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The pathogenic mechanisms underlying primary T-cell disorders are mainly related to molecular 
alterations of genes whose expression is intrinsic to hematopoietic cells. However, since the 
differentiation process requires a crosstalk among thymocytes and the thymic microenvironment, 
molecular alterations of genes, involved in the differentiation and functionality of the stromal 
component of the thymus, may lead to a severe T-cell defect or failure of central tolerance, as 
well. The first example of severe combined immunodeficiency (SCID) not related to an intrinsic 
alteration of the hematopoietic cell but rather of the thymic epithelial component is the Nude/
SCID phenotype, inherited as an autosomal recessive disorder, whose hallmarks are the T-cell 
defect and the absence of the thymus. The clinical and immunological phenotype is the human 
equivalent of the murine Nude/SCID syndrome, which represents the first spontaneous SCID 
identified in nude mice in 1966. For over 3 decades studies of immune system in these mice 
enormously contributed to the overall knowledge of cell mediated immunity, in the assumption 
that the athymia of these mice was solely responsible for the T-cell immunological defect. This 
syndrome is due to mutations of the transcription factor FOXN1, belonging to the forkhead-box 
gene family, which is mainly expressed in the thymus and skin epithelial cells, where it plays a 
critical role in differentiation and survival. An alteration of the thymic structure is also a feature 
of the DiGeorge syndrome (DGS), which has been long considered the human counterpart of the 
nude mice phenotype. This syndrome is frequently associated to a deletion of the 22q11 region, 
which contains approximately 30 genes, including the TBX1 gene, which is responsible for most 
of the clinical features of DGS in humans and mice. In this syndrome common manifestations 
are cardiac malformations, speech delay, hypoparathyrodism and immunodeficiency, even 
though the immunological hallmarks of the T-cell defect in DiGeorge syndrome are profoundly 
different from those reported in human Nude/SCID. The divergence of the phenotype among 
these 2 entities raised the possibility that the FOXN1 transcription factor represents the real key 
stromal molecule implicated in directing the hematopoietic stem cell toward a proper T-cell fate. 
Thymic stromal component of the primary lymphoid organ is also required to negatively select 
the autoreactive clones, a process driven by the expression of tissue specific antigens (TSA) by 
medullary thymic epithelial cells (mTECs). The expression of genes encoding TSA antigens is 
mediated by autoimmune regulator (AIRE) gene, encoding a transcription factor expressed in 
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mTECs. Molecular alterations of this gene are associated to autoimmune polyendocrinopathy 
candidiasis ectodermal dystrophy (APECED), a rare autosomal disorder, which may be considered 
the prototype of an autoimmune disease due to the failure of central tolerance homeostasis. 

All these “experiments of nature” led to unravel novel pathogenic mechanisms underlying 
inherited disorders of immune system and, of note, to clarify the pivotal role of epithelial cells in 
the maturation and education process of T-cell precursors.

Citation: Pignata, C., Sousa, A. E., eds. (2015). Thymic Stromal Alterations and Genetic Disorders of 
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In this specialty section of the journal, we host a topic focused
on thymic stromal alterations and genetic disorders of immune
system. The thymus is a specialized organ of the immune sys-
tem where, through stage-specific differentiation of hematopoietic
progenitor cells, fully mature and self-tolerant T cells origin. The
process is strictly dependent on the link between the thymic
stromal cells (TSCs), which allow the selection of a functional
and self-tolerant T-cell repertoire, and the thymus tridimensional
architecture. Indeed, the interaction between the developing thy-
mocytes and the stromal cells is crucial for the development of both
T cells and TSCs (1, 2). In both human and mice, the primordial
thymic epithelial cells (TECs) are yet unable to fully support the
T-cell development and only after the transcriptional activation
of the Forkhead-box n1 (FOXN1) gene, this essential function is
acquired. Most of the information concerning the T-cell develop-
ment came out from studies on mice carrying null mutation in
FOXN1 gene. In humans, as detailed in the Romano et al. review,
the Nude/SCID phenotype is characterized by congenital alopecia
of the scalp, eyebrows, and eyelashes, nail dystrophy, and a severe
T-cell immunodeficiency, inherited as an autosomal recessive dis-
order (3). As extensively approached in the Villa et al. review, the
intercellular cross-talk is also essential to support the maturation
of Foxp3C natural regulatory T cells. In Omenn syndrome (OS),
caused by hypomorphic Rag alterations, an infiltration of periph-
eral tissues by activated T cells and immune dysregulation have
been found (4). The authors discuss on abnormalities of thymic
microenvironment in OS with a special focus on the defective
maturation of TECs, and impairment of central tolerance.

The commonest association of thymic stromal deficiency
resulting in T-cell immunodeficiency is the DiGeorge syndrome
(DGS), discussed in the Davies review. In this syndrome, however,
the immunological impairment is highly variable, ranging from
normal to a severe immune defect in rare individuals, thus suggest-
ing that partial thymic hypoplasia may occur or that extrathymic
sites of differentiation play a role in the process (5). The difference
in the immunological defects between DGS and the Nude/SCID
phenotypes implies that FOXN1 controlled genes are mandatory
for a fully mature T-cell development process rather than the
integrity of the thymus itself.

It is known that autoimmune regulator (AIRE) gene plays a
central role in the induction of central tolerance, and different
mechanisms of action have been hypothesized for this process.
According to the most reliable theory, AIRE directly induces the

production of tissue-specific antigens (TSA) (6). However, recent
evidence suggests that another mechanism for negative selection
of self-reactive thymocytes may be due to AIRE-induced differ-
entiation of medullary TECs, and regulation of the expression
of intrathymic chemokines directed to antigens presenting cells
(APCs), such as thymocytes and dendritic cells (7). In their reviews,
Laan and Peterson and Kisand et al. give an overview on what
is known about the different mechanisms through which AIRE
induces central tolerance.

