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Editorial on the Research Topic

Advanced Interpretable Machine Learning Methods for Clinical NGS Big Data of Complex

Hereditary Diseases

Next-generation sequencing (NGS) has revolutionized biomedical research, enabling genome-wide
screening of genetic defects. NGS based tests have many applications in Non-Invasive Prenatal
Testing (NIPT), early detection of diseases, targeted therapy of various cancers and etiology of
rare diseases. There are numerous NGS based genetic test companies and associated data have
been accumulated.
As the genomic data increases, it will be a challenge to identify genetic patterns with traditional
sampling-based statistical methods. Therefore, advanced machine learning methods, such as
deep learning, and Artificial Intelligence (AI) methods can be very beneficial. As an end-to-end
method, the deep neural network can extract complex feature patterns automatically and construct
prediction models with little manual feature engineering.

Another change the big data has caused is the comeback of instance-based methods or
data-driven methods. Unlike the model-based learning or principle-driven methods, the instance-
based learning, such as K nearest neighbors, is easy-to-use, easy-to-interpret and has high accuracy
when the sample size is big enough to guarantee its performance and the system is too complex to
build principle-driven models.

With clinical NGS big data, the genetic causes of various hereditary diseases can be revealed and
the shared genetic relationships between diseases can be investigated. Some v very different diseases
may share similar genetic causes and should be treated with similar approaches. Some similar
diseases may have different genetic causes and should be treated accordingly. The integration of
disease network and drug network will become important.

The interpretable model with simple rules is what we need most to transform information
exacted from big data to the knowledge that we can master and apply in medical practice. A black
box AI algorithm can’t appease a worried patient. The interpretable model is not only good for
genetic counseling but also essential for knowledge validation and formation. It can also check the
correctness of the models and avoid misleading caused by the bias of big data.

The last but not the least change is that in clinical practice, the analysis methods for NGS panel
data is quite different from the analysis methods for WGS/WES data which are widely used in
the research community. Most research scientists have not faced such challenges and are not even
aware of such problems. For clinical panels, we need to re-invent most NGS analysis methods and
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tools. Such work has mostly been done in industry and hospitals
and requires additional research scientist input.

This Research Topic focuses on the challenges of clinical big
data analysis in complex genetic diseases, by introducing the
latest interpretable machine learning algorithms. There are 22
published articles.

Lv et al. developed a random forest-based sub-Golgi protein
classifier rfGPT. The rfGPT used 2-gap dipeptide and split amino
acid composition for the feature vectors and was combined with
the synthetic minority over-sampling technique (SMOTE) and
an analysis of variance (ANOVA) feature selection method. Its
accuracy (ACC) was over 90%.

Zhang H. et al. investigated the lung adenocarcinoma (LUAD)
and squamous cell lung carcinoma (SCLC) difference on multi-
omics scale. With the Boruta method to remove irrelevant
features and the MCFS (Monte Carlo Feature Selection) method
to identify the significantly important features, they identified
113 keymethylation features and 23 key gene expression features.

Wang Y. et al. identified 704 pathogenic genes, 3,848
pathogenic sites, and 2,075 standard phenotypes for underlying
molecular perturbations and their phenotypic impact in 3,803
patients with the broad spectrum of intellectual disability
(ID). They built the most comprehensive database of an ID
phenotyped cohort to date: IDminer http://218.4.234.74:3100/
IDminer/, which included the curated ID data and integrated
IDpred tool for both clinical and experimental researchers.

Jin et al. studied the biological functions of LINC00356-
miR-199a-3p-CDK1/CCNB1 axis in Hepatocellular carcinoma
(HCC). Their results proved that LINC00346 could regulate the
expression of CDK1/CCNB1 through the competitive adsorption
of miR-199a-3p, thereby affecting the p53 signaling pathway
and finally regulating the apoptosis, invasion and cell cycle of
HCC cells.

Wang H. et al. analyzed the miRNA expression profiles and
clinical data of esophageal carcinoma (EC) patients. They found
that miR-29c-3p can target CCNA2 to mediate p53 signaling
pathway, finally attributing to the inhibition of cell proliferation,
migration and invasion, and making cells arrest in G0/G1 phase.

Zhang X. et al. investigated the effects of miR-221-3p in bone
marrowmesenchymal stem cell (BMMSC)-derived microvesicles
(MVs) on cell cycle, proliferation, and invasion of acute
myelocytic leukemia (AML). They discovered that miR-221-
3p in BMMSC-derived MVs can regulate AML cell cycle, cell
proliferation, and invasion through targeting CDKN1C.

Cheng et al. analyzed the gene expression profiles of
2,343 tumor cells and 1,246 periphery cells. They applied
computational methods to screen core biomarkers that can
distinguish the discrepancy between Glioblastoma (GBM) tumor
and environment (Cheng et al.). Thirty-one important genes
were extracted that may be essential biomarkers for GBM
tumor cells.

Liu B. et al. collected 10 patients with persistent atrial
fibrillation, 10 patients with paroxysmal atrial fibrillation
and 10 healthy individuals and did Methylation EPICBead
Chip and RNA sequencing. By analyzing the methylation
and gene expression data using machine learning-based
feature selection method Boruta, they identified the key

genes that were strongly associated with AF and found
their interconnections.

Hu et al. applied bioinformatics methods for identifying
the differentially expressed genes (DEGs) in the lung
adenocarcinoma (LUAD) dataset, predicting where the potential
target miRNA was expressed and exploring the corresponding
downstream target mRNA. They found that exosome-derived
miR-486-5p is responsible for cell cycle arrest as well as the
inhibition of cell proliferation and metastasis in LUAD via
targeting NEK2.

Li et al. proposed a novel method named faster randomized
matrix completion for latent disease-lncRNA association
prediction (FRMCLDA) by virtue of improved randomized
partial SVD (rSVD-BKI) on a heterogeneous bilayer network.
Case studies have shown that FRMCLDA is able to effectively
predict latent lncRNAs correlated with three widespread
malignancies: prostate cancer, colon cancer, and gastric cancer.

Yip et al. developed the Molecular Prognostic Indicators in
Cirrhosis (MPIC) database as a representative example of a n
omics database tailored for prognostic biomarker validation.
MPIC assists cost-effective prognostic biomarker development
by facilitating the process of validation and will transform the
care of chronic diseases such as cirrhosis. MPIC is freely available
at www.mpic-app.org.

Chen et al. presented a novel computational approach to
identify potential distinctive features among bacterial subgroups
based on a systematic dataset on the gut microbiome from
approximately 1,500 human gut bacterial strains. They also
established a group of quantitative rules for explaining
such distinctions.

Yao et al. analyzed the gene expression profiles of two datasets:
one training dataset that includes 144 COPD patients and 194
ILD patients, and one test dataset that includes 75 COPD patients
and 61 ILD patients. They identified the 38-gene biomarker and
built an SVM (support vector machine) classifier. Its accuracy,
sensitivity, and specificity on training dataset evaluated by
leave one out cross-validation were 0.905, 0.896, and 0.912,
respectively. And on the independent test dataset, the accuracy,
sensitivity, and specificity on were as great as and were 0.904,
0.933, and 0.869, respectively.

Xu et al. designed a new model called probability matrix
factorization (PMFMDA) for discovering potential disease-
related miRNAs. PMFMDA achieved reliable performance
in the frameworks of global leave-one-out cross-validation
(LOOCV) and 5-fold cross-validation (AUCs are 0.9237 and
0.9187, respectively) in the HMDD (V2.0) dataset, significantly
outperforming a few state-of-the-art methods including
CMFMDA, IMCMDA, NCPMDA, RLSMDA, and RWRMDA.

Huang et al. proposed an approach based on information
entropy and machine learning for computationally identifying
histone butyrylation sites. The proposed method achieved 0.92
of area under the receiver operating characteristic (ROC) curve
over the training set by 3-fold cross-validation and 0.80 over the
testing set by independent test.

Jiang et al. examined the transcriptional changes of
Mycobacterium marinum (M. marinum), a pathogenic
mycobacterial species closely related to M. tb, at different
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stages of resuscitation from hypoxia-induced dormancy. Their
study provided valuable insight into the transcriptome changes
of M. marinum upon resuscitation as well as gene module
function of the bacteria during active metabolism and growth.

Zhou et al. enrolled a total of 564 lung adenocarcinoma
patients. The relationship between CTTNB1 mutational
status and clinicopathologic parameters, the rates of relapse-
free survival (RFS) and overall survival (OS), and the
mutational status of other genes commonly mutated in lung
adenocarcinoma were analyzed. They found that Female patients
and non-smokers are likely to harbor CTNNB1 mutation and
primary lung adenocarcinoma with mutated CTNNB1 has a
poor prognosis.

Wang C. et al. proposed a PU induction matrix completion
algorithm based on heterogeneous information fusion
(PUIMCHIF) to predict candidate genes involved in the
pathogenicity of human diseases. The experimental results of the
PUIMCHIF algorithm regarding the three indexes of precision,
recall, and mean percentile ranking (MPR) were significantly
better than those of other algorithms.

Zhang J. et al. analyzed the gene expression profiles of 156
KRAS mutation samples and other negative samples with two-
stage feature selection approach. Forty-one predictive genes
for KRAS mutation were identified and a KRAS mutation
predictor was constructed. Its leave one out cross-validation
MCC was 0.879.

Su et al. built three multivariable Cox models based on
prognostic genes selected from the prognostic protein-coding
genes (PCGs) and lncRNAs in gastric cancer. The performance of
the three models based on features from only PCGs or lncRNAs
or from all prognostic genes were systematically compared, which
revealed that the features selected from all the prognostic genes
showed higher performance than the features selected only from
lncRNAs or PCGs.

Liu X. et al. analyzed the circulating tumor-derived DNAs
(ctDNAs) fragment length distribution and found that ctDNA
fragments were frequently shorter than the normal cell-free DNA
(cfDNA). The findings of this study contributed to improving the
detection of low-frequency tumor mutations.

Guo et al. conducted a linkage disequilibrium score regression
analysis to confirm the strong genetic correlations between
asthma, hay fever and eczema and integrated three distinct
association analyses (metaCCA multi-trait association analysis,
MAGMA genome-wide and MetaXcan transcriptome-wide
gene-based tests) to identify shared risk genes based on the large-
scale GWAS results in the GeneATLAS database. Their workmay
provide help on treatment of asthma, hay fever and eczema in
clinical applications.

The 22 articles in this Research Topic only covered a small part
of the advanced interpretable artificial intelligence applications
in clinical NGS and panel data analysis. We hope more and
more AI researchers will devote their time and effort into this
field, accelerate the clinical applications of AI and eventually
help patients.
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To gain insight into the malfunction of the Golgi apparatus and its relationship to various

genetic and neurodegenerative diseases, the identification of sub-Golgi proteins, both

cis-Golgi and trans-Golgi proteins, is of great significance. In this study, a state-of-art

random forests sub-Golgi protein classifier, rfGPT, was developed. The rfGPT used

2-gap dipeptide and split amino acid composition for the feature vectors and was

combined with the synthetic minority over-sampling technique (SMOTE) and an analysis

of variance (ANOVA) feature selection method. The rfGPT was trained on a sub-Golgi

protein sequence data set (137 sequences), with sequence identity less than 25%.

For the optimal rfGPT classifier with 93 features, the accuracy (ACC) was 90.5%; the

Matthews correlation coefficient (MCC) was 0.811; the sensitivity (Sn) was 92.6%; and

the specificity (Sp) was 88.4%. The independent testing scores for the rfGPT were ACC

= 90.6%; MCC = 0.696; Sn = 96.1%; and Sp = 69.2%. Although the independent

testing accuracy was 4.4% lower than that for the best reported sub-Golgi classifier

trained on a data set with 40% sequence identity (304 sequences), the rfGPT is currently

the top sub-Golgi protein predictor utilizing feature vectors without any position-specific

scoring matrix and its derivative features. Therefore, the rfGPT is a more practical tool,

because no sequence alignment is required with tens of millions of protein sequences. To

date, the rfGPT is the Golgi classifier with the best independent testing scores, optimized

by training on smaller benchmark data sets. Feature importance analysis proves that

the non-polar and aliphatic residues composition, the (aromatic residues) + (non-polar,

aliphatic residues) dipeptide and aromatic residues composition between NH2-termial

and COOH-terminal of protein sequences are the three top biological features for

distinguishing the sub-Golgi proteins.

Keywords: random forests, sub-Golgi protein classifier, ANOVA feature selection, split amino acid composition,

k-gap dipeptide, synthetic minority over-sampling

INTRODUCTION

The Golgi apparatus (GA) is an important organelle in eukaryotic cells, because lipids and different
types of proteins are modified, packaged, and transported in vesicles to different destinations (Rhee
et al., 2005). The GA comprises three main parts (Xu and Esko, 2009): cis-Golgi, medial, and
trans-Golgi. The cis-Golgi receives proteins and then delivers them to themedial section for protein
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biosynthesis. The trans-Golgi releases the biosynthesized
proteins from the medial section. The proteins in the cis-region
of the GA are called cis-Golgi proteins, whereas trans-Golgi
proteins are in the trans-Golgi part (Pfeffer, 2001).

Malfunction of the GA can disrupt protein biosynthesis in
the medial part, which can lead to neurodegenerative diseases,
such Parkinson’s (Fujita et al., 2006; Yang J. et al., 2016) and
Alzheimer’s (Gonatas et al., 1998; Yang et al., 2015). A key
step in the understanding of GA function is to determine
whether a protein is a sub-Golgi protein (cis-Golgi or trans-
Golgi). Such determinations will improve comprehension of the
mechanisms for GA dysfunction and provide clues for disease
treatment and more effective drug research and development
(Gunther et al., 2018).

In the past few years, several protein subcellular locations
and protein type prediction tools, including sub-Golgi protein
identification tools (Teasdale and Yuan, 2002; Van Dijk et al.,
2008; Chou et al., 2010; Ding et al., 2011, 2013; Jiao et al.,
2014; Lin et al., 2014; Nikolovski et al., 2014; Jiao and Du,
2016a,b; Yang R. et al., 2016; Ahmad et al., 2017; Wang
et al., 2017; Rahman et al., 2018; Ahmad and Hayat, 2019;
Wuritu et al., 2019), have been developed using various machine
learning algorithms, including increment diversity Mahalanobis
discriminant (IDMD) (Ding et al., 2011), support vector machine
(SVM) (Ding et al., 2013, 2017; Jiao et al., 2014; Lin et al.,
2014; Jiao and Du, 2016a,b), random forest (RF) (Ding et al.,
2016a,b; Yang R. et al., 2016; Yu et al., 2017; Liu et al., 2018),
and K nearest neighbor algorithm (KNN) (Ahmad et al., 2017;
Ahmad and Hayat, 2019), among others. To generate feature
vectors for sub-Golgi protein identification, protein amino acid
composition (AAC) (Rahman et al., 2018), k-gapped dipeptide
composition (k-gapDC) (Ding et al., 2011, 2013), pseudo amino
acid composition (PseAAC) (Jiao et al., 2014; Liu et al., 2015),
and protein sequences evolutionary information (e.g., position-
specific scoringmatrix, PSSM) and their derivative features (Yang
et al., 2014; Jiao and Du, 2016a,b; Yang R. et al., 2016; Ahmad
et al., 2017; Rahman et al., 2018) have been used. Because the
extensively used training benchmark data sets (Ding et al., 2013;
Yang R. et al., 2016) are unbalanced in sub-Golgi protein classes, a
synthetic minority over-sampling technique (SMOTE) has been
adopted to obtain class-balanced data sets for training (Yang R.
et al., 2016; Ahmad et al., 2017; Wan et al., 2017; Rahman et al.,
2018; Ahmad and Hayat, 2019). Diversified feature selection
methods, including analysis of variance (ANOVA) (Ding et al.,
2013; Jiao and Du, 2016a), minimal redundancy-maximal
relevance (mRMR) (Jiao and Du, 2016b; Wang S. P. et al., 2018),

Abbreviations: D/Dim, dimension; D0/D1/D2/D3, data sets; IDMD, increment

diversity Mahalanobis discriminant; SVM, supporting vector machine; KNN, K-

nearest neighbors; RF, random forests; 2-gapDC, 2-gap dipeptide composition;

3-gapDC, 3-gap dipeptide composition; DPDC, Dipeptide compostion; TPDC,

Tripeptide composition; AAC, amino acid composition; SAAC, split amino

acid composition; PseAAC, pseudo amino acid composition; PSPCP, positional-

specific physicochemical properties derived feature from PSSM; PSSM, position-

specific scoring matrix; PSSMDC, PSSM-Dipeptide Composition; BigramPSSM,

Bi-gram features directly extracted from PSSM; EDPSSM, Evolutionary Difference

PSSM; CSP, Common Spatial Patterns; SMOTE, synthetic minority over-sampling

technique; ACC, accuracy; MCC, Matthew correlation coefficient; Sn, Sensitivity;

Sp, Specificity.

maximum relevance-maximum distance (MRMD) (Zou et al.,
2016a,b), RF/Wrapper (Pan et al., 2018; Rahman et al., 2018),
multi-voting for feature selection (Ahmad and Hayat, 2019), and
lasso (Liu et al., 2016), among others, have been used to remove
redundant features and improve the prediction accuracy with as
few features as possible (Yu et al., 2016; Zhu et al., 2017, 2018;
Kuang et al., 2018; Wang H. et al., 2018).

Two widely used benchmark-training data sets have resulted
in different optimization models with various independent
testing prediction scores. For the benchmark data set of
Ding (137 sequences with 25% sequence identity; Ding et al.,
2013), Jiao and Du (2016b) applied 49-dimensional features of
positional-specific physicochemical properties (PSPCP, a derived
feature from PSSM) to train their best SVM model. They
achieved jackknife cross-validation results with accuracy (ACC)
of 91.2%; Matthew correlation coefficient (MCC) of 0.793;
sensitivity (Sn) of 99.0%; and specificity (Sp) of 73.8%, whereas
the independent prediction accuracy of their classifier was 87.1%.
The best predictor built on the benchmark data set of Yang (304
sequences with 40% sequence identity) (Yang R. et al., 2016) was
developed by Ahmad and Hayat (2019). They carefully selected
180-dimensional features from the combined features of split
amino acid composition (SAAC), 3-gap dipeptide composition,
and PSSM with its derivative features to obtain a designed
KNN classifier with good jackknife cross-validation scores (ACC
= 94.9%; MCC = 0.90; Sn = 97.2%; Sp = 92.6%) and good
independent testing scores (ACC = 94.0%; MCC = 0.84; Sn =
81.5%; Sp= 96.9%).

To our best knowledge, all high-profile sub-Golgi protein
predictors trained on either benchmark data sets are constructed
on the basis of a PSSM and its derived feature vectors, whose
acquisition requires the use of a position-specific iterative
basic local alignment search tool to align sub-Golgi protein
sequences with a protein database (Jiao andDu, 2016a,b; Rahman
et al., 2018; Ahmad and Hayat, 2019). Then, a secondary data
transformation is performed (Altschul et al., 1997) in which data
are usually converted into a 20 by 20 matrix with average values
in each feature dimension (Jiao and Du, 2016a,b; Yang R. et al.,
2016; Ahmad et al., 2017; Rahman et al., 2018). The sequence
alignment is typically time-consuming, particularly when the
protein database for alignment is large and the computing power
is limited.

In this paper, instead of using PSSM and its derived
features, the focus was on constructing an efficient sub-Golgi
protein RF classifier, namely rfGPT, based only on amino
acid and dipeptide composition-based feature vectors. Related
studies (Li et al., 2016; Luo et al., 2016; Tang et al., 2018;
Zhang et al., 2018a,b) have demonstrated the effectiveness of
composition and dipeptide and amino acid composition-based
features for solving bioinformatics problems. The rfGPT with
55-dimensional features of 2-gap dipeptide composition attained
better jackknife cross-validation scores (ACC = 91.1%; MCC
= 0.823; Sn = 87.4%; Sp = 94.7%) and better independent
testing results (ACC = 89.1%; MCC = 0.631; Sn = 53.8%; Sp =
98.0%) than those classifiers trained on the same data set (Ding
et al., 2013; Jiao and Du, 2016a,b). Therefore, to date, the rfGPT
is the best sub-Golgi predictor trained from the benchmark
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data set of Ding via SMOTE (Ding et al., 2013). For further
improvement of the rfGPT, 59 2-gap dipeptide composition
features selected through ANOVA technology were fused with
SAAC features to form 119 new dimensional features, which were
then secondarily selected via ANOVA for rfGPT optimization.
Ultimately, the rfGPT with 93 dimensional features [59 2-gap
dipeptide composition (DC) sub-features plus 34 SAAC sub-
features] was the best predictor, with jackknife cross-validation
scores of ACC = 90.5%; MCC = 0.811; Sn = 92.6%; and Sp =
88.4%, and independent test scores of ACC = 90.6%; MCC =
0.696; Sn= 96.1%; and Sp= 69.2%.

MATERIALS AND METHODS

Data Sets
To train models for sub-Golgi protein identification, two
benchmark-training data sets are widely used. One data set, D1
in this text, was constructed by Ding et al. (2013), and the other,
D2 in this text, was constructed by Yang R. et al. (2016). Before
D1 was developed, Ding et al. constructed a smaller data set (D0)
which was used once and never used again (Ding et al., 2011).

In this work, the data set D1 was downloaded from http://lin-
group.cn/server/SubGolgi/data and used to train the sub-Golgi
protein classifier. The D1 data set consisted of 137 Golgi-resident
protein sequences, with 42 cis-Golgi and 95 trans-Golgi proteins.
The D1 data set was selected for model training primarily because
the sequence identity was <25%. Thus, the D1 data set contained
less sequence noise and redundancy than the D2 data set.

For testing the optimized model, an independent data set D3
provided by Ding et al. (2013) was applied. The D3 data set
has been adopted by most of the key researchers in previously
reported sub-Golgi predictors (Ding et al., 2013; Jiao and Du,
2016b; Yang R. et al., 2016; Ahmad et al., 2017; Rahman
et al., 2018; Ahmad and Hayat, 2019). The D3 data set is
generally used only for independent testing and contains 64 test
sequences, including 13 cis-Golgi and 51 trans-Golgi protein
sequences. The D3 data set is available at http://lin-group.cn/
server/SubGolgi/data.

Modeling Overview
The entire rfGPT modeling process is illustrated in Figure 1.
Compared with previous predictors, the major difference of
the rfGPT used in this study was that only extracted features

FIGURE 1 | Modeling framework of the state-of-art random forests sub-Golgi protein classifier. ANOVA: analysis of variance.
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from amino acid and dipeptide composition were used. In this
study, the 2-gapped dipeptide composition profile and SAAC
were adopted. Ding et al. (2013) verified the validity of the 2-
gapped dipeptide composition profile for sub-Golgi prediction.
The SAAC considers that the location of a Golgi protein is related
to the composition of amino acid residues at the N-terminal and
C-terminal of a protein sequence (Paulson and Colley, 1989). As
shown in Figure 1, the 400 dimensions (400D) 2-gapDC features
extracted from D1 were used to generate a class-balanced data
set via ANOVA and SMOTE, which was then fed into a RFmodel
for optimization and estimation by jackknife cross-validation and
independent testing. In this step, an optimized prediction model
was sought, whose selected features were then combined with
the SAAC features as new features of a new model for further
optimization. After the secondary feature selection via ANOVA
and SMOTE, the new optimal model was evaluated through
jackknife cross-validation and independent testing.

Feature Extraction
The methods for feature extraction used for sub-Golgi
classification are divided into three categories: (1) amino
acid and peptide composition and their derived features; (2)
PSSM and its derived features; and (3) features combined with
amino acid residue physical and chemical properties. In this
research, the derived features of category 1 were adopted because
they are simple and convenient for feature extraction, namely, to
calculate the frequency of peptide and amino acid components.
The following two AAC features were adopted.

k-Gapped Dipeptides Composition
In general, the composition of adjacent dipeptides can only reflect
the short-range structure of the protein sequence. The dipeptide
composition in the larger interval may better reflect the tertiary
structure of the protein. In biology, interval residues are more
important than adjacent residues. Especially in some common
structures, such as helices and plates, two non-adjacent residues
are joined by hydrogen bonds (Lin et al., 2015;Wang et al., 2019).
The k-gap dipeptides composition (k-gapDC) is an indirect
mathematical description of the biological significance, which
has been extensively utilized for sub-Golgi protein classification
and other bioinformatics fields (Xu et al., 2018; Agrawal et al.,
2019; Akbar et al., 2019; Wang et al., 2019). For the k-gapDC, the
frequency of a dipeptide separated by k positions is determined,
which is then divided by the total number of k-gapped dipeptides;
thus, a protein sequence is transformed into a 400D feature
vector. The 2-gapDC features were utilized in this work.

Split Amino Acid Composition
It has been proved that the N-terminal and C-terminal
of protein sequences can act as signal-anchor domains for
subcellular locations, e.g., glycosyltransferases all have a short
NH2-terminalcytoplasmic tail, a 16-20-amino acid signal-anchor
domain, and an extended stem region which is followed by
the large COOH-terminal catalytic domain (Paulson and Colley,
1989). Another example is that lysine at position 329 within a C-
terminal dilysine motif is crucial for the endoplasmic reticulum
localization of human SLC35B4 (Bazan et al., 2018). All of

these inspire us to used split amino acid composition for sub-
Golgi protein identification. The split amino acid composition
was proposed by Chou (Chou and Shen, 2007), which converts
variable-length protein sequences into fixed-length amino acids
for feature representation. In SAAC, a protein sequence is
initially segmented into different parts, and then the amino acid
frequency of each independent part is calculated. In the current
work, the protein sequences were split into three segments: 30 N-
terminal residues, 30 C-terminal residues, and the intermediate-
block residues, which are the sequences between N-terminal and
C-terminal parts. A 60D feature vector was obtained from the
SAAC instead of the traditional 20D amino acid component.
The details of the SAAC feature extraction are described as
follows. Considering the length of protein sequence L and the
three segments [NSeg (N-terminal), ISeg (intermediate block),
and CSeg (C-terminal)] with the lengths Xn, L – Xn – Xc,
and Xc (Xn = Xc = 30), respectively, the SAAC feature vector
[

f1, f2, · · · , f60
]

is generated by the following formulas:

• fi =
N(AAi)
Xn

, i = 1, 2, . . . , 20

• fi =
N(AAi)

L−Xn−Xc
, i = 21, 22, . . . , 40

• fi =
N(AAi)

Xc
, i = 41, 42, . . . , 60

AA : amino acid residue;
N (AA) : the numbers of AA in different segments.
L: the length of protein sequence;
Xn: the residues numbers of N-terminal segments;
Xc: the residues numbers of C-terminal segments.
fi: the ith SAAC feature vector element, it is one of the 20
amino acid residue frequency in a segment.

Feature Selection
Feature selection is conducted to remove redundant information
and to overcome over-fitting in machine learning modeling. A
variety of feature selection techniques (Ding et al., 2013; Jiao
et al., 2014; Zeng et al., 2015, 2016, 2018; Jiao and Du, 2016a,b;
Yang R. et al., 2016; Ahmad et al., 2017; Rahman et al., 2018;
Ahmad and Hayat, 2019; Liu Y. et al., 2019; Zhang X. et al., 2019)
have been important for sub-Golgi protein identification and for
other areas of bioinformatics. ANOVA ranks the importance of
features in terms of the ratio of the variance of data within a
category to the variance between categories. The larger the value
of the ratio is, the more important the feature is. The details for
the use of ANOVA as a feature selection technique have been
presented previously (Ding et al., 2013; Jiao and Du, 2016a) and
are not repeated here. In this study, the ANOVA module from
the famous Scikit-learn machine learning tool kit was used for
feature selection (https://scikit-learn.org/).

Synthetic Minority Over-sampling
Technique
The D1 benchmark data set is imbalanced, with the cis-Golgi
protein and trans-Golgi protein sequences ratio of 0.44. Such
an imbalance has a significant impact on the acceptability of
the application, because the classifiers can be overly suitable for
the majority classes. In this case, the prediction accuracy may
seem high, but the results may be unacceptable, as minority
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groups may be completely/partially ignored. To solve this
problem, the very effective SMOTE was proposed by Chawla
et al. (2002). SMOTE helps to balance unbalanced data sets
by creating “synthetic” minority class examples rather than by
oversampling with replacement, and is employed by various sub-
Golgi classifiers trained on benchmark data set D2 (Yang R. et al.,
2016; Ahmad et al., 2017; Rahman et al., 2018; Ahmad and Hayat,
2019). As this manuscript was prepared, the use of SMOTE
with benchmark data set D1 had not yet been reported. In this
research, the SMOTE module implemented was from http://
imbalanced-learn.org.

Evaluation Metrics
Testing Methods
The jackknife cross-validation is a leave-one-out cross-validation
method for testing the efficiency of protein classification (Chou
and Shen, 2006) and is executed in the following steps. A training
data set with T items is separated into two parts. For each
run, one part consists of T−1 item for model training, and the
remaining part contains one item for testing. This process is
repeated T times, and all the items sampled in the training data
set act as a testing sample only once. Jackknife cross-validation
is a time-consuming method, particularly for large data sets, but
the method is robust with small variance. In this article, the
benchmark data set D1 collected by Ding et al. (2013) was used
for the jackknife cross-validation.

In independent testing, a completely different data set from
the training data set is used to evaluate the trained model. Once
the model is built with the training data set, tests are performed
on the independent data set to evaluate the model. In this article,
the independent data set D3 collected by Ding et al. (2013) was
used for model performance evaluation.

Performance Metrics
Four standard metrics were used to evaluate the proposed
models: ACC, Sn, Sp, and MCC. The metrics are previously
described (Wei et al., 2017a,b; Chen et al., 2018; Su et al., 2018;
Feng et al., 2019; Zhang S. et al., 2019) and were calculated
as follows:

• ACC = TP+TN
TP+TN+FP+ FN

• Sn = TP
TP+ FN

• Sp = TN
TN+ FP

• MCC = TP × TN−FP × FN√
(TP+FP) × (TN+FN) × (TP+FN) × (TN+ FP)

where TP is a true positive, TN is a true negative, FP is a false
positive, and FN is a false negative.

Classifier
Support vector machine (SVM) (Ding et al., 2011, 2013; Feng
et al., 2013; Lin et al., 2014; Jiao and Du, 2016a,b; Zeng et al.,
2017; Rahman et al., 2018; Chen et al., 2019; Dao et al., 2019;
Liu B. et al., 2019), K-nearest neighbor (KNN) (Ahmad et al.,
2017; Ahmad and Hayat, 2019), and random forests (RF) (Yang
R. et al., 2016; Pan et al., 2017; Ru et al., 2019; Su et al., 2019;
Zheng et al., 2019) classifiers have been used to identify sub-
Golgi proteins and for other fields. In this study, RF was selected
for modeling because it is a powerful machine-learning tool and
facilitates analysis of feature importance. Previously, Yang R. et al.
(2016) selected 55 features from composite features (3-gapDC +
PSSM derived features) to optimize their random forest classifier.
The jackknife cross-validation scores using data set D2 were
ACC = 88.5%; MCC = 0.765; Sn = 88.9%; and Sp = 88.0%,
and for the independent testing, the scores were ACC = 93.8%;
MCC = 0.821; Sn = 92.3%; and Sp = 94.1% (Yang R. et al.,
2016). However, those results are somewhat confusing, because
other sub-Golgi predictors have lower independent test scores
than those for the jackknife cross-validation. To date, no sub-
Golgi RF predictor has been trained from benchmark data set
D1. In this study, the random forest classification model in the
Scikit-learn tool kit (https://scikit-learn.org/) was applied for the
implementation, testing, and evaluation of the rfGPT classifier
and for the analysis of feature importance.

RESULTS AND DISCUSSION

Performance of Random Forests Classifier
Without Feature Selection
Table 1 shows the performance of the rfGPT using various
extracted features. In the models with the SMOTE technique, the
cross-validation scores improved remarkably for ACC, MCC, Sn,
and Sp. For example, based on 460D SAAC + 2-gapDC features
and SMOTE, the scores of the rfGPT were ACC = 90.5%; MCC
= 0.817; Sn = 96.8%; and Sp = 84.2%, which were increases
of 20, 132, 44, 2.2, and 171.6%, respectively, compared with the
rfGPT without SMOTE. Although the SMOTE technique does

TABLE 1 | Jackknife cross-validation and independent testing results after training on the benchmark data set D1 without feature selection.

Feature(D) SMOTE (Y/N) Jackknife cross-validation Independent testing

ACC MCC Sn Sp ACC MCC Sn Sp

2-gapDC(400) N 74.5% 0.326 94.7% 28.6% 79.7% 0.318 90.2% 38.5%

SAAC(60) N 69.3% 0.073 97.9% 4.8% 78.1% −0.07 98.0% 0.0%

2-gapDC+SAAC(460) N 75.2% 0.351 94.7% 31.0% 79.7% 0.237 94.1% 23.1%

2-gapDC(400) Y 86.3% 0.743 96.8% 75.8% 82.8% 0.351 98.0% 23.1%

SAAC(60) Y 87.9% 0.763 93.7% 82.1% 81.2% 0.388 90.2% 46.2%

SAAC+2-gapDC(460) Y 90.5% 0.817 96.8% 84.2% 81.2% 0.287 96.1% 23.1%
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improve the recognition rate of minority classes, the accuracy
of the independent testing for the rfGPT with diverse features
ranged from 78.1 to 82.8%, with little improvement with SMOTE
(Table 1). For the other metrics (MCC, Sn, Sp), the case was
the same. Thus, other techniques are needed to improve the
generalization prediction model. In this paper, to obtain a better
rfGPT with fewer features, ANOVA feature selection was used to
eliminate redundant features.

Classifier Optimizing via ANOVA Feature
Selection
To obtain the optimized classifier, the ANOVA feature selection
method was first conducted for 400 2-gapDC features. One
hundred sub-data sets containing 1, 2, . . . and 100 2-gapDC
features generated separately after ANOVA feature selection
were used for training 100 corresponding RF classifiers. For
all 100 classifiers, jackknife cross-validation and independence
testing were conducted. Figure 2A shows the accuracy of the
cross-validation and independent tests of the 100 classifiers with
varying numbers of features. Except for the models with nine
and ten selected features, the average accuracy of the jackknife
cross-validation of the other models was higher than that of the
independent test results. Based on the jackknife cross-validation,
the best-trainedmodel with the highest accuracy was the classifier
with 59 selected features (rfGPT_1), whereas the classifier with 55
selected features (rfGPT_2) had the highest independent testing
accuracy results.

The performance scores of both classifiers are listed inTable 2.
The jackknife cross-validation scores of rfGPT_2 (ACC= 91.1%;
MCC = 0.823; Sn = 94.7%; Sp = 87.4%) were slightly lower
than those of rfGPT_1 (ACC = 93.2%; MCC = 86.4%; Sn =
94.7%; Sp= 91.6%). However, rfGPT_2 had the better predictive
performance on the independent test sets with scores of ACC =
89.1%; MCC = 0.631; Sn = 98%; and Sp = 53.8%, which were as
much as 5.6, 35, 8.3, 10, and 16% larger than the corresponding
values of rfGPT_1 (ACC= 84.4%; MCC= 0.466; Sn= 94.1%; Sp
= 46.2%). The 89.1% independent testing accuracy of rfGPT_2
was an increase of 2.2% compared with the best SVM sub-Golgi
classifier (Jiao and Du, 2016b) trained on the same benchmark
data set (D1). The accuracy of 93.2% for rfGPT_1 and 91.1% for
rfGPT_2 from the jackknife cross-validations was an increase of
9.0 and 6.5%, respectively, compared with that of the RF classifier
obtained by Yang et al. which was trained on benchmark data set
D2 (Yang R. et al., 2016).

For further optimization, the 59 2-gapDC features of rfGPT_1
obtained in the previous step were combined with 60 SAAC
features to form 119-dimensional (2-gapDC+ SAAC) composite
features, and then ANOVA was used to construct 100 data sets
with selected 1, 2, ... and 100 features for building 100 classifiers.
The jackknife cross-validation and independent test results for
these models are shown in Figure 2B and Table 2. For the
cross-validation performance, classifier rfGPT_3 with 43 features
was better than classifier rfGPT_4 with 93 features. However,
for independent testing, the predictive metric of rfGPT_4 with
ACC= 90.6%; MCC = 0.696; Sn = 96.1%; and Sp = 69.2%
exceeded that of rfGPT_3 with ACC = 84.4%; MCC = 0.466;

FIGURE 2 | Jackknife cross-validation and independent testing accuracy of

the random forest classifier with the number of features varied: (A) 2-gap

dipeptide composition (2-gapDC) features (B) 59 selected 2-gapDC features

+ 60 split amino acid composition (SAAC) features, and (C) 55 selected

2-gapDC features + 60 SAAC features.
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TABLE 2 | The best evaluation scores from jackknife cross-validation and independent testing of different models with various feature types and feature numbers.

Classifier Features(D) Jackknife cross-validation Independent testing

ACC MCC Sn Sp ACC MCC Sn Sp

rfGPT_1 2-gapDC(59) 93.2% 0.864 94.7% 91.6% 84.4% 0.466 94.1% 46.2%

rfGPT_2 2-gapDC(55) 91.1% 0.823 94.7% 87.4% 89.1% 0.631 98.0% 53.8%

rfGPT_3 2-gapDC+SAAC(43) 93.7% 0.874 93.7% 93.7% 82.8% 0.484 88.2% 61.5%

rfGPT_4 2-gapDC+SAAC(93) 90.5% 0.811 92.6% 88.4% 90.6% 0.696 96.1% 69.2%

rfGPT_5 2-gapDC+SAAC(94) 93.2% 0.864 93.7% 92.7% 84.4% 0.546 88.2% 69.2%

rfGPT_6 2-gapDC+SAAC(66) 90.0% 0.800 89.5% 90.5% 89.1% 0.695 90.2% 84.6%

Sn = 88.2%; and Sp = 61.5%; the increases were 7.3%, 49, 8.3,
9.0, and 13%, respectively.

Optimization was also performed by combining the 55 2-
gapDC features of rfGPT_2 with SAAC features to form 115-
dimensional features for 100 new models with various features.
The cross-validation and independent testing accuracy scores are
revealed in Figure 2C. The scores for rfGPT_5 and rfGPT_6 are
shown in Table 2. The independent accuracy of both models was
inferior to that of rfGPT_4 (Table 2).

Because most cross-validation and independent testing scores
of the classifier rfGPT_4 were superior to those of other models
in Table 2, rfGPT_4 was designated as the final sub-Golgi model
for prediction.

Feature Importance Analysis
To analyze the importance of the features selected for rfGPT_4,
the feature importance function of the Scikit-learn RF model
was exploited (Figure 3). As shown in Figure 3A, 59 2-gapDC
features and 34 SAAC features were adopted in rfGPT_4, and
their importance to the classification of Golgi proteins was 72.4
and 27.6%, respectively. Figure 3B shows the ranking of the 93
features by importance value and the cumulative importance
score by importance value order. Among the combined features,
the single feature importance was diverse and ranged from 0.16
to 3.64%. Figure 3C shows the importance order of the first 25
specific features, which accounted for 50% of the importance for
the rfGPT. Only four of the top 25 features (which included 21
2-gapDC features and 4 SAAC features) had an importance value
of more than 3% (Figure 3C).

To further analyze the feature bio-meaning, the feature
importance values are assigned to different types of amino
acid residues, that is aromatic residues, non-polar, and aliphatic
residues, polar and non-charged residues, positively charged
residues, and negatively charged residues. For instance, FP.gap2
feature as shown in Figure 3Cmeans the composition frequency
of dipeptide, which consists of F (phenylalanine) and P (proline)
amino acid residence. The importance value 3.64% for FP.gap2
feature is divided by 2 to allocate 1.72% to aromatic residues
type and non-polar and aliphatic residues type. Other features
importance values are handled in the same way to assign
importance value to five type amino acid residues (see Table S1).
It finds out that the importance value of non-polar and
aliphatic residues, aromatic residues, negatively charged residues,
positively charged residues, polar, and non-charged residues are
30%, 24%, 21%, 13% and 12%, respectively. The non-polar and

aliphatic property of amino acid residues plays the most critical
role in sub-Golgi protein identification, and then the next is
aromatic, negatively charged, positively charged, and polar and
non-charged in turn. The importance values of the first three
properties add up to 75%, so it concludes that to discriminate cis
or trans sub-Golgi protein is mainly determined by the non-polar
and aliphatic residues, aromatic residues, and negatively charged
residues composition frequency.

For 2-gap DC features, the first three most important features
are FP.gap2 (3.64%), IG.gap2 (3.50%), and GD.gap2 (3.44%),
and five different residue types combined with each other
generate 25 type dipeptides, whose feature importance values
are listed in Figure 3C and Table S2. The (aromatic residues)
+ (non-polar, aliphatic residues) dipeptide, (non-polar, aliphatic
residues)+ (non-polar, aliphatic reduces residues) dipeptide and
the (non-polar, aliphatic residues)+ (aromatic residues) with the

importance values as 8.54%, 8.18%, and 7.36%, respectively, are
the top three important features for sub-Golgi classification.

For SAAC features, the protein sequence is segmented into
three parts: N-terminal segment, C-terminal segment and the
Interblock between N-terminal and C-terminal, whose amino
acid composition frequency feature is labeled as Nterminal_A,
Cterminal_A and InterTier_A (A represents one of the
20 amino acid residues; see Figure 3C and Table S3). The
importance values of N-terminal features, C-terminal features,
and Interblock features are 6.43%, 8.81%, and 12.37%, separately.
The first three important values of 5 types residues of each
block is aromatic residues of Interblock (5.05%), non-polar and
aliphatic residues of C-terminal (3.13%), and negatively charged
residues of N-terminal (3.00%). The D (aspartate) residues
composition of N-terminal, as shown in Figures 3C, is the
most important SAAC feature for sub-Golgi classification, but
the aromatic residues composition frequency features of the
Interblock seem even more important (see Table S3).

To sum up the above, the non-polar and aliphatic residues
composition, the (aromatic residues) + (non-polar, aliphatic
residues) dipeptide and aromatic residues composition between
NH2-termial and COOH-terminal of protein sequences are three
top biological features for distinguishing the sub-Golgi proteins.

Metrics Comparison With Existing
Predictors
Ten optimized sub-Golgi classifiers that have been developed
are presented in Table 3. Three separate data sets (D0, D1,
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FIGURE 3 | Feature importance analysis of random forests sub-Golgi

classifier, rfGPT _4: (A) importance of feature types (B) the ranking orders of

93 features for rfGPT_4 and their integrated importance (red line), and (C) the

importance of the top 25 features, which accounted for 50% of the integrated

importance (blue line). The A1A2.gap2 means the composition of dipeptide

A1A2. A1 or A2 is one of the 20 amino acid residues. Nterminal_D means the

composition of amino acid residues D (aspartate) in NH2-terminal of protein

sequence. InterTier_K, interTier_W, and interTier_F mean K(lysine),

W(tryptophan), and F(phenylalanine) amino acid residues composition of the

inter-tier between NH2-terminal and COOH-terminal of protein sequence.

D2), and four machine learning algorithms (IDMD, SVM, KNN,
RF) were exploited to train these sub-Golgi classifiers, and
one common independent data set was used to evaluate the
various sub-Golgi classifiers. A total of six classifiers adopted
the PSSM and its derived features for sub-Golgi prediction.
Ahmad et al. (2017), training on the D2 data set with 40%
sequence identity, achieved the highest independent testing
scores (ACC = 94.8%; MCC = 0.86; Sn = 93.9%; Sn = 94.0%)
for a classifier; the KNN sub-Golgi classifier with 83 composited
features. In contrast to the KNN sub-Golgi classifier of Ahmad
et al. the ultimate classifier rfGPT_4 in this paper was trained
on the benchmark data set D1 with 25% sequence identity and
contained 93 features, without any PSSM and its derivative
features. Therefore, the rfGPT_4 is more practical, because the
time-consuming sequence alignment step to obtain the PSSM
and its derivatives scores using the Position-Specific Iterative
Basic Local Alignment Search Tool is avoided. In addition,
rfGPT_4 is currently the model with the best independent
testing scores for training on data set D1 and is a state-of-
art sub-Golgi classifier with only dipeptide and amino acid
composition features.

CONCLUSIONS

In this work, an optimized rfGPT classifier for sub-Golgi
protein type (cis and trans) identification was developed. The
rfGPT classifier was derived from a random forests machine-
learning algorithm, followed by implementation of the SMOTE
to overcome a severe imbalance in the training data set and
selection of optimal-related features using an ANOVA feature
selection technique. The independent testing scores (ACC =
90.6%; MCC = 0.696; Sn = 96.1%; Sp = 69.2%) of the rfGPT
ranked it as the one of the top sub-Golgi predictors. The feature
importance analysis proves that the non-polar and aliphatic
residues composition, the (aromatic residues) + (non-polar,
aliphatic residues) dipeptide and aromatic residues composition
for block between NH2-termial and COOH-terminal of protein
sequence are the top biological features, which play the key role
for sub-Golgi proteins identification.

As compared with previous reported sub-Golgi protein
classifiers, the rfGPT is with only dipeptide and amino
acid residue composition features, which exempted sequence
alignment from the procedure. Also, the rfGPT adopted random
forests algorithm is easier for feature analysis and for revealing
the key bio-factors of sub-Golgi protein classification. However,
the rfGPT had an independent prediction accuracy (from a
training data set with 25% sequence identity) that was 4.4% lower
than that for the best of the reported sub-Golgi protein identifiers
(based on the 40% sequence identity data set) and rfGPT uses
more features.

The expectation is to build a more general data set
of Golgi protein sequences to train the rfGPT model
and to realize a more advanced sub-Golgi classifier
of the features. In the future, extreme learning (Li
et al., 2019) and deep learning (Long et al., 2017; Yu
et al., 2018; Lv et al., 2019; Wei et al., 2019; Zhang Z.
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TABLE 3 | Jackknife cross-validation and independent testing scores list for reported sub-Golgi protein classifiers.

No. Classifier (Reference) Data Set Features Dim Jackknife cross-validation Independent testing

ACC MCC Sn Sp ACC MCC Sn Sp

1 IDMD

(Ding et al., 2011)

D0 2-gapDC 400 74.7% 0.495 79.6% 69.6% / / / /

2 SVM

(Ding et al., 2013)

D1 2-gapDC 83 85.4% 0.652 90.5% 90.5% 85.9% 0.578 90.2% 69.2%

3 SVM

(Jiao and Du, 2016a)

D1 PSPCP 59 86.9% 0.684 92.6% 73.8% / / 90.2% 69.2%

4 SVM

(Jiao and Du, 2016b)

D1 PSPCP 49 91.2% 0.793 99.0% 73.8% 87.1% / / /

5 SVM

(Lin et al., 2014)

D1 TPDC 501 97.1% 0.949 100% 92.9% / / / /

6 SVM

(Rahman et al., 2018)

D2 ACC

+DPDC

+TPDC

+2-gapDC

+PseAAC

2800 95.9% 0.920 95.9% 92.6% 93.8% 0.85 98.0% 84.6%

7 KNN

(Ahmad et al., 2017)

D2 PseAAC

+3-gapDC

+Bigram-PSSM

83 94.9% 0.90 97.2% 92.6% 94.8% 0.86 93.9% 94.0%

8 KNN

(Ahmad and Hayat, 2019)

D2 SAAC

+PSSM

+3-gapDC

180 98.2% 0.96 98.6% 97.7% 94% 0.84 96.9% 81.5%

9 RF

(Yang R. et al., 2016)

D2 3-gapDC

+CSP-PSSMDC

+CSP-BigramPSSM

+CSP-EDPSSM

55 88.5% 0.765 88.9% 88% 93.8% 0.821 94.1% 92.3%

10 RF

(this work)

D1 2-gapDC+SAAC 93 90.5% 0.811 92.6% 88.4% 90.6% 0.696 96.1% 69.2%

et al., 2019; Zou et al., 2019) methods will be tested on
this problem.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: http://lin-group.cn/server/subGolgi2.

AUTHOR CONTRIBUTIONS

ZL and SJ were responsible for experiments and manuscripts
preparation. HD participated in discussions. QZ worked as
supervisor for all procedures.

FUNDING

This work was supported by the National Key R&D Program
of China (2018YFC0910405), the Natural Science Foundation
of China (No. 61922020, No. 61771331), and the Scientific
Research Foundation in Shenzhen (JCYJ201803061722
07178).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2019.00215/full#supplementary-material

REFERENCES

Agrawal, P., Kumar, S., Singh, A., Raghava, G. P. S., and Singh, I. K. (2019).

NeuroPIpred: a tool to predict, design and scan insect neuropeptides. Sci. Rep.

9:12. doi: 10.1038/s41598-019-41538-x

Ahmad, J., and Hayat, M. (2019). MFSC: multi-voting based feature selection

for classification of Golgi proteins by adopting the general form of Chou’s

PseAAC components. J. Theoret. Biol. 463, 99–109. doi: 10.1016/j.jtbi.201

8.12.017

Ahmad, J., Javed, F., and Hayat, M. (2017). Intelligent computational

model for classification of sub-Golgi protein using oversampling

and fisher feature selection methods. Artif. Intell. Med. 78, 14–22.

doi: 10.1016/j.artmed.2017.05.001

Akbar, S., Hayat, M., Kabir, M., and Iqbal, M. (2019). iAFP-gap-SMOTE: an

efficient feature extraction scheme gapped dipeptide composition is coupled

with an oversampling technique for identification of antifreeze proteins. Lett.

Organic Chem. 16, 294–302. doi: 10.2174/1570178615666180816101653

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs.Nucleic Acids Res. 25, 3389–3402. doi: 10.1093/nar/25.17.3389

Bazan, B., Wiktor, M., Maszczak-Seneczko, D., Olczak, T., Kaczmarek, B., and

Olczak, M. (2018). Lysine at position 329 within a C-terminal dilysine motif

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 September 2019 | Volume 7 | Article 21516

http://lin-group.cn/server/subGolgi2
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00215/full#supplementary-material
https://doi.org/10.1038/s41598-019-41538-x
https://doi.org/10.1016/j.jtbi.2018.12.017
https://doi.org/10.1016/j.artmed.2017.05.001
https://doi.org/10.2174/1570178615666180816101653
https://doi.org/10.1093/nar/25.17.3389
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lv et al. Random Forest Sub-Golgi Protein Classifier

is crucial for the ER localization of human SLC35B4. PLoS ONE 13:e0207521.

doi: 10.1371/journal.pone.0207521

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:

synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.

doi: 10.1613/jair.953

Chen,W., Feng, P., Liu, T., and Jin, D. (2018). Recent advances inmachine learning

methods for predicting heat shock proteins. Curr. Drug. Metab. 20:224–228.

doi: 10.2174/1389200219666181031105916

Chen, W., Lv, H., Nie, F., and Lin, H. (2019). i6mA-Pred: identifying DNA

N6-methyladenine sites in the rice genome. Bioinformatics 35, 2796–2800.

doi: 10.1093/bioinformatics/btz015

Chou, K.-C., and Shen, H.-B. (2006). Hum-PLoc: a novel ensemble classifier

for predicting human protein subcellular localization. Biochem. Biophys. Res.

Commun. 347, 150–157. doi: 10.1016/j.bbrc.2006.06.059

Chou, K.-C., and Shen, H.-B. (2007). Recent progress in protein subcellular

location prediction. Analyt. Biochem. 370, 1–16. doi: 10.1016/j.ab.2007.07.006

Chou, W.-C., Yin, Y., and Xu, Y. (2010). GolgiP: prediction of

Golgi-resident proteins in plants. Bioinformatics 26, 2464–2465.

doi: 10.1093/bioinformatics/btq446

Dao, F. Y., Lv, H., Wang, F., Feng, C. Q., Ding, H., Chen, W., et al.

(2019). Identify origin of replication in Saccharomyces cerevisiae using

two-step feature selection technique. Bioinformatics 35, 2075–2083.

doi: 10.1093/bioinformatics/bty943

Ding, H., Guo, S.-H., Deng, E.-Z., Yuan, L.-F., Guo, F.-B., Huang, J., et al. (2013).

Prediction of Golgi-resident protein types by using feature selection technique.

Chemometr. Intell. Lab. Syst. 124, 9–13. doi: 10.1016/j.chemolab.2013.03.005

Ding, H., Liu, L., Guo, F.-B., Huang, J., and Lin, H. (2011). Identify

golgi protein types with modified mahalanobis discriminant algorithm

and pseudo amino acid composition. Protein Peptide Lett. 18, 58–63.

doi: 10.2174/092986611794328708

Ding, Y., Tang, J., and Guo, F. (2016a). Identification of Protein–Protein

Interactions via a novel matrix-based sequence representation model

with amino acid contact information. Int. J. Molecul. Sci. 17:1623.

doi: 10.3390/ijms17101623

Ding, Y., Tang, J., and Guo, F. (2016b). Predicting protein-protein interactions via

multivariate mutual information of protein sequences. BMC Bioinform. 17:398.

doi: 10.1186/s12859-016-1253-9

Ding, Y., Tang, J., and Guo, F. (2017). Identification of drug-target interactions

via multiple information integration. Inform. Sci. 418–419, 546–560.

doi: 10.1016/j.ins.2017.08.045

Feng, C. Q., Zhang, Z. Y., Zhu, X. J., Lin, Y., Chen, W., Tang, H., et al. (2019).

iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional

terminators. Bioinformatics 35, 1469–1477. doi: 10.1093/bioinformatics/

bty827

Feng, P. M., Chen, W., Lin, H., and Chou, K. C. (2013). iHSP-PseRAAAC:

identifying the heat shock protein families using pseudo reduced

amino acid alphabet composition. Anal. Biochem. 442, 118–125.

doi: 10.1016/j.ab.2013.05.024

Fujita, Y., Ohama, E., Takatama, M., Al-Sarraj, S., and Okamoto, K. (2006).

Fragmentation of Golgi apparatus of nigral neurons with α-synuclein-positive

inclusions in patients with Parkinson’s disease.Acta Neuropathol. 112, 261–265.

doi: 10.1007/s00401-006-0114-4

Gonatas, N. K., Gonatas, J. O., and Stieber, A. (1998). The involvement of

the Golgi apparatus in the pathogenesis of amyotrophic lateral sclerosis,

Alzheimer’s disease, and ricin intoxication. Histochem. Cell Biol. 109, 591–600.

doi: 10.1007/s004180050257

Gunther, T., Tulipano, G., Dournaud, P., Bousquet, C., Csaba, Z., Kreienkamp, H.

J., et al. (2018). International union of basic and clinical pharmacology. CV.

Somatostatin receptors: structure, function, ligands, and new nomenclature.

Pharmacol. Rev. 70, 763–835. doi: 10.1124/pr.117.015388

Jiao, Y., Du, P., and Su, X. (2014). “Predicting Golgi-resident proteins in plants by

incorporating N-terminal transmembrane domain information in the general

form of Chou’s pseudoamino acid compositions,” in: 2014 8th International

Conference on Systems Biology (ISB) (Qingdao), 226–229.

Jiao, Y.-S., and Du, P.-F. (2016a). Predicting Golgi-resident protein types

using pseudo amino acid compositions: approaches with positional

specific physicochemical properties. J. Theoret. Biol. 391, 35–42.

doi: 10.1016/j.jtbi.2015.11.009

Jiao, Y.-S., and Du, P.-F. (2016b). Prediction of Golgi-resident protein types using

general form of Chou’s pseudo-amino acid compositions: approaches with

minimal redundancy maximal relevance feature selection. J. Theoret. Biol. 402,

38–44. doi: 10.1016/j.jtbi.2016.04.032

Kuang, L., Yu, L., Huang, L., Wang, Y., Ma, P., Li, C., et al. (2018). A

personalized QoS prediction approach for CPS service recommendation based

on reputation and location-aware collaborative filtering. Sensors 18:1556.

doi: 10.3390/s18051556

Li, D., Luo, L., Zhang, W., Liu, F., and Luo, F. (2016). A genetic algorithm-based

weighted ensemble method for predicting transposon-derived piRNAs. BMC

Bioinform. 17:329. doi: 10.1186/s12859-016-1206-3

Li, Y., Niu, M., and Zou, Q. (2019). ELM-MHC: an improved MHC identification

method with extreme learning machine algorithm. J. Proteome Res. 18,

1392–1401. doi: 10.1021/acs.jproteome.9b00012

Lin, H., Ding, H., and Chen, W. (2014). Prediction of golgi-resident

protein types using computational method. Bentham Sci. 1, 174–193.

doi: 10.2174/9781608058624114010011

Lin, H., Liu, W. X., He, J., Liu, X. H., Ding, H., and Chen, W. (2015).

Predicting cancerlectins by the optimal g-gap dipeptides. Sci. Rep. 5:16964.

doi: 10.1038/srep16964

Liu, B., Chen, J., Guo, M., and Wang, X. (2019). Protein remote homology

detection and fold recognition based on Sequence-Order Frequency

Matrix. IEEE/ACM Transact. Comput. Biol. Bioinform. 16, 292–300.

doi: 10.1109/TCBB.2017.2765331

Liu, B., Fang, Y., Huang, D.-S., and Chou, K.-C. (2018). iPromoter-2L: a two-layer

predictor for identifying promoters and their types by multi-window-based

PseKNC. Bioinformaitcs 34, 33–40. doi: 10.1093/bioinformatics/btx579

Liu, B., Liu, F., Wang, X., Chen, J., Fang, L., and Chou, K.-C. (2015). Pse-

in-One: a web server for generating various modes of pseudo components

of DNA, RNA, and protein sequences. Nucleic Acids Res. 43, W65–W71.

doi: 10.1093/nar/gkv458

Liu, X., Yang, J., Zhang, Y., Fang, Y., Wang, F., Wang, J., et al. (2016). A systematic

study on drug-response associated genes using baseline gene expressions of the

Cancer Cell Line Encyclopedia. Sci. Rep. 6:22811. doi: 10.1038/srep22811

Liu, Y., Wang, X., and Liu, B. (2019). A comprehensive review and comparison of

existing computational methods for intrinsically disordered protein and region

prediction. Briefings Bioinform. 20, 330–346. doi: 10.1093/bib/bbx126

Long, H. X., Wang, M., and Fu, H. Y. (2017). Deep convolutional neural networks

for predicting hydroxyproline in proteins. Curr. Bioinform. 12, 233–238.

doi: 10.2174/1574893612666170221152848

Luo, L., Li, D., Zhang, W., Tu, S., Zhu, X., and Tian, G. (2016). Accurate

prediction of transposon-derived piRNAs by integrating various

sequential and physicochemical features. PLoS ONE 11:e0153268.

doi: 10.1371/journal.pone.0153268

Lv, Z. B., Ao, C. Y., and Zou, Q. (2019). Protein function prediction:

from traditional classifier to deep learning. Proteomics 19:1900119.

doi: 10.1002/pmic.201900119

Nikolovski, N., Shliaha, P. V., Gatto, L., Dupree, P., and Lilley, K. S. (2014). Label-

free protein quantification for plant golgi protein localization and abundance.

Plant Physiol. 166, 1033–1043. doi: 10.1104/pp.114.245589

Pan, Y., Liu, D., and Deng, L. (2017). Accurate prediction of functional effects

for variants by combining gradient tree boosting with optimal neighborhood

properties. PLoS ONE 12:e0179314. doi: 10.1371/journal.pone.0179314

Pan, Y. W., Zixiang Z. W., and Deng, L. (2018). Computational identification

of binding energy hot spots in protein-RNA complexes using an ensemble

approach. Bioinformatics 34, 1473–1480. doi: 10.1093/bioinformatics/btx822

Paulson, J. C., and Colley, K. J. (1989). Glycosyltransferases. Structure, localization,

and control of cell type-specific glycosylation. J Biol Chem. 264, 17615–17618.

Pfeffer, S. R. (2001). Constructing a Golgi complex. J. Cell Biol. 155, 873–875.

doi: 10.1083/jcb.200109095

Rahman, M. S., Rahman, M. K., Kaykobad, M., and Rahman, M. S. (2018).

isGPT: an optimized model to identify sub-Golgi protein types using SVM

and Random Forest based feature selection. Artif. Intell. Med. 84, 90–100.

doi: 10.1016/j.artmed.2017.11.003

Rhee, S. W., Starr, T., Forsten-Williams, K., and Storrie, B. (2005). The

steady-state distribution of glycosyltransferases between the golgi apparatus

and the endoplasmic reticulum is approximately 90:10. Traffic 6, 978–990.

doi: 10.1111/j.1600-0854.2005.00333.x

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 September 2019 | Volume 7 | Article 21517

https://doi.org/10.1371/journal.pone.0207521
https://doi.org/10.1613/jair.953
https://doi.org/10.2174/1389200219666181031105916
https://doi.org/10.1093/bioinformatics/btz015
https://doi.org/10.1016/j.bbrc.2006.06.059
https://doi.org/10.1016/j.ab.2007.07.006
https://doi.org/10.1093/bioinformatics/btq446
https://doi.org/10.1093/bioinformatics/bty943
https://doi.org/10.1016/j.chemolab.2013.03.005
https://doi.org/10.2174/092986611794328708
https://doi.org/10.3390/ijms17101623
https://doi.org/10.1186/s12859-016-1253-9
https://doi.org/10.1016/j.ins.2017.08.045
https://doi.org/10.1093/bioinformatics/bty827
https://doi.org/10.1016/j.ab.2013.05.024
https://doi.org/10.1007/s00401-006-0114-4
https://doi.org/10.1007/s004180050257
https://doi.org/10.1124/pr.117.015388
https://doi.org/10.1016/j.jtbi.2015.11.009
https://doi.org/10.1016/j.jtbi.2016.04.032
https://doi.org/10.3390/s18051556
https://doi.org/10.1186/s12859-016-1206-3
https://doi.org/10.1021/acs.jproteome.9b00012
https://doi.org/10.2174/9781608058624114010011
https://doi.org/10.1038/srep16964
https://doi.org/10.1109/TCBB.2017.2765331
https://doi.org/10.1093/bioinformatics/btx579
https://doi.org/10.1093/nar/gkv458
https://doi.org/10.1038/srep22811
https://doi.org/10.1093/bib/bbx126
https://doi.org/10.2174/1574893612666170221152848
https://doi.org/10.1371/journal.pone.0153268
https://doi.org/10.1002/pmic.201900119
https://doi.org/10.1104/pp.114.245589
https://doi.org/10.1371/journal.pone.0179314
https://doi.org/10.1093/bioinformatics/btx822
https://doi.org/10.1083/jcb.200109095
https://doi.org/10.1016/j.artmed.2017.11.003
https://doi.org/10.1111/j.1600-0854.2005.00333.x
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lv et al. Random Forest Sub-Golgi Protein Classifier

Ru, X. Q., Li, L. H., and Zou, Q. (2019). Incorporating distance-based top-n-gram

and random forest to identify electron transport proteins. J. Proteome Res. 18,

2931–2939. doi: 10.1021/acs.jproteome.9b00250

Su, R., Liu, X., Wei, L., and Zou, Q. (2019). Deep-resp-forest: a deep

forest model to predict anti-cancer drug response. Methods 166, 91–102.

doi: 10.1016/j.ymeth.2019.02.009

Su, R., Wu, H., Xu, B., Liu, X., and Wei, L. (2018). Developing a multi-dose

computational model for drug-induced hepatotoxicity prediction based on

toxicogenomics data. IEEE/ACM Transact. Comput. Biol. Bioinform. 16, 1231–

1239. doi: 10.1109/TCBB.2018.2858756

Tang, G., Shi, J., Wu, W., Yue, X., and Zhang, W. (2018). Sequence-based bacterial

small RNAs prediction using ensemble learning strategies. BMC Bioinform.

19:503. doi: 10.1186/s12859-018-2535-1

Teasdale, R. D., and Yuan, Z. (2002). Prediction of Golgi Type II membrane

proteins based on their transmembrane domains. Bioinformatics 18,

1109–1115. doi: 10.1093/bioinformatics/18.8.1109

Van Dijk, A. D. J., Van Der Krol, A. R., Ter Braak, C. J. F., Bosch, D., and Van

Ham, R. C. H. J. (2008). Predicting sub-Golgi localization of type II membrane

proteins. Bioinformatics 24, 1779–1786. doi: 10.1093/bioinformatics/btn309

Wan, S., Duan, Y., and Zou, Q. (2017). HPSLPred: an ensemble multi-label

classifier for human protein subcellular location prediction with imbalanced

source. Proteomics 17:1700262. doi: 10.1002/pmic.201700262

Wang, H., Liu, C., and Deng, L. (2018a). Enhanced prediction of hot spots at

protein-protein interfaces using extreme gradient boosting. Sci. Rep. 8:14285.

doi: 10.1038/s41598-018-32511-1

Wang, S. P., Zhang, Q., Lu, J., and Cai, Y. D. (2018b). Analysis

and prediction of nitrated tyrosine sites with the mRMR method

and support vector machine algorithm. Curr. Bioinform. 13, 3–13.

doi: 10.2174/1574893611666160608075753

Wang, X., Li, H., Gao, P., Liu, Y., and Zeng, W. (2019). Combining

support vector machine with dual g-gap dipeptides to discriminate

between acidic and alkaline enzymes. Lett. Organic Chem. 16, 325–331.

doi: 10.2174/1570178615666180925125912

Wang, Y., Ding, Y., Guo, F., Wei, L., and Tang, J. (2017). Improved detection

of DNA-binding proteins via compression technology on PSSM information.

PLoS ONE 12:e0185587. doi: 10.1371/journal.pone.0185587

Wei, L., Su, R., Wang, B., Li, X., Zou, Q., and Gao, X. (2019). Integration

of deep feature representations and handcrafted features to improve

the prediction of N 6-methyladenosine sites. Neurocomputing 324, 3–9.

doi: 10.1016/j.neucom.2018.04.082

Wei, L., Wan, S., Guo, J., and Wong, K. K. (2017a). A novel hierarchical selective

ensemble classifier with bioinformatics application. Artif. Intell. Med. 83,

82–90. doi: 10.1016/j.artmed.2017.02.005

Wei, L., Xing, P., Zeng, J., Chen, J., Su, R., and Guo, F. (2017b).

Improved prediction of protein–protein interactions using novel negative

samples, features, and an ensemble classifier. Artif. Intell. Med. 83, 67–74.

doi: 10.1016/j.artmed.2017.03.001

Wuritu, Y., Xiao-Juan, Z., Jian, H., Hui, D., and Hao, L. (2019). A brief survey of

machine learning methods in protein sub-golgi localization. Curr. Bioinform.

14, 234–240. doi: 10.2174/1574893613666181113131415

Xu, D., and Esko, J. D. (2009). A Golgi-on-a-chip for glycan synthesis. Nat. Chem.

Biol. 5:612. doi: 10.1038/nchembio0909-612

Xu, L., Liang, G., Wang, L., and Liao, C. (2018). A novel hybrid

sequence-based model for identifying anticancer peptides. Genes 9:158.

doi: 10.3390/genes9030158

Yang, J., Grunewald, S., Xu, Y., and Wan, X. F. (2014). Quartet-based

methods to reconstruct phylogenetic networks. BMC Syst. Biol. 8:21.

doi: 10.1186/1752-0509-8-21

Yang, J., Huang, T., Petralia, F., Long, Q., Zhang, B., Argmann, C., et al.

(2015). Synchronized age-related gene expression changes across multiple

tissues in human and the link to complex diseases. Sci. Rep. 5:15145.

doi: 10.1038/srep15145

Yang, J., Huang, T., Song, W. M., Petralia, F., Mobbs, C. V., Zhang, B., et al.

(2016). Discover the network underlying the connections between aging and

age-related diseases. Sci. Rep. 6:32566. doi: 10.1038/srep32566

Yang, R., Zhang, C., Gao, R., and Zhang, L. (2016). A novel feature extraction

method with feature selection to identify golgi-resident protein types from

imbalanced data. Int. J. Molecul. Sci. 17:218. doi: 10.3390/ijms17020218

Yu, L., Ma, X., Zhang, L., Zhang, J., and Gao, L. (2016). Prediction of new drug

indications based on clinical data and network modularity. Sci. Rep. 6:32530.

doi: 10.1038/srep32530

Yu, L., Su, R., Wang, B., Zhang, L., Zou, Y., Zhang, J., et al. (2017).

Prediction of novel drugs for hepatocellular carcinoma based on multi-source

random walk. Ieee-Acm Transact. Comput. Biol. Bioinform. 14, 966–977.

doi: 10.1109/TCBB.2016.2550453

Yu, L., Sun, X., Tian, S. W., Shi, X. Y., and Yan, Y. L. (2018). Drug and nondrug

classification based on deep learning with various feature selection strategies.

Curr. Bioinform. 13, 253–259. doi: 10.2174/1574893612666170125124538

Zeng, X., Liao, Y., Liu, Y., and Zou, Q. (2016). Prediction and validation of disease

genes using hetesim scores. IEEE/ACMTransact. Computat. Biol. Bioinform. 14,

687–695. doi: 10.1109/TCBB.2016.2520947

Zeng, X., Liao, Y., Liu, Y., and Zou, Q. (2017). Prediction and validation of disease

genes using hetesim scores. IEEE/ACM Transact. Comput. Biol. Bioinform.

14, 687–695.

Zeng, X., Yuan, S., Huang, X., and Zou, Q. (2015). Identification of cytokine

via an improved genetic algorithm. Front. Comput. Sci. 9, 643–651.

doi: 10.1007/s11704-014-4089-3

Zeng, X. X., Liu, L., Lu, L. Y., and Zou, Q. (2018). Prediction of potential disease-

associated microRNAs using structural perturbation method. Bioinformatics

34, 2425–2432. doi: 10.1093/bioinformatics/bty112

Zhang, S., Zhang, T., and Liu, C. (2019). Prediction of apoptosis protein

subcellular localization via heterogeneous features and hierarchical

extreme learning machine. Sar Qsar Environ. Res. 30, 209–228.

doi: 10.1080/1062936X.2019.1576222

Zhang, W., Qu, Q., Zhang, Y., and Wang, W. (2018a). The linear neighborhood

propagationmethod for predicting long non-coding RNA–protein interactions.

Neurocomputing 273, 526–534. doi: 10.1016/j.neucom.2017.07.065

Zhang, W., Yue, X., Tang, G., Wu, W., Huang, F., and Zhang, X. (2018b).

SFPEL-LPI: sequence-based feature projection ensemble learning for

predicting LncRNA-protein interactions. PLoS Comput. Biol. 14:e1006616.

doi: 10.1371/journal.pcbi.1006616

Zhang, X., Zou, Q., Rodriguez-Paton, A., Zeng, C. B. (2019). Meta-path methods

for prioritizing candidate disease miRNAs. IEEE/ACM Transact. Comput. Biol.

Bioinform. 16, 283–291. doi: 10.1109/TCBB.2017.2776280

Zhang, Z., Zhao, Y., Liao, X., Shi, W., Li, K., Zou, Q., et al. (2019). Deep

learning in omics: a survey and guideline. Brief. Funct. Genom. 18, 41–57.

doi: 10.1093/bfgp/ely030

Zheng, N., Wang, K., Zhan, W., and Deng, L. (2019). Targeting virus-host protein

interactions: feature extraction and machine learning approaches. Curr. Drug

Metabol. 20, 177–184. doi: 10.2174/1389200219666180829121038

Zhu, P. F., Xu, Q., Hu, Q. H., Zhang, C. Q., and Zhao, H. (2018). Multi-

label feature selection with missing labels. Pattern Recogn. 74, 488–502.

doi: 10.1016/j.patcog.2017.09.036

Zhu, P. F., Zhu, W. C., Hu, Q. H., Zhang, C. Q., and Zuo, W. M. (2017). Subspace

clustering guided unsupervised feature selection. Pattern Recogn. 66, 364–374.

doi: 10.1016/j.patcog.2017.01.016

Zou, Q., Wan, S., Ju, Y., Tang, J., and Zeng, X. (2016a). Pretata: predicting TATA

binding proteins with novel features and dimensionality reduction strategy.

Bmc Systems Biol. 10:114. doi: 10.1186/s12918-016-0353-5

Zou, Q., Xing, P., Wei, L., and Liu, B. (2019). Gene2vec: gene subsequence

embedding for prediction of mammalian N6-Methyladenosine sites from

mRNA. RNA 25, 205–218. doi: 10.1261/rna.069112.118

Zou, Q., Zeng, J., Cao, L., and Ji, R. (2016b). A novel features ranking metric

with application to scalable visual and bioinformatics data classification.

Neurocomputing 173, 346–354. doi: 10.1016/j.neucom.2014.12.123

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Lv, Jin, Ding and Zou. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 September 2019 | Volume 7 | Article 21518

https://doi.org/10.1021/acs.jproteome.9b00250
https://doi.org/10.1016/j.ymeth.2019.02.009
https://doi.org/10.1109/TCBB.2018.2858756
https://doi.org/10.1186/s12859-018-2535-1
https://doi.org/10.1093/bioinformatics/18.8.1109
https://doi.org/10.1093/bioinformatics/btn309
https://doi.org/10.1002/pmic.201700262
https://doi.org/10.1038/s41598-018-32511-1
https://doi.org/10.2174/1574893611666160608075753
https://doi.org/10.2174/1570178615666180925125912
https://doi.org/10.1371/journal.pone.0185587
https://doi.org/10.1016/j.neucom.2018.04.082
https://doi.org/10.1016/j.artmed.2017.02.005
https://doi.org/10.1016/j.artmed.2017.03.001
https://doi.org/10.2174/1574893613666181113131415
https://doi.org/10.1038/nchembio0909-612
https://doi.org/10.3390/genes9030158
https://doi.org/10.1186/1752-0509-8-21
https://doi.org/10.1038/srep15145
https://doi.org/10.1038/srep32566
https://doi.org/10.3390/ijms17020218
https://doi.org/10.1038/srep32530
https://doi.org/10.1109/TCBB.2016.2550453
https://doi.org/10.2174/1574893612666170125124538
https://doi.org/10.1109/TCBB.2016.2520947
https://doi.org/10.1007/s11704-014-4089-3
https://doi.org/10.1093/bioinformatics/bty112
https://doi.org/10.1080/1062936X.2019.1576222
https://doi.org/10.1016/j.neucom.2017.07.065
https://doi.org/10.1371/journal.pcbi.1006616
https://doi.org/10.1109/TCBB.2017.2776280
https://doi.org/10.1093/bfgp/ely030
https://doi.org/10.2174/1389200219666180829121038
https://doi.org/10.1016/j.patcog.2017.09.036
https://doi.org/10.1016/j.patcog.2017.01.016
https://doi.org/10.1186/s12918-016-0353-5
https://doi.org/10.1261/rna.069112.118
https://doi.org/10.1016/j.neucom.2014.12.123
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


1 September 2019 | Volume 10 | Article 769

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00769
published: 04 September 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Peilin Jia,  

University of Texas Health Science 
Center, United States

Reviewed by: 
Xin Zhou,  

Stanford University, United States 
Lu Zhang,  

Hong Kong Baptist University,  
Hong Kong

*Correspondence: 
Shulin Wang 

smartforesting@163.com 
Jialiang Yang 

yangjl@geneis.cn

Specialty section: 
This article was submitted to 

Bioinformatics and  
Computational Biology,  
a section of the journal  

Frontiers in Genetics

Received: 21 May 2019
Accepted: 19 July 2019

Published: 04 September 2019

Citation: 
Li W, Wang S, Xu J, Mao G, Tian G 

and Yang J (2019) Inferring Latent 
Disease-lncRNA Associations by 

Faster Matrix Completion on a 
Heterogeneous Network.  

Front. Genet. 10:769.  
doi: 10.3389/fgene.2019.00769

Inferring Latent Disease-lncRNA 
Associations by Faster Matrix 
Completion on a Heterogeneous 
Network
Wen Li 1, Shulin Wang 1*, Junlin Xu 1, Guo Mao 1, Geng Tian 2 and Jialiang Yang 2*

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China, 2 Geneis Beijing Co., 
Ltd., Beijing, China

Current studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in 
a variety of fundamental biological processes related to complex human diseases. The 
prediction of latent disease-lncRNA associations can help to understand the pathogenesis 
of complex human diseases at the level of lncRNA, which also contributes to the detection 
of disease biomarkers, and the diagnosis, treatment, prognosis and prevention of disease. 
Nevertheless, it is still a challenging and urgent task to accurately identify latent disease-
lncRNA association. Discovering latent links on the basis of biological experiments is 
time-consuming and wasteful, necessitating the development of computational prediction 
models. In this study, a computational prediction model has been remodeled as a matrix 
completion framework of the recommendation system by completing the unknown items 
in the rating matrix. A novel method named faster randomized matrix completion for 
latent disease-lncRNA association prediction (FRMCLDA) has been proposed by virtue 
of improved randomized partial SVD (rSVD-BKI) on a heterogeneous bilayer network. 
First, the correlated data source and experimentally validated information of diseases 
and lncRNAs are integrated to construct a heterogeneous bilayer network. Next, the 
integrated heterogeneous bilayer network can be formalized as a comprehensive 
adjacency matrix which includes lncRNA similarity matrix, disease similarity matrix, and 
disease-lncRNA association matrix where the uncertain disease-lncRNA associations are 
referred to as blank items. Then, a matrix approximate to the original adjacency matrix 
has been designed with predicted scores to retrieve the blank items. The construction of 
the approximate matrix could be equivalently resolved by the nuclear norm minimization. 
Finally, a faster singular value thresholding algorithm with a randomized partial SVD 
combing a new sub-space reuse technique has been utilized to complete the adjacency 
matrix. The results of leave-one-out cross-validation (LOOCV) experiments and 5-fold 
cross-validation (5-fold CV) experiments on three different benchmark databases have 
confirmed the availability and adaptability of FRMCLDA in inferring latent relationships of 
disease-lncRNA pairs, and in inferring lncRNAs correlated with novel diseases without 
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INTRODUCTION

Long non-coding RNAs are RNA molecules whose transcripts 
are not less than 200 nucleotides, including intronic/exonic 
lncRNAs, antisense lncRNAs, overlapping lncRNA and long 
intergenic ncRNAs (lincRNAs). LncRNAs have long been 
considered as transcriptional noise, because of their absence in 
encoding proteins. Recently, it has been found that some lncRNAs 
regulate the expression of target genes after transcription, whose 
malfunction may lead to a number of diseases. For example, 
abnormal lncRNA expression may be involved in certain stages 
of cancer progression, which can serve as a potential biomarker 
for early tumor diagnosis (Zhou et al., 2015; Niknafs et al., 2016). 
In addition, lncRNAs are found able to interact with signaling 
pathways involved in the pathology of malignancy (Bian et al., 
2015). However, studies on the prediction of relationships 
between lncRNAs and diseases are still limited in number. One 
key bottleneck is the high cost and labor-intensity of laboratory 
techniques in discovering the relationships between lncRNAs 
and diseases. To break the bottleneck, a lot of computational 
models have been proposed which can generally be divided into 
two major categories depending on the source of the interaction 
data: models for single-interaction data sources and models for 
multi-interaction data sources.

In the first major category, models for single-interaction data 
sources are based on diseases-lncRNAs interaction (association/
link) data, which is unique known interaction information. 
According to its method, the model can be divided into 
two minor branches. The first minor branch is composed 
of machine-learning based models, in which the prediction 
of latent disease-lncRNA association takes experimentally 
validated disease-lncRNA associations as labeled data (training 
set) and unknown associations as unlabeled samples (invalidated 
relationship information). For example, a method named 
Laplacian Regularized Least Squares (LRLSLDA) was first 
proposed by Chen et al. to infer disease-lncRNA associations with 
a semi-supervised learning model (Chen et al., 2013). It is assumed 
that diseases with high semantic similarity are more likely to 
interact with lncRNAs with high functional similarity. LRLSLDA 
effectively predicts latent associations without negative samples, 
but it is difficult to select appropriate parameters and classifiers 
that optimize similarity measures for both lncRNAs and diseases. 
Inspired by the recommendation system, the authors consider 
disease-lncRNA association prediction as a recommendation 
task. A computational model named SIMCLDA is designed to 
predict latent disease-lncRNA relationships, taking advantage of 
the inductive matrix completion (IMC) method (Lu et al., 2018). 
The main idea of SIMCLDA is to extract informative feature 

vectors of lncRNAs and diseases to complete the association 
matrix. It is able to discover more accurate primary feature 
vectors and predict associations for novel lncRNAs and diseases.

Additionally, the second minor branch is composed of 
network-based models, random walk and a variety of propagation 
algorithms implemented on a heterogeneous network to infer 
latent disease-lncRNA associations. The heterogeneous network 
is constructed by integrating lncRNA-disease interaction 
network, disease similarity network and lncRNA similarity 
network. For instance, based on the hypothesis that functional 
lncRNAs are associated with diseases with similar phenotypes, 
a lncRNA functional similarity network (LFSN) is constructed 
and a novel computational framework RWRlncD is proposed for 
predicting latent disease-lncRNA associations through random 
walk with restart (Sun et al., 2014). However, the method of 
RWRlncD fails to infer related lncRNAs for novel diseases without 
prior interaction. Gu et al. put forward a global network-based 
random walk where negative samples are not required to predict 
latent disease-lncRNA relationships (Gu et al., 2017). Although 
this method can predict relationships related to isolated diseases 
or lncRNAs, it is prone to biased prediction. A computational 
method called BPLLDA is brought forward in a heterogeneous 
network on a basis of simple paths with finite length (Xiao et al., 
2018). However, BPLLDA also has some limitations such as 
biased predictions. And the simplistic distance-decay function 
has yet to be improved by machine learning.

