automatic labeled gray matter depth electrode coverage; (B) the spatial distribution of cHFOs; (C) the distribution of qHFOs and the spatial distribution of qHFOs with FR (D). It can be seen from the figures that with classification, the result was more specific and localized, indicating SOZ. No thresholding was used in the above figures. The intensity bar represents the min-max normalized HFOs occurrence rates. HFOs: high frequency oscillations; cHFO: candidate HFOs; qHFO: quality HFOs; FR: fast ripple; SOZ: seizure onset zone.




DISCUSSION

Even HFOs have been recognized as a promising biomarker for identifying the EZ in recent years, analysis of HFOs is still challenging, mainly due to their usual low signal-to-noise ratio, their heterogeneous patterns and their association with other epileptic activity (Thomschewski et al., 2019). Automatic detection of HFOs has a considerable advantage over visual marking in terms of efficiency. Different algorithms, such as the short-time energy detector (Staba et al., 2002), the short line length detector (Gardner et al., 2007), the Hilbert detector (Crepon et al., 2010), and the Montreal Neurological Institute detector (Zelmann et al., 2012), have been published and are publicly available through the RIPPLELAB Toolbox (Navarrete et al., 2016); however, many publicly available detectors face challenges such as artifact contamination and the lack of robustness across different situations (i.e. low inter-method reproducibility), which impede their clinical implementation (Frauscher et al., 2017). To narrow the gap between HFOs analysis and clinical EZ localization, we designed an integrated pipeline imitating the current workflow of HFOs analysis. We have also systematically validated the performance of our detector in simulated datasets and real datasets. Features of the proposed pipeline include (1) channel selection based on anatomical localization and RMS to exclude flat channels and minimize the influence of artifacts; (2) automatic detection of cHFO through filtering and amplitude thresholds followed by labeling detected events with tags of spike, R and FR using a deep convolutional neural network in a supervised manner; and (3) visualization of high-rate HFOs channel distribution projected on brain structures.

Many automatic and semiautomatic algorithms have been developed and have shown promising results. However, apart from those flourishing studies, researchers should still be cautious about the sensitivity and specificity of their SOZ localization values. Part of the reason could be attributed to the lack of a gold standard for identifying HFOs. A working definition is that oscillatory activities in a frequency band from 80 to 500 Hz clearly stand out from the baseline signal and persist for at least four oscillation cycles. This definition may provide practical guidelines for the manual identification of HFOs; however, it lacks specific parameters needed for designing automatic detectors (Roehri et al., 2017). In addition, the literature constantly indicates that manual labeling can act as the gold standard (Amiri et al., 2016; Zuo et al., 2019), but manual labeling has been questioned in terms of subjective bias and interrater reliability. Here, as the base of our initial detector, we adopted a traditional yet feasible definition by Anatol Bragin et al. that successive RMS values with amplitudes of 5 SDs above the mean amplitude of the RMS signal longer than 6 ms in duration (Staba et al., 2002) with subtle modification as described in the “Materials and Method” section. As was discussed in the paper by Roehri et al. (2017), it was challenging to directly compare the performance between detectors because of the lack of gold standard, therefore, they proposed a benchmark framework and an openly available simulated dataset to ease the problem. The reason we choose the simulated dataset to validate our initial detector is that there are benchmarks of four openly available detectors based on this dataset and we can directly compare our detector with others. To evaluate the initial detector in a systematic manner, we tested our initial detector using the simulated dataset, and the performance was satisfactory, especially when the SNRs were high and robust compared with other four state-of-the-art openly available detectors from RIPPLELAB Toolbox (Navarrete et al., 2016).

Even though the performance was inspiring in the simulated dataset, we should keep in mind that the real dataset might be complicated, containing artifacts, physiology HFOs and pathological HFOs with various patterns (Engel et al., 2009; Kovach et al., 2011; Cimbalnik et al., 2018). Therefore, the clinical translation of HFOs as a biomarker of EZ has been largely limited by the ability to reliably detect and accurately classify HFOs (Khadjevand et al., 2017). With the purpose of improving the specificity of HFOs for indicating EZ, endeavors have been made to distinguish events of interest. For example, Fabrice Wendling et al. used a similar two-stage approach to detect events of interest and identify FRs based on parameters extracted from Fourier transform or wavelet transform (Birot et al., 2013). Taking advantage of multiple handcrafted features such as power band ratio, spectral centroid, and entropy, Su et al. successfully divided HFOs candidates into several clusters based on unsupervised clustering algorithms, which increased the accuracy for pathological HFOs detection (Liu et al., 2018). In this study, we aimed at improving this situation using four well trained CNN classifiers after initial detection. To be specific, in the testing dataset from real patients, we termed the detected events from initial detector as cHFOs, which indicated that they cannot be directly deemed as HFOs without further artifacts rejection. As can be seen from Table 2, there were 13.80% false HFOs and they could make a big difference in the final results. The trained classifiers successfully improved the localization value of HFOs for SOZ by rejecting those artifacts. The SOZ localization value was further improved after the FR classifier was applied, suggested by the increased AUC values.

Clinically, physicians tend to use high-pass filtering of EEG signals to suppress background activity and highlight some oscillations in the frequency band of interest. However, both HFOs and sharp transients may be represented as in Amiri et al. (2016); in this scenario, it is often helpful to overview the broadband signal or the time-frequency scalogram, which manifests the full spectral characteristics of the HFO event, for categorization tasks. Inspired by current clinical workflows and different from unsupervised clustering, we chose the CNN model as our classifier, reflecting the idea from data to decisions. The development of machine learning in recent years has heavily emphasized and benefited from CNN, which was originally designed to handle object classification tasks. Across multiple layers, these networks extract features from low levels to higher levels, often described as end-to-end and inspired by the brain recognition process (Di Carlo and Cox, 2007). Among different CNN architectures, ResNet101 mitigates the problem of vanishing gradient resulting from improper hyperparameter tuning and the increased stacked layers by skip connections, and it is also actively chosen for computer vision tasks for its ability to generalize well to different datasets and problems (Wu et al., 2019). In contrast to handcrafted feature-based clustering, a deep learning neural network can automatically extract features and perform classification tasks. The key of this classification algorithm was to gather enough representative events as training materials so that the classifier can be trained toward good generalization ability. Because the imbalance distribution of different event types was shown in the results, it was more feasible to train four binary CNN classifiers rather than one multiclass classifier. Using transfer learning, it was possible to train a more generalized deep neural network for classification with limited samples.

The issue with the TF scalogram is that the low-frequency component may make HFOs less visible given specific settings because of the 1/f spectrum law. Researchers have designed various strategies, such as autoregressive integrated moving average, Teager-Kaiser operator energy and H0 z-score (Roehri et al., 2016) to flatten the spectrum. Here, we arbitrarily performed 8 Hz high-pass filtering of the raw trace and then log-transformed the raw energy. The spectrum was whitened, while most low-frequency components were preserved under such settings. In scalograms, true HFOs are visible as isolated “blobs” in the time-frequency plane, while the pure spike and the transient sharp artifact produce a single elongated shape with no visible band-limited blobs (Benar et al., 2010). During the manual labeling period, it was sometimes challenging to discern HFOs when the spikes co-occurred. We tended to check the raw and high-pass filtered trace as supplementary proof for visual classification. Based on the combined manually labeled and simulated dataset, the training and validation results of the four ResNet101 classifiers showed robust accuracies above 95% across different split ratios. The four successfully trained classifiers laid solid foundation for improving the localization value of HFOs.

After the classifiers were trained properly, we sought to further validate the classification performance in 20 real patients against 3 assumptions, which could be safely drawn from previous studies: (1) the EZ localization capability could be enhanced by removing artifacts and false HFOs (Benar et al., 2010); (2) HFOs cooccurring with spikes had higher localization value than those without (Wang et al., 2013; Weiss et al., 2016; Wang et al., 2017), and (3) FRs were more closely related to the EZ (Engel et al., 2009; Gonzalez Otarula et al., 2019). By labeling cHFOs, our detector successfully verified the assumptions concluded from previous studies. In addition, we demonstrated that the AUC values of qHFOs and qHFOs with FR clustered near 1. In the qHFOs with FR group, 19 out of 20 AUC values were above 0.8, and 15 were above 0.9. The results suggested the excellent ability to predict SOZ

channels using the classified HFOs rate. Poor concordance was found in two TSC patients, reflecting the multifocal nature and a complex widespread epileptic network in patients with TSC (Okanishi et al., 2014).

Aside from artifact removal, it was also important to separate pathological HFOs and physiological HFOs. Previous studies suggest that they could be distinguished based on their frequency band, their co-occurrence with interictal epileptiform discharges (Wang et al., 2013; Jacobs et al., 2016), their stereotyped morphology patterns and their spatial distribution (Liu et al., 2018). Therefore, successful classification of HFOs with FR or co-occurring with other interictal epileptiform discharges such as spike may help improve the specificity of HFOs in delineating EZ, which could be achieved through our algorithm.

Detection and classification algorithms tend to be optimized for recording a specific group with limited diversity in epilepsy syndromes, which is true for this automatic pipeline. Validation on a larger cohort from a multicenter is needed to better evaluate the prediction performance of this algorithm. Furthermore, because of the sophisticated design, this algorithm is computationally expensive compared with other detectors.

In this paper, we proposed an integrated pipeline for automatic detection, classification and imaging of HFOs with SEEG. Our initial detector demonstrated robust detection results on a comprehensive simulated dataset. The CNN-based classifiers achieved satisfactory accuracy, and their generalization ability was also validated in an extra real patient cohort. Thus, the proposed detection method dramatically decreased the workload in assessing the presence of HFOs in SEEG while providing straightforward interpretable results for surgical planning.



DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author. Codes of the algorithms described in this paper, including the trained neural network, are open-source and openly available (https://github.com/zhaobaotian/HFO_AI_Detector_Open).



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethics Committee of Beijing Tiantan Hospital. Written informed consent to participate in this study was provided by the participants or their legal guardian/next of kin.



AUTHOR CONTRIBUTIONS

JZ and BZ conceived and planned the study. JZ and KZ performed the surgery resection. BZ performed the statistical analysis and drafted the manuscript. BZ, WH, and CZ worked out almost all the technical details. XW, YW, and CL collected the data. JM suggested the neural network architecture. XY and XS interpretation of the SEEG data. LS and YM discussed the results and revised the manuscript. All authors provided critical feedback and helped shape the research, analysis and the manuscript.



FUNDING

This study was supported by the National Natural Science Foundation of China (Nos. 81771399, 81830033, 81701276) and Beijing Municipal Science & Technology Commission (Z171100001017069, Z161100000216130).



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2020.00546/full#supplementary-material


FOOTNOTES

1
https://www.fil.ion.ucl.ac.uk/spm/

2
https://github.com/zhaobaotian/HFO_AI_Detector_Open


REFERENCES

Aanestad, E., Gilhus, N. E., and Brogger, J. (2020). Interictal epileptiform discharges vary across age groups. Clin. Neurophysiol. 131, 25–33. doi: 10.1016/j.clinph.2019.09.017

Akiyama, T., McCoy, B., Go, C. Y., Ochi, A., Elliott, I. M., Akiyama, M., et al. (2011). Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia 52, 1802–1811. doi: 10.1111/j.1528-1167.2011.03199.x

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., et al. (2018). The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv [Preprint]. arXiv:1803.01164.

Amiri, M., Lina, J. M., Pizzo, F., and Gotman, J. (2016). High Frequency oscillations and spikes: separating real HFOs from false oscillations. Clin. Neurophysiol. 127, 187–196. doi: 10.1016/j.clinph.2015.04.290

Benar, C. G., Chauviere, L., Bartolomei, F., and Wendling, F. (2010). Pitfalls of high-pass filtering for detecting epileptic oscillations: a technical note on “false” ripples. Clin. Neurophysiol. 121, 301–310. doi: 10.1016/j.clinph.2009.10.019

Birot, G., Kachenoura, A., Albera, L., Bénar, C., and Wendling, F. (2013). Automatic detection of fast ripples. J. Neurosci. Methods 213, 236–249. doi: 10.1016/j.jneumeth.2012.12.013

Bragin, A., Engel, J. Jr., Wilson, C. L., Fried, I., and Mathern, G. W. (1999). Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid–treated rats with chronic seizures. Epilepsia 40, 127–137. doi: 10.1111/j.1528-1157.1999.tb02065.x

Bragin, A., Mody, I., Wilson, C. L., and Engel, J. (2002). Local generation of fast ripples in epileptic brain. J. Neurosci. 22, 2012–2021. doi: 10.1523/jneurosci.22-05-02012.2002

Burnos, S., Hilfiker, P., Sürücü, O., Scholkmann, F., Krayenbühl, N., Grunwald, T., et al. (2014). Human intracranial high frequency oscillations (HFOs) detected by automatic time-frequency analysis. PLoS One 9:e94381. doi: 10.1371/journal.pone.0094381

Chaibi, S., Sakka, Z., Lajnef, T., Samet, M., and Kachouri, A. (2013). Automated detection and classification of high frequency oscillations (HFOs) in human intracereberal EEG. Biomed. Signal Process. Control 8, 927–934. doi: 10.1016/j.bspc.2013.08.009

Cimbalnik, J., Brinkmann, B., Kremen, V., Jurak, P., Berry, B., Gompel, J. V., et al. (2018). Physiological and pathological high frequency oscillations in focal epilepsy. Ann. Clin. Transl. Neurol. 5, 1062–1076. doi: 10.1002/acn3.618

Crepon, B., Navarro, V., Hasboun, D., Clemenceau, S., Martinerie, J., Baulac, M., et al. (2010). Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 133(Pt 1), 33–45. doi: 10.1093/brain/awp277

David, O., Blauwblomme, T., Job, A. S., Chabardes, S., Hoffmann, D., Minotti, L., et al. (2011). Imaging the seizure onset zone with stereo-electroencephalography. Brain 134(Pt 10), 2898–2911. doi: 10.1093/brain/awr238

Devinsky, O. (1999). Patients with refractory seizures. N. Engl. J. Med. 340, 1565–1570. doi: 10.1056/NEJM199905203402008

Di Carlo, J. J., and Cox, D. D. (2007). Untangling invariant object recognition. Trends Cogn. Sci. 11, 333–341. doi: 10.1016/j.tics.2007.06.010

Engel, J. Jr., Bragin, A., Staba, R., and Mody, I. (2009). High-frequency oscillations: what is normal and what is not? Epilepsia 50, 598–604. doi: 10.1111/j.1528-1167.2008.01917.x

Frauscher, B., Bartolomei, F., Kobayashi, K., Cimbalnik, J., van ’t Klooster, M. A., Rampp, S., et al. (2017). High-frequency oscillations: the state of clinical research. Epilepsia 58, 1316–1329. doi: 10.1111/epi.13829

Gardner, A. B., Worrell, G. A., Marsh, E., Dlugos, D., and Litt, B. (2007). Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin. Neurophysiol. 118, 1134–1143. doi: 10.1016/j.clinph.2006.12.019

Gliske, S. V., Irwin, Z. T., Davis, K. A., Sahaya, K., Chestek, C., and Stacey, W. C. (2016). Universal automated high frequency oscillation detector for real-time, long term EEG. Clin. Neurophysiol. 127, 1057–1066. doi: 10.1016/j.clinph.2015.07.016

Gonzalez Otarula, K. A., von Ellenrieder, N., Cuello-Oderiz, C., Dubeau, F., and Gotman, J. (2019). High-frequency oscillation networks and surgical outcome in adult focal epilepsy. Ann. Neurol. 85, 485–494. doi: 10.1002/ana.25442

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (Piscataway, NJ: IEEE), 770–778.

Holler, Y., Kutil, R., Klaffenbock, L., Thomschewski, A., Holler, P. M., Bathke, A. C., et al. (2015). High-frequency oscillations in epilepsy and surgical outcome. A meta-analysis. Front. Hum. Neurosci. 9:574. doi: 10.3389/fnhum.2015.00574

Iglesias, J. E., Liu, C.-Y., Thompson, P. M., and Tu, Z. (2011). Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transact. Med. Imag. 30, 1617–1634. doi: 10.1109/tmi.2011.2138152

Jacobs, J., LeVan, P., Chander, R., Hall, J., Dubeau, F., and Gotman, J. (2008). Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 49, 1893–1907. doi: 10.1111/j.1528-1167.2008.01656.x

Jacobs, J., Staba, R., Asano, E., Otsubo, H., Wu, J. Y., Zijlmans, M., et al. (2012). High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 98, 302–315. doi: 10.1016/j.pneurobio.2012.03.001

Jacobs, J., Vogt, C., LeVan, P., Zelmann, R., Gotman, J., and Kobayashi, K. (2016). The identification of distinct high-frequency oscillations during spikes delineates the seizure onset zone better than high-frequency spectral power changes. Clin. Neurophysiol. 127, 129–142. doi: 10.1016/j.clinph.2015.04.053

Jobst, B. C., and Cascino, G. D. (2015). Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 313, 285–293. doi: 10.1001/jama.2014.17426

Khadjevand, F., Cimbalnik, J., and Worrell, G. A. (2017). Progress and remaining challenges in the application of high frequency oscillations as biomarkers of epileptic brain. Curr. Opin. Biomed. Eng. 4, 87–96. doi: 10.1016/j.cobme.2017.09.006

Kovach, C. K., Tsuchiya, N., Kawasaki, H., Oya, H., Howard, M. A. III, and Adolphs, R. (2011). Manifestation of ocular-muscle EMG contamination in human intracranial recordings. Neuroimage 54, 213–233. doi: 10.1016/j.neuroimage.2010.08.002

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105.

Liu, S., Gurses, C., Sha, Z., Quach, M. M., Sencer, A., Bebek, N., et al. (2018). Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy. Brain 141, 713–730. doi: 10.1093/brain/awx374

Liu, S., Sha, Z., Sencer, A., Aydoseli, A., Bebek, N., Abosch, A., et al. (2016a). Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy. J. Neural Eng. 13:026026. doi: 10.1088/1741-2560/13/2/026026

Liu, S., Sha, Z., Sencer, A., Aydoseli, A., Bebek, N., Abosch, A., et al. (2016b). Exploring the time–frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy. J. Neural Eng. 13:026026.

Lopez-Cuevas, A., Castillo-Toledo, B., Medina-Ceja, L., Ventura-Mejia, C., and Pardo-Pena, K. (2013). An algorithm for on-line detection of high frequency oscillations related to epilepsy. Comput. Methods Programs Biomed. 110, 354–360. doi: 10.1016/j.cmpb.2013.01.014

Nagahama, Y., Schmitt, A. J., Nakagawa, D., Vesole, A. S., Kamm, J., Kovach, C. K., et al. (2018). Intracranial EEG for seizure focus localization: evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes. J. Neurosurg. 8, 1–13. doi: 10.3171/2018.1.JNS171808

Navarrete, M., Alvarado-Rojas, C., Le Van, Quyen, M., and Valderrama, M. (2016). RIPPLELAB: a comprehensive application for the detection, analysis and classification of high frequency oscillations in electroencephalographic signals. PLoS One 11:e0158276. doi: 10.1371/journal.pone.0158276

Okanishi, T., Akiyama, T., Tanaka, S., Mayo, E., Mitsutake, A., Boelman, C., et al. (2014). Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex. Epilepsia 55, 1602–1610. doi: 10.1111/epi.12761

Pantazis, D., Weber, D. L., Dale, C. L., Nichols, T. E., Simpson, G. V., and Leahy, R. M. (2005). “Imaging of oscillatory behavior in event-related MEG studies,” in Proceedings of SPIE-The International Society for Optical Engineering, (Washington, DC: SPIE), 5674.

Roehri, N., Lina, J. M., Mosher, J. C., Bartolomei, F., and Benar, C. G. (2016). Time-frequency strategies for increasing high-frequency oscillation detectability in intracerebral EEG. IEEE Trans. Biomed. Eng. 63, 2595–2606. doi: 10.1109/TBME.2016.2556425

Roehri, N., Pizzo, F., Bartolomei, F., Wendling, F., and Benar, C. G. (2017). What are the assets and weaknesses of HFO detectors? A benchmark framework based on realistic simulations. PLoS One 12:e0174702. doi: 10.1371/journal.pone.0174702

Rosenow, F., and Luders, H. (2001). Presurgical evaluation of epilepsy. Brain 124(Pt 9), 1683–1700. doi: 10.1093/brain/124.9.1683

Spring, A. M., Pittman, D. J., Aghakhani, Y., Jirsch, J., Pillay, N., Bello-Espinosa, L. E., et al. (2018). Generalizability of high frequency oscillation evaluations in the ripple band. Front. Neurol. 9:510. doi: 10.3389/fneur.2018.00510

Staba, R. J., Wilson, C. L., Bragin, A., Fried, I., and Engel, J. Jr. (2002). Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 88, 1743–1752. doi: 10.1152/jn.2002.88.4.1743

Thomschewski, A., Hincapie, A. S., and Frauscher, B. (2019). Localization of the epileptogenic zone using high frequency oscillations. Front. Neurol. 10:94. doi: 10.3389/fneur.2019.00094

Urrestarazu, E., Chander, R., Dubeau, F., and Gotman, J. (2007). Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain 130(Pt 9), 2354–2366. doi: 10.1093/brain/awm149

Vakharia, V. N., Duncan, J. S., Witt, J. A., Elger, C. E., Staba, R., and Engel, J. Jr. (2018). Getting the best outcomes from epilepsy surgery. Ann. Neurol. 83, 676–690. doi: 10.1002/ana.25205

van Klink, N. E. C., Van’t Klooster, M. A., Zelmann, R., Leijten, F. S. S., Ferrier, C. H., Braun, K. P. J., et al. (2014). High frequency oscillations in intra-operative electrocorticography before and after epilepsy surgery. Clin. Neurophysiol. 125, 2212–2219. doi: 10.1016/j.clinph.2014.03.004

van ’t Klooster, M. A., van Klink, N. E., Leijten, F. S., Zelmann, R., Gebbink, T. A., Gosselaar, P. H., et al. (2015). Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 85, 120–128. doi: 10.1212/WNL.0000000000001727

Wang, S., So, N. K., Jin, B., Wang, I. Z., Bulacio, J. C., Enatsu, R., et al. (2017). Interictal ripples nested in epileptiform discharge help to identify the epileptogenic zone in neocortical epilepsy. Clin. Neurophysiol. 128, 945–951. doi: 10.1016/j.clinph.2017.03.033

Wang, S., Wang, I. Z., Bulacio, J. C., Mosher, J. C., Gonzalez-Martinez, J., Alexopoulos, A. V., et al. (2013). Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy. Epilepsia 54, 370–376. doi: 10.1111/j.1528-1167.2012.03721.x

Weiss, S. A., Orosz, I., Salamon, N., Moy, S., Wei, L., Van’t Klooster, M. A., et al. (2016). Ripples on spikes show increased phase-amplitude coupling in mesial temporal lobe epilepsy seizure-onset zones. Epilepsia 57, 1916–1930. doi: 10.1111/epi.13572

Worrell, G. A., Parish, L., Cranstoun, S. D., Jonas, R., Baltuch, G., and Litt, B. (2004). High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127(Pt 7), 1496–1506. doi: 10.1093/brain/awh149

Wu, J. Y., Sankar, R., Lerner, J. T., Matsumoto, J. H., Vinters, H. V., and Mathern, G. W. (2010). Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology 75, 1686–1694. doi: 10.1212/WNL.0b013e3181fc27d0

Wu, Z., Shen, C., and Van Den Hengel, A. (2019). Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119–133. doi: 10.1016/j.patcog.2019.01.006

Zelmann, R., Mari, F., Jacobs, J., Zijlmans, M., Dubeau, F., and Gotman, J. (2012). A comparison between detectors of high frequency oscillations. Clin. Neurophysiol. 123, 106–116. doi: 10.1016/j.clinph.2011.06.006

Zijlmans, M., Worrell, G. A., Dumpelmann, M., Stieglitz, T., Barborica, A., Heers, M., et al. (2017). How to record high-frequency oscillations in epilepsy: a practical guideline. Epilepsia 58, 1305–1315. doi: 10.1111/epi.13814

Zijlmans, M., Zweiphenning, W., and van Klink, N. (2019). Changing concepts in presurgical assessment for epilepsy surgery. Nat. Rev. Neurol. 15, 594–606. doi: 10.1038/s41582-019-0224-y

Zuo, R., Wei, J., Li, X., Li, C., Zhao, C., Ren, Z., et al. (2019). Automated detection of high-frequency oscillations in epilepsy based on a convolutional neural network. Front. Comput. Neurosci. 13:6. doi: 10.3389/fncom.2019.00006


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zhao, Hu, Zhang, Wang, Wang, Liu, Mo, Yang, Sang, Ma, Shao, Zhang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 04 June 2020
doi: 10.3389/fnins.2020.00491





[image: image]

A Nomogram Model of Radiomics and Satellite Sign Number as Imaging Predictor for Intracranial Hematoma Expansion
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Background: We aimed to construct and validate a nomogram model based on the combination of radiomic features and satellite sign number for predicting intracerebral hematoma expansion.

Methods: A total of 129 patients from two institutions were enrolled in this study. The preprocessed initial CT images were used for radiomic feature extraction. The ANOVA-Kruskal–Wallis test and least absolute shrinkage and selection operator regression were applied to identify candidate radiomic features and construct the Radscore. A nomogram model was developed by integrating the Radscore with a satellite sign number. The discrimination performance of the proposed model was evaluated by receiver operating characteristic (ROC) analysis, and the predictive accuracy was assessed via a calibration curve. Decision curve analysis (DCA) and Kaplan–Meier (KM) survival analysis were performed to evaluate the clinical value of the model.

Results: Four optimal features were ultimately selected and contributed to the Radscore construction. A positive correlation was observed between the satellite sign number and Radscore (Pearson’s r: 0.451). The nomogram model showed the best performance with high area under the curves in both training cohort (0.881, sensitivity: 0.973; specificity: 0.787) and external validation cohort (0.857, sensitivity: 0.950; specificity: 0.766). The calibration curve, DCA, and KM analysis indicated the high accuracy and clinical usefulness of the nomogram model for hematoma expansion prediction.

Conclusion: A nomogram model of integrated radiomic signature and satellite sign number based on noncontrast CT images could serve as a reliable and convenient measurement of hematoma expansion prediction.

Keywords: cerebral hemorrhage/diagnostic imaging, disease progression, computed tomography, stroke, algorithms


INTRODUCTION

Intracerebral hemorrhage (ICH) confers a worse prognosis than ischemic stroke, with an overall fatality rate approaching 40% and neurological disability among the survivors (van Asch et al., 2010; Heit et al., 2017). Based on previous findings, the baseline volume and the location of ICH, intraventricular hemorrhage (IVH), Glasgow coma scale score, and age are strongly associated with the outcomes as clinical predictors (Hemphill et al., 2001). Early hematoma expansion is a greater risk factor for increased mortality and poor functional outcomes, which is independent of other defined clinical correlation factors (Delcourt et al., 2012). A remarkable hemorrhage enlargement by more than 33% volume increase within 24 h after the onset of symptoms occurred in 38% of patients with ICH, as has been reported prospectively (Brott et al., 1997). Therefore, as the only modifiable risk factor, early identification of patients with a potential risk of hematoma growth is crucial for targeted therapeutic strategies.

Recently, different imaging characteristics have been successively reported and paved the way for available prediction of hematoma expansion in clinical routine. The computed tomography angiography (CTA) spot sign, as an independent predictor, has been well established and prospectively validated, which turned out to be of limited sensitivity (Demchuk et al., 2012; Dowlatshahi et al., 2016). Besides that, CTA has not yet been a routine measurement for emergency radiology in some institutions, following nephrotoxicity and allergy problems (Caplan, 2016). Rather, several novel markers based on noncontrast CT (NCCT), including blend sign, black hole sign, swirl sign, island sign, and satellite sign, recently gained attention, mainly focused on the heterogeneity and the irregularity of hematoma (Boulouis et al., 2017; Shimoda et al., 2017; Morotti et al., 2019). The satellite sign, which was easy to recognize and clearly defined, was especially proven to be an independent imaging marker for hematoma expansion prediction (Shimoda et al., 2017; Yu et al., 2017). However, these imaging predictors make qualitative or semi-quantitative analysis studies only and caused inevitable deviation due to subjectivity. More objective quantitative indicators should be defined to approach more veracious results. As a promising quantitative method for heterogeneous studies, radiomic analysis has become a new “’hot spot” in cancer researches (Davnall et al., 2012). Radiomic analysis links quantitative imaging features to clinical findings by using machine learning and statistics analysis methods. Machine learning methods, such as logistic regression, support vector machines, random forest, and Bayesian algorithm, have come into a wider use in the field of radiomics (Lambin et al., 2012; Bi et al., 2018; Shen et al., 2018; Khalaf et al., 2019; Zavecz et al., 2020). In oncology, features have already been carried out to assess intratumor heterogeneity in various tumor types through the analysis of pixel or voxel gray level distribution and degree of coarseness for early diagnosis, preoperative grading, and monitoring responses to therapies for prognosis prediction (Lubner et al., 2017b; Bi et al., 2019). However, limited numbers of studies were found focusing on the nononcologic applications of radiomics (Kotze et al., 2014; Ginsburg et al., 2016; Lubner et al., 2017a).

In this study, we hypothesized that radiomic analysis and quantitative satellite sign can identify the associations between the quantitative imaging features and the hematoma pathophysiology and thus effectively and precisely predict intracerebral hematoma expansion in NCCT images. The aim of this study was to establish a quantitative imaging model to predict hematoma expansion and improve the functional outcomes for patients with ICH. We investigated a nomogram model combined with radiomics and quantitative satellite sign to improve the diagnostic performance in early hematoma expansion prediction.



MATERIALS AND METHODS


Patients

This retrospective study was approved by the Medical Ethics Committee of institution I and II and conducted in accordance with relevant guidelines. Informed consent was waived.

Patients with spontaneous ICH within 6 h since symptom onset and CT recheck within 24 h in between January 2017 and December 2018 were included. The exclusion criteria were the following conditions: (1) patients with ICH secondary to arteriovenous malformation, trauma, aneurysm, tumor, and venous sinus embolism, (2) patients who were receiving anticoagulation treatment, (3) surgery or interventional therapy before the repeat CT scan, (4) image contained severe artifacts, and (5) IVH or subarachnoid hemorrhage is involved. Clinical data were provided by a neurologist, including age, gender, systolic blood pressure, international normalized ratio, time to initial CT scan, activated partial thromboplastin time, and baseline Glasgow Coma Scale score.



CT Examination, ROI Segmentation, and Imaging Evaluation

The CT scans in the two institutions were carried out on different CT scanners, including a GE LightSpeed VCT 64-slice and a GE Optima 540 16-slice. The same CT scanning parameters were performed with a tube voltage of 120 kV, a tube current of 150–300 mA, field of view of 25 cm, and 512 × 512 acquired matrix. The scan ranged from the skull base to the cranium, with a thickness of 5 mm per layer.

The radiomic workflow is summarized in Figure 1. Patients with a volume increase of more than 33% in the follow-up image within 24 h compared to the initial one were automatically defined as hemorrhage expansion (Connor et al., 2015; Hemphill et al., 2015). ITK-SNAP (Version 3.6.0, UPenn) was performed to segment regions of interest (ROI) on CT images. ROI was delineated manually within the confine of each main hematoma by two neuroradiologists with 10 and 12 years of experience, respectively, and who were blind to the data. Before delineation, intensity normalization by histogram matching was applied to eliminate any difference in technologies using ITK software. All pixel gray levels inside the whole ROI objects were extracted for radiomic analysis. No multiple simultaneous spontaneous ICHs were included in the study (Chen et al., 2016). The two neuroradiologists recorded the location of hematoma, the satellite sign number, and the presence or the absence of swirl sign, blend sign, and black hole sign independently during delineation. The definitions of satellite sign, blend sign, black hole sign, and swirl sign were determined according to Al-Nakshabandi (2001), Li et al. (2015, 2016), and Shimoda et al. (2017).
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FIGURE 1. Workflow.




Feature Extraction and Selection

All the radiomic features from ROIs were extracted from preprocessed images using the Artificial Intelligence Kit Version 3.0.1.A (Life Sciences, GE Healthcare, United States), with window width 110 and window level 45. Six main categories were involved, including histogram, morphology, gray level co-occurrence matrix, run length matrix, and gray level zone size matrix. Analysis of variance, Kruskal–Wallis test, and single-factor logistic regression analysis were successively carried out for selecting significant features that were highly correlated. By removing the redundancy with a correlation coefficient of more than 0.90, the radiomic features were further optimally elected. In the final step, least absolute shrinkage and selection operator (LASSO) regression was applied to identify the most nonredundant and robust features among the 396 radiomic features from the training cohort in order to improve the class separability and optimize the representation of lesion heterogeneity. With an increase of the value of λ, relevant features with non-zero coefficients were selected and these contributed to the final LASSO regression. Meanwhile, the best value of λ found by 10-fold cross-validation with a maximum area under the curve (AUC) was used for constructing the regression model. Radscore, which is defined by corresponding non-zero coefficients of the features selected by LASSO, was created by a linear combination of selected features weighted by their coefficients. Respective Radscore was calculated for each patient. Pearson correlation analysis was performed to identify the correlation between satellite sign number and Radscore. The pairwise Pearson correlation coefficients were calculated.



Radiomics Nomogram Building, Calibration, and External Validation

Both Radscore and the satellite sign number were integrated by a multivariate logistic regression-based radiomic model in the training cohort. Furthermore, a nomogram model was constructed based on a multivariate logistic regression analysis to visually demonstrate the probability of a hematoma enlargement. In addition, predictive models based on Radscore or the satellite sign number alone were also developed. The receiver operating characteristic (ROC) analysis and the AUC were applied to evaluate the discrimination performance on the three models. Along with the Hosmer–Lemeshow test measuring for goodness of fit of the nomogram model, predictive accuracy was assessed via a calibration curve in terms of the agreement between the predicted probability of hematoma expansion and the actual one. Then, the constructed model from the training cohort was applied to the external validation cohort. Respective Radscore was also calculated for each patient and further combined with the satellite sign number to validate the nomogram model based on the training cohort. Ultimately, the same process of predictive capability assessment with the ROC analysis and the calibration curve was also carried out in the validation cohort.

Decision curve analysis (DCA) was carried out to evaluate the clinical value of the three models independently on the basis of calculating the net benefit for patients at each threshold probability. By comparing to all strategies or none at all, the best model was elected according to the higher calculated net benefit.

The Kaplan–Meier method was carried out to calculate the survival probabilities. The survival rates were estimated in 30 days. The patients from the two institutions were divided into the expander and the non-expander groups according to the predictive results using the threshold calculated from the training dataset through the Youden Index. Survival was defined as the period from diagnosis to the date of death or the time at which information was last obtained.



Statistical Analysis

Version 3.3.2 of R software and version 13.0 of SPSS software were used in the statistical analysis. Quantitative variables are shown as mean ± SD. Statistical group comparisons of clinical data were performed by independent-samples t-test or χ2 test where appropriate. Intraclass correlation coefficient (ICC) was analyzed for estimating the reliability of inter-observer agreements, which was defined as good consistency if between 0.75 and 1, fair consistency if between 0.4 and 0.75, and poor consistency if under 0.4. The pairwise comparison of ROC curves was performed using z statistic in MedCalc for Windows, version 19.0.7 (MedCalc Software, Ostend, Belgium). Log-rank test was used to compare survival curves, and the results were considered as significant when p < 0.05. The test power (1-β error probability) was calculated by version 3.1.9.7 of G∗Power software. The level of statistical significance was set at a two-sided p-value < 0.05 for all analyses.



RESULTS


Patients Characteristics

As demonstrated in the workflow (Figure 1), between January 2017 and December 2018, a final cohort of 129 patients were selected, and among them, 68 patients from institution I were taken as the training set for the initial prediction model and the other 61 patients from institution II were taken as a prospective independent set for validation.

Tables 1, 2 show the demographic, clinical, and imaging characteristics. No significant difference (p > 0.05) was found in all baseline clinical features and in most of the imaging characteristics between expanders and non-expanders in both the training and the validation cohorts. Moreover, only observer one found a statistical significance in the presence of a swirl sign in the training cohort. No other statistically significant difference of the presence of swirl sign blend sign or black hole sign was observed between groups in both cohorts. However, the patients with and without hematoma expansion had an uneven distribution in the satellite sign number with statistical significance (p < 0.001).


TABLE 1. Baseline demographic information.
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TABLE 2. Radiological characteristics.
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Reproducibility Analysis

Based on the result of the reproducibility analysis by the two radiologists, 349 out of 396 (88.2%) radiomic features had good consistency (ICC ≥ 0.75) on contour-focused segmentation. The number of features with fair consistency (0.75 > ICC ≥ 0.4) and with poor consistency (ICC < 0.4) was 28 (7.1%) and 19 (4.7%), respectively. Supplementary Table S1 demonstrates in detail the consistency of the four selected radiomic features. For identification of the satellite sign, swirl sign, and blend sign, intraobserver reproducibility analysis was also conducted. The ICC for the satellite sign number was 0.910 (95% CI: 0.855 to 0.945), indicating satisfactory consistency. By contrast, the interrater agreement between the two neuroradiologists for swirl sign, blend sign, and black hole sign was 0.738 (95% CI: 0.575 to 0.838), 0.735 (95% CI: 0.570 to 0.836), and 0.791 (95% CI: 0.700 to 0.854), respectively. Since there is excellent consistency between the two segmentation data as well as the satellite sign number evaluation, data from the neuroradiologist with 12 years of experience were finally submitted for further analysis.



Radscore and Nomogram Building

Supplementary Figure S1A shows the heat map based on feature distribution after redundancy removal. The transparent clustering characteristics between rows implied a high differential capacity of distinguishing between hematoma expanders and non-expanders. Indicated between columns is the clustering identification of the former four features and the latter eight features, respectively. Four features were finally selected by 10-fold cross-validation for ensuring robustness and preventing overfitting (Supplementary Figures S1B,C). The differences of the four candidate features between expanders and non-expanders were all remarkably statistically significant (Figure 2). These features were then constructed by a fitting calculation formula for Radscore.
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FIGURE 2. Univariate analysis of four candidate features for hematoma expansion prediction in the training cohort. HGLRE, high gray level run emphasis, SRHGLE, short run high gray level emphasis. *p < 0.01, **p < 0.001.
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From the pairwise Pearson correlative analysis, the satellite sign number was observed to be positively correlated to the corresponding Radscore with a correlation coefficient of 0.482 (p < 0.001, 95% CI: 0.272 to 0.649) (Figure 3). The multivariable logistic regression analysis was generated on the basis of the Radscore and the satellite sign number. The nomogram model was conducted to visualize the results of the multivariable logistic regression analysis (Figure 4A).
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FIGURE 3. Correlation between satellite sign number and Radscore based on Pearson correlation analysis. The mean absolute correlation was 0.482 (p < 0.001, 95% CI 0.272 to 0.649).
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FIGURE 4. Nomogram construction and performance of the combined model in both cohorts. (A) Combined nomogram based on the training cohort. (B) Pairwise comparison of receiver operating characteristic (ROC) curves for Radscore, satellite sign number and the nomogram model in the training cohort. (C) Corresponding calibration curve in the training cohort. (D) Pairwise comparison of ROC curves in the external validation cohort. (E) Calibration curve of the nomogram model in the validation cohort.


[image: image]

A further validation was carried out through ROC analysis. Compared to the Radscore (0.812, 95% CI: 0.698 to 0.897, sensitivity: 0.992, specificity: 0.617) and the satellite sign number (0.762, 95% CI: 0.643 to 0.858, sensitivity: 0.950, specificity: 0.511) alone, the combination of the two yielded an even better performance in the prediction of hematoma expansion as well as an increased AUC of 0.881 (95% CI: 0.779–0.947, sensitivity: 0.973, specificity: 0.787) in the training cohort (Figure 4B). The nomogram model showed a statistically significant improvement in the pairwise comparison of ROC curves; however, the difference between the Radscore and the satellite sign number has no statistical significance (Figure 4B). Figure 4C illustrates the corresponding calibration curve and the Hosmer–Lemeshow test of the nomogram model in the training cohort (p > 0.05). The nomogram model obviously showed a good agreement between the predicted risk and the observed one, indicating a high accuracy of the model in hematoma expansion prediction. The test power (1-β) was 0.99, which verified the reliability and the accuracy of the results (Supplementary Figure S2).



Performance on the External Validation Cohort

According to the ROC analysis, the nomogram model yielded a higher AUC value (0.857, 95% CI: 0.750–0.931, sensitivity: 0.950, specificity: 0.766) than the Radscore-based model (0.776, 95% CI: 0.657 to 0.868, sensitivity: 0.750, specificity: 0.745) and the satellite sign number (0.720, 95% CI: 0.597 to 0.823, sensitivity: 0.950, specificity: 0.426) in the external validation cohort. Consistent results were shown in the pairwise comparison of ROC curves (Figure 4D). Figure 4E illustrates the calibration curve of the proposed nomogram model based on the validation cohort, which suggested a favorable predictive performance satisfactorily consistent with the ideal curve.

DCA was conducted to assess the clinical utility of the nomogram model (Figure 5). According to the decision curve, the nomogram model (red) demonstrated improved hematoma expansion prediction with more areas shown in the validation cohort compared to that derived from the Radscore or the satellite sign number alone (blue and green).
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FIGURE 5. Decision curve analysis for the nomogram model in the external validation cohort. The gray line stands for the assumption that all patients developed hematoma expansion, and the black line represents the assumption that no patient had hematoma expansion. Compared to other models, the highest curve of the nomogram model with more area is the optimal decision making for maximal net benefit in hematoma expansion prediction.


The Kaplan–Meier survival analysis showed approximate survival rates between actual subjects and predicted ones. Furthermore, a significant difference was found not only between the actual expander and non-expander groups but also between predicted groups, which suggested the prognostic value of the combined nomogram model (Figure 6, p < 0.001).
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FIGURE 6. Kaplan–Meier (KM) survival curve for actual and predicted expander and non-expander groups. The KM analysis shows a significant difference between both actual and predicted groups (p < 0.001).




DISCUSSION

In this study, we established and validated a nomogram model for early ICH expansion prediction, incorporating four robust radiomic features which were extracted from NCCT and proven to be effective for the classification of expanders and non-expanders and the satellite sign number which was found to be a statistically significant imaging marker for the identification of expanders. The nomogram model achieved a significantly better performance in both training cohort and external validation cohort with a larger AUC value than the model of radiomic signature alone, suggesting the reproducibility and the reliability of the improved model in hematoma expansion prediction.

In the recent years, several imaging markers for assessing the greater risk of ICH expansion in NCCT images have been springing up (Al-Nakshabandi, 2001; Li et al., 2015, 2016; Boulouis et al., 2017; Shimoda et al., 2017). NCCT turned out to be an optimized alternative for patients with ICH. Including blend sign, black hole sign, swirl sign, island sign, and satallite sign, different imaging characteristics based on NCCT have been proposed one after another (Al-Nakshabandi, 2001; Li et al., 2015, 2016; Boulouis et al., 2016b). The imaging biomarkers based on the heterogeneity of hematoma were prone to be impacted by photon noise and to be strongly subjective due to the unclear description and definition, which were dominant factors in reducing interobserver agreement during visual assessment (Park et al., 2019). As a strong evidence for that, the presence of qualitative signs was observed with relatively inferior consistency between two observers, along with indistinctive results between expanders and non-expanders, in our study. Besides that, the evaluation of inter-group statistical significance for swirl sign in the training cohort appeared to be inconsistent between observers. In the study of Xie et al. (2020), no statistical significance was found in the difference of identification capability between the nomogram model and the Radscore-based model for predicting ICH growth, indicating no statistical contribution of qualitative NCCT signs to the nomogram model construction. Meanwhile, inconsistent results of association between NCCT imaging markers and functional outcomes have been found in ICH patients (Boulouis et al., 2016a; Morotti et al., 2017). In this context, instead of defining new imaging predictors, more robust and quantitative characteristics derived from NCCT images were urgently needed to combine with existing markers to contribute to the predictive model for hematoma expansion.

The satellite sign and the island sign shared a similar morphology-based definition, which was less influenced by photon noise during observation (Li et al., 2017; Shimoda et al., 2017). However, the island sign contained a subjective morphological assessment of “islands” that were connected with the “mainland”, which could contribute to the discrepancy between observers (Sporns et al., 2018). Besides that, the lower limit of the island number in the definition made it difficult to transform into a quantitative index. The satellite sign instead had a precise size limitation with complete separation in at least one slice for those “connected satellites,” making the assessment more straightforward, which could be confirmed by the excellent intraobserver agreement and the consistent results between observers found in our study, thus indicating a high reproducibility. The satellites were explained as multifocal active bleeding from peripheral arterioles or reperfusion injury resulting from perihematomal edema, which means the greater the number of satellite was, the higher the probability of hematoma enlargement could be (Fisher, 1971; Shimoda et al., 2017). On top of that, we assumed that satellite sign number detection, a quantitative transformation of the satellite sign, could make imperative complementation for isolated small hematoma that could not be simultaneously included in the radiomic analysis and provide improved risk stratification.

The LASSO regression method has already been widely applied in radiomics-based studies (Huang et al., 2016; Allotey et al., 2019; Wei et al., 2019). The main thrust of LASSO regression is to avoid overfitting by regression coefficient restriction, which shows great strengths when multicollinearity exists. It is suitable for dimension reduction and feature selection in high-dimensional data, especially when the number of features is much higher than the sample size, just in line with the characteristics of radiomic data. Our previous work concentrated on the predictive performance of filtered histogram-based parameters for ICH enlargement (Shen et al., 2018). In this work, we specially focused on amelioration by employing a matrix-based texture extracting approach to improve the category and the quantity of radiomic features. Through an optimized selection from 396 features by the LASSO method, four features including sum average, high gray level run emphasis (all directions), short run high gray level emphasis (angel 0), and short run high gray level emphasis (angel 35) outstandingly surpassed themselves, suggesting their vital role in the prediction model. The sum average measures the relationship between the occurrences of pairs with lower intensity values and higher intensity values. The high gray level run emphasis and the short run high gray level emphasis measure the distribution of high gray level values and the joint distribution of short run and high gray level, respectively. These results indicated the diversity between hematoma expanders and non-expanders on the specific spatial heterogeneity of gray levels within the region of hematoma. What we found was consistent with those of previous studies which selected one or more of these textures as optimum feature for radiomic model construction (Chen et al., 2018; Romeo et al., 2018; Rui et al., 2018). As expected, the Radscore-based model yielded gratifying results in stratifying patients into expanders and non-expanders, with an AUC of 0.812 in the training cohort. In order to establish a more robust nomogram for prediction, the satellite sign number, as described above, was introduced as a promising imaging biomarker for complement. As the results showed, the nomogram model proved to be more effective and reliable than the model of radiomic signature alone in both cohorts, with a satisfactory AUC of 0.881 and 0.857, respectively, suggesting a positive effect of the inclusion of satellite sign number on prediction.

Early hematoma expansion is a critical determinant for both mortality and dependency after ICH onset. As the only modifiable factor in the vast majority of patients, it takes the center stage in therapeutic strategies (Ohwaki et al., 2004; Broderick et al., 2007). Through our study, two experienced neuroradiologists turned out to have rather different results in the observation of swirl sign and blend sign; in spite of that, they reached a high agreement for both radiomic features and the satellite sign number detection. From that, we would say that the nomogram model for ICH expansion prediction was a fast, easy-to-use, and reliable tool, which could be highly efficient and convenient for clinical routine. The model could assess ICH dynamic changes effectively at baseline and facilitate personalized treatment decisions. Owing to that, early medication, intervention, or even decompressive surgery, targeting hematoma growth, could be conducted for those highly suspected expanders as early as possible in clinical practice to improve the long-term prognosis.

There were some limitations in the current research that still need to be further investigated. First of all, it was a retrospective study with a relatively small and imbalanced sample size between expanders and non-expanders in both training and external validation cohorts. Further prospective researches are warranted to expand and balance the sample size and to verify the conclusions. On the other hand, in the process of hematoma segmentation, when it comes to hematoma located in cortical or subcortical regions, it was prone to inaccurate delineation due to partial volume effects. Besides that, the feature extraction software made the displacement vectors 1, 4, and 7 describe the relationship between the gray scale of pixels of the texture as default setting. In light of this, different set points could possibly influence the quantity and the category of radiomic feature extraction; thus, a future radiomic analysis based on various displacement vectors is required. Due to the relatively short follow-up time, the median overall survival for ICH was not available. We will continue to follow up with these patients to secure a more complete prognosis status.



CONCLUSION

We have identified and validated a nomogram model of integrated radiomic signature with the satellite sign number based on NCCT images to be a reliable and precise evaluation measurement for ICH enlargement prediction at early baseline. The predictive model could serve as an objective and convenient tool to use for patients with ICH in individualized prediction and treatment decision-making, thus suggesting a great potential for clinical application.
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Parkinson’s disease (PD) is a progressive, chronic, and neurodegenerative disorder that is primarily diagnosed by clinical examinations and magnetic resonance imaging (MRI). In this study, we proposed a machine learning based radiomics method to predict PD. Fifty healthy controls (HC) along with 70 PD patients underwent resting-state magnetic resonance imaging (rs-fMRI). For all subjects, we extracted five types of 6664 features, including mean amplitude of low-frequency fluctuation (mALFF), mean regional homogeneity (mReHo), resting-state functional connectivity (RSFC), voxel-mirrored homotopic connectivity (VMHC) and gray matter (GM) volume. After conducting dimension reduction utilizing Least absolute shrinkage and selection operator (LASSO), fifty-three radiomic features including 46 RSFCs, 1 mALFF, 3 mReHos, 1 VMHC, 2 GM volumes and 1 clinical factor were retained. The selected features also indicated the most discriminative regions for PD. We further conducted model fitting procedure for classifying subjects in the training set employing random forest and support volume machine (SVM) to evaluate the performance of the two methods. After cross-validation, both methods achieved 100% accuracy and area under curve (AUC) for distinguishing between PD and HC in the training set. In the testing set, SVM performed better than random forest with the accuracy, true positive rate (TPR) and AUC being 85%, 1 and 0.97, respectively. These findings demonstrate the radiomics technique has the potential to support radiological diagnosis and to achieve high classification accuracy for clinical diagnostic systems for patients with PD.

Keywords: Parkinson’s disease, radiomics, resting-state functional magnetic resonance imaging, structural magnetic resonance imaging, machine learning


INTRODUCTION

Parkinson’s disease (PD) is a major neurodegenerative disease influenced by both genetic and environmental factors (Halliday et al., 2014). As the second most common neurodegenerative disorder, PD is characterized by the degeneration of dopamine-producing cells in the brain resulting in motor symptoms and nonmotor features (Mhyre et al., 2012). Available diagnostic tools are better at detecting motor symptoms than nonmotor symptoms. The neural and pathophysiologic mechanisms to predict the progression of PD remain unclear and discovering the psychobiological markers is the key research priority. Understanding the inner working mechanisms of PD is one of the most intriguing scientific questions. Studies in neuroscience strongly suggest intervention during early therapeutic windows (Vu et al., 2012; Tibar et al., 2018). Although positron emitted topography/computed tomography is accurate (Meles et al., 2017) the diagnosis of PD at present is mainly dependent on clinical features and scores.

In recent years, neuroimaging has been increasingly employed to aid the early diagnosis of PD. A variety of neuroimaging technologies including functional magnetic resonance imaging (fMRI), structure MRI (sMRI), positron emission tomography (PET) and electroencephalography (EEG) have been widely adopted. Among these, resting-state functional MR imaging (rs-fMRI) is regarded as a promising technique for precisely locating the abnormal spontaneous activities in neuropsychological disease (Wang et al., 2019). Several rs-fMRI based methods including regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and functional connectivity (FC) provide a task-free approach to explore spontaneous brain activity and connectivity among networks in different brain regions of PD patients. Application of these techniques provides new insights in prediction, early diagnosis and differential diagnosis of PD. Previous rs-fMRI studies using ALFF found specific frequency band of ALFF for PD (Li et al., 2016) and detected significant alterations of ALFF in the prefrontal cortex and subcortical regions in PD patients (Xiang et al., 2016). Frequency domain analyses of ALFF revealed decreased ALFF in the putamen, parieto-temporo-occipital cortex, thalamus, cerebellum, and several occipital regions, while increased ALFF values were detected in the caudate and several temporal regions (Zhang et al., 2013). A large sample study of 109 PD patients found distinguishing frequency bands and neural modulations in the brainstem and striatum correlated with the dose of levodopa and bradykinesia subscale scores (Hou et al., 2014).

Along with these distinctive changes of ALFF, spontaneous ReHo analysis in rs-fMRI studies also achieved considerable progress in examining early onset and late-onset PD (Wu et al., 2009; Yang et al., 2013; Sheng et al., 2016). ReHo alteration in the early phase of PD showed a low level of local coherence in the right primary sensory and positive correlation with disease duration (Choe et al., 2013). A 2-year longitudinal PD study of multimodal MRI using ReHo and voxel-based-morphometry (VBM) observed a progressive decrease of ReHo values in the sensorimotor cortex, default-mode network (DMN), and the left cerebellum, but increased ReHo in the supplementary motor area (SMA), bilateral temporal gyrus, and hippocampus (Zeng et al., 2017). A meta-analysis using ALFF and ReHo found consistent decreased activity in the putamen for PD patients that could serve as an independent validation of rs-fMRI (Wang et al., 2018). Another ALFF and ReHo based study demonstrated the disturbed DMN, SMA, basal ganglia (BG), and posterior cerebellar lobule in cognitively normal PD as compared with healthy controls (Harrington et al., 2017). These multilevel characteristics of rs-fMRI could effectively improve the discrimination accuracy of diagnosis.

Although previous rs-fMRI studies revealed widespread abnormal intrinsic networks in line with the pathophysiology of PD, these findings and biomarkers have not been extensively used for diagnosis, prediction or prognosis of PD in daily clinical practice. In recent years, a method called radiomics that extracts large amount of features from radiographic medical images into high-dimensional mineable data using data-characterization algorithms has received considerable attention, particularly in clinical oncology diagnosis (Valladares et al., 2020). Radiomics analysis employs multimodality medical images and machine learning techniques to extract many quantitative characteristics as objective, sensitive biomarkers of disease stage to potentially detect treatment effects (Liu et al., 2019). Applications of radiomics approach in the neurodegenerative and mental disorder disclosed the heterogeneity characteristics with a high accuracy that facilitate individualized diagnosis in patients with Alzheimer’s disease, autism spectrum disorder and schizophrenia (Hofmann-Apitius et al., 2015; Salvatore et al., 2019; Wang et al., 2019). The radiomics technology that integrated the advantages of various models has been utilized to extract the characteristics for automated diagnosis of early PD and quantifying PD severity. These methods consist of voxel-based method (VBM), diffusion tensor imaging (DTI), functional connectome and connectivity measures among others (Shinde et al., 2019). A radiomics analysis of longitudinal Single-photon Emission Computed Tomography (PSECT) images demonstrated radiomic features significantly increased the prediction accuracy and were proved to be effective prognostic biomarkers of PD (Rahmim et al., 2017). More recently, a radiomics of deep neural nets on neuromelanin-sensitive MRI demonstrated a test accuracy of 85.7% and revealed the substantia nigra pars compacta abnormalities in PD discriminating from atypical PD (Shinde et al., 2019). Another radiomics study of quantitative susceptibility mapping were shown to assist the diagnosis of idiopathic PD (Cheng et al., 2019). A classifier for early PD with an accuracy of 86.96% was identified from SVM training by extracting characteristics including ALFF, ReHo and RSFC from the gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) (Long et al., 2012).

Considering the above-mentioned radiomics approaches in existing PD studies, we aimed to utilize both rs-fMRI and sMRI to extract radiomic features including whole-brain functional activity (i.e., ALFF and ReHo), connectivity (i.e., RSFC and VMHC) and gray matter (GM). Our goal was to discover more effective biomarkers and to eventually develop an automated classification framework of early diagnosis for PD patients.



MATERIALS AND METHODS


Participates and Clinical Evaluation

This study was approved by the Medical Research Ethical Committee of Nanjing Brain Hospital (Nanjing, China) in accordance with the Declaration of Helsinki, and written informed consent was obtained from all subjects. Seventy PD patients and fifty healthy controls (HC) were recruited. All the demographic characteristics and clinical symptom ratings were collected before MRI scanning and all patients were in the ON state during the MRI scan.

All subjects underwent a complete neurological and psychological status assess, and a review of medical history records. Mini-mental state examination (MMSE) was used to evaluate cognition. The severity of depression was quantified using the Hamilton Depression Scale (HAMD). The neurocognitive tests were administered to each participant individually by a professional appraiser in the neuropsychological research center. All HC participants were interviewed to rule out the presence including current or past psychiatric illness, history of psychiatric illness in first-degree relatives and/or current or past significant medical or neurological illness.

The demographic and clinical data of patients with PD and HC were compared using a Fisher’s exact test (for sex), analysis of variance (ANOVA) (for age, education, MMSE and HAMD). The level of significance was set at p < 0.05.



Image Data Acquisition

Image data were acquired using a Siemens 3.0-Tesla signal scanner (Siemens, Verio, Germany) in the department of radiology within Nanjing Brain Hospital. Functional imaging data were collected transversely by using a gradient-recalled echo-planar imaging (GRE-EPI) pulse sequence with the following configurations: TR/TE = 200 ms/30 ms, flip angle = 90°, matrix = 64 × 64, FOV = 220 × 220 mm, thickness/gap = 3.5/0.6 mm, in-plane resolution = 3.4 × 3.4 mm, slices = 31. For each subject, a total of 140 volumes were obtained, resulting in a total scan time of 280 s. High resolution anatomical images were acquired using a T1 fluid attenuated inversion recovery (FLAIR) sequence (TR/TE = 2530/3.34 ms, flip angle = 7°, matrix = 256 × 192, FOV = 256 × 256 mm, slice thickness/gap = 1.33/0.5 mm, 128 slices covered the whole brain). The subjects were instructed to keep their eyes closed, relax their minds and remain as motionless as possible during the data acquisition. Rubber earplugs were used to reduce noise, and foam cushioning was used to fix the head to reduce motion artifacts. The MR images were retrieved from the archive by two experienced neuroradiologists (QH and XW).



Data Preprocessing

Image preprocessing procedure was carried out Data Processing Assistant for Resting-State fMRI1 based on Statistical Parametric Mapping (SPM122) operated on the Matlab platform. The following steps were applied to the image data. For each subject, we first discarded the first five time points for signal equilibrium when subject was still adapting to the scanning noise. The remaining 135 images underwent slice-timing correction using the middle slice as the reference frame and head motion correction by regressing out 6 head motion signals (displacement on x, y, and z direction and 3 angular motion). Four subjects with more than 2.5 mm maximum displacement in any of the three dimensions or 2.5° of any angular motion were removed. Next, T1-weighted structural images of each subject were coregistrated to the resulting functional images followed by images being segmented into gray matter (GM), white matter, and cerebrospinal fluid using a new segment and DARTEL segmentation algorithm. The functional images were spatially normalized to the Montreal Neurological Institute (MNI) space with 3 × 3 × 3 mm cubic voxels. After normalization, images were spatially smoothed with a 4 mm full width at half maximum (FWHM) Gaussian kernel and detrended using linear, quadratic or higher order polynomial algorithms. Note that when calculating Regional Homogeneity (ReHo), the smoothing procedure was omitted for maintaining the measuring accuracy. After smoothing and detrending, we further regressed out nuisance covariates including the Friston 24 motion parameters (Friston et al., 1996), white matter, global signals and cerebrospinal fluid signals and applied temporal filter (0.01 Hz < f < 0.08 Hz) to diminish high-frequency noise.



Image Feature Extraction


ReHo Analysis

The method of Regional Homogeneity (ReHo) (Zang et al., 2004) was proposed to analyze characteristics of regional brain activity and to reflect the temporal homogeneity of neural activity. It has been pointed out that some preprocessing methods especially spatial smoothing R-fMRI time series may significantly change the ReHo magnitudes (Zuo et al., 2013). To get rid of this potential issue, preprocessed rs-fMRI data without the spatial smoothing step was used for calculating ReHo. All individual ReHo maps were computed and then spatially smoothed with a 4 mm FWHM Gaussian kernel. In particular, we focused on the mReHo maps obtained by dividing the mean ReHo of the whole brain within each voxel in the ReHo map. We further segmented the mReHo maps and extract all the 112 ROI signals based on the Harvard-Oxford atlas (HOA) using the Resting-State fMRI Data Analysis Toolkit, REST3.



ALFF and VHMC Extraction

Slow fluctuations in activity are fundamental features of the resting brain for determining correlated activity between brain regions and resting state networks. The relative magnitude of these fluctuations can discriminate between brain regions and subjects. Amplitude of Low Frequency Fluctuations (ALFF) (Zang et al., 2007) are related measures that quantify the amplitude of these low frequency oscillations. Leveraging the preprocessed data within the frequency range between 0.01 and 0.1 Hz, we calculated individual ALFF maps and the mALFF maps by dividing the mean ALFF of the whole brain within each voxel in the ALFF maps. Using the HOA, we ended up with 112 mALFF values after extracting the ROI signals based on the mALFF maps.

Voxel-Mirrored Homotopic Connectivity (VMHC) quantifies functional homotopy by providing a voxel-wise measure of connectivity between hemispheres. VMHC calculates the connectivity between each voxel in one hemisphere and its mirrored counterpart in the other (Zuo et al., 2010). By segmenting the VMHC maps via HOA, we also got 112 VHMC values.



RSFC and GM Volume Extraction

Resting-state functional connectivity (rsFC) analysis is an effective method for estimating spontaneous functional activity and measuring the temporal correlation between spatially remote neurophysiological events. The preprocessed rs-fMRI images were segmented into 112 ROIs according to HOA. After averaging the rs-fMRI time courses of all the voxels within each ROI, the mean time series of each ROI were acquired. We performed Pearson’s correlation analysis on each pair of ROI time series (i.e., 112 × 111/2 = 6216 pairs in total). The 6216 correlation coefficients were then transformed into z-scores by Fisher’s z transformation and retained as the RSFC metrics. Based on the preprocessed structural images, we also extracted GM volumes of these 112 ROIs using the HOA as masks.



Feature Selection and Model Validation

Our candidate features consist of all the aforementioned metrics including ReHo, mALFF, VHMC, RSFC and GM volume along with all the clinical characteristics. To build our model, we first randomly split our dataset into training set and testing set while maintaining the PD:HC ratio, where 93 subjects were used as the primary cohort for feature selection and model training. The remaining 23 subjects were treated as validation cohort for examining the selected features. All steps of feature selection and model training were only based on and performed in the training dataset.

Note that our goal was to identify the most significant variables that could discriminate PD patients from healthy controls. However, as we had a total of 6669 features and a comparably much smaller sample size, the dimension reduction was necessary to improve the accuracy in the later step of building the machine learning model for classification (Wang et al., 2019). Hence, we first performed the nonparametric Mann-Whitney U test on each feature between the PD patients and the healthy controls and kept the variables with P-value larger than 0.1. Since the Mann–Whitney U test does not require the data to be normally distributed, we adopted the procedure as the first step to filter the features. Next, to avoid the possible presence of Simpson’s Paradox caused by multicollinearity, where a predictor appears to be significant by itself, but this observation disappears or the direction reverses when other predictors are added. Therefore, whenever we spotted an absolute value of pairwise correlation between two features that was larger than 0.5, we removed the feature with larger average absolute correlation. Finally, to further reduce the burden of high dimensionality imposed on the model training, we used the least absolute shrinkage and selection operator (Lasso) procedure that assigns a penalty to the coefficients and eliminates variables with zero coefficient value. We used 10-fold cross validation to obtain the optimal penalty parameter for Lasso and retained the features with nonzero regression coefficients.

The methods of supper vector machine (SVM) and random forest were implemented for classifying subjects based on the selected features. Given the relatively small sample size, we used the linear kernel when fitting SVM, which was conducted by specifying the type parameter to be “linear” in the svm function. The tuning parameters for both methods were selected via 10-fold cross-validation by using the trainControl function with the method parameter being “repeatedcv” and the train function with the method parameter specified as either “cforest” or “svmLinear2” for random forest and SVM, respectively. The performance of these two different machine learning methods in the training and test sets were later compared and visualized according to different metrics including accuracy, true positive rate, false positive rate, receiver-operating characteristic (ROC) curve and area under curve (AUC). The complete statistical analysis was conducted in R 3.5.0. Specifically, packages “e1071,” “randomForest”, “glmnet,” “caret” were employed for running the SVM, random forest, Lasso and for cross validation, respectively. The flowchart of this study is presented in Figure 1.


[image: image]

FIGURE 1. Flowchart of the study. After the rs-fMRI and sMRI images were preprocessed, we extracted the 6669 metrics. Then, Mann–Whitney U test, screening out high correlated variables and Lasso regression were implemented to reduce the number of features. Last, random forest and SVM were conducted to differentiate between PD and HC subjects.




RESULTS


Clinical Characteristics

In Table 1, we provided the complete demographic and clinical information for all subjects participated in this study. No significant difference was observed with respect to the gender, age, education and MMSE score between PD patients and HCs, while significant difference was detected for HAMD between these two groups. In particular, for PD patients, the HAMD scores (11.0 ± 6.9) were significantly higher than those for HCs (2.1 ± 2.3).


TABLE 1. Clinical and demographic data evaluation of PD and HC.
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Feature Selection

After the first step of Mann–Whitney U test, 6669 features containing metrics from rs-fMRI, sMRI and clinical information reduced to 993 features. Next, the procedure of excluding variables with absolute correlations larger than 0.5 removed 628 features with a total of 365 features remaining. Last, 54 features including (46 RSFCs, HAMD, 1 mALFF, 3 mReHos, 1 VMHC and 2 GM volumes) with nonzero coefficients obtained from the logistic regression with Lasso penalty were retained as the final metric set to be used for binary classification. In Table 2, we listed these 46 RSFCs and the respective connected brain regions indexed in the HOA template. The related brain regions of RSFCs were primarily located in the executive control network (ECN), default mode network (DMN), affective network (AN), visual network (VIN) and sensorimotor network (SMN) (Figure 2). The seven features were mALFF of the left superior temporal gyrus, posterior division, mReHo of the left parahippocampal gyrus, posterior division, mReHo of the right thalamus and left pallidum, VMHC of the right temporal fusiform cortex, anterior division, and the GM volume of the right inferior temporal gyrus, anterior division and the right accumbens.


TABLE 2. 46 RSFC features and the related brain regions indexed in the HOA template.
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FIGURE 2. The visualization plot of the selected 46 RSFCs. The color of the spot reflects the number of connections that the associated brain regions participate in. The larger corresponding value on the color bar means more connections are involved in the respective region. The brain networks were visualized with the BrainNet Viewer (Xia et al., 2013).


For better illustration and clearer visualization of the difference for these selected features between PD group and HC group, in Table 3 we reported the mean, standard deviation (SD) and P-value of the resulting features from the dimension reduction step for two groups. We also plotted the histograms of these features with different colors representing different groups in Figure 3. In particular, the increasing or decreasing trends of these features between two groups can be immediately revealed by looking at the corresponding values in Table 3 or locations in Figure 3.


TABLE 3. The mean, standard deviation (SD) and P-value for all 54 selected features in PD group and HC groups.
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FIGURE 3. Histograms of selected features for PD and HC subjects with darker color representing overlapping values. Purple: PD; Green: HC. (A) HAMD score; (B) mReHo values of the left parahippocampal gyrus, posterior division, the right thalamus and left Pallidum; (C) mALFF values of the left superior temporal gyrus, posterior division; (D) VHMC values of the right temporal fusiform cortex, anterior division; (E) GM volumes of the right inferior temporal gyrus, anterior division and the right accumbens.




Model Fitting

After the screening process, we were left with only 56 features and were no longer stuck in the ultrahigh dimensional situation. Most of the existing machine learning methods including random forest and SVM could accommodate this relatively smaller number of variables compared with previous 6669 features. Therefore, we conducted the model fitting procedure for classifying subjects in the training set utilizing random forest and SVM to evaluate the performance of these two methods. It turned out that after cross-validation, both random forest and SVM achieved the perfect accuracy and AUC for distinguishing between PD and HC subjects in the training set, which was not surprising since we only had 56 coefficients to estimate while we had a sample size of 93 subjects.



Model Validation

Despite the superior performance of both methods in the training set, what really matters is the predictive result in the testing set. We therefore examined the validity of random forest and SVM by evaluating their classification performance in the testing set using AUC and the following measures (Table 4),


TABLE 4. Predictive performance table in the testing set for random forest and SVM.
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where TP, TN, FP and FN correspond to true positive, true negative, false positive and false negative, respectively.

TPR measures the proportion of PD patients correctly detected by the given procedure among all the PD patients. FPR is calculated using the number of people who were falsely identified as having PD, divided by the total number of HCs. Accuracy gives the proportion of true results (both true positives and true negatives) among the total number of cases examined, i.e., the sample size of the testing set. In practice, we used the natural cutoff 0.5 to determine whether the subject should be classified as PD. To further assess the robustness of two methods, we also plotted the ROC curves in Figure 4 by varying thresholding values.


[image: image]

FIGURE 4. ROC curves evaluating the predictive performance of random forest and SVM in the testing set.


From Table 4 and Figure 4 we can tell that random forest and SVM performed comparably well in terms of the overall accuracy. Random forest performed slightly better than SVM according to FPR, while SVM outperformed random forest according to accuracy, TPR and AUC. Therefore, for a less conservative and more robust prediction, we would prefer SVM over random forest based on the performance summary in the testing set.



DISCUSSION

We presented a framework for uncovering predictive markers of PD based on radiomics analysis and obtained excellent accuracy in classifying PD from HCs. Our model was established based on the relevant clinical characteristics, whole-brain functional connectivity and activity along with gray matter structure. After collecting the MRI scans for one subject, it may take 2 h for obtaining clinical evaluation, 10 min for preprocessing and around 2 s for running the machine learning models. To the best of our knowledge, this is the first study to explore the whole-brain functional activity and gray matter structure in a homogeneous and relatively large sample MRI study. The distinctive whole-brain functional activity and connection were mainly located within or across the AN, DMN, ECN and SMN in PD compared with HCs.

Our results showed that both methods achieved perfect accuracy in the training set, and SVM yielded an overall better classification performance than random forest in the testing set. In particular, SVM had higher accuracy (85%), TPR (1) and AUC (0.97) than random forest, while the FPR for SVM (0.31) was higher than random forest (0.27). The radiomics-based machine learning models in present study demonstrated the validity of trained classifiers in PD, which could be helpful to support clinical decision in both radiology and neurology.