The process aimed at the elimination of potential self-reactive
T cells in the thymus is crucial for preventing the onset of autoim-
mune diseases. As discussed in the Akiyama et al. paper, medullary
epithelial cells play a central role in the process through the regula-
tion of gene expression, and, in particular, of those genes encoding
for the TNF family cytokines,RANK ligand,CD40 ligand,and lym-
photoxin. These genes promote the differentiation of AIRE- and
TSA-expressing mTECs (8).

The mechanism by which a single AIRE gene can influence the
transcription of such a large number of TSA within mTECs has
been discussed in the Matsumoto et al. paper. Two models have
been proposed. The first one implies a direct transcriptional con-
trol of AIRE on TSA, while the second one is based on the role of
AIRE on the maturation program of mTECs (9).

The clinical and immunological phenotype of patients affected
with autoimmune polyendocrinopathy ectodermal dystrophy
(APECED), as reviewed by Petteri Arstila and Jarva, is char-
acterized by multiple endocrine deficiencies, the most com-
mon manifestations being hypoparathyroidism, Addison’s disease,
hypogonadism, and secondary amenorrhea, usually associated
with the presence of autoantibodies toward the target tissues (10).
However, the phenotype and, therefore, the underlying pathogenic
mechanism, are even more complex, in that Chronic Mucocuta-
neous Candidiasis is also a prominent part of the disease. This
clinical entity is related to abnormalities in the Th17-related
cytokines, which are mostly involved in immune defenses against
Candida (11). Finally, high titers of neutralizing autoantibodies
against type I interferons, which have been shown to downreg-
ulate the expression of interferon-controlled genes, have been
documented (12).

In this Research Topic, De Martino et al. focus their attention on
the complexity of the APECED phenotype in that a wide variabil-
ity of the clinical expression, in the presence of the same genotype
alteration, has been found (13). They suggest that additional
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Pignata et al. Thymic alterations and related disorders

mechanisms, in addition to AIRE function, are involved in the
pathogenesis of the disease. This might be helpful to understand
not only the molecular basis of APECED but will also help improve
diagnosis, management, and therapeutic strategies to treat this
complex disease.
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T cell ontogeny is a sophisticated process, which takes place within the thymus through a
series of well-defined discrete stages.The process requires a proper lympho-stromal inter-
action. In particular, cortical and medullary thymic epithelial cells (cTECs, mTECs) driveT cell
differentiation, education, and selection processes, while the thymocyte-dependent signals
allow thymic epithelial cells (TECs) to maturate and provide an appropriate thymic microen-
vironment. Alterations in genes implicated in thymus organogenesis, includingTbx1, Pax1,
Pax3, Pax9, Hoxa3, Eya1, and Six1, affect this well-orchestrated process, leading to dis-
ruption of thymic architecture. Of note, in both human and mice, the primordial TECs are
yet unable to fully support T cell development and only after the transcriptional activation
of the Forkhead-box n1 (FOXN1) gene in the thymic epithelium this essential function is
acquired. FOXN1 is a master regulator in the TEC lineage specification in that it down-
stream promotes transcription of genes, which, in turn, regulate TECs differentiation. In
particular, FOXN1 mainly regulates TEC patterning in the fetal stage and TEC homeostasis
in the post-natal thymus. An inborn null mutation in FOXN1 leads to Nude/severe com-
bined immunodeficiency (SCID) phenotype in mouse, rat, and humans. In Foxn1−/− nude
animals, initial formation of the primordial organ is arrested and the primordium is not col-
onized by hematopoietic precursors, causing a severe primary T cell immunodeficiency. In
humans, the Nude/SCID phenotype is characterized by congenital alopecia of the scalp,
eyebrows, and eyelashes, nail dystrophy, and a severe T cell immunodeficiency, inherited
as an autosomal recessive disorder. Aim of this review is to summarize all the scientific
information so far available to better characterize the pivotal role of the master regulator
FOXN1 transcription factor in the TEC lineage specifications and functionality.

Keywords: Foxn1 gene,TECs, thymus gland, immunodeficiency, Nude/SCID

INTRODUCTION
The thymus is the primary lymphoid organ with the unique func-
tion to produce and to maintain the pool of mature and functional
T cells. This process is strictly dependent on specialized func-
tions of thymic stromal cells (TSCs) and requires the thymus
peculiar tridimensional (3D) architecture, which allows a proper
intercellular cross talk (1). For a long time, the difficulty in the iso-
lation and characterization of the thymic cellular components has
limited studies on the peculiar role of individual stromal compo-
nents. Novel experimental tools, including stromal cell isolation by
phenotype-based cell sorting (2), dissociation and reaggregation
of stromal cell subsets (3, 4), or global gene expression analysis
and the evaluation of the pattern of self-antigen expression within
the individual thymic epithelial cells (TECs) subset (5), allowed to
acquire important knowledge on the cellular and molecular basis
of thymus organogenesis and TECs functionality.

The recent discovery of disease models associated to genetic
alterations of molecules implicated in thymus specification and
TECs differentiation,provided new and conclusive insights regard-
ing the pathways, the genes, and the molecular mechanism
governing these processes and stromal functionality.

THE THYMUS ARCHITECTURE: REQUIREMENT OF A 3D
STRUCTURE FOR A PROPER LYMPHO-EPITHELIAL
CROSSTALK
The thymus provides the microenvironment essential for the
development of T cells. T cell progenitors originate in the bone
marrow, enter into the thymus (6, 7) and, through a series of
well defined and coordinated developmental stages, differentiate,
undergo selection process, and mature into functional T cells.
The steps in this process are tightly regulated through a complex
network of transcriptional events, specific receptor-ligand inter-
actions, and sensitization to trophic factors, which mediate the
homing, proliferation, survival, and differentiation of developing
T cells (1, 8, 9).