Due to the fact that known experimentally validated disease-
lncRNA interactions are still rare, the second major category 
of computational models is models based on multi-interaction 
data sources proposed for association prediction. Multi-
interaction data sources, such as lncRNA-gene interaction, 
lncRNAs-miRNAs interaction, disease-gene interaction and 
miRNA-disease interaction, are also included to infer latent 
disease-lncRNA associations. For example, a TPGLDA method 
is proposed to identify the underlying relationships by a tripartite 
graph of disease-lncRNA-gene and to develop an efficient 
resource allocation algorithm in the graph (Ding et al., 2018). 
TPGLDA effectively reduces the biased prediction in the resource 
allocation process, but it focuses on an unweighted tripartite 
graph and its accuracy for prediction needs to be improved. In 
this category, the weights of heterogeneous interaction data are 
difficult to determine, so the fusion of heterogeneous data is a 
challenging task.

Inferring latent disease-lncRNA association can also be 
modeled as a recommendation system which recommends 
top-ranked lncRNAs for given diseases. Based on matrix 
completion, the establishment of the disease-lncRNA 
recommendation system aims to complete unknown terms 

any prior interaction information. Additionally, case studies have shown that FRMCLDA is 
able to effectively predict latent lncRNAs correlated with three widespread malignancies: 
prostate cancer, colon cancer, and gastric cancer.

Keywords: heterogeneous bilayer network, association prediction, matrix completion, faster SVT, randomized 
partial SVD, similarity measurements
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in the association matrix according to its ranked scores. 
Similar to the hypothesis in the user-item recommendation 
system that users with similar behaviors prefer similar 
items, the prediction of disease-lncRNA association assumes 
that phenotypically similar diseases tend to interact with 
functionally similar lncRNAs (Chen and Yan, 2013). In our 
study, we assume that semantically or functionally similar 
diseases tend to interact with similar lncRNAs (similar in 
sequence, expression profiles or function). Thus, theoretically 
the integration of lncRNA-lncRNA and disease-disease 
interaction will benefit the prediction of lncRNA-disease 
associations. Based on that, we proposed a computational 
model FRMCLDA similar to the recommendation system 
to infer latent associated lncRNAs for queried diseases, and 
solved it with faster randomized partial matrix completion 
(fSVT) algorithm (Feng et al., 2018). FRMCLDA consolidated 
disease integrated similarity network, lncRNA integrated 
similarity network and known disease-lncRNA interaction 
network to construct a heterogeneous bilayer network. Then 
a randomized SVD technique incorporating the block Krylov-
subspace iteration (BKI) scheme (named rSVD-BKI algorithm) 
was proposed to complete large-scale matrix. In addition, a 
novel subspace reuse technique was integrated to accelerate 
matrix completion. Our method is based on semi-supervised 
machine learning, which does not need the information of 
negative samples. So, it generally belongs to the first category.

Our work main contributions are threefold: first, the 
integrated similarities for diseases and lncRNAs were properly 
calculated by different methods dealing with different types of 
data sources. The ratio of cosine similarity in integrated similarity 
was better determined by learning, which extracted similarity 
information based on known disease-lncRNA interaction. 
Therefore, FRMCLDA was able to offset biased predictions 
by similarity integration which was not entirely dependent on 
known interaction. Second, diseases and lncRNAs were mapped 
into the same network by constructing a heterogeneous bilayer 
network. FRMCLDA completed the disease-lncRNA interaction 
matrix by completing the adjacency matrix of the large-scale 
heterogeneous network. Thus, the similar information was 
included in the association prediction. Third, we took advantage 
of an effective fSVT algorithm which adopted rSVD-BKI and 
a novel subspace reuse technique to expeditiously approximate 
the dominant singular values and homogeneous singular vectors 
in an adaptive manner. Hence, the recommendation system 
could be extended for comprehensive adjacency matrices of 
heterogeneous bilayer networks.

For evaluating the performance of our method, cross 
validation experiments were performed on three benchmark 
databases, Dataset 1, Dataset 2 and Dataset 3. FRMCLDA 
obtained reliable AUCs of 0.92068, 0.91224 in global LOOCV 
and local LOOCV respectively in Dataset1, at least 5% higher 
than other comparison models. In Dataset 2 and Dataset 3, 
FRMCLDA achieved an AUC of 0.9182 and 0.8999 by global 
5-fold CV, higher than other comparison methods. In addition, 
a case study on inferring latent lncRNAs associated with 
prostate cancer, colon cancer and gastric cancer in Dataset 3 
were performed. In terms of the results, 16, 15, 16 out of the top 
20 predicted lncRNAs associated with prostate cancer, colon 
cancer and gastric cancer respectively were confirmed by recent 
literature and public databases. The results show that FRMCLDA 
is able to effectively infer the associations between diseases and 
lncRNAs with higher accuracy than the other existing models.

MATERIALS AND METHODS

We denote a disease-lncRNA association matrix as DL m n∈ ×
  , 

the rows of which represent diseases and columns represent 
lncRNAs. The variable m is the number of diseases, and n is the 
number of lncRNAs. If disease di is associated with lncRNA lj, 
the value of DL(i, j) in the association matrix is 1. And if the 
link between di and lj is unknown or uncertain, DL(i, j) is 0. It 
is noted that the unlinked evidence between di and lj is difficult 
to obtain. The known experimentally validated disease-lncRNA 
links can be retrieved from the public association database, based 
on which disease-lncRNA interaction matrix DL is established. If 
the number of nonzero elements is far smaller than that of zero 
elements, and the distribution of nonzero elements in the matrix 
is irregular, the matrix will be called sparse matrix. Generally, 
matrix DL is a sparse matrix, because, due to the insufficient 
number of studies, there are much more unknown associations 
(value 0) in matrix DL than known ones (value 1) (see Table 1). 
LS and DS denote lncRNA integrated similarity matrix and 
disease integrated similarity matrix respectively, which can be 
calculated through various biological data. It is assumed that 
the underlying determinants of the disease-lncRNA associations 
are closely related. Hence the number of independent factors is 
less than the number of lncRNAs or diseases. Accordingly, the 
matrix of known disease-lncRNA association is of low rank. That 
assumed, matrix completion can recover the unknown items of 
the disease-lncRNA interaction matrix by constructing a low-
rank matrix which aims to approximates adjacency to matrix A.

TABLE 1 | Details of three benchmark datasets.

Datasets Number of known 
associations 

Number of lncRNAs Number of diseases Sparsity of the matrix DL Weights in integrated 
Similarity 

Dataset 1 352 156 190 1.187*10−2 wl = 0.7, wd = 0.9
Dataset 2 540 115 178 2.638*10−2 wl = 0.5, wd = 0.7
Dataset 3 621 258 226 1.065*10−2 wl = 0.5, wd = 0.5

The sparsity is calculated by the ratio of existed known association number to the size of the matrix (all the possible association number).
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Overview
In our work, a new method called FRMCLDA is proposed to infer 
latent disease-lncRNA associations on the basis of fast matrix 
completion. The mechanism of FRMCLDA is shown in Figure 1. 
Firstly, we obtaine known disease-lncRNA associations from the 
public databases. Secondly, we calculate the disease similarity and 
lncRNA similarity with different methods. Next, we construct a 
heterogeneous bilayer network with three networks, i.e., a disease 
similarity network, a lncRNA similarity network and a disease-
lncRNA interaction network. Furthermore, we implement a faster 
matrix completion algorithm with an improved randomized partial 
SVD and a sub-space reuse technique to restore the adjacency 
matrix of heterogeneous bilayer network. Finally, we infer potential 
disease-lncRNA associations through the predicted scores.

Datasets and Data Preprocessing
All the known diseases-lncRNA interactions were obtained 
from three gold standard databases in three benchmark datasets 
respectively: MNDR database, Lnc2Cancer database and 
LncRNADisease database (Chen et al., 2013; Wang et al., 2013; 
Ning et al., 2016).

The known associations between lncRNA and disease in 
Dataset 1 were retrieved from the MNDR database in 2015. After 
removing all the duplicate records of lncRNAs and diseases, and 
what do not belong to human beings, and correcting the names 
of the lncRNAs (according to LncRNAdb, Lncipedia, NCBI and 
HGNC) and diseases (according to UMIS, MeSH and NCBI), 
we finalized 352 disease-lncRNA associations, including 156 
lncRNAs and 190 diseases.

FIGURE 1 | Scheme of FRMCLDA to infer latent disease-related lncRNAs by matrix recovery.
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In Dataset 2, the known associations between lncRNA and 
disease were obtained from the Lnc2Cancer database in 2016. 
After eliminating the duplicate associations on account of 
different evidences, we obtained 540 distinct known disease-
lncRNA associations, including 115 lncRNAs and 178 diseases.

In Dataset 3, the known disease-lncRNA associations were 
downloaded from the manually curated LncRNADisease 
database (http://cmbi.bjmu.edu.cn/lncrnadisease) in 2015. In 
the same way as data preprocessing, we downloaded 621 known 
disease-lncRNA associations, including 248 lncRNAs and 226 
diseases. The details of the three datasets are shown in Table 1.

Similarity Calculation
Diseases Similarity
In the three benchmark datasets, disease integrated similarities 
were calculated with three different similarity data sources.

a) Disease semantic similarity: In previous studies by Chen et al., 
a graph of directed acyclic (DAG) is utilized to label a disease, 
which includes overall relevant annotation labels acquired 
from the U.S. National Library of Medicine (MeSH) (Cai et al., 
2008; Chen and Yan, 2013). It is assumed that diseases sharing 
larger common DAGs areas might have higher similarity 
scores. Therefore, the semantic similarity of diseases denoted 
as DS–semantic was calculated on the basis of DAG values by 
DOSim. DOSim is a package of R language for the semantic 
similarity calculation based on disease ontology (Wang 
et al., 2007).

b) Disease functional similarity: Disease functional similarity 
was calculated using the Jaccard similarity coefficient on 
account of gene-gene ontology relationships and disease-gene 
relationship, as reported in previous studies (Pinero et al., 
2017; Lu et al., 2018). Disease functional similarity is denoted 
as DS–jaccard(di, dj), and can be calculated by formula (1):

 

DS jaccard d d
GO GO

GO GO
i j

d d

d d

i j

i j

_ ( , ) =




 (1)

  where GOdi represents the gene ontology terms related to 
disease di, and the symbol |·| represents the number of items 
in a set.

c) Disease cosine similarity: Widely used in information retrieval 
and data mining, the cosine similarity is a popular method for 
calculating the similarity as the cosine of the angle between 
vectors. Here we used cosine similarity to extract disease 
feature information from the known interaction matrix DL. 
The disease cosine similarity denoted as DS–cosine(di, dj)can 
be calculated by formula (2):

 
DS ine d d

IP d IP d
IP d IP di j

i j

i

_cos ( , )
( ) ( )
( ) ( )

=
⋅

j
 (2)

  where IP(di) is the interaction profile of disease di, the i-th row 
vector of the interaction matrix DL. If disease di is associated 

with lncRNA lk, the k-th element in IP(di) is 1, otherwise the 
value is 0. The value 0 does not mean that association does 
not exist but means it is uncertain. ||IP(di)|| is the 2-norm of 
IP(di).

d) Integrated disease similarity DS: To illustrate the adaptability 
of our model to different similarity data, we adopted two 
different integrated disease similarities in three benchmark 
datasets. In Dataset 1 and Dataset 2, DS was calculated 
by: DS w DS semantic w DS ine

d d
= ∗ + − ∗

1 1
_ ( ) _ cos1  

In Dataset 3, DS was calculated by: 
DS w DS jaccard w DS ine

d d
= ∗ + ∗

2 2
-_ ( ) _ cos1 .

LncRNAs Similarity 
To calculate lncRNA integrated similarity, we adopted four 
different sources of similarity data: lncRNA sequence similarity, 
lncRNA expression similarity, lncRNA functional similarity and 
lncRNA cosine similarity.

a) LncRNA sequence similarity: Most of the RNA sequences 
of lncRNAs were downloaded mainly from the database 
LncRNADisease (http://www.cuilab.cn/lncrnadisease). The 
sequences not available in LncRNADisease were retrieved 
from the databases UCSC and LNCipedia. The sequence 
similarity between two lncRNAs were calculated with 
Needleman-Wunsch global alignment algorithm (Emboss-
Needle tool) (Needleman and Wunsch, 1970; Rose and 
Eisenmenger, 1991). We set the parameters to default values. 
The Matrix file name was set to EDNAfull for nucleic, Gap 
opening penalty was set to 10 and Gap extension penalty was 
set to 0.5 for any sequences. LncRNA sequence similarity is 
defined as formula (3):

 

LS seq l l
SW l l

SW l l SW l l
i j

i j

i i j j

_ ( , )

( , )

( , ) ( , )

=
⋅

 (3)

  where SW(li, lj) is the alignment score calculated by Emboss-
Needle, which is equal to the sum of the matches taken from 
the scoring matrix, minus penalties arising from opening and 
extending gaps in the aligned sequences.

b) LncRNA expression similarity: The expression profiles of 
lncRNA can be obtained from the dataset E-MTAB-513 in 
ArrayExpress (Parkinson et al., 2007; Derrien et al., 2012). 
Based on the previous literature, we normalized these 
expression data and calculated the lncRNA expression 
similarity LS_exp with the absolute Spearman correlation 
coefficient (Chen and Yan, 2013).

c) LncRNA functional similarity: Based on an accepted 
assumption that lncRNAs with similar functions have similar 
interaction patterns to those of diseases, the functional 
similarity of lncRNA can be obtained via computation of 
disease semantic similarity from a previous study by Sun 
et al., (2014). It is supposed that lncRNA li is correlated with a 
set of diseases Di = {di1, di2,…, dim}, and lncRNA lj is correlated 
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with a set of diseases Dj = {dj1, dj2,…djn}. Semantic similarity 
between dil and Dj is calculated as formula (4):

 
DS semantic d D DS semantic d d

il j d D il
j

_ ( , ) max( _ ( , ))=
∈  

(4)

  And then the functional similarity of lncRNAs can be 
computed as formula (5):

LS func l l
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  where LS_ func(li, lj) denotes the functional similarity between 
lncRNA li and lncRNA lj.

d) LncRNA cosine similarity: In the same way, we used cosine 
similarity to extract lncRNA feature information from the 
known interaction matrix DL. lncRNA cosine similarity can 
be calculated as formula (6):

 

LS ine l l
IP l IP l

IP l IP l
i j

i j

i j

_cos ( , )

( ) ( )

( ) ( )

=
⋅  (6)

  where IP(lj) is resulted from the j-th column of the interaction 
matrix DL. IP(lj) is a vector which denotes the feature vector 
for lncRNA lj.

e) Integrated lncRNA similarity LS: In three benchmark datasets, 
we adopted three different similarity computation methods 
to fully demonstrate the robustness of FRMCLDA. In 
Dataset 1, integrated lncRNA similarity LS was calculated as: 
LS w LS func w LS ine

l l
= ∗ + − ∗

1 1
_ ( ) _ cos1 . In Dataset 2, LS 

was calculated as: LS w LS w LS ine
l l

= ∗ + − ∗
2 2

_ exp ( ) _ cos1  . 
In Dataset 3, LS was calculated as: 
LS w LS seq w LS ine

l l
= ∗ + − ∗

3 3
_ ( ) _ cos1 .

Construction of the Heterogeneous 
Bilayer Network
Based on the integrated disease and lncRNA similarity matrices 
DS and LS calculated above, disease similarity network and 
lncRNA similarity network can be constructed. Let D = {d1, 
d2,…, dn} represent the set of n diseases in the disease similarity 
network. The edge between disease di and dj is weighted by 
integrated disease similarity DS(i, j). Let L = {l1, l2,…, lm} represent 
the set of m lncRNAs in the lncRNA similarity network. The 
edge between lncRNA li and lj is weighted by integrated lncRNA 
similarity LS(i, j). Besides, the disease-lncRNA interaction 
network can be modeled as G(V, E), where V(G) = {D,L}, E(G) 
⊆ D × L, E(G) = {eij, edge between disease di and lncRNA lj}. The 
edge eij is initialized to 1, if there exists a known link between 
disease di and lncRNA lj, otherwise, eij is initialized to 0. DL is the 
adjacency matrix for the disease-lncRNA interaction network.

Finally, a heterogeneous bilayer network is constructed by 
connecting disease similarity network and lncRNA similarity 
network via disease-lncRNA association network, as shown 
in Figure 1. Accordingly, the adjacency matrix A of the 
heterogeneous bilayer network is defined as formula (7):

 
A DS DL

DL LST
=













 (7)

where diagonal sub-matrices DS and LS are the adjacency matrix 
of the disease similarity network and the lncRNA similarity 
network. The off-diagonal sub-matrix DL is the adjacency matrix 
for the disease-lncRNA interaction network, DLT is the transpose 
of DL. Usually, the interaction between lncRNAs and diseases is 
mutual, and values of the matrix DL are nonnegative, therefore 
the adjacent matrix A is meristic and positive semi-definite. The 
singular values of the adjacent matrix A are nonnegative real 
numbers and equivalent to the eigenvalues. In conclusion, the 
prediction of disease-lncRNA association can be remodeled as 
the matrix completion of the adjacency matrix A. If matrix A is 
only comprised of matrix DL, rather than the large-scale matrix 
of the heterogeneous network, then the completion based on 
rank minimization will not generate significant results. That is 
because all known disease-lncRNA associations are positive in 
matrix. Only restoring the matrix DL will result in an optimized 
solution to rank minimization problem, i.e., all-one matrix with 
rank 1.

Inferring Latent Associations by Faster 
Randomized Matrix Completion
Our goal is to restore the unknown entries of the adjacent matrix 
A by constructing a proximate matrix A* with the same size (m + 
n) × (m + n). It is assumed that A have rank r(r ≪ (m + n)). Φ is 
denoted as an index set for all the known entries of matrix A. The 
problem of matrix completion can be converted to solving the 
rank minimization problem by formula (8):

min ( )rank A∗

 s t P A P A. . ( ) ( )Φ Φ
∗ =  (8)

in which PΦ(A) is denoted as an orthogonal projector onto the 
span of matrix A. Its value is 0 when the element (i, j) is not in 
the set Φ. Matrix A is the adjacency matrix of the heterogeneous 
network constructed in Datasets and Data Processing. However, 
the problem of rank minimization is generally considered as 
a NP-hard problem (Natarajan, 1995). An approach called 
relaxed convex optimization is widely used by minimizing 
the nuclear norm (||·||*) of the matrix, which is known to be 
solved by standard singular value threshold (SVT) algorithm 
(Candès and Recht, 2009). Therefore, the matrix completion 
can be resolved by a proximal optimization solution (Cai et al., 
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2008). Minimization of the nuclear norm can be resolved by 
formula (9):

min A∗

∗

 s t P A P A. . ( ) ( )*
Φ Φ=  (9)

Equation (9) can be solved by the iterative processes in 
formula (10) and (11):
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where the function shrink(Y(i), τ) is a soft thresholding operator 
that computes the singular value of the matrix Y at level τ (Aken 
et al., 2016). δ is the iteration step length. σ j

i( )  is one of the singular 
values of Yat the ith iteration. uj

i( )  and v j
i( )  are the corresponding 

left singular vector and right singular vector respectively. Y (i) is 
usually a relatively large matrix with high sparsity, and usually 
can be stored with a sparse matrix. Starting computation from 
Y P(0)=c (A)δ Φ , a series of X(i) and Y(i) can be generated through 
the linearized Bregman iteration.

In FRMCLDA, δ is set to ( /m n)+ Φ  as assigned in 
previous literature (Li and Yu, 2017). We set c p A=  τ δ/ ( ( ) )Φ , 
τ φ= + P A m nF( ) ( ) / Φ  to balance the accuracy of approximation 
against the speed of convergence as suggested by Candès et  al.
(Candès and Recht, 2009). Although the SVT algorithm has high 
accuracy for both symmetric and real data matrix, the costs are 
large when executing SVD repeatedly at each iteration. So many 
improved methods like truncated singular value decomposition 
and randomized SVD have been proposed for accelerating SVT 
by keeping the cost of shrink (·) low throughout the iteration 
(Halko et al., 2010). In this study, FRMCLDA adopts a faster SVT 
algorithm, fSVT, based on partial and improved randomized SVD 
which exploits a sub-space reuse technique to extract key singular 
value and corresponding singular vector. The main concept of 
randomization is to determine the sub-spaces for obtaining 
dominant information and ignore insignificant information 
by random projection. Randomized SVD algorithms execute 
as many or fewer floating-point operations (flops) with the 
runtime benefit. Faster matrix completion even incorporates 
a block Krylov sub-space iteration rSVD-BKIr scheme and a 
novel sub-space reuse mechanism (reuse the orthogonal basis 
Q from the last round of iteration) (Musco and Musco, 2015). 
The fast matrix completion algorithm with rSVD-BKI has been 
proven the have the same reliability and accuracy as the original 
singular value thresholding algorithm, while at higher speed for 
large data matrix completion (Feng et al., 2018). FRMCLDA 

applies the faster singular value threshold (fSVT) algorithm for 
a similarly optimal low-rank approximation of the adjacency 
matrix, and prediction of latent links between lncRNAs and 
diseases in LD. Our faster randomized matrix completion 
method is illustrated in Algorithm 1 in the Supplementary 
Materials S6. The function rSVD-BKI(·) performs singular 
value decomposition and the details of realization can be found 
in an earlier study (Feng et al., 2018)

EXPERIMENTS AND RESULTS

We first put forward the evaluation metrics for the methods of 
association prediction. Second, we tested the effects of cosine 
similarity on diseases and lncRNAs and fine-tuned the weights 
of cosine similarity. Third, we implemented permutation test to 
assess the influence of different data sources on optimization 
procedure. Fourth, we recorded the time usage of FRMCLDA 
for different sizes of heterogeneous network. Fifth, we compared 
FRMCLDA with other existing methods by global LOOCV 
experiments, local LOOCV experiments and global 5-fold cross-
validation experiments. Finally, we implemented case studies to 
validate the practicability of FRMCLDA.

Evaluation Metrics of Performance
In order to assess the performance of FRMCLDA in inferring 
latent disease-correlated lncRNAs, global LOOCV experiments, 
local LOOCV experiments and global 5-fold cross-validation 
experiments are implemented on three benchmark datasets. 
Under the framework of LOOCV, each known experimentally 
validated association is picked in turns as a test sample, and all 
the other known associations are considered as training samples. 
The test sample is sorted together with the candidate samples 
without known association evidence. The test sample whose rank 
exceed the given threshold would be considered as a successful 
prediction. The main difference between global and local 
LOOCV is whether to investigate all diseases simultaneously or 
only query one disease at a time to select candidate samples. That 
is to say, global LOOCV considered all the unknown associations 
as candidate samples, whereas local LOOCV only focused on 
one disease in the test sample and selected the corresponding 
unknown associations as candidate samples. In global 5-fold 
cross-validation, all of the known experimentally validated 
associations are divided into five uncrossed sets, whose size must 
be strictly equal. Each set of the five is taken in turns as the test 
sample, but the other 4 sets are served as training samples. After 
matrix completion is performed, the test samples are ranked 
together with candidate samples and then are sorted in the 
descending order of their predicted scores.

Furthermore, false negative (FN), false positive (FP), true 
negative (TN) and true positive (TP) are summarized based 
on the ranked results for each specific threshold. The receiver 
operating characteristic curves are made by plotting the true 
positive rate (TPR, recall) against false positive rate (FPR) 
based on varying thresholds. The precision-recall (PR) curve is 
also plotted to fully evaluate the performance of the prediction. 
The area under the ROC curve (AUC) and the area under the 
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PR curve (AUPR) are finally calculated to evaluate the overall 
performance of the prediction. An AUC value of 0.5 implies 
a random prediction and an AUC value of 1 implies a perfect 
prediction performance. Therefore, AUC and AUPR are used as 
primary evaluating measures.

Effects of Cosine Similarity on Diseases 
and lncRNAs
Both integrated disease similarity and integrated lncRNA 
similarity in three benchmark datasets are calculated with cosine 
similarity combined, which can extract feature information 
from the known interaction matrix. The weights of wl and wd 
in integrated similarity calculations can be fine-tuned by cross 
validation in three benchmark datasets separately. Let wd and wl 
vary from 0.1 to 1 at the increment of 0.1. According to AUC 
values of LOOCV based on Dataset1, FRMCLDA performed 
best when wd1 = 0.9 and wl1 = 0.7. Likewise, on Dataset2, we 
chose wd2 = 0.7 and wl2 = 0.5. On Dataset3, we chose wd3 = 0.5 
and wl3 = 0.5. All can be seen in Table 1.

In Dataset2, we implemented 5-fold cross validation 20 times 
to test the effects of the cosine similarity on model performance. 
The four test settings were: 1) using cosine similarity both for 
integrated similarity of neither lncRNAs nor diseases; 2) only 
the lncRNA similarity integrating the cosine similarity; 3) only 
the disease similarity integrating the cosine similarity; 4) both 
lncRNA similarity and disease similarity integrating cosine 
similarity. The results can be seen in Table 2. When both 
similarities are calculated with cosine similarity combined, the 
AUC value (0.9145 ± 0.0013) achieves the best of four. Therefore, 
FRMCLDA performance can be improved by incorporating 
effective feature information extracted by cosine similarity from 
interaction profiles with fast matrix completion.

Influence of Different Data Sources on 
Optimization Procedure
To evaluate the influence of different data sources on the 
optimization procedure of matrix completion, we have 
implemented a permutation test on disease-lncRNA interaction 
matrix DL, lncRNA similarity matrix LS, and disease similarity 
matrix DS separately. Based on the LOOCV framework, we 
randomized each of the three matrices in turns, while keeping 
the other two matrices unchanged. We carried it out 20 times 
and recorded the average AUC value for each type of data 
source. Usually, if a matrix contributes more to the optimization 
procedure, the result of the permutation test based on it will be 

closer to the stochastic value. As shown in Table 3, the mean 
AUC based on randomized matrix DL is the lowest and close 
to  0.5, indicating that matrix DL has the greatest influence on 
the performance of our model. In the same way, it is concluded 
that matrix LS contributes more than DS to the performance of 
our model.

Time Usage of FRMCLDA for Different 
Sizes of the Heterogeneous Network
In FRMCLDA model, we implement matrix completion through 
fSVT as proposed by a previous study (Feng et al., 2018). 
Algorithm fSVT used a block Krylov iteration approximation 
SVD method rSVD-BKIr and a sub-space reuse mechanism 
to replace the original exact SVD. Thus, the turn-around time 
of SVT is significantly reduced while the accuracy remains 
the same. As seen in algorithm 1 in Supplementary file S6, 
tolerance ε is the terminating condition. When mean absolute 
error (MAE) is greater than ε, the program will terminate. The 
value of power parameter p can be dynamically adjusted as the 
operation accuracy changes. Therefore, the parameter ε and p can 
decide the rounds of the iteration, which will greatly affect the 
main turn-around time of FRMCLDA. Therefore, we were not 
able to compare the running time with other of other methods 
because of different conditions. We just recorded the time usage 
of FRMCLDA for different sizes of heterogeneous network.

Here, we set p = 2 and ε = 0.4. We executed 20 times FRMCLDA 
in three benchmark datasets. Average time usage of FRMCLDA 
and standard deviations are shown in Table 4. In Dataset 1, 2 
and 3, the CPU time reached 2.1758 ± 0.2826 s, 1.5367 ± 0.1799 
s and 3.9016 ± 0.2703 s, respectively.

Comparison of Performance With Other 
Methods on Different Datasets
On Dataset 1, the performance of FRMCLDA is compared 
with four popular methods: LRLSLDA (Chen and Yan, 2013), 
KATZLDA (Chen, 2015), SIMCLDA (Lu et al., 2018) and 

TABLE 2 | The effects of the cosine similarity on AUC by 5CV in dataset2.

No LS_cosine 
and DS_cosine

Only combing 
LS_cosine 
in LS

Only combing 
DS_cosine 
in DS

Combing 
LS_cosine in LS 
and DS_cosine 
in DS

0.7995 ± 0.0044 0.8705 ± 0.0050 0.8510 ± 0.0032 0.9145 ± 0.0013

TABLE 3 | The result of contribution test on performance of prediction by 
LOOCV in dataset 2.

Set the data source to random matrix Average AUCs by 20 times 
randomization

lncRNA similarity matrix (LS) 0.8615 ± 0.0061
Disease similarity matrix (DS) 0.8081 ± 0.0059
disease-lncRNA association matrix (DL) 0.5332 ± 0.0174

TABLE 4 | The time usage of FRMCLDA for different sizes of heterogeneous 
network.

The size of heterogeneous 
network

CPU time (second)

Dataset1 156 × 190 2.1758 ± 0.2826 
Dataset2 115 × 178 1.5367 ± 0.1799 
Dataset3 258 ×226 3.9016 ± 0.2703
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BPLLDA (Xiao et al., 2018). The ROC curves of global LOOCV 
are shown in Figure 2. Obviously, FRMCLDA achieved an AUC 
of 0.92068, which outperformed LRLSLDA (0.81952), KATZLDA 
(0.79708), SIMCLDA (0.87368) and BPLLDA (0.87117) by 5% 
at least. Therefore, FRMCLDA is superior compared to other 
methods in predicting disease-lncRNA association.

One advantage of FRMCLDA is that it is able to infer latent 
correlated lncRNAs with queried diseases, even novel diseases. 
To show the performance of FRMCLDA in predicting novel 
disease-correlated lncRNAs, we implemented local LOOCV 
on Dataset 1. The results of FRMCLDA with local LOOCV on 
Dataset 1 were recorded in Supplementary S1. As shown in 
Figure 3, compared with three methods (LRLSLDA, BPLLDA, 
and GrwLDA) (Gu et al., 2017), the AUC of FRMCLDA was 
0.91224, significantly higher than those of LRLSLDA (0.65812), 
BPLLDA (0.78528) and GrwLDA (0.65802) with increases 
of about 27.8%, 13.9%, and 27.86% respectively. The AUPR of 
FRMCLDA was 0.54644, significantly higher than those of 
LRLASLDA (0.12517), GrwLDA (0.1180) and BPLLDA (0.0753). 
In conclusion, FRMCLDA has been proven to be effective in 
inferring related lncRNAs with novel diseases in terms of AUC 
values and AUPR values. For example, we deleted all the known 
breast cancer-correlated associations, just as breast cancer was 
a novel disease. After matrix completion by FRMCLDA, we 
ranked all the candidate lncRNAs according to their scores. As 
can be seen in Table 5, all 14 deleted breast cancer-associated 
lncRNAs were finally successfully ranked out of top 20 of all the 
predicted lncRNAs.

The robustness of FRMCLDA was further validated by 
inferring latent associations on Dataset 2 and Dataset 3. We 
conducted 20 times global 5-fold cross-validation experiments 

to validate the precision of prediction by FRMCLDA on Dataset 
2 and Dataset 3. The results of ROC curve, PR curve, precision-
rank bars and recall-rank bars using different methods are 
shown in Figure 4 and Figure 5, respectively. For example, as 
shown in Figure 4, after one time global 5-fold cross-validation 
on Dataset 2, FRMCLDA achieved an AUC of 0.91827, higher 
than SIMCLDA (0.88401) and KATZLDA (0.83693). The AUPR 
of FRMCLDA was 0.23794, also higher than those of SIMCLDA 
(0.1989) and KATZLDA (0.0635). Furthermore, on Dataset 2, 
the maximum precision reached by FRMCLDA is 0.88, which is 
higher than other methods, as shown in Table 6. On Dataset 3, 
after 20 times 5-fold CV, the average AUC of FRMCLDA is 0.8999 
(±0.0049), which is superior to SIMCLDA 0.84694 (±0.0033) 
and KATZLDA 0.78561 (±0.0053). The AUPR of FRMCLDA 
is 0.1908 (±0.0033), higher than those of SIMCLDA 0.13717 
(±0.0027) and KATZLDA 0.0293 (±0.0036), as shown in Figure 5. 
Furthermore, in terms of precision-rank bar and recall-rank bar, 
FRMCLDA boasts the best precision at every rank except for the 
top-20 rank in Dataset 3. In summary, FRMCLDA demonstrates 
high prediction accuracy on three different datasets.

Case Study
After performing cross validation to confirm the ability of 
FRMCLDA, we conducted a global prediction of potential 
related disease-lncRNA pairs. All known lncRNAs-diseases 
links were considered as training samples, while other 
unknown associations constituted the candidate samples. 
FRMCLDA can infer the latent correlated lncRNAs for all 
diseases simultaneously by faster random matrix completion. 
All candidate lncRNAs correlated with a queried disease were 

FIGURE 2 | Overall performance assessment of FRMCLDA, BPLLDA, SIMCLDA, KATZLDA and LRLSLDA in predicting disease-lncRNA relationships on Dataset 1 
by global LOOCV.
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ranked according to predicted scores generated by FRMCLDA. 
The predicted and ranked lncRNAs (excluding known correlated 
lncRNAs) correlated with 226 diseases on Dataset 3 can be 
seen in Supplementary S2. To confirm whether top-ranked 
lncRNAs for queried diseases are real through public literature 
and three public databases (LncRNADisease, Lnc2Cancer and 
MNDR), we have conducted case studies on Dataset 3. Three 
databases are kept updated with new disease-lncRNA links 
verified by biological experiments in support of our validation. 
As shown by one of the prediction results in Supplementary 
S2, we take prostate cancer, colon cancer and gastric cancer 
and show the verification of top-20 predicted lncRNAs for each 
selected cancer.

Prostate cancer is one of the most common malignant 
tumors for males, accounting for about 13% of cancer-related 
death (Miller et al., 2016). In prostate cancer, the expression 

level of lncRNAs may be increasing or decreasing steadily 
(Smolle et al., 2017). Thus, it is justifiable to predict the 
possible links between lncRNAs and prostate cancer. Recent 
biological experiments have identified several lncRNAs 
associated with prostate cancer. For example, LncRNA H19 is 
down-regulated significantly in the cell line M12 of metastatic 
prostate carcinoma (Zhu et al., 2014). HOTAIR is found to 
be significantly regulated via genistein, and the expression of 
HOTAIR in castration-resistant PCa cell line is higher than 
that of standard prostate cell lines (Chiyomaru et al., 2013). 
MEG3 can enhance Bax, activate caspase 3 and inhibit the 
internal survival pathway of cells in vivo and in vitro through 
decreasing the bcl-2 protein expression (Zhang et al., 2003). 
MALAT1 is upregulated in prostate tumor tissue and cell line 
of human beings (Ren et al., 2013). It is reported that CBX7 
and CDKN2B-AS1 levels are enhanced in prostate tumor 
tissues (Yap et al., 2010). PVT1 can accelerate the intrusion 
and transfer by prostate carcinoma via regulating EMT (Chang 
et al., 2018). Linc00963 is a new lncRNA which is involved in 
the transformation from the androgen-dependent stage to the 
androgen-independent stage of prostate carcinoma (Wang 
et al., 2014). In our work, FRMCLDA is performed to infer 
possible lncRNAs correlated with prostate cancer. Finally, 
10 out of top-10 and 16 out of top-20 predicted prostate 
cancer-associated lncRNAs are verified on the three databases 
(LncRNADisease, MNDR, Lnc2Cancer) mentioned above. 
They are shown in Table 7.

Colon cancer is considered as one of the most widespread and 
deadly cancers in the world. Disorders of lncRNAs are associated 

FIGURE 3 | Performance assessment of LRLSLDA, GrwLDA, BPLLDA and FRMCLDA in inferring novel disease-correlated lncRNAs on Dataset 1 by local LOOCV. 
(A) ROC curve of inferring novel disease-related lncRNAs. (B) PR curve of inferring novel disease-related lncRNAs.

TABLE 5 | Predicting novel disease-related lncRNAs by deleting known 
associations for each disease.

Known but deleted 
breast cancer-related 
lncRNAs

Rank 
number

Known but deleted 
breast cancer-

related lncRNAs

Rank 
number

BCAR4 13 LSINCT5 7
BCYRN1 6 MALAT1 2
CDKN2B-AS1 4 MEG3 3
DSCAM-AS1 8 MIR31HG 14
GAS5 10 PINC 15
H19 1 PVT1 5
HOTAIR 9 SRA1 11
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with miscellaneous biological processes, including tumorigenesis 
(Ba-Alawi et al., 2016). For example, CDKN2B-AS1 up-regulates 
proliferation in HCT116 cells in a manner independent of the 
p15/p16-pRB pathway (Chiyomaru et al., 2013). The lower 
expression of GAS5 is highly related to big tumor volumes, low 
histological scores and late TNM stages. LncRNA Plasma UCA1 
can be used as a potential biomarker for inchoate diagnosis 
and monitoring of colon cancer (Aken et al., 2016). It is found 
that overexpression of lncRNA TUG1 promotes colon cancer 
progression (Ba-Alawi et al., 2016). We utilize FRMCLDA to 
restore the possible colon cancer-correlated lncRNAs. The results 
suggest that, 9 out of the top 10 (9/10) and 15 out of the top 20 
(15/20) predicted lncRNAs are confirmed by three databases 

mentioned before (LncRNADisease, MNDR, Lnc2Cancer), as 
shown in Table 8.

Gastric cancer is one of the cancers with the highest 
incidence and mortality in the world. Gastric cancer is a 
complicated disease, caused by an imbalance of the cancer-
causing and cancer-suppressing pathways (Aken et al., 2016). 
An increasing number of studies show that lncRNAs may play 
an active role in primary processes of gastric cancer. FRMCLDA 
predicts the gastric cancer-associated lncRNAs, some of which 
are validated though the latest public literature and databases. 
For instance, the expression of GAS5 is found to be lowered 
in gastric tumors, contrary to the up-regulated expression 
of mir-23a (Ba-Alawi et al., 2016). It is suggested that a high 

FIGURE 4 | Performance of FRMCLDA, KATZLDA and SIMCLDA on inferring lncRNAs by global 5-fold cross-validation on Dataset 2. (A) ROC curve of predicting 
disease-lncRNA associations. (B) PR curve of predicting disease-lncRNA associations. (C) Results of precision at every rank. (D) Results of recall at every rank.
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FIGURE 5 | Performance of FRMCLDA, KATZLDA and SIMCLDA on inferring lncRNAs by global 5-fold cross-validation on Dataset 3. (A) ROC curve of predicting 
disease-lncRNA associations. (B) PR curve of predicting disease-lncRNA associations. (C) Results of precision at every rank. (D) Results of recall at every rank.

TABLE 6 | Precision-rank on dataset 2.

lncRNA Top 20 Top 40 Top 60 Top 80 Top 100 Top 120 Top 140

precision

FRMCLDA 0.8800 0.5150 0.4233 0.3775 0.3440 0.3200 0.3029
SIMCLDA 0.5300 0.4150 0.3667 0.3175 0.2860 0.2671 0.2343
KATZLDA 0.2100 0.1500 0.1500 0.1300 0.1200 0.1167 0.1086

recall
FRMCLDA 0.1630 0.1707 0.2352 0.2796 0.3185 0.3556 0.3926
SIMCLDA 0.0981 0.1537 0.2037 0.2352 0.2648 0.2907 0.3037
KATZLDA 0.0389 0.0556 0.0833 0.0963 0.1111 0.1296 0.1407
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level of MALAT1 could be a potential biomarker for distant 
metastasis of gastric cancer. Further studies have shown that 
lincrna-p21 knockout can promote the malignant behavior of 
gastric cancer cells according to overexpression assay (Aken 
et al., 2016). LncRNA SNHG16 is found to be highly expressed 
in gastric cancer and thus has become a novel target of clinical 
treatment for gastric cancer (Lian et al., 2017). The results 
show that, 8 out of the top-10 ranked lncRNAs and 16 out of 
the top-20 ranked lncRNAs are validated by FRMCLDA, as 
shown in Table 9.

The network of the top 50 ranked links with prostate cancer, 
colon cancer and gastric cancer on Dataset 3 by FRMCLDA 
is shown in Figure 6. We find that some top-ranked lncRNAs 

are associated with one or more diseases. The results in case 
studies for three selected cancers have shown an outstanding 
prediction performance of FRMCLDA. As stated, FRMCLDA 
is a comprehensive method which could infer latent disease-
lncRNA link for overall diseases synchronously. As a result, 
we also prioritized overall candidate disease-lncRNA pairs 
(excluding known links) on Dataset 3 by their global scores 
assigned through FRMCLDA. The higher the global scores of 
the links, the more likely that links between them exist. For 
example, the predicted global score for GAS5 and gastric 
cancer ranks 6th out of all the 60,169 non-zero predicted 
results by FRMCLDA. This prediction was confirmed in the 
latest research by Sun M et al. (Aken et al., 2016). They verified 
that the reduced expression of GAS5 indicates poor prognoses 
and will lead to gastric cancer cells spreading. Therefore, top-
priority prediction further proves the validity of FRMCLDA, 
and so do the other high-ranked links. The results of the global 
rank for all the predicted links are provided in Supplementary 
S3. We hope that the prediction results may help discovery of 
disease-related lncRNAs.

CONCLUSIONS

With the development of the next-generation sequencing in 
biomedical research, constructing a heterogeneous network on 
the basis of clinical NGS big data will benefit in prediction models 
of latent human disease-lncRNA associations. The prediction of 
disease-lncRNA links is very important in the biomedical field, 
among others. Construction of computational prediction models 
for new disease-lncRNA relationships will help understand the 
molecular mechanism of complicated human diseases at the level 
of lncRNA, and recognize the disease biomarker for diagnosis, 
treatment, prognosis and prevention of disease.

In this paper, we calculated the integrated similarities for 
diseases and lncRNAs using different methods and dealing with 
different types of data sources. We constructed a heterogeneous 
bilayer network by integrating similarity networks and 
interaction network. Then we utilized the algorithm fSVT 
to retrieve the unknown entries in adjacency matrix of the 
heterogeneous network. Theoretically FRMCLDA has a 
superior performance compared to other association prediction 
methods, because it takes account of all the predominant 
eigenvalues and the relevant eigenvectors of the matrix to be 
restored. In addition, FRMCLDA is able to process large scale 
matrices and execute proximate SVD rapidly at each SVT 
iteration by incorporating rSVD-BKI with a novel sub-space 
reuse technique. To assess the performances of FRMCLDA, 
experiments including global LOOCV and local LOOCV, global 
5-fold CV and case studies are conducted. The experimental 
results show that the effectiveness of FRMCLDA is consistent 
with the theoretical estimation. Nevertheless, there are also a 
few limitations for FRMCLDA. First, if the adjacency matrix 
lacks low rank, then matrix completion with fSVT will lose its 
speed advantage. Second, the p value in power iteration can be 
adapted to guarantee the accuracy of SVD, but it can increase to 

TABLE 7 | The top-20 lncRNAs predicted for prostate cancer.

Rank LncRNA Pubmed 
ID

Rank LncRNA Pubmed 
ID

1 H19 24988946 11 IGF2-AS 27507663
2 HOTAIR 23936419 12 PCAT1 22664915
3 MEG3 14602737 13 LincRNA-p21 27976428
4 MALAT1 23845456 14 PTENpg1 not found
5 CDKN2B-AS1 20541999 15 PRNCR1 20874843
6 PVT1 23728290 16 SNHG16 not found
7 GAS5 22664915 17 MINA not found
8 Linc00963 24691949 18 SRA1 16607388
9 C1QTNF9B-AS1 27507663 19 NEAT1 25415230
10 UCA1 27686228 20 LSINCT5 not found

TABLE 8 | The top-20 lncRNAs predicted for colon cancer.

Rank Name of 
LncRNA

Pubmed ID Rank Name of 
LncRNA

Pubmed 
ID

1 CDKN2B-AS1 26708220 11 DRAIC Not found
2 PVT1 25043044 12 IGF2-AS Not found
3 GAS5 25326054 13 NPTN-IT1 23395002
4 LincRNA-p21 26656491 14 XIST 29679755
5 UCA1 26885155 15 PCAT29 Not found
6 KCNQ1OT1 16965397 16 LSINCT5 25526476
7 TUG1 27634385 17 anti-NOS2A Not found
8 MINA Not found 18 HIF1A-AS2 29278853
9 BCYRN1 29625226 19 SNHG16 24519959
10 MIAT 29686537 20 HIF1A-AS1 28946548

TABLE 9 | The top-20 lncRNAs predicted for gastric cancer.

Rank Name of 
LncRNA

Pubmed 
ID

Rank Name of 
LncRNA

Pubmed 
ID

1 GAS5 27827524 11 SNHG16 29081409
2 MALAT1 27486823 12 PTENpg1 25694351
3 LincRNA-p21 28969031 13 PCAT29 25700553
4 BCYRN1 29435146 14 XIST 29053187
5 KCNQ1OT1 Not found 15 BDNF-AS1 Not found
6 IGF2-AS Not found 16 HIF1A-AS1 26722487
7 TUG1 27983921 17 HIF1A-AS2 25686741
8 NPTN-IT1 28951520 18 lncRNA-ATB 28115163
9 MIAT 29039602 19 HAR1B Not found
10 DRAIC 25700553 20 CCAT2 29435046

31

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


FRMCLDALi et al.

14 September 2019 | Volume 10 | Article 769Frontiers in Genetics | www.frontiersin.org

REFERENCES

Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., et al. (2016). The 
ensembl gene annotation system. Database (Oxford) 1–19 2016. doi: 10.1093/
database/baw093

Ba-Alawi, W., Soufan, O., Essack, M., Kalnis, P., and Bajic, V. B. (2016). DASPfind: 
new efficient method to predict drug-target interactions. J. Cheminf. 8, 15. doi: 
10.1186/s13321-016-0128-4

Bian, E. B., Li, J., Xie, Y. S., Zong, G., Li, J., and Zhao, B. (2015). LncRNAs: new 
players in gliomas, with special emphasis on the interaction of lncRNAs with 
EZH2. J. Cell. Physiol. 230, 496–503. doi: 10.1002/jcp.24549

Cai, J. F., Candes, E. J., and Shen, Z. (2008). A singular value thresholding 
algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982. doi: 
10.1137/080738970

Candès, E. J., and Recht, B. (2009). Exact matrix completion via convex 
optimization. Found. Comput. Math. 9, 717. doi: 10.1007/s10208-009-9045-5

several tens in some situations, which will lead to an increased 
running time and deprive the rSVD-BKI of advantages over the 
original SVD method. In conclusion, by expediting the matrix 
completion algorithm or properly extracting more effective 
features from lncRNAs and diseases, the performances of 
FRMCLDA can be further improved. 

DATA AVAILABILITY

All datasets generated for this study are included in the 
manuscript/supplementary files.

AUTHOR CONTRIBUTIONS

WL, SW and JY conceptualized the work and planned the 
procedure of experiments; JX and GM and GT implemented 
literature research; WL collected the data and analysed the 

results; WL and JY drafted the manuscript; all the authors have 
read and supported the final edition.

FUNDING

This work was supported by the National Nature Science 
Foundation of China (Grant Nos. 61672011 and 61474267, 
the National Key Research and Development Program (Grant 
Nos. 2017YFC1311003) and the Natural Science Foundation of 
Hunan, China (Grant No. 2018JJ2461).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00769/
full#supplementary-material

FIGURE 6 | Network of the top-50 predicted associations of prostate cancer, colon cancer and gastric cancer on Dataset 3. Circles and triangles represent 
lncRNAs and diseases, respectively.

32

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/database/baw093
https://doi.org/10.1093/database/baw093
https://doi.org/10.1186/s13321-016-0128-4
https://doi.org/10.1002/jcp.24549
https://doi.org/10.1137/080738970
https://doi.org/10.1007/s10208-009-9045-5
https://www.frontiersin.org/articles/10.3389/fgene.2019.00769/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00769/full#supplementary-material


FRMCLDALi et al.

15 September 2019 | Volume 10 | Article 769Frontiers in Genetics | www.frontiersin.org

Chang, Z., Cui, J., and Song, Y. (2018). Long noncoding RNA PVT1 promotes 
EMT via mediating microRNA-186 targeting of twist1 in prostate cancer. Gene 
654, 36–42. doi: 10.1016/j.gene.2018.02.036

Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., et al. (2013). 
LncRNADisease: a database for long-non-coding RNA-associated diseases. 
Nucleic Acids Res. 41, D983–D986. doi: 10.1093/nar/gks1099

Chen, X. (2015). KATZLDA: KATZ measure for the lncRNA-disease association 
prediction. Sci. Rep. 5, 16840. doi: 10.1038/srep16840

Chen, X., and Yan, G. Y. (2013). Novel human lncRNA-disease association 
inference based on lncRNA expression profiles. Bioinformatics 29, 2617–2624. 
doi: 10.1093/bioinformatics/btt426

Chiyomaru, T., Yamamura, S., Fukuhara, S., Yoshino, H., Kinoshita, T., Majid, S., et al. 
(2013). Genistein inhibits prostate cancer cell growth by targeting miR-34a and 
oncogenic HOTAIR. PLoS One 8, e70372. doi: 10.1371/journal.pone.0070372

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. 
(2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis 
of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789. 
doi: 10.1101/gr.132159.111

Ding, L., Wang, M., Sun, D., and Li, A. (2018). TPGLDA: novel prediction of 
associations between lncRNAs and diseases via lncRNA-disease-gene tripartite 
graph. Sci. Rep. 8, 1065. doi: 10.1038/s41598-018-19357-3

Feng, X., Yu, W., and Li, Y. (2018). “Faster Matrix Completion Using Randomized 
SVD”, in 2018 IEEE 30th International Conference on Tools with Artificial Intelligence 
(ICTAI) (Volos, Greece: Greece, IEEE), 608–615. doi: 10.1109/ICTAI.2018.00098

Gu, C., Liao, B., Li, X., Cai, L., Li, Z., Li, K., et al. (2017). Global network random 
walk for predicting potential human lncRNA-disease associations. Sci. Rep. 7, 
12442. doi: 10.1038/s41598-017-12763-z

Halko, N., Martinsson, P. G., and Tropp, J. A. (2010). Finding structure with 
randomness: probabilistic algorithms for constructing approximate matrix 
decompositions. SIAM Rev. 53, 217–288. doi: 10.1137/090771806

Li, Y., and Yu, W. (2017). A fast implementation of singular value thresholding 
algorithm using recycling rank revealing randomized singular value 
decomposition. Computer Science: Numerical Analysis.

Lian, D., Amin, B., Du, D., and Yan, W. (2017). Enhanced expression of the long 
non-coding RNA SNHG16 contributes to gastric cancer progression and 
metastasis. Cancer Biomarker 21, 151–160. doi: 10.3233/CBM-170462

Lu, C., Yang, M., Luo, F., Wu, F. X., Li, M., Pan, Y., et al. (2018). Prediction of 
lncRNA-disease associations based on inductive matrix completion. 
Bioinformatics 34, 3357–3364. doi: 10.1093/bioinformatics/bty327

Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., 
et al. (2016). Cancer treatment and survivorship statistics, 2016. CA Cancer J. 
Clin. 66, 271–289. doi: 10.3322/caac.21349

Musco, C., and Musco, C. (2015). Randomized block Krylov methods for stronger 
and faster approximate singular value decomposition, in Proceedings of the 28th 
International Conference on Neural Information Processing Systems, vol. 1, 1–9. 
(Montreal, Canada: MIT Press). 

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM J. 
Comput. 24, 227–234. doi: 10.1137/S0097539792240406

Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the 
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 
48, 443–453. doi: 10.1016/0022-2836(70)90057-4

Niknafs, Y. S., Han, S., Ma, T., Speers, C., Zhang, C., Wilder-Romans, K., et al. 
(2016). The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 
in breast cancer progression. Nat. Commun. 7, 12791. doi: 10.1038/
ncomms12791

Ning, S., Zhang, J., Wang, P., Zhi, H., Wang, J., Liu, Y., et al. (2016). Lnc2Cancer: 
a manually curated database of experimentally supported lncRNAs associated 
with various human cancers. Nucleic Acids Res. 44, D980–D985. doi: 10.1093/
nar/gkv1094

Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R., 
Farne, A., et al. (2007). ArrayExpress–a public database of microarray 
experiments and gene expression profiles. Nucleic Acids Res. 35, 747–750. doi: 
10.1093/nar/gkl995

Pinero, J., Bravo, A., Queralt-Rosinach, N., Gutierrez-Sacristan, A., Deu-Pons, J., 
Centeno, E., et al. (2017). DisGeNET: a comprehensive platform integrating 
information on human disease-associated genes and variants. Nucleic Acids 
Res. 45, D833–D839. doi: 10.1093/nar/gkw943

Ren, S., Liu, Y., Xu, W., Sun, Y., Lu, J., Wang, F., et al. (2013). Long noncoding RNA 
MALAT-1 is a new potential therapeutic target for castration resistant prostate 
cancer. J. Urol. 190, 2278–2287. doi: 10.1016/j.juro.2013.07.001

Rose, J., and Eisenmenger, F. (1991). A fast unbiased comparison of protein 
structures by means of the Needleman-Wunsch algorithm. J. Mol. Evol. 32, 
340–354. doi: 10.1007/BF02102193

Smolle, M. A., Bauernhofer, T., Pummer, K., Calin, G. A., and Pichler, M. (2017). 
Current insights into Long Non-Coding RNAs (LncRNAs) in prostate cancer. 
Int. J. Mol. Sci. 18. doi: 10.3390/ijms18020473

Sun, J., Shi, H., Wang, Z., Zhang, C., Liu, L., Wang, L., et al. (2014). Inferring novel 
lncRNA-disease associations based on a random walk model of a lncRNA functional 
similarity network. Mol. Biosyst. 10, 2074–2081. doi: 10.1039/C3MB70608G

Wang, J. Z., Zhidian, D., Rapeeporn, P., Yu, P. S., and Chin-Fu, C. (2007). A new 
method to measure the semantic similarity of GO terms. Bioinformatics 23, 
1274–1281. doi: 10.1093/bioinformatics/btm087

Wang, L., Han, S., Jin, G., Zhou, X., Li, M., Ying, X., et al. (2014). Linc00963: 
a  novel, long non-coding RNA involved in the transition of prostate cancer 
from androgen-dependence to androgen-independence. Int. J. Oncol. 44, 
2041–2049. doi: 10.3892/ijo.2014.2363

Wang, Y., Chen, L., Chen, B., Li, X., Kang, J., Fan, K., et al. (2013). Mammalian 
ncRNA-disease repository: a global view of ncRNA-mediated disease network. 
Cell Death Dis. 4, e765. doi: 10.1038/cddis.2013.292

Xiao, X., Zhu, W., Liao, B., Xu, J., and Yang, J. (2018). BPLLDA: predicting 
lncRNA-disease associations based on simple paths with limited lengths in a 
heterogeneous network. Front. Genet. 9, 411. doi: 10.3389/fgene.2018.00411

Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., et al. 
(2010). Molecular interplay of the noncoding RNA ANRIL and methylated 
histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. 
Mol. Cell. 38, 662–674. doi: 10.1016/j.molcel.2010.03.021

Zhang, X., Zhou, Y., Mehta, K. R., Danila, D. C., Scolavino, S., Johnson, S. R., et al. 
(2003). A pituitary-derived MEG3 isoform functions as a growth suppressor in 
tumor cells. J. Clin. Endocrinol. Metab. 88, 5119–5126. doi: 10.1210/jc.2003-030222

Zhou, X., Yin, C., Dang, Y., Ye, F., and Zhang, G. (2015). Identification of the long 
non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric 
cancer. Sci. Rep. 5, 11516. doi: 10.1038/srep11516

Zhu, M., Chen, Q., Liu, X., Sun, Q., Zhao, X., Deng, R., et al. (2014). lncRNA H19/
miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 
281, 3766–3775. doi: 10.1111/febs.12902

Conflict of Interest Statement: JY and GT were employed by company Geneis 
Beijing Co., Ltd. The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be construed 
as potential conflict of interest.

Copyright © 2019 Li, Wang, Xu, Mao, Tian and Yang. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and 
that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

33

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1016/j.gene.2018.02.036
https://doi.org/10.1093/nar/gks1099
https://doi.org/10.1038/srep16840
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1371/journal.pone.0070372
https://doi.org/10.1101/gr.132159.111
https://doi.org/10.1038/s41598-018-19357-3
https://doi.org/10.1109/ICTAI.2018.00098
https://doi.org/10.1038/s41598-017-12763-z
https://doi.org/10.1137/090771806
https://doi.org/10.3233/CBM-170462
https://doi.org/10.1093/bioinformatics/bty327
https://doi.org/10.3322/caac.21349
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1038/ncomms12791
https://doi.org/10.1038/ncomms12791
https://doi.org/10.1093/nar/gkv1094
https://doi.org/10.1093/nar/gkv1094
https://doi.org/10.1093/nar/gkl995
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1016/j.juro.2013.07.001
https://doi.org/10.1007/BF02102193
https://doi.org/10.3390/ijms18020473
https://doi.org/10.1039/C3MB70608G
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.3892/ijo.2014.2363
https://doi.org/10.1038/cddis.2013.292
https://doi.org/10.3389/fgene.2018.00411
https://doi.org/10.1016/j.molcel.2010.03.021
https://doi.org/10.1210/jc.2003-030222
https://doi.org/10.1038/srep11516
https://doi.org/10.1111/febs.12902
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 September 2019 | Volume 10 | Article 830

BRIEF RESEARCH REPORT

doi: 10.3389/fgene.2019.00830
published: 18 September 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Yudong Cai,  

Shanghai University,  
China

Reviewed by: 
Quan Zou,  

University of Electronic Science 
and Technology of China, China 

Yu Wang,  
Jilin University,  

China

*Correspondence: 
Shijia Zhu 

Shijia.Zhu@UTSouthwestern.edu 
Yujin Hoshida 

Yujin.Hoshida@UTSouthwestern.edu

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Bioinformatics and 
Computational Biology,  
a section of the journal  

Frontiers in Genetics

Received: 20 June 2019
Accepted: 12 August 2019

Published: 18 September 2019

Citation: 
Yip SH, Fujiwara N, Burke J, 
Shetler A, Peralta C, Qian T, 

Hoshida H, Zhu S and Hoshida Y 
(2019) MPIC: Molecular Prognostic 
Indicators in Cirrhosis Database for 

Clinical Context-Specific in Silico 
Prognostic Biomarker Validation. 

Front. Genet. 10:830.  
doi: 10.3389/fgene.2019.00830

MPIC: Molecular Prognostic 
Indicators in Cirrhosis Database 
for Clinical Context-Specific in Silico 
Prognostic Biomarker Validation
Shun H. Yip 1†, Naoto Fujiwara 1,2†, Jason Burke 3, Anand Shetler 1, Celina Peralta 1, 
Tongqi Qian 4, Hiroki Hoshida 1, Shijia Zhu 1* and Yujin Hoshida 1*

1 Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver 
Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States, 
2 Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan, 3 Broad Institute of 
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Prognostic biomarkers are vital in the management of progressive chronic diseases such 
as liver cirrhosis, affecting 1–2% of the global population and causing over 1 million deaths 
every year. Despite numerous candidate biomarkers in literature, the costly and lengthy 
process of validation hampers their clinical translation. Existing omics databases are not 
suitable for in silico validation due to the ignorance of critical factors, i.e., study design, 
clinical context of biomarker application, and statistical power. To address the unmet need, 
we have developed the Molecular Prognostic Indicators in Cirrhosis (MPIC) database as a 
representative example of an omics database tailored for prognostic biomarker validation. 
MPIC consists of (i) a molecular and clinical database structured by defined disease context 
and specific clinical outcome and annotated with employed study design and anticipated 
statistical power by disease domain experts, (ii) a bioinformatics analysis engine for user-
provided gene-signature- or gene-based prognostic prediction, and (iii) a user interface for 
interactive exploration of relevant clinical cohort/scenario and assessment of significance 
and reliability of the result for prognostic prediction. MPIC assists cost-effective prognostic 
biomarker development by facilitating the process of validation, and will transform the care 
of chronic diseases such as cirrhosis. MPIC is freely available at www.mpic-app.org. The 
website is implemented in Java, Apache, and MySQL with all major browsers supported.

Keywords: prognostic prediction, study design, molecular signature, chronic disease, cirrhosis

INTRODUCTION

Management of chronic diseases is a considerable economic burden to the medical care systems. 
For example, progressive fibrosis in solid organs is one of the major life-limiting chronic disease 
conditions associated with at least one-third of deaths worldwide (Rockey et al., 2015). Liver 
cirrhosis is one of the major fibrotic conditions that costs >$12 billion even in the U.S. alone (Ge 
and Runyon, 2016; Fujiwara et al., 2018). Organ fibrosis progression generally takes decades and the 
rate of disease progression is highly variable across the patients. Therefore, prognostic prediction is 
critical to allocate limited medical resources to rapid progressors who most need intervention, while 
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sparing the resources for slow progressors to maximize the cost-
effectiveness of patient management. However, development 
of prognostic biomarker is extremely challenging as evidenced 
by the absence of clinically translated biomarkers despite years 
of research (Goossens et al., 2015). This is primarily due to 
requirement of lengthy and costly clinical validation of candidate 
biomarkers, which does not fit within the budget and time frame 
of typical clinical trial. A fast and cheap alternative strategy of 
prognostic biomarker validation is sorely needed.

Publicly available omics profiles of clinical specimens may 
provide the opportunity of in silico validation for candidate 
prognostic biomarkers and spare resources and efforts wasted for 
unsuccessful clinical trials. However, currently available databases 
do not meet the need because the following two critical issues for 
prognostic biomarker assessment are disregarded (Chen et al., 
2014): (1) Study-design-related information is missing. Clinical 
prognostic information, defined as time to clinical event, is 
generally incomplete due to insufficient observation period and/or 
biases in patient enrollment and treatment and follow-up protocols. 
Therefore, observed prognostic association is vulnerable to flaws 
in study design that could lead to false positive or negative finding 
(Goossens et al., 2015). Clinical patient cohort can be assembled in 
either retrospective or prospective manner. A retrospective cohort 
is a collection of patients from previously performed clinical care, 
where patient inclusion/exclusion criteria cannot be optimized 
because the enrollment is already completed in the past. In contrast, 
a prospective cohort is a collection of patients from future clinical 
care, which can be enrolled based on pre-determined inclusion/
exclusion criteria, although completion of patient enrollment and 
follow up will take long time and is costly. In reality, virtually most 
of omics data suffer from the issue of biased patient enrollment 
because of the use of “samples of convenience,” i.e., readily available 
biospecimens retrospectively collected without predetermined 
intention of prognostic biomarker assessment (Simon et al., 
2009). Thus, it is critical to annotate cohort/dataset for study 
design quality according to reporting guidelines to provide clue 
to reliability of observed prognostic association (Mcshane et al., 
2006; Vandenbroucke et al., 2007); (2) Specific clinical context or 
scenario for biomarker application is missing. There is no clinical 
utility for a prognostic biomarker without specific indication of its 
use in real-world clinical practice, e.g., prediction of liver cancer 
development in Child-Pugh class A compensated viral cirrhosis 
patients monitored under biannual liver cancer screening, 
prediction of cancer-related death after 8-week cisplatin-based 
chemotherapy in stage III ovarian cancer.

To meet the unmet need by addressing the two major issues, 
we have developed Molecular Prognostic Indicators in Cirrhosis 
(MPIC) database as a proof of concept specifically designed for 
reliable prognostic assessment of candidate biomarkers using 
chronic fibrotic liver diseases as representative example. This 
scheme is readily applicable to other chronic diseases.

METHODOLOGY AND RESULTS

Genome-wide transcriptome datasets and associated clinical 
outcome data are from our previous and ongoing studies as well 

as private contribution. Although available data are still scarce, 
cohorts/outcomes from public databases such as NCBI Gene 
Expression Omnibus (www.ncbi.nlm.nih.gov/geo) and EBI 
ArrayExpress (www.ebi.ac.uk/arrayexpress) are included.

The database currently contains 66 unique cohorts/outcomes 
of 5,540 subjects with unique clinical contexts, covering the 
major chronic liver diseases (i.e., viral or metabolic chronic 
hepatitis, cirrhosis, and cancer) for two types of outcome, 
time-to-event and binary outcomes (Table 1). The contents are 
curated and thoroughly annotated for study design by disease 
domain experts (NF and YH). The metadata include clinical 
demographics such as disease etiology, patient race/ethnicity, 
geographic region/country, median and interquartile range 
of clinical follow-up time, and % of patients who experienced 
clinical outcome of interest. Mode of patient enrollment 
is presented as prospective, retrospective to indicate the 
reliability of outcome association derived from the cohort. 
For instance, the analysis result from a prospective cohort 
can be reported as derived from “prospective-retrospective” 
study design, which indicates higher reliability compared to a 
result from retrospective study (Simon et al., 2009). Setting of 
patient enrollment is indicated as population-, community-, or 
hospital-based to explicitly indicate applicable clinical setting. 
Statistical power to detect certain magnitude of prognostic risk 
distinction is also provided to inform users about potential 
lack of statistical power for user-provided prognostic gene(s) at 
hazard ratios of 2.0 to 5.0 in Cox regression modeling, cutoffs 
often adopted to determine clinically meaningful prognostic risk 
distinction. Specific clinical contexts of biomarker application 
are unequivocally defined, and user can interactively find a 
clinical scenario of interest (see Step 1 in the next section).

MPIC consists of the following three components: (i) 
MySQL database of molecular profiles and clinical annotations 
for each specific clinical outcome in each patient cohort, 
(ii) bioinformatics data analysis engine developed based on 
GenePattern genomic analysis environment (Reich et  al., 
2006), and (iii) a user interface implemented using Java 
Grails, communicating with the database and analysis engine. 
Biostatistical analysis methods are implemented using the R 
statistical language (www.r-project.org).

TABLE 1 | Clinical demographics of subjects in MPIC database.

Clinical characteristic

Age, median (IQR) 57 (50–65)
Sex, male no. (%) 4,035 (72.8)
Race/ethnicity, no. (%)
 Asian 3,369 (60.8)
 Black 31 (0.6)
 Caucasian 2,078 (37.5)
 Hispanic 46 (0.8)
Disease etiology, no. (%)
 Hepatitis B 1,278 (23.0)
 Hepatitis C 2.699 (48.7)
 Alcohol 796 (14.4)
 Non-alcoholic fatty liver disease 585 (10.6)
Observation time (yr), median (IQR) 2.9 (1.8–5.2)
Observation clinical events (%), median (IQR) 40 (31–55)
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In MIPC, users can test their own candidate prognostic 
gene(s) for association with a specific clinical outcome in a patient 
cohort following the steps described below (Figure 1). MPIC 
helps circumvent the lengthy and costly process of biomarker 
validation by providing opportunity to quickly perform in silico 
assessment of candidate biomarkers without requiring any 
clinical and experimental resources.

Step 1: Select Patient Cohort and  
Clinical Outcome
Genome-wide molecular profiles of patient cohorts 
are hierarchically organized by disease condition (e.g., 
hepatocellular carcinoma, cirrhosis, alcoholic hepatitis), type 
of specimens (e.g., liver tissue, tumor tissue, serum), and 
clinical outcome (e.g., development of organ decompensation, 
diagnosis of stage I cancer within 2 years after surgical therapy, 
overall death). By selecting a patient cohort under a clinical 
outcome, a user can browse detailed metadata/annotations 
for the cohort. The cohort meta-data are summarized in 
Supplementary Table 1.

Step 2: Upload User-Defined Prognostic 
Gene or Molecular Signature
Subsequently, a user-defined prognostic molecular signature or 
gene is uploaded. A prognostic molecular signature is defined as 
two sets of genes, up- or down-regulated in association with the 
clinical outcome of interest, in official gene symbols. Alternatively, 
a single gene symbol can be provided to examine association of 
the gene’s expression level with the clinical outcome of interest. 
MPIC currently supports only 2-class gene signature, i.e., two 
sets of genes overexpressed in association with either “Class 1” 
or “Class 2,” corresponding to opposite clinical outcomes such as 
“poor survival” or “good survival,” respectively.

Step 3: Patient Classification and 
Assessment of Prognostic Association
Using the user-defined molecular signature, each patient in 
the selected cohort is classified into either “Class 1” or “Class 2” 

subgroup (e.g., “poor survival” or “good survival” subgroup) by a 
nearest neighbor-based versatile class prediction algorithm, Nearest 
Template Prediction (NTP) using cosine distance as dissimilarity 
metric (Hoshida, 2010). Briefly, hypothetical representative 
“Class 1” and “Class 2” templates are defined as vectors with the 
same length with the user’s input gene signature, where “Class 1” 
genes are set to 1 and “Class 2” genes are set to 0 for the “Class 
1” template and vice versa for the “Class 2 template. Classification 
of each patient is performed based on proximity to either of the 
templates measured by cosine distance. Expression pattern of the 
user-provided molecular signature in the cohort is visualized as a 
heatmap of sample-wise Z-score for each gene. Alternatively, when 
a single gene symbol is provided as input, subjects are classified into 
high- or low-expression groups based on top quartile cut-off, and 
visualized as a bar graph. Association of the patient classification 
and time-to-event clinical outcome is evaluated by log-rank test and 
Cox regression and visualized as Kaplan-Meier curves. Correlation 
between each signature gene expression and selected time-to-event 
outcome is calculated as Cox score using the following equation 
adapted from previous study (Bair and Tibshirani, 2004):
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where i, sample index; k, unique death time indices z1:zk; xi, 
transcript abundance in sample i, ti, observation time; dk,  
number of deaths at time zk; mk, number of samples in Rk = i: 
ti > zk. Statistical significance of the statistic is measured as 
false discovery rate based on random gene resampling-based 
(n  =  1,000) nominal p-value and visualized as bar chart. 
Association with binary outcome is evaluated by 2 × 2 table 
statistics (e.g., sensitivity, specificity, positive/negative predictive 
values), Fisher’s exact test, and logistic regression. Data analysis 
engine was developed based on GenePattern (Reich et al., 2006), 
which can be easily extended to incorporate more analytic 
pipelines towards more advanced requirements.

FIGURE 1 | Workflow of MPIC for clinical context-specific in silico prognostic biomarker validation in cirrhosis.
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Throughout the process, users do not have access to individual 
patient’s molecular and clinical data. This is a logistical advantage 
that lowers the bar to deposit clinical outcome data by mitigating 
data contributors’ concerns about sharing unpublished data, 
bleaching patient identity, and other regulatory issues. Besides 
ongoing regular expansion of cohort/dataset collection in the 
database, future developments will cover meta-analysis of 
prognostic associations derived from multiple patient cohorts 
for a molecular signature, multivariable analysis incorporating 
clinical prognostic factors, and comparison of prognostic 
performance across multiple molecular signatures.

DISCUSSION

Prognostic biomarker is the vital component in the management of 
patients with progressive and lethal chronic diseases. However, its 
development has been a daunting task due to the costly and lengthy 
process of clinical validation as evidenced by the scarce prognostic 
biomarker assays successfully translated to clinic. Currently 
available omics databases cannot accommodate the need because 
they disregard critical issues for clinical prognostic assessment such 
as study design, clinical context of biomarker use, setting of patient 
enrollment, statistical power, among many others.

To address the unmet need, we have developed a proof-of-
concept database and web application, called MPIC. As opposed to 
biological hypothesis generation tools such as The Cancer Genome 
Atlas portal and associated databases, MPIC is specialized for 
prognostic biomarker validation using liver cirrhosis (cirrhosis) 
as a representative example that causes over one million deaths 
every year worldwide. It supports a quick go/no-go decision for 
prognostic biomarker candidates for further clinical development, 
avoids wasting cost and time for biomarker clinical trial, and 
enables revolutionarily more cost-effective prognostic biomarker 
development compared to the traditional strategy.

With this resource, we have successfully developed a prognostic 
assay implemented in FDA-approved clinical diagnostic platforms, 
supporting real-world clinical utility of our web application 
(initial discovery: (Hoshida et al., 2008), assay implementation 
and validation: (King et al., 2015; Nakagawa et al., 2016; Ono 
et al., 2017), incorporation in clinical trial as a companion 
biomarker: NCT02273362). Simulation-based analysis showed 
that personalized patient management with the prognostic assay is 
significantly cost-effective (Goossens et al., 2017), supporting that 

MPIC will have transformative biomedical impact on the dismal 
prognosis of cirrhosis patients. In the initial implementation, 
we primarily focused on gene expression datasets, but we will 
expand the database to cover other types of omics information 
such as non-coding RNA, epigenetic profiles, and DNA structural 
alterations. This scheme is readily applicable to other chronic 
diseases, and such an informatics resource will contribute to the 
substantial improvement of chronic disease management and 
patient prognosis.
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Gut microbiomes are integral microflora located in the human intestine with particular 
symbiosis. Among all microorganisms in the human intestine, bacteria are the most 
significant subgroup that contains many unique and functional species. The distribution 
patterns of bacteria in the human intestine not only reflect the different microenvironments 
in different sections of the intestine but also indicate that bacteria may have unique biological 
functions corresponding to their proper regions of the intestine. However, describing the 
functional differences between the bacterial subgroups and their distributions in different 
individuals is difficult using traditional computational approaches. Here, we first attempted 
to introduce four effective sets of bacterial features from independent databases. We 
then presented a novel computational approach to identify potential distinctive features 
among bacterial subgroups based on a systematic dataset on the gut microbiome 
from approximately 1,500 human gut bacterial strains. We also established a group of 
quantitative rules for explaining such distinctions. Results may reveal the microstructural 
characteristics of the intestinal flora and deepen our understanding on the regulatory role 
of bacterial subgroups in the human intestine.

Keywords: gut microbiome, bacteria feature, pattern, rule, multi-class classification

INTRODUCTION
Gut microbiome refers to the integral microflora that is located in the human intestine and has symbiosis 
with human beings (Arumugam et al., 2011;Yatsunenko et al., 2012). According to recent publications, 
the identified microflora in the human intestine contains tens of trillions of microorganisms including 
bacteria, fungi, protists, archaea, and viruses (Yatsunenko et al., 2012). Among different subgroups 
of microorganisms, bacteria are the most significant subgroup that contains unique and functional 
species between 300 and 1000 (Barcenilla et al., 2000;Chadchan et al., 2019). More than 60% of all 
microorganisms can be clustered into different bacterial subgroups. In different sections of the human 
intestine, the species distributions of bacteria are quite different (Reichardt et al., 2014). For instance, 
in the gut, almost all the identified bacteria are anaerobes; however, in the cecum, aerobic bacteria, 
another subgroup of bacteria, are predominant (Wells et al., 1987; Kelly et al., 2004). Such distribution 
patterns of bacteria in the human intestine not only reflect the different microenvironments in 
different sections of the intestine but also indicate that bacteria may have their unique biological 
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functions corresponding to their proper regions of the intestine. 
The symbiosis of human beings and bacterial subgroups/clusters 
maintains the stability of the intestinal microenvironment 
(Arumugam et al., 2011;Yatsunenko et al., 2012).

In general, the biological functions of symbiotic gut bacteria 
can be summarized into three major aspects: intestine immune 
regulation (Kelly et al., 2005), nutrition metabolism regulation 
(Ramakrishna, 2013), and regulation of gut–brain axis (Foster and 
McVey Neufeld, 2013; Plummer et al., 2013). First, the gut bacteria 
can initiate and activate the humoral and adaptive immune 
responses in the specific region of the gut (Slack et al., 2009; 
Bunker et al., 2015). As one of the major subgroups of immune 
response-associated processes in the intestinal immune system, 
cytokine-associated biological processes are important; different 
subgroups of gut bacteria have been confirmed to increase 
different subgroups of cytokines (Atarashi et al., 2013; Schirmer 
et al., 2016). In addition, most bacteria, such as filamentous 
bacteria, can activate the musical immune responses, indicating 
that different subgroups of bacteria can have different biological 
contributions to immune regulatory processes (Wu et al., 2010). 
Different subgroups of bacteria also contribute to the digestion 
and absorption of nutrients through specific nutrition-associated 
biological functions. For instance, saccharolytic fermentation 
is a specific fermentation process that helps synthesize unique 
subtypes of short-chain fatty acids, which are required by 
various organs, such as the brain, liver, and kidney, and cannot 
be synthesized independently (Miller and Wolin, 1979; Windey 
et al., 2012). Different subgroups of gut bacteria contribute to the 
manufacture of different nutrient subtypes (Windey et al., 2012). 
Thus, the collaborative contribution of different gut bacterial 
subgroups can maintain the nutrition supply and physical health 
of human beings. Importantly, the direct relationship between 
the gut bacteria and the central nervous system, known as the 
gut–brain axis, has been confirmed in recent studies (Ghaisas 
et al., 2016; Kohler et al., 2016). Early in 2004, an independent 
experiment confirmed that germ-free mice, which do not have 
gut microbiome, exhibited improved hypothalamic–pituitary 
axis response compared with normal controls (Riediger et al., 
2004). This study directly confirms that the gut microbiomes have 
potential causal effects on the central nervous system.

Bacterial distribution in the human intestine is significantly 
diverse and exerts various biological effects on human health. 
However, describing the functional differences between the 
bacterial subgroups and their distributions in different individuals 
is difficult using traditional computational approaches. Therefore, 
we attempted to introduce four effective sets of features from 
four independent databases, namely, the Antibiotic Resistance 
Genes Database (ARGD) (Liu and Pop, 2009), the Comprehensive 
Antibiotic Resistance Database (CARD) (McArthur et al., 2013; Jia 
et al., 2017), the Virulence Factor Database (VFDB) (Liu et al., 2019), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
(Kanehisa, 2002; Tanabe and Kanehisa, 2012). The combination 
of features may comprehensively describe the biological functions 
of different bacterial subgroups and screen their most critical 
differences. In the present study, using the dataset established by a 
systematic analysis on the gut microbiome from approximately 1500 
human gut bacteria phyla (Zou et al., 2019), we presented a novel 

computational approach to identify the potential distinctive features 
among bacterial subgroups and established a group of quantitative 
rules for explaining such distinctions. We only focused on three 
bacterial subgroups, namely, Actinobacteria, Bacteroidetes, and 
Firmicutes, due to the quantitative characteristics of the sequencing 
data. Our results may reveal the microstructural characteristics of 
the intestinal flora and deepen our understanding on the regulatory 
role of bacterial subgroups in the human intestine.

MATeRIAlS AND MeTHODS

Datasets
We downloaded the functional annotations of human gut bacteria 
from the China National GeneBank under Project ID: CNP0000126 
(https://db.cngb.org/search/project/CNP0000126/) (Zou et al., 
2019). Each human gut bacteria were encoded with 342 Antibiotic 
Resistance Genes Database (ARDB) annotation features, 259 
CARD annotation features, 243 KEGG annotation features, and 
149 VFDB annotation features (a total of 993 features). We analyzed 
three human gut bacteria phyla with number of strains greater 
than 100, namely, 235 Actinobacteria, 447 Bacteroidetes, and 
796 Firmicutes. Fusobacteria with six strains and Proteobacteria 
with 36 strains were excluded. The goal was to find the functional 
difference among different human gut bacterial phyla.

Features from different databases have their independent 
biological significance. The first database (ARDB) was built up to 
provide a basic summary for antibiotic resistance and facilitate the 
identification and annotation of novel drug resistance associated 
genes (Liu and Pop, 2009). Features in such database describes 
the gene ontology, COD&COG taxonomy, KEGG pathway 
information (McArthur et al., 2013; Jia et al., 2017), and mutation 
resistance information of all the annotated genes (Liu and Pop, 
2009). Using such features, we can easily describe the biological 
functions of effective genes and the potential pathogenic effects 
of specific mutations, classifying mutant and wild-type genes into 
different types (Liu and Pop, 2009). As for the second database, 
CARD, it summarizes all the characterized, peer-reviewed 
resistance determinants and associated antibiotics based on 
Antibiotic Resistance Ontology (ARO) and AMR gene detection 
models (McArthur et al., 2013; Jia et al., 2017). Features of such 
database mainly focused on the description of drug resistance 
characteristics of different microbial strains (McArthur et al., 
2013; Jia et al., 2017). Deferentially, the next database named 
as VFDB (Liu et al., 2019) turns out to be an integrated and 
comprehensive online resource for bacterial pathogenic analysis. 
Features from such databases describe the virulence factors and 
potential pathogens of various microbial types (Liu et al., 2019). 
As for the last database, as we have mentioned above, KEGG 
database (McArthur et al., 2013; Jia et al., 2017) mainly focuses on 
the functional description of potential microbial genes. Features 
of such database describe the unique functional characteristics.

Feature Ranking
Of the extracted 993 features from different sources, some 
features  were redundant and not informative. To select the 
important features that contribute most to the classification 
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tasks, we applied Monte Carlo feature selection (MCFS) (Cai 
et al., 2018; Chen et al., 2018a; Pan et al., 2018; Chen et al., 2019a; 
Chen et al., 2019c; Chen et al., 2019e; Li et al., 2019; Pan et al., 
2019a; Pan et al., 2019b) to analyze these features and rank them 
according to their importance. MCFS is a supervised feature 
selection method based on multiple decision trees (Draminski 
et al., 2008). MCFS first generates s bootstrap sample sets and 
m feature subsets from the original data. A decision tree is 
grown for each combination of the bootstrap set and feature 
subset. Accordingly, t×m trees are constructed in total and used 
to calculate relative importance (RI) score for each feature with 
the assumption that the important features should be frequently 
involved in many growing decision trees. For each feature, RI 
score is calculated based on the following components: 1) number 
of splits involved in all nodes of t×m trees; 2) information gain by 
each split; and 3) classification accuracies of individual decision 
trees. Its calculation formula is as follows:
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where IG(ng(τ)) stands for the gain information of node ng(τ), 
(no.in ng(τ)) the number of samples in node ng(τ), no.in τ the 
number of samples in tree τ, wAcc the weighted accuracy of 
decision tree τ. u, and v represent two regular factors, which were 
all set to one in this study. After obtaining the RI score of each 
feature, all features were ranked by the decreasing order of their 
RI scores. MCFS was implemented and downloaded at http://
www.ipipan.eu/staff/m.draminski/mcfs.html.