Previous studies have made great progress in identifying PD and other neurodegenerative disorders from HCs using structural and fMRI data with the assist of machine learning. These results demonstrated the ability of supervised classification methods with a relatively high accuracy. An automatic SVM based study with leap motion controller recruited 16 PD and 12 HCs, and the accuracy was 74.07% with an AUC of 0.675 (Butt et al., 2018). Another study of SPECT imaging using SVM and logistic regression (LR) showed that SVM method produced a higher accuracy of 85% than LR of 83%, and the authors claimed that the SVM-based model could provide better guide for PD stage classification (Hsu et al., 2019). A large sample based on 831 structure T1-weighted MRI achieved a very high accuracy of up to 99% for differential diagnosis of PD (Singh and Samavedham, 2015). A study incorporating DTI and VBM in an SVM algorithm correctly distinguished PD from progressive supranuclear palsy (PSP) when white matter atrophy was considered (Cherubini et al., 2014). Combined with these previous findings, big data-driven approaches were helpful to aid PD diagnosis and to reach precision medicine (Khoury et al., 2019; van den Heuvel et al., 2020).

The aforementioned methods either possessed a lower accuracy and AUC or only considered part of the complete radiomic features based on either rs-MRI or sMRI. In our study, the radiomics approach integrated both rs-MRI and sMRI by extracting features that quantify the whole-brain functional activity and connectivity along with GM volume and clinical evaluations. Forty-six RSFCs and the respective connected brain regions were selected after dimension reduction, and these disturbed brain regions related to RSFCs were primarily located in the ECN, DMN, AN, VN, and SMN. Seven more features of the HAMD, mALFF, mReHo, VMHC and the GM volume were also retained to build the classifying model. Within the model, intrinsic connectivity networks of mALFF were identified and located mainly in DMN including the left superior temporal gyrus, posterior division, the left parahippocampal gyrus, posterior division. The particular neural activities of mReHo maps were also located in DMN of the right thalamus and GN of the left pallidum. Selected VMHC quantified the functional homotopy of connectivity in VN of the right temporal fusiform cortex and anterior division. Features of the GM volume also covered the DMN in the right inferior temporal gyrus, anterior division and the right accumbens.

Some of these findings were expected and in accordance with previous studies. For example, the altered RSFCs were primarily located in the typical resting-state network (RSN). However, the prominent role of DMN, ECN, AN, VIN and sensorimotor functioning in PD revealed in our study was remarkable. The identified regions in DMN included the left superior temporal gyrus, posterior division, the left parahippocampal gyrus, the right thalamus and the right inferior temporal gyrus. We also found abnormal AN in the right insular cortex, left and right temporal pole, along with unusual VIN in lateral occipital cortex, superior, temporal fusiform cortex, the left and right temporal occipital fusiform cortex, the left occipital pole, the right superior parietal lobule. Abnormal ECN was detected in the left and right paracingulate gyrus, and the right anterior cingulate gyrus.

RSN reflects the spontaneous neural activities of the blood oxygenation level-dependent (BOLD) signals between temporally correlated brain regions. Compared with the control group, the DMN plays a crucial role in neurodegenerative disorders and normal aging. Several fMRI studies have indicated that the DMN injured before the cognitive decline in PD (Sandrone and Catani, 2013; Koshimori et al., 2016). A 2-year study using ReHo and VBM to identify differences in local spontaneous brain activity and gray matter volume found that PD patients with normal cognition showed a decreased ReHo in the DMN (Zeng et al., 2017). In addition, a gender-specific effect of uric acid on resting-state cortical FC found the de novo PD group had decreased FC in bilateral cingulate, postcentral and lingual gyri within DMN (Lee et al., 2018). Our results were consistent with these previous studies.

The basal ganglia, thalamus, and brainstem are important in the pathophysiology of PD. Studies on detecting neural activity changes in these regions have achieved more sensitive and reliable results for scientific and clinical research on PD. The basal ganglia network (BGN) has been observed in pathologies with altered neurotransmitter systems of dopaminergic processes, and also involving motor control. In the present study, we found disturbed BGN in left pallidum, the right thalamus and the right brainstem. The variability of FC in healthy older adults found strongest correlate of FC in the BGN, and potential links to dopamine-related function (Griffanti et al., 2018). A sex-related pattern of RSN showed an increased connectivity within the BGN in female PD patients, and FC changes in sensorimotor at baseline were considered as an independent predictor of disease severity in the early stage of PD (De Micco et al., 2019).

Attention networks (AN) in cortical regions are affected in early stage of PD (Madhyastha et al., 2015). Proteinopathy and longitudinal changes in FC networks within the SMN were confirmed, and the interaction between the dorsal attention network (DAN) the frontoparietal control network decreased significantly over time in PD while correlated with the decline in cognitive function (Campbell et al., 2019). Altered organization of the DAN and lack of changes in the ventral attention network (VAN) in PD patients indicated the higher risk for freezing of gait during complex walking situations, and these findings revealed that AN played an important role in freezing of gait (Maidan et al., 2019). Gender-specific effect of uric acid on rs-fMRI networks in de novo PD found decreased FC in bilateral insular, frontal and temporal areas within DAN and bilateral medial temporal and right insular areas within executive control network (ECN) (Lee et al., 2018).

Apart from these RSFC findings, structure MRI has received more research focus on better stability and repeatability compared with rs-fMRI. In our study, GM volume of the right inferior temporal gyrus, anterior division and the right accumbens demonstrated differences in PD as opposed to HC. Atrophy of the putamen and altered FC of the striatal structures in PD revealed key structure-function relationship. Caudate nucleus and putamen atrophy could serve as neuroimaging biomeasures for PD (Owens-Walton et al., 2018). A brain microstructual study found decreased white matter fiber features in the right arcuate fasciculus and bilateral middle cerebellar peduncles. The study also detected increased network connectivity in prodromal early PD, which might indicate the neural compensation (Sanjari et al., 2019). The right accumben as one of selected GM features in the model is an interesting sign. An analysis of dopamine regulation and transporter function found regional brain (the nuclei accumbens, cingulate regions and inferior frontal) were closely related with apathy rating scores and β-amyloidopathy for predicting cognitive decline in advancing PD (Zhou et al., 2020). An event-related fMRI study based on reward-related neural responses showed the left nucleus accumbens with lower activation indicated involvement of the ventral striatum in individuals for further development of PD (Thaler et al., 2019) and PD patients with persistent pain displayed an accumbens-hippocampus disconnection (Polli et al., 2016).

Our study certainly has several limitations. First, although we have carried out detailed clinical evaluation and stage classification for all subjects, due to our limited sample size, we could not further stratify the patients according to the disease severity. Second, RSFCs in the model may be influenced by the different clinical symptoms such as olfaction or depression. Third, cerebellum networks were left out in the model. Although the key molecular events that provoke PD have not been fully understood and the underlying mechanisms involving cerebellum were relatively less reported, considerable evidence has indicated that cerebellum plays an important role in sensorimotor dysregulation and has now received growing attention (Lopez et al., 2020; Maas et al., 2020). For future studies, we will include the cerebellum, and increase our sample size in order to obtain different subgroups based on disease stages.

In agreement with previous rs-fMRI studies, the proposed radiomics method that combined rs-fMRI spontaneous activity, connectivity and structure MRI of gray matter (GM) was proved to be scientifically sound and valid. The machine learning based radiomics approach can help the diagnosis, personalized treatment, and prognosis orientation for patient with PD at a lower cost. This type of radiomics approaches should be widely performed and considered as an automated classification framework for predicting PD in clinical management.
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Measurement of the width of fetal lateral ventricles (LVs) in prenatal ultrasound (US) images is essential for antenatal neuronographic assessment. However, the manual measurement of LV width is highly subjective and relies on the clinical experience of scanners. To deal with this challenge, we propose a computer-aided detection framework for automatic measurement of fetal LVs in two-dimensional US images. First, we train a deep convolutional network on 2,400 images of LVs to perform pixel-wise segmentation. Then, the number of pixels per centimeter (PPC), a vital parameter for quantifying the caliper in US images, is obtained via morphological operations guided by prior knowledge. The estimated PPC, upon conversion to a physical length, is used to determine the diameter of the LV by employing the minimum enclosing rectangle method. Extensive experiments on a self-collected dataset demonstrate that the proposed method achieves superior performance over manual measurement, with a mean absolute measurement error of 1.8 mm. The proposed method is fully automatic and is shown to be capable of reducing measurement bias caused by improper US scanning.

Keywords: biometric measurement, computer-aided diagnosis, ultrasound, fetal head, deep learning, lateral ventricle


1. INTRODUCTION

Ultrasound (US) is widely used in prenatal diagnosis because it is non-radiative, noninvasive, real-time, and inexpensive (1, 2). Ventriculomegaly, one of the most common abnormal findings in prenatal diagnosis, is often a sign of central nervous system malformation, chromosomal abnormalities, intrauterine infections, or other problems (3, 4). Ventriculomegaly can be diagnosed by measuring the fetal lateral ventricles (LVs) in standard plane images of the fetal brain. Currently, to measure the width of LVs, human scanners determine the maximum distance by marking two endpoints on the inner and outer edges of the LV. The line segment between these endpoints is considered the diameter of the LV and its length is generally referred to as the LV width (5), as shown in Figure 1A. However, such manual measurement requires extensive and comprehensive clinical knowledge of fetal LVs. It is a challenging task, especially for novice scanners. Additionally, scanners often suffer from repetitive stress injuries caused by multiple keystrokes (6). Therefore, it is necessary to develop automatic methods for fetal LV measurement, and crucial image-processing issues must be resolved to achieve a more accurate and efficient obstetric examination. Although the automatic measurement of fetal biometrics—such as head circumference (7, 8) and femur length (9, 10)—has attracted widespread attention in recent years, work on fetal LV measurement is rare.


[image: Figure 1]
FIGURE 1. (A) Scanner-located LV width; the yellow crosses represent the endpoints, and the physical length of the LV is shown in the lower right corner. (B) Fetal LV images in different ultrasound instruments.


To the best of our knowledge, this is the first study to propose an automatic measurement method for fetal LV width based on two-dimensional (2D) US images using deep learning. Several sample images of fetal LVs and the caliper in different US instruments are shown in Figure 1B.

Automatic measurement of fetal LV width remains a challenging task, as illustrated in Figure 2. The difficulties lie in three aspects: (1) The poor quality of the image can be an obstacle to accurate detection and segmentation of the fetal LV. For instance, the boundary of the LV may be blurred, as indicated by the white arrows in Figures 2A,D, which can result in a large overlap with adjacent tissues or anatomical structures, as highlighted by the yellow arrows in Figure 2B. (2) Because of differences between the location and type of calipers used, indicated by the blue arrows in Figures 2C,D, it is difficult to obtain the essential pixels-per-centimeter (PPC) parameter, which is the number of pixels in one centimeter of an image and is used to convert pixel length to physical length. (3) The subjectivity of manual measurements can cause issues, and the poor performance of the manual implementation is attributable to a lack of standardized training. Although standard definitions of the LV width are available, the widest part of the LV is determined by scanners manually marking two points on its inner and outer edges, as shown in Figure 1A.


[image: Figure 2]
FIGURE 2. (A) Obvious fetal LV. (B) Images sometimes contain other similar structures. (C) Different location of the caliper than in (A). (D) Fuzzy fetal LV, with a different type of caliper from that in (A). Blue arrows indicate the caliper; yellow arrows indicate the LV and similar structures; white arrows indicate the LV.


To tackle these challenges, we develop a framework for automatic LV measurement based on deep learning. Specifically, we decompose the LV measurement task into three subtasks. First we train a Mask R-CNN (11) convolutional network on 2,400 images of fetal LV. The trained model can effectively learn and extract discriminative features from the training images and is able to perform joint classification, detection, and segmentation tasks simultaneously. Morphological operations (12) and prior knowledge are combined to enable extraction of the caliper scales in such a way that interference with other structures and tissues in the images is avoided. In the second step, we extract the caliper scales using prior knowledge. From these scales the PPC is calculated precisely. Then, we employ the minimum enclosing rectangle (MER) method to find the diameter and use the Euclidean distance to calculate its pixel length. Finally, the pixel length is transformed to the physical length of the LV by the PPC. The proposed method is evaluated on a self-collected dataset. Experimental results reported in Table 4 demonstrate the superior performance of the method.



2. MATERIALS AND METHODS

The framework of the proposed method is summarized in Figure 3. Given heterogeneous sources of US images, Mask R-CNN can automatically detect and segment the caliper and the fetal LV simultaneously. Then, the PPC is obtained from the detected caliper using prior knowledge, and the pixel length of the LV is obtained by the MER method. Finally, the fetal LV width measurement is obtained by transforming the pixel length to a physical length using the PPC.


[image: Figure 3]
FIGURE 3. Flowchart of the proposed framework for automatic LV measurement.



2.1. Image Acquisition

All examinations and diagnoses were carried out during routine screenings at the First Affiliated Hospital of Sun Yat-Sen University, China, from March 2010 to February 2018, by a team of 15 doctors with 3–22 years of experience. Images of fetal standard transventricular planes are required to assess fetal LVs, according to the guidelines of the International Society of Professionals in Ultrasound for Obstetrics and Gynecology (ISUOG). Ten different US machines provided by six different manufacturers (GE Voluson 730 Expert/E6/E8/E10, Aloka SSD-a10, Siemens Acuson S2000, Toshiba Xario 200 (Tus-X200), Samsung UGEO WS80A, and Philips EPIQ 7C) were utilized for data acquisition.

We acquired a total of 2,900 images, comprising 1,694 normal LVs, and 1,206 ventriculomegaly LVs, from the above US instruments, as well as 2,079 US images containing only calipers. To verify the robustness of the model, we collected 200 test images that contain neither LVs nor calipers to serve as negative samples. Our dataset is large enough to adequately represent the various LV images commonly seen in clinical practice. The ground truth of the LVs and calipers in these images were labeled by three experienced scanners. We randomly selected 2,400 images containing LVs and calipers and 1979 images containing only calipers to constitute the training dataset. The testing dataset is made up of 300 images containing LVs and calipers as positive samples and the 200 images without LVs and calipers as negative samples. The 1,979 images containing only calipers are used to improve the recognition of calipers.



2.2. The Mask R-CNN Model

The complex task of measuring the width of LVs can be disentangled into a few simple problems that are easily solved with convolutional neural networks (CNNs). We trained a Mask R-CNN to simultaneously perform two localization tasks and two segmentation tasks. In previous studies, deep learning has produced state-of-the-art results in many computer vision and medical image analysis problems, including prediction of protein function (13), classification of non-metastatic nasopharyngeal carcinomas (14), discovery of m6A sequences (15), image segmentation using new iterative tri-class thresholding techniques (16), qualitative assessment of fetal head US images (17), and detection of breast cancer (18). We choose to employ the deep learning algorithm Mask R-CNN, which combines object detection, object classification, and object segmentation. Notably, the excellent feature extraction ability of the deep learning network offers the potential of resolving the aforementioned issues in LV width measurement.

We trained an end-to-end 50-layer ResNet (19) with Feature Pyramid Networks (FPN) (20). Specifically, ResNet50 learns a set of image filters at multiple spatial scales and produces hierarchical feature maps of increasing coarseness. FPN combines the low-level features and high-level increase the receptive field and invariance. Then, the feature map generates many candidate region proposals through the Region Proposal Network (RPN). The class branch outputs the categories and confidence scores of the predicted anatomy. The bounding boxes of the target are obtained by the box branch. Subsequently, the mask branch learns to up-sample the coarse feature maps to produce a pixel-wise label prediction at the resolution of the input image. The hyperparameters are set as follows: the height and width of the input images are scaled down to 600 pixels; the training batch size is set to six images per batch; the initial learning rate and the number of iterations of the model are set to 0.02 and 20,000, respectively; and the remaining hyperparameters are set to their default values given in previous work (11). The Mask R-CNN network was trained with a training dataset, and the network output is shown in Figure 4. The network produces three results: bounding boxes, pixel-wise segmentation, and recognition confidence values for fetal LVs and calipers.


[image: Figure 4]
FIGURE 4. Ultrasound fetal brain image: from left to right the columns show the raw image, the ground truth labeled by the scanner, and the result detected by Mask R-CNN.




2.3. PPC Calculation With Morphological Operations and Prior Knowledge

Because of differences in the type, shape, and location of the caliper, it is difficult to obtain an accurate value for the PPC. To measure the LV width accurately, we incorporate clinical prior knowledge into our algorithm to guide the precise estimation of the PPC.

Through observation, two types of calipers are identified, which we refer to as the 10-caliper and the 5-caliper. For the former, the physical length between adjacent scales is 10 mm, as shown by the blue arrow in Figure 2A; the latter has a 5 mm distance between adjacent scales, as shown by the blue arrow in Figure 2D. The caliper scales are embedded in the ultrasonic structure, and the background noise poses an obstacle to extraction of the scale, as indicated by the blue arrow in Figure 2A. Obviously, the background and caliper scales cannot be distinguished directly via a threshold approach.

To eliminate the effects of background noise on scale extraction, we first crop the caliper from the raw image using the bounding box given by Mask R-CNN and process it separately. We then convert the caliper images into gray-scale. The Laplace operator is used for morphological operations after comparing with the experimental results. Large highlighted blocks of complex background are effectively discarded, as shown in Figure 5D. Next, we binarize the gray-scale image using a threshold value of 127 to obtain a monochrome image and then perform a morphological open operation on the monochrome image to eliminate a small amount of background noise. A visualization of these processing steps is shown in Figure 5. Figure 5G displays a binary image without the Laplace and open operations. As indicated by the green arrows in Figures 5F,G, the highlighted object is successfully filtered and the scales are preserved adequately after the Laplace and open operations. The background noise filtering is used preliminarily to filter out the part of the image that does not belong to the caliper.


[image: Figure 5]
FIGURE 5. Visualization of background noise filtering: (A) raw image; (B) intercept of the caliper; (C) conversion to gray-scale; (D) edge detection by the Laplace operator; (E) binarization from gray-scale to monochrome; (F) morphological open operation. (G) The result of no morphological processing on the image. The green arrows indicate the difference between the treated image in (F) and the untreated one in (G).


After morphological processing, the background noise is minimized and all contours in the image are obtained by using the “findContours” function of OpenCV, as shown in Figure 6A. These contours consist of pixel points (x, y). From our observations, the caliper scales follow three rules, as shown in Figure 7A. First, the scales belonging to a caliper contain a small number of pixel points. Second, the scales are all on the same y-axis. Third, the distances between adjacent scales are fixed.


[image: Figure 6]
FIGURE 6. Visualization of contour filtering: (A) finding contours; (B) filtering out large contours; (C) filtering out edge contours; (D) filtering out inner contours. The yellow rectangles indicate the scales of the caliper found by our method.



[image: Figure 7]
FIGURE 7. (A) The 5-caliper, with the green arrows indicating the “big-small-big” scale change law. (B) The 10-caliper, where the blue arrows indicate adjacent scales of the same size. (C) Results of caliper type judgments and PPC calculations; in each image the green box bounds the position of the scales given by Mask R-CNN, and the yellow box shows the caliper scales extracted by our method. The PPC value and caliper type are shown in the upper left corner of each image.


Although the above step reduces the noise, it still cannot achieve the full denoising effect. To this end, we further propose contour filtering for taking into account prior knowledge of the scale. The aim of the following steps is to thoroughly eliminate noise, so as to identify the type of caliper and determine the PPC more accurately. First, we filter out the contours that have pixel numbers larger than the threshold value of 30, i.e., the large background contours that have not been cleaned by the morphological processing, indicated by the green arrows in Figures 6A,B. Next, we count the contours that intersect with each y-axis by traversing all y-axes in the caliper image. The y-axis with the greatest number of intersecting contours is regarded as the axis along which the scales are located. This step involves filtering out the small and medium contours of the image edge, as indicated by the blue arrows in Figures 6B,C. Then, the mode is obtained as the pixel distance between adjacent scales via calculating and recording the distance between adjacent contours. The position of each contour is represented by the point at the upper left corner of the contour. Finally, all scale contours are obtained via the pixel distance, and the “minAreaRect” function of OpenCV is utilized to generate a rectangular bounding box for each scale contour, to filter out the small contours between scales. After these steps have been applied, the remaining contours are considered the scales of the caliper. This process is illustrated in Figure 6D, where the yellow rectangles indicate the scales of the caliper obtained by our method.

After extracting the scales, we calculate the PPC. The two kinds of calipers have their unique rules of change in scale size: the 5-caliper has a “big-small-big” change rule, as shown in Figure 7A, whereas the 10-caliper has adjacent scales of the same size, as shown in Figure 7B. The type of caliper is determined by these rules and the scales extracted using the above procedure. In the case of the 5-caliper, the PPC of the image is the distance between adjacent scales multiplied by 2; for the 10-caliper, the PPC is the distance between adjacent scales. The caliper type and PPC results are shown in Figure 7C at the upper left corner of the image. The green box surrounds the position of the scales obtained by Mask R-CNN, and the yellow box indicates the caliper scale extracted by our method.



2.4. Locating LV Diameter and LV Measurement

Clinically, the widest location of the LV is determined by scanners, who mark two points on the inner and outer edges of the LV. To find the widest location of the LV in images, the MER method is used to simulate the judgment of scanners.

We obtain the angle θ between the x-axis and the edge of the enclosing rectangle with the smallest angle to the x-axis, as illustrated in Figure 8A. First, the image is rotated by angle θ in the opposite direction to give a horizontal LV, as shown in Figures 8A,B. Then, we traverse all y-axes and obtain two points intersecting the contour of the LV; see the green lines in Figure 8B. We calculate the pixel distance between these two points using the Euclidean distance. The largest pixel distance is regarded as the width of the LV, and the diameter of the LV is obtained as the line connecting the two points, i.e., the red line in Figure 8B. Finally, the physical length of the LV diameter is calculated as the pixel length divided by the PPC. Figure 8C shows a visualization of the results.


[image: Figure 8]
FIGURE 8. (A) The minimum angle θ between the x-axis and the enclosing rectangle of the LV image is determined. (B) After rotating the image to make it horizontal, the vertical green lines are candidate diameters; the red line is the longest diameter. (C) Two LV measurements obtained using our method; in each image the yellow line inside the green box is the diameter of the LV as determined by our method, and the measurement results are shown near the yellow line.





3. RESULTS AND DISCUSSION

We conduct three experiments to assess the reliability and efficacy of the proposed framework for automatic fetal LV measurement: (1) To evaluate our method's detection and segmentation ability for LVs and calipers, we test the trained network model with a testing dataset containing 500 images. (2) We assess the accuracy of the PPC acquisition method. (3) We compare the measurement errors between the LV width measured by our method and the ground truth measured by three scanners.

Our data were labeled by three experienced scanners. The diagnosis results and measurements produced by their consensus judgments serve as the ground truth in Table 1. The physical lengths of the LVs in Table 4 were also measured by doctors.


Table 1. Caliper and LV prediction results.

[image: Table 1]


3.1. Detection and Segmentation Ability of Mask R-CNN

As shown in Table 1, to evaluate the proposed method's ability to recognize LVs and calipers, we record its precision, recall, sensitivity, specificity, and accuracy on the test set.

The results indicate that the trained Mask R-CNN identifies the LV and the caliper with accuracies of 96 and 98.6%, respectively. The precision of the model is 100% for calipers and 98.25% for LVs and indicates that the positive samples identified by the network have high confidence. Our model performs well for negative samples, with a specificity of 96.67% for calipers and 93.02% for LVs.

In addition, to verify the accuracy of the LV contour segments obtained by Mask R-CNN, we invited three US experts to score the degree of fitting between the predicted LV contours and the ground truth on a scale from 0 to 4. The scoring criteria are shown in Figure 9, and the results are reported in Table 2. Predicted results scoring 4 points accounted for 77.4% of the cases, with an average score of 3.5. To summarize, the network appears to accurately predict the LV contours.


[image: Figure 9]
FIGURE 9. Scoring criteria of three ultrasound experts, who scored the degree of fitting between predicted LV contours and the ground truth on a scale from 0 to 4.



Table 2. Expert scoring results.

[image: Table 2]

The accuracy of LV detection is lower than that of caliper detection. A separate analysis of incorrect recognition cases, as shown in Figure 10A, indicates that structures similar to LVs are likely to be present in the images, demonstrating that object detection in US images is still a challenging task. As can be seen in Figure 10B, the unrecognized images are too dark, and the contour of the LV is not obvious. A possible reason is that the training dataset is insufficient. In future work, more LV images will be collected and used for optimization of the network structure to improve the detection of LVs.


[image: Figure 10]
FIGURE 10. (A) Error recognition and (B) failure recognition for LVs. The first row shows the ground truth and error recognition; the second row shows the ground truth and failure recognition.


Under the same hardware conditions (CPU Intel Core i7-7700 3.60 GHz X8; GPU GeForce GTX 1060 6 GB / PCIe / SSE2), we train DeepLab V3+ networks with the same training set. The hyperparameters are chosen as follows: train_crop_size is set to 401 × 801, train_batch_size is set to 2, and the model is iterated 40,000 times; the remaining hyperparameters are set to their default values in previous work (21). Figure S1 shows the comparison results. The experimental results indicate that the performance is worse than that of Mask R-CNN, a possible reason being that the images in the training set are relatively small, only 512 × 512. In contrast, the images in our training set are large enough, with most of the sizes being 700 × 1,400.



3.2. Accuracy of the PPC

The accuracy of the obtained PPC depends on the judgment of the caliper type. To better represent the accuracy of caliper type judgments with different data complexities, we randomly select 20 images with black backgrounds and 80 images with complex backgrounds to make up a 100-image test dataset. Table 3 demonstrates the accuracy of our method in caliper classification.


Table 3. Accuracy of caliper type judgments.

[image: Table 3]

The experimental results indicate that our method performs well in the recognition of caliper types against a black background, with an accuracy of 95%; however, the accuracy of recognition of caliper types against a complex background could be further improved.



3.3. Measurement Error

Test sets consisting of 200 LV images measured by scanners are used as the ground truth. We measure the same LVs using our method and compare the results. Notably, the LVs are not recognized in 19 of the 200 images; these images are considered to be 0 mm in the measurement error statistics. Figure 11 displays LV measurement results obtained by our method, compared with the LV ground truth provided by experts. The LV diameters determined by our method are quite close to the ground truth, and the measurement error is small. The mean absolute error, standard deviation, root mean squared error, and time consumption of our method are listed in Table 4. Because 19 of 200 images are considered to be 0 mm, the standard deviation is large, 3.4 mm. The experimental results demonstrate that our method is accurate and efficient for measuring fetal LV width; for example, the time consumption is 0.13 s per image and the mean absolute measurement error is 1.8 mm.


Table 4. Quantification of the performance of the proposed method in terms of mean absolute error (MAE), standard deviation (SD), root mean squared error (RMSE), and average time consumed (ATC).

[image: Table 4]


[image: Figure 11]
FIGURE 11. Measurement results obtained using our method (left) compared with the ground truth (right).





4. CONCLUSION

This paper describes an automatic method for measuring the width of LVs in 2D US images. To the best of our knowledge, this is the first study proposing an automatic measurement method for fetal LVs based on 2D US images using deep learning. Our method is able to automatically recognize and locate the fetal LV in 2D US images and can measure the width of the LV rapidly and accurately. Moreover, our model, with slight modifications, can be extended to the measurement of other fetal biometrics, such as femur length and head circumference. The demonstrated robustness of the model implies that it is also a promising tool to be used with various ultrasonic instruments to facilitate quick clinical prenatal diagnosis. The experimental results on 200 LV images indicate that the performance of our proposed method is close to the manual method of LV measurement in terms of accuracy and efficiency.

The measurement errors of our method mainly arise from three sources: inadequate fitting of the LV contour, inaccurate PPC calculation, and inaccurate diameter location. In future work, we will focus on reducing measurement errors by using a greater amount of LV data, improving the network structure to enhance its abilities of detection and segmentation, and modifying the location algorithm for determining LV diameter. Our long-term goal is to develop an automatic system that can measure all biometrics based on fetal US images.
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Objective

Decreased homotopic connectivity of brain networks such as the cortico-striato-thalamo-cortical (CSTC) circuits may contribute to the pathophysiology of obsessive-compulsive disorder (OCD). However, little is known about interhemispheric functional connectivity (FC) at rest in OCD. In this study, the voxel-mirrored homotopic connectivity (VMHC) method was applied to explore interhemispheric coordination at rest in OCD.



Methods

Forty medication-free patients with OCD and 38 sex-, age-, and education level-matched healthy controls (HCs) underwent a resting-state functional magnetic resonance imaging. The VMHC and support vector machine (SVM) methods were used to analyze the data.



Results

Patients with OCD had remarkably decreased VMHC values in the orbitofrontal cortex, thalamus, middle occipital gyrus, and precentral and postcentral gyri compared with HCs. A combination of the VMHC values in the thalamus and postcentral gyrus could optimally distinguish patients with OCD from HCs.



Conclusions

Our findings highlight the contribution of decreased interhemispheric FC within and outside the CSTC circuits in OCD and provide evidence to the pathophysiology of OCD.





Keywords: obsessive-compulsive disorder, voxel-mirrored homotopic connectivity, support vector machine, functional magnetic resonance imaging, resting-state



Introduction

The features of obsessive-compulsive disorder (OCD) are persistent and intrusive thoughts, impulses, images, and repetitive behaviors (1). This chronic neuropsychiatric disorder has a lifetime prevalence of 2% to 3% (2). As one of the top ten disabling diseases, OCD leads to social disability, functional impairment, and even suicide. OCD imposes considerable financial burden and misery to families. The involvement of structural and functional abnormalities in the areas of the cortico-striato-thalamo-cortical (CSTC) circuits, which include the orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, anterior cingulate cortex, striatum, and thalamus, is among the most examined networks in OCD (3–5). However, other brain regions outside the CSTC circuits, such as the occipital, parietal, and cerebellar cortices, are also involved in OCD (6–8).

As the largest commissure of white matter, the corpus callosum (CC) plays a crucial role in cognitive processes and interhemispheric communication (9). Decreased fractional anisotropy values (10) and microstructural abnormalities in the CC (11) have been reported in OCD, which may affect interhemispheric functional interactions related to obsessions and compulsions (12). Functional interhemispheric coordination between the cerebral hemispheres may be an important aspect of brain function (13). Nevertheless, little is known about alterations in functional interhemispheric coordination in OCD.

As a basic characteristic of the brain’s intrinsic functional architecture, functional homotopy reﬂects high degree of synchrony in spontaneous activity between geometrically corresponding (i.e., homotopic) regions in each hemisphere, and can be investigated with the resting-state functional connectivity (FC) method (14). A voxel-mirrored homotopic connectivity (VMHC) approach explores the resting-state FC between the time series for each voxel in one hemisphere and that of its corresponding voxel in the opposite hemisphere (14) and is designed to measure interhemispheric coordination (15). This method has been well applied in neuropsychiatric disorders (16–20). Previous studies used the VMHC approach to explore interhemispheric patterns in patients with OCD at rest and found reduced VMHC values within and outside the CSTC circuits (21, 22). Their findings indicated that the integrity of interhemispheric cooperation was impaired in OCD. However, most patients with OCD in the previous studies were on medications that might affect brain connectivity at rest (21–24). Whether altered interhemispheric coordination can be applied as a potential image marker to determine OCD from healthy controls (HCs) remains unclear.

In this study, we investigated interhemispheric FC at rest in a relatively large number of medication-free patients with OCD using the VMHC method. We hypothesized that patients with OCD would exhibit decreased VMHC within and outside the CSTC circuits based on previous studies (21, 22). We further explored the correlations between altered VMHC values and clinical variables in patients with OCD. Machine-learning techniques have received increasing attention and are used to identify potential neuroimaging biomarkers for early diagnosis in psychiatric disorders (25). Support vector machine (SVM) is one of the machine-learning techniques with higher precision and accuracy. SVM is effective to define a set of information and features from different brain regions that can classify patients and HCs using neuroimaging data such as functional magnetic resonance imaging (fMRI) data (25). Therefore, the present research applied SVM to detect whether abnormal VMHC could differentiate patients with OCD from HCs.



Materials and Methods


Participants

Forty patients with OCD were recruited from the Fourth Affiliated Hospital of Qiqihar Medical University, and Qiqihar Mental Health Center, China. Diagnosis of OCD was confirmed according to the Structured Clinical Interview for DMS-IV (SCID), patient version (26). Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), 17-item Hamilton Depression Rating Scale (HAMD), and Hamilton Anxiety Rating Scale (HAMA) were used to assess the severity of clinical symptoms of OCD. Eighteen patients were drug-naive, and twenty-two had a history of antidepressants, antipsychotics or anti-obsessive medication. No patients had taken any kind of psychotropic medication for at least four weeks before the recruitment. Thirty-eight sex-, age-, and education level-matched HCs were enrolled from the local community using the SCID, non-patient version (27). Patients with OCD and HCs had the same inclusion criteria: (1) 16 to 50 years of age; (2) right-handedness; (3) no neurological disorder; (4) no severe medical disorder; (5) no substance/alcohol abuse or nicotine/caffeine dependence; and (6) no contraindication for MRI scan. HCs were excluded if they had a first-degree relative with any psychiatric disorders.

Ethical approval was obtained from the Research Ethics Committee of Qiqihar Medical University. All subjects were informed about the full description of procedures and provided a written informed consent.



MRI Data Acquisition

Brain images were implemented on a 3.0-Tesla GE 750 Signa-HDX scanner (General Electric Healthcare, Waukesha, Wisconsin) with a standard head coil (12-channel) at the Third Affiliated Hospital of Qiqihar Medical University. All individuals were instructed to lie still with closed eyes and minimize head movement. An echo-planar imaging (EPI) sequence was used to acquire resting-state fMRI with the following parameters: 33 axial slices, 2000-ms TR, 30-ms TE, 3.5/0.6-mm thickness/gap, 90° flip angle, 200 × 200-mm2 field of view, 64 × 64 data matrix, and 240 volumes in total.



Data Processing

The imaging data were processed through the Data Processing & Analysis for Brain Imaging (DPABI) software (28). The preprocessing procedures were as follows: the first 10 volumes were discarded. A slice-timing correction was applied. After that, the images were spatially normalized to a standard Montreal Neurological Institute (MNI) space and resembled to 3 × 3 × 3 mm3. Subsequently, the processed images were spatially smoothed using an isotropic Gaussian kernel of 4 × 4 × 4 mm3 full width at half maximum (FWHM). The temporal band-pass filtering (0.01–0.08 Hz) was conducted to reduce the confounding effect of high-frequency physiological noise and low-frequency drifts. White matter, cerebrospinal fluid time course, and 24 head motion parameters were regressed out as the nuisance covariates. Mean framewise displacement (FD) for each participant was calculated. Scrubbing was applied with a FD which indexes volume-to-volume changes in head position using a threshold of 0.2 together with one preceding and two subsequent volumes (29).


Interhemispheric Correlation

VMHC computation was also processed by using the DPABI software (28). The homotopic resting-state FC of the individuals was computed as the Pearson correlations between the residual time series of each voxel in one hemisphere and that of its opposite hemisphere. Then, the coefficients were Fisher z-transformed, and VMHC maps were generated with the resultant values. The mean VMHC was extracted from the voxels that make up the clusters.



Statistical Analyses

The demographic and clinical characteristics of the two groups were conducted with two-sample t-tests or a χ2 test using SPSS version 23.0 (SPSS Inc., Chicago, IL, USA).

The mean FD and age were subsequently utilized as covariates for voxel-wise two-sample t-tests between drug-naive patients with OCD and HCs to detect VMHC differences. The significance level corrected by the Gaussian random field (GRF) theory was p < 0.05. To minimize the confounding effects of depressive and anxiety symptoms on the present results, we repeated voxel-wise two-sample t-tests using the mean FD, age, HAMD scores, and HAMA scores as covariates.

Pearson correlations were evaluated between abnormal VMHC and clinical symptoms, i.e., total, obsession, and compulsion scores in the Y-BOCS, HAMA scores, and HAMD scores in patients with OCD. The Bonferroni-corrected significance level was p < 0.05.



SVM Analysis

SVM analysis was conducted using the LIBSVM software in MATLAB (http://www.csie.ntu.edu.tw/cjlin/libsvm/). This exploratory analysis examined whether abnormal VMHC could be used to differentiate patients with OCD from HCs. SVM classifiers can separate the individuals into two classes through a decision boundary, which is as far as the closest points from each of the sample data according to a function of selecting kernel. To minimize the problem of overfitting or underfitting, exploratory SVM analysis is conducted in the LIBSVM software with default parameters. A “leave-one-out” cross-validation approach was used to obtain the highest values for specificity and sensitivity. A permutation test was applied to validate the SVM results, which ran 10,000 times for each sample (OCD/HCs). Then, a global accuracy could be obtained for each sample.





Results


Demographic Characteristics of Subjects

The 40 patients with OCD comprised 27 men and 13 women. The 38 HCs comprised 25 men and 13 women. Patients and HCs showed no significant between-group differences in age (t = 0.05, p = 0.71), gender (X2 = 0.32, p = 1.00), education level (t = 0.50, p = 0.83), and FD (t = 1.25, p = 0.13). Between-group differences were found in the clinical characteristics of Y-BOCS (t = 25.27, p < 0.01), HAMA (t = 9.00, p < 0.01), and HAMD (t = 9.04, p < 0.01). Details are shown in Supplementary Material Table S1.



VMHC Differences

Patients with OCD had remarkably decreased VMHC values in the OFC, thalamus, middle occipital gyrus, and precentral and postcentral gyri compared with HCs (Table 1 and Figure 1). No VMHC was increased in the patients relative to the controls. These results were similar using the mean FD, age, HAMD scores, and HAMA scores as covariates (Table S2). Scatter plots for the significant clusters of samples (OCD/HCs) were showed in Figure 2.


Table 1 | Decreased VMHC in patients with OCD.






Figure 1 | Brain regions with decreased VMHC in patients with OCD. Blue denotes decreased VMHC. Color bars indicate t-values of voxel-based two-sample t-tests (p < 0.05, GRF-corrected).






Figure 2 | Scatter plots for the significant clusters of samples. VMHC, voxel-mirrored homotopic connectivity.





Correlation Analysis

No correlations were found between abnormal VMHC values and clinical variables (i.e., total, obsession, and compulsion scores in the Y-BOCS, HAMA and HAMD scores) in patients with OCD at Bonferroni-corrected p < 0.05 level.



SVM Results

Five brain regions (1 = middle occipital gyrus, 2 = orbitofrontal cortex, 3 = postcentral gyrus, 4 = precentral gyrus, and 5 = thalamus) in patients with OCD had decreased VMHC values. Exploratory SVM analysis was conducted using the VMHCs of these five brain regions and their pairwise combinations. Their classification accuracies were as follows: 1 = 76.92% (60/78), 2 = 75.64% (59/78), 3 = 75.64% (59/78), 4 = 67.95% (53/78), 5 = 75.64% (59/78), 1 and 2 = 79.49% (62/78), 1 and 3 = 80.77% (63/78), 1 and 4 = 76.92% (60/78), 1 and 5 = 78.21% (61/78), 2 and 3 = 80.77% (63/78), 2 and 4 = 89.74% (70/78), 2 and 5 = 76.92% (60/78), 3 and 4 = 76.92% (60/78), 3 and 5 = 94.87% (74/78), and 4 and 5 = 71.79% (56/78).The combination of the VMHC values of 3 and 5 (Figures 3 and 4) could optimally discriminate the patients with OCD from the HCs with accuracy, sensitivity, and specificity rates of 94.87%, 95.00%, and 94.74%, respectively.




Figure 3 | Accuracy (%) of abnormal VMHC in single or combined brain regions to discriminate patients from healthy controls. 1, Middle occipital gyrus; 2, orbitofrontal cortex; 3, postcentral gyrus; 4, precentral gyrus; 5, thalamus; 12, middle occipital gyrus and orbitofrontal cortex; 13, middle occipital gyrus and postcentral gyrus; 14, middle occipital gyrus and precentral gyrus; 15, middle occipital gyrus and thalamus; 23, orbitofrontal cortex and postcentral gyrus; 24, orbitofrontal cortex and precentral gyrus; 25, orbitofrontal cortex and thalamus; 34, postcentral gyrus and precentral gyrus; 35, postcentral gyrus and thalamus; 45, precentral gyrus and thalamus.






Figure 4 | Visualization of the SVM classification using the combination of the VMHC values in the thalamus and postcentral gyrus. Left: 3D visualization of the SVM parameter selection result (Best c, 1; Best g, 128). Right: visualization of the classification with the combination of the VMHC values in the thalamus and postcentral gyrus. Different colors of the contour lines indicate different classification accuracies by using different combinations of the VMHC values in the thalamus and postcentral gyrus. Dimension 1, the VMHC values in the postcentral gyrus; dimension 2, the VMHC values in the thalamus.



To validate the SVM results. A permutation test showed that the global accuracy was 0.9562 (p < 0.001) for discriminating patients with OCD from HCs by using the combination of the VMHC values of 3 and 5.

A feature selection was conducted to validate the SVM results as follows. First, the accuracy was 82.05% (64/78) using the combination of abnormal VMHC values in five brain regions for classification. Then, the VMHC values in one brain region were removed and the VMHC values in the remaining four brain regions were combined for classification. If the accuracy increased, it means that the VMHC values in this brain region could be removed; if the accuracy decreased, it means that the VMHC values in this brain region should be retained. Next, the VMHC values in another brain region were removed, the VMHC values in the remaining three brain regions were combined for classification, and the above process was repeated. Finally, the combination of the VMHC values in the postcentral gyrus and thalamus (3 and 5, Figures 3, 4) could optimally discriminate the patients from the HCs with an optimal accuracy of 94.87%.

Different combinations of abnormal VMHC values in five brain regions were examined to validate the SVM results using the receiver operating characteristic curve (ROC) (Figure 5). The areas under the curve (AUC) were as follows: 1 and 2 = 0.7889, 1 and 3 = 0.7965, 1 and 4 = 0.7717, 1 and 5 = 0.8030, 2 and 3 = 0.7774, 2 and 4 = 0.7899, 2 and 5 = 0.7666, 3 and 4 = 0.7881, 3 and 5 = 0.8047, and 4 and 5 = 0.7387. As expected, the combination of 3 and 5 showed the highest AUC.




Figure 5 | Receiver operating characteristic curves (ROC) for discrimination patients with obsessive-compulsive disorder from healthy controls using different combinations of voxel-mirrored homotopic connectivity values in five brain regions. 12, Middle occipital gyrus and orbitofrontal cortex; 13, middle occipital gyrus and postcentral gyrus; 14, middle occipital gyrus and precentral gyrus; 15, middle occipital gyrus and thalamus; 23, orbitofrontal cortex and postcentral gyrus; 24, orbitofrontal cortex and precentral gyrus; 25, orbitofrontal cortex and thalamus; 34, postcentral gyrus and precentral gyrus; 35, postcentral gyrus and thalamus; 45, precentral gyrus and thalamus.






Discussion

The present study explored interhemispheric FC at rest in a relatively large medication-free OCD sample. Consistent with our hypothesis, patients with OCD exhibited decreased VMHC values within (i.e., OFC and thalamus) and outside (i.e., middle occipital, precentral, and postcentral gyri) the CSTC circuits. In addition, a combination of decreased VMHC in the thalamus and postcentral gyrus could distinguish patients with OCD from HCs with high accuracy, specificity, and sensitivity.

This study discovered decreased VMHC values within the CSTC circuits, such as OFC and thalamus, in patients with OCD at rest. OFC is a key structure within the CSTC circuits and plays an important role in response inhibition, behavioral inhibition, and emotional regulation (30–32). As a central relay station (33), the thalamus transmits sensory input from the surrounding area to the cortex and manages input and output information between the striatum and cortex within the CSTC circuits (3, 34). A recent meta-analysis discovered that patients with OCD showed hypoactivation in the bilateral thalamus and medial OFC during inhibitory control (35). Decreased VMHC values in the OFC and thalamus in patients with OCD at rest were also observed in other studies (21, 22). The present and previous studies supported the disconnection between homotopic brain regions within the CSTC circuits in patients with OCD, which might lead to obstacles in the communication and integration of cognitive and emotional information in OCD (15).

Decreased VMHC outside the CSTC circuits, such as the middle occipital, precentral, and postcentral gyri, in patients with OCD at rest in our study is similar to the results of Deng et al. (21). The occipital cortex is involved in the pathophysiology of OCD because of its connection with the CSTC circuits (4, 36). Abnormalities in the occipital cortex in patients with OCD may underlie the visuospatial deficits characteristic of the disorder involved in the pathophysiology of OCD, and cognitive impairments in OCD are also underpinned by disconnectivity of specific neurocognitive networks (37). Decreased regional homogeneity (ReHo) in the occipital cortex and increased FC with the caudate nucleus have been discovered in different samples of OCD in our previous studies (36, 38). Based on our current and previous findings, we inferred that decreased ReHo and interhemispheric functional homotopy in the occipital cortex and increased FC with the CSTC circuits may work together to contribute to the pathogenesis of OCD. The precentral and postcentral gyri are important brain regions in the sensorimotor network; decreased global brain FC in the precentral or postcentral gyrus at rest has been found in patients with OCD (39), and the amplitude of the low-frequency ﬂuctuations of the precentral gyrus can be used to distinguish patients with OCD from HCs (8). In the present study, decreased interhemispheric functional homotopy in the precentral and postcentral gyri may be associated with damaged sensory-motor integration and sensory gating in OCD at rest and might contribute to the inability to suppress internally repetitive and intrusive thoughts and behaviors in patients with OCD (40, 41). Brain regions with macro- and microstructural alterations outside the CSTC circuits are also related to the pathophysiology of OCD (6–8, 11, 42–44). The present findings provide additional evidence to elucidate the pathogenesis of OCD.

The SVM classification method is a binary classification algorithm that maximizes the boundary between classes in a high dimensional space (45). The current SVM results displayed that the combination of decreased VMHC in the thalamus and postcentral gyrus could distinguish patients with OCD from HCs with optimal accuracy, specificity, and sensitivity and could be used as a potential neurobiological marker for OCD. This marker may improve diagnostic accuracy and provide a new perspective for clinical diagnosis.

This study had several limitations. First, the human brain is asymmetrical, and this asymmetry may cause bias in the present findings. However, we used a symmetrical template and smoothed the data during data processing to limit the possible effects of asymmetry. Second, gray and white matters were not assessed in the current study, and their potential influence on VMHC was unclear. Third, patients with OCD were not divided into different subtypes according to clinical symptoms. Fourth, some patients had a history of taking psychotropic medication, which might influence interhemispheric functional homotopy at rest in OCD. Fifth, resting-state FC is altered in depression, and even subclinical depressive phenomenology can modify the brain’s microstructure (46). Although only very mild symptoms were present in this cohort (but see the significant difference between HAMA and HAMD scores in the two samples), this might have impacted the present findings. To minimize the confounding effects of depressive and anxiety symptoms on the present results, we repeated voxel-wise two-sample t-tests using the mean FD, age, HAMD scores, and HAMA scores as covariates. Similar results were obtained. This issue indicated that depressive and anxiety symptoms had little effect on the present results. Finally, it may be circular to pick brain regions already shown difference between groups in the univariate voxel-wise analysis, and the results of SVM may be potential overfitting/unfitting due to small sample size (47). For these reasons, interpretation of the present findings should be cautious.

Despite these limitations, our findings found decreased VMHC values within and outside the CSTC circuits at rest in patients with OCD. A combination of the VMHC values of the thalamus and postcentral gyrus could be used as a discriminative feature to distinguish patients with OCD from HCs. The current study provides evidence to the pathophysiology of OCD.
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Background: A number of mental illness is often re-diagnosed to be bipolar disorder (BD). Furthermore, the prefronto-limbic-striatal regions seem to be associated with the main dysconnectivity of BD. Functional connectivity is potentially an appropriate objective neurobiological marker that can assist with BD diagnosis.

Methods: Health controls (HC; n = 173) and patients with BD who had been diagnosed by experienced physicians (n = 192) were separated into 10-folds, namely, a ninefold training set and a onefold testing set. The classification involved feature selection of the training set using minimum redundancy/maximum relevance. Support vector machine was used for training. The classification was repeated 10 times until each fold had been used as the testing set.

Results: The mean accuracy of the 10 testing sets was 76.25%, and the area under the curve was 0.840. The selected functional within-network/between-network connectivity was mainly in the subcortical/cerebellar regions and the frontoparietal network. Furthermore, similarity within the BD patients, calculated by the cosine distance between two functional connectivity matrices, was smaller than between groups before feature selection and greater than between groups after the feature selection.

Limitations: The major limitations were that all the BD patients were receiving medication and that no independent dataset was included.

Conclusion: Our approach effectively separates a relatively large group of BD patients from HCs. This was done by selecting functional connectivity, which was more similar within BD patients, and also seems to be related to the neuropathological factors associated with BD.

Keywords: classification, bipolar disorder, functional connectivity, feature selection, machine learning


INTRODUCTION

Bipolar disorder (BD) is an affective disorder characterized by episodic fluctuations in mood. It is one of the leading causes of disability in the world and affects more than 1% of the world’s population (Alonso et al., 2011). Based on the mood episodes that the patients’ experience, BD is categorized into two common subtypes, bipolar I disorder (BDI) and bipolar II disorder (BDII). In BDI, at least one manic episode has to have presented, while in BDII, at least one hypomanic episode and one major depressive episode have to have presented (First et al., 1995). The diagnosis of BD and its subtypes depends on the patient’s subjective symptoms and the presence of observational signs. However, BD is one of the most common mental illnesses to be subject to re-diagnosis, and patients may often have been initially diagnosed as suffering from unipolar depression or schizophrenia (Hirschfeld et al., 2003; Ruggero et al., 2010). Therefore, a search for objective neurobiological markers that can assist with diagnosis is a pressing need, and such a system will then help greatly with future treatment decisions related to BD.

Furthermore, BD is known to be a disease that involves neurobiological deficits (Perry et al., 2018). The activity and connectivity of the brain regions that mediate emotional regulation and reward processing have been found to be disrupted in BD (Chen et al., 2011; Strakowski et al., 2012; Phillips and Swartz, 2014); these include alterations in the activity of various limbic structures, such as the amygdala and hippocampus, as well as prefrontal regions, such as the ventrolateral cortex. Moreover, when a connectivity-based approach has been employed previously to investigate BD, the prefronto-limbic-striatal regions have been found to be the areas associated with the main dysconnectivity in BD (Strakowski et al., 2012; Jiang et al., 2017; Roberts et al., 2017). In a review study by Perry et al. (2018), it was suggested that dysconnectivity is most prominent in the amygdala and prefrontal regions when the reviewed studies are considered; nevertheless, dysconnectivity was also observed in the inferior frontal cortex, medial prefrontal areas, anterior cingulate cortex, thalamus, and several other diverse regions of the cortex. However, these observations were based on group-level inferences and as a result could not be applied directly to the categorization of individual patients. Hence, there is a need to develop an approach that assists individual diagnosis; this was coupled with neuroimaging in order to develop an approach that will be able to distinguish BD patients from healthy controls (HCs) and also distinguish BD patients from patients with other psychiatric disorders.

Unfortunately, the thousands of features present in the data created by neuroimaging lead to the “curse of dimensionality” (Bellman, 1961; Altman and Krzywinski, 2018). As feature dimensionality increases, the statistical results obtained often can be the result of data sparsity, overfitting, or both. The problem is made worse when there is a small sample size; and in this context, in previous studies in this area, the sample sizes have usually been relatively small (Frangou et al., 2017; Rubin-Falcone et al., 2018; Squarcina et al., 2019). Furthermore, proper feature selection strategies and reducing irrelevant/redundant data will be able to improve the classification and prediction performance, enhance the ability to generalize, and provide a better interpretation of the learning process. In addition, previous studies have shown that heterogeneity is present in common psychiatric disorders (Jablensky, 2006; Charney et al., 2017). A reduction in heterogeneity should increase the predictive accuracy when diagnosing psychiatric disorders (Insel et al., 2010; Wu et al., 2017; Dwyer et al., 2018). Therefore, minimum redundancy/maximum relevance (mRMR) was used in the present study during feature selection; this uses mutual information quotient as the value of feature importance, calculated by the mutual information of a feature regarding the response divided by sum of that of other features, in order to select the features that show minimal redundancy and maximal relevance to the category being investigated (Peng et al., 2005). It is one of a number of filter-based feature selection methods that are available and is independent of the model being developing. This means that it is unlikely to result in the model suffering from overfitting and also helps to increase efficiency during computation (Guyon and Elisseeff, 2003).

Therefore, the aim of the present study was to develop and validate a classification approach for BD using a large sample of the patients with BD that included both BDI and BDII patients, in conjunction with a well-matched group of HCs and to do this by using whole-brain functional connectivity analysis. Furthermore, mRMR was utilized as a selection method in order to remove irrelevant and redundant features, to avoid overfitting, and to help interpret the functional connectivity; this would be beneficial when distinguishing BD patients from HCs at the individual level. In addition, support vector machine (SVM) was used as the classifier in the present study; this has been widely used for the classification of psychiatric disorders and has often produced very promising results (Costafreda et al., 2011; Wei et al., 2013; Jie et al., 2015; Rashid et al., 2016). This is because the algorithm shows very good performance when attuning non-linear discriminant functions (Wu et al., 2020).



MATERIALS AND METHODS


Participants

A total of 185 health controls and 222 patients with BD were recruited. The patients included both outpatients and inpatients who attended Taipei Veterans General Hospital, Taiwan. Each patient diagnosis was confirmed by an experienced physician according to the “Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition” (First et al., 1995) and was based on structured clinical interviews. Potential participants were excluded if they had a neurological illness or any other disorder that affects cerebral metabolism, had substance abuse history or dependence during the previous 6 months, or had a history that included head injury with a documented sustained loss of consciousness and/or neurological sequelae. The clinical assessment of the patients with BD involved using the young mania rating scale (YMRS) and the Montgomery–Åsberg depression rating scale (MADRS), but only some of the patients received a complete rating. The patients were being treated with a variety of atypical antipsychotics, antidepressants, and mood stabilizers before participating in the study. The investigation was conducted according to the latest version of the Declaration of Helsinki. All participants gave written informed consent prior to their participation, and this was after the procedures had been fully explained to them. The present study was approved by the Research Ethics Committee of Taipei Veterans General Hospital.



Resting-State Functional and Structural Magnetic Resonance Imaging

Scanning was conducted at the Taipei Veterans General Hospital and was carried out on a 3.0-T GE magnetic resonance imaging (MRI) scanner (GE Healthcare Life Sciences, Little Chalfont, United Kingdom) with a quadrature head coil. The head of each subject was immobilized using a vacuum-beam pad inside the scanner. All participants wore earplugs to muffle outside noise. Resting-state functional images were obtained using a T2∗-weighted gradient-echo, echo-planar sequence [repetition time (TR) = 2,500 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, and voxel size = 3.5 mm × 3.5 mm × 3.5 mm]. A total of 200 MRI volumes of each subject were obtained with their eyes closed. A functional whole-brain image volume consisted of 43 interleaved horizontal slices, all of which were parallel to the intercommissural plane. Furthermore, anatomical whole-brain image volumes were obtained using a sagittal magnetization-prepared rapid acquisition gradient-echo three-dimensional T1-weighted sequence (TR = 2,530 ms, TE = 3 ms, echo spacing = 7.25 ms, FA = 7°, field of view = 256 × 256 mm, voxel size = 1 mm × 1 mm × 1 mm) in order to allow more efficient spatial registration and the localization of brain activity; this allowed better correction for any anatomical differences present that might affect the interpretation during functional analysis.



Preprocessing for Resting-State Functional MRI

Preprocessing and subsequent analyses of the imaging data were performed using Statistical Parametric Mapping (SPM12, Wellcome Institute of Neurology, University College London, United Kingdom) executed in MATLAB 2019b (MathWorks, Natick, MA, United States). The images were preprocessed based on the following steps: (1) the initial eight volumes were excluded; (2) slice-dependent time shifts were compensated for; (3) head motion was corrected for and participants with a framewise displacement > 0.2 mm were discarded; (4) functional imaging volumes were co-registered with their own anatomical images; (5) spatial normalization into the Montreal Neurological Institute space was performed using a non-linear warping algorithm with resampling at a voxel size of 3 mm × 3 mm × 3 mm; (6) spurious data were regressed out by utilizing the Friston 24-parameter model (Friston et al., 1996), and the data included white matter signals, cerebrospinal fluid signals, and global signals; and (7) band-pass filtering from 0.01 to 0.08 Hz was applied to the imaging data. Subsequently, smoothing was conducted using a 4-mm full-width half-maximum Gaussian kernel. The removal from the study of any participants showing considerable head motion (mean framewise displacement > 0.2) meant that, after the above procedures, there were 192 patients with BD, made up of 103 patients with BDI and 89 patients with BDII, as well as 173 health controls, who proceeded on to the follow-up analysis.



Feature Extraction, Selection, and Classification

Functional connectivity was conducted by parcellating the whole brain into 268 regions, based on Shen’s whole-brain functional-connectivity-based atlas (Shen et al., 2013); this was carried out via a group-wise spectral clustering algorithm. Shen’s atlas categorizes 268 regions into eight networks (see Figure 1); these are the medial frontal network (MFN), the frontoparietal network (FPN), the default mode network (DMN), the subcortical and cerebellar regions (SC), the motor network (MON), the visual I network (VisI), the visual II network (VisII), and the visual association network (VA). The correlation between each of the above pairs of regional time series across the 268 regions was examined using Pearson’s correlation coefficient, and the results were then converted using Fisher’s r-to-z transformation (Fisher, 1915). Consequently, functional networks for each patient were obtained in the form of 268 × 268 normalized, symmetric correlation matrices. Next, in order to investigate the generalizability of the classification, we used the nested 10-fold cross-validation as the following procedure (also see Supplementary Figure S1). In the outer loop, each sample was separated into 10-folds, and ninefolds were used as the training set, while the remaining fold was used as the testing set. The results of this procedure were used for the classification, and the above process was repeated 10 times until each of the 10-folds had formed testing set. The completed process formed the 10-fold classification used during the present study. During the outer loop of the nested cross-validation, mRMR was used to rank the importance of features with a high correlation with the category but a low redundancy among features. Features before there was a drop in the mRMR feature importance score (the ratio of the mutual information between the feature and the category to that between pairwise features), which represents the feature’s selection confidence, were chosen. Furthermore, to avoid double dipping, feature selection was only applied to the training set. Next, SVM with the Gaussian kernel was utilized and the parameter C and Gaussian kernel scale of the SVM for each training set were determined by 10-fold cross-validation in the inner loop. The trained model and selected features were then applied to the testing set. After all folds of the outer loop had been used as the testing set for classification, the performance in terms of classification, including accuracy, sensitivity, and specificity, was averaged. Given that different parcellations of the 10-folds groupings are likely to influence the performance, the nested cross-validation was run randomly 100 times, and the optimal results identified. In addition, in order to investigate whether the classification procedure outlined above can also be successfully applied to the two common clinical types of BD, namely, BDI (N = 103) and BDII (N = 89), these two types were separately trained to determine if they are able to be discriminated from the HCs when the sample size is balanced (N = 85).
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FIGURE 1. The regions of the eight networks obtained from Shen’s whole-brain functional-connectivity-based atlas. The networks consist of the medial frontal network, the frontoparietal network, the default mode network, the subcortical and cerebellar regions, the motor network, the visual I network, the visual II network, and the visual association network. The glass brains in this figure are shown from a lateral view of the right hemisphere.




Inter-Subject Similarity Before and After the Process of Minimum Redundancy/Maximum Relevance

Recently, functional connectivity matrix similarity (alternatively functional connectome fingerprinting) has been developed to allow participant identification to be determined (Finn et al., 2015; Ji et al., 2019; Liu et al., 2019); this is based on the assumption that individuals within the same phenotypic group will have a similar functional connectome. Hence, inter-subject functional connectivity similarity was carried out to investigate the similarity within each group and between BD/HC groups. Specifically, similarity was defined as the cosine distance of every paired functional connectivity matrix in the present study and was calculated before and after the process of mRMR for each complete group (that is not separating the group into training and testing sets). The cosine distance was used as the degree of similarity; and thus the lower the distance, the higher the value, and the higher the similarity.



Effects of Confounding Factors

There are a number of confounding factors that needed to be taken into consideration during the present study. Firstly, in order to examine the effect of parcellation on the classification performance, a second functional connectivity parcellated using Power’s 264 node-based functional regions of interest (Power et al., 2011) was carried out, and then the same procedures of feature selection and model training were done. Power’s 264-region parcellation was chosen for comparison because it consists of a similar number of regions of interest; if there were fewer nodes used, then this would have resulted in the functional connectivity having a lower resolution. Such a lower resolution might have produced a poorer classification performance, which in turn might have resulted in the functional information essential for discriminating classes fading as the signals from reduced number of parcels became averaged (Arslan et al., 2018). Comparison of the different parcellation was examined using the two-proportion test.

Secondly, in order to rule out the effects of clinical confounding factors, including duration of disease, symptoms, and medication, we investigated the relationship between these factors and the major features repeatedly chosen by mRMR during the outer loop of the nested cross-validation. Pearson’s correlation coefficients were used to examine the continuous variables such as duration and symptom scores. Independent t-tests were used to examine categorical variables such as the patient groups with or without atypical antipsychotics, the patient groups with or without antidepressants, and the patient groups with or without mood stabilizers; each of these analyses were carried out separately. In addition, even though head motion had been corrected, spurious functional connectivity may be produced by head motion (Power et al., 2012). Therefore, the difference of head motion estimated via framewise displacement calculation between BD/HC groups, and the correlation of head motion and major features would be evaluated.



RESULTS

When the demographic data were examined (see Table 1), there were no significant differences in terms of age either between all of the patients and the HCs, or between either of the two clinical subgroups (BDI and BDII) and a subgroup of HCs that had a balanced sample size. However, the sex was not matched in BD/HC and BDII/HC comparisons because there was higher proportion of female in BD and in BDII.


TABLE 1. Demographic data.
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Classification Performance of Bipolar Disorder Versus Healthy Controls With Shen’s 268 Parcellation

There were 333 features selected on average by the outer loop of all nested cross-validation. The overall accuracies of the training and testing sets based on the features selected using mRMR were 90.69 ± 0.93% and 76.25 ± 1.47%, respectively. For the testing sets, the mean sensitivity and specificity for BD were 77.04 ± 1.64% and 76.71 ± 1.96%, respectively (see Table 2). In addition, the area under the receiver operating characteristic (ROC) curve (AUC) of the classification was 0.840 ± 0.0142. Moreover, there were 22 major features selected by mRMR in a total of nine or 10 times during the outer loop of the optimal nested cross-validation, and these were found to mostly be in the SC, followed by the FPN region (see Figures 2, 3). Since Shen’s parcellation is not restricted by anatomical brain structure, that is, by the gyrus and sulcus, the centroid location of the parcellated region was used to provide more information about the regions. Thus, as can be seen in Table 3, the major features were mainly involved in within and between network connectivity with the SC. The mRMR scores calculated by the whole BD and HC groups were also presented in Table 3. In addition, in order to investigate the importance of the selected features with high mRMR scores, the classification performance was also examined using the same feature numbers of the average selected features mentioned above, but this time with an mRMR low score. The mean accuracies obtained when classifying the testing set under these circumstances were 71.15 ± 1.94%, which was on the trend toward significantly worse performance than the mean accuracy of the testing sets using the features with high mRMR scores (p = 0.0594). For the low mRMR score testing sets, the mean sensitivity and specificity were 71.20 ± 2.13% and 72.77 ± 2.38%, respectively, and the mean AUC was 0.772 ± 0.0213.


TABLE 2. The classification performance of the testing sets.
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FIGURE 2. The major features after the 10 times process of minimum redundancy/maximum relevance selection during the outer loop of the nested cross-validation illustrated using the eight networks of Shen’s 268-region parcellation. (A) The major features that were selected nine or 10 times during the nested cross-validation of the bipolar disorder and healthy control groups. (B) The major features that were selected 10 times during the nested cross-validation of the bipolar I disorder and healthy controls groups. (C) The major features that were selected 10 times during the nested cross-validation of the bipolar II disorder and healthy control groups. (B,C) were selected 10 times because of the very large number of features selected when nine or 10 times were used. To make the illustration more readable, only the features selected 10 times are shown. Red line represents the connectivity of patients being higher than healthy controls, and blue line represents the connectivity of patients being lower than healthy controls.
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FIGURE 3. The major features of the classification for the bipolar disorder and healthy control groups, the bipolar I disorder and healthy controls groups, and the bipolar II disorder and healthy controls groups after the 10 times process of minimum redundancy/maximum relevance selection during the outer loop of the nested cross-validation illustrated on the glass brain.



TABLE 3. The major features after the 10 times process of minimum redundancy/maximum relevance selection.
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Inter-Subject Functional Connectivity Similarity Before and After the Process of Minimum Redundancy/Maximum Relevance

Before the process of mRMR, the inter-subject similarity of the HC group was significantly smaller between groups than within the HC group (0.3793 < 0.4004, p < 0.001), but that of the BD group was slightly greater between groups than within the BD group (0.3793 > 0.3789, p = 0.8989). However, after the process of mRMR, the inter-subject similarity of both the HC and BD groups was smaller between the groups than within each group (0.3705 < 0.4339, p < 0.001; and 0.3705 < 0.3783, p = 0.0680, respectively). Furthermore, in order to explore whether the smaller similarity was affected by the feature number, the features were randomly selected with the same number as the features with high mRMR scores. In these circumstances, the mean inter-subject similarity of the HC group was still significantly smaller between groups than within the HC group (0.3891 < 0.4141, p < 0.001), but that of the BD group was also slightly greater between groups than within the BD group (0.3891 > 0.3866, p = 0.6109).



Classification Performance of Bipolar I Disorder Versus Healthy Controls and Bipolar II Disorder Versus Healthy Controls Using Shen’s 268 Parcellation

When the classifications of BDI vs. HC and BDII vs. HC were carried out, 342 and 252 features were on average selected during the outer loop of all nested cross-validation, respectively. The mean accuracies of the training/testing sets were 94.52 ± 0.67%/73.47 ± 1.89% and 89.59 ± 4.08%/72.78 ± 3.18%, respectively. The sensitivity/specificity of the testing sets for BDI and BDII was 74.87 ± 2.00%/73.91 ± 2.71% and 74.04 ± 3.56%/76.24 ± 2.57%, respectively (see Table 2). Moreover, the AUCs of the testing sets were 0.805 ± 0.0165 and 0.778 ± 0.0450 for BDI and BDII, respectively. The above might be the result of greater homogeneity because the major features were chosen nine or 10 times during the outer loop, and this was much larger than for the feature selection when all patients were included. Thus, the major features of BDI and BDII were pinpointed as features that were selected in every fold during the outer loop of the optimal nested cross-validation (see Table 3). Moreover, as Figure 2 shows, the major features of BDII existed mostly within and between SC network connectivity, with a few involving network connectivity of FPN and MFN. However, the major features of BDI showed a wider distribution across the networks than BDII. In addition, when the classification of BDI and BDII was being conducted, 139 features were averagely selected during the outer loop. The mean accuracies of the training/testing datasets were 86.23 ± 2.95%/50.91 ± 2.47%, and the sensitivity/specificity was 53.78 ± 2.29%/47.13 ± 3.46%, respectively. Moreover, the mean AUC was 0.501 ± 0.0234.



Inter-Subject Functional Connectivity Similarity of Bipolar I Disorder and Bipolar II Disorder Before and After the Process of Minimum Redundancy/Maximum Relevance

In addition, the inter-subject similarities of the HC group and BDI/BDII groups before the process of mRMR were both significantly smaller between groups than within the HC group (0.3809 < 0.4056, p < 0.001; and 0.3807 < 0.4056, p < 0.001, respectively) but were both slightly smaller between groups than within the BDI/BDII groups (0.3809 < 0.3811, p = 0.9753; and 0.3807 < 0.3836, p = 0.6005, respectively). However, the inter-subject similarities of the BDI group after the process of mRMR and with randomly selected features were still slightly smaller between the groups than within the BDI group (0.3947 < 0.3961, p = 0.8445; and 0.4058 < 0.4092, p = 0.5282, respectively). The inter-subject similarities of the BDII group after the process of mRMR and with randomly selected features were smaller but not significantly between the groups than within the BDII group (0.4450 < 0.4586, p = 0.0533 and 0.4049 < 0.4094, p = 0.4507, respectively), with greater trend after mRMR.



Classification Performance of Bipolar Disorder Versus Healthy Controls Using Power’s 264 Parcellation

To allow the classification of BD and HC, 339 features using Power’s 264 node-based atlas were on average selected during the outer loop of all nested cross-validation. The mean accuracy levels of the classification were 91.95 ± 1.03% for training sets and 74.36 ± 1.80% for testing sets. The sensitivity/specificity for the testing sets was 75.39 ± 1.76% and 74.73 ± 2.34%, respectively (see Table 2). Moreover, the AUC for the testing sets of the nested cross-validation was 0.818 ± 0.0155. Compared with Shen’s parcellation, both the mean accuracies of testing sets using Power’s parcellation were lower, but the difference was not significant (p = 0.5552).

For the classification of BDI vs. HC and BDII vs. HC using Power’s 264 node-based atlas, 353 and 225 features were on average selected during the outer loop, respectively. The mean accuracy levels of the training/testing sets were 96.67 ± 0.85%/73.25 ± 2.30% and 89.27 ± 4.63%/70.97 ± 3.31%, respectively. The sensitivity/specificity for the testing sets for BDI and BDII was 74.88 ± 2.28%/73.59 ± 3.04% and 72.19 ± 3.68%/74.69 ± 2.85%, respectively (see Table 2). Moreover, the AUCs of the nested cross-validation were 0.806 ± 0.0200 and 0.752 ± 0.0458 for BDI and BDII, respectively. Compared with those of Shen’s parcellation, both the mean accuracies of testing sets using Power’s parcellation were not significantly different for BDI vs. HC or for BDII vs. HC (p = 0.9601 or p = 0.7039, respectively).



Potential Influence of Various Clinical Confounding Factors and Head Motion

After false discovery rate (FDR) correction for multiple comparisons, there was no significant correlation of the major features with either illness duration or symptom scores. Furthermore, there were no significant differences in the major features between the patients who were being treated with atypical antipsychotics, antidepressants, and/or mood stabilizers or were not being treated. In addition, since that there was a significant difference in gender between the BD and HC groups, the classification only for the male BD and male HC groups was also conducted. The mean accuracies were 74.36 ± 2.04%, and the results of two-proportion test indicated no difference between the whole groups and the male groups in overall performance (p = 0.5552). These results suggested that there were few clinical confounding factors that were affecting the classification process. Furthermore, the mean (standard deviation) of mean framewise displacement of BD and HC were 0.090 (0.0360) and 0.085 (0.0381), respectively. There was no significant difference (p = 0.2303) between BD and HC. In addition, there was no significant correlation between mean framewise displacement and the major features of BD vs. HC or BDI vs. HC after FDR correction. However, only the functional connectivity between right inferior temporal cortex (in FPN) and right middle frontal cortex (in FPN), one of the major features of BDII vs. HC, was significantly associated with mean framewise displacement (q < 0.001).