The thymus is organized in two lobes, which are already present
in mice at 21 days of thymic organogenesis and is completely
organized at 1 month of post-natal life. The lobes are divided
in three areas: a cortical and the dark cortical area, with a high
number of lymphoid cells and epithelial cells, cortical thymic
epithelial cells (cTECs); a light medullary area with a low number
of mature T cells, named medullary TECs (mTECs), Hassall’s bod-
ies (HB), macrophages, dendritic cells (DCs), B lymphocytes, and
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rarely myoid cells. Eventually, there is a transitional area, named
cortico-medullary junction (CMJ), characterized by abundant
blood vessels (10).

The unique function of the thymus in the establishment and
maintenance of the T cell pool is intimately linked to this peculiar
thymus architecture and to the specialized functions of the TSCs.

LYMPHO-EPITHELIAL CROSS-TALK REQUIRED FOR
THYMOCYTE AND TECs DIFFERENTIATION
An important feature of the thymic microenvironment is its
3D organization, consisting of an ordered architecture of TSCs,
that represents a heterogeneous mixture of distinct cell types,
including cTECs, mTECs, fibroblasts, endothelial cells, DCs, and
macrophages (11). Among these stromal elements, TECs are the
most abundant cell types, which form a delicate 3D cellular
network spanning throughout both the thymic cortex and the
medulla. The requirement for the 3D-supporting stroma appears
to be unique to the T cell development, as the in vitro differenti-
ation program of other hematopoietic lineages, including B and
NK cells, does not require a 3D structure (12).

Thymocyte development is not a cell-autonomous process, and
the transition to the next stage in development relies on the proper
interaction of HSCs with thymic stroma. The 3D configuration
of the thymus maximizes this interaction, allowing intercellular
cross-talk integral to the development of both T cells and TSCs
(13). Paralleling the T cell precursor proliferation and differentia-
tion program, immature TECs undergo a developmental sequence,
resulting in the establishment of mature cTECs and mTECs orga-
nized in this 3D network. Several studies on mutant mice with
an abnormal organization of thymic epithelium substantiated the
concept that a reciprocal signaling between thymocytes and TSCs
is required, not only for the production of mature T cells but
also for the development and organization of the thymic microen-
vironment in a bi-directional fashion (14, 15). Mice showing a
blockage of the T cell development process, in the absence of T
cell receptor (TCR)-expressing cells, have a defective organiza-
tion of the thymic medulla, as well (16, 17). Of note, under this
condition, thymic medullary organization can be restored by the
addition of mature T cells, which follows stem cell transplanta-
tion (17, 18). In adult CD3etg26 mice, lacking intra-thymic T
cell precursors, a severe alteration of the cortical thymic archi-
tecture has been documented (19), even though a restoration of
the architecture and TEC development in these mice can occur.
Recently, the injection of either fetal or adult T-committed pre-
cursors into adult CD3etg26 mice leads to the reconstitution of
thymic microenvironment, as indicated by thymocyte differen-
tiation, organization of functional cortical and medullary areas,
and generation of Foxp3+ Treg and Aire+ mTECs (20). These
data suggest that adult TECs maintain the receptivity to cross talk
with thymocytes despite a prolonged absence of T cell precursors.
Moreover, the absence of both thymocytes and of the 3D frame-
work may result in changes of the keratin genes expression, thus
inducing the cTECs and mTECs to undergo a de-differentiation
process and to reacquire the precursor K5+K8+ cellular pheno-
type. Taken together, these findings suggest that signals from early
CD4–CD8– DN T cell precursors and/or their immediate prog-
eny provide necessary signals to promote the formation of the

thymic cortex, while, later in ontogeny, the differentiation of TECs
into a medullary phenotype are clearly dependent on the presence
of CD4+CD8− and CD4−CD8+ single positive (SP) thymocytes
(21–23). However, the precise molecular nature of the signals pro-
vided by developing thymocytes, which lead to the generation of
the thymic stromal compartment are still incompletely defined.

Eventually, a better understanding of the developmental process
through which a normal thymus structure is built, is essential
for a better comprehension of the intimate mechanisms which
take place within the thymus to promote the T cell development
in vivo. This knowledge may also be useful in designing future
therapeutic strategies, as alterations of the thymus structure and
function may result in serious health consequences, including
immunodeficiency or autoimmunity.

mTECS AND cTECS ARE SPECIALIZED CELLS PLAYING A
DIFFERENT ROLE IN THE T CELL EDUCATION PROCESS
T cell ontogeny is a sophisticated process, which takes place
through discrete stages during which developing thymocytes
dynamically relocate in different thymic areas, following a cortico-
medullary gradient.

The initial colonization of the thymus anlagen by migrant lym-
phoid progenitors occurs at an early stage, embryonic day 11.5
(E11.5) in mice and 8 week of gestation in humans (24, 25). Stud-
ies documented that chemokines CC ligand (CCL)21 and CCL25
play a major role in the early stage of fetal thymus colonization
(26, 27). Indeed, mice deficient for these chemokines or for the
cognate receptors, showed a significant reduction in the number
of thymocytes compared to normal mice (28). In post-natal thy-
mus, lymphoid progenitor cells through their cell surface adhesion
molecules, such as platelet-selectin glycoprotein ligand 1, inter-
act with P-selectin, expressed on the TECs, and thanks to this
interaction they are allowed to migrate from the blood into the
thymic parenchyma, in correspondence of the area around the
CMJ [Figure 1; (29)].