Incremental Feature Selection
After ranking the input features by using MCFS, we determined 
whether all these features are necessary for classifying 
Actinobacteria, Bacteroidetes, and Firmicutes. We applied 
incremental feature selection (IFS) (Zhang et al., 2015a; Zhang 
et al., 2015b; Zhou et al., 2015; Chen et al., 2017b; Chen et al., 
2017c; Liu et al., 2017; Chen et al., 2018b; Zhang et al., 2018; 
Chen et al., 2019d; Wang and Huang, 2019) with a classifier to 
the ranked features and selected the discriminate features with 
the best performance. Basing on the ranked features from MCFS, 
we constructed a series of feature subsets with step 1, e.g., the 
first feature subset has the top 1 feature, and the second subset 
has the top 1 and 2 features. For each feature subset, we trained 
a classifier on the samples consisting of features from the feature 
subset and evaluated the classification performance by 10-fold 
cross-validation. After running the process for all feature subsets, 
we selected the feature subset with the best performance (i.e., 
highest Matthews correlation coefficient); this feature subset was 
called the optimum feature subset.

Rule learning
Many different supervised classifiers, including black-box and 
interpretable rule-based methods, exist. Black-box methods 
cannot explain their predictions in a manner that humans can 
understand, and rule-based methods can supply classification 

reasons in a way understandable to humans. In this study, we used 
an interpretable rule-based classification method with repeated 
incremental pruning to produce error reduction (RIPPER) 
(Cohen, 1995; Li et al., 2019; Pan et al., 2019a) (i.e., Jrip algorithm) 
to classify the samples from three bacterial groups, namely, 
Actinobacteria, Bacteroidetes, and Firmicutes. In addition, a rule 
usually consists of if-then statement; simply put, if conditions A 
and B are met, then we make a certain prediction of yes or no. 
RIPPER is a greedy method for learning classification rules. 
This method first generates a good rule covering some samples 
in the training set. These covered samples are removed, and the 
remaining training set is used for the next rule. This process of 
rule generation is repeated until all samples are covered by the 
learned rules or predefined stop conditions are met. Lastly, the 
learned rules are further pruned using reduced error pruning.

To quickly implement the RIPPER algorithm mentioned 
above, a tool “JRip” in Weka (Witten and Frank, 2005) was 
directly employed in this study. For convenience, its default 
parameters were used.

Performance Measurement
We used RIPPER as a multiclassification method to classify samples 
from Actinobacteria, Bacteroidetes, and Firmicutes. The 10-fold 
cross-validation was adopted for performance evaluation (Huang 
et al., 2009; Huang et al., 2010; Cai et al., 2012; Chen et al., 2013; 
Zhang et al., 2015a; Zhao et al., 2018; Zhang et al., 2019; Zhao et al., 
2019), and the performance measurements should be appropriate 
for multiclass classification. Several measurements were employed 
in this task. They can be divided into two categories. The first 
measurement category was for each phylum, such as individual 
accuracy, precision, recall (same as individual accuracy), and 
Matthews correlation coefficient (MCC) (Matthews, 1975). The 
other measurement category fully evaluate the performance of 
the classification method, including overall accuracy and MCC 
in multi-class (Gorodkin, 2004), as detailed in previous works 
(Chen et al., 2017a; Li et al., 2018; Chen et al., 2019b; Chen et al., 
2019c; Cui and Chen, 2019; Pan et al., 2019a; Pan et al., 2019b). 
Because MCC in multi-class is widely accepted to be a balanced 
measurement even if the dataset is of great imbalance, it was 
selected as the key measurement in our study.

ReSUlTS
In this study, we extracted 993 features to represent each sample. 
These features consist of 342 ARDB features, 259 CARD features, 
243 KEGG features, and 149 VFDB features, wherein the names 
and values are given in Supplementary Table S1. Then, several 
advanced computational methods were adopted to analyze these 
features. The entire procedures are illustrated in Figure 1. Clearly, 
not all features have the same importance for distinguishing 
samples from different bacterial groups; as such, the features 
are ranked and selected using the RI scores from MCFS. The RI 
scores of individual features are given in Supplementary Table 
S2. A total of 432 of all 993 features have RI scores larger than 
zero and thus have discriminated ability for different bacterial 
groups. Other features were discarded in the following analysis.
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To further select the optimum features from the 432 
features, we used IFS with RIPPER for sample classification. 
RIPPER was trained and evaluated on the samples consisting 
of features from individual feature subsets by 10-fold cross-
validation. As shown in Figure 2, among the top 432 features, 
the best MCC in multi-class of 0.998 and an overall accuracy 
of 0.999 were obtained when the top 153 features were used. 
The individual accuracy (recall), precision and MCC for each 
phylum are shown in Figure 3. It can be seen that each of 
these measurements was larger than 0.990, indicating the good 
performance of RIPPER on top 153 features. In particular, we 

obtained a high MCC in multi-class of 0.991 and an overall 
accuracy of 0.995 when only the top 25 features were used. The 
detailed predicted results were counted as a confusion map, as 
shown in Figure 4. Its performance on each phylum is shown 
in Figure 3, which was a little lower than that of the RIPPER 
with top 153 features; however, it was still very high. The 
corresponding performance of the RIPPER with the number of 
features ranging from 1 to 432 are shown in Supplementary 
Table S3. The results indicate that the interpretable rule-based 
method RIPPER is close to perfectly classify the samples from 
Actinobacteria, Bacteroidetes, and Firmicutes.

FIgURe 1 | A flow chart to illustrate the procedures of identifying microbiota signature and functional rules for bacterial subtypes in human intestine. Bacteria in 
three human gut bacteria phyla were represented by four types of features. These features were analyzed by the Monte Carlo feature selection method, resulting in 
a feature list. For some top features, an extensive analysis was performed. Furthermore, the incremental feature selection method, incorporating the rule learning 
algorithm (RIPPER algorithm), was applied on the feature list to construct optimal classification rules, which were also extensively analyzed.

FIgURe 2 | Optimal performance of IFS with RIPPER algorithm. The RIPPER algorithm provided the highest MCC (0.998) when top 153 features were used.
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As mentioned above, RIPPER with top 25 features yielded 
quite high performance. To indicate the importance of these 25 
features, we did the following test: 1000 feature subsets containing 
25 features were randomly produced. RIPPER was trained on the 
samples represented by features from each of these feature subsets 
and evaluated by 10-fold cross-validation. Obtained MCCs in 
multi-class are illustrated in a box plot, as shown in Figure 5, in 
which the MCC in multi-class yielded by the RIPPER with top 
25 features is also listed. It can be observed that all MCCs in 

multi-class on randomly produced feature subsets were lower than 
that yielded by the RIPPER with top 25 features. It is suggested 
that top 25 features were very important for identifying bacteria 
in different phyla. Therefore, we established five significant 
classification rules on all bacteria represented by top 25 features, 
as listed in Table 1, to elucidate how RIPPER can make accurate 
prediction. The details of these learned rules are discussed below. 
The results demonstrate the satisfactory discriminate powers of 
the five produced classification rules for different bacterial groups.

FIgURe 4 | Confusion matrix yielded by the RIPPER algorithm with top 25 features. The accuracy of Bacteroidetes reached 1.000, while those of two other phyla 
were higher than 0.970, indicating the high performance of RIPPER algorithm with top 25 features.

FIgURe 3 | Performance of RIPPER algorithm with top 25 and 153 features on each phylum. The RIPPER algorithm with top 153 features provided nearly perfect 
classification, while the RIPPER algorithm yielded a little lower performance.
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DISCUSSION
In this study, we attempted to integrate different feature sets from 
ARGD (Liu and Pop, 2009), CARD (McArthur et al., 2013; Jia 
et al., 2017), VFDB (Liu et al., 2019), and KEGG (Kanehisa, 2002; 

Tanabe and Kanehisa, 2012) databases. Basing on these collective 
features and original datasets, we accurately distinguished the 
common gut bacteria into three major clusters: Actinobacteria, 
Bacteroidetes, and Firmicutes. We not only identified the crucial 
features from the four known datasets that contributed most to 
such clustering but also set up a novel quantitative rule set for the 
accurate clustering of gut bacteria. All the predicted results (i.e., 
features and rules) were supported by solid experimental evidence 
presented in literature. We screened the top features and rules in 
our optimal prediction list for further discussion and analyses 
below due to page limitation.

Analysis of Optimal Features for Subtyping 
of gut Bacteria
Using machine learning models, we screened a group of proper 
features to distinguish three common gut bacterial subgroups. 
The first significant distinctive feature (F_740) is a metabolism 
describing feature: glycan biosynthesis and lipopolysaccharide 
biosynthesis associated metabolism. According to recent 
publications, bacteria from Actinobacteria (King et al., 2009; 
Alshalchi and Anderson, 2015), Bacteroidetes (Jacobson et al., 
2018), and Firmicutes (d'Hennezel et al., 2017) participate in 
these biological processes. In contrast to Actinobacteria and 
Bacteroidetes, Firmicutes directly promotes the biosynthesis of 
lipids and contributes to the pathogenesis of obesity (d'Hennezel 
et al., 2017). The activation of such metabolic processes was 
finally decided by the relative abundance of Firmicutes compared 
with the other bacterial phyla. Therefore, F_740 could be a novel 
and effective feature for subtyping different bacterial subgroups.

The following feature marked as F_602 describes cell growth 
and death-associated processes, including apoptosis. In general, the 
balance between cell growth and death in the intestine is usually 
regulated and maintained by inflammatory reactions (Neurath et al., 
1998; Pickard et al., 2017) and lipopolysaccharide production (Guo 
et al., 2013). The production of lipopolysaccharides is significant 
for the survival of gut cells. According to recent publications, 
lipopolysaccharide production is correlated with the relative 
abundance ratio between Bacteroidetes and Firmicutes (Jeong et al., 
2015; Kim et al., 2016). Therefore, the stable status of cell growth and 
death-associated processes may be sufficiently effective and sensitive 
for evaluating the relative abundance of such two major bacterial 
subtypes, thereby validating the efficacy of our new method.

F_823 describes the general protein digestion and absorption 
processes of the digestive system, and different bacterial subgroups 
play different roles in the digestion and absorption of different 
nutrients (Flint et al., 2012; Valdes et al., 2018). For example, 
the digestion and absorption of lipids and proteins as a proper 
instance again; as such, different subgroups of bacteria contribute 
differently to such processes. In contrast to fat metabolism, a case 
of protein metabolism, the high abundance of bacterial subgroups, 
such as Bacteroidetes, indicates the high activation status of protein 
digestion and absorption (Turnbaugh et al., 2006). Therefore, 
F_823, as an indicator of the activity degree of protein metabolism, 
may contribute to the distinction of different bacterial subgroups.

F_608, as a complicated feature describing the formation 
of biofilm, was screened to distinguish different gut bacterial 

TABle 1 | Five classification rules produced by the RIPPER algorithm for 
Actinobacteria, Bacteroidetes, and Firmicutes.

Rules Criteria Bacteria group

Rule 1 Genetic Information Processing: Folding, sorting, and 
degradation: Proteasome > = 1

Actinobacteria

Rule 2 (Human Diseases: Drug resistance: Cationic 
antimicrobial peptide (CAMP) resistance < = 0)
and
(Genetic Information Processing: Folding, sorting, 
and degradation: Protein processing in endoplasmic 
reticulum > = 2)

Actinobacteria

Rule 3 (Cellular Processes: Transport and catabolism: 
Peroxisome < = 0)
and
(Genetic Information Processing: Folding, sorting, 
and degradation: Protein processing in endoplasmic 
reticulum > = 2)
and
(Human Diseases: Drug resistance: Cationic 
antimicrobial peptide (CAMP) resistance < = 1)

Actinobacteria

Rule 4 Organismal Systems: Digestive system: Protein 
digestion and absorption > = 1

Bacteroidetes

Rule 5 others Firmicutes

FIgURe 5 | Box plot to show the performance of RIPPER algorithm with 25 
features that are randomly selected from all features. The green star strands for 
the MCC in multi-class yielded by RIPPER algorithm with top 25 features, which 
is higher than all other MCCs in multi-class on randomly selected 25 features.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 147444

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Signature and Functional Rules of Bacterial SubtypesChen et al.

7

subgroups. In 2015, a systematic review on microbial biofilms 
and associated gut diseases confirmed that the abundances of 
Firmicutes and Bacteroidetes rather than that of Actinobacteria 
are functionally related to biofilm. The relative contributions of 
the three clusters of gut bacteria on biofilm regulation would 
be quite different (von Rosenvinge et al., 2013). Therefore, the 
biological characteristics of gut biofilm may also be a potential 
biomarker for the distinction of different bacteria subgroups.

The finally discussed high-ranked feature, named as F_756, 
describes the biosynthesis of steroid hormone. In 2013, a review on 
gut microbiome summarized the specific role of steroid hormones 
in the interactions between the gut bacteria and host humans 
(Garcia-Gomez et al., 2013). According to this review, only 
bacteria from clusters such as Actinobacteria, Proteobacteria, and 
Firmicutes were confirmed to participate in the biosynthesis and 
metabolism of steroid hormone to date. However, Bacteroidetes 
does not. In addition, the dominant phyla, such as Actinobacteria 
and Firmicutes, can express hydroxysteroid dehydrogenase; this 
phenomenon is essential for steroid hormone metabolism (Kisiela 
et al., 2012). Therefore, such feature has significant functional 
importance for bacterial subgrouping.

Analysis of the Optimal Rules for gut 
Bacteria Subtyping
The use of our newly presented computational approaches to 
determine the optimal features has been validated by recent 
publications. Apart from such qualitative analysis results, 
quantitative analysis was performed to distinguish different 
bacterial subgroups. Based on Jrip algorithm, also known as the 
RIPPER algorithm, we identified five effective rules for explaining 
the distinction of bacterial subgroups.

The first rule contains one feature describing the biological 
processes of proteasomes involving folding, sorting, and 
degradation of functional proteins. According to recent publications, 
proteasomes are self-compartmentalized proteolytic organelles only 
identified in Archaea, Actinobacteria, and eukaryotes but not in 
Bacteroidetes or Firmicutes (Valas and Bourne, 2008; Ziemski et al., 
2018). Therefore, regarding such feature as a quantitative parameter 
 for the identification of Actinobacteria is quite reasonable.

The next rule indicates cationic antimicrobial peptide 
(CAMP) resistance (F12) and protein folding in the endoplasmic 
reticulum as another two quantitative parameters for the 
recognition of Actinobacteria subgroup. According to recent 
reports, cationic antimicrobial peptides mediate the bacterial 
resistance against most Actinobacteria and Firmicutes (Anaya-
Lopez et al., 2013). Therefore, the first parameter may distinguish 
Actinobacteria and Firmicutes from other bacterial subgroups. 
As for the next parameter, Actinobacteria has a specific structure 
called peroxisomes, sharing similar biological functions with 
the endoplasmic reticulum (Duhita et al., 2010; Gabaldon and 
Capella-Gutierrez, 2010). Therefore, the combination of the two 
parameters refers to the accurate identification of Actinobacteria, 
thereby validating the efficacy and accuracy of our prediction.

Next, the third rule has three parameters involved in 
protein modification. Apart from parameters F24 and F12, the 
effective parameter F7 describes the transport and catabolism of 

peroxisomes, which were identified and discussed to be unique 
in Actinobacteria, thereby validating our prediction (Duhita 
et al., 2010; Gabaldon and Capella-Gutierrez, 2010).

The fourth rule is associated with the differential performance 
of the general protein digestion and absorption processes of the 
digestive system with different distribution patterns of bacteria. 
The high activation status of protein digestion and absorption 
pattern in the gut indicate the abundance of Bacteroidetes 
(Turnbaugh et al., 2006), corresponding with our rules.

Overall, all optimal features and rules for the distinction 
of different bacterial subgroups are accurate and efficient 
with solid publication supports. The accurate clustering of gut 
bacteria is the foundation for microbiome studies of the human 
intestine. For a long time, applying microbiome clustering 
based on sequencing data is difficult and time consuming due 
to the complicated described feature sets. Here, with the help 
of machine learning models, we identified the core features for 
microbiome distinction and set up a group of accurate distinctive 
rules for explaining such clustering problem. Therefore, using 
proper machine learning models, the present study reveals an 
accurate and elaborate panorama for gut microbe and provides a 
novel tool for further studies on the microbiome.
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Disease and Interstitial Lung Disease
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Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China

COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are 
two common respiratory diseases. They share similar clinical traits but require different 
therapeutic treatments. Identifying the biomarkers that are differentially expressed between 
them will not only help the diagnosis of COPD and ILD, but also provide candidate drug 
targets that may facilitate the development of new treatment for COPD and ILD. Due to 
the irreversible complex pathological changes of COPD, there are very limited therapeutic 
options for COPD patients. In this study, we analyzed the gene expression profiles of two 
datasets: one training dataset that includes 144 COPD patients and 194 ILD patients, 
and one test dataset that includes 75 COPD patients and 61 ILD patients. Advanced 
feature selection methods, mRMR (minimal Redundancy Maximal Relevance) and 
incremental feature selection (IFS), were applied to identify the 38-gene biomarker. An 
SVM (support vector machine) classifier was built based on the 38-gene biomarker. Its 
accuracy, sensitivity, and specificity on training dataset evaluated by leave one out cross-
validation were 0.905, 0.896, and 0.912, respectively. And on independent test dataset, 
the accuracy, sensitivity, and specificity on were as great as and were 0.904, 0.933, and 
0.869, respectively. The biological function analysis of the 38 genes indicated that many 
of them can be potential treatment targets that may benefit COPD and ILD patients.

Keywords: chronic obstructive pulmonary disease, interstitial lung disease, biomarker, gene expression, 
treatment target

INTRODUCTION
COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are both common 
lung diseases (Andersen et al., 2013). And cigarette smoking is the biggest risk factor for COPD and 
ILD (Caminati et al., 2012). About 20% smokers will develop COPD (Bosse, 2012). COPD is also an 
independent risk factor of lung cancer. Both emphysema and non-emphysema COPD phenotypes 
significantly increased the risk of lung cancer (Wang et al., 2018). In addition, epidemiological 
studies have found that COPD increases the risk of lung cancer by two to six times, regardless of 
whether there is a history of smoking or not (Papi et al., 2004; Young et al., 2009). Since the complex 
pathological changes in COPD and most of ILD patients are not irreversible, the diseases cause 
extensive mortality and are great public health problems worldwide (Vogelmeier et al., 2017).

Although COPD and ILD share many common traits and have similar clinical phenotypes, 
their treatments and the therapeutic effects are different. The recommended treatments for COPD 
patients are smoking cessation and drugs that treat bronchoconstriction and inflammation, such 
as methylxanthines, β-adrenoceptor agonists, corticosteroids, phosphodiesterase type 4 (PDE-4) 
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inhibitors, and anticholinergics (Andersen et al., 2013), while 
the ILD patients are treated with immunosuppressive agents, 
such as alkylating nitrogen mustard (du Bois, 2010). Inhaled 
corticosteroids (ICS) are important in managing exacerbations 
and symptoms in COPD (Lakshmi et al., 2017). However, a 
significant percentage of patients respond poorly or not at all to 
pharmacotherapies, especially for patients with severe disease 
(Nixon et al., 2017). In addition, poor adherence to medication 
is an essential factor in treatment failure. Therefore, new therapy 
strategies are needed urgently.

It is critical to classify COPD patients from ILD patients 
since it is the first step for choosing the right treatment. As we 
mentioned, COPD and ILD share similar pathogeny and have 
similar clinical phenotype; it is difficult to discriminate these 
two diseases and the underlying mechanisms of COPD and ILD 
are largely unknown. Identifying the biomarkers for COPD and 
ILD will not only provide a tool for disease diagnosis, but also 
reveal novel insights of the pathological mechanisms and help 
developing new treatment to benefit the survival of patients. 
Microarray is a reliable technology to measure the expression 
level of thousands of genes simultaneously and has been proven 
to be great data source for discovering biomarkers.

In this study, we analyzed two gene expression datasets 
of COPD and ILD: one training dataset of Agilent-028004 
SurePrint G3 Human GE 8x60K Microarray including 144 
COPD patients and 194 ILD patients, and one independent 
test data of Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F including 75 COPD patients and 61 ILD 
patients. Advanced feature selection methods, mRMR (minimal 
Redundancy Maximal Relevance) and IFS (incremental feature 
selection), were applied to get the optimal biomarkers on 
training dataset. The SVM (support vector machine) method 
was used to construct the classifier on training dataset and tested 
on independent test dataset. The 37-gene classifier achieved great 
performance on training and test datasets. The accuracies on 
training data and test data were 0.964 and 0.904, respectively. The 
37 selected genes were involved in key biological pathways and 
functions of COPD and ILD. These results provided novel insight 
for understanding the mechanisms of COPD and ILD and shed 
light on new treatment development.

METhODs

The Gene Expression Profiles of COPD 
and ILD Patients
The gene expression profiles of COPD and ILD patients were 
downloaded from GEO (Gene Expression Omnibus) with 
accession number of GSE47460 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE47460). The original data 
were generated by Peng et al. (2016). They measured the gene 
expression levels of 144 COPD patients and 194 ILD patients with 
Agilent-028004 SurePrint G3 Human GE 8x60K Microarray and 
75 COPD patients and 61 ILD patients with Agilent-014850 Whole 
Human Genome Microarray 4x44K G4112F. We extracted the 
common 15,180 genes between these two microarray platforms 
and quantile normalized the two datasets. Then the first dataset 

of 144 COPD patients and 194 ILD patients were considered as 
training dataset, while the second dataset of 75 COPD patients 
and 61 ILD patients were considered as independent test dataset.

Biomarker selection Using mRMR and IFs 
Methods
We adopted the mRMR (minimal Redundancy Maximal 
Relevance) method (Peng et al., 2005) to rank the genes on the 
training dataset. The mutual information-based mRMR method 
is widely used and has been used in solving many biomedical 
problems (Niu et al., 2013; Zhao et al., 2013; Zhou et al., 2015). 
The C/C++ version mRMR program was downloaded from 
http://home.penglab.com/proj/mRMR/. Unlike the univariate 
method, such as t test and ANOVA (analysis of variance), mRMR 
considers not only the relevance between genes and disease types 
but also the redundancies between genes.

Ω, Ωs, and Ωt were used to represent the complete set of all 
15,180 (N) candidate genes for biomarker ranking, the selected m 
genes, and the to-be-selected n genes, respectively. The relevance 
of gene g from Ωt with disease type t can be measured with 
mutual information (I) (Sun et al., 2012; Huang and Cai, 2013):

 D t= I g( , )  (1)

And the redundancy R of the gene g with the selected genes 
in Ωs are

 

R = ( )



∈∑1

m
I g gi

gi s

,
Ω  

(2)

The goal of this algorithm is to get the gene gj from Ωs that 
has maximum relevance with disease type t and minimum 
redundancy with the selected genes in Ωs, i.e. maximize the 
mRMR function
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g
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(3)

The evaluation procedure will be continued for N rounds, and 
all the genes will be ranked as a list

 S = … …{ }g g g gh N1 2
' ' ' ', , , , ,  (4)

The index h reflects the trade-off between relevance with 
disease type and redundancy with selected genes. The smaller 
the index h is, the better the discriminating power the gene has.

Based on the top 500 mRMR genes, we constructed 500 SVM 
classifiers and applied an IFS method (Jiang et al., 2013; Li et al., 
2014; Shu et al., 2014; Zhang et al., 2014a; Zhang et al., 2015) to 
identify the optimal genes as biomarker. Each candidate gene set 
S g g g kk k= …{ } ≤ ≤( )1 2 1 500' ' ', , ,  included the top k genes in the 
mRMR list.
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Based on the leave-one-out cross-validation (LOOCV) 
accuracy of each candidate gene set on the training dataset, an 
IFS curve can be plotted. The x-axis denoted the number of top 
genes that were used to train the SVM classifier, and the y-axis 
denoted the LOOCV accuracies of trained classifiers. Based on 
the IFS curve, we can choose the right cutoff of gene numbers to 
achieve a good prediction performance.

Prediction Performance Evaluation of the 
Classifier
We used LOOCV (Cui et al., 2013; Yang et al., 2014) to evaluate 
the prediction performance of the SVM classifiers on the training 
dataset and then independently tested the final classifier that was 
trained using all training data on the independent test dataset. 
During LOOCV on training dataset, all of the N training 
samples were tested one by one. In each round, one sample was 
used for testing of the prediction model trained with all the 
other N-1 samples. After N rounds, all samples were tested one 
time, and the predicted disease types were compared with the 
actual disease types. The final classifier was trained using all the 
training samples and then tested on the independent test dataset. 
Figure 1 showed the flowchart of biomarker selection, classifier 
construction, and prediction performance evaluation. The 
SVM method was applied using the svm function with default 
parameters in R package e10171 (https://cran.r-project.org/web/
packages/e1071/).

Accuracy (ACC), Sensitivity (Sn), and Specificity (Sp) were 
calculated to evaluate the prediction performance

 
   ACC TP TN

TP TN FP FN
= +

+ + +  (5)

 
S TP

TP FNn =
+

   (6)

 
S TN

TN FPp =
+  (7)

where TP, TN, FP, and FN stand for true positive (COPD), 
true negative (ILD), false positive (COPD), and false negative 
(ILD), respectively.

REsULTs aND DIsCUssION

The genes that showed different expression 
pattern between COPD and ILD patients
We obtained the top 500 most discriminative genes of COPD and 
ILD patient samples using the mRMR method on the training 
dataset. The mRMR ranked the genes based on their relevance 
with disease types, COPD or ILD, and their redundancy with 
selected genes. Both the relevance and redundancy were 

FIGURE 1 | The flowchart of biomarker selection, classifier construction, and prediction performance evaluation. First, the COPD/ILD samples were divided into 
training dataset and test dataset based on their platform: the 144 COPD samples and 194 ILD samples profiled with 8x60K Microarray was the training set; the 
75 COPD samples and 61 ILD samples profiled with 4x44K Microarray were the test set. Then in the training set, we applied mRMR and IFS to select the optimal 
number of genes as biomarkers and evaluated its performance on the training dataset using leave-one-out cross-validation. At last, the final 38-gene SVM classifier 
was trained using all training dataset and tested on the independent test dataset. The accuracy, sensitivity, and specificity were calculated to objectively evaluate the 
prediction performance of the 38-gene classifier.
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measured with mutual information. The mutual information 
has been proven to be a better statistic than correlation and was 
widely used. The top 500 mRMR genes were given in Table S1.

The Optimal Biomarkers Identified From 
the mRMR Gene List With IFs Methods
After mRMR analysis, the genes were ranked based on the 
gene expression profiles on training dataset. But we still did 
not know how many top genes should we choose. And the 
ideal biomarkers should use less genes and achieve great 
performance. Therefore, we applied the IFS procedure to 
select the optimal number of top mRMR genes to form the 
biomarker gene set. During each round of IFS, different 
numbers of top genes were used and the corresponding 
prediction performance, i.e., the LOOCV accuracy on 
training dataset, were calculated. The relationship between 
the number of genes and prediction accuracies was plotted as 
an IFS curve as shown in Figure 2. It can be seen that when 
94 genes were used, the LOOCV accuracy on training dataset 
was the highest. But even early, when only 38 genes were used, 
the accuracy was over 0.90. To consider both using less genes 
and achieving higher prediction accuracy, we chose the 38 
genes as the optimal biomarker gene set since increasing the 
number of genes will not significantly increase the accuracy 
any more after the 38 genes were used. The 38 genes were 
shown in Table 1.

The Prediction Performance of the 
38-Gene Classifier
The 38 genes were chosen from the genome wide 15,180 genes 
based on mRMR and IFS methods. To objectively evaluate their 
prediction power, we calculated not only the LOOCV accuracy, 
sensitivity, and specificity on training dataset, but also the 
accuracy sensitivity and specificity on independent test dataset. 
The confusion matrix of predicted disease types and actual 
disease types on both training and test datasets were shown in 
Table 2. On training dataset, the LOOCV accuracy, sensitivity, 
and specificity were 0.905, 0.896, and 0.912, respectively. 
More importantly, the accuracy, sensitivity, and specificity on 

FIGURE 2 | The IFS curve that showed how the prediction performance 
improved when more and more genes were used to construct the classifier. 
The IFS curve explained the relationship between the number of genes and 
prediction accuracies. The x-axis denoted the number of top genes that 
were used to train the SVM classifier, and the y-axis denoted the LOOCV 
accuracies of trained classifiers. The highest accuracy was achieved when 
94 genes were used. But after 38 genes were used, the IFS curve entered 
the plateau area and did not increase too much even when more and more 
genes were included. To consider both the model complexity and model 
performance, we chose the 38 genes as the optimal biomarker gene set.

TaBLE 1 | The 38 genes selected by mRMR and IFS methods.

Order symbol Name score

1 HBEGF Heparin binding EGF like growth 
factor

0.288

2 DIO2 Iodothyronine deiodinase 2 0.187
3 CLCN3 Chloride voltage-gated channel 3 0.115
4 SEPT4 Septin 4 0.120
5 FAT1 FAT atypical cadherin 1 0.120
6 CTSE Cathepsin E 0.116
7 CRIP1 Cysteine rich protein 1 0.108
8 ACADVL Acyl-CoA dehydrogenase, very long 

chain
0.112

9 CNTN3 Contactin 3 0.118
10 UQCRQ Ubiquinol-cytochrome c reductase 

complex III subunit VII
0.116

11 ASPN Asporin 0.111
12 ZNF786 Zinc finger protein 786 0.110
13 RARRES2 Retinoic acid receptor responder 2 0.107
14 BTC Betacellulin 0.111
15 FNDC1 Fibronectin type III domain containing 

1
0.114

16 DUSP1 Dual specificity phosphatase 1 0.113
17 C6orf145 PX domain containing 1 0.104
18 NUTF2 Nuclear transport factor 2 0.105
19 TNN Tenascin N 0.101
20 COQ9 Coenzyme Q9 0.103
21 SCG5 Secretogranin V 0.105
22 BCHE Butyrylcholinesterase 0.099
23 NR4A2 Nuclear transport factor 2 0.100
24 HS6ST3 Heparan sulfate 6-O-sulfotransferase 

3
0.103

25 SHE Src homology 2 domain containing E 0.102
26 C20orf111 Oxidative stress responsive serine 

rich 1
0.098

27 REEP2 Receptor accessory protein 2 0.099
28 C19orf63 ER membrane protein complex 

subunit 10
0.097

29 IRS2 Nuclear receptor subfamily 4 group A 
member 2

0.098

30 FA2H Fatty acid 2-hydroxylase 0.094
31 ACTL6A Actin like 6A 0.094
32 NR4A3 Nuclear receptor subfamily 4 group A 

member 3
0.093

33 DAO D-amino acid oxidase 0.095
34 VNN2 Vanin 2 0.093
35 IGFL2 IGF like family member 2 0.094
36 ZNF692 Zinc finger protein 692 0.093
37 CAMK1D Calcium/calmodulin-dependent 

protein kinase ID
0.091

38 HCAR2 Hydroxycarboxylic acid receptor 2 0.092
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independent test dataset were as great as on the training dataset 
and were 0.904, 0.933, and 0.869, respectively.

To more intuitively demonstrate the discriminative power 
of these 38 genes for COPD and ILD samples, we combined 
the training dataset samples and test dataset samples and draw 
a heatmap using these 38 genes (Figure 3). It can be seen that 
even without advanced machine learning algorithm, such as 
SVM, the simple hierarchical clustering can group most COPD 
and ILD samples into the right clusters. And the upregulation 
and downregulation patterns of these 38 genes were very clear 
between COPD and ILD patients.

We also calculated the results of the 94 genes and plotted their 
heatmap as Figure S1. On training dataset, the LOOCV accuracy, 
sensitivity, and specificity of the 94-gene classifier were 0.911, 
0.889, and 0.928, respectively. On independent test dataset, the 
accuracy, sensitivity, and specificity of the 94-gene classifier were 
0.897, 0.933, and 0.852, respectively. The performance of the 94 
genes was close to the 38 genes on both training and independent 
test datasets. The 38 genes were even slightly better than the 94 
genes on independent test dataset.

The Biological significance of the 38-Gene 
Biomarkers
As shown in Table 1, the first gene on the mRMR list was HBEGF 
(heparin binding EGF like growth factor). From Figure 2, it can 
be seen that HBEGF was highly expressed in COPD patients. 

HBEGF is a key member of the EGFR pathway. Its expression 
level has been reported to be increased in COPD samples and 
were significantly correlated with both diffusing capacity of 
the lung for carbon monoxide (DLCO) and Forced Expiratory 
Volume in 1 second (FEV1), two major clinical variables for 
COPD (Cockayne et al., 2012). We investigated the tissue 
specific expression pattern of HBEGF in ARCHS4 (Lachmann 
et al., 2018) and Figure 4, which were retrieved from ARCHS4, 
showed that HBEGF is very specifically highly expressed in lung.

The second gene was DIO2 (iodothyronine deiodinase 
2). DIO2 plays an important role in biologically active 
triiodothyronine synthesis. Its expression level was consistent 
with the degree of lung injury: the more the lung injury, the 
higher the expression of DIO2 (Ma et al., 2011). Clearly, DIO2 
is key for the inflammatory response (Ma et al., 2011). And 
COPD is a complex chronic inflammatory disease involving the 
dysfunction of a variety of inflammatory mediators (Thorley and 
Tetley, 2007). DIO2 could be a key factor in the inflammatory 
mechanism of COPD (Barnes, 2017).

CLCN3 (chloride voltage-gated channel 3) ranked third on 
the mRMR list. It has been reported that the CLCN3 mRNA was 
expressed in fetal airway epithelia and played important roles in 
pulmonary epithelium developing of human lung (Lamb et al., 
2001). As we have known, COPD mainly affects pulmonary 
epithelium (Hiemstra et al., 1998). And it is believed that cigarette 
smoke triggers COPD through causing epithelial damage and 
interfering repair processes (Thorley and Tetley, 2007).

TaBLE 2 | The confusion matrix of predicted disease types and actual disease types on both training and test datasets.

Leave one out cross validation on Training set* Independent test on test set*

actual COPD actual ILD actual COPD actual ILD

Predicted COPD 129 17 Predicted COPD 70 8
Predicted ILD 15 177 Predicted ILD 5 53
Accuracy: 0.905 Sensitivity: 0.896 Specificity: 0.912 Accuracy: 0.904 Sensitivity: 0.933 Specificity: 0.869

*COPD was considered as positive sample and ILD was considered as negative samples during sensitivity and specificity calculation.

FIGURE 3 | The heatmap of COPD and ILD patients using the selected 38 genes. The COPD and ILD patients from training dataset and test dataset were 
hierarchically cluttered using the 38 selected genes. There were very clear clusters of COPD and cluster of ILD. Most samples were grouped into the right cluster.
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ILD and COPD are two kinds of chronic lung diseases 
with significant differences in etiology, incidence, pathology, 
and prognosis (McDonald, 2018). ILD is a heterogeneous 
group of diseases, characterized by chronic, progressive, 
mainly interstitial inflammation and is always accompanied 
by varying degrees of pulmonary parenchyma fibrosis (Doyle 

et al., 2012), while COPD is characterized by chronic airflow 
limitation caused by small airway disease and substantial 
destruction, which is not completely reversible and usually 
progressive (Song et al., 2012; Rabe and Watz, 2017). 
Generally, the diagnosis and classification of ILD and COPD 
severity depend on clinical evaluation, thoracic imaging, 

FIGURE 4 | The tissue specific expression pattern of HBEGF in ARCHS4. The tissue expression data from ARCHS4 showed that HBEGF is very specifically highly 
expressed in lung ( https://amp.pharm.mssm.edu/archs4/gene/HBEGF#tissueexpression).
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and pulmonary function testing (PFT) (Song et al., 2012; Du 
Plessis et al., 2018).

Among these identified genes, HBEGF has been found related 
with the invasion and progression of many malignant tumors 
including breast, pancreatic, and ovarian, and may be involved 
in macrophage-mediated cellular proliferation (Ray et al., 2014; 
He et al., 2015). He et al. (2019) conducted comprehensive 
bioinformatic analyses to predict target genes of ILD and 
identified HBEGF as one of the potential prognostic markers 
and therapeutic targets for ILD. Besides, SEPTIN4, a member of 
the septin family of nucleotide binding proteins, plays a role in 
apoptosis and cancer (Garcia et al., 2008), which may affect the 
occurrence and development of ILD.

We will not go through the mRMR table one by one. With 
only the top three genes, the LOOCV accuracy was 0.873 as 
shown in Figure 2. There are several genes in Table 1 that 
are highly possible to play key roles in COPD. Notably, CTSE 
(cathepsin E) ranked sixth was reported to be able to promote 
pulmonary emphysema through causing mitochondrial 
fission and may be a candidate therapeutic target (Zhang et al., 
2014b). BTC (betacellulin) ranked 14th was found to be higher 
expressed in COPD ex-smokers than ex-smokers without COPD 
(de Boer et al., 2006). DUSP1 (dual specificity phosphatase 1) 
ranked 16th was reported to have anti-inflammatory potential 
(Newton, 2014) and when COPD patients undertook fluticasone 
propionate, DUSP1 expression level was increased (Lee et al., 
2016). BCHE (butyrylcholinesterase) ranked 22nd was associated 
with oxidative stress and inflammation, and its activity was 
found to be decreased in COPD patients (Sicinska et al., 2017). 
In Figure 3, we also observed the downregulation of BCHE 
in COPD cluster. SHE (Src homology 2 domain containing E) 
ranked 25th may play a critical role in promoting airway smooth 
muscle cell growth and migration during the airway remodeling 
of COPD patients (Krymskaya et al., 2005). DAO (D-amino acid 
oxidase) ranked 33rd was an enzyme for peroxisome, glyoxylate 
metabolism, and glycine degradation. The serum DAO activity 
was found to be higher in the intestinal tissue of COPD model rat 
than control (Xin et al., 2016). CAMK1D (calcium/calmodulin 
dependent protein kinase ID) ranked 37th was found to be a hub 
node on the protein–protein interaction network of differentially 
expressed gene (DEG) in COPD and was considered as candidate 
biomarker and potential target for clinical diagnosis and 
treatment of COPD (Yuan et al., 2014).

Since there are very few drugs for COPD, we searched 
DrugBank for possible COPD drugs and found that BCHE, DAO, 
UQCRQ, HCAR2, CAMK1D, and NR4A3 were drug targetable. 
The number of small molecule drugs that targeted BCHE, DAO, 
UQCRQ, HCAR2, CAMK1D, and NR4A3 were 31, 8, 8, 3, 2, 
and 1, respectively. These genes can be considered as therapeutic 
targets and may be helpful for development of COPD treatment.

The associations Between the 38 Genes 
and air Pollutants, Particulate Matter, and 
Tobacco smoke Pollution
COPD has a close relationship with environmental factors. 
Pollution and smoking can trigger COPD. Some of the 38 genes 

have been reported to be associated with smoking by GWAS 
(genome-wide association study). For example, rs1374879 
within CNTN3, which ranked 9th in Table 1, was found to be 
associated with smoking quantity (Argos et al., 2014). Therefore, 
we systematically studied the associations between signature 
genes and air pollutants, particulate matter, and tobacco smoke 
pollution in CTD (comparative toxicogenomics database) 
(Mattingly et al., 2006). Table 3 listed how many manually 
curated literatures, the associations between the gene, and the 
environmental factor were reported.

It can be seen that 5 genes (HBEGF, DUSP1, NR4A2, NR4A3, 
and VNN2) were associated with all three environmental factors, 
14 genes were associated with two environmental factors, and 4 
genes were associated with one environmental factor. Column 
wise, there were 23 genes associated with particulate matter, 
17 genes associated with tobacco smoke pollution, and 7 genes 

TaBLE 3 | The associations between the 38 genes and air pollutants, 
particulate matter, and tobacco smoke pollution.

Gene air pollutants* Particulate 
matter*

Tobacco smoke 
pollution*

HBEGF 1 15 5
DIO2 0 5 1
CLCN3 0 0 0
SEPT4 0 1 1
FAT1 0 3 2
CTSE 0 4 4
CRIP1 1 1 0
ACADVL 0 4 0
CNTN3 0 0 0
UQCRQ 0 0 0
ASPN 0 0 0
ZNF786 0 0 0
RARRES2 0 3 1
BTC 0 0 0
FNDC1 0 2 1
DUSP1 1 12 3
C6orf145 0 0 0
NUTF2 0 1 1
TNN 0 2 1
COQ9 0 0 0
SCG5 0 1 0
BCHE 0 2 0
NR4A2 1 3 1
HS6ST3 0 0 0
SHE 0 0 0
C20orf111 0 0 0
REEP2 0 0 0
C19orf63 0 0 0
IRS2 0 2 1
FA2H 0 1 0
ACTL6A 1 1 0
NR4A3 1 2 1
DAO 0 1 1
VNN2 1 1 1
IGFL2 0 0 0
ZNF692 0 0 0
CAMK1D 0 3 1
HCAR2 0 2 1

*: The number literatures that suggested the association.
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associated with air pollutants. Particulate matter is a serious threat 
to health and can cause many lung diseases (Shu et al., 2016).

CONCLUsION
COPD and ILD are two common and similar lung diseases. Both 
diseases cause huge public health problems. The diagnosis of 
COPD and ILD is essential for early treatment. We analyzed the 
gene expression profiles of COPD and ILD patients from two 
batches that were measured with two microarray platforms. We 
chose one dataset as the training dataset and selected 38 genes 
that showed different expression pattern between COPD and ILD 
patients using advanced mRMR and IFS methods. Based on these 
38 genes, a powerful COPD/ILD SVM classifier was built. The 
classifier had great performance both on training dataset evaluated 
by LOOCV and on independent test dataset. The 38-gene classifier 
demonstrated great robustness and excellent prediction accuracy. 
The biological function analysis of the 38 genes indicated that 
many of them can be potential treatment targets that may improve 
the current COPD and ILD therapeutic practice.
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Geng Tian 2 and Jialiang Yang 3*

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China, 2 Department of Science, 
Geneis Beijing Co., Ltd., Beijing, China, 3 School of Mathematics and Statistics, Hainan Normal University, Haikou, China

In recent years, miRNAs have been verified to play an irreplaceable role in biological 
processes associated with human disease. Discovering potential disease-related miRNAs 
helps explain the underlying pathogenesis of the disease at the molecular level. Given the 
high cost and labor intensity of biological experiments, computational predictions will be 
an indispensable alternative. Therefore, we design a new model called probability matrix 
factorization (PMFMDA). Specifically, we first integrate miRNA and disease similarity. Next, 
the known association matrix and integrated similarity matrix are utilized to construct 
a probability matrix factorization algorithm to identify potentially relevant miRNAs for 
disease. We find that PMFMDA achieves reliable performance in the frameworks of global 
leave-one-out cross validation (LOOCV) and 5-fold cross validation (AUCs are 0.9237 and 
0.9187, respectively) in the HMDD (V2.0) dataset, significantly outperforming a few state-
of-the-art methods including CMFMDA, IMCMDA, NCPMDA, RLSMDA, and RWRMDA. 
In addition, case studies show that PMFMDA has good predictive performance for new 
associations, and the evidence can be identified by literature mining.

Keywords: diseases, miRNAs, probabilistic matrix factorization, association prediction, receiver operating 
characteristic curve (ROC)

INTRODUCTION
MicroRNAs are short non-coding RNAs. It plays a vital role in the regulation of many important 
biological processes (Bandyopadhyay et al., 2010; Hammond, 2015; Zhang et al., 2017). It has shown 
that human disease is associated with abnormal expression of miRNAs, whose analyses can guide 
the diagnosis, prognosis and treatment of certain diseases (Liang et al., 2019). However, identifying 
new miRNA–disease associations through bio-wet experiments not only has a high error rate, but 
also consumes huge financial resources (Feng et al., 2017). Therefore, in-silicon prediction of disease-
associated miRNAs has become a critical step in prioritizing most confident targets for further 
experimental validation. Due to the growing power of sequencing technology, more and more omics 
data have been published (Yi et al., 2017), which provides a chance to reveal what role miRNAs play 
in physiology and pathology. Typical directions include miRNAs–disease interaction prediction, 
miRNA–miRNA regulatory module discovery, and so on (Chou et al., 2016). Undoubtedly, all these 
studies enrich our understanding of the functional regulation mechanisms of miRNA (Ha et al., 2019).

In recent years, in order to understand the pathogenesis of diseases, more and more computational 
models have been proposed by researchers to infer disease-related miRNAs, among which machine 
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learning-based and network-based methods are most popular 
(Luo et al., 2017a). Network-based methods are based on a 
common assumption that miRNAs associated with diseases 
using similar phenotypes are similar in function, and vice versa. 
For example, Jiang et al. (2010) proposed the priority of disease-
associated miRNAs through human peptide–microRNAome 
networks to identify potential associations. However, this 
method relies too much on known associations to make its 
prediction performance less effective. Subsequently, Chen et al. 
(2012) implemented a random walk with restart (RWRMDA) 
on its network to identify potentially associated miRNAs by 
building a network of similarities between miRNAs. Similarly, 
Shi et al. (2013) conducted random walks through functional 
linkages between miRNA targets and disease genes to explore the 
relationship between human miRNA diseases. Peng et al. (2017) 
constructed a multiple biological network by integrating the two-
way relationship among microRNA, disease and environmental 
factors, and realized the unbalanced random walk algorithm on 
this network to achieve the purpose of prediction. However, these 
methods cannot predict miRNAs associated with isolated diseases. 
Later, Chen and Zhang (2013) used a network of consistent 
reasoning methods to infer unknown miRNAs associated with 
disease. Gu et al. (2016) created a network consistent projection 
algorithm to identify latent associations by integrating similarity 
networks and associated networks. The biggest advantage of 
these methods is that they can predict isolated disease-associated 
miRNAs, but the performance achieved is not very satisfactory.

More recently, machine learning-based models have been 
implemented to improve classification accuracy and prediction 
performance (Gu et al., 2016). For example, Xu et al. (2011) 
designed a support vector machine (SVM) classifier that 
combines four topological features extracted from a miRNA 
target disease network to distinguish between prostate cancer-
associated miRNAs and non-prostate cancer-associated 
miRNAs. To construct a negative sample, they randomly paired 
the miRNA with the disease and then removed the pair present 
in the positive sample set. It is clear that negative samples 
constructed in this way are prone to false positives. Chen and Yan 
(2014) introduced a normalized least square method to identify 
the association between potential miRNAs–diseases (RLSMDA), 
which does not require negative samples. In addition, Luo 
et  al. (2017b) developed a Kronecker regularized least squares 
method to predict the potential association of miRNAs–disease 
by combining multiple omics data. Liu et al. (2019) converted 
the miRNAs–disease association prediction problem into a 
complete bipartite graph model, and proposed a prediction 
algorithm based on a restricted Boltzmann machine to improve 
prediction performance. Shen et al. (2017) introduced the 
cooperative matrix decomposition (CMFMDA) algorithm in the 
recommendation system to infer potential associations. Finally, 
Chen et al. (2018) introduced an induction matrix-completed 
algorithm to identify unknown associations. However, these 
methods do not perform well in predicting associations related 
to new diseases or miRNAs, and the prediction accuracy is not 
as satisfactory as associations with known diseases or miRNAs.

In order to achieve better predictive performance, we construct 
a new model called probability matrix factorization (PMFMDA) 

to predict unknown miRNAs–disease associations in this study. 
PMFMDA makes full use of miRNA disease association, miRNA 
similarity and disease similarity. To evaluate the effectiveness 
of PMFMDA, we test it using frameworks of global 5-fold CV 
and global LOOCV. In addition, a validation method called 
CVd is developed to estimate the performance in predicting 
novel diseases or miRNAs. Outperforming other state-of-the-
arts methods, PMFMDA achieve reliable performance in the 
frameworks of global LOOCV and 5-fold CV (AUCs of 0.9237 
and 0.9187, respectively) in the HMDD (V2.0) dataset (Li et al., 
2014). To further demonstrate the superiority of PMFMDA, we 
conduct an analysis of three common diseases. According to the 
analysis of the test results, we can find that there are 20, 19 and 17 
of 20 candidate miRNAs that are confirmed to be associated with 
esophageal neoplasms, breast neoplasms and lung neoplasms by 
dbDEMC and miRCancer, respectively.

MATeRIALs AND MeThODs
The general workflow of PMFMDA is shown in Figure 1. We 
first use matrix Y to represent 5,430 experimentally validated 
associations after preprocessing the HMDD V2.0 database (Li 
et al., 2014). Specifically, Y is a 495 × 383 matrix with row denoting 
miRNAs and column denoting diseases; Yi,j = 1 if the ith miRNA is 
associated with the jth disease and 0 otherwise. We then calculate the 
disease similarity Sd and miRNA similarity Sm. Finally, a probability 
matrix factorization (PMF) model is proposed by integrating Y, Sd 
and Sm, the solution of which will recover unknown miRNAs–
disease associations based on known ones.

Disease semantic similarity
The hierarchical directed acyclic graphs (DAGs), usually are 
obtained from the MeSH database, and are widely used to 
calculate the similarity between diseases (Gu et al., 2016). 
Specifically, for a disease d, let DAGd = (d, Td, Ed) represents its 
directed acyclic graph, where Td denotes the set of the ancestors 
of d, and Ed represents the set of links in the MeSH tree. So, the 
semantic contribution of disease t to disease d is defined as:

 D t
if t d

D t t children of t if td
d

( ) =
=

× ( ) ∈{ }′ ′

1  

|      max ∆ ≠≠






d

 (1)

Where Δ is a predefined sematic contribution factor, the value 
of Δ in this study is set to 0.5. Therefore, we can calculate the 
semantic similarity of between diseases by formula (2).

 D d d
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miRNAs Functional similarity
For the similarity between miRNAs, most studies use functional 
similarity measurements (Wang et al., 2010). Specifically, for 
any two miRNAs ri and rj, let DTi = {di1,di2,…,dik} and DTj = 
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{dj1,dj2,…,djl} be their associated disease sets, respectively. Similar 
to Wang et al. we first use S d DT D d dd DT ii

( ,  ) ( , )= ∈
max  to represent 

the similarity between a disease d and DT. Then the similarity 
between ri and rj is defined as

 
R r r

S d DT S d DT

k li j
m

k

im j
n

l

jn i
( , )

( , ) ( , )
=

+

+
= =∑ ∑1 1

 (3)

The Gaussian Interaction Profile Kernel 
similarity For Diseases and miRNAs
In the similarity measurement algorithm, Gaussian interaction 
profile kernel similarity is also a good measurement algorithm, 
which is widely used in various fields (Lu et al., 2019). Let VP(di) 
be the vector associated with the disease di in Y, i.e. the ith column 
of Y. Then, the Gaussian interaction kernel similarity between 
disease di and dj is calculated as:

 KD d d VP d VP di j d i j(  , ) ( || ( ) ( )|| )= − −exp γ 2  (4)

where γd is the adjustment parameter of the kernel bandwidth. 
The parameter γd update rule is as follows:

 γ γd d i
nd

ind
d= ∑ =

' / ( ||( )|| )1
1

2  (5)

where γ d
'  is usually set to 1.

Similarly, we can conclude that the Gaussian kernel similarity 
of miRNAs is as follows:

 KM r r VP r VP ri j m i j , ( )|| ( ) ( )||( ) = − −exp γ 2  (6)

 γ γm m i
nm

inm
VP r= ∑ =

' / ( ) || ( )||1
1

2
 (7)

Where γ m
'  is usually set to 1.

Integrated similarity For Diseases  
and miRNAs
The similarity between disease di and disease dj is constructed by 
combining the two similarities of the disease as follows:
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D d d d and d has semant

d i j

i j i j
( ) ,

(  ,  )               
=

iic similarity

KD d di j

 

(  , )                                                   otherwise









 (8)

Similarly, the similarity between miRNAs ri and rj can be 
redefined as:

 S r r
R r r r and r has functional

m i j
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similarity
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 (9)

FIGURe 1 | The workflow of PMFMDA is used to infer disease-associated unknown miRNAs.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 123459

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


PMFMDA: Predict Disease Associated MiRNAs Xu et al.

4

PMFMDA
Probability Matrix Decomposition (PMF) is a probabilistic linear 
model of Gaussian observation noise and has been widely used 
in data representation (Salakhutdinov and Mnih, 2008). Let 
Y∈Rn×m be the known miRNAs–disease association matrix, Ui 
and Vi represent the D-dimensional miRNA-specific and disease-
specific latent feature vectors, respectively. The conditional 
distribution of the observed associations Y∈Rn×m (likelihood 
term) and the prior distribution of U∈RD×n and V∈RD×m are 
given by:

 P Y U V N Y U Vi
N

j
M

ij i
T

j
Iij| , , [ ( | , )]α α( ) = ∏ ∏= =

−
1 1

1  (10)

 P U N U I
U i

N

i U
( ) ( | , )|α α= ∏ −

−
1

1

0  (11)

 P V N V IV j
M

j V( | ) ( | , )α α= ∏ =
−

1
10  (12)

Where N (x | μ,α-1) denotes the Gaussian distribution, Iij = 0 if 
the entry(i,j) in Y is missing, and 1 otherwise.

The optimal model is obtained by maximizing the logarithmic 
a posterior of miRNAs and disease characteristics using fixed 
hyperparameters:

 

ln , | , , , ln | , , ln |

ln |

P U V Y P Y U V P U

P V
V U Uα α α α α( ) = ( ) + ( )

+ ααV C( ) +  (13)

Where C is a constant. So, using a quadratic regularization term 
to minimize the sum of squares of the error functions instead of 
maximizing the posterior distribution relative to U and V:
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Where λU = αU / α and λv = αV / α are regularization parameters, 
|| ||⋅ Fro

2 denotes the Frobenius norm.
The standard PMF in Equation (10) does not consider the 

effect of similarity between miRNAs and the similarity between 
diseases. Since Ui represents the D-dimensional miRNA-specific 
latent feature vectors, UTU denotes the weighted similarity matrix 
of the miRNAs. Similarly, VTV denotes the weighted similarity 
matrix of the disease. Thus, we propose a new objective function 
by integrating miRNAs similarity and diseases similarity named 
PMFMDA as follows:
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 (15)

where Sm and Sd have been calculated before.

Optimization
In order to obtain the local optimal solution of Equation 
(15), we use the gradient descent algorithm to solve (Xiao et 
al., 2018). According to the nature of the Frobenius norm, 
the corresponding Lagrange function LE of Equation (15) is 
defined as:
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 (16)

where Tr() denotes the trace of a matrix, ∅=[φik] and Ψ=[ωjk] are 
Lagrangian multipliers.

The partial derivatives of U and V are as follows:

 

∂
∂

= ⋅ − +( ) + + − ( ) +( ) + ∅

∂
∂

L
U

I VY VV U U U S UU U

L

E T T
U m

T

E

λ λ2 1 ,

VV
I UY UU V V V S VV VT

V d
T= ⋅ − +( ) + + − ( ) +( ) +λ λ2 2 Ψ

 
 (17)

Finally, the Karush-Kuhn-Tucker (KKT) conditions ϕikUik =0  
and ω jkVJk =0  according to the gradient descent method. The 
following equations are obtained for Uik and Vjk:
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Therefore, the updating rules for U and V as follows:
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Update U and V according to Equation (19) and Equation 
(20) until the local minimum of the objective function. Finally, 
the predicted miRNAs–disease association matrix is Y′=UTV. 
The ith column of Y′ indicates the association score between 
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disease di and miRNAs, and the larger the score, the more 
relevant it is.

evaluation Methods
In order to test the performance of PMFMDA, we utilize a 5-fold 
CV experiment and global LOOCV on the HMDD database 
and compare it with a few recent methods including CMFMDA, 
IMCMDA, NCPMDA, RLSMDA, and RWRMDA. In the 5-fold 
CV experiment of a single disease d, known miRNAs associated 
with d (column vectors in matrix A∈Rm×n) are randomly divided 
into five subsets of equal size. Associations related to all other 
diseases together with 4 subsets (with respect to d) are taken 
as training samples and the remaining subset is considered as 
testing samples. The process is performed for 5 times until all the 
associations associated with d have been predicted once. Global 
LOOCV was used to evaluate the model’s global prediction ability 
for all miRNAs–disease association simultaneously. Specifically, 
we removed each known association in turn as a testing sample, 
with all remaining associations as training samples. We then 
predicted the removed entry and evaluated the performance. In 
addition, we perform CVd experiment to test the performance of 
PMFMDA in predicting miRNAs associated to a novel disease d. 
In CVd: CV on disease di, we remove all the known associations 
of the disease di (column vectors in matrix Y∈Rm×n) and build 
prediction model (for inferring the deleted associations) using 
the remaining data.

Parameter Tuning
We cross-validate the training set to tune the parameters of 
PMFMDA. Specifically, the parameters λU,λV,λ1, and λ2 are 
increased from 0.001 to 1 with a step of 0.1 and the ones with 
the best AUC are selected. Since the other methods have also 
been tested on HMDD (V2.0) in published papers, we adopt 
the parameters provided by the authors. Specifically, W=0.9 for 
RLSMDA, λU = λV = 1,λ1 = λ2 = 0.005 for PMFMDA, λ1 = λ2 = 1 

for IMCMDA, λm = λd = 1 for CMFMDA r = 0.9, for RWRMDA 
and NCPMDA is parameter free.

ResULTs

PMFMDA Outperforms Other Popular 
Methods In Predicting Potential 
Associations
We apply PMFMDA, CMFMDA, IMCMDA, NCPMDA, 
RLSMDA, and RWRMDA into the HMDD database. Their 
receiver operating characteristic (ROC) curves and associated 
area under the curve (AUCs) of the global 5-fold CV and LOOCV 
are plotted in Figure 2. As can be seen, the AUCs of PMFMDA, 
CMFMDA, IMCMDA, NCPMDA, RLSMDA, and RWRMDA are 
0.9187, 0.8928, 0.8372, 0.8792, 0.8333, and 0.8168, respectively. 
Furthermore, PMFMDA also achieve the best AUC (0.9237) 
on global LOOCV, indicating that PMFMDA perform best in 
predicting miRNAs–disease associations. However, considering 
the limited number of known miRNAs–disease associations, it 
might be insufficient to evaluate the performance of the methods 
by AUC alone. Thus, we also plotted the precise recall (PR) curve 
and calculated the area under the PR curve (AUPR) based on 
the global 5-fold CV experiment in Figure 3. In a PR-curve, the 
precision refers to the ratio of correctly predicted associations 
to all associations with scores higher than a given threshold; 
by contrast, the recall refers to the ratio of correctly predicted 
associations to all known miRNAs–disease associations. In 
general, the ROC curve and the PR curve show similar trend. 
As shown in Figure 3, the AUPRs of PMFMDA, CMFMDA, 
IMCMDA, NCPMDA, RLSMDA, and RWRMDA are 0.3535, 
0.3428, 0.2509, 0.1176, 0.1234, and 0.1369 respectively, indicating 
that PMFMDA performed best in predicting miRNAs–disease 
associations. At the same time, in order to further prove the 
effectiveness of PMFMDA. We performed 10 times of global 
5-fold CV and achieved an average AUC and AUPR of 0.9187 

FIGURe 2 | The ROC curves for PMFMDA and benchmark algorithms for 5-fold CV and global LOOCV.
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+/− 0.0013, 0.3535+/− 0.0015, respectively. This proves the 
reliability and stability of the PMFMDA algorithm.

PMFMDA Outperforms Other Popular 
Methods In Predicting miRNAs Associated 
With Novel Diseases
Besides global miRNAs–disease predictions, it is also critical to 
check the performance of the above methods on specific diseases. 
CVd is used to measure the ability of an algorithm to predict a new 
disease-associated miRNA. In order to compare the fairness of 
the test, we conduct CV tests on 8 common diseases (Xuan et al., 
2015) and use the area under the accurate recall curve (AUPR) as 
an indicator of predictive performance. The reason is that AUPR 
severely penalizes highly ranked non-interactions, which is 
desirable here because in practice we do not want to recommend 
incorrect predictions (i.e., AUPR metrics severely penalize highly 
ranked false positives). The results for CVd are shown in Table 1. 
We can clearly see that the average AUPR of PMFMDA for the 

eight test diseases was 0.6687, which was significantly higher than 
IMCMDA (0.6377), CMFMDA (0.5091), NCPMDA (0.6121), 
and RLSMDA (0.5761). This also sufficient PMFMDA is also the 
best way to predict miRNAs associated with novel diseases.

Furthermore, in order to further evaluate our approach in 
predicting new diseases. We implement CVd experiments on 
the above 8 diseases. We show the calculation of the number 
of disease-associated miRNAs identified at different ranking 
thresholds in Table 2. For example: We delete all miRNAs 
associated with breast tumors, and then use PMFMDA to predict 
its related miRNAs. we can find that 91 of the top 100 predictions 
are accurately predicted through the test results. This is ample 
indication that our approach can yield high quality predictions 
for isolated disease-associated miRNAs. In order to better 
understand the predicted eight disease-related miRNAs, we 
listed the names and predicted scores of the top 100 candidates 
related to the eight diseases in the Supplementary Table S1.

evaluate Performance on Different Data 
sources
To further test the versatility of PMFMDA. We obtain 60,576 
experimental validation correlation data by preprocessing the 
MNDR (V2.0) dataset (Cui et al., 2018). The data contains 887 
diseases and 3,954 miRNAs. We apply PMFMDA, CMFMDA, 
IMCMDA, NCPMDA, RLSMDA, and RWRMDA on the MNDR 
(V2.0) database. As shown in Table 3, the AUC of PMFMDA was 
0.9885, significantly higher than those of CMFMDA (0.9799), 
IMCMDA (0.9171), NCPMDA (0.9480), RLSMDA (0.9358), 
and RWRMDA (0.9055) with increases of about 0.86, 7.14, 
4.05, 5.27, and 8.3% respectively. The AUPR of PMFMDA was 
0.5174, significantly higher than those of CMFMDA (0.5047), 
IMCMDA (0.3865), NCPMDA (0.2045), RLSMDA (0.2818), and 
RWRMDA (0.1907). In conclusion, PMFDA has been proven to 
be effective in inferring related miRNAs with diseases in terms of 
AUC values and AUPR values.

Parameter sensitivity Analysis
In machine learning, parameter tuning is critical for the 
performance of a model. Thus, we presented in Table 4 several 
sets of parameter settings based on the global 5-fold CV 
experiment on the HMDDV 2.0 dataset. We found that a better 

FIGURe 3 | The PR curves for PMFMDA and benchmark algorithms for 
5-fold CV.

TABLe 1 | Comparison of AUPR values predicted by PMFMDA and benchmark algorithms on novel diseases.

Disease name AURP

PMFMDA IMCMDA CMFMDA NCPMDA RLsMDA

Melanoma 0.7149 0.6757 0.4574 0.6785 0.6940
Breast tumor 0.7895 0.7752 0.6135 0.7866 0.7749
Colorectal tumor 0.6585 0.6333 0.4725 0.5714 0.5315
Glioblastoma 0.5940 0.5076 0.4540 0.4779 0.4028
Heart failure 0.5956 0.6284 0.4510 0.6182 0.5510
Prostatic tumor 0.6578 0.5881 0.5963 0.5873 0.5208
Stomach tumor 0.6981 0.6438 0.5231 0.6269 0.6081
Bladder tumor 0.6409 0.5388 0.5051 0.5505 0.5255
Mean 0.6687 0.6237 0.5091 0.6121 0.5761
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prediction result will be achieved when the value of λ1 and λ2 
are large and the value of λ1 and λ2 are small. This result further 
confirms the effectiveness of seeking an optimal combination of 
parameters in improving performance.

Finally, we explore the effect of the disease similarity and 
miRNA similarity on prediction performance. Specifically, we 
perform global 5-fold CV with parameters λ1 and λ2 setting to 

zero (Figure 4) in the HMDD (V2.0) dataset. We can see that 
the two similarities do contribute to prediction performance. 
In addition, PMFMDA achieve good results even in the model 
without integrating disease and miRNA similarity. However, this 
model is not good in predicting the association of new diseases 
or new miRNAs.

Case studies
Another aspect of PMFMDA’s strong predictive power is in 
case studies. Here, all the associations included in the HMDD 
(V2.0) database are used as training for the model, and the 
unincorporated associations are considered candidates for 
verification. In addition, miRCancer (Xie et al., 2013) and 
dbDEMC (Yang et al., 2010) were used to verify the correctness 
of the predictions. In this work, we mainly study three diseases 
including esophageal tumors, breast tumors, and lung tumors, 
and perform detailed analyses of the top 10 candidates predicted 
by PMFMDA in each disease (see Table 5).

Esophageal tumors are a disease with high morbidity and high 
mortality in the digestive system (Kano et al., 2010; He et al., 2012). 
Early diagnosis plays a crucial role in its treatment (Azmi, 2012). 
In this study, we use PMFMDA to identify potential miRNAs 
associated with esophageal tumors. The top 10 miRNAs to be all 
confirmed by the database were associated with esophageal tumors 
(see Table 5).

Breast neoplasm is the malignant tumor that is prone to occur 
in women, it is a systemic malignant disease, for which many 
related genes have been discovered (Venkatadri et al., 2016). 
MicroRNA (miRNA), as a kind of small RNA, can specifically 
bind to the 3′ untranslated region of its target mRNA, causing 
translational inhibition or degradation of target mRNA, 
and playing an oncogene in the process of cell growth and 
differentiation (Miller et al., 2008). Thus, MiRNAs present a new 
way for the study of pathogenic genes in breast neoplasms. As 
we can see from Table 5, 9 of the top 10 predictions have been 
confirmed by the relevant databases.

TABLe 2 | PMFMDA predicts the correct numbers of different ranking thresholds 
for 8 common diseases.

Cancer No. of known 
associated miRNAs

Ranking threshold

20 40 60 80 100

Breast neoplasms 202 20 38 54 74 91

Colorectal neoplasms 147 17 30 45 58 70
Glioblastoma 96 17 30 36 43 53
Heart failure 120 17 28 39 51 58
Melanoma 141 19 35 51 63 77
Prostatic neoplasms 118 17 32 43 56 65
Stomach neoplasms 173 15 32 49 63 79
Urinary bladder neoplasms 92 18 31 42 51 55

TABLe 3 | The performance of PMFMDA and the baseline methods based on 
5-fold CV on the MNDRV2.0 dataset.

PMFMDA CMFMDA IMCMDA NCPMDA RLsMDA RWRMDA
AUC 0.9885 0.9799 0.9171 0.9480 0.9358 0.9055
AUPR 0.5174 0.5047 0.3865 0.2045 0.2818 0.1907

TABLe 4 | Parameter tuning for PMFMDA based on 5-fold CV.

AUC λU = λV = 1 λU = λV = 0.1 λU = λV = 0.01

λ1 = λ2 = 1 0.7905 0.7728 0.7588
λ1 = λ2 = 0.1 0.9040 0.8507 0.8381
λ1 = λ2 = 0.01 0.9185 0.9032 0.8692

TABLe 5 | PMFMDA infers the top 10 miRNA candidates for the three selected diseases.

Cancer Number of miRNAs 
identified by the literature

Top 10

Rank miRNAs evidence Rank miRNAs evidence
Esophageal neoplasms 1 mir-17 dbDEMC 6 mir-1 dbDEMC

2 mir-18a dbDEMC 7 mir-200b dbDEMC
10 3 mir-221 dbDEMC 8 mir-222 dbDEMC

4 mir-16 dbDEMC 9 mir-29a dbDEMC
5 mir-19b dbDEMC 10 mir-133b dbDEMC

Breast neoplasms 1 mir-142 miRCancer 6 mir-138 dbDEMC
2 mir-150 dbDEMC, miRCancer 7 mir-15b dbDEMC

9 3 mir-106a dbDEMC 8 mir-192 dbDEMC
4 mir-99a dbDEMC, miRCancer 9 mir-378a Unconfirmed
5 mir-130a dbDEMC 10 mir-196b dbDEMC

lung neoplasms 1 mir-16 dbDEMC 6 mir-99a dbDEMC
2 hsa-mir-15a dbDEMC 7 mir-429 dbDEMC, miRCancer

9 3 hsa-mir-106b dbDEMC 8 mir-302b dbDEMC, miRCancer
4 mir-195 dbDEMC, miRCancer 9 mir-130a dbDEMC
5 mir-141 dbDEMC 10 mir-296 Unconfirmed
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The death rate from lung neoplasms is extremely high. About 1.3 
million people die of lung neoplasms every year, accounting for about 
one-third of all neoplasms deaths worldwide (Yu et al., 2015; Sun et al., 
2016). miRNAs have been found as a tumor suppressor gene and lung 
neoplasms. For example, Gu et al. found that miR-99a was significantly 
expressed in lung cancer tissues and lung neoplasm cells. In addition, 
the expression level of miR-99a is correlated with clinicopathological 
factors, the clinical stage and lymph node metastasis of lung cancer 
patients. We use PMFMDA to predict potential related miRNAs in 
lung tumors. As shown in Table 5, we can find that only one of the top 
10 related miRNAs predicted is unconfirmed.

For a clear view, we show the top 20 miRNAs associated 
networks predicting three tumors in Figure 5. It is worth 
noting that some miRNA candidates are usually associated 
with several diseases. For example, mir-15b and mir-130a are 
associated with both Prostatic lung and Breast Neoplasms. Has-
mir-16 is associated with both Esophageal Neoplasms and lung 
Neoplasms.

DIsCUssION
It is known that miRNAs often play an irreplaceable role in 
biological processes related to human diseases (Shen et al., 2017). 

FIGURe 4 | Performance evaluation of PMFMDA in two situations for 5-fold 
cross validation. (1) PMFMDA with similarity information; (2) PMFMDA without 
similarity information.

FIGURe 5 | The network of the top 20 predicted associations for the three selected diseases via PMFMDA.
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Accurately inferring disease-related potential miRNAs is helpful 
for us to investigate the pathogenesis of the disease and find a more 
effective treatment. In this study, we construct a mathematical 
model based on probability matrix factorization (PMFMDA) to 
identifying potential miRNAs–disease associations. PMFMDA 
outperform a few state-of-the-art models in the HMDD V2.0 
database due to a few factors. First, PMFMDA not only uses 
known correlation data, but also integrates the similarities 
between miRNAs and between diseases. This has enabled 
PMFMDA to achieve good results in predicting isolated disease-
associated miRNAs since theoretically similar miRNAs may 
associate with similar diseases. Second, the model is a semi-
supervised model, which does not rely on negative samples. 
Thus, it is better than most machine learning algorithms with 
strong requirement for good negative samples. Finally, in 
the model solving process, we use the alternating gradient 
descent algorithm to find the optimal solution to ensure the 
reliability of disease feature vectors and miRNA feature vectors. 
In terms of experiment, PMFMDA achieves the highest AUC 
(0.9187, 0.9237, respectively) in 5-fold CV and global LOOCV, 
demonstrates its most reliable prediction performances. At the 
same time, we also perform CVd experiments to measure the 
ability of PMFMDA to predict miRNAs associated with novel 
diseases. We conduct CV testing on 8 common diseases, which 
have at least 80 associations are verified (Xuan et al., 2015). 
PMFMDA achieves the highest average AUPRs of 0.6687. 
Finally, to make the more comprehensive test of PMFMDA, we 
use the three most common diseases in humans for research. 
The number of other database validations in the top 20 predicted 
miRNAs for esophageal tumors, breast tumors, and lung tumors 
are found to be 20, 19, and 17, respectively. In conclusion, 
PMFMDA has achieved good results in predicting the potential 
association of miRNA disease and predicting new disease-
associated miRNAs and can be used as a very useful supplement 
to existing prediction models.

Although quite satisfactory results have been achieved from 
PMFMDA, there are still some limitations to this approach. 
Firstly, we only use semantic similarity and the Gaussian kernel 
similarity to construct disease similarity network. It may be 

helpful to improve the predictive performance of PMFMDA 
by integrating disease or miRNA similarity from multiple data 
sources such sequence similarity. Secondly, the public data sets 
used in this study may have noise and outliers. A preprocessing 
step for de-noising and dimension reduction in raw input data 
might be useful. Thirdly, in the process of solving PMFMDA, 
the gradient descent method often obtains the local optimal 
solution, and how to further optimize its solution helps to 
improve the prediction performance of PMFMDA. Finally, as 
more and more miRNAs and disease associations are confirmed, 
collecting more validated data will help us to conduct more 
in-depth research.
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Lung cancer is a common malignant cancer. Kirsten rat sarcoma oncogene (KRAS)
mutations have been considered as a key driver for lung cancers. KRAS p.G12C
mutations were most predominant in NSCLC which was comprised about 11–16% of
lung adenocarcinomas (p.G12C accounts for 45–50% of mutant KRAS). But it is still not
clear how the KRAS mutation triggers lung cancers. To study the molecular mechanisms
of KRAS mutation in lung cancer. We analyzed the gene expression profiles of 156 KRAS
mutation samples and other negative samples with two stage feature selection approach:
(1) minimal Redundancy Maximal Relevance (mRMR) and (2) Incremental Feature
Selection (IFS). At last, 41 predictive genes for KRAS mutation were identified and a
KRAS mutation predictor was constructed. Its leave one out cross validation MCC was
0.879. Our results were helpful for understanding the roles of KRAS mutation in
lung cancer.

Keywords: Kirsten rat sarcoma oncogene (KRAS), mutation, lung cancer, predictor, gene expression
INTRODUCTION

Lung cancer, known as a malignant cancer which defined as the overgrowth of uncontrolled cell in
lung tissues, has proved be a key cause of cancer death. Each year, 1.3 million people die of lung
cancer (Jemal et al., 2006; Jemal et al., 2011). Non-small-cell lung cancer (NSCLC) accounts for
more than 85% of diagnosed lung cancer patients (Morgensztern et al., 2010). NSCLC can be further
divided into adenocarcinoma, squamous cell carcinoma (SCC), and large cell carcinoma (Sandler
et al., 2006; Morgensztern et al., 2010).

At present, the pathogenesis of lung cancer is not very clear, but is generally believed that one of
the most important reason is the accumulation of mutations including single nucleotide
transformation, small fragments of insertions and deletions, the changes of copy number, and
chromosome rearrangement. Moreover, these mutations are closed with cell proliferation, invasion,
metastasis, and apoptosis (Scagliotti et al., 2008; Liu et al., 2012). So, studying mutations in living
systems will be helpful to understand how mutations are associated with lung-cancer
biological processes.
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In the last decade, researchers have uncovered the source of
one of the important mutations is called as Kirsten rat sarcoma
oncogene (KRAS) mutations in lung cancers using molecular
studies (Gautschi et al., 2007). KRAS is the principal isoform of
RAS. KRAS p.G12C mutations were most predominant in
NSCLC which was comprised about 11–16% of lung
adenocarcinomas (p.G12C accounts for 45–50% of mutant
KRAS) (Cox et al., 2014). Other common KRAS mutations in
lung cancer are G12V and G12D. In other cancers, such as
pancreatic cancer and colorectal cancer, KRAS mutations are
also frequent. Based on the TCGA data in cBioPortal (Gao et al.,
2013), the most frequent KRAS mutations in pancreatic cancer
are G12D, G12V, and G12R; the most frequent KRAS
mutations in colorectal cancer are G12D, G12V, and G13D.
KRAS may be a good lung cancer therapeutic target for
searching potential drugs.

As above mentioned, mutations in KRAS is the most usual
mutations that occur in lung cancer, especially in NSCLC (Mao
et al., 1994; Mills et al., 1995; Nakamoto et al., 2001). KRAS
mutation is more frequent in Caucasians than in Asians.
Moreover, smokers may have more KRAS mutations than
nonsmokers (Westcott and To, 2013; Ferrer et al., 2018).
Single amino acid substitutions in codon 12 were most
common KRAS mutations in NSCLC (Graziano et al., 1999).
Therefore, the search for how the KRAS mutations affected the
gene in lung cancer has been a long-standing goal in
cancer biology.

In this study, to study the functional effects of key driver KRAS
mutations on gene expression in lung cancer, we analyzed the gene
expression profiles of 156 lung cancer cell lines with KRAS
mutations and other 3,582 lung cancer cell lines without KRAS
mutations. Forty-one discriminative genes for KRAS mutations
were identified using two stage feature selection approach: (1)
minimal Redundancy Maximal Relevance (mRMR) and (2)
Incremental Feature Selection (IFS).
METHODS

The Gene Expression Profiles of Cell Lines
With and Without KRAS Mutations
To identify the key genes that distinguishes key driver KRAS
mutations from other mutations, we downloaded the gene
expression profiles of 156 lung cancer cell lines with KRAS
mutations as positive samples and other 3,582 lung cancer cell
lines without KRAS mutations as negative samples from publicly
available Gene Expression Omnibus (GEO) database under
accession number of GSE83744 (Berger et al., 2016). The
expression levels of 978 representative genes from Broad
Institute Human L1000 landmark were measured. The L1000
landmark was derived from the Connectivity Map (CMap)
project (Subramanian et al., 2017). CMap is a large gene-
expression dataset of human cells perturbed with many
chemicals and genetic reagents (Lamb et al., 2006). These 1,000
genes were sensitive to perturbations and can reflect 81% of non-
measured transcripts (Subramanian et al., 2017).
Frontiers in Genetics | www.frontiersin.org 268
Two Stage Feature Selection Approach
We applied two stage feature selection approach to select the
biomarker genes. First, the genes were ranked based on not only
their relevance with mutation samples, but also their redundancy
among genes using the mRMR algorithm (Peng et al., 2005). It
had a wide range of applications in bioinformatics for feature
selection (Chen et al., 2018c; Chen et al., 2019e; Li and Huang,
2018; Li et al., 2019b; Wang and Huang, 2019a). As the equation
shown below,Ωs,Ωt andΩ were the set of m selected genes, n to-
be-selected genes, and all m+n genes, respectively. We use
mutual information (I) to measure the relevance of the
expression levels of gene g from Ωt with KRAS mutation status
t (Huang and Cai, 2013):/>

D = I g, tð Þ (1)

Meanwhile, the redundancy R of the gene g with the selected
genes in Ωs can be calculated as below:

R =
1
m

∑gi ∈Ws
I g, gið Þ� �

(2)

The optimal gene gj from Ωt with max relevance with KRAS
mutation status t and min redundancy with the selected genes in
Ωs can be selected by maximizing mRMR function listed below

max
gj ∈Wt

I gj, t
� �

−
1
m

∑gi ∈Ws
I gj, gi
� �� �� �

j = 1, 2,…, nð Þ (3)

With N round evaluations, genes can be ranked as

S = g
0
1, g

0
2,…, g

0
h,…, g

0
N ,

n o
(4)

The top ranked genes were associated with KRAS mutation
status, and had little redundancy with other genes. Such genes
were suitable for biomarkers. The top 200 genes were further
analyzed at the second stage.

The second stage was to determine the number of selected
genes using the IFS method (Chen et al., 2018b; Chen et al.,
2019b; Chen et al., 2019c; Chen et al., 2019d; Chen et al., 2019f; Li
et al., 2019a; Pan et al., 2019a; Pan et al., 2019b; ). To do so, 200
classifiers were constructed using top 1, top 2, top 200 genes. The
LOOCV (leave-one-out cross validation) MCC (Mathew’s
correlation coefficient) of the top k-gene classifier was
calculated each time.

We tried several different classifiers: (1) SVM (Support
Vector Machine) (Jiang et al., 2019; Yan et al., 2019; Chen
et al., 2019a; Li et al., 2019a; Pan et al., 2019a; Wang and
Huang, 2019b; Chen et al., 2019d), (2) 1NN (1 Nearest
Neighbor) (Lei et al., 2013; Chen et al., 2016; Wang et al.,
2017a), (3) 3NN (3 Nearest Neighbors), (4) 5NN (5 Nearest
Neighbors), (5) Decision Tree (DT) (Huang et al., 2008;
Huang et al., 2011; Chen et al., 2015), (6) Neural Network
(NN) (Liu et al., 2017; Pan et al., 2018; Chen et al., 2019e). The
function svm from R package e1071, function knn from R
package class, function rpart from R package rpart, function
nnet from R package nnet were used to apply these
classification algorithms.
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Based on the IFS curve in which x-axis was the number of
genes and y-axis was the corresponding LOOCV MCC, we can
decide the best gene combinations we should select. The peak of
the curve was the optimal selection.

Prediction Performance Evaluation
of the Classifier
As we mentioned before, the prediction performance of each
classifier was evaluated with leave-one-out cross validation
(LOOCV) (Cui et al., 2013; Yang et al., 2014). It will go
through N rounds and each sample will be tested during the N
rounds. In each round, one sample will be tested using the model
trained with the other N-1 samples. It can objectively evaluate all
samples (Chou, 2011).

The performance metrics, including Sensitivity (Sn),
Specificity (Sp), Accuracy (ACC), and Mathew’s correlation
coefficient (MCC) were all calculated:

Sn =
TP

TP + FN
(5)

Sp =
TN

TN + FP
(6)

ACC =
TP + TN

TP + TN + FP + FN
(7)

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp (8)

where TP, TN, FP, and FN stand for the number of true
positive samples, true negative samples, false positive samples,
and false negative samples, respectively. Since the sizes of
KRAS mutation + samples and KRAS mutation - samples were
imbalance and MCC can trade-off sensitivity and specificity
(Chen et al., 2018a; Li et al., 2018; Pan et al., 2018; Pan et al.,
2019a; Pan et al., 2019b), MCC was used as the main
performance metric.
RESULTS AND DISCUSSION

The Genes That Showed Different
Expression Pattern Between KRAS
Mutations From Other Mutations Samples
The top 200 most informative genes for KRAS mutations were
identified using the mRMR method which has been widely
used in bioinformatics filed (Zhao et al., 2013; Zhang et al.,
2016). The C/C++ version software written by Peng et al.
(Peng et al., 2005; Best et al., 2017) (http://home.penglab.com/
proj/mRMR/) was used to apply the mRMR algorithm. Unlike
the traditional statistical test based univariate feature selection
methods, mRMR considers the relevance between gene
expression and KRAS mutation status, and the redundancy
among genes.
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The Optimal Biomarkers Identified From
the mRMR Gene List With IFS Methods
After genes were ranked by mRMR, the IFS procedure was
applied to find the optimal number of genes to be selected.
The IFS curve in Figure 1 showed the relationship between the
number of genes and their MCCs. The peak LOOCV MCCs of
SVM, 1NN, 3NN, 5NN, DT, and NN were 0.858 with 8 genes,
0.853 with 48 genes, 0.879 with 41 genes, 0.878 with 59 genes,
0.871 with 69 genes, 0.842 with 174 genes. 3NN performed best.
The corresponding 41 genes were shown in Table 1.