DISCUSSION

The present study demonstrated that the patients with BD can be successfully discriminated from HCs with a mean testing accuracy of 76.25% and an AUC of 0.840; this analysis involved a relatively large sample size and used a single imager. The process selected the more relevant and less redundant functional connectivity for the classification. In addition, the classification performance of the present study was robust because nested cross-validation was utilized. The findings indicate that the relevant within-network and between-network connectivity of the regions was mainly within the SC, as well as the FPN; and it was these pathways that played the most important roles during the classification that separated BD from HCs. The reasons for being able to satisfactorily discriminate between BD and HC was that the process selected the functional connectivity that was more similar within BD, and that was related to the neuropathological factors associated with BD; this was possible because a whole-brain functional-connectivity-based atlas was involved.

When discriminating BD patients from HCs, previous studies have shown medium to high levels of accuracy when a variety of features were used including voxel-based morphometry (Mwangi et al., 2016), cortical thickness and skewedness (Squarcina et al., 2019), and functional connectivity (Roberts et al., 2017; Wang et al., 2019). Moreover, as a review study (Claude et al., 2020), which added some more recent studies (Squarcina et al., 2019; Wang et al., 2019), demonstrated that more than half of the studies classifying BD and HC used structural MRI, and, furthermore, the number of studies that used functional MRI was greater than the ones using diffusion tensor images. In general, the classification performances of the studies using functional MRI outperformed those of studies using other modalities. The accuracy levels for classification ranged from 57% to 100% among these studies; however, the studies with relatively high accuracy may have obtained these results due to overfitting because of a small sample size. The studies with an accuracy higher than the median accuracy of these studies, which was 68.2%, almost all had a small sample size, namely, one that was less than 100. For example, one reviewed study discriminated between 12 patients with BD and 25 HCs with 100% accuracy using white matter integrity as the features (Besga et al., 2012). Moreover, as the sample sizes became larger, the classification performance levels were reduced (Claude et al., 2020). Notwithstanding the above, the present study, which has a relatively large sample size, has been able to achieve a high accuracy; this accuracy is higher than the median accuracy of the above previous studies as well as being closed to the minimum threshold of clinical relevance (i.e., 80%).

A number of points need to be noted. Firstly, the acceptable classification of BD during the present study is possibly a consequence of deciding to use functional connectivity with higher similarities within BD patients and avoiding using what seems to be more irrelevant similarities between BD patients and HC; the heterogeneous nature of the BD patients may be relevant to this (Charney et al., 2017). Specifically, in the present study, the mRMR process was performed with this purpose in mind. This is supported by the finding that the inter-subject similarity results show that the within-group similarity of BD patients became greater than the between-group similarity after mRMR, and at this point, the patients with BD became more homogenous within the group. Even though both the between-group and within-group differences that are present both before and after mRMR were not significant for the BD group, there was an observable trend. Furthermore, better classification performance was obtained from the features with a high mRMR score when those with a low mRMR score were used, and this is consistent with the hypothesis that an increase in the homogeneity of the psychiatric patients resulted in better predictive model performance (Wu et al., 2017; Dwyer et al., 2018). However, in the present study, rather than clustering the patients into phenotypes based on their neuroimaging features as was done in previous studies, the homogeneity increase was due to mutual similarities in functional connections. Nevertheless, the results that the classification performance between each clinical subtype (i.e., BDI and BDII) and HCs was not better than that between the whole patient group and HCs in the present study may because of heterogeneity within the clinical subtypes. Previously, there have been inconsistences between clinical subtypes and neuroimaging phenotypes (Wu et al., 2017). Phenotypes derived from neurobiological markers of the transdiagnosed study did not match the diagnostic groups (Itahashi et al., 2020). Also, subtypes of patients using unsupervised learning approaches investigated by previous studies were hardly explained by clinical patterns, including symptoms and treatment responses, and usually were compared in clinical patterns with group level or were defined by featured clinical patterns (Costa Dias et al., 2015; Sun et al., 2015). However, the subtypes based on clinical dimensions, such as the history of suicide, may be consistent in neuroimaging and also be clinically explicable (Houenou et al., 2015; Hozer and Houenou, 2016). Moreover, the fact that there is evidence showing that there are few or no differences between clinical subtype (i.e., BDI and BDII) in terms of neurobiological abnormality may explain this inconsistency (Ha et al., 2009; Ambrosi et al., 2016; Hibar et al., 2016; Janiri et al., 2019). This is supported by our results to some extent because in the present study there is poorer classification performance when discriminating BDI from BDII.

Secondly, the classification results of the present study were able to achieve satisfactory performance because the selected features were specific to the regions associated with BD neuropathology. The major features able to discriminate between the BD and HC groups were those frequently selected during feature selection in the cerebellum, the subcortical regions, and some prefrontal regions. These selections are consistent with dysconnectivity during BD, which is known to involve the prefronto-limbic-striatal regions (Strakowski et al., 2012; Jiang et al., 2017; Roberts et al., 2017; Perry et al., 2018). The cerebellum was long regarded as only acting as a motor coordinator, but it also does seem to have a role as a modulator of non-motor functions, including the processing of emotions and cognitions (Stoodley and Schmahmann, 2009, 2010). Furthermore, the involvement of the cerebellum in affective and cognitive function is supported by evidence that the cerebellum interconnects with regions that are involved in reasoning, emotions, motivation, and various drives (Leiner et al., 1986; Middleton and Strick, 1994; Schmahmann, 1996; Kelly and Strick, 2003). In relation to its affective functions, the cerebellum has been implicated in perceiving and recognizing emotional cues, integrating emotional evaluation, and modulating emotional processing (Shakiba, 2014; Adamaszek et al., 2017). Previous studies have also demonstrated affective disorders that are accompanied by cerebellar abnormalities. Some of these findings have indicated that patients with BD show cerebellar microstructural changes (Ambrosi et al., 2016; Zhao et al., 2016), a decreased cerebellum volume (Baldaçara et al., 2011), and alterations in cerebellar activity and cerebro-cerebellar connectivity. These seem to be present even during different mood states such as depression, mania, and euthymia (Johnson et al., 2018; Wang et al., 2018), when psychosis is present (Shinn et al., 2017), and in the absence of medication (He et al., 2018; Luo et al., 2018; Chen et al., 2019). In addition, the subcortical and prefrontal regions also work synchronously during the regulation of emotion processing (Phan et al., 2002; Yamasaki et al., 2002; Strakowski et al., 2012). The subcortical regions covered by the results of the present study included the thalamus, caudate nucleus, and hippocampus region of the cortex. Moreover, the prefrontal regions, which include the orbitofrontal cortex, dorsomedial prefrontal cortex (including superior frontal cortex), and anterior cingulate gyrus (which is covered by region 15 of Shen’s 268 atlas), were also involved; these regions are highly implicated in the modulation of internal emotional stimuli and automatic emotional responses (Phillips et al., 2008). Our findings are consistent with the assumption that BD is an interoceptive disorder (Perry et al., 2018). This is because they are consistent with the findings regarding the regions involving automatic emotion described in a study by Phillips et al. (2008). Previous studies also indicated that disturbances in emotional regulation are accompanied by abnormalities in the subcortical and prefrontal regions, including enlargement of the gray matter volume, disruption of white matter integrity, altered activation, dysconnectivity, and abnormal properties within functional network (Strakowski et al., 2005; Phillips et al., 2008; Chen et al., 2011; Strakowski et al., 2012; Wang et al., 2017; Perry et al., 2018). Furthermore, the result of the present study, when the focal abnormalities in BDI and BDII patients were compared, demonstrated that the former had more distributed abnormalities as major features when classifying the patients and HCs, which is also consistent with previous studies (Ha et al., 2009; Abé et al., 2016).

In addition to feature selection, the better performance of the present study may be a result of using whole-brain functional-based parcellation. When compared with Power’s 264 node-based atlas, Shen’s 268 whole-brain functional-connectivity-based atlas, with an equivalent number of regions of interest, gave better, although not significantly better, classification performance. These results are consisted with Wang et al. (2019) in which the classification by whole-brain parcellation outperformed that node-based regions-of-interest analysis. Moreover, even though Power’s atlas was created as a spatially continuous parcellation, Arslan et al. (2018) found that it had worse agreement with the regions of task activation, Brodmann areas, and myelinated cortical areas than Shen’s atlas. In addition, even though both the present study and Wang et al. (2019) study demonstrated high accuracy, the features extracted from the present study seem to be more reasonable than an approach using anatomical parcellation for functional features extraction. This is because, when compared with anatomical parcellation, functional-connectivity-based parcellation shows much better agreement with the underlying resting-state functional MRI (rs-fMRI) connectivity (Arslan et al., 2018). For example, Deen et al. (2011) conducted cluster analysis to investigate the subdivisions of insula based on rs-fMRI and found distinct patterns of connectivity within subdivisions of the insula (Deen et al., 2011); this was in spite of the fact that the insula forms a single parcel in a standard anatomical brain atlas (Tzourio-Mazoyer et al., 2002).

There are several limitations that affect the present study. The first is that all the patients were being treated with medication; the drugs included atypical antipsychotics, antidepressants, and mood stabilizers. Such long-term treatment with medication can bring about changes that affect the brain. Nevertheless, in the present study, there was no significant correlation between any of the major features and either illness duration or symptom scores. Furthermore, there also were no significant differences in the major features between the patients on different types of medication. The second limitation is that no independent dataset was included in this study. However, it should be noted that the main purpose of the present study was to investigate the generalizability of the classification procedure used here, rather than an attempt to develop an effective model for assisting diagnosis of BD. Thirdly, the amygdala, which plays an essential role in affective disorders, was not identified as one of the major features used for discriminating BD patients from HCs. In the present study, the amygdala was separated into four distinct subregions based on Shen’s 268 parcellation, and these formed four distinctly different regions of interest; this splitting of the amygdala might mean that each of the independent subregions might not have a strong enough impact to be identified during our procedure.



CONCLUSION

The present study demonstrates an effective approach for classifying a relatively large group of individuals into BD patients and HCs; this approach was able to achieve the minimum thresholds for clinical relevance. This was done by selecting homogeneous features and using whole-brain functional connectivity. Furthermore, the features chosen by the selection process were clearly related to various the neuropathological factors relevant to BD. Finally, the parcellation approach utilized in this study is congruous with functional performance and the cytoarchitecture of brain. All of the above are possible reasons why the discrimination was successful using our approach.
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Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most important factors when evaluating an individual’s risk for SCZ. However, robust imaging biomarkers for the disease that can be used for diagnosis and determination of the prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned using resting-state functional magnetic resonance imaging. The subjects’ brains were parcellated into 200 regions using the Craddock atlas, and the FC between each pair of regions was used as a classification feature. Multivariate pattern analysis using leave-one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity 84.06%, specificity 92.18%, and area under the receiver operating characteristic curve (AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the accurate classification. The FC patterns of each FDR were input into each classification model as test data to obtain a corresponding prediction label (a total of 76 individual classification scores), and the averaged individual classification score was then used as a robust measure to characterize whether each FDR showed an SCZ-type or HC-type FC pattern. A significant negative correlation was found between the average classification scores of the FDRs and their semantic fluency scores. These findings suggest that FC combined with a machine learning algorithm could help to predict whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.

Keywords: functional connectivity, machine learning, first-degree relatives, schizophrenia, cognitive impairments


INTRODUCTION

Schizophrenia (SCZ) is a devastating neurodevelopmental disorder with a complex genetic etiology (Lee et al., 2016). Multiplex family studies have established significant heritability for SCZ, which is often summarized as 81% (Light et al., 2014). First-degree relatives (FDRs; i.e., siblings, offspring, and parents) of patients with SCZ are 10 times more likely to suffer from SCZ than healthy controls (HCs) (Luykx et al., 2017). Consequently, when evaluating an individual’s risk for SCZ, the familial risk is among the most important factors (Pirjo et al., 2005). To define putative risk criteria for psychosis, prodromal criteria based on the Comprehensive Assessment of At Risk Mental States (CAARMS), the Criteria of Prodromal Syndromes (COPS), and the Bonn Scale for the Assessment of Basic Symptoms/Schizophrenia Proneness Instrument, Adult version (BSABS/SPI-A) have been validated in a range of studies (Yung et al., 2008; Schultze-Lutter, 2009; Woods et al., 2009). Early clinical intervention in SCZ has recently become a major objective of mental health services; those interventions include antipsychotic medications, cognitive behavioral therapy (CBT), and other novel strategies such as eicosapentaenoic acid (Addington and Heinssen, 2012). Because early intervention can help delay and prevent the onset of psychosis, the development of biomarkers allowing the early identification of individuals at elevated risk of developing SCZ is of great importance.

A previous large-scale network analysis showed that FDRs of patients with SCZ demonstrate similar deficits in connectivity metrics (Delawalla et al., 2008), interhemispheric functional connectivity (FC) abnormalities (Guo et al., 2014), default-mode network dysfunction (Meda et al., 2008), and rich club connectivity impairments, as do their relatives with SCZ (Zhang et al., 2016). This sharing of disease-specific patterns indicates that brain network disturbances are likely to show familial associations, possibly reflecting a vulnerability for SCZ. Consistent with these results, our previous study using stochastic dynamic causal modeling found similar anterior cingulate cortico-hippocampal dysconnectivity in unaffected FDRs and patients with SCZ (Xi et al., 2016). To date, however, the results of these studies showed minimal clinical impact for diagnostic and prognostic purposes, and traditional diagnostic and prognostic tools are still being used by psychiatrists. The most important reason is that the differences between FDRs and controls were reported at the group level, which provided limited information to make inferences at the level of the individual (Orrù et al., 2012).

With the continuous innovation of machine learning technology, pattern classification algorithms have become widely used in SCZ research. Previous studies showed that functional brain connectivity patterns can be used not only to classify patients with SCZ from normal controls but also to predict the development and prognosis of the disease. With the use of functional brain networks derived from an independent component analysis of resting-state functional magnetic resonance imaging (RS-fMRI), FC patterns reached an accuracy of 85.5% for distinguishing SCZ patients from HCs (Jing et al., 2019). Additionally, using a support vector machine (SVM) algorithm, the accuracy of FC patterns for differentiating controls from patients can reach 83.8% (Fan et al., 2011). More importantly, the classification scores obtained from the SVM could predict the prognosis, with high classification scores being associated with worse treatment effects.

In the present study, we investigated the classification efficiency of FC obtained from RS-fMRI for distinguishing SCZ patients from HCs, applied the classification models to determine whether FDRs were similar to SCZ patients or HCs, and finally explored whether the classification scores were able to predict the cognitive performance of the FDRs.



MATERIALS AND METHODS


Subjects

The current study was approved by the First Affiliated Hospital (Xijing Hospital) of the Fourth Military Medical University. Written informed consent forms approved by the local Research Ethics Committee were signed by all participants. The study sample consisted of 40 first-episode SCZ patients from early intervention services within the outpatient clinic and inpatient department of Xijing Hospital, 36 FDRs of patients with SCZ, and 40 HCs recruited from the local community by advertisements. Two senior clinical psychiatrists diagnosed SCZ using the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-V) structured clinical interviews (SCIDs). All SCZ patients had a first episode with exposure to antipsychotic treatment within 2 weeks. Some patients with <6 months’ illness duration were diagnosed as FE-SCZ after a 6-month follow-up according to diagnostic criteria. The severity of symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987). Exclusion criteria consisted of (1) other DSM disease; (2) a history of treatment with transcranial magnetic stimulation, transcranial current stimulation, or behavioral therapy; (3) substance abuse; (4) other neurological diseases; and (5) pregnancy or other MRI contraindications. Additional exclusion criteria for the HCs included a current or past history of psychiatric illness and the presence of psychosis in FDRs (Yuan et al., 2018a).



MRI Acquisition

All MRI data were collected on a 3.0-T Siemens Magnetom Trio Tim scanner at the Department of Radiology of Xijing Hospital. During data acquisition, participants were asked to keep their eyes closed, to let their mind wander, and to keep awake (Liu et al., 2013; Yuan et al., 2017a). A head coil fitted with foam pads was used to minimize head motion, and earplugs were used to dampen scanner noise (Liu et al., 2017; Yuan et al., 2017b). Resting-state functional scans were acquired with an echo-planar imaging (EPI) sequence using the following parameters: repetition time (TR), 2,000 ms; echo time (TE), 30 ms; field of view, 220 × 220 mm; matrix, 64 × 64; flip angle, 90°; number of slices, 33; slice thickness, 4 mm; 240 volumes; and a total of 7 min. After acquisition of the RS-fMRI, a high-resolution T1 image was acquired for anatomical reference using a magnetization-prepared rapid gradient-echo sequence with the following parameters: TR, 2,530 ms; TE, 3.5 ms; flip angle, 7°; field view, 256 × 256 mm; matrix, 256 × 256; slice thickness, 1 mm; slice gap, 0 mm; slices, 192; resolution, 1 × 1 × 1 mm; and a total of 6 min 30 s.



Data Preprocessing

Preprocessing of the RS-fMRI data and the calculation of FC measures were performed in a similar manner to those described in previous studies (Zhu et al., 2019; Song et al., 2020). The first 10 images were discarded to ensure MRI data stability (Yuan et al., 2016), and then the remaining 230 images were slice timing corrected and realigned to the first image, during which the average frame-wise displacement (FD) was obtained (no differences in this were found across the three groups; see Table 1). Inter-scan motion was assessed using the translation and rotation parameters, and an exclusion criterion of >2.5 mm translation and/or >2.5° rotation in each direction at each time point was set. Two SCZ patients, two HCs, and three FDRs met the criteria and were excluded from further analyses, resulting in 38 SCZ patients, 33 FDRs, and 38 HCs for final inclusion. As FC measures are sensitive to head motion, Friston-24 parameters were used to regress out their effects. To further reduce the effects of nuisance factors, signals from cerebrospinal fluid and white matter were also regressed out. The global signal was not removed as suggested in a previous study (Hahamy et al., 2014). Then, the DARTEL toolbox was used to normalize the data into Montreal Neurological Institute (MNI) space (Ashburner, 2007), and the resulting images were finally smoothed with a 6-mm full width at half maximum (FWHM) Gaussian kernel.


TABLE 1. Demographic and clinical features of the participants.
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Functional Connectivity of the Whole Brain

The Craddock atlas was used to parcellate the whole brain into 200 regions of interest (ROIs) (Craddock et al., 2012). This new atlas has been validated that it can successfully parcellate group resting-state fMRI data into spatially coherent functionally homogeneous clusters of the network (Allen et al., 2014). The time series within each region were first band-pass filtered (0.01–0.08 Hz) and then averaged. For each participant, FC was calculated between each ROI using Pearson’s correlation coefficients, resulting in 19,900 [(200 × 199)/2] dimensional FC feature vectors for each subject.



Feature Selection

Before the classifier model was built, an initial feature selection step was performed for data dimension reduction. The current study used an F-score for feature ranking, which was shown to be an effective method in previous studies (Liu et al., 2015). Leave-one-out cross-validation (LOOCV) was used to evaluate the performance of the classifier. In LOOCV, one subject is used as test the data, and the classifier is trained on the remaining dataset. For each LOOCV iteration, the features were ranked from the highest to lowest according to their F-score, and the first 644 features (see details in subsection “Overall Classifier Performance”) were used to build the classifier.

However, for each iteration of the LOOCV, the data subset used for feature ranking was a little different, and the final features selected for the classification model differed slightly between each iteration. Therefore, consensus features were identified, with these being the features that were always selected to build the classification model in each iteration of the LOOCV. The weight for each consensus feature was defined as the average of the weights across the 76 LOOCV iterations. A weight for each ROI was also calculated by summing one half of the consensus feature weights associated with that region, which represented the ability of that region to discriminate SCZ patients from HCs.



Classification and Support Vector Machine

The SVM algorithm was selected for classification because it has shown good efficiency when the sample size studied is relatively small. Patients with SCZ were labeled as 1, and HCs were labeled as −1, and a decision function was determined during the training step and used to predict the labels of the test data. To avoid overfitting and to allow direct extraction of the feature weights, a linear kernel SVM was implemented using the LIBSVM toolbox (Chang and Lin, 2011), with the parameter C set to the default value of 1. With the use of the LOOCV strategy, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were obtained, and the statistical significance of the accuracy was assessed using a permutation test (Golland and Fischl, 2003).



Classification of First-Degree Relatives

The above-mentioned classification model was used to classify SCZ patients and HCs, and our next analysis was to investigate whether the final classification model could be used to determine whether the FDRs showed similar FC patterns to SCZ patients or HCs. After the classification model was built, the FC of each FDR was input as test data into each iteration of the LOOCV, to obtain its corresponding prediction label (1 or −1). Therefore, each FDR was given 76 individual prediction labels. The classification score, which is the average of the 76 prediction labels, was used as a robust measure to characterize the similarity of each FDR’s FC pattern to an SCZ pattern (in the range of −1 to 1, a positive score indicated an SCZ pattern).



Correlation Analysis Between Cognitive Function and Classification Scores

Finally, a general linear model was used to investigate the correlations between classification scores and measures of cognitive function in FDRs, with age, sex, and years of education as covariates. A semantic fluency test (animal version) was administered to evaluate the executive function and the semantic memory, which are severely affected in SCZ; the performance was analyzed using the number of correct words within 1 min.



RESULTS


Demographic and Clinical Data

The demographic and clinical data are shown in Table 1. No significant difference was present between the SCZ patients, FDRs, and HCs in any of the demographic variables, including age, sex distribution, education level, and FD. However, significant differences were found for semantic fluency scores across the three groups.



Overall Classifier Performance

As shown in Figure 1, the accuracy of the linear SVM classifier reached up to 88.15% (84.06% for sensitivity, 92.18% for specificity, and p < 0.001 by permutation test) using the 644 highest-ranked FC features. Thus, we selected the top-ranked 644 features in each iteration of the LOOCV for the classification features. The discriminative score for each tested individual was acquired from the SVM classifier and an ROC curve was created (Figure 2A), which showed an AUC of 0.93, indicating good classification power. A non-linear SVM classifier was also trained and showed similar results; however, to reduce the risk of overfitting and to directly calculate and exhibit the FC weights and ROI weights, the following analysis is based on the linear SVM classifier.
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FIGURE 1. Predictive accuracy as a function of the number of connections used in the classification process. The connections were ranked according to F-scores in descending order.
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FIGURE 2. (A) Receiver operating characteristic (ROC) curve of the classifier; the gray line indicates the 95% confidence interval for the area under the ROC curve. (B) The consensus functional connections. The brain regions are represented by a square on the circumference of the big circle. The lines connecting two squares represent the connections between the corresponding two brain regions. The red lines represent positive connections, and the blue lines represent negative connections.




Consensus Features and Region Weights

In this study, 397 consensus features were identified, as illustrated in Figure 2B. Eighteen regions were identified as having weights that were at least one standard deviation greater than the average of the weights of all regions. As shown in Figure 3, the ROIs making the greatest contribution to the model were located within the default mode network (DMN) (angular gyrus, middle temporal gyrus, orbital frontal gyrus, temporal pole, and inferior frontal gyrus), frontal-parietal network (superior parietal gyrus and parietal operculum cortex), auditory network (Heschl’s gyrus), and sensorimotor network (precentral gyrus and postcentral gyrus).
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FIGURE 3. Regions of interest that contributed mostly to the accurate classification. L, left; R, right; OFC, orbital frontal cortex; IFG, inferior frontal gyrus; SPL, superior parietal lobule; MTG, middle temporal gyrus.




Cognitive Deficits in Relatives and Correlation Analysis

As shown in Figure 4, six FDRs were given a classification score of 1 (SCZ specific) in all 76 LOOCV iterations, seven FDRs were classified as −1 (HCs specific) in all 76 LOOCV iterations, and the remaining FDRs were classified either as 1 or −1 in different iterations of the LOOCV. A significant negative correlation was found between the average classification scores of the FDRs and the semantic fluency scores.
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FIGURE 4. Correlation between support vector machine (SVM) scores and semantic fluency in first-degree relatives (FDRs).




Classifier Performance Using Features Within the Identified Networks

In the current study, we obtained many more features than examples (644 features were selected according to 76 participants); therefore, we reanalyzed the classifier performance only using features within the identified networks (DMN, FP, auditory, and sensorimotor). According to the networks brought up by Yeo et al. (2015), we masked the DMN, FP, auditory, and sensorimotor networks, and 142 features were obtained. As shown in Figure 5, the accuracy of the linear SVM classifier reached up to 82.89% (89.47% for specificity, 63.16% for sensitivity, and p < 0.001 by permutation test). The discriminative score for each tested individual was acquired from the SVM classifier, and an ROC curve was created (Figure 6), which showed an AUC of 0.82, also indicating good classification power.
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FIGURE 5. Predictive accuracy as a function of the number of connections used in the classification process. The connections were ranked according to F-scores in descending order. Classification performance was further tested by including features within the default mode network, frontal-parietal network, auditory network, and sensorimotor network only.
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FIGURE 6. Receiver operating characteristic (ROC) curve of the classifier using features within the default mode network, frontal-parietal network, auditory network, and sensorimotor network only.




DISCUSSION

With the use of a multivariate pattern classification method, our study demonstrated that whole-brain resting-state FC can be used to distinguish SCZ patients from HCs with excellent accuracy, with the functional connections showing the best discriminatory power being mainly located within or across the default mode, frontal-parietal, auditory, and sensorimotor networks. Furthermore, the trained machine learning model could also help to identify whether unaffected FDRs showed similar FC patterns to SCZ patients or HCs. An additional finding was that the classification scores of the unaffected FDRs correlated significantly with their word semantic fluency test scores. These findings suggest that FC, combined with a machine learning algorithm, can help to predict whether unaffected FDRs show a SCZ-specific FC pattern or a healthy control-specific FC pattern.

Cutting-edge machine learning methods have been applied in structural and functional neuroimaging studies and have revealed that multivariate patterns of brain change are sensitive enough to classify individual SCZ patients (Liu et al., 2015; Yuan et al., 2018b). Combining cortical thickness, gyrification of gray matter, and fractional anisotropy and mean diffusivity of white matter, Liang et al. (2019) used a gradient boosting decision tree to identify SCZ patients, reaching an average accuracy of 76.54%. Using global and nodal network properties derived from a graph theory analysis, Jo et al. (2020) revealed that functional network properties had a high discriminatory ability for classifying SCZ patients and HCs. Using betweenness centrality from graph theoretical approaches and a SVM algorithm, Cheng et al. (2015) found a classification accuracy of around 80% for differentiating SCZ patients from non-psychiatric HCs. Recent progress in neuroimaging research has suggested that SCZ is a dysconnectivity syndrome, and our results provide evidence that resting-state FC can be successfully used to differentiate SCZ patients from HCs.

We employed the F-score for the feature ranking in the feature selection approach, and a SVM algorithm with an LOOCV strategy showed a classification accuracy of 88.15%. We used the Craddock atlas for brain parcelation, because the brain regions are clustered in a more homogenous manner than in the AAL atlas (Craddock et al., 2012), and certain ROIs from this parcelation showed significant performance in classifying SCZ patients from HCs. Previous studies showed that an isolated brain region or connectivity dysfunction cannot be responsible for SCZ (Lefebvre et al., 2016) and indicated that impairment of interactions between several intrinsic FC networks underlies the specific psychopathological mechanism of SCZ. Our ROIs showing significant classification performance were located within previously well-studied brain networks such as the DMN, frontal-parietal network, auditory network, and sensorimotor network. Decreased communication within the DMN supports the idea of impaired self-related processes relevant to the emotional processing and recollection of prior experience (Dong et al., 2018), whereas deficits in the frontal-parietal network have been associated with poor information manipulation and poor problem-solving in goal-directed behavior, and it is proposed that abnormal interactions between the DMN and frontal-parietal network are associated with errors in the self-monitoring of SCZ (Anhoj et al., 2018; Brandl et al., 2019). Auditory network dysfunction is always found in SCZ patients, with morphological and functional abnormalities of the superior temporal gyrus, a key component of the auditory network, being frequently reported, and altered dominance in the direction of causal influence from the DMN to the auditory network also being found (Li et al., 2019). Additionally, SCZ patients have also shown impaired connectivity within sensorimotor networks, such as compromised connections between M1 and the supplementary motor area and medial motor areas (Mcnabb et al., 2018). In combination with our findings, such aberrant connectivity within and between large-scale networks not only may reflect the possible pathophysiology of SCZ but also can provide essential information, allowing us to differentiate HCs and FDRs before the development of SCZ symptoms.

First-degree relatives of patients with SCZ have an almost 10-fold increased risk of developing SCZ (Luykx et al., 2017); however, early interventions to delay or prevent the onset of psychotic disorders among these high-risk individuals have shown limited success. One of the most important hurdles is the identification of a syndrome or set of traits that reflects a predisposition to SCZ and that might provide potential targets for intervention. A neuroimaging analysis of the FDRs of patients with SCZ has mostly focused on group comparisons, with several functional brain alterations before the onset of SCZ having been reported in previous studies, although robust imaging biomarkers for the diagnosis and prediction of a later transition to psychotic disorders are still lacking. The classification scores presented in our study provided a sensitive measure for classifying FDRs as having a SCZ-specific FC pattern or HC-specific pattern, and early preventions could be provided for relatives showing a SCZ-specific pattern, especially those given labels of 1 in the LOOCV predictions. More importantly, we found that the classification scores showed a significant negative correlation with the semantic fluency scores. For those FDRs with a clear SCZ-specific pattern, psychological and psychosocial interventions (such as CBT), pharmacological interventions (such as risperidone), and nutritional supplements (such as omega-3 fatty acids) would have a beneficial effect on transition rates (Stafford et al., 2013), while for those with classification scores <+1, those interventions should be implemented with caution, as a clinically significant side effect (for example, possible increased stigma) might be induced (Stafford et al., 2013). As stated by other studies (Mourao-Miranda et al., 2012), linear SVM can effectively handle high-dimensional data and is less prone to overfitting of the data. Therefore, in this study, we exclusively used a linear kernel SVM to reduce the risk of overfitting the data and to allow direct extraction of the weight vector. The linear SVM has only one parameter (C) that controls the trade-off between having zero training errors and allowing misclassifications. This was fixed at C = 1 for all cases (default value). It has been shown previously that the SVM performance for whole-brain classification does not change for a large range of C values and only degrades with very small C values (Laconte et al., 2005).

Cognitive impairments are a key component of SCZ and have been included as a diagnostic criterion for SCZ in the DSM-V classification (Bortolato et al., 2015). Previous studies have indicated that non-psychotic FDRs also exhibit similar but less severe cognitive defects (Molina et al., 2016). Study of the neurocognitive functions of non-psychotic FDRs is a widely used strategy for understanding the etiology of SCZ and is free of the confounds associated with psychosis. Furthermore, it is also well accepted that cognitive impairments precede the onset of illness and represent vulnerability markers for the onset of the disorder (Viviano et al., 2018). Therefore, the negative correlations found between classification scores and cognitive performance indicate that the classifiers built on these FC measures could serve as sensitive biomarkers for the early detection of FDRs at high risk of developing SCZ.

The present study has several limitations. First, the sample size of the current study is relatively small, and the age distribution is rather young because we recruited first-episode SCZ, and a large multicenter imaging dataset containing chronic SCZ patients is necessary to confirm our findings. Second, we used cross-sectional data of the FDRs, and a longitudinal investigation is needed to verify our findings. So far, we have followed 10 unaffected FDRs for 4 years, and they remain normal. Due to low incidence rate of SCZ in unaffected FDRs, longer follow-ups are needed to investigate if the SCZ-specific FDRs had higher risk of development of the disease than the HCs-specific FDRs. Third, cognitive impairment was characterized by a small number of measures, and comprehensive measures should be collected, which may help bring neuroimaging classification scores from the bench to the bedside. Finally, we did not collect other cognitive status score such as Mini-Mental State Exam (MMSE), which would provide important information on global cognition for FDRs and HCs.



CONCLUSION

Our findings indicate that brain-wide multivariate neuroimaging patterns have clear advantages for accurately classifying individuals as SCZ patients or HCs. FC within and among the default mode, frontal-parietal, auditory, and sensorimotor networks contributed most to the accurate classification. Finally, classification scores obtained by our analysis could serve as an effective and sensitive biomarker for the early detection of FDRs at high risk of developing SCZ.
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Background: Previous studies of atypical antipsychotic effects on cortical structures in schizophrenia (SZ) and bipolar disorder (BD) have findings that vary between the short and long term. In particular, there has not been a study exploring the effects of atypical antipsychotics on age-related cortical structural changes in SZ and BD. This study aimed to determine whether mid- to long-term atypical antipsychotic treatment (mean duration = 20 months) is associated with cortical structural changes and whether age-related cortical structural changes are affected by atypical antipsychotics.

Methods: Structural magnetic resonance imaging images were obtained from 445 participants consisting of 88 medicated patients (67 with SZ, 21 with BD), 84 unmedicated patients (50 with SZ, 34 with BD), and 273 healthy controls (HC). Surface-based analyses were employed to detect differences in thickness and area among the three groups. We examined the age-related effects of atypical antipsychotics after excluding the potential effects of illness duration.

Results: Significant differences in cortical thickness were observed in the frontal, temporal, parietal, and insular areas and the isthmus of the cingulate gyrus. The medicated group showed greater cortical thinning in these regions than the unmediated group and HC; furthermore, there were age-related differences in the effects of atypical antipsychotics, and these effects did not relate to illness duration. Moreover, cortical thinning was significantly correlated with lower symptom scores and Wisconsin Card Sorting Test (WCST) deficits in patients. After false discovery rate correction, cortical thinning in the right middle temporal gyrus in patients was significantly positively correlated with lower HAMD scores. The unmedicated group showed only greater frontotemporal thickness than the HC group.

Conclusion: Mid- to long-term atypical antipsychotic use may adversely affect cortical thickness over the course of treatment and ageing and may also result in worsening cognitive function.
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INTRODUCTION

Schizophrenia (SZ) and bipolar disorder (BD) have substantial overlap in genetic vulnerability (The International Schizophrenia Consortium, Purcell et al., 2009; Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium, 2015), brain structural abnormalities (Goodkind et al., 2015), symptomatology, and cognitive deficits (Tamminga et al., 2013), suggesting a common neurobiological mechanism underlying the two psychiatric conditions. Atypical antipsychotics are first-line treatment options for SZ and BD (Meltzer, 2013) and are effective for treating psychotic symptoms in both disorders (Leucht et al., 2009). They are the mainstay long-term treatment for SZ. Atypical antipsychotics combined with mood stabilizers constitute the mainstay of acute management of bipolar mania and depression and the long-term management of BD (Grande et al., 2016). However, the effects of atypical antipsychotics on cortical structures, especially age-related effects, are still unclear (Goff et al., 2017). Potential effects could have important implications for the course and prognosis of illness.

Previous magnetic resonance imaging (MRI) studies of antipsychotic effects have mainly focused on morphometric changes in cortical volume, thickness and surface area. There may be differences in the short- and longer-term (mid-to-long-term) effects of atypical antipsychotics treatment on cortical structures, such as clinical trials examining the cortical structural changes during short-term (less than 3 months) antipsychotic treatment have reported that cortical thickness is maintained or even increased after 6–12 weeks of antipsychotic treatment (Goghari et al., 2013; Jessen et al., 2018; Nelson et al., 2020), while longer-term (more than 3 months) studies have shown cortical structural loss compared to healthy controls (HC) (Lieberman et al., 2005; Ahmed et al., 2015; Guo et al., 2019; Voineskos et al., 2020). In the largest randomized longitudinal study to date comparing the effects of antipsychotic medication types on brain volumes, olanzapine was found to reduce brain volumes over a 1-year period (Lieberman et al., 2005). In the most recent double-blind, randomized, placebo-controlled trial, major depressive disorder (MDD) patients who were exposed to olanzapine had a significant decrease in cortical thickness across a 6-month period compared with those who took a placebo (Voineskos et al., 2020). Due to the challenges of conducting clinical trials to study atypical antipsychotic effects for more than 1 year, observations mostly come from cross-sectional studies and longitudinal studies with naturalistic designs. For example, cross-sectional studies of SZ patients undergoing current or chronic (over 5 years) treatment suggest cortical loss (Haijma et al., 2013; Lesh et al., 2015; Gjerde et al., 2018; van Erp et al., 2018; Di Sero et al., 2019; Liu et al., 2020). Similar results were observed in BD patients (Gildengers et al., 2014; Birner et al., 2020), although other studies failed to replicate the finding, possibly due to differences in the duration (short, medium and long-term) of atypical antipsychotic treatment and variability in methodology and sample size (Hallahan et al., 2011; Hafeman et al., 2012; Hibar et al., 2018). Longitudinal studies with 3, 7.2, and 9 years of follow-up showed that atypical antipsychotics were associated with progressive cortical structural loss (Ho et al., 2011; Veijola et al., 2014; Akudjedu et al., 2020). However, the findings were not replicated by a meta-regression of longitudinal studies and a 5-year follow-up study (van Haren et al., 2011; Vita et al., 2015). In these studies, a higher mean daily intake or cumulative intake of atypical antipsychotics was associated with less cortical structural loss. Herein, we conduct a preliminary exploratory investigation of the effects of mid- to long-term use of atypical antipsychotics on cortical structures.

Few studies have focused on the effects of atypical antipsychotic on age-related cortical structural changes. Previous studies found greater age-related loss of cortical structures in SZ and BD patients than in HC but were unable to comprehensively examine the influence of antipsychotics (Cropley et al., 2017; Abe et al., 2020). Most studies indicate the absence of antipsychotic effects in the age-related trajectory of cortical measures (Cropley et al., 2017; Altamura et al., 2018), while some show the presence of antipsychotic effects (van Haren et al., 2011). However, evidence regarding the effects of atypical antipsychotics on age-related cortical structural changes in SZ and BD remains uncertain.

Cortical volume is determined by both cortical thickness and surface area, which have distinct genetic influences (Panizzon et al., 2009) and different development trajectories (Wierenga et al., 2014). Thus, we used SBM vertexwise analysis based on cortical surface reconstruction to evaluate thickness and surface area. We opted to combine SZ and BD patients for the following reasons: The criteria for the current prevalent classifications of SZ and BD were established mainly based on clinical symptoms. However, SZ and BD share substantial core features, as indicated by converging lines of evidence from genetic, molecular, histological, and neuroimaging studies (Garcia-Rizo et al., 2016; Goldsmith et al., 2016; Moser et al., 2018; Akudjedu et al., 2020; Writing Committee for the Attention-Deficit/Hyperactivity Disorder et al., 2020). Thus, there appears to be a greater continuum between SZ and BD than previously thought. Previous studies have also selected samples of SZ and BD patients to explore antipsychotic effects (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Ansell et al., 2015; Goodkind et al., 2015). Thus, SZ and BD patients were combined here. To our knowledge, only two studies have investigated how atypical antipsychotics are associated with cortical thickness in SZ and BD. One cross-sectional study did not include an unmedicated comparison group or clear determination of the duration of medication use; it found that SZ and BD patients had thinner medial frontal, parietal and fusiform areas and thicker precentral and postcentral gyri compared to HC (Ansell et al., 2015). One recent naturalistic longitudinal study of psychosis patients with a 3-year follow-up period reported a significantly increased rate of cortical thinning in the left lateral orbitofrontal region compared with HC (Akudjedu et al., 2020). However, evidence of the mid- to long-term effects of atypical antipsychotics is still needed.

Herein, we aimed to determine whether mid- to long-term atypical antipsychotic treatment is associated with cortical structural changes in a real-world observation and, if so, whether age-related cortical structural changes are affected by atypical antipsychotics. We compared cortical thickness and area in SZ and BD patients who had been treated for more than 3 months with atypical antipsychotics, patients who received no psychotropic medication, and HC. We also examined the effects of atypical antipsychotics on clinical symptoms and cognitive function. We hypothesized that regional cortical thickness was more vulnerable to the effects of atypical antipsychotics than surface area was. We also hypothesized that greater cortical thinning would be found in medicated patients than in unmedicated patients and HC and that atypical antipsychotics would affect age-related changes.



MATERIALS AND METHODS


Participants

The study included a total of 445 individuals aged 13–45 years: 88 medicated patients (67 with SZ, 21 with BD) who were treated with atypical antipsychotics for at least 3 months, 84 unmedicated patients (50 with SZ, 34 with BD) who had received no pharmacological treatment for at least 2 months or were medication naive, and 273 HC. Patients were recruited from the inpatient services of the Shenyang Mental Health Centre and the outpatient services of the First Affiliated Hospital of China Medical University. HC participants were recruited from the local community. All participants provided written informed consent after receiving a detailed description of the study. The study was approved by the Institutional Review Board of China Medical University.

All participants were independently assessed by two expert-trained psychiatrists using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I Disorders (age ≥18 years) or the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL) (age <18 years). All patients met the DSM-IV diagnostic criteria for SZ and BD and had no other comorbid Axis I disorder. HC participants did not have current or lifetime Axis I disorders or a history of psychotic, mood, or other Axis I disorders in first-degree relatives, as determined by detailed family history. HC were matched by age and gender with the medicated and unmedicated patients. Participants were excluded if any of the following were present: (1) substance/alcohol abuse or dependence, (2) concomitant major medical disorder, (3) history of electroconvulsive therapy or transcranial magnetic stimulation therapy, (4) history of head trauma with loss of consciousness for ≥5 min or any neurological disorder and (5) any contraindications for magnetic resonance imaging (MRI).

Symptom severity was assessed by the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the Young Mania Rating Scale (YMRS), and the Brief Psychiatric Rating Scale (BPRS); cognitive function was evaluated by the Wisconsin Card Sorting Test (WCST). Demographic and clinical information are detailed in Table 1.



TABLE 1. Demographic, clinical characteristics and cognitive function of healthy controls, the medicated patients, and the unmedicated patients.
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Pharmacological Treatment

We reviewed information on the type, dosage, and duration of medication recorded at the time of the MRI scan. The treatments received reflected real-world clinical practice. According to the existing literature on cortical structure changes following the administration of antipsychotics (Lesh et al., 2015), a treatment duration of more than 3 months would be sufficient to observe brain changes associated with atypical antipsychotic use in our samples. On the basis of existing literature on antipsychotic washout (Garver et al., 2005), we considered subjects who were medication naive or had not taken any psychotropic medication in the 2 months prior to the MRI scanning unmedicated. The mean duration of atypical antipsychotic treatment was 20 months; in 78% (69/88) of participants, the duration was more than 6 months, and 61% (54/88) of the participants, the duration was more than 1 year. In the medicated group, 65 patients took a single atypical antipsychotic, and the other 23 patients took 2 atypical antipsychotics simultaneously. No patients were taking typical antipsychotics, but 15 patients were taking antidepressants (escitalopram, fluoxetine, fluvoxamine, and sertraline) at the time of scanning, and 17 patients were taking anticonvulsants (magnesium valproate and sodium valproate). Doses of antipsychotics were converted to olanzapine equivalents (Leucht et al., 2016). In the unmedicated group, 68 patients were medication naive, and the remaining 16 had discontinued psychotropic medication more than 2 months before the study.



MRI Acquisition

MRI scans were acquired on a GE signa HDX 3.0T scanner at the First Affiliated Hospital of China Medical University with a standard 8-channel head coil. A 3D fast-spoiled gradient-echo sequence [3D-FSPGR: TR = 7.1 ms, TE = 3.2 ms, matrix = 240 × 240, field of view (FOV) = 24 cm × 24 cm, voxel size = 1 mm ∗ 1 mm ∗ 1 mm, slice thickness = 1.0 mm without a gap, 176 slices in total, and scan time = 8 min 6 s] was used to obtain sagittal T1-weighted structural images of the whole brain.



Data Processing

Structural MRI images were processed by the Connectome Computation System (CCS1) (Zuo et al., 2013), an integrated informatic platform for multimodal neuroimaging data mining and discovery sciences. Methodological details of the processing have been provided in previous studies (Jiang et al., 2015). Briefly, the CCS processing pipeline employed in the present work included two major parts: (1) volBrain (Manjon and Coupe, 2016) performs noise removal, intensity variationcorrection, and extraction of brain tissues; (2) FreeSurfer (version 6.02) performs cortical surface reconstruction with a series of functions, including brain tissue segmentation, mesh tessellation and deformation to tissue boundaries, surface topological defect correction, and surface inflation into a sphere. All outcomes of the above preprocessing were visually inspected by two researchers, and no participants needed manual editing. Cortical thickness and surface area were calculated in native space. Specifically, the thickness of each vertex was the mean value of twice the shortest calculated distance between the white surface (white–gray interface) and the pial surface (grey-CSF interface) and vice versa. Cortical thickness has been demonstrated to show high test–retest reliability (Madan and Kensinger, 2017). The cortical surface area was derived as the total area of the triangles connected to a vertex. All individual maps of cortical thickness and surface area were smoothed of 10 mm full width at half-maximum (FWHM) using a Gaussian filter and transferred to the standard spherical surface (fsaverage).



Statistical Analysis

Statistical analyses of demographic and clinical characteristics were performed using analysis of variance (ANOVA), two-sample t-tests, or χ2 tests.

A general linear model (GLM) was applied to examine the vertexwise differences in morphometry, including cortical thickness and surface area, among the three groups for the left and right hemispheres. Age and gender were modeled as covariates of interest. We then tested the effects of the group differences in the two morphometric measurements with statistical correction for multiple comparisons based on the Monte Carlo clusterwise simulation approach, with a p-threshold of 0.001 at the vertex level and a p-threshold of 0.01 at the cluster level (Hagler et al., 2006). We also performed vertexwise post hoc t-tests for cortical thickness between each pair of groups (medicated vs. HC, unmedicated vs. HC, medicated vs. unmedicated). A three-group comparison of cortical thickness that included intracranial volume (ICV), age and gender as covariates were also performed (see Supplementary Material). Vertexwise analyses of cortical thickness between the diagnostic subgroups were also performed to test for effects of diagnosis: BD/SZ (see Supplementary Material).

For each region showing group-level differences, the mean values of the cortical measures were extracted. Post hoc two-sample t-tests were applied to test the differences in effects between each pair of groups in these regions. Multiple comparisons were corrected using the false discovery rate (FDR) method, and the significance level was set at p < 0.05. The duration of illness was included as a covariate of no interest in the patient subgroup comparison. Multiple regression analyses were used to evaluate the relationships between cortical measures in regions showing group-level differences with 5 potential moderators [diagnosis: BD/SZ, age, gender, atypical antipsychotic use (yes/no), and illness duration] in patients. The 5 moderators were entered concurrently as independent effects, allowing us to examine the magnitude of influence among them, especially illness duration and antipsychotic use. The results were corrected using the FDR method, with p < 0.05.

To determine potential relationships between the thickness or surface area of regions showing significant group differences and antipsychotic dosage and duration, symptom severities (HAMD, HAMA, YMRS, and BPRS scores) and cognitive function (WCST scores) in all patients (unmedicated and medicated), exploratory partial correlation analysis controlling for age and gender was performed. The results were corrected using the FDR method, with p < 0.05.

To determine the age-related effects on cortical measurements in the three groups, we used the mean values of the cortical measurements in regions with group-level differences and ran a GLM. The cortical measurements were considered dependent variables. Fixed factors included age and group (HC, unmedicated, medicated). Significant interaction effects (age × group) were first examined among the three groups to explore the regions showing age-related alterations and were further disentangled using post hoc analysis between each pair of groups to test for differential rates of age-related changes across groups. Additionally, to determine the effects of illness duration on our findings, we investigated the (illness duration × group) interactions. The results were corrected using the FDR method, with p < 0.05.




RESULTS


Demographic and Clinical Data

Demographic and clinical details are presented in Table 1. We found no significant differences in age, gender or handedness among the three groups. We did observe that the medicated group had significantly lower mean HAMD, HAMA and BPRS scores; longer illness duration; and lower first-episode rates than the unmedicated group (p < 0.05). Demographic and clinical details of the SZ and BD patients are shown in Supplementary Table 1.



Group Differences in Cortical Morphology

A three-group analysis of cortical thickness showed 13 regions with significant group differences (Table 2 and Figure 1A). Post hoc analysis showed that compared to the unmedicated and HC groups, the medicated group demonstrated widespread cortical thinning in the bilateral insula, the bilateral isthmus of the cingulate cortex, the bilateral superior frontal gyrus, and the bilateral superior temporal gyrus as well as in the right precentral gyrus, left inferior temporal gyrus, right middle temporal gyrus, right lateral orbitofrontal cortex and right superior parietal gyrus compared with the unmedicated group and HC. Compared to the HC group, the unmedicated patient group showed increased cortical thickness in the left inferior temporal gyrus and the left superior frontal gyrus (Figure 1B). When illness duration was included as a covariate in comparisons of patients (medicated vs. unmedicated), all significant regions except the right parietal cortex survived. We did not detect any significant differences in cortical surface area among the three groups. The results of vertexwise post hoc t-tests of cortical thickness were presented in Figure 2 and Supplementary Tables 2, 3. Compared to the HC and unmedicated group, the medicated group showed cortical thinning in multiple regions. The unmedicated group showed no significant differences in cortical thickness compared with HC. The results of three-group analysis of cortical thickness controlling for ICV, age and gender can be found in Supplementary Material, which were similar to the above findings. The details of the effects of diagnosis: BD/SZ on cortical thickness can be found in Supplementary Material. The results do not indicate diagnostic differences between BD and SZ with regard to the relationship between atypical antipsychotic treatment and cortical thickness alterations.



TABLE 2. Cortical regions with significant difference in cortical thickness among healthy controls, the medicated patients, and the unmedicated patients.
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FIGURE 1. Significant differences in cortical thickness among healthy controls, medicated patients, and unmedicated patients. (A) Regions with significant thickness differences among the three groups. The significance level was set at p < 0.001 at the vertex level with Monte Carlo clusterwise simulation correction for multiple comparisons (p < 0.01, corrected). The color bar represents the t-value. (B) Post hoc pairwise comparisons showing thickness differences between each pairing (HC vs. medicated, HC vs. unmedicated, medicated vs. unmedicated). The significance level was set at p < 0.05, with FDR correction for multiple comparisons. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. HC, healthy controls; R, right; L, left; SPG; superior parietal gyrus; ICG, isthmus of the cingulate cyrus; mSFG, medial superior frontal gyrus; PreCG, precentral gyrus; INS, insula; MTG, middle temporal gyrus; lOFC, lateral orbitofrontal cortex; STG, superior temporal gyrus; ITG, inferior temporal gyrus.
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FIGURE 2. Significant differences of cortical thickness between medicated patients and HC, and between medicated patients and unmedicated patients. (A) Regions with significant thickness differences between medicated patients and HC. (B) Regions with significant thickness differences between medicated patients and unmedicated patients. The significance level was set to vertex p < 0.001 with Monte Carlo cluster-wise simulation correction for cluster p < 0.01. L, left. R, right. The color bar represents t-value. (C) Post hoc pair-wise comparisons showing thickness differences between medicated patients and HC. (D) Post hoc pair-wise comparisons showing thickness differences between medicated patients and unmedicated patients. The significance level was set at p < 0.05 with FDR correction for multiple comparison. ∗∗∗p < 0.001. HC, healthy controls; R, right; L, left; SPG; superior parietal gyrus; ICG, isthmus cingulate gyrus; mSFG, medial superior frontal gyrus; PreCG, precentral gyrus; ISN, insula; MTG, middle temporal gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus; lOFC, lateral orbitofrontal cortex; FFG, fusiform gyrus.



Multiple regression analyses in patients showed that diagnosis (BD/SZ) did not have significant effects on cortical thinning in all regions after FDR correction. Age had significant effects on cortical thinning in all regions (−0.008 to −0.003 mm/year) except the right middle temporal gyrus. Gender did not have significant effects on cortical thinning in all regions. Atypical antipsychotic use had significant effects on cortical thinning in all regions (b = −0.177 to −0.060 mm/year). Illness duration did not have significant effects on cortical thinning in all regions (Supplementary Table 4). We also used these possible confounding factors as covariates to observe the effect on the results. Potential confounding factors [diagnosis: BD/SZ, age, gender, duration of illness, antidepressants (yes/no) and anticonvulsants (yes/no)] had little impact on the results (Supplementary Figures 1–3). Additionally, higher olanzapine dose equivalents were significantly correlated with cortical thinning in the left superior temporal gyrus (r = −0.362, p = 0.011) after FDR correction. There was no significant correlation between duration of antipsychotic treatment and cortical thickness.

Regarding clinical symptoms, the HAMD scores of patients were significantly positively correlated with cortical thinning in the left isthmus of the cingulate cortex and the right middle temporal gyrus, right lateral orbitofrontal cortex, left superior temporal gyrus and left inferior temporal gyrus. The HAMA total score of patients was significantly positively correlated with cortical thinning in the left isthmus of the cingulate cortex, the right middle temporal gyrus and the left superior temporal gyrus. The YMRS total score in patients was significantly negatively correlated with cortical thinning in the left superior frontal gyrus. BPRS scores were significantly positively correlated with cortical thinning in the bilateral insula, the bilateral isthmus of the cingulate cortex, the left superior frontal gyrus, the left superior temporal gyrus, the right precentral gyrus, the left inferior temporal gyrus, the right middle temporal gyrus, the right lateral orbitofrontal cortex and the right superior parietal gyrus. Regarding cognitive function, WCST deficits in patients were significantly correlated with cortical thinning (correct responses and completed categories were positively correlated with cortical thickness; total errors, perseverative errors, and non-perseverative errors were negatively correlated with cortical thickness) in the right superior frontal gyrus, the left isthmus of the cingulate cortex, the right middle temporal gyrus, the right lateral orbitofrontal cortex and the left superior temporal gyrus. All the results above were set at p < 0.05 uncorrected, and the p and r values are listed in Table 3. After FDR correction, there was still a significant positive correlation between cortical thickness in the right middle temporal gyrus and the HAMD total (r = 0.283, p = 0.026), somatic anxiety (r = 0.295, p = 0.030), and psychic anxiety scores (r = 0.263, p = 0.041). The results of exploratory partial correlation analyses controlling for age, gender and illness duration can be found in Supplementary Table 5.



TABLE 3. Relationship between cortical thickness and clinical symptoms or cognitive function in all patients (medicated and unmedicated).
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Age-Related Differences in Cortical Morphology

Age-related effects on cortical thickness were observed in all 13 regions, showing group-level differences after FDR correction (Figure 3). Post hoc analyses showed that medicated patients had greater age-related cortical thinning in most (9 of 13) of these regions than did the unmedicated patients and HC (Table 4).


[image: image]


FIGURE 3. Age-related differences in cortical thickness among healthy controls, medicated patients, and unmedicated patients. HC, healthy controls.





TABLE 4. Average rate of change in cortical thickness per year for healthy controls, the medicated patients, and the unmedicated patients.


[image: Table 4]

When the same effects were examined in relation to illness duration, no illness duration effects were found.




DISCUSSION

In this study, we found significant cortical thickness differences in the frontal, temporal, parietal, cingulate gyrus isthmus and insula areas among the three groups, with medicated patients showing significant cortical thinning. No differences in cortical surface area were found among the three groups. Furthermore, there were age-related differences in the effects of atypical antipsychotics in most (9 of 13) regions in the medicate group compared to the unmedicated and HC groups.

These findings were not related to illness duration. In an exploratory correlation analysis, cortical thinning in most regions was significantly positively correlated with lower HAMD, HAMA, and BPRS scores and WCST deficits (p < 0.05, uncorrected). After FDR correction, cortical thinning in the right middle temporal gyrus in patients was significantly positively correlated with lower HAMD total, somatic anxiety, and psychic anxiety scores. Finally, unmedicated patients had greater cortical thickness than HC only in the frontotemporal region.

In this study, cortical thinning in medicated patients relative to unmedicated patients provided preliminary evidence indicating negative effects of mid- to long-term atypical antipsychotic treatment on cortical thickness. Our results were consistent with studies showing the contribution of atypical antipsychotics to cortical thinning in the frontal, temporal, and parietal lobes, which has been repeatedly reported (Lesh et al., 2015; Zhang et al., 2018; Guo et al., 2019; Liu et al., 2020), and in the lateral orbitofrontal cortex (Gjerde et al., 2018; Akudjedu et al., 2020). Mid- to long-term treatment effects may be negative as a result of cumulative pharmacologic effects (Xiao et al., 2018). A study of BD published in 2020 found that patients currently being treated with atypical antipsychotics had significantly reduced total gray matter volumes compared to patients who were not taking atypical antipsychotics and to HC, which is similar to our results (Birner et al., 2020). The possible mechanism for cortical thinning may be that long-term atypical antipsychotic treatment could cause some loss of neurites, synaptic spines, or synapses in the cortical structures (Huang and Song, 2019). Animal studies have also shown an association between long-term exposure to atypical antipsychotics and reduced cortical volume (Dorph-Petersen et al., 2005). The atypical antipsychotic medication olanzapine was shown to exhibit neurotoxic effects by influencing autophagy (Vucicevic et al., 2014).

Our results showed greater age-related cortical thinning in medicated patients than in unmedicated patients and HC. The results were consistent with those of a few studies that did not differentiate between the effects of typical and atypical antipsychotics (van Haren et al., 2011; Alexander-Bloch et al., 2014) on cortical thinning and contradict the absence of an effect of antipsychotics on the age-related trajectory of cortical measures. We cannot deny that psychiatric disorders are progressive brain diseases that cause changes in cortical structures (van Haren et al., 2012). However, when illness duration was used as a covariate, all significant regions except the right parietal cortex survived. Moreover, we did not find evidence of an interaction between illness duration and group. Thus, we consider that the effect of atypical antipsychotics on thickness was greater than the effect of the disease itself (Fusar-Poli et al., 2013; Birner et al., 2020).

One possible reason for the occurrence of cortical thinning but not surface area reduction is that they have different neural mechanisms. In studies examining the role of genetic and environmental factors in thickness and surface area in a sample of 1,237 healthy adult twins, genetic factors contributed to approximately 45% of the variance in thickness (Kremen et al., 2010) but as much as 70% of the variance in surface area (Eyler et al., 2011). These results suggest that of these two structural measures, the brain plasticity caused by environmental influences (atypical antipsychotics, in our study) may be mainly reflected in changes in cortical thickness.

We observed a complex relationship between cortical structural changes and clinical features following mid- to long-term treatment. In this study, cortical thinning was associated with clinical improvement and, possibly, worsening cognitive function, suggesting atypical antipsychotics have both adaptive and maladaptive compensatory effects. Findings related to cognitive function were not significant after FDR correction, and further studies are needed to clarify the role of atypical antipsychotics in cortical thinning and subsequent changes in cognitive function. Worsening cognitive function may relate to dopamine sensitivity in psychosis and negative prognosis in patients receiving long-term, 7–20 years of antipsychotic treatment (Harrow and Jobe, 2018). Prior studies have generally indicated cortical volume loss during the course of illness in SZ; however, there are inconsistencies in findings such as the association of cortical structural loss with improved and worsening clinical severity (Gur et al., 1998; Sporn et al., 2003; Xiao et al., 2015; Walton et al., 2017; Moser et al., 2018; Guo et al., 2019). Several studies have found that atypical antipsychotics were associated with concurrent cortical structural loss and clinical improvement (Ahmed et al., 2015; Lesh et al., 2015; Guo et al., 2019). Further, atypical antipsychotics may have mechanistic role in cortical thinning as well as clinical improvement. Interestingly, greater cortical volume reduction in medicated adults and adolescents with SZ has been associated with greater clinical improvement at 3-year follow-up independent of medication types or baseline or follow-up clinical severity (Gur et al., 1998; Sporn et al., 2003). Some data found a negative correlation between cortical volume and regional homogeneity (ReHo) in the right inferior temporal gyrus in drug-naïve SZ but not in HC, suggesting that cortical volume reductions could be associated with increased ReHo (greater brain network integration) in SZ (Hong et al., 2019). In addition, cortical thinning has also been observed in high-risk people without disease onset (Bois et al., 2015). Altogether, these studies suggest that cortical thinning in medicated patients represent a potential compensatory mechanism associated with clinical improvement. Conceivably, cortical thinning could occur through known compensatory synaptic and cellular pruning of malfunctioning neurons. However, atypical antipsychotics are unlikely able to correct or arrest cortical defects and their progression that are already present.

Interestingly, we also observed more thickness in the left superior frontal gyrus and the inferior temporal gyrus in unmedicated patients than in medicated patients and HC. Greater thickness in these regions may be related to insufficient synaptic pruning during the neurodevelopmental process in SZ (Xiao et al., 2015). Moreover, we observed a trend of greater cortical thickness in the forebrain and less cortical thickness in the hindbrain in unmedicated patients than in HC. This is in line with the low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) results of previous large-sample functional studies conducted by our group (Wei et al., 2018; Chang et al., 2019), suggesting that there are disease-related physiological imbalances (such as functional imbalances) that lead to cortical structural changes through some mechanisms. The negative findings of disease effects on surface area may be because the surface area is a weak intermediate phenotype for psychiatric disorders (Neilson et al., 2019). Our sample size is not adequate to identify disease-related differences.

There are several limitations to our study. First, the present study was conducted in a real-world context. Most patients were treated with more than one medication, and it was difficult to identify patients treated with a single medication. Therefore, it is unclear whether specific atypical antipsychotics cause cortical structure abnormalities. There may be interactions between different medications, a possibility that requires further investigation. Additionally, we note that the illness duration differed significantly between the medicated and unmedicated groups. However, this study demonstrated no effect of illness duration on the results. The multiple regression analysis and lack of interaction between illness duration and thickness argued against the possibility that our results were due to differences in illness duration between groups. Finally, given our cross-sectional design, the age-related results provided only a preliminary exploration of the cortical structural changes associated with atypical antipsychotics. However, it has been noted that most accelerated aging studies are cross-sectional designs. A longitudinal, placebo-controlled randomized controlled trial (RCT) design would be better, but patients in such studies would not be representative. Our real-world observations can provide complementary information and are more representative of the real-world situation. Second, our sample size was moderate and had a relatively wide age range (13–45 years). The broad age range and cross-sectional design may have limited the interpretation of our findings. Finally, the correlation findings are tentative because the uncorrected p and r values were generally modest, indicating modest effects.

Our major findings suggest that mid- to long-term atypical antipsychotic treatment is related to regional cortical thinning but not to a reduction in surface area and is associated with cognitive impairment. Furthermore, we provide the first evidence of age-related differences in the effects of mid- to long-term atypical antipsychotic treatment on cortical thickness in SZ and BD, suggesting that mid- to long-term atypical antipsychotic treatment may have negative effects.
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Type 2 diabetes mellitus (T2DM) leads to a higher risk of brain damage and adversely affects cognition. The underlying neural mechanism of T2DM-induced cognitive impairment (T2DM-CI) remains unclear. This study proposes to identify a small number of dysfunctional brain connections as imaging biomarkers, distinguishing between T2DM-CI, T2DM with normal cognition (T2DM-NC), and healthy controls (HC). We have recruited 22 T2DM-CI patients, 31 T2DM-NC patients, and 39 HCs. The structural Magnetic Resonance Imaging (MRI) and resting state fMRI images are acquired, and neuropsychological tests are carried out. Amplitude of low frequency fluctuations (ALFF) is analyzed to identify impaired brain regions implicated with T2DM and T2DM-CI. The functional network is built and all connections connected to impaired brain regions are selected. Subsequently, L1-norm regularized sparse canonical correlation analysis and sparse logistic regression are used to identify discriminative connections and Support Vector Machine is trained to realize three two-category classifications. It is found that single-digit dysfunctional connections predict T2DM and T2DM-CI. For T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, the number of connections is 6, 7, and 5 and the area under curve (AUC) can reach 0.912, 0.901, and 0.861, respectively. The dysfunctional connection is mainly related to Default Model Network (DMN) and long-distance links. The strength of identified connections is significantly different among groups and correlated with cognitive assessment score (p < 0.05). Via ALFF analysis and further feature selection algorithms, a small number of dysfunctional brain connections can be identified to predict T2DM and T2DM-CI. These connections might be the imaging biomarkers of T2DM-CI and targets of intervention.

Keywords: resting state fMRI, type 2 diabetes mellitus, cognitive impairment, functional connectivity, machine learning


INTRODUCTION

Diabetes mellitus is a common metabolic disorder characterized by hyperglycemia (McCrimmon, et al., 2012). Currently, there are an estimated 463 million adults with diabetes worldwide, of which Type 2 diabetes mellitus (T2DM) accounts for more than 90% (International Diabetes Federation, 2019). The chronic hyperglycemia of T2DM patients may cause systemic damage to nerves, eyes, kidneys, and blood vessels, which may bring many complications, such as cognitive impairment (CI), microvascular complications (Valencia and Florez, 2017),and olfactory dysfunction (Yazla et al., 2018).

T2DM-induced cognitive impairment (T2DM-CI), also known as diabetic encephalopathy, mainly manifests through learning, judgment, and memory deficits, a decline in executive function, and decreased information processing speed (Mijnhout et al., 2006; McCrimmon, et al., 2012; Biessels and Despa, 2018). Many longitudinal studies have found that T2DM is an independent risk factor for Alzheimer’s disease (AD) (Vagelatos and Eslick, 2013) and vascular dementia (VD) (Biessels et al., 2008), and some patients may even deteriorate to severe dementia (Cukierman et al., 2005). However, due to the diversity of clinical manifestations of T2DM-CI and its relatively slow onset, there is no gold standard for diagnosis, which is likely to cause misdiagnosis or missed diagnosis and delay the treatment of patients (Srikanth et al., 2020).

Resting state functional MRI (rs-fMRI) and the subsequent computational analysis have presented the potential of precisely characterizing and inferring neurological diseases, including T2DM-CI (Cohen et al., 2017; Rosenberg et al., 2019). Measures of brain regions and connections are two main aspects of the computational analysis. Amplitude of low frequency fluctuations (ALFF) can reflect the intensity of spontaneous neural activity of each voxel from an energy perspective, thereby reflecting the regularity and physiological state of neuron autonomous activity in different brain regions (Pan et al., 2017). It has been demonstrated that T2DM shows the decreased ALFF in frontal lobe, parietal lobe, and posterior cerebellar lobe (Xia et al., 2013; Cui et al., 2014). ALFF disturbances in the occipital lobe may play an important role in T2DM-related cognitive dysfunction (Wang et al., 2014). Most previous studies have only compared T2DM patients with healthy controls (HC), however, T2DM-CI is not well-studied.

Through various brain atlases [e.g., the recently established human Brainnetome Atlas of 246 brain subregions (Fan et al., 2016)], a whole brain functional network can be constructed from rs-fMRI data to study the brain connections. This method can fully utilize the rich information from the viewpoint of connectomics, find potential neuroimaging biomarkers, and help people understand the neural mechanism of neurological and psychiatric disorders (Craddock et al., 2013; Fornito et al., 2015; Qi et al., 2015; Bassett and Sporns, 2017). Previous studies have shown that T2DM is of aberrant brain functional connectivity (Musen et al., 2012; Chen et al., 2014).

Through machine learning, the integrated models of characteristics across multiple brain connections and regions can be constructed to predict clinical statuses and outcomes (Iniesta et al., 2016; Woo et al., 2017; Dwyer et al., 2018). Remarkable progress has been made for autism, schizophrenia, depression, and AD (Yahata et al., 2016; Sui et al., 2018; Zhu et al., 2019; Jin et al., 2020). Specifically, Liu et al. (2019) selected 23 connections to identify 38 T2DM-CI from 84 T2DM patients and the resulted area under the receiver operating characteristic (ROC) curve (AUC) reached 0.9737.

Better predictive biomarkers of T2DM-CI rest on the effective identification of the discriminative features (or connections). Meanwhile, the number of identified connections must be small to avoid the over-fitting problem in which the fitting errors are artificially smaller than inherent data variance (Whelan and Garavan, 2014; Woo et al., 2017). The resulted model with over-fitting inevitably presents catastrophic generalizability for external data. According to a rule of thumb, 10 samples (patients) are usually required for each feature (or connection) in a binary classifier (Gillies et al., 2016).

Therefore, we propose one effective method of identifying a small number of dysfunctional brain connections and use them as imaging biomarkers to distinguish among T2DM-CI, T2DM with normal cognition (T2DM-NC), and healthy controls (HC). There are three contributary aspects. First, one ALFF-based way is proposed to identify dysfunctional connections through the impaired Brainnetome regions, integrating the information of both brain regions and connections. Second, 6, 7, and 5 dysfunctional connections have been identified as biomarkers distinguishing between T2DM-CI and HC, T2DM-NC and HC, and T2DM-CI and T2DM-NC. The strength of identified connections are significantly different among groups and correlated with cognitive assessment score (p < 0.05). Third, the constructed three models can predict T2DM and T2DM-CI with the AUC higher than 0.90. These identified dysfunctional brain connections might direct the underlying neural mechanism of T2DM-CI and the potential targets of intervention of T2DM care. The ALLF-based method can be expanded to study other neurological disorders.



MATERIALS AND METHODS


Participants

A total of 53 T2DM patients who met the diagnostic criteria were recruited from Affiliated Zhongshan Hospital of Dalian University from January 2015 to January 2017. Inclusion criteria for T2DM patients were that they must: (1) meet the diagnostic criteria for diabetes, (2) be 45 to 75 years old, (3) have a history of diagnosis of 5 to 10 years, and (4) be right-handed. Meanwhile 39 healthy people who were examined at Affiliated Zhongshan Hospital of Dalian University at the same time were recruited as the HC group. The sex, age, and education level of the HC group were matched with T2DM patients. Exclusion criteria for all participants were: (1) patients with vision, hearing, language communication, or physical activity difficulties; (2) patients with psychiatric disorders or head trauma; (3) alcoholics, smoking addicts, or drug abusers; (4) MRI contraindications; and (5) patients with brain injury, cerebral hemorrhage, cerebral infarction, and other brain diseases, and patients with brain white matter demyelination (Age-Related White Matter Changes (ARWMC) score >1). The detailed demographic information of the enrolled subjects is shown in Table 1. This study was approved by the ethics committee of Affiliated Zhongshan Hospital of Dalian University and was in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All the subjects were informed about the examination, expressed their knowledge of the study, and signed their informed consent.


TABLE 1. Demographic, clinical, and neuropsychological information of the participants.

[image: Table 1]
We used neuropsychological tests, including the Chinese version of the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005), clock drawing test (CDT) (Shulman, 2000), auditory verbal learning test (AVLT) (Powell et al., 1991), digit span test (DST) (Melikyan et al., 2019), trail making test (TMT) (Llinàs-Reglà et al., 2017), and verbal fluency test (VFT) (Weiss et al., 2003), to determine the cognitive status of T2DM patients. The same trained physicians judged whether T2DM patients have cognitive impairment and divided them into T2DM-CI (MoCA score < 26, n = 22) and T2DM-NC (MoCA score ≥ 26, n = 31). The details are given in Table 1.