Entered thymocytes started to intensely proliferate and to
acquire T cell hallmarks. In this phase, T cell proliferation and
differentiation are triggered by a potent combination of signals
provided by cTECs. Delta-like 4 (DL4), which is an essential, non-
redundant ligand for Notch1 during thymic T cell development,
and IL-7 are critically involved in the activation of signaling path-
ways, leading to the proliferation and migration of thymocytes
(30–32). In particular, these intra-thymic ligands induce the devel-
opment of DN CD25+ cells, which migrate toward the subcapsular
region of thymic cortex (33). Several chemokine receptors have
been suggested to guide the migration of immature thymocytes,
such as CXCR4, CCR7, and CCR9 [Figure 1; (34)]. In the thymic
cortex DN thymocytes begin V(D)J rearrangement of their TCRβ

gene. Successfully rearranged TCRβ protein, assembled with the
pre-TCRα chains, forms the pre-TCR complex. Membrane expres-
sion of pre-TCR complex, along with the Delta-Notch interaction,
provides the signal necessary to induce the expression of the co-
receptors CD4 and CD8, as well as V-J rearrangement of the TCRα

genomic region. Subsequently, DP thymocytes with a functional
TCR-αβ receptor are generated [Figure 1; (35)].

Thymic cortex is also the area where takes place the positive
selection of DP thymocytes. Positive selection is the process by
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Romano et al. FOXN1 in thymic epithelial development

FIGURE 1 | Lympho-stromal interactions andT cell development. Bone
marrow HSCs enter into the thymus through CMJ, a process mediated by
CCL12 and CCL25 in the embryonic thymus and by the interaction between
P-selectin and its cognate ligand PSGL-1 in adult thymus. Stimulation by IL-7
allows the relocation of DN thymocytes from the cortex to the subcapsular
region. DP thymocytes bearing TCR and capable of binding to self-MHC

ligands are positively selected. This process is regulated by Pssr6 and b5t,
which are expressed in cTECs. Developing thymocytes are relocated from
cortex to the medulla by chemotactic attraction between CCR7 and the
ligands CCL19/CCL21, expressed on the mTECs. Into medulla, self-reactive
thymocytes are deleted through the negative selection, a process mediated
by dendritic cells and Aire-expressing mTECs.

which developing thymocytes, that recognize and bind with mild
avidity peptide-major histocompatibility complex on cTECs sur-
face, get a rescue signal through their TCR and are allowed to
further maturate to the CD4+CD8− or CD4−CD8+ SP stage.
Only a small fraction (1–5%) of DP cells survive to positive selec-
tion. By contrast, the majority of DP cells, that bind with too low
affinity to MHC complex, are programed to undergo death by
neglect (36, 37).

Cortical thymic epithelial cells have a crucial role in the posi-
tive selection process of T cells within thymus cortex (38). Recent
studies have found that cTECs exclusively express a specific form
of proteasome, referred as thymoproteasome, which contains a
peculiar catalytic subunit, the β5-thymus (β5t) (39). β5t subunits
exhibit an unique peptidase activity, compared to other β5 sub-
units found in common immunoproteasome, which leads to the
production of a set of self-peptides with a high affinity for class I
MHC molecules (40). Moreover, β5t-deficient mice show a severe
decrease in the number of CD8+ SP thymocytes, but no alteration
in the CD4+ number or in the thymic architecture. In addition, the
small fraction of CD8+ T cells, positively selected by β5t-deficient
cTECs, show altered immune responses toward several stimuli.

Taken together these results suggest that the thymoproteasome is
essential for the production of self antigens involved in the positive
selection of functional CD4−CD8+ T cells (41).

As for the positive selection of CD4+ T cells, two other pro-
teins predominantly expressed in cTECs, the lysosomal protease
Prss16 and Cathepsin L, have been demonstrated to be essential to
generate an immunocompetent repertoire of CD4+CD8− T cells
[Figure 1; (42, 43)].

TCR engagement by peptide-MHC complex also triggers the
expression of the chemokine receptor CCR7 in positively selected
thymocytes. Thanks to the chemotactic attraction between CCR7
and its ligands, CCL19 and CCL21, expressed on the mTECs,
developing thymocytes are relocated from cortex to the medulla
[Figure 1; (44, 45)].

In order to create a repertoire of mature T cells able to recognize
foreign antigens and, at the meantime, to ignore self antigens, SP
thymocytes have to undergo the negative selection process in the
thymic medulla. Both mTECs and DCs, play a pivotal role in this
last stage of thymocyte development, which is critical to establish
the central tolerance and, eventually, to prevent autoimmunity. In
contrast to cTECs, mTECs are characterized by a high expression
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of clustered tissue-restricted autoantigens (TSAs), the so called
promiscuous gene expression (46). To date, the autoimmune reg-
ulator (AIRE) transcription factor represents the only molecule,
so far identified, which contributes to the mTECs function and,
in particular, to the molecular regulation of the promiscuous gene
expression [Figure 1; (47)]. However, not all TSAs are regulated
in an AIRE-dependent manner, suggesting that other molecular
mechanisms, such as epigenetic mechanisms, may be involved in
mTECs function regulation. TSAs associated with class II MHC
molecules are presented directly by mTECs or indirectly by DCs
to developing thymocytes (48). T cells which recognize with a high
avidity self antigens are deleted. Remarkably, only a few number
of mTECs express a given TSAs (about 50–500 per thymus), and
lead to apoptosis by negative selection of a few thymocytes (37, 49,
50). A possible explanation is that the high motility of thymocytes
within the thymic medulla during a period of 4–5 days, allows each
of them to interact with mTECs (51). DCs play a similar role in
the negative selection process. They are attracted in the thymic
medulla by the chemochine XCL1 (lymphotactin), produced by
mTECs in an AIRE-dependent manner. Differently from mTECs,
DCs are not able to produce TSAs and the TSAs expressed mostly
derive from the phagocytosis of apoptotic mTECs (52, 53). mTECs
and DCs not only contribute to the establishment of central toler-
ance through the deletion of self-reactive T cells, but, also, through
the generation of regulatory T cells (Tregs) (54, 55, 65, 153), which
act in the periphery by suppressing autoreactive T cells, which have
escaped to the process of the central tolerance.