The Prediction Metrics of the 41 Genes
The 41 genes were chosen with two stage feature selection
methods: mRMR and IFS. To more carefully evaluate their
prediction power, we checked their confusion matrix which
showed the overlaps between actual KRAS mutation status and
predicted KRAS mutation status using 3NN (Table 2). The
LOOCV sensitivity, specificity, accuracy, and MCC were 0.840,
0.997, 0.991, and 0.879, respectively.

The Network Associations Between KRAS
and the 41 Genes
We searched KRAS and the eight genes in STRING database
Version: 11.0 (https://string-db.org) and Figure 2 showed their
functional association networks. It can be seen that 20 out of 41
genes (CCND3, CDK19, CEBPA, CEBPD, CSNK1E, CTSL,
DUSP6, GRB10, HMGA2, MMP1, MTHFD2, NR3C1, PAK4,
PMAIP1, RAP1GAP, SDHB, STX1A, TP53, TRIB3, UBE2L6)
FIGURE 1 | The IFS curves of six different classifiers. The x-axis was the
number of genes and the y-axis was the then leave one out cross validation
(LOOCV) MCC. The red, blue, brown, black, orange, and purple curves were
the IFS results of SVM, 1NN, 3NN, 5NN, DT, and NN, respectively. Peak
LOOCV MCCs of SVM, 1NN, 3NN, 5NN, DT, and NN were 0.858 with 8
genes, 0.853 with 48 genes, 0.879 with 41 genes, 0.878 with 59 genes,
0.871 with 69 genes, 0.842 with 174 genes. 3NN performed best. Therefore,
the corresponding 41 genes were finally selected.
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had direct interactions with KRAS. The STRING network results
supported that most of the 41 genes had direct interactions
with KRAS.

The Biological Significance of the Selected
Genes in Lung Cancer
As mentioned earlier, we used mRMR algorithm and IFS program
to screen out 41 genes which may be molecular markers for
identifying KARS mutations. Subsequently, we reviewed studies
of these genes in lung cancer and other cancers with high frequency
of KARS mutations such as colorectal and pancreatic cancer. In the
study of Zhang X et al., Tribbles-3 (TRIB3) pseudokinase can
activate the b-catenin signal pathway, which in turn promotes the
proliferation and migration of NSCLC cells (Zhang et al., 2019). In
addition, blocking the activity of TRIB3 may be one of the
mechanisms for the treatment of lung cancer (Ding et al., 2018).
Wang X et al. have found that PAK4 is significantly associated with
poor prognosis of NSCLC (Wang et al., 2016b), and LIMK1
phosphorylation mediated by it regulates the migration and
invasion of NSCLC. Therefore, PAK4 may be an important
prognostic indicator and a potential molecular target for
treatment of NSCLC (Cai et al., 2015). HMGA2 affects apoptosis
and is highly expressed in metastatic LUAD through Caspase 3/9
and Bcl-2. It is also considered to be a biomarker and potential
therapeutic target for lung cancer therapy (Kumar et al., 2014; Gao
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et al., 2017b). A meta-analysis of lung cancer showed that metallo-
proteinase 1 (MMP1)-16071G/2G polymorphism was a risk factor
for lung cancer in Asians (Li et al., 2015). In addition, DUSP6
rs2279574 gene polymorphism is thought to predict the survival
time of NSCLC patients after chemotherapy (Wang et al., 2016a).
Cyclin D3 gene (CCND3) is a key cell cycle gene of NSCLC, which
can promote the growth of LUAD (Zhang et al., 2017). Casein
kinase I epsilon (CSNK1E), a circadian rhythm gene, whose genetic
variation has a very significant correlation with the risk of lung
cancer (Ortega and Mas-Oliva, 1986). CEPBA, can be used as a
new tumor suppressor factor, Lu H et al. through clinical
experiments, it was found that up-regulation of CEBPA is an
effective method for the treatment of human NSCLC (Halmos
et al., 2002; Lu et al., 2015). In addition, a comprehensive analysis
of lung cancer genes by, Lv M shows that CEPBD may be involved
in the development of lung cancer (Lv and Wang, 2015). TP53
mutation is very common in NSCLC and is considered to be a
marker of poor prognosis and a prognostic indicator of lung cancer
(Gao et al., 2017a; Labbe et al., 2017). Methylenetetrahydrofolate
dehydrogenase 2 (MTHFD2) has redox homeostasis and can be
used in the treatment of lung cancer (Nishimura et al., 2019).
NR3C1 is reported to be involved in the pathways related to the
biological process of lung cancer, and as a gene marker has a
significant correlation with the survival of LUAD (Zhao et al., 2015;
Luo et al., 2018). Cathepsin L1, as a protein was encoded by the
CTSL1 gene, could reduce the cellular matrix and proteolytic
cascades which resulting to promote invasion or metastatic
activity (Duffy, 1996; Turk et al., 2012). Elevated expression of
extracellular Cathepsin L was related with cancer progression of
lung cancer cells (Okudela et al., 2016). Moreover, Cathepsin L is
viewed as a downstream target of oncogenic KRAS mutations.

The above genes have not only been proved to be closely
related to the prognosis, diagnosis, and treatment of lung cancer,
but also have a direct interaction with KRAS. Some of the 41
selected genes have no direct interaction with KRAS, but are
considered to be involved in the occurrence and development of
lung cancer. RBM6 protein is located at 3p21.3, and its
expression changes regulate many of the most common
abnormal splicing events in lung cancer (Sutherland et al.,
2010; Coomer et al., 2019). The double up-regulation of RGS2
gene is related to the poor overall survival rate of patients with
lung adenocarcinoma (Yin et al., 2016). Epigenetic silencing of
BAMBI has been identified as a marker of NSCLC, and
overexpression of BAMBI may become a new target for the
treatment of this cancer (Marwitz et al., 2016; Wang et al.,
2017b). Overexpression of PAFA-H1B1 can lead to the
occurrence and poor prognosis of lung cancer (Lo et al., 2012).
Collagen alpha-1(IV) chain (COL4A1), encoded by the COL4A1
gene, was found previously to play a crucial role in the
coordinating alveolar morphogenesis and formatting the
epithelium vasculature lung tissue (Abe et al., 2017).
The Potential Roles of the Selected Genes
in Other Cancers
KRAS related genes are likely to be diagnostic, prognostic
markers and therapeutic targets of lung cancer. We also
TABLE 1 | The 41 genes selected by mRMR and IFS.

Rank Gene Rank Gene

1 CTSL1 22 CCDC92
2 GNPDA1 23 BRP44
3 TRIB3 24 CDK19
4 STX1A 25 CD320
5 PHKA1 26 ATP1B1
6 CSNK1E 27 DRAP1
7 COL4A1 28 DUSP6
8 CEBPA 29 RAP1GAP
9 CEBPD 30 GALE
10 NSDHL 31 SSBP2
11 TP53 32 UBE2L6
12 MTHFD2 33 CCND3
13 RGS2 34 PAFAH1B1
14 NR3C1 35 RBM6
15 PPIC 36 C5
16 BAMBI 37 SDHB
17 PAK4 38 GRB10
18 FEZ2 39 UFM1
19 KTN1 40 ARL4C
20 HMGA2 41 PMAIP1
21 MMP1
TABLE 2 | The confusion matrix of actual sample classes and predicted sample
classes using 3NN.

Predicted KRAS mutation + Predicted KRAS
mutation −

Actual KRAS mutation + 131 25
Actual KRAS mutation − 10 3572
MCC = 0.879 Sensitivity = 0.840 Specificity = 0.997
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looked for studies of these genes and KRAS high-frequency
mutations in other cancers, mainly in colorectal and
pancreatic cancer. According to Hua F et al., TRIB 3 gene
knockout can reduce the occurrence of colon tumors in mice,
reduce the migration of colorectal cancer cells, and reduce
their growth in mouse transplanted tumors. The strategy of
blocking the activity of TRIB3 can be used to treat colorectal
cancer (Hua et al., 2019). Tyagi N et al. have found that PAK4
can maintain the stem cell phenotype of pancreatic cancer cells by
activating STAT3 signal, which can be used as a new therapeutic
target (Tyagi et al., 2016). TP53 mutation is associated with early
stage of colorectal cancer (Laurent et al., 2011). There was a
significant correlation between MMP1 and colon cancer mortality
(Slattery and Lundgreen, 2014).
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FIGURE 2 | The functional association network of KRAS and the selected genes based on STRING database. Twenty out of 41 genes (CCND3, CDK19, CEBPA,
CEBPD, CSNK1E, CTSL, DUSP6, GRB10, HMGA2, MMP1, MTHFD2, NR3C1, PAK4, PMAIP1, RAP1GAP, SDHB, STX1A, TP53, TRIB3, UBE2L6) had direct
interactions with KRAS. Each line represented an interaction supported by different evidences. The skype-blue, purple, green, red, blue, grass green, black, and
navy-blue edges were interactions from curated databases, experiment, gene neighborhood, gene fusions, gene co-occurrence, text mining, co-expression, and
protein homology, respectively. For more detailed explanations, please refer to STRING database (https://string-db.org).
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Complex diseases seriously affect people's physical and mental health. The discovery of
disease-causing genes has become a target of research. With the emergence of
bioinformatics and the rapid development of biotechnology, to overcome the inherent
difficulties of the long experimental period and high cost of traditional biomedical methods,
researchers have proposed many gene prioritization algorithms that use a large amount of
biological data to mine pathogenic genes. However, because the currently known gene–
disease association matrix is still very sparse and lacks evidence that genes and diseases
are unrelated, there are limits to the predictive performance of gene prioritization
algorithms. Based on the hypothesis that functionally related gene mutations may lead
to similar disease phenotypes, this paper proposes a PU induction matrix completion
algorithm based on heterogeneous information fusion (PUIMCHIF) to predict candidate
genes involved in the pathogenicity of human diseases. On the one hand, PUIMCHIF uses
different compact feature learning methods to extract features of genes and diseases from
multiple data sources, making up for the lack of sparse data. On the other hand, based on
the prior knowledge that most of the unknown gene–disease associations are unrelated,
we use the PU-Learning strategy to treat the unknown unlabeled data as negative
examples for biased learning. The experimental results of the PUIMCHIF algorithm
regarding the three indexes of precision, recall, and mean percentile ranking (MPR)
were significantly better than those of other algorithms. In the top 100 global prediction
analysis of multiple genes and multiple diseases, the probability of recovering true gene
associations using PUIMCHIF reached 50% and the MPR value was 10.94%. The
PUIMCHIF algorithm has higher priority than those from other methods, such as IMC
and CATAPULT.

Keywords: pathogenic gene prediction, induction matrix completion, compact feature learning, PU-Learning, mean
percentile ranking
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INTRODUCTION

The discovery of disease-causing genes plays an important role in
understanding the causes of diseases, clinically diagnosing
diseases, and achieving early prevention and treatment (Cheng
et al., 2016; Zeng et al., 2017; Cheng et al., 2019). It is also an
important goal of human genome research, with great scientific
and social significance. Prioritization of potentially pathogenic
genes is an important step in the discovery of disease-causing
genes and obtaining an understanding of genetic diseases.

Early studies of gene–disease associations were based on
clinical and biological experiments, which are expensive and
time-consuming. Owing to the inherent difficulties and delays in
the study of human genetic diseases, there are very few known
identified gene–disease links in public databases, such as the
widely used Online Mendelian Inheritance in Man (OMIM)
(Amberger et al., 2015) and Genetic Association Database
(Becker et al., 2004). Because of the specificity of the study of
disease-causing genes, we do not know the genes that are not
related to a particular disease. We only know the few genes that
have been proven to be related to it. Against this background,
with the emergence of bioinformatics, researchers have begun to
focus on and study genetic disease prioritization algorithms, and
use computer technology to mine candidate pathogenic genes
from massive data (Liu et al., 2020; Wang et al., 2018; Zeng et al.,
2018; Zhang et al., 2019; Zeng et al., 2019; Pan et al., 2019). The
selected genes are more likely to be related to diseases, and gene
sorting algorithms with better predictive performance would be
more helpful to conduct targeted biological experiments and
understand pathogenic mechanisms.

Early gene sorting algorithms based on network similarity
focused on local information in the gene–disease network,
namely, nodes adjacent to gene or disease nodes; an example of
these is the molecular triangulation method (Krauthammer et al.,
2004). It has been found that the global topology of a network can
improve the performance in predicting disease-causing genes (Pan
et al., 2019; Chen et al., 2019). Kohler et al. (Kohler et al., 2008) used
the random walk (RWR) algorithm to analyze candidate disease-
causing genes, which further improved the predictive performance.

Complex biological systems cannot always meet the needs of
analysis with single network data (Chen et al., 2019). The
continuous growth of biological data, such as high-throughput
sequencing, also brings opportunities to study new predictive
methods. The more commonly used databases include the gene
expression database GEO (Barrett et al., 2007), the cancer gene
information TCGA database (Cancer Genome Atlas Research et al.,
2013), the protein interaction network database STRING
(Szklarczyk et al., 2017), the Gene Ontology (GO) database
(Ashburner et al., 2000), and Disease Ontology (DO) (Schriml et
al., 2012). Recently, there has been increasing interest in studying
gene sorting algorithms and starting to integrate a large amount of
biological data and analyze heterogeneous networks (Gomez-
Cabrero et al., 2014; Jiang, 2015; Zhang et al., 2019; Deng et al.,
2019). In 2008, the CIPHER algorithm (Wu et al., 2008) was
proposed by Wu et al., which combines protein interaction and
Frontiers in Genetics | www.frontiersin.org 276
disease-like networks but only considers local information in the
network and lacks global topology. In 2010, Vanunu et al. (Vanunu
et al., 2010) proposed the PRINCE algorithm, based on the idea of
global network information and network dissemination. In the
same year, Yongjin Li et al. (Li and Patra, 2010) proposed the
restarted random walk algorithm (RWRH) that fused a gene
similarity network, a disease phenotypic similarity network, and a
large heterogeneous network composed of a disease phenotype–
gene relationship network. In addition, Singh-Blom et al. (Singh-
Blom et al., 2013) further improved the predictive performance in
2013 using the Katz method commonly used in the field of social
networks for the task of predicting gene–disease relationships.

With the rapid development of machine learning and artificial
intelligence in recent years, new algorithms based on machine
learning have been applied to predict candidate pathogenic genes;
they have shown good predictive performance (Zou et al., 2018; Peng
et al., 2018; Liao et al., 2018; Zhang et al., 2018; Xiong et al., 2018; He
et al., 2018; Cheng et al., 2018; Cheng et al., 2018; Zeng et al., 2019;
Ding et al., 2019; Liu, 2019; Liu et al., 2019a; Zhu et al., 2019). In 2011,
Mordelet et al. (Mordelet and Vert, 2011) considered the problem of
genetic prediction as a supervised machine learning problem and
proposed the ProDiGe method. Moreover, in 2013, Singh-Blom et al.
(Kohler et al., 2008) proposed the supervised machine-learning
method CATAPULT using a variety of data sources. Then,
Natarajan et al. (Natarajan and Dhillon, 2014) applied the inductive
matrix completion algorithm (IMC) in the recommendation system
to predict pathogenic genes. This algorithm can not only predict
existing genes and diseases but also predict new genes and diseases
that have not previously been shown to be related. To compensate for
the impact of a data sparseness and the PU problem, the PUIMCHIF
algorithm is proposed in this paper. Specifically, on the basis of the
original IMC algorithm, the main innovations and contributions of
this paper can be summarized as follows: (1) owing to the sparsity of
gene–disease association data, we used a variety of data sources to
construct the characteristics of genes and diseases, and added a
STRING data set for the compact feature learning of genes, which
contained the physical relationships and other interactions that were
not in the original data set. (2) For the gene–gene network and the
disease–disease network (Li et al., 2019), we used the RWRmethod to
obtain the diffusion state of each node in the network under a steady
state in accordance with the network topology, used diffusion
component analysis (DCA) to reduce the dimensions of the data,
and finally obtained the network characteristics of genes or diseases.
One advantage of this approach is the ability to analyze both
HumanNet and STRING networks. (3) Self-encoders in machine
learning can learn efficient representations of data for dimensionality
reduction. Combined with the characteristics of biological data, the
work described in this paper used denoising self-encoding to reduce
the dimensionality of high-dimensional data features of genes and
diseases. (4) Considering the sparse disease–gene association data and
the prior knowledge that most unknown associations are negative
cases, we adopted the PU-Learning strategy to treat unlabeled data as
negative cases for biased learning, so as to replace the IMC method
involving learning for only positive cases. (5) To verify the
effectiveness of the PUIMCHIF method proposed in this paper, we
February 2020 | Volume 11 | Article 5
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used two commonly used evaluation indexes, Precision and Recall.
On this basis, we added theMPR index of mean percentile ranking to
further analyze the experimental results comprehensively.
INTRODUCTION TO METHODS

We are interest in kinds of associations between the genes and
diseases, but only part of them are known. So we want to make a
prediction about the unknown pare from the known ones. As
shown in Figure 1, our goal was to predict these unknown
associations based on the constructed low-dimensional
characteristics of the genes and diseases, and some known items
in the gene–disease associationmatrix P, that is, to predict candidate
genes potentially involved in the pathogenicity of the disease.

First, we constructed a low-dimensional eigenvector of genes
and diseases from different biological sources (compact feature
learning). We proposed different methods for learning compact
features based on different forms of data. For the network data of
genes and diseases, the random walk with restart algorithm
(RWR) was first used to extract the diffusion state of each
node in the network, and then DCA was used for
dimensionality reduction to obtain the similarity of each gene
(or disease) node in the heterogeneous network encoded by low-
dimensional feature vectors. This is because genes (or diseases)
with similar topological properties in the network are more likely
to be functionally related.

Second, for common feature matrix data, to reduce the
influence of high noise and data loss of biological data, we
used denoising autoencoder (DAE) to reduce the dimensions
of features.

Next, we applied the partial inductive matrix completion
algorithm to predict the relationship between genes and
Frontiers in Genetics | www.frontiersin.org 377
diseases by combining the characteristics of multiple diseases
and genes. One of the main advantages of this method is that it is
generalized and can be applied to diseases that are not present
during training, which cannot be predicted by traditional matrix
completion methods. This allows us to take advantage of
previous knowledge of known gene–disease interactions to
predict unknown gene–disease interactions. Because we added
an unbiased learning scheme for the unknown association
relationship as a negative example, we finally adopted the
PUIMC method for disease-causing gene prediction. The
details of the PUIMCHIF algorithm are described below.

Compact Feature Learning
In machine learning, the data are more important than the
algorithm because the generalization of machine learning
algorithm is about the ability from known data to the
unknown data. Therefore, when we choose the prediction
method based on machine learning to predict the disease-
causing gene. First, we need to use high-quality data. Second,
we need to conduct feature processing on the data to obtain more
favorable data features for the prediction task.

We integrated a variety of biological data to extract
characteristics of genes or diseases. Moreover, our goal was to
obtain a low-dimensional effective data feature matrix, where one
row of the feature matrix refers to a gene or disease, and the
columns of the matrix represent different characteristics. The
different compact feature learning methods that we used are
described below.

RWR
Closely linked or functionally similar genes are more likely to
cause the same or similar diseases. Random walk provides an
effective framework for exploring relationships in networks.
FIGURE 1 | Schematic diagram of PUIMCHIF model framework.
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Random walk with restart is referred to as RWR, which is a
network diffusion algorithm widely used in the analysis of
complex biological network data (Navlakha and Kingsford,
2010; Cao et al., 2014). Different from the traditional random
walk method, each iteration of RWR introduces a predefined
restart probability at the initial node, which can consider both
local and global topological connection patterns within the
network and take full advantage of direct or indirect
relationships between nodes.

Here, matrix A and B are defined. Matrix A represents the
weighted adjacency matrix of the interaction network of genes
(or diseases). And in matrix B as shown in equation (1), each
element Bij describes the probability of transition from node i to
node j. sti represents an n-dimensional distribution vector, and
each element stores the probability that a node is accessed after
iterating t times from node i during the random walk. The
formula for calculating RWR is shown in equation (2).

Bij =
Aij

Sj0Aij0
(1)

st+1i = 1 − prð ÞstiB + prdi (2)

In equation (2), di represents an n-dimensional standard basis
vector and di(i) = 1, di (j) = 0, for ∀j ≠ i. And pr is a predefined
restart probability that controls the relative influence of local
structure and global structure in the diffusion process. With a
higher value, more attention is paid to the local structure in
the network.

For a node in the iterative process, we can obtain a stable
distribution s∞i , so we define si as the “diffusion state” of node i,
that is si = s∞i . The jth element sij of si represents the probability
that the RWR starts from node i and ends at node j in equilibrium.
When two nodes have similar diffusion states, it generally means
that they are more similar than other nodes in the network and
may have similar functions. This discovery provides a basis for
predicting unknown gene–disease associations.

Diffusion Component Analysis
Although the diffuse states generated by the above RWR process
represent the underlying topological environment and intrinsic
connectivity spectrum of each gene or disease node in the
network, they may not be completely accurate due to the low-
quality and high-dimensional nature of biological data. For
example, a small number of missing or false interactions in the
network can significantly affect the outcome of the diffusion
process (Kim and Leskovec, 2011). It is often inconvenient to
directly use high-dimensional diffusion states as topological
features in prediction tasks.

To solve this problem, we used a dimensionality reduction
method called DCA to reduce the dimensions of the feature
space and obtain important topological features from the
diffusion state. In addition, for multi-omics networks, DCA
also performs very well. The key idea of DCA is to obtain an
informative but low-dimensional vector representation. Similar
to principal component analysis (PCA), which seeks the inherent
low-dimensional linear structure of data to best interpret
Frontiers in Genetics | www.frontiersin.org 478
variances , DCA learns the low-dimensional vector
representation of all nodes to best interpret their patterns of
connection in heterogeneous networks. We will briefly describe
the DCA framework below.

To achieve the purposes of noise reduction and
dimensionality reduction, DCA uses the polynomial logic
model represented by a low-dimensional vector to approximate
the obtained diffusion state distribution, and it has far fewer
dimensions than the original n-dimensional vector representing
the diffusion state. Specifically, the probability of assigning node i
to node j in the diffusion state is modeled as:

ŝ ij =
exp xTi wj

� �
oj0 exp xTi wj0

� � (3)

In equation (3), xi, wi∈Rd, d ≪ n. We take wi as the context
feature and xi as the node feature of node i, both of which
describe the topological properties of the network. If xi and wi

point in similar directions, we obtain a larger inner product. This
means that node j may be frequently visited in a random walk
starting from node i. DCA uses the obtained diffusion state S={
s1,⋯, sn } as input to optimize w and x of all nodes. The
optimization method uses KL divergence, as shown in equation
(4).

min
w,  x

C s,   ŝð Þ = min
w,x

1
n oi=1

n
DKL(sijjŝ i) (4)

DKL(⋅||⋅) is the KL divergence between the two distributions.
We use w and x to represent this formula according to the
definition of KL invergence and ŝ .

C s, ŝð Þ = 1
n o

i=1

n

H sið Þ − o
j=1

n
sij wT

i xj − log o
j0=1

n
exp wT

i , xj0
� � ! !" # (5)

In equation (5), H(⋅) represents entropy. The objective
function can find the low-dimensional vector representation of
w and x using the standard quasi-Newton L-BFGS method.
Although the obtained low-dimensional vector can effectively
capture the network structure, we found that this optimization
method is time-consuming.

To make the DCA framework more suitable for large
biological networks, we use a more efficient method, clusDCA
(Wang et al., 2015), which is based on matrix factorization, to
decompose the diffusion states and obtain their low-dimensional
vector representations. According to the definition, the following
formula can be obtained:

log ŝ ij = xTi wj − log o
j0
exp xTi wj0
� �

(6)

The first term corresponds to the low-dimensional
approximation of ŝ ij. The second term is a normalization factor,
ensuring that ŝ i is a well-defined distribution. By removing the
second term, we relax the constraint that the elements in ŝ ij must
add up to 1. Although the obtained low-dimensional
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approximation of the diffusion state is no longer a strictly valid
probability distribution, it is found that these approximations are
very close to the true distribution, and the effects of relaxation are
negligible. Therefore, it can be simplified as:

log ŝ ij = xTi wj : (7)

In addition, we use the sum of squared errors as the objective
function, instead of minimizing the relative entropy between the
original diffusion state and the approximate diffusion state.

min
w,  x

C s,   ŝð Þ = min
w,x oi=1

n

o
j=1

n
wT
i xj − log sij

� �2
(8)

The obtained objective function can be optimized by singular
value decomposition (SVD). To avoid taking the logarithm of 0,
we add a small positive number 1

n to sij. The calculation formula
of the logarithm diffusion state matrix L is as follows:

L = log S + Qð Þ − log Qð Þ : (9)

In equation (9), S∈Rn×n, Q∈Rn×n and Qij =
1
n, for ∀i, j. Using

the singular value decomposition method, we decompose L into
three matrices:

L = USVT (10)

In equation (10), U∈Rn×n, V∈Rn×n, S∈Rn×n and S is a
diagonal singular value matrix. To obtain the low-dimensional
vectors wj and xi in d dimensions, we simply select the first d
singular vectors Ud, Vd, and Sd. Each row of matrix X =
½x1,  …,   xn�T represents the low-dimensional eigenvector
corresponding to each node in the network. In matrix W =
½w1,  …,  wn�T , each row represents the corresponding vector of
the context feature. The formulas for calculating X and W are as
follows:

X = UdS
1=2
d ,    W = VdS

1=2
d : (11)

Denoising Autoencoder
Autoencoder is an unsupervised neural network model. It learns
the implicit features of input data, which is called “coding.” At
the same time, the original input data can be reconstructed with
Frontiers in Genetics | www.frontiersin.org 579
the learned new features, which is called “decoding.” Intuitively,
autoencoder can be used for reducing feature dimensionality, like
principal components analysis (PCA), but with stronger
performance than PCA because the neural network model can
extract more effective new features.

The denoising autoencoder adds noise to the input x to obtain
~x, and after training, it obtains a noiseless output z, as shown in
Figure 2.

This prevents the autoencoder from simply copying the input
to the output, so as to extract useful patterns in the data and
improve the weight robustness. Noise can be either pure gaussian
noise added to the input or randomly discarding a feature at
input layer, similar to dropout. The specific equation for
calculating z is as follows:

y = f ~xW1 + b1ð Þ
z = g yW2 + b2ð Þ

(12)

In addition, network parameters are trained to minimize
reconstruction errors, namely:

min LH x, zð Þ = min jjx − zp : (13)

Pathogenic Gene Prediction Method
Standard Inductive Matrix Completion
In the gene–disease association matrix P ∈ RNg�Nd , each row
represents a gene ID and the number of genes is Ng. Each column
represents a disease phenotype and the number of diseases is Nd.
If Pij = 1, this means that gene i is related to disease j, and Pij = 0
means that the relationship between gene i and disease j is
uncertain. Based on the most successful and deeply studied
matrix completion method in the recommender systems, the
IMC algorithm was used to complete the task of learning gene–
disease associations. The advantage of this is that this method is
inductive, and it can achieve the prediction of new genes or
diseases that have rarely been studied.

IMC assumes that the association matrix has a low rank, with
the goal of recovering Z using the observed values of P and the
eigenvectors of genetic diseases, as shown in Figure 3.

The eigenvector matrix of Ng genes is represented by X ∈
RNg�fg , and the eigenvector of gene i is represented by xi ∈ Rfg .
FIGURE 2 | Diagram of Denoising Autoencoder.
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Similarly, Y ∈ RNd�fd is used to represent the eigenvector matrix
of Nd diseases, and yi ∈ Rfd is used to represent the eigenvector
of disease j. The inductive matrix completion problem is to
recover a low-rank matrix Z by using the known association W+

from the gene–disease association matrix P. We established a
bilinear function to learn the projection matrix Z between the
gene space and the disease space to predict the interaction
between unknown genes and diseases. We modeled the matrix
P as XZYT≈ P. Then, we used the following formula to measure
the probability of pairwise interaction score between gene i and
disease j, and the higher the score(i, j) value, the more likely gene
i and disease j interact.

score i, jð Þ = xiZy
T
j (14)

There is usually a significant correlation between spatially
close eigenvectors of genes or diseases, which can greatly reduce
the number of effective parameters needed to model gene–
disease interactions in Z. To consider this problem, we applied
a low-rank constraint on Z and learned only a few potential
factors. Let Z = GHT, where G ∈ Rfg�k,H ∈ Rfd�k, and k is small.
This low-rank constraint not only alleviates the overfitting
problem, but also facilitates the process of optimizing the
calculation (Wang et al., 2015). The optimization problem of
low-rank constraint is NP-hard on the original matrix Z. One
standard method of relaxing the low-rank constraint is to
minimize the trace norm, that is, the sum of the singular
values. Minimizing the trace norm of Z = GHT is equivalent to
minimizing 1

2 (‖G‖
2
F + ‖H‖2F). The decomposition of Z into G

and H solves the following optimization problems by alternating
minimization. A common choice for the loss function ℓ is the
square loss function. l is the regularization parameter.
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min o
i,jð Þ∈W+

‘ Pij, x
T
i GH

Tyi
� �

+
l
2

‖G‖2F + ‖H‖2F
� �

(15)

Improved Inductive Matrix Completion
To optimize the objective function, we introduce the idea of PU-
Learning. Although we predicted positive examples from
unknown relationships, that is, candidate disease-causing
genes, it was undeniable that these unknown genes-disease
pairs may be unrelated. Therefore, unknown association
relationship information was added to the learning process as
a negative example, and the objective function was as follows:

min o
i,jð Þ∈W+

‘ Pij, x
T
i GH

Tyi
� �

+ a o
i,jð Þ∈W−

‘ Pij, x
T
i GH

Tyi
� �

+ l
2 ‖G‖2F + ‖H‖2F
� � (16)

We represent the unknown association in the gene–disease
association matrix P as W−. The key parameter a < 1 because the
penalty weight of the known relationship must be greater than the
unknown relationship. Finally, equation (14) was still used to
calculate the interaction score between gene i and disease j. The
scores are sorted in descending order, and the first k genes were
selected as candidate pathogenic genes for the corresponding disease.
DATA SETS AND FEATURES

The data sets used in this paper can be divided into three
categories: gene–disease association data, gene characteristic
data, and disease characteristic data.
FIGURE 3 | Methods of predicting pathogenic genes.
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Gene–Disease Associations
The known gene–disease association data that we used were from
the OMIM database, which contained 12,331 genes, 3,209
diseases, and 3,954 known gene–disease associations (the total
number of nonzero elements in the gene–disease association
matrix). It can be seen that the data in the incidence matrix are
very sparse, with more than 90% of the columns having only one
nonzero item and 70% of the rows having no nonzero elements.

Gene Characteristics
Gene characteristics were obtained by processing four different data
sources through compact feature learning (Compact Feature
Learning). The first source of gene characteristics was gene
microarray data, which contained 8,755 genes and 4,536
characteristics. First, we linearly transformed the expression range
of each gene to between 0 and 1. Because these characteristics are
highly correlated, we used four layers of denoising autoencoder to
reduce the dimensionality of the data, and the number of cells in
each hidden layer was 3,000-800-300-100, respectively. Moreover,
gaussian noise with a noise factor of 0.2 was added to the input data,
and sigmoid was used to activate each layer. The model was
optimized with Adam, and epoch was 100.

The second source of gene characteristics was from
homologous gene phenotypic associations in eight other
species, which were more abundant than in studies of human
genetic diseases. The data used in the experiment are shown in
Table 1. The features were extracted by two-layer denoising
autoencoder with the following specific parameters: the number
of nodes in each layer is “200–100,” the corruption level of data is
0.2, the activation function is sigmoid function, the batch size is
set as 150, and the model is optimized by Adam.

In addition, the data on interactions between genes can also be
used as a part of the characteristics of genes. We integrated two
networks, HumanNet (Lee et al., 2011) and STRING (Szklarczyk
et al., 2017), for unified analysis. These two sets of data represent
gene–gene interaction networks, but there are differences between
them (Kuang et al., 2018). The integrated analysis of different sets
of data can verify each set, and they can help to validate each other
and expand understanding the potential rules. We used the RWR
and DCA methods to fuse two networks to extract gene features.
We set the restart probability to 0.05 and extracted the 600-
dimensional gene characteristics. Finally, the gene characteristics
used in the model were 800 dimensions.
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Disease Characteristics
The disease characteristics are mainly derived from two data
sources: the disease similarity network MimMiner and clinical
manifestation data of the disease, as well as a large amount of
data from analysis of the medical literature.

MimMiner data are processed by literature (van Driel et al.,
2006) and are freely available online. This data set has been
applied in gene prioritization methods (Vanunu et al., 2010;
Singh-Blom et al., 2013; Natarajan and Dhillon, 2014). RWR and
DCA were used to extract 100-dimension disease features in the
disease similarity network, and the restart probability was set
as 0.05.

Another disease feature that we incorporated was from the
OMIM disease webpage. We paid special attention to the clinical
features and clinical management of webpages. We obtained
disease features through text mining. We used PCA to reduce the
dimensions of feature space and retained the first 100 principal
components . F ina l ly , we obta ined 200-d imens ion
disease characteristics.
EXPERIMENT

Evaluation Indexes and Methods introduces the evaluation
indexes and methods of the experiment. Parameter Settings
describes the influence of important parameters in the
experiment. In Global Performance, the global performance of
the experiment is compared. Prediction of New Genes and New
Diseases compares the ability to predict new genes and new
diseases. Newly Discovered Genes compares the ability to predict
newly discovered associations.

Evaluation Indexes and Methods
In the experiment, to quantitatively evaluate our method and
compare it with the most advanced disease-causing gene
prioritization methods, we used a cross-validation strategy to
measure gene recovery. We divided the known gene–disease
pairs into three groups of the same size. The associations in one
group were hidden, and the associations in the remaining two
groups were used as training data, repeated three times to ensure
that each group was hidden only once. For each disease in our
data set, we ranked all of the genes according to the degree to
which they were associated with the disease. The first r genes
were taken as candidate pathogenic genes for corresponding
diseases; namely, the top-r ranking method was used. The
performance of the algorithm was analyzed by comparing the
recall and precision of each method under different thresholds r,
usually r ≤ 100. The formula for calculating this was as follows:

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall rate refers to the proportion of positive cases correctly
judged by the model relative to all positive cases (TP+FN) in the
TABLE 1 | Species Details.

Number Species name Number of disease
phenotypes

Number of
associations

1 Human 3209 3954
2 Arabidopsis thaliana 1137 12010
3 Worm 744 30519
4 Drosophila 2503 68525
5 Zebrafish 1143 4500
6 Escherichiacoli 324 72846
7 Gallus 1188 22150
8 Mouse 4662 75199
9 Saccharomyce 1243 73284
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data set. FN represents the data that are mistaken as negative
cases by the model but are actually positive cases. The precision
rate is the proportion of true positive cases (TP) relative to all
positive cases (TP+FP) judged by the model (Xiong et al., 2012;
Xu et al., 2017; Cheng et al., 2019; Cheng et al., 2019).

To further confirm the value of our approach, we also used
the mean percentile ranking (MPR), an evaluation index based
on recall, to evaluate the performance of the algorithm. This
evaluation index has been applied in recommendation algorithm
and analyses of the performance for predicting drug-targets (Hu
et al., 2008; Johnson, 2014; Li et al., 2015; Ding et al., 2017; Hao
et al., 2019; Liu et al., 2019b; Liu et al., 2019c; Zeng et al., 2019)
and disease biomarkers (Chen et al., 2016; Zeng et al., 2016;
Hong et al., 2019; Xu et al., 2019). For each disease, the genes
were ranked in descending order according to the calculated
gene–disease predictive value. The average ranking of the true
and established associations among them is the final result. Here,
rankji can be used to represent the percentile ranking (PR) of
gene j and disease i. rank ji = 0% indicates that disease i is most
likely to interact with gene j. Similarly, rank ji = 100% indicates
that disease i has the lowest probability of interacting with gene j.
Therefore, the definition of MPR is as follows:

MPR = o
Nt
D

i=1Ri

Nt
D

(19)

Nt
T represents the number of diseases in the test set, and the

formula for calculating Ri is as follows:

Ri =
oNt

T
j=1rankji
Nt
T

(20)

Nt
T represents the number of genes in the test set for current

disease i. It is important to emphasize that lower MPR values are
preferable because they indicate that our approach has a higher
probability, which means that the model works better.
Conversely, a higher MPR indicates a lower likelihood of gene
interactions with disease. Clearly, the randomly generated list is
expected to have an MPR of 50%. Using this measure, we can
obtain a list of recommended candidate pathogenic genes, where
the recommended optimal prediction is used for higher priority
experimental validation.

Parameter Settings
The key parameters of PUIMCHIF are the rank k of matrix
Z∈R800×200, the regularized parameter l, and the penalty weight
a for the unknown relation. As can be seen from Figure 4, the
performance of the PUIMCHIF method increases with the
increase of k. When k = 100, 150, and 200, the three curves are
very close. In the following experiment, the PUIMCHIF method
uniformly set parameters as follows: k = 200, l = 0.02,
and a=0.0035.

As mentioned earlier, our approach features four improvements
over the original IMC approach. For Figure 5, recall, precision, and
MPR were used to analyze the effect of our improved method. The
four experimental results in the figure represent (a) the initial
experimental results of the original IMC method, (b) the results
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of extracting features by using RWR and DCA, instead of PCA, for
the network data of diseases and genes, (c) the prediction results of
adding STRING data to the gene interaction network, and (d) the
experimental results of each index of the PUIMCHIF method.

We found that using RWR and DCA can better extract the
gene–gene and disease–disease relationships, and helps to improve
the prediction of candidate pathogenic genes. Meanwhile, it was also
found that the protein interaction network STRING improved the
prediction recall rate to 47.45%, and the MPR value also decreased
significantly. Using denoising autoencoder to represent the
characteristics of genes and diseases, and introducing the idea of
PU-Learning into the inductive matrix completion can further
improve the predictive performance.

Global Performance
In this experiment, the threefold cross-validation method was
used to compare the overall performance of the proposed
method with CATAPULT, Katz, and IMC. As shown in
Figure 6A, the vertical axis gives the probability of recovering
the true gene association in the top-r prediction of different r
values on the horizontal axis. The experimental results show that
the PUIMCHIF algorithm proposed in this paper has a much
higher probability of recovering true gene associations under
different thresholds than the other methods. Figure 6B presents
the precision–recall curve.

In addition, Table 2 shows the results of three evaluation
indexes for each method when the threshold r=100. It is worth
mentioning that a smaller value of MPR is associated with a
higher probability and a better effect. It can be seen that the MPR
value of PUIMCHIF is the lowest and the recall rate reaches 50%,
while the best method among other methods, IMC, is only 25%,
that is, the recall is doubled. The precision rate was also twice
that of Katz which is the best method of other methods, reaching
4.87%. The overall performance of PUIMCHIF has been further
improved, confirming the superiority of our method.
FIGURE 4 | Performance Comparison of PUIMCHIF with Different k Values.
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Prediction of New Genes and
New Diseases
Prediction of New Genes
One problem affecting prioritization assessments is that well-related
genes and diseases tend to be more predictable and therefore tend to
generate inflated recall rates. Here, we focued only on genes that are
known to have a single association in the gene-disease association
Frontiers in Genetics | www.frontiersin.org 983
data set. In other words, we selected the gene corresponding to the
row with only 1 non-zero element in the gene-disease association
matrix as the validation set, and hided these known associations in
the training process. After repeated three-fold cross validations,
Figure 7A shows the predictive power of different methods within
the threshold r < 100. The Y-axis represents the probability of a true
known single gene association hidden during recovery training.
FIGURE 5 | Model Optimization Results.
FIGURE 6 | Global Performance with Different Thresholds r. (A) Recall rate at different threshold r. (B) Precision-recall curve.
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Table 3 shows the specific experimental results of each
method when r = 100. For the prediction of new genes,
although the precision rate was slightly lower than Katz, the
recall rate of our PUIMCHIF was significantly higher than other
methods, reaching 40.7% when the recall rate of IMC method
was only 13.7%. At the same time, we found that using the MPR
index to evaluate the results, the PUIMCHIF method was only
13.5%, much lower than Katz and CATAPULT. This also shows
that our method is more reliable.

Prediction of New Diseases
Similar to the prediction of new genes, we only considered
diseases with a single known association in the gene-disease
association data set as the validation set, that is, diseases
corresponding to the columns with only 1 non-zero element in
the gene-disease association matrix, and hided these known
associations during training. Similarly, a three-fold cross-
validation analysis was used, and the results are shown in
Figure 7B. The probability that the proposed method could
recover the true association of new diseases reached 48%, which
was a significant improvement compared with other methods.
Moreover, the MPR value of our method was lower than that of
other methods, and the precision rate was nearly 2.7 percentage
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points higher than that of IMC method. As can be seen from
Table 4, PUIMCHIF method is superior to other methods in
three evaluation indexes.

Newly Discovered Genes
Cross-validation of retrospective data can lead to overly
optimistic performance estimates. For example, certain gene
interactions may be found because of associations with specific
diseases being evaluated. Although the association itself is
hidden, other features are contaminated by this information.
Therefore, the use of recently reported associations to assess gene
prioritization tools is unbiased in this assessment.

We trained all methods using all the gene associations of the
3,209 OMIM diseases collected. We found 162 newly discovered
associations, of which 83 genes had no known associations
previously. Thus, the assessment of new associations also helps
determine the ability of methods to recommend new genes. The
ranking performance of each method in 162 new associations is
shown in Figure 8. We can see that the IMC method is superior
to other methods in the range of threshold 6 ≤ r ≤ 100.
CONCLUSION
In this paper, a PU induction matrix completion algorithm based
on heterogeneous information fusion, PUIMCHIF, was
proposed to predict gene–disease associations. Based on the
specific advantages of IMC method, PUIMCHIF can predict
new genes and diseases, and has good predictive performance. In
addition, because closely connected or functionally similar genes
are more likely to cause the same or similar diseases, we
TABLE 2 | Experimental Results with Threshold r =100.

Methods Recall Precision MPR

CATAPULT 0.152251 0.006289 0.319410
Katz 0.120132 0.023752 0.335564
IMC 0.249621 0.014036 0.216856
PUIMCHIF 0.501265 0.048681 0.109412
FIGURE 7 | Prediction of New Genes and New Diseases. (A) Prediction of New Genes. (B) Prediction of New Diseases.
TABLE 3 | Prediction of New Genes with Threshold r =100.

Methods Recall Precision MPR

CATAPULT 0.056943 0.001227 0.497410
Katz 0.074838 0.018446 0.466105
IMC 0.137195 0.001935 0.284610
PUIMCHIF 0.407281 0.013840 0.135043
TABLE 4 | Prediction of New Disease with Threshold r =100.

Methods Recall Precision MPR

CATAPULT 0.070060 0.002392 0.346974
Katz 0.045454 0.001709 0.363452
IMC 0.221804 0.014012 0.226905
PUIMCHIF 0.479836 0.040671 0.112801
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constructed low-dimensional feature representations of genes
and diseases from various data sources such as STRING using
the compact feature learning method, which effectively alleviated
the impact of data sparsity. Although there is no evidence that
genes are unrelated to diseases in the data set, it is clear that most
of the unknown associations are negative. PUIMCHIF conducts
biased learning by treating unlabeled data as negative cases and
constraining the penalty weight of known relationships to be
greater than that of unknown relationships. Compared with the
existing prediction methods, the PUIMCHIF method can
significantly improve the prediction results regarding recall
rate, precision rate, and MPR. According to the evaluation
Frontiers in Genetics | www.frontiersin.org 1185
index of MPR, the experimental results of the PUIMCHIF
method that we proposed are the lowest; that is to say, the
candidate genes given by our algorithm have a higher priority for
validation by biological experiments.
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Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, 7 Suzhou
Geneworks Technology Co., Ltd., Suzhou, China

The broad spectrum of intellectual disability (ID) patients’ clinical manifestations,
the heterogeneity of ID genetic variation, and the diversity of the phenotypic
variation represent major challenges for ID diagnosis. By exploiting a manually
curated systematic phenotyping cohort of 3803 patients harboring ID, we identified
704 pathogenic genes, 3848 pathogenic sites, and 2075 standard phenotypes for
underlying molecular perturbations and their phenotypic impact. We found the positive
correlation between the number of phenotypes and that of patients that revealed their
extreme heterogeneities, and the relative contribution of multiple determinants to the
heterogeneity of ID phenotypes. Nevertheless, despite the extreme heterogeneity in
phenotypes, the ID genes had a specific bias of mutation types, and the top 44
genes that ranked by the number of patients accounted for 39.9% of total patients.
More interesting, enriched co-occurrent phenotypes and co-occurrent phenotype
networks for each gene had the potential for prioritizing ID genes, further exhibited the
convergences of ID phenotypes. Then we established a predictor called IDpred using
machine learning methods for ID pathogenic genes prediction. Using10-fold cross-
validation, our evaluation shows remarkable AUC values for IDpred (auc = 0.978),
demonstrating the robustness and reliability of our tool. Besides, we built the most
comprehensive database of ID phenotyped cohort to date: IDminer http://218.4.234.74:
3100/IDminer/, which included the curated ID data and integrated IDpred tool for both
clinical and experimental researchers. The IDminer serves as an important resource and
user-friendly interface to help researchers investigate ID data, and provide important
implications for the diagnosis and pathogenesis of developmental disorders of cognition.

Keywords: intellectual disability, phenotypic convergence, gene-focused networks, co-occurrent phenotype,
machine learning, pathogenic genes prediction
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INTRODUCTION

Intellectual disability (ID), also known as mental retardation,
is characterized by significant impairment in cognition. The
patients with ID usually have the obvious shortcomings of
adaptive behavior before the age of 18, and a high incidence
rate, 1–3%, making it a worldwide social problem (Maulik
et al., 2011; Mefford et al., 2012). It can occur in isolation
or in combination with congenital malformations or other
neurological features such as epilepsy, congenital malformations,
sensory impairment, and autism spectrum disorders (ASD), and
its severity (mild, moderate, severe, and profound) is highly
variable (Vissers et al., 2016). The heterogeneity of phenotypes
poses additional challenges for understanding the complex
etiology, with contributions by environmental factors, perinatal
hypoxia, and genetic factors. In recent years, genetic factors
including chromosomal abnormalities, single and multiple gene
mutations have found to become increasingly prominent for the
disease (Gilissen et al., 2014; Lelieveld et al., 2016; Reichenberg
et al., 2016). With the increasing number of ID cases identified in
clinics, its phenotypes have found to be extremely heterogeneous.
Previous studies found that patients with identical mutations in
a single gene could give rise to different phenotypes (Hoischen
et al., 2014). As the limitations of detection technologies and the
heterogeneity of ID genes and phenotypes, many patients still
lack appropriate diagnosis.

In the past 10 years, a large number of studies have been
carried out in order to explore the genetic mechanism of ID (Gécz
et al., 2009; Ellison et al., 2013). In particular, the development
of second-generation sequencing technology facilitates the rapid
investigation of more DNA samples from ID cases (Rauch et al.,
2012; Gilissen et al., 2014). This led to an expansion in the
number of genes associated with ID. Having mass data about ID
genes, clinical phenotypes, and pedigrees available in the public
domain could shed insights into ID mechanisms. A previous
report suggests that ID genes are substantially enriched with co-
expression, protein-protein interactions, and specific biological
functions. Furthermore, they also revealed combinations of
typical phenotypes within process-defined groups of ID disorders
by clusters of ID genes with significantly elevated biological
coherence (Kochinke et al., 2016). This suggests that ID genes
and phenotypes have their own characteristics, and these data
can be used to define mechanisms of ID and may improve the
diagnosis of patients.

In this study, the ID genes, phenotypes, and pedigrees were
extracted manually and analyzed and then integrated to build a
standard ID database IDminer, which analyzed the phenotypes,
genes, families and their relationships based on the individual
patient. Furthermore, the candidate pathogenic genes for ID
patients could be prioritized based on the molecular feature
of ID genes and the genes specific phenotypes and phenotypic
pairs. Furthermore, the similarity between patients was also
evaluated via clinical features and could help patients with
effective intervention. Importantly, the curated data including ID
phenotypes, genes and pedigrees, their integrated analysis and
their applications are accessible online via http://218.4.234.74:
3100/IDminer/.

MATERIALS AND METHODS

Analysis of Specific Phenotypes and
Phenotypic Pairs
Each pathogenic gene could be associated with multiple patient
samples, and each patient may have different phenotypes.
For each gene, the specific phenotypes were obtained with
the enrichment analysis using the hypergeometric distribution.
A gene could correspond to multiple patients. For each patient,
any two of their phenotypes formed a phenotype pair, referred to
as co-occurrence. A phenotype pair could appear in N patients
(N represents the frequency of phenotypic pairs). In situations
with a single gene affecting multiple cases, multi-phenotypic pairs
and their frequencies were obtained. For each phenotypic pair, we
analyzed whether the co-occurrence was enriched in the affected
patients or not.

Construction of Co-occurrence Network
For constructing a co-occurrence network, all phenotypic pairs
with a P-value = 0.05 for at least one gene were built as a
non-directional network. In this network, each node represents
a phenotype and the node size indicates the frequency of the
phenotype in the database, while the edges denote significantly
enrichment between phenotype pairs. Then the modules were
extracted with the R igraph package.

Phenotype-Based Samples Similarity
Analysis
The same phenotype may appear in different patient samples.
Based on the number of the same phenotypes between
these samples, similarity scores between pairs of patient
samples was calculated.

The Phenotype Converting Tool
The tool was used to calculate the similarity between the users’
input phenotypes and the 2,075 standard phenotypes in this
website. The python module named FuzzyWuzzy was used to
calculate the similarity score [0,100]. The higher the score, the
more similar the two phenotypes.

Supervised Machine Learning Prediction
In this study, the supervised machine learning method, Support
Vector Machine (SVM), was employed for ID pathogenic genes
prediction. The R language interface of LIBSVM was used to
construct the SVM-based pathogenic predictors. The radial basis
function was chosen as the kernel function, and the other
parameters were set at the default. A prediction model was
trained using repeated 10-fold cross-validation of the training
dataset, and their predictive performance was evaluated in the
independent test dataset.

Web Interface Configuration
The interface has two main parts: one part displayed the ID
knowledge base data and the search results, while the other
displayed the input and results of the analysis tool. Through
the search box on the main page, users could search for a gene
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or a phenotype. Through the tools button in the main menu,
users could enter the analysis interface, and according to the
given phenotypes and genes, the ID genes were identified, and
the association between the genes and their phenotypes were
visualized. The web service was mainly based on java server pages,
JavaScript, R, Python, Ajax, Apache, and MySQL.

RESULTS

Data Curation
We first employed the keywords, such as ID, mental retardation,
developmental delay, cognitive impairment, developmental
disability, and learning disability to accomplish the literature
searches by using PubMed. Then the literature was filtered
through the artificial proofing method, and the ID-related papers
and genes were retained. The text mining method was used
to mark phenotypes in the literature using the HPO1 database
phenotypic information as a reference. Then the gene name,
mutation site, and phenotypes were curated manually (Figure 1).
Based on the sample description in the literature, the family
information of the samples were also collated from the HGNC
(HUGO Gene Nomenclature Committee) database according
to the acquired ID-related gene name information, such as
gene alias, chromosome localization, corresponding OMIM ID,
and Ensembl ID, and the biological function and pathway
information for these genes were marked simultaneously through
GO2 and KEGG3 databases.

The Landscape and Convergence of ID
Genes
Through 1174 ID papers, we obtained a total of 3803 samples with
2075 phenotypic descriptions, that were caused by 704 ID genes.
Among these genes, there are 3848 mutations, containing 1793
missense/non-sense mutations, 182 splicings, and 610 indels. We
found that the majority of the genes were identified in less than
10 patients, and 305 genes (43.3%) found in only one patient
and 103 genes (14.8%) in two patients (Figure 2A). Also, a
small set of genes caused more patients than other genes, as
shown in Figure 2B, the top nine genes ranked by the number
of patients accounted for 14.9% of the total patient group, and
the top 44 genes included 39.9% of patients. Moreover, our
analysis also showed some ID genes had the dominant mutation
types (Figure 2C). For the top 57 genes ranked by the number
of ID patients, the majority of mutations of patients harboring
mutated MECP2, HUWE1, and CREBBP are gross insertions.
In addition, the predominant mutation type of patients with
mutated THOC2, KIF1A, KDM5C, IQSEC2, SLC6A8, TBC1D24,
MAN1B1, YAP1, GRIN2B, PAK3, NALCN, CLPB, and GRIN1
genes are missense/non-sense mutations, while deletions are
mainly found in patients harboring SOX4, NRXN1, FMR1,
MEF2C, OPHN1, PQBP1, AUTS1, MYT1L, CNTNAP2, MAPT,
and TUSC3 genes. Importantly, the mutation types of 47 of

1http://human-phenotype-ontology.github.io
2http://geneontology.org/
3http://www.genome.jp/kegg/

the top 57 genes contained gross insertions (most duplications)
and missense/non-sense, suggesting that both deletion and
overexpression of these genes were likely to cause ID disease.
These findings suggested that despite the diversity of ID genetic
variation, most ID patients are caused by a small number of genes
based on its genetic bias and convergence.

The Heterogeneities of ID Phenotypes
Among the patient cohort, 637 (16.6%) patients have a unique
phenotype, while 901 (23.7%) patients have more than ten
phenotypes (Figure 3A). Also, our data showed that the number
of phenotypes for each patient had a positive correlation
with the number of the patients, which showed a significant
linear relationship (Spearman P-value < 0.001, Figure 3B) and
indicated the heterogeneity of the ID phenotypes. Additionally,
HPO structure analysis found the accompanying phenotypes of
ID were also widely distributed, including symptoms in many
parts of the body (Figure 3C). For these phenotypes, as shown
in Figure 3D, the top 50 phenotypes ranked by the number
of patients exhibited that the ID was usually accompanied by
other mental diseases, such as seizure, epilepsy, microcephaly,
ataxia, microcephaly and autism, abnormal behaviors containing
hypotonia, strabismus, sleep disturbance, constipation, delayed
or absent speech, motor delay, hyperactivity, feeding difficulties
and inability to walk, and dysmorphism about spine, face, stature,
and cryptorchidism. These results showed that the phenotypes of
ID patients had extreme heterogeneity.

The Convergences of ID Phenotypes
The phenotypes that were converged for each gene based on
the fact that intra-similarity between patients caused by one
gene were more than inter-similarity between different genes’
patients (Figure 4A) and the phenotypes in patients caused by the
identified mutations in the same family had more similarity than
other families (Figure 4B). To better understand the convergence
of the ID clinic features, we first obtained the specific phenotypes
for each ID gene with enrichment analysis. A total of 143
phenotypes, appearing in at least five patients caused by the
same gene, were enriched in some genes’ patients (Figure 4C).
Importantly, among the phenotypes, 47 appeared in only single
gene’s patients and accounted for 30 genes, which could help
to diagnosis the patients caused by the genes (Figure 4C).
To illustrate the relationships between phenotypes, we also
investigated the situation of two phenotypes could be co-occurred
in one patient, and the co-occurrence phenotypes were recorded
as “phenotypic pairs.” We analyzed these phenotypic pairs
presented in patients with an enrichment analysis. Interestingly,
we found that most enriched phenotypic pairs were specific for
a single gene. Like single phenotype analysis, phenotypic pairs
made it easy to diagnosis patients with 82 ID genes (Figure 4D).

Gene-Focused Network for Phenotype
Enrichment
Then we analyzed the network diagram of the phenotypic
pairs for each gene, which revealed the gene-focused network
(Figure 5A) and three typical sub-networks (Figure 5B). The
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FIGURE 1 | The flowchart of data collection and curation. The framework for genes extracting, paper downloading, phenotypes, and pedigrees obtaining and data
curating of this project.

first type of sub-network was radial, indicating that most of
the phenotypes co-occurred with another one phenotype (like
gene ZNF711). The pathogenic genes with the first type of
sub-network may have a core phenotype, or an important
phenotype that appeared more frequently, and it illustrated that
there are strong association between the core phenotype and
the biological function. The second type of sub-network was
dense, and the phenotypes co-occurred with each other (like
gene PIGO). The pathogenic genes with the second type of sub-
network often result in a set of concurrent phenotypes. In this
case, the prediction of pathogenic genes by phenotype may be
more accurate. The third type of sub-network was the mixed
state of the above two types (like gene MECP2). With the third
type of sub-network of pathogenic genes, the mutations are
usually more extensive, the phenotypes are complex, and one
independent group phenotypes is often insufficient to reveal the
pathogenic genes information. Our analysis showed that the co-
occurrence network of each gene had its own characteristics,
and the phenotypes in the co-occurrence network of each
gene are different. And the co-occurrence networks of different
genes had commonality in their structural similarity. Analysis
of co-occurring networks further illustrated the phenotypic
conservation relative to genes, despite the heterogeneity of
phenotypes. Based on the above discoveries, we inferred that the
pathogenic genes for patients could be achieved by analyzing
specific phenotypes and phenotypic pairs. Our analyses indeed
showed that the more the patients’ phenotypes, the more accurate
the prediction of pathogenic genes (Figure 5C). Furthermore,
given more phenotypes, the predicted pathogenic genes incline
to have a more significant P-values (Figure 5D). These results
showed that phenotypic analysis could reveal the convergences of
ID phenotypes and be used for clinical pathogenic gene analysis.

Pathogenic Gene Prediction
Support Vector Machine is one of the most widely used machine
learning algorithms in computational biology. It was previously
used for predicting virulent proteins in bacterial pathogens (Garg
and Gupta, 2008), the clinical outcome from cancer patients
(Yeoh et al., 2002) and gene interactions in genetic diseases
(Upstill-Goddard et al., 2013). As shown in Supplementary
Figure S1, developed SVM-based predictor, a 10-fold cross-
validation was employed on the training datasets for model
selection purpose (Figure 6A), and the final performance
of the predictor was measured on the independent testing
dataset (Ortiz-Gonzalez et al., 2018) compared with other ID
pathogenic gene prediction models (Yang et al., 2015; Stelzer
et al., 2016; Figures 6B,C). The receiver operating characteristic
curve (sensitivity against 1-specificity) was used to measure
the prediction performance under different decision thresholds,
and the area under the curve (AUC) was calculated as the
main performance evaluation metric. For calculating variable
importance for prediction, 100 sets of independent training were
performed using different random seed. The median of variable
importance obtained in each training was used as a representative
value (Supplementary Figure S2).

Database and Tool for ID Research and
Diagnosis
In order to represent the ID data and the analysis tools for
ID research and diagnosis, the IDminer system was designed.
The database included a number of components, including a
knowledge base for intellectual disabilities, specific phenotypes
and phenotypic pairs for genes, co-occurrence networks, and
analysis tools for converting phenotypes to standard phenotypes
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FIGURE 2 | The landscape and convergence of ID genes. (A) The distribution of patient number for each gene. Most genes had less than three patients. (B) The top
genes accounted for most patients. (C) The heatmap of genes and their mutations/indels in ID patients.

and exploring the expressions of interesting genes in the
brain (Figure 7). IDminer was built on open sources software
systems, such as MongoDB database, Express web development
framework, Nginx web server, and Ubuntu operating system.
Python and R were used for data collection processing and
analysis. A user-friendly web interface was provided to help users
search and analyze the data online at http://218.4.234.74:3100/
IDminer/. The interface consists of seven parts: Home, Browser,
Tools, Statistics, Download, Help, and Q&A. On the Home
page, an introduction to the IDminer outlines a description
statistic about all the data integrated into the database and the
search module for gene and phenotype. There are two analysis
tools for converting phenotypes and prioritizing candidate genes,
respectively. Converting phenotypes is to help user mapping their
clinical descriptions to our standard ID phenotypes, while co-
expression analysis can be based on the brain gene expression
data to study the expression profile of the interesting genes

and its related genes. In the Document and Q&A pages, the
guidelines for the database, and frequently asked questions and
answers were showed. Furthermore, our database could be easily
updated with the latest published information. For gene query,
we provided basic gene information and linked it to multiple
external databases, such as containing Ensemble, UniProtKB,
GO, KEGG, and OMIM. Reported mutations, ID phenotypes,
and patient information were also represented. Additionally, the
gene’s phenotypic pairs were also interactively visualized. When
users entered a phenotypic item in the input box, we listed its
basic information such as HPO ID, synonyms and phenotype
definitions, reported patients with this phenotype, reported
causative genes causing the patients, and its co-occurrence
network. For reported genes, in addition to displaying detailed
mutation information of these genes, we also annotated the genes’
functions and performed PPI network analysis. Importantly, the
query clinic feature could be enriched for some genes, and the
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FIGURE 3 | The heterogeneities of ID phenotypes. (A) The distribution of the phenotypes number for each patient. (B) A scatter point and line fitting showing the
correlation between the patient number and phenotypes count. The patient number and phenotype count were derived from each gene in the database. (C) The
phenotypes structure of ID patients. (D) The oncoprint-like representation of phenotypes in ID patients.

genes were also listed. Finally, the top co-occurred phenotypic
pairs ranked by their frequencies were shown as a network and
the enriched genes for each pair were shown by clicking the edge.

A Use Case for the IDpred
The case of a real patient with the pathogenic gene AAR2 and
the standardized phenotypes [Microcephaly (HP:0000252),
Cochlear malformation (HP:0008554), Hypoplasia of the corpus
callosum (HP:0002079), Ventricular septal defect (HP:0001629),
Global developmental delay (HP:0001263), Anteriorly placed
anus (HP:0001545), Macule (HP:0012733), Patent foramen
ovale (HP:0001655)] was selected based on the previous studies
(Charng et al., 2016). The other input candidate genes were
randomly selected from the gene list in our database. Then, the
query genes list consisted of MXRA8, DMBX1, AAR2, CLIC2,
PLA2G6, and phenotypes list consisted of all the standardized
phenotypes of this patient (genes and phenotypes are separated
by semicolons) were entered into the corresponding box on
the page of the website. Then the selection of the models
(for example, SVM) with the appropriate parameters should
be submitted (Supplementary Figure S3A). The result page
contains seven columns (GeneSymbol, PathogenicGeneRank,
PathogenicScore, Pathogenicity, SimilarRank, SimilarScore,
and Phenotypes) would be displayed. On the result table,
PathogenicGeneRank is the rank of the input pathogenic

genes compared to all deposited genes in our database,
PathogenicScore is the score of the pathogenic genes, and
Pathogenicity is defined as “Probably” (PathogenicScore > 0.5)
or “Less likely” (PathogenicScore = 0.5). SimilarRank refers
to the rank of similarity between gene and phenotypes, and
SimilarScore refers to the calculated score of similarity between
gene and phenotypes. Phenotypes listed the phenotypes related
to the GeneSymbol. As shown in the result of this case, AAR2
was predicted as the pathogenic gene with the highest pathogenic
score of 0.788 (Supplementary Figure S3B).

DISCUSSION

Our work manually extracted a large number of genes, clinic
phenotypes and basic information of the patients from published
ID literature. By integrating these data for comprehensive
analysis, we have provided a holistic view of the current genetic
research of ID and made the correlation of various clinic factors
of ID patients, prompting researchers to further explore the
mechanisms causing ID. The mutation spectrum delineated
in our datasets provided essential information for molecular
diagnosis in ID patients. Though most genes had its major
mutation types, the spectrum showed that all mutation types
were identified in ID cases. This combination of mutation types
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FIGURE 4 | The convergences of ID phenotypes. (A) The mean value of intra-similarity between patients caused by one gene was higher than the mean value of
inter-similarity between the gene’s patients and other genes’ patients. (B) The similarity of phenotypes in patients caused by identical mutations among the same and
other families. (C) The oncoprint-like representation of specific phenotypes for genes. (D) The oncoprint-like representation of specific phenotypic pairs for genes.

raises the need of using several clinical detection methods for
ID diagnoses such as Array Comparative Genomic Hybridization
(aCGH), target panel sequencing, whole exon sequencing, and
even whole genome sequencing (De Ligt et al., 2013; Redin
et al., 2014). Notably, because a small number set of genes
accounted for most ID patients, targeted panel sequencing may
be favorable than other methods in consideration of cost, time
and the difficulty of the data analysis.

The phenotypes of ID patients were extremely diverse
and heterogeneous. Unlike the previous study of phenotype-
based clustering (Kochinke et al., 2016), we mapped the
phenotypes of ID patients to HPO items and found the 2075

phenotypes in total 3803 patients. We confirmed not only
mutations in different genes could lead to various phenotypes,
but defects in a single gene had been implicated in different
phenotypes. Interestingly, there was also considerable phenotypic
heterogeneity even among individuals who have identical
mutations in the disease gene. We speculated that, besides
various genes, the heterogeneity of phenotypes could be affected
by other factors, such as mutation types, genetic background,
and environment. Though the phenotypes of ID patients were
heterogeneous, the specific phenotypes for genes could be
analyzed and used for prioritizing caused genes. A previous
report suggests that, for tubulinopathies, each mutated gene has
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FIGURE 5 | Gene-focused network for phenotype enrichment. (A) The network of phenotypes that were enriched in genes. (B) The three types of co-occurrence
sub-networks. (C) The accuracy of the predicted pathogenic gene with phenotypes. (D) The P-value distribution of predicted pathogenic gene based on different
number of given phenotypes.

an associated predominant pattern of cortical dysgenesis (Bahi-
Buisson et al., 2014). Additionally, the previous studies in ID
found that convergent molecular pathways result in common
phenotypes (Kochinke et al., 2016), allowing some phenotype-
genotype correlation. However, the common phenotypes for each
gene could be achieved until recently the applications of NGS,
aCGH, target sequencing, WES, and WGS to ID patients, which
lead to an increase of diagnosis. This larger sample size could
raise the power of the statistical significance test. Then, for some
genes, a large number of patients are sufficient to statistically to

find the specific phenotypes, phenotypic pairs and co-occurrence
networks for the genes. These features were extracted with
enrichment in patients subgroup caused by each gene, confirming
the phenotype-genotype correlations and the convergence of ID
phenotypes among their extreme heterogeneities.

With the deepening of ID research and the increase of reported
patients, it also requires the development of analytical tools for ID
researchers to understand the data. Therefore, providing online
friendly and easy-to-use analysis tools will also greatly assist in the
research of the entire ID field. So, our website not only provides
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FIGURE 6 | Performance comparison of pathological gene prediction between IDpred and other algorithms. (A) ROC curve derived from IDpred model based on 10
fold cross validation. (B) the percentage of predicted pathogenic gene derived from IDpred, phenolyzer, and varElect. (C) cumulative distribution of TopN rate base
on the rank of the pathogenic gene derived from IDpred, phenolyzer, and varElect.

FIGURE 7 | The illustration of functional modules of IDminer database. The six functional modules of IDminer: Brower, Genes, Gene co-expression, Phenotype,
Phenotype convert, and Download.
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a knowledge base of ID but also aggregates tools commonly used
in ID analysis. And more analysis tools for ID will be added in the
future to promote ID research as much as possible.

Overall, our data and analysis showed the convergences of
ID genes and phenotypes among their extreme heterogeneities.
For genes, the convergence was characterized by the fact that
a small percentage of genes could explain the majority of
ID phenotypes. And for phenotypes, it was represented as
genes’ specific phenotype and phenotypic pairs. Importantly,
we provided analysis tools based on ID genes and phenotypes
in hopes of establishing the standard ID gene and phenotype
libraries and, in turn, aiding in clinical diagnosis. Overall, the
findings and tools could contribute to the understanding of the
genetic basis of ID disease and ultimately improve the diagnosis
and treatment of the disease.

CONCLUSION

Our analysis provided evidence to support, though the ID genes
and phenotypes were extremely heterogeneous, the genetic bias
and phenotypic convergence deserved our more attention, which
may help to help us to quickly diagnose ID patients and further
promote the studies of disease mechanisms. Moreover, our
curated data, analysis, and developed tools were integrated to
build a standard ID database IDminer, which could be accessed
through http://218.4.234.74:3100/IDminer/. The database and
interface are user-friendly for geneticists and clinicians, and a
very wide range of ID researchers.
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FIGURE S1 | The flowchart of pathogenic gene prediction model specification.
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FIGURE S2 | Feature importance scores derived from IDpred. Feature importance
is defined as the average gain of the feature in trees from XGBoost in
IDpred_XGBoost.top, IDpred_XGBoost.random, and IDpred_XGBoost.low model.

FIGURE S3 | Dpred interface and direct mode example. (A) The user enters three
types of input: gene symbol list, phenotype expression and modeling type. (B)
Output results presented in a tab with seven columns which were defined as
GeneSymbol, PathogenicGeneRank, PathogenicScore, pathogenicity,
SimilarRank, SimilarScore, and Phenotypes.
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Lung cancer is a highly prevalent type of cancer with a poor 5-year survival rate
of about 4–17%. Eighty percent lung cancer belongs to non-small-cell lung cancer
(NSCLC). For a long time, the treatment of NSCLC has been mostly guided by tumor
stage, and there has been no significant difference between the therapy strategy of
lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (SCLC), the two
major subtypes of NSCLC. In recent years, important molecular differences between
LUAD and SCLC are increasingly identified, indicating that targeted therapy will be
more and more histologically specific in the future. To investigate the LUAD and SCLC
difference on multi-omics scale, we analyzed the methylation and gene expression
data together. With the Boruta method to remove irrelevant features and the MCFS
(Monte Carlo Feature Selection) method to identify the significantly important features,
we identified 113 key methylation features and 23 key gene expression features. HNF1B
and TP63 were found to be dysfunctional on both methylation and gene expression
levels. The experimentally determined interaction network suggested that TP63 may
play an important role in connecting methylation genes and expression genes. Many
of the discovered signature genes have been supported by literature. Our results may
provide directions of precision diagnosis and therapy of LUAD and SCLC.

Keywords: lung adenocarcinoma, squamous cell lung carcinoma, methylation, gene expression, Boruta, Monte
Carlo Feature Selection

INTRODUCTION

Lung cancer, considered to be a highly prevalent type of cancer, is a leading cause of cancer-related
mortality worldwide, resulting in 1.6 million deaths each year with poor 5-year survival rate of
about 4–17% (Hirsch et al., 2017; Altorki et al., 2019). Lung cancer is classified as follows: small-
cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), accounting for approximately
20 and 80% of all lung cancer cases, respectively (Oser et al., 2015). NSCLC is a complex
systems disease with dysfunctions on multiple pathways and multiple molecular levels (Huang
et al., 2012, 2015; Li et al., 2013; Zhou et al., 2015; Chen et al., 2016; Liu et al., 2017). It can
also be typically divided into three main subtypes, lung adenocarcinoma (LUAD), squamous cell
lung carcinoma (SCLC), and large cell cancer (LCC), according to standard pathology methods
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(Socinski et al., 2016; Swanton and Govindan, 2016; Herbst et al.,
2018). Compared with squamous lung cancer, adenocarcinoma
was associated with better prognosis. Despite the advances in
diagnostic and therapeutic technology, lung cancer remains a
serious global public health concern.

For a long time, the treatment of NSCLC has been mostly
guided by tumor stage, and there has been no significant
difference between the therapy strategy of LUAD and SCLC. Most
lung cancers are usually diagnosed at an advanced stage and
are treated primarily with systemic chemotherapy, typically with
platinum-based regimens (Bishop et al., 2010). Recent progress
in characterization of NSCLC by molecular typing, especially in
adenocarcinomas of the lung, have brought new investigation
of therapeutic agents that target dominant oncogenic mutations,
such as epidermal growth factor receptor (EGFR)-targeted
therapies, which have showed improved response rates in patients
with NSCLC (Shigematsu et al., 2005).

Currently, progress in molecular biology of lung cancer has
resulted in the identification of multiple potential biomarkers that
may be related to the clinical management of NSCLC patients. In
recent years, with the emergence of next-generation sequencing
technologies, important molecular differences between LUAD
and SCLC are increasingly identified, indicating that targeted
therapy will be more and more histologically specific in the future
(Kim et al., 2005; Sun et al., 2007; Li et al., 2014). Several studies
have identified multiple gene expression subtypes that differ in
prognosis, genomic alterations, clinical characteristics, including
tumor differentiation, stage-specific survival, underlying drivers,
and potential responses to treatment within LUAD and SCLC
(Wilkerson et al., 2010; Thomas et al., 2014; Lu et al., 2016).
For example, LUAD patients that harbor EGFR, ALK, ROS1,
or BRAF mutations were discovered to benefit the most
(Villalobos and Wistuba, 2017; Herbst et al., 2018). Targeted
therapies for gene abnormalities of HER2, MET, RET, and
NTRK1 appear to be an effective approach to treat LUAD
(Dearden et al., 2013; Mazieres et al., 2013). SCLC shows
different mutation spectrum from that of adenocarcinoma,
and the mutation targeted therapy for SCLC has not been
thoroughly studied to obtain approved treatment (Bunn et al.,
2016; Soldera and Leighl, 2017).

A series of imaging studies suggested that NSCLC may
progress rapidly between occurrence and primary treatment
(Koh et al., 2017). Therefore, it is necessary for clinicians
to identify between these two subtypes of NSCLC in a
convenient and rapid way. With the improvement of the
above clinical and molecular levels, growing evidences have
shown that immunohistochemistry (IHC) is an effective tool for
differentiating adenocarcinoma from squamous cell carcinoma
(Bass et al., 2009; Weiss et al., 2010).

It is reported that the formation and development of lung
cancer are related to the accumulation of permanent genetic
changes and dynamic epigenetic changes. Therefore, enhancing
our understanding of tumor biology and gene expression profiles
will be critical for cancer treatment and diagnosis. In this study,
an integrative analysis of lung cancer methylation data and gene
expression data was performed, and mixed features were also
screened out for analysis.

MATERIALS AND METHODS

The Joint Methylation and Expression
Profiles of Lung Cancer Patients
The methylation and gene expression profiles of lung cancer
patients were obtained from GEO (Gene Expression Omnibus)1.
The data were originally generated by Karlsson et al. (2014). They
used the data to cluster the patients into five groups, and these
groups showed different overall survival (Karlsson et al., 2014).
We were more interested in how the methylation and expression
differ from well-known subtypes, especially LUAD and SCLC.
Therefore, we analyzed the 77 LUAD and 22 SCLC patients who
had both methylation and expression data.

The methylation profiles were measured with Illumina
HumanMethylation450 BeadChip while the gene expression
profiles were measured with Illumina HumanHT-12 V4.0
expression BeadChip. The probe expression levels were averaged
onto 20,178 genes. The 354,251 methylation sites within genes
were analyzed. Therefore, each patient was represented with
20,178 genes and 354,251 methylation sites.

Screen for the Relevant Methylation and
Expression Features
Since the number of methylation and expression features was
very large, it was difficult to analyze directly. We applied
the Boruta method (Kursa and Rudnicki, 2010) to screen
the combined data and identify the relevant methylation and
expression features. The Boruta method was based on random
forest classification, and the relevance of features to sample
classes was measured by the ensemble of the random forest
classifier’s stochasticity.

Evaluate the Importance of Relevant
Methylation and Expression Features
After the irrelevant features were removed, the relevant
methylation and expression features were ranked based on
their importance evaluated with MCFS (Monte Carlo Feature
Selection) (Draminski et al., 2008). The MCFS was a widely used
method to rank features based on classification trees (Chen et al.,
2018, 2019; Pan et al., 2018, 2019a,b; Li et al., 2019). First, for
the d features, we selected s subsets and each subset included m
features (m was much smaller than d). Then, for each subset, t
trees were constructed. Based on the s × t trees, we can estimate a
feature’s importance by considering how many times it appeared
in these trees and how well it performed in these trees as a
node. By comparing the permutation results, the significance of
features was evaluated.

Perdition Performance of the Mixed
Methylation and Expression Signature
The MCFS can find the significant top-ranking features by
comparing with permutations. To objectively evaluate the
significant top-ranking features’ prediction performance, we
performed LOOCV (Leave One Out Cross Validation) using

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60645
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SVM (Support Vector Machine) classifier (Li et al., 2018; Sun
et al., 2018; Pan et al., 2019a). Each time, one sample was chosen
as test samples and all other samples were used to train the SVM
predictor. After all samples were tested once, we compared the
actual sample classes with predicted sample classes and calculated
the sensitivity, specificity, accuracy, and Mathew’s correlation
coefficient (MCC) based on the confusion matrix (Huang et al.,
2011, 2013; Cai et al., 2012).

RESULTS AND DISCUSSION

Rank the Methylation and Expression
Features
The methylation and gene expression data were combined
and, therefore, each lung cancer patient was represented with
mixed methylation and gene expression features. The number
of mixed features (20,178 gene expression features and 354,251

methylation features) was too large to conduct sophisticated
statistical analysis. So, we removed irrelevant features using the
Boruta method (Kursa and Rudnicki, 2010). At last, 711 relevant
features were remained.

Then, these 711 Boruta selected features were further
ranked with the MCFS method (Draminski et al., 2008). As
a classification tree-based ensemble learning algorithm, MCFS
can rank the features based on how many times and how
much it contributed to the sample classification in s × t trees.
By comparing with permutation results, it can evaluate the
significance of features.

Identify the Methylation and Expression
Signature
The 136 significant top-ranking features were identified using
the latest dmLab version 2.3.0 software downloaded from2

2https://home.ipipan.waw.pl/m.draminski/mcfs.html

TABLE 1 | The 136 methylation and gene expression signature identified with the MCFS method.

Rank Feature Rank Feature Rank Feature Rank Feature

1 DSC3 35 cg08796240 69 cg14487292 103 cg08621277

2 KRT5 36 cg08198430 70 cg03545620 104 cg13387113

3 cg02194717 37 cg10969178 71 DSG3 105 S1PR5

4 cg17814481 38 cg07838427 72 cg10991454 106 cg14769121

5 cg00415665 39 cg15958289 73 ANXA8L1 107 cg25634000

6 cg04432660 40 cg19445207 74 cg18736431 108 cg07417666

7 cg12932675 41 DLX5 75 cg14108894 109 cg18383680

8 cg13715502 42 cg26117023 76 cg17775621 110 cg11640015

9 cg08436756 43 cg16148454 77 cg15221831 111 cg02328660

10 cg02771299 44 cg13089599 78 cg26150462 112 cg08379517

11 cg06555468 45 cg00180559 79 cg11288202 113 cg04778236

12 cg13626676 46 cg21845794 80 cg27623451 114 cg11416243

13 KRT6C 47 cg26819757 81 cg02459569 115 cg18368125

14 cg01397507 48 cg03782130 82 cg24228306 116 cg09853371

15 SPRR2A 49 cg17005319 83 RORC 117 cg16260888

16 cg23613253 50 cg26795540 84 cg07538160 118 cg10842126

17 cg24235613 51 cg17957094 85 cg12448539 119 cg17094593

18 cg16969274 52 cg17543218 86 cg08774902 120 cg15335334

19 FAT2 53 cg13522118 87 cg04488647 121 KRT17

20 cg02579706 54 cg26431815 88 cg08190615 122 RFC4

21 TMEM63A 55 cg06332339 89 cg09470758 123 cg27009392

22 cg07568117 56 cg19883066 90 cg21922731 124 TP63

23 KRT6A 57 cg21013395 91 cg20197694 125 cg08327518

24 cg25922471 58 cg19526267 92 ACSL5 126 cg05800082

25 cg23628350 59 cg02634861 93 KRT6B 127 cg05128003

26 cg19032799 60 cg20803931 94 RAE1 128 cg04926361

27 cg04703476 61 cg05351785 95 cg24083274 129 cg01943337

28 cg01176141 62 cg21936454 96 cg23037777 130 cg06520450

29 cg12788467 63 cg03361585 97 cg07112556 131 cg15441535

30 cg24211826 64 cg20637223 98 cg26807301 132 cg25521254

31 MUC1 65 ANXA8 99 HNF1B 133 cg21176488

32 FMO5 66 cg15247247 100 cg18771553 134 cg05267427

33 cg06200607 67 cg06411879 101 cg18720506 135 cg05575304

34 VSNL1 68 cg10720966 102 cg04345366 136 cg20544605
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FIGURE 1 | The heatmap of LUAD and SCLC lung cancer patients with 113 methylation features. Almost all samples were correctly clustered using the 113
methylation features and only three SCLC samples were misclassified.

with default parameters. These 136 methylation and expression
signatures are given in Table 1.

It can be seen that within these 136 signature features,
there were 113 methylation features and 23 gene expression
features. The annotations of the 113 methylation features based
on GPL135343 are provided in Supplementary Table S1. We
plotted the heatmaps of LUAD and SCLC lung cancer patients
with 113 methylation features and 23 gene expression features

3https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534

in Figures 1, 2, respectively. Both the 113 methylation features
and 23 gene expression features can successfully group almost all
samples with only three misclassified SCLC samples. They did not
show difference on cluster results.

To more objectively and carefully compare the performance of
the 113 methylation features and 23 gene expression features, we
conducted LOOCV with SVM classifier. The LOOCV prediction
performances of the 136 mixed features, 113 methylation features
and 23 gene expression features are listed in Tables 2–4. It can
be seen that the prediction results of 113 methylation features
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FIGURE 2 | The heatmap of LUAD and SCLC lung cancer patients with 23 gene expression features. Almost all samples were correctly clustered using the 23 gene
expression features and only three SCLC samples were misclassified.