Rs-fMRI Data Acquisition

MRI scanning was performed using one Magnetom 3.0 Tesla scanner (Siemens, Germany) with a 12-channel head phased array surface coil. The gradient field is 45 mT/m, and the gradient switching rate is 200 mT/ms. The subject’s head was fixed with a sponge pad before scanning and was informed to keep their head still during the scan. Structural images were acquired using the standard 3D magnetization prepared rapid gradient echo (MPRAGE) sequence: repetition time (TR) = 2530 ms, echo time (TE) = 2.22 ms, slice thickness = 1.0 mm, flip angle (FA) = 7°, field of view (FOV) = 224 × 224 mm, matrix = 224 × 224, layers = 192. Rs-fMRI images were collected by the echo planar imaging (EPI) pulse sequence: TR = 2000 ms, TE = 30 ms, slice thickness = 3.5 mm, FA = 90°, FOV = 224 × 224 mm, matrix = 64 × 64, layers = 31. 240 time phases were collected and 240 images were obtained. The MRI images will be available upon reasonable request after approval by the Ethic Committee of Affiliated Zhongshan Hospital of Dalian University.



Overview of the Study Procedure

As shown in Figure 1, there are seven steps in our study. (1) Image processing is performed according to the standard procedures. (2) ALFF analysis is done to identify the impaired regions for three two-group comparisons. (3) Functional brain network is constructed for each participant. (4) Impaired Brainnetome regions are identified. (5) Dysfunctional connections connected with the impaired Brainnetome are selected. (6) Discriminative connections are identified by L1-norm regularized sparse canonical correlation analysis (L1-SCCA) and sparse logistic regression (SLR). (7) Classifiers are trained, and their performance is evaluated.
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FIGURE 1. Overview of study procedure. (A) Main steps in this study [It is noted that steps from (2) to (7) are carried out many times since they are included in a procedure of leaving-one-out cross validation (LOOCV) to avoid the leakage of category information]; (B) Image preprocessing; (C) Construction of functional brain network; (D) Identification of impaired Brainnetome subregions by ALFF analysis; (E) Identification of discriminative connections by L1-SCCA and spare logistic regression (SLR).


It is noted that, to avoid category information leakage, steps from (2) to (7) in Figure 1 are carried out in a procedure of leaving-one-out cross validation (LOOCV). It means that steps from (2) to (7) have be conducted for n1, n2, and n3 times for T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, where n1, n2, and n3 are the number of participants in three classifications after step (1) of imaging preprocessing.



Image Preprocessing

In this study, resting state fMRI data are preprocessed using Data Processing and Analysis for Brain Imaging (DPABI) toolkit1 in MATLAB 2018b software. As shown in Figure 1B, at first, the initial 10 time points of fMRI data are removed to exclude the influence of the instability of equipment initialization and subjects’ adaptation to the environment. Second, slice-timing correction and realignment for head motion correction are carried out. Three participants with head motion exceeding 2.0 mm maximum translation or 2° rotation are excluded. Third, detrending and nuisance covariates regression, including Friston 24-parameter model, and mean time series of global, white matter, and cerebrospinal fluid signals as regressors, are conducted to remove the influence of physiological factors. Fourth, spatial normalization is carried out, and the brain structure of each subject is normalized to the standard template by the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) tool (Ashburner, 2007). Finally, images are smoothed by Gaussian of full-width at half-maximum 4 mm. Because ALFF analysis is then needed, we have skipped filtering during the preprocessing. It is noted that 89 subjects (19 T2DM-CI, 31 T2DM-NC, and 39 HC) took part in the following study since three subjects were removed during image preprocessing.



ALFF Calculation and Statistical Analysis

We used the modules in the DPABI toolkit to calculate ALFF. First, time series of each voxel are transformed into frequency domain by Fourier transform and then the power spectrum is obtained. Subsequently, the square root of each frequency power spectrum is calculated according to the frequency band (usually 0.01–0.08 Hz), and the mean value is ALFF. Finally, the ALFF values are standardized to reduce the errors caused by individual differences. The standardized ALFF value is the ALFF value of each voxel divided by the whole brain ALFF mean value.

We have performed statistical analysis on the standardized ALFF values of T2DM-CI, T2DM-NC, and HC. The ALFF values among the three groups are compared by one-way ANOVA test and the statistical map with significant difference is used to create a mask. Then two-sample t-tests are performed as post hoc tests to identify regions with significant differences in the mask above. The significance level of two-sample t-tests are set at p < 0.05 with 1000 permutations corrected with the threshold-free cluster enhancement (TFCE) correction. It is found that permutations corrected with the TFCE correction can best balance the family-wise error (FWE) rate and test-retest reliability (Chen et al., 2018).

To avoid the category information leakage, ANOVA test and two-sample t-test are carried out after leaving one out, not for all subjects. Specifically, in each fold of the leave-one-out procedure, we have conducted the above ANOVA test and two-sample t-test on all subjects except the one who is taken out, then we get the regions with significantly different ALFF of this fold. They are named the impaired regions. In summary, this step of ALFF calculation and statistical analysis has been conducted 58 times for T2DM-CI versus HC, 70 times for T2DM-NC versus HC, and 50 times for T2DM-CI versus T2DM-NC.



Construction of Functional Brain Networks

The network consists of many nodes and edges between those nodes. In the functional brain network, nodes represent brain regions and edges represent the degree of statistical dependence of blood oxygen level dependent (BOLD) imaging between different brain regions. As shown in Figure 1C, the present study has used the Human Brainnetome Atlas (Fan et al., 2016), which parcellates the whole human brain into 246 subregions, and each subregion represents a node in the brain network. With the progress of MRI scanning, changes in activity of different brain regions can be reflected as time courses. For each subject, we obtain the average time courses of the 246 brain subregions and then we calculate the Pearson correlation coefficient between the average time courses of any two subregions as a functional connectivity indicator between them, which can be used as the edge of the brain network. After that, we can get one 246 × 246 adjacency matrix of each subject, which is called the weighted functional connectivity matrix.



Identification of Impaired Brainnetome Subregions

After using two-sample t-test of ALFF to determine voxels with significant differences between two groups, we excluded clusters with less than 20 voxels. Spatially matching the impaired regions identified by ALFF analysis with Brainnetome Atlas can determine the volume of the impaired region in each Brainnetome subregions. We sort the Brainnetome subregions by volume of impaired region from large to small. Finally, two lists of subregions with increased and decreased ALFF are obtained for each two-group comparison.

Previous studies have reported that, compared with HCs, T2DM patients have decreased ALFF values in brain regions which are related to cognitive impairment. There are 15 Brainnetome subregions with decreased ALFF for both T2DM-CI versus HC and T2DM-NC versus HC, which are named as the impaired Brainnetome subregions. For T2DM-CI versus T2DM-NC, there are only 10 subregions with decreased ALFF. In order to get the same number of subregions for the three groups, we have added five subregions with increased ALFF.



Identification of Connections With High Discriminative Power

In constructed adjacency matrix, all functional connections connected to the 15 impaired Brainnetome subregions are considered to be potentially discriminative.

The number of features is still too large for classification. We utilize a combination of L1-SCCA and SLR to further perform dimension reduction (Yahata et al., 2016). At first, we have two data matrices: the first data matrix of [image: image] and the second matrix of [image: image] . X1 lists the attributes all subjects with a dimension of N × p1 (N is the number of subjects, p1 is 3 here). The first column of X1 is the “Diagnosis” label (either 0 or 1), while the second and third columns are the age and gender (1 for male, 0 for female). X2 lists the connections connected with 15 impaired Brainnetome subregions with a dimension of N × p2 (p2 is 3570 here). L1-SCCA is applied to get the sparse projection matrices V1 and V1 from X1 and X2. As the equation given in references (Witten et al., 2009; Yahata et al., 2016), for a canonical variable, L1-SCCA is formulated as,
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where v1 and v2 are the projection vectors and λ1 and λ2 are their sparseness, respectively. Subsequently, the canonical variable only associated with the “Diagnosis” label is determined, the connections corresponding to the diagnostic canonical variable is chosen, and the effect of nuisance variables of age and gender is reduced.

Sparse logistic regression is further used to reduce the dimension of features and identify the connections with high discriminative power. Given N feature-label data samples {(x1,y1),…,(xN,yN)}, LR aims to find the parameter vector θ such that the likelihood function l(θ) is maximized.
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where,
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here [image: image], D is the dimension of features and θ0 is the bias.

Sparse logistic regression combines the automatic relevance determination (ARD) with LR (Yamashita et al., 2008). Imposing the constraint on the weight parameter, ARD assumes that each parameter θd has a Gaussian prior with mean 0.
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here αd is the inverse variance of the normal distribution and it is treated as a hyper-parameter, named “the relevance parameter.” αd regulates the range of θd. It is known that most αd diverges to infinity and the corresponding θd is pruned. Finally, the connections related to the label are automatically selected by SLR.

After this reduction, an average of 15.47 connections remain. However, these surviving connections are still too many for the sample in this study and result in over-fitting. Therefore, we instigate the influence of surviving connections on the classification performance and determine the final discriminative connections when the highest performance reaches this point.



Classification and Performance Evaluation

Support vector machine (SVM) is used to build prediction models. This study has used the library for support vector machines (LIBSVM) toolkit2, which integrates functions such as SVM kernel selection, parameter adjustment, and prediction. We chose the radial basis function (RBF) as the kernel function of the SVM, and the values of the optimal penalty coefficient C and the kernel function parameter Gamma are determined by the grid search method through 5-fold cross validation.

Due to the limited number of samples in this study, we have used LOOCV to estimate the generalization of the classifier. The receiver operating characteristic (ROC) curve, the area under ROC curve (AUC), and the confusion matrix are used to quantify the performance of the classifier. Moreover, using the fixed discriminative connections identified in this study as the features, three SVM models are trained and evaluated by LOOCV.




RESULTS


Impaired Brainnetome Subregions Determined by ALFF

Through ALFF analysis and subsequent matching, 15 impaired subregions have been identified for T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC (Figure 2 and Table 2). In Figure 2, the abbreviation of brain subregion is used, and one can refer to the original paper for the full names (Fan et al., 2016).


TABLE 2. Impaired brain subregions identified through ALFF analysis in T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC.

[image: Table 2]

[image: image]

FIGURE 2. Impaired Brainnetome subregions determined by ALFF. (A) T2DM-CI versus HC; (B) T2DM-NC versus HC; (C) T2DM-CI versus T2DM-NC.


Using T2DM-CI versus HC as an example, we have conducted the group comparison (or ALFF analysis) 58 times in LOOCV loop. During these 58 comparisons, only one sample (or patient) is different between any two comparisons. Some clusters of voxels with significantly different ALFF will be obtained and there is only a slight difference (a several of voxels) between the “impaired regions” of any two comparisons. However, this slight difference has been eliminated in the impaired Brainnetome subregions. It is because these Brainnetome subregions are selected if they overlap with the “impaired regions” and the overlap status does not change with the slight variation of “impaired regions.” We have compared the identified subregions in 58 experiments of LOOCV loop for T2DM-CI versus HC and found they are completely the same. It is also true for the other two comparisons.

For T2DM-CI versus HC, two impaired subregions are in the frontal lobe, four in the inferior parietal lobule, three in the precuneus, four in the cingulate gyrus, and two in the occipital lobe. For T2DM-NC versus HC, there is the same spatial distribution as for T2DM-CI versus HC.

Two subregions in the middle frontal gyrus belong to the executive control network (ECN), four in the inferior parietal, four in the cingulate gyrus, and three in the precuneus are in the default model network (DMN). Two in the occipital lobe belong to the visual network (VN). Among 15 subregions, 13 are overlapped between T2DM-CI versus HC and T2DM-NC versus HC, indicating that T2DM-CI and T2DM-NC have a common neuropathological basis.

For T2DM-CI versus T2DM-NC, three subregions are in the frontal lobe, one in the superior parietal lobule, four in the inferior parietal lobule, one in the postcentral gyrus, four in the precuneus, one in the cingulate gyrus, and one in the occipital lobe. Among 15 subregions, seven have appeared in the above two comparisons and they belong to DMN and ECN. One subregion in the superior parietal lobule and one in the postcentral gyrus are the new ones which do not appear in the other comparisons. From the viewpoint of intrinsic brain network, three subregions (ID: 16, 17, 18) are in ECN, nine in DMN (ID: 136, 138, 142, 144, 151, 152, 153, 154, 183), one in FPN (ID: 132), 1 in DAN (ID: 161), and one in VN (ID: 210).



Dysfunctional Connections With High Discriminative Power

The effect of the number of discriminative connections on prediction accuracy is given in Figure 3. It is shown that the SVM model has the highest accuracy of 93.1%, while six discriminative connections remain for T2DM-CI versus HC. For T2DM-NC versus HC and T2DM-CI versus T2DM-NC, the optimal number of discriminative connections is seven and five. The feature selection method of L1-SCCA and SLR is much better than the dimension reduction of principal component analysis (PCA).
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FIGURE 3. The effect of the number of discriminative connections on prediction accuracy and comparison of our method with feature reduction of principle component analysis (PCA). (A) T2DM-CI versus HC; (B) T2DM-NC versus HC; (C) T2DM-CI versus T2DM-NC.


Because LOOCV is used to divide the dataset, the surviving connections for each fold are slightly different. Sorting the connections by repeat times, the top six, top seven, and top five connections are listed in Tables 3–5 for T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, respectively. The spatial locations of the identified connections are given in Figure 4. The straight-line distance between two endpoints of each connection is also calculated according to the MNI coordinates of the subregions and presented in Tables 3–5.


TABLE 3. Six discriminative functional connections for T2DM-CI versus HC.
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TABLE 4. Seven discriminative functional connections for T2DM-NC versus HC.
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TABLE 5. Five discriminative functional connections for T2DM-CI versus T2DM-NC.
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FIGURE 4. Dysfunctional connections with high discriminative power. (A) Six connections for T2DM-CI versus HC; (B) Seven connections for T2DM-NC versus HC; (C) Five connections for T2DM-CI versus T2DM-NC. The blue lines represent connections used for classification. Dots represent brain subregion nodes connected to these connections. Different colored dots represent subregions from different resting state network. The green dots indicate subregions of DMN, the red dots indicate subregions of FPN, yellow dots indicate subregions of ECN, purple dots indicate subregions of SAN and black dots indicate subregions of DAN.


It is found that for T2DM-CI versus HC, among the six selected connections (Table 3, Figure 4A), two are between regions within DMN (left and right subregions in cingulate gyrus; two subregions in cingulate gyrus and inferior frontal gyrus), two between DMN and frontoparietal network (FPN), one between DMN and ECN, and one between DMN and salience network (SAN). DMN appears in all six connections. All six connections are long-distance links across different lobes; three of the six are inter-hemispheric, and the other three are right intra-hemispheric. Though the straight-line distance between subregions of 181 and 182 is only 19.29 mm, it has been treated as a “long-distance” link as it is inter-hemispheric. No left intra-hemispheric connection is observed. For the three inter-hemispheric connections, one subregion in the precuneus (ID: 154, Pcun_R_4_4) appears twice.

For T2DM-NC versus HC, among the seven selected connections (Table 4 and Figure 4B), there were two between regions of DMN, two between DMN and ECN, one between ECN and dorsal attention network (DAN), one between DMN and FPN, and one between DMN and SAN. Among the seven connections, two are left intra-hemispheric, two are inter-hemispheric, and three are right intra-hemispheric. All seven connections are long-distance links. The connection between subregions of 175 and 176 is inter-hemispheric, though the straight-line distance is only 8.31 mm.

When comparing T2DM-CI versus HC and T2DM-NC versus HC, it is surprising to find that no overlap exists between the six and seven connections although DMN, FPN, ECN, and SAN are involved in both cases. It indicates that the neuropathological substrate for T2DM-CI and T2DM-NC might be different from the viewpoint of functional connections, though they have almost the same impaired subregions (Table 2). This finding may emphasize that the information of brain regions and connections are intrinsically different and complementary.

For T2DM-CI versus T2DM-NC, among the five selected connections (Table 5, Figure 4C), there are three between DMN and ECN, one between subregions within the DMN, and one between DMN and FPN. Three connections are with the subregion of IPL_R_6_5 in the inferior parietals lobule. Three are inter-hemispheric connections. All five connections are long-distance links across different lobes, suggesting that the global integration of information, not the local communication, might be abnormal in T2DM-induced cognitive impairment. The hippocampus and thalamus are new regions which do not appear in T2DM-CI versus HC and T2DM-NC versus HC.



Altered Strength of Discriminative Connections

The strength of discriminative connections is compared between different groups (Figure 5). All discriminative connections have significantly different strengths (p < 0.05). Here we define that the smaller connectivity indicates a more negative strength of connection and the greater connectivity indicates a more positive. As shown in Figure 5A, T2DM-CI shows the smaller connectivity in one connection (181-182) but the greater connectivity in five connections than HC. Most discriminative connections are “weak.” Specifically, only one connection has a strength higher than 0.6 and the other five have strength less than 0.4.
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FIGURE 5. Strength comparison of dysfunctional discriminative connections. (A) Six connections for T2DM-CI versus HC; (B) Seven connections for T2DM-NC versus HC; (C) Five connections for T2DM-CI versus T2DM-NC. * indicates a difference of p < 0.05, which is statistically significant.


For T2DM-NC versus HC, one connection has strength higher than 0.8 and the other six have strength less than 0.3. Three connections have greater connectivity in T2DM-NC than HC (26-110; 71-181; 15-160) and the other four show the opposite results.

For T2DM-CI versus T2DM-NC, all five discriminative connections are “weak” and with an absolute strength less than 0.3. Three connections in T2DM-CI show smaller connectivity than T2DM-NC (18-237; 37-151; 144-217), but two show the greater connectivity.



Strength of Discriminative Connections and MoCA Score

The correlations between the real value of five discriminative connections and MoCA score are analyzed and the correlation coefficients (r) and p-values are listed in Tables 3–5 for three comparisons. For T2DM-CI versus HC, the strength of all six connections is significantly correlated with MoCA score. The first connection (181-182) has positive r of 0.3247, corresponding to the one with the smaller connectivity in T2DM-CI, and the others have negative r. As expected, there are no significant correlations between the strength of discriminative connections and MoCA score for T2DM-NC versus HC because they have a similar MoCA score >26.

For T2DM-CI versus T2DM-NC, the correlations between the real value of five discriminative connections and MoCA score are given in Figure 6. It is found that they are significantly correlated (p < 0.05) and the correlation coefficient (r) is −0.4273, 0.3831, 0.3862, 0.3555, and −0.3527. For the connection between the inferior frontal gyrus and inferior parietal lobule, the value is positive in T2DM-CI but negative in T2DM-NC (ID: 32 and 144). The same trend occurs for the connection between the superior temporal gyrus and inferior parietal lobule (ID: 133 and 144). The opposite trend appears for the other three connections: middle frontal gyrus and Thalamus (ID: 18 and 237); inferior frontal gyrus and precuneus (ID: 37 and 151); and inferior parietal lobule and hippocampus (ID: 144 and 217).
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FIGURE 6. Correlations between the dysfunctional discriminative connections and MoCA scores for T2DM-CI and T2DM-NC groups. (A) Connection 32-144; (B) Connection 18-237; (C) Connection 37-151; (D) Connection 144-217; (E) Connection 133-144.


We have analyzed the correlations between the strength of five discriminative connections in T2DM-CI versus T2DM-NC and CDT, AVLT, DST, TMT, VFT, respectively. The Pearson correlation coefficient (r) and the p-values are calculated. Only three cases are significant (p < 0.05): Connection 32-144 and CDT (r = −0.3137); Connection 18-237 and DST (r = 0.3191); and Connection 144-217 and CDT (r = 0.2894). Since the five discriminative connections are determined according to the classification label given by the MoCA threshold, their strength is significantly correlated with MoCA (Table 5). However, only three of 25 cases are significant for the five neuropsychological test scales of CDT, AVLT, DST, TMT, and VFT. A possible reason might be that these scales measure different aspects of the neuropsychology or cognition of T2DM patients.



Performance of Predictive Models

As shown in Figure 7A, for T2DM-CI versus HC, the optimal SVM models achieve an average accuracy of 93.1% and an AUC of 0.912 in the LOOCV loop. The precision, F1-score, recall, and specificity are 94.1, 88.9, 84.2, and 97.4%, respectively (Figure 7B.
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FIGURE 7. The ROC curve and confusion matrix obtained by LOOCV procedure. (A) The ROC curves for three classifications; (B) The confusion matrix of T2DM-CI versus HC; (B) The confusion matrix of T2DM-NC versus HC; (D) The confusion matrix of T2DM-CI versus T2DM-NC.


For T2DM-NC versus HC (Figures 7A,C), the optimal SVM models achieve an average accuracy of 88.6% and an AUC of 0.901. The precision, F1-score, recall, and specificity are 84.8, 87.5, 90.3, and 87.2%, respectively. The performance is slightly lower than the models for T2DM-CI versus HC.

For T2DM-CI versus T2DM-NC (Figures 7A,D), the optimal SVM models achieve an average accuracy of 76.0% and an AUC of 0.861. However, the recall and F1-score are lower and only reach 62.5 and 52.6%, respectively. Of the nineteen patients with T2DM-CI, nine are wrongly predicted as T2DM-NC.

When using the fixed discriminative connection as input features, the performance of SVM models can be improved. As shown in Figure 8, the AUC can be increased to 0.977, 0.929, and 0.927 for T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, respectively. Especially for T2DM-CI versus T2DM-NC, the recall and F1-score can reach 78.9 and 83.3%, respectively, although four patients with T2DM-CI are still predicted wrongly.
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FIGURE 8. The ROC curve and confusion matrix obtained by fixed discriminative connections. (A) The ROC curves for three classifications; (B) The confusion matrix of T2DM-CI versus HC; (C) The confusion matrix of T2DM-NC versus HC; (D) The confusion matrix of T2DM-CI versus T2DM-NC.





DISCUSSION

To the best of our knowledge, this is the first study to identify a small number of dysfunctional brain connections as imaging biomarkers distinguishing among T2DM-CI, T2DM-NC, and HC simultaneously. As small as six, seven, and five identified connections can lead to reliable SVM classifiers and the prediction accuracy can reach 96.6, 90.0, and 88.0% for T2DM-CI (n = 19) versus HC (n = 39), T2DM-NC (n = 31) versus HC (n = 39), and T2DM-CI (n = 19) versus T2DM-NC (n = 31), respectively. The small number of connections alleviates the over-fitting problem. The proposed new way of identifying connections starts from ALFF analysis to find impaired Brainnetome subregions, further selects discriminative connections from ones linked with impaired subregions by L1-SCCA and SLR, and determines the final connections through investigating the effect of the number of connections on prediction accuracy.


Impaired Brainnetome Subregions for ALFF

Compared with the HC group, the 15 impaired Brainnetome subregions with decreased ALFF in the two T2DM groups (T2DM-CI and T2DM-NC) are mostly the same, located in the frontal lobe, inferior parietal lobule, precuneus, posterior cingulate gyrus, and occipital lobe. This finding is in line with previous studies. The frontal lobe is involved in cognitive functions such as execution function, attention, memory, and language (Chayer and Freedman, 2001); the precuneus is related to many high-level cognitive functions, such as episodic memory, self-related information processing, and self-awareness (Cavanna and Trimble, 2006). The decreased activity in the occipital lobe is significantly correlated with visual memory decline, information processing speed loss, and attention loss. In addition, a relevant study has reported that the hypometabolism and neural degeneration in the posterior cingulate cortex are related to cognitive decline in AD, schizophrenia, and other brain diseases (Dan et al., 2019). Zhou et al. concluded that the inferior parietal lobule, including the angular gyrus and the supramarginal gyrus, is involved in higher cognitive function activities, especially executive control functions (Zhou et al., 2019). The decreased ALFF reflects the inhibition of neurons in related brain regions and the decrease of activity (Wang et al., 2011).

For T2DM-CI versus T2DM-NC, 12 subregions belong to DMN and ECN and the other three belong to FPN, DAN, and VN. These regions appear in AD, mild cognitive impairment, and schizophrenia, and are thought be implicated with cognition (Sui et al., 2018; Jin et al., 2020). In summary, the identified Brainnetome subregions are impaired from the viewpoint of ALFF (i.e., the intensity of spontaneous neural activity) and might help understand the neuropathological basis of T2DM and T2DM-CI.



Discriminative Connections Are DMN-Related and Long-Distance

For three classifications, the identified brain connections with high discriminative power are mainly between subregions within DMN and between DMN and other resting state networks including ECN, FPN, and SAN. It is no wonder that DMN are implicated with T2DM and T2DM-CI (Yang et al., 2016; Macphersona et al., 2017). DMN is related to continuous thinking, imagination, and internal mental activities such as memory, theory of mind, and self-thinking (Brewer et al., 2011). In addition, DMN is considered to be related to human cognitive function (Broyd et al., 2009), and some studies have also found that abnormal activity in the DMN is closely related to some psychiatric disorders, such as MCI (Wang et al., 2019), AD (Agosta et al., 2012) and schizophrenia (Jing et al., 2019).

In T2DM-CI versus T2DM-NC, it is found that most of the discriminative connections are between DMN and other resting state networks. ECN is involved in goal-oriented advanced cognitive tasks and plays an important role in adaptive cognitive control (Seeley et al., 2007). FPN is related to interoceptive awareness, working memory, and emotional regulation (Salas et al., 2014), and studies have found that the destruction of FPN and DMN is the basis of metacognitive deficits (Jia et al., 2020). Combining the functions of these networks, previous research, and the findings found in this study, we speculated that the cognitive impairment caused by T2DM may be mainly related to the abnormal connectivity patterns between DMN and ECN, FPN, or other resting state networks.

Another finding is that all discriminative connections for three classifications are long-distance. It is in agreement with the report of T2DM-CI (Liu et al., 2019). One possible reason is that the impaired subregions are hub nodes in the brain network and they mediate the long-distance connections between brain modules (Crossley et al., 2014). The hubs are generally implicated in different brain disorders. These long-distance connections are functionally valuable for information integration and are closely related with cognition (van den Heuvel et al., 2012; Crossley et al., 2013).



The Methodology From Brain Regions to Connections

Here we have proposed one way of identifying discriminative connection for the diagnosis prediction of T2DM and T2DM-CI. It belongs to the category of “From brain regions to connections” and the measure of brain regions is ALFF. Our previous study used prior knowledge to localize the etiological origin of depression (lateral habenula, LHb), selected discriminate connections linked with LHb, and realized an accurate prediction of subclinical depression (Zhu et al., 2019). This method is also in the category of “From brain regions to connections.” Moreover, the measure of brain regions can be certainly expanded to other fMRI measures, including regional homogeneity (ReHo) and Voxel-mirrored Homotopic Connectivity (VMHC).

The identified Brainnetome subregions help narrow the search range of discriminative connections. More importantly, the impaired Brainnetome subregions will leave “ALFF memory” to the discriminative connections so that the final classification has used valuable information of both brain region and connections. We observed that among 15 impaired subregions, 13 are overlapped between T2DM-CI versus HC and T2DM-NC versus HC. However, no overlap exists between the six and seven discriminative connections. This observation suggests that the information of brain regions and connections are intrinsically different and complementary.

Another category of identifying discriminative connections is “Select connections from network directly.” The selection method can be L1-SCCA, SLR, elastic net, and so on (Yahata et al., 2016; Liu et al., 2019). These methods emphasize the role of connections and believe the hypothesis of “the node is determined by its connections.” The third category is “Select brain regions and connections simultaneously.” The measures of brain regions and connections are treated equally, and the selection or reduction of measures rely on powerful machine leaning algorithms or multiple variable analysis (Jin et al., 2020).



Less Is Better for Reliable Biomarkers

Over-fitting is one of the main issues for neuroimaging-based classifiers of neurological disorders. We have 30135 connection candidates (246∗245/2 = 30135), and more if necessary. However, the sample size is only 92 in this study due to the difficulty of recruiting patients. An effective way of identifying discriminative features (or connections) is the key to generating better predictive biomarkers.

Less is better for the reliable biomarkers. In this study, single-digit brain functional connections have been identified and enable prediction of T2DM and T2DM-IC. Specifically, six, seven, and five dysfunctional connections can distinguish between T2DM-CI and HC, T2DM-NC and HC, and T2DM-CI and T2DM-NC, respectively. Each feature (or connection) corresponds to 10 samples (patients) in a binary classifier (Gillies et al., 2016). Fewer connections can alleviate the problem of over-fitting and increase the generalizability of prediction models. Fewer connections means that the etiological origin of T2DM and T2DM-CI is more specific and potential intervention will be targeted and precise.

It should be noted that our study aims to identify a small number of dysfunctional brain connections as imaging biomarkers distinguishing between T2DM-CI, T2DM-NC, and HC. These identified dysfunctional brain connections may help to understand the underlying neural mechanism of T2DM-CI and even find targets of intervention. However, for real clinical diagnosis and intervention, more studies are required. For clinical diagnosis of T2DM-CI, a reasonable way might be to conduct the cognitive assessment from the clinic at first to find the high-risk group and then to do an fMRI scan.



Limitations and Future Directions

There are many limitations in the current study. The sample size is still small, although the total number has reached 92. Moreover, the generalizability of the classifier is not tested on an independent validation cohort since all participants are recruited from one single center. However, the results of this study have confirmed the potential of functional connectivity patterns based on ALFF results to predict cognitive impairment in T2DM patients. In the future, more effective prediction models may be obtained through larger sample data combined with data from different sources.

In terms of the construction of the prediction model, for the time being, only the combination of L1-SCCA and sparse logistic regression are used to reduce the dimension of selected features. In the future, we can use elastic net model, minimum-redundancy maximum relevancy, recursive feature elimination, and other feature selection and dimension reduction methods to obtain a better classification model (Liu et al., 2019).

In this study, T2DM patients have been divided into T2DM-CI and T2DM-NC according to neuropsychological tests. However, because T2DM patients may suffer from diabetic microangiopathy, diabetic retinopathy, and other complications, these diseases may also affect ALFF and functional connectivity. In future research, it may be necessary to consider the impact of other T2DM complications and analyze the potential impact of factors such as the course of T2DM patients and the degree of cognitive impairment (Rosenberg et al., 2019).

Finally, this study mainly analyzed from the perspective of brain functional connection network through fMRI data. In the future research, we can combine more neuroimaging data to find abnormalities caused by T2DM-induced cognitive impairment from structural abnormalities as a comprehensive biomarker, so as to make a more reliable analysis and diagnosis of the disease (Woo et al., 2017; Jin et al., 2020).




CONCLUSION

In this study, via ALFF analysis and effective algorithms of feature selection, single-digit dysfunctional brain connections have been identified to predict T2DM and T2DM-induced CI. Only using six, seven, and five discriminative connections, the trained SVM models can realize the classification between T2DM-CI and HC, T2DM-NC and HC, and T2DM-CI and T2DM-NC, with an AUC of 0.912, 0.901, and 0.861, respectively. The strength of identified connections were significantly different among groups and correlated with cognitive assessment (MoCA) score. The impaired Connectome subregions and dysfunctional connections might serve as the imaging biomarkers of T2DM-CI and as potential targets of intervention of T2DM care. The developed method leaves “ALFF memory” to the discriminative connections so that the final classification has used valuable information from both brain regions and connections, which can be expanded to studies of other neurological disorders.
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Background: Some studies suggest that as much as 40% of all causes of death in a group of patients with schizophrenia can be attributed to suicides and compared with the general population, patients with schizophrenia have an 8.5-fold greater suicide risk (SR). There is a vital need for accurate and reliable methods to predict the SR among patients with schizophrenia based on biological measures. However, it is unknown whether the suicidal risk in schizophrenia can be related to alterations in spontaneous brain activity, or if the resting-state functional magnetic resonance imaging (rsfMRI) measures can be used alongside machine learning (ML) algorithms in order to identify patients with SR.

Methods: Fifty-nine participants including patients with schizophrenia with and without SR as well as age and gender-matched healthy underwent 13 min resting-state functional magnetic resonance imaging. Both static and dynamic indexes of the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity as well as functional connectivity (FC) were calculated and used as an input for five machine learning algorithms: Gradient boosting (GB), LASSO, Logistic Regression (LR), Random Forest and Support Vector Machine.

Results: All groups revealed different intra-network functional connectivity in ventral DMN and anterior SN. The best performance was reached for the LASSO applied to FC with an accuracy of 70% and AUROC of 0.76 (p < 0.05). Significant classification ability was also reached for GB and LR using fALFF and ALFF measures.

Conclusion: Our findings suggest that SR in schizophrenia can be seen on the level of DMN and SN functional connectivity alterations. ML algorithms were able to significantly differentiate SR patients. Our results could be useful in developing neuromarkers of SR in schizophrenia based on non-invasive rsfMRI.

Keywords: schizophrenia, suicidal ideations, machine learning, resting state fMRI, mental pain, classification, gradient boosting, feature selection


INTRODUCTION

Schizophrenia research suggests that as much as 40% of all death causes in this group can be attributed to suicides (Wildgust et al., 2010), while 25–50% of individuals with schizophrenia attempt to commit suicide during their lifetime (Bohaterewicz et al., 2018; Cassidy et al., 2018). Hence, there is a vital need of developing more accurate and objective methods to predict the risk of suicide among individuals with schizophrenia.

Functional magnetic resonance imaging (fMRI) is a non-invasive, widely employed method allowing one to measure activity of a human brain. Resting state (rs), in turn, is considered highly effective as it captures 60–80% of the brain’s total activity (Smitha et al., 2017). Furthermore, some studies show that it allows monitoring treatment outcomes as well as assessing biomarkers of psychiatric disorders (Glover, 2011; Moghimi et al., 2018).

Previous studies indicate gray matter volume reduction in dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, as well as insular cortex in patients after suicide attempt, compared to the ones without suicide attempt in the past (Besteher et al., 2016; Zhang et al., 2020), whereas fMRI studies revealed that during a simple task based on cognitive control, suicide thoughts were associated with decreased activity in PFC and the history of previous suicide attempt resulted in decreased activity of premotor cortex (Minzenberg et al., 2014; Potvin et al., 2018). Previous results from volumetric as well as functional task fMRI analyses indicate the potential resting-state brain activity changes in the regions included in Default Mode Network (DMN), Salience Network (SN), and Sensorimotor Network (SMN).

In recent years, there has been a growing number of machine learning (ML) applications on rsfMRI data in order to make prognostic evaluation and to differentiate between various groups or conditions (Pereira et al., 2009). Lately, ML classifiers with the input from fMRI as an unbiased biomarker have been adopted to identify people engaged in the suicide-related behavior, including suicide ideations. For example, Just et al. (2017) were able to correctly identify 15 out of 17 suicidal participants with a sensitivity of 0.88 and a specificity of 0.94 using Gaussian Naïve Bayes algorithm and task fMRI data. In more recent work, Gosnell et al. (2019) used a Random Forest (RF) algorithm and rsfMRI functional connectivity data from psychiatric inpatients that enabled them to correctly classify suicidal behavior with a sensitivity of 81.3%. To the best of our knowledge, none of the previous studies focused on various ML classifiers in order to discriminate between healthy controls (HCs), suicidal risk (SR), and non-suicidal risk (NSR) schizophrenia patients based on rsfMRI data.

In the current work, our objective was to conjoin ML methods with rsfMRI data in order to investigate whether the selected classifiers allow differentiating between schizophrenia patients with and without a suicide risk. Ultimately, five algorithms such as Gradient Boosting (GB), Least Absolute Shrinkage and Selection Operator (LASSO), Logistic Regression (LR), RF, and Support Vector Machine (SVM) were performed to increase the reliability of diagnostic accuracy. Each metric presents a different degree of complexity; therefore, establishing their separate and combined precision allows gaining a wider picture in the aforementioned classification. Moreover, the article aims at explaining the association between the resting-state brain activity and suicide risk among schizophrenia patients; thus, stationary as well as dynamic measures with sliding windows approach were calculated. Based on the literature, the authors hypothesize (a) varied neural activity in the regions included in DMN, SN, and SMN networks to be involved in suicide risk in patients with schizophrenia; (b) that the predictive ability of classifiers will be better while using dynamic indexes as the features in comparison to the static ones; (c) that the results of ML-based discrimination will differ using diverse parcellation approaches; (d) ML-based algorithms to discriminate between SR and NSR groups with the accuracy exceeding 50%.



MATERIALS AND METHODS


Participants

A total of 66 participants were recruited for the study. The clinical group consisted of 43 patients with paranoid schizophrenia diagnosed according to the ICD-10 criteria. The clinical group covered two subgroups: 24 patients with acute suicidal risk (SR) and 19 patients without such risk (NSR). The control group (HCs) consisted of 23 individuals matched in terms of gender and age with a clinical group, without diagnosis of mental disorder or a history of mental illness in first-degree relatives. All the participants were right-handed, as measured by the Neurological Evaluation Scale (Buchanan and Heinrichs, 1989). The inclusion criterion for the clinical group was treatment with atypical antipsychotic agents from the group of dibenzoxazepine: clozapine, olanzapine, or quetiapine. Additionally, valproic acid treatment was accepted. The exclusion criteria for both clinical and control groups were as follows: (1) history of alcohol or drug abuse (according to substance use disorder of DSM-5); (2) severe, acute, or chronic neurological and somatic diseases; (3) severe personality disorders; (4) treatment other than those mentioned in the inclusion criteria. All of the abovementioned conditions were confirmed by clinical interviews based on DSM-5 criteria. Detailed information about patients’ medication is presented in the Supplementary Materials. Written consent was obtained from all of the participants. The study was approved by the Jagiellonian University Bioethics Committee.



Assessment of Suicidality

Suicidal risk was assessed with the Polish adaptation of Suicide Behavior Questionnaire—Revised (SBQ-R) (Osman et al., 2001; Chodkiewicz and Gruszczyńska, 2020), with the cutoff of ≥8 points in accordance with the Osman et al. (2001) recommendations. Moreover, the Polish adaptation (Chodkiewicz, 2013) of The Psychache Scale (TPS) (Holden et al., 2001) was used to evaluate the subjective experience of participants’ psychological pain, considered to be highly associated with suicidal thoughts and acts (Ducasse et al., 2018).



MRI Data Acquisition

MRI data were acquired using a 3-T Siemens Skyra MR System (Siemens Medical Solutions, Erlangen, Germany). Anatomical images were obtained using sagittal 3D T1-weighted MPRAGE sequence with TR = 2,300 ms and TE = 3.9 ms. A total of 13 min of functional resting-state BOLD images was acquired using a gradient-echo single-shot echo planar imaging sequence with the following parameters: FOV = 256 mm; TE = 27 ms; TR = 2060 ms; voxel size = 3 mm × 3 mm × 3 mm, with no gap. Altogether, 39 interleaved transverse slices and 400 volumes were acquired. During the resting-state procedure, the subjects were instructed to keep their eyes open and to think of nothing particular. They were also asked not to fall asleep, which was controlled using an infrared binocular eye tracker (Eyelink 1000 Plus, SR Research, Mississauga, ON, Canada). In addition, during the EPI sequence, neutral gray background was presented using a MRI-compatible LCD screen and Siemens Head Coil Viewing Mirror. Both structural and functional sequence details are in Supplementary Data Sheet 1.



Data Preprocessing

Data preprocessing was performed using Dpabi v. 4.2 (Yan et al., 2016) and SPM 12 (Friston, 1994), both working under Matlab v.2018a (The Mathworks Inc.). The first 10 time points were discarded due to signal equilibration, and next slice timing and realignment with assessment of the voxel specific head motion were conducted. The subjects with movements in one or more of the orthogonal directions above 3 mm or rotation above 3° were discarded from the analysis. A total of three participants from the control group and four patients from the clinical sample (four from SR group) were excluded due to the excessive head movements. Consequently, 39 patients and 20 HCs were included in the final analyses. Functional scans were then coregistered using T1 images and normalized to Montreal Neurological Institute (MNI) space using DARTEL and a voxel size of 3 mm3. The 24 motion parameters (Friston et al., 1996) derived from the realignment step were regressed out from the functional data by linear regression as well as five principal components from both cerebrospinal fluid and white matter signals using principal components analysis integrated in a Component-Based Noise Correction Method (Behzadi et al., 2007). The global signal was included due to its potential in providing additional valuable information (Liu et al., 2017). The signal was then band-pass filtered (0.01–0.08 Hz). Finally, the functional data were spatially smoothed with 4-mm Full Width at Half Maximum (FWHM) kernel.



Parcellation

For validation purposes and to exclude a chance of parcellation-specific results, the preprocessed data were parcellated using two functional atlases: Power et al. (2011), which utilizes 264 functionally independent regions, and Automated Anatomical Labeling (AAL) atlas, which separates brain into 116 regions (Tzourio-Mazoyer et al., 2002). Using centroids obtained from both atlases, the raw signal from individual brain maps was extracted and averaged within a 4-mm-radius sphere using MarsBaR v. 0.43 (Brett et al., 2002). In addition, in accordance to our hypothesis, in order to investigate possible between-group differences among DMN, SN, and SM networks, the authors used templates from FIND lab1. Raw time series were extracted and averaged in each ROI within ventral default mode network (vDMN), dorsal default mode network (dDMN), anterior salience network (aSN), posterior salience network (pSN), and SMN (Shirer et al., 2012) (see Supplementary Table 1 for detailed information about the ROIs).



Measures

For the purpose of developing a predictive classification model, the authors used Regional Homogeneity (ReHo), Amplitude of Low Frequency Fluctuations (ALFF), Fractional Amplitude of Low Frequency Fluctuations (fALFF), and Functional Connectivity (FC). Each measure has its static and dynamic equivalent, and each measure was extracted for both atlases (see Figure 1 for study flowchart and Supplementary Materials for detailed description of the measures).


[image: image]

FIGURE 1. Flowchart of the steps taken in order to extract rsfMRI features.




Stationary Approach

The mReHo, ALFF, and f/ALFF maps were segmented into 116 and 264 brain regions, and the values were extracted accordingly. Each participant got 116 × 1 (AAL atlas) and 264 × 1 (Power et al. atlas) matrices, consisting of a single value for each brain region among all 390 time points. Z-transformed correlation coefficients were obtained for each brain atlas, which resulted in 264 × 264 as well as 116 × 116 matrices for each participant. The lower half and diagonal values were removed and not used as features for ML algorithms, so that the total of 6,670 and 34,716 z-score values were used.



Dynamic Approach

The dynamic mALFF, mf/ALFF, and mReHo indexes were computed using the Temporal Dynamic Analysis module of Dpabi (Yan et al., 2017) using a sliding window approach with a hamming window shape.

According to previous work of Leonardi and Van De Ville (2015), in order to reduce the likelihood of spurious fluctuations in the dynamics of observed data, minimum window length should have at least 1/fmin, where fmin is the minimum frequency of the time series; a similar approach was used among others in the work of Li et al. (2019), where the authors showed alterations in temporal dynamics of the brain associated with suicidal ideations in depression. In our case, fmin after band-pass filter equals 0.01 Hz (100 s), and for this reason, window size was set to 50 TR (103 s) length and was shifted by 1 TR (2.06 s). The full time series was divided into 341 windows for each participant. As in case of stationary maps, dynamic maps were segmented using AAL and Power atlases. As a result, each participant gets a matrix of size 341 × 116 for AAL atlas and 341 × 264 for Power et al. atlas for dynamic ReHo (dReHo), dynamic ALFF (dALFF), as well as dynamic f/ALFF (df/ALFF). Each column represented a brain region and rows were populated with a single value for each window. Dynamic functional connectivity (dFC) was computed using the same window size, shift, and method via DynamicBC v.2.2 (Liao et al., 2014). After the calculations, data were represented by a 341 × 116 × 116 matrix for AAL atlas and 341 × 264 × 264 for Power atlas, where each of the 341 windows were “populated” with z-score Pearson correlation values. As in the case of stationary FC, upper half and diagonal values were removed from each of the 341 matrices so that 6670 and 34,716 z-score values for each window were used, which gave a total of 2.274470 (aal) and 11.838156 (Power) z-score values used as an input for classification algorithms.



Classification Models

The authors used a selection of the most effective classification algorithms, each with a different level of complexity: LR (Cramer, 2002), LASSO (Tibshirani, 1996), SVM (Boser et al., 1992), RF (Ho, 1995), and GB (Friedman, 2001). See Supplementary Materials for a detailed description of the algorithms. Python, SciPy, NumPy, and scikit-learn (ver. 0.21) (Pedregosa et al., 2011) were used to compute the results. Standard scikit-learn model classes, score calculation routines, grid search, and dataset splitting functions were applied where possible.

The source code is available at https://github.com/gmum/schizo_fmri.



Classification Framework

The dataset was divided into train and test sets of approximately equal sizes (19 and 20 patients, respectively) with stratification. The training dataset was used to train a classifier pipeline consisting of optional data standardization and dimensionality reduction using Principal Component Analysis (PCA) steps and of the actual classifier. A grid search with fivefold cross-validation was performed to find the optimal hyperparameters. The entire hyperparameter grid search and training procedure is illustrated in Figure 2. It was run separately for every combination of the classifier type, input data type, and whether dimensionality reduction was performed.


[image: image]

FIGURE 2. Illustration of the machine learning classification framework.


For static data, the model simply accepts the entire data of selected measure types for the given patient. For dynamic data, the model is given only a single window and, thus, predicts a binary label for each window. An aggregation scheme is needed to make a final prediction for a patient. For this purpose, we applied a simple thresholding and counting scheme. Window results are first transformed to binary results using 0.5 as the threshold value. The final result was defined as the ratio of positive results to the total number of windows.



Classification Performance

Area Under Receiver Operating Curve (AUROC) was used as the score metric for grid search cross-validation procedure, and both AUROC and accuracy of the final classifier were evaluated on the test dataset.

In addition, the p-value of each AUROC score was calculated in order to determine the statistical significance of the obtained results. To do this, 1,000 permutations of the target labels were generated. Then, for each permutation, the classifier was retrained on the permuted labels, and its AUROC score was measured. The p-value was defined as the ratio of runs that achieved a score greater than or equal to the score of the original classifier (Ojala and Garriga, 2010).



Statistical Analysis

Two-sample t-tests were used in order to seek for possible differences in suicidal risk (SBQ-R), mental pain (TPS), severity, and illness duration between the SR and NSR groups. One-way analysis of variance (ANOVA) was used to check for possible differences in age, mean FD, and education (in years) between SR, NSR, and HCs groups, and the Kruskal–Wallis H test was used to compare gender differences.

One-way ANOVA was used to investigate possible differences in FC among three rsfMRI networks between SR, NSR, and HCs groups. The results were corrected with the Benjamini and Hochberg (1995) False Discovery Rate correction at p < 0.05.

One-way ANCOVA with the Bonferroni post hoc test was used to investigate the differences in static ALFF, fALFF, ReHo between SR, NSR, and HCs. Age, gender, and mean FD were used as covariates. The same set of analyses was applied to compare the group-level temporal variability of ALFF, fALFF, ReHo, and FC. Temporal variability for ALFF, fALFF, and ReHo was expressed as a coefficient of variations (SD/mean) and, for FC, as a variance calculated across sliding-window dynamics, and then compared using one-way ANOVA with FDR correction. The statistical significance level for ALFF, fALFF, and ReHo analyses was set as pFWER < 0.05 with 5,000 times permutation using Permutation Analysis of Linear Models (Winkler et al., 2016) as a part of DPABI. The cluster forming threshold was set to z = 2.3, which is equal to p < 0.01 and the cluster extent threshold at k > 25 (Li et al., 2019).



RESULTS


Demographic and Clinical Characteristics

The final analysis was conducted based on the data obtained from 59 participants, 39 of whom were schizophrenia patients. No differences in age [one-way ANOVA; F(2,57) = 2.13; p = 0.1282], gender [Kruskal–Wallis; H(2) = 2,468; p = 0.291], and head motion [one-way ANOVA; F(2,57) = 0.66; p = 0.5214] were found among the three groups. SR and NSR groups were significantly different in SBQ-R score (t = 7.645; p < 0.001) and illness duration (t = 1.69; p = 0.01), but no differences were found in the case of TPS scores (t = 1.904; p = 0.064) The range of SBQ-R score in the SR group was 8–17 points (Table 1).


TABLE 1. Detailed participant demographic and clinical information.
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Differences in rsfMRI Measures

No differences were found among the three groups in static ALFF, fALFF, and ReHo. No significant differences were found in the case of temporal variability of ALFF, fALFF, or ReHo either. Significant differences between SR, NSR, and HCs groups were found in both static functional connectivity and temporal variability of FC. One-way ANOVA showed that the three groups were different in FC among ventral DMN (F = 19.02; p < 0.001) and anterior SN (F = 6.85; p = 0.001) (Figure 3). Post hoc tests showed that the significant differences among ventral DMN network were present between SR and NSR groups (p < 0.001; FDR corrected) and NSR and HCs groups (p < 0.01; FDR corrected). In the case of anterior SN, post hoc tests indicated differences between SR and NSR groups (p = 0.03; FDR corrected). No differences were found among dorsal DMN, posterior SN, or SMN between the three groups. Temporal variability of FC, calculated at each voxel for the two atlases, showed that the three groups were significantly (p < 0.001) different in total FC variability measured using AAL, as well as Power atlases. Post hoc tests with FDR correction showed that in the case of both atlases, FC variability was significantly different between SR and NSR, between SR and HCs, and between NSR and HCs groups (Table 2 and Supplementary Figures 1,2).
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FIGURE 3. (A) Receiver operating characteristic curve for LASSO classificator applied to Functional Connectivity with Power 264 atlas. (B) Box-and-whisker plot illustrating the differences between three groups in Functional Connectivity among ventral Default Mode Network. (C) Box-and-whisker plot illustrating the differences between three groups in Functional Connectivity among Anterior Salience Network. The outliers can be seen due to the high variance of dFC values.



TABLE 2. Dynamic functional connectivity and functional connectivity differences among NSR, SR, and HC groups.
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Classification Results

The 10 most important features of amplitude of low-frequency fluctuations (ALFF) for LR as well as of Functional Connectivity for LASSO classifiers are presented in Table 3. The accuracies and AUROCs of five ML algorithms for each static and dynamic rsfMRI measures, divided into two atlases, are listed in Table 4.


TABLE 3. The 10 most important features for Logistic Regression and LASSO classifiers.
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TABLE 4. The accuracies and AUROCs of five ML algorithms for each static and dynamic rsfMRI measures, divided into two atlases.

[image: Table 4]Three variants of ML algorithm and rsfMRI measures turned out to be significant at p < 0.05. (1) The LASSO applied to static functional connectivity with Power atlas reached an accuracy of 70% and an AUROC of 0.76. (2) The LR algorithm applied to dynamic ALFF with AAL atlas reached an accuracy of 65% and an AUROC of 0.75. (3) The GB algorithm applied to static fALFF with AAL atlas reached an accuracy of 65% and an AUROC of 0.74. It can be seen that AUROCs of the majority of variants were at chance level, even when accuracies were above 50%. In short, the obtained results suggest that the combination of LASSO algorithm and static functional connectivity calculated on 264 ROIs provide superior accuracy/AUROC of classification between SR patients and non-SR patients and allow correct classification of 14 out of 20 SR patients.



DISCUSSION

In the present article, a successful discrimination between schizophrenia patients with and without a suicide risk using ML algorithms and rsfMRI data was demonstrated.

Although previous studies developed the rsfMRI-based ML classification models capable of distinguishing suicidal patients with different diagnoses, such as anxiety disorder, depression, or borderline personality disorder (Gosnell et al., 2019; Wang et al., 2020), to the best of the authors’ knowledge, none of the previous studies were focused on schizophrenia. Ipso facto, the presented study is the first attempt to find rsfMRI features that allow detecting the risk of suicide in schizophrenia with the use of the ML algorithms. Moreover, this is the first work using rsfMRI to explain the differences in brain activity, which might be associated with suicide risk in schizophrenia patients. Above that, unlike most of ML–fMRI studies focused on classifying suicidal participants, the authors used five various ML classifiers. The results of conventional analyses showed that patients with and without suicidal risk, as well as the healthy controls, demonstrated different patterns of temporal variability of dFC and FC, with the latter being an important feature for ML classification. Furthermore, ALFF and fALFF measures also contributed to ML-based classification, but no significant differences in the above measures were found in the conventional group analyses.

Du et al. (2015) and also Gosnell et al. (2019) results are partly congruent with the ones obtained from this study, indicating frontal and temporal brain region abnormalities to be the most useful in ML classification of suicidal risk, suggesting activity of specific brain structures to be characteristic for suicide risk among all psychiatric patients. Cao et al. (2015), in turn, demonstrated altered ReHo in suicide attempters without psychiatric diagnosis in left precuneus, which also remains consistent with the region allowing discriminating between SR and NSR patients reported in our study. In addition, regions that turned out to be discriminative in ML-based classification are also congruent with the studies using cognitive control tasks, revealing the association between decreased activity of the frontal cortex and suicide risk in schizophrenia (Zhang et al., 2013; Potvin et al., 2018). Our results are also consistent with the studies showing significance of ACC, angular gyrus, as well as both precentral and postcentral gyrus in understanding the suicidal behavior (Reisch et al., 2010; Fan et al., 2013; Tsujii et al., 2017; Harms et al., 2019).

Numerous fMRI studies indicate the association of suicide-related behaviors and prefrontal cortex alterations due to its role in decision-making as well as action planning (Potvin et al., 2018; Brown et al., 2020). Other studies suggest decreased connectivity between ACC and PFC to be related to suicidal behavior (Minzenberg et al., 2015; Chase et al., 2017). PFC and ACC are considered responsible for anticipating the consequence of actions, inhibition of inappropriate behavior, and impulsiveness (Zhou et al., 2016; Brown et al., 2019), which are indirectly related to suicidal behavior (Wang et al., 2017; Koval and Baumann, 2019). Alterations in ACC and PFC have also been found in patients with schizophrenia (Cordes et al., 2015; Fryer et al., 2019) while their impulsivity has been reported as correlated with increased suicide risk (Iancu et al., 2010). Notably, the above regions are included in DMN as well as SN, which have already been established as disrupted in schizophrenia (Garrity et al., 2007; White et al., 2010; Palaniyappan et al., 2012). Weaker functional connectivity within DMN is reported to be associated with the difficulties in abstract thinking, planning the future, as well as analyzing social behaviors (Andrews-Hanna, 2012), while decreased functional connectivity within SN has been reported as linked to higher trait anxiety and decreased cognitive regulation (Geng et al., 2016). The above symptoms might additionally elevate suicidal risk.

Importantly, our results from conventional static FC analyses confirm the aforementioned results, revealing functional connectivity differences in ventral DMN and anterior SN between SR and NSR patients. The above dissimilarity was also apparent between NSR patients and HCs. Moreover, The LASSO algorithm, applied on static functional connectivity data, allowed the discrimination between SR and NSR patients, supporting our hypothesis. Furthermore, all the three groups varied from each other in the case of temporal variability of dFC with the use of both AAL and Power atlases.

According to another hypothesis, all five ML algorithms presented different classification performance. The LASSO, applied on static functional connectivity without PCA on Power atlas, achieved 70% accuracy and an AUROC of 0.76, proving to be the best ML classifier used in the study. As a result, LASSO allowed the correct classification of 14 out of 20 suicidal patients. The possible reason why the LASSO outperforms the other classifiers is the type of its regularization loss term. The processed dataset has high dimensionality but very few samples, which could possibly make the standard classifiers heavily overfit to the train set and therefore perform poorly on the test set. As a result, a regularization method needs to be used in order to reduce overfitting and increase generalization. The L1 cost used in LASSO has a property of much stronger parameters’ shrinkage due to its diagonal regularization contour, leading to a more sparse model.

Noteworthy, raw performance of the classifiers differed depending on the selected parcellation scheme. However, contrary to our assumptions, the dynamic measures did not improve the prediction ability of ML classifiers compared to static measures. As far as the authors are aware, none of the previous studies used ML-based classifiers to discriminate between SR and NSR schizophrenia patients. Further studies should consider to enlarge sample size in order to demonstrate the replicability of our study.



LIMITATIONS

The conducted study has some limitations. Firstly, EPI sequence was introduced to participants after the structural scans (T1–MPRAGE) and not before them, which could influence the results. Secondly, results may possibly depend on the size of the smoothing kernel. Another noteworthy limitation of this study is the restricted sample size; thus, the presented results should be interpreted with caution. Further studies should consider extending the sample size by adding the control group to the input training data. Moreover, the specific window size as well as arbitrarily chosen atlases could influence the results. What is more, the high number of features may cause high susceptibility to any noise signal; therefore, distinctive features could be possibly different in another sample size, i.e., patients. Based on the literature, we have also decided to include the global signal, which is not always considered to be beneficial. Additionally, further studies should incorporate a semi-supervised approach with a pre-training phase using the data of HC.
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An efficient method to identify whether mild cognitive impairment (MCI) has progressed to Alzheimer’s disease (AD) will be beneficial to patient care. Previous studies have shown that magnetic resonance imaging (MRI) has enabled the assessment of AD progression based on imaging findings. The present work aimed to establish an algorithm based on three features, namely, volume, surface area, and surface curvature within the hippocampal subfields, to model variations, including atrophy and structural changes to the cortical surface. In this study, a new biomarker, the ratio of principal curvatures (RPC), was proposed to characterize the folding patterns of the cortical gyrus and sulcus. Along with volumes and surface areas, these morphological features associated with the hippocampal subfields were assessed in terms of their sensitivity to the changes in cognitive capacity by two different feature selection methods. Either the extracted features were statistically significantly different, or the features were selected through a random forest model. The identified subfields and their structural indices that are sensitive to the changes characteristic of the progression from MCI to AD were further assessed with a multilayer perceptron classifier to help facilitate the diagnosis. The accuracy of the classification based on the proposed method to distinguish whether a MCI patient enters the AD stage amounted to 79.95%, solely using the information from the features selected by a logical feature selection method.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia, representing a significant burden on the global economy (Prince et al., 2015). While the treatment of AD remains a major clinical challenge, slowing down the deterioration of cognitive capability during the mild cognitive impairment (MCI) stage represents an important preventive approach. Consequently, it is critical to monitor whether a patient is progressing from MCI to AD (a converter) or is still in the MCI stage (a non-converter).

Multiple AD biomarkers have been recognized with varying trends as the disease progresses (Bateman et al., 2012). For the prediction of AD, amyloid, tau, and neurodegeneration are related and efficient biomarkers that comply with the amyloid hypothesis. This hypothesis postulated that AD is due to a cascade mechanism, starting from the deposition of Aβ and tau hyperphosphorylation, which then further causes neurodegeneration, including synaptic dysfunction, death of neural cells, and brain shrinkage (Hardy and Selkoe, 2002; Spillantini and Goedert, 2013). However, the examinations of amyloid and tau, including the extraction of cerebrospinal fluid (CSF) and contrast injection for a PET scan, are in general more invasive. Therefore, we resort to the last potential mechanism in studying AD—neurodegeneration. Neurodegeneration encompasses structural variations, such as atrophy and neuronal loss due to amyloid and tau deposition, which can be measured and, hence, quantified via structural MRI. Clear observations of the hippocampal volume using this neuroimaging modality are indicative biomarkers revealing the obvious changes in the transition from MCI to AD which have been well documented (Frisoni et al., 2010; Bateman et al., 2012).

Studies on structural atrophy in the hippocampus and entorhinal cortex, based on the evaluation of volume and surface area from MRI scans during the progression from MCI to AD, have been previously carried out (Devanand et al., 2007; Frisoni et al., 2010; Bateman et al., 2012). Although the volume and surface area of the hippocampus and entorhinal cortex have been observed to be highly correlated to AD (Bobinski et al., 2000; Dickerson et al., 2009), these biomarkers are influenced by natural aging (Bigler et al., 1997; Dickerson et al., 2009). The curvature of the cortical surface is another feature in the analysis of cognitive evolution. It has been shown that the mean curvature of the cortex is less influenced by normal aging (Long et al., 2012). The mean curvature derived from a surface analysis could be used to distinguish MCI from AD based on the analysis of the cortical area (Long et al., 2013).

While some AD biomarkers have achieved good prediction, most of them require several different examined data modalities to achieve good accuracy. In this work, we propose a method to screen for whether an MCI patient has developed AD, using only the MRI data, with efficiency and good accuracy. This work analyzes geometric features to identify the conversion from MCI to AD by characterizing structural changes in the hippocampus. For surface curvature, we further introduce a new feature, the “average of principal curvature ratio,” instead of using the average curvature. In addition to the statistical evaluation of indices, including the volume, surface area, and curvature index within the hippocampus, the multilayer perceptron (MLP) classifier is designed to predict whether a subject has converted from MCI to AD.


Recent Advances

Recently, internationally encoded endpoints, e.g., clinical, imaging, genetic, and biospecimen biomarkers, have been introduced together with machine learning analytics algorithms in predicting and characterizing the disease process from normal aging to early MCI, late MCI, and dementia, especially AD. Neuroimaging biomarkers have especially gained popularity in providing direct indication of the AD progress.

A systematic review primarily on imaging and biochemical biomarkers, including primarily MRI, PET scans, and CSF or plasma amyloid-β/tau, with longitudinal cohorts in anticipating characterization of AD progression has been documented (Lawrence et al., 2017). Principal component analysis was used by Blazhenets et al. (2019) to quantify cerebral metabolic patterns measured from fluorodeoxyglucose-positron emission tomography (FDG-PET) related to MCI to AD conversion. Clinical variables were also used. FDG-PET brain images were used by Brown et al. (2020) at different prodromal stages in tracking longitudinally the AD process. Statistical textural features on the entorhinal cortex from MRI scans were extracted for differentiation of normal control, MCI, and AD by Leandrou et al. (2020). Textural biomarkers were assessed for its superiority over traditional volumetric features in earlier indication of brain atrophy. Similarly, Lee et al. (2020) also extracted grayscale co-occurrence matrix texture features surrogating as hippocampus precuneus and posterior cingulate cortex biomarkers. Structural MRI (sMRI) cortical and subcortical measurements, e.g., thickness and rs-fMRI functional graph connectivity biomarkers, were studied with SVM classification having high prediction accuracy for MCI converter or non-converter (Cabral et al., 2015). Vuoksimaa et al. (2020) investigated on vascular risk factors, serving as a biomarker, for MCI to AD conversion in subjects having low cerebral small vessel burden. Memory baseline brain (e.g., hippocampus, entorhinal cortex) and CSF biomarkers were also studied by Kung et al. (2020).

Non-linear Gaussian processes were documented by Lin et al. (2020) to model non-linear interactions of biomarkers including demographics, APOE4, CSF, hippocampal volume, and brain age. The proposed method also provided insight into the biomarker interactions personalized for individual patients (Hojjati et al., 2018). This proposed an extreme learning machine-based method to individually grade multimodal data extracted from MRI images, PET, CSF, and gene biomarkers. Pan et al. (2020) applied several CNN models which were subsequently combined via ensemble learning for classifying features extracted from MRI images. AD-NET introduced by Gao et al. (2020) transferred age-related surrogate biomarker information in the form of transfer learning to deep learning of sMRI features for alleviation of data insufficiency.

In this study, we introduce algorithmic methods to characterize and quantify the pathological variations in the identification of biomarkers. Furthermore, extracted biomarkers capable of indicating the severity of AD may be fed into the MLP classifier to differentiate the MCI to AD group from the non-converter MCI group. By honing its capacity through the accumulation of additional data, this framework could be further designed as a computer-aided diagnosis system to assist doctors in taking preventive steps to reduce the progression rate of AD.



MATERIALS AND METHODS


Overview of the Proposed Algorithm

As shown in Figure 1, the proposed algorithm functions in the following order: data pre-processing, feature extraction, and classification after acquiring the MRI images. The overall data pre-processing includes data cleaning for datasets with a series of MRI selection standards and MRI pre-processing and hippocampus segmentation. After obtaining the pre-processed hippocampus-labeled images, the image processing pipeline is followed by a surface construction of the hippocampus. Subsequently, morphological metrics including volume, surface area, and curvature of the hippocampus surface will be calculated. The assessment of the surface curvature will be detailed in the following section since it plays a critical role in our classifier. We perform feature extraction based on a statistical analysis of the volume, surface area, and average RPC, associated to the hippocampal subfields, in the hopes of identifying a proper neural network model to construct the MLP classifier to mimic a neurologist’s decision in assisting with a diagnosis. This MLP classifier serves to identify the converter and non-converter groups.


[image: image]

FIGURE 1. Block diagram of the whole proposed algorithm.




MRI Data Acquisition and Selection

MRI data used in this study was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with a primary focus on the analysis of two subject groups, namely, the converter and the non-converter groups. The converters are those cases diagnosed with MCI at the first visit but developing AD within a 2 year period. Their demographic data are shown in Table 1 with the Mini-Mental State Examination (MMSE) scores shown in Table 10. There were no significant differences between the converter and non-converter groups in terms of age at first visit, gender ratio, or years of education as shown in Table 2. The data used for the diagnosis had 1.2 mm resolution and were T1-weighted images acquired from 1.5 to 3.0 T scanners. These data were collected for studies through four phases: ADNI1, ADNI GO, ADNI2, and ADNI3. The current study focuses on demographic, neuropsychological, and structural imaging data from the ADNI GO and ADNI2 phases.


TABLE 1. The demographic data for the two study groups.
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TABLE 2. Chi-square test between the MCI non-converter and MCI to AD.

[image: Table 2]Structural MRI images were selected from the ADNI database and were pre-processed with images scanned in the sagittal plane, to minimize differences as a result of individual scanning conditions. Pre-processing includes correcting the non-uniform intensity caused by the gradient warp distortion. The data in the ADNI1 phase was not included in current studies to assure consistent MRI scanning protocol. The ADNI3 phase data was also excluded due to incompleteness. In order to eradicate unexpected factors, a series of data cleaning steps were defined for each cohort as follows. Data from GE were excluded due to difference in protocols in ADNI2 and GO phases: (a) excluded ADNI1 and ADNI3 phases; (b) included pre-processing steps, e.g., MT1, N3, and Gradwrap; (c) excluded the accelerated scanning images; (d) excluded images if the scanning time differs from the diagnosis time by over 2 weeks; (e) chose the scanning images with the scanning time closest to diagnosis time;, and (f) investigated whether the diagnosis record has a missing score in neuropsychological data.



MRI Pre-processing

Structural MRI pre-processing consists of two parts: one for assuring consistencies due to different scanning systems and the other another for inner-subject variabilities.

The pre-processing for scanning system consistency includes MT1, N3, and Gradwrap. MT1 is a multiplane reconstruction process, in which the scanning image will produce sagittal, coronal, and axial planes. N3 (Sled et al., 1998) is an algorithm for correcting intensity non-uniformity in MRI which is caused by inhomogeneous radiofrequency (RF) excitation. Gradwrap (Axel and Morton, 1989) corrects the gradient distortion which is caused by both gradient non-linearity and imperfections in the B0 field to assure revelation of significant hippocampus features in discerning between the MCI group and the AD group.

Pre-processing for inner-subject data consistency includes a series of step. The first step is size conformation by which image sizes from different manufacturers were normalized. The second step consists of non-uniform intensity normalization which is similar to the pre-processing for assuring scanning system consistency but does not include the magnetic field strength information. The third step is the Talairach transform computation with Talairach coordinates used for brain size and shape normalization. Intersubject registration within the standardized space is used to compare different brain positions with different sizes. The fourth step is interslice intensity normalization which attempts to correct for fluctuations in intensity caused by eddy current and cross talk between slices. This intensity correction step is aimed to enhance the accuracy of the subsequent segmentation process. The fifth step, namely, the skull strip, utilized the watershed algorithm to segment and remove the skull, eyes, and neck which are not part of the brain. The sixth step applies a subcortical segmentation algorithm to segment and label each subcortical structure. It calculates transforms to align the input volume to the Gaussian classifier atlas (GCA). Normalization was also performed using non-linear transforms based on GCA, which labels subcortical structures within the GCA model. The final step is white matter segmentation which uses intensity, neighborhood, and smoothness constraints to segment and separate the white matter.



Segmentation of the Hippocampus and Its Subfields

After pre-processing, hippocampus segmentation was performed using FreeSurfer 6.0 (Fischl, 2012). This is based on the statistical atlas which was constructed from manual labels and information from Bayesian reference (Iglesias et al., 2015). The FreeSurfer pipeline used in current research generated the masks of the entire hippocampus as well as its subfields according to the pre-trained statistical atlas (Iglesias et al., 2015). The hippocampus was further segmented into 12 subfields, namely, the parasubiculum, presubiculum, subiculum, CA1, CA3, and CA4. Granule cells were in the molecular layer of the dentate gyrus (GC-ML-DG), hippocampus–amygdala–transition area (HATA), fimbria, molecular layer, hippocampal fissure, and hippocampal tail. The parasubiculum, HATA, and fimbria subfields were not included due to low resolution in MRI.

Although there were a few literature documenting quantitative performance evaluations on this automatic subfield segmentation and manual segmentation process, results have shown that the segmentation of subfields using FreeSurfer could achieve high test–retest reliability, with intraclass correlation coefficient (ICC) > 0.9 for most subfields (Whelan et al., 2016). The segmented subfields were also shown to be informative in the analysis of AD (Iglesias et al., 2015). When compared with FIRST, a software which also enables hippocampus segmentation in FSL, FreeSurfer has revealed a higher correlation via manual tracing (manual segmentation), with approximately 82 ± 1.5% of the volume overlapping in the left hippocampus and 82 ± 2.8% of the volume overlapping in the right hippocampus (Morey et al., 2009).

There should, in general, not be much difference between 1.5 and 3 T images except possibly minor in the contrast. Recently, Brown et al. (2020) have also documented on test–retest reliability of automated segmentation of the hippocampal subfield procedures via T1-weighted images acquired from two models of Siemens scanners.



Curvature Analysis

As depicted in Figure 2, the segmented hippocampus and its subfields subsequently underwent 3D surface reconstruction, surface smoothing, and calculation of the curvature indices. The 3D reconstruction is based on the Marching cubes algorithm (Lorensen and Cline, 1987) to produce a surface from hippocampus-labeled MRI. Subsequently, surface smoothing is performed to compensate for the spurious structure of the original segmentation with the Laplacian smoothing algorithm. The effect of surface smoothing is demonstrated in Figure 3. The surface from the original hippocampal segmentation could be quite rough due to limited spatial resolution and SNR in MRI scans. The smoothing algorithm removes the bulgy structure to adequately reveal the surface structure. The number of iterations for smoothing has been set to 50 in this work to balance noise removal and principal feature preservation.
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FIGURE 2. Flowchart of curvature analysis on the hippocampus surface.
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FIGURE 3. Laplacian smoothing on the hippocampal surface. From left to right, displayed are the series of hippocampal surfaces from the original surface constructed from the Marching cubes to the surface with more smoothing iterations. The upper surfaces are the full size of the hippocampus, and the lower surfaces are about the zooming surface focus on hippocampal head for observing the smoothing levels at a fine scale.