A body of evidence documents that the expression of an autore-
active TCR leads to the entry of the thymocyte into the Treg lineage.
Tregs, that are about 5–10% of peripheral T cells CD4+, constitu-
tively express the CD25 molecule and share several immunological
features, in humans and mice (56, 57). These cells specifically
express the transcription factor FOXP3 (Foxp3 in mice) that
plays a pivotal role in Tregs differentiation and function (58). The
Foxp3 promoter region and the conserved non-coding sequence 2
(CNS2) (known as TSDR, the Treg-specific-demethylated-region)
are fully methylated in immature thymocytes (59, 155). At the
beginning of Treg development, an appropriate TCR/CD28 signal
is needed to make available the Foxp3 promoter through shift of
the Protein Inhibitors of Activated STAT 1 (PIAS1), a signal cas-
cade, which results in the NF-κB-mediated transcription of genes
playing a role in Treg differentiation (60, 61).

THYMIC FORMATION: NEW INSIGHTS IN EPITHELIAL
LINEAGES SPECIFICATION
In the mouse, mTECs and cTECs originated from the third pha-
ryngeal pouch endoderm and the thymus anlage are located next to
that of the parathyroid. The expression of Forkhead-box transcrip-
tion factor n1 (Foxn1) approximately at E11.5 is crucial for the sub-
sequent epithelial differentiation, since in its absence, the coloniza-
tion of the anlage by T cell progenitors from the bone marrow fails
(62) and the subsequent T cell development and TECs formation is
aborted, resulting in a severe immunodeficiency (63, 64, 66, 154).

The maturation process of TECs during thymic organogen-
esis could be divided in two genetic phases. The first stage is
independent from the Foxn1 expression and consists in the induc-
tion and outgrowth of the thymic epithelial anlage from the third

pharyngeal pouch, through the expression of genes including the
Eya1 and Six (67), Hoxa3 (68), and Tbx1 (69, 70). During the sec-
ond genetic phase, epithelial patterning and differentiation take
place and the Foxn1 expression drives the immature epithelial cells
to differentiate into functional cTECs and mTECs (71).

FOXN1-INDIPENDENT GENETIC STAGE OF TEC
DIFFERENTIATION
In the first phase of the thymus organogenesis an interaction
between epithelial and mesenchymal cells occurs, while at the
later phase lympho-epithelial interaction predominates (72). In
mice, at about E10.5 the mesenchymal cells are able to respond
to the endodermic signals, which induce the development of
the primordial thymic epithelium (73, 74). Subsequently, at
about E12.5, the thymic rudiment is colonized by progenitors
come from the fetal liver, thus resulting in a tight epithelial-
thymocyte interaction within the mesenchymal derived capsule.
This thymic rudiment contains the EpCam+Plet1+ epithelial pop-
ulation (72, 75), which includes a common thymic epithelial
precursor (TEPC), from which both cTECs and mTECs will be
subsequently generated (72, 76).

Through studies on animal models carrying molecular alter-
ations of distinct genes, the key role of several transcription factors
involved in the thymus organogenesis and TEC-sublineage spec-
ification process, have thus far been identified (77). In particular,
several genes, including Tbx1 (69, 70), Pax1, Pax3, Pax9 (78–80),
Hoxa3 (68), Eya1, and Six1 (67) have been shown to play a central
role in the thymus ontogeny. Indeed, their molecular alteration
affects this well-orchestrated process, leading to disruption of the
thymic architecture. Abnormalities of the paired box (Pax) family
transcription factors Pax1 or Pax9 result in a blockage of the thy-
mus organogenesis (79, 81). Mutations in the Hox transcription
factor family member, Hoxa3, expressed on both thymic epithe-
lium and mesenchymal cells, result in athymia (68). Furthermore,
the homozygous loss of Tbx1, related to the DiGeorge syndrome
phenotype, leads to thymic a/hypoplasia in humans (69, 82), while
mice heterozygous for a null allele of Tbx1 show a mild pheno-
type without thymus anomalies (83). Therefore, the expression
of Tbx1 both in the pharyngeal core mesoderm and in the pha-
ryngeal endoderm is required for a proper thymus development.
However, it remains to be elucidated whether the expression of
Tbx1 in the TECs occurs and whether the gene participates in the
TECs development (4).

FOXN1-DEPENDENT GENETIC STAGE OF TEC
DIFFERENTIATION
In both humans and mice, the primordial TECs are yet unable to
fully support T cell development and only after the transcriptional
activation of the FOXN1 gene in the thymic epithelium this essen-
tial function is acquired. FOXN1 is a master regulator in the TEC
lineage development in that it promotes down-stream the tran-
scription of genes implicated in the thymus organogenesis and
TECs full differentiation.

Forkhead-box n1 transcription factor belongs to the FOX tran-
scription factor family implicated in a variety of biochemical and
cellular processes, including development, metabolism, aging, and
cancer (84, 85). During the post-natal life, Foxn1 is selectively
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expressed only in thymic and skin epithelia, where it regulates
the expression of several molecular targets to maintain the bal-
ance between growth and differentiation (86, 87). The signals
required for FOXN1 expression, and its activity, are still unclear,
even though the wingless (Wnt) proteins (88) and bone mor-
phogenetic protein (BMP) signaling have been shown to regulate
FOXN1 expression (89). Even though the complete pattern of
FOXN1 expression over the time and its role are not yet com-
pletely defined, studies on mouse and human model of gene
alterations enormously helped unravel important issues on its role.
Mutations in Foxn1 gene lead to alymphoid cystic thymic dysge-
nesis due to a defective TECs differentiation process (63, 90). In
both mice and humans FOXN1 abnormalities lead to a hairless
phenotype (87, 154).