TABLE 2 | The confusion matrix using 136 mixed methylation and gene
expression features.

Actual LUAD Actual SCLC

Predicted LUAD 77 2

Predicted SCLC 0 20

Performance
Measurements

Sensitivity: 1.000, specificity: 0.909, accuracy:
0.980, MCC: 0.941

TABLE 3 | The confusion matrix using 113 methylation features.

Actual LUAD Actual SCLC

Predicted LUAD 77 2

Predicted SCLC 0 20

Performance
Measurements

Sensitivity: 1.000, specificity: 0.909, accuracy:
0.980, MCC: 0.941

were the same as the 136 mixed features and better than the 23
gene expression features. The 23 gene expression features had one
more misclassified SCLC samples. It seemed that methylation had
better performance.

Comparison With CNV Signature
Comparing with the 136 LUAD and SQCLC CNV signatures
identified by Li et al. (2014), we found that the methylated genes
HORMAD2, KLHL3, LPP, and PTPN3 are also CNAs genes.
HORMAD2 is expressed in nearly 10% of Chinese Han lung
cancer tissues, which is a new target for lung cancer research
(Liu et al., 2012). Lipoma preferred partner (LPP) may be an
important candidate molecular marker for the classification of
NSCLC tissue subtypes. PTPN3 can inhibit lung cancer by
regulating EGFR signal (Li et al., 2015). However, there are no
reports of KLHL3 in lung cancer, which also suggests a new idea
of candidate molecular markers for the identification of lung
cancer subtypes.

The Relationship Between Methylation
and Expression Signature Genes
The 113 methylation features can be mapped onto 93 genes.
We overlapped the selected methylation feature genes and

TABLE 4 | The confusion matrix using 23 gene expression features.

Actual LUAD Actual SCLC

Predicted LUAD 77 3

Predicted SCLC 0 19

Performance
Measurements

Sensitivity: 1.000, specificity: 0.864, accuracy:
0.970, MCC: 0.912

expression feature genes and found that HNF1B and TP63 were
dysfunctional on both methylation and gene expression levels.
HNF1B was one of the DNA methylated markers of the same
subtype (Matsuo et al., 2014; Shi et al., 2017). TP63, also known
as P63, was considered to be the most common marker for SCLC
(Bishop et al., 2012; Van de Laar et al., 2014).

We downloaded the 66 lung cancer genes from KEGG
hsa05223 NSCLC4 and mapped them and the overlapped two
genes: HNF1B and TP63, onto STRING network (Szklarczyk
et al., 2018). TP63 interacted with 39 KEGG lung cancer genes:
AKT1, AKT3, ALK, BAK1, BAX, CASP9, CCND1, CDK4, CDK6,
CDKN1A, CDKN2A, DDB2, E2F1, E2F2, E2F3, EGF, EGFR,
EML4, ERBB2, FHIT, FOXO3, GADD45A, GRB2, HRAS, KRAS,
MAP2K1, MAPK1, MAPK3, NRAS, PIK3CA, PIK3CB, PIK3R1,
RB1, STAT3, STAT5A, STAT5B, STK4, TGFA, and TP53. HNF1B
interacted with 14 KEGG lung cancer genes: AKT1, AKT2,
CCND1, CDKN1A, CDKN2A, EGF, HRAS, KRAS, MAPK1,
MAPK3, PIK3CA, RXRA, STAT3, and TP53.

What’s more, we searched the methylation genes and
expression genes in STRING database (Szklarczyk et al., 2018)
and extracted the experimentally determined interaction and
plotted the network in Figure 3. The light-yellow nodes were
methylation genes, the light-blue nodes were expression genes.
The overlapped methylation and expression genes were marked
in red, the overlapped methylation and CNV genes from Li
et al. (2014) were marked in pink. It can be seen that TP63
played an important role in connecting methylation genes
and expression genes. The methylation genes and expression
genes were closely connected to form a dense functional
module on the network.

4https://www.genome.jp/dbget-bin/www_bget?pathway+hsa05223

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 February 2020 | Volume 8 | Article 3103

https://www.genome.jp/dbget-bin/www_bget?pathway+hsa05223
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00003 February 6, 2020 Time: 16:33 # 6

Zhang et al. Integrative Analysis in Lung Cancer

FIGURE 3 | The methylation genes and expression genes with experimentally determined interactions on STRING network. The light-yellow nodes were methylation
genes, and the light-blue nodes were expression genes. The overlapped methylation and expression genes were marked in red, and the overlapped methylation and
CNV genes were marked in pink. TP63 played an important role in connecting methylation genes and expression genes.

The Biological Significance of the
Identified Signature
To develop more specific and individualized targeted therapy,
there is an urgent need to improve our knowledge on
the molecular basis, in addition to different phenotypes.
It is noteworthy that adenocarcinoma and squamous cell
carcinoma show marked differences in expression profiles, DNA
methylation, and lesion location. In this study, the features
containing methylation and expression data were screened by

Boruta and then further sorted by MCFS. After comparing the
selected features with related literatures, a certain correlation was
found between these features and lung cancer subtypes.

In this study, 113 methylation features were screened and
mapped to 93 genes. We inquired about the functions of these
genes and their relationship with lung cancer to discuss whether
they have the potential as molecular markers to recognize LUAD
and SQCLC. Many genes have been proved to promote or
inhibit the progression of lung cancer. For instance, FOXK1
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was expressed in many malignant tissues (Huang and Lee,
2004) and Ma et al. (2018) also found that FOXK1 plays a
carcinogenic role in lung cancer. MAD1L1 is a checkpoint gene,
with its mutation been proved to play a pathogenic role in
lung cancer (Tsukasaki et al., 2001). Some genes have been
reported to be related with the prognosis of NSCLC, such
as HORMAD2 and ANO1. The overexpression of ANO1 is
related to the high expression of EGFR, which can be used
as a predictor of recurrence after NSCLC (He et al., 2017).
In addition, according to Zhang et al. (2014) HORMAD2
gene polymorphism has great potential prognostic value in
Chinese patients with NSCLC. Other genes are associated
with NSCLC subtypes, such as another member of the FOX
family, FOXK2, which was reported to be closely related to
the overall survival of LUAD (Chen et al., 2017). DOK1
and HOPX were found to serve as lung tumor suppressors
for LUAD (Berger et al., 2010; Chen et al., 2015). In the
study of Zhou et al. (2017) the methylation locus of PARD3
gene was positively correlated with the expression of PARD3
and suppression of PARD3 intensified chemoresistance in
LUAD cells. SFTA3 was found obviously overexpressed in
LUAD, and its expression in LUAD and SQCLC was quite
different. Therefore, the sensitivity and specificity of using
SFTA3 to distinguish the two subtypes will be relatively high
(Zhan et al., 2015). ARHGEF1 aliased p114RhoGEF and its
expression might help to predict progression and survival of
SQCLC patients (Song et al., 2013). Notably, LPP has multiple
functions of actin binding protein and transcriptional coactivator
(Kuriyama et al., 2016). Ngan et al. (2017) proved that the
expression of LPP reduces the number of circulating tumor
cells and inhibits lung cancer metastasis. Kang et al. (2009)
used high-resolution array-CGH to find that the difference
in genomic imbalance patterns between SQCLC and LUAD
was most significant in 3q26.2-q29, while LPP (3q28) was
significantly targeted in SQCLC, suggesting that LPP may
be an attractive candidate molecular marker for histological
subtype classification of NSCLC and may be involved in the
pathogenesis of SQCLC.

We also investigated 23 expressed genes in lung cancer,
and found that many studies clearly indicated that some genes
were associated with LUAD or SQCLC. DSC3 (Han et al.,
2014; Lv et al., 2015) and KRT5 (Xu et al., 2014; Travis et al.,
2015) have been proved to be an effective marker of SQCLC.
ANXA8 (Chao et al., 2006) and DSG3 (Savci-Heijink et al., 2009)
were significantly over-expressed in SQCLC, and DSG3 could
be an effective ancillary marker to identify SQCLC (Sanchez-
Palencia et al., 2011; Gómez-Morales et al., 2013). VSNL1, also
known as VILIP-1, was a tumor suppressor gene specific to
SQCLC (Fu et al., 2008). KRT6A, KRT6B, and KRT6C, members
of the keratin protein family, are specific to squamous cells
and associated with epidermis of squamous epithelium (Fujii
et al., 2002; Hawthorn et al., 2006; Chang et al., 2011). In
addition, we also identified several genes primarily associated
with LUAD. According to Balabko et al. (2014) RORC is a specific
transcription factor in the tumor area of lung tissue in patients
with LUAD. DLX5 (Kato et al., 2008; Balabko et al., 2014),
MUC1 (Mashima et al., 2005; Molina-Pinelo et al., 2014), and

TABLE 5 | The GO enrichment results of the identified signature.

GO Term FDR P value Number of
overlapped genes

GO:0070268 cornification 8.58E-05 5.39E-09 9

GO:0009913 epidermal cell
differentiation

0.0109 1.42E-06 11

GO:0031424 keratinization 0.0109 2.05E-06 9

GO:0030216 keratinocyte
differentiation

0.0109 2.73E-06 10

GO:0060429 epithelium
development

0.0115 3.59E-06 20

GO:0030855 epithelial cell
differentiation

0.0130 4.91E-06 15

GO:0043588 skin development 0.0172 7.57E-06 11

GO:0009888 tissue
development

0.0202 1.01E-05 25

GO:0008544 epidermis
development

0.0319 1.80E-05 11

GO:0005737 cytoplasm 0.0045 2.34E-06 79

GO:0005829 cytosol 0.0083 8.55E-06 46

KRT17 (Erdogan et al., 2009; Liu et al., 2018) were found to be
overexpressed in LUAD.

The GO Enrichment Analysis of the
Identified Signature
In order to further analyze the relationship between mixed
characteristics and lung cancer, we carried out GO enrichment
analysis. The results suggest that characteristic genes are mainly
related to keratinization, epidermal cell differentiation, tissue
development, and cytoplasm. The GO enriched results with FDR
(False Discovery Rate) smaller than 0.05 are listed in Table 5.
P63 appears to be useful in differentiating SQCLC from LUAD
in small biopsies with no keratosis or glandular differentiation,
helping to establish different treatments (Camilo et al., 2006).
The expression of keratinocyte transglutaminase and cytokeratin
10 was measured as markers of squamous differentiation
(Lokshin et al., 1999). Epidermal cell differentiation is related
to EGFR signal pathway, which can inhibit the proliferation
and metastasis of cancer cells, while EGFR mutation is largely
limited to LUAD (Ladanyi and Pao, 2008). The expression of
Promyelocytic leukemia zinc finger (PLZF) in SQCLC was weak
or absent, which was significantly lower than that in LUAD
(Xiao et al., 2015).

To sum up, most of the 113 methylated genes and 23 expressed
genes we found are closely related to lung cancer, and some
of them have the possibility of distinguishing SQCLC from
LUAD, which is helpful for the targeted selection of lung cancer
treatment and provide more research support for lung cancer
molecular markers.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 February 2020 | Volume 8 | Article 3105

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00003 February 6, 2020 Time: 16:33 # 8

Zhang et al. Integrative Analysis in Lung Cancer

AUTHOR CONTRIBUTIONS

HZ, ZJ, LC, and BZ contributed to the study design. HZ, ZJ, and
LC conducted the literature search. HZ, ZJ, and BZ acquired the
data. ZJ and LC wrote the manuscript. HZ and BZ performed the
data analysis. All authors gave the final approval of the version to
be submitted, read, and approved the final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.00003/full#supplementary-material

TABLE S1 | The annotations of the 113 methylation features.

REFERENCES
Altorki, N. K., Markowitz, G. J., Gao, D., Port, J. L., Saxena, A., Stiles, B.,

et al. (2019). The lung microenvironment: an important regulator of tumour
growth and metastasis. Nat. Rev. Cancer 19, 9–31. doi: 10.1038/s41568-018-
0081-9

Balabko, L., Andreev, K., Burmann, N., Schubert, M., Mathews, M., Trufa, D. I.,
et al. (2014). Increased expression of the Th17-IL-6R/pSTAT3/BATF/RorγT-
axis in the tumoural region of adenocarcinoma as compared to squamous cell
carcinoma of the lung. Sci. Rep. 4:7396. doi: 10.1038/srep07396

Bass, A. J., Watanabe, H., Mermel, C. H., Yu, S., Perner, S., Verhaak, R. G., et al.
(2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal
squamous cell carcinomas. Nat. Genet. 41, 1238–1242. doi: 10.1038/ng.465

Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al.
(2010). Identification of DOK genes as lung tumor suppressors. Nat. Genet. 42,
216–223. doi: 10.1038/ng.527

Bishop, J. A., Benjamin, H., Cholakh, H., Chajut, A., Clark, D. P., and Westra, W. H.
(2010). Accurate classification of non-small cell lung carcinoma using a novel
microRNA-based approach. Clin. Cancer Res. 16, 610–619. doi: 10.1158/1078-
0432.Ccr-09-2638

Bishop, J. A., Teruya-Feldstein, J., Westra, W. H., Pelosi, G., Travis, W. D., and
Rekhtman, N. (2012). p40 (1Np63) is superior to p63 for the diagnosis of
pulmonary squamous cell carcinoma. Mod. Pathol. 25, 405–415. doi: 10.1038/
modpathol.2011.173

Bunn, P. A. Jr., Minna, J. D., Augustyn, A., Gazdar, A. F., Ouadah, Y., et al.
(2016). Small cell lung cancer: can recent advances in biology and molecular
biology be translated into improved outcomes? J. Thorac. Oncol. 11, 453–474.
doi: 10.1016/j.jtho.2016.01.012

Cai, Y., Huang, T., Hu, L., Shi, X., Xie, L., and Li, Y. (2012). Prediction of lysine
ubiquitination with mRMR feature selection and analysis. Amino Acids 42,
1387–1395. doi: 10.1007/s00726-011-0835-0

Camilo, R., Capelozzi, V. L., Siqueira, S. A., and Del Carlo Bernardi, F. (2006).
Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung
carcinomas. Hum. Pathol. 37, 542–546. doi: 10.1016/j.humpath.2005.12.019

Chang, H. H., Dreyfuss, J. M., and Ramoni, M. F. (2011). A transcriptional
network signature characterizes lung cancer subtypes. Cancer 117, 353–360.
doi: 10.1002/cncr.25592

Chao, A., Wang, T. H., Lee, Y. S., Hsueh, S., Chao, A. S., Chang, T. C., et al. (2006).
Molecular characterization of adenocarcinoma and squamous carcinoma of the
uterine cervix using microarray analysis of gene expression. Int. J. Cancer 119,
91–98. doi: 10.1002/ijc.21813

Chen, L., Huang, T., Zhang, Y. H., Jiang, Y., Zheng, M., and Cai, Y. D. (2016).
Identification of novel candidate drivers connecting different dysfunctional
levels for lung adenocarcinoma using protein-protein interactions and a
shortest path approach. Sci. Rep. 6:29849. doi: 10.1038/srep29849

Chen, L., Li, J., Zhang, Y. H., Feng, K., Wang, S., Zhang, Y., et al. (2018).
Identification of gene expression signatures across different types of neural
stem cells with the Monte-Carlo feature selection method. J. Cell. Biochem. 119,
3394–3403. doi: 10.1002/jcb.26507

Chen, L., Pan, X., Zhang, Y.-H., Kong, X., Huang, T., and Cai, Y.-D. (2019). Tissue
differences revealed by gene expression profiles of various cell lines. J. Cell.
Biochem. 120, 7068–7081. doi: 10.1002/jcb.27977

Chen, S., Jiang, S., Hu, F., Xu, Y., Wang, T., and Mei, Q. (2017). Foxk2 inhibits
non-small cell lung cancer epithelial-mesenchymal transition and proliferation
through the repression of different key target genes. Oncol. Rep. 37, 2335–2347.
doi: 10.3892/or.2017.5461

Chen, Y., Yang, L., Cui, T., Pacyna-Gengelbach, M., and Petersen, I. (2015). HOPX
is methylated and exerts tumour-suppressive function through Ras-induced

senescence in human lung cancer. J. Pathol. 235, 397–407. doi: 10.1002/path.
4469

Dearden, S., Stevens, J., Wu, Y. L., and Blowers, D. (2013). Mutation incidence
and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and
histology (mutMap). Ann. Oncol. 24, 2371–2376. doi: 10.1093/annonc/mdt205

Draminski, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J.,
and Komorowski, J. (2008). Monte Carlo feature selection for supervised
classification. Bioinformatics 24, 110–117. doi: 10.1093/bioinformatics/btm486

Erdogan, E., Klee, E. W., Thompson, E. A., and Fields, A. P. (2009). Meta-analysis
of oncogenic protein kinase Ciota signaling in lung adenocarcinoma. Clin.
Cancer Res. 15, 1527–1533. doi: 10.1158/1078-0432.Ccr-08-2459

Fu, J., Fong, K., Bellacosa, A., Ross, E., Apostolou, S., Bassi, D. E., et al. (2008).
VILIP-1 downregulation in non-small cell lung carcinomas: mechanisms and
prediction of survival. PLoS One 3:e1698. doi: 10.1371/journal.pone.0001698

Fujii, T., Dracheva, T., Player, A., Chacko, S., Clifford, R., Strausberg, R. L., et al.
(2002). A preliminary transcriptome map of non-small cell lung cancer. Cancer
Res. 62, 3340–3346.

Gómez-Morales, M., Cámara-Pulido, M., Miranda-León, M. T., Sánchez-
Palencia, A., Boyero, L., Gómez-Capilla, J. A., et al. (2013). Differential
immunohistochemical localization of desmosomal plaque-related proteins in
non-small-cell lung cancer. Histopathology 63, 103–113. doi: 10.1111/his.12126

Han, F., Dong, Y., Liu, W., Ma, X., Shi, R., Chen, H., et al. (2014). Epigenetic
regulation of sox30 is associated with testis development in mice. PLoS One
9:e97203. doi: 10.1371/journal.pone.0097203

Hawthorn, L., Stein, L., Panzarella, J., Loewen, G. M., and Baumann, H. (2006).
Characterization of cell-type specific profiles in tissues and isolated cells from
squamous cell carcinomas of the lung. Lung Cancer 53, 129–142. doi: 10.1016/
j.lungcan.2006.04.015

He, Y., Li, H., Chen, Y., Li, P., Gao, L., Zheng, Y., et al. (2017). Expression of
anoctamin 1 is associated with advanced tumor stage in patients with non-small
cell lung cancer and predicts recurrence after surgery. Clin. Transl. Oncol. 19,
1091–1098. doi: 10.1007/s12094-017-1643-0

Herbst, R. S., Morgensztern, D., and Boshoff, C. (2018). The biology and
management of non-small cell lung cancer. Nature 553, 446–454. doi: 10.1038/
nature25183

Hirsch, F. R., Scagliotti, G. V., Mulshine, J. L., Kwon, R., Curran, W. J., Wu, Y. L.,
et al. (2017). Lung cancer: current therapies and new targeted treatments. Lancet
389, 299–311. doi: 10.1016/S0140-6736(16)30958-8

Huang, J. T., and Lee, V. (2004). Identification and characterization of a novel
human FOXK1 gene in silico. Int. J. Oncol. 25, 751–757. doi: 10.3892/ijo.25.
3.751

Huang, T., He, Z. S., Cui, W. R., Cai, Y. D., Shi, X. H., Hu, L. L., et al. (2013).
A sequence-based approach for predicting protein disordered regions. Protein
Pept. Lett. 20, 243–248. doi: 10.2174/0929866511320030002

Huang, T., Jiang, M., Kong, X., and Cai, Y. D. (2012). Dysfunctions associated with
methylation, MicroRNA expression and gene expression in lung cancer. PLoS
One 7:e43441. doi: 10.1371/journal.pone.0043441

Huang, T., Niu, S., Xu, Z., Huang, Y., Kong, X., Cai, Y. D., et al. (2011). Predicting
transcriptional activity of multiple site p53 mutants based on hybrid properties.
PLoS One 6:e22940. doi: 10.1371/journal.pone.0022940

Huang, T., Yang, J., and Cai, Y.-D. (2015). Novel candidate key drivers in the
integrative network of genes, MicroRNAs, methylations, and copy number
variations in squamous cell lung carcinoma. BioMed Res. Int. 2015:358125.
doi: 10.1155/2015/358125

Kang, J. U., Koo, S. H., Kwon, K. C., Park, J. W., and Kim, J. M. (2009).
Identification of novel candidate target genes, including EPHB3, MASP1 and
SST at 3q26.2-q29 in squamous cell carcinoma of the lung. BMC Cancer 9:237.
doi: 10.1186/1471-2407-9-237

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 February 2020 | Volume 8 | Article 3106

https://www.frontiersin.org/articles/10.3389/fbioe.2020.00003/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00003/full#supplementary-material
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.1038/srep07396
https://doi.org/10.1038/ng.465
https://doi.org/10.1038/ng.527
https://doi.org/10.1158/1078-0432.Ccr-09-2638
https://doi.org/10.1158/1078-0432.Ccr-09-2638
https://doi.org/10.1038/modpathol.2011.173
https://doi.org/10.1038/modpathol.2011.173
https://doi.org/10.1016/j.jtho.2016.01.012
https://doi.org/10.1007/s00726-011-0835-0
https://doi.org/10.1016/j.humpath.2005.12.019
https://doi.org/10.1002/cncr.25592
https://doi.org/10.1002/ijc.21813
https://doi.org/10.1038/srep29849
https://doi.org/10.1002/jcb.26507
https://doi.org/10.1002/jcb.27977
https://doi.org/10.3892/or.2017.5461
https://doi.org/10.1002/path.4469
https://doi.org/10.1002/path.4469
https://doi.org/10.1093/annonc/mdt205
https://doi.org/10.1093/bioinformatics/btm486
https://doi.org/10.1158/1078-0432.Ccr-08-2459
https://doi.org/10.1371/journal.pone.0001698
https://doi.org/10.1111/his.12126
https://doi.org/10.1371/journal.pone.0097203
https://doi.org/10.1016/j.lungcan.2006.04.015
https://doi.org/10.1016/j.lungcan.2006.04.015
https://doi.org/10.1007/s12094-017-1643-0
https://doi.org/10.1038/nature25183
https://doi.org/10.1038/nature25183
https://doi.org/10.1016/S0140-6736(16)30958-8
https://doi.org/10.3892/ijo.25.3.751
https://doi.org/10.3892/ijo.25.3.751
https://doi.org/10.2174/0929866511320030002
https://doi.org/10.1371/journal.pone.0043441
https://doi.org/10.1371/journal.pone.0022940
https://doi.org/10.1155/2015/358125
https://doi.org/10.1186/1471-2407-9-237
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00003 February 6, 2020 Time: 16:33 # 9

Zhang et al. Integrative Analysis in Lung Cancer

Karlsson, A., Jonsson, M., Lauss, M., Brunnstrom, H., Jonsson, P., Borg, A., et al.
(2014). Genome-wide DNA methylation analysis of lung carcinoma reveals
one neuroendocrine and four adenocarcinoma epitypes associated with patient
outcome. Clin. Cancer Res. 20, 6127–6140. doi: 10.1158/1078-0432.Ccr-14-
1087

Kato, T., Sato, N., Takano, A., Miyamoto, M., Nishimura, H., Tsuchiya, E., et al.
(2008). Activation of placenta-specific transcription factor distal-less homeobox
5 predicts clinical outcome in primary lung cancer patients.Clin. Cancer Res. 14,
2363–2370. doi: 10.1158/1078-0432.Ccr-07-1523

Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al.
(2005). Identification of bronchioalveolar stem cells in normal lung and lung
cancer. Cell 121, 823–835. doi: 10.1016/j.cell.2005.03.032

Koh, W. J., Greer, B. E., Abu-Rustum, N. R., Campos, S. M., Cho, K. R., Chon, H. S.,
et al. (2017). Vulvar cancer, version 1.2017, NCCN clinical practice guidelines
in oncology. J. Natl. Compr. Canc. Netw. 15, 92–120.

Kuriyama, S., Yoshida, M., Yano, S., Aiba, N., Kohno, T., Minamiya, Y., et al.
(2016). LPP inhibits collective cell migration during lung cancer dissemination.
Oncogene 35, 952–964. doi: 10.1038/onc.2015.155

Kursa, M., and Rudnicki, W. (2010). Feature selection with the Boruta Package.
J. Stat. Softw. Artic. 36, 1–13. doi: 10.18637/jss.v036.i11

Ladanyi, M., and Pao, W. (2008). Lung adenocarcinoma: guiding EGFR-targeted
therapy and beyond. Mod. Pathol. 21(Suppl. 2), S16–S22. doi: 10.1038/
modpathol.3801018

Li, B. Q., You, J., Chen, L., Zhang, J., Zhang, N., Li, H. P., et al. (2013). Identification
of lung-cancer-related genes with the shortest path approach in a protein-
protein interaction network. BioMed Res. Int. 2013:267375. doi: 10.1155/2013/
267375

Li, B. Q., You, J., Huang, T., and Cai, Y. D. (2014). Classification of non-
small cell lung cancer based on copy number alterations. PLoS One 9:e88300.
doi: 10.1371/journal.pone.0088300

Li, J., Lan, C.-N., Kong, Y., Feng, S.-S., and Huang, T. (2018). Identification and
analysis of blood gene expression signature for osteoarthritis with Advanced
feature selection methods. Front. Genet. 9:246. doi: 10.3389/fgene.2018.
00246

Li, J., Lu, L., Zhang, Y. H., Xu, Y., Liu, M., Feng, K., et al. (2019). Identification of
leukemia stem cell expression signatures through Monte Carlo feature selection
strategy and support vector machine. Cancer Gene Ther. doi: 10.1038/s41417-
019-0105-y

Li, M. Y., Lai, P. L., Chou, Y. T., Chi, A. P., Mi, Y. Z., Khoo, K. H., et al. (2015).
Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation
and migration by promoting EGFR endocytic degradation. Oncogene 34,
3791–3803. doi: 10.1038/onc.2014.312

Liu, C., Zhang, Y. H., Huang, T., and Cai, Y. (2017). Identification of transcription
factors that may reprogram lung adenocarcinoma. Artif. Intell. Med. 83, 52–57.
doi: 10.1016/j.artmed.2017.03.010

Liu, J., Liu, L., Cao, L., and Wen, Q. (2018). Keratin 17 promotes lung
adenocarcinoma progression by enhancing cell proliferation and invasion.Med.
Sci. Monit. 24, 4782–4790. doi: 10.12659/msm.909350

Liu, M., Chen, J., Hu, L., Shi, X., Zhou, Z., Hu, Z., et al. (2012). HORMAD2/CT46.2,
a novel cancer/testis gene, is ectopically expressed in lung cancer tissues. Mol.
Hum. Reprod. 18, 599–604. doi: 10.1093/molehr/gas033

Lokshin, A., Zhang, H., Mayotte, J., Lokshin, M., and Levitt, M. L. (1999). Early
effects of retinoic acid on proliferation, differentiation and apoptosis in non-
small cell lung cancer cell lines. Anticancer Res. 19, 5251–5254.

Lu, C., Chen, H., Shan, Z., and Yang, L. (2016). Identification of differentially
expressed genes between lung adenocarcinoma and lung squamous cell
carcinoma by gene expression profiling. Mol. Med. Rep. 14, 1483–1490.
doi: 10.3892/mmr.2016.5420

Lv, J., Zhu, P., Yang, Z., Li, M., Zhang, X., Cheng, J., et al. (2015). PCDH20
functions as a tumour-suppressor gene through antagonizing the Wnt/β-
catenin signalling pathway in hepatocellular carcinoma. J. Viral Hepat. 22,
201–211. doi: 10.1111/jvh.12265

Ma, X., Yang, X., Bao, W., Li, S., Liang, S., and Sun, Y. (2018). Circular
RNA circMAN2B2 facilitates lung cancer cell proliferation and invasion via
miR-1275/FOXK1 axis. Biochem. Biophys. Res. Commun. 498, 1009–1015.
doi: 10.1016/j.bbrc.2018.03.105

Mashima, T., Oh-hara, T., Sato, S., Mochizuki, M., Sugimoto, Y., Yamazaki, K., et al.
(2005). p53-defective tumors with a functional apoptosome-mediated pathway:

a new therapeutic target. J. Natl. Cancer Inst. 97, 765–777. doi: 10.1093/jnci/
dji133

Matsuo, T., Dat le, T., Komatsu, M., Yoshimaru, T., Daizumoto, K., and Sone, S.
(2014). Early growth response 4 is involved in cell proliferation of small cell
lung cancer through transcriptional activation of its downstream genes. PLoS
One 9:e113606. doi: 10.1371/journal.pone.0113606

Mazieres, J., Peters, S., Lepage, B., Cortot, A. B., Barlesi, F., Beau-Faller, M.,
et al. (2013). Lung cancer that harbors an HER2 mutation: epidemiologic
characteristics and therapeutic perspectives. J. Clin. Oncol. 31, 1997–2003.
doi: 10.1200/jco.2012.45.6095

Molina-Pinelo, S., Gutiérrez, G., Pastor, M. D., Hergueta, M., Moreno-Bueno,
G., García-Carbonero, R., et al. (2014). MicroRNA-dependent regulation of
transcription in non-small cell lung cancer. PLoS One 9:e90524. doi: 10.1371/
journal.pone.0090524

Ngan, E., Stoletov, K., Smith, H. W., Common, J., Muller, W. J., Lewis, J. D.,
et al. (2017). LPP is a Src substrate required for invadopodia formation and
efficient breast cancer lung metastasis. Nat. Commun. 8:15059. doi: 10.1038/
ncomms15059

Oser, M. G., Niederst, M. J., Sequist, L. V., and Engelman, J. A. (2015).
Transformation from non-small-cell lung cancer to small-cell lung cancer:
molecular drivers and cells of origin. Lancet Oncol. 16, e165–e172. doi: 10.1016/
s1470-2045(14)71180-5

Pan, X., Chen, L., Feng, K. Y., Hu, X. H., Zhang, Y. H., and Kong, X. Y.
(2019a). Analysis of expression pattern of snoRNAs in different cancer types
with machine learning algorithms. Int. J. Mol. Sci. 20:2185. doi: 10.3390/
ijms20092185

Pan, X., Hu, X., Zhang, Y.-H., Chen, L., Zhu, L., Wan, S., et al. (2019b).
Identification of the copy number variant biomarkers for breast cancer
subtypes. Mol. Genet. Genomics 294, 95–110. doi: 10.1007/s00438-018-1488-4

Pan, X., Hu, X., Zhang, Y. H., Feng, K., Wang, S. P., and Chen, L. (2018). Identifying
patients with atrioventricular septal defect in down syndrome populations by
using self-normalizing neural networks and feature selection. Genes (Basel)
9:208. doi: 10.3390/genes9040208

Sanchez-Palencia, A., Gomez-Morales, M., Gomez-Capilla, J. A., Pedraza, V.,
Boyero, L., Rosell, R., et al. (2011). Gene expression profiling reveals novel
biomarkers in nonsmall cell lung cancer. Int. J. Cancer 129, 355–364.
doi: 10.1002/ijc.25704

Savci-Heijink, C. D., Kosari, F., Aubry, M. C., Caron, B. L., Sun, Z., Yang, P., et al.
(2009). The role of desmoglein-3 in the diagnosis of squamous cell carcinoma
of the lung. Am. J. Pathol. 174, 1629–1637. doi: 10.2353/ajpath.2009.080778

Shi, Y. X., Wang, Y., Li, X., Zhang, W., Zhou, H. H., Yin, J. Y., et al. (2017).
Genome-wide DNA methylation profiling reveals novel epigenetic signatures
in squamous cell lung cancer. BMC Genomics 18:901. doi: 10.1186/s12864-017-
4223-3

Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I.,
et al. (2005). Clinical and biological features associated with epidermal growth
factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst. 97, 339–346.
doi: 10.1093/jnci/dji055

Socinski, M. A., Obasaju, C., Gandara, D., Hirsch, F. R., Bonomi, P., Bunn, P., et al.
(2016). Clinicopathologic features of advanced squamous NSCLC. J. Thorac.
Oncol. 11, 1411–1422. doi: 10.1016/j.jtho.2016.05.024

Soldera, S. V., and Leighl, N. B. (2017). Update on the treatment of metastatic
squamous non-small cell lung cancer in new era of personalized medicine.
Front. Oncol. 7:50. doi: 10.3389/fonc.2017.00050

Song, C., Gao, Y., Tian, Y., Han, X., Chen, Y., and Tian, D. L. (2013). Expression of
p114RhoGEF predicts lymph node metastasis and poor survival of squamous-
cell lung carcinoma patients.Tumour. Biol. 34, 1925–1933. doi: 10.1007/s13277-
013-0737-8

Sun, S., Schiller, J. H., and Gazdar, A. F. (2007). Lung cancer in never smokers–a
different disease. Nat. Rev. Cancer 7, 778–790. doi: 10.1038/nrc2190

Sun, X., Li, J., Gu, L., Wang, S., Zhang, Y., Huang, T., et al. (2018).
Identifying the characteristics of the hypusination sites using SMOTE and SVM
algorithm with feature selection. Curr. Proteom. 15, 111–118. doi: 10.2174/
1570164614666171109120615

Swanton, C., and Govindan, R. (2016). Clinical implications of genomic discoveries
in lung cancer. N. Engl. J. Med. 374, 1864–1873. doi: 10.1056/NEJMra1504688

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., and Huerta-Cepas,
J. (2018). STRING v11: protein-protein association networks with increased

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 February 2020 | Volume 8 | Article 3107

https://doi.org/10.1158/1078-0432.Ccr-14-1087
https://doi.org/10.1158/1078-0432.Ccr-14-1087
https://doi.org/10.1158/1078-0432.Ccr-07-1523
https://doi.org/10.1016/j.cell.2005.03.032
https://doi.org/10.1038/onc.2015.155
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1038/modpathol.3801018
https://doi.org/10.1038/modpathol.3801018
https://doi.org/10.1155/2013/267375
https://doi.org/10.1155/2013/267375
https://doi.org/10.1371/journal.pone.0088300
https://doi.org/10.3389/fgene.2018.00246
https://doi.org/10.3389/fgene.2018.00246
https://doi.org/10.1038/s41417-019-0105-y
https://doi.org/10.1038/s41417-019-0105-y
https://doi.org/10.1038/onc.2014.312
https://doi.org/10.1016/j.artmed.2017.03.010
https://doi.org/10.12659/msm.909350
https://doi.org/10.1093/molehr/gas033
https://doi.org/10.3892/mmr.2016.5420
https://doi.org/10.1111/jvh.12265
https://doi.org/10.1016/j.bbrc.2018.03.105
https://doi.org/10.1093/jnci/dji133
https://doi.org/10.1093/jnci/dji133
https://doi.org/10.1371/journal.pone.0113606
https://doi.org/10.1200/jco.2012.45.6095
https://doi.org/10.1371/journal.pone.0090524
https://doi.org/10.1371/journal.pone.0090524
https://doi.org/10.1038/ncomms15059
https://doi.org/10.1038/ncomms15059
https://doi.org/10.1016/s1470-2045(14)71180-5
https://doi.org/10.1016/s1470-2045(14)71180-5
https://doi.org/10.3390/ijms20092185
https://doi.org/10.3390/ijms20092185
https://doi.org/10.1007/s00438-018-1488-4
https://doi.org/10.3390/genes9040208
https://doi.org/10.1002/ijc.25704
https://doi.org/10.2353/ajpath.2009.080778
https://doi.org/10.1186/s12864-017-4223-3
https://doi.org/10.1186/s12864-017-4223-3
https://doi.org/10.1093/jnci/dji055
https://doi.org/10.1016/j.jtho.2016.05.024
https://doi.org/10.3389/fonc.2017.00050
https://doi.org/10.1007/s13277-013-0737-8
https://doi.org/10.1007/s13277-013-0737-8
https://doi.org/10.1038/nrc2190
https://doi.org/10.2174/1570164614666171109120615
https://doi.org/10.2174/1570164614666171109120615
https://doi.org/10.1056/NEJMra1504688
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00003 February 6, 2020 Time: 16:33 # 10

Zhang et al. Integrative Analysis in Lung Cancer

coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131

Thomas, J. K., Kim, M. S., Balakrishnan, L., Nanjappa, V., Raju, R., Marimuthu, A.,
et al. (2014). Pancreatic cancer database: an integrative resource for pancreatic
cancer. Cancer Biol. Ther. 15, 963–967. doi: 10.4161/cbt.29188

Travis, W. D., Brambilla, E., Nicholson, A. G., Yatabe, Y., Austin, J. H. M., Beasley,
M. B., et al. (2015). The 2015 world health organization classification of lung
tumors: impact of genetic. clinical and radiologic advances since the 2004
classification. J. Thorac. Oncol. 10, 1243–1260.

Tsukasaki, K., Miller, C. W., Greenspun, E., Eshaghian, S., Kawabata, H., and
Fujimoto, T. (2001). Mutations in the mitotic check point gene, MAD1L1, in
human cancers. Oncogene 20, 3301–3305. doi: 10.1038/sj.onc.1204421

Van de Laar, E., Clifford, M., Hasenoeder, S., Kim, B. R., Wang, D., Lee, S.,
et al. (2014). Cell surface marker profiling of human tracheal basal cells
reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal,
and identifies new biomarkers for lung squamous cell carcinomas. Respir. Res.
15:160. doi: 10.1186/s12931-014-0160-8

Villalobos, P., and Wistuba, I. I. (2017). Lung cancer biomarkers. Hematol. Oncol.
Clin. North Am. 31, 13–29. doi: 10.1016/j.hoc.2016.08.006

Weiss, J., Sos, M. L., Seidel, D., Peifer, M., Zander, T., and Heuckmann, J. M.
(2010). Frequent and focal FGFR1 amplification associates with therapeutically
tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med.
2:62ra93. doi: 10.1126/scitranslmed.3001451

Wilkerson, M. D., Yin, X., Hoadley, K. A., Liu, Y., Hayward, M. C., Cabanski, C. R.,
et al. (2010). Lung squamous cell carcinoma mRNA expression subtypes are
reproducible, clinically important, and correspond to normal cell types. Clin.
Cancer Res. 16, 4864–4875. doi: 10.1158/1078-0432.ccr-10-0199

Xiao, G. Q., Li, F., Findeis-Hosey, J., Hyrien, O., Unger, P. D., and Xiao, L.
(2015). Down-regulation of cytoplasmic PLZF correlates with high tumor grade
and tumor aggression in non-small cell lung carcinoma. Hum. Pathol. 46,
1607–1615. doi: 10.1016/j.humpath.2015.06.021

Xu, C., Fillmore, C. M., Koyama, S., Wu, H., Zhao, Y., Chen, Z., et al.
(2014). Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with
elevated PD-L1 expression. Cancer Cell 25, 590–604. doi: 10.1016/j.ccr.2014.
03.033

Zhan, C., Yan, L., Wang, L., Sun, Y., Wang, X., Lin, Z., et al. (2015). Identification of
immunohistochemical markers for distinguishing lung adenocarcinoma from
squamous cell carcinoma. J. Thorac. Dis. 7, 1398–1405. doi: 10.3978/j.issn.2072-
1439.2015.07.25

Zhang, K., Tang, S., Cao, S., Hu, L., Pan, Y., and Ma, H. (2014). Association
of polymorphisms at HORMAD2 and prognosis in advanced non-small-cell
lung cancer patients. Cancer Epidemiol. 38, 414–418. doi: 10.1016/j.canep.2014.
03.013

Zhou, Q., Dai, J., Chen, T., Dada, L. A., Zhang, X., Zhang, W., et al. (2017).
Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma
cell EMT and invasion. Cell. Signal. 38, 49–59. doi: 10.1016/j.cellsig.2017.
06.016

Zhou, Y., Wu, K., Jiang, J., Huang, J., Zhang, P., and Zhu, Y. (2015). Integrative
analysis reveals enhanced regulatory effects of human long intergenic non-
coding RNAs in lung adenocarcinoma. J. Genet. Genomics 42, 423–436.
doi: 10.1016/j.jgg.2015.07.001

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhang, Jin, Cheng and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 February 2020 | Volume 8 | Article 3108

https://doi.org/10.1093/nar/gky1131
https://doi.org/10.4161/cbt.29188
https://doi.org/10.1038/sj.onc.1204421
https://doi.org/10.1186/s12931-014-0160-8
https://doi.org/10.1016/j.hoc.2016.08.006
https://doi.org/10.1126/scitranslmed.3001451
https://doi.org/10.1158/1078-0432.ccr-10-0199
https://doi.org/10.1016/j.humpath.2015.06.021
https://doi.org/10.1016/j.ccr.2014.03.033
https://doi.org/10.1016/j.ccr.2014.03.033
https://doi.org/10.3978/j.issn.2072-1439.2015.07.25
https://doi.org/10.3978/j.issn.2072-1439.2015.07.25
https://doi.org/10.1016/j.canep.2014.03.013
https://doi.org/10.1016/j.canep.2014.03.013
https://doi.org/10.1016/j.cellsig.2017.06.016
https://doi.org/10.1016/j.cellsig.2017.06.016
https://doi.org/10.1016/j.jgg.2015.07.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Tao Huang,

Shanghai Institutes for Biological
Sciences (CAS), China

Reviewed by:
Liang Liu,

Fudan University Shanghai Cancer
Center, China

Deli Liu,
Cornell University, United States

*Correspondence:
Chang Chen

chenthoracic@163.com

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 17 October 2019
Accepted: 12 December 2019
Published: 07 February 2020

Citation:
Zhou C, Li W, Shao J, Zhao J and

Chen C (2020) Analysis of the
Clinicopathologic Characteristics

of Lung Adenocarcinoma
With CTNNB1 Mutation.
Front. Genet. 10:1367.

doi: 10.3389/fgene.2019.01367

ORIGINAL RESEARCH
published: 07 February 2020

doi: 10.3389/fgene.2019.01367
Analysis of the Clinicopathologic
Characteristics of Lung
Adenocarcinoma With
CTNNB1 Mutation
Chao Zhou1,2, Wentao Li2, Jinchen Shao3, Jikai Zhao3 and Chang Chen1*

1 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,
2 Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China, 3 Department
of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China

Introduction: Lung adenocarcinoma withCTNNB1mutation is relatively uncommon, and
its clinicopathologic characteristics, disease course, and prognosis have not been
well-studied.

Methods: A total of 564 lung adenocarcinoma patients were enrolled in this study. The
relationship between CTTNB1 mutational status and clinicopathologic parameters, the
rates of relapse-free survival (RFS) and overall survival (OS), and the mutational status of
other genes commonly mutated in lung adenocarcinoma were analyzed.

Results: Of 564 lung adenocarcinoma patients, 30 (5.3%) harbored CTNNB1mutations.
Univariate analyses revealed that gender, smoking history, pleural invasion, and
histological subtype were all significant predictors of RFS and OS. Pleural invasion and
histological subtype remained significant predictors of RFS and OS in a multivariate
analysis. There were no significant differences in RFS (p = 0.504) or OS (p = 0.054)
between lung adenocarcinoma patients with CTNNB1 mutation and those without
CTNNB1 mutation. However, patients with CTNNB1 mutation tended to have a
worse OS.

Conclusions: Female patients and nonsmokers are likely to harbor CTNNB1 mutation
and primary lung adenocarcinoma with mutated CTNNB1 has a poor prognosis.

Keywords: adenocarcinoma, lung cancer, CTNNB1, mutation, prognosis
INTRODUCTION

Lung cancer, which has the highest incidence of all cancers and the highest rate of disease-related
fatalities, is the main cause of cancer-related death worldwide (Torre et al., 2015; Gu et al., 2017a; Gu
et al., 2018). Lung adenocarcinoma is the most common pathological subtype, accounting for nearly
70% of all lung tumors (Sun et al., 2010). With the introduction of low-dose computed tomography,
which enables earlier detection, the incidence of lung cancer, especially early-stage lung cancer, has
risen sharply in recent years (Field et al., 2012).
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With the advent of genomics, molecular or genetic variants
affecting disease risk can be identified (Field, 2008). Mutations in
the gene encoding b-catenin (CTNNB1) have been detected in
numerous human malignancies, including lung cancer
(Woenckhaus et al. , 2008), malignant mesothelioma
(Shigemitsu et al., 2001), desmoid tumors (Colombo et al.,
2013), colon cancer (Akyol et al., 2019), and others.
Woenckhaus et al. (2008) identified a number of differentially
expressed genes in smoke-exposed bronchial epithelium and
nonsmall cell lung cancers (NSCLCs), they found in
adenocarcinomas, the cytoplasmic expression of beta-catenin
was associated with shorter survival (p = 0.012). Shigemitsu
et al. (2001) found CTNNB1 is infrequently mutated in lung
cancer. Akyol et al. (2019) defined an immunohistochemical
algorithm to dissect Wnt pathway alterations in formalin-fixed
and paraffin-embedded neoplastic tissues and found all six colon
adenomas of the 126 total adenomas studied for the altered/
mutant b-catenin staining pattern had presumptively pathogenic
point mutations or deletions in CTNNB1. The N-terminus of
b-catenin, with contains conserved phosphorylated threonine/
serine amino acid residues, is the most frequent location of
cancer-related CTNNB1mutations (Dar et al., 2017). The level of
free b-catenin in the cytoplasmic pool is regulated by
ubiquitination and proteasomal degradation (Akyol et al.,
2019). b-catenin is a member of the Wnt signaling cascade and
is associated with cadherin-mediated cell–cell adhesion systems
(Woenckhaus et al., 2008). In lung tumors, the immunohistologic
loss of b-catenin membrane staining along with a corresponding
increase cytoplasmic or nuclear staining has been reported
(Nozawa et al., 2006).

Although CTNNB1 mutation occurs in many tumors types, it
has not been well-studied in the context of lung adenocarcinoma,
and the clinicopathologic characteristics and prognosis of lung
adenocarcinoma with mutated CTNNB1 has not been described.
Therefore, we compared the clinicopathologic characteristics of
30 lung adenocarcinomas with CTNNB1mutations with those of
534 lung adenocarcinomas with wild-type CTNNB1.
MATERIALS AND METHODS

From July 2008 to April 2013, resected primary lung
adenocarcinomas were collected at the Department of Thoracic
Surgery of Shanghai Chest Hospital, Shanghai Jiaotong
University. To confirm the diagnosis of primary lung cancer,
all the patients received thorough preoperative testing at our
hospital, including physical exams, serological tests, pulmonary
function tests, chest/brain computed tomography (CT),
technetium bone scanning, and abdominal ultrasound. Biopsies
were done by bronchoscopy or endobronchial ultrasound-guided
transbronchial needle aspiration, and in some cases, positron
emission tomography CT was used to exclude mediastinal lymph
node metastases (Gu et al., 2017b). The lung adenocarcinoma
subtype was determined by light microscopy intraoperatively,
using frozen sections, and confirmed postoperatively, using
paraffin-embedded sections. All surgical samples had at least
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5% tumor content. Each case was reviewed by at least two junior
pathologists and a senior pathologist to confirm the histologic
subtype of resected lung neoplasms. The combination of
routine preoperative examination and intra-/postoperative
pathological diagnosis is recommended to make an exact lung
cancer diagnosis.

In total, 601 patients with primary lung adenocarcinoma were
identified. Of these, 17 and 20 patients were excluded because they
received neoadjuvant chemotherapy or were lost to follow-up,
respectively. The remaining 564 patients were enrolled in
this study.

Informed consent was given by all patients or their legal
representatives. The study was initiated after obtaining
Institutional Review Board approval. The medical records for all
patients were reviewed to collect corresponding clinicopathologic
data, including sex, age, smoking status, pathologic tumor, node,
and metastasis (TNM) stage [according to the staging system of
the 7th edition of the American Joint Committee onCancer (Edge
et al., 2010)], thyroid transcription factor-1 status, and treatment
information. Data on disease recurrence and survival were
obtained from follow-up clinic visits or by telephone.

Bioinformatics Analysis
Data of The Cancer Genome Atlas (TCGA) were analyzed by
Gene Expression Profiling interactive Analysis (http://gepia.
cancer-pku.cn/) and Kaplan–Meier Plotter (http://kmplot.com/
analysis/index.php?p=service&cancer=lung). Gene CTNNB1
were further analyzed by Gene Expression Profiling interactive
Analysis and the survival curves were draw and compared by
Kaplan–Meier Plotter.

Mutational Analysis
The mutational status of EGFR, KRAS, and CTNNB1 was
determined by targeted sequencing and verified by DNA
sequencing analysis. Relevant primers were designed to amplify
all known ALK fusion variants by quantitative real-time reverse
transcriptase PCR of cDNA. ALK fluorescent in situ
hybridization was used to confirm the presence of ALK gene
fusions (Wang et al., 2012).

Statistical Analysis
Clinicopathologic data was analyzed using the SPSS 22.0
software package (SPSS Inc, Chicago, IL). Relapse-free survival
(RFS) and overall survival (OS) were estimated by the Kaplan–
Meier method, and differences were compared by log-rank
testing using Prism 6 (GraphPad Software, La Jolla, CA). A
p value of <0.05 was considered statistically significant.
RESULTS

Mutational Status of Lung
Adenocarcinomas
Of the 564 lung adenocarcinoma patients examined, 30 (5.3%)
harbored CTNNB1 mutations (Table 1). The distributions of
specific mutation types are shown in Figure 1.
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Relationship Between Clinicopathologic
Factors and CNTTB1 Mutational Status
Of the 30 patients with CTNNB1mutations, there were 21 (70%)
female patients and 9 (30%) male patients, ranging in age
from 22 to 81 years (median, 59 years). Histologically, 263
of the tumors were acinar-predominant (47%), 115 were
micropapillary-predominant (20%), 94 were papillary-
predominant (17%), 49 were lepidic-predominant (9%), 32
were mucinous adenocarcinoma-predominant (5%), and 11
were solid-predominant (2%). Most of the patients had early-
Frontiers in Genetics | www.frontiersin.org 3111
stage lung cancer in both the CNTTB1 mutation group (stage I:
18/30, 60%) and the CNTTB1 wild-type group (stage I: 241/534,
45%). Age (p = 0.851), tumor size (p = 0.256), lymph node status
(p = 0.184), pathologic stage (p = 0.322), and the presence of
pleural invasion (p = 0.459) were similar between lung
adenocarcinomas with CTNNB1 mutation and lung
adenocarcinomas without CTNNB1 mutation, but the former
group tended to have more female patients (p < 0.001) and more
smokers (p = 0.019) (Table 2).

Relationship Between CNTTB1 Mutational
Status and Survival
Univariate analysis revealed that gender, smoking history,
pleural invasion, and histological subtype were all significant
predictors of RFS and OS (Table 3). Pleural invasion and
histological subtype were still significant predictors of RFS and
OS in a multivariate analysis (Table 4).

During follow-up, 19 (63.3%) patients with lung
adenocarcinomas with mutated CTNNB1 and 259 (48.5%)
patients with lung adenocarcinomas with wild-type CTNNB1
experienced a relapse, and 10 (33.3%) and 111 (20.8%) patients
died, respectively. There were no statistically significant
differences in RFS (p = 0.504) or OS (p = 0.054) between
patients with CTNNB1 mutation and patients without CTNNB1
mutation (Figure 2). However, patients with CTNNB1 mutation
tended to have a worse OS.
TABLE 1 | Characteristics of lung adenocarcinoma with CTNNB1 mutation.

Cases Gender Age Smoking Subtype Tumor size (cm) Stage CTNNB1 mutation RFS (months) OS (months)

1 F 57 Never smoker A + P 3 2a S45F 35.4 46.8
2 F 52 Never smoker S + P 3 3a S45F 6.3 26.1
3 F 60 Never smoker A + P 4.1 3a D32Y 46.5 82+
4 F 59 Never smoker P 2.8 3a D32Y 3.6 22.3
5 F 44 Never smoker S + A 3 3a D32Y 22 56+
6 F 49 Never smoker P + S + L 8.4 3a S33C 3.2 16.8
7 M 59 Never smoker L + A 1.9 1a S37A 25.4 47+
8 M 65 Smoker P 4.6 3a S33C 25 68+
9 M 62 Smoker P 2.4 1a S37F 45+ 45+
10 F 55 Never smoker A + P 5 1b S45P 12 43+
11 M 59 Smoker IMA 5 3a G34V 2.4 19
12 F 75 Never smoker P + M 2.1 1a S33Y 45+ 45+
13 F 60 Never smoker A + P 1.6 1b S33C 63+ 63+
14 F 74 Never smoker P + M 4.3 1b S37C 63+ 63+
15 M 67 Smoker A + P + M 2.1 2b S37C 3.2 44
16 F 69 Never smoker A + P + M 2.9 3a S37F 16.8 29
17 F 70 Never smoker A + M 1.7 1a D32H 56+ 56+
18 F 62 Never smoker S + P 2.1 1b S33F 6.4 10
19 F 55 Never smoker A + L 2.8 3a S37F 58+ 58+
20 M 41 Never smoker A + P 2.6 1a S33C 62+ 62+
21 F 59 Never smoker P + A 4.5 1b S37F 60+ 60+
22 F 68 Never smoker P + A + M 4.3 1b G34R 4.8 13.8
23 F 72 Never smoker S + P 2.1 1a S45F 54+ 54+
24 F 68 Never smoker A + P 2.9 1b S33C 19 29.4
25 F 59 Never smoker A + P + M 2.4 1a S33C 16 34.2
26 M 46 Never smoker A + P 2.6 1a G34R 15 35
27 F 70 Never smoker P + A 2.1 1b S37C 19.6 35.3
28 M 74 Never smoker M 5.6 2a S45P 56+ 56+
29 F 60 Never smoker A + S 3.8 1b S33C 48+ 48+
30 M 61 Smoker P + M 4.6 1b G34V 61+ 61+
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As for lung adenocarcinomas from TCGA, there was
no significant differences in the distributions of CTNNB1
mRNA expression among different lung adenocarcinoma
stages (Supplementary Figure 1). Besides, between lung
adenocarcinoma patients with and without CTNNB1 mutation,
there was no significant differences in RFS (p = 0.49), while
significant differences were found in OS (p = 8.9e−05).
(Supplementary Figures 2 and 3).
DISCUSSION

Lung cancer remains the leading cause of cancer-related death
worldwide (Gu et al., 2017). Low-dose computed tomography
TABLE 2 | Features of patients with lung adenocarcinoma harboring CTNNB1
mutations.

CTNNB1 mutation CTNNB1 wild type

No. Percent No. Percent p value

Total 30 5.3% 534 94.7%
Sex
Male 9 30% 259 48.5%
Female 21 70% 275 51.5% <0.001

Age
≥60 years 14 47% 234 44%
<60 years 16 53% 300 56% 0.851

Smoking status
Smoker 5 17% 332 62%
Never-smoker 25 83% 202 38% 0.019

Tumor size
≤3c m 21 70% 314 59%
>3 cm 9 30% 220 41% 0.256

Lymph Node status

N0 21 70% 300 56%
N1/2 9 30% 234 44% 0.184

Pathologic stage
I 18 60% 241 45%
II 3 10% 81 15%
III 9 30% 187 35%
IV 0 / 25 5% 0.322

Pleural invasion
0 15 50% 299 56%
1/2 15 50% 235 44% 0.459

Pathological subtype
Lepidic 1 3% 48 8%
Acinar 13 43% 250 47%
Papillary 10 33% 84 16%
Micropapillary 4 13% 111 21%
Solid 1 3% 10 2%
IMA 1 3% 31 6% 0.168

TTF1
Positive 16 53% 339 63%
Negative 14 47% 195 37% 0.331

EGFR
Present 21 70% 314 59%
Absent 9 30% 220 41% 0.256

KRAS
Present 1 3.3% 56 10.5% 0.347
Absent 29 96.7% 478 89.5%

ALK
Present 2 7% 28 5%
Absent 28 93% 506 95% 0.669
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TABLE 3 | Independent predictors of overall survival.

Univariate analysis HR 95% CI p value

Gender, male vs. female 1.706 1.194–2.438 0.003
Age 0.988 0.971–1,006 0.18
Smoke, never vs. ever 1.464 1.025–2.09 0.036
Pleural invasion, yes vs.no 0.671 0.4–0.814 0.002
Subtypes
Lepidic 0.041 0.004–0.479 0.011
Acinar 0.801 0.561–1.142 0.801
Papillary 0.927 0.574–1.497 0.757
Micropapillary 0.438 0.061–3.134 0.411
Solid 2.918 2.021–4.213 0.0001
Invasive mucinous 0.726 0.267–1.97 0.529
EGFR mutation, no vs. yes 0.746 0.523–1.065 0.106
ALK, negative vs. positive 1.411 0.689–2.89 0.347
CTNNB1 mutation, yes vs.no 1.746 0.982–3.103 0.058
Multivariate analysis HR 95% CI p value
Gender, male vs. female 1.995 1.183–3.367 0.01
Age 0.991 0.974–1.009 0.341
Smoke, never vs. ever 0.769 0.449–1.318 0.339
Pleural invasion, yes vs.no 0.8 0.668–0.957 0.015
Subtypes
Lepidic 0.001 / 0.949
Acinar 1.321 0.456–3.826 0.608
Papillary 1.344 0.431–4.188 0.611
Micropapillary 0.641 0.067–6.13 0.7
Solid 3.247 1.117–9.439 0.031
Invasive mucinous / / /
EGFR mutation, no vs. yes 1.14 0.745–1.744 0.547
ALK, negative vs. positive 1.494 0.665–3.358 0.331
CTNNB1 mutation, yes vs.no 1.784 0.981–3.247 0.058
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TABLE 4 | Independent predictors of relapse-free survival.

Univariate analysis HR 95% CI p value

Gender, male vs. female 1.706 1.194–2.438 0.003
Age 0.988 0.971–1,006 0.18
Smoke, never vs. ever 1.464 1.025–2.09 0.036
Pleural invasion, yes vs.no 0.671 0.4–0.814 0.002
Subtypes
Lepidic 0.041 0.004–0.479 0.011
Acinar 0.801 0.561–1.142 0.801
Papillary 0.927 0.574–1.497 0.757
Micropapillary 0.438 0.061–3.134 0.411
Solid 2.918 2.021–4.213 0.0001
Invasive mucinous 0.726 0.267–1.97 0.529
EGFR mutation, no vs. yes 0.746 0.523–1.065 0.106
ALK, negative vs. positive 1.411 0.689–2.89 0.347
CTNNB1 mutation, yes vs.no 1.746 0.982–3.103 0.058
Multivariate analysis HR 95% CI p value
Gender, male vs. female 1.127 0.76–1.673 0.552
Age 0.995 0.988–1.007 0.435
Smoke, never vs. ever 1.435 0.957–2.15 0.081
Pleural invasion, yes vs.no 0.78 0.692–0.88 < 0.001
Subtypes
Lepidic 0.345 0.145–0.822 0.016
Acinar 0.997 0.54–1.839 0.992
Papillary 0.967 0.497–1.881 0.92
Micropapillary 1.45 0.516–4.077 0.481
Solid 1.731 0.929–3.224 0.084
Invasive mucinous / / /
EGFR mutation, no vs. yes 1.19 0.889–1.592 0.243
ALK, negative vs. positive 1.159 0.641–2.095 0.626
CTNNB1 mutation, yes vs.no 1.206 0.737–1.974 0.457
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screening reduces the mortality of lung cancer by as much as 20%
in high-risk patients (National Lung Screening Trial Research
Team, 2011). Early detection and diagnosis increases the number
of patients who are newly diagnosed with lung cancer while it is
still early-stage, improving the prognosis of lung cancer patients
as a whole. For individuals at a high risk of developing lung
cancer, periodic screening could have a survival benefit. Recently,
some lung cancer risk prediction models have been constructed
to make lung cancer screening more efficient (Spitz et al., 2007;
Raji et al., 2012). With the development of gene mutation testing,
targeted therapy has changed the treatment strategy for lung
cancer. In this study, we describe the clinicopathological
characteristics of lung adenocarcinoma with CTNNB1 mutation.

b-catenin is important for the establishment and maintenance
of the epithelial layer and is a key downstream component of the
canonicalWnt signaling pathway. TheWNT/b-catenin pathway is
involved in cancer and pluripotent stem cell signaling, which may
suggest the mechanism underlying cancer stem cells. In this
study, out of 564 patients, 30 (5.3%) patients with CTNNB1
mutations were identified. Kase et al. (2000) conducted an
immunohistochemical analysis of 331 lung cancer specimens and
reported thatb-catenin expressionwas reduced in 122 (37%) of the
samples, which was associated with significantly worse patient
survival. Similarly,Woenckhaus et al. (2008) reported that reduced
membrane staining of b-catenin and its abnormal accumulation in
the cytoplasm and/or nuclei of lung adenocarcinoma cells was
associated with shorter survival (p = 0.012). Another study also
suggested that reduced b-catenin expression in surgically resected
non-small cell lung cancer specimens was associated with lymph
node metastasis and a poor prognosis (Retera et al., 1998). These
studies suggest that decreased expression of b-catenin is associated
with an unfavorable prognosis in lung cancer.

In our study, during follow-up, 19 patients (63.3%) with lung
adenocarcinomas with CTNNB1 mutations and 259 patients
(48.5%) with lung adenocarcinomas with wild-type CTNNB1
Frontiers in Genetics | www.frontiersin.org 5113
relapsed, and 10 (33.3%) and 111 (20.8%) patients died,
respectively. Patients with CTNNB1 mutations therefore tended
to have a worse prognosis, although this did not reach statistical
significance. When compare with data from TCGA, patients with
CTNNB1 mutation in TCGA also had worse OS. Our findings
therefore correspond well to the results of previous studies and
common directory (Sunaga et al., 2001).

In Cox proportional hazards models, univariate analyses
revealed that gender, smoking history, the presence of pleural
invasion, and histological subtypewere all significant predictors of
RFS and OS. Pleural invasion and histological subtype remained
significant predictors of RFS and OS in a multivariate analysis.
With respect to histological subtype, adenocarcinoma patients
with micropapillary or solid subtypes, which are defined as high-
risk subtypes in the 2011 classification proposed by the
International Association for the Study of Lung Cancer/
American Thoracic Society/European Respiratory Society
(Travis et al., 2011), had significantly worse prognosis. As for
pleural invasion, pleural invasion, as well as visceral invasion, is
considered an aggressive and invasive factor in NSCLC and has
been included in the TNM staging system as a factor that should
upstage the T factor (Rami-Porta et al., 2007; Travis et al., 2008;
Butnor and Travis, 2012). Shimizu et al. (2005) demonstrated that
velopharyngeal insufficiency (VPI) is a significant and
independent predictor of a poor prognosis regardless of tumor
size or N status, and as a result, VPI is a good indicator of the
degree of invasion and aggressiveness of NSCLC. As more early-
staged lung neoplasms are detected, whether VPI has impact on
survival of patients with early-staged lung cancer is unknown.
Therefore, Jiang et al. (2015) published ameta-analysis and found
VPI together with tumor size has a synergistic effect on survival in
patients with N0 disease. Patients with stage IBNSCLC and larger
tumor size with VPI might be considered for adjuvant
chemotherapy after surgical resection and need careful
preoperative evaluation and postoperative follow-up.
FIGURE 2 | Survival curves for relapse-free survival and overall survival according to CTNNB1 status. (A) Relapse-free survival between the two groups. (B) Overall
survival between the two groups.
February 2020 | Volume 10 | Article 1367

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhou et al. Lung Adenocarcinoma With CTNNB1 Mutation
There are several limitations to this study. First, the sample
size was relatively small. Contributing to the small sample size,
there were several patients with CTNNB1 gene mutations who
could not be included in the data analysis because of incomplete
clinicopathological records. Finally, the patients’ outcomes could
have been influenced by the use of different treatment strategies,
which may confound the survival analysis.

In summary, our results suggest that female patients and
nonsmokers are likely to harbor CTNNB1mutation and primary
lung adenocarcinoma with mutated CTNNB1 has a poor
prognosis. Further research is needed to verify our results.
However, these data suggest that b-catenin could be a potential
therapeutic target for advanced-stage lung cancer.
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Nearly one-third of the world's population is latently infected with Mycobacterium
tuberculosis (M. tb), which represents a huge disease reservoir for reactivation and a
major obstacle for effective control of tuberculosis. During latent infection,M. tb is thought
to enter nonreplicative dormant states by virtue of its response to hypoxia and nutrient-
deprived conditions. Knowledge of the genetic programs used to facilitate entry into and
exit from the nonreplicative dormant states remains incomplete. In this study, we
examined the transcriptional changes of Mycobacterium marinum (M. marinum), a
pathogenic mycobacterial species closely related to M. tb, at different stages of
resuscitation from hypoxia-induced dormancy. RNA-seq analyses were performed on
M. marinum cultures recovered at multiple time points after resuscitation. Differentially
expressed genes (DEGs) at each time period were identified and analyzed. Co-expression
networks of transcription factors and DEGs in each period were constructed. In addition,
we performed a weighted gene co-expression network analysis (WGCNA) on all genes
and obtained 12 distinct gene modules. Collectively, these data provided valuable insight
into the transcriptome changes ofM. marinum upon resuscitation as well as gene module
function of the bacteria during active metabolism and growth.

Keywords: transcriptional regulation, resuscitation, M. marinum, hypoxia, latency
INTRODUCTION

Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is the leading cause of
death due to an infectious disease globally, with an estimated 10 million new cases and 1.3 million
deaths in 2017. There were an additional 300,000 deaths from TB among HIV-positive people. The
success of M. tb as a leading pathogen is associated with its ability to infect and persist in the host.
About 1.7 billion people, 23% of the world's population, are estimated to have a latent TB infection
(LTBI), which is asymptomatic but can persist for decades (Stewart et al., 2003; North and Jung.,
2004). About 5–10% of LTBI will eventually develop active disease, and host immunosuppression
(e.g., HIV coinfection) markedly increases the risk of reactivation (Corbett et al., 2007). LTBI poses a
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major challenge to the effective control of TB because of the
difficulty in treatment and the fact that LTBI represents a huge
disease reservoir.

During LTBI, M. tb is thought to enter nonreplicative
‘dormant' states by virtue of its lowered or altered metabolism
in response to hypoxia, nitrosative stress, and/or nutrient
deprivation (Boshoff and Barry, 2005). Accordingly, much
research has been focused on environmental conditions and
genetic programs that induce bacteriostasis, and the most
extensively studied culture condition is hypoxia (Wayne and
Sohaskey, 2001; Rustad et al., 2009). It was shown that an
immediate bacterial response (2 hr) was the coordinated
upregulation of 47 M. tb genes under the control of the
response regulator (DosR) and two sensor kinases (DosS and
DosT), known as the DosR regulon (Sherman et al., 2001; Boon
and Dick, 2002; Park et al., 2003). A second set of 230 genes,
induced by longer hypoxia exposure (7 days), was also identified
(Rustad et al., 2008). These genes, collectively known as the
enduring hypoxic response (EHR), were DosR-independent
genes (Rustad et al., 2008).

During the reactivation of LTBI, the dormant bacteria are
believed to resuscitate and resume active growth and metabolism.
A few recent studies have used reaeration of hypoxic cultures for in
vitromodeling of reactivation or resuscitation (Veatch and Kaushal,
2018). Several regulatory proteins, such as transcription factor ClgR
and sigma factors SigH and SigE, were found to play a role inM. tb
resuscitation from hypoxia (Mcgillivray et al., 2015; Iona et al., 2016;
Veatch et al., 2016).

Despite the progress, knowledge of the genetic programs used to
facilitate entry into and exit from the nonreplicative dormant states
remains incomplete. In this study, we examined the transcriptional
changes of Mycobacterium marinum (M. marinum) at different
stages of resuscitation from hypoxia-induced dormancy. M.
marinum is a pathogenic Mycobacterium and the closest genetic
relative of the M. tb complex. M. marinum is an excellent model
through which to understand various aspects of host–pathogen
interactions in M. tb pathogenesis. For example, M. marinum and
M. tb share many virulence determinants, such as the ESX-1
secretion system (Tobin and Ramakrishnan, 2008) and lipid
virulence factors phthiocerol dimycocerosates and phenolic
glycolipids (Yu et al., 2012). As such, findings from the current
study of M. marinum may be applicable to M. tb.
RESULT

RNA-Seq Analysis of M. marinum
Recovered From Hypoxia
Larry Wayne and co-workers were the first to develop an in vitro
model to mimic the hypoxic environment of the human
granuloma (Wayne, 1977; Wayne and Hayes., 1996; Wayne
and Sohaskey., 2001). In the Wayne model, a sealed, standing
culture is incubated over an extended period while the bacteria
deplete the available oxygen. The gradual depletion of oxygen
leads to nonreplicating persistence states with a concomitant
shift in gene expression and metabolism.
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To gain insight into the genetic mechanisms that facilitate the
exit of mycobacteria from the nonreplicative state, we grew M.
marinum under hypoxia for 7 days using the Wayne model and
then reaerated the cultures. At different time points thereafter (0,
0.5, 4, 12, 24, and 48 hr),M. marinum cultures were collected and
subjected to RNA-seq analysis. The growth curve of the bacteria
is shown in Supplementary Figure 1. A total of 18 samples were
collected (three biological replicates at each time point)
and analyzed.

The RNA-seq reads showed a high mapping ratio for all
samples (>96%) (Table 1), supporting the overall sequencing
accuracy. Transcripts of more than 4,900 genes were detected in
each sample. We compared the RNA-seq data of cultures
recovered at different time points under aerobic conditions. As
expected, results showed that the correlation coefficient
decreased as the interval between two samples increased
(Figure 1). This result also suggested that the recovery from
hypoxia is a gradual but dynamic process.

Dynamic Changes of Gene Expression at
Different Stage of Resuscitation
To analyze transcriptome changes of M. marinum, we focused
on genes with RPKM ≥ 10 and compared samples from
adjacent intervals: between 0.5 and 0 hr, 4 and 0.5 hr, 12 and 4
hr, 24 and 12 hr, as well as 48 and 24 hr. Differentially expressed
genes (DEGs) were identified, and this was defined as a fold
change greater than 2 and false discovery rate P value less
than 0.05.

At the earliest time point after resuscitation (0.5 hr), 136
DEGs were detected, of which 71 were upregulated and 65 were
downregulated. Between 4 and 0.5 hr, most of the DGEs were
downregulated (81 out of 88 total DEGs). The numbers of DGEs
found between 12 and 4 hr, 24 and 12 hr, as well as 48 and 24 hr
TABLE 1 | RNA-seq reads of 18 samples (three biological replicates at each
time point).

Sample Total
reads

Mapped
reads

Pair
mapped
reads

Single
mapped
reads

Mapped
ratio(%)

0hr_rep1 25667618 25206648 25071544 135104 98.2
0hr_rep2 24461374 24025951 23875630 150321 98.22
0hr_rep3 24356981 23991626 23851008 140618 98.5
0.5hr_rep1 27750348 27226045 27037288 188757 98.11
0.5hr_rep2 29227286 28693463 28508636 184827 98.17
0.5hr_rep3 30215819 29671934 29509385 162549 98.2
4hr_rep1 29552072 28996782 28795942 200840 98.12
4hr_rep2 25707932 25227133 25058798 168335 98.13
4hr_rep3 26459312 25956585 25781988 174597 98.1
12hr_rep1 20056376 19435701 19294860 140841 96.91
12hr_rep2 25849366 25305478 25143598 161880 97.9
12hr_rep3 24639687 24048335 23903266 145069 97.6
24hr_rep1 28399172 27857378 27662324 195054 98.09
24hr_rep2 31131638 30539305 30334952 204353 98.1
24hr_rep3 29686534 29152176 28950812 201364 98.2
48hr_rep1 28813928 28353514 28145540 207974 98.4
48hr_rep2 27427442 26995636 26807948 187688 98.43
48hr_rep3 28062635 27641695 27444061 197634 98.5
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were 72, 85, and 172, respectively. The heat map of the five
groups of DEGs is shown in Figure 2.

We performed a Venn analysis of the five DEG groups
(Figure 3A). The proportion of unique genes in each group
was high: 68.4% (93/136, between 0.5 and 0 hr), 60.2% (53/88,
between 4 and 0.5 hr), 46.7% (35/72, between 12 and 4 hr), 47.1%
(40/85, between 24 and 12 hr), and 74.4% (128/172, between 48
and 24 hr). This suggests that a variety of genes were involved at
different stages of resuscitation.

Combing the DEGs of different stages, a total of 440 genes
were identified (Supplementary Table 1), and their expression
underwent dynamic changes during resuscitation (Figure 3B).
For example, the expression of MMAR_0922, MMAR_3562, and
MMAR_1654 were significantly changed at the early stage of
resuscitation, suggesting that they may play an important role in
this period. Some genes had changed in multiple time periods.
For example, the expression ofMMAR_3403 was changed in last
three periods, suggesting that this gene may be associated with
the late stage of resuscitation.

Validation of RNA-seq Results by
RT-qPCR
To validate the RNA-seq results, a real-time quantitative (RT-
qPCR) analysis was performed. Three biologically independent
samples at each time point were used for this experiment. For
each DEG group, we selected the top 10 upregulated genes and 10
downregulated genes for this analysis (Figure 4). Between 0 and
Frontiers in Genetics | www.frontiersin.org 3118
0.5 hr,MMAR_4852 andMMAR_5170 (whiB4) were significantly
downregulated, and six genes, MMAR_5122 (lipX), MMAR_0548
(espG3) , MMAR_0547 (esxR) , MMAR_0551 (eccE3) ,
MMAR_0546 (esxG), and MMAR_0550 (mycP3), were
significantly upregulated (Figure 4A). Between 0.5 to 4 hr, six
genes, including MMAR_1656 , MMAR_1658 (hycQ),
MMAR_1653 (Rv0081), MMAR_1655, MMAR_5122 (lipX), and
MMAR_5170 (whiB4), were significantly downregulated and four
genesMMAR_0845 (hemB),MMAR_5484,MMAR_1908 (ATC1),
and MMAR_3776 (rpfE) were significantly upregulated (Figure
4B). Between 4 and 12 hr, MMAR_2343 (papA1), MMAR_3555,
and MMAR_2320 (wecE) were significantly upregulated and
MMAR_4903 were significantly downregulated (Figure 4C).
Between 12 and 24 hr, six genes, MMAR_0335, MMAR_0602,
MMAR_4903, MMAR_4899, MMAR_2009, and MMAR_0615
(iniA), were significantly downregulated (Figure 4D). Between
24 and 48 hr, six genes, MMAR_3465 (PPE51), MMAR_4824,
MMAR_4482 (cypM), MMAR_4750, MMAR_2944, and
MMAR_1790 (PPE2), were significantly downregulated, and
seven genes, MMAR_2651, MMAR_2914 (katG), MMAR_2649,
MMAR_5315 (lpqH), MMAR_5319, MMAR_2839 (mpt63), and
MMAR_0656, were significantly upregulated (Figure 4E).

There is a good agreement between the RNA-seq and qPCR
data, evident from the scatter plot using the expression levels of
all 97 genes that were analyzed by both RNA-seq and qPCR (R2 =

0.784) (Figure 4F). Based on this result, we consider that the
RNA-seq data is reliable.
FIGURE 1 | Calculated correlation coefficients between RNA-seq data from samples of different time points (0_hour, 0.5_hour, 4_hour, 12_hour, 24_hour, and
48_hour) during resuscitation.
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FIGURE 2 | Heatmaps of DEGs between adjacent time points. At each time point, data from three biologically independent samples were included. (A) 0.5 vs. 0 hr;
(B) 4 vs. 0.5 hr; (C) 12 vs. 4 hr; (D) 24 vs. 12 hr; and (E) 48 vs. 24 hr. The red color indicates upregulation. The blue color indicates downregulation.
FIGURE 3 | Analysis of DEGs in five groups. (A) The Venn diagram of five DEGs. (B) The expression trend of all DEGs (440 genes) in the five periods (left). The
number of DEGs in each period is shown on the right.
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Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Enrichment Analysis
To gain insight into the biological consequence of the observed
transcriptome changes, we performed GO and KEGG pathway
analyses of the five DEG groups (Figure 5). A GO analysis was
applied to identify the functional categories of DEGs. Between 0.5
and 0 hr, more than half of DEGs were involved in membrane and
cell wall processes and were significantly enriched (Figure 5). This is
consistent with the notion that, upon reaeration, the bacteria
resumed cell division, which involved cell wall and membrane
biogenesis. A KEGG analysis consistently revealed that DEGs
involved in metabolic pathways and biosynthesis were
significantly enriched and accounted for the largest number. A
similar trend was observed for later periods, in which genes involved
in cell wall and membrane biogenesis were highly enriched and
accounted for the majority of DEGs at these stages. These results
Frontiers in Genetics | www.frontiersin.org 5120
provide snapshots into the recovery of the bacteria from hypoxia
and active growth under aerobic conditions.

Co-Expression Analysis Between
Transcriptional Regulators and mRNAs
Co-expression networks can show relationships between genes.
To explore the regulatory mechanisms at different stages of
resuscitation, we constructed a co-expression network between
transcriptional regulators and mRNAs. For this, we selected
known transcriptional regulators, including transcription
factors and sigma factors from the five DEGs, and calculated
the correlation coefficients between these transcription factors
and the remaining DEGs in the same group. We considered that
a relationship existed between a given transcriptional regulator
and other genes if the absolute value of the correlation coefficient
was greater than 0.9, which included both positive and negative
correlation. Based on these results, we constructed five
FIGURE 4 | qRT-PCR results. (A–E) Approximately 20 genes from each period were selected and analyzed by qRT-PCR. *p < 0.05; **p < 0.01; and ***p < 0.001.
(F) Scatter plot of RT-PCR data of all genes analyzed in (A–E), comparing them to RNA-seq data of the same genes.
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co-expression modules and integrated them into a large network
(Figure 6). The dark blue nodes in the figure represent
transcription factors, and the green nodes denote DEGs in the
same period. The size of the node is determined by the degree of
connectivity. Greater degrees of connectivity are indicated by
larger points. If there is a line between two nodes, then there is a
relationship between them.
Frontiers in Genetics | www.frontiersin.org 6121
In the first co-expression module (between 0 and 0.5 hr),
three transcription factors, MMAR_4874 (CosR), MMAR_1653
(Rv0081), and MMAR_4852 (KmtR), formed the major
regulatory hubs, and MMAR_4874 (CosR) was the largest hub
and interacted with other hubs in the network (Figure 6). The
MMAR_4874 (CosR) and MMAR_1653 (Rv0081) hubs
remained in the second co-expression module (between 0.5
FIGURE 5 | GO and KEGG analysis of DEGs in the five periods.
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FIGURE 6 | Co-expression networks in five periods. Each dot represents a gene. Transcription factors are labeled in blue, and other genes are labeled in green.
Line between dots represents co-expression relationship between genes. The size of dot is proportional to the level of connectivity.
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and 4 hr), in addition to three new hubs formed by
MMAR_4254, MMAR_1725 and MMAR_1132. In the third
period (between 4 and 12 hr), MMAR_0229 and MMAR_4902
formed the hubs. In the fourth period (between 12 and 24 hr),
MMAR_2003 (SigB) and MMAR_4219 formed the hubs. In the
final period (24 to 48 hr), MMAR_2651, MMAR_1555, and
MMAR_0249 formed the hubs.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
The DEG analysis focused on partial dynamic changes during
resuscitation. While the co-expression network of transcription
factors provides an overview of the regulatory programs enabling
the resuscitation of M. marinum, our knowledge on the overall
genetic changes is still missing. Therefore, in this section, we
analyzed the expression of all genes from cultures at different
stages of resuscitation.

Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008) is a method for analyzing the
Frontiers in Genetics | www.frontiersin.org 8123
gene expression patterns of multiple samples. It clusters genes
into modules by similar expression trends and reveals the
relationship between gene modules and specific traits or
phenotypes. We applied this method to analyze the RNA-seq
data of M. marinum at different stages of resuscitation.

The genemodules were identified by theWGCNApackage in R
software. We first determined the appropriate “soft-thresholding”
value, which emphasizes strong gene–gene correlations at the
expense of weak correlations. An optimal parameter (power = 20)
was determined by plotting the strength of correlation against a
series (range 2 to 20) of soft threshold powers (Figure 7A).

An unsigned pairwise correlation matrix was calculated, and
the WGCNA algorithm was used to transfer the correlation
coefficient between genes into the adjacent coefficient. Then, the
dissimilarity of the topological overlap matrix was calculated
based on the adjacent coefficient. Using the calculated
dissimilarity, we carried out a hierarchical analysis by using
agglomerative hierarchical clustering, also known as the bottom-
up method. Other assumptions were made: (i) distances between
FIGURE 7 | WGCNA cluster analysis. (A) Plot of the strength of correlation against a series (range 2 to 20) of soft threshold powers. (B) Gene clusters and gene
module fusion.
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different classes were measured by the average connectivity, and
(ii) there should be at least 30 genes in each gene module.

Based on these analyses, we initially obtained 48 gene modules.
Thehierarchical cluster treewas then treatedusing thedynamic tree
cut algorithm in theWGCNA package. A total of 13 gene modules
were obtained. The “gray” module was the default module, which
included discarded genes that could not be clustered. Thus, we
focused on the analysis in the remaining 12 gene modules. The
process offusion is shown inFigure7B. Thenumber of genes varied
among these 12 modules, and the detailed information is listed in
Table 2 and Supplementary Table 2.

The first principal component analysis (PCA) was performed
on the 12 gene modules (Figure 8). The PCA results reflected the
main trend of gene expression in the modules. Module 20 played
an important role in the early stage (0 to 0.5 hr) of recovery,
module 35 played a role mostly in the middle stage (4 to 12 hr),
and module 12 was only involved in the last stage (24 to 48 hr).
Other modules appeared to play roles in more extended periods.