The curvature analysis measures the principal curvatures and RPC. Quantified by the curvature index, the cortical gyrus and sulcus can be described as the juxtaposition of ridges and valleys according to Boucher et al. (2009). Curvature was first defined as the second-order derivative of a 1D curve, as shown in Figure 4. The concept can be generalized to a 2D surface to measure folding conditions in terms of normal curvature, defined by a 1D curve intercepted by a normal plane at a specific point. Among all normal curvatures obtained from the different rotating angles of a given point on the surface, the maximum and minimum are defined as the principal curvatures, respectively. The principal curvatures of a given vertex, v, on the surface in 3D, are formulated as follows:


[image: image]

FIGURE 4. Illustration about the curvature to quantify the degree of bending and folding.
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The K(v) indicates the discrete Gaussian curvature at vertex v which can be obtained from the Gauss–Bonnet theorem, given by

[image: image]

where N is the number of faces containing v and βi is the interior angle of v. H(v) represents the discrete mean curvature defined as

[image: image]

where e is the edge set incident to the vertex v and N is the number of edges in the edge set. Besides, the s(e) denotes the length of the edge, and ψ(e) denotes the dihedral angle of e. Based on the topology observed, we also noted that RPC can be an effective index to distinguish the local folding pattern, as shown in Figure 5, which is defined by


[image: image]

FIGURE 5. Local folding pattern corresponds to the principal curvature.
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The curvature indices of the entire hippocampus as well as all the segmented subfields are all calculated. Separation of the curvature of the entire hippocampus and its subfield will help to reveal structural alterations inside the hippocampus during the conversion. Instead of mapping the calculated curvature on the lattice grid of the segmentation map, an iterative closet points (ICP) surface registration algorithm (Besl and Mckay, 1992) has been used to register the curvature values of the subfield segmentation after smoothing. The refined registration was applied out of concern that the curvature of the subfield is prone to a low signal-to-noise ratio and limited spatial resolution.



Feature Selection for Classification

Proper selection of features as prediction variables has been known to be a critical factor in constructing classification models. In our current work, neuropathological and morphological changes as described by medical experts have been used to characterize the volume, surface area, averages of the principal curvatures, and the average of the RPC biomarkers. These indices featuring the entire hippocampus and its subfields were chosen for investigation while anticipating biomarker identification to categorize the converter and the non-converter cohorts. Furthermore, this work seeks to track symptom changes over time. The change in rate of each morphological index should be more useful than the indices at each time point. Thus, the change in rate (Cf) of a morphological index is defined as

[image: image]

to quantify the relative difference between two visits. In the feature selection step, we explore neuroimaging features. Feature selection is carried out because that multilayer perceptron will usually treat all features as equivalent or begin. With the training process, a multilayer perceptron will determine the most suitable parameters in the feature map. As such, reducing some features such as noise can more accurately and quickly yield a suitable weight in the feature map. In the first selection method, the univariate selection, a two-sample t-test is conducted to compare the C_f in each volume of interest to explore potential useful biomarkers. The indices showing significant differences between the two groups will be adopted as the candidate prediction variables in the classifier. Features are selected on the basis of their p-value in an independent t-test. The p-value may represent whether the difference is sufficiently large to justify the conclusion that the two samples were drawn from different populations. The second method is feature importance, which is based on the features set combinability and Gini impurity, whereby features are selected based on their combination relevance.



Multilayer Perceptron Classifier

MLP is a popular and efficient neural network model in the field of pattern recognition. MLP mimics the developing brain, the plasticity, and the storage of experiential knowledge, which is also known as learning processing. MLP is a multilayer network capable of multilevel information extraction through its hierarchical structure. MLP may also be seen as a multivariate probabilistic function or mapping of input features to outputs.

The MLP architectures proposed in this current research are shown in Figure 6. There are three main parameters needed for the design: (1) the number of hidden layers, (2) the number of neurons in each layer, and (3) the activation function. With regard to choosing the number of hidden layers, we have a shallow design network. Our input features are highly representative, and we do not need a deep network to identify the complicated relations. With regard to choosing the number of neurons in each layer, we used a grid search method to find out the best parameter. In addition, we used ReLU as an activation function. ReLU reduced the probability of a vanishing gradient and is more computationally efficient. According to the design, the MLP is equipped with two hidden layers within each 12-neuron layer.


[image: image]

FIGURE 6. Input features and proposed architecture in MLP.


The prediction was based on these architectures and was performed using the scikit-learn framework. The ReLU function was used as the activation function. The Adam with momentum (0.9) and adaptive learning rate to enhance training was used to optimize the learning process. An L2 norm penalty of weight 0.0001 was also imposed for regularization. The maximum iteration was set to 800. All the subject data were randomly shuffled; 60% of them were treated as the training set, 30% of them were treated as the testing set, and 10% of them were used for validation.



RESULTS


Feature Extraction From the Hippocampus

The 3D curvature mappings are shown in Figure 7. The maximum curvature is capable of delineating the ridges of the local structure (Figure 7), while the minimum curvature is capable of outlining the cap-shape patterns (Figure 7). While the two principal curvatures enhance the folding regions bending in different directions, the RPC helps to distinguish the folding area and the flatting area. However, the RPC is instrumental in enhancing the morphological complexity of cortical surfaces, as shown in Figure 7, indicating capture of the structural changes in the hippocampus. Figure 8 illustrates the morphological changes in CA1 from a typical converter. Not only the volume but also the surface area was significantly reduced. A smaller flat region was also noticed when the subject was diagnosed with AD with increased RPC.
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FIGURE 7. CA1 subfield surface attached with calculated maximum curvature, minimum curvature, and RPC. The leftmost artwork is about the CA1 subfield surface with maximum curvature. The second artwork from the left is about the CA1 subfield surface with minimum curvature. The third artwork from the left is about the CA1 subfield surface with RPC. The right artwork is about the demonstration of RPC by the medial side of the hippocampus surface with RPC attached. In this illustration, the RPC showed its ability to indicate valleys and ridges on the surface.
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FIGURE 8. Comparison of CA1 surface between MCI and AD. The three artworks in the left are the comparison of volume and surface area. The volume is 443.964 mm3 and surface area is 753.45 mm2 when the subject was diagnosed as MCI. The volume is 325.024 mm3 and surface area is 594.504 mm2 when the subject was diagnosed as AD. The two artworks in the right are targeted to demonstrate the change of “average of RPC.”


The rates of change in volume, surface, and RPC data of all nine subfields are listed in Tables 3–5. The converter generally shows a higher reduction level over time in terms of volume and surface area than the non-converter. Most of the subfields reveal statistically significant differences, except for the parasubiculum, HATA, and fimbria. The hippocampus subregion segmentation algorithm will make an error in a small region appear particularly significant since our surface model is constructed by labeled segmentation of MRI data. These errors will continue to be passed on to the feature via the feature extraction step. On the other hand, only temporal changes in the average RPC in CA1 achieved significant difference levels between the two groups and reached a statistical significance level quite early in the subiculum. Table 6 shows the selection results for neuroimaging features. For neuroimaging features, we found that volume and surface area are strong features in different subregions. There are only seven curvature features selected by the criteria. We also observed that the presubiculum might be a region of interest since the volume, surface area, RPC, minimum curvature, and maximum curvature have been selected. In addition, the subiculum, CA1, CA4, and the molecular layer have four features which have been selected by a univariate selection method. They might also be regions of interest to carefully focus on. We built 100 random forest classifiers with 20 decision trees. Due to the randomness of the subset of features in forming the decision tree, the model may yield important differences in feature weights each time. By training the model multiple times, for a certain number of cycles, we were finally able to obtain a certain amount of features that make an important contribution to the impact of the classification task. The importance of a feature is computed as the total Gini impurity reduction of the criterion brought by that feature. It is also called the Gini importance. We sort the rank from the whole feature according to the sum of the feature importance with different weights. A higher feature importance rank in the random forest has a higher weight. The order of ranking is representative of the relative importance in Table 7.


TABLE 3. Two-sample t-test on changing rate of volume in different hippocampal subfields.
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TABLE 4. Two-sample t-test on changing rate of surface area in different hippocampal subfields.
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TABLE 5. Two-sample t-test on changing rate of “average of RPC” in different hippocampal subfields.
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TABLE 6. Selection result based on univariate selection.
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TABLE 7. Selection result based on feature importance.

[image: Table 7]


Identification of MCI Converting Based on MLP

Performances of the MLP, adopting different combinations of prediction variables, are listed in Table 8. We found the criteria (p < 0.01) with a higher accuracy (79.07%) in a univariate selection method. Performance decreased with this criteria (p < 0.05; p < 0.1). This means that the extra selected features represent noise in the classification task. The second observation was that the criteria (random forest top 20) had a higher accuracy (79.95%) in the feature importance method. The best accuracy was also found in the two-selection method. This is reasonable, since the random forest considered both the combination of feature set and classification ability at the same time. We roughly assessed the different criteria. We will compare the selected features by a two-selection method and remove the common parts. This can help with the interpretation. Using both selection methods can enhance the model accuracy by about 15%.


TABLE 8. Performance of the MLP classifier with different input features (100 times training result averaging).

[image: Table 8]


Correlation Between MMSE and Neuroimage Biomarkers

The correlation between the neuroimaging biomarkers with MMSE scores is shown in Table 10. It is observed that based on p < 0.05, the volume and surface area markers have revealed high correlations with the presubiculum, subiculum, molecular layer, and hippocampal fissure subfields. In addition, the newly introduced RPC biomarker, representing degeneration, has statistical significance between MMSE at the CA1 and molecular layer subfields. High correlations could also be observed between pathological indicative maximum curvature and minimum curvature biomarkers and MMSE primarily at the CA1 subfield.



DISCUSSION

Previous studies have found that morphological changes in the hippocampus are highly related to the progression of AD. While most research studies have investigated the entire hippocampus as a single unit, the present work has tried to associate the alteration of the subfields of the hippocampus with the progression of cognitive impairment. The results suggested that the rate of change of the average RPC can be used as a biomarker of whether an MCI patient will convert to AD. While the average RPC captures the structural features in AD progression, the ways in which the pattern changes were also qualitatively analyzed. Based on the correspondence between principal curvature indices and morphology, the histogram showing the distribution of the surface pattern from the data of a typical converter subject is plotted in Figure 9. The flat pattern was found to diminish more than the other patterns. This finding suggests that the boundaries of the hippocampal subfields would grow increasingly spurious during conversion to AD. Consequently, RPC has the potential to detect whether a subject has developed AD according to the change in surface pattern.
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FIGURE 9. Comparison between MCI and AD according to the detected local folding pattern on the whole hippocampus surface. The two left artworks are the local folding pattern identification of the surface in MCI stage and the surface in AD stage, respectively. Moreover, the two right artworks are the histogram about the proportion ratio of each local folding patterns in the MCI stage and AD stage, respectively.


Several studies have focused on the link between volume and surface area while discriminating MCI and AD. These two structural quantities have shown their potential in the classification. Consequently, this work has invested much effort into investigating these two quantities and their temporal changes, as shown in Tables 3, 4. The experimental results also showed that the curvature features can improve the classification ability. Curvature features which have statistical meaning and important features have been selected by univariate selection. As a result, the combination of the random forest top 20 features is likely to provide the highest accuracy in predicting changes in symptoms based on the presented framework. However, there is still room to improve the prediction accuracy, and we anticipate that further factors, regardless of morphology or physiology, should be further investigated to increase the quality of the classification.

The architecture of the MLP classifier is also key to the prediction accuracy, in addition to properly selecting the prediction features. After obtaining the optimized prediction results for the two hidden-layer MLP, we tried modifying the MLP to a larger number of layers and neurons. However, as far as the number of subjects is concerned, the MLP structure cannot go too much deeper lest overfitting takes place. Another interesting fact in the experiment is shown in Table 8, whereby the increase in input features does not guarantee a better prediction, even when combining the three prominent features. These two findings suggest that the design of an optimal MLP classifier requires sophisticated tests. While there is no standard way to optimize the variables and parameters, our approach, starting with a statistical analysis on the feature selection, may greatly ease the daunting procedure of optimizing the structure of the classifier.

Several studies have sought to discriminate between MCI converters (MCI-C) and MCI non-converters (MCI-NC). A list of the accuracy from the literature is listed in Table 9. This study achieved a 79.95% accuracy based on the MLP classifier with a surface area and average RPC as input features, while the accuracy of the other approaches ranged from 74.1 to 83.3%. We have found that the present work has achieved relatively high accuracy, with only MRI data extracted from the regions in the hippocampus without combining other features from PET, CSF, or cognitive scores. This work could be used as a good screening tool for clinical examinations, as only a structural MRI scan is required with a simple MLP classifier. The loads for scan and computation are minimal. Given that other examination data may provide complimentary information to improve prediction quality, the MLP classifier can be augmented to accommodate more information to ensure better accuracy when a MCI converter is suspected.


TABLE 9. Classification comparison of different approaches (order follows the time of publication).

[image: Table 9]Normalization is a key step in the FreeSurfer to register a brain to the template for subfield segmentation (Wisse et al., 2020). Despite concerns on the accuracy in volumetry of the automatic segmentation, the results suggest that the two different groups, MCI converter and MCI non-converters, could still be distinguishable statistically following the presented procedure. We believe the outcome can be greatly improved providing more accurate information if the anatomical image at a higher resolution becomes available.

Recent advances in machine learning-based biomarker studies for AD are generally faced with two major challenges: the first on diagnostic confirmation of the disease without biopsy and second on data insufficiency. Statistical models are introduced to model the degenerative process which, however, are independent or irrespective of pathological feedbacks. Supervised deep learning via CNN has gained high popularity, and information such as, e.g., clinical data, has been transferred to train CNN using neuroimaging biomarkers. To address both challenges, our main contribution is on the introduction of a machine learning algorithm which incorporates the neuropathologist’s experiences in characterizing pathological morphology of the disease in the form of subfield biomarker, primarily curvature analysis, with features selected via univariate t-test and random forest.

In Table 10, hippocampal volumetric MRI measurements have revealed statistical significance which is consistent with well-established outcomes in clinical AD progression research. In addition to characterizing the degenerative process via coarse or global features using volume and surface area, we have further introduced curvature as fine or local neuropathological features delineated at the hippocampal subfields.


TABLE 10. Correlation between MMSE and neuroimage biomarkers.

[image: Table 10]
Based on a recently published paper (Gao et al., 2020), the highest accuracy for MCI to AD conversion using only structural MRI is 73%. The accuracy could reach 79% after adding PET markers. Our proposed technique achieves one of the highest accuracy by using only structural MRI biomarker. Medical experts’ intelligence is subsequently augmented with the semisupervised algorithm, primarily via the MLP decision-making process using limited imaging data. These biomarkers are further confirmed from the neuropsychological MMSE information.



CONCLUSION

The present work has assessed the structural information of the hippocampal subfields, including volume, surface area, and surface pattern as characterized by a curvature analysis. The combined biomarkers of the rate of change in volume, surface area, and curvature from the hippocampal subregions are considered critical in classifying an MCI converter, which can achieve an accuracy of 79.95%.
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We aimed to determine the alterations in the subcortical structures of patients with idiopathic generalized epilepsy with tonic–clonic seizures (IGE-GTCS) via MRI volumetry and vertex-based shape analysis and to evaluate the relationships between MRI measures and drug responses. In a follow-up sample of 48 patients with IGE-GTCS and 48 matched normal controls (NCs), high-resolution 3D T1WI was performed at baseline. After 1 year of follow-up, 31 patients were classified as seizure free (SF) and 17 as drug resistant (DR). The volumes of subcortical structures were extracted, and vertex-based shape analysis was performed using FSL-Integrated Registration and Segmentation Toolbox (FSL-FIRST). Comparisons among groups were calculated adjusting for covariates [age, sex, and intracranial volume (ICV)]. Analysis of the relationships among imaging biomarkers along with frequency and duration was assessed using partial correlations. The differential imaging indicators were used as features in a linear support vector machine (LSVM). The DR group displayed significant regional atrophy in the volume of the left amygdala compared with NCs (p = 0.004, false discovery rate corrected) and SF patients (p = 0.029, uncorrected). Meanwhile, vertex-based shape analysis showed focal inward deformation in the basolateral subregion of the left amygdala in DR compared with the results for SF and NC (p < 0.05, FWE corrected). There were significant correlations between the volume changes and seizure frequency (r = −0.324, p = 0.030) and between shape (r = −0.438, p = 0.003) changes and seizure frequency. Moreover, the volume of the left thalamus in the DR group was significantly correlated with seizure frequency (r = −0.689, p = 0.006). The SVM results revealed areas under the receiver operating characteristic curve of 0.82, 0.68, and 0.88 for the classification between SF and DR, between SF and NC, and between DR and NC, respectively. This study indicates the presence of focal atrophy in the basolateral region of the left amygdala in patients with IGE drug resistance; this finding may help predict drug responses and suggests a potential therapeutic target.
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INTRODUCTION

Idiopathic generalized epilepsy (IGE) with tonic–clonic seizures (GTCS), one of the main genetic generalized epilepsy syndromes, representing approximately 15–20% of all epilepsies (Jallon and Latour, 2005), typically responds well to antiepileptic drug (AED) treatment. However, approximately one-third of patients still develop drug resistance (Brodie et al., 2012) despite the availability of over 20 new AEDs in the past 30 years (Engel and Pitkanen, 2020). Compared with the epilepsy control group, the risk of mortality, dysfunction, and premature death in drug-resistant (DR) epilepsy patients was notably higher, which created a huge burden for patients and the society (Jerome Engel, 2016; Beghi et al., 2019). IGE appears normal on conventional magnetic resonance imaging (MRI) with a diffuse mechanism of seizure onset and no identifiable pathogenesis other than hereditary susceptibility. Identifying common biological disease pathways may help clarify diagnostic and prognostic biomarkers, which in turn helps optimize individual treatment (Pitkänen et al., 2016). Consequently, we aimed to identify imaging biomarkers to predict prognosis in IGE patients.

With the application of non-invasive neuroimaging technology, the understanding of the epilepsy mechanism is improving; furthermore, this technology explores different aspects, such as structural functional or metabolic modification. Structural changes are a prominent feature of many epilepsy types. Based on abundant human and animal neuropathologic, imaging, and electrophysiologic evidence, it has been suspected that a complex cortical–subcortical interaction is the basis of the epileptic process and that subcortical structures (such as the thalamus and basal ganglia) play a crucial role in the generation and propagation of epilepsy (Badawy et al., 2013). Some studies have suggested that electrical stimulation of subcortical structures may exert control on seizure generators initiating epileptic activities, although the mechanism of action remains to be fully elucidated (Zangiabadi et al., 2019). Therefore, the alterations of subcortical nuclei are worth studying. Today, the results of previous studies in subcortical structures in IGE remain controversial. Extensive brain subcortical structural atrophy across several regions, including the thalamus, hippocampus, pallidum, and putamen, was previously reported in IGE patients via volumetric and voxel-based morphology (VBM) analysis (Betting et al., 2006; Bernhardt et al., 2009; Du et al., 2011; Whelan et al., 2018). Some studies have found no significant difference in the subcortical structure volume of IGE-GTCS patients compared with that of normal controls (NCs) (Bernasconi et al., 2003; Natsume et al., 2003; Seeck et al., 2004; Ozturk et al., 2020). Some functional MRI studies complemented these findings, indicating connectome anomalies in the thalamus and hippocampus (Wang et al., 2019a,b). Despite the contribution of these findings to localizing anomalies in this disease, there is limited insight into the specific clinical value of the abnormality of subcortical nuclei. Hence, we attempt to explore more subtle forms of structural damage in the subcortical structures from patients with different drug responses and to predict drug efficacy in IGE-GTCS patients.

Complementary to VBM, vertex-based shape analysis is an automatic method that provides useful information about the location and pattern of morphological changes in subcortical structures. Shape analysis is now widely used to evaluate the regional atrophy of subcortical structures in various neurological and psychiatric disorders (Zarei et al., 2010; Gelineau-Morel et al., 2012). Moreover, combining volumetric and morphological analyses will improve the accuracy and sensitivity of structural alterations.

In the present study, we hypothesized that IGE-GTCS patients with different drug responses would have diverse changes in the subcortical nuclei, and the structural alteration of subcortical nuclei may be potential biomarkers of drug responses in IGE patients. To verify this hypothesis, we conducted both volume and morphology analyses of subcortical structures with FSL-Integrated Registration and Segmentation Toolbox (FSL-FIRST) software in IGE-GTCS patients to determine specific patterns that might be a biomarker to predict which patients will develop drug resistance.



MATERIALS AND METHODS


Subjects

In order to make it easier for readers to understand, we made a schematic figure of the analytical methods (Figure 1). Forty-eight consecutive right-handed patients with IGE-GTCS admitted to the Nanjing Drum Tower Hospital from 2013 to 2019 were enrolled in the study. They met the following inclusion and exclusion criteria: (1) those diagnosed with idiopathic/hereditary generalized epilepsy with only GTCS according to the current International League Against Epilepsy (ILAE) classification of seizure types (Fisher et al., 2017) based on electroclinical symptomatology were included (we ruled out patients with myoclonic or absence seizures to exclude patients with juvenile myoclonic epilepsy or juvenile absence seizures); (2) subjects who had psychiatric disorders, brain structural lesions, systemic disease, or other MRI contraindications were excluded; (3) prospective clinical treatment follow-up of at least 1 year after an imaging investigation was required for inclusion; and (4) participation in a 3-T study MRI on the same scanner and 3D T1WI results were necessary for inclusion.
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FIGURE 1. Schematic figure of the analytical methods.


In patients, we established the drug response via the ILAE criteria (Kwan et al., 2010) at least at a 1-year follow-up point after the imaging scan and divided patients into seizure-free (SF) and DR groups. After 1 year of follow-up, 31 patients (11 females, mean ± SD age = 24.11 ± 10.62 years) were classified as SF, and 17 patients (9 females, mean ± SD age = 28.53 ± 9.91 years) were classified as DR. Of these patients, 15 SF patients and 3 DR patients had not taken medication before imaging (mean ± SD duration = 1.73 ± 2.08 years), and 30 patients (16 SF and 14 DR) were treated with monotherapy or polytherapy including valproate (VPA), levetiracetam (LEV), lamotrigine (LTG), oxcarbazepine (OXC), topiramate (TPM), carbamazepine (CBZ), phenytoin (PHT), clonazepam (CZP), and phenobarbital (PB) before the study (mean ± SD duration = 9.45 ± 7.29 years). The information of the drug exposure prior to MRI scan and treatment selection after enrollment is in Supplementary Table 2 (SocioDemographic).

Forty-eight age-matched and sex-matched NCs (17 females, mean ± SD age 25.63 ± 3.25 years) were enrolled during the same recruitment period. They underwent the same image scanning with the same quality control standards as the patients. Prior to the study, all subjects (patients and NCs) gave written informed consent, and this study was approved by the Research Ethics Committee of Nanjing Drum Tower Hospital.



MRI Acquisition

Brain scanning of all the subjects was performed on a Philips Healthcare (Best, the Netherlands) 3 T MR imaging scanner with an eight-channel head coil. High-resolution 3D T1WI was conducted using a 3D turbo field echo sequence (repetition time 9.8 ms, echo time 4.6 ms, inversion time 900 ms, flip angle 8°, voxel size 1.0 mm × 1.0 mm × 1.0 mm, and 192 slices). During the examination, the subjects were ordered to close their eyes and remain motionless.



Image Analysis

To investigate the alterations in subcortical structures, we first applied the DARTEL algorithm in the SPM12 toolbox1 to preprocess each anatomical image to perform intensity correction and skull dissection. A Bayesian model-based segmentation tool in FSL-FIRST2 was used to segment subcortical nuclei (bilateral thalamus, hippocampus, amygdala, nucleus accumbens, putamen, caudate, and palladium), cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM). No participant was excluded owing to poor structural segmentation, following FSL-FIRST guidelines3. Then, we calculated the volumes of the individual subcortical nuclei and the intracranial volume (ICV). For the subcortical nuclei of all subjects, the vertex index was calculated using the FSL vertex analysis script, first_utils script, which is based on the signed vertical distance from the corresponding surface mesh (a vtk file produced by using the FSL run_first_all script) in the Montreal Neurological Institute (MNI) template. A positive index indicated outward deformation or expansion of the surface of a given structure, whereas a negative index indicated inward deformation or atrophy of the surface of the structure. Finally, the degree of deformation value for all participants was computed and then used for statistical analysis.



Statistical Analysis

This study used IBM SPSS Statistics, Version 23.0, to determine a statistical description and make statistical inferences. A chi-square test was used to assess the classification variables. Analysis of variance (ANOVA) was performed to evaluate continuous variables. ANOVA was used for between-group comparisons (SF vs. DR, SF vs. NC, DR vs. NC, SF vs. DR vs. NC) of the volume of subcortical nuclei after adjusting the covariates (age, sex, and ICV). An analysis with a priori determination of the significance level at p < 0.05 was considered statistically significant, false discovery rate corrected (FDR corrected). The volume difference between the left and right amygdala was compared by using paired t-test in the three groups (SF, DR, and NC) separately. Intergroup differences in subcortical shape were assessed using a method based on a non-parametric approach for seven pairs of nuclei using the FSL randomization procedure and adjusting the covariates (age and sex). The findings were corrected for multiple comparisons using threshold-free cluster enhancement (TFCE) with a familywise error (FWE) rate of p < 0.05 by running 5,000 random permutations. Then, after controlling for age, sex, and ICV, the relationship between the volume and shape of the structures with seizure frequency and disease duration was analyzed by partial correlation.



SVM-Based Classification

To explore whether imaging indicators can be used to classify including SF vs. DR, DR vs. NC, SF vs. NC, we applied the LIBSVM toolbox for MATLAB to implement the linear support vector machine (LSVM) classification4. LSVM is one of the most widely used supervised machine learning methods (Cui et al., 2016). Its purpose is to obtain a classifier with high predictive ability by minimizing the empirical classification error on the training data while considering the complexity of the model. In this study, the SVM toolbox in MATLAB was used to verify the role of the morphology and volume of subcortical structures in the classification of subjects. Leave-one-out cross-validation (LOOCV) was adopted; that is, each subject was separately used as the test set in turn, and the remaining subjects belonging to the contrast group were used as the classifier to form the training set. We used the SVM with the linear kernel function, and the parameter C was set to 1. Discriminative features were derived from differential imaging indicators of seven pairs of subcortical structure volumes and shapes. The accuracy, sensitivity, specificity, and operating curve (ROC) of the classifier in the classification of test set data in each test were recorded. Then, the area under the curve (AUC) of the ROC was statistically compared based on the DeLong method. To test the sample size imbalance effect on the classification, a control analysis to select the same sample size of DR (n = 17) from NC (n = 48) was performed.



RESULTS


Clinical Features

Anatomical MRI data from 96 participants were included in the study, consisting of 31 SF patients, 17 DR patients, and 48 NCs. The demographic and clinical characteristics of the subjects are listed in Table 1. The baseline features of sex and age among the three groups (all p > 0.05) were generally well balanced. Patients who were not SF indeed had a higher seizure frequency (t = 19.700, p = 0.000) and had a longer illness duration (t = 23.896, p = 0.000) than SF patients. However, there was no significant difference in onset age between the two groups (t = 0.035, p = 0.852).


TABLE 1. Demographic and clinical characteristics of the subjects.
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MRI Features


MR Volumetry

We analyzed seven pairs of subcortical nuclei, including the bilateral thalamus, hippocampus, amygdala, nucleus accumbens, putamen, caudate, and palladium. The subcortical nuclei schematic is shown in Figure 2. There were significant differences in the volume of the left amygdala between the three groups (p = 0.008, uncorrected) (Table 2). Compared with NCs, DR patients showed a distinct decrease in the volume of the left amygdala (p = 0.004, FDR corrected, Figure 3A), and compared with SF patients, the volume of the left amygdala was reduced in DR patients (p = 0.029, uncorrected). There was no difference in the volume between SF patients and NCs (p > 0.05). Additionally, there was no significant difference in bilateral amygdala volume in NCs (p = 0.100) and SF patients (p = 0.164), but the volume of the left amygdala was smaller than that of the right amygdala in the DR group (p = 0.031) (Figure 3B and Supplementary Table 1). Interestingly, the thalamus and hippocampus did not show any significant alterations. Moreover, there was no significant difference in the shape (p > 0.05) and volume (p = 0.372) of the left amygdala between the medication group and the non-medication group.
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FIGURE 2. Schematic diagram of subcortical structures by the BrainNet Viewer. (A) Coronal; (B) sagittal; and (C) axial.



TABLE 2. Comparison of subcortical structure volumes among groups (p < 0.05).
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FIGURE 3. (A) Volume distribution of the left amygdala in patients and healthy controls. (B) Intragroup volume of the bilateral amygdala. SF, seizure free; DR, drug resistant; NC, normal control. The results were corrected for sex, age, and ICV (p < 0.05).




Vertex-Based Shape Analysis

Compared with NCs, DR patients showed significant regional atrophy in the shape of the left amygdala (L_Amyg: 616/911 67.62%, p < 0.05, FWE corrected), which was located in the basolateral region (Figure 4B). Meanwhile, a similar part of the left amygdala in the DR group was also slightly reduced compared with the amygdala of SF patients (L_Amyg: 172/872 19.72%, p < 0.05, FWE corrected) (Figure 4A). In addition, the shape of the left putamen (L_Puta: 94/2,969 3.17%, p < 0.05, FWE corrected) showed slight inward deformation (atrophy) in the DR group compared with that of NCs. Furthermore, compared with controls, SF patients had minor inward deformation in the shape of the left pallidum (L_Pall: 15/1,128 1.33%, p < 0.05, FWE corrected).
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FIGURE 4. Vertex-based shape analysis results of the comparison between groups at a significance level of p < 0.05 (FWE corrected) and controlling for age and sex. Red arrows point outward (expansion) and blue arrows point inward (atrophy). The x- and y-axes indicate different directions (dorsal, ventral, medial, lateral, anterior, posterior) to show different location information. (A) The seizure free > the drug resistant, the basolateral region of the left amygdala: 172/872 19.72%; (B) the drug resistant < the normal controls, the basolateral region of the left amygdala: 616/911 67.62%.




Correlation Between MRI Measurements and Clinical Parameters

The correlations between the morphology and volume changes of subcortical nuclei and the seizure frequency and disease duration of IGE are provided in Table 3. The data of all patients showed that seizure frequency was negatively correlated with left amygdala shape (r = −0.438, p = 0.003, uncorrected) and volume (r = −0.324, p = 0.03, uncorrected) (Table 3 and Supplementary Table 2). In the DR group, although there was no statistically distinct difference, there was a trend of correlation between the shape and volume of the left amygdala and seizure frequency. Moreover, the volume of the left thalamus in the DR group was significantly negatively related to seizure frequency (r = −0.689, p = 0.006, uncorrected), but a correlation was not found in all patients. No correlation was found for the disease duration in either patient group. On the other hand, left amygdala volume was positively correlated with right amygdala volume in the NC group (r = 0.599, p = 0.000) and SF (r = −0.522, p = 0.003), but this correlation was not found in the DR group (r = 0.373, p = 0.140) (Supplementary Table 1).


TABLE 3. Correlation among volume and shape changes of subcortical nuclei along with seizure frequency and IGE duration.
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SVM Classification Results

The results of the LSVM classification are shown in Figure 5 and Supplementary Table 3. Discriminative features were derived from age and differential indicators including the volume and shape of the left amygdala and palladium and putamen. The best results are retained for each group classification. The demographical feature of age among the three groups (all p > 0.05) was generally well balanced, but the age of our subjects (IGE patients) ranged from 12 to 57 years old. Therefore, age was regarded as a feature in this study. The characteristics that identify SF patients from NCs are age, the shape of the left amygdala and palladium, and volume of the left amygdala; those that differentiate DR patients from NCs are age, the shape of the left amygdala and putamen, and volume of the left amygdala; and those that discriminate SF patients and DR patients include age, shape, and volume of the left amygdala and palladium. LSVM distinguished DR patients from NCs with an accuracy of 84.62%, sensitivity of 58.82%, specificity of 87.50%, and AUC of 0.88, whereas the accuracy, sensitivity, specificity, and AUC for differentiating SF patients from NCs were 70.89, 41.94, 89.58%, and 0.68, respectively. In terms of distinguishing DR patients from SF patients, the accuracy, sensitivity, specificity, and AUC were 77.08, 90.32, 52.94%, and 0.82, respectively. Furthermore, LSVM distinguished DR patients (n = 17) from NCs (n = 17) with an accuracy of 82.35%, sensitivity of 82.35%, specificity of 82.35%, and AUC of 0.90, and the classification features are the same as above (Supplementary Figure 1).
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FIGURE 5. ROC curve of the classification between seizure-free and drug-resistant patients (A), between seizure-free patients and NCs (B), and between drug-resistant patients and NCs (C).




DISCUSSION

In this study, alterations in subcortical nuclei in IGE-GTCS patients with different drug responses were investigated by MR volume and vertex-based shape analysis. Both volume and morphology analysis of subcortical structures showed atrophy in the basolateral region of the left amygdala in DR patients. Moreover, there were significant correlations between the volume and shape changes and between the volume and seizure frequency. The correlation of bilateral amygdala volume was not present in the DR group. The volume of the left thalamus in the DR group was significantly related to seizure frequency. The LSVM results revealed AUCs of 0.8159, 0.6848, and 0.8811 for the classification between SF and DR patients, between SF patients and NCs, and between DR patients and NCs, respectively.


Atrophy of the Left Amygdala, Especially in Basolateral Areas Contributed to Drug Resistance

It is well known that the amygdala is regarded as part of the limbic system of the brain and is subdivided into three groups comprised of the basolateral complex, the corticomedial nucleus, and the central nucleus. The amygdala plays a crucial role in many physiological and pathological mechanisms, including emotion regulation, memory organization, epileptogenicity, and others (Janak and Tye, 2015). In this study, pharmacoresistant patients had more frequent seizures than SF patients. There is growing evidence that seizure-induced alterations could also be generated by recurrent seizures, especially in structures vulnerable to damage (e.g., the amygdala or hippocampus) (Duncan, 2002; Lopim et al., 2016). One study has shown that stimulating the right amygdala can cause negative emotions, especially fear and sadness, and stimulating the left amygdala can cause pleasant or unpleasant (fear, anxiety, and sadness) emotions (Lanteaume et al., 2007). It is reasonable to speculate that repeated seizures induce bad experiences and increase negative emotions in DR patients, resulting in damage to the left amygdala. Accumulating evidence suggests that an accelerated loss of neurons in the epileptogenic zone has conventionally been considered to be a factor associated with poor prognosis in epilepsy (Salmenpera et al., 2001). Furthermore, previous studies have shown that neurons in the basolateral amygdala consist of lateral (LA), basal (BA), and basomedial (BM) cell groups and play an important role in associative learning (Zhang and Li, 2018). The basolateral subregion receives information on the external environment from the sensory thalamus and sensory cortex, which strongly project to the LA. The basolateral amygdala is interconnected with sensory contact areas and cortical areas, especially the hippocampus, midline, and orbital prefrontal cortex (McDonald, 1998; Solano-Castiella et al., 2010). In our research, the contraction in the basolateral area as a functional area of the amygdala was more compelling than other findings. Meanwhile, substantive evidence has shown that thalamocortical networks play an essential role in GTCS (Bernhardt et al., 2009). Notably, there are complex fiber projections between the thalamus, amygdala, and hippocampus (McDonald and Mott, 2017; Aizenberg et al., 2019). Consequently, shrinkage of the left amygdala in DR patients can be understood and explained. A study showed that chronic epilepsy and memory impairment in patients with DR medial temporal lobe epilepsy (TLE) are related to different patterns of histopathological changes in the hippocampus, amygdala complex, and entorhinal region. Major histopathological alterations included neuronal cell loss and cellular and fibrillary gliosis in the lateral and basal nuclei of the amygdala. Patients with secondary GTCS showed more serious damage in these areas (Yilmazer-Hanke et al., 2000). It is universally accepted that the amygdala kindling model in fully kindled rats may be an available model for DR patients with complex partial seizures with secondary generalization (Loscher et al., 1986; Welzel et al., 2019). On the other hand, some studies have demonstrated that the amygdala and amygdala pathways can predict the treatment outcome of social anxiety disorder and affect therapeutic effects (Klumpp and Fitzgerald, 2018). Experimental evidence suggests that emotional stimuli can influence many different aspects of cognition and behavior, resulting in disrupted cognitive goals and less optimal task performance (Vuilleumier et al., 2001; Ladouceur et al., 2018). Emotional processing and regulation interact with treatment in a number of diseases. It is well established that epilepsy is a common neurological disorder that can be complicated with neurobehavioral comorbidities, including cognitive disorders and psychiatric disorders (Hermann et al., 2008; Lin et al., 2012). As a result, our finding that patients with poor drug responses have atrophy in the left amygdala, especially in basolateral areas, is reasonable. Brain subcortical structural changes across several regions, including the thalamus, hippocampus, pallidum, and putamen, were formerly reported in IGE patients (Badawy et al., 2013; Kim et al., 2013; Pitkänen et al., 2016). Previous studies have not found obvious amygdala changes, which may be due to the lack of subgroup analysis of drug responses. On the other hand, we did not find a difference between the thalamus and hippocampus, which may be due to insufficient obvious differences, the influence of drug treatment, the degree of social support, etc. Furthermore, the vertex-based morphological analysis showed slight atrophy of the left pallidum and putamen in patients, which is consistent with the findings in previous studies (Pitkänen et al., 2016; Beghi et al., 2019). This shows that the left pallidum and putamen may play an unknown role in IGE-GTCS.

Notably, the volume and shape atrophy in the left amygdala found in the between-group comparison was negatively correlated with seizure frequency, suggesting that basolateral regions of the amygdala are preferentially affected in IGE patients. As a clinical index of epilepsy, seizure frequency can indirectly reflect the severity of the disease. The negative correlation indicated that the more frequent seizures were, the more obvious the damage to the amygdala in IGE-GTCS patients was. In the DR group, although there was no obvious relevance in clinical indicators and imaging indicators, there was a trend in relativity. This may be because the sample size was too small to achieve a statistically significant difference. The correlation of bilateral amygdala volume was not present in the DR group. This may indicate that changes in the amygdala are related to drug resistance. In addition, the volume of the left thalamus in the DR group was significantly negatively related to seizure frequency. This correlation was not found in the SF group or among all patients. This may suggest that the left thalamus is related to drug resistance. Several studies have suggested that the anterior thalamic region (ANT) is vital to the maintenance and propagation of seizures explained by its extensive connections (Bouwens van der Vlis et al., 2019). The ANT is the most widely used target for deep brain stimulation (DBS) in the treatment of DR epilepsy (Fisher et al., 2010). These findings may reveal the relationship between disease severity and imaging indicators, which will help improve the present understanding of the emergence of drug resistance, predict DR patients, and provide an advanced therapeutic target for DR epilepsy.



Classification Performance of the SVM

We explored the classification results of drug responses in IGE-GTCS patients using LSVM with imaging indicators. Although the results are not very satisfactory, they provided us with an opportunity to judge the efficacy of the drug clinically. This is a brave attempt in the study of prognostic biomarkers in DR epilepsy. In the future, this needs to be verified in animal experiments and brain connectomics studies. The mediocre performance may have been due to the following reasons. First, our sample size was not large enough though it was essential for classification performance, and the sample size imbalance effect was also a source of poor classification results. In addition, amygdala atrophy may have a complex pathophysiological mechanism and may not be suitable for classification. Our findings support the clinical validity of left amygdala contraction as a potential means for clinicians to predict the efficacy of a drug in IGE patients who have no obvious lesions on conventional MRI.



Limitations and Settlements

The main limitation of our study is that the sample size of the patients in the DR group was small. This may cause the statistical effect to be erroneously low. For example, the difference in the left amygdala volume between the DR group and the SF group was not corrected for multiple comparisons. Clinical and imaging indicators had related trends, but no significant difference was found. Moreover, a larger sample size can provide more representative features for obtaining a more stable and reliable classification performance. However, the recruitment of DR subjects is still challenging owing to the low incidence and the demands of follow-up work. Second, although the mechanism of the effect of AEDs on brain structure is unclear, we cannot eliminate this drug effect. Some subjects had already taken AEDs before the study began. Some studies have shown that AEDs can affect a person’s brain structure, resulting in pseudoatrophy of the brain or neurogenesis (Papazian et al., 1995). On the positive side, we examined the changes in the nuclei in patients who were taking medication at baseline and those who were not. There was no significant difference in the shape and volume of the left amygdala between these two groups. We can cautiously say that the drug may not have a significant effect on the left amygdala in our study. Moreover, we did not perform a psychiatric evaluation, so we cannot determine the patients’ mental state to further verify our results. Finally, although we obtained relatively good classification accuracy by LSVM based on the volume and shape analysis of subcortical structures, it is still not suitable to serve as a substitute for traditional clinical methods for evaluating drug resistance. In the future, more subjects need to be included in studies using more advanced classifiers to further validate our findings. Hopefully, more effective and high-quality imaging indicators can be provided for the clinic, which can identify DR patients, thereby reducing drug side effects and improving the quality of life of patients by increasing social support and care.



CONCLUSION

The findings from this study suggested the presence of focal atrophy of the left amygdala located in the basolateral region, which may help predict drug response and suggest a potential therapeutic target such as DBS.
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Although mounting neuroimaging studies have greatly improved our understanding of the neurobiological mechanism underlying internet addiction (IA), the results based on traditional group-level comparisons are insufficient in guiding individual clinical practice directly. Specific neuroimaging biomarkers are urgently needed for IA diagnosis and the evaluation of therapy efficacy. Therefore, this study aimed to develop support vector machine (SVM) models to identify IA and assess the efficacy of cognitive behavior therapy (CBT) based on unbiased functional connectivity density (FCD). Resting-state fMRI data were acquired from 27 individuals with IA before and after 8-week CBT sessions and 30 demographically matched healthy controls (HCs). The discriminative FCDs were computed as the features of the support vector classification (SVC) model to identify individuals with IA from HCs, and the changes in these discriminative FCDs after treatment were further used as features of the support vector regression (SVR) model to evaluate the efficacy of CBT. Based on the informative FCDs, our SVC model successfully differentiated individuals with IA from HCs with an accuracy of 82.5% and an area under the curve (AUC) of 0.91. Our SVR model successfully evaluated the efficacy of CBT using the FCD change ratio with a correlation efficient of 0.59. The brain regions contributing to IA classification and CBT efficacy assessment were the left inferior frontal cortex (IFC), middle frontal cortex (MFC) and angular gyrus (AG), the right premotor cortex (PMC) and middle cingulate cortex (MCC), and the bilateral cerebellum, orbitofrontal cortex (OFC) and superior frontal cortex (SFC). These findings confirmed the FCDs of hyperactive impulsive habit system, hypoactive reflecting system and sensitive interoceptive reward awareness system as potential neuroimaging biomarkers for IA, which might provide objective indexes for the diagnosis and efficacy evaluation of IA.

Keywords: internet addiction, cognitive behavior therapy, support vector classification, support vector regression, biomarker


INTRODUCTION

In the last two decades, with the development of digital information technology, the internet has brought great convenience and benefit to people’s lives, but the popularity of the internet has also brought new public health issues, such as internet addiction (IA). IA, characterized by excessive internet craving and habitual and uncontrolled use of the internet (Hormes et al., 2014; Wang et al., 2019), has widely prevailed all over the world, with a prevalence ranging from 0.2 to 57.5% (Darvesh et al., 2020). Even in medical students, the pooled incidence rate of IA is as high as 30.1% (Zhang et al., 2018). Furthermore, the incidence of IA is rising rapidly. The prevalence rate of IA has risen steeply almost ninefold in Hong Kong in the last 10 years (Chung et al., 2019). Additionally, with the popularity of mobile internet, the risk of IA in children has become an increasing concern (Mihajlov and Vejmelka, 2017). Surveys show that almost one-quarter of early teenagers spend 40 h online per week (Ayar et al., 2017), and more than 30% of children under 2 years old have used mobile internet devices (Young, 2017), reflecting the younger age trend of IA. Collectively, epidemiological features, including worldwide prevalence, high incidence, rapidly increasing incidence and younger age trend, make IA a public health threat as serious as substance addiction.

As one of the most widely used noninvasive technologies for investigating brain function in vivo, functional magnetic resonance imaging (fMRI) has greatly improved our understanding of the neuropathological abnormalities underlying IA. Using resting-state functional connectivity (FC), an fMRI technology reflecting the functional communication of preselected regions of interest (ROIs), researchers have found hyperactive function of the striatum and orbitofrontal cortex (OFC) (Kuehn and Gallinat, 2015; Ge et al., 2017), indicating that IA has similar pathological reward awareness to substance addiction. In a longitudinal fMRI study, the FC of the putamen in individuals with IA was also found to be significantly correlated with the online time per day, suggesting that the habitual use of the internet was related to hyperactive impulsive habit system in the brain (Lee et al., 2021). Using functional connectivity density (FCD) analysis, a novel method that overcomes the bias of FC produced by the preselection of ROIs, to analyze whole-brain functional communication, we further found altered dorsolateral prefrontal cortex (DLPFC) function in our prior study (Wang et al., 2019), representing the defective reflecting system in IA. These fMRI studies have provided us with the potential neuropathologic mechanism underlying IA; however, the average differences between groups are insufficient in guiding individual clinical practice directly. There is still a lack of biomarkers to diagnose IA and evaluate the effectiveness of therapy on IA.

Recently, machine learning (ML) has increasingly gained popularity in the neuroimaging research field. Through appropriate features, ML models can identify neuropsychiatric diseases and predict the effectiveness of treatment accurately, which provides us with an available way to explore potential biomarkers for neuropsychosis diagnosis and the evaluation of therapy efficacy (Arbabshirani et al., 2017). Feature selection, aiming to find appropriate features to develop model, is a necessary step in ML studies, especially in the neuroimaging field. Due to the vast amount of data in neuroimaging studies, overfitting is inevitable without feature selection (Chiang et al., 2015). The two-sample t-test is a commonly used approach for feature selection in pattern recognition, which can determine the features distributed differently in two groups, meaning that the corresponding features have excellent discrimination ability (Liu et al., 2019). Support vector machine (SVM), which includes support vector classification (SVC) and supporter vector regression (SVR), is currently the most popular algorithm applied in neuroimaging studies for its outstanding performance on pattern recognition and regression prediction in small-sample datasets (Bruin et al., 2019). Using the FC of the ventral tegmental area and substantia nigra to build an SVC model, Wen et al. (2020) successfully identified individuals with IA, implicating the potential of the functional connectivity indexes of interoceptive reward awareness system as neuroimaging markers of IA. However, due to the priori selection of ROIs, seed-based FC can only partly provide SVC with local features referred to ROIs. The lack of global features of information communication might reduce the performance of SVC (Guo et al., 2017). Additionally, no studies have focused on the evaluation of IA treatment efficacy, although SVR has been applied in the evaluation of IA severity (Song et al., 2020). Thus, an SVM study based on more comprehensive features is needed to explore potential effective biomarkers for both IA diagnosis and the evaluation of therapy efficacy.

Functional connectivity density analysis, computing the temporal correlations of each voxel to all other voxels, can provide SVM with more comprehensive features without bias. Based on voxel-based FCD, data-driven SVM with global features will provide us with an opportunity to acquire specific neuroimaging markers for IA diagnosis and the evaluation of therapy efficacy. Thus, this study aims to explore potential biomarkers for IA diagnosis and the evaluation of therapy efficacy using a combination of FCD analysis and SVM models. For this purpose, we first computed the local FCD (lFCD), long-range FCD (lrFCD), and global FCD (gFCD) of 27 individuals with IA and 30 healthy controls (HCs) and then selected the discriminative FCDs as effective features by a 2-sample t-test. After parameter optimization, SVC models were established to identify IA. After cognitive behavior therapy (CBT), an effective treatment for various addictions, including IA (Goslarp et al., 2020), FCD changes were used as features in SVR for the evaluation of the efficacy of CBT. We hypothesized that (1) FCDs would accurately discriminate individuals with IA from HCs by the SVC model, and (2) FCD changes would well represent symptom improvement after CBT by the SVR model.



MATERIALS AND METHODS


Participants

The study protocol was approved by the Sichuan Regional Ethics Review Committee on Traditional Chinese Medicine (2016KL-005) and carried out in accordance with the Declaration of Helsinki. All enrolled participants voluntarily participated in the study and signed informed consent forms before inclusion.

Sixty participants (30 individuals with IA and 30 HCs) aged between 18 and 30 were initially recruited from universities. Three individuals with IA failed to complete the CBT sessions due to scheduling conflicts or personal issues. Thus, the final dataset included data obtained from 27 individuals with IA and 30 HCs. Fifteen of 27 individuals with IA had participated in our former fMRI study detecting functional abnormalities in IA (Wang et al., 2019) and further consented to take part in the present CBT study. Each individual with IA met the diagnostic criteria for IA (assessed by the Internet Addiction Questionnaire), while all the demographically matched HCs did not meet the criteria for IA. The Internet Addiction Questionnaire developed by Young was the first diagnostic tool for IA (Young, 1998). Based on the original version of Young, Beard proposed a wider applied questionnaire (Beard and Wolf, 2001), which was composed of eight items. The first five items were characteristics of IA, and the other three were negative consequences of IA. All of the first five items and at least one of the last three items were required for a diagnosis of IA. Young’s Internet Addiction Test (IAT) was used to assess the severity of IA, and a score greater than 50 was required in the IA group (Yoon et al., 2017). Participants with organic diseases or a history of substance abuse (such as alcohol dependence, nicotine addiction or any other drug addictions) were excluded from our study. Additionally, we also excluded pregnant or lactating females.



Questionnaire

In addition to IAT, the Self-rating Depression Scale (SDS) and Self-rating Anxiety Scale (SAS) were completed by all participants and were applied to assess depression and anxiety, respectively. All these clinical scales were translated into Chinese versions. We also collected information on sex, age, and years of education by a self-designed questionnaire.



Cognitive Behavior Therapy

The complete procedure of this study is shown in Figure 1. After baseline assessment and fMRI scan, all individuals with IA were treated with CBT, which was led by an experienced licensed psychotherapist. A total of 27 individuals with IA completed the 8-week CBT protocol. The CBT protocol consisted of 8 sessions, and each session lasted 1.5–2 h. According to the modularized CBT protocol slightly modified from Park’s version (Park et al., 2016), the following topics were discussed in the 8 sessions: (1) an introduction of the negative consequences of excessive use of the internet, (2) the motivation behind excessive internet use, (3) techniques for managing pressure, (4) techniques for recognizing addiction when it happens, (5) five steps to change, (6) techniques to deal with problems, (7) techniques to recover family relationships; and (8) future plans. One topic was discussed in each session.


[image: image]

FIGURE 1. Flow diagram of study procedure. At baseline, fMRI images were acquired from both the HC and IA groups. Based on informative FCDs, the SVC model was applied to the identification of individuals with IA. After 8-week CBT sessions, individuals with IA were rescanned for fMRI data. The change in informative FCDs was used to evaluate symptom improvement by the SVR model. IA, internet addiction; HC, heathy control; SVC, support vector classification; SVR, support vector regression; IAT, Young’s Internet Addiction Test; CBT, cognitive behavior therapy.


To ensure the pure effect of CBT, individuals with IA were informed not to take any other medicines or interventions during the research term. Within 3 days after CBT sessions, we assessed symptom severity again by IAT.



Resting-State fMRI Data Acquisition

All fMRI images were acquired by a 3.0 T MR imaging system (GE Discovery MR 750, United States) with a standard 8-channel head coil. The HC group took part in only one fMRI scan, while the IA group participated in two scans, one within 3 days before CBT treatment and the other within 3 days after CBT sessions. During data collection, ear plugs and soft pads were used to restrict noise and displacement of head, respectively. The participants were instructed to keep their eyes closed and remain awake with nothing in mind during the whole scanning term. A standard echo planar imaging sequence was adopted to collect functional images, with the following parameters in our prior study (Wang et al., 2020a): repetition time = 2000 ms, echo time = 30 ms, flip angle = 90°, field of view = 24 cm × 24 cm, image matrix = 64 × 64, no gap, and voxel size = 3.75 mm × 3.75 mm × 4.4 mm. For this scan sequence, 255 volumes were obtained, and each volume included thirty-five transverse slices.



Date Preprocessing and FCD Calculation

The Neuroscience Information Toolbox (NIT)1 was used for data preprocessing. To minimize the influence of an unstable magnetic field in the initial scanning, the first 5 volumes of each participant were discarded. Subsequently, slice timing and spatial realignment were conducted to correct time delay and head motion, respectively. Participants with more than 2° rotation or more than 2 mm displacement were excluded from the present study. The functional images were then spatially normalized to a standard Montreal Neurological Institute (MNI) template and resampled to 3 mm × 3 mm × 3 mm. After that, we regressed out nuisance signals, including 24 head motion parameters and signals from cerebral spinal fluid and white matter. Ultimately, to reduce the interference of low-frequency drift and high-frequency noise, bandpass filtering (0.01–0.08 Hz) was conducted.

To address concerns about the influence of head motion on fMRI analysis, voxel-specific framewise displacement (FD) was computed (Jenkinson et al., 2002; Power et al., 2012; Yan et al., 2013). Two-sample t-test showed that there was no significant intergroup difference at baseline (P > 0.05, mean ± SD: 0.0407 ± 0.0123 for HCs and 0.0419 ± 0.0172 for the IA group). Additionally, no significant difference before and after CBT in the IA group was observed based on the paired t-test (P > 0.05, mean ± SD: 0.0419 ± 0.0172 for pretreatment and 0.0436 ± 0.0189 for posttreatment). Furthermore, to rule out the effect of head motion on the following analyses, we also calculated FCD with and without scrubbing the frames with FD > 0.5 (Yamashita et al., 2020).

In our study, the FCD was calculated using the NIT according to the method proposed by Tomasi and Volkow (2010a, b). Initially, Pearson correlations between the time course of each voxel and those of other voxels were calculated. The connections between two voxels with a correlation coefficient of R > 0.6 were considered as significant connections according to the previous study (Tomasi and Volkow, 2010a). The gFCD was defined as the total number of efficient functional connections between a given voxel and all other voxels. The lFCD was defined as the total number of efficient functional connections between a given voxel and its neighboring voxels. The lrFCD was defined as the number of efficient functional connections between a given voxel and other distant voxels. Thus, the combination of gFCD, lFCD, and lrFCD can well describe the role of a given voxel hub in global, local and long-range information transmission. Finally, the whole-brain gFCD, lFCD, and lrFCD maps were spatially smoothed with a Gaussian kernel of 6 mm.



SVM Modeling

The main steps of SVM modeling are described in Figure 2, comprising feature selection, model building, and performance evaluation (Jie et al., 2018; Wang et al., 2020b). Due to the vast amount of data, the selection of informative features from tremendous neuroimaging data is necessary in ML studies that are based on neuroimaging (Chiang et al., 2015) since it decreases the computational burden and improves the performance of SVM models. As in previous study, the two-sample t-test (p < 0.005) was used to select features in the current study (Suk et al., 2015; Kwak et al., 2020). After the features with discriminative information were selected, we adopted the Fisher score as the feature weight in the SVC model (Germond et al., 2018), which is defined in the following equation:
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FIGURE 2. The SVM schematic flow. (A) In the SVC model, the gFCD, lFCD, and lrFCD differences between the HC and IA groups (pretreatment) were used as features for pattern identification. Leave-one-out cross-validation was applied to performance assessment. (B) In the SVR model, the alterations of discriminative gFCD, lFCD, and lrFCD were used as features to predict the improvement of IAT. The performance of the SVR model was represented by the correlation of actual IAT scores to predict IAT scores collected in each leave-one-out-cross-validation fold. IA, internet addiction; HC, heathy control; SVC, support vector classification; SVR, support vector regression; IAT, Young’s Internet Addiction Test; CBT, cognitive behavior therapy; ACC, accuracy; R, correlation coefficient.


[image: image]

Here, mi represents the average of the i-th feature in all samples, n1 and n2 are the number of samples in the HC and IA groups, m1i and m2i are the respective mean values of the i-th feature in each group, and [image: image] and [image: image] represent the respective variance of the i-th feature in each group. Since the Fisher score ranks features in order of how discriminate they are, consequently, a higher Fisher score value contributes more information to the SVC model.

To further confirm the selected FCDs as potential biomarkers, the ratio of changes in the informative FCDs in IA group was introduced into the SVR model as features to assess the efficacy of CBT. The contribution of each feature to the SVR model was evaluated by mutual information, which weighs the features by the correlation and redundancy of features. High mutual information represents a high prediction ability and low redundancy (Gan et al., 2019).

LIBSVM2 was implemented in this study to build SVC and SVR models (Chang and Lin, 2011). For classification, the binary SVC model with a radial basis function (RBF) kernel was built according to the extracted discriminative FCDs of the IA (pretreatment) and HC groups. To optimize the classifier and evaluate the performance of SVC, we used leave-one-out cross-validation (LOOCV) and grid search (hyperparameter optimization for C and gamma) to train the data. The performance of the classification was described as the mean accuracy in LOOCV and area under the curve (AUC). In addition, a permutation test was applied with 1000 rounds to assess the significance of classification accuracy (P < 0.05).

Through building the SVR model, we aimed to evaluate symptom improvement by FCD changes after CBT in individuals with IA. Thus, the ratio of FCD changes (change/baseline of FCD) and IAT score improvement (change/baseline of IAT score) were introduced into the SVR model as features and labels, respectively. Grid search and LOOCV were also used to optimize and assess the performance of SVR. Pearson’s correlation coefficient was computed between the actual IAT scores and the predictive scores collected in all LOOCV folds. A 1000 times permutation test with a P-value < 0.05 was further performed to ensure the significance of the result.



Statistical Analysis

Demographic characteristics and treatment response were analyzed by SPSS 18. Continuous variable (e.g., age, IAT score) differences between HCs and individuals with IA at baseline were compared by two sample t-test, while the difference within the IA group before and after CBT was compared by paired t-test. Categorical variable (e.g., gender) differences were compared by the chi-squared test.

As described in section “SVM Modeling,” the findings of two-sample t-test were applied to feature selection using the Resting-State fMRI Data Analysis Toolkit plus (RESTplus V1.24)3 (Jia et al., 2019).



RESULTS


Demographic Characteristics and Treatment Response

A total of 57 participants (27 individuals with IA and 30 HCs) were included in the final data analysis. No statistically significant differences were observed in sex, age, or years of education between the IA group and the HC group (P > 0.05). Individuals with IA exhibited higher IAT, SDS, and SAS scores (P < 0.05). After 8 weeks of CBT, significant decreases in IAT, SDS, and SAS scores were observed in the IA group (P < 0.05) (see Table 1).


TABLE 1. Demographic characteristics and treatment response.

[image: Table 1]


Feature Selection

Two-sample t-test was used to select informative features for subsequent model building. The indiscriminative FCDs were filtered out, and only FCDs with a P-value < 0.005 were selected as feature vectors (see Table 2). As shown in Figure 3A, in comparison to HCs, individuals with IA exhibited increased gFCD in the right cerebellum and decreased gFCD in the left angular gyrus (AG) and superior frontal cortex (SFC). Figure 3B shows the enhanced lFCD of individuals with IA in the right PMC, middle cingulate cortex (MCC), and the bilateral cerebellum. The IA group also showed higher lrFCD in the left/right orbitofrontal cortex (OFC) as well as lower lrFCD in the left AG, inferior frontal cortex (IFC), and middle frontal cortex (MFC) and the bilateral SFC, as shown in Figure 3C.


TABLE 2. Discriminative gFCD, lFCD and lrFCD between HCs and individuals with IA.
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FIGURE 3. Discriminative gFCD, lFCD, and lrFCD between HCs and individuals with IA. (A) Discriminative gFCD. (B) Discriminative lFCD. (C) Discriminative lrFCD and (D) The summary of these discriminative FCDs based on BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al., 2013). The red nodes represent the interoceptive reward awareness system, the blue nodes represent the impulsive habit system, and the yellow nodes represent the reflecting system. The red up arrows represent increased FCDs, while the blue down arrows represent decreased FCDs. g, gFCD; l, lFCD; lr, lrFCD; L, left; R, right; SFC, superior frontal cortex; OFC, orbitofrontal cortex; MFC, middle frontal cortex; IFC, inferior frontal cortex; PMC, premotor cortex; MCC, middle cingulate cortex; AG, angular gyrus.


According to the tripartite neurocognitive model (Wei et al., 2017), these results can be summarized as hyperactive impulsive habit system, hypoactive reflecting system, and sensitive interoceptive awareness system, which were proposed as the main pathological mechanism of IA (Figure 3D). With all bad frames scrubbed, the reanalysis produced similar results, which are shown in Supplementary Figure 1.



SVC Results

Using gFCD, lFCD and lrFCD, the binary SVC successfully discriminated individuals with IA from HCs with a mean accuracy of 82.5% (Figure 4A), which was ensured by a permutation test (P < 0.05). Figure 4B shows the receiver operating characteristic (ROC) curve of this SVC model, the AUC of which is 0.91. Similar results were also obtained after scrubbing the bad frames (Supplementary Figure 2).


[image: image]

FIGURE 4. The classification performance of SVC model. (A) The classification results between the IA and HC groups. (B) The receiver operating characteristic curve of the SVC model.




SVR Results

As shown in Figure 5, the SVR model successfully predicted symptom improvement after CBT. Based on the variation ratio of FCDs (change/baseline), the SVR model predicted an IAT score decrease after treatment with a correlation efficient of 0.59. The results were validated by a permutation test (P < 0.05). The repeated analysis after the bad frames were scrubbed produced similar results (Supplementary Figure 3).


[image: image]

FIGURE 5. The regression performance of SVR model. Correlation analysis between the actual IAT change ratio and the predictive change ratio predicted by SVR.




Feature Contribution

The contribution of each feature to the SVM models is ranked in Figure 6. According to the Fisher scores, the lFCD of the right cerebellum and the lrFCD and gFCD of the left SFC were the most important features in the SVC model (Figure 6A). The lFCD of the left cerebellum and the lrFCD of the bilateral SFC contributed most to the SVR model, since those features had the highest mutual information (Figure 6B).
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FIGURE 6. The feature contribution. (A) The Fisher score of each feature in the SVC model. (B) The mutual information of each feature in the SVR model.




DISCUSSION

Using data-driven SVM models, we successfully identified individuals with IA and evaluated the effectiveness of CBT. To our knowledge, the present study is the first to explore unified biomarkers for both diagnosis and therapy efficacy evaluation in psychological neuroimaging using SVM models. The brain regions contributing to IA classification and the evaluation of CBT efficacy were the left IFC, MFC and AG, the right PMC and MCC, and the bilateral SFC, OFC and cerebellum, which were compatible with the tripartite neurocognitive model of IA (Wei et al., 2017). In the well-accepted tripartite neurocognitive model, the pathological mechanism of IA was attributed to three key abnormal systems — hyperactive impulsive habit system, hypoactive reflecting system, and sensitive interoceptive awareness system (Wei et al., 2017).


Hyperactive Impulsive Habit System

The impulsive habit system in the tripartite neurocognitive model is responsible for fast, automatic, unconscious, and habitual behaviors (Wei et al., 2017). In the current study, the hyperfunction of the right PMC and bilateral cerebellum in individuals with IA, which were thought to contribute to the habitual or compulsive use of the internet, was detected and further found to contribute to IA identification and the evaluation of CBT efficacy (Wang et al., 2020a).

As a key neural system that generates automatized behavior to adapt to circumstances, the habit system is dedicated to transiting goal-directed behavior to response-stimulate habitual behavior (Everitt and Robbins, 2005). The hyperactive habit system is considered part of the mechanism underlying substance dependence (Zilverstand et al., 2018), accounting for the transition from voluntary drug use (response-outcome goal-directed behavior) to habitual and compulsive drug abuse (response-stimulate habitual behavior) (Everitt and Robbins, 2005). As a behavioral addiction, IA manifests with habitual and compulsive use of the internet (Seo and Ray, 2019). Under the framework of associative learning theory, previous psychological studies have revealed the aberrant transition process from goal-directed behavior to habit-based behavior in individuals with IA (Zhou et al., 2018; Gong et al., 2020), demonstrating the abnormal habit behavioral pattern built by continuous online playing.

Neuroimaging evidence of aberrant habit system in IA was also revealed by neuropathology studies. A number of studies have found altered function of the PMC in IA (Cheng and Liu, 2020; Shin et al., 2020), which is a key region of the habit system accounting for the transformation of memory into a particular response sequence (Abe and Hanakawa, 2009). The cerebellum, traditionally considered a pure motor center, is now concerned for its various cognitive functions, including habit formation. The cerebellum is involved in rapid and automatic behavioral responses in substance dependence, accounting for the habitual and compulsive drug abuse (Miquel et al., 2019, 2020). In IA studies, increased activations in the cerebellum were also found in individuals with IA when exposed to internet cues, implicating automatic habitual reactions to internet (Schmitgen et al., 2020). Furthermore, the hyperactivity of the PMC-cerebellar loop was found both in IA and substance addiction (Yalachkov et al., 2009; Wang et al., 2020a), suggesting the common pathological changes in the habit system in IA and substance dependence.

In line with the tripartite neurocognitive model, the hyperactive impulsive habit system was found valuable in IA identification and the evaluation of therapy efficacy in our study, further clarifying the abnormal habit formation process in habitual and compulsive use of the internet. According to the Fisher scores, the right cerebellum was one of the most contributive regions to the SVC model, indicating that the hyperconnected right cerebellum might be the discriminative characteristic of IA. The mutual information further revealed that the reduced connectivity of the left cerebellum contributed most to the SVR model, implicating that the effect of CBT on IA was closely associated with the compensatory decrease in left cerebellum connectivity. Thus, the impulsive habit system might be the key factor for IA diagnosis and treatment.



Hypoactive Reflecting System

According to the tripartite neurocognitive model, the reflecting system is involved in planning, problem solving, and inhibition control (Wei et al., 2017). In the present study, hypoactive FCDs in the right DLPFC (comprising the SFC and MFC) and the left AG, IFC and DLPFC were revealed and further demonstrated to be conducive to IA identification and treatment efficacy prediction. All these regions were included in the reflecting system in the tripartite neurocognitive model.

Containing the most cognitive structures in the brain, the reflecting system is involved in a variety of advanced cognitive functions, including inhibition and problem solving, so it is also known as cognitive control system in other studies. The ability to suppress inappropriate behavior is a main function of the reflecting system, the impairment of which was proposed as a key determinant for uncontrolled internet and drug use (Volkow et al., 2010; Brand et al., 2019). The reflecting system in IA and substance addiction was consistently found to be dysfunctional when performing inhibition control tasks (Darnai et al., 2019; Antons and Matthias, 2020; Suarez-Suarez et al., 2020); therefore, it was regarded as a therapeutic target for addiction. After noninvasive treatment targeted to the system, the addiction symptoms were significantly relieved (Newman-Norlund et al., 2020; Su et al., 2020), indicating the critical role of the reflective system in addiction.

The IFC and DLPFC, responsible for inhibiting response habits and impulsive behavior, are acknowledged as key components of the reflecting system. Impairments in the IFC and DLPFC are thought to be directly related to uncontrolled drug abuse (Ely et al., 2020; Qian et al., 2020), and the stimulation of these regions was demonstrated to be effective in relieving addictive symptoms (Chen et al., 2020b; Newman-Norlund et al., 2020). In IA, a close association between the dysfunction of IFC and DLPFC and the uncontrolled online playing has also been demonstrated (Dong et al., 2020). Although the AG is not typically associated with executive control function, the crucial role of the AG in inhibition control has been well demonstrated by previous studies (Castelluccio et al., 2014; Nobusako et al., 2017; Lewis et al., 2019). In substance dependence research, dysfunction of AG in response inhibition tasks were found to be related to addiction severity (Herman et al., 2019) and could even predict potential substance abuse in the future (Mahmood et al., 2013), demonstrating the importance of AG in inhibiting uncontrolled addictive behavior. In individuals with IA, dysfunctional AG was also a key characteristic change correlating to symptom severity (Lemenager et al., 2016; Chen et al., 2020a), implicating the defective inhibition control function in IA.

In the tripartite neurocognitive model, the reflecting system was described as the controller of the impulsive habit system (Wei et al., 2017). Hence, it is not surprising that the hypoactive reflecting system in our study contributed to IA diagnosis and evaluation of therapy effectiveness. Through Fisher score ranking, the critical role of the DLPFC in IA diagnosis was well demonstrated in the SVC model. Furthermore, the key contribution of the DLPFC to CBT efficacy assessment was revealed by mutual information ranking. Thus, the hypoconnection of the reflecting system might be the main characteristic of IA, and activation connectivity of the reflecting system might be the main effect of CBT on IA.



Sensitive Interoceptive Awareness System

According to the tripartite neurocognitive model, the sensitive interoceptive awareness system potentiates the activity of the impulsive habit system and undermines the activity of the reflecting system, thus playing an important role in developing and maintaining IA (Wei et al., 2017). Reward awareness plays an important part in interoceptive awareness. In our study, the well-known reward regions OFC and MCC were demonstrated to contribute to IA diagnosis and treatment efficacy evaluation, validating the critical role of sensitive reward awareness in IA.

Comprising of two major dopamine pathways (mesolimbic and mesocortical pathways) in the brain, the reward network plays a decisive role in substance addiction. Previous research has revealed that independent of the drugs used and the tasks performed, the hyperactive reward network was consistently related to craving, addiction severity, and the use duration and frequency of drug use. Consequently, the dysfunction of the reward network was proposed as a fundamental pathological change in substance dependence (Zilverstand et al., 2018). Similar to that in substance addiction, sensitive reward awareness was also demonstrated in IA and thought to be a critical pathological characteristic of IA (Li et al., 2015). The mesocortical dopamine pathway, including the MCC and OFC, is responsible for the cognitive component of reward processing (Leroy et al., 2012). The dysfunction of these two regions was thought to be involved in excessive craving for addictive substances. Analogously, the abnormal microstructure and function of the MCC and OFC have also been found to be closely associated with internet craving (Ko et al., 2009; Lee et al., 2017, 2019), implicating the common foundation of IA and substance dependence.

Compatible with the tripartite neurocognitive model, the sensitive interoceptive awareness system was found in individuals with IA in the present study. In addition, similar to a previous study, the functional connectivity indexes of the reward awareness system were successfully applied to IA classification, verifying the reward awareness system as the key characteristic of IA (Wen et al., 2020). Moreover, we successfully evaluated the effectiveness of CBT using FCD changes in the reward awareness system, further confirming the potential of sensitive reward system as biomarkers of IA.