In the Foxn1-dependent step of thymus organogenesis, precur-
sor epithelial cells differentiate into mature and functional cTECs
and mTECs from the same bi-potential TEC progenitor (4, 72, 76).
It has been reported, that Foxn1 is differentially expressed during
the TE-lineage specification, since it is expressed in all TECs dur-
ing the pre-natal life, but not in all TECs postnatally, indicating
that the gene is highly developmentally regulated. There is a body
of evidence documenting different effects of Foxn1 expression in
mTEC and cTECs. Particularly, studies on K5- and K18-CreERT-
mediated Foxn1-deleted mouse models suggested that during the
post-natal life, the loss of Foxn1 affected mTECs, characterized by
the expression of K5 and K14 keratins type. Conversely, the loss
of Foxn1 did not affect cTECs, which express the keratins K8 and
K18 (91, 92). Taken together, these data suggest that cTECs and
mTECs are not equally Foxn1-dependent in the post-natal life.

Recent reports highlighted a central role for Foxn1 in TECs
homeostasis in the adult thymus and its necessary role for the
functionality and survival of adult TEC progenitors (92), express-
ing K5+ and K14+ markers. This role in adult thymus seems to
be exerted in cooperation with other stem cell-related genes, such
as p63. Of note, the transcription factor p63, encoding for multi-
ple isoforms (93), plays a pivotal for the development of stratified
epithelia of several tissues, such as epidermis, breast, prostate, and
thymus (94). In the thymus, the p63 protein drives the prolifera-
tion of epithelial progenitor cells (94, 95). Therefore, it has been
hypothesized that p63 and Foxn1 could act synergistically through
the formation of a p63-Foxn1 regulatory axis aimed at regulating
TECs homeostasis. However, the molecular mechanism through
which the proliferation regulator p63 and differentiation regulator
Foxn1 collaborate in this axis are still unclear.

FOXN1-MEDIATED GENE EXPRESSION FOR TEC
DIFFERENTIATION
Forkhead-box n1 is directly or indirectly implicated in the tran-
scriptional regulation of a panel of genes involved in thymus
development and function.

Pax1 is a key regulator of TEC differentiation/survival balance.
Pax1 is expressed in the third pharyngeal pouch from E9.5 dur-
ing the thymus ontogeny, while in the post-natal thymus only in
cTEC (96). Even though the regulation of Pax1 is still unclear,
from E11.0 its expression requires Hoxa3 (68). Of note, the loss
of Hoxa3 impairs the intrinsic ability of the neural crest cell pop-
ulation to differentiate and/or to lead to the differentiation of the

tissues of pharyngeal arch and pouch. Indeed, in Hoxa3 mutant
mice the thymus is absent and thyroid hypoplasia has been docu-
mented (68). Moreover, the first step of thymus development is the
expansion of mesenchymal neural crest in the posterior part of the
third pharyngeal pouch. Prior to this event, in the Hoxa3 mutant
embryos a marked reduction in Pax1 expression has been shown.
Similarly, Pax1 mutant mice also show thymic hypoplasia, suggest-
ing a role for Hoxa3 in maintaining Pax1 expression in these cells
(68). In the thymic primordium, Pax1 expression is under the con-
trol of Foxn1 (71). This finding indicates that Foxn1 and Hoxa3 are
both involved in the network of molecular signals that regulates
Pax1 expression, thus demonstrating the existence of a molecular
and/or functional interaction between Hoxa3 and Foxn1 [Figure 2;
(71)]. In keeping with this, Hoxa3+/−Pax1−/− compound mutant
mice display a few phenotypic hallmarks of the Foxn1R/R mouse
model, which expresses low-dose of Foxn1, such as hypomorphic
post-natal thymus, and reduced levels of MHC class II expres-
sion on the TECs surface (80). These data suggest two alternative
hypothesis: Hoxa3 may regulate Foxn1, which, in turn, regulates
Pax1 expression in the thymic primordium, in a Foxn1-dependent
manner, or Hoxa3 and Foxn1 induce Pax1 expression in the third
pharyngeal pouch and in early thymus primordium.

It has also been shown that Foxn1 regulates the expression of
CCL25 and Dll4 (Figure 2). These genes play a pivotal role in the
thymocyte development, since CCL25 regulates the colonization
of the fetal thymus (97), while the Notch ligand Dll4 is involved in
the commitment of hematopoietic progenitors to the T cell lineage
(30). In both early fetal TEC and in the post-natal thymus, Dll4
expression is directly related to the Foxn1 expression (71). Fur-
thermore, these molecules are absent in the Foxn1 null thymus,
even though there is evidence indicating that their expression may
occur in a Foxn1-independent manner in TECs (98, 99). Eventu-
ally, in a recent report it has been shown that Foxn1 is upstream
of dll4a and ccl25a expression in medaka fish, thus confirming the
relationship with this transcription factor (100).

THE HUMAN NUDE/SCID PHENOTYPE: A MODEL OF THYMIC
MICROENVIRONMENT DISRUPTION AND FAILURE OF THE T
CELL DEVELOPMENT
The Nude/severe combined immunodeficiency (SCID) pheno-
type represents the prototype of thymic architecture disruption
due to alterations of the FOXN1, which is the master regulator of
TE-lineage specification (71).