Identification of Key Gene Modules
Associated With Different Stages of
Resuscitation
Thus far, we have identified 5 DEGs and 12 gene modules. We
then performed an enrichment analysis between them. When the
P value of Fisher's exact test was less than 0.001, we considered
that these gene modules were significantly enriched in the DEG
sets. The results are shown in Figure 9. Interestingly, module 20
was significantly enriched in DEGs of the early stage (0 to 0.5 hr)
and module 12 was significantly enriched in DEGs of the last
stage (24 to 48 hr) of the recovery. This is consistent with the
result that these two modules were only involved in the early and
last stages of resuscitation, respectively (Figure 8).
DISCUSSION

In this study, we examined the transcriptome changes of M.
marinum recovered from hypoxia-induced dormancy. To gain a
comprehensive view, multiple time points, including shortly after
resuscitation (0.5 hr) to more extended periods up to 48 hr, were
included. For each time point, three biologically independent
Frontiers in Genetics | www.frontiersin.org 9124
samples were analyzed. Transcripts of the whole genome were
analyzed by RNA-seq, and the quality of the RNA-seq data was
reflectedby thehighgenomemappingratio and furthervalidatedby
qPCR analysis of close to 100 genes. With these high-quality
sequence data, we performed in-depth analyses, which included
the identification of DEGs and the construction of co-expression
network of transcription factors in each period. The availability of
transcriptomes of independent samples atmultiple time points also
allowed us to employ a weighted gene co-expression network
analysis to identify gene modules of M. marinum. Collectively,
these dataprovide valuable insight intonot only the genetic changes
of the bacteria upon resuscitationbut also the genemodule function
ofM. marinum during active metabolism and growth.

A total of 136 DEGs were identified in M. marinum upon
resuscitation from dormancy (0 to 0.5 hr), including eight
transcription factors (Figure 6). Interestingly, all of these
transcription factors were significantly downregulated. Among
them, MMAR_1653 is a homolog of Rv0081 in M. tb. Previous
studies have shown that Rv0081 is a member of the DosR regulon
and is induced at the early stage of hypoxia (Sherman et al.,
2001). Rv0081 is a major regulator of M. tb response to hypoxia
and forms a large regulatory hub (Galagan et al., 2013; Chawla et
al., 2018; Sun et al., 2018). Rv0081 plays an important role
connecting the early and enduring hypoxic responses (Sun et al.,
2018). WhiB4 (MMAR_5170) is an oxygen-sensitive
transcription factor and has been shown to regulate PE/PPE
family proteins, and it plays a role in M. marinum virulence
(Chawla et al., 2012; Wu et al., 2017). CosR (MMAR_4874) is a
copper-inducible transcriptional regulator, and the loss of cosR
resulted in a hypoxia-type response with the induction of the
DosR regulon (Talaat et al., 2004; Ward et al., 2008; Marcus et al.,
2016). Given their roles in the hypoxic response, it is not
surprising that Rv0081, WhiB4, and CosR underwent dynamic
changes in expression upon resuscitation by reaeration. Two other
transcription factors that were downregulated at this stage,
MMAR_5405 (EthR) and MMAR_1394 (Rv3176c), belong to the
TetR family transcription factors (Leiba et al., 2014; Sharma et al., 2017).

We also found that multiple members of the ESAT-6 family
proteins were upregulated upon resuscitation (Harboe et al., 1996;
Priscille et al., 2004), including EsxA (Sandra et al., 2010; Zhang et al.,
2016), EsxB (Sandra et al., 2010), EsxG (Sweeney et al., 2011), EsxH
(Alka et al., 2013; Portal-Celhay et al., 2016), EsxK, and EsxN
(Zhigang et al., 2017). These proteins are components of the Type
VII secretion systems, and many of them are important T cell
antigens and play a critical role modulating the host–pathogen
interactions (Abdallah et al., 2007).

From 0.5 to 4 hr after reaeration, 11 transcription factors were
downregulated (Figure 6), including Rv0081, CsoR, and WhiB4 as
mentioned above. Notably, the expression of two other WhiB family
proteins (Averina et al., 2012), WhiB3 and WhiB5, were also
significantly altered. WhiB3 responds to dormancy signals,
including hypoxia and NO, and controls redox homeostasis of the
bacteria (Priscille et al., 2004). WhiB5 responds to oxygen and
controls the expression type VII secretion systems (Priscille et al.,
2004). Consistently, we found that whiB3 was downregulated while
whiB5 was upregulated at this stage of resuscitation.
TABLE 2 | Information of gene modules identified by WGCNA.

Module_ID Number of genes

module_34 1711
module_26 919
module_43 424
module_14 320
module_20 298
module_3 268
module_35 142
module_29 136
module_12 127
module_22 89
module_47 89
module_45 46
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FIGURE 8 | PCA analysis of 12 gene modules. The X axis represents time period, and the Y axis represents expression of first principal component.
FIGURE 9 | Enrichment analysis between 12 gene modules and 5 DEGs. The above bar chart represents the number of DEGs in each period, and the bar chart on
the right represents the number of genes in each gene module. Blue squares represent a significant enrichment between the row set and the column set.
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During the period of 4 to 12 hr, we identified 72 DEGs,
including 7 PPE family genes (MMAR_5121, MMAR_1095,
MMAR_1235, MMAR_1847, MMAR_1905, MMAR_2669, and
MMAR_3989). The PE/PPE family proteins play a critical role in
mycobacterial pathogenesis (Fishbein et al., 2015). In addition,
several genes of the Mce family were upregulated, including
MMAR_3865 (mce2B), MMAR_3868 (mce5E), MMAR_3867
(mce5D), MMAR_3866 (mce5C). The Mce family genes
comprise four mammalian cell invasion factor (mce) operons
(mce1-4), and some of these are involved in the invasion of host
cells (Zhang and Xie, 2011).

A picture appears to have emerged from these analyses; in the
early stage of resuscitation from the hypoxia-induced dormancy,
transcription factors critical for a hypoxia-induced response are
downregulated, and, as the recovery continues, genes important
for virulence and host interactions are upregulated.

A WGCNA analysis revealed 12 distinct gene modules. Of
particular interest is gene module 20, which was involved in the
early stage of resuscitation only (Figure 8). This module
comprises of ~300 genes, many of which have unknown
functions or annotations. Future studies focusing on genes in
this module may help to understand the molecular machinery
enabling the exit of the bacteria from dormancy.
METHODS AND MATERIALS

Bacterial Strain, Media, and Growth
Conditions
M. marinum 1218R (ATCC 927) was grown in Middlebrook
7H9 broth to OD600~0.5, at which point they were aliquoted
and cultured in screw-capped conical flasks at 30°C without
additional oxygen. The hypoxic culture conditions were
described previously by Wayne and Hayes (Wayne and Hayes,
1996). After 7 days in hypoxic conditions, the screw cap was
replaced with a permeable membrane, and the rest of the
conditions were unchanged. After aeration, samples were taken
at 0 h, 0.5 h, 4 h, 12 h, 24 h, and 48 h, and an aliquot was used to
measure the OD value (Supplementary Figure 1). The
remaining samples were collected and snap frozen in liquid
nitrogen for RNA sequencing.

RNA Extraction, Illumina Sequencing, and
RT-qPCR
M. marinum cultures were centrifuged at 4,500 × g for 5 min at
room temperature and frozen on dry ice. The frozen cell pellets
were resuspended in 1 mL TRIzol reagent (CW Bio). RNA
extraction and illumina sequencing were performed as
previously described (Wu et al., 2017). Raw data of RNA
sequencing have been uploaded to the GEO database
(BioProject ID : PRJNA588556).

For RT-qPCR validation of RNA-seq data, 1 μg RNA was
reversed-transcribed to cDNA, which was then used as the
template for RT-PCR analysis. The primers for analyzing the
selected genes were listed in Supplementary Table 3.
Frontiers in Genetics | www.frontiersin.org 11126
Transcriptome and Bioinformatics
Analysis
The RNA-seq analysis and identification of differentially
expressed genes (DEGs) were performed as previously
described (Lee et al., 2019).

GO and KEGG Analysis
We used the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Ogata et al., 2000) (www.genome.jp/kegg/)
and the Gene Ontology (GO) database (Ashburner et al., 2000)
(www.geneontology.org/) for our data analysis.

Construction of the Gene Co-Expression
Network
We calculated the correlation coefficient between identified
transcription factors and other DEGs in each time period. The
correlation coefficient value ranges from -1 to 1, representing a
negative and positive correlation, respectively. We considered the
expression of two genes as correlated if the absolute value of the
correlation coefficient was larger than 0.8. The results were imported
into Cytoscape 3.0 to generate the network map (Kohl et al., 2011).

Weighted Gene Co-Expression Network
Analysis (WGCNA)
We used the RNA-seq data from multiple time points (three
biological independent samples at each time point) for WGCNA
analysis. We used the WGCNA package to cluster gene modules
as follows.

(a) Define gene co-expression similarity: calculate the similarity
between any two genes using Pearson's correlation coefficient
(Sij = |cor(i,j)|, the correlation coefficient of gene i and gene
j), which then forms the correlation matrix (S = [Sij]).

(b) Define the exponential weighted value b: for any gene pair (i
and j), apply the exponential adjacency function in the
WGCNA algorithm to measure their relation index, namely,
the exponential weighted b square of the correlation coeffi-
cient (aij = power(Sij, b) = |Sij|

b). Exponential weighted b is
the power of the correlation coefficient. We selected b = 5
after the analysis (fit value R2 to approximately 0.9).

(c) Define a measure of node dissimilarity: after determining the
adjacency function parameter b, the correlation matrix S =
[Sij] is switched into the adjacency matrix A = [aij] and
converted into the topological overlap matrix W = [wij]. ki or
kj indicate the sum of one node's adjacency coefficients. The
node is a gene (i or j).

wij =
lij + aij

min ki, kj
� �

+ 1 −   aij
lij =omaimamj ki =omaim ki =omaim

(d) Build hierarchical clustering tree to identify gene modules:
the hierarchical clustering tree built using the dissimilarity
coefficient dwij (d

w
ij = 1 − wij), and the different branches rep-

resent the gene modules.
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Enrichment Analysis and PCA Analysis
To determine whether one set of genes were more enriched in
another set of genes, we used the Chi-square test or Fisher's exact
test (Upton, 1992). First, the two sets ofgeneswere takenandused to
form a 2*2 contingency table. If there was a value less than or equal
to five in the table, the Fisher's exact test was applied; otherwise,
theChi-square testwas applied.Whenthepvaluewas less than0.05,
the two sets were considered significantly enriched to each other.
PCA analyses were performed by the princomp function in R
software (version 3.5.1)
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Gastric cancer is a common malignant tumor with high occurrence and recurrence and is
the leading cause of death worldwide. However, the prognostic value of protein-coding
and non-coding RNAs in stage III gastric cancer has not been systematically analyzed. In
this study, using TCGA data, we identified 585 long noncoding RNAs (lncRNAs) and 927
protein-coding genes (PCGs) correlated with the overall survival rate of gastric cancer.
Functional enrichment analysis revealed that the prognostic genes positively correlated
with death rates were enriched in pathways, including gap junction, focal adhesion, cell
adhesion molecules (CAMs), and neuroactive ligand-receptor interaction, that are involved
in the tumor microenvironment and cell-cell communications, suggesting that their
dysregulation may promote the tumor progression. To evaluate the performance of the
prognostic genes in risk prediction, we built three multivariable Cox models based on
prognostic genes selected from the prognostic PCGs and lncRNAs. The performance of
the three models based on features from only PCGs or lncRNAs or from all prognostic
genes were systematically compared, which revealed that the features selected from all
the prognostic genes showed higher performance than the features selected only from
lncRNAs or PCGs. Furthermore, the multivariable Cox regression analysis revealed that
the stratification with the highest performance was an independent prognostic factor in
stage III gastric cancer. In addition, we explored the underlying mechanism of the
prognostic lncRNAs in the Cox model by predicting the lncRNA and protein interaction.
Specifically, CTD-2218G20.2 was predicted to interact with PSG4, PSG5, and PSG7,
which could also interact with cancer-related proteins, including KISS1, TIMP2, MMP11,
IGFBP1, EGFR, and CDKN1C, suggesting that CTD-2218G20.2 might participate in the
cancer progression via these cancer-related proteins. In summary, the systematic analysis
of the prognostic lncRNAs and PCGs was of great importance to the understanding of the
progression of stage III gastric cancer.
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INTRODUCTION

Gastric cancer is one of the most commonly diagnosed cancers
worldwide, with an incidence of 1,031,700 new cases in 2018 and
poor survival rates, causing approximately 787,200 deaths that
year (Bray et al., 2018). Incidence rates of gastric cancer exhibit
significant differences among regions, as its rates in Eastern Asia
are markedly higher than those in Northern America and
Northern Europe, and about 70% of gastric cancer is reported
in developing countries with a higher mortality ratio, reflecting
the importance of modern surgical and medical technology in
gastric cancer treatment (Guggenheim and Shah, 2013).
Environmental risk factors for gastric cancer include
Helicobacter pylori infection, tobacco and alcohol use, and
dietary salt intake (Zhang and Zhang, 2017), while genetic
studies have revealed several key genetic factors in gastric
cancer, including chromosomal instability, changes in
microRNA profile, and somatic gene mutations (McLean and
El-Omar, 2014).

According to the TNM system, most of GC patients are
suffering from stage III or stage IV disease (Washington, 2010;
Coburn et al., 2018). Surgery may seem to be the only approach
to ensure long-time survival; however, for patients who have
undergone surgical resection, the recurrence-free survival time
remains poor, with a median length shorter than two years
(Spolverato et al., 2014; Chan et al., 2016). Although adjuvant
radiotherapy and chemotherapy are utilized to reduce its
recurrence after surgery, the five-year survival rate for all
stages is still unsatisfying, as it merely becomes 65% for
patients with stage I disease, and the situation is much worse
for patients with more advanced stages (Spolverato et al., 2014).

The discovery of biomarkers will greatly help deliver
personalized treatment, with the goal of reducing gastric
cancer recurrence and mortality rates. Currently, most studies
investigating biomarkers in gastric cancer focus on protein-
coding genes (PCGs), but noncoding RNAs are less addressed
(Nagarajan et al., 2012). Though a growing number of long
noncoding RNAs (lncRNAs), including HOTAIR, MEG3,
MALAT1, H19, GAPLINC, and GClnc1, have been reported to
be associated with gastric cancer tumorigenesis, the role of
lncRNAs in human gastric cancer and their prognostic value
are still inadequately explored (Kogo et al., 2011; Gu et al., 2015;
Sun et al., 2016). Furthermore, the performance of the protein-
coding genes and lncRNAs in risk prediction has not been
systematically compared in gastric cancer. In the present study,
we collected gene expression data for stage III gastric cancer and
aimed to identify key prognostic lncRNAs in gastric cancer.
Moreover, we built a Cox model based on features from both
protein-coding genes and lncRNAs and compared the
performance of Cox models based on features from prognostic
lncRNAs, from pPCGs, and from all prognostic genes. The
systematic analysis of the prognostic lncRNAs and PCGs is of
great importance for the understanding of the progression of
stage III gastric cancer.
Frontiers in Genetics | www.frontiersin.org 2130
MATERIALS AND METHODS

TCGA Gene Expression Data Collection
and Processing
The gene expression data of TCGA stomach adenocarcinoma
(TCGA-STAD) and the associated clinical data were
downloaded from the UCSC Xena database (Goldman et al.,
2018) (https://xenabrowser.net/datapages/). Samples diagnosed
with TNM stage III in TCGA-STAD were selected for the
downstream data analysis. Each gene was discretized as of high
and low expression status if its expression level was higher or
lower than the median, respectively. The survival analysis was
conducted based on the discretized expression status.

Overrepresentation Enrichment
Analysis (ORA)
To characterize the prognostic genes, we employed
overrepresentation enrichment analysis (ORA), which was
implemented by R package clusterProfiler with the enrichKEGG
and enricher functions (Yu et al., 2012). The gene sets used for
the enrichment analysis of the lncRNA interacting proteins were
collected from MSigDB gene sets (Liberzon et al., 2011) (http://
software.broadinstitute.org/gsea/index.jsp). The significant
pathways were selected based on a threshold of 0.05 for
adjusted P-value.

Cox Proportional Hazards
Regression Analysis
The two-sample comparisons of overall survival were performed
by Cox proportional hazards regression analysis and the
differences tested by log-rank test, implemented using the R
package survival with the coxph function. The predicted risk
score for the patients was calculated based on the expression
status of the prognostic genes, implemented in R with the
predict.coxph function. Particularly, the features (prognostic
genes) were selected by the Maximum Minimum Parents and
Children (MMPC) algorithm (Lagani et al., 2016) and
implemented by the MXM package in R.

lncRNA–Protein Interaction Analysis
To predict the potential lncRNA–protein interactions, we used
the pre-trained LncADeep (Yang et al., 2018) model, a deep
learning model, and utilized the sequences of differentially
expressed lncRNAs and proteins to predict their interactions.
In addition, we also conducted Pearson correlation analysis
between the lncRNAs and proteins, with a threshold of 0.3 for
Pearson correlation coefficients (PCC).

Statistical Analysis
The statistical analyses were conducted in R programming
software, version 3.6.0. The two-sample or multiple-sample
comparisons were performed using the Wilcoxon rank-sum
test or analysis of variance (ANOVA). P-value < 0.05 was
considered statistically significant difference.
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RESULTS

Identification of Prognostic Genes by a
Univariable Cox Model
To identify the prognostic genes, including the long noncoding
RNAs (lncRNAs) and protein-coding genes (PCGs), we collected
152 stage III gastric cancer samples from the TCGA gastric
cancer cohort. The univariable survival analysis was then
conducted on all the genes with stable expression (FPKM > 1
in 10% of samples). In total, we identified 585 lncRNAs and 927
PCGs correlated with overall gastric cancer survival
(Supplementary Table S1). Notably, 57.95% of PCGs and
68.72% of lncRNAs positively correlated with death rates in
the Cox models were identified (Figure 1A), suggesting that
these genes might drive the cancer progression. The two
proportions showed significant difference (two-sample
proportion test, P < 0.05), which might be caused by the
relatively lower expression of lncRNAs. Moreover, we also
Frontiers in Genetics | www.frontiersin.org 3131
investigated the distribution of the prognostic gene expression
levels. The prognostic PCGs had significantly higher expression
than the prognostic lncRNAs (Figure 1B). As shown in Figure
1C, the top five genes positively and negatively correlated with
death rates included RP13-577H12.2, AJ239318.1, CLDN9,
OLFML2A, RP11-1021N1.1, CTD-2218G20.2, LMNB2, RP11-
291L22.4, SRSF7, and PPP1R15B. Notably, RP13-577H12.2,
CTD-2218G20.2, and RP11-291L22.4 were prognostic lncRNAs.

Functional Characterization of the
Prognostic Genes
To characterize the functions of the prognostic genes, the prognostic
genes positively or negatively correlated with death rates were
subjected to KEGG enrichment analysis. The genes promoting the
progression of gastric cancer were enriched in pathways such as
adrenergic signaling in cardiomyocytes, axon guidance, gap
junction, insulin secretion, the cAMP signaling pathway, bladder
cancer, focal adhesion, cell adhesion molecules (CAMs), the PI3K-
FIGURE 1 | Overview of the prognostic protein-coding genes (PCGs) and long noncoding RNAs (lncRNAs). (A) Proportions of prognostic PCGs and lncRNAs
positively and negatively correlated with death rates. (B) Distribution of expression levels for the PCGs and lncRNAs. (C) Forest plot for the top five genes positively
and negatively correlated with death rates.
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Akt signaling pathway, and neuroactive ligand-receptor interaction
(Figure 2). In contrast, the genes with higher expression in samples
with better prognosis were enriched in base excision repair,
transcriptional misregulation in cancer, breast cancer, Fanconi
anemia pathway, pancreatic cancer, platinum drug resistance,
RNA transport, hepatitis C, homologous recombination, and
spliceosome (Figure 2). It should be noted that the gap junction,
focal adhesion, cell adhesion molecules (CAMs), and neuroactive
ligand-receptor interaction pathways were involved in tumor
microenvironments and cell-cell communications, suggesting that
their dysregulation may promote the tumor progression.

The Performance of the Prognostic
lncRNAs and PCGs in Risk Prediction
To evaluate the performance of the prognostic genes in risk
prediction, we first selected features from the lncRNAs, PCGs,
and all genes, respectively, with a significance level of 0.01 using
the MMPC algorithm. Specifically, 10 lncRNAs and seven PCGs
were selected for the construction of Cox models based on only
lncRNAs or PCGs (Figures 3A, B). Additionally, another nine
genes including five lncRNAs and four PCGs were selected to
build the model under both lncRNAs and PCGs (Figure 3C). As
shown in Figure 3, the risk groups stratified by the three Cox
models showed significantly different overall survival (P <
0.0001), and the selected features were highly correlated with
the risk. Furthermore, we also compared the performance of the
three models based on the criteria of log-rank test, Wald test, and
C-index (Table 1). Consistently, the features selected from all the
prognostic genes showed higher performance than the features
selected only from lncRNAs or PCGs (Table 1), suggesting that
Frontiers in Genetics | www.frontiersin.org 4132
stratification by feature by integrating PCGs and lncRNAs was
superior to using either of the two alone.

TheStratificationBased on the Features
FromAll Genes Is an Independent Prognostic
Factor in Stage III Gastric Cancer
As the prognostic model based on the features from all genes
exhibited satisfying performance on all stage III gastric cancer
patients, it was also necessary to investigate whether this
stratification was a prognostic factor independent of clinical
indicators such as age, gender, race, and histology grade. The
multivariable Cox regression model was then constructed by
group and these co-factors. We observed that both age and group
were significantly associated with stage III gastric cancer survival
(P < 0.05). Remarkably, the group had the highest statistical
significance (P = 1.54E-14), suggesting that the stratification
based on the features from all genes was an independent
prognostic factor in stage III gastric cancer (Table 2).

Prediction of the Underlying Mechanism of
the lncRNAs in the Cox Model
As the lncRNAs could perform their function by interacting
with proteins, we then predicted the interactions between the
FIGURE 2 | KEGG enrichment of the prognostic genes. The node size represents the ratio of the genes in the pathway. The colors represent the statistical
significance of the pathways.
TABLE 1 | Performance of three Cox models based on features selected from
all genes, PCGs, and lncRNAs.

Features logtest.pvalue waldtest.pvalue C-index sd(C-index)

All genes 3.56E-20 1.48E-16 0.84 0.04
PCGs 2.73E-16 8.20E-14 0.80 0.04
LncRNAs 2.99E-18 8.59E-14 0.83 0.04
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prognostic lncRNAs in the Cox model and proteins using a
deep learning method, LncADeep. Moreover, we also
conducted a correlation analysis between the proteins and
lncRNAs. However, only one of the five lncRNAs in the Cox
model, CTD-2218G20.2, was predicted to interact with 86
proteins (Pearson correlation coefficient, PCC > 0.3). The
gene set enrichment analysis revealed that these interacting
proteins also interacted with cancer-related proteins, including
Frontiers in Genetics | www.frontiersin.org 5133
KISS1, TIMP2, MMP11, IGFBP1, EGFR, and CDKN1C
(Figure 4A). Specifically, pregnancy-specific glycoproteins,
including PSG4, PSG5, and PSG7, were those proteins jointly
interacting with CTD-2218G20.2 and cancer-related proteins,
which were highly correlated with CTD-2218G20.2 (Figure 4B,
PCC > 0.3). These results suggested that CTD-2218G20.2 might
participate in the cancer progression via these cancer-
related proteins.
FIGURE 3 | Performance of the three Cox models in risk prediction. Performance of three Cox models based on the features selected from only the prognostic
lncRNAs, only the prognostic PCGs, and all the prognostic genes are displayed in (A–C), respectively.
TABLE 2 | Multivariable Cox model with age, gender, race, and histology grade as co-factors.

Variables Coef exp(Coef) se(Coef) Z P

Age 1.12E-04 1.00E+00 3.86E-05 2.896 0.00378
Gender Male 4.12E-01 1.51E+00 2.69E-01 1.532 0.12547
Race Black or African American -1.13E-01 8.93E-01 7.00E-01 -0.162 0.87143

White 4.04E-01 1.50E+00 3.83E-01 1.055 0.29138
Histology grade G2 -1.82E-01 8.34E-01 1.05E+00 -0.173 0.86275

G3 -8.96E-02 9.14E-01 1.03E+00 -0.087 0.93095
GX -1.54E+01 2.10E-07 3.40E+03 -0.005 0.99639

Group Low-risk -2.88E+00 5.59E-02 3.75E-01 -7.684 1.54E-14
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DISCUSSION

Gastric cancer is a common malignant tumor with high
occurrence and recurrence and is the leading cause of death
worldwide (Bray et al., 2018). However, the prognostic value of
protein-coding and non-coding RNAs in stage III gastric cancer
has not been systematically analyzed. In this study, we identified
585 lncRNAs and 927 PCGs correlated with the overall survival
rate of gastric cancer. Notably, 57.95% of PCGs and 68.72% of
lncRNAs were positively correlated with the death rate in the
Cox models (Figure 1A). To characterize the function of the
prognostic genes, the prognostic genes positively or negatively
correlated with death rates were subjected to KEGG enrichment
analysis. Notably, the pathways of gap junction, focal adhesion,
cell adhesion molecules (CAMs), and neuroactive ligand-
receptor in terac t ion were invo lved in the tumor
microenvironments and cell-cell communications, suggesting
that their dysregulation may promote the tumor progression.
In accordance with previous studies (Wang et al., 2013; Yan et al.,
2018; Zhao et al., 2019), the genes in gap junction, focal adhesion,
and CAMs were significantly associated with gastric cancer
prognosis. In addition, PI3K/Akt signaling pathway has been
widely reported to regulate the tumorigenesis and progression
(Tapia et al., 2014; Matsuoka and Yashiro, 2014) and act as a
Frontiers in Genetics | www.frontiersin.org 6134
potential therapeutic target in gastric cancer (Ye et al., 2012;
Singh et al., 2015).

To evaluate the performance of the prognostic genes in risk
prediction, we built three Cox models based on prognostic
lncRNAs, PCGs, and both (Figure 3C). The performances of the
three models were systematically compared based on the criteria of
log-rank test,Wald test, andC-index,which revealed that the features
selected from all the prognostic genes showed higher performance
than the features selected only from lncRNAsorPCGs. Furthermore,
we investigated whether the stratification with the highest
performance was a prognostic factor independent of clinical
indicators, such as age, gender, race, and histology grade. The
multivariable Cox regression analysis revealed that the stratification
had the highest statistical significance (P= 1.54E-14), suggesting that
the stratification based on the features from all genes was an
independent prognostic factor in stage III gastric cancer. In
addition, as the CEA and CA19-9 are commonly used biomarkers
forgastriccancerriskprediction,wecomparedtheirprognosticvalues
with those of the genes included in themultivariable Coxmodel. The
hazard ratios (HR) of CEA and CA19-9 were estimated as 1.681 and
1.83 bymeta-analysis (Song et al., 2015; Deng et al., 2015). However,
the HR of CTD-2218G20.2 in the multivariable Cox model reached
3.48, suggesting that the lncRNACTD-2218G20.2was superior to the
common clinical biomarkers like serumCEA and CA19-9.
FIGURE 4 | Predicted function of the prognostic lncRNA CTD-2218G20.2. (A) Gene sets enriched by the proteins predicted to interact with CTD-2218G20.2.
(B) Correlation analysis between CTD-2218G20.2 and three pregnancy-specific glycoproteins. The x- and y-axes represent the expression levels (log2 (FPKM+1)) of
the PSG genes and CTD-2218G20.2, respectively.
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Furthermore, we explored the underlying mechanism of the
prognostic lncRNAs in the Cox model by predicting the lncRNA
and protein interaction. Specifically, CTD-2218G20.2 was
predicted to interact with 86 proteins (Pearson correlation
coefficient, PCC > 0.3), some of which, including PSG4, PSG5,
and PSG7, could also interact with cancer-related proteins,
including KISS1, TIMP2, MMP11, IGFBP1, EGFR, and
CDKN1C (Figure 4A). Notably, KISS1, TIMP2, MMP11,
IGFBP1, and EGFR have been reported to be involved in the
metastasis of gastric cancer (Guan-Zhen et al., 2007; Kou et al.,
2013; Wang et al., 2017; Wang et al., 2018; Sato et al., 2019).
These results suggested that CTD-2218G20.2might participate in
the cancer progression via these cancer-related proteins.

The present study still had some limitations, such as lack of
experimental validation or large sample size. However, we aimed
to discover some key prognostic PCGs and lncRNAs in stage III
gastric cancer that could not be extrapolated to early stage GC
patients. In summary, this systematic analysis of the prognostic
lncRNAs and PCGs was of great importance to the
understanding of the progression of stage III gastric cancer.
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Objective: The study aims to investigate the effects of miR-221-3p in bone marrow

mesenchymal stem cell (BMMSC)-derived microvesicles (MVs) on cell cycle, proliferation

and invasion of acute myelocytic leukemia (AML).

Methods: Bioinformatics was used to predict differentially expressed miRNAs

(DEmiRNAs) in AML. The morphology of BMMSC-derived MVs was observed under

an electron microscope, and the positional relation of MVs and OCI-AML2 cells was

observed by a fluorescence microscope. MTT, Transwell, and flow cytometry assays

were used to analyze the effects of MVs on OCI-AML2 cells. The targeted relationship

between miR-221-3p and CDKN1C was detected by dual luciferase assay.

Results: It was verified that miR-221-3p promoted the proliferation, invasion and

migration of OCI-AML2 cells, and induced the cell cycle arrest in G1/S phase as well

as inhibited cell apoptosis. Further studies showed that MVs promoted the proliferation,

migration and invasion of AML, and induced the cell cycle arrest in G1/S phase through

miR-221-3p. It was confirmed that miR-221-3p can directly target CDKN1C to regulate

cell cycle, proliferation and invasion of AML.

Conclusion: miR-221-3p in BMMSC-derived MVs regulated AML cell cycle, cell

proliferation and invasion through targeting CDKN1C. miR-221-3p and CDKN1C were

considered to be potential targets and biomarkers for the treatment of AML in clinic.

Keywords: BMMSC, microvesicles, miR-221-3p, AML, cell proliferation and invasion, cell cycle

INTRODUCTION

Acute myelocytic leukemia (AML) is a malignant tumor of abnormal clonal in immature
myeloid hematopoietic cells with high heterogeneity, which is characterized by differentiation
and maturation disorders along with block of apoptosis in clonal hematopoietic stem cells or
progenitor cells, leading to malignant proliferation and accumulation of cells in the bone marrow,
thus affecting normal hematopoiesis (Coombs et al., 2016; Khwaja et al., 2016). AML is the
most-common acute leukemia in adults, but it predominantly occurs in older people (>60 years
of age), with a median age at diagnosis of 67 (Coombs et al., 2016). It typically presents with a rapid
onset of symptoms that are attributable to bone marrow failure and may be fatal within weeks or
months when left untreated. Currently, chemotherapy and hematopoietic stem cell transplantation
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are the main treatments, but the success rate of AML
cure remains low (Cornelissen and Blaise, 2016; Stein and
Tallman, 2016). Therefore, it is particularly important to
study the pathogenesis of AML and explore the possible
therapeutic approaches.

Microvesicles (MVs) are extracellular vesicles between 100 nm
and 1µm that derived from normal cells and cancer cells.
MVs can transfer proteins, glycoproteins, lipids, nucleic acids,
and cytokines from maternal cells to recipient cells, promoting
phenotype changes of recipient cells and playing an important
role in intercellular communication (Hansen et al., 2014;
Gopal et al., 2017; Abbasian et al., 2018). Studies have found
that tumor-derived MVs (TMV) can interact directly with
tumor cells and play a macro-messenger role to promote
the transfer of molecular substances between tumor cells to
facilitate tumor growth (Stec et al., 2015a,b). MVs derived from
bone marrow mesenchymal stem cell (BMMSC) can promote
tumorigenesis and development (Crompot et al., 2017; Boyiadzis
and Whiteside, 2018). miRNAs in MVs, as post-transcriptional
regulatory elements, directly regulate gene expression, target
mRNA expression and translation or induce mRNA degradation
to reduce protein synthesis by directly binding with the
3′-untranslation region (3′-UTR) of specific mRNA targets
(Braicu et al., 2015; Jerez et al., 2019), ultimately induce
multiple pathophysiological processes, such as leukemia stem cell
formation, regulation of tumor cell proliferation, angiogenesis,
invasion, metastasis, and immune escape to modulate leukemia
development (Braicu et al., 2015; Del Principe et al., 2017).

microRNAs (miRNA) are a class of evolutionarily conserved
22 to 24-nucleotide small RNAs in length, which are widely
found in eukaryotic cells with molecular functions to regulate
cell differentiation, proliferation and apoptosis (Summerer et al.,
2013; Zheng et al., 2013). miR-221-3p has important regulatory
effects on a variety of cancers as an important miRNA. Studies
have reported that in cervical squamous cell carcinoma, miR-
221-3p in MVs promotes lymph angiogenesis and lymphatic
metastasis by targeting VASH1 (Zhou et al., 2019), and
promotes angiogenesis by targeting THBS2 (Wu et al., 2019).
We previously found that miR-221-3p was significantly highly
expressed in AML patients through bioinformatics, and miR-
221-3p mainly existed in BMMSC-derived MVs. These results
suggest that miR-221-3p in BMMSC-derived MVs has certain
regulatory effects on AML cells.

Therefore, in this paper, we explored the regulatory effects
and mechanism of miR-221-3p in BMMSC-derived MVs on
cell cycle, cell proliferation and invasion of AML through in
vitro experiments, so as to further understand the pathogenesis
of AML and provide new ideas for future clinical diagnosis
and treatment.

MATERIALS AND METHODS

Cell Lines and Patients
Normal human BMMSCs were purchased from Kunming cell
bank, Chinese Academy of Sciences (No. 3153C0001000000244).
BMMSCs were isolated from AML patients and human AML

cells OCI-AML2 (BNCC341618) were purchased from BeNa
Culture Collection (China).

Fifteen AML patients and 18 control samples (peripheral
blood or bone marrow) were obtained with the informed consent
of the patient or healthy subject and were collected at the First
Affiliated Hospital of Zhejiang University through the protocol
approved by the review committee.

Bioinformatics Analysis
AML-related miRNA expression dataset GSE49665 was obtained
from GEO database (https://www.ncbi.nlm.nih.gov/geoprofiles/)
to screen differentially expressed miRNAs (DEmiRNAs) and
determine target miRNAs. Target miRNAs were found to be
highly expressed in the MVs of fiber cells and mesenchymal stem
cells (MSCs) via searching expression location In the EV miRNA
database (http://bioinfo.life.hust.edu.cn/EVmiRNA). The
downstream target genes of the target miRNAs were predicted
by TargetScan database (http://www.targetscan.org/vert_72/),
miRSearch database (https://www.exiqon.com/miRSearch), and
mirDIP database (http://ophid.utoronto.ca/mirDIP/index.jsp),
and differential analysis was conducted on AML gene expression
in TCGA. The down-regulated genes in AML were selected to
intersect with the predicted downstream target genes. Finally,
the target genes with the most significant expression changes
were detected by signaling pathway enrichment analysis.

Isolation, Culture and Analysis of BMMSC
BMMSCs were obtained by density gradient centrifugation. The
bone marrow fluids were centrifuged at 1,000 rpm for 10min,
while the lipids and supernatant were absorbed and discarded.
The remaining marrow fluids were added with equal quantity of
PBS buffer and mixtured, centrifuged at 1,000 rpm for 10min,
and the supernatant was discarded. Then cell suspensions were
prepared with 2mL PBS buffer at a density of 4 × 107 cells,
carefully superimposed on 5mL Percoll separation solution
(at a density of 1.077 g/mL), and centrifuged at 2,300 rpm for
30min. After centrifugation, the liquids from top to bottom are:
platelet and plasma diluent layer, yellow-brown annular cloud-
like mononuclear cell layer, lymphocyte separation liquid layer,
red blood cells and granulocyte layer. The mononuclear cell layer
was absorbed and mixed with PBS buffer at a ratio of 1:2, and
then centrifuged at 1,500 rpm for 10min. All centrifugations were
carried out at room temperature. The supernatant was discarded
and cells were washed twice. 1× 106 cells/mL were inoculated in
a 25 cm2 culture bottle with 5mL BMMSCs medium (containing
10% fetal bovine serum, FBS). After 2–3 days, non-adhesive cells
were removed, and monolayer adherent cells were spread to 70–
80% of the bottom of the culture bottle. Cells were then isolated in
a trypsin solution (0.25% trypsin/0.1% EDTA PBS solution, free
of magnesium/magnesium and phenolic red) (Aurogene, Rome,
Italy) and re-inoculated at a density of 3.5 × 103 cells/cm2. The
3–5 generation cells were used for the experiment. Cell growth
was analyzed by direct cell count at every passage.

Isolation and Identification of MVs
BMMSC-derived MVs were isolated using the exoEasy Maxi Kit
(qiagen, Germany) according to the manufacturer’s instructions.
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MVs were observed by Philips CM120 BioTwin transmission
electron microscope (FEI, USA).

Inhibition/Overexpression of miRNA and

mRNA
miR-221-3p inhibitor, 100 nmol/L miR-221-3p mimic, 100
nmol/L overexpression of CDKN1C and the corresponding
negative control (NC) were purchased from GenePharma
(Shanghai, China). Approximately 1 × 105 cells were inoculated
into 12-well plates during transfection. CDKN1C, miR-221-
3p and negative control were transfected into the cells using
LipoFiter kit (Hanbio, Shanghai, China) according to the
kit instructions. RNA and proteins were extracted 48 h after
transfection. The sequences of synthesized primers were shown
in Supplement Table 1.

Construction of Lentivirus Expression

Vector and Cell Transfection
Human miR-221-3p sequences were amplified and then bound
to pcDNA3.1 (+) to form miR-221-3p expression vector
(GenePharma, ShangHai, China). PcDNA3.1 carrier was used as
blank control. Lentivirus coated miR-221-3p or blank lentivirus
was transfected into OCI-AML2 cells and cultured for 96 h and
then treated with puromycin for 4 weeks to screen cells (Santa
Cruz organisms).

qRT-PCR
Total RNA was extracted from tissues and cells using Trizol
(Invitrogen) according to themanufacturer’s protocol. cDNAwas
synthesized using reverse transcription system kit (Invitrogen).
qRT-PCR was performed on ABI 7900HT instrument (Applied
Biosystems, USA). Quantitative PCR was performed using the
miScript SYBR Green PCR Kit (Qiagen, Germany) under the
following thermal cycling conditions: pre-denaturation at 95◦C
for 10min, followed by 40 cycles of denaturation at 95◦C for
2min, annealing at 95◦C for 5 s and extending at 60◦C for 30 s.
CDKN1C was normalized with β-Actin as an internal reference,
andmiR-221-3p was normalized with U6 as an internal reference.
The relative expression of the target gene mRNAs in the control
group and the experimental group were analyzed by 2−11Ct

method. The primers used in the experiment were shown in
Supplement Table 1.

Western Blot
Forty-eight hours after transfection of cells from different
treatment groups, the cells were washed three times with cold
PBS (Thermo fisher, USA), and lysed on ice using whole protein
lysate for 10min. BCA quantitative kit (Thermo fisher, USA)
was used for protein quantification, then 10 µl loading buffer
was added and proteins were boiled at 95◦C for 10min. the
proteins were loaded onto SDS-PAGE at 100V and transferred
to the NC membrane blocked with 5% BSA/TBST for 60min.
The membrane was incubated with primary antibodies at 4◦C
overnight and then washed with 1 × TBST solution (Solarbio,
Beijing, China) at room temperature for 5min × 3 times. the
membrane was probed with HRP labeled goat-anti-rabbit IgG at
room temperature for 120min, and washed by TBST for three

times. After each 20min, the ECL kit (Solarbio, Beijing, China)
was used for detecting luminescence reaction, and the protein
blot was photographed and observed. The antibodies used in
experiment were listed in Supplement Table 2.

MTT Assay
OCI-AML2 cells (5 × 103 cells/100 ul) were seeded into 96-well
plates. Each group was made in triplicate. Proliferation of cells
were evaluated by sterile MTT solution (Beyptime) according to
the instructions after culture for 12, 24, 48, and 72 h, respectively.
Absorbance at 490 nm was measured using a spectrophotometer
(Molecular Devices, Sunnyvale, CA, USA).

Transwell Assays
Transwell migration assay was used to evaluate the migration
ability of OCI-AML2 cells. 24-well Transwell Chambers (8µm
aperture, BD Biosciences) were used. For migration assay, cells
at a density of 1 × 105 cells/chamber were seeded into the
upper chamber and the 600 µL of medium containing 10% FBS
(Thermo fisher, USA) was placed in the lower chamber. For
invasion assay,∼2× 104 cells/chamber were seeded in the upper
chamber, which was coated with Matrigel. Dulbecco’s modified
Eagle culture medium (DMEM) containing 10% FBS (Thermo
fisher, USA) was filled into the lower chamber. After incubation
at 37◦C for 48 h, the cells that were not migrated/invaded were
cleared away with a cotton swab and the migrated/invaded cells
on the lower side were stained with 0.5% crystal violet. Cells were
observed under a microscope, and photographed.

Flow Cytometry (FCM)
Cell cycle detection: OCI-AML2 cells in growth phase were added
with 3mL PBS and harvested with 1mL trypsin for 1–5min after
removing the liquid. The cell suspension was prepared by adding
5mL PBS, and then transferred to a 15mL centrifuge tube for
centrifugation at 1,500 rpm for 5min to discard the supernatant.
Five hundred microliters PBS was added for cell suspension, and
2mL of cold ethanol of 95% at 20◦Cwas added to the suspension.
After mixing, the suspension was fixed for 30min. Five milliliters
PBS was added and centrifuged at 1,500 rpm for 5min to remove
the supernatant and then added with 5mL PBS and centrifuged
at 1,500 rpm for 5min to discard the supernatant. The cells
were stained with 800 µL PI at room temperature for 30min in
darkness. Cell cycle was detected by FCM.

Dual Luciferase Assay
In order to determine the binding probability of miR-221-3p
and 3′UTR of CDKN1C, a psiCHECK luciferase reporter vector
(Sangon Co., LTD, ShangHai, China) was inserted into 3′UTR of
CDKN1C wild type (WT) and mutated type (MUT). HEK293T
cells (Thermo fisher, USA) were then inoculated in a 48-well plate
and cultured for 24 h. miR-221-3p/NC and psiCHECKWT/MUT
plasmids were co-transfected into cells. Finally, luciferase activity
was measured by luciferase assay reagent (Promega, Fitchburg,
WI, USA).

Statistical Analysis
All data were processed by SPSS 22.0 statistical software. The
measurement data were expressed as mean± standard deviation.
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FIGURE 1 | miR-221-3p is highly expressed in peripheral blood of patients with leukemia. (A) Heat map of DEmiRNAs in GSE49665 dataset. (B) Boxplot of

DEmiRNA. (C) Expression levels of miR-221-3p in different cancer species in TCGA database. (D) miR-221-3p was significantly overexpressed in AML patients.

The comparison between the two groups was analyzed by t-test,
in which ∗ stood for P < 0.05.

RESULTS

miR-221-3p Is Highly Expressed in

Peripheral Blood of Patients With AML
Bioinformatics analysis found that in the miRNA expression
dataset GSE49665 of AML patients in the GEO database,
5 DEmiRNAs were obtained and the expression of miR-
221-3p changed most significantly (Figures 1A,B). At the
same time, we detected the expression level of miR-221-3p
in various cancers in TCGA database and found that its
expression was most significant in AML (Figure 1C), so we
chose miR-221-3p for follow-up study. In order to further
confirm the high expression of miR-221-3p in the peripheral
blood of AML patients, we used qRT-PCR to detect the
expression of miR-221-3p in the peripheral blood of 15
normal people and 18AML patients, and discovered that
miR-221-3p was highly expressed in the peripheral blood of
AML patients (Figure 1D), which was consistent with the
bioinformatics results.

miR-221-3p Regulates AML Cell Cycle,

Proliferation, and Invasion
miR-221-3p was overexpressed in OCI-AML2 cells (Figure 2A)
to further explore its role in AML. Analysis of MTT (Figure 2B)
and Transwell (Figure 2C) assays revealed that overexpression of
miR-221-3p could significantly improve the viability, migration
and invasion abilities of OCI-AML2 cells. FCM assay were
performed on NC-mimic and oe-miR-221-3p OCI-AML2 cells.
The results indicated that overexpression of miR-221-3p reduced
the number of cells in the G0/G1 phase with the number of
cells in the divisions increased in OCI-AML2 cells (Figure 2D).
The expressions of PARP, caspase 8, cleave caspase 8, caspase
9, and other apoptosis-related proteins detected by western blot
were decreased after overexpression of miR-221-3p (Figure 2E),
indicating that overexpression of miR-221-3p weakened the
apoptosis of OCI-AML2 cells, and the results were consistent
with FCM.

BMMSC-Derived MVs Regulate the

Function of AML Cells
At present, studies have found that miRNAs can be produced
by other cells and transported to target cells through MVs for
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FIGURE 2 | miR-221-3p regulates AML cell cycle, proliferation, and invasion. (A) miR-221-3p expression in each group. (B) The effect of miR-221-3p overexpression

on the activity of OCI-AML2 cells was tested by MTT. (C) The effects of miR-221-3p overexpression on invasion and migration of OCI-AML2 cells were detected by

Transwell assay (100×). (D) The effects of overexpression of miR-221-3p overexpression on the cell cycle of OCI-AML2 was detected by FCM. (E) The effect of

miR-221-3p overexpression on expressions of apoptosis-related proteins in OCI-AML2 cells.

further function (Momen-Heravi et al., 2015; Hornick et al.,
2016; Lu, 2017), so we speculated that miR-221-3p may be
carried by MVs to act on AML cells and thus exerting its
regulatory role. We searched the expression location of miR-
221-3p in the EVmiRNA database and found that its content
in MVs of fibroblast and MSCs was significantly higher than
that in MVs of other cells (Figure 3A). Meanwhile, studies have
reported that BMMSC can affect the morphology, adhesion
and microenvironment of leukemia stem cells (Roversi et al.,
2019). Then we hypothesized that miR-221-3p was contained
in the BMMSC-derived MVs and entered the blood to affect
the morphological function of AML cells. MVs of BMMSC
from normal subjects and AML patients were extracted, and the
morphology of MVs was observed under electron microscopy to
verify the hypothesis. The MVs showed double-concave disk-like
particles with a diameter of about 100 nm−1µm (Figure 3B).
The contents of MV marker proteins CD63, TSG101, HSP70,
CD9, and CD81 were detected by western blot (Figure 3C)
to verify the successful extraction of MVs. Further detection

revealed that the expression of miR-221-3p in the BMMSC-
derived MVs of AML patients was significantly higher than
that of normal subjects (Figure 3D). To identify the delivery of
MVs, we labeled BMMSC-derived MVs and OCI-AML2 cells
with Dil (red) or Dio (green), respectively. After co-culture, it
was observed that Dil spots presented in the OCI-AML2 cells
under laser scanning confocal microscope, indicating that the
MVs released by the BMMSC were delivered to the OCI-AML2
cells (Figure 3E). Finally, the results of Transwell (Figure 3F) and
MTT (Figure 3G) assays showed that the BMMSC-derived MVs
significantly improved themigration and invasion abilities as well
as cellular activity of OCI-AML2 cells. The results of FCM on
co-cultured cells showed that the number of cells was reduced
in G0/G1 phase and increased in division stage of the OCI-
AML2 cell cycle induced by BMMSC-derived MCs (Figure 3H).
The expressions of apoptosis-related proteins including PARP,
caspase 8, cleave caspase 8, and caspase 9 determined by western
blot were decreased after the co-culture of BMMSC-derived MVs
with OCI-AML2 cells (Figure 3I), indicating that the MVs could
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FIGURE 3 | BMMSC-derived MVs regulate AML cell function. (A) The expression of miR-221-3p in the MVs of each cell, the abscissa represents the cell name and

the ordinate represents the miRNA expression value. (B) The morphology and size of BMMSC-derived MVs from normal subjects and AML patients were observed

under electron microscopy. (C) The changes of MV marker proteins from different sources were detected by western blot. (D) miR-221-3p expression in

BMMSC-derived MVs in normal subjects and AML patients. (E) Fluorescence microscopy showed that Dio-labeled OCI-AML2 cells (green) were transferred to

Dil-labeled MVs (red). (F) Transwell assay was conducted to detect the effects of MVs on the invasion and migration ability of OCI-AML2 cells (100×). (G) The effect of

MVs on the activity of OCI-AML2 cells was determined by MTT assay. (H) The effects of MVs from different sources on the cell cycle of OCI-AML2 was detected by

FCM. (I) The expression changes of apoptosis-related proteins in OCI-AML2 cells affected by MVs from different sources were determined by western blot.
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FIGURE 4 | BMMSC-derived MVs regulates cell biological behaviors in AML via miR-221-3p. (A) miR-221-3p expression in BMMSC and MVs. (B) OCI-AML2 cell

viability detected by MTT. (C) Cell migration and invasion assayed by Transwell (100×). (D) Cell cycle and cell apoptosis test by FCM. (E) Levels of apoptosis-related

proteins determined by western blot.

reduce the apoptosis of OCI-AML2 cells, which was in keeping
with the results of FCM. These results demonstrated that the
BMMSC-derivedMVs could enter OCI-AML2 cells, promote the
proliferation, migration and invasion, weaken the apoptosis and
regulate the cell cycle of OCI-AML2 cells.

BMMSC-Derived MVs Regulates Cell

Biological Behaviors in AML via

miR-221-3p
To further investigate the regulatory mechanism of BMMSC-
derived MVs on OCI-AML2 cell proliferation, invasion and cell
cycle via miR-221-3p, inhibitor NC and miR-221-3p inhibitor
were transfected into BMMSC, respectively. MVs in two groups
were extracted and we found that miR-221-3p was significantly
decreased in MVs with miR-221-3p inhibitor relative to that in
MVs with NC inhibitor (Figure 4A). Then, the MVs were co-
cultured with OCI-AML2 cells, showing that MVs in miR-221-
3p inhibitor group suppressed the promotive effect of BMMSC-
derived MVs on cell proliferation, migration and invasion of
OCI-AML cells (Figures 4B,C). Meanwhile, FCM revealed that

miR-221-3p inhibitor induced BMMSC cell cycle arrested in
G0/G1 phase, indicating that miR-221-3p inhibitor could reverse
the effect of BMMSC-derived MVs on cell cycle (Figure 4D).
Besides, high expressions of apoptosis-related proteins PARP,
caspase 8, cleave caspase 8, and caspase 9 were detected by
western blot (Figure 4E), and the results suggested that miR-221-
3p was capable of abrogating the inhibitory effect of BMMSC-
derived MVs on OCI-AML2 cells, which was consistent with the
FCM results. In all, these findings shed light on that BMMCS-
derived MVs regulated OCI-AML2 cell biological behaviors
via miR-221-3p.

miR-221-3p Regulates Cell Proliferation,

Invasion and Cell Cycle in AML via

Targeting CDKN1C
The downstream targets of miR-221-3p were predicted by
TargetScan, miRSearch and mirDIP databases. Differential
analysis was performed on the mRNAs procured from TCGA-
AML dataset, and eventually 12 potential targets were obtained
after the intersection between the identified down-regulated
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FIGURE 5 | miR-221-3p regulates cell proliferation, invasion and cell cycle in AML via targeting CDKN1C. (A) Venn daigram was plotted to find the potential target

genes of miR-221-3p. (B) CDKN1C expression in mRNA and protein levels in the presence of miR-221-3p overexpression. (C) The binding sites of miR-221-3p on

CDKN1C 3′-UTR-WT and CDKN1C 3′-UTR-MUT. (D) Relative luciferase activity in each group. (E) Cell migration and invasion detected by Transwell (100×). (F) Cell

viability test by MTT. (G) Cell cycle determined by FCM. (H) Protein levels of apoptosis-related proteins measured by western blot.

DEmRNAs and the predicted targets (Figure 5A). Among the
12 target genes, CDKN1C alteration in AML was shown to be
the most significant (Table 1). Thereafter, to further validate

the relationship between miR-221-3p and CDKN1C, miR-
221-3p mimic and NC-mimic were, respectively, transfected
into OCI-AML2 cells. Western blot and qRT-PCR suggested
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TABLE 1 | Differential expression of the identified 12 potential target genes in the

TCGA-AML dataset.

Gene

symbol

Gene ID Median

(Tumor)

Median

(Normal)

Log2 (Fold

Change)

Adjp

CDKN1C ENSG00000129757.12 13.44 118.61 −3.05 4.88E-22

NRK ENSG00000123572.16 0.93 9.153 −2.395 1.77E-10

MYLIP ENSG00000007944.14 2.83 13.58 −1.929 8.84E-26

POGZ ENSG00000143442.21 11.19 31.24 −1.403 1.20E-27

FOS ENSG00000170345.9 28.099 75.439 −1.393 3.10E-09

ARHGEF7 ENSG00000102606.17 9.05 23.855 −1.306 4.83E-36

CREBZF ENSG00000137504.13 13.06 32.565 −1.255 2.01E-27

FAM214A ENSG00000047346.12 12.69 30.505 −1.202 6.79E-18

ADAM22 ENSG00000008277.14 1.37 4.23 −1.142 2.88E-14

CD4 ENSG00000010610.9 3.35 8.185 −1.078 2.74E-07

HMBOX1 ENSG00000147421.17 14.57 31.545 −1.064 1.92E-21

RFX7 ENSG00000181827.14 1.66 4.535 −1.057 3.91E-26

that the mRNA and protein expressions CDKN1C were
reduced in the cells transfected with miR-221-3p mimic
(Figure 5B). Then, online miRNA data analysis software
(starBase) was applied, finding that miR-221-3p was targeted
binding with the CDKN1C 3′-UTR (Figure 5C). Meanwhile,
dual-luciferase assay demonstrated that miR-221-3p inhibitory
functioned on the luciferase activity in cells transfected with
CDKN1C-WT, whereas there was no difference observed
in cells transfected with CDKN1C-MUT (Figure 5D). Taken
together, we could conclude that CDKN1C was a direct
target of miR-221-3p. Subsequently, a series of in vitro
experiments were conducted to explore the miR-221-3p-
dependent mechanism on cell biological behaviors via CDKN1C.
Transwell and MTT assays showed that overexpressing of
CDKN1C could reverse the promotive role of miR-221-3p
overexpression in cell migration, invasion, proliferation and
colony forming of OCI-AML cells (Figures 5E,F). Besides,
the effects of miR-221-3p overexpression on cell cycle could
also be reversed when CDKN1C was simultaneously increased
(Figure 5G). Moreover, apoptosis-related proteins were all
observed to be elevated after CDKN1C being overexpressed
(Figure 5H), elucidating that CDKN1C overexpression was
capable of rescuing the decrease of cell apoptosis induced by
miR-221-3p overexpression.

DISCUSSION

MVs were primarily regarded as unfunctional cellular
components to be discarded, yet it has been increasingly
suggested that MVs are important tools for the exchange of
cellular information and materials, and closely correlated with
tumor distant metastasis and immune inhibition (Steinbichler
et al., 2017; Fan et al., 2018; Seo et al., 2018; Jerez et al.,
2019). MVs are capable of inducing various biological
processes after being transferred into recipient cells, such
as angiogenesis, metastasis formation, therapeutic resistance,
epithelial-mesenchymal transition (EMT) and epigenetic

programming (Kreimer et al., 2015; Milane et al., 2015; Gopal
et al., 2017). In the present study, we found that miR-221-3p
was highly expressed in BMMSC-derived MVs. Besides, it has
been reported that bone marrow stromal cell-derived MVs can
attenuate the B cell apoptosis in chronic lymphocytic leukemia,
also promote cell migration and induce gene expression
and modification (Crompot et al., 2017). Hence, this study
focused attention on the BMMSC MVs-derived miR-221-3p.
Enormous studies have revealed that miR-221-3p is aberrantly
expressed in various cancers and participate in the regulation
of tumorigenesis and development, like cervical squamous
carcinoma (Wu et al., 2019), hepatocellular carcinoma (Li
et al., 2019), medulloblastoma (Yang et al., 2019), and breast
cancer (Ergun et al., 2015). However, the role of miR-221-3p
in AML has not been reported. Therefore, the purpose of this
study is to explore the mechanism of miR-221-3p in AML. In
our study, we discovered that miR-221-3p was mainly present
in BMMSC-derived MVs, and found to be overexpressed in
AML patients. Then we constructed miR-221-3p overexpression
and found that elevated miR-221-3p was responsible for the
promotion of OCI-AML2 cell proliferation, migration and
invasion. Moreover, miR-221-3p has been reported to play an
important role in other cancers. Wu et al. have found that
miR-221-3p from tumor cell-derived MVs targets THBS2 to
facilitate the angiogenesis in cervical squamous carcinoma (Wu
et al., 2019). Wei et al. have reported that miR-221-3p can
potentiate metastasis in cervical cancer via directly targeting
THBS2 (Wei et al., 2017). In addition, Shi et al. have revealed
that miR-221-3p serving as an oncogene promotively functions
on cell proliferation, migration and invasion in gastric cancer
through inhibiting PTEN (Shi et al., 2017). Collectively, we
believed that miR-221-3p from BMMSC-derived MVs could act
as an oncogene beneficial for the cell proliferation, migration
and invasion in AML.

In order to further understand the molecular mechanism of
miR-221-3p regulating the function of AML cells in BMMSC-
derived MVs, we proved that miR-221-3p can directly target
CDKN1C through bioinformatics analysis and dual-luciferase
assay. Besides, there was a negative correlation showed in miR-
221-3p and CDKN1C expressions both in tissues and cells.
CDKN1C is a cyclin-dependent kinase inhibitor 1C, which
can inhibit cell proliferation (Adkins and Lumb, 2002; Qiu
et al., 2018, 2019). Abnormal expression of CDKN1C plays
a role in breast cancer (Qiu et al., 2018), gastric cancer
(Sun et al., 2017), glioma (Zhang et al., 2015) and other
cancers. And some studies have found that CDKN1C is often
methylated in acute lymphoblastic leukemia, and methylation
is associated with poor prognosis (Shen et al., 2003). It is
found that the expression of CDKN1C is related to the
prognosis of patients with AML (Radujkovic et al., 2016),
but the biological function of CDKN1C in AML is unclear.
This study found that overexpressing CDKN1C could suppress
cell proliferation, migration and invasion in AML. Moreover,
CDKN1C was able to reverse the regulation of miR-221-3p
overexpression on AML cell biological behaviors when it was
concurrently elevated. Taken together, these results suggest
that miR-221-3p in BMMSC-derived MVs in AML patients
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regulates the proliferation, invasion, migration and cell cycle by
targeting CDKN1C.

In conclusion, our study confirmed that miR-221-3p
from BMMSC-derived MVs had the functions of promoting
cell proliferation, migration, invasion and regulating cell
cycle in AML via targeting CDKN1C. This finding extends
our knowledge on the role of miR-221-3p in AML, and
helps to further explore the novel approaches for AML
targeted therapy.
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Butyrylation plays a crucial role in the cellular processes. Due to limit of techniques, it is a
challenging task to identify histone butyrylation sites on a large scale. To fill the gap, we
propose an approach based on information entropy and machine learning for
computationally identifying histone butyrylation sites. The proposed method achieves
0.92 of area under the receiver operating characteristic (ROC) curve over the training set
by 3-fold cross validation and 0.80 over the testing set by independent test. Feature
analysis implies that amino acid residues in the down/upstream of butyrylation sites would
exhibit specific sequence motif to a certain extent. Functional analysis suggests that
histone butyrylation was most possibly associated with four pathways (systemic lupus
erythematosus, alcoholism, viral carcinogenesis and transcriptional misregulation in
cancer), was involved in binding with other molecules, processes of biosynthesis,
assembly, arrangement or disassembly and was located in such complex as consists
of DNA, RNA, protein, etc. The proposed method is useful to predict histone butyrylation
sites. Analysis of feature and function improves understanding of histone butyrylation and
increases knowledge of functions of butyrylated histones.

Keywords: butyrylation, random forest, histone, post-translational modification, information entropy
INTRODUCTION

Butyrylation, a type of post-translation modification (PTM), refers to a biochemical interaction
process where the butyryl functional group covalently modifies the lysine amino acid (Chen et al.,
2007; Lu et al., 2018). Protein butyrylation is a newly discovered PTM (Chen et al., 2007). In the past
5 years, butyrylation's roles in the cellular process have been gradually uncovered. For example,
Goudarzi et al. (2016) confirmed that histone butyrylation directly stimulates gene expression and
inhibits Brdt Binding, Xu et al. (2018) found that butyrylation and acetylation are responsible for the
phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum, and Lu et al.
(2018) revealed that butyrylation prefers poising gene activation by external stresses in the rise of
submergence and starvation. Nevertheless, compared to such extensively-studied PTMs as
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acetylation (Kiemer et al., 2005; Basu et al., 2009; Gnad et al.,
2010; Choudhary et al., 2014) and methylation (Chen et al., 2006;
Shi et al., 2012b; Hamamoto et al., 2015; Shi et al., 2015; Wei
et al., 2018), few functions of butyrylation are known. With in-
depth exploration of butyrylation, more biological functions of
butyrylation will undoubtedly be found.

Identifying butyrylation sites is an important foundation to
further explore its functions. Biotechnologies whose
representative is mass spectrometry provide a necessary
approach to identify PTMs including butyrylation. Zhang et al.
(2008) found four lysine butyrylation sites in histone yeast, Xu
et al. (2014) 11 histone butyrylation sites in human cells, and Lu
et al. (2018) identified four histone butyrylation sites in rice using
mass spectrometry. Obviously, this strategy is not only labor-
intensive and time-consuming, but also generally low-
throughput. On the contrary, bioinformatics approaches
provide an alternative to explore PTM sites, with characteristic
being high-throughput. Since Hansen et al. (1995; 1998)
proposed a method for computationally predicting mucin type
O-glycosylation sites in the 1990s, dozens of computational
approaches have been developed for identifying PTM sites
(Blom et al., 2004; Xue et al., 2006; Zhou et al., 2006; Xu et al.,
2008; Xu et al., 2010; Liu et al., 2011; Cai et al., 2012; Shi et al.,
2012b; Zhang et al., 2012; Zhao et al., 2012; Xu et al., 2013; Zhang
et al., 2013; Zhao et al., 2013; Huang et al., 2014; Shi et al., 2015;
Xu et al., 2015a; Zhou et al., 2016). For instances, glycosylation
identification includes the neural network-based method
(Hansen et al., 1998), the support vector machine-based
method (Li et al., 2006; Chen et al., 2008; Sasaki et al., 2009),
the random forest-based method (Hamby and Hirst, 2008;
Chuang et al., 2012), and ensemble learning algorithms
(Caragea et al., 2007). Features used for predicting methylation
sites are from protein sequences (Shao et al., 2009; Zhang et al.,
2013; Qiu et al., 2014; Zhang et al., 2015; Wei et al., 2018),
structure (Shien et al., 2009) or amino acid properties (Shi et al.,
2012a). Xu et al. (2015b) proposed a pseudo amino acid
composition-based method for predicting lysine succinylation.
Zhou et al . (2004) proposed the GPS method for
phosphorylation prediction, and Xu et al. (2008) proposed the
method SUMOpre for sumoylation prediction. These
computational methods are capable of screening potential
modified sites on a large scale in a little time and help the
former methods narrow the scope of verification of it. Here, we
didn't plan to comprehensively review and discuss them, but
propose a novel method based on information entropy and
random forest for predicting histone butyryllysine. To the best
of my knowledge, this is the first computational method for
predicting butyrylation.
METHOD AND MATERIALS

Materials
One hundred butyrylated proteins were retrieved by searching
both the Uniprot database (UniProt Consortium, 2018): https://
Frontiers in Genetics | www.frontiersin.org 2149
www.uniprot.org/ and the Protein Lysine Modifications
Database (PLMD): http://plmd.biocuckoo.org/ (Xu et al.,
2017). The Uniprot database is a comprehensive repository of
function annotation and sequences of proteins, which is updated
every 2 months. The PLMD is dedicated to specifically collect
lysine-modified proteins, and the current version 3.0 contains
284,780 modification events of 20 types of lysine-modified PTMs
from 53501 proteins, including butyrylation, crotonylation and
propionylation. Searching the Uniprot database with the
keyword “butyryllysine”, we retrieved 91 butyrylated histones
containing 317 butyrylation sites with the manual assertion. We
downloaded the butyrylation data from the PLMD. Merging
these two datasets and then removing abnormal proteins, we got
100 unique histones. To eliminate dependency of the
computational method on homology, it is a general step to
remove homology among prote in sequences . The
computational clustering tool (Huang et al., 2010) was used to
cluster these 100 protein sequences with the sequence identity
cut-off 0.7. Thirteen representative protein sequences were
obtained among which sequence identity of any two is no
more than 0.7. We selected six proteins from the Uniprot
database as the training set which contained 17 butyrylation
sites and the remaining seven from the PLMD as the testing set
which contained nine butyrylation sites.

Method
As shown in Figure 1, the overall workflow of the proposed
method consists mainly of four steps: cutting sequence, sequence
encoding, training and predicting. The training and the
predictive butyrylation histone sequences were cut into
fragments which centered lysine with respectively N amino
acid residues in the upstream and the downstream of it. That
is, the window of (2N+1) residues centering lysine were separated
out. For the windows containing lysine but less than 2N+1
residues, we prefixed or suffixed the character “X” to it for
complement. The fragments undergoing butyrylation event
were viewed as positive samples. We randomly selected 18
non-butyrylation fragments from the training set as training
negative samples, and 18 non-butyrylation ones from the
testing set as the testing negative samples. The Supplementary
Table 1 listed all the training and the testing butyrylation as well
as the non-butyrylation sites. For each fragment with (2N+1)
resides, the information entropy-based encoding (IEE) and the
composition of k-space amino acid pair (CKSAAP) transformed
it into numerical feature. After the random forest algorithm
trained a classifier using the training set with the numerical
features, the unknown protein sequences were input into the
trained classifier for final prediction.

IEE
Histone butyrylation is assumed as a stochastic system described
as Pi(a) which stands for probability of the amino acid a
occurring at the i-th position. Obviously, Pi(a) is an m-by-n
matrix where m is the number of characters of amino acid (here
m is 21) and n the length of the sequence (here n=2*N+1). This
stochastic system is measured by the information entropy of
February 2020 | Volume 10 | Article 1325

https://www.uniprot.org/
https://www.uniprot.org/
http://plmd.biocuckoo.org/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Huang et al. Computationally Identifying Histone Lysine Butyrylation
amino acid (PIEA) and the information entropy of position
(PIEP), which are denoted respectively by

PIEA að Þ = o
2N+1

i=1
− Pi að Þ log Pi að Þ (1)

and
PIEP ið Þ = o

a∈F
− Pi að Þ logPi að Þ (2)

whereF represents the set of characters of amino acid. Pi(a) can
be estimated by calculating frequencies of amino acid over all the
positive samples in the training set, respectively. The PIEA and
the PIEP represent uncertainty of the butyrylation system. The
more the PIEA and the PIEP are, the more uncertainty the
system is. After a new sample s was added to the system, its
information entropies of amino acid and position are denoted by
PIEPs and PIEAs. The variation of information entropies after
addition of the new sample to the system is defined by

PVIEA = PIEA að Þ − PIEAs að Þ (3)

and
PVIEP = PIEP ið Þ − PIEPs ið Þ : (4)

Similarly, the non-butyrylation system is also assumed as a
distinct stochastic system Ni(a) which is estimated by calculating
Frontiers in Genetics | www.frontiersin.org 3150
frequencies of amino acid over all the negative samples in the
training set, respectively. The information entropies of amino
acid (NIEA) and the information entropies of position (NIEP)
for the non-butyrylation system are defined by

NIEA að Þ = o
2N+1

i=1
− Ni að Þ logNi að Þ (5)

and
NIEP ið Þ = o

a∈F
− Ni að Þ logNi að Þ (6)

The variation of information entropies after addition of the
new sample s to the non-butyrylation system is defined by

NVIEA = NIEA að Þ − NIEAs að Þ (7)

and
NVIEP = NIEP ið Þ − NIEPs ið Þ, (8)

where NIEAs and NIEPs denote respectively information
entropies of amino acid and position after addition of the new
sample to the non-butyrylation system. The new sample is
encoded by PVIEA-NVIEA and PVIEP-NVIEP. Therefore, for
each sample, we obtain (21 + 2N+1) feature to represent it.

CKSAAP
The CKSAAP is occurrence frequency of k-spaced amino acid
pair which is spaced by up to k residues. k is equal to or more
than 0. For example, AA, AC, ..., YX and XX belong to 0-spaced
amino acid pair, while AA, AC, ...., XX, ABA, ABC, ..., and XBX
to 1-spaced amino acid pair. Generally, there are (K+1)*21*21
features for k-spaced amino acid pair. The CKSAAP were widely
applied to prediction of phosphorylation, methylation,
palmitoylation, pupylation, ubiquitination and O-glycosylation
(Chen et al., 2008; Wang et al., 2009; Chen et al., 2011; Zhao
et al., 2012; Tung, 2013; Zhang et al., 2013).

Feature Normalization
All the features are normalized by the following formula

Xn
k =

xnk −min
m

xmkf g
max
m

xmkf g −min
m

xmkf g , (9)

where xk
n denotes the k-th non-normalized feature of the sample

n. The normalized feature lies between 0 and 1.

Random Forest
Random forest by Breiman (2001) is an ensemble learning
algorithm which combines decision trees for vote. The random
forest is composed mainly of constructing of decision trees and
voting over all the decision trees for the given sample. Each
decision tree grow out of the new training set drawn with
replacement from the training set and with m << M randomly
selected features (M is the total number of sample features). The
majority of vote for a sample is the output class for classification.
The advantage of Random forests is that it overcome overfitting
which occurred in decision trees, and meanwhile produce a
limiting value of the generalization error. For more details of
random forest, readers can refer to relevant references. Here, we
FIGURE 1 | The flowchart of the proposed method.
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use Weka software package (Hall et al., 2009) which realized a
wide range of machine learning algorithms using the Java
programming language.
CROSS VALIDATION AND METRICS

We used 3-fold cross validation to examine performance of the
proposed method. For 3-fold cross validation, n training samples
are divided into three parts in approximate or equal size. Each
part is in turn used as the testing set which is predicted by the
trained classifier over the other two parts. Independent test was
used to examine generalization ability of the proposed method.

The receiver operating characteristic (ROC) curve was used to
assess the predictive performances, which is plotting true positive
rate against false positive rate under various threshold. Area
under the ROC curve (AUC) was used to compare it, ranging
from 0 to 1. The AUC was 1, meaning the perfect prediction,
while the AUC was 0.5, indicating the uninformative classifier.
RESULTS AND DISCUSSION

To investigate effects of the parameter N (length of amino acid
residues in the upstream or the downstream of the butyrylation
sites) on the predictive performances, we conducted 3-fold cross
validation over the training set. Most approaches for predicting
PTM sites generally set N to the interval of 10 to 15 (Hou et al.,
2014; Huang et al., 2014; Xu et al., 2015a; Hasan et al., 2016; Jia
et al., 2016a; Jia et al., 2016b; Xu et al., 2016; Wang et al., 2017).
For example, the iSulf-Cys for predicting s-sulfenylation sites
(Xu et al., 2016) adopted a window of 21 residues (i.e., N=10),
while the iSuc-PseOpt (Jia et al., 2016a), a tool for predicting
lysine succinylation sites, used N=15 amino acid residues of the
upstream/downstream of the modified site. Therefore, we tested
N only between 10 to 15. As shown in Figure 2, the ROC curves
of 3-fold cross validation under various N were plotted. The best
AUC (N=13) is 0.92, while the worst (N=15) is 0.73. Therefore,
we set N to 13.

ROC curves of 3-fold cross validation over the training set for
single type of IEE and for single type of CKSAAP features were
shown in Figure 3A. The IEE outperformed the CKSAAP and
the combination of two. ROC curves of independent test were
plotted in Figure 3B. Obviously, the combination performs best,
followed by the CKSAAP and then by the IEE feature. The single
performance of the IEE feature is best over the training set, but
worst over the testing set. The single performance of the
CKSAAP is worst over the training set. The combination of
IEE and CKSAAP features performs most stable, with 0.92 of
AUC over 3-fold cross validation and 0.80 of AUC over
independent test respectively.

Analysis Of Sequence Pattern
We used the WebLogo program (Crooks et al., 2004) to draw a
sequence logo of all the 26 positive samples both from the
training and the testing sets, as shown in Figure 4A. The
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stacks at the positions 13, 25 and 26 is higher, followed by the
positions 22, 18 and 11, indicating that these positions would be
more evolutionarily conservative. On the contrary, the stacks at
the positions 1, 7, 8 and 19 is lower, implying these positions
would be less conservative. The symbols A (alanine) at the
positions 3, 6, 12, 13, and 26, K (lysine) at the positions 5, 10,
18, 21 and 24, G (glycine) at the positions 9, 11 and 22, and R
(arginine) at the position 25 are higher at respective stack,
indicating that these amino acids alanine, lysine, glycine and
arginine would appear more frequently at these corresponding
positions. The two-sample sequence logo was plotted using a web-
based software (Vacic et al., 2006) http://www.twosamplelogo.org/
index.html. The positive samples were 26 non-redundant
fragments containing butyrylation sites, while the negative ones
were 36 fragments, 62 in total. In comparison to previous single-
sample sequence logo, the two-sample logo more intuitively
exhibited statistically significant differential residues between two
classes. As shown inFigure 4B , the symbols K at these positions 21
and 22, A at these positions 3, 13,19 and 20, P (proline) at the
position 2, M (methionine) at the position 9, Q (glutamine) at the
position 10, S (serine) at the position 12, G andR at the position 25,
were enriched in the butyrylation fragments, while G at the
position 1, A at the position 9, K at the position 13, S at the
position 22, V (valine) at the positions 15 and 25, andT (threonine)
at the position 25 were depleted. Combining the information from
Figures 4A, B, we speculated that alanine at the position 3 and
13, lysine at the position 21 and arginine at the position 25 would
be associated with histone butyrylation.

Analysis of Information Entropy Feature
As shown in Figure 5, we calculated information entropies of all
the used positive and the negative samples in the experiment
using the equations (1) and (2). Regardless of amino acid or
position, information entropies of butyrylation wholly are less
than those of non-butyrylation, indicating that the distribution
of amino acid followed more a rule in the butyrylation than at
random. The information entropies of C (cysteine) and W
(tryptophan) are near or equal to zero (Figure 5A), implying
that two types of amino acid would occur in a fixed way not at
random. The information entropies of F (phenylalanine) and N
(asparagine) are much less in the butyrylation than in the non-
butyrylation, indicating that phenylalanine and asparagine
would play a role in the butyrylation. Information entropies of
G, P, M and R in the positive sample is approximately equal or
more than those in the negative samples, respectively. This
indicated non-difference of these amino acids between
butyrylation and non-butyrylation. The information entropies
of position in the butyrylation is less than those in the non-
butyrylation exception the position 14 (Figure 5B), indicating
that amino acid distribution in the butyrylation would follow
more rules than at random.

Analysis of CKSAAP Feature
We calculated pairs of amino acid separated by up to one residue.
Namely, amino acid pair might be of such form as ab and aDb,
where D represent an amino acid. Figure 6 shows frequency of
pair of amino acid. Obviously, distribution of amino acid pairs in
February 2020 | Volume 10 | Article 1325
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the butyrylation differs largely from that in the non-butyrylation.
The butyrylation focuses mainly on these amino acid pairs of
DN, GG, GK, KA, KD, KL, KP, KS, KV, PE, RH, RN, VY, XM
and XX, while the non-butyrylation on GK, KA, KK and XX.

Analysis of Function for Histone
Butyrylation
We used the PANTHER classification system (Mi et al., 2013)
(http://www.pantherdb.org/) for functional analysis of histone
butyrylation. Both statistical over-representation tests of Homo
sapiens butyrylation histones against the whole H. sapiens genes
and ofMus musculus butyrylation histones against the whole M.
musculus genes were performed. The significantly over-
Frontiers in Genetics | www.frontiersin.org 5152
represented GO terms (P < 0.05) for biological process,
molecular function and cellular composition are listed in
Supplementary Table 2–7. It is obviously observed that all GO
terms of M. musculus butyrylated histones appeared in the H.
sapiens histones, except cytosol (GO:0005829) which is defined
as the part of the cytoplasm which does not contain organelles
but contain such particulate matter as protein complexes.
However, some GO terms of H. sapiens butyrylated histones
fail to fall into the set of GO terms of M. musculus histones. For
example, in terms of molecular function, STAT family protein
binding (GO:0097677), RNA polymerase II core promoter
sequence-specific DNA binding (GO:0000979), core promoter
sequence-specific DNA binding (GO:0001046), core promoter
binding (GO:0001047), chromatin binding (GO:0003682),
protein-containing complex binding (GO:0044877), protein
binding (GO:0005515) and binding (GO:0005488) are
significant over-represented GO terms in H. sapiens
butyrylation histone, not in M. musculus histones. The
difference of the first four molecular functions between two
species would be caused by the small-sample question. The
number of studied M. musculus butyrylated histones is 17, less
than the number of H. sapiens histones. The term GO:0097677
appeared two times, and these three terms GO:0000979,
GO:0001046 and GO:0001047 appeared three times in these 30
butyrylated H. sapiens histones, while they would likely appear
less than two times in these 17 butyrylatedM. musculus histones.
Only functions appearing two times or more would be
statistically analyzed. Therefore, these four molecular functions
could not separate H. sapiens from M. musculus histones.
GO:0044877 appeared 10 times, GO:0003682 11 times,
GO:0005515 29 times, while GO:0005488 appeared 30 times in
the H. sapiens histone. It is rational to infer occurring more than
two times in 17M. musculus butyrylation histones, but they were
not significant over-represented GO terms. This indicated that
FIGURE 2 | ROC curves under various parameter N.
FIGURE 3 | ROC curves. (A, B) depict ROC curves of 3-fold cross validation and independent test, respectively.
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these later four molecular functions were enriched only in the H.
sapiens, not in all the species.

Table 1 listed the most significant five GO terms of molecular
function, biological process and cellular component in the
butyrylated H. sapiens histone which all belonged to the set of
the over-represent GO terms in the M. musculus histones
respectively. These three terms GO:0003677 (DNA binding),
GO:0003676 (nucleic acid binding) and GO:0031492
(nucleosomal DNA binding) are defined as interacting
selectively and non-covalently with DNA, with any nucleic
acid and with the DNA portion of a nucleosome, respectively.
GO:0046982 (protein heterodimerization activity) is defined as
interacting selectively and non-covalently with a non-identical
Frontiers in Genetics | www.frontiersin.org 6153
protein to form a heterodimer, whose relationship with
GO:0046983 (protein dimerization activity) is “is a”. All the
five terms belongs to the ancestor GO:0005488 (binding) via the
“is a” relationship, implying that butyrylation histones could
bind other molecules such as DNA, nucleic acid or protein.
GO:0006334 (nucleosome assembly) is defined as the
aggregation, arrangement and bonding together of a
nucleosome, the beadlike structural units of eukaryotic
chromatin composed of histones and DNA, which is of “is a”
relationship with GO:0034728 (nucleosome organization) and of
“part of ” relationship with GO:0031497 (chromatin assembly).
The term GO:0031497 is of “part of” relationship with
GO:0006323 (DNA packaging) and of “is a” relationship with
FIGURE 4 | Sequence logo. (A) is sequence logo of all the positive samples and (B) is sequence logo of all the positive and the negative samples.
FIGURE 5 | Information entropies. (A) represents information entropies of PIEA and NIEA. (B) represents information entropies of PIEP and NIEP.
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GO:0006333 (chromatin assembly or disassembly). These five
terms finally are traced up to two terms: GO:0016043 (cellular
component organization) and GO:0044085 (cellular component
biogenesis), indicating that butyrylation histones might be
associated with these processes of biosynthesis, assembly,
arrangement or disassembly. The term GO:0000786
(nucleosome) refers to a complex consisting of DNA wound
around a multi-subunit core and associated proteins, which
forms the primary packing unit of DNA into higher order
structures. The term GO:0000786 is of “is a” relationships both
with the term GO:0044815 (DNA packaging complex) and with
GO:0032993 (protein-DNA complex) and is of “part of”
relationship with the term GO:0000785 (chromatin) which is
of part of relationship with the term GO:0005694 (chromosome).
These results indicate that butyrylation histone might be located
in a complex composed of DNA, proteins, etc.

We used the David (Database for Annotation, Visualization
and Integrated Discovery) (Huang da et al., 2009a; Huang da
et al., 2009b) to explore biological pathways in which the
butyrylated histones are potential to be involved. The David is
one of most popular tool for enrichment analysis of gene
function, currently including over 40 annotation categories,
such as ordinary GO terms, protein functional domains, bio-
pathways, etc. The backgrounds for H. sapiens and M. musculus
Frontiers in Genetics | www.frontiersin.org 7154
butyrylation histones were respectively the whole H. sapiens and
the whole M. musculus genes. The statistically significant Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (P-
value < 0.01) are systemic lupus erythematosus, alcoholism,
viral carcinogenesis and transcriptional misregulation in
cancer, whether for H. sapiens or for M. musculus genes,
indicating that histone butyrylation is involved in similar
bio-pathway.
CONCLUSION

Histone butyrylation is a newly discovered PTM, whose
mechanism remains unknown. In this paper, we presented an
approach based on information entropy and machine learning
for identifying histone butyrylation sites. To the best of our
knowledge, this is the first computational method for identifying
histone butyrylation sites. By comparing sequences, IEE and
CKSAAP between butyrylation and non-butyrylation, we found
some specific characteristics implying potential and hidden
pattern of histone butyrylation. The statistical test suggests that
the butyrylation histone might be of binding with other
molecules, be associated with the processes of biosynthesis,
assembly, arrangement or disassembly, be located in the
FIGURE 6 | Heatmap of amino acid pair. (A) represents heatmap of all the positive samples and (B) heatmap of all the negative samples.
TABLE 1 | Most significant five GO terms of molecular function, biological process and cellular component for Homo sapiens.