CONCLUSION

In summary, based on individual FCD data, this study successfully differentiated individuals with IA from HCs and further evaluated the effectiveness of CBT. These findings suggested the FCDs of hyperactive impulsive habit system, hypoactive reflecting system, and sensitive interoceptive awareness system as potential neuroimaging biomarkers of IA, providing objective indexes for the diagnosis of IA and the evaluation of treatment efficacy.



LIMITATIONS

Although providing robust and explainable results, our study still has several limitations to be noted. First, to include more participants, we included all types of IA in this study. Further research on specific IA subtypes (such as internet gaming disorder) should be conducted in the future. Second, the clinical endpoint was set at the end of treatment in the present study but should be extended to explore the long-term effect of CBT and study the reduction in online time/week by CBT. Third, due to the limited sample size, these findings need to be validated in other larger datasets. In addition, our SVM models were built on discriminative features. The excluded brain areas may also contain valuable information, which should be considered in future studies. Last, multimodal neuroimaging data (such as structural data) may provide complementary information; thus, multiple modalities are needed to improve the performance of models.
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Machine learning methods have been frequently applied in the field of cognitive neuroscience in the last decade. A great deal of attention has been attracted to introduce machine learning methods to study the autism spectrum disorder (ASD) in order to find out its neurophysiological underpinnings. In this paper, we presented a comprehensive review about the previous studies since 2011, which applied machine learning methods to analyze the functional magnetic resonance imaging (fMRI) data of autistic individuals and the typical controls (TCs). The all-round process was covered, including feature construction from raw fMRI data, feature selection methods, machine learning methods, factors for high classification accuracy, and critical conclusions. Applying different machine learning methods and fMRI data acquired from different sites, classification accuracies were obtained ranging from 48.3% up to 97%, and informative brain regions and networks were located. Through thorough analysis, high classification accuracies were found to usually occur in the studies which involved task-based fMRI data, single dataset for some selection principle, effective feature selection methods, or advanced machine learning methods. Advanced deep learning together with the multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends especially in the recent 4 years. In the future, advanced feature selection and machine learning methods combined with multi-site dataset or easily operated task-based fMRI data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.
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INTRODUCTION

As a pervasive neurodevelopmental disorder, autism spectrum disorder (ASD) is characterized by deficits in social communication and interaction and restricted and repetitive behaviors (Hull et al., 2017), which was known to be an urgent public health concern that could benefit from enhanced strategies to help identify ASD earlier (Jon et al., 2018). Diagnosed autism prevalence has risen dramatically over the last several decades (Nevison, 2014), and the causes have remained elusive, which have increasingly attracted numerous researchers to focus on it. Thus far, different advanced neuroimaging tools have been applied for ASD research, including structural and functional magnetic resonance imaging (MRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), and novel protocols (Alessandro et al., 2017; Du et al., 2018). Among them, functional MRI (fMRI) studies involving task-based and resting-state fMRI (rs-fMRI) data occupy a large proportion. Especially with the appearance and development of freely available rs-fMRI databases, such as the Autism Brain Imaging Data Exchange (Martino et al., 2014)1, which provides functional and structural brain imaging datasets collected from more than 24 different independent sites, researchers from different countries have expanded a series of studies based on it. In this paper, the review about ASD classification is restricted to fMRI data for more specific analysis. The aforementioned fMRI data consist of rs-fMRI data and task-based fMRI data, which are collected from scanning the brain using fMRI technology while the subject is resting and performing a special task, respectively.

For the last decade, there have been a variety of methods proposed to investigate the potential difference between ASD patients and typical controls (TCs) from different levels using fMRI data. It is well known that machine learning methods have been widely applied to brain disorder research such as schizophrenia, depression, Alzheimer disease, ASD, and so on (Davatzikos et al., 2006; Fan et al., 2008; Cuingnet et al., 2011; Du et al., 2012; Arbabshirani et al., 2013; Zeng et al., 2014; Patel et al., 2015), especially with their rapid development. Recent progress in machine learning has been driven both by the development of new learning algorithms and theory and by the ongoing explosion in the availability of online data and low-cost computation (Jordan and Mitchell, 2015). Notwithstanding the fact that there have existed great quantity of research on classifications for ASD and the TCs, a specialized systematic review about them is lacking. While different approaches have different assumptions and advantages, a detailed review is important to help us understand the ways in which these approaches have been used. Wolfers et al. published a review about pattern recognition for neuroimage-based psychiatric diagnostics in which ASD was mentioned as a little part (Wolfers et al., 2015). Du et al. (2018) have reviewed relative literatures on classification and prediction of brain disorders using functional connectivity (FC) but not limited to ASD. Hyde et al. provide a comprehensive review of 45 papers utilizing supervised machine learning in ASD but not limited to fMRI data (Hyde et al., 2019).

In this paper, we exhibit a review by summarizing 47 literatures involving classifications using fMRI data between ASD patients and TCs. The general process of autism spectrum disorder studies using fMRI data and machine learning was illustrated in Figure 1. The purpose of this review is to (1) summarize relatively representative papers from the following aspects to find out their commonality and differentiation: classification features involved, machine learning methods, classification performance, and factors on classification results; (2) reveal critical consistent or novel conclusions about discriminant brain regions, networks, and explanations for behavioral characteristics of ASD in the literatures; and (3) give feasible work directions for future progress in the field.
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FIGURE 1. General process of ASD studies using fMRI data and machine learning (taking FC features for example). ASD, autism spectrum disorder; fMRI, functional magnetic resonance imaging; FC, functional connectivity.




FMRI DATA SOURCES

It is well known that spontaneous fluctuations in the blood oxygenation level-dependent (BOLD) signal, as measured by fMRI, present a valuable data resource for delineating the human neural functional architecture (Cole et al., 2010). fMRI, including rs-fMRI and task-based fMRI, has become one of the primary tools of cognitive neuroscience. From analysis of the papers detailed in Table 1, it was obviously found that there are mainly three types of fMRI data sources, which are self-acquisition data, the cooperation agency data, and freely available database. The self-acquisition data and the cooperation agency data are usually acquired from the same site with same acquisition parameters. Notably, all the task-based fMRI data involved belonged to the former two data sources. The well-known large freely available database is the ABIDE database. The data of the ABIDE database are collected from different sites in North America and Europe, which inevitably introduces heterogeneity into the dataset in terms of differences among fMRI scanners, data collection protocols, and participant populations (Ghiassian et al., 2016). The aggregation of data across multiple neuroimaging sites has become popular in recent years. Given that the sharing and combination of task-based fMRI data are significantly more challenging than rs-fMRI data (Poldrack and Gorgolewski, 2015), the large freely available database is mainly rs-fMRI data. Despite this, some efforts have been made to build an open repository for task-based fMRI data, such as the Open fMRI database (Poldrack et al., 2013; Poldrack and Gorgolewski, 2015). The advantage of the large database is that it contains more available data than the former two data sources and can satisfy more researchers’ purchase for large database analysis. Working toward the ultimate goal of deriving an automated diagnosis tool from the fMRI data classification, a large database is indispensable for further generalization. Unfortunately, the classification of the large database from different sites appears to be more challenging than that of the small database from the same site. In spite of the above challenge, the freely available database is getting increasing attention in the study of ASD. Notably, 33 of 47 literatures in Table 1 adopted the freely available database, which accounted for 70% of the total.


TABLE 1. Summary of ASD classification studies based on fMRI data.
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FEATURE CONSTRUCTION FROM RAW FMRI DATA

Sundry features constructed from raw fMRI data reflect special meanings of brain information. They are important inputs of machine learning and can influence the performance of classification together with the explanation of contributed brain areas to some extent. Therefore, proper feature construction from raw fMRI data of ASD patients and the TCs becomes a crucial step of classification. FC features are most popularly adopted features given that they can reflect particular significance of ASD. Besides, some other meaningful features are also introduced.


Non-task Static Functional Connectivity Features

Resting-state FC has been proven to be a critical tool in understanding different disease mechanisms and has great potential to provide biomarkers for disease diagnosis (Price et al., 2014). The typically static FCs are constructed by calculating FC between two regions of interest (ROIs) of the brain. It has been reported that altered patterns of brain FCs were suggested as a key neurobiological correlate of the behavioral characteristics of ASD (Neufeld et al., 2017). Increasingly, it has been accepted that ASD is associated with atypical development of multiple interconnected brain systems rather than isolated brain regions (Minshew and Williams, 2007; Uddin et al., 2013a). Furthermore, Hull et al. reviewed the rs-fMRI literatures over how intrinsic connectivity is altered in the autistic brain, with reports of general over-connectivity, under-connectivity, and/or a combination of both (Hull et al., 2017). The whole brain fMRI is usually parcellated into ROIs defined by different atlases, which are either anatomically defined or functionally defined. The commonly used atlas is the anatomical Automated Anatomical Labeling (AAL) atlas (Murdaugh et al., 2012; Wang et al., 2012; Iidaka, 2015; Guo et al., 2017; Aghdam et al., 2018; Bi et al., 2018; Kazeminejad and Sotero, 2019; Liu J. et al., 2020; Tang et al., 2020; Zhao et al., 2020; Reiter et al., 2021). Aside from the AAL, some other atlases were introduced to construct FCs for ASD classification, such as the Power atlas (Power et al., 2014; Chen et al., 2015; Dodero et al., 2015a; Yin et al., 2021), the Craddock 200 (CC200) atlas (Craddock et al., 2012; Kassraian-Fard et al., 2016; Huang et al., 2020; Kazeminejad and Sotero, 2020; Liu J. et al., 2020), the CC400 atlas (Sherkatghanad et al., 2020), the Harvard Oxford (HO) atlas (Desikan et al., 2006; Fredo et al., 2019), the Desikan–Killiany (DK) atlas (Kong et al., 2018; Soussia and Rekik, 2018), and the sulci-based anatomical atlas (Yahata et al., 2016). In particular, the whole brain FCs between 7,266 ROIs were used as classification features (Anderson et al., 2011; Nielsen et al., 2013; Heinsfeld et al., 2018). In addition, FCs derived from specific brain networks were also attractive. For example, Murdaugh et al. adopted FCs between default mode network (DMN) ROIs as classification features (Murdaugh et al., 2012). Different from the above research, Dodero et al. (2015b) obtained FCs by introducing the University of California at Los Angeles (UCLA) Multimodal Connectivity Database, which is an openly available website for brain network analysis and data sharing (Brown et al., 2012).



Task-Based Static Functional Connectivity Features

Though static FC features are the most adopted features for ASD classification, they are usually but not absolutely restricted to rs-fMRI data. The underconnectivity theory is based largely on analysis of task-related changes in interregional connectivity during tasks (Masona et al., 2008) that involve language, working memory, mental imagery, executive functions, cognitive control, and social cognition. Given that differentiation between ASD patients and TCs is absolutely confirmed, targeted tasks can expand their fMRI differences relative to rs-fMRI. Therefore, FCs generated from task-based fMRI data also attracted the researchers (Murdaugh et al., 2012; Wang et al., 2012; Deshpande et al., 2013). The Theory of Mind (ToM) hypothesis, proposed by Baron Cohen, has emerged as a highly regarded explanation of autistic behavior (Baron-Cohen, 1988a, b, c; Baron-Cohen et al., 1994; Baron-Cohen, 2004). According to this prior knowledge, Deshpande et al. (2013) acquired fMRI data during a ToM task and obtained FCs between 18 ROIs.



Dynamic or High-Order Functional Connectivity Features

The aforementioned FCs referred to the conventional static brain FCs, which revealed the intrinsic similarities between a pair of ROIs or specific networks. It was recently accepted that dynamic FCs contained more additional knowledge than static FCs. Dynamic FCs can reveal spatiotemporal network properties not observable in static FCs and may reveal more nuanced transient patterns of atypical FC in ASD (Mash et al., 2019). Even so, there are but not many relative ASD classification studies using dynamic FCs compared to static FCs. Price et al. obtained dynamic FCs based on independent components generated from group-independent component analysis (ICA). In their research, it was demonstrated that using FC features over a wide range of time scales was able to substantially increase ASD classification compared with static FC features (Price et al., 2014), indicating that dynamic FCs are the important supplement of static FC features. A high-order morphological brain network based on Pearson correlation was further proposed by Soussia and Rekik to detect more complex interaction patterns between multiple brain regions (Soussia and Rekik, 2018). Moreover, it was noticed that the identified regions at a high-order level are different from those at a lower order, and this may appear to provide complementary discriminative information for more accurate diagnosis (Soussia and Rekik, 2018). Similarly, multi-level, high-order FC networks were put forward by Zhao et al. to serve as ASD classification features (Zhao et al., 2018), and better classification performance was obtained. Two years later, they fused the features extracted from conventional FCs, low-order dynamic FCs, and high-order dynamic FCs for the ASD classification and achieved the best classification performance than any other type of feature fusion (Zhao et al., 2020). It was indicated that the fusion of different-level FCs can supply complementary relevant information for ASD diagnosis, which was consistent with their previous study.



Other Applied Classification Features

Through analysis of the relative papers, it was obviously found that the commonly adopted classification features are mainly from statics or dynamic functional networks. Besides, some researchers expanded the range of classification features of ASD through different perspectives. Because reduced attention to social stimuli is one of the defining features of ASD, Odriozola et al. (2016) used two visual oddball tasks to investigate brain systems engaged during attention to social (face) and non-social (scene) stimuli. In their work, multivariate activation patterns in the dorsal part of the anterior insula were chosen as classification features. Chanel et al. (2016) acquired fMRI data from two performed experiments and used the beta maps of each condition estimated at the individual step level as features for the classification. The beta map of each individual is high-dimensional containing 186,217 features. Even the rs-fMRI time series and all voxels within the gray matter (GM) mask were directly chosen as classification features (Dvornek et al., 2017; Rane et al., 2017) with the hypothesis that they will carry more useful information than single, static FC measures. In addition, some researchers applied integrated classification features. For example, volumetry analysis, FC MRI analysis, and graph theory via small-world network analysis were introduced to produce the integrated classification features which contained a total of 22 quantitative local and global imaging features (Zhou et al., 2014). Integrated FCs originated from the AAL atlas, the HO atlas, and the Craddock atlas were implemented in the work of Niu et al. (2020). Moreover, for better classification, some researchers applied their proposed methods to obtain classification features, such as histogram of oriented gradients (HOG) features (Ghiassian et al., 2016) and features by factor analysis (Just et al., 2014). As another example of classification feature fusion, Aghdam et al. (2018) computed means of ROIs respectively for rs-fMRI, GM, and white matter (WM) based on the AAL atlas, and the highest classification accuracy was obtained using the fusion of the three features. Based on FCs of the AAL atlas, Tang et al. (2020) introduced fMRI × ROI connectivity for feature supplements.



MACHINE LEARNING METHODS AND CLASSIFICATION RESULTS


Summary About Machine Learning Methods and Classification Accuracy Results

High classification accuracy and confirming the most discriminant features are two main purposes for ASD classification. The most discriminant features resulting from ASD classifications can make a good distinction between the two groups and have the potentiality to serve as disease biomarkers. The higher the classification accuracy, the more creditable the confirmed discriminant features. As a traditional classifier, support vector machine (SVM) has been widely used in the classification of brain disorders including ASD in the last decade. The SVM classifier can be linear and non-linear, which was decided by different kernels, such as linear kernel, polynomial kernel, sigmoid kernel, and Gaussian radial basis function (RBF) kernel. Different kernels were chosen according to different features. Eighteen papers in Table 1 applied SVM classifiers benefiting from their classification power. Bi et al. classified the ASD patients and TCs by 96.15% using SVM with RBF kernel (Bi et al., 2018). Dekhil et al. (2018) obtained 91% classification accuracy using the same classification method. Deshpande et al. (2013), Chen et al. (2015), Chanel et al. (2016), Odriozola et al. (2016), Bernas et al. (2018), and Zhao et al. (2018, 2020) all made use of SVM classifiers to discriminate ASD patients and TCs with higher accuracies, which are 92.3% (peak), 85%, 81%, 90.8%, 95.9%, and 86.7%, respectively. However, the choice of SVM classifiers is not the only determining factor for high accuracies, which will be discussed in the next section. Kassraian-Fard et al. (2016) and Liu J. et al. (2020) also applied the SVM classifier but resulted in a lower accuracy probably due to the large multi-site fMRI dataset.

Besides the SVM classifier, some other traditional classifiers are also used in the discrimination of ASD patients and TCs, such as logistic regression (Murdaugh et al., 2012; Wang et al., 2012; Uddin et al., 2013a), random forest (RF) (Chen et al., 2015; Fredo et al., 2019; Reiter et al., 2021), manifold Laplacian (Dodero et al., 2015a), Gaussian naïve Bayes (GNB) (Just et al., 2014), and so on. In order to contrast the effect of different machine learning methods, the scikit-learn library, which contains multiple machine learning methods, was also applied by some researchers for ASD classification (Plitt et al., 2015; Abraham et al., 2017; Rane et al., 2017). In addition, many researchers tried their best to develop novel classification approaches for better performance. Ghiassian et al. proposed (f)MRI HOG-feature-based patient classification (MHPC) learning algorithm to distinguish ASD individuals and TCs by 65% (Ghiassian et al., 2016). Yahataet al. developed a novel machine learning algorithm called Structured Logistic Regression (SLR) classifier and separated the two groups with the accuracy of 85% (Yahata et al., 2016). In addition, Niu et al. employed a proposed multichannel domain-adversarial neural network (DANN) model and further compared it with the existing machine learning methods such as random RF, SVM models, and multichannel deep neural network (DNN), resulting in the best performance of the self-proposed method with an accuracy of 73.2% (Niu et al., 2020).

Moreover, as an advanced and popular machine learning method, deep learning was widely applied in the classification of ASD especially since 2017. There are several commonly used models of deep learning, such as, autoencoders (AE), long short-term memory (LSTM), recurrent neural network (RNN), DNN, deep belief network (DBN), and convolutional neural network (CNN) (Du et al., 2018). Fourteen of 47 involved papers applied deep learning methods for the classification as detailed in Table 1. Purely from the perspective of classification accuracy, the performance of advanced deep learning methods is comparable with that of traditional ones. In fact, classification accuracy was affected by not only machine learning methods but the dataset, constructed features, and feature selection methods, which will be discussed in detail in section “Factors on Classification Accuracy.” Therefore, the scientific and meaningful comparison on performance of deep learning and traditional machine learning should be carried out under the same condition. Classification accuracies were compared between deep learning and traditional machine learning in Figure 2D using papers with more than 800 participants from the ABIDE dataset. Generally speaking, deep learning outperformed traditional machine learning. In the work of Thomas et al. (2020) CNN was reported to achieve comparable results with SVM as shown in Table 2. Apart from this, eight other papers with deep learning reported their better performance than traditional machine learning methods under the same condition detailed in Table 2 (Heinsfeld et al., 2018; Kong et al., 2018; Li et al., 2018; Huang et al., 2020; Kazeminejad and Sotero, 2020; Sherkatghanad et al., 2020; Thomas et al., 2020; Yang et al., 2021; Yin et al., 2021). It is reasonable to believe that deep learning holds better classification power than the traditional ones.
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FIGURE 2. Summary of the involved literatures (A) relationship between number of studies and total sample size. (B) relationship between classification accuracy and total sample size. The pink diamonds and the others represent the task-based fMRI literatures and the rs-fMRI literatures, respectively. The red dots denote the same classification results by Reiter et al. (2021) and Fredo et al. (2019). The green hexagons denote the classification results of Kazeminejad and Sotero (2020). (C) Classification accuracy comparison of studies with feature selection and not, regarding the rs-fMRI dataset. (D) Classification accuracy comparison of studies with deep learning and not, regarding the rs-fMRI dataset with more than 800 participants. fMRI, functional magnetic resonance imaging; rs-fMRI, resting state fMRI.



TABLE 2. Accuracy comparison between deep learning and othermachine learning.
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Factors on Classification Accuracy

High accuracy is a critical goal of classification between ASD individuals and TCs aiming to determine biomarkers for ASD. Through analysis of the involved literatures, several factors that substantially impacted classification accuracy were summarized.


Task-Based fMRI Dataset

Many studies have proved the brain difference between ASD individuals and TCs. There is a hypothesis that the degree of alteration in the representation of self in individuals with autism would be related to behavioral measures of various social abilities, such as thinking, face processing, and ToM (Just et al., 2014). Thus, fMRI data with correlated tasks are commonly used for ASD classification studies (Murdaugh et al., 2012; Wang et al., 2012; Deshpande et al., 2013; Just et al., 2014; Chanel et al., 2016; Odriozola et al., 2016). It was found that classifications using task-based fMRI data usually obtained high accuracies as detailed in Table 1 and represented by the pink diamonds in Figure 2B, ranging from 82.8% to 97%. Compared to the rs-fMRI data used in the classification, the task-based fMRI data are an important factor for high classification accuracies. But for task-based fMRI data, it is difficult to acquire large datasets. Most task-based fMRI studies relatively involved small samples of usually less than 50 subjects (Poldrack and Gorgolewski, 2015). Interestingly, we found that the less samples, the higher the classification accuracy as shown in Figure 2B. It is worthy of note that the classification accuracy may decrease with an increase in the number of individuals in the task-based fMRI studies, which necessitates further demonstration.



Contribution of Feature Selection

Besides the factor of the task-based fMRI data, another important factor for high classification accuracy is feature selection. Feature selection methods play an important role in classifications because of the high-dimension property of fMRI data even after relative features have been constructed. Proper feature selection can further reduce the dimensionality of features, enhance classification accuracy, facilitate visualization of the data, and lead to faster classification (Guyon and Elisseeff, 2003; Kassraian-Fard et al., 2016). To realize the importance of feature selection in classification, it gradually became an indispensable part of ASD classification studies. Nevertheless, 16 of the 47 papers in this review did not introduce separate feature selection methods as detailed in Table 1, and high dimensional features were directly applied as the inputs of classifiers (Nielsen et al., 2013; Heinsfeld et al., 2018) resulting in lower classification accuracies. The performance of ASD classification with and without feature selection methods was also compared in some works. Chen et al. (2015) achieved 90.8% classification accuracy using the top 100 features with the highest variable importance compared with 58% accuracy without feature selection. Guo et al. (2017) demonstrated that classification with feature selection outperformed that without feature selection method by 9.09%, and different feature selection methods could bring different classification results. Worth mentioning was that the ASD classification studies using feature selection method in the review can averagely bring better classification accuracies than those without it as statistically illustrated in Figure 2C. In summary, feature selection methods made an indelible contribution to the performance of ASD classification.



The Property of the Dataset

Another non-ignored factor of the high classification accuracy is the property of the dataset applied for classification such as sample size and data heterogeneity. The total sample size of the involved literatures mostly concentrated less than 400 or more than 800 as shown in Figure 2A. The relationship between classification accuracy and sample size was illustrated in Figure 2B, in which the pink diamonds and others represent the results of the literatures involving tasks or not, respectively. Classification across multiple sites has to accommodate additional sources of variance in subjects, scanning procedures, and equipment in comparison to single-site datasets (Nielsen et al., 2013) and usually results in low classification accuracies detailed in Table 1. However, it is worth noting that several works in Table 1 applying the fMRI data from the ABIDE dataset brought high accuracies from 81% to 96.15% (Price et al., 2014; Chen et al., 2015; Bi et al., 2018; Kong et al., 2018; Zhao et al., 2018, 2020; Kazeminejad and Sotero, 2019). Through analysis, the commonality of datasets applied in these papers is that they are all subsets of the large dataset according to some special selection criteria, such as site limitation, single protocol, or age-related selection, which can alleviate data heterogeneity to some extent and improve the classification accuracy. Eslami et al. (2019) evaluated their proposed machine learning method on all data and each site data of the ABIDE dataset respectively, resulting in 70.1% for all data and 80% peak accuracy for the Oregon Health & Science University (OHSU) site. Likewise, several works that focused on childhood and adolescent fMRI data also attained high accuracies from 83% to 91% (Uddin et al., 2013a; Price et al., 2014; Iidaka, 2015; Bernas et al., 2018; Dekhil et al., 2018) following the principal of the above age-related selection. In the work of Kazeminejad et al., the dataset including 817 participants was split into five age ranges, and the best classification accuracies for each range were obtained ranging from 69% to 95% (Kazeminejad and Sotero, 2019). In accordance with the task-based fMRI studies, an approximately linear relationship between classification accuracies and sample size was discovered in their work as illustrated in Figure 2B. In addition, the same sample size could result in different classification accuracies due to different heterogeneity of the dataset, which was illustrated by the red dots in Figure 2B (Fredo et al., 2019; Reiter et al., 2021). All in all, the property of the applied dataset can definitely influence the classification result to some extent.



The Choice of Atlas

As discussed in section “FEATURE CONSTRUCTION FROM RAW FMRI DATA,” atlases of anatomical, functional parcellation, and data-driven extraction were applied for FC feature construction in ASD classification. It was believed that the choice of atlas could influence classification accuracy to some extent (Plitt et al., 2015; Abraham et al., 2017; Dadi et al., 2019; Liu Y. et al., 2020; Yin et al., 2021). Plitt et al. addressed the impact of three different brain atlases on classifications (Power et al., 2011; Plitt et al., 2015), which are the DiMartino atlas, the Destrieux atlas, and the Power atlas. The Destrieux atlas slightly outperformed the other two as illustrated in Figure 3, indicating that different anatomical atlases influenced the classification accuracy indeed. Meanwhile, Abraham et al. considered three different predefined atlases and four data-driven atlases and compared their classification performance (Abraham et al., 2017). The three predefined atlases are the anatomical HO atlas (Desikan et al., 2006), the functional Yeo atlas (Yeo et al., 2011), and the functional Craddock atlas (Lashkari et al., 2009), while the four data-driven atlases were derived based on K-means, Ward’s clustering, ICA, and multi-subject dictionary learning (MSDL). Data-driven atlases were reported to perform more poorly than the predefined atlases except the MSDL-based atlas, and the functional HO atlas led to maximal performance. In the work of Dadi et al., functional atlases were reported to lead to better prediction than anatomical atlases, and the MSDL-based atlas was found to perform comparably (Dadi et al., 2019). The MSDL-based atlas exhibited robust performance out of all the anatomical and data-driven atlas approaches (Yin et al., 2021). In a summary, the choice of atlas played an important role on the prediction accuracy. Apart from this, the great meaningful contribution of the choice of atlas was the explanation of discriminant features or biomarkers derived from classification.
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FIGURE 3. Classification accuracy comparison based on different choice of atlas in the work of Plitt et al. (2015). RF, random forests; KNN, K-nearest neighbor; L-SVM, linear support vector machine; RBF-SVM, Gaussian kernel support vector machine; GNB, Gaussian naïve Bayes; LDA, linear discriminant analysis; L1LR, L1 logistic regression; L2LR, L2 logistic regression; ENLR, elastic-net logistic regression; Average, average of the above nine methods.




Development of Machine Learning Method

As the core of classification, machine learning methods are undoubtedly a crucial factor on classification accuracies. Different machine learning methods and their variants were introduced to fMRI data classification study for better classification results, determination of discriminant features, ASD biomarkers exploration, or just method innovation. Among traditional shallow machine learning methods, SVM was recognized as a powerful one than others. With the appearance and rapid development of deep learning, it was widely applied in ASD classification. Apart from its lack of interpretability restrictions and being time consuming, deep learning has shown great potential power in classification compared with traditional machine learning methods as discussed in section “Summary About Machine Learning Methods and Classification Accuracy Results.” Further and deeper study on deep learning can continue to promote the development of ASD classification. The most promising focus on the application of machine learning to the neuroimaging field may be to create specific methods for the special properties of fMRI.



SIGNIFICANT RESULTS SUMMARIZED FROM INVOLVED LITERATURES

It is well known that one major goal of the classifications between ASD and TC is to obtain high accuracies, while another is to determine the informative brain regions or networks contributing to the classifications with the ultimate goal of yielding a possible biomarker of ASD. The higher the accuracy, the more trustworthy the identified brain regions or networks. Not only the informative brain areas or networks were determined, but the physiology and behavior explanation about them were exhibited in most of the papers.


Consistent Results From FC Classification Using the AAL Atlas

Given that FCs were chosen by many researchers as classification features, we summarized informative brain regions and networks determined by classifications between ASD individuals and TCs using FCs as features in Table 3. The brain regions and networks are more comparable in different literatures which applied the same brain atlas regardless of different pattern classification methods. As an anatomically defined atlas, the AAL atlas was frequently adopted in ASD classifications (Murdaugh et al., 2012; Wang et al., 2012; Iidaka, 2015; Guo et al., 2017; Bi et al., 2018; Liu J. et al., 2020; Tang et al., 2020; Zhao et al., 2020). The informative brain regions and networks were determined separately from FC classifications as shown in Table 3 except the work of Guo et al. (2017) and Tang et al. (2020). The common brain regions determined by classifications of the several above literatures included the right posterior cingulate cortex (PCC), the left PCC, and the right thalamus. The conclusion derived from the work of Wang et al. (2012, 2017, 2020) is that weak functional connections between the frontal lobe and the rest of the cortex occurred in ASD patients compared with the TCs. Dodero et al. (2015a) obtained eight informative connections through FCs classification detailed in Table 3, in which red connections identify higher connectivity in healthy subjects while blue connections identify a higher connectivity strength in autistic subjects. Guo et al. (2017) found 32 most significant FCs between the two groups mainly from or across different pre-defined brain networks including the default mode, cingulo-opercular, frontal-parietal, and cerebellum. The detailed significant brain areas about the above papers are shown in Table 3.


TABLE 3. Summary of informative brain regions or networks determined by classification between ASD and TD usingFCs as features.

[image: Table 3]


Consistent Results About the Default Mode Network

The DMN comprised several dispersed cortical nodes including the anterior cingulate/medial prefrontal cortices and the PCC (Raichle et al., 2001; Greicius et al., 2003; Buckner et al., 2008; Washington et al., 2014). Functionally, the DMN is considered to relate to self-referential cognition including domains of known impairment in ASD (Chen et al., 2015), which have been reported in some previous non-classification research (Monk et al., 2009; Assaf et al., 2010; Minshew and Keller, 2010; Zielinski et al., 2012; Martino et al., 2013; Redcay et al., 2013). Notably, some common regions determined by the aforementioned literatures using the AAL atlas belong to the DMN. Early in 2011, Anderson et al. have reported the phenotypic pattern of impaired communication within and between the DMN and attention control networks in ASD through classification between the two groups (Anderson et al., 2011). Soon afterward, a series of ASD classification studies were carried out and resulted in consistent conclusions about the DMN. As depicted in Table 3, impaired FCs related to the DMN were obtained in several literatures (Nielsen et al., 2013; Chen et al., 2015; Yahata et al., 2016; Abraham et al., 2017; Heinsfeld et al., 2018; Fredo et al., 2019; Reiter et al., 2021). Besides, Murdaugh et al. (2012) demonstrated that deactivation and connectivity of the DMN were altered in individuals with ASD at a high classification accuracy of 96.3%. The impaired DMN was also reported in the research by Plitt et al. together with the frontal-parietal control network (Plitt et al., 2015). In addition, seven distinctive fronto-parietal and temporal networks between ASD patients and TCs were reported in the work of Bernas et al. (2018) one of which was DMN. Lower correlation was proved between the anterior and posterior DMN in autistic individuals (Liu Y. et al., 2020). Both dorsal DMN (dDMN) and precuneus (PCUN) achieved better accuracies than other brain networks in the work of Yang et al. (2021), which are the subnetworks of the DMN. Taken together, the DMN is undoubtedly a crucial component of the underlying neurobiology and has the potentiality to serve as a biomarker of ASD.



Partial Hemispheric Distribution of Discriminant FCs or Brain Regions

It has been reported that the distributed patterns of functional abnormalities are over the whole brain of ASD patients (Zhao et al., 2018). Actually, in the work of Nielsen et al. (2013), a homogenous regional distribution of connectivity abnormalities in autism was argued against and replaced by a heterogeneous spatial distribution of connectivity disturbances that involves specific brain regions. The conclusion of partial hemispheric distribution of informative brain regions and networks in autism were identically obtained in several other involved literatures. There were significantly more regions in the right hemisphere than in the left among the brain regions involved in the 16 FCs identified in the study of Yahata et al. (2016) with the left intra-hemispheric FCs absent. Likewise, significant discriminative connections between the two groups were mostly located in the right hemisphere, and there were more involved brain areas in the right hemisphere than in the left, which was detailed in the work of Dodero et al. (2015a). Odriozola et al. (2016) also found that children with ASD displayed greater activation of the right insula when viewing deviant faces vs. scenes in contrast to their TCs (Odriozola et al., 2016). In addition, the best performance was achieved in distinguishing between ASD/TC subjects for the right hemisphere by Soussia and Rekik indicating that the right hemisphere features may have more discriminative power (Soussia and Rekik, 2018). Though not all relative papers involved the conclusion about partial hemispheric distribution, it undoubtedly supplied a novel understanding and a new prospective for ASD.



Identification of the Potential ASD Biomarker

As a prime conception in the field of psychiatric neuroimaging research, biomarkers have successfully attracted enough attraction of researchers especially with the emergence and development of machine learning. More than 10 years ago, machine learning methods were thought to be a promising method to reveal brain states that discriminate patients from controls and thus constitute a valuable tool to identify potential biomarkers (Mourão-Miranda et al., 2005; Pereira et al., 2009). Notably, 38 of 47 papers in the review mentioned “biomarker” to some extent, which appropriately proved the collaborative efforts from various research teams to explain or identify the objective biomarker of ASD using machine learning methods and fMRI data. Plitt et al. (2015) indicated that FC classification of autism identifies highly predictive brain features but falls short of biomarker standards for several reasons, such as establishing standard analytic techniques, demonstrating biomarkers robustness to variability across larger numbers of individuals and sites, and addressing the diagnostic potential of brain-based biomarkers. It was thought that the predicted autistic neural patterns determined by classification are anticipated to serve as reproducible biomarkers and important in early diagnosis and treatment (Kong et al., 2018; Huang et al., 2020). Resting-state FC measures were proved to be potential diagnostic biomarkers for ASD in several studies (Deshpande et al., 2013; Price et al., 2014; Plitt et al., 2015; Bhaumik et al., 2018; Kong et al., 2018; Soussia and Rekik, 2018; Fredo et al., 2019). The study of Iidaka (2015) indicated that an intrinsic connectivity matrix constructed from rs-fMRI data could yield a possible biomarker of ASD restricted to children and adolescents. It was proposed that the high-order FC could be affected in ASD compared with the traditional FC and thus can be used as effective biomarkers for ASD diagnosis in the work of Zhao et al. (2018). In the study of Bernas et al. a change in the coherence of temporal neurodynamics is identified to be a biomarker of ASD (Bernas et al., 2018). Thomas et al. (2020) reported that hidden somewhere in the high-dimensional spatio-temporal signal are the biomarkers that could distinguish between healthy and psychiatric subjects. A strong negative correlation between the left precuneous cortex and the left superior frontal gyrus was anticipated to serve as reproducible biomarkers (Huang et al., 2020). In the work of Yang et al. (2021), the dDMN, PCUN, and salience network (SN) are suggested to be highly different between ASD and normal control (NC) and have the potential to be reliable biomarkers for the identification of ASD. Though most works of relative papers failed to identify definite and replicated biomarkers of ASD, efforts from different research teams have put the identification of the ASD biomarker forward, and it was believed that an ideal biomarker would be derived through the continuous work.



Some Other Specific Meaningful Results

In the work of Heinsfeld et al. (2018), the most contributing conclusion is the anterior-posterior disruption in the connectivity of ASD, which has been reported to be shown in previous task-related (Adam et al., 2004; Kana et al., 2009) and rs-fMRI studies of ASD patients (Cherkassky et al., 2006). Similarly, the right supramarginal gyrus, the fusiform gyrus, and the cerebellar vermis were found to play a significant role in the diagnosis of autism (Sherkatghanad et al., 2020), which was another evidence about the disruption of anterior-posterior brain connectivity in ASD. Lower correlation between the anterior and posterior DMN was demonstrated in autistic individuals than controls (Liu Y. et al., 2020). Brain regions related to social communication, emotion expression, language comprehension, and action coordination were determined, such as inferior frontal gyrus, amygdala, angular gyrus, and hippocampus (Zhao et al., 2018). In the work of Uddin et al. the SN was identified to play a critical role in discriminating children with ASD from TC and could be a hallmark of ASD (Uddin et al., 2013b) with the explanation that regions within the SN are implicated in multiple functions, ranging from attention to interception and subjective awareness (Craig, 2011). Changes in caudate volume, caudate-cortical FC, and inferior frontal gyrus FC were reported to be highly informative in the classification of the two groups (Zhou et al., 2014). Moreover, the social brain has been accepted to be impaired in individuals with ASD, which was further confirmed from the perspective of fMRI classification through four literatures (Deshpande et al., 2013; Just et al., 2014; Chanel et al., 2016; Bernas et al., 2018). Though most involved literatures identified contributing brain regions or networks, some still gave more prominence to the methods and results of classifications and ignored the determination of informative brain regions and networks (Kassraian-Fard et al., 2016; Dvornek et al., 2017; Ktena et al., 2017; Kong et al., 2018; Kazeminejad and Sotero, 2019; Liu J. et al., 2020; Niu et al., 2020; Yin et al., 2021).



FUTURE WORK DIRECTION

In this paper, we summarized 47 literatures involved in fMRI data classification between ASD individuals and TCs. Most researchers expected to derive the biomarkers of ASD through classification studies and have made some progress in deed, but the overall assessment of classification of ASD using fMRI data thus far falls short of biomarker standards. Despite this, several work directions may need to be paid more attention by researchers: (1) Considering the factors for high classification accuracies, development of novel feature selection methods should be an important work direction for classifications between ASD individuals and TCs, which could facilitate machine learning methods to determine the most discriminant features. (2) Another pivotal work direction is to obtain advanced machine learning methods by improving the existing methods and combining the superiority of different methods, especially trying to develop specific machine learning methods for the special properties of fMRI. (3) Non-invasive rs-fMRI data classification studies between ASD individuals and TCs will still be the prominent work direction especially since the release of the ABIDE dataset. More robust and replicated biomarkers are more likely derived from big datasets. (4) Age is an important factor in the ASD diagnosis. Age-specific research can significantly reduce the heterogeneity of ASD dataset and increase the classification rate. Therefore, the age-specific research of ASD will be a valuable research direction. (5) Because of the higher classification accuracies for task-based fMRI data, it may be a new work direction to design some easily operated and efficient tasks to acquire fMRI data to form large datasets for further research. In the future, developed feature selection and machine learning methods combined with large rs-fMRI datasets or easily operated task-based fMRI dataset may appear to serve as a promising diagnostic tool for ASD.



AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.



FUNDING

We acknowledge funding from the National Natural Science Foundation of China (62036013, 61976248, 81301199, and 81901698), the National Key R&D Program of China (2016YFC1307100 and 2017YFC0107400), and Key Science and Technology Program of Shaanxi Province (2017ZDXM-SF-047).



ACKNOWLEDGMENTS

We thank the reviewers for their valuable suggestions.



FOOTNOTES

1http://fcon_1000.projects.nitrc.org/indi/abide/



REFERENCES

Abraham, A., Milhame, M., Martino, A. D., Craddock, R. C., Samaras, D., Thirion, B., et al. (2017). Deriving robust biomarkers from multi-site resting-state data: an autism-based example. Neuroimage 147, 736–745. doi: 10.1016/j.neuroimage.2016.10.045

Adam, J. M., Cherkassky, V. L., Keller, T. A., and Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127, 1811–1821. doi: 10.1093/brain/awh199

Aghdam, M. A., Sharifi, A., and Pedram, M. M. (2018). Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J. Digit. Imaging 31, 895–903. doi: 10.1007/s10278-018-0093-8

Alessandro, G., Roma, S., and Remo, J. (2017). Editorial: advanced neuroimaging methods for studying autism disorder. Front. Neurosci. 11:533. doi: 10.3389/fnins.2017.00533

Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., et al. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain: J. Neurol. 134, 3739–3751. doi: 10.1093/brain/awr263

Arbabshirani, M. R., Kiehl, K. A., Pearlson, G., and Calhoun, V. D. (2013). Classification of schizophrenia patients based on resting-state functional network connectivity. Front. Neurosci. 7:133. doi: 10.3389/fnins.2013.00133

Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., et al. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53, 247–256. doi: 10.1016/j.neuroimage.2010.05.067

Baron-Cohen, S. (1988a). An assessment of violence in a young man with Asperger’s syndrome. J. Child Psychol. Psychiatry 29, 351–360. doi: 10.1111/j.1469-7610.1988.tb00723.x

Baron-Cohen, S. (1988b). Social and pragmatic deficits in autism: cognitive or affective? J. Autism Dev. Disord. 18, 379–402. doi: 10.1007/bf02212194

Baron-Cohen, S. (1988c). Without a theory of mind one cannot participate in a conversation. Cognition 29, 83–84. doi: 10.1016/0010-0277(88)90011-X

Baron-Cohen, S. (2004). The cognitive neuroscience of autism. J. Neurol. Neurosurg. Psychiatry 75, 945–948. doi: 10.1136/jnnp.2003.018713

Baron-Cohen, S., Ring, H., Moriarty, J., Schmitz, B., Costa, D., and Ell, P. (1994). Recognition of mental state terms. clinical findings in children with autism and a functional neuroimaging study of normal adults. Br. J. Psychiatry 165, 640–649. doi: 10.1192/bjp.165.5.640

Bernas, A., Aldenkamp, A. P., and Zinger, S. (2018). Wavelet coherence-based classifier: a resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism. Comput. Methods Programs Biomed. 154, 143–151. doi: 10.1016/j.cmpb.2017.11.017

Bhaumik, R., Pradhan, A., Das, S., and Bhaumik, D. K. (2018). Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics 16, 197–205. doi: 10.1007/s12021-018-9366-0

Bi, X.-A., Wang, Y., Shu, Q., Sun, Q., and Xu, Q. (2018). Classification of autism spectrum disorder using random suppor vector machine cluster. Front. Genet. 9:18. doi: 10.3389/fgene.2018.00018

Brown, J. A., Rudie, J. D., Bandrowski, A., Horn, J. D. V., and Bookheimer, S. Y. (2012). The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Front. Neuroinform. 6:28. doi: 10.3389/fninf.2012.00028

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s default network anatomy, function, and relevance to disease. N. Y. Acad. Sci. 1124, 1–38. doi: 10.1196/annals.1440.011

Chanel, G., Pichon, S., Conty, L., Berthoz, S., Chevallier, C., and Grèzes, J. (2016). Classification of autistic individuals and controls using cross-task characterization of fMRI activity. Neuroimage Clin. 10, 78–88. doi: 10.1016/j.nicl.2015.11.010

Chen, C. P., Keown, C. L., Jahedi, A., Nair, A., Pflieger, M. E., Bailey, B. A., et al. (2015). Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. Neuroimage Clin. 8, 238–245. doi: 10.1016/j.nicl.2015.04.002

Cherkassky, V. L., Kana, R. K., Keller, T. A., and Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport 17, 1687–1690. doi: 10.1097/01.wnr.0000239956.45448.4c

Cole, D. M., Smith, S. M., and Beckmann, C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4:8. doi: 10.3389/fnsys.2010.00008

Craddock, R. C., James, G. A., Holtzheimer, P. E. III, Hu, X. P., and Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.21333

Craig, A. D. B. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Ann. N. Y. Acad. Sci. 1225, 72–82. doi: 10.1111/j.1749-6632.2011.05990.x

Cuingnet, R., Gérardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., et al. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56, 766–781. doi: 10.1016/j.neuroimage.2010.06.013

Dadi, K., Rahim, M., Abraham, A., Chyzhyk, D., Milham, M., Thirion, B., et al. (2019). Benchmarking functional connectome-based predictive models for resting-state fMRI. Neuroimage 192, 115–134. doi: 10.1016/j.neuroimage.2019.02.062

Davatzikos, C., Fan, Y., Wu, X., Shen, D., and Resnick, S. M. (2006). Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging 29, 514–523. doi: 10.1016/j.neurobiolaging.2006.11.010

Dekhil, O., Hajjdiab, H., Shalaby, A., Ali, M. T., Ayinde, B., Switala, A., et al. (2018). Using resting state functional MRI to build a personalized autism diagnosis system. PLoS One 13:e0206351. doi: 10.1371/journal.pone.020635

Deshpande, G., Libero, L. E., Sreenivasan, K. R., Deshpande, H. D., and Kana, R. K. (2013). Identification of neural connectivity signatures of autism using machine learning. Front. Hum. Neurosci. 7:670. doi: 10.3389/fnhum.2013.00670

Desikan, R. S., Seǵonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Dodero, L., Sambataro, F., Murino, V., and Sona, D. (2015a). “Medical image computing and computer-assisted intervention–MICCAI 2015,” in Proceedings of the 18th International Conference, Munich.

Dodero, L., Sambataro, F., Murino, V., and Sona, D. (2015b). Kernel-Based Analysis of Functional Brain Connectivity on Grassmann Manifold. Lect. Notes Comput. Sci. 9351, 604–611. doi: 10.1007/978-3-319-24574-4_72.

Du, W., Calhoun, V. D., Li, H., Ma, S., Eichele, T., Kiehl, K., et al. (2012). High classification accuracy for schizophrenia with rest and task fMRI data. Front. Hum. Neurosci. 6:145. doi: 10.3389/fnhum.2012.00145

Du, Y., Fu, Z., and Calhoun, V. D. (2018). Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12:525. doi: 10.3389/fnins.2018.00525

Dvornek, N. C., Ventola, P., Pelphrey, K. A., and Duncan, J. S. (2017). Identifying autism from resting-state fmri using long short term memory networks. Mach. Learn. Med. Imaging. 10541, 362–370. doi: 10.1007/978-3-319-67389-9_42

Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., and Saeed, F. (2019). ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinform. 13:70. doi: 10.3389/fninf.2019.00070

Fan, Y., Gur, R. E., Gur, R. C., Wu, X., Shen, D., Calkins, M. E., et al. (2008). Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study. Biol. Psychiatry 63, 118–124. doi: 10.1016/j.biopsych.2007.03.015

Fredo, A. R. J., Jahedi, A., Reiter, M. A., and Muller, R.-A. (2019). Classification of severe autism in fMRI using functional connectivity and conditional random forests. Neural Comput. App. 32:8415. doi: 10.1007/s00521-019-04346-y

Ghiassian, S., Greiner, R., Jin, P., and Brown, M. R. G. (2016). Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLoS One 11:e0166934. doi: 10.1371/journal.pone.0166934

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi: 10.1073/pnas.0135058100

Guo, X., Lu, L. J., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., et al. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front. Neurosci. 11:460. doi: 10.3389/fnins.2017.00460

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182. doi: 10.1162/153244303322753616

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F. (2018). Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Huang, Z.-A., Zhu, Z., Member, S., Yau, C. H., and Tan, K. C. (2020). Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans. Neural Netw. Learn. Syst. 32, 2847–2861. doi: 10.1109/tnnls.2020.3007943

Hull, J. V., Dokovna, L. B., Jacokes, Z. J., and Torgerson, C. M., Irimia, A., and Van Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum disorders: a review. Front. Psychiatry 7:205. doi: 10.3389/fpsyt.2016.00205

Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon, D. R., et al. (2019). Applications of supervised machine learning in autism spectrum disorder research: a review. Rev. J. Autism Dev. Disord. 6, 128–146. doi: 10.1007/s40489-019-00158-x

Iidaka, T. (2015). Resting state functional magnetic resonance imaging and neural network classified autism and control. Sciencedirect Cortex 63, 55–67. doi: 10.1016/j.cortex.2014.08.011

Jon, B., Lisa, W., Christensen, D. L., Maenner, M. J., Daniels, J., Zachary, W., et al. (2018). Prevalence of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 67, 1–23. doi: 10.15585/mmwr.ss6802a1

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: trends, perspectives, and prospects. Science 349, 255–260. doi: 10.1126/science.aac4520

Just, M. A., Cherkassky, V. L., Buchweitz, A., Keller, T. A., and Mitchel, T. M. (2014). Identifying autism from neural representations of social interactions: neurocognitive markers of autism. PLoS One 9:e113879. doi: 10.1371/journal.pone.0113879

Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., and Just, M. A. (2009). Atypical frontal-posterior synchronization of theory of mind regions in autism during mental state attribution. Soc. Neurosci. 4, 135–152. doi: 10.1080/17470910802198510

Kassraian-Fard, P., Matthis, C., Balsters, J. H., Maathuis, M. H., and Wenderoth, N. (2016). Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example. Front. Psychiatry 7:177. doi: 10.3389/fpsyt.2016.00177

Kazeminejad, A., and Sotero, R. C. (2019). Topological properties of resting-state fmri functional networks improve machine learning-based autism classification. Front. Neurosci. 12:1018. doi: 10.3389/fnins.2018.01018

Kazeminejad, A., and Sotero, R. C. (2020). The importance of anti-correlations in graph theory based classification of autism spectrum disorder. Front. Neurosci. 14:676. doi: 10.3389/fnins.2020.00676

Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., and Liu, J. (2018). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324, 63–68. doi: 10.1016/j.neucom.2018.04.080

Ktena, S. I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B., et al. (2017). Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage 169, 431–442. doi: 10.1016/j.neuroimage.2017.12.052

Lashkari, D., Vul, E., Kanwisher, N., and Golland, P. (2009). Discovering structure in the space of fMRI selectivity profiles. Neuroimage 50, 1085–1098. doi: 10.1016/j.neuroimage.2009.12.106

Li, H., Parikh, N. A., and He, L. (2018). A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front. Neurosci. 12:491. doi: 10.3389/fnins.2018.00491

Liu, J., Sheng, Y., Lan, W., Guo, R., Wang, Y., and Wang, J. (2020). Improved ASD classification using dynamic functional connectivity and multi-task feature selection. Pattern Recognit. Lett. 138, 82–87. doi: 10.1016/j.patrec.2020.07.005

Liu, Y., Xu, L., Li, J., Yu, J., and Yu, X. (2020). Attentional connectivity-based prediction of autism using heterogeneous rs-fMRI data from CC200 atlas. Exper. Neurobiol. 29, 27–37. doi: 10.5607/en.2020.29.1.27

Martino, A. D., Yan, C.-G., Li, Q., Denio, E., and Castellanos, F. X. (2014). The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667. doi: 10.1038/mp.2013.78

Martino, A. D., Zuo, X.-N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz, A., et al. (2013). Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 74, 623–632. doi: 10.1016/j.biopsych.2013.02.011

Mash, L. E., Linke, A. C., Olson, L. A., Fishman, I., Liu, T. T., and Müller, R.-A. (2019). Transient states of network connectivity are atypical in autism: a dynamic functional connectivity study. Hum. Brain Mapp. 40, 2377–2389. doi: 10.1002/hbm.24529

Masona, R. A., Williams, D. L., Kana, R. K., Minshew, N., and Just, M. A. (2008). Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia 46, 269–280. doi: 10.1016/j.neuropsychologia.2007.07.018

Minshew, N. J., and Keller, T. A. (2010). The nature of brain dysfunction in autism: functional brain imaging studies. Curr. Opin. Neurol. 23, 124–130. doi: 10.1097/WCO.0b013e32833782d4

Minshew, N. J., and Williams, D. L. (2007). The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 64, 945–950. doi: 10.1001/archneur.64.7.945

Monk, C. S., Peltier, S. J., Wiggins, J. L., Weng, S.-J., Carrasco, M., Risi, S., et al. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47, 764–772. doi: 10.1016/j.neuroimage.2009.04.069

Mourão-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., and Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. Neuroimage 28, 980–995. doi: 10.1016/j.neuroimage.2005.06.070

Murdaugh, D. L., Shinkareva, S. V., Deshpande, H. R., Wang, J., Pennick, M. R., and Kana, R. K. (2012). Differential deactivation during mentalizing and classification of autism based on default mode network connectivity. PLoS One 7:e50064. doi: 10.1371/journal.pone.0050064

Neufeld, J., Kuja-Halkola, R., Mevel, K., Cauvet, É, Fransson, P., and Bölte, S. (2017). Alterations in resting state connectivity along the autism trait continuum: a twin study. Mol. Psychiatry 23, 1659–1665. doi: 10.1038/mp.2017.160

Nevison, C. D. (2014). A comparison of temporal trends in United States autism prevalence to trends in suspected environmental factors. Environ. Health 13:73.

Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., et al. (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 7:599. doi: 10.3389/fnhum.2013.00599

Niu, K., Guo, J., Pan, Y., Gao, X., Peng, X., Li, N., et al. (2020). Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data. Complexity 3, 1–9. doi: 10.1155/2020/1357853

Odriozola, P., Uddin, L. Q., Lynch, C. J., Kochalka, J., Chen, T., and Menon, V. (2016). Insula response and connectivity during social and non-social attention in children with autism. Soc. Cogn. Affect. Neurosci. 11, 433–444. doi: 10.1093/scan/nsv126

Patel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds, C. F. III, and Aizenstein, H. J. (2015). Machine learning approaches for integrating clinical and imaging features in LLD classification and response prediction. Int. J. Geriatr. Psychiatry 30, 1056–1067. doi: 10.1002/gps.4262

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers and FMRI: a tutorial overview. Neuroimage 45, S199–S209.

Plitt, M., Barnes, K. A., and Martin, A. (2015). Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin. 7, 359–366. doi: 10.1016/j.nicl.2014.12.013

Poldrack, R. A., Barch, D. M., Mitchell, J. P., Wager, T. D., Wagner, A., Devlin, J. T., et al. (2013). Towards open sharing of task-based fMRI data: the OpenfMRI project. Front. Neuroinform. 7:12. doi: 10.3389/fninf.2013.00012

Poldrack, R. A., and Gorgolewski, K. J. (2015). OpenfMRI: open sharing of task fMRI data. Neuroimage 144, 259–261. doi: 10.1016/j.neuroimage.2015.05.073

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., et al. (2011). Functional network organization of the human brain. Neuron 72, 665–678. doi: 10.1016/j.neuron.2011.09.006

Power, J. D., Schlaggar, B. L., and Petersen, S. E. (2014). Studying brain organization via spontaneous fMRI signal. Neuron 84, 681–696. doi: 10.1016/j.neuron.2014.09.007

Price, T., Wee, C. Y., Gao, W., and Shen, D. (2014). Multiple-network classification of childhood autism using functional connectivity dynamics. Med. Image. Comput. Comput. Assist. Interv. 17, 177–184. doi: 10.1007/978-3-319-10443-0_23

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682.

Rane, S., Jolly, E., Park, A., Jang, H., and Craddock, C. (2017). Developing predictive imaging biomarkers using whole-brain classifiers: application to the ABIDE I dataset. Res. Ideas Outcomes 3:e12733. doi: 10.3897/rio.3.e12733

Redcay, E., Moran, J. M., Mavros, P. L., Tager-Flusberg, H., Gabrieli, J. D. E., and Whitfield-Gabrieli, S. (2013). Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Front. Hum. Neurosci. 7:573. doi: 10.3389/fnhum.2013.00573

Reiter, M. A., Jahedi, A., Fredo, A. R. J., Fishman, I., Bailey, B., and Muller, R.-A. (2021). Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity. Neural Comput. App. 33, 3299–3310. doi: 10.1007/s00521-020-05193-y

Sherkatghanad, Z., Zomorodi-Moghadam, M., Khosrowabadi, R., Akhondzadeh, M., Abdar, M., and Salari, V. (2020). Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 13:1325. doi: 10.3389/fnins.2019.01325

Soussia, M., and Rekik, I. (2018). Unsupervised manifold learning using high-order morphological brain networks derived from T1-w MRI for autism diagnosis. Front. Neuroinform. 12:70. doi: 10.3389/fninf.2018.00070

Tang, M., Kumar, P., Chen, H., and Shrivastava, A. (2020). Deep multimodal learning for the diagnosis of autism spectrum disorder. J. Imaging 6:47. doi: 10.3390/jimaging6060047

Thomas, R. M., Gallo, S., Cerliani, L., Zhutovsky, P., El-Gazzar, A., and Wingen, G. V. (2020). Classifying autism spectrum disorder using the temporal statistics of resting-state functional mri data with 3D convolutional neural networks. Front. Psychiatry 11:440. doi: 10.3389/fpsyt.2020.00440

Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., et al. (2013a). Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879. doi: 10.1001/jamapsychiatry.2013.104

Uddin, L.Q., Supekar, K., and Menon, V. (2013b). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front. Hum. Neurosci. 7:458. doi: 10.3389/fnhum.2013.00458

Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., and Batzoglou, S. (2017). Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416. doi: 10.1038/nmeth.4207

Wang, H., Chen, C., and Fushing, H. (2012). Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS One 7:e45502. doi: 10.1371/journal.pone.0045502

Wang, J., Zhang, L., Wang, Q., Chen, L., Shi, J., Chen, X., et al. (2020). Multi-class asd classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation. IEEE transactions on medical imaging 39, 3137–3147. doi: 10.1109/TMI.2020.2987817

Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A., Wolfe, A., et al. (2014). Dysmaturation of the default mode network in autism. Hum. Brain Mapp. 35, 1284–1296. doi: 10.1002/hbm.22252

Wolfers, T., Buitelaar, J. K., Beckman, C. F., Franke, B., and Marquand, A. F. (2015). From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biohehav. Rev. 57, 328–349. doi: 10.1016/j.neubiorev.2015.08.001

Yahata, N., Morimoto, J., Hashimoto, R., Lisi, G., Shibata, K., Kawakubo, Y., et al. (2016). A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7:11254. doi: 10.1038/ncomms11254

Yang, M., Cao, M., Chen, Y., Chen, Y., Fan, G., Li, C., et al. (2021). Large-scale brain functional network integration for discrimination of autism using a 3-D deep learning model. Front. Hum. Neurosci. 15:687288. doi: 10.3389/fnhum.2021.687288

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/jn.00338.2011

Yin, W., Mostafa, S., and Wu, F. (2021). Diagnosis of autism spectrum disorder based on functional brain networks with deep learning. J. Comput. Biol. 28, 146-165. doi: 10.1089/cmb.2020.025

Zeng, L.-L., Shen, H., Liu, L., and Hu, D. (2014). Unsupervised classification of major depression using functional connectivity MRI. Hum. Brain Mapp. 35, 1630–1641. doi: 10.1002/hbm.22278

Zhao, F., Chen, Z., Rekik, I., Lee, S.-W., and Shen, D. (2020). Diagnosis of autism spectrum disorder using central-moment features from low- and high-order dynamic resting-state functional connectivity networks. Front. Neurosci. 14:258. doi: 10.3389/fnins.2020.00258

Zhao, F., Zhang, H., Rekik, I., An, Z., and Shen, D. (2018). Diagnosis of autism spectrumdisorders using multi-level high-order functional networksderived from resting-statefunctional MRI. Front. Hum. Neurosci. 12:184. doi: 10.3389/fnhum.2018.00184

Zhou, Y., Yu, F., and Duong, T. (2014). Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS One 9:e90405. doi: 10.1371/journal.pone.0090405

Zielinski, B. A., Anderson, J. S., Froehlich, A. L., Prigge, M. B. D., Nielsen, J. A., Cooperrider, J. R., et al. (2012). scMRI reveals large-scale brain network abnormalities in autism. PLoS One 7:e49172. doi: 10.1371/journal.pone.0049172


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Liu, Li and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	
	ORIGINAL RESEARCH
published: 27 September 2021
doi: 10.3389/fneur.2021.685276






[image: image2]

Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis

Ashika Mani1†, Tales Santini2†, Radhika Puppala3†, Megan Dahl3, Shruthi Venkatesh3, Elizabeth Walker3, Megan DeHaven3, Cigdem Isitan3, Tamer S. Ibrahim2, Long Wang4, Tao Zhang4, Enhao Gong4, Jessica Barrios-Martinez5, Fang-Cheng Yeh5, Robert Krafty6, Joseph M. Mettenburg7 and Zongqi Xia2,3*


1Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States

2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States

3Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States

4Subtle Medical Inc., Menlo Park, CA, United States

5Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States

6Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States

7Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States

Edited by:
Baojuan Li, Massachusetts General Hospital and Harvard Medical School, United States

Reviewed by:
Erika Molteni, King's College London, United Kingdom
 Takuya Matsushita, Kyushu University, Japan

*Correspondence: Zongqi Xia, zxia1@post.harvard.edu

†These authors have contributed equally to this work and share first authorship

Specialty section: This article was submitted to Applied Neuroimaging, a section of the journal Frontiers in Neurology

Received: 24 March 2021
 Accepted: 24 August 2021
 Published: 27 September 2021

Citation: Mani A, Santini T, Puppala R, Dahl M, Venkatesh S, Walker E, DeHaven M, Isitan C, Ibrahim TS, Wang L, Zhang T, Gong E, Barrios-Martinez J, Yeh F-C, Krafty R, Mettenburg JM and Xia Z (2021) Applying Deep Learning to Accelerated Clinical Brain Magnetic Resonance Imaging for Multiple Sclerosis. Front. Neurol. 12:685276. doi: 10.3389/fneur.2021.685276



Background: Magnetic resonance (MR) scans are routine clinical procedures for monitoring people with multiple sclerosis (PwMS). Patient discomfort, timely scheduling, and financial burden motivate the need to accelerate MR scan time. We examined the clinical application of a deep learning (DL) model in restoring the image quality of accelerated routine clinical brain MR scans for PwMS.

Methods: We acquired fast 3D T1w BRAVO and fast 3D T2w FLAIR MRI sequences (half the phase encodes and half the number of slices) in parallel to conventional parameters. Using a subset of the scans, we trained a DL model to generate images from fast scans with quality similar to the conventional scans and then applied the model to the remaining scans. We calculated clinically relevant T1w volumetrics (normalized whole brain, thalamic, gray matter, and white matter volume) for all scans and T2 lesion volume in a sub-analysis. We performed paired t-tests comparing conventional, fast, and fast with DL for these volumetrics, and fit repeated measures mixed-effects models to test for differences in correlations between volumetrics and clinically relevant patient-reported outcomes (PRO).

Results: We found statistically significant but small differences between conventional and fast scans with DL for all T1w volumetrics. There was no difference in the extent to which the key T1w volumetrics correlated with clinically relevant PROs of MS symptom burden and neurological disability.

Conclusion: A deep learning model that improves the image quality of the accelerated routine clinical brain MR scans has the potential to inform clinically relevant outcomes in MS.

Keywords: multiple sclerosis, deep learning, artificial intelligence, magnetic resonance imaging, accelerated acquisition, patient-reported outcome (PRO), brain volume, DBPN


INTRODUCTION

Routine magnetic resonance (MR) scans are the standard of care for monitoring disease activity and progression in people with multiple sclerosis (PwMS) (1). Most PwMS undergo brain MR scans yearly, with individual factors such as changes in disease activity and disease-modifying treatment (DMT) altering the scan frequency. Prolonged MR scan time contributes to patient discomfort, poor image quality due to motion, delays in scheduling, potentially high medical cost, and financial burden for PwMS (2). Thus, accelerating the acquisition time of clinical MR scans could benefit PwMS and generally improve access to critical diagnostic imaging. However, diminished image quality (e.g., contrast to noise ratio, resolution) is the main challenge preventing the clinical application of MR scans with accelerated acquisition time.

Artificial intelligence (AI) approaches could potentially address the loss of MR image quality in accelerated scans. Deep learning (DL) models such as convolutional neural networks (CNNs) enhance MR image quality of the fast scans without compromising relevant image information passed through each layer (3–6). Compared to supervised learning algorithms, CNNs show comparable aptitude and often greater adaptability in MRI post-processing (7). Deep back-projection network (DBPN) is a class of CNN that outperforms other methods given its ability to self-correct errors using back-projection (8).

In this study, we evaluated the clinical application of a DL model based on DBPN that employed noise-reducing and sharpness-enhancing functions. Specifically, we assessed whether the DL model improved the quality of fast clinical brain MR images acquired with accelerated time and whether the key volumetrics from brain MR preserved their correlations with clinically relevant neurological outcomes to the extent comparable to the benchmark conventional MR scans. Here, we prioritized T1-weighted volumetrics (i.e., whole brain, gray matter, white matter, thalami) that are known to be associated with subsequent clinical outcomes in MS (9–18).



METHODS


Data Source

We recruited participants from a clinic-based, prospective MS cohort study (Prospective Investigation of Multiple Sclerosis in the Three Rivers Region, PROMOTE) based in the Pittsburgh region (PA, USA). The Institutional Review Board of the University of Pittsburgh approved this study. All participants completed the informed consent process.



MRI Acquisition

One hundred and fifteen participants underwent routine clinical brain MR studies on a GE Discovery MR750 3-Tesla scanner between September 2018 and January 2020, some completing multiple scans on separate days. In addition to the institutional clinical protocol that included the standard (or conventional) 3D T1w BRAVO (FE/PE/SE: 220 × 220 × 126, scan time 2:57), 3D T2 FLAIR (FE/PE/SE: 256 × 224 × 240, scan time 6:40), and other routine clinical sequences, we acquired an accelerated (or fast) 3D T1w BRAVO (FE/PE/SE: 220 × 128 × 64, scan time 1:13) and an accelerated (or fast) 3D T2w FLAIR (FE/PE/SE: 256 × 128 × 120, scan time 2:17) during the same MR exam. Compared to the conventional T1w BRAVO and T2w FLAIR, the fast sequences were accelerated by a factor of 2 in both the phase and slice directions.



Deep Learning

We developed a DL model based on DBPN (8) to enhance the image quality for the fast sequences from clinical brain MR scans. The DL model input the fast sequences and generated high resolution images similar to that of the conventional sequences. The output of the DL model had twice the slice number as that of the input. To incorporate the slice information, we applied a 2.5 D model with five adjacent slices. We trained the DL model with the first 15 randomly selected scans, with images from the conventional sequences serving as the ground truth. An L1 loss was applied in training to measure the difference between the DL output and ground truth. We applied image pre-processing, including image registration (19), bias field correction (20), and image normalization to the training data. We implemented the DL model in TensorFlow and trained on an NVIDIA V100 GPU with an ADAM optimizer (21). After excluding the 15 training scans and 7 scans acquired with the incorrect conventional and/or fast sequences, we applied the DL model to the remaining 108 scans for evaluation.



MR Image Analysis

Figure 1 showed the overall workflow. For this study, we prioritized T1w volumetric analysis. As quality control, we first examined the raw T1w images to remove scan with: (1) excessive motion artifacts that could decrease the automatic segmentation accuracy (4 out of 108); (2) acquisitions in the wrong phase encoding orientation (7 out of 108); and (3) missing scan (1 out of 108). Using the FreeSurfer software version 6.0 (http://surfer.nmr.mgh.harvard.edu/) (22), we then computed the volumes of 96 sets of T1w MR images, including the following regions: total brain, total thalamus, total cerebral gray matter, and total cerebral white matter as well as intracranial space. These regions were chosen based on known correlation with clinical outcomes in MS (9–15, 17, 18). We extracted the volumes from the automatic segmentation file “aseg” of FreeSurfer and normalized each volume measure by the intracranial volume in each individual. Normalized volumes had no unit.


[image: Figure 1]
FIGURE 1. Study workflow.


For exploratory analysis, we manually delineated the T2 lesions and calculated the T2 lesion volume in a subset of 30 MR scans using DSI Studio (http://dsi-studio.labsolver.org) (23). Two initial raters (RP and MD) performed the manual correction, and a third supervising rater (CI) performed the final manual correction. We first loaded the T2 FLAIR images in DSI Studio from Step T3. The lesion drawing task began with placing multiple 3D spheres to cover each of the T2 hyperintense regions. DSI Studio provides a 3D interactive function to place and move spheres in the 3D space to complete this task quickly. The raters then refined the contours of the lesions by applying an intensity threshold. The exact value of the threshold was adjustable to achieve the best segmentation results. Each scan required an average of 15–30 min to complete the manual correction.



Patient-Reported Outcomes

To assess the clinical relevance of the neuroimaging measures, we used two clinically relevant patient-reported outcomes of neurological function validated in PwMS. First, the Multiple Sclerosis Rating Scale-Revised (MSRS-R) assessed the MS symptom burden across eight domains: walking, using arms and hands, vision, speech, swallowing, cognition, sensation, and bowel and bladder control (24, 25). Each domain included a sub-score ranging from 0 (no symptoms) to 4 (severe disability) for a maximum total score of 32. Second, Patient Determined Disease Steps (PDDS) assessed the gait impairment, ranging from 0 (normal gait) to 8 (bedridden). We categorized patients as having severe disabilities based on consistent requirements for assistive devices for distances longer than 25 feet (PDDS of 4). This threshold approximated the clinician-rated Extended Disability Status Scale (EDSS) score of 6 (26).



Statistical Analysis

All analyses were completed using R version 4.0.3 (27). For the paired t-tests, a two-sided P < 0.0125 was indicative of statistical significance as we used the Bonferroni Correction method to obtain this significance level (0.05/4 = 0.0125), given the four different T1w volumetrics being tested. For descriptive variables, we expressed continuous data as mean and standard deviation (SD) or medians and interquartile ranges, and categorical data as frequencies and percentages.

We first performed paired t-tests to compare the three types of MR acquisition (conventional, fast, fast with DL) for the four T1w volume measures: normalized brain volume (NBV), normalized thalamic volume (NThV), normalized gray matter volume (NGMV), and normalized white matter volume (NWMV).

To measure the association between the four T1w volumetrics (NBV, NThV, NGMV, NWMV) and the two patient-reported clinical outcomes (MSRS-R, PDDS), we developed a repeated measures multivariate linear mixed-effects model for T1w volumetrics that included the type of MR acquisition conducted as the fixed between-subject factor, a random subject effect and clinical outcomes (see Supplementary Material for formula). We included interaction terms between the clinical outcomes tested and the type of MR acquisition, with conventional MR acquisition as the reference point or benchmark. The interaction terms quantified (1) differences in associations with clinical outcomes between fast scans and conventional scans, and (2) differences in associations with clinical outcomes between fast scans with DL and conventional scans. To account for the contribution of age, sex, race, ethnicity, disease duration in years, clinical type (e.g., relapsing), and DMT (i.e., treatment) status on the clinical outcomes, we adjusted these covariates as fixed effects in the model. We performed exploratory analysis examining the multivariate association between T2 lesion volume and clinical outcomes.



Data and Code Availability

Code for analysis and figure generation is available at: https://github.com/ashikamani/MS-MRI-. Anonymous data that support the findings of this study are available upon reasonable request to the corresponding author.




RESULTS


Participant Demographics

This study includes 87 unique PwMS (see Table 1 for demographics). After excluding training scans and evaluation scans with quality control failure, there were a total of 96 MR scans for evaluation. Nine patients had two MR scans occurring on separate days. The mean age of the participants was 47 years. Most participants were women and of Non-Hispanic European descent (70.2 and 80.5%, respectively). Most participants (86.2%) had the relapsing type of MS with mostly mild physical disability and gait impairment (mean PDDS of 1.7) and mild MS symptom burden (median MSRS-R of 4). The mean disease duration (i.e., the interval between the date of the participant's first neurological symptoms and the date of MR scan) was 15 years. At the time of the MR, most participants (72.4%) received DMT with 5.7% on high-efficacy treatment.