In humans, as in mice and rats, mutations in the “nude” Foxn1
gene induce the hairless phenotype, associated with a rudimen-
tary thymus gland (T cell related primary immunodeficiency).
The human Nude/SCID phenotype (MIM 601705; Pignata Guar-
ino Syndrome) was first identified in 1996, after more than 30 years
from the initial mouse description, in two sisters originated from
a small community with a high grade of inbreeding, who showed
congenital alopecia of the scalp, eyebrows, and eyelashes, nail dys-
trophy, and a severe T cell immunodeficiency, inherited as an
autosomal recessive disorder (154). This phenotype was associ-
ated with a C792T transition in the FOXN1 gene, which resulted
in the nonsense mutation R255X in the exon 4 (formerly exon
5), with a complete absence of a functional protein similar to the
previously described rat and mouse Foxn1 mutations (101–103).
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Romano et al. FOXN1 in thymic epithelial development

FIGURE 2 |The thymus organogenesis. The thymus organogenesis is
characterized by two genetic phases. The first stage is independent from
the Foxn1 expression (1) and consists in the induction and outgrowth of
the thymic epithelial anlage from the third pharyngeal pouch, through the
expression of genes including the Eya1, Six, Hoxa3, and Tbx1. Hoxa3 and
Eya1 are also required in neural crest cells (NCCs). In the phase 2, Foxn1

regulates the expression of CCL25, Dll4, and Hoxa3, necessary for the
thymocytes and TECs differentiation. During this step, cTECs (expressing
K8 and K18 keratin type) and mTECs (expressing K5 and K14 keratin type)
originate from the same bi-potential TEC progenitor. The crosstalk between
TECs and developing thymocytes is required to generate fully mature TECs
and functional T cells.

In the absence of Foxn1 expression, thymic development is
halted at a rudimentary stage. As a consequence, in the affected
patients the thymic lobe is still present but intra-thymic lym-
phopoiesis is completely blocked (63, 104) leading to severe pri-
mary T cell immunodeficiency (105–107) and to death in early
childhood from severe infections (105, 108–112, 154). Foxn1 is
also involved in morphogenesis and maintenance of the 3D thymic
micro-structure, which is necessary for a fully functional thymus
(113, 114). In fact, evidence is available that in an in vitro 2D
culture system consisting of a monolayer of mouse bone mar-
row stromal OP9 cells it is possible to generate mature T cells,
only if these cells are transduced with the Notch ligand Delta-
like 1 (OP9-DL1) (115, 116), whose pathway exerts a pivotal and
necessary role in promoting the induction of T cell-lineage com-
mitment (117–119). Of note, in all these co-culture systems, the
stromal cells are enforced to overexpress Notch ligands, and their
expression by TECs seems to be maintained only in a 3D thy-
mus structure (120). In human Nude/SCID, the T cell defect is

characterized by the absence of proliferative response to the com-
mon mitogens and a severe blockage of the T cell differentiation
(154). Recent studies revealed the presence of some circulating
T cells of non-maternal origin in patients carrying alterations of
FOXN1 gene. These cells have been shown to be predominantly
double-negative αβ T cells (CD3+CD4−CD8−, DN) and to exhibit
a regulatory like T cell phenotype (FoxP3+). This finding raised
important issues regarding the site of differentiation of these cells.
One hypothesis is the persistence of a thymic rudiment, which
allows a partial T cell development (109). Alternatively, a T cell
differentiation, even though partial and ineffective to result in a
productive immunity, could occur at an extra-thymic site. In both
pre-natal and post-natal life, the TCRBV spectratype repertoire in
Nude/SCID patients is oligoclonal, thus confirming the immatu-
rity of the process and, at the same time, that developmental events
do take place at some extent (111, 112).

For many years, the human counterpart of the nude mouse phe-
notype has been erroneously considered the DiGeorge syndrome,
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which occurs spontaneously and is mainly characterized by thymic
hypo/aplasia and a mild T cell defect. However, several lines of
evidence argue against the analogy between these two disorders.
In fact, the DiGeorge syndrome is often associated with neona-
tal tetany and major anomalies of great vessels. These defects are
due to malformation of the parathyroid and heart, derived from
a major embryologic defect in the third and fourth pharyngeal
pouch from which the thymus primordium emerges. In addition,
in this syndrome hairlessness is missing and gross abnormalities
of skin annexa are not found. Children with DiGeorge syndrome
may also have lymphopenia, with a mild reduction of T cells, that
are however usually responsive to common mitogens.

In Nude/SCID patients, skin is tighter than usual and is charac-
terized by basal hyperplasia and dysmaturity. Alopecia is primitive
in nature, in that it can be observed at birth and persists after bone
marrow transplantation, thus ruling out the acquired nature of the
disorder. In keeping with this, in athymic mice, completely lacking
body hair, restoration of the thymus did not lead to hair growth,
indicating a direct participation of FOXN1 to hair follicle develop-
ment (87). The most frequent phenotypic alteration affecting the
nails is koilonychia (“spoon nail”), characterized by a concave sur-
face and raised edges of the nail plate, associated with significant
thinning of the plate itself; canaliform dystrophy and a transverse
groove of the nail plate (Beau line) may also be observed (121).
However, the most specific phenotypic alteration is leukonychia,
characterized by a typical arciform pattern resembling a half-moon
and involving the proximal part of the nail plate. These alter-
ations of digits and nails were also reported in a few strains of
nude mice. Of note, nail dystrophy has also been observed in het-
erozygous subjects carrying FOXN1 alterations (121). FOXN1 is
known to be selectively expressed in the nail matrix, where the
nail plate originates, thus confirming that this transcription factor
is involved in the maturation process of nails and suggesting nail
dystrophy as an indicative sign of heterozygosity for this molecular
alteration (121).