Molecular function Biological process Cellular component

Protein heterodimerization activity (GO:0046982) Nucleosome assembly (GO:0006334) Nucleosome (GO:0000786)
DNA binding (GO:0003677) Chromatin assembly (GO:0031497) DNA packaging complex (GO:0044815)
Protein dimerization activity (GO:0046983) Chromatin assembly or disassembly (GO:0006333) Protein-DNA complex (GO:0032993)
Nucleic acid binding (GO:0003676) Nucleosome organization (GO:0034728) Chromatin (GO:0000785)
Nucleosomal DNA binding (GO:0031492) DNA packaging (GO:0006323) Chromosome (GO:0005694)
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complex of DNA, protein, etc, and be involved in the such
pathway as systemic lupus erythematosus, alcoholism, viral
carcinogenesis and transcriptional misregulation in cancer.
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Hepatocellular carcinoma (HCC) is one of the important types of liver cancer. LncRNA
is an important regulatory factor that regulates many biological processes such as
tumor cells during tumorigenesis and metastasis. LINC00346 has been associated
with various types of liver cancer, but its role and regulatory mechanism in HCC
remain unclear. In our study, we found the LINC00356-miR-199a-3p-CDK1/CCNB1 axis
through bioinformatics analysis. The expressions of LINC00356, miR-199a-3p, CDK1,
and CCNB1 in HCC and normal hepatocytes were determined by qRT-PCR and WB.
The results showed that LINC00356, CDK1 and CCNB1 were highly expressed in HCC,
while miR-199a-3p was lowly expressed. Dual luciferase reporter gene assay, RIP and
RNA-pull down assays demonstrated the targeted binding relationship of LINC00346-
miR-199a-3p-CDK1/CCNB1. Overexpressing LINC00460 and silencing miR-199a-3p
promoted cell invasion, inhibited apoptosis of HCC, and arrested the cell cycle in S
phase while opposite results were obtained when silencing LINC00346, CDK1, and
CCNB1. LINC00346 indirectly affects liver cancer by promoting the expression of
CDK1/CCNB1 through competitive adsorption of miR-199a-3p. In addition, the study
also demonstrated that overexpression of LINC00346 indirectly inhibited the expression
of p53 and p21 proteins by promoting CDK1/CCNB1 expressions, thereby blocking
the p53 signaling pathway. These results proved that LINC00346 could regulate the
expression of CDK1/CCNB1 through the competitive adsorption of miR-199a-3p,
thereby affecting the p53 signaling pathway and finally regulating the apoptosis, invasion
and cell cycle of HCC cells. In conclusion, LINC00346 can be used as a tumor promoter
and potential therapeutic target for HCC metastasis and prognosis.

Keywords: LINC00346, miR-1991-3p, CDK1, CCNB1, p53 signaling pathway, hepatocellular carcinoma

INTRODUCTION

Primary liver cancer is one of the second leading causes of death worldwide, and hepatocellular
carcinoma (HCC) is one of the major types of it (Sia et al., 2017). In recent years, incidence
rates continue to increase rapidly for liver cancer, by about 3% per year in women and
4% per year in men (Siegel et al., 2017). Although the treatment of HCC has improved
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significantly in recent decades, including surgical resection, liver
transplantation, radiotherapy and chemotherapy, the overall 5-
year survival rate is not improved (Ulahannan et al., 2014).
Over the years, the occurrence of liver cancer is considered to
be a complex multi-step process involving multiple molecules
and multiple signaling pathways (Setshedi et al., 2018). A better
understanding of the occurrence and development of HCC will
help to further improve treatment strategies. Therefore, it is of
great significance to explore the mechanism of the occurrence
and development of HCC, determine the effective therapeutic
targets of HCC, and find a new way for HCC treatment.

Recently, increasing evidence confirms that long non-coding
RNAs (lncRNAs) and microRNAs (miRNAs) have been identified
as important regulators in a variety of cancers including HCC
(Bartel, 2004; Li and Chang, 2014; Wang et al., 2017). Abnormal
expression of lncRNA plays a key role in cancer progression and
carcinogenesis through a variety of mechanisms (Chen et al.,
2016). LINC00346 is located on chromosome 13q34, with a total
length of 6322bp, and is up-regulated and has oncogenic effects
in non-small cell lung cancer and bladder cancer (Ye et al.,
2017; Zhang B. et al., 2018). Overexpression of LINC00346 was
positively correlated with poor prognosis of pancreatic cancer
(Brown et al., 2018). Zhang et al. (2015) have found that the
up-regulated expression of LINC00346 in HCC is significantly
negatively correlated with the survival of HCC patients. These
results indicate that LINC00346 plays a significant oncogenic role
in a variety of cancers, but the specific biological function and
mechanism of LINC00346 in HCC have not been studied.

Cyclin-dependent kinase (CDK) is an important cell cycle-
regulating protein, belonging to the serine/threonine kinase
family, which includes catalytic kinase subunits and cell cycle
protein conjugates. Only CDK1 in the CDK family can promote
cell cycle independently (Santamaría et al., 2007; Malumbres
and Barbacid, 2009). CDK1 has been reported to be highly
expressed in human colorectal cancer (Sung et al., 2014),
prostate cancer (Willder et al., 2013). Therefore, CDK1 is closely
related to cancer progression. In the study of the specific
role of CDK1 in cancer. Danhier et al. (2010) have reported
that CDK1/CyclinB1 inhibitor JNJ-7706621 and aurora kinase
combined with paclitaxel can effectively treat transplantable liver
cancer and inhibit tumor growth. In addition, studies have shown
that CDK1 and CCNB1 have inhibitory effects on p53 signaling
pathway as regulatory factors in HCC (Qin et al., 2019). Cell
cyclin B1 (CCNB1) is an important cell cycle protein whose
abnormal expression plays an important role in regulating cell
cycle (Jin et al., 1998). Recent studies have demonstrated that
CCNB1 is highly expressed in various human cancers, including
breast cancer (Niméus-Malmström et al., 2010), cervical cancer
(Kreis et al., 2010) and lung cancer (Yoshida et al., 2004).
Moreover, Porter et al. (2003) found that inhibition of CCNB1
nuclear export and CCNB1 accumulation in the nucleus induced
apoptosis. CCNB1 has also been proved to significantly correlate
with overall survival of HBV-related HCC recurrence. These
results indicate that CDK1/CCNB1 are significantly positively
correlated with the development of various cancers including
HCC, but the specific role of these two genes in HCC has not
been investigated.

In this study, we found that LINC00346 was highly expressed
in HCC cells, and it regulated the expressions of CDK1/CCNB1
through competitive adsorption of miR-199-3p as a ceRNA,
thereby promoting the proliferation and metastasis of HCC
cells. LINC00346 also regulated the p53 signaling pathway
by regulating the miR-199-3p/CDK1/CCNB1 signaling axis.
These results demonstrated that LINC00346 played a significant
oncogenic role in the development of HCC and LINC00346 can
be used as a prognostic target and potential biomarker in the
diagnosis and prognosis of HCC.

MATERIALS AND METHODS

Bioinformatics Analysis
Hepatocellular carcinoma expression datasets GSE62232
(including 10 normal samples and 81 HCC samples) and
GSE74618 (including 10 normal samples and 218 HCC samples)
were obtained through GEO database1. Normal samples were
set as control, and “limma” package was used for differential
analysis with the threshold of |logFC| > 2 and P-value < 0.05.
KEGG pathway enrichment analysis of the differential genes
was conducted by “clusterprofiler” package, and the pathview
diagram was plotted by “pathview” package. Gene interaction
analysis was conducted through STRING database2, and gene
interaction network map was drawn by cytocape v3.7.1. The
expression levels of CDK1 and CCNB1 in TCGA3 database
were retrieved through GEPIA database4. The upstream
regulatory miRNAs of CDK1 and CCNB1 were predicted and
the binding site information of miRNA-mRNA was obtained by
TargetScan database5. The upstream lncRNAs of miR-199a-3p
were predicted by RAID database6, and lncRNA-miRNA binding
site information was obtained through RNA22 database7.

Cell Lines and Transfection
Human normal liver cells L-02 (BNCC351907), HCC cell
lines HepG2 (BNCC338070), Huh-7 (BNCC337690), Hep3b
(BNCC337952), and SMMC-7721 (BNCC352197) were all
purchased from BeNa Culture Collection. All cell lines were
incubated with 90% Dulbecco’s Modified Eagle Medium
(DMEM)-H containing 10% fetal bovine serum (FBS, Gibco,
Grand Island, NY) and maintained in an incubator with 5% CO2
at 37◦C.

LINC00346, oe-LINC00346, CDK1 and CCNB1 siRNA,
miR-199a-3p inhibitors, miR-199a-3p mimic or corresponding
controls were obtained from GENECHEM (Shanghai, China)
and transfected into cells in 6-well plates by Lipofectamine
3000 (Invitrogen, United States) according to the manufacturer’s
instructions. In addition, PFT β [Pifithrin-β, p53 protein

1https://www.ncbi.nlm.nih.gov/geoprofiles/
2https://string-db.org
3https://www.cancer.gov/
4http://gepia.cancer-pku.cn/
5http://www.targetscan.org/vert_71/
6http://www.rna-society.org/raid2/index.html
7https://cm.jefferson.edu/rna22/
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inhibitor, HY-16702, MedChemExpress (Da Pozzo et al., 2014)]
was added to the culture medium at 10 µM per well
plate. All cells were transfected for 48 h and collected for
subsequent experiments.

qRT-PCR
Total RNA from transfected cells was extracted by TriZol reagent
(Qiagen) according to the instructions. Complementary DNA
(cDNA) synthesis and quantitative polymerase chain reaction
(qPCR) procedures were performed for mRNA and lncRNA
using PrimeScript RT Master Mix and TB Green Premix Ex Taq II
(TaKaRa, Dalian, China). RNA of miRNA was isolated using the
miRNeasy Mini Kit (Qiagen, Shenzhen, China). Mir-x miRNA
first strand synthesis kit and Mir-x miRNA quantitative real-time
polymerase chain reaction (qRT-PCR) SYBR kit (TaKaRa) were
used for reverse transcription and qPCR. The primers were listed
in Table 1. U6 snRNA was used as an internal reference for miR-
199a-3p, and GAPDH was the internal reference of LINC00346,
CDK1 and CCNB1. The data were analyzed by 2−1 1 Ct method.

Western Blot (WB)
Total protein was extracted from transfected cells by RIPA lysis
buffer (Beyotime, Shanghai, China). The purity of the protein in
the whole extract was determined by bicinchoninic acid (BCA)
protein assay kit (Pierce, Appleton, WI). The proteins were
separated by SDS-PAGE and transferred to PVDF membrane
(Millipore). After incubation with bovine serum albumin (BSA)
in Tris-HCl buffered saline containing 0.1% TBST, the membrane
was added with corresponding primary antibodies CDK1
(ab32094, 1:2000, Abcam, Cambridge, MA), CCNB1 (ab32053,
1:50000, Abcam, Cambridge, MA), p53 (ab32389, 1:1000, Abcam,
Cambridge, MA), p21 (ab109520, 1:1000, Abcam, Cambridge,
MA), and GAPDH (ab181602, 1: 10, 000, Abcam, Cambridge,
MA). Second antibody Goat anti-rabbit IgG H&L (horseradish
peroxidase, HRP) (ab6721, 1:2000, Abcam, Cambridge, MA,
United States) was then used to incubate the membrane.
The positive bands were detected by Immobilon Western
Chemiluminescent HRP Substrate (Millipore) and the strength of
the target strip was quantified by Image Lab Software (Bio-Rad).

TABLE 1 | Primer sequences.

Genes Primer sequences

LINC00346 F: 5′-TCTCACCAGCATTTGACGCT-3′

R: 5′-ACGTGCGCAAGTAAGTCTCA-3′

CDK1 F:5′-AAACTACAGGTCAAGTGGTAGCC-3′

R:5′-TCCTGCATAAGCACATCCTGA-3′

CCNB1 F:5′-GACCTGTGTCAGGCTTTCTCTG-3′

R:5′-GGTATTTTGGTCTGACTGCTTGC-3′

GAPDH F:5′-CAGGAGGCATTGCTGATGAT-3′

R:5′-GAAGGCTGGGGCTCATTT-3′

miR-199a-3p F:5′-CTCACAGTAGTCTGCACA-3′

R:5′-GACTGTTCCTCTCTTCCTC-3′

U6 F:5′-CTCGCTTCGGCAGCACA-3′

R:5′-AACGCTTCACGAATTTGCGT-3′

Flow Cytometry (FCM)
Apoptosis assay: transfected cells for 48 h were collected and the
apoptosis rate was measured by Annexin V-FITC/PI apoptosis
assay kit (Beijing Biosea Biotechnology, Beijing, China). In brief,
the cells were stained with 10 µL Annexin V-FITC and 5 µL
propidium iodide (PI). After incubation in darkness at room
temperature for 30 min, the samples were analyzed by FCM
(Beckman Coulter, Fullerton, CA, United States). Annexin V-PE
(+)/PI (-) represents apoptotic cells, while Annexin V-PE (+)/PI
(+) represents early apoptotic or dead cells.

Cell cycle determination: after transfection for 48 h, cells
were harvested and stained with PI using the CycleTest Plus
DNA Reagent kit (BD) in accordance with the manufacturer’s
guidelines. Finally, the percentage of cells in G0/G1, S and G2/M
phases was counted.

Transwell
Invasion measurement was performed using Transwell
Chambers consisting of an 8 µm membrane filter (Corning
Incorporated, Corning, NY, United States) coated with Matrigel
(BD Biosciences, San Jose, CA, United States). Cells were
trypsinized and suspended in serum-free medium. Next, 2 × 10
(Setshedi et al., 2018) cells were plated in the upper chamber,
and the lower chamber was filled with a medium containing 10%
FBS. After incubation for 36 h, the cells in the lower chamber
were fixed with 4% paraformaldehyde and stained with crystal
violet. Five fields were randomly selected and cells were counted
under a microscope.

RIP Assay
The EZ-magna RIP kit (Millipore, United States) was applied to
carry out the RIP assay according to the product specifications.
First, the HepG2 cells were collected and lysed in a full
RIP lysis buffer. Cell extracts were then incubated with RIP
buffer containing magnetic beads conjugated to human AGO2
antibodies (ab32381, abcam, Cambridge, United Kingdom), and
IgG antibody (ab6702, abcam, Cambridge, United Kingdom)
was used as controls. The samples were incubated with
protease K and oscillated to digest the protein and isolate the
immunoprecipitated RNA. The concentration of RNA was then
measured using a NanoDrop spectrophotometer and real-time
PCR analysis of the purified RNA was performed.

Dual Luciferase Reporter Gene Assay
CDK1 and CCNB1 fragments containing miR-199a-3p binding
sites were amplified by PCR and cloned into the downstream
of luciferase reporter gene in pmirGLO vector, which were
named CDK1-WT and CCNB1-WT. CDK1-MUT and CCNB1-
MUT (mutations within the binding sites) were generated using
the Quickchange XL Site-Directed Mutagenesis Kit (Stratagene)
according to the manufacturer’s protocol. Mimic NC and miR-
199a-3p mimic were co-transfected with CDK1-WT or CDK1-
MUT and CCNB1-WT or CCNB1-MUT, respectively, into
HepG2 cells. After 48 h of transfection, cells were harvested and
luciferase assay was performed using the dual luciferase reporter
system (Promega).
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RNA Pull-Down
RNA pull-down measurements were performed using the Pierce
TM Magnetic RNA-Protein Pull-Down Kit (Millipore) according
to the manufacturer’s instructions. In brief, HepG2 cells were
transfected with 3′-terminal biotin-labeled LNC00346 probe and
its control probe. 24 h after transfection, the cells were incubated
with streptomycin-coated magnetic beads. The expressions of
LNC00346 and miR-199a-3p in the binding portion were
determined by qRT-PCR.

Statistical Analysis
SPSS 21 (IBM Corp., Armonk, NY, United States) was used for
statistical analysis of data between different groups. All data were
expressed as Mean ±SD. The comparison between two groups
was analyzed by t-test. P < 0.05 was statistically significant.

RESULTS

CDK1 and CCNB1 Are Possible Targets
for HCC
In order to find the genes associated with HCC development,
we firstly conducted differential analysis on GES62232 dataset
in GEO database to analyze the mRNAs with significantly
different expressions, and 230 DEGs in HCC were obtained
(Supplementary Table S1). Figure 1A showed the expressions
of the first 100 DEGs. Further analysis of KEGG function
enrichment of these DEGs revealed that six genes were enriched
in p53 signaling pathway (Figure 1B). P53 signaling pathway was
believed to be involved in cell apoptosis, cell cycle and other
activities, and many studies indicated that it was involved in
tumor development (Smal et al., 1989; Meng et al., 2014). Protein
interaction analysis was performed on these six genes (Figure 1C)
and it was found that CDK1 and other three genes were at the
core position. CDK1 and CCNB1 were chosen for the follow-
up studies. The expression levels of CDK1 and CCNB1 in HCC
tumor samples and normal samples from TCGA database were
analyzed (Figures 1D,E) and we found that CDK1 and CCNB 1
were highly expressed in HCC, which suggested that CDK1 and
CCNB1 may play important regulatory roles in HCC.

CDK1/CCNB1 Regulate Cell Cycle,
Apoptosis and Invasion in HCC
We first detected the expression of CDK1 and CCNB1 in human
normal liver cells L-02 and HCC cell lines HepG2, Huh-7,
Hep3b, and SMMC-7721 by qRT-PCR. The results exhibited
that both CDK1 and CCNB1were highly expressed in HCC
cells (Figure 2A) (P < 0.05), and then the two HCC cell
lines HepG2 and Huh-7 with higher expression of CDK1 and
CCNB1 were selected for subsequent experiments. WB was
used to detect the protein expressions of CDK1 and CCNB1
in L-02, HepG2 and Huh-7 cell lines (Figure 2B). Compared
with L-02, the protein expressions of CDK1 and CCNB1 were
significantly increased in HepG2 and Huh-7 cell lines, which
was consistent with the expression trend of mRNA. In order to
further study the functional role of CDK1 and CCNB1 in HCC,

we established CDK1 and CCNB1 silencing cell lines and the
silencing efficiency was detected by qRT-PCR (Figures 2C,D).
Compared with si-NC group, CDK1 and CCNB1 were effectively
silenced (P < 0.05), and si-CDK1-2 and si-CCNB1-2 sequences
with better silencing efficiency were selected for subsequent
experiments. Then, FCM was performed to detect apoptosis in si-
NC group, si-CDK1 group and si-CCNB1 group (Figure 2E). The
results showed that silencing CDK1/CCNB1 promoted apoptosis
of HepG2 and Huh-7 cells in HCC (P < 0.05). After studying
the effect of CDK1/CCNB1 on apoptosis of HCC cells, its effects
on cell invasion and cell cycle were also studied. Transwell
assay was used to determine cell invasion (Figure 2F). The
results exhibited that the invasion ability of HCC cells decreased
significantly after CDK1/CCNB1 was silenced (P < 0.05). Then
FCM was used to detect the cell cycle (Figure 2G). The
proportion of cells in G0/G1 phase in the si-CDK1 group and
si-CCNB1 group increased significantly, and the proportion of
cells in S phase decreased greatly (P < 0.05). In conclusion,
silencing CDK1 or CCNB1 can promote the apoptosis of HCC
cell lines HepG2 and Huh-7, inhibit cell invasion, and block
cells in G0/G1 phase.

CDK1/CCNB1 Affect the Apoptosis,
Invasion and Cell Cycle of HCC by
Regulating p53 Pathway
After determining the biological function of CDK1/CCNB1 on
HCC cells, we investigated the effect of CDK1 and CCNB1 on
HCC cells by regulating p53 pathway. The transfected HepG2
cells with the highest CDK1 expression were divided into si-
NC + DMSO group, si-NC + PFT β group, si-CDK1 + DMSO
group, si-CDK1+ PFT β group, and transfected Huh-7 cells with
the highest CCNB1 expression were divided into si-NC+DMSO
group, si-NC + PFT β group, si-CCNB1 + DMSO group,
si-CCNB1 + PFT β group. First, WB was used to detect
the protein expressions of CDK1, CCNB1, p53 and p21 in
cells in each group. As displayed in Figures 3A,B, silencing
CDK1/CCNB1 can promote the protein expressions of p53 and
p21 in cancer cells (P < 0.05), while the result was reverse
with the addition of PFT β, a p53 pathway inhibitor. This
result indicated that CDK1/CCNB1 could negatively regulate p53
signaling pathway.

In order to study the function of this regulation in HCC, we
used FCM to detect the apoptosis of each group (Figures 3C,D).
The results displayed that compared with the si-NC + DMSO
group, the apoptosis rate of the si-NC + PFT β group
was significantly reduced. CDK1 or CCNB1 silencing group
can eliminate the inhibitory effect on apoptosis of pathway
inhibitor group. Then Transwell was used to detect the cell
invasion of each group (Figures 3E,F). The results showed
that PFT β promoted invasive ability of cancer cells while
CDK1 or CCNB1 silencing group canceled out the promoting
effect of PFT β on invasion ability of HepG2 or Huh-7
cells (P < 0.05). Finally, FCM was used to detect the cell
cycle (Figures 3G,H). We observed that the proportion of
cells in the G0/G1 phase in the si-NC + PFT β group
decreased significantly, while that in the S phase increased
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FIGURE 1 | CDK1 and CCNB1 are possible targets for HCC. (A) Heat map of the first 100 DEGs expression in GSE62232 dataset from GEO database; (B) KEGG
pathway enrichment analysis of DEGs in GSE62232 dataset; (C) Interaction analysis of DEGs in p53 signaling pathway, orange represents high expression and blue
represents low expression; (D,E) CDK1 and CCNB1 gene expression in HCC samples and normal samples from TCGA database, red is the tumor sample and black
is the normal sample. *represents P < 0.05.

significantly. Silencing CDK1 or CCNB1 blocked cell cycle
and eliminates the effect of PFT β. These results suggested
that inhibiting CDK1/CCNB1 could promote invasion, inhibit
apoptosis and regulate cell cycle of HCC cells by blocking the p53
signaling pathway.

miR-199a-3p Targeted Inhibits Both
CDK1 and CCNB1 Expression
In order to investigate the upstream miRNAs that regulate
CDK1/CCNB1, the TargetScan database was further used to
predict the upstream regulatory miRNAs of CDK1 and CCNB1.
At the same time, a miRNA expression dataset GSE74618 of

HCC was obtained through the GEO database and analyzed.
Finally, two miRNAs that were significantly down-regulated
in HCC were obtained. The microarray analysis results and
TargetScan prediction results were intersected (Figure 4A) and
it was found that there was only one miRNA that was miR-
199a-3p in the intersection. The expression level of miR-199a-3p
in GSE74618 dataset was significantly lower in HCC samples
(Figure 4B). QRT-PCR was used to detect the expression
of miR-199a-3p in human normal liver cells L-02 and HCC
cell lines HepG2 and Huh-7 (Figure 4C). The result showed
that miR-199a-3p was significantly lowly expressed in HCC
cells (P < 0.05). Next, the binding sites of miR-199a-3p and
CDK1 or CCNB1 were predicted by bioinformatics website,
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FIGURE 2 | Expression and regulation of CDK1 and CCNB1 in HCC cells. (A) The expressions of CDK1 and CCNB1 in normal human cells and four HCC cell lines
were detected by qRT-PCR; (B) The protein expressions of CDK1 and CCNB1 in HepG2 and Huh-7 were detected by WB; (C,D) The silencing efficiency of CDK1
and CCNB1 was measured by qRT-PCR; Cells development in each group was detected by FCM and Transwell assays (100×). (E) Cell apoptosis; (F) Cell invasion;
(G) Cell cycle. *means P < 0.05. Representative of three independent experiments.

respectively, to explore the targeting relationship between mir-
199a-3p and CDK1 or CCNB1 (Figure 4D). miR-199a-3p can
bind to the 3′UTR of CDK1 or CCNB1, respectively. Then
RIP assay was performed on HepG2 cells to detect whether
miR-199a-3p could bind with CDK1 or CCNB1, as shown in

Figure 4E. Compared with IgG antibodies, CDK1 and CCNB1
enriched in AGO2 antibody group were significantly increased
(P < 0.05). Moreover, dual luciferase reporter gene assay was
used to verify the targeted binding relationship (Figure 4F).
Compared with the mimic NC group, the relative fluorescence

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 February 2020 | Volume 8 | Article 54162

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00054 February 15, 2020 Time: 17:3 # 7

Jin et al. The Effects of LINC00346-miR-199a-3p-CDK1/CCNB1 Axis on HCC

FIGURE 3 | CDK1 and CCNB1 affect the apoptosis, invasion and cell cycle of HCC by regulating p53 pathway. (A) The protein expressions of CDK1, p53 and p21
in HepG2 cells were detected by WB; (B) The protein expressions of CCNB1, p53 and p21 in Huh-7 cells were detected by WB; Cells development in each group
was detected by FCM and Transwell assays (100×). (C,D) Cell apoptosis; (E,F) Cell invasion; (G,H) Cell cycle. *means P < 0.05.
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FIGURE 4 | miR-199a-3p targeted inhibited CDK1 and CCNB1 expression. (A) The miRNAs that regulate CDK1 and CCN1 were predicted by TargetScan and
intersections with significantly down-regulated expression in GSE74618 of HCC; (B) miR-199a-3p expression in GSE74618 dataset, black represents the normal
sample and red represents the tumor sample; (C) The expression of miR-199a-3p in L-02, HepG2 and Huh-7 cell lines was detected by qRT-PCR; (D) The binding
sites of miR-199a-3p and CDK1 or CCNB1; (E) RIP assay was used to detect whether miR-199a-3p could bind with CDK1 and CCNB1; (F) Dual luciferase reporter
gene assay was used to verify the targeted binding relationship between miR-199a-3p and CDK1/CCNB1; (G) The expressions of miR-199a-3p, CDK1 and CCNB1
in HepG2 cells were detected by qRT-PCR; (H) Protein expressions of CDK1 and CCNB1 in HepG2 cells was detected by WB. *represents P < 0.05.

activity of miR-199a-3p mimic was significantly decreased in
the co-transfection group with CDK1-WT or CCNB1-WT,
indicating that miR-199a-3p could target CDK1 and CCNB1,
respectively. In addition, HepG2 cell line was transfected into

NC mimic group and miR-199a-3p mimic group. Expressions
of miR-199a-3p, CDK1 and CCNB1 were detected by qRT-
PCR (Figure 4G), and protein expressions of CDK1 and
CCNB1 were detected by WB (Figure 4H). Overexpression
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FIGURE 5 | Continued

FIGURE 5 | miR-199a-3p affects the apoptosis, invasion and cell cycle of
HCC through CDK1 and CCNB1. The mRNA and protein expressions of
miR-199a-3p, CNK1, CCNB1, p53 and p21 in each group were detected by
qRT-PCR and WB, respectively. Cells development in each group was
detected by FCM and Transwell assays (100×). (A) MRNA expressions of
miR-199a-3p and CDK1 in HepG2 cells; (B) MRNA expressions of
miR-199a-3p and CCNB1 in Huh-7 cells; (C) The protein expressions of p53
and p21 in HepG2 cells; (D) The protein expressions of p53 and p21 in Huh-7
cells; (E,F) Cell apoptosis; (G,H) Cell invasion; (I,J) Cell cycle. *represents
P < 0.05. Representative of three independent experiments.

of miR-199a-3p resulted in down-regulation of mRNA and
protein expression levels of CDK1 and CCNB1 (P < 0.05).
These results proved that miR-199a-3p inhibit CCNB1 and
CDK1 expressions.

miR-199a-3p Affects the Apoptosis,
Invasion and Cell Cycle of HCC Through
Targeting CDK1 and CCNB1
Next, in order to explore the effect of miR-199a-3p on HCC
by targeting CDK1 and CCNB1, HepG2 cells were transfected
into inhibitor NC + si-NC, miR-199a-3p inhibitor + si-
NC, inhibitor NC + si-CDK1, miR-199a-3p inhibitor + si-
CDK1 groups, and Huh-7 cells were transfected into inhibitors
NC + si-NC, miR-199a-3p inhibitor + si-NC, inhibitor
NC + si- CCNB1, miR-199a-3p inhibitor + si-CCNB1 groups.
QRT-PCR was used to detect the expressions of miR-199a-
3p and CDK1 in HepG2 cells, as well as expressions of
miR-199a-3p and CCNB1 in Huh-7 cells. As exhibited in
Figures 5A,B. Silencing miR-199a-3p significantly up-regulated
the expressions of CDK1 and CCNB1 (P < 0.05). WB was
performed to examine the protein expressions of p53 and
p21 in cells of each group (Figures 5C,D). The results
revealed that silencing miR-199a-3p inhibited the protein
expressions of p53 and p21, while simultaneously silencing
CDK1/CCNB1 offset the inhibitory effect of silencing miR-199a-
3p (P < 0.05).

Functionally, FCM was used to detect the apoptosis rate
(Figures 5E,F), compared with the inhibitor NC + si-NC group,
the miR-199a-3p inhibitor + si-NC group had a significantly
lower apoptosis rate, while inhibitor NC + si-CDK1 and the
inhibitor NC + si-CCNB1 group had a significantly increased
apoptosis rate. The co-transfection groups of miR-199a-3p
inhibitor with si-CDK1 or si-CCNB1 offset the effect of both on
apoptosis. Similarly, Transwell was used to measure cell invasion
(Figures 5G,H). The results showed that silencing miR-199-
3p could promote the invasion of HCC cells while silencing
CDK1/CCNB1 would counteract the promoting effect of miR-
199-3p (P < 0.05). Finally, FCM was used to detect the cell cycle
(Figures 5I,J). We found that the cell ratio in G0/G1 phase in the
miR-199a-3p inhibitor group was significantly reduced, and the
cell ratio in S phase was significantly increased. While silencing
CDK1 or CCNB1 improved miR-199a-3p inhibitory effect on
cell cycle arrest.

In conclusion, miR-199a-3p activated the p53 signaling
pathway by targeted inhibiting the expressions of CDK1 and
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FIGURE 6 | LINC00346 regulates the expression of CDK1 and CCNB1 by sponging miR-199a-3p. (A) The binding sites of LINC00346 and miR-199a-3p; (B) RNA
pull-down assay was used to verify the interaction between LINC00346 and miR-199a-3p, red letters indicate predicted binding sites of LINC00346 and
mRNA-199a-3p (C) RIP was used to detect the binding of LINC00346 and miR-199a-3p in each group; (D) RIP was used to detect changes in LINC00346, CDK1
and CCNB1 binding to miR-199a-3p in each group; (E) Expression changes of LINC00346, miR-199a-3p, CDK1 and CCNB1 after LINC00346 silencing were
detected by qRT-PCR; (F) The expressions of LINC00346, miR-199A-3p, CDK1 and CCNB1F in each group were detected by qRT-PCR and WB, respectively: The
expressions of LINC00346, miR-199a-3p, CDK1 and CCNB1; (G) Protein expressions of CDK1 and CCNB1. *represents P < 0.05.

CCNB1, thus promoting the apoptosis of HepG2 or Huh-7 cells,
inhibiting the invasion and regulating cell cycle.

LINC00346 Regulates the Expression of
CDK1 and CCNB1 by Sponging
miR-199a-3p
After confirming that miR-199a-3p regulated HCC cells by
targeting CDK1/CCNB1, we then used the RNA22 database
to find the corresponding lncRNA to miR-199a-3p and found
that it was regulated by LINC00346. Moreover, studies have
reported that LINC00346 was significantly negatively correlated
with the survival of HCC patients, and could play a regulatory
role through the mechanism of ceRNA (Zhang et al., 2015).
These results suggested that LINC00346 may target and regulate
the expression of CDK1 and CCNB1 by sponging miR-199a-
3p, thereby affecting the p53 signaling pathway and ultimately
participating in the development of HCC. For verification, the

binding sites of LINC00346 and miR-199a-3p (Figure 6A) were
predicted by bioinformatics website, and RNA pull-down assay
was performed to verify the interaction between LINC00346
and miR-199a-3p in HepG2 cells. As shown in Figure 6B, both
LINC00346 and miR-199a-3p were significantly enriched in the
biotin-labeled LINC00346 drop-down conjugate (P < 0.05),
indicating that LINC00346 could directly bind to miR-199a-3p.
Then RIP was conducted to detect the binding of LINC00346
and miR-199a-3p. As displayed in Figure 6C, compared with
IgG antibody, LINC00346 and miR-199a-3p enriched in AGO2
antibody group were significantly increased (P < 0.05). After
silencing LINC00346, the relative enrichment of LINC00346 was
significantly decreased, while that of CDK1 and CCNB1 was
significantly increased (Figure 6D).

We then determined whether LINC00346 could modulate
the expression of miR-199a-3p in HCC cells. HepG2 cells were
transfected into si-NC and si-LINC00346 groups. QRT-PCR was
used to detect the changes of LINC00346, miR-199a-3p, CDK1
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FIGURE 7 | Silencing LINC00346 affects the apoptosis, invasion and cell cycle of HCC. (A) Protein expressions of p53 and p21 in each group were detected by
WB; Cells development in each group was detected by FCM and Transwell assays (100×). (B) Cell apoptosis; (C) Cell invasion; (D) Cell cycle. *represents P < 0.05.

and CCNB1 after silencing LINC00346. As shown in Figure 6E,
silencing LINC00346 promoted the expression of miR-199a-3p
and decreased the expression of CDK1 and CCNB1 (P < 0.05).
Finally, HepG2 cells were transfected into si-NC + inhibitor
NC, si-LINC00346 + inhibitor NC, si-NC + miR-199a-3p
inhibitor, si-LINC00346 + miR-199a-3p inhibitor groups and
the expressions of LINC00346, miR-199a-3p, CDK1, and CCNB1
in each group were detected (Figure 6F). WB was used to
detect the protein expressions of CDK1 and CCNB1 in each
group (Figure 6G). The results revealed that the mRNA and
protein expressions of CDK1 and CCNB1 were significantly
down-regulated after silencing LINC00346, and those were
significantly up-regulated after silencing miR-199a-3p. Silencing
LINC00346 and miR-199a-3p simultaneously canceled out the
effects of silencing CDK1 and CCNB1 expression (P < 0.05). In
conclusion, LINC00346 promoted the expression of CDK1 and
CCNB1 by sponging miR-199a-3p.

LINC00346 Affects the Apoptosis,
Invasion and Cell Cycle of HCC by
Regulating the Expression of CDK1 and
CCNB1
Finally, we explored the effect of LINC00346 on CDK1 and
CCNB1 regulation on HCC. HepG2 cells were transfected and

divided into si-NC group and si-LINC00346 group. Protein
expressions of p53 and p21 were detected by WB (Figure 7A).
The results showed that silencing LINC00346 promoted the
protein expressions of p53 and p21 (P < 0.05). Functionally, the
apoptotic rate was detected by FCM (Figure 7B) and observed
that the apoptosis rate in si-LINC00346 group was significantly
increased (P < 0.05). Cell invasion was detected by Transwell
(Figure 7C). The results exhibited that silencing LINC00346
decreased the invasion ability of HCC cells (P < 0.05). FCM was
used to detect the cell cycle (Figure 7D), we found that the cell
proportion of G0/G1 phases in the si-LINC00346 group increased
significantly, and the cell proportion of S phase decreased
significantly. The results showed that silencing LINC00346
promoted p53 signaling pathway, promoted apoptosis, inhibited
invasion, and blocked cells in G0/G1 phase.

HepG2 cells after transfection were then grouped into oe-
NC + si-NC, oe-LINC00346 + si-NC, oe-LINC00346 + si-
CDK1, and oe-LINC00346 + si-CCNB1. The expressions of
LINC00346, CDK1 and CCNB1 in each group were detected
by qRT-PCR (Figure 8A). The results indicated that the
expressions of LINC00346, CDK1 and CCNB1 in the oe-
LINC00346 + si-NC group were significantly up-regulated
compared with those in the oe-NC + si-NC group (P < 0.05).
Compared with oe-LINC00346 + si-NC group, the expression
of CDK1 in oe-LINC00346 + si-CDK1 group and CCNB1 in
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FIGURE 8 | LINC00346 affects the apoptosis, invasion and cell cycle of HCC by regulating the expression of CDK1 and CCNB1. The mRNA and protein
expressions of LINC00346, CNK1, CCNB1, p53 and p21 in each group were detected by qRT-PCR and WB, respectively. Cells development in each group was
detected by FCM and Transwell assays (100×). (A) The expressions of LINC00346, CDK1 and CCNB1; (B) Protein expressions of CDK1, CCNB1, p53 and p21;
(C) Cell apoptosis; (D) Cell invasion; (E) Cell cycle. *represents P < 0.05.
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oe-LINC00346 + si-CCNB1 group were significantly down-
regulated (P < 0.05). WB was performed to detect the
protein expressions of CDK1, CCNB1, p53 and p21 in each
group (Figure 8B). The results revealed that overexpression of
LINC00346 promoted the expressions of CDK1 and CCNB1 and
inhibited the expressions of p53 and p21 (P < 0.05). FCM was
also used to detect the apoptosis rate (Figure 8C). Overexpression
of LINC00346 inhibited cell apoptosis, while silencing CDK1
and CCNB1 reversed the inhibitory effect of LINC00346
overexpression on apoptosis. Transwell was conducted to
detect cell invasion (Figure 8D). Overexpression of LINC00346
promoted cell invasion, while the co-transfection group of over-
expressing LINC00346 and silenced CDK1 or CCNB1 reversed
the promotion effect of over-expressing LINC00346. FCM was
used to measure cell cycle (Figure 8E). We found that compared
with the oe-NC + si-NC group, the cell ratio of G0/G1 phase in
the oe-LINC00346 group was significantly reduced while the cell
ratio in S phase was significantly increased, and silencing CDK1
or CCNB1 improved the inhibitory effect of overexpression
of LINC00346 on cell cycle arrest. The results above showed
that overexpression of LINC00346 promoted the expressions of
LINC00346, CDK1, and CCNB1 and invasion, inhibited the p53
pathway and apoptosis, and blocked cells in the S phase. These
results indicated that LINC00346 could block the p53 signaling
pathway by promoting the expressions of CDK1/CCNB1, thereby
promoting the invasion of cancer cells, inhibiting apoptosis and
regulating cell cycle.

DISCUSSION

Because of the high recurrence and metastasis rates, the overall
survival of HCC patients remains low, and the study of molecular
therapies for HCC has been a hot topic (Setshedi et al., 2018).
This study demonstrated that CDK1 and CCNB1 were highly
expressed in HCC tissues and cells through bioinformatics
analysis combined with cell experiments, which was consistent
with previous results (Wu et al., 2018; Gu et al., 2019). Then,
we analyzed the effects of CDK1 and CCNB1 on the biological
behavior of HCC, and found that CDK1 and CCNB1, as two
oncogenes, could inhibit the apoptosis of HCC cells and promote
cell invasion. These two genes also play a carcinogenic role
in other cancers. Yang et al. put forward that the expression
of CDK1 as an oncogene would increase with the progressive
deterioration of epithelial ovarian cancer (Yang et al., 2016). Ding
et al. (2014) demonstrated that CCNB1 can act as a biomarker of
ER+ breast cancer and play an oncogenic role in the occurrence
of ER + breast cancer (Ding et al., 2014). These results indicated
that CDK1/CCNB1 played an important role as an oncogene in a
variety of cancers including HCC.

In exploring the specific molecular mechanism of
CDK1/CCNB1 in regulating cancer, Zhang et al. revealed that
CCNB1 could affect the cell cycle and apoptosis of pancreatic
cancer cells by regulating p53 signaling pathway (Zhang H.
et al., 2018). Qin G et al. reported that the p53 signaling pathway
may be regulated by multiple genes to affect the development
of liver cells (Qin et al., 2019). In addition, KEGG pathway

enrichment analysis (Figure 1B) showed that multiple DEGs,
including CDK1/CCNB1, were enriched in the p53 signaling
pathway. Therefore, we speculated that CNK1/CCNB1 might
regulate the occurrence of HCC by affecting p53 signaling
pathway. We had conducted several experiments to verify this
hypothesis, and the results showed that silencing CDK1/CCNB1
could promote the protein expressions of p53 and p21, thus
promoting the apoptosis and inhibiting the invasion of HCC
cells. These results all suggested that CDK1 and CCNB1 affected
the apoptosis, invasion and cell cycle of HCC by regulating p53
signaling pathway.

In order to further explore the genes related to CDK1/CCNB1,
we proved the signal axis of LINC00346-miR-199a-3p-
CDK1/CCNB1 through bioinformatics analysis and molecular
experiments and found that miR-199a-3p could bind to
the 3′UTR of CDK1 and CCNB1. Meanwhile, the targeted
relationship was verified by the dual luciferase reporter gene
assay, and the results of WB confirmed that miR-199a-3p
inhibited the expressions of CDK1 and CCNB1. The results are
consistent with the results of previous studies. Ma et al. (2019)
reported that miR-199a-3p is poorly expressed in HCC cells and
HEIH silence suppressed the activation of mTOR signaling via
upregulating miR-199a-3p (Ma et al., 2019). Ren et al. (2016)
reported that miR-199a-3p could inhibit the proliferation of
HCC cells by targeted down-regulating YAP1 expression (Ren
et al., 2016). Our study on the regulatory effect of miR-199a-3p
on HCC also found that miR-199a-3p could activate the p53
signaling pathway by targeting the expressions of CDK1/CCNB1,
thereby inhibiting the development of HCC.

In the study of LINC00346 on HCC, we found that LINC00346
significantly promoted the invasion and inhibited cell apoptosis
of HCC through the competitive adsorption of miR-199a-3p
to promote the expressions of CDK1/CCNB1. In recent years,
lncRNAs analysis and functional assays for various types of
cancer have provided increasing evidence supporting the critical
role of lncRNAs in HCC tumor growth and progression, such
as HOTAIR (Hu et al., 2018), MALAT1 (Tao et al., 2018) and
TUG1 (Sun et al., 2018). Previous studies have found that
LINC00346 is up-regulated in HCC tissues (Zhang et al., 2015).
As a gene regulator, lncRNA regulates gene expression through a
variety of mechanisms, one of which is sponging miRNA to up-
regulate or down-regulate miRNA expression. Previous studies
have reported that the LINC00346-miR-10a-5p-CDK1 axis may
be an important mechanism for HBV-related HCC, and genes
in this ceRNA axis may be potential prognostic biomarkers
and therapeutic targets (Li et al., 2019). The effects of the
ceRNA axis of LINC00346-miR-199a-3p-CDK1/CCNB1 on cell
invasion, apoptosis and cell cycle of HCC was demonstrated
in this study, which further proved the role of LINC00346
as an oncogene in HCC, and the mechanism of HCC was
further investigated.

CONCLUSION

In conclusion, LINC00346 has a positive regulatory effect
on HCC. LINC00346 can regulate CDK1/CCNB1 to inhibit
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apoptosis, promote cell invasion and regulate cell cycle of
HCC by targeting miR-199a-3p, while LINC00346-miR-199a-3p-
CDK1/CCNB1 signal axis can regulate p53 signaling pathway.
This result provides a deeper understanding of LINC00346’s
role in HCC, and lays the foundation for searching new targeted
therapies for HCC.
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Objective: In the present study, we tried to describe the role of miR-29c-3p in
esophageal carcinoma (EC) and the relationship of miR-29c-3p with CCNA2 as well
as cell cycle, accordingly revealing the potential molecular mechanism across cell
proliferation, migration and invasion.

Methods: Expression profiles of EC miRNAs and matched clinical data were accessed
from TCGA database for differential and survival analyses. Bioinformatics databases
were employed to predict the downstream targets of the potential miRNA, and
enrichment analysis was performed on the miRNA and corresponding target gene
using GSEA software. qRT-PCR was conducted to detect the expression levels of miR-
29c-3p and CCNA2 mRNA in EC tissues and cells, and Western blot was performed
for the examination of CCNA2, CDK1 and p53 protein levels. Subsequently, cells
were harvested for MTT, Transwell as well as flow cytometry assays to examine cell
viability, migration, invasion and cell cycle. Dual-luciferase reporter gene assay and
RIP were carried out to further investigate and verify the targeted relationship between
miR-29c-3p and CCNA2.

Results: MiR-29c-3p was shown to be significantly down-regulated in EC tissues and
able to predict poor prognosis. CCNA2 was found to be a downstream target of
miR-29c-3p and mainly enriched in cell cycle and p53 signaling pathway, whereas miR-
29c-3p was remarkably activated in cell cycle. MiR-29c-3p overexpression inhibited
cell proliferation, migration and invasion, as well as arrested cells in G0/G1 phase.
As suggested by dual-luciferase reporter gene assay and RIP, CCNA2 was under the
regulation of miR-29c-3p, and the negative correlation between the two genes was
verified. Silencing CCNA2 could suppress cell proliferation, migration and invasion, as
well as activate p53 pathway, even was seen to reverse the inhibitory effect of PFTβ on
p53. Besides, in the presence of low miR-29c-3p, CCNA2 was up-regulated while p53
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was simultaneously inhibited, resulting in the promotion of cell migration, invasion and
cell cycle arrest.

Conclusion: MiR-29c-3p plays a regulatory role in EC tumorigenesis and development.
MiR-29c-3p can target CCNA2 to mediate p53 signaling pathway, finally attributing
to the inhibition of cell proliferation, migration and invasion, and making cells arrest in
G0/G1 phase.

Keywords: miR-29c-3p, CCNA2, p53, esophageal carcinoma, migration, invasion, cell cycle

INTRODUCTION

Esophageal carcinoma (EC), a common gastrointestinal
neoplasm, is the fifth cause of cancer-related death in China
(Wang et al., 2012). EC can be classified as esophageal squamous
cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC)
(Zaidi and Kelly, 2017), among which ESCC is the most common
histopathological type with relative high morbidity in China
(Kamangar et al., 2006; Bohanes et al., 2012). At present, the main
curative option of EC is surgery with adjuvant radiotherapy and
chemotherapy, but the overall prognosis remains poor (Gertler
et al., 2011). Therefore, studying potential molecular mechanism
is of great importance for the exploration of novel therapies.

MiRNAs is a large family, and some of the miRNAs show
targeted relationship with miRNAs. Genome analysis suggests
that miRNA-mediated genes account for nearly 30% of the total
human genome, and their expressions are firmly associated with
cancers (Calin et al., 2004; Lewis et al., 2005). Studies have
found that the alteration of miRNAs expression can lead to
the changes of oncogenes and tumor suppressor genes, thus
affecting cell proliferation, migration, invasion and apoptosis in
gastrointestinal neoplasms including ESCC (Harada et al., 2016).
In addition, miRNAs have been observed to be differentially
expressed in ESCC as reported by multiple microarray studies.
Ogawa et al. found that 22 miRNAs were up-regulated in
ESCC tissues relative to that in adjacent normal tissues, whereas
4 miRNAs were down-regulated (Fu et al., 2013). Fu et al.
revealed that among the 43 differentially expressed miRNAs
(DEmiRNAs) found in ESCC, 27 miRNAs were decreased and
the rest were increased, of which miRNA-1 was significantly
reduced and attributed to the inhibition of cell proliferation,
clone, migration and invasion (Yao et al., 2015). Moreover,
miR-34a was found to suppress cell migration and invasion in
ESCC via targeting Yin Yang-1 (Nie et al., 2015), and miR-29b
was shown to function on ESCC progression through targeting
MMP-2 (Qi et al., 2015).

CCNA2 (cyclin A2) is a cyclin accumulated in G1 phase and
plays a regulatory role in the transitional period of G1/S and
G2/M (Krasnov et al., 2017). Published literature has reported
that CCNA2 functions on various cancers, like colorectal cancer
(Huang et al., 2017), liver cancer (Yang et al., 2016), breast
cancer (Gao et al., 2014), cervical cancer (Wu et al., 2019),
and EC (Ma, 2019). In the present study, we found that
miR-29c-3p was remarkably down-regulated in EC cells. Then
bioinformatics methods were performed to predict the targets of
miR-29c-3p, and CCNA2 was selected for further investigation,

in turn evaluating the potential of miR-29c-3p/CCNA2 axis as an
effective therapy for EC.

MATERIALS AND METHODS

Bioinformatics Analysis
The miRNA and mRNA expression profiles of ESCA were
downloaded from the TCGA database1. “edgeR” package was
used to perform differential analysis, and | logFC| > 1.5 and
P-adj < 0.01 were set as the threshold to screen out DEGs.
Survival analysis was performed on DEmiRNAs to confirm
the potential target miRNA. Four databases miRDB2, mirDIP3,
starBase4, and miRTarBase5 were utilized to predict the targets
of the miRNA, and Venn diagram was plotted to find the
potential target genes. GSEA 4.0.1 software was applied to carry
out enrichment analysis on the miR-29c-3p and its target gene
CCNA2. According to the median expression level of CCNA2 and
miR-29c-3p, EC tissue samples were divided into high (n = 80)
and low (n = 80) expression groups. MSigDB6 was applied to
access “c2.cp.kegg.v7.0.symbols.gmt” data as reference.

Cell Culture
Human normal esophageal epithelial cell HET-1A
(BNCC342346) and EC cell lines Eca-109 (BNCC337687),
EC9706 (BNCC339892), KYSE150 (BNCC342590), and
KYSE180 (BNCC351871) were purchased from BeNa Culture
Collection (Beijing, China). All cells were grown in the Dulbecco’s
Modified Eagle Medium (DMEM; Gibco, United States)
supplemented with 10% fetal bovine serum (FBS; Gibco,
United States), streptomycin (100 mg/mL; Gibco, United States)
and penicillin (100 units/mL; Gibco, United States), and
maintained in 5% CO2 at 37◦C.

Sample Collection
A total of 30 cases of EC tissues and matched adjacent normal
tissues (2 cm in margin) were collected in the Shaoxing People’s
Hospital from January 2018 to May 2019. All samples were
obtained during the intraoperative period as well as firmly

1https://portal.gdc.cancer.gov/
2http://mirdb.org/miRDB/index.html
3http://ophid.utoronto.ca/mirDIP/index.jsp#r
4http://starbase.sysu.edu.cn/
5http://mirtarbase.mbc.nctu.edu.tw/php/index.php
6http://software.broadinstitute.org/gsea/msigdb/index.jsp
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diagnosed by experienced pathologists, and none of the patients
had received preoperative chemotherapy or radiotherapy. EC
tissues separated were rapidly stored in RNA preservation
solution. All procedures were performed with the approval of
the Ethics Committee in the Shaoxing People’s Hospital and
informed consent was obtained from all patients before this
study. Patients’ clinicopathological characteristics like gender,
age, histology identification results and tumor location were
detailed in Table 1.

Cell Transfection
For preparation, cells were grown in complete medium for
at least 24 h, and washed by phosphate buffered saline (PBS;
pH 7.4) before transfection. Plasmids were all purchased from
GenePharma (Shanghai, China), and transiently transfected into
EC cells using Lipofectamine2000 (Thermo Fisher Scientific,
Inc.), consequently forming six groups of NC mimic, miR-29c-
3p mimic, NC inhibitor, miR-29c-3p inhibitor, si-NC, and si-
CCNA2. Transfected cells were cultured in DMEM containing
5% CO2 at 37◦C for subsequent experiments.

RNA Extraction and qRT-PCR
TRIzol Reagent (Invitrogen) was utilized to isolate the total RNA
and Superscript II reverse transcriptase (Invitrogen) was applied
for cDNA synthesis via reverse transcription using 2 µg of total
samples. qRT-PCR was conducted for the detection of miR-
29c-3p and CCNA2 mRNA using the Applied Biosystems 7300
Real-Time PCR System (Applied Biosystems, United States), with
U6 and GAPDH as internal control. All steps were followed
the manufacturer’s instructions. Primers used were designed by
Sangon Biotech (Shanghai, China) as listed in Table 2. 2−11Ct

method was used for the normalization of miR-29c-3p and
CCNA2 mRNA expression levels.

Western Blot
After 48 h of transfection, cells were washed three times with cold
PBS. Then proteins were extracted from cells on ice by whole

TABLE 1 | Basic information of patients and correlation with miR-29c-3p
expression.

Characteristic Total miR-29c-3p expression

Low High

Gender

Male 13 4 9

Female 17 6 11

Age

<50 12 3 9

≥50 18 7 11

Histology

Adenocarcinoma 5 2 3

Squamous cell carcinoma 25 8 17

Tumor location

Upper esophagus 2 0 2

Middle esophagus 23 8 15

Lower esophagus 5 2 3

TABLE 2 | Primer sequence.

Target gene Primer (5′–3′)

CCNA2 F: CAGAAAACCATTGGTCCCTC

R: CACTCACTGGCTTTTCATCTTC

miR-29c-3p F: TAGCACCATTTGAAATCGGTTA

U6 F: CTCGCTTCGGCAGCACA

R: AACGCTTCACGAATTTGCGT

GAPDH F: GCACCGTCAAGGCTGAGAAC

R: TGGTGAAGACGCCAGTGGA

cell lysate, and the concentration was assayed using BCA kit
(Thermo Fisher Scientific, Waltham, MA, United States). 30 µg
of the total extraction was separated through polyacrylamide
gel electrophoresis (PAGE), and transferred onto the PVDF
membranes (Amersham, United States) that were sequentially
blocked in 5% skim milk for 1 h. Afterward, the membrane was
incubated with primary rabbit polyclonal antibodies overnight
at 4◦C, followed by horseradish peroxidase (HRP)-labeled
secondary antibody goat anti-rabbit IgG H&L (ab6721, 1:2000,
Abcam, Cambridge, United Kingdom) at room temperature
for 1 h. Primary antibodies contained CCNA2 (ab181591,
1:2000, Abcam, Cambridge, United Kingdom), p53 (ab32389,
1:1000, Abcam, Cambridge, United Kingdom) and GAPDH
(ab9485, 1:2500, Abcam, Cambridge, United Kingdom). PBST
(PBS containing 0.1% Tween-20) was utilized to wash the
membranes three times following each step. Protein bands were
visualized by chemiluminescence apparatus (GE, United States)
and then photographed.

MTT
Transfected cells were digested, resuspended and then plated
into 96-well plates at a density of 5 × 103 cells/well. At 24,
48, 72, and 96 h, 10 µL of MTT regent (5 mg/mL) was added
into per well and cells were continuously cultured at 37◦C for
4 h. Thereafter, the supernatant was removed and the precipitate
was solubilized in 200 µL of dimethyl sulfoxide (DMSO). Neo
multimode reader (Thermo Fisher Scientific) was applied to
measure the absorbance at 595 nm.

Transwell
Migration assay: Cells in logarithmic phase were placed in serum-
free medium for 24 h. On the following day, cell suspension at a
concentration of 2 × 104 cells/mL was prepared after digestion
and centrifugation. 0.2 mL of suspension was added into the
Transwell inserts, and 700 µL of pre-cooled DMEM containing
10% FBS was placed out of the inserts. After 24 h of incubation
in 5% CO2 at 37◦C, unmigrated cells were wiped off with a
cotton swab, while cells migrated out of the inserts were fixed
by methanol for 30 min and stained in 0.1% crystal violet for
20 min. Images were captured under an inverted microscope, and
five fields were randomly selected for cell count.

Invasion assay: Around 2 × 104 cells were added into the
upper chambers pre-coated with Matrigel matrix (Corning, NY,
United States), and DMEM supplemented with 10% FBS was
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placed in the lower chambers. Follow-up steps were similar with
migration assay as detailed above.

Flow Cytometry
Petri dishes (6 cm) were utilized to culture transfected cells
(2 × 105 cells/dish) until 80% in confluence. Subsequently,
cells were digested with trypsin, washed with ice-cold PBS
and collected. After being fixed by 75% methanol, cells were
centrifuged and suspended in RNase A (Sigma-Aldrich) followed
by stained using 500 µL PI solution (Sigma-Aldrich). Flow
cytometer (Beckman-Coulter) was employed to analyze the cell
cycle. The percentage of cells in G0/G1, S and G2/M was
calculated, respectively, and compared in each group.

Dual-Luciferase Reporter Gene Assay
CCNA2 vectors bearing mutant and wild type 3′UTR (MUT- and
WT-3′UTR) were cloned into pmiRGLO (Promega, Madison,
WI, United States), forming the luciferase reporter plasmids
WT-CCNA2 and MUT-CCNA2. Then the two plasmids were co-
transfected with miR-29c-3p mimic or NC mimic into EC cell
lines, respectively, with the Renilla luciferase expression vector
pRL-TK (TaKaRa, Dalian, China) as the internal control. Cells

were grown in DMEM containing 10% FBS. After 48 h, dual-
luciferase detection kit (Promega, Madison, WI, United States)
was utilized to examine the luciferase activity.

RNA-Binding Protein
Immunoprecipitation Assay (RIP)
Magna RIP RNA-Binding Protein Immunoprecipitation Kit
(Millipore, United States) was applied in this experiment
following the manufacture’s protocols. Cells were firstly
lysed in RIP lysate buffer for 30 min, then the proteins
obtained were incubated in RIP buffer containing magnetic
beads. Ago2 antibody (ab32381, 1:50, Abcam, Cambridge,
United Kingdom) was used to immune-precipitate miR-29c-3p
protein complex taking normal rabbit antibody IgG (ab6712,
1:1000, Abcam, Cambridge, United Kingdom) as negative
control. Consequently, protease K was utilized to purify the
immunoprecipitation, and qRT-PCR was performed to detect
the expression of CCNA2 mRNA.

Statistical Analysis
SPSS 22.0 statistical software was utilized to process all data.
Measurement data were expressed as mean± standard deviation

FIGURE 1 | MiR-29c-3p is decreased in EC tissues accompanied by low survival rate and associated with the increase of CCNA2. TCGA database was utilized to
access expression data of miRNAs and mRNAs of ESCA, and (A) the results of differential analysis were plotted in Volcano plots, with red representing high
expression and green representing low expression. In panel (B), miR-29c-3p level in EC tissues were determined as shown in a box plot. (C) Survival analysis of
miR-29c-3p in TCGA-ESCA dataset was performed, with the red line as high expression and blue line as low expression. In panel (D), Venn diagram was made to
find the candidate targets of miR-29c-3p, acquiring 10 DEmRNAs. In panel (E), correlation analysis was conducted between miR-29c-3p and CCNA2 (–0.57) as
plotted in a heat map. In panel (F), CCNA2 expression in EC cells was examined. Clinical tissue samples were used to further explore the (G) expression of
miR-29c-3p and CCNA2 mRNA in EC tissues by qRT-PCR, (H) the protein level of CCNA2 (P1, P2, P3 referred to three EC samples) via Western blot and (I) the
correlation between miR-29c-3p and CCNA2. *P < 0.05.
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(SD). t-test and one-way ANOVA were employed to perform
comparisons between two groups and among multiple groups,
respectively. Kaplan–Meier survival analysis was conducted using
the log-rank method. Pearson analysis was used to analyze
the correlation between miR-29c-3p and CCNA2. Statistical
significance was considered when P < 0.05.

RESULTS

MiR-29c-3p Is Decreased in EC Tissues
Accompanied by Low Survival Rate and
Associated With the Increase of CCNA2
Differential analysis was conducted on the gene expression
profiles in TCGA-ESCA dataset using “edgeR” package, acquiring
62 DEmiRNAs and 1609 DEmRNAs (Figure 1A). Among
them, miR-29c-3p showed significantly low expression in EC
tissues (Figure 1B). Meanwhile, survival analysis suggested
that low miR-29c-3p predicted poor prognosis, showing the
survival time of patients with low miR-29c-3p shorter than
those with high expression (Figure 1C). In addition, miRDB,
mirDIP, starBase, and miRTarBase four databases were applied
to predict candidate targets of miR-29c-3p and Venn diagram
was plotted to find the potential target genes. As revealed in

Figure 1D, 10 DEmRNAs were obtained, among which CCNA2
presented relative high correlation with miR-29c-3p (−0.57),
as well as significantly increased expression in cancer cells
relative to the normal control (Figures 1E,F). GSEA suggested
that miR-29c-3p was highly enriched in cell cycle, and CCNA2
was mainly activated in cell cycle and p53 signaling pathway
(Supplementary Figures S1A–C).

Moreover, we detected the expression levels of miR-29c-
3p and CCNA2 mRNA in clinical samples of cancer tissues
by qRT-PCR, and the results showed that miR-29c-3p in EC
epithelial tissues was significantly lower than that in normal
tissues, while CCNA2 was highly expressed (Figure 1G). Western
blot indicated that CCNA2 showed remarkably up-regulated
expression in the protein level as well (Figure 1H). Besides,
correlation analysis was carried out, and there was a reverse
association between miR-29c-3p and CCNA2 (Figure 1I). All
above results elucidated that miR-29c-3p and CCNA2 could be
served as potential biomarkers for EC diagnosis.

MiR-29c-3p Functions on the Migration,
Invasion and Cell Cycle of EC Epithelial
Cells
To further verify the role of miR-29c-3p in EC, qRT-PCR
was firstly performed in 5 cell lines (including one normal

FIGURE 2 | MiR-29c-3p functions on the migration, invasion and cell cycle of EC epithelial cells. qRT-PCR was performed to test (A) the expression of miR-29c-3p
in each cell line and (B) that in Eca109 and EC7906 cells after transfected with miR-29c-3p mimic. To further evaluate the role of miR-29c-3p in EC cells, with the
presence of miR-29c-3p mimic and normal cells as control, (C) cell viability was detected by MTT, (D) migration and invasion ability was examined by Transwell and
(E) cell cycle was assayed by flow cytometry. *P < 0.05.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 February 2020 | Volume 8 | Article 75176

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00075 February 18, 2020 Time: 19:36 # 6

Wang et al. MiR-29c-3p Suppresses Development of EC

cell line and four EC cell lines), suggesting the decreased
expression of miR-29c-3p in EC cells (Figure 2A). For better
observation, Eca109 and EC7906 were selected for subsequent
analysis. As shown in Figure 2B, miR-29c-3p was significantly
up-regulated in the two cells lines after transfection with miR-
29c-3p mimic. It was also determined that cell viability was
suppressed in the cells transfected with miR-29c-3p mimic as
detected by MTT, indicting the weakening of cell proliferation
(Figure 2C). Transwell assay revealed that EC cells had
reduced migration and invasion abilities when miR-29c-3p was
overexpressed (Figure 2D). Furthermore, flow cytometry showed
the accumulation of miR-29c-3p mimic transfected cells in
G0/G1phase (Figure 2E), indicating that miR-29c-3p could arrest
cells from entering S phase, thus inhibiting cell proliferation.

MiR-29c-3p Targets CCNA2 and Inhibits
Its Expression
As aforementioned, CCNA2 was a downstream target
of miR-29c-3p (Figure 3A) and highly expressed in

EC cells. To make a better understanding of their
targeted relationship, dual-luciferase reporter gene assay
was carried out via the construction of WT-CCNA2
and MUT-CCNA2. As shown in Figure 3B, luciferase
activity was significantly decreased in the cells transfected
with miR-29c-3p mimic and WT-CCNA2. Meanwhile,
findings concluded by RIP suggested the remarkably
up-regulated CCNA2 in miR-29c-3p mimic transfected
cells (Figure 3C). Together, it could be elucidated that
miR-29c-3p could specifically bind with CCNA2, leading to
its reduced expression.

Besides, qRT-PCR and Western blot were conducted
to further verify such relationship. As revealed by qRT-
PCR plotted in Figure 3D, significantly reduced CCNA2
mRNA was observed when miR-29c-3p was overexpressed.
Similar trend could be seen in Western blot, showing
the down-regulation of CCNA2 protein level in cells
transfected with miR-29c-3p mimic (Figure 3E). Collectively,
there was a targeted relationship between miR-29c-3p
and CCNA2.

FIGURE 3 | MiR-29c-3p targets CCNA2 and inhibits its expression. Targeted binding sites of miR-29c-3p and CCNA2 were predicted before as shown in panel (A).
To investigate their targeted relationship, (B) dual-luciferase assay was performed to confirm their targeted binding, and (C) RIP was conducted to describe the
effect of miR-29c-3p on CCNA2. Moreover, (D,E) qRT-PCR and Western blot were carried out to determine CCNA2 expression in mRNA and protein levels in
miR-29c-3p mimic transfected cells, so as to further verify such relationship. *P < 0.05.
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CCNA2 Silencing Regulates the
Migration, Invasion and Cell Cycle in EC
by Promoting p53 Signaling Pathway
Prior studies have found that CCNA2, a type of cyclin, is able
to promote cell proliferation, migration and invasion (Ma, 2019;
Shekhar et al., 2019; Tu et al., 2019), as well as associated
with various biological pathways like p53 signaling pathway
(Zhang et al., 2018; Doan et al., 2019). In order to investigate
the underlying mechanism of CCNA2 on EC cells, cells were
classified into four groups: si-NC+DMSO, si-CCNA2+DMSO,
si-NC + PFTβand si-CCNA2 + PFTβ groups [PFTβ, p53
inhibitor, HY-16702, MedChemExpress, 10 µM (Da Pozzo et al.,
2014)]. qRT-PCR was firstly performed to test CCNA2 level in
each group, finding that CCNA2 was markedly decreased in
cells transfected with si-CCNA2 + DMSO (Figure 4A). Western
blot suggested that CCNA2 silencing was with a concomitant
increase in p53 level. si-NC + PFTβ group presented the
lowest p53 expression, while in si-CCNA2 + PFTβ group,
p53 level was restored, indicating that CCNA2 silencing could
abrogate the inhibitory effect of PFTβ on p53 (Figure 4B).

Subsequently, transfected cells were harvested for MTT and
Transwell assays, revealing that the decrease of cell viability was
more prominent with the reduction of CCNA2 (Figure 4C), as
well as cell migration and invasion (Figure 4D). Furthermore,
flow cytometry results plotted in Figure 4E showed the
accumulation of cells in G0/G1 phase with the reduction of
CCNA2. Taken together, CCNA2 silencing could repress EC
epithelial cell activities.

MiR-29c-3p Mediates the Migration,
Invasion and Cell Cycle in EC via
CCNA2/p53 Axis
In order to uncover the miR-29c-3p-dependent mechanism in
EC, inhibitor NC + si-NC, inhibitor NC + si-CCNA2, miR-
29c-3p inhibitor + si-NC and miR-29c-3p inhibitor + si-
CCNA2 were designed to transfect cells. As shown in Figure 5A,
p53 expression was up-regulated when CCNA2 was silenced,
whereas when miR-29c-3p was inhibited, CCNA2 was increased
with a concomitant of p53 decrease. Besides, when miR-29c-
3p and CCNA2 were repressed simultaneously, p53 expression

FIGURE 4 | CCNA2 silencing regulates the migration, invasion and cell cycle in EC by promoting p53 signaling pathway. si-NC + DMSO, si-CCNA2 + DMSO,
si-NC + PFTβ and si-CCNA2 + PFTβ were transfected into cells. qRT-PCR and Western blot were conducted to determine (A) the CCNA2 mRNA and (B) protein
levels of CCNA2 as well as p53. MTT, Transwell, and flow cytometry were performed to investigate the effects of silencing CCNA2 on EC cell activities, including (C)
cell viability, (D) migration and invasion, (E) cell cycle. *P < 0.05.
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was restored. Moreover, MTT assay showed that miR-29c-3p
inhibitor could promote cell proliferation, while such promotive
effect was inhibited when CCNA2 was silenced (Figure 5B).
Similar results could be concluded as suggested by Transwell
migration and invasion assays (Figure 5C). Meanwhile, with
the results of flow cytometry plotted in Figure 5D, it could be

indicated that the accumulation of cells in G0/G1 phase was
positively associated with miR-29c-3p expression. Collectively,
we speculated that miR-29c-3p targeted CCNA2 to regulate p53
signaling pathway, thereby repressing cell migration, invasion
and resulting in cell cycle arrest, culminating in the inhibition
of tumorigenesis.

FIGURE 5 | MiR-29c-3p mediates the migration, invasion and cell cycle in EC via CCNA2/p53 axis. Cells were treated with inhibitor NC + si-NC, inhibitor
NC + si-CCNA2, miR-29c-3p inhibitor + si-NC and miR-29c-3p inhibitor + si-CCNA2, and then harvested for (A) Western blot to detect the protein levels of CCNA2
and p53. (B) MTT was performed to test cell viability, (C) Transwell was conducted to assay the ability of cell migration and invasion, and (D) flow cytometry was
carried out to determine the effect of miR-29c-3p on cell cycle. *P < 0.05.
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DISCUSSION

Enormous evidence has revealed that miRNAs possess the ability
of mediating cancer cell proliferation, migration and invasion,
exerting their important regulatory roles in tumorigenesis and
development (Lu et al., 2005; Deng et al., 2016). In ESCC,
miR-124-3p could targeted bind with 3′UTR of BCAT1, and
was found to be firmly correlated with cell proliferation and
migration (Zeng et al., 2019). Renata Hezova et al. (2015)
reported that miR-21, miR-29c, miR-148, and miR-203 could
serve as potential diagnostic and prognostic biomarkers in EAC
and ESCC. Therein, miR-29c has been reported to function on
cell proliferation, migration, invasion and cell cycle, supporting
its potential as a therapeutic target (Rao and Pattabiraman,
1989; Fan et al., 2014; Zhao et al., 2015; Li et al., 2018). For
example, miR-29c could induce cell cycle arrest in ESCC through
mediating the expression of cyclin E (Ding et al., 2011).

In the present study, we verified the low expression of miR-
29c-3p in EC epithelial tissues and cells, and found that cell
viability, migration and invasion were significantly decreased in
cells treated with miR-29c-3p mimic. In addition, miR-29c-3p
was seen to be associated with cell cycle as indicated by GSEA.
Compared with the NC group, overexpression of miR-29c-3p
attributed to the cell cycle arrest in G0/G1 phase, thus inhibiting
the cell proliferation.

CCNA2 was found to be a direct target of miR-29c-3p, which
was predicted by bioinformatics methods and verified by dual-
luciferase reporter gene and RIP assays. Silencing CCNA2 could
decrease the inhibitory effect of miR-29c-3p on EC epithelial
cell proliferation, migration and invasion. CCNA2, a member
of cyclin family, is a core regulatory factor during cell cycle
progression, and participates in the regulation of S phase and
mitosis. In addition, another study has showed that CCNA2 is
involved in cytoskeleton dynamics behaviors and cell activities
(Bendris et al., 2012), and the dysregulation of CCNA2 expression
can be used as a marker of metastasis (Loukil et al., 2015).
Notably, CCNA2 is commonly related to cell proliferation and
highly expressed in many cancers. For instance, Cyclin A2
and Cyclin E2 can be mediated by SOSTDC1 and potentiate
cell proliferation in thyroid cancer (Liang et al., 2015). FH535
can suppress cell proliferation and migration in colorectal
cancer through regulating cyclin A2 and Claudin1 (Tu et al.,
2019). Besides, Xu et al. (2019) found that miRNAs-mediated
CCNA2 targeted p53 to inhibit cell senescence, in other words,
p53/miRNAs/CCNA2 axis could be used as a novel regulator for
cell senescence.

In this research, CCNA2 was found to be mainly activated
in p53 signaling pathway and cell cycle detected by GSEA, and

significantly up-regulated in EC tissues and cells relative to the
normal controls. Silencing CCNA2 could remarkably repress cell
proliferation, migration and invasion. In addition, Western blot
showed that the decrease of CCNA2 attributed to the increase
of p53, which played a crucial role in the regulation of cell
cycle and apoptosis, as well as in the response of cell to DNA
damage. When CCNA2 and p53 were simultaneously silenced,
the protein level of p53 was seen to be up-regulated relative to
that with p53 inhibitor alone, elucidating that silencing CCNA2
could promote p53 expression to some extent, thus activating
p53 signaling pathway, consequently inhibiting cell proliferation,
migration and invasion, and inducing cell arrest in G0/G1 phase.

In summary, our study confirmed that high miR-29c-3p
expression can inhibit cell proliferation, migration and invasion
in EC via CCNA2/p53 axis, which helps us to explore a novel
approach on EC diagnosis and treatment.
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Human blood contains cell-free DNA (cfDNA), with circulating tumor-derived DNAs (ctDNAs)
widely used in cancer diagnosis and treatment. However, it is still difficult to efficiently and
accurately identify and distinguish specific ctDNAs from normal cfDNA in cancer patient blood
samples. In this study, ctDNA fragment length distribution analysis showed that ctDNA
fragments are frequently shorter than the normal cfDNAs, which is consistent with previous
findings. Interestingly, the ctDNA fragment length was found to be partially associated with the
mutant allele frequency, with a lowmutant allele frequency (< ~0.6%) associated with a longer
ctDNA fragment length when compared to normal cfDNAs. The findings of this study
contribute to improving the detection of low-frequency tumor mutations.

Keywords: low-frequency tumor mutation, cell-free DNA, circulating tumor-derived DNA, fragment length
enrichment, mutant allele frequency, next generation sequencing
INTRODUCTION

In modern medicine, liquid biopsies are widely used in prenatal diagnoses and cancer treatment.
When utilizing a liquid biopsy, circulating cell-free DNA (cfDNA), circulating tumor cells (CTCs),
or exosomes are isolated for evaluation (Bardelli and Pantel, 2017; Wan et al., 2017; Siravegna et al.,
2017). Of these, circulating tumor-derived DNA (ctDNA) is widely utilized as a tumor biomarker in
translational and clinical research (Diaz and Bardelli, 2014; Donaldson and Park, 2018), while fetal
cfDNA obtained frommaternal blood is widely used as a noninvasive method for prenatal diagnoses
(Lun et al., 2008; Lo et al., 2010; Yu et al., 2014; Sun et al., 2018).

About 30 years ago, Stroun et al. first discovered that cancer patient blood samples contain cfDNA
of cancer origin (Stroun et al., 1989; Thierry et al., 2016). In the following decades, ctDNA has been
gradually developed as a clinical tool for cancer diagnosis and treatment, and has even been used as a
prognostic or predictive factor (Mao et al., 1994; Lecomte et al., 2002; Kimura, 2006; Diehl et al., 2008).
Currently, the use of ctDNA detection in cancer therapy has been approved by the US Food and Drug
Administration as a treatment determinant (osimertinib or erlotinib) in non-small-cell lung carcinoma
(NSCLC) patients with an EGFRmutation in the event that a tumor biopsy cannot be performed (US
Food & Drug Administration, 2016). The application of ctDNA in cancer therapy is reliant on precise
February 2020 | Volume 11 | Article 1471182
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polymerase chain reaction (PCR)-based technologies, such as
droplet digital PCR (ddPCR) or amplification refractory
mutation system (ARMS)-PCR, and deep-sequencing
technologies; these techniques aid in distinguishing ctDNAs
from other normal cfDNAs within the plasma and enable
hotspot mutation detection within cancer driver genes (Taly
et al., 2013; Newman et al., 2014; Frenel et al., 2015; Azizi et al.,
2018). However, ctDNAs are usually present in low abundance
relative to the normally occurring cfDNAs derived from normal
cells, particularly in non-metastatic solid tumors (Tug et al., 2014;
Siravegna et al., 2017). Consequently, there is an urgent need to
reliably distinguish ctDNAs from normal cfDNA to improve the
accuracy of identifying driver gene mutations.

Recently, tumor-derived ctDNAs have been shown to vary in
size and are shorter than normal cfDNAs in healthy people
(Umetani et al., 2006; Thierry et al., 2010; Mouliere et al., 2011;
Mouliere et al., 2013). This trend was also observed during
pregnancy, with fetal cfDNA usually of a different fragment size
than the maternal cfDNA (Lun et al., 2008; Lo et al., 2010).
Furthermore, in one study examining ctDNA length distributions
in hepatocellular carcinoma (HCC) patients, copy number
aberrations were leveraged and showed that high-concentration
ctDNA fractions were more fragmented, while low-concentration
fractions were paradoxically longer (Jiang et al., 2015; Mouliere and
Rosenfeld, 2015; Jiang and Lo, 2016). In another study, ctDNAs
were found to be consistently shorter than normal cfDNA, in both
animal xenograft models and clinical plasma samples (Underhill
et al., 2016). Additionally, mutant ctDNA fragments from tumor
patients were always shorter than wild-type cfDNA fragments from
healthy donors, with mutant alleles more commonly having shorter
fragment lengths, something that could potentially be exploited to
improve ctDNA detection (Underhill et al., 2016; Hellwig et al.,
2018). Moreover, a later study confirmed that this size difference
could be exploited to enhance sensitivity when monitoring ctDNAs
and for noninvasive genomic analysis of various cancers (Mouliere
et al., 2018). However, few studies have examined the impact of
mutant allele frequency on the size distribution of ctDNA
fragments, and most studies were conducted in cancer patients
with relatively high mutant allele frequencies.

Thus, the aim of this study was to examine ctDNA fragment
distributions in patients with low mutant allele frequencies and
determine whether the ctDNA fragment length is affected by the
mutant allele frequency. This was accomplished by utilizing
blood samples from cancer patients with a variety of different
histological types and stages. Key driver gene mutation
frequencies were determined using deep-sequencing
technologies and ddPCR, and fragment length differences
between mutant ctDNAs and normal cfDNAs obtained from
the cancer patient samples were examined.
MATERIALS AND METHODS

Sample Collection
All 105 samples (male: 49.52%, female: 50.48%) were obtained
from lung cancer patients from Chifeng Municipal Hospital. All
Frontiers in Genetics | www.frontiersin.org 2183
patients provided informed written consent before de-
identification. The median age of the patients was 63.5 years
old (range from 36 to 85 years old). Our research was approved
by the Medical Research Ethics Committee of Chifeng Municipal
Hospital (Ethics [2018] No. 017).

Next-Generation Sequencing (NGS) Library
Preparation, Sequencing, and
Bioinformatics
Cell-free DNA was extracted using a QIAamp Circulating
Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The extracted DNA (20 ng/sample)
was then used to build libraries using Accel-NGS® 2S Plus DNA
Library Kits (96 reactions; Swift BioSciences, Ann Arbor, MI,
USA). Customized probes were obtained from Integrated DNA
Technologies (IDT, Skokie, IL, USA) and were used for
hybridization capture. All cfDNA libraries utilized a 38-hotspot
gene panel (Supplementary File) and were quantified using a
Universal Library Quantification Kit (Kapa Biosystems,
Wilmington, MA, USA) on an ABI 7500 Real-Time PCR
system (Applied Biosystems, Waltham, MA, USA). Sample
quality was evaluated using a high sensitivity DNA kit (Agilent
Technologies, Santa Clara, CA, USA) with an Agilent 2100
Bioanalyzer as per the manufacturer’s instructions. NGS with
fusion detection was performed using a NextSeq 500/550 High
Output v2 kit with a NextSeq 500 sequencer (Illumina, San
Diego, CA, USA) for 302 cycles, with standing paired-end reads
of 151 bp (average sequencing depth was ~2,164X, details in the
Supplementary File).

The FASTQ reads were collapsed into unique observations
based on barcodes using CASAVA (v1.8.2) software. Low-quality
and adapter-contaminated reads were removed from the raw
reads using Cutadapt (v1.12) and aligned to the Hg19 reference
genome using the Burrow-Wheeler Aligner for short-read
alignment (bwa aln; 0.7.12-r1039). Paired-end reads with
hotspots were extracted from the paired-end alignment
information (column 9th) in BAM format using Samtools
(v0.1.19-44428cd), and the corresponding insert size
information was extracted. Finally, the extracted paired-end
reads were aligned to the Hg19 reference genome again using
SOAP (2.21), and hotspot mutation fragment lengths and wild
fragment lengths were calculated with the alignment mismatch
information (column 11th) in the alignment files.

Digital Droplet PCR
EGFR-T790M, EGFR-L858R, BRAF-V600E, PIK3CA-E545K,
KRAS-G12C, and KRAS-G12V mutant allele frequencies were
determined using a Digital Droplet PCR system (Bio-Rad
Laboratories, Inc., Hercules, CA, USA), with a droplet size of 1
nL in a total reaction volume of 20 mL, with ~20 ng of cfDNA
library utilized. All primers and probes were synthesized by IDT
(Skokie, IL, USA; Table 1). Droplet counts were determined
using the QuantaSoft software (Bio-Rad).

For the PIK3CA-E545K (n = 1), KRAS-G12C (n = 3), KRAS-
G12V (n = 1), EGFR-T790M (n = 5), and EGFR-L858R (n = 1)
samples, amplified libraries were utilized prior to size selection to
February 2020 | Volume 11 | Article 147
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define gates for wild-type and mutation droplet populations.
Libraries were constructed using the obtained DNA (~20 ng) and
a Rapid DNA Lib Prep kit (ABclonal, Woburn, MA, USA). The
obtained libraries (~1.2 mg) were then separated using 2% agarose
gel electrophoresis and bands between 130–160 bp and 160–230
bp were extracted using a QIAquick Gel Extraction kit (Qiagen).
All of the selected fragment size libraries were then validated using
ddPCR as described above (Supplementary File).
Frontiers in Genetics | www.frontiersin.org 3184
RESULTS

Comparison of cfDNA Fragment Sizes in
Cancer Patient Plasma Samples
Blood samples were obtained from cancer patients with defined
driver gene hotspot mutations, including EGFR-T790M (n = 32),
EGFR-L858R (n = 28), BRAF-V600E (n = 13), PI3KCA-E545K
(n = 13), KRAS-G12C (n = 13), and KRAS-G12V (n = 6). The
cfDNA-sequencing libraries were analyzed by both NGS and
ddPCR to precisely detect the mutant allele frequencies of these
six hotspots in each cancer patient (Figure 1). Some hotspot
mutant allele frequencies were more variable, such as EGFR-
T790M (0.11–74.75%), EGFR-L858R (0.15–35.77%), PI3KCA-
E545K (0.10–21.67%), and KRAS-G12C (0.10–33.81%; Table 2).
Furthermore, some hotspot allele frequencies within these driver
genes were relatively low, including BRAF-V600E (0.10–0.30%)
and KRAS-G12V (0.11–1.26%; Table 2), which could be
explained by examining samples at different tumor stages and
of different histological types collectively. Next, the cfDNA-
sequencing libraries were sequenced, and size differences
between plasma ctDNA and normal cfDNA were compared.