Table 1. Characteristics of the study participants.
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Comparison of MR Acquisition Methods for T1w MRI Volumes

We compared the T1w volumetrics across the three MR acquisition methods: conventional scan, fast scan, and fast scan with DL (Figures 2, 3). For the T1w volumes, paired t-tests using the conventional scan as the benchmark indicated a true difference in mean volumes among these methods (Table 2). Using a threshold for multiple hypotheses testing, paired t-tests comparing fast scans against conventional scans were significant for NBV, NThV, NGMV, and NWMV (p = 0.0006, p = 0.01, p < 0.0001, and p < 0.0001, respectively). Likewise, paired t-tests comparing fast scans with DL against conventional scans were significant for NBV, NThV, NGMV, and NWMV (p < 0.0001, p = 0.002, p = <0.0001, and p < 0.0001, respectively). Compared to the conventional scans, the mean absolute difference (or percentage difference) for NBV, NThV, NGMV, and NWMV for fast scans with DL were 0.013 (−1.789%), 0.0020 (2.265%), 0.018 (−4.273%), and 0.0043 (1.478%), respectively. Finally, paired t-tests comparing fast scans with DL and fast scans were also significant for NBV, NThV, NGMV, and NWMV (p = 0.0004, p < 0.0001, p < 0.0001, and p < 0.0001, respectively).


[image: Figure 2]
FIGURE 2. Representative T1w images. Central slices in a similar position for the acquisitions using the three methods: Conventional T1w BRAVO (2:57 min total acquisition time, 220 × 220 × 126 matrix size), fast T1w BRAVO (1:13 min total acquisition time, 220 × 128 × 64 matrix size), and fast T1w BRAVO with DL (same acquisition time and matrix size as the fast T1w BRAVO). BRAVO is the T1-weighted sequence for brain volume imaging on GE MR scanner.



[image: Figure 3]
FIGURE 3. Representative FreeSurfer segmentation images. Slices in a similar position for the FreeSurfer segmentation derived from the three different methods to generate the images.



Table 2. Paired differences for T1w volume measures across methods.
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While the T1w volumes on fast scan and fast scan with DL both had significant differences from conventional scans, the relative difference (or percentage difference) decreased from −9.3% (fast vs. conventional) to −4.3% (fast with DL vs. conventional) for normalized gray matter volume and from 10.9% (fast vs. conventional) to 1.5% (fast with DL vs. conventional) for normalized white matter volume. The relative difference marginally increased from −0.9% (fast vs. conventional) to −1.8% (fast with DL vs. conventional) for normalized brain volume and from −1.6% (fast vs. conventional) to 2.3% (fast with DL vs. conventional) for normalized thalamic volume.



MRI-Clinical Correlations Comparisons

We next assessed the clinical applicability of the T1w volume metrics as acquired by the different methods again using the conventional scans as benchmarks. First, we examined the correlation between T1w volumetrics and physical and gait impairment based on the clinically relevant patient-reported outcome of PDDS (Table 3). The Wald chi-square test for comparing the coefficients between fast scans and the conventional scans were statistically significant only for NBV (p = 0.002) but not for NThV, NGMV, and NWMV, indicating a difference in the correlation between NBV (but not the other T1w volumetrics) and PDDS when comparing the fast scans to the conventional scans. Importantly, the coefficients comparing fast scans with DL and conventional scans were not statistically significant for NBV, NThV, NGMV, and NWMV, indicating no difference in the correlations between all T1w volumetrics and PDDS when comparing the fast scans with DL against the benchmark conventional scans.


Table 3. Linear mixed-effects model with conventional MRI scans as baseline and interaction with gait and physical impairment in multiple sclerosis as measured by PDDS.
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Second, we examined the correlation between T1w volumetrics and the MS symptom burden based on the clinically relevant patient-reported outcome of MSRS-R (Table 4). There was no significant difference in the correlation between all T1w volumetrics (NBV, NThV, NGMV, and NWMV) and MSRS-R when comparing fast scans to the benchmark conventional scans. Likewise, we did not find statistical significance for the coefficients comparing fast scans with DL and the conventional scans for all T1w volumetrics, indicating no difference in the correlations between all T1w volumetrics and MSRS-R when comparing fast scans with DL against the benchmark scans.


Table 4. Linear mixed-effects model with conventional MRI scans as baseline and interaction with multiple sclerosis symptom burden as measured by MSRS-R.
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Exploratory Analyses

In a subset of the 30 scans in which we calculated T2 lesion volumes, there was no difference in pairwise comparisons across the three methods (Figure 4, Supplementary Table 1). Further, there was no difference in the correlation between the T2 lesion volume and either neurological outcome (MSRS-R or PDDS) when comparing fast scans with DL against the benchmark conventional scans (Supplementary Table 2).


[image: Figure 4]
FIGURE 4. Representative T2FLAIR images. Slices in a similar position for the acquisitions using three different methods: Conventional T2 FLAIR (6:40 min total acquisition time, 256 × 224 × 240 matrix size), fast T2 FLAIR (1:13 min total acquisition time, 256 × 128 × 120 matrix size), and fast T2 FLAIR with DL (same acquisition time and matrix size as the fast T2 FLAIR). FLAIR is the T2-weighted Fluid-Attenuated Inversion Recovery sequence.





DISCUSSION

We reported a deep learning model based on DBPN that improved the image quality of an accelerated T1w sequence acquired during routine clinical brain MR scans to the extent of preserving the correlation between the key T1w volumetrics and clinically relevant outcomes in PwMS. The T1w volumetrics (normalized brain volume, normalized thalamic volume, normalized gray matter volume, and normalized white matter volume) are all known to inform MS neurological outcomes (9–18) and are indeed inversely correlated with patient-reported neurological outcomes in this study (Supplementary Table 3). Here, the T1w (and T2w-FLAIR) fast images were acquired nearly 3 (and 6 times) faster than the conventional acquisitions (respectively). To our knowledge, this is the first report of DL application to improve the image quality of accelerated scans in clinical brain MR for MS and it has the potential for clinical applications in the routine care of PwMS.

Accelerating clinical MR acquisition time has direct clinical implications, particularly for conditions such as MS where routine disease monitoring using MR scans is the standard of care. Methods such as compressed sensing and parallel imaging aim to reconstruct higher quality images from a smaller amount of raw MR imaging data (28–30). However, the concern for clinical feasibility stems from the poor image quality and long reconstruction times (31). Deep learning methods began to address these issues by incorporating different types of CNN structures (3–6). These methods follow two similar steps: reducing scan acquisition time by under-sampling k-space in raw MR data and then reconstructing a higher-quality image using novel DL models. Contrasting feed-forward approaches, DBPN takes advantage of error feedback to self-correct at multiple layers of the neural network. Further, with its multiple stages of up- and down-sampling layers, it combines both local and global information into learning, and preserves the small details leading to more robust response compared to residual block-based models such as Enhanced Deep Residual Networks (EDSR), which focuses only on the local information (32). DBPN is a useful tool for improving image quality through noise elimination and sharpness-enhancement (8). Given it is not over-parameterized, a relatively modest sample size would be sufficient for training the model to generate reasonable performance without overfitting. Finally, it results in faster inference time during deployment without similar performance. To our knowledge, this specific application of DBPN to improve the quality of accelerated clinical brain MR scans for PwMS is novel.

In terms of the study design, we aimed to balance the need for sufficiently powered sample size for the held-out evaluations and the need to have sufficient training data to generate reasonable performance without overfitting. By tuning the model parameters (filter size, the number of filters, the number of the project units, etc.), it was feasible to build a model that performed well on a small training set. Empirically, we found that 15 cases for the current model setup (which were randomly selected) resulted in good performance in image improvement. The loss function metric, a measure of the difference between the model output and the ground truth image, decreased monotonically as validation set images were presented to the deep learning algorithm. This suggests that the model was not overfitted and could be generalizable. When visually assessing the image sharpness, particularly in the cerebral cortex, the performance of the validation set resembles the training set, again confirming that the model was not overfitted.

Although the T1w volumes computed from the fast scan and fast scan with DL both had significant differences when compared to the benchmark conventional scans (Table 2), the fast scan with DL reduced the mean absolute difference from the benchmark scans for normalized gray matter volume (from −9.345 to −4.273%) and normalized white matter volume (from 10.874 to 1.478%), while only marginally increased the mean absolute difference from the benchmark scans for normalized brain volume (from −0.905 to −1.789%) and normalized thalamic volume (from −1.641 to 2.265%) when compared to the fast scans. The current study cannot conclude whether the deep learning approach introduces brain region-specific improvement.

Despite the small T1w volumetric differences from the benchmark conventional approach, there was no significant difference in the correlations between all four T1w volumetrics and the two clinically relevant patient-reported outcomes of neurological disability and symptom burden (PDDS and MSRS-R) in the fast scans with DL against the benchmark conventional approach (Tables 3, 4). These findings indicate that the calculated volumetric differences between fast scans with DL and conventional approaches were not large enough to have clinical impact. Specifically, the correlation between the T1w MRI findings and real-world outcomes of gait and physical impairment (PDDS) as well as overall symptom burden (MSRS-R) were preserved in the fast scans with DL.

The difference in the parcellations derived from the fast and conventional images could explain the significant difference in the correlation between the normalized brain volume and PDDS (Table 3) as well as the borderline difference in the correlation between the normalized brain volume and MSRS-R (Table 4), though the latter association did not reach significance after correction for multiple testing. When calculating the normalized whole brain volume in the fast scans, the segmentation software likely performed less well when compared to the other T1w volumetrics. The coarse resolution of the fast scans might have made the delimitation of the whole brain edges more challenging.

Obtaining nearly equivalent image quality using shorter acquisition time improves patient comfort and satisfaction while reducing artifact introduced by involuntary motion that often manifests in the latter portion of a prolonged MR study. The increased MR study throughput would also enable efficient utilization of the MR resources, reducing unnecessary wait time and improving access to critical imaging for diagnostic and monitoring purposes, not only for PwMS but also for other patient populations.

There were limitations to our study. First, the study had a modest sample size, limiting the power of some of the statistical analyses (e.g., T2 lesion volume, see further discussion Supplementary Material). Second, the current study performed volumetric analysis on only the T1w images, while inclusion of the T2w-FLAIR contrasts in the processing pipeline might improve the volumetric estimations.

In summary, we demonstrated the clinical application of a deep learning model to improve the quality of accelerated T1w images in routine clinical brain MR scans for MS. Beyond further validation of this application in longitudinal studies (e.g., baseline T1w volumetrics informing long-term clinical outcomes), we anticipate future studies that test the ability of a DL model to replace gadolinium contrast for MRI with “virtual” contrast (33, 34).
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Introduction/Purpose: Systemic lupus erythematosus (SLE) is a chronic auto-immune disease with a broad spectrum of clinical presentations, including heterogeneous neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in distinguishing between NPSLE patients and patients in which the NP symptoms are not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive learning algorithms proved to be useful in classification tasks in rare diseases with limited number of datasets. Our aim was to apply self-supervised contrastive learning on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to distinguish between NPSLE and non-NPSLE patients.

Subjects and Methods: We used 3T MRI T1-weighted images of 163 patients. The training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random geometric transformations between iterations to augment our data sets. The ML pipeline consisted of convolutional base encoder and linear projector. To test the classification task, the projector was removed and one linear layer was measured. Validation of the method consisted of 6 repeated random sub-samplings, each using a random selection of a small group of patients of both subtypes.

Results: In the 6 trials, between 79% and 83% of the patients were correctly classified as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the common features found in both groups, Gradient-weighted Class Activation Maps (Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common features identified for the NPSLE cohort, while no such communality was found for the non-NPSLE group.

Discussion/Conclusion: The self-supervised contrastive learning model was effective in capturing common brain MRI features from a limited but well-defined cohort of SLE patients with NP symptoms. The interpretation of the Grad-CAM results is not straightforward, but indicates involvement of the lateral and third ventricles, periventricular white matter and basal cisterns. We believe that the common features found in the NPSLE population in this study indicate a combination of tissue loss, local atrophy and to some extent that of periventricular white matter lesions, which are commonly found in NPSLE patients and appear hypointense on T1-weighted images.

Keywords: Systemic Lupus Erythematosus, magnetic resonance imaging, cohort studies, unsupervised machine learning, neuroimaging


INTRODUCTION

Systemic lupus erythematosus (SLE) is a female-predominant auto-immune disease with a broad spectrum of clinical presentations and multi-organ involvement. SLE is characterized by the production and deposition of several autoantibodies, of which more than 20 are associated with damage to the nervous system and 11 are brain-specific (Hanly et al., 2019). The involvement of the central nervous system (CNS) in SLE leads to a series of non-specific neuropsychiatric (NP) manifestations in 12–95% of SLE patients (Ainiala et al., 2001). These NP symptoms widely range in terms of severity and prognostic implications (Schwartz et al., 2019). NP events in SLE can be directly associated with the disease (NPSLE) or can be explained by another etiology (non-NPSLE). NP symptoms are associated with an increased mortality and reduced quality of life within the SLE population (Ramage et al., 2011). The diagnosis of NPSLE is also difficult due to the heterogeneous nature of NP syndromes. According to the American College of Rheumatology (ACR), 19 different syndromes are described in relation to NPSLE patients, and stem from involvement of the CNS: aseptic meningitis, cerebrovascular disease, demyelinating syndrome, headache (including migraine and benign intracranial hypertension), movement disorder (chorea), myelopathy, seizure disorders, acute confusional state, anxiety disorder, cognitive dysfunction, mood disorder and psychosis (Hanly, 2014). The large variation in the attribution of the NP symptoms across studies and institutions highlights the difficulty in unequivocally diagnose NPSLE. In clinical practice, it is important to correctly classify NP events, since the therapeutic approach is defined based on this classification. A study performed in our center reported that about 15% of NP events attributed to SLE (NPSLE) during the first patient evaluation were reclassified after reassessment as non-NPSLE (Magro-Checa et al., 2017). This discrepancy highlights the pressing need for biomarkers that will contribute to more reliably distinguish between NPSLE and non-NPSLE early in the diagnostic process.

Another contributor to the heterogeneity of NPSLE is the multitude of pathomechanisms that underlie brain tissue damage. Two different underlying mechanisms are thought to play a role in the pathophysiology of NPSLE. One is the inflammatory mechanism, where the blood-brain barrier (BBB) or the blood-cerebrospinal fluid (BCSF) barrier is compromised due to presence of pro-inflammatory factors (Gelb et al., 2018). Subsequently, auto-antibodies can enter the brain and trigger an inflammatory process that results in focal or diffuse tissue damage. The second proposed mechanism is the thrombotic or ischemic mechanism, where vascular injury and occlusion are present (Magro-Checa et al., 2016). These two pathomechanisms act independently of one another and can be both present in the same patient. Due to the lack of a diagnostic gold standard, the best strategy so far for diagnosing NPSLE remains a multidisciplinary expert consensus after standardized evaluation of complaints and a complete battery of tests, including brain magnetic resonance imaging (MRI) (Magro-Checa et al., 2017). Despite conventional brain MRI being the method of choice for clinical evaluation of SLE patients experiencing NP events, morphological changes and brain lesions observed in these patients do not clearly correlate with the clinical symptoms and disease outcome, underscoring the clinical-radiological paradox encountered with many NPSLE patients, defined by the presence of lesions in the absence of symptoms of NPSLE or vice versa (Magro-Checa et al., 2018).

Currently, MRI features can only contribute in a limited way in the diagnostic process, mostly in the way of exclusion. Several studies have shown that patients with SLE have more white matter hyperintensities (WMH) and more atrophy and infarcts compared to controls (Ainiala et al., 2005; Appenzeller et al., 2006, 2007; Kozora and Filley, 2011; Luyendijk et al., 2011). These findings per se, albeit indicative of robust presence of structural abnormalities in NPSLE, are not useful for the diagnostic process, and basic metrics such as global atrophy and lesion count and lesion load do not lead to a specific diagnosis. It is therefore imperative to further explore neuroimaging biomarkers in the hope of finding markers that can help clinicians differentiate between NPSLE and non-NPSLE patients, and further down the line, also help in the stratification of NPSLE patients based on their clinical phenotype.

Deep learning has been shown to be useful in diagnostic tasks related to clinical neuroimaging data both in diseases with overt brain damage such as stroke, as well as in diseases in which brain alterations are not directly detectable via standard radiological observation (Zhang L. et al., 2020). Deep learning models can extract significant features that are relevant to clinical diagnosis and can distinguish between patient populations even when the brain alterations are not visibly overt (Islam and Zhang, 2018). Classification tasks, however, require a large number of data sets, as well as trained clinicians to generate labels to aid the categorization process. Dementia (Basaia et al., 2019; Jo et al., 2019; Oh et al., 2019; Stamate et al., 2020) and psychiatric disorders (Lin et al., 2018; Durstewitz et al., 2019) have been natural targets for using deep neural networks, as imaging data for these diseases are widely available. NPSLE, on the other hand, is a sub-category of SLE, which in itself is categorized as an orphan/rare disease (prevalence of 1–5 in 10,000, source1) and thus the amount of data available is limited. This makes a supervised ML approach impractical for studying brain abnormalities in NPSLE in a single-center study.

Recently, self-supervised learning approaches, which train the model on unlabeled data by providing self-generated labels from the data themselves, have become popular in image classification. In non-medical applications, self-supervised learning approaches were applied in the prediction of the rotation angles of objects (Gidaris et al., 2018), colorization of gray-scale images (Zhang et al., 2016) and solving randomly generated Jigsaw puzzles (Noroozi and Favaro, 2016). Instance-level identity preservation with contrastive learning has proven effective in learning rich representations for classification (He et al., 2019; Tian et al., 2019; Chen et al., 2020). In this context, self-supervised learning approaches are more suitable for dealing with limited data sets, such as the one presented in this work. Self-supervised learning in biomedical imaging has been implemented in several instances, among which screening of 2-dimensional chest x-ray images (Zhang J. et al., 2020), in the evaluation of cardiac time-series data (Kiyasseh et al., 2020), in tissue segmentation of brain lesions (Gonçalves et al., 2014), in segmentation of renal dynamic contrast-enhanced MRI (Huang et al., 2019), in robust and accelerated reconstruction of quantitative and B0-inhomogeneity-corrected R2* maps from multi-gradient recalled echo MRI data (Torop et al., 2020) and in quality enhancement of compressed sensing MRI of the vessel wall (Eun Di Jang et al., 2020).

In this study, we hypothesized that a self-supervised learning approach would be effective for the classification tasks in our limited patient population, in particular in the distinction between two important diagnostically different SLE patient groups: NPSLE and non-NPSLE patients. To test this hypothesis, we applied a self-supervised method to 3D structural MRI data with the aim of distinguishing and classifying such data for NPSLE and non-NPSLE patients. To provide a benchmark for the ML algorithm presented here, we performed two secondary analyses on the same data set: a standard tissue volumetric analysis of the two patient populations, and a classification of the data sets based on one-class support vector machine (SVM).



MATERIALS AND METHODS


Patient Population

Leiden University Medical Center (LUMC) is the national referral center for SLE patients with NP complaints in the Netherlands. SLE Patients are referred to the outpatient clinic if they present with NP manifestations. In this retrospective study we initially included 216 patients with SLE recorded between May 2007 and April 2015. Of these, 28 patients were excluded because of undefined diagnosis, 3 patients were excluded because of motion artifacts in the MRI scan, 20 patients were excluded because of brain infarcts over 1.5 cm and 2 patients were excluded due to the presence of other diseases (one for a brain tumor and one for a large arachnoid cyst). This resulted in a total of 163 patients included in this study. The medical ethics committee of Leiden-The Hague-Delft approved of the study and all included patients signed an informed consent form.

All patients were admitted to the clinic for a full one-day visit and underwent an identical standardized assessment that included a brain MRI scan (Zirkzee et al., 2012) and a combination of multidisciplinary medical assessments and extensive complementary tests, necessary for deciding whether the NP-events are attributed to SLE (Magro-Checa et al., 2016). Attribution of NP symptoms to SLE was established during a multidisciplinary consensus meeting. This diagnostic process is described in detail previously (Zirkzee et al., 2012). NP events were classified according to the 1999 ACR nomenclature for NPSLE (ACR AD HOC Committee on Neuropsychiatric Lupus Nomenclature, 1999).

During an intake interview, information about gender, age, and SLE disease duration was provided by the patients and verified by their medical records. During the evaluation, SLE activity and damage indexes were scored for each patient: the SLE disease activity was defined using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) (Gladman et al., 2002); SLE irreversible damage was determined through the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI) (Gladman et al., 2000).



Magnetic Resonance Imaging Protocol

All patients were scanned, according to a standardized scanning protocol, on a Philips Achieva 3T MRI scanner (Philips Healthcare, Best, Netherlands) with a body transmit RF coils and an 8-Channel head receive coil array. The sequence used for this project was a 3D T1-weighted gradient echo scan (voxel size = 1.17 × 1.17 × 1.2mm3; TR/TE = 9.8/4.6 ms).



Magnetic Resonance Imaging Preprocessing

All the T1-weighted images were registered to a standard brain template, the Montreal Neurological Institute standard template (MNI152), using FNIRT (FMRIB’s non-linear image registration tool) (Woolrich et al., 2009; Jenkinson et al., 2012), using affine registration with 12 degrees of freedom.



Machine Learning Pipeline Architecture

We followed the self-supervised framework introduced by Chen et al. (2020), where an encoder network fθ was used to project the image into a feature space, followed by two-layer multi-perceptron (MLP) pπ projector that projected the features into latent vector z. In our work we modified this approach to address the fact that 3D MRI data required more classification parameters than 2D natural images. Therefore, we designed the encoder network fθ using three convolutional layers with batch normalization and a max pooling layer. To test the representation feature, we changed the projector layer into a linear layer which had the same output size as the number of classes, which in our case equals 2 – NPSLE and non-NPSLE. Subsequently, we fine-tuned the linear layer with a training set. Finally, we tested the accuracy of the trained encoder and linear layer. Figure 1 shows the architecture described above.
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FIGURE 1. Architecture of ML pipeline: encoder, projector, and linear module. In the training phase, an encoder and projector were used to project the images into representation space with a latent vector z. In the fine tuning and test phase, the projector was changed with a linear module and predict the class.



Preprocessing

In 2D natural images, Chen et al. (2020) used stochastic data augmentation t, randomly selected from the family of augmentations T, including random cropping, random color distortion, and random flip. In our 3D MRI data, we used stochastic data augmentation by performing random selection from the set of augmentations we applied to our data. These included: random cropping, random flipping along the z axis and random in-plane rotation. The random crop was applied up to 15 voxels along the three axes. For the random flip, only left-right flips were applied based on the foot-head axis (coronal plane). For rotation, random rotation of angles up to 45 degrees was applied in the left-right, anterior-posterior and foot-head directions. To test the robustness of our method with respect to different data augmentation strategies, we tried three different augmentation settings: one only with crop, one with crop, flip and rotation. The geometric transformations are depicted in Figure 2.


[image: image]

FIGURE 2. 3D data transformations used for data augmentation. Three types of geometrical transformations were applied to the 3D MRI data augment the data set: cropping of the image, left-right flips, and in-plane rotations.




Contrastive Loss

The contrastive loss function Lcon is defined as follows,
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where z, {zpos}, and {zneg} are corresponding 128-dimensional representation vectors (z) of x obtained by the encoder and projector z = pπ(fθ(x)). The expression [image: image] denotes cosine similarity between two vectors and τ is a temperature parameter (Chen et al., 2020).

We trained the encoder and projector with the contrastive loss function, NT-xent which maximizes the similarity between each transformed sample.



Patient Selection for Validation of the ML Pipeline

To determine the accuracy of our study, six trials were performed. In each trial, the training set consisted of 68 non-NPSLE and 34 NPSLE patients randomly chosen from within the total patient population (163 subjects). In order to have an equal number of NPSLE and non-NPSLE patients for the training procedure, we used the images of NPSLE twice in every epoch. Therefore, a total of 136 images were used to train the model. In each trial, the test set consisted of 9 non-NPSLE patients and 9 NPSLE patients randomly chosen within the total patient’s population (163 subjects) excluding the training set. The overall demographic and clinical characteristics of the patient population included in this study is shown in Table 1A. The demographic and clinical characteristics of the patients selected in each trial are shown in Tables 1B,C. Detailed age data for the training and test sets in all six trials are given in the Supplementary Tables 1A,B.


TABLE 1A. Patient population characteristics for the entire study.
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TABLE 1B. Patient population characteristics for the six training sets.
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TABLE 1C. Patient population characteristics for the six test sets.
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Training Details

We used three convolutional layers as the base encoder network and 2-layer multi-layer perceptron with 128 embedding dimensions as the projection head. All models were trained by minimizing the final contrastive loss with a temperature of τ = 0.5. For the rest, we followed similar optimization steps as in SimCLR (Chen et al., 2020). We trained with 1000 epochs under the stochastic gradient descent (SGD) base Layer-wise Adaptive Rate Scaling (LARS) optimizer (You et al., 2017), a cosine annealing learning rate and a gradual warmup scheduler (Chen et al., 2020). We used a weight decay of 1e-6 and momentum of 0.9. We used linear warm-up for the first 10 epochs until a learning rate of 1.0 was achieved and decay with cosine decay schedule. We used a batch size of 16. Furthermore, we used global batch normalization, which shared the parameters over the multiple GPUs. We trained the encoder with contrastive loss. Then, we fine-tuned the encoder along a linear layer to optimize the cross-entropy loss with learning rate 0.001 during 35 epochs. Figure 3 shows the loss curves across the 1,000 training epochs for the three data augmentation strategies. Such intermediate observations are useful for the evaluation of the training process, which in this case appears to be well-behaved for all three strategies.
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FIGURE 3. Training loss function for the duration of the training process (1,000 epochs). The three traces represent the loss functions obtained with the three data augmentation strategies: orange: crop only; gray: crop and flip; yellow: crop, flip and rotation.




Gradient Class Activation Mapping

There are several methods for interpreting predictions in deep learning (Selvaraju et al., 2016; Doshi-Velez and Kim, 2017; Fong and Vedaldi, 2017; Kim et al., 2017; Shrikumar et al., 2017; Covert et al., 2020). We chose to use gradient class activation mapping (grad-CAM) (Selvaraju et al., 2016). Grad-CAM uses gradient information flowing into the last convolutional layer of the model to assign importance values to each parameter for the prediction of the model. We extended the grad-CAM to deal with 3D convolutional neural networks. Since we are interested in a classification for a specific disease, and images are all aligned to the same space (MNI 152), it was possible to average the grad-CAM maps of test samples to obtain a qualitative measure of the brain regions where significant features were found after averaging across subjects in each trial. For this purpose, for each trial, the grad-cam maps of the samples which were correctly classified in the same class were averaged. Thresholded averaged grad-CAM maps were then overlaid on the MNI template for display.




Secondary Analyses

We included two secondary analyses to serve as benchmarks to the ML analysis: a volumetric analysis of tissue volumes obtained from segmentation of the T1-weighted images, and a one-class supporting vector machine (SVM) analysis.


Volumetric Analysis

3D T1-weighted images were segmented using the CAT12 toolbox from the statistical parametric mapping software to determine total grey matter (GM), white matter (WM), and cerebral-spinal fluid (CSF) volumes (Inglese et al., 2021). Total intracranial volume was calculated as the sum of gray matter, white matter, and cerebral-spinal fluid volumes. Tissue fractions were obtained by normalizing each tissue volume to the total intracranial volume. Two analyses were performed: (a) a comparison of tissue fractions between the 9 NPSLE and the 9 non-NPSLE subjects included in each trial in the ML analysis, for a total of 6 such comparisons; and (b) comparison of tissue fractions across the entire population of NPSLE (n = 43) and non-NPSLE (n = 120) included in this study.




One-Class Support Vector Machine Analysis

For the one-class SVM analysis we used the pipeline provided by the scikit-learn 0.24.2 toolkit2. Given the significantly larger size of the non-NPSLE group, we chose it to be class on which the boundaries are defined, and the NPSLE group are tested as belonging to the class or outliers. In a consistent manner with the ML analysis, 68 T1-weighted images of non-NPSLE were initially chosen for the classifier to define the class boundaries. Subsequently, randomly chosen 9 NPSLE and 9 non-NPSLE data sets were tested against the classifier. This process was repeated 10 times.



Statistics

For evaluation of the performance of the algorithm at each trial, we used classification accuracy, precision and recall as quantitative measures. An image is considered correctly classified when the model classifies it into the correct class: NPSLE or non-NPSLE. Accuracy was defined as the ratio between the total number of correctly classified samples and the total number of test sets. The coefficient of variation for the three augmentation strategies was also calculated by taking the ratio of the mean accuracy and the standard deviation. Precision was defined as the fraction of correctly predicted NPSLE samples out of the total test samples (NPSLE + non-NPSLE). The recall, defined as the fraction of relevant items selected from the interest class, was calculated as the fraction of correctly predicted NPSLE samples out of the total number of NPSLE samples.

To assess differences in mean accuracy, precision and recall among the three different geometric transformation approaches we used here, repeated-measures analysis of variance (ANOVA) was performed. For the volumetric analysis, the normality of the volume fraction distributions was checked with the Shapiro-Wilk test and value histograms were visually inspected. Differences between NPSLE and non-NPSLE patients across the total population and for the test sets in each trial were assessed with independent sample t-tests and p values were calculated. All tests were performed using the Statistical Package for the Social Sciences (SPSS) version 25 (IBM corporation, Armonk, NY, United States).




RESULTS


Classification Performance

No statistically significant differences were found between NPSLE and non-NPSLE in any of the population characteristics provided in Tables 1B,C (training sets) and (test sets). Table 2A shows the individual and mean accuracy of the classification results for the six trials, defined as the percent of correctly classified NPSLE/non-NPSLE patients out of the total tests within a trial. Results are given for three different strategies for data augmentation that included one (random crop), two (random crop + flip) and three (crop + flip + rotate) transformations. The accuracy (SD) of the six trials in each augmentation strategy was 83.35% (14.05%), 83.33% (16.10%), and 79.63% (11.47%). No significant differences were found when comparing the accuracy of the classification across the three data augmentation options. The coefficient of variation for the three augmentation strategies ranged between 0.14 and 0.19.


TABLE 2A. Classification accuracy for the test sets per trial, for all three data augmentation strategies.
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Table 2B shows the individual and mean precision and recall for the test sets in each of the 6 classification trials. Precision is defined as percent of correctly predicted NPSLE cases out of the total number of tests within a trial, and recall is defined as the fraction of correctly predicted NPSLE samples out of the total number of NPSLE test samples within a trial. The same three sets of geometric transformation for data augmentation were used also here. The precision (SD) across trials was 50.6% (8%), 49.3% (6%), and 48.6% (7%) for trials using only crop, crop + flip, and crop + flip + rotation transformation, respectively. Recall (SD) values were 85.2% (19%), 83.3% (23%), and 79.7% (19%) for trials using only crop, crop + flip, and crop + flip + rotation transformation, respectively. No significant differences were found in accuracy (p = 0.531), precision (p = 0.845) and recall (p = 0.686) among trials using the three different geometric transformations.


TABLE 2B. Classification precision and recall for the test sets per trial, for all three data augmentation strategies.
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An alternative and useful way to assess classifier performance is the receiver operating characteristic (ROC) curve, displaying the true positive rate (recall, or sensitivity) vs. the false positive rate, expressed as complementary to the specificity. We provide the ROC curves for the test sets in all six trials and the three data augmentation strategies within each trial in Supplementary Figure S1 of the Supplementary Material.



Common Features in NPSLE – Grad-CAM Results

Figure 4 shows the thresholded averaged grad-CAM maps for the six trials. Threshold was set at three different levels: 0.75, 0.85, and 0.95. Each of the three panels shows the results following data augmentation with crop only (4A), crop + flip (4B) and crop + flip + rotate (4C). Common features that show up on the grad-CAM maps were found only in the NPSLE cohort. The areas generated by the grad-CAM maps with threshold set at 0.75 are too generic to report on specific brain regions, while the higher thresholds of 0.85 and 0.95 reveal more parcellated maps indicating local involvement. Brain regions showing on the grad-CAM maps with threshold above 0.85 include the lateral ventricles and periventricular white matter, as well as third ventricle and basal cisterns (Figure 5). There were no specific regions that contributed to the model’s prediction of non-NPSLE.
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FIGURE 4. (A) Grad-CAM results of NPSLE patients in the six trials augmented with “crop” (A), “crop and flip” (B), and “crop, flip and rotation” (C). Each row displays thresholded mean grad-CAM maps obtained from the NPSLE test set of one of the trials (1 through 6) overlaid on a T1-weighted dataset. Each column displays a different Grad-CAM threshold: 0.75 (left), 0.85 (middle), and 0.95 (right). Within each column, data are shown in three different orientations: coronal (left), sagittal (middle), and axial (right).



[image: image]

FIGURE 5. Brain areas that correspond with regions highlighted in the grad-CAM maps with threshold above 0.85. Arrows indicate the lateral ventricles (A), the third ventricle (B), and the basal cisterns (C). Periventricular white matter is highlighted in (D).




Secondary Analyses


Volumetric Analysis

Table 3 shows the results of the different comparisons of tissue fractions between NPSLE and non-NPSLE: the six comparisons within the test sets and the comparison across the entire population of NPSLE and non-NPSLE subjects. When data are not corrected for multiple comparisons, three comparisons show significant differences between NPSLE and non-NPSLE: GM and CSF in trial 4, and WM in trial 6. These differences become non-statistically significant when the p values are corrected for multiple comparisons (6 trials × 3 tissue types = 18 tests) with Bonferroni correction. No statistically significant difference in any tissue fraction was found between the total population of NPSLE patients and that of non-NPSLE patients.


TABLE 3. Comparisons of GM, WM, and CSF tissue fractions between NPSLE and non-NPSLE across test sets in all six trials and in the entire study population.
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One-Class Support Vector Machine Analysis

Our attempt to apply one-class SVM to distinguish between T1-weighted images of NSPLE and non-NPSLE was unsuccessful: all non-NPSLE as well as all NPSLE data sets in all 10 trials were classified as within-class, i.e., belonging to the non-NPSLE group.





DISCUSSION

In this study, we designed a self-supervised machine-learning pipeline for classification of T1-weighted MRI images aimed at distinguishing between images of NPSLE patients and those of non-NPSLE patients. The accuracy of the classification algorithm, based on six repeated trials, was significantly above random choice, and practically independent of the augmentation strategy. The mean classification accuracy into the two classes, NPSLE and non-NPSLE, across the three augmentation strategies ranged between 79 and 83%. Within-augmentation variability across trials was well contained: the coefficient of variation for the three augmentation strategies ranged between 0.14 and 0.19, indicating a good repeatability of the accuracy of the classification, despite the significant heterogeneity of clinical measures, disease phenotypes and the symptoms in the NPSLE population.

The overall precision of our model, representing the fraction of correctly predicted NPSLE out of the total number of NPSLE predictions, was lower, at about 51.8%. This indicates a relatively high rate of false negatives (non-NPSLE subjects identified as NPSLE). This may indicate that the structural brain changes characteristic of NPSLE and were picked up by the classification algorithm can also be found in non-NPSLE patients. MRI abnormalities, such as lesions, local atrophy and other diffuse abnormalities have been found in non-NPSLE and as well as in SLE patients without NP when compared with healthy controls (Ainiala et al., 2005; Appenzeller et al., 2006, 2007; Kozora and Filley, 2011; Luyendijk et al., 2011). It is thus not surprising that some of the features picked up in the training of the algorithm were erroneously attributed to non-NPSLE patients. It remains to be seen whether with increased population size (via, for example, a multicenter effort), or additional MRI modalities that reflect better other aspects of structural changes in the disease (for example, FLAIR T2 images that report on white matter hyperintensities) will contribute to the precision of the classification and limit the false-positives. Conversely, the recall, defined as the fraction of total relevant results (correctly predicted NPSLE patients) out of the NPSLE group, averaged at about 83% indicating a relatively low rate of false negatives, i.e., NPSLE patients that were not classified as such. This corroborates the meaningfulness of the features found by the ML algorithm and provides support to their link to brain changes in NPSLE population.

We studied the relationship between brain alterations in NPSLE and the common features identified by the classification algorithm with grad-CAM, a commonly used visualization tool that provides a coarse localization map highlighting important regions in the image for the classification task. As of recent, Grad-CAM maps have been applied to medical imaging modalities, including a successful application aimed at grading gliomas based on MR images (Pereira et al., 2018; Stoyanov et al., 2018). While grad-CAM maps do not provide quantitative statistical information in the way that statistical parametric maps do, they do indicate communality in the features that led to the classification. In particular, periventricular white matter, lateral ventricles, third ventricle and basal cistern seemed to be features that discriminate NPSLE patients from non-NPSLE. In vivo Structural MRI Studies (Muscal and Brey, 2010) and post-mortem histological analyses of brains of NPSLE patients (Brooks et al., 2010) showed significant amount of small focal lesions and white matter hyperintensities concentrating on periventricular white matter, as well as ventricular dilation. Higher occurrence of periventricular and deep WMH lesions was reported also in SLE patients compared to controls but without stratification for NPSLE versus non-NPSLE patients (Hachulla et al., 1998). Overall, despite their common presence in SLE patients with brain involvement, the etiology of periventricular WMH in NSPLE is not well understood, nor is it fully investigated in other diseases with prevalence of periventricular WMH. In older adults, periventricular WMH appear to be associated with impaired cognitive function, in particular with working memory, and are linked to disruption of long distance white matter connections. Some characterization of periventricular WMH in older adults was provided by diffusion tensor imaging and pathological observations and revealed that periventricular WMH are mostly characterized by gliosis and myelin loss (Griffanti et al., 2018). Further investigation on the role of periventricular WMH in NPSLE patients is necessary to confirm their role and their importance in the disease process. Similarly, additional confirmation for the link between the grad-CAM concentration in the ventricular area in the NPSLE population and either ventricular dilation or periventricular WMH needs to be obtained. It is important to note that common features of brain tissue alterations in NPSLE are not only relegated to volume and location but also to the shape of lesions, and in particular that of white matter hyperintensities. The potential relevance of WMH shape in the radiological diagnostic process has been already demonstrated in diabetes (De Bresser et al., 2018), cerebral small vessel disease (Kant et al., 2019) and stroke (Ghaznawi et al., 2021). Evidence for ventricular and periventricular structural differences between NPSLE phenotypes, including between NPSLE and non-NPSLE, have been already given, including in our own studies (Inglese et al., 2021), and it is possible that the features detected by the ML algorithm in the NPSLE population is a combined effect of volume and shape characteristics. Finally, there is no consistent reporting on direct involvement of the basal cisterns per se in SLE or NPSLE, barred few case reports (Kawamata et al., 1991; Tsushima and Kubo, 1999). A plausible explanation for the involvement of the basal cisterns is the effect of atrophy, leading to increase in CSF volume in the basal cisterns as well as in the lateral ventricles.

There are several limitations and challenges associated with our study, and we hope to address some of them in our future efforts. Characterization of the overlapping features between the false negatives and “true” NPSLE subjects will certainly require special attention in future studies, with significantly larger populations of SLE and non-NPSLE patients, and with an inclusion of control groups of SLE patients without NP, as well as of healthy controls. One of the most significant limitations of this study is that we could not use the method implemented here to reliably address the link between NP manifestations and structural brain changes in the NPSLE population. This is a question of great importance, and providing means to investigate it will increase the understanding of the pathological mechanisms behind NPSLE as well as aid in diagnosis. The choice of focusing solely on the classification of NPSLE vs. non-NPSLE patients was partly driven by its diagnostic importance, but also made based on the number of patients available for the training and trial sets. Since the ACR1999 criteria apply only to NPSLE, stratification based on NP manifestations or based on NPSLE disease phenotype would have resulted in groups that are too small for a reliable application of the pipeline we developed in this work. For example, stratification of the NPSLE patients to ischemic and inflammatory phenotypes would have resulted in two groups of 30 and 13 patients, respectively, from which training and trial samples have to be in turn chosen. This is an unrealistic scenario for this particularly study. It is hoped that multicenter studies that carefully address harmonization in the diagnostic and in the imaging process will be able to efficiently address this issue.

Despite the fact that there were common regions highlighted by Grad-CAM in the NPSLE group, it is premature to claim at this point that these regions are indeed clinically significant, and a broader investigation is required. In the current investigation we used only one MRI modality, namely T1-weighted images, a modality that is highly sensitive to volumetric structural changes, but less sensitive and less specific to lesions, infarcts, microbleeds and hemorrhages, which all result in local hypointensities. Thus, it is imperative to continue the investigation with a more multimodal approach, with additional modalities that will add more sensitivity and specificity to a variety of structural changes commonly found in SLE and NPSLE. From the algorithm perspective, self-supervised machine learning is identity preserving, and it is therefore possible to add a variety of MRI modalities to the process in the hope of significantly improving the classification performance. For example, information on microbleeds is significantly enhanced with the use of T2*-weighted images, and white matter hyperintensities are conspicuous on T2-FLAIR images.

In deep learning classification tasks, access to a large amount of data sets is essential. The number of samples (overall number of patient data sets) that were included in our study (163) was limited compared to typical numbers of samples used in classification tasks, typically in the tens of thousands of cases (Zhang J. et al., 2020) NPSLE is a rare and highly heterogeneous disease with respect to the variety and severity of symptoms, and most pertinently with respect to the types and spatial distribution of brain abnormalities found in NPSLE and the underlying pathomechanisms responsible for the damage to brain tissue. and it is therefore not a natural target for supervised machine learning based classification. Our results do not categorically exclude the usefulness of supervised deep learning approaches to classification tasks of the kind we performed here, but do provide an impetus for exploring a variety of approaches with the goal of finding the one that suits the most the type and amount data in need of classification. The goal of this study was to establish a retrospective link between (known) diagnosis and structural brain differences between two classes of samples: NPSLE and non-NPSLE patients. Within the limits of a single-center study we benefitted from the maximum number of patients available in the Netherlands, as well as from the most comprehensive diagnostic process for NPSLE (being a national referral center for the disease). When attempting to use a 2 class-wise supervised learning approach, the model diverged, possibly due to the limited number of data sets and the inconspicuousness of the visual features. Based on the fact that self-supervised learning is known to perform well even with a small data sets (Masood et al., 2015; Bai et al., 2019), we opted for self-supervised learning, in the hope that following the classification, common features for two independent classes will emerge, coinciding with the NPSLE and non-NPSLE patient groups. Eventually, the algorithm was only able to find common features within one class of patients (NPSLE), and no common features were found in the non-NPSLE group in our trials. We cannot claim as a certainty that there are no common features to the non-NPSLE group, but the positive result we obtained for the classification of the NPSLE group supports the notion that in our classification task it was more effective to allow the algorithm to learn the visual representation in a self-supervised manner using similarity across images, rather than providing a-priori class labels.

To conclude: we set the stage for classification of brain imaging data of NPSLE and non-NPSLE patients using deep neural networks, achieving relatively high average accuracy across repeated trials. We showed that self-supervised learning is capable of capturing common image features in one class of subjects (NPSLE). This task could not be accomplished with supervised learning, demonstrating that self-supervised machine learning can capture relatively inconspicuous visual information by cross-entropy loss in the MRI images, and may prove advantageous when only a limited number of data sets is available. The method shown here is modular and can accommodate additional imaging modalities to be included in the classification, and can be easily applied to other studies of rare diseases that suffer from similar limitations.
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fissure

Hippocampal —2.26 + 8.36% —4.87 £6.3% 0.00681  0.35392

tail
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Type

Chi-square Degrees Significant
of level 5%
freedom
Gender (M, F) 0 1 3.841
Age (50s, 60s, 70s, 80s, 90s) 8.843 4 9.488
Education (11~20) 8.905 9 16.919
MMSE (—12, =11, —8~5) 58.263 15 24.996
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MCI non-converter

Number of subjects 89
Age at first visit (years) 734+£7.6
Males (%) 53 (69.6%)

Years of education 16.3 £ 2.6

MCI to AD

89
74.4+8.0
52 (58.4%)
168+ 2.6
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Learning rate: 0.001

Learning technique: Early stop
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Variable Training set (n = 68) Validation set (n = 61)

Expander (n = 21) Non-expander (n = 47) p-value Expander (n = 19) Non-expander (n = 42) p-value

Age (years) 64.2 £14.7 61.2+14.2 0.42 56.2 + 10.6 571 +£13.5 0.86
Male (%)* 13 (19.1) 31 (45.6) 0.75 6(20.7) 12 (41.4) 0.98
Admission SBP (mmHg) 168.5 + 8.8 165.0 £ 11.2 0.21 162.3 £ 9.1 166.1 £8.2 0.28
Admission INR 1:5 £0.2 1.5+0.3 0.25 1.4+03 1.5+03 0.51
Time to initial CT scan (h) 8.1 +£08 85+11 0.21 39+16 39+18 0.96
APTT (s) 33.3+4.9 32.0+ 3.9 0.25 28.3+ 6.5 29.5+5.0 0.62
Baseline GCS score 122+38 120+ 34 0.84 13.7+£ 3.7 12.3+ 3.8 0.37

SBP, systolic blood pressure; INR, international normalized ratio; APTT, activated partial thromboplastin time; GCS, Glasgow Coma Scale. Data are means + standard
deviations. *Data are the number of patients, with percentages in parentheses.
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Variable Training cohort (n = 68) Validation cohort (n = 61)

Expander (n = 21) Non-expander (n = 47) p-value Expander (n = 19) Non-expander (n = 42) p-value
Observer 1
Location*
Basal ganglia 16 (76.2) 35 (74.5) 0.88 11 (67.9) 31(73.8) 0.21
Lobar 4(19.1) 9(19.2) 0.99 5 (26.3) 7(16.7) 0.38
Thalamus or brainstem 14.8 3(6.4) 0.79 3 (15.8) 4 (9.5) 0.67
Satellite sign number 24+16 10+1:8 <0.001 24 1.7 0.7+1.0 0.001
Black hole sign* 8(38.1) 9(19.1) 0.10 7 (36.8) 7(16.7) 0.08
Swirl sign* 7 (33.3) 6(12.8) 0.04 8 (42.1) 9(21.4) 0.09
Blend sign* 9(42.9) 10(21.3) 0.07 7 (36.8) 9(21.4) 0.21
Observer 2
Location*
Basal ganglia 16 (76.2) 36 (76.6) 0.97 11 (567.9) 31(73.8) 0.21
Lobar 4(19.1) 8(17.0) 0.84 5 (26.3) 6 (14.3) 0.23
Thalamus or brainstem 14.8) 3(6.4) 0.79 3(15.8) 5(11.9) 0.69
Satellite sign number 285+ 1.7 11+14 0.001 2.2 +£11 0.7 +£0.6 0.003
Black hole sign* 8(38.1) 8(17.0) 0.06 9 (47.4) 10 (23.8) 0.07
Swirl sign* 7 (33.3) 7(14.9) 0.08 8 (42.1) 10 (23.8) 0.15
Blend sign* 7(33.3) 8(17.0) 0.13 7 (36.8) 8(19.0) 0.14

Data are means + standard deviations. *Data are the number of patients, with percentages in parentheses.
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db2-ALFF bior4.4- morl-ALFF meyr-ALFF sym3-

ALFF ALFF
Slow-6 (0-0.0117 Hz)
NYU 1.46 1.38 1.25 1.32 1.28
PKU1 1.22 145 1.17 1.48 148
PKU2 1.37 1.28 1.29 1.36 1.24
PKU3 1.31 1.26 1.26 1.30 1.22
EOEC 1.20 118 1.1 1.14 172
Mean 1.31 1.24 1.22 1.25 1.22
Slow-5 (0.0117-0.0273 Hz)
NYU 112 1.10 1.02 1.07 1.09
PKU1 1.22 1.18 1.05 1.09 Ml
PKU2 1.16 1.08 0.99 1.07 1.09
PKU3 1.25 1.20 1.1 1.19 112
EOEC 1.15 110 1.01 1.03 1.09
Mean 1.18 1:12 1.04 1.09 1:.18
Slow-4 (0.0273-0.0742 Hz)
NYU 1.05 1.03 0.99 1.08 1.03
PKU1 1.0 1.07 1.03 1.06 1.05
PKU2 1.06 1.07 1.05 1.06 1.08
PKU3 1.06 1.06 1.04 1.05 1.08
EOEC 1.04 1.02 0.98 0.99 1.03
Mean 1.06 1.05 1.02 1.04 1.05
Slow-3 (0.0742-0.1992 Hz)
NYU 112 I 1.07 1.06 1.18
PKU1 1.06 1.07 1.04 1.04 1.08
PKU2 1.03 1.04 1.02 0.99 1.09
PKU3 1.05 1.04 1.05 1.01 1.08
EOEC 1.05 1.06 1.04 1.01 1.09
Mean 1.06 1.06 1.05 1.02 140
Slow-2 (0.1992-0.25 Hz)
NYU 1.65 1.43 1.21 1.27 1.61
PKU1 1.57 1.37 1.18 1.20 1.65
PKU2 1.55 1.34 1.20 1.21 1.54
PKU3 1.47 1.34 1.14 1.19 1.49
EOEC 1.47 1.26 1.1 112 1.44
Mean 1.54 1.35 1.17 1.20 1.53
Conventional (0.0117-0.0781 Hz)
NYU 1.00 1.00 1.00 1.01 1.00
PKU1 1.08 1.06 1.03 1.06 1.03
PKU2 1.03 1.08 1.02 1.02 1.03
PKU3 1.08 1.03 1.04 1.03 1.02
EOEC 1.01 1.01 0.98 0.98 1.01
Mean 1.08 1.03 1.01 1.02 1.02

A ratio > 1 indicates more sensitive for Wavelet-ALFF and vice versa. The mean
sensitivity across all five cohorts of a given frequency band and a given mother
wavelet was also calculated. ALFF, amplitude of low-frequency fluctuation; bior4.4,
biorthogonal 4.4; db2, Daubechies 2; FFT, fast Fourier transform; meyr, Meyer;
morl, Morlet; sym3, Symlets 3.
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Characteristic Responders  Non-Responders P values

=28 =29
Age b) 3102102 297285 st
Gender (WF) 17 209 51
Educaion leve ) 17235 13240 7
Duration of iness () 54264 61264 7
Time between measurements 39+ 1.1 39:11 £
i
Gl score at basekne 56211 57206 72
G score after ECT 26207 36209 <00t
PANSS score at baseing

Posiive score 209+62 280281 32

Negatve score 1952103 200£109 001

General score 4472121 417295 a1
Total score 941:192 9872210 39
PANSS score ater ECT

Posiive score 97220 164235 <001

Negative score 106249 197279 <00t

General sc0re 19.7 234 286267 <001
Total score 400271 672138 <001
Changes i PANSS score  847% 296%  610% = 128% <001
Number of ECT 103220 100229 67
Antipsychotic dose (mg/c)® 175259 188267 ®
“Data missing for one Ao 1o5p0nGer.

*Otnzapine cquiclents based on dofned daly doses method.
CGi, Cinical Global Impressions; ECT, aectroconvusve therapy; PANSS, Posiivo And
Naoaile Swakome Soals:
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Regions

Feature MMSE
Pearson’s r p-value
Presubiculum Volume 0.3166 < 0.0001
Surface_area 0.3399 < 0.0001
RPC 0.01606 0.8316
Max_Curvature 0.0268 0.7248
Min_Curvature —0.0815 0.2836
Subiculum Volume 0.3093 < 0.0001
Surface area 0.3352 < 0.0001
RPC —0.0437 0.5669
Max_Curvature —0.0541 0.4782
Min_Curvature —0.0666 0.3843
CA1 Volume 0.0974 0.1984
Surface area 0.1059 0.1618
RPC —0.1639 0.0303
Max_Curvature —0.2193 0.0034
Min_Curvature 0.1938 0.01
CA3 Volume 0.09047 0.2325
Surface area 0.1353 0.0734
RPC —0.0394 0.6039
Max_Curvature 0.00488 0.9488
Min_Curvature —0.0581 0.4424
CA4 Volume 0.06013 0.4266
Surface area 0.1001 0.1848
RPC 0.0023 0.9763
Max_Curvature —0.1453 0.0642
Min_Curvature 0.07523 0.3339
GC-ML-DG Volume 0.1068 0.1885
Surface area 0.08517 0.2597
RPC —0.0482 0.5233
Max_Curvature 0.06343 0.4003
Min_Curvature 0.03293 0.6662
Molecular layer Volume 0.2298 0.0022
Surface area 0.2101 0.0051
RPC —0.2311 0.0019
Max_Curvature —-0.1014 0.1952
Min_Curvature 0.02585 0.7342
Hippocampal fissure Volume 0.1829 0.0145
Surface area 0.2416 0.0012
RPC 0.04782 0.5262
Max_Curvature 0.09744 0.1996
Min_Curvature 0.04733 0.546
Hippocampal tail Volume 0.09862 0.1928
Surface area 0.121 0.1097
RPC —0.0423 0.577
Max_Curvature 0.06056 0.4273
Min_Curvature —0.0475 0.5294
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Study

Chupin et al. (2009)

Misra et al. (2009)
Liu et al. (2010)

Davatzikos et al. (2011)
Wolz et al. (2011)

Duchesne and Mouiha (2011)

Costafreda et al. (2011)

Coupe et al. (2012)

Cheng et al. (2015b)
Ewers et al. (2012)

Westman et al. (2012)
Zhang et al. (2012a)
Zhang et al. (2012b)

Young et al. (2013)
Wee et al. (2013)
Suk and Shen (2013)

Eskildsen et al. (2013)
Suk et al. (2014)

Liu et al. (2015)
Cheng et al. (2015a)
Suk et al. (2015)

Cabral et al. (2015)
Moradi et al. (2015)

Korolev et al. (2016)

ROI

Hippocampus and
amygdala
Whole brain

Hippocampus, amygdala,
and caudate

Whole brain
Whole brain

Whole brain
Hippocampus

Entorhinal cortex and
hippocampus

GM

Hippocampus

Whole brain
Whole brain
Whole brain

Whole brain
Whole brain
Whole brain

Whole brain
Whole brain
Whole brain
GM

Whole brain

Whole brain
GM

Left hippocampus, middle
temporal gyrus, inferior
parietal cortex

Subjects

76 MCI-C 134 MCI-NC

27 MCI-C 76 MCI-NC
21 MCI-C 79 MCI-NC

69 MCI-C 170 MCI-NC
167 MCI-C 238 MCI-NC

20 MCI-C 29 MCI-NC
22 MCI-C 81 MCI-NC

167 MCI-C 238 MCI-NC

43 MCI-C 56 MCI-NC
58 MCI-C 72 MCI-NC

81 MCI-C 81 MCI-NC
43 MCI-C 48 MCI-NC
38 MCI-C 50 MCI-NC

47 MCI-C 96 MCI-NC
89 MCI-C 111 MCI-NC
43 MCI-C 56 MCI-NC

166 MCI-C 134 MCI-NC
76 MCI-C 128 MCI-NC
117 MCI-C 117 MCI-NC
43 MCI-C 56 MCI-NC
43 MCI-C 56 MCI-NC

25 MCI-C 56 MCI-NC
164 MCI-C 100 MCI-NC

139 MCI-C 120 MCI-NC

Features

MRI (volume)

MRI (RAVENS score)
MRI (volume)

MRI (SPARE-AD) + CSF
MRI (hippocampus volume)

MRI (hippocampus volume,
thickness, TBM, and
manifold-based learning)

MRI

MRI (shape), cognitive scores
(MMSE)

MRI (volume, SNIPE)

MRI (volume) + CSF + PET

MRI (hippocampus volume), CSF
P-tau181, AB1-42, cognitive scores
(TMT-B), age

MRI (volume, thickness) + CSF

MRI (volume) + CSF + PET

MRI (volume) + PET + cognitive
scores (MMSE, ADAS-Cog)

MRI + CSF + PET + APOE
MRI (volume, thickness)

MRI (volume) + CSF + PET +
cognitive scores (MMSE,
ADAS-Cog)

MRI (thickness)

MRI + PET

MRI

MRI (volume) + CSF + PET

MRI

MRI + CSF + PET + cognitive
scores (MMSE, ADAS-Cog)
MRI+PET

MRI, age, cognitive scores (MMSE,
ADAS-Cog, CDR-SB, RAVLT, FAQ)
MRI (volume, thickness) + plasma
proteomic data + cognitive scores
(ADAS, RAVLT, FAQ)

Accuracy (%)

67.0

75-80
69.0

61.7
65.0
68.0

72.3
80.0

73.0

70.7
76.9

68.5
73.9
78.4

741
75.05
75.8

80.9
75.9
78.9
80.1
69.3
83.3

74.0
82.0

79.9

RO, regions of interest; GM, gray matter; TBM, tensor-based morphometry; SNIPE, Scoring by Non-local Image Patch Estimator; CDR-SB, Clinical Dementia Rating-Sum
of Boxes; ADAS, Alzheimer’s Disease Assessment Scale; RAVLT, Rey Auditory Verbal Learning Test; FAQ, Functional Activities Questionnaire; MCI-C, MCI converters;

MCI-NC, MCI non-converters.
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Input feature

Basic MLP architecture

Selection method

Univariate selection
Univariate selection
Univariate selection
Feature importance
Feature importance
Feature importance
Feature importance

Criteria

p-value < 0.01

p-value < 0.05

p-value < 0.1
Random forest top 10
Random forest top 15
Random forest top 20
Random forest top 25

Whole feature (without feature selection)

Number of features

19
21
25
10
15
20
25
45

Neuroimaging features

2 hidden layers with 12 neurons

Accuracy (%)

79.07
78.47
75.96
72.45
78.10
79.95
76.39
65.97

Sensitivity (%)

72.41
72.04
71.39
60.00
70.28
74.44
73.52
60.56

Specificity (%)

85.74
84.91
80.00
84.91
85.93
85.46
79.26
71.39
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Region

Presubiculum
Hippocampal tail
Subiculum
Presubiculum
Hippocampal fissure
Subiculum
Hippocampal fissure
CA4
GC-ML-DG
GC-ML-DG
CA4
Hippocampal tail
Presubiculum
Molecular layer
Molecular layer
Molecular layer
CA3
CA1
Subiculum
CA4
Presubiculum
CA1
CA3
Subiculum
CA4

Feature

Volume
Surface area
Surface area
Surface area
Surface area

Volume

Volume

Volume
Surface area

Volume
Surface area

Volume

CurvMin
Surface area

Volume

CurvMax

Volume

CurvMax

CurvMax

CurvMin

RPC
RPC
RPC
RPC
CurvMax

Score

2,335
2,004
1,994
1,972
1,687
1,598
1,651
1,645
1,420
1,374
1,349
12
1,107
1,063
1,016
694
663
619
612
609
479
462
458
320
306
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Region

Subiculum
Subiculum
Presubiculum
Hippocampal tail
Molecular layer
Presubiculum
CA4
Molecular layer
Hippocampal fissure
CA1
Hippocampal fissure
CA3
CA1
CA4
CA3
GC-ML-DG
Presubiculum
Hippocampal tail
CA1
GC-ML-DG
CA1
Subiculum
Presubiculum
CA4
Presubiculum
Molecular layer
Hippocampal tail
Hippocampal fissure
Molecular layer
CA4

Feature

Surface area
Volume
Volume

Surface area
Volume

Surface area

Surface area

Surface area

Surface area

Surface area
Volume

Surface area
Volume
Volume
Volume
Volume
CurvMin
Volume

CurvMax
Surface area
RPC
RPC
CurvMax
CurvMin
RPC
CurvMax
CurvMax
CurvMax
RPC
CurvMax

p-value

< 0.00001
< 0.00001
< 0.00001
0.00001
0.00003
0.00006
0.00012
0.00017
0.00021
0.00034
0.00038
0.00076
0.00155
0.00168
0.00234
0.00366
0.00373
0.00681
0.00969
0.01097
0.01596
0.05146
0.06049
0.06766
0.07571
0.11261
0.25083
0.29224
0.34715
0.41302
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Subfields Changing rate of average of RPC  p-value Cohen’s d

MCI MCI to AD
non-converter group
group

Presubiculum 3.26 + 7.82% 1.24 £9.65% 0.07571 0.23127
Subiculum —0.24 £7.74% 1.87 £8.92% 0.05146 0.25377
CA1 017 £71% 259 +£8.33% 0.01595 0.31467
CA3 4.23 +£14.62% 3.61 £ 14.42% 0.74307 0.04254
CA4 13.0 £ 54.5% 14.3 +£58.17% 0.85797 0.02323
GC-ML-DG 3.5 +20.75% 435 +19.91% 0.74702 0.04187
Molecular layer 4.08 £ 23.04% 7.0+24.87% 0.34714 0.12212
Hippocampal 214 £19.4% 2.85+19.14% 0.77527 0.03705
fissure

Hippocampal 212 +£11.1% 2.11 +£12.34% 0.99021 0.00159

tail
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FCDs Brain Cluster MNI Peak P value

regions voxels coordinates T-value
X Y z

gFCD  Cerebellum_R 26 28 —46 —-30 3.9005 < 0.005
AG_L 29 -39 57 27 -3.6592 <0.005
SFC_L 98 -6 338 57 —3.6342 <0.005
IFCD  Cerebellum_R 129 9 —48 —15 43797 <0.005
MCC_R 23 6 27 42 3.6251  <0.005
PMC_R 31 21 -9 61 3.6222  <0.005
Cerebellum_L 36 -156 -39 -21 3.2990 <0.005
IrFCD OFC_L+R 43 0 48  -21 3.3400 <0.005
IFC_L 25 -51 19 0 —4.3605 <0.005
SFC_L 125 -3 42 51  —4.0600 <0.005
SFC_R 24 18 48 48 -3.8860 <0.005
AG_L 28 -39 —-60 30 —3.7300 <0.005
MFC_L 46 —42 15 45 -3.5797 <0.005

MNI, Montreal Neurological Institute; L, left; R, rightt PMC, premotor
cortex; IFC, inferior frontal cortex; SFC, superior frontal cortex; AG, angular
gyrus; MCC = middle cingulate cortex; OFC, orbitofrontal cortex; MFC,
middle frontal cortex.
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Accuracy TPR FPR AUC

Random forest 0.8261 0.9167 0.2727 0.9015
SVM 0.8483 1 0.3136 0.9697
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Healthy IA group IA group post
control group pretreatment treatment

(n =30) (n=27) (n=27)

M + SD M + SD M + SD
Age (years) 21.73 £2.08 20.74 + 1.95% 20.74 £1.95
Sex (male/female) 22/8 22/5% 22/5
Education (years) 16.77 £ 1.82 14.70 + 1.84* 1470 £1.84
Internet Addiction 29.90 +7.18 62.89 £ 11.574 46.56 + 11.83*
Test Scale
Self-rating 37.70 £ 7.87 55.74 £ 9.094 50.22 + 10.28*
Depression Scale
Self-rating Anxiety 35.00 + 6.79 50.11 £ 11.054 44.22 + 9.61*

Scale

“Comparison between individuals with IA and HCs at baseline, P > 0.05.
A Comparison between individuals with IA and HCs at baseline, P < 0.05.
*Comparison in the IA group before and after CBT, P < 0.05.
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Feature

Frontal Pole.L-Parietal Operculum Cortex.R

Frontal Pole.R-Superior Frontal Gyrus.L

Frontal Pole.R-Temporal Pole.L

Insular Cortex.R-Planum Polare.R

Superior Frontal Gyrus.R-Inferior Temporal Gyrus, posterior.R
Superior Frontal Gyrus.R-Temporal Occipital Fusiform Cortex.R
Middle Frontal Gyrus.L-Paracingulate Gyrus.R

Inferior Frontal Gyrus, pars opercularis.L-Temporal Fusiform Cortex, posterior.R
Inferior Frontal Gyrus, pars opercularis.R-Lingual Gyrus.R

Inferior Frontal Gyrus, pars opercularis.R-Planum Polare.L
Precentral Gyrus.R-Parahippocampal Gyrus, posterior.R
Temporal Pole.L-Superior Temporal Gyrus, posterior.L

Temporal Pole.L-Juxtapositional Lobule Cortex.R

Temporal Pole.R-Superior Parietal Lobule.R

Temporal Pole.R-Juxtapositional Lobule Cortex.L

Temporal Pole.R-Occipital Fusiform Gyrus.L

Superior Temporal Gyrus, anterior.L-Angular Gyrus.R

Superior Temporal Gyrus, anterior.R-Right Putamen

Superior Temporal Gyrus, posterior.L.-Middle Temporal Gyrus, anterior.LL
Superior Temporal Gyrus, posterior.L-Subcallosal Cortex.L
Middle Temporal Gyrus, anterior.L-Postcentral Gyrus.L

Middle Temporal Gyrus, anterior.R-Frontal Orbital Cortex.L
Middle Temporal Gyrus, posterior.L-Precuneus Cortex.R

Middle Temporal Gyrus, posterior.R-Inferior Temporal Gyrus, posterior.R
Inferior Temporal Gyrus, anterior.L.-Heschl’s Gyrus.L

Inferior Temporal Gyrus, anterior.R-Cingulate Gyrus, posterior.R
Inferior Temporal Gyrus, posterior.L-Planum Polare.L

Inferior Temporal Gyrus, temporooccipital.R-Lingual Gyrus.R
Postcentral Gyrus.R-Occipital Pole.R

Lateral Occipital Cortex, superior.R-Left Accumbens

Lateral Occipital Cortex, inferior.L-Left Accumbens

Subcallosal Cortex.R-Right Amygdala

Paracingulate Gyrus.L-Cingulate Gyrus, anterior.L

Paracingulate Gyrus.L-Right Thalamus

Paracingulate Gyrus.R-Parietal Operculum Cortex.L

Cingulate Gyrus, anterior.R-Parietal Operculum Cortex.L
Cingulate Gyrus, anterior.R-Heschl's Gyrus.R

Cingulate Gyrus, posterior.R-Temporal Fusiform Cortex, anterior.R
Parahippocampal Gyrus, posterior.R-Left Thalamus

Temporal Fusiform Cortex, posterior.L-Left Accumbens
Temporal Occipital Fusiform Cortex.L-Parietal Operculum Cortex.R
Temporal Occipital Fusiform Cortex.L-Right Amygdala

Temporal Occipital Fusiform Cortex.R-Occipital Fusiform Gyrus.R
Planum Polare.R-Left Thalamus

Planum Temporale.R-Left Hippocampus

Occipital Pole.R-Brainstem.R

HAMD Score

mMALFF of Superior Temporal Gyrus, posterior.R

mReHo of Parahippocampal Gyrus, posterior.L

mReHo of Right Thalamus

mReHo of Left Pallidum

VMHC of Temporal Fusiform Cortex, anterior.R

Gray Matter Volume of Inferior Temporal Gyrus, anterior.R

Gray Matter Volume of Right Accumbens

PD (mean + SD)

—0.1129 £ 0.2642
0.0478 + 0.2354
0.2116 £ 0.2723
0.2713 £ 0.2794

—0.0828 £+ 0.3272

—0.2821 £ 0.2749
0.5995 + 0.2634
0.0897 £ 0.2763

—0.1656 + 0.2669
0.0418 £ 0.2501
0.1467 £ 0.2138

—0.3148 £ 0.2612

—0.0739 £ 0.2415
0.1059 £ 0.2912
0.6623 £ 0.2743

—0.1192 £ 0.2378

—0.0500 £ 0.2470

—0.1993 + 0.2559

—0.0174 £ 0.2309
0.0451 £0.2116

—0.0628 + 0.2827

—0.0029 + 0.2553

—0.0032 £ 0.1956
0.0455 + 0.2457
0.4837 £ 0.3685
0.1240 £ 0.2235

—0.0922 + 0.2427

—0.0489 £ 0.2319
0.2362 £ 0.2612

—0.1134 £ 0.2020
0.7454 £ 0.2993

—0.1688 £+ 0.2078

—0.1056 £ 0.2160

—0.0849 + 0.2356
0.0737 £ 0.2734
0.1262 £ 0.2546
0.0159 £ 0.2817

—0.1340 £ 0.2362
0.2082 + 0.2267
0.1025 + 0.2688
0.0059 + 0.2695
0.1999 £ 0.2317
0.0310 £ 0.2339

—0.0057 £ 0.2023

—0.1296 + 0.2257
0.0972 + 0.2042

10.1429 + 6.3545
1.1140 £ 0.1317
0.8302 + 0.0956
0.8533 + 0.0924
0.7300 £ 0.0772
0.2277 £ 0.1448
0.0025 + 0.0008
0.0004 + 0.0001

HC (mean + SD)

—0.2487 £ 0.265
0.0408 £ 0.2536
0.3172 £ 0.2829
0.1674 £ 0.2358
0.0568 £+ 0.3013
0.4011 £0.2316
0.4751 £0.2763
0.2384 + 0.2609
0.2521 £ 0.2320
0.0845 £ 0.2656
0.0216 £ 0.2398
0.4955 £ 0.3027
0.0455 £ 0.2886
0.0107 £0.2773
0.7524 £ 0.2624
0.0146 £ 0.2261
0.0688 + 0.2392
0.1071 £ 0.2856
0.1275 £ 0.2442
0.1618 £0.2278
0.0856 £ 0.2278
0.1269 £ 0.2147
0.1271 £0.1759
0.0399 £ 0.2304
0.3644 £ 0.3915
0.0302 £0.3139
0.0667 £ 0.2399
0.0818 £+ 0.1936
0.1036 £0.3113
0.0016 £0.2128
0.6130 £ 0.2801
0.0146 £ 0.2352
0.0254 £ 0.2486
0.1805 £ 0.2874
0.0281 £0.2416
0.2581 £ 0.2542
0.0983 £ 0.1895
0.0164 £ 0.2544
0.3380 £ 0.1966
0.2534 £ 0.2388
0.0970 £ 0.2492
0.0755 £ 0.2679
0.1168 £0.2416
0.1249 £ 0.2388
0.0337 £ 0.2826
0.0076 £ 0.2136
1.9730 +£2.1793
1.0478 +0.1379
0.7870 £ 0.0859
0.9144 £0.1154
0.7718 £0.1010
0.1818 £0.1395
0.0021 £ 0.0008
0.0004 + 0.0001

P-value

0.3488
0.0815
0.2758
0.0104
0.0341
0.1139
0.0082
0.2141
0.1853
0.0344
0.0032
0.2183
0.0269
0.0292
0.2021
0.0045
0.0285
0.0207
0.1225
0.1429
0.0130
0.0659
0.0238
0.0888
0.0180
0.0049
0.0035
0.0103
0.0060
0.0043
0.0100
0.0006
0.0047
0.2865
0.0475
0.3158
0.0704
0.0084
0.1968
0.2285
0.2080
0.0043
0.2874
0.0550
0.0017
0.0096
0.0000
0.0270
0.0292
0.1034
0.0910
0.0159
0.0103
0.1797
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Characteristics PD (n = 68)

Sex (M/F) 35/33

Age (year) 57.8£7:0
Education (year) 11.8 £ 3.3
MMSE 288417
HAMD 11.0+£6.9

HC (n = 48)

23/25
57.8+5.5
11.7+ 438
29,0+ 23

21 £238

Test statistics

0.409
0.021
0.689
0.585
67.58

P-value

>0.052
>0.08P
>0.05°
>0.059
<0.05°

aThe P-value for gender diistribution by Fisher’s exact test; P~ The P-values for age,
education, MMSE and HAMD, respectively, by analysis of variance (ANOVA).
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Groups DR SF + DR (IGE)
Clinical feature Frequency Duration Frequency Duration
Statistics r p r p r P r P
Shape Left amygdala —0.357 0.211 —0.261 0.367 —0.438 0.003" —0.265 0.078
Volume Left amygdala —0.442 0.114 —0.237 0.415 —0.324 0.030" —0.226 0.136
Left thalamus —0.689 0.006* —-0.527 0.053 —0.154 0.311 —-0.182 0.232

*There were statistically significant differences between the groups (the significance level at p < 0.05).
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“There were statistically significant differences between the groups (p < 0.05).
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Characteristics SR (n = 31)

Demographic

Age (years) 2411 +£10.62
Sex (F/M) 11/20
Medical history

Duration (years) 481 +4.54
Frequency” (times/years) 1.90 4+ 1.55
Onset age (year) 19.35 + 10.33

SF, seizure free; DR, drug resistant; NC, normal control.