Mutant Alleles Have a Shorter Fragment
Length Than the Wild-Type Alleles
In addition to examining cancer patient mutant allele
frequencies, whole cfDNA fragment length distributions were
globally observed. As expected, the mutant ctDNA fragments
were generally shorter than the normal cfDNAs (Figures 2 and
3). In patients with a low mutation frequency, the ctDNA
TABLE 1 | Primers and probes used in droplet digital PCR experiments.

Mutation Forward primer Reverse primer Wild probe Mutation probe

T790M GCCTGCTGGGCATCTG TCTTTGTGTTCCCGGACATAGTC VIC-
ATGAGCTGCGTGATGAG-
MGB-NFQ

FAM-
ATGAGCTGCATGATGAG-
MGB-NFQ

L858R GCAGCATGTCAAGATCACAGATT CCTCCTTCTGCATGGTATTCTTTCT VIC-
AGTTTGGCCAGCCCAA-
MGB-NFQ

FAM-
AGTTTGGCCCGCCCAA-
MGB-NFQ

V600E CATGAAGACCTCACAGTAAAAATAGGTGAT TGGGACCCACTCCATCGA VIC-
CTAGCTACAGTGAAATC-
MGB-NFQ

FAM-
TAGCTACAGAGAAATC-
MGB-NFQ

E545K CACTTACCTCTGACTCCATAGAAAATCTT AAAGCAATTACTACACGATATCCTCTCTC HEX-TCCTGCTCAGTGATT-
MGB-NFQ

FAM-CTCCTGCTTAGTGATT-
MGB-NFQ

G12 G12V AATTAGATGTATCGTCAAGGCACTCTT GCTGAAAATGACTGAATATAAACTTGTGG VIC-TACGCCACCAGCTC-
MGB-NFQ

FAM-TACGCCAACAGCTC-
MGB-NFQ

G12C FAM-TACGCCACAAGCTCT-
MGB-NFQ
February 2
FIGURE 1 | Experimental design flow.
TABLE 2 | Summary of the mutation frequencies based on next generation sequencing.

T790M L858R V600E E545K G12C G12V

Validation library number 32 28 13 13 13 6
Low mutation frequency 0.1–1% 16 11 13 11 4 5
Medium mutation frequency 1–10% 10 12 0 1 7 1
High-mutation frequency 10–100% 6 5 0 1 2 0
Mutation frequency distribution 0.11–74.75% 0.15–35.77% 0.10–0.30% 0.10–21.67% 0.10–33.81% 0.11–1.26%
020 | Volume 11
 | Article 147

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Liu
et

al.
ctD

N
A
Fragm

ent
Enrichm

ent

Frontiers
in

G
enetics

|
w
w
w
.frontiersin.org

February
2020

|
Volum

e
11

|
A
rticle

147
4

FIGURE 2 | Fragment length distributions of cfDNAs from 105 cancer patient blood samples.

185

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Liu et al. ctDNA Fragment Enrichment
fragment length was longer than the normal cfDNAs, such as
BRAF-V600E (0.10–0.30%). However, this trend was not
observed in the four other DNA fragment size distribution,
including EGFR-T790M (0.11–74.75%), EGFR-L858R (0.15–
35.77%), PI3KCA-E545K (0.10–21.67%), KRAS-G12V (0.11–
1.26%) or KRAS-G12C (0.10–33.81%; Figure 3).

Longer Fragment Lengths in Mutant
ctDNAs With a Low Mutation Frequency
Fragment size differences between cancer patient ctDNAs and
normal cfDNAs were further examined in conjunction with a
low, medium, or high mutant allele frequency. In fragments
associated with a low mutant allele frequency, the ctDNA
fragments were longer than the normal cfDNAs (Figure 4),
such as EGFR-T790M (0.22 and 0.21%). However, in ctDNAs
with a higher mutant allele frequency, such as EGFR-T790M
(74.75%), or a medium frequency, such as EGFR-T790M
(4.57%), fragment lengths were shorter than the normal
cfDNAs (Figure 5 and Table 3).

Low-Frequency Mutations Are Associated
With Large Fragment Sizes
Different fragment sizes were observed among the mutant
ctDNAs, including long ctDNA (longer than normal cfDNAs),
normal ctDNA (comparable to normal cfDNA lengths), and
short ctDNA (shorter than normal cfDNAs). Within these three
Frontiers in Genetics | www.frontiersin.org 5186
groups, the mutant allele frequency distributions were examined
and showed that a low mutation frequency was commonly
associated with a long ctDNA fragment length, while normal
and short ctDNAs were not (Figure 6).

Enrichment of Longer ctDNA Fragments
Could Improve the Detection of Low-
Frequency Mutations
After discovering that a low-frequency is associated with a longer
ctDNA fragment size, this study aimed to determine if enriching
longer cfDNA fragments could increase the mutation frequency in
blood samples with a low mutant allele frequency. In one patient
with a high frequency for EGFR-T790M (44.53%), cfDNA was
extracted and different fragment sizes were obtained. To further
detect the EGFR-T790M frequency, DNA libraries comprising two
different DNA fragment sizes were examined using ddPCR. The
EGFR-T790M frequency in a library with a fragment length
between 160 and 230 bp (42.20%) was lower than the library
with a fragment size between 130–160 bp (46.40%; Figure 7A).
This was consistent with the findings presented above. Conversely,
a cfDNA sample was obtained from a patient with a low EGFR-
T790M frequency (0.54%) and different fragment sizes were
collected and analyzed. In the library with fragment sizes
between 160–230 bp, the EGFR-T790M frequency was increased
(1.04%) when compared to the library with fragment sizes between
130–160 bp (0.30%; Figure 7B).
FIGURE 3 | Comparison of fragment length sizes between ctDNAs and normal cfDNAs.
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DISCUSSION

This study showed that a consistent fragment length difference
occurs when comparing ctDNAs and normal cfDNA, with the
mutant allele almost always associated with a shorter ctDNA
fragment size, which is consistent with previous findings (Jiang
et al., 2015; Underhill et al., 2016; Mouliere et al., 2018).
However, some mutant ctDNAs were found to have a longer
Frontiers in Genetics | www.frontiersin.org 7188
fragment size when compared to normal cfDNAs and were
associated with a low mutant allele frequency, which has not
been previously reported. Furthermore, this study showed that in
cancer patient plasma samples, the ctDNA fragment length is
associated with the mutant allele frequency and may even be
affected by it.

Here, blood samples were obtained from 105 patients that
contained different cancer driver gene mutations, such as NSCLC
FIGURE 5 | Fragment length distributions of cancer patient ctDNAs and normal cfDNAs with high, medium, or low EGFR-T790M mutant allele frequencies.
TABLE 3 | Fragment length distributions of cancer patient ctDNAs and normal cfDNAs with high, medium, or low EGFR-T790M mutant allele frequencies.

Mutation type NGS (%) ddPCR (%) Description Mutation peak Wild peak Mutation fragment median Wild fragment median

T790M 74.75 69.33 Short 146 171 164 172
T790M 4.57 5.55 Long 169/171 165 169.5 169
T790M 0.22 0.26 Other 158/191 169 191 168
V600E 0.23 0.17 Long 214 167 214 168
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FIGURE 6 | Mutant allele frequency distributions based on ctDNA fragment length. (A) Relationship between the mutation fragment size peak and the mutation
frequency. (B) Relationship between the median mutation fragment size peak and the mutation frequency.
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FIGURE 7 | Further validation of an association between fragment size and frequency using ddPCR. Examination of different fragment size libraries from a patient
with (A) a high EGFR-T790M frequency (44.53%) and from a patient with (B) a low EGFR-T790M frequency (0.54%) using ddPCR.
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patients with an EGFR gene mutation and colorectal cancer
patients with a BRAF mutation. In general, mutant ctDNA
fragments were found to be much shorter than normal cfDNA
fragments regardless of the histological type or driver gene
mutation. However, ctDNA fragments with a low mutant allele
frequency were found to be longer than normal cfDNA
fragments. In another study, longer mutant ctDNA fragments
were also detected in cancer patient blood samples, but this
phenomenon could not be explained at the time (Mouliere et al.,
2018). The findings presented herein may partially explain the
origin of these longer mutant ctDNA fragments.

In a previous study examining HCC plasma samples, ctDNAs
with low fractional concentrations were also found to have a
longer size distribution relative to the healthy controls (Jiang
et al., 2015), which is similar to the observations in this study.
However, the previous study only compared fragment length
differences between cancer patients and healthy donors, and did
not distinguish mutant ctDNA fragments from normal cfDNAs
due to experimental design limitations. Taken together, these
findings could suggest that early-stage tumors tend to release
longer ctDNA fragments at a low-frequency, but this hypothesis
requires further examination.

Mutant ctDNA fragments with a low allele frequency are hard
to be accurately detected. Here, two advanced technologies to
detect mutant ctDNA fragments and monitor mutant allele
frequency were employed to overcome this obstacle. The
cfDNA fragment sizes were accurately determined using deep-
sequencing technologies, and the mutant allele frequencies were
further confirmed using ddPCR. However, even these advanced
technologies are susceptible to false positives.

Furthermore, the lost enrichment phenomenon of short
fragments observed in this study may be related to factors such
as the designed probe size (120 bp), cfDNA purification, and
library construction. Moreover, the findings presented herein
indicate that size selection can further improve the ctDNA
detection rate and accuracy. Additionally, it would seem that
when constructing a ctDNA library for early-stage cancer
patients, a larger DNA fragment size (> 167 bp) should be
enriched, while in later stages, enrichment of shorter DNA
fragment size (< 167bp) is more beneficial.

In summary, this study demonstrates that plasma ctDNAs are
generally shorter than normal cfDNAs. However, for cancer
patients with a low mutant allele frequency or early tumor stage,
mutant ctDNA fragments are longer than normal cfDNAs. These
findings may potentially facilitate the accurate detection of cancer
gene mutations when utilizing liquid biopsies, and improve the
application of ctDNA detection in early cancer diagnoses.
Frontiers in Genetics | www.frontiersin.org 10191
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Glioblastoma (GBM) is one of the most common and aggressive primary adult brain
tumors. Tumor heterogeneity poses a great challenge to the treatment of GBM, which is
determined by both heterogeneous GBM cells and a complex tumor microenvironment.
Single-cell RNA sequencing (scRNA-seq) enables the transcriptomes of great deal of
individual cells to be assayed in an unbiased manner and has been applied in head
and neck cancer, breast cancer, blood disease, and so on. In this study, based on
the scRNA-seq results of infiltrating neoplastic cells in GBM, computational methods
were applied to screen core biomarkers that can distinguish the discrepancy between
GBM tumor and pericarcinomatous environment. The gene expression profiles of GBM
from 2343 tumor cells and 1246 periphery cells were analyzed by maximum relevance
minimum redundancy (mRMR). Upon further analysis of the feature lists yielded by the
mRMR method, 31 important genes were extracted that may be essential biomarkers
for GBM tumor cells. Besides, an optimal classification model using a support vector
machine (SVM) algorithm as the classifier was also built. Our results provided insights of
GBM mechanisms and may be useful for GBM diagnosis and therapy.

Keywords: glioblastoma biomarkers, scRNA-seq, mRMR method, support vector machine, pericarcinomatous
environment

INTRODUCTION

Glioblastoma (GBM), with an annual incidence of 3.19 per 100,000, maintains the most common
and aggressive primary adult brain tumor (Stupp et al., 2007, 2017; Chinot et al., 2014;
Gilbert et al., 2014; Ostrom et al., 2016). Currently, the standard therapeutic regimen has been
established, including surgical resection, followed by radiotherapy with concurrent chemotherapy
(temozolomide), then followed by maintenance therapy (temozolomide for 6–12 months) (Stupp
et al., 2005). However, the diffuse nature of GBMs makes it invariably recur after treatment,
rendering local therapies invalid, because the migrating GBM cells outside of the neoplasm core are
usually unaffected by local therapies and hence cause recurrence of GBMs (Darmanis et al., 2017).
The mean disease-free survival is just over 6 months and the mean overall survival also remains
gloomy, with an approximately 25% 2-year survival rate after diagnosis and a 5–10% 5-year survival
rate (Stupp et al., 2005, 2017; Das and Marsden, 2013).

Tumor heterogeneity poses a great challenge to the treatment of GBM, which is determined by
both heterogeneous GBM cells and a complex tumor microenvironment. It is critical important
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for researchers to understand how different types of GBM cells
interact with neoplasm cells through profiling of different types
of cell from cell population in paraneoplastic environment, as
well as identifying the lineage and phenotypes (Darmanis et al.,
2017). Verhaak et al. (2010) has proved bulk tumor sequencing
methods were useful in generating classification schemas of
GBM subtypes, but the heterogeneity of GBM was not unveiled
in essence (Cancer Genome Atlas Research Network, 2008).
Until recently, RNA profiling was limited to ensemble-based
approaches, averaging over bulk cell populations. Therefore, the
advent of single-cell RNA sequencing (scRNA-seq) enables the
transcriptomes of great deal of individual cells to be assayed
in an unbiased manner (Stegle et al., 2015) and has been
applied in head and neck cancer (Puram et al., 2017), breast
cancer (Bajikar et al., 2017), blood disease (Zhao et al., 2017),
and so on. Patel et al. (2014) profiled 430 cells from five
GBM patients using scRNA-seq and described inter-patient
variation and molecular diversity of tumor cells within individual
GBM patients. The diversities of GBM cells within tumors
are responsible for cancer progression and finally result in
treatment failure.

Currently, in order to improve future treatment options,
an increasing number of researchers have focused on the
targeted agents or genes (Liu et al., 2013; Xiao et al., 2014;
Li et al., 2018). Furnari et al. (2007) have identified genetic
molecular mechanisms in GBM patients: (1) dysregulation of
growth factor signaling through amplification and mutational
activation of receptor tyrosine kinase (RTK) genes; (2) activation
of the phosphatidyl inositol 3-kinase (PI3K) pathway; and (3)
deactivation of the p53 and retinoblastoma tumor suppressor
pathways. Moreover, four distinct GBM subclasses, including
neural, proneural (PGFRA/IDH1 events), classical (focal EGFR
events), and mesenchymal (NF1 mutation and loss), were
defined by gene expression studies from The Cancer Genome
Atlas (TCGA) (Verhaak et al., 2010), which also found the
majority of GBM neoplasms had abnormalities in the pathways
(RB, TP53, and RTK) through projecting copy number and
mutation data on these pathways, revealing that this is a
crucial step for GBM pathogenesis. Apart from such researches
focused on tumor or microenvironment, many studies analyzed
the gene expression of immune cells in GBM via scRNA-
seq. Muller et al. (2017) identified 66 new gene sets which
can be applied as biomarkers (such as P2RY12, CD49D,
and HLA-DRA) to distinguish the different lineages of the
macrophage cell subsets.

In this study, based on the scRNA-seq results of infiltrating
neoplastic cells in GBM, computational methods were applied
to screen core biomarkers that can distinguish the discrepancy
between GBM tumor and pericarcinomatous environment. The
gene expression profiles of GBM from 2343 tumor cells and 1246
periphery cells were analyzed by maximum relevance minimum
redundancy (mRMR) (Peng et al., 2005). Upon further analysis
of the feature lists yielded by the mRMR method, 31 important
genes were extracted that may be essential biomarkers for GBM
tumor cells. Besides, an optimal classification model using a
support vector machine (SVM) algorithm (Ding and Dubchak,
2001) as the classifier was also built.

MATERIALS AND METHODS

The Single Cell Gene Expression Profiles
of Tumor and Surrounding Tissues
We download the single cell gene expression profiles of 2343
cells of tumor core and 1246 cells of surrounding tissue from
Gene Expression Omnibus (GEO) with accession number of
GSE84465 (Darmanis et al., 2017). 23,460 genes were measured
using Illumina NextSeq 500. Within each sample, we counted
the number of expressed genes, i.e., the number of genes with
mapped reads. The average number of expressed genes in each
sample was 2,581. Our goal is to discriminate the 2343 tumor cells
(positive samples) and 1246 surrounding cells (negative samples).

The mRMR Ranking of Discriminative
Genes
There have been many statistics methods for identifying the
differentially expressed genes (DEGs). But these methods did not
consider the relationships between genes. Usually, the number of
DEGs was too large to apply as biomarker. Therefore, we adopted
the information theory-based mRMR (minimal Redundancy
Maximal Relevance) method (Peng et al., 2005) to overcome this
problem. The mRMR method not only considers the associations
between genes and samples, but also the redundancy between
genes. If several genes are similar, only the most representative
gene will be selected. This approach has been proven to be
effective and has been widely used for many biomedical feature
selection problems (Niu et al., 2013; Zhao et al., 2013; Zhou et al.,
2015; Zhang et al., 2016; Liu et al., 2017), especially in single cell
RNA-Seq analysis (Zhang et al., 2019). The sample size of single
cell data was large and the gene expression was spare. It was easy
to get too many redundant significant genes using traditional
statistical based method, such as t-test. Therefore, the mRMR
was suitable for analyzing single cell data to get small number of
non-redundant biomarkers.

Let’s describe the method mathematically. All genes, selected
genes, to be selected genes can be represented as �, �s, and �t ,
respectively. The relevance of gene g from �t with tissue type t
can be measured with mutual information (I) (Sun et al., 2012;
Huang and Cai, 2013):

D = I(g, t). (1)

And the redundancy R of the gene g with the selected genes
in �s are

R =
1
m

 ∑
gi∈�s

I(g, gi)

 (2)

The goal of this algorithm is to get the gene gj from �t that has
maximum relevance with tissue type t and minimum redundancy
with the selected genes in �s, i.e., maximize the mRMR function

max
gj∈�t

I(gj, t)−
1
m

 ∑
gi∈�s

I(gj, gi)

 (j = 1, 2, . . . , n) (3)
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The evaluation procedure will be continued for N rounds, and all
the genes will be ranked as a list

S = {g′1, g
′
2, . . . , g

′

h, . . . , g
′
N, } (4)

The index h reflects the trade-off between relevance with tissue
type and redundancy with selected genes. The smaller index h is,
the better discriminating power the gene has.

The Single Cell GBM Biomarker
Optimization
Based on the top 100 mRMR genes, we constructed 100 SVM
classifiers and applied an incremental feature selection (IFS)
method (Jiang et al., 2013; Li et al., 2014; Shu et al., 2014;
Zhang et al., 2014, 2015) to identify the optimal number of
genes as biomarker. The svm function from R package e10171
was used to implement the SVM method. Each candidate gene
set Sk = {g′1, g

′
2, . . . , g

′

k}(1 ≤ k ≤ 100) included the top k genes
in the mRMR list.

We used leave-one-out cross validation (LOOCV) (Cui et al.,
2013; Yang et al., 2014) to evaluate the prediction performance
of each SVM classifier. During LOOCV, all of the N samples
were tested one-by-one. In each round, one sample was used for
testing of the prediction model trained with all the other N−1
samples. AfterN rounds, all samples were tested one time, and the
predicted tissue types were compared with the actual tissue types.

Since the positive and negative sample sizes were imbalance
and Mathew’s correlation coefficient (MCC) can consider both
sensitivity and specificity (Huang et al., 2015), MCC was used in
IFS optimization. MCC can be calculated as follows:

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(5)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively.

Based on the LOOCV MCC of each candidate gene set, an IFS
curve can be plotted. The x-axis denoted the number of top genes
that were used in the SVM classifier, and the y-axis denoted the
LOOCV MCCs of the SVM classifiers. Based on the IFS curve,
we can choose the right number of genes which had a good
prediction performance as final biomarkers.

RESULTS AND DISCUSSION

The Discriminative Importance of Genes
We applied mRMR algorithm to evaluate the discriminative
importance of features iteratively. We want to find the features
that were strongly associated with samples groups and were
not redundant with other selected features. Using the mRMR
method, we identified the top 100 most important genes. These
genes were listed in Supplementary Table S1.

The Optimal GBM Biomarker Genes
Selected With IFS Method
After we got the top 100 mRMR genes, we still did not know
how many genes should be selected. To optimize the selected

biomarker genes, we adopted IFS method. Each time, we added
one feature into the previous feature set and got a new feature
set. Then SVM classifiers were built to predict each sample’s labels
during LOOCV. The IFS curve with the number of genes as x-axis
and the prediction performance (LOOCV MCC) as y-axis were
plotted in Figure 1. The peak MCC was 0.812 when 31 genes were
used. These 31 genes were selected as optimal GBM biomarker
genes. The 31 genes were listed in Table 1. The confusion matrix
of the 31 genes were given in Table 2. The sensitivity, specificity,
and accuracy were 0.948, 0.855, and 0.915, respectively.

Since the tumor tissues are usually a mixture of tumor cells and
normal cells, the tumor purity may cause the misclassifications.
To check this, Figures 2A,B showed the t-distributed stochastic
neighbor embedding (t-SNE) plots of predicted GBM cells and
predicted non-GBM cells, respectively. In Figure 2A, it can be
seen that the false positive samples (red dots) and the true
positive samples (black dots) were mixed and they were difficult
to classify. Similarly, in Figure 2B, it can be seen that the false
negative samples (black dots) and the true negative samples (red
dots) were mixed. These t-SNE plots suggested that the GBM
tissues may contain non-GBM cells and the non-GBM tissues
may contain GBM cells, but most cells from the corresponding
tissue were similar and the machine learning algorithm we used
can get the robust single cell biomarkers even when there were
tissue purity issues.

The Biological Functions of the Selected
Genes
Upon analysis by the mRMR method, 31 important genes were
extracted that may be essential biomarkers of GBM. We did Gene

FIGURE 1 | The IFS curve of the top 100 mRMR genes. The x-axis was the
number of genes and the y-axis was the prediction performance, i.e., LOOCV
MCC. The peak MCC was 0.812 when 31 genes were used. These 31 genes
were selected as optimal GBM biomarker genes.
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TABLE 1 | The 31 selected GBM biomarker genes.

Rank Gene Rank Gene

1 TMSB4X 17 VIM

2 IPCEF1 18 ATP1A2

3 MTSS1 19 RPL41

4 S100A10 20 EGR3

5 HTRA1 21 OMG

6 DHRS9 22 LDHA

7 TPI1 23 P2RY12

8 SNX22 24 SPOCK1

9 FCGBP 25 NAMPT

10 TMSB10 26 C1QL2

11 CCL3 27 PTN

12 SLC6A1 28 CCL4

13 SMOC1 29 PDZD2

14 SEC61G 30 LGALS1

15 TGFBI 31 CLDN10

16 CDR1

TABLE 2 | The confusion matrix of the 31 selected genes.

Predicted GBM Predicted non-GBM

Actual GBM 2220 123

Actual non-GBM 181 1065

Ontology (GO) enrichment analysis of these 31 genes. The GO
enrichment results were given in Table 3. It can be seen that
their main function was cell adhesion and their main subcellular
location was extracellular.

TABLE 3 | The GO enrichment results of the 31 selected genes.

GO term FDR P-value Genes

GO:0007155 cell
adhesion

0.0068 8.26E−07 EGR3, LGALS1, OMG, PTN,
S100A10, CCL4, SPOCK1,
TGFBI, CLDN10, MTSS1, PDZD2,
P2RY12

GO:0022610
biological
adhesion

0.0068 8.74E−07 EGR3, LGALS1, OMG, PTN,
S100A10, CCL4, SPOCK1,
TGFBI, CLDN10, MTSS1, PDZD2,
P2RY12

GO:0031012
extracellular matrix

0.0029 1.57E−06 LGALS1, OMG, HTRA1, PTN,
SPOCK1, TGFBI, VIM, SMOC1

GO:0005615
extracellular space

0.0107 1.56E−05 LGALS1, OMG, HTRA1, PTN,
CCL3, CCL4, SPOCK1, TGFBI,
TMSB4X, TPI1, NAMPT

GO:0005576
extracellular region

0.0107 1.87E−05 ATP1A2, LDHA, LGALS1, OMG,
HTRA1, PTN, S100A10, CCL3,
CCL4, SPOCK1, TGFBI,
TMSB4X, TPI1, VIM, FCGBP,
NAMPT, PDZD2, SMOC1, C1QL2

GO:0005578
proteinaceous
extracellular matrix

0.0107 2.30E−05 LGALS1, OMG, PTN, SPOCK1,
TGFBI, SMOC1

GO:0044421
extracellular region
part

0.0108 2.89E−05 ATP1A2, LDHA, LGALS1, OMG,
HTRA1, PTN, S100A10, CCL3,
CCL4, SPOCK1, TGFBI,
TMSB4X, TPI1, VIM, FCGBP,
NAMPT, SMOC1

We compared the 31 genes with reported GBM signatures in
GeneSigDB (Culhane et al., 2012) and found that the 31 genes
were significantly overlapped with a signature called “Human

FIGURE 2 | The t-SNE plots of predicted GBM cells and predicted non-GBM cells. (A) The t-SNE plots of predicted GBM cells. It can be seen that the false positive
samples (red dots) and the true positive samples (black dots) were mixed and they were difficult to classify. (B) The t-SNE plots of predicted non-GBM cells. It can be
seen that the false negative samples (black dots) and the true negative samples (red dots) were mixed. These t-SNE plots suggested that the GBM tissues may
contain non-GBM cells and the non-GBM tissues may contain GBM cells, but most cells from the corresponding tissue were similar and the machine learning
algorithm we used can get the robust single cell biomarkers even when there were tissue purity issues.
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Glioblastoma_Morandi08_22genes” which were from Table 1
of Morandi et al. (2008): the 22 up-regulated genes following
camptothecin (CPT) treatment in both U87-MG and DBTRG-05
cells. The hypergeometric test p-value was 0.0157.

Among the 31 genes, several of them plays roles in
tumor metastasis. Thymosin β4 (TMSB4X/Tβ4) is associated
with tumor metastasis and progression which plays a role
in cell proliferation, migration, and differentiation through
a TGFβ/MRTF Signaling Axis (Morita and Hayashi, 2018).
TMSB4X expression was associated with cancers in a stage- and
histology-specific manner and could be an effective prognostic
parameter and prognostic index. Thus far, the relationship
between TMSB4X and GBM remain unknown. IPCEF1 is the
C-terminal half of CNK3 which is required for HGF-dependent
Arf6 activation and migration during cancer metastasis (Attar
et al., 2012). MTSS1 plays an important role in cancer
metastasis. Previous researches indicated that MTSS1 as a
potential tumor biomarker and its reduced expression associated
with bad prognosis in many cancers. In GBM, MTSS1was
reported as a potential tumor suppressor and prognostic
biomarker which could suppress cell migration and invasion
(Zhang and Qi, 2015).

Several genes can facilitate cancer progression. S100A10 is
a calcium binding protein which is found to be significantly
correlated with poor survival in patients with gliomas
(Sethi et al., 2012). S100A10 has been involved in cancer
progression, but the unique function is not well understood
(O’Connell et al., 2010). HTRA1 encodes a ubiquitously
expressed serine protease with prominent expression in the
vasculature. Inhibition of HTRA1 could deregulate angiogenesis
in the tumor stroma which plays an important role in
tumor progression (Chien et al., 2006; He et al., 2010;
Klose et al., 2018).

There are several other reported tumor genes. DHRS9
is a member of the short-chain dehydrogenases/reductases
(SDR) family. Recent research found that SDR family members
have been involved in tumors (Hu et al., 2016). TPI1
encodes an enzyme, consisting of two identical proteins, which
catalyzes the isomerization of glyceraldehydes-3-phosphate
(G3P) and dihydroxy-acetone phosphate (DHAP) in glycolysis
and gluconeogenesis. TPI1 was down-regulated in response to
LLL12 treatment and validated using immunoblot (Jain et al.,
2015). It may serve as potential therapeutic targets in GBM
(Jain et al., 2015).

CONCLUSION

Glioblastoma is the most aggressive and incurable primary brain
cancer in adults. The most common survival time after diagnosis
is 12–15 months, with 5-year survival rate <5%. Symptoms of
GBM are non-specific at early stage and the cause of GBM
remains elusive. We analysis the data from 2343 tumor cells and
1246 periphery cells using mRMR and IFS method to characterize
infiltrating tumor cells, and to define the cellular diversity.
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Atrial fibrillation (AF) is one of the most prevalent heart rhythm disorder. The causes of
AF include age, male sex, diabetes, hypertension, valve disease, and systolic/diastolic
dysfunction. But on molecular level, its mechanisms are largely unknown. In this study,
we collected 10 patients with persistent atrial fibrillation, 10 patients with paroxymal
atrial fibrillation and 10 healthy individuals and did Methylation EPICBead Chip and RNA
sequencing. By analyzing the methylation and gene expression data using machine
learning based feature selection method Boruta, we identified the key genes that were
strongly associated with AF and found their interconnections. The results suggested that
the methylation of KIF15 may regulate the expression of PSMC3, TINAG, and NUDT6.
The identified AF associated methylation-expression regulations may help understand
the molecular mechanisms of AF from a multi-omics perspective.

Keywords: atrial fibrillation, methylation, multi-omics, feature selection, classification

INTRODUCTION

Atrial fibrillation (AF), one of the most prevalent heart rhythm disorders, is a potential cause of
heart failure and ischemic stroke with high morbidity and mortality (Ogawa et al., 2017; Asmarats
et al., 2019). The cause of AF is multifactorial which include age, male sex, diabetes, hypertension,
valve disease, and systolic/diastolic dysfunction (Schnabel et al., 2009; Lip et al., 2013; Voukalis
et al., 2016). Depends on how often atrial fibrillation occurs and how it responds to treatment, AF is
roughly divided into two major subtypes-paroxysmal atrial fibrillation (PAF) and persistent atrial
fibrillation (PeAF). In the treatment of AF, drugs were the first choice, non-drug therapies were
used only when drug therapy failed or patients could not tolerate the medication. In contrast to the
extensive knowledge of etiology, the underlying mechanism of AF remains elusive. Further study of
the potential mechanisms of AF could provide novel strategies for the treatment and management
to increase quality of life and reduce economic burden of social (Chugh et al., 2001).
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With the development of next generation sequencing (NGS)
technologies, growing evidence have demonstrated that AF is a
disease with a significant genetic contribution. Previous studies
have filtered novel genetic variants and candidate genes including
transcriptional factor genes (PITX2, PRRX1, ZFHX3, NKX2.5,
TBX5), ion channel genes (KCNN3, HCN4, CACNA1C, SCN5A,
KCNQ1, KCNH2), and caveolin genes (CAV1 and CAV2) (Ellinor
et al., 2010; Olesen et al., 2014; Sinner et al., 2014; Ma et al., 2016;
Nielsen et al., 2018). However, these genes explain only a small
fraction of the biology and genetic underpinnings of AF.

Epidemiological studies have demonstrated that genetic,
environmental, behavioral, and clinical factors contribute to
AF pathogenic mechanism (Zhong et al., 2016). Emelia J.
B performed genome-wide methylation using whole blood
samples from 183 prevalent AF and 220 incident AF cases.
They examined the association between DNA methylation and
GWAS loci, suggesting DNA methylation might be a possible
mechanism through which AF-specific genetic variations affect
gene regulation (Lin et al., 2017). To date, only a few studies
have investigated differential DNA methylation as a predictor
biomarker at specific candidate loci that were previously
associated with AF.

Therefore, we applied DNA methylation profiling study to
identify the likely rare damaging variants and putative candidate
genes from 10 patients with persistent atrial fibrillation (PeAF),
10 patients with paroxymal atrial fibrillation (PAF) and 10
healthy individuals. Interestingly, we identified top 10 genes
(KIF15, ABCA3, FOXG1, VGF, PDE4D, EIF3C, CNTNAP5,
SHOX2, VGF, TRIM59) as functional candidate genes and
the expression level are significantly increased in PeAF and
PAF patients than control. Given the importance of DNA
methylation to gene expression, we investigated the gene
expression of the same participants using RNA sequencing.
We also defined top 10 genes (EPN3, EMD, SMCO4, F2RL2,
TMED1, PSMC3, PDZD11, NUDT6, TINAG, GALNT5) in gene
expression data and the expression pattern of these genes
was significantly different between PeAF and PAF. These
results have improved our understanding of the underlying
mechanism and offer new insights into the potential pathway
of AF, which could provide novel therapeutic option for
this disease.

MATERIALS AND METHODS

Atrial Fibrillation Patients
Ten patients with paroxymal atrial fibrillation (g1), 10 patients
with persistent atrial fibrillation (continuous atrial fibrillation
lasting more than 12 months) (g2) and 10 healthy individuals
(g3) were enrolled in this study (Table 1). All patients were
subjected to detailed medical evaluation, which included medical
history, physical examination, electrocardiography (ECG), and
echocardiography. Patients with chronic heart failure, coronary
heart disease, cardiomyopathy, hyperthyroidism or chronic
pulmonary heart disease were excluded.

The study was conducted in accordance with the Declaration
of Helsinki, and the protocol used to collect human heart

tissue was approved by the Ethics Committee of Shanghai East
Hospital (DI: 0402017).

Written informed consents to participate in this study
were provided by all the enrolled patients before operation
of fibrillation ablation. The left atrial appendage tissues
which were abandoned during isolated surgical ablation were
collected. Normal left atrial appendages were collected from
healthy male donors.

The Methylation Profiles
The DNA methylation status of 850K probes in the 30 samples
was measured using Methylation EPICBead Chip. The raw data
was quality controlled and preprocessed using R/Bioconductor
package minfi1 (Aryee et al., 2014). The beta value ranged
from 0 to 1 was calculated to represent how each position
was methylated. 1 meant high methylation and 0 meant
low methylation.

The RNA Sequencing Profiles
The total RNAs were extracted using RNeasy Mini Kit
(Cat#74106, Qiagen) and the RNA integrity was checked using
Agilent Bioanalyzer 2100 (Agilent technologies, Santa Clara,
CA, United States). Qualified total RNA was further purified
by RNAClean XP Kit (Cat A63987, Beckman Coulter Inc.,
Kraemer Boulevard, Brea, CA, United States) and RNase-Free
DNase Set (Cat#79254, QIAGEN, GmBH, Germany). Pair-end
sequencing reads were generated using Illumina data collection
software. First, the reads were mapped onto human reference
genome GRCh38 using Hisat2 (version:2.0.42) (Kim et al., 2015).
Then, Stringtie (version:1.3.03) (Pertea et al., 2015) was used to
calculate the FPKM (Fragments Per Kilobase of exon model per
Million mapped reads).

Feature Selection Algorithm
There were 866,091 methylation probes and 50,868 RNAs.
The number of features were extremely large. It was difficult
to select key features using traditional statistical methods.
Therefore, we adopted the latest machine learning based feature
selection method Boruta to get the key methylation probes
and RNAs.

Boruta (Kursa and Rudnicki, 2010) is a feature selection
method based on random forest. It can select sample group
relevant features effectively. First, it will shuffle the features
to create many permuted datasets. Then, it will evaluate
the importance score of each feature in the original actual
dataset and permuted datasets. Then, it will compare the actual
importance score with permuted scores and find the features
with significantly higher actual importance scores than permuted
scores. After multiple iterations, it will select all the sample
group relevant features. The python code from https://github.
com/scikit-learn-contrib/boruta_py was used to apply the Boruta
feature selection algorithm.

1https://bioconductor.org/packages/minfi/
2http://ccb.jhu.edu/software/hisat2/
3http://ccb.jhu.edu/software/stringtie/
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TABLE 1 | Demographic characteristics of AF patients.

Coronary

Age Weight Height Diabetes angiography LVEF Left atrial Duration of

No. (years) Gender (Kg) (cm) Smoking Hypertension mellitus or CTA (%) diameter (mm) AF (years)

1 69 Male 76 169 No Yes No Negative 70 40 –

2 63 Male 64 170 No No No Negative 59 46 –

3 63 Male 70 170 No No No Negative 66 39 –

4 69 Male 67 173 No Yes No Negative 67 46 –

5 69 Male 75 165 No No No Negative 70 36 –

6 61 Male 76 176 No Yes Yes Negative 60 42 –

7 64 Male 52 168 Yes No No Negative 64 40 –

8 64 Male 71 181 No Yes Yes Negative 63 39 –

9 61 Male 87 167 Yes Yes No Negative 62 37 –

10 66 Male 82 173 No Yes No Negative 63 42 –

11 63 Male 86 176 No Yes No Negative 57 46 2.5

12 63 Male 80 178 No No No Negative 68 55 3

13 64 Male 70 170 No No No Negative 67 41 4

14 64 Male 84 164 No Yes No Negative 55 48 2

15 65 Male 73 169 No Yes No Negative 69 55 3.5

16 66 Male 66 168 No Yes No Negative 64 45 4

17 67 Male 80 175 No Yes Yes Negative 59 47 2.5

18 67 Male 73 165 Yes Yes No Negative 59 47 3

19 63 Male 61 164 No No No Negative 73 49 2

20 67 Male 90 178 No Yes No Negative 70 58 2.5

LVEF, left ventricular ejection fraction; AF, atrial fibrillation; CTA, CT angiography.

Classification Predictor
To evaluate how well the selected features can classify
the samples, we built an SVM (Support Vector Machine)
classifier using the methylation data and another RNA-Seq
data based SVM classifier. The svm function in R package
e101714 (Chang and Lin, 2011) was used to apply the SVM
classification algorithm.

LOOCV (leave-one-out cross validation) was used to
objectively evaluate the classification performance. Each time,
one sample was treated as test sample while all the other samples
were used to train the model. After 30 rounds, all samples had
been tested once and the overall accuracy was calculated based
on the confusion matrix. In confusion matrix, the actual sample
groups were compared with predicted sample groups.

RESULTS

The Key Methylation Features Identified
With Boruta
We ran Boruta feature selection algorithm on the methylation
data and got 10 key methylation features. These 10 key
methylation features were listed in Table 2. The probes were
annotated to genome positions (Genome Build 37) and genes
using the official annotation file from Illumina. Sometime, one
position may be associated with multiple genes. Therefore, the
10 methylation probes can be mapped onto 15 gene symbols.

4https://CRAN.R-project.org/package=e1071

We checked the GO annotation of these genes and found that
cg16703882 (SHOX2) was associated with GO:0007507: heart
development which was closely relevant to AF.

We plotted the heatmap of these 10 key methylation features
in Figure 1. It can be seen that most of the 10 patients with
paroxymal atrial fibrillation (g1), 10 patients with persistent atrial
fibrillation (g2) and 10 healthy individuals (g3) were cluster into
the right groups.

The Key Gene Expression Features
Identified With Boruta
Similarly, we ran Boruta feature selection algorithm on the RNA-
Seq gene expression data and got 10 key gene expression features.

TABLE 2 | The 10 key methylation features identified by Boruta.

ILMNID Chromosome Position Strand UCSC Ref gene name

cg00702638 3 44803293 R KIF15; KIAA1143

cg02331561 16 2391081 F ABCA17P; ABCA3

cg02991338 14 29236017 R FOXG1

cg04084157 7 100809049 F VGF

cg05995159 5 59325256 R PDE4D

cg06357615 16 28403195 R MIR6862-2; MIR6862-1;
EIF3CL; EIF3C

cg11344566 2 124782885 F CNTNAP5

cg16703882 3 157823479 R SHOX2

cg21186299 7 100808810 R VGF

cg26856080 3 160167746 R TRIM59
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FIGURE 1 | The heatmap of the key methylation features. The 30 samples
were from three groups: 10 patients with paroxymal atrial fibrillation (g1), 10
patients with persistent atrial fibrillation (g2), and 10 healthy individuals (g3). It
can be seen that most samples were cluster into the right groups.

The 10 key gene expression features were given in Table 3. We
also plotted their heatmap in Figure 2. The clusters were also
largely correct.

The Classification Performance of
Methylation and Gene Expression
From Figures 1, 2, we can see that both methylation and
gene expression features can correctly cluster most samples.
But we would like to evaluate their performance objectively
and quantitatively. Therefore, we applied LOOCV to test the
SVM classifiers of methylation and gene expression features. The
confusion matrixes of methylation features and gene expression
features were listed in Tables 4, 5, respectively.

From Table 3, we can see that the AF patients (g1 + g2)
and healthy individuals (g3) were perfectly classified using the
methylation features, but the methylation data did not have great
performance on classifying the subtype of AF (g1 and g2). From
Table 4, we can see that the two subtype of AF, paroxysmal atrial
fibrillation (g1) and persistent atrial fibrillation (g2), had very
different gene expression pattern. In other words, the methylation
data and gene expression data complement each other. The
methylation data can be used to predict the AF and the gene
expression data can be used to classify the subtypes of AF.

FIGURE 2 | The heatmap of the key gene expression features. The 30
samples were from three groups: 10 patients with paroxymal atrial fibrillation
(g1), 10 patients with persistent atrial fibrillation (g2), and 10 healthy individuals
(g3). It can be seen that most samples were cluster into the right groups.

TABLE 4 | The confusion matrix of key methylation features.

Predicted g1 Predicted g2 Predicted g3

Actual g1 8 2 0

Actual g2 3 7 0

Actual g3 0 0 10

TABLE 5 | The confusion matrix of key gene expression features.

Predicted g1 Predicted g2 Predicted g3

Actual g1 9 0 1

Actual g2 0 9 1

Actual g3 1 0 9

We checked the wrongly predicted samples in Tables 3, 4.
They were different. Within the 30 samples, 22 samples had
the same predicted labels by expression and methylation. All
these 22 samples were correctly predicted. For the 8 inconsistent
samples between expression and methylation predictions, at least
one of the two predictions (the expression-based prediction
and the methylation-based prediction) was correct. In other
words, all the samples can be corrected classified based on either
expression or methylation. The expression-based prediction and
the methylation-based prediction were complementary.

TABLE 3 | The 10 key gene expression features identified by Boruta.

Gene ID Name Description GRCh38 locus

ENSG00000049283 EPN3 Epsin 3 17:50532543-50543750

ENSG00000102119 EMD Emerin X:154379197-154381523

ENSG00000166002 SMCO4 Single-pass membrane protein with coiled-coil domains 4 11:93478472-93543508

ENSG00000164220 F2RL2 Coagulation factor II (thrombin) receptor-like 2 5:76615482-76623434

ENSG00000099203 TMED1 Transmembrane p24 trafficking protein 1 19:10832438-10836318

ENSG00000165916 PSMC3 Proteasome 26S subunit, atpase 3 11:47418769-47426473

ENSG00000120509 PDZD11 PDZ domain containing 11 X:70286595-70290514

ENSG00000170917 NUDT6 Nudix hydrolase 6 4:122888697-122922968

ENSG00000137251 TINAG Tubulointerstitial nephritis antigen 6:54307859-54390152

ENSG00000136542 GALNT5 Polypeptide N-acetylgalactosaminyltransferase 5 2:157257598-157314211
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FIGURE 3 | The methylation-expression regulation network. The red and green nodes were methylation and expression genes, respectively. The methylation genes
located in three clusters: EIF3CL-EIF3C, KIF15-TRIM59, and SHOX2-FOXG1-CNTNAP5. KIF15 can directly or indirectly regulate the expression genes and may play
important roles.

The Methylation-Expression Regulation
Network
We mapped the genes of methylation features and gene
expression features to the STRING network (Version 11.05)
(Szklarczyk et al., 2018) and visualized the network using
R package igraph (Csardi and Nepusz, 2006)6 to identify
the potential relationship between two candidate genes sets.
The methylation-expression regulation network was shown in
Figure 3. In the network, the methylation and expression
genes were marked in red and green. The methylation genes
located in three clusters: EIF3CL-EIF3C, KIF15-TRIM59, and
SHOX2-FOXG1-CNTNAP5. The three expression genes (PSMC3,
TINAG, and NUDT6) were connected with methylation gene
KIF15. Even EPN3 can be indirectly connected to KIF15.
That made KIF15 at the center of the network. These
results suggested that KIF5 may play important roles in the
pathogenesis of AF.

5http://string-db.org
6https://CRAN.R-project.org/package=igraph

DISCUSSION

DNA methylation, a pre-transcriptional modification
characterized by the addition of methyl groups to specific
nucleotides, regulates the stability of gene expression states and
maintains genome integrity by collaborating with proteins that
modify nucleosomes (Ma et al., 2014; Tao et al., 2016; Shen
et al., 2017). Previous studies considered that changes in DNA
methylation states contribute to the regulation of biological
processes underlying AF, such as fibrosis, atrial dilatation, atrial
fibroblast proliferation and differentiation from fibroblasts
into myofibroblasts (Zhao et al., 2017). To further enhance the
biological understanding of the atrial fibrillation, our study
focused on DNA methylation, particularly with respect to how
it relates to mRNA expression. Among our two gene sets of top
10 genes, we found PDED4, SHOX2, and EMD were the most
important genes for AF which have been reported associated
with AF in previous reference.

Atrial fibrillation is reported to be associated with a profound
remodeling of membrane receptors and alterations in cAMP

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 March 2020 | Volume 8 | Article 187204

http://string-db.org
https://CRAN.R-project.org/package=igraph
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00187 March 10, 2020 Time: 20:22 # 6

Liu et al. Multi-Omics Methylation Analysis Atrial Fibrillation

dependent regulation of Ca2+ handling. PDE4 is expressed
in human atrial myocytes and accounts for approximately
15% of PDE (phosphodiesterase) activity (Molina et al., 2012).
PDE4D encoded protein has 3’,5’-cyclic-AMP phosphodiesterase
activity and degrades cAMP, which acts as a signal transduction
molecule in multiple cell types and represents the major PDE4
subtype (Berk et al., 2016). The activity of PDEs decreased
with age, and the relative PDED4 activity was lower in patients
with permanent atrial fibrillation than in age-matched sinus
rhythm controls (Milton et al., 2011). Previous study provided
evidence that patients with pAF were found to have a decreased
PDE4 activity as compared with patients in sinus rhythm
(Yeh et al., 2007).

Short Stature Homeobox 2 (SHOX2) is a member of the
homeobox family of genes in which mutations associated with
early-onset and familial AF (Hoffmann et al., 2019). SHOX2 is
considered as a key regulator of sinus node development of which
deficiency could lead to bradycardia in animal models (Vicente-
Steijn et al., 2017). Previous study demonstrated SHOX2 was
susceptible for SND and AF by screening 98 SND patients and
450 individuals with AF. In the heart development of mouse and
zebrafish, they also proved SHOX2 plays an important role, the
mutation of SHOX2 could lead to severe bradycardia (Blaschke
et al., 2007; Ye et al., 2015).

Emerin (EMD) encodes a serine-rich nuclear membrane
protein which located on the cytoplasmic surface of the inner
nuclear membrane and related to X-linked Emery-Dreifuss
muscular dystrophy (EDMD) (Capanni et al., 2009). Previous
study found a nonsense mutation in EMD from two EDMD
families which is associated with X-linked recessive inheritance,
result in serious cardiac complication, including AF (Sakata et al.,
2005). Cardiologic assessment revealed slow atrial fibrillation in
a recent case of a 65-year-old male patient with a hemizygous
duplication of 5 bases in exon 6 of the EMD, gene on

the X chromosome (Kissel et al., 2009; Zhao et al., 2014;
Brisset et al., 2019).
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Asthma, hay fever and eczema are three comorbid diseases with high prevalence
and heritability. Their common genetic architectures have not been well-elucidated.
In this study, we first conducted a linkage disequilibrium score regression analysis to
confirm the strong genetic correlations between asthma, hay fever and eczema. We then
integrated three distinct association analyses (metaCCA multi-trait association analysis,
MAGMA genome-wide and MetaXcan transcriptome-wide gene-based tests) to identify
shared risk genes based on the large-scale GWAS results in the GeneATLAS database.
MetaCCA can detect pleiotropic genes associated with these three diseases jointly.
MAGMA and MetaXcan were performed separately to identify candidate risk genes for
each of the three diseases. We finally identified 150 shared risk genes, in which 60
genes are novel. Functional enrichment analysis revealed that the shared risk genes
are enriched in inflammatory bowel disease, T cells differentiation and other related
biological pathways. Our work may provide help on treatment of asthma, hay fever and
eczema in clinical applications.

Keywords: asthma, hay fever, eczema, association studies, shared genes, multi-trait, multiomic

INTRODUCTION

Asthma is a bronchial disease characterized by chronic inflammation and narrowing of the airways.
It results in recurring coughing, periods of wheezing, chest tightness, and mucus production
(Moffatt et al., 2010; Vicente et al., 2017; Pividori et al., 2019). Hay fever (allergic rhinitis) is
an inflammation disease of the nasal mucous membranes. Its symptoms include sneezing, nasal
congestion, rhinorrhea, and itching (Ramasamy et al., 2011; Bunyavanich et al., 2014; Ferreira et al.,
2014). Eczema (atopic dermatitis) is a form of dermatitis. Its manifestations include itching and
dryness, recurring skin rashes with redness, blistering and skin edema (Sun et al., 2011; Weidinger
et al., 2013; Paternoster et al., 2015). The three diseases have high global prevalence. Nearly 15% of
the world population are affected by asthma (Vicente et al., 2017), 10∼20% by hay fever (Ober and
Yao, 2011), 15∼30% of children and 5∼10% of adults are affected by eczema (Waage et al., 2018).
Poor life quality and substantial medical expenditure bother the patients (Ober and Yao, 2011;
Waage et al., 2018). Moreover, the three diseases have significant genetic contributions in different
patients. The heritability ranges from 35% to 95% for asthma, from 33% to 91% for hay fever
and from 71% to 84% for eczema (Ober and Yao, 2011; Zhu et al., 2018; Johansson et al., 2019).
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Genome-wide association studies (GWAS) are the most powerful
tools to identify the disease-associated variants. GWAS have been
carried out separately for asthma, hay fever and eczema in the
last two decades (Moffatt et al., 2010; Paternoster et al., 2015;
Waage et al., 2018). To date (2019.11), hundreds of statistically
significant single-nucleotide polymorphisms (SNPs) have been
identified to be associated with each of three diseases according
to GWAS-catalog database (MacArthur et al., 2017).

Clinical and epidemiological studies have found that the three
diseases often co-occur in the same person or different members
from the same family (Ober and Yao, 2011; Ferreira et al.,
2017). Up to 90% of asthmatics suffer from allergic diseases
such as hay fever and eczema (Leynaert et al., 2000; Zhu et al.,
2018). Furthermore, eczema was demonstrated to be a major risk
factor for the development of asthma and hay fever (Spergel,
2010). About 30% eczema patients were affected by asthma, and
approximately 66% eczema patients were affected by hay fever
(Ober and Yao, 2011). Similarly, 19∼38% hay fever patients
were affected by asthma simultaneously (Ober and Yao, 2011).
These phenomena indicate potential genetic pleiotropy and co-
morbidity between asthma, hay fever and eczema. Therefore,
identifying shared risk genes between these three diseases can
broaden our knowledge of the underlying shared genetic causes,
as well as lead the way to prevention and treatments based on
the molecular mechanisms (Marenholz et al., 2013; Ferreira et al.,
2017; Zhu et al., 2018).

In the past 3 years, several large-scale GWAS focused on
unraveling the shared genetic architectures between asthma, hay
fever and eczema based on data from UK Biobank (Sudlow
et al., 2015; Ferreira et al., 2017; Zhu et al., 2018; Johansson
et al., 2019). Researchers (Ferreira et al., 2017) performed meta-
analysis of allergic diseases (asthma and/or hay fever and/or
eczema) based on GWAS results from 13 studies by using
METAL (Willer et al., 2010) software to identify the associations,
and used GeneNetwork (Fehrmann et al., 2015) to identify
biological processes enriched among the genes. Finally the reason
why asthma, hay fever and eczema partly coexist was revealed,
i.e., they share many genetic variations that dysregulate the
expression of immune-related genes. Subsequently, another study
(Zhu et al., 2018) applied cross-trait GWAS meta-analysis by
using R package ASSET (Bhattacharjee et al., 2012) to combine
the associations for asthma and allergic diseases (hay fever and/or
eczema) at individual variants. They demonstrated that shared
risk loci not only influence immune/inflammatory systems but
also tissues with epithelium cells. A recent work showed that these
three diseases shared a large amount of genetic contributions,
but part of which is more disease specific (Johansson et al.,
2019). However, these studies did not make strict distinction
between the three diseases in phenotypic definition. Either they
used a broad allergic disease defined as asthma and/or hay
fever and/or eczema, or a slightly more narrow definition which
distinguished asthma from allergic diseases, i.e., asthma and
allergic diseases (hay fever and/or eczema). This may cause
inaccurate conclusions. Moreover, the pleiotropic effect between
each gene (including multiple variants) and these three correlated
diseases jointly were not taken into account, which may lead
to low statistical power or small percentage of explainable

genetic variance. Multi-trait association study method metaCCA
(Cichonska et al., 2016) enables the pleiotropy to be resolved
effectively. It has been applied to identify shared pleiotropic
genes for three correlated diseases (type 2 diabetes, obesity and
dyslipidemia) (Chen et al., 2018) and five major psychiatric
disorders (Jia et al., 2019), respectively. However, the sample
sizes in the above-mentioned two studies were not large enough
(several tens of thousands), and only genome data was used,
resulting in only 25 and 66 shared risk genes obtained, separately.

In this study, we firstly performed a linkage disequilibrium
(LD) score regression to evaluate genetic correlations between
asthma, hay fever and eczema. We then integrated three
distinct association analyses (metaCCA multi-trait association
analysis, MAGMA genome-wide and MetaXcan transcriptome-
wide gene-based tests) to identify shared risk genes based on
the large-scale GWAS results in GeneATLAS database (Canela-
Xandri et al., 2018). MetaCCA can detect pleiotropic genes jointly
associated with these three diseases (Cichonska et al., 2016).
MAGMA (de Leeuw et al., 2015) considers the correlations
between genes and each disease, and MetaXcan (Gamazon
et al., 2015) merges the gene expression information to identify
candidate risk genes for each of the three diseases. Through these
three different analyses, we obtained the potential shared risk
genes associated with these three diseases. Finally we verified
them by GWAS-catalog analysis, enrichment analysis and
protein–protein interaction (PPI) network analysis to provide
biology insights.

MATERIALS AND METHODS

GWAS Result Datasets
We downloaded the GWAS results from a publicly accessible
database GeneATLAS (Canela-Xandri et al., 2018), including
asthma (Ncases = 52269, Ncontrols = 399995), hay fever
(Ncases = 25473, Ncontrols = 426791) and eczema (Ncases = 11552,
Ncontrols = 440712). The total 452264 samples are all European-
ancestry individuals from UK Biobank. In this study, we used
the same 623944 genotyped variants in each sample that passed
quality control in GeneATLAS.

Methods
LD Score Regression Analysis
We applied linkage disequilibrium score regression (LDSC)
(Bulik-Sullivan et al., 2015) to estimate genetic correlations, as
well as SNP heritability and LD-score intercept for asthma, hay
fever and eczema, respectively. We used the reference panel from
European-ancestry population of 1000 Genome Project Phase 3
(The 1000 Genomes Project Consortium, 2015).

Multi-Trait Association Analysis
After estimating genetic correlations between asthma, hay fever
and eczema, we used metaCCA multi-trait GWAS approach
to identify pleiotropic genes associated equally with the three
diseases. MetaCCA enables the measure of correlation between
the gene (including multiple variants) and multiple traits using
canonical correlation analysis (CCA) (Cichonska et al., 2016).
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This takes into consideration that there exist dependencies
(i.e., covariances) between genotypic and phenotypic variables,
and the cross-covariance between all genotypic and phenotypic
variables is made of univariate regression coefficients in
linear model.

In order to reduce the computation time and memory,
we first conducted gene annotation by referring NCBI human
genome build 37 (including 19427 gene locations), and found
that 301949 (48.39%) of the total 623944 SNPs are mapped to
17446 genes. Then we performed linkage disequilibrium (LD)
based pruning to filter SNPs using PLINK software (version:
1.90b) with parameters (–indep-pairwise 50 5 0.2) (Jia et al.,
2019), i.e., calculating LD between each pair of SNPs in a window
of 50 SNPs, removing one of a pair of SNPs if the LD is
greater than 0.2, shifting the window of 5 SNPs forward and
repeating the procedure until no pairs of SNPs with high LD
remain. We selected those SNPs which overlap with variants
from the European population in HapMap3. After pruning,
24946 of the input 301949 SNPs are mapped to 6575 genes. We
used 24946 SNPs to estimate genotypic correlation structure.
301949 SNPs were applied to estimate phenotypic correlation
structure due to the fact that the larger number of variants,
the higher the estimation accuracy (Cichonska et al., 2016).
The covariance matrix between all genotypic and phenotypic
variables is made up of regression coefficients in the GWAS
results. The majority of the CPU memory in metaCCA is spent
on estimating the covariance between genotypic variables. The
space complexity is O(n2), where n is the number of SNPs,
and it used about 6.3 gb memory for 24946 SNPs. MetaCCA
mainly uses CPU time in estimation of genotypic correlation
structure and canonical correlations. In our study, metaCCA
took about 4 h for multi-trait gene test of the three diseases. We
performed the operations on a computer of Intel Xeon E5-2640
CPU 2.40 GHz.

To determine significant loci (p < 5 × 10−8) that are
independent from each other, we used the clump procedure
of PLINK software (Purcell et al., 2007). We set parameters
(–clump-p1 5 × 10−8 –clump-p2 1 × 10−5 –clump-r2
0.2 –clump-kb 500) (Zhu et al., 2018) indicating the SNPs with
a p-value less than 1 × 10−5, LD statistic r2 more than 0.2,
and within 500 kb distance from the peak, will be assigned to
that peak’s clump.

Genome-Wide Gene-Based Analysis
Gene-based analysis is a statistical method for simultaneous
analysis of multiple genetic variations to determine their joint
effect. MAGMA, a genome-wide gene-based association method
based on a multiple linear principal components regression
model (de Leeuw et al., 2015), was used to identify significant
genes using the GWAS results for asthma, hay fever and eczema,
respectively. We regarded the individual-level genotype data
from European-ancestry population of 1000 Genomes Project
Phase 3 as reference. 19427 genes in the whole genome were used
to determine the significance threshold in Bonferroni correction.
The space complexity of MAGMA is O(k2), where k is the
number of genes. For a human genome, the required memory is
about 5 gb. In MAGMA, the majority of the CPU time is spent

on the ordinary least squares method, the time complexity is
O(k2

× (n + k)), where k is the number of genes and n is the
number of SNPs. In our study, MAGMA took about 1 min to
analyze each disease.

Transcriptome-Wide Gene-Based Analysis
We used the MetaXcan framework to integrate expression
quantitative trait loci (eQTL) information with GWAS results
and map genes associated with disease traits. MetaXcan is
a transcriptome-wide gene-based association approach that
estimates tissue-specific gene expression profiles from GWAS
results using prediction models trained in large reference
databases, and correlates predicted expression levels with diseases
(such as asthma) to detect potential disease-associated genes
(Barbeira et al., 2018). It has high concordance (correlation
coefficient: R2 > 0.999) with the individual-level version
PrediXcan (Gamazon et al., 2015). Training sets are reference
transcriptome datasets from the Genotype-Tissue Expression
Project (GTEx: version 7) (GTEx Consortium, 2017), the weights
and covariances of prediction model for different tissues are
available from PredictDB (http://predictdb.org/).

In order to reduce multiple-testing burden, we analyzed 10 of
the total 48 tissues, 4 obvious tissues (Whole Blood, Lung, Skin
Sun Exposed and Skin Not Sun Exposed) plus 6 other relevant
tissues (Cells EBV-transformed lymphocytes, Cells Transformed
fibroblasts, Esophagus Gastroesophageal Junction, Esophagus
Mucosa, Esophagus Muscularis and Vagina) reported in previous
studies (Ferreira et al., 2017; Zhu et al., 2018). The total number
of genes (27314) in the 10 tissues was used to determine the
Bonferroni correction threshold. We ran MetaXcan separately in
asthma, hay fever and eczema, each with the same 10 tissues,
and used per SNP p-value from GWAS results after correction
for the LD-score intercept. MetaXcan uses a small amount of
memory and very little CPU time. MetaXcan’s CPU time is
primarily spent on the calculation of covariance of the gene
matrix. The space and time complexity are O(k2) and O(k3)
respectively, where k is the number of genes in the tissue. In our
study, 18 min were spent on MetaXcan’s analysis of 10 tissues
for each disease.

GWAS-Catalog Analysis, Enrichment Analysis and
PPI Network Analysis
To understand whether the identified genes have been reported
in the previous GWAS studies for asthma, hay fever and eczema,
we downloaded the corresponding GWAS catalog from NHGRI-
EBM (3 November, 2019), and searched the genes one by one. To
gain biology insights from the shared risk genes, we performed
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analysis using the Enrichr web server (Kuleshov et al., 2016) from
http://amp.pharm.mssm.edu/Enrichr. The significant criterion is
that the adjusted p-value is less than 0.05. In addition, we used
STRING v10 (Szklarczyk et al., 2015) from https://string-db.org/
to analyze the PPI network.

A flow chart of our work is shown in Figure 1. That
is, we integrated three association studies (metaCCA multi-
trait association analysis, MAGMA genome-wide and MetaXcan
transcriptome-wide gene-based tests) to identify candidate risk
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FIGURE 1 | Flow chart of the present work.

genes, and then conducted GWAS-catalog analysis, enrichment
analysis and PPI network analysis to the shared risk genes.

RESULTS

Genetic Correlation Between Asthma,
Hay Fever and Eczema
We evaluated the genetic correlation between asthma, hay
fever and eczema using LD score regression (LDSC). Genetic
correlation between asthma and hay fever (rg = 0.665,
SE = 0.0457, P = 5.26 × 10−48) is the strongest, followed
by the correlation between asthma and eczema (rg = 0.4519,
SE = 0.0577, P = 4.93 × 10−15), then between hay fever
and eczema (rg = 0.3297, SE = 0.0714, P = 3.85 × 10−6)
(Table 1). In summary, significant genetic correlations are
observed between any pair of the three diseases. Additionally,
estimates of SNP heritability (h2) on the liability scale (assuming
15% disease prevalence) is 11.85% (SE = 1.15%) for asthma, 4.65%
(SE = 0.41%) for hay fever and 2.36% (SE = 0.53%) for eczema.
Furthermore, the LD score intercepts for asthma, hay fever and
eczema are 1.043 (SE = 0.0143), 1.0195 (SE = 0.0102) and 1.0085
(SE = 0.0105), respectively, indicating most of the inflation is due
to polygenic effect rather than population structure or sample
overlap (An et al., 2019).

Pleiotropic Genes Identified by
Multi-Trait Association Study
We performed metaCCA multi-trait association study to identify
pleiotropic genes that are associated jointly with asthma,

TABLE 1 | Genetic correlation between asthma, hay fever, and eczema.

Diseases1 Asthma Hay fever Eczema

Asthma 1 0.665 (0.0457) 0.4519 (0.0577)

Hay fever 5.256 × 10−48 1 0.3297 (0.0714)

Eczema 4.930 × 10−15 3.848 × 10−6 1

1Element in upper off-diagonal is the genetic correlation rg (standard deviation SE),
element in lower off-diagonal is the corresponding genetic correlation P-value.

hay fever and eczema. There were 66 pleiotropic genes that
reached the significant threshold (PmetaCCA < 7.6 × 10−6)
after the Bonferroni correction of the LD pruned 6575 genes,
the canonical correlations of which ranged from 0.0077 to
0.0302. The results for the metaCCA gene-based test are shown
in Supplementary Data 1.

Genes Identified by Genome-Wide and
Transcriptome-Wide Studies
We conducted MAGMA genome-wide gene-based analysis
to identify genes associated with asthma, hay fever and
eczema, respectively. 287, 80, and 57 significant genes
(PMAGMA < 2.57 × 10−6) were identified after Bonferroni
correction of the total 19427 genes (Supplementary Data
2). Moreover, we carried out MetaXcan transcriptome-wide
gene-based analysis, and detected 204, 48, and 53 genes that
were above the significance level (PMetaXcan < 1.84 × 10−6)
determined by 27314 genes in 10 relevant tissues
(Supplementary Data 3–5).

Noticing that some overlapping genes exist for the same
gene-based test, we took the results in MAGMA as an
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TABLE 2 | Number of genes identified by MAGMA and MetaXcan.

Methods Asthma Hay fever Eczema Asthma and Hay
fever

Asthma and
Eczema

Hay fever and
Eczema

Asthma and Hay
fever and Eczema

MAGMA 287 80 57 65 36 19 17

MetaXcan 204 48 53 37 33 5 4

Combined1 397 109 91 94 59 24 23

1Number of genes identified by MAGMA and/or MetaXcan.

TABLE 3 | Details of overlapping genes in Type I and II of shared risk genes.

Genes1 PmetaCCA Asthma Hay fever Eczema Literature PMID

PMAGMA PMetaXcan PMAGMA PMetaXcan PMAGMA PMetaXcan

TNXB† 7.12e-29 3.51e-35 1.39e-10 1.20e-09 23886662

C6orf10‡ 1.60e-18 1.59e-22 1.01e-12 9.84e-10 21804548,

23042114

CLEC16A* 8.26e-16 4.24e-22 3.51e-10 5.92e-11 31036433,

30013184,

26482879

C2* 1.84e-06 1.31e-14 3.51e-21 1.08e-13 5.06e-08 1.45e-08 29551627,

25085501,

26542096

WDR36* 1.95e-26 1.61e-24 5.68e-14 2.58e-14 2.52e-08 30929738,

24388013,

30595370

PSORS1C2 3.54e-15 3.77e-13 6.80e-07

HLA-DMB 7.72e-14 6.67e-14 3.34e-07

BTNL2† 1.14e-12 1.03e-59 5.08e-09 29273806

BAG6 5.69e-11 9.44e-19 6.64e-15 7.05e-10 6.03e-18

SLC25A46* 2.79e-09 1.35e-09 9.52e-09 31036433,

22036096,

30595370

CAMK4‡ 2.31e-08 5.12e-11 1.28e-08 29785011,

30013184

MUC22 8.56e-07 1.56e-13 2.01e-11

PLCL1‡ 6.08e-06 2.23e-06 9.73e-12 30013184,

30595370

RNF5 4.31e-17 1.75e-12 3.39e-13 2.06e-10 5.84e-11

KIF3A‡ 7.05e-16 5.35e-13 6.57e-14 7.51e-08 31036433,

26542096

DDAH2 1.78e-07 1.43e-08 3.10e-08

RAD50* 4.05e-06 6.20e-29 9.21e-31 6.36e-07 30929738,

30013184,

26482879

1Symbol †, ‡, and * behind the genes represents 1, 2, and 3 associated diseases (asthma, hay fever, eczema) reported in GWAS-catalog, respectively. PMID, PubMed
unique identifier. The blank cells are non-significant p-values or no supporting literature.

example, there are 65 overlapping genes between asthma and
hay fever, 36 between asthma and eczema, 19 between hay
fever and eczema, and 17 among the three diseases. Similarly,
some genes detected by both MAGMA and MetaXcan for
the same disease, such as 94 overlapping genes are identified
in asthma. We combined the genes identified by MAGMA
and/or MetaXcan, and obtained 397, 109, and 91 significant
genes for asthma, hay fever and eczema, respectively. The

numbers of genes identified by the two approaches are shown
in Table 2.

Shared Risk Genes for Asthma, Hay
Fever, and Eczema
We considered the shared risk genes from two types. Type
I includes the pleiotropic genes by metaCCA which were
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FIGURE 2 | Venn diagram of the pleiotropic genes identified by metaCCA (A)
and the combined genes identified by MAGMA and/or MetaXcan for asthma
(B), hay fever (C) and eczema (D).

associated with at least one disease by MAGMA and/or
MetaXcan, it is inspired by these two studies (Chen et al., 2018;
Jia et al., 2019); Type II includes the pleiotropic genes associated
with at least two diseases by MAGMA and/or MetaXcan. We
found that type I includes 36 genes (PmetaCCA < 7.6 × 10−6,
PMAGMA < 2.57 × 10−6, and/or PMetaXcan < 1.84 × 10−6

in at least one of asthma, hay fever and eczema), and type
II contains 131 genes (PMAGMA < 2.57 × 10−6 and/or
PMetaXcan < 1.84 × 10−6 in at least two of asthma, hay fever
and eczema). After removing the repetitions in these two types,
150 shared risk genes were obtained (Supplementary Data 6).
Here we only showed the details of the 17 overlapping genes
in type I and II in Table 3. A Venn diagram (Figure 2)
shows the pleiotropic genes identified by metaCCA and the
combined genes identified by MAGMA and/or MetaXcan
for asthma, hay fever and eczema. We can see that four
overlap genes can not only be detected by metaCCA but also

associated with all of the three diseases by MAGMA and/or
MetaXcan analyses.

GWAS-Catalog Analysis, Enrichment
Analysis and PPI Network Analysis
To see whether the 150 shared risk genes have been reported
previously, GWAS-catalog analysis was carried out for each gene.
We found 23 genes have been reported to be associated with
all of the three diseases, 31 genes have been reported to be
associated with two diseases, and 36 genes have been reported
to be associated with one disease. Furthermore, 60 genes have
never been reported, suggesting that these are novel ones. Gene
names involved in these four different classes are listed in Table 4,
their corresponding PubMed IDs of supporting literatures are
shown in Supplementary Data 7. Among the 90 genes which
have been reported as associated with diseases before, 85, 31,
and 51 of them have been reported as associated with asthma,
hay fever and eczema (Supplementary Data 7), respectively.
Some genes are only detected by metaCCA. CGN has been
reported associated with asthma, but it was not detected by
MAGMA and/or MetaXcan for asthma data; RAD50 has been
reported as associated with hay fever, but it was not detected
by MAGMA and/or MetaXcan for hay fever data; eight genes
(AHI1, IL2, MICB, NDFIP1, PLCL1, PRKCQ, SLC25A46, and
WDR36) have been reported as associated with eczema, but they
were not detected by MAGMA and/or MetaXcan for eczema
data (Supplementary Data 6, 7). Similarly, there are also some
reported genes that can only be detected by MAGMA and/or
MetaXcan. 67 of the reported genes which are associated with
asthma can only be successfully identified by MAGMA and/or
MetaXcan, but not by metaCCA. For hay fever and eczema,
gene numbers of this class are 22 and 15 (Supplementary Data
7), respectively. In addition, there are 5 genes (C2, CLEC16A,
RAD50, SLC25A46, and WDR36) have been reported to be
associated with all of the three diseases for the 66 pleiotropic
genes by metaCCA (Supplementary Data 1). For the 424 genes
(287 for asthma, 80 for hay fever, 57 for eczema) detected by
MAGMA, there are 141, 23, and 24 that have been reported
associated with asthma, hay fever and eczema in the GWAS-
catalog (Supplementary Data 2), respectively.

TABLE 4 | List of 150 shared risk genes divided into four categories.

Related
diseases1

Gene names

3 BACH2, C11orf30, C2, CLEC16A, GSDMA, HLA-B, HLA-C, HLA-DQA1, IKZF3, IL13, IL18R1, IL1RL1, IL2, IL2RA, IL7R, LPP, RAD50, SLC25A46,
SMAD3, TLR1, TNF, TSLP, WDR36

2 AAGAB, ADAD1, C6orf10, CAMK4, CD247, D2HGDH, ERBB3, FLG, GSDMB, HLA-DQB1, HLA-DRB1, IL18RAP, IL1R1, IL33, KIAA1109, KIF3A,
MICA, MICB, NDFIP1, PBX2, PLCL1, PRKCQ, PRR5L, RORC, RPS26, RTEL1, SMARCE1, STAT6, TLR10, TMEM232, ZBTB46

1 AHI1, BRD2, BTNL2, C4A, CGN, FAM114A1, GAL3ST2, GLDC, GPSM3, HLA-DPA1, HLA-DQA2, HLA-DQB2, HLA-DRA, HLA-DRB5, HLA-DRB6,
HLA-DRB9, IKZF4, IL21R, ITPR3, LCE3D, MRVI1, NOTCH4, ORMDL3, PSORS1C1, S100A1, SLC22A4, SLC22A5, SLC9A2, SLC9A4, SPRR2D,
SUOX, TAP2, TLR6, TNXB, TRIM26, ZGPAT

0 AGER, AGPAT1, AIF1, ARNT, ATF6B, BAG6, BAK1, C4B, C6orf25, C6orf47, C6orf48, CCHCR1, CFB, CXXC11, CYP21A2, DDAH2, DIS3L,
DOCK3, DPP4, DXO, EGFL8, EHMT2, FKBPL, GNL1, HCG27, HCG4B, HLA-DMB, HSPA1B, HSPA1L, HSPA4, KPRP, LEMD2, LINGO4,
LOC101929163, LST1, MRPL9, MSH5, MUC21, MUC22, NELFE, PGLYRP4, PPT2, PRRC2A, PRRT1, PRUNE, PSMD4, PSORS1C2, RNF5,
S100A2, SAPCD1, SEMA6C, SKIV2L, SLC44A4, STK19, TAP1, TCF19, TNXA, VWA7, ZBTB12, ZKSCAN3

1The digit in the first column means the number of associated diseases (asthma, hay fever, eczema) reported in GWAS-catalog.
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Before conducting enrichment analysis, we excluded the
genes in the major histocompatibility complex (MHC) region
(Zhu et al., 2019). On the one hand, a majority of genes in
MHC region are related to immune response which may
bring false positives (Pividori et al., 2019); on the other
hand, for asthma and allergy diseases, MHC region was
reported as containing some of the strongest association signals
such as HLA-DQB and HLA-B (Waage et al., 2018). We
expected to find other biological pathways besides immunity.
KEGG pathway enrichment analysis by Enrichr web server
(http://amp.pharm.mssm.edu/Enrichr) shows that 6 biological
pathways were significantly enriched (Supplementary Data
8). They are inflammatory bowel disease (IBD) (hsa05321),
Th17 cell differentiation (hsa04659), cytokine–cytokine receptor
interaction (hsa04060), Th1 and Th2 cell differentiation
(hsa04658), JAK-STAT signaling pathway (hsa04630) and chagas
disease (American trypanosomiasis) (hsa05142). The most
strongly enriched one is IBD pathway (hsa05321) including 8
enriched genes (IL18RAP, SMAD3, IL13, RORC, IL21R, STAT6,
IL2, IL18R1). A bubble chart shows the result of KEGG pathway
analysis (Figure 3).

To understand the interactions between shared risk genes
(excluding those in MHC region), we conducted PPI network
analysis using STRING tool. There are in total 168 pairs of
interaction in PPI network (Supplementary Data 9), all the
interacting genes have combined scores of no less than 0.4, in
which 9 pairs of genes (IL2RA-IL2, IL33-IL1RL1, TSLP-IL7R,
IL18R1-IL18RAP, IL13-STAT6, IKZF3-IL2, CD247-IL2, LCE3D-
SPRR2D, TLR6-TLR1) with scores ≥ 0.95. The 10 hub genes
(degree ≥ 10) that interact extensively with other genes in PPI

network are IL2, IL13, TSLP, IL2RA, IL33, STAT6, ORMDL3,
IL1R1, IL1RL1 and IL7R. The PPI network for shared risk genes
are shown in Figure 4.

DISCUSSION

Two-thirds of our identified shared risk genes were reported
to associate with at least one of the three diseases, asthma,
hay fever and eczema. Results obtained by Enrichment analysis
are mostly consistent with the findings in previous researches.
For example, we found substantial shared genes in the HLA
region, which was highlighted by their prominent role in
immune response (Pividori et al., 2019), and immune response
is one of the major factors influencing asthma, hay fever and
eczema (Ferreira et al., 2017; Zhu et al., 2018). Additionally,
IBD pathway (hsa05321) is the most strongly enriched pathway
in our study, which was demonstrated to share susceptibility
genes with allergic disease (Kreiner et al., 2017). Moreover,
there are also some T cell (including TH17, TH1, TH2)
related pathways enriched, involving Th17 cell differentiation
(hsa04659), Th1 and Th2 cell differentiation (hsa04658). This
conclusion supports that of a previous study which widely
documented contribution of these T cell subsets to allergic
responses (Farh et al., 2015).

We found four genes (C2, CLEC16A, C6orf10, TNXB)
which have statistical significance in metaCCA, MAGMA and
MetaXcan association studies for the three diseases. C2 and
CLEC16A have been reported to associate with all the three
diseases (Waage et al., 2018; Zhu et al., 2018; Kichaev et al., 2019).

FIGURE 3 | Bubble chart of enrichment analysis of shared risk genes (excluding those in MHC region).
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FIGURE 4 | PPI network for shared risk genes (excluding those in MHC region).

Although TNXB has only been reported to associate with eczema
(Baurecht et al., 2015), it may be very important for asthma
and hay fever. Among the 17 overlapping genes from types
I and II of shared risk genes, six genes (PSORS1C2, HLA-
DMB, BAG6, MUC22, RNF5, DDAH2) have never been reported
before. Furthermore, cytokine-cytokine receptor interaction
(hsa04060), JAK-STAT signaling pathway (hsa04630) and chagas

disease (American trypanosomiasis) (hsa05142) also enriched
in our study. These findings may be helpful in pathological
diagnosis studies.

From the single-trait GWAS results of asthma, hay fever
and eczema, only one independent loci (rs61893460) is found
to associate with these three diseases. rs61893460 locates in
C11orf30-LRRC32 region on chromosome 11 and was reported
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associated with total serum IgE levels (Li et al., 2012). IgE is
released from the immune system and travels to local organs
or tissues to type 2 cytokines, which can further cause asthma,
hay fever and eczema (Ferreira et al., 2017). However, metaCCA
multi-trait analysis identifies 66 pleiotropic genes, which implies
stronger statistical power. We did not regard all of the 66
pleiotropic genes as shared risk genes, but refined them under a
restraint, that is, they must be associated with at least one of the
three diseases by MAGMA/MetaXcan. This idea derives from the
two studies (Chen et al., 2018; Jia et al., 2019).

Using multi-trait analysis, we only identified five genes which
have been reported associated with the three diseases, while
23 reported genes are detected by integrating multi-trait and
multiomic methods. In addition, among the 90 genes which have
been reported, some cannot be detected by a single method.
Take gene RAD50 for example, it was reported to be associated
with the three diseases in GWAS-catalog and can be identified
by multi-trait method (metaCCA), but it cannot be detected
by multiomic methods (MAGMA and/or MetaXcan) for hay
fever disease. RAD50 promotes the development of asthma by
inducing inflammatory factors secreted by Th2 cell (Li et al.,
2010), and it was found to be associated with hay fever (Waage
et al., 2018). These results imply the benefits of integration.

Note that 73 of 136 independent risk variants are novel in
Ferreira et al. (2017), 41 of 141 loci are novel in Johansson
et al. (2019), and 60 of 150 shared risk genes are novel in
our study. Besides the different phenotypic definitions which
we have explained in the Introduction section, the determining
of novel status is also different. The novel variants not only
included those risk loci that never reported to associate with any
of the three diseases in GWAS-catalog, but also contained the
variants that had LD statistic r2 < 0.05 with all reported variants
(Ferreira et al., 2017). Moreover, the novel loci were composed
of variants if the locus was distanced >1 Mb from any of the
previously reported loci for any of the three diseases in GWAS-
catalog, PubMed or bioRxiv, as well as those variants if r2 < 0.05
between the identified variant and previously reported variants
(Johansson et al., 2019). Both of the definitions of “novel” in these
two studies are broader than ours. In addition, we investigated
genetic overlap on gene level rather than genetic variant level.

Compared with the previous studies, our work has some
achievements. First, we confirmed strong genetic correlations
between the three diseases. Second, we considered the pleiotropic
effects via multi-trait association analysis, which yields a
statistical power advantage compared to single-trait modeling
strategies. Third, we identified more shared risk genes from
multi-omic (genome-wide and transcriptome-wide) perspective.

Limitations
First, our results cannot be used to represent the worldwide
population or children, because the samples are of European-
ancestry individuals aged between 40 and 69 years old from UK
Biobank. Second, association studies results in our work mean
potential shared risk genes, they do not represent the causative
genes. Mendelian randomization analysis can be used to reveal
the causality (Verbanck et al., 2018), and fine mapping is helpful
in detecting the pathogenic variants and genes (Marenholz

et al., 2013; Farh et al., 2015). Third, the functions of novel
shared risk genes are still unknown. There is a long way to
go in understanding the gene functions and their roles in
disease pathophysiology. Further studies should also highlight
and explore the biological interpretation and try to translate the
findings to clinical research or practice.

CONCLUSION

We confirmed strong genetic correlations between asthma,
hay fever and eczema. Three different association studies
are integrated to identify the shared risk genes between
these three diseases. One is metaCCA multi-trait association
analysis considering the joint effect, another two are MAGMA
and MetaXcan gene-based tests using genome-wide and
transcriptome-wide data referring to 1000 Genomes and GTEx
project, respectively. We identified 150 shared risk genes, in
which 60 are novel. Functional enrichment analysis reveals
that the shared risk genes are enriched in inflammatory bowel
disease (IBD), T cells differentiation and other related biological
pathways. Our work may provide help on treatment of asthma,
hay fever and eczema in clinical application.
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