DR (n =17)

28.53 + 9.91
9/8

9.74 £ 9.35
7.06 +7.02
18.80 £8.78

*There were statistically significant differences between the groups (o < 0.05).

#Numbers of generalized tonic—clonic seizure per year.

NC (n = 48)

25.63 + 3.25
17/31

Fort

1.788
1.808

19.700
23.896
0.035

0.173
0.405

0.000*
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Interaction between Coefficient (SE) P-values for

scan type and interaction term
patient-reported coefficients
outcomes®
NBVe Fast x MSRS-R 0.0007 (0.0003) 0022
FwDL x MSRS-R 0.0003 (0.0003) 0297
NThV Fast x MSRS-R 0.00002 (0.00001) 0025
FwDL x MSRS-R 0,002 (0.00001) 0.069
NGMV®  Fast x MSRS-R 0.0003 (0.0002) 0.102
FwDL x MSRS-R 0.0002 (0.0002) 0302
NWMV®  Fast x MSRS-R 0.0004 (0.0009) 0.181
FwDL x MSRS-R 0.0001 (0.0003) 0618

@NBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized
gray matter volume; NWMV, normalized white matter volume. Normalized volumes have
no unit.

PMSRS-R, multiple sclerosis rating scale-revised; FwDL, fast scan with deep learning.
*Indicated statistical significance meeting the multiple hypotheses testing threshold.
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Interaction between

nt (SE) P-values for

scan type and interaction term
patient-reported coefficients
outcomes®
NBV Fast x PDDS 00031 (0.001) 0.002*
FwDL x PDDS 0.0016 (0.001) 0.098
NThye Fast x PDDS 0.00007 (0.00003) 0024
FwDL x PDDS 0.000008 (0.00003) 0.79%0
NGMve Fast x PDDS 0.0010 (0.0006) 0.110
FwDL x PDDS 0.0013 (0.0006) 0.039
NWMVe Fast x PDDS 0.0020 (0.0008) 0019
FwDL x PDDS 0.0006 (0.0008) 0.460

SNBY, normalized brain volume; NThY, normalized thalamic volume; NGMV, normalized
gray matter volume; NVWMV, normalized white matter volume. Normalized volumes have
no unit.

bPDDS, Patient-determined disease steps; FwDL, Fast scan with deep learning.
*Indicated statistical significance meeting the muitiple hypotheses testing threshold.
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Mean of the P-values Mean of the P-values Mean of the P-values

differences & SD differences +SD Differences +SD
Mean percentage Mean percentage Mean percentage
difference difference difference
Fast vs. Conventional Fastvs. Fast with DL® vs. Fast with DL vs. Fast with DL vs. Fast Fast with DL vs.
Conventional Conventional Conventional Fast
NBVE ~0.007 +0.021 0.0006* ~0.013:£0017 <0.0001* ~0.006 £ 0015 0.0004*
~0.905% —1.789% ~0.892%
NThve ~0.0002  0.0006 0.01* 0.0002 + 0.0006 0.002* 0.0004  0.0005 <0.0001*
—1.641% 2.265% 3.971%
NGMva ~0039 £ 0012 <0.0001* ~0018+ 0011 <0.0001" 0022 £0.011 <0.0001"
—9.345% —4.273% 5.505%
NWMVe 0081 +0018 <0.0001* 0.004 +0.010 <0.0001* ~0.026 +0.018 <0.0001*
10.874% 1.478% —8.475%

SNBV, normalized brain volume; NThV, normelized thalamic volume; NGMV, normalized gray matter volume; NWIMV, normalized white matter volume. Normelized volumes have no unit.
bDL, deep learning approach applied to the fast scan.
“Indicated statistical significance meeting the multiple hypotheses testing threshold.
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Characteristics

Age (years), Mean = Standard deviation
Men, n (%)

European-descent, n (%)
Non-hispanic, n (%)

Non-hispanic European descent, n (%)
PDDS?, Mean & SD

MSRS-R?, median (interquartile range)
RMS?, n (%)

Disease duration (years), Mean + SD
No treatment, n (%)

High-efficacy treatment, n (%)

Participants (N = 87)°

4684133
26(208)
73 (83.9)
84(96.6)
70(80.5)
17£18

42-9
75(86.2)

149+ 193

24(27.6)
5(.7)

2PDDS, patient-determined disease steps; MSRS-R, multiple sclerosis rating scale-

revised; RMS: relapsing clinical type.

PBecause nine participants had two MR scans on separate days, the total number of
participants was 87, whereas the total number of MR scans (occurring on separate days)

for evaluation was 96.
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Number Correct Error Accuracy (%)

Total 100 2 8 92
Black 20 19 1 95
Complex 80 73 7 91.25
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Predicted result

Caliper Total
Yes No
Yes 290 7 207
Ground truth No 0 208 203
Total 200 210 500
Precision Recall Sensitivity Specificity Accuracy
100% 97.64% 100% 96.67% 98.6%
W Predicted result Total
Yes No
Yes 280 15 295
Ground truth No 5 200 205
Total 285 215 500
Precision Recall Sensitivity Specificity Acouracy
98.25% 94.91% 98.25% 93.02% 96%
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Authors

Anderson et al. (2011)
Wang et al. (2012)
Murdaugh et al. (2012)
Nielsen et al. (2013)

Deshpande et al. (2013)

lidaka (2015)

Chen et al. (2015)

Plitt et al. (2015)

Yahata et al. (2016)

Dodero et al. (2015b)

Abraham et al. (2017)

Guo et al. (2017)

Heinsfeld et al. (2018)

Bietal. (2018)

Bhaumik et al. (2018)

Fredo et al. (2019)

LiuY. et al. (2020)

Sherkatghanad et al. (2020)

Zhao et al. (2020)

Huang et al. (2020)
Reiter et al. (2021)

Brain atlas

7,266 regions
The AAL atlas
The AAL atlas
7,266 regions

18 self-defined ROIs

The AAL atlas

The Power atlas

The Power atlas

The Destrieux atlas
The DiMartino atlas

Sulci-based anatomical
atlas

The Power atlas

The HO atlas
The Yeo atlas
The CC200 atlas

The AAL atlas

7,266 regions

The AAL atlas

'he Brodmann’s areas
ROIs

The Gordon'’s cortical
atlas

The HO atlas

The CC200 atlas
The CC400 atlas

The AAL atlas

The CC200 atlas

'he Gordon atlas
The HO atlas

Informative brain regions or networks contributing to the classification
between ASD and TD

The DMN, superior parietal lobule, fusiform gyrus and anterior insula

Weak functional connections between the frontal lobe and the rest of the cortex
The PCC, PCUN, and MFC

The DMN, parahippocampaland fusiform gyri, insula, Wernicke area, and
intraparietal sulcus

Functional connections between the fusiform face area and middle temporal
gyrus

The medial part of the superior frontal gyrus, anterior and posterior cingulate
cortices, and thalamus

Default mode, somatosensory/motor (hand region), and visual networks

The left anterior cingulate gyrus, bilateral postcentral gyrus, right PCUN, left
calcarine sulcus, the left paracentral lobule and the right postcentral gyrus

The insula, ventromedial prefrontal cortex, anterior, middle, and posterior
regions of cingulate cortex, supplementary motor cortex, anterior temporal
obes, posterior aspects of the fusiform gyrus, posterior superior temporal
sulcus, temporal parietal junction, intraparietal sulcus, and inferior and middle
rontal gyri, bilaterally
Default-mode network, the frontal-parietal control networl
16 discriminative functional connections
The cingulo-opercular network

Red: left precentral gyrus-left occipital pole, left precentral gyrus-left precentral
gyrus, left superior frontal gyrus-right lateral occipital cortex, right superior
rontal gyrus-right parietal operculum
Blue: right frontal medial cortex-right precentral gyrus, left caudate-right
precentral gyrus, left putamen-right precentral gyrus, right frontal pole-right
ateral occipital cortex

DMN, Pareto-insular network and semantic ROls

32 most significant FC mainly from or cross different pre-defined brain networks
including the default-mode, cingulo-opercular, frontal-parietal, and cerebellum

The regions with the highest anticorrelation: paracingulate gyrus, supramarginal
gyrus, and middle temporal gyrus

The regions with the highest correlation: occipital pole, and lateral occipital
cortex; superior division
The right IFG (opercular part), the right PCUN, superior frontal gyrus (orbital
part), the left inferior occipital gyrus, the right hippocampus, the bilateral
superior frontal gyrus (dorsolateral), the right median cingulate and
paracingulate gyri, the right posterior cingulate gyrus, the left supramarginal
gyrus, the right thalamus, the right superior, and middle temporal gyrus

Dorsolateral prefrontal cortex, somatosensory association cortex, primary
auditory cortex, inferior temporal gyrus
and temporopolar area

COTC, visual, DA, DMN, and SMH

Lower correlation between the anterior and posterior DMN in autistic individuals

The right supramarginal gyrus, the fusiform gyrus, the cerebellar vermis (C115,
€188, C247, and C326)

Precentral gyrus, middle frontal gyrus, middle cingulate gyrus, posterior
cingulate gyrus, amygdala, angular gyrus

20 discriminative functional connections
COTC, visual, SMH, DMN, and DA

Abbreviations: ASD, autism spectrum disorder; TD, typically developing; FC, functional connectivity;, DMN, default mode network; AAL, Automated Anatomical Labeling;
PCC, posterior cingulate cortex; PCUN, precuneus; MFC, medial prefrontal cortex; ROI, region of interest; HO, Harvard Oxford; IFG, inferior frontal gyrus;, COTC,

cingulo-opercular task control: DA, dorsal attention; SMH, somatosensory motor hand.
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Study Deep learning accuracy Other machine learning accuracy

Dvornek et al. (2017) LSTM classifier: 68.5% SVM classifier: 66.9%

MHPC classifier: 59.2%
Heinsfeld et al. (2018) DNN classifier: 70% SVM classifier: 65%

RF classifier: 63%
Kong et al. (2018) DNN classifier: 90.39% RF classifier:74.46%
Sherkatghanad et al. (2020) CNN classifier: 70.22% SVM classifier:

KNN classifier:

RF classifier:
Kazeminejad and Sotero (2020) A multilayer perceptron: 64.4% (average) LR classifier: 61% (peak)

RF Classifier: 63% (peak)
RBF-SVM classifier: 67% (peak)
Thomas et al. (2020) CNN classifier: 64% SVM classifier: 66% (comparable)
Huang et al. (2020) DBN classifier: 76.4% DNN classifier: 70%
LSTM classifier: 68.5%
L-SVM classifier: 68.5%
SVC classifier: 66.9%
LOOCY classifier: 60%
RBF-SVM: 59.2%
Yin et al. (2021) DNN classifier: 79.2% L-SVM classifier: 68%
Medium-SVM classifier: 72.2%
Coarse Gaussian-SVM classifier: 66.9%
Medium-KNN classifier: 72.4%
Cosine-KNN classifier: 72.6%
Weighted KNN classifier: 72.4%
Yang et al. (2021) CNN classifier: 77.74% AE-MLP classifier: 68.56%
SVM classifier: 62.97%
RF classifier: 60.62%
Conv GRU-CNN classifier:67%

Abbreviations: LSTM, long short-term memory; SVM, support vector machine; DNN, deep neural network; RF, random forest; KNN, K-nearest neighbor; LR, logistic
regression; RBF-SVIM, radial basis function-support vector machine; L-SVM, linear support vector machine; SVC, support vector classification; LOOCYV, leave-one-out
cross-validation; AE-MLR autoencoders-multilayer perceptron;, CNN, convolutional neural network; GRU, gated recurrent unit.





OPS/images/fneur-11-00526/fneur-11-00526-g007.gif





OPS/images/fnins-15-697870/fnins-15-697870-t001c.jpg
Eslami et al. (2019)

Fredo et al. (2019)

Niu et al. (2020)

Liu Y. et al. (2020)

Sherkatghanad et al. (2020)

Thomas et al. (2020)

Tang et al. (2020)

Zhao et al. (2020)

Huang et al. (2020)

Liu Y. et al. (2020)

Kazeminejad and Sotero (2020)

Yin et al. (2021)

Yang et al. (2021)

Reiter et al. (2021)

505 ASD

530 TC

306 ASD

350 TC

(400 participants for each
sample)

408 ASD

401 TC

506 ASD
548 TC
505 ASD
580 TC
620 ASD
542 TC
505 ASD
530 TC

45 ASD
47 TC

505 ASD
530 TC
403 ASD
468 TC
493 ASD
530 TC
403 ASD
468 TC
79 ASD
1056 TC

306 ASD

350 TC

(400 participants for each
sample)

@Machine learning methods that are deep learning methods.

Abbreviations: ASD, autism spectrum disorder; fMRI, functional magnetic resonance imaging; rs-fMRI, resting state fMRI; TC, typical control; FC, functional connectivity; ROI, region of interest; AAL, Automated
Anatomical Labeling; ABIDE, Autism Brain Imaging Data Exchange; ToM, Theory of Mind; SVM, support vector machine; FA, factor analysis; GNB, Gaussian naive Bayes, PCA, principal component analysis; RFE,
recursive feature elimination; MRMR, maximal relevance and minimal redundancy; UCLA, University of California at Los Angeles; PSO, particle swarm optimization; HOG, histogram of oriented gradients, ICA, independent
component analysis; MSDL, multi-subject dictionary learning; L1-SCCA, the L1-norm regularized sparse canonical correlation analysis; SAEs, sparse auto-encoders; SLR, Structured Logistic Regression; LSTM, long
short-term memory; DNN, deep neural network; DBN, deep belief network; RBF-SVM, radial basis function-support vector machine; GM, gray matter; WM, white matter;, LASSO, least absolute shrinkage and selector
operation; SSAE, a stacked sparse auto-encoder; SIMLR, Single-cell Interpretation via Multi-kernel LeaRning;, PSD, Power spectral densities; DTL-NN, deep transfer learning neural network; AE, autoencoders; HO,
Harvard Oxford; DANN, deep attention neural network; CNN, convolutional neural network; Lo-D-FCs, low-order dynamic functional connectivity networks, Ho-D-FCs, high-order dynamic functional connectivity
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sample from SDSU)

FCs between 200 ROls
(the CC200 atlas)

FCs between 237 ROIs
(the Gordon’s cortical atlas
the HO atlas)

FCs between ROIs from three
atlases separately (the AAL
atlas, the HO atlas and the
CC200 atlas)

FCs between 200 ROIs

the CC200 atlas)

FCs between 392 ROls

the CC400 atlas)

ine sum mary measures

FCs between 116 ROIs
MRI x ROI connectivity
the AAL atlas
FCs, Lo-D-FCs and Ho-D-FCs
between 116 ROIs (the AAL
atlas)
FCs between 200 ROIs
the CC200 atlas)
D-FCs between ROIs
the AAL atlas
FCs between 200 ROls
the CC200 atlas)

FC between 264 ROIs
the Power atlas)

8 brain functional networks
rom

group-ICA

FC between 237 ROIs

the Gordon atlas

he HO atlas)

AE

Conditional random forest

None

Extra-tree

None

None

None

A two-sample t-test and
LASSO

Graph-based
feature-selection method
MTFS-EM

PCA

An AE-based feature

selection method

Dual regression

Conditional random forest

networks; MTFS-EM, an improved multi-task feature selection method integrating elastic net and manifold regularization; SDSU, San Diego State University.

A'single layer
perceptron?
Random forest

The proposed
multichannel DANN

Linear-SVM
CNN classifier?
3D CNN classifier?

DNN classifier?

Linear-SVM

DBN classifier?
Multi-kernel SVM
A multilayer
perceptron?

DNN classifier?

3D CNN classifier?

Random Forest

80%
62.5%
65%
70%
73.75%
73.2%

72.2%

70.22%

64%

74%

83%

76.4%

76.8%

64.4%

79.2%

77.74%

62.5%
65%
70%
73.75%





OPS/images/fneur-11-00526/fneur-11-00526-g006.gif





OPS/images/fnins-15-697870/fnins-15-697870-t001b.jpg
Abraham et al. (2017)

Yahata et al. (2016)

Dvornek et al. (2017)

Rane et al. (2017)

Guo et al. (2017)

Bi et al. (2018)

Heinsfeld et al. (2018)

Aghdam et al. (2018)

Zhao et al. (2018)

Soussia and Rekik (2018)

Dekhil et al. (2018)

Bernas et al. (2018)

Bhaumik et al. (2018)

Kong et al. (2018)

Li et al. (2018)

Kazeminejad and Sotero (2019)

871 participants

74 ASD
107 TC

539 ASD
573TC
539 ASD
573TC
55 ASD
55 TC
45 ASD
39TC
505 ASD
530 TC
116 ASD
69 TC

54 ASD
46 TC
155 ASD
186 TC
123 ASD
160 TC

24 ASD
30TC
167 ASD
205TC

78 ASD
104 TC
38 ASD
23TC

109 participants
342 participants
190 participants
137 participants
51 participants

rs-tMRI data
(the ABIDE dataset)

rs-fMRI data

_‘
=
@

> =
o I

data
DE datase

data
DE datase
data
DE datase
data
DE datase
data
DE datase
and sMRI data
DE datase

-‘ -‘ -‘
9 9 59
[0} [0} [0}

>SS »= » 5
mE2 T TE

-‘ -‘
5 9 5 9
[0} [0}

>»S » S
mwE TH

Rl data
he ABIDE datasef

Rl data
he ABIDE datasef

rs-fMRI data

rs-fMRI data

rs-fMRI data
he ABIDE datasef

Rl data
he ABIDE datasef
rs-fMRI data
he ABIDE datasef
rs-fMRI data
he ABIDE datasef

FCs between ROlIs from three
atlases

(the HO atlas, the Yeo atlas,
and the CC200 atlas)

FCs between 140 ROIls

(the sulci-based anatomical
atlas)

The resting-state fMRI time
series

All voxels within the GM mask

FCs between 116 ROIs

the AAL atlas)

FCs between 90 ROIs

the AAL atlas)

Whole brain FC between 7,266
ROIs

Means of ROls respectively for
rs-fMRI, GM and WM

the AAL atlas)

Multi-level, high-order FCs

High-Order Morphological
etwork

PSD

7 resting-state networks

FCs between Brodmann’s
areas ROls

FCs between 148 ROls
the Destrieux atlas)
FCs between 90 ROIs
the AAL atlas)

FCs between 116 ROIs
the AAL atlas)

ICA and MSDL

L1-SCCA

None

None

SAEs

random SVM cluster

SAEs

one

LASSO

one

PSD with highest
correlation with the 34
rs-fMRI atlases

Group-ICA

Filter-based test and

embedded Elastic Nets

F-score

SSAE

A sequential forward
floating algorithm

The scikit-learn library

SLR classifier

LSTM model

he scikit-learn library

DNN classifier?

RBF-SVM

DNN classifier?

DBN classifier?

multiple linear SVMs
SIMLR based
pairing + SVM
RBF-SVM

poly-SVM

Partial least square
regression combined
with SVM

DNN classifier?

DTL-NN classifier?

Gaussian SVM

67% (peak)

85%

68.5%

62%

86.36%

96.15%

70%

65.56%

81%

61.7%

91%

86.7%

70%

90.39%

70.4%

86%
69%
78%
80%
95%





OPS/images/fneur-11-00526/fneur-11-00526-g005.gif





OPS/images/fnins-15-697870/fnins-15-697870-t001a.jpg
Study

Anderson et al. (2011)

Wang et al. (2012)

urdaugh et al. (2012)

ielsen et al. (2013)

Uddin et al. (2013a)

Deshpande et al. (2013)

Just et al. (2014)

Price et al. (2014)

Zhou et al. (2014)

Plitt et al. (2015)

Dodero et al. (2015a)

lidaka (2015)

Chen et al. (2015)

Chanel et al. (2016)

Ghiassian et al. (2016)

Kassraian-Fard et al. (2016)

Odriozola et al. (2016)

Participants

40 ASD
40TC
29 ASD
29TC
13 ASD
147TC

447 ASD
517 TC

20 ASD
20TC
15 ASD
16TC
17 ASD
17TC

30 ASD
30TC
127 ASD
163TC
59 ASD
59 TC

42 ASD
37TC
312 ASD
328 TC
126 ASD
126 TC
15 ASD
147TC
538 ASD
573 TC
77 ASD
77TC
283 ASD
22TC

Data

rs-fMRI data

fMRI data with a cognitive
control tas
fMRI data with three stimuli
experiments

rs-fMRI data
(the ABIDE dataset)
rs-fMRI data

fMRI data with ToM task

fMRI data with a thinking task

rs-fMRI data
(the ABIDE dataset)

rs-fMRI data
(the ABIDE dataset)

rs-fMRI data

rs-fMRI data
(the UCLA data)
rs-fMRI data

rs-fMRI data
the ABIDE dataset)

rs-fMRI data

the ABIDE dataset)
rs-fMRI data

the ABIDE dataset)

MRI data with two visual
oddball detection tasks

MRI data with emotional stimuli

Features

Whole brain FCs between
7,266 ROIs

FCs between 106 ROls
the AAL atlas)
Seed-based FCs

FCs between 102 regions
the AAL atlas)

Whole brain FCs between
7,266 ROIs

ndependent components

FCs between 18 ROIs

Features obtained by factor
analyses proposed by the
author

Dynamic FCs from
multi-network

ntegrated features

atlases
the Destrieux atlas, the

atlas)

FCs between 264 ROls
the Power atlas)

FCs between 90 ROIs
the AAL atlas)

defined ROIs

The beta maps

Proposed HOG features

FCs between 200 ROIs
(the CC200 atlas)

Multivariate activation patterns
in the dorsal part of the anterior

insula

FCs between ROls from three

DiMartino atlas, and the Power

FCs between 220 functionally

Feature selection

A two-tailed t-test for
p < 0.001
one

one

one

one

Recursive cluster
elimination

The FA procedure

Self-proposed methods

PCA and MRMR

RFE

None
Threshold
PSO

RFE

RFE
MRMR

None

None

Machine learning
method

ot detailed

Logistic regression

Logistic regression

ot detailed

Logistic regression

Linear SVM

GNB

Multi-kernel SVM

SVM and Bayesian
network

The scikit-learn library

Grass-Kernel based
Manifold Laplacian

Probabilistic neural
network

SWM
Random forest

SVM
MHPC learning
algorithm

SVM

SVM

Accuracy

79%

82.8%

96.3%

60%

83%

95.9%

97%

90%

70%

76.67%(peak)

68.29%
89.4%
66%
90.8%
92.3%
65%

63%

85%





OPS/images/fnins-15-697870/fnins-15-697870-g003.jpg
classification accuracy

bt
3

=
N

<
W

S
s

$=
o

o=
b

e
[—y

|
|

Destrieux Atlas

L

DiMartino Atlas

b

Power Atlas

I RF
" KNN

L-SVM

" RBF-SVM
GNB

H LDA

B LILR

B L2LR

Bl ENLR

[] Average





OPS/images/fnins-14-00118/crossmark.jpg
©

2

i

|





OPS/images/fnins-14-00118/fnins-14-00118-g001.gif
Atypical ICA pipeline Proposed ICA pipeline

e = v T

et e [y
== g==

——

==

i
|
i

T
i
i






OPS/images/fpsyt.2020.00098/crossmark.jpg
©

2

i

|





OPS/images/fneur-10-01378/fneur-10-01378-t003.jpg
Group MCl group Non-MCI group t/U-Value® P-Value® t/U-Value® P-Value®

N=48 N=34
Left Right Left Right
AD 170+ 043 1,69+ 039 1.664+0.36 1.66+0.37 021 077 032 065
MD 1.47 £0.41 1.45+0.35 1.46 +035 1.43 +0.37 0.19 077 0.14 085
RD 1.38:£0.37 1.33£0.34 1.33 £ 031 1.80+0.36 0.44 067 022 053
FA 015+ 0.04 0.16+0.04 0.15+0.03 0.47 £0.05 082 024 0.41 050
AK  0.70(0.65,0.76) 068 (0.64,0.73) 0.71(0.67,0.79) 0.72(0.67,0.78) 581.0 0027 7265 0.40
MK 0.72(0.66,0.77) 0.71(0.66, 0.76) 0.73(0.69, 0.80) 0.78 (0.69, 0.83) 594.0 0.087 712.0 0328
RK  0.72(0.65,082) 0.73(0.66, 0.82) 0.74(0.70,0.80) 080 (0.68, 0.87) 637.0 0.002 706.0 0301
KFA  0.28(0.24,032) 0.29(0.25,0.34) 0.29(0.26,0.32) 031(0.26,0.40) 7340 044 7280 0.408

DK, Difusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean
kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.

The right-side group test value and P-value.

le group test value and P-value.
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Group MCl group Non-MCI group t/U-Value® P-Value® t/U-Value® P-Value®

N=48 N=34
Left Right Left Right

AD 220037 190+ 025 114027 1984034 372 075 152 044
MD 192035 1.65+0.23 1.88+025 1.68+0.33 422 073 188 057
RD 178034 153028 1.73£025 154.+032 466 079 116 0.48
FA 0.15(0.18,0.17) 0.15(0.14,0.18) 0.16(0.14,0.17) 0.16(0.14,0.18) 771.0 0.762 688.0 0228
AK 063:+0.08 066 (0.62, 0.69) 0.65+0.04 067 (0.64,0.71) 663.0 0.15 9.15 0.044
MK 069 0.10 069 0.07 0.71£0.05 0.71+0.06 0.14 0.19 632 0.175
RK  0.72(0.66,0.78) 0784 0.10 0.74(0.71,0.82) 0.76 40,08 032 027 630.0 008
KFA 023:+0.04 027 £006 0.25+0.03 027 +£0.06 022 094 068 0,087

DK, Difusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean
kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.

The right-side group test value and P-value.

le group test value and P-value.
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MoCA Brain region

Offactory_R
Offactory_L
Hippocampus_R
Hippocampus_L.
Parahippocampal_R
Parahippocampal_L

AD

—-0.035
-0.083
-0.079

—0.074
—0.131

MD

-0.029
0.000
-0.138
=0.227*
-0077
-0.122

RD

-0.036
-0.034
-0.145
-0.255"
-0.086
-0.134

FA

0.134
-0.009
0.109
0.374™
0.143
0.152

AK

0.167
-0.010
0.106
0.220
0.212
0.228"

KFA MK
0.161 0.137
0.097 -0.078
0.095 0.173
0.242" 0.370"
0.097 0218
0.282" 0.180

RK

0.161
-0.034
0.154
0.392"
0.231*
0.161

R, Right; L, Left; AD, Axial diffusion; MD, Mean diffusion; RD, Radial diffusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional

anisotropy; MoCA, Montreal cognitive assessment scale.

*P < 0.05 P < 0.01.
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MClgroup  Non-MClgroup U2 P

N=48 N=34
Age (year) 64 (60, 71) 63(57,67)  —0.862 0.389
Sex (male) 28 (58.3%) 19(85.9%)  0.049 0825
Duration of education 8 (7, 10) 95( 1) 1708 0083
(year)
HAMD 23(47.9%) 14(@12%) 0365 0546
HAMA 19 (39.6%) 13(382%) 0015 0902
Hyperlipidemia 27 (56.3%) 15 (44.1%) 1.173 0279
DM 10 (20.8%) 14(@12%) 3979 0046"
Hypertension 33 (68.8%) 21 (61.8%) 0.432 0511
History of drinking 18 (27.1%) 11(824%) 1794 0498
History of smoking 18 (37.5%) 14 (41.2%) 0.138 0.934
Glucose (mmol/L) 534965  53(47,72) -0.108 0914
UA (umol/l) 204 (236,381) 283 (253,346) —0.376 0.707
CR (umolrL) 69.2(63.4,84.9) 67.5(56.7,75.7) —1.633 0.102
TC 44(36,49)  45(39,50) -0.734 0.463
TG 15(1.1,1.9 13(09,1.9 -0.982 0.351
LDL-C 23(19,28)  24(2-0,28 -0.438 0.662
LPa 174(71,385)  135(54,182)  —1.412 0.158
HCY 143 (12,16.5) 12.3(10.8,16.3) —1.823 0.068
Glycated hemogiobin 6 (5.8, 6.8) 6.4(58,68 -0.972 0.331
MoCA 21 (19,22) 27(5,28)  —6.983 0.000"

DM, Diabetes melitus; UA, Uric acid; Cr, Creatinine; TC, Total cholesterol; TG, Trigiycerice;
LDL-C, Low-density lipoprotein cholesterol; Lpa, Lipoprotein a; HCY, Homocysteine;
MoCA, Montreal Cognitive Assessment; MCI, mild cognitive impairment.

P < 0.05, P < 0.01.
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Group MCl group Non-MCl group t/U-Value*  P-Value®  t/U-Value®  P-Value®

N=48 N=34
Left Right Left Right

AD 1.99 (182, 2.29) 1.80 (1.63, 2.07) 1.96 (1.7, 2.06) 1.67 (158, 1.90) 644.0 0.105 6280 0077
MD 1.79 £ 030 151 (1.8, 1.80) 163+0.22 1.37 (1.25,1.53) 6200 0065 551 0005
RD 1.65 +0.29 1.36(1.17, 1.63) 1.48 023 1.24 (1.1, 1.40) 645.0 0.108 3.94 0,008
FA 0.16(0.14,0.19) 021006 0.18(0.16,0.24) 022007 044 072 5635 0017
AK 0.63+0.05 065+ 0.06 066 +0.04 0.68+0.08 000 0.08 328 001
MK 070+ 007 074008 074007 075+ 009 015 037 000 0002
RK 0.74(0.70, 0.80) 083+ 0.13 0.79(0.74,0.92) 0.84+0.15 037 067 5590 0016
KFA 026+005 031005 029:+0.05 032007 053 030 0.16 0023

DKI, Diffusion kurtosis imaging; MCI, Mild cognitive impairment; AD, Axial difusion; MD, Mean diffusion; RD, Radial diftusion; FA, Fractional anisotropy; AK, Axial kurtosis; MK, Mean
kurtosis; RK, Radial kurtosis; KFA, Kurtosis fractional anisotropy.

“The right-side group test value and P-valve.

ide group test value and P-value.
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Regions variables SPG.R ICG.R mSFG.R ICG.L PreCG.R INS.R MTG.R OFC.R STG.L ITG.L mSFG.L
Clinical symptoms
HAMD total score 0.283/ 0.181/0.034* 0.186/0.030* 0.210/0.014*
HAMD factor scores <0.001*** 0.209/0.014*
Somatic anxiety 0.295/ 0.181/0.034* 0.206/0.016* 0.232/0.006**

<0.001***
Psychic anxiety 0.263/ 0.204/0.017* 0.186/0.030*

0.002**

Core depressive 0.186/0.029* 0.201/0.019* 0.182/0.034* 0.172/0.045*
Anorexia
HAMA total score 0.225/0.011* 0.195/0.028* 0.185/0.037*
YMRS total score —0.200/0.028*
BPRS total score 0.211/0.011*
BPRS factor scores
Anxiety and depression 0.179/0.032* 0.192/0.021*
Lack of energy 0.185/0.026*
Thought disorder 0.173/0.038*
Activity
Hostility 0.178/0.033* 0.256/0.002* 0.183/0.028* 0.267/0.001** 0.226/0.006"* 0.197/0.018* 0.182/0.029* 0.224/0.007** 0.297/0.018*
Cognitive function
WCST
Correct responses 0.205/0.043* 0.253/0.012* 0.268/0.008** 0.213/0.036*
Categories completed 0.218/0.031* 0.227/0.025* 0.205/0.034*
Total errors —0.205/0.043* —0.253/0.012* —0.268/0.008**—0.213/0.036*

Perseverative errors

Non-perseverative errors

—0.230/0.023*

—0.218/0.032*

Exploratory patrtial correlation analyses controlling for age and sex were performed to determine the relationship between cortical thickness and clinical symptoms (HAMD total scores and its factors; HAMA total scores;
< 0.001, *p < 0.01, *p < 0.05. Bold indicates
significance at p < 0.05, after FDR correction. R, right; L, left; SPG; superior parietal gyrus; ICG, isthmus cingulate gyrus; mSFG, medial superior frontal gyrus; PreCG, precentral gyrus; INS, insula; MTG, middle temporal
gyrus; IOFC, lateral orbitofrontal Cortex; STG, superior temporal gyrus, ITG, inferior temporal gyrus.

YMRS total scores; and BPRS total scores and its factors) and cognitive function (WCST scores) separately. Data were presented as r-value/uncorrected p value;

*okk

P
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Cluster size (mm?)

Brain region Talairach Coordinates (Peak Vertex) p-values
Left hemisphere

nferior temporal gyrus 546.49 —53.4 —-19.2 —-30.3 < 0.001
nsula 354.44 -33.7 14.9 13 < 0.001
Superior frontal gyrus 339.42 —-6.8 37.9 46.6 < 0.001
Superior temporal gyrus 331.48 —47.6 4.8 —27.9 0.001
sthmus cingulate gyrus 224.27 —-12.3 —-40.8 33.6 0.009
Right hemisphere

Middle temporal gyrus 1090.79 54.4 3.4 —-31.2 < 0.001
nsula 736.88 32.2 9.4 9.2 < 0.001
Lateral orbitofrontal cortex 480.16 33.3 31.3 —-11.8 < 0.001
Precentral gyrus 387.28 241 —-13.8 63.8 < 0.001
sthmus cingulate gyrus 344.42 4.4 —42.2 29.9 < 0.001
Superior parietal cortex 321.1 251 —60.5 33 < 0.001
Superior frontal gyrus 268.73 12.7 19.8 37.4 0.003
Superior temporal gyrus 229.69 571 —-12.5 4.7 0.008
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Variable HC (n = 273) Patients (n = 172) F/let-values p-values

Medicated patients (n = 88) Unmedicated patients (n = 84)

Demographic characteristic

Age (years) 26.59 (7.15) 25.47 (8.12) 25.11(8.19) 1.609% 0.201
Male 107 (39%) 38 (43%) 34 (40%) 0.443% 0.801
Right handedness 253 (94%) 232 (90%) 75 (89%) 3.264% 0.515
Clinical characteristic
liness duration (months) - 59.20 (59.65) 17.01 (28.52) 30.059% <0.001
First episode, yes - 39 (44%) 65 (77%) 18.851% <0.001
HAMD Total (n =251 n=74 n =65

1.05 (1.71) 5.47 (6.05) 13.40 (9.43) —5.827% <0.001
HAMA total (n =250 n =69 n =60

0.92 (2.11) 3.88 (4.02) 10.93 (9.00) —5.602% <0.001
YMRS total (n = 245 n =63 n =60

0.22 (0.83) 2.84 (6.81) 4.30 (8.84) —1.028% 0.306
BPRS total (n =189 n=78 n =68

18.41 (1.18) 28.33 (10.41) 34.51 (12.44) —3.267% 0.001
Cognitive function
WCST (n=194) n =53 n =47
Corrected responses 31.53 (11.54) 20.06 (11.36) 23.87 (12.64) —1.590% 0.115
Categories completed 4.19 (2.09) 2.25 (2.24) 2.66 (2.09) —0.954% 0.342
Total errors 16.55 (11.69) 27.94 (11.36) 2413 (12.64) 1.590% 0.115
Perseverative errors 5.98 (6.98) 10.83 (8.37) 9.68 (11.37 0.580% 0.563
Non-perseverative errors 10.52 (6.54) 17.11 (7.70) 14.49 (8.34] 1.635% 0.105

Medication

Antipsychotic use

Duration (months) - (n = 83) 20.47 (25.55) -
Dose OPZ (mg) - (n =64)8.27 £ 6.49 -
Antipsychotic type

Amisulpride - 3 (3%) -
Aripiprazole - 24 27% =
Clozapine - 12 (14%, —
Olanzapine - 17 (19%, —
Paliperidone - 2 (2%) —
Quetiapine = 17 (19%, -
Risperidone B 33 (38% &
Ziprasidone B 3 (3%) &
Antidepressants (%) - 15 (17%, -
Anticonvulsants (%) = 17 (19%, .

Data were presented as either n (%) or mean (SD). HC, Healthy Controls; HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale; YMRS, Young Manic
Rating Scale; BPRS, Brief Psychiatric Rating Scale; WCST, Wisconsin Card Sorting Test. OPZ, Olanzapine equivalent value. $The examination among the medicated,
unmedicated, and HC groups. % The examination between the medicated and unmedicated groups.
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Differences in age, education levels, frame-wise displacement and semantic fluency scores were carried with one-way ANOVA. Differences in gender was carried with

Chi-square test.
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aThe p-value for sex distribution was obtained by a chi-square test.
bThe p-values were obtained by two samples t-tests.

FD, Framewise displacement.
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Right precentral gyrus 57 6 9 19 -47784  <0.001

Right supplementary 12 30 51 3 -43817 <0001

motor area

GFC, global-brain functional connectivity; MNI, Montreal Neurological Institute.
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Tissue volumes were normalized to total intracranial volume resulting in (unitless)
tissue fractions. These are expressed as mean + SD. Differences between NPSLE
and non-NPSLE were calculated with unpaired t-tests and expressed as p values,
*o < 0.05. values in bold represent statistically significant differences between the

two cohorts.
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(precision/recall)

Random data T Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean (S.D.)
augmentation Set

crop {T1}eT 45.5%/55.6% 42.9%/66.7% 64.3%/100% 50.0%/100% 56.3%/100% 44.4%/88.9% 50.6% (8%)/85.2% (19%)
crop, flip {Ty, T} eT 36.4%/44.4% 50.0%/66.7% 52.9%/100% 53.3%/88.9% 52.9%/100% 50.0%/100% 49.3% (6%)/83.3% (23%)

crop, flip, and rotation (T4, T2, T3} € T 50.0%/66.7% 38.5%/55.6% 57.1%/88.9% 50.0%/100% 42.9%/66.7% 52.9%/100% 48.6% (7%)/79.7% (19%)

Data are shown as percentage, and each pair of numbers represents the precision and recall values, respectively.
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Random data T Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Mean (S.D.)
augmentation Set

crop {Ti}eT 61.11% (6,5 77.78% (8,6) 77.78% (5,9) 100.0% (9,9) 88.89% (7,9) 94.44% (9,8) 83.35% (14.05%)
crop, flip {Ty, To} eT 61.11% (7,4) 66.67% (6,6) 94.44% (8,9) 83.33% (7,8) 94.44% (8,9) 100.00% (9,9) 83.33% (16.10%)
crop, flip and rotation {Ty, T2, T3} eT 66.67% (6,6) 72.22% (8,5) 77.78% (6,8) 100.0% (9,9 77.78% (8,6) 83.33% (7,8) 79.63% (11.47%)

Data are shown as percentage. Numbers in parentheses stand for the number of correctly classified non-NPSLE and NPSLE subjects, respectively.





OPS/images/fnins-14-577568/cross.jpg
3,

i





OPS/images/fnins-16-695888/fnins-16-695888-t001c.jpg
Trial 1 (n =18) Trial 2 (n = 18) Trial 3 (n = 18) Trial 4 (n = 18) Trial 5 (n = 18) Trial 6 (n = 18)

Sex (female, %) 100% 89% 94% 89% 100% 100%
Age (mean + SD) 34+9 46 + 16 41 £10 47 415 38 + 11 37+13
SLE duration (mean + SD) 6+7 5+6 9+10 3+5 8+8 7+8
SLEDAI-2K (mean =+ SD) 24 b= 249 242 G2 81
SDI (mean + SD) 0.83+0.9 16418 142 08418 Q1A 0.6 +£0.8

Sex, age and SLE clinical variables are described for the population included in each trial. SLEDAI = Systemic Lupus Erythematosus Disease Activity Index 2000.
SDI = Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index.
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Regions 1 (With Region Label)

BD vs. HC

186

Left superior temporal pole

242 Left crus Il of cerebellum

188 Left superior temporal pole
201 Left inferior temporal cortex
131 Right pons

80 Right calcarine

188 Left inferior temporal cortex
189 Left middle temporal pole

104 Right lobule X of cerebellum
198 Left fusiform gyrus

110 Right lobule VI of cerebellum
157 Left inferior opercular frontal cortex
157 Left inferior opercular frontal cortex
233 Left parahippocampus

28 Right superior medial frontal cortex
192 Left middle temporal cortex
252 Left crus Il of cerebellum

257 Left caudate

224 Left middle cingulate cortex
177 Left superior parietal cortex
59 Right fusiform gyrus

50 Right middle temporal cortex
BDI vs. HC

238 Left lobule VI of cerebellum
108 Right lobule IX of cerebellum
104 Right lobule X of cerebellum
148 Left superior medial frontal cortex
202 Left inferior temporal cortex
260 Left caudate

135 Left inferior orbitofrontal cortex
193 Left inferior temporal cortex
201 Left inferior temporal cortex
55 Right inferior temporal cortex
192 Left middle temporal cortex
258 Left caudate

BDII vs. HC

186 Left superior temporal pole
220 Left middle cingulate cortex
253 Left crus | of cerebellum

268 Left pons

70 Right inferior temporal cortex
198 Left fusiform gyrus

229 Left hippocampus

192 Left middle temporal cortex
264 Left thalamus

MFN
FPN
MON
VA
SC
Visl
FPN
MON
SC
Visl
SC
FPN
FPN
SC
SC
MFN
SC
SC
SC
VA
VA
DMN

SC
SC
SC
MFN
MON
SC
SC
FPN
VA
FPN
MFN
SC

MFN
SC
SC
SC
FPN
Visl
SC
MFN
SC

Regions 2 (With Region Label)

152
70
96
31
43
79
24
57

101
41
99

152
14
81
16

136

144

142
15
91
33

174
71
101
137
30
151
57
53
49
50

222

162
60
4
148
19
53
172
4
183

Left middle orbitofrontal cortex
Right inferior temporal cortex
Right parahippocampus

Right precentral cortex

Right angular gyrus

Right lingual gyrus

Right supplementary motor area
Right inferior temporal cortex
Right lobule IV, V of cerebellum
Right superior parietal cortex
Right hippocampus

Left middle orbitofrontal cortex
Right middle frontal cortex
Right inferior occipital cortex
Right inferior triangular frontal cortex
Left rectus

Left middle frontal cortex

Left middle frontal cortex

Right middle cingulate cortex
Right middle cingulate cortex
Right precentral cortex

Right middle frontal cortex

Left paracentral lobule

Right fusiform gyrus

Right lobule IV, V of cerebellum
Left rectus

Right superior frontal cortex
Left inferior orbitofrontal cortex
Right inferior temporal cortex
Right middle temporal pole
Right angular gyrus

Right middle temporal cortex
Right superior orbitofrontal cortex
Left precuneus

Left middle orbitofrontal cortex
Right inferior temporal cortex
Right superior orbitofrontal cortex
Left superior medial frontal cortex
Right middle frontal cortex

Right middle temporal pole

Left postcentral cortex

Right superior orbitofrontal cortex
Left superior temporal cortex

SC
FPN
DMN
FPN
VA
Visl
MON
MFN
SC
VA
SC
SC
FPN
Visll
MFN
SC
SC
FPN
SC
SC
MON
FPN

MON
VA
SC
MFN
FPN
MFN
MFN
MFN
DMN
DMN
FPN
DMN

sC
MFN
FPN
sC
FPN
MFN
MON
FPN
MFN

mRMR Score

0.0261
0.0225
0.0191
0.0181
0.0170
0.0084
0.0054
0.0038
0.0026
0.0023
0.0022
0.0021
0.0020
0.0018
0.0015
0.0014
0.0013
0.0013
0.0011
0.0009
0.0008
0.0007

0.0995
0.0423
0.0361
0.0361
0.0361
0.0361
0.0305
0.0070
0.0065
0.0050
0.0027
0.0013

0.0567
0.0490
0.0419
0.0419
0.0354
0.0354
0.0107
0.0105
0.0097

DMN, default mode network; FPN, frontoparietal network; MFN, medial frontal network; MON, motor network; SC, subcortical and cerebellar network; VA, visual
association network; Visl, visual | network; Visll, visual Il network.
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Trial 1 (n =102) Trial 2 (n = 102) Trial 3 (n = 102) Trial 4 (n = 102) Trial 5 (n = 102) Trial 6 (n =102)

Sex (female, %) 90% 91% 91% 93% 90% 89%
Age (mean £ SD) 44 +13 41 +12 41 +£12 41 +12 41 +14 43+ 13
SLE duration (mean + SD) 7+8 7+8 7T+7 8+8 7+8 7+8
SLEDAI-2K (mean + SD) 2+2 2+2 2+2 242 2 2 24k 2
SDI (mean + SD) 1.2 0.8+1 08+1 0.8+1 09+11 09+1.1

Sex, age and SLE clinical variables are described for the population included in each training set of each trial. SLEDAI = Systemic Lupus Erythematosus Disease Activity
Index 2000. SDI = Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index.
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Parcellation Targets

Shen 268 BD vs. HC
BDI vs. HC
BDIl vs. HC
BD vs. HC
BDI vs. HC
BDIl vs. HC

Power 264

Accuracy (%)
76.25 £+ 1.47
73.47 + 1.89
72.78 + 3.18
74.36 £ 1.80
73.25 + 2.30
70.97 + 3.31

Sensitivity (%)

77.04 £ 1.64
74.87 £ 2.00
74.04 £+ 3.56
75.39 + 1.76
74.88 + 2.28
72.19 =+ 1368

Specificity (%)

76.71
73.91
76.24
74.73
73.59
74.69

+ 1.96
£ 201
+ 2,57
+ 2.34
+ 3.04
+ 2.85

0.840
0.805
0.778
0.818
0.806
0.752

AUC

0.0142
0.0165
0.0450
0.0155
0.0200
0.0458

AUC, area under the receiver operating characteristic ROC curve; BD, bipolar disorder; BDI, bipolar | disorder; BDII, bipolar Il disorder; HC, healthy control.
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NP-SLE patients non-NPSLE

(n=43) patients (n = 120)
Female, n (%) 37 (86%) 110 (92%)
Age, years 40 +£ 13 42 +13
NPSLE phenotypes
Inflammatory 30 (70%) -
Ischemic 13 (30%) -
Hypertension 16 (37%) 35 (30%)
Current smoking 12 (28%) 34 (28%)
BMI 25+ 8 2544
Diabetes 3(7%) 6 (5%)
Duration of SLE, 6+8 8+8
years
SLEDAI-2K 845 4+4
SDI 15+ 12 09+11

Sex, age and SLE clinical variables are described for the population included
in the study. SLEDAI = Systemic Lupus Erythematosus Disease Activity Index
2000. SDI = Systemic Lupus International Collaborating Clinics/American College
of Rheumatology Damage Index.
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Bipolar Disorder Healthy Control p-Value

Sample size 192 173
Age 37.16 £ 12.197 35.65 + 8.934 0.1831
Sex 0.0007*
Male (%) 62 (32.3) 87 (50.3)
Female (%) 130 (67.7) 86 (49.7)
Duration 12.45 £ 9.163
YMRS 3.41 £ 4.429
MADRS 12.07 £ 10.830
Medication
Atypical antipsychotics (%) 97 (50.5)
Antidepressants (%) 65 (33.9
Mood stabilizers (%) 129 (62. 5)
Suicide (%) 47 (24.5)

Bipolar | Disorder Healthy Control p-Value
Sample size 1083 85
Age 37.87 +11.885 36.53 + 3.893 0.1831
Sex 0.1011
Male (%) 41(39.8) 44 (51.8)
Female (%) 62 (60.2) 41 (48.2)

Bipolar Il Disorder Healthy Control p-Value
Sample size 89 85
Age 36.85 + 11.986 36.53 + 3.893 0.8123
Sex 0.0001*
Male (%) 21 (23.6) 44 (51.8)
Female (%) 68 (76.4) 41 (48.2)

YMRS, young mania rating scale; MADRS, Montgomery—f\sberg depres-

sion rating scale. “p < 0.05.
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Connected nodes ID Connected brain subregions  Repeat times  Distance (mm) Resting state network  Correlation with MoCA  p-value

181-182 (A23v-A23v) CG_L_7_4,CG_R_7_4 58 17.29 DMN 0.3247 0.0129
133-144 (A7ip-A39rv) SPL_L_5_5,IPL_R_6_5 58 85.24 FPN-DMN —0.3465 0.0077
8-154 (AGdI-A31) SFG_R_7_4, Pcun_R_4_4 57 69.86 FPN-DMN —0.4403 0.0005
138-188 (A39rd-A32sg) IPL_.R 6.2, CG_R 7_7 56 117.63 DMN —0.3506 0.0070
30-154 (A44d-A31) IFG_R_6_1, Pcun_R_4_4 55 80.75 ECN-DMN —0.3482 0.0074
143-170 (A39rv-vidivlg)  IPL_L_6_5, INS_R_6_4 37 112.21 DMN-SAN —0.3746 0.0038

CG, cingulate gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; SFG, superior frontal gyrus;, Pcun, precuneus; IFG, inferior frontal gyrus; INS, caudodorsal
posterior insula; DMN, default mode network; FPN, frontoparietal network; ECN, executive control network; SAN, salience network.
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Brain subregion

Anatomical and cyto-architectonic descriptions

MNI coordinate

Selected or not

X Y z Clvs. HC NC vs. HC Clvs. NC

15 MFG_L_7_1 A9/46d, dorsal area 9/46 -27 43 31 3

16 MFG_R_7_1 A9/46d, dorsal area 9/46 30 37 36 4
17 MFG_L_7_2 IFd, inferior frontal junction —42 13 36 Vi 4
18 MFG_R_7_2 IFJ, inferior frontal junction 42 11 39 J
23 MFG_L_7_5 A8Vl, ventrolateral area 8 -33 23 45 J

26 MFG_R_7_6 ABVI, ventrolateral area 6 34 8 54 J

182 SPL R 54 AT7pc, postcentral area 7 23 —43 67 w4
136 IPL_R_6_1 A39c, caudal area 39 (PGp) 45 -71 20 J
138 IPL_R_6_2 A39rd, rostrodorsal area 39 (Hip3) 39 —65 44 J J v
142 IPL_R_6_4 A40c, caudal area 40 (PFm) 57 —44 38 J J J
143 IPL.L 65 A40c, caudal area 40 (PFm) —47 —65 26 J J

144 IPL_.R 6.5 A39rv, rostroventral area 39 (PGa) 53 —54 25 4 4 J
151 Pcun_L_4_3 dmPOS, dorsomedial parietooccipital sulcus —12 —67 25 J
152 Pcun_R_4_3 dmPOS, dorsomedial parietooccipital sulcus 16 —64 25 Vi Vi 4
153 Pcun_L_4_4 A31, area 31 (Lc1) -6 —55 34 i i «f
154 Pcun_R_4_4 A31, area 31 (Lc1) 6 —54 35 J J «
161 PoG_L 4 4 A1/2/3tru, area 1/2/3 (trunk region) —21 —-35 68 "4
175 CG_L 71 A23d, dorsal area 23 —4 -39 31 Wi Wi

176 CG_R_7_1 A23d, dorsal area 23 4 -37 32 o o

181 CG_L 7 4 A28y, ventral area 23 -8 —47 10 of of

182 CG_R._7_4 A23y, ventral area 23 9 —44 1 J J

183 CG_L 7.5 A24cd, caudodorsal area 24 —45 7 37 J
209 sOcG_L 2 2 IsOccG, lateral superior occipital gyrus —22 77 36 J J

210 sOcG_R 2_2 IsOccG, lateral superior occipital gyrus 29 -75 36 4 4 J

ID, the ID of the note (brain subregion) in the Human Brainnetome Atlas;, MFG, middle frontal gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; Pcun,
precuneus; PoG, postcentral gyrus; CG, cingulate gyrus; sOcG, superior occipital gyrus. «/ indicates the brain region which is selected as the impaired brain subregions.





OPS/images/fnins-14-588684/fnins-14-588684-t001.jpg
Characteristics T2DM-CI T2DM-NC HC p-value

Gender (male/female) 12/10 18/13 23/16 0.138
Age 62.64 £4.94 5956+7.56 58.34+£669 0.092
BMI (kg/m?) 2599 £303 25784316 2510249 0458
Education duration ~ 1023 £2.89 11.35£3.09 10.86+273 0.387
T2DM duration 1014 £4.66  9.15+6.74 - 0.406
FPG (mmol/L) 1413 +£7.31 11.08+£7.93 524+029 0013
MoCA 2191 £2.77 2716+£1.15 27.24+ 115 <0.001*
coT 245+£059 2774061  3.03+057 0.003*
VFT 2055 £ 644 2363+592 2285+£642 0.205
AVLT 2138 £569 24944464 2565+333 0.003*
DST 1059 £1.89 1219+262 12.09+2.12 0025
TMT(s) 69.95 + 27.57 51.77 £26.83 51.90 +21.14 0.019*

Data are presented as mean + SD. BMI, body mass index; FPG, fasting plasma
glucose; MoCA, Montreal Cognitive Assessment; CDT, clock drawing test; VFT,
verbal fluency test; AVLT, auditory verbal learning test; DST, digit span test; TMT,
trail making test. * indicates a difference of p < 0.05, which is statistically significant.
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PAIR SVM

High Low Sham
ReHo
High 94.70% 95.95%
Low 97.24%
Sham
DC
High 93.18% 94.32%
Low 95.57%
Sham
AUC of the ROC
ReHo
High 0.72 0.84
Low 0.68
Sham
DC
High 0.73 0.82
Low 0.63
Sham

ReHo, regional homogeneity; DC, degree centrality; SVM, support vector machine;
AUC of the ROC, the area under the curve of the receiver operating characteristic.
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Brain region

ReHo

Right Inferior Semi-Lunar Lobule
Left Inferior Semi-Lunar Lobule
Right Cerebellum VIII/VIIb

Right Brainstem

Right Cerebellum Crus1

DC

Right Inferior Semi-Lunar Lobule
Right Cerebellum VIIIVIIb

18
42

MNI (x y 2)

-78
-63
-60
-27
-69

-75
-57

-57
-57
-54
-51
-36

-57
-54

Cluster size (mm3)

621
351
864
459
459

405
729

F value

11.671
9.29
16.02
14.18
12.26

8.86
12.91

Peak voxel p value

<0.001
<0.001
<0.001
<0.001
<0.001

<0.001
<0.001

ReHo, regional homogeneity; DC, degree centrality; MINI, Montreal Neurological Institute.
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Mean + SD t value p value

ReHo (Right Cerebellum VIii/Vlib)

High vs. Low 0.13 +£0.24 3.13 0.004
High vs. Sham 0.22 +£0.29 4.22 0.0002*
Low vs. Sham 0.09 +0.19 2.48 0.019
DC (Right Cerebellum VIiI/Viib)

High vs. Low 0.12 +£0.23 2.96 0.006
High vs. Sham 0.20 +£0.22 4.95 0.00003*
Low vs. Sham 0.08 +£0.17 2.56 0.016
ReHo (Right Semi-Lunar Lobule)

High vs. Low 0.23 +£0.30 416 0.0002*
High vs. Sham 0.17 £0.33 2.80 0.009
Low vs. Sham —0.06 + 0.28 —-1.17 0.253
ReHo (Right Brainstem)

High vs. Low 0.156 £ 0.21 4.11 0.0003*
High vs. Sham 0.01 £0.20 0.25 0.805
Low vs. Sham —-0.14 £ 0.17 —4.73 0.00005*
ReHo (Right Cerebellum Crus1)

High vs. Low —0.13+0.18 —-3.98 0.0004*
High vs. Sham —-0.15+0.17 —4.87 0.00003*
Low vs. Sham 0.03 £0.19 —-0.74 0.463

*Surviving Bonferroni correction of 0.05/15 = 0.0033. SD, standard deviation;
ReHo, regional homogeneity; DC, degree centrality.
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Brain region

Left hemisphere

nferior temporal gyrus —0.003
nsula —0.005
Superior frontal gyrus —0.009
Superior temporal gyrus —0.005
sthmus cingulate gyrus —0.007
Right hemisphere

Middle temporal gyrus —0.004
nsula —0.006
Lateral orbitofrontal cortex —0.005
Precentral gyrus —0.003
sthmus cingulate gyrus —0.006
Superior parietal cortex —0.005
Superior frontal gyrus —0.008
Superior temporal gyrus —0.005

HC, healthy controls; the significance level was set at p < 0.05 with FDR correction for multiple comparison.

HC (mm/year)

Medicated (mm/year)

—0.006
—0.008
—0.011
—0.006
—0.004

—0.006
—0.010
—0.010
—0.005
—0.009
—0.004
—0.009
—0.004

Unmedicated (mm/year)

—0.003
—0.004
—0.006
—0.006
—0.005

—0.001
—0.006
—0.006
—0.001
—0.003
—0.003
—0.008
—0.007

Medicated vs. Unmedicated

Ak,

Medicated vs. HC

P < 0.001, *p < 0.01, *p < 0.05. |, greater age-

related thickness thinning in medicated patients compared to unmedicated patients or HC; 1, smaller age-related thickness thinning in medicated patients compared to

unmedicated patients or HC.
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Age

Gender (male/female)
Educational qualifications (year)
HAMD

HAMA

HC

32.28 +10.80
30/26
156.78 £4.33

MDD

35.23 +11.28
13/30
11.44 £3.33
23.35 +£3.33l
18.04 +£3.33I

p-value

0.167
0.013
<0.001

Data are shown as (mean + SD). HAMA, Hamilton Anxiety Rating Scale; HAMD,
Hamilton Depression Rating Scale; HC, healthy control; MDD, major depres-

sive disorder.
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Method Optimal Sensitivity Specificity Accuracy AUC

features size (%) (%) (%)
DFC 28 96.77 94.68 95.59 0.9913
SFC 14 76.19 83.05 80.07 0.8685

AUC, area under the curve; CV, cross validation; DFC, dynamic functional connec-
tivity; SFC, static functional connectivity; SVM, support vector machine.
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Cluster location Poak (MNI)

x y oz
Left PCC/Lingual Gyrus 18 -66 12
Left Precentral Gyrus/Postcental 45 -9 30
Gyrus.

Left DLPFC a6 45 27
Left IPL 54 -42 39

Number of
voxels

&
129

56
8

7 value

59604
56116

52824
43242

GFC, globaktvain functional comectivt; OCD, obsessie-compulsive disorder; MN,
Montreal Neurological Insttute; PCC, posterior cingulate corex; DLPFC, dorsal latera

prefiontal cortex: IPL, inferior parietal fobue.
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Brain regions. Areaunder  Cut-off Sensitivity Specificit
thecurve point

Left POC/Lingual Gyrus: 0868 03776  7250%  8421%
(2040 (32138)
Left Precentral Gyrus/ 0830 00664 8500%  7632%
Postoentral Gyrus (ara0) (20138
Left DLPFC 0804 02852 7500%  78.95%
(©0140)  (30/38)
Left IPL 0814 0225 7250%  81.58%
(0) (31138

ROC, recoer aperating characterstic cunve; GG, globakbrain fnctional connectiy:
PCC, posterior cingulate corte; DLPFC, dorsal lateral profontal corex; PL, infrr
parietal lobul.
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ALFF fALFF FC REHO Concatenated

AAL 116 Static With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA
GB 55%/0.6 55%/0.62  65%/0.74* 40%/0.25 65%/0.65 55%/0.47 45%/0.46 45%/0.43 55%/0.62 55%/0.49
LASSO 55%/0.41 50%/0.41 55%/0.54 65%/0.61 50%/0.58 50%/0.65 65%/0.54 50%/0.6 50%/0.27 45%/0.55
LR 60%/0.55 45%/0.5 35%/0.29 35%/0.34 35%/0.34 35%/0.32 35%/0.36 35%/0.32 45%/0.43 35%/0.29
RF 45%/0.57 50%/0.55 65%/0.66 30%/0.34 50%/0.43 60%/0.44 30%/0.32 25%/0.24 55%/0.67 50%/0.36
SVM 50%/0.46 50%/0.42 50%/0.55 40%/0.29 50%/0.14 40%/0.37 50%/0.38 30%/0.34 45%/0.38 60%/0.48
AAL 116 Dynamic

GB 45%/0.47 60%/0.5 40%/0.42 50%/0.5 = = 60%/0.5 40%/0.29 = =
LASSO 40%/0.45 50%/0.39 60%/0.57 50%/0.45 - - 40%/0.43 55%/0.49 - -

LR 50%/0.65  65%/0.75* 60%/0.56 35%/0.39 35%/0.27 - 50%/0.51 35%/0.41 45%/0.44 -

RF 45%/0.49 50%/0.57 35%/0.48 45%/0.47 50%/0.43 s 35%/0.38 40%/0.41 70%/0.6 s
SVM 45%/0.46 45%/0.42 40%/0.42 40%/0.41 o - 45%/0.32 55%/0.39 o -
Power 264 Static

GB 60%/0.55 40%/0.5 40%/0.32 55%/0.56 45%/0.67 50%/0.5 40%/0.4 30%/0.33 50%/0.62 50%/0.5
LASSO 45%/0.42 25%/0.42 70%/0.65 55%/0.31 50%/0.41 70%/0.76 35%/0.34 35%/0.36 45%/0.51 50%/0.41
LR 55%/0.61 60%/0.48 45%/0.51 40%/0.44 45%/0.47 45%/0.43 50%/0.51 40%/0.45 45%/0.48 45%/0.4
RF 60%/0.65 40%/0.41 45%/0.47 55%/0.46 60%/0.69 55%/0.38 55%/0.68 70%/0.57 55%/0.48 50%/0.49
SVM 50%/0.34 50%/0.39 50%/0.45 50%/0.33 50%/0.68 50%/0.46 45%/0.24 40%/0.43 50%/0.69 50%/0.46
Power 264 Dynamic

GB 55%/0.58 45%/0.6 50%/0.5 60%/0.57 = = 55%/0.6 55%/0.64 = =
LASSO 60%/0.5 55%/0.65 45%/0.62 45%/0.38 - - 45%/0.58 45%/0.5 - -

LR 60%/0.57 70%/0.66 55%/0.51 50%/0.44 50%/0.46 s 50%/0.47 50%/0.5 50%/0.48 s

RF 45%/0.44 55%/0.53 50%/0.34 50%/0.48 50%/0.41 s 40%/0.61 60%/0.55 50%/0.49 s
SVM 45%/0.46 45%/0.6 40%/0.47 55%/0.42 o - 50%/0.55 50%/0.51 o -

GB, gradient boosting;, LASSO, least absolute shrinkage and selection operator; LR, logistic regression; RF, random forest; SVM, support vector machine. Significant
results (p < 0.05), estimated using the permutation method, are marked with an asterisk and bolded. The binary classification was conducted using NSR and SR groups.
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Ensemble Method

Logistic Regression

Feature ROI labels Coordinates
(MNI)

1 Angular_L -39, —74, 43

2 Precuneus_L —11, —56, 156

3 Cingulum_Ant_L 2,41, 16

4 Temporal_Sup_L —60, —25, 13

5 Postcentral_R 65, -7, 24

6 Precentral_R 20, —29, 60

7 Postcentral_R 50, —20, 42

8 Postcentral_L —53, —10, 24

9 Rolandic_Oper_R 43, —23, 20

10 Frontal_Sup_L —20, 45, 39

Ensemble Method LASSO

Feature ROI-ROI labels

1 Supramarginal_R-Precentral_R

2 Postcentral_R-Precuneus_R

3 Angular_R-Precentral_R

4 Frontal_Sup_Medial_R-Parietal_Sup_R

5 Paracentral_Lobule_L-Postcentral_R

6 Frontal_Sup_Medial_R-Frontal_Mid_R

7 Precentral_R-Frontal_Sup_Medial_R

8 Frontal_Inf_Tri_L-Occipital_Mid_L

9 Precentral_R-Frontal_Sup_Medial_R

10 Frontal_Sup_Medial_L-Precentral_R

Data are presented for (a) Logistic Regression applied to dynamic amplitude of
low-frequency fluctuations with AAL atlas and (b) LASSO applied to static ROI-RO!
Functional Connectivity with Power 264 atlas.
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Region F

Dorsal DMN 1.55
Ventral DMN 19.02
Anterior SN 6.85
Posterior SN 1.23
Sensorimotor 1.66
Network

Dynamic 677.67
variance Power

Atlas FC

Dynamic 108.61
variance AAL

FC

P

0.2133
<0.001

0.0011

0.2919
0.1898

<0.001

<0.001

Pairwise comparison

SR vs. NSR (p < 0.0001, MD = —0.0582);
NSR vs. HCs (o < 0.0001, MD = 0.0550)
SR vs. NSR (p = 0.001, MD = 0.0482);

NSR vs. HCs (p = 0.029, MD = —0.0347)

SR vs. NSR (p < 0.0001, MD = —0.00103);
SRvs. HCs (o < 0.0001, MD = —0.00095);
NSR vs. HCs (o = 0.0404,

MD = 0.0000775)

SRvs. NSR (o < 0.0001, MD = —0.00098);
SR vs. HCs (o < 0.0001, MD = —0.00068);
NSR vs. HCs (p = 0.00031,

MD = 0.000303)

Statistical differences were computed using one-way ANOVA with FDR correction.
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Demographics

Group size (n)

FD (0-3)

TPS (13-59)

SBQ-R (3-17)

Gender (female/male)

Age (27-65)

Handedness (right/left)

liness duration (years) (10-39)

HCs SR NSR

20 20 19
0.079+£0.04 0.09+0.06 0.097 £0.063
1638 £6.88 33.65+10.24 26.57 £12.86
4.42 +£2.11 10.7°:2.97 510 +1.32

10/10 5/15 9/10
36.57 £7.25 426 £9.4 39.1 £9.23
20/0 20/0 19/0

= 18 £ 10.1 10.89 £ 5.93

SBQ-R, Suicide Behaviors Questionnaire—Revised; TPS, The Psychache Scale.
Ranges of the variables are provided in the parentheses.
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Subject
ID

Sub001
Sub002
Sub003
Sub004
Sub005
Sub006
Sub007
Sub008
Sub009
Sub010
Sub011
Sub012
Sub013
Sub014
Sub015
Sub016
Sub017
Sub018
Sub019
Sub020
Sub021
Sub022
Sub023
Sub024
Sub025
Sub026
Sub027
Sub028
Sub029
Sub030
Sub031
Mean

Brodmann
area

W oo oo DMOOOODOOOOOO PO P~ DMDNOO D

Coordinate
xy2)

-15
-6
-19
-20
-16
-8
-14
-9
-14
-6
4
-15
0
-12
-15
-24
-9
-25
-13
-7
-15
-23

t value

6.25
6.22
5.84
3.91
8.89
5.05
8.36
9.21
3.82
6.40
6.34
8.29
4.44
10.1
8.58
2.78
5.91
8.59
5.97
9.44
5.55
8.45
9.90
3.32
7.64
5.26
6.95
6.92
11.28
6.93
8.52

p value

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.01
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.01
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
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Connected nodes ID Connected brain subregions Repeattimes Distance (mm) Resting state network  Correlation with MoCA  p-value

32-144 (IFS-A39rv) IFG_R_6_2,IPL_R_6_5 50 89.94 ECN-DMN —0.4273 0.0020
18-237 (IFJ-rTtha) MFG_R_7_2,Tha_L_8_4 50 63.64 ECN-DMN 0.3831 0.0060
37-151 (A44op-dmPOS)  IFG_L_6_5, Pcun_L_4_3 50 96.28 ECN-DMN 0.3862 0.0056
144-217 (A39rv-cHipp) IPL_R_6_5, Hipp_L_2_2 48 91.44 DMN 0.3555 0.0113
133-144 (A7ip-A39rv) SPL_L_5_5,IPL_R_6_5 37 85.24 FPN-DMN —0.3527 0.0120

IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; Tha, Thalamus, Pcun, precuneus; Hipp, hippocampus; SPL, superior parietal lobule; IPL,
inferior parietal lobule; ECN, executive control network; DMN, default mode network; FPN, frontoparietal network.
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Connected nodes ID

154-166 (A31-vla)
26-110 (A6vI-A35/36r)
71-181 (A41/42-A23v)
175-176 (A23d-A23d)
32-144 (IFS-A39rv)
15-160 (A9/46d-A2)
115-153 (A28/34-A31)

Connected brain subregions

Pcun_R_4_4,INS_R 6.2
MFG_R_7_6, PhG_R_6_1
STG_L_6_2,CG_L_7_4
CG_L_7_1,CG_R_7_1

IFG_R_6_2, IPL_R_6_5

MFG_L_7_1, PoG_R_4_3
PhG_L_6_4, Pcun_L_4_4

Repeat times

70
70
70
70
70
66
64

Distance (mm)

87.50
88.66
48.43
8.31
89.94
102.00
78.19

Resting state network

DMN-SAN
ECN-DMN
FPN-DMN
DMN

ECN-DMN
ECN-DAN
DMN

—0.0712
—0.0858
0.0316
0.0081
0.0108
0.0354
—0.1040

Correlation with MoCA  p-value

0.5581
0.4800
0.7950
0.9472
0.9296
0.7709
0.3915

Pcun, precuneus; INS, caudodorsal posterior insula; MFG, middle frontal gyrus; PhG, parahippocampal gyrus; STG, superior temporal gyrus; CG, cingulate gyrus; IFG,
inferior frontal gyrus; IPL, inferior parietal lobule; PoG, postcentral gyrus; DMN, default mode network; SAN, salience network; ECN, executive control network; FPN,

frontoparietal network.
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