Autoptical study of a fetus homozygous for R255X muta-
tion revealed multiple-site neural tube defects, including anen-
cephaly and spina bifida. This finding may help explaining the
high rate of mortality in utero observed in the population where
the first patients were identified (105). Intriguingly, the other
forms of SCID become clinically evident only during the post-
natal life, when the protection of the newborn transferred from
the mother immune system declines. This observation, suggests
that other causes different from immunodeficiency, are respon-
sible for the high rate of mortality in utero and led to consider
the Nude/SCID mutation and anencephaly causally related. Of
note, in a recent study, the mouse Foxn1 gene was found to be
expressed also in epithelial cells of the developing choroids plexus,
a structure filling the lateral, third and fourth ventricles of the
embryonic brain (105). Moreover abnormality in the develop-
ment of corpus callosum were also found in another FOXN1
mutated fetus even in the absence of anencephaly, indicating that
the transcription factor may play a role as a co-factor in the brain
ontogeny (105).

Altogether these findings suggest that FOXN1 may also be
implicated as co-factor in the development of vital systems
required for a proper fetus development, thus explaining the

mortality in the first trimester in fetuses carrying the genetic
alterations, which is not justified by the SCID per se.

FOXN1 MUTATION PREVENTS THE PRE-NATAL T CELL
DEVELOPMENT IN HUMANS
It is now clear that FOXN1 acts as a transcription factor impli-
cated in the differentiation of thymic and skin epithelial cells, even
though many of its molecular targets still remain to be discov-
ered. Most of the knowledge so far available has been achieved in
humans in the post-natal life, while little is known about FOXN1
role during the pre-natal life.

Of note, other FOX family members, including Foxq1 and
Foxm1b, are important during embryogenesis, being involved
in a variety of biological processes (122). Approximately 50%
of Foxq1−/− murine embryos die in utero, thus suggesting the
requirement of this gene during embryogenesis (123). Similarly,
Foxm1b is important during liver regeneration (124).

Studies on thymus organogenesis revealed that Foxn1 is
expressed in all TECs during fetal stages. Of note, Foxn1−/−

mice showed undifferentiated TECs responsible for a blockage
of thymopoiesis and severe immunodeficiency (125). Recently,
the identification of a human FOXN1−/− fetus gave the unique
opportunity to study in humans the T cell development in utero,
in the absence of a functional thymus. Vigliano et al. documented a
total blockage of the CD4+ T cell maturation and a severe impair-
ment of CD8+ cells, with an apparent bias toward TCRγδ+ cells
(112). In this case in the congenital absence of the thymus was
due to R255X missense mutation in the FOXN1 gene. In particu-
lar, it has been reported that in the absence of FOXN1 a few not
functional CD8+ cells, mostly bearing TCRγδ in the absence of
CD3, presumably of extra-thymic origin could develop in both
humans and mice (126–128). Further analysis of the fetal RNA,
performed to evaluate the variable-domain β-chain (Vβ) fami-
lies’ usage among T lymphocytes, revealed that the generation of
TCR diversity occurred at some extent in the FOXN1−/− fetus,
but was abnormal. Thus, these data provided a further evidence
of the crucial role for FOXN1 in the early pre-natal stages of T
cell development and not in the B and NK-cell differentiation,
these populations being normally present in the Nude/SCID fetus
(112). A similar impairment of the T cell differentiation with a
selective blockage of CD4 differentiation but not of CD8, was
detected in murine models characterized by the absence of the
nuclear high-mobility group (HMG) box protein TOX (107).

The identification of a limited number of CD8+ cells bear-
ing the TCRγδ suggests that this cell population may develop at
extra-thymic sites in a FOXN1-independent manner, even though
they are unable to sustain a productive immune response into the
periphery. Indeed, evidence exists indicating that T cells may also
differentiate at extra-thymic sites, as intestine and liver (129–133).
Of note, the majority of thymus-derived T lymphocytes bears the
αβ chains of TCR and a few of them express the γδ heterodimer
(134), while the T cell pool developed outside the thymus is char-
acterized by a higher proportion of TCRγδ+ T cells expressing the
CD8αα homodimer, instead of the CD8αβ (135, 136). Moreover,
also DN T cells (CD3+CD4–CD8–) and lymphocytes expressing
CD7 and CD2 in the absence of CD3 (CD2+CD3–CD7+) are
generally considered of extra-thymic origin (135–137).
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In spite of the well documented knowledge on the role of the
primary lymphoid organ to foster T cell development, some still
unsolved issues in human athymic conditions indicate that an in-
depth information of the overall process is still to be achieved and,
in particular, the involvement of different tissues in T cell ontogeny
must be definitively clarified. Since FOXN1 is selectively expressed
in the thymus and skin, one possibility to explain the presence of
the few non-functional CD8+TCRγδ+ cells in Nude/SCID fetus is
that skin epithelial cells could play a partial role in T cell ontogeny,
as already shown in in vitro models (138, 139).

THYMUS TRANSPLANTATION: A PROMISING TREATMENT
TO ATHYMIC DISORDERS
Forkhead-box n1 deficiency is a very rare immunodeficiency with
unfortunately poor chance of curative treatments. Recently, thy-
mus transplantation has emerged as a promising treatment for
children affected with congenital athymia (140–143), as that
observed in complete DiGeorge anomaly and in FOXN1 deficiency.
Conceptually, the thymus transplant seems to be in principle the
more appropriate therapeutic strategy, taking into account that
bone marrow transplantation performed in one child with FOXN1
deficiency, failed to induce a long-term sustained immune recon-
stitution. In particular, in this patient no reconstitution of the
naïve T cell pool was observed (144).

Thymus transplantation has been first used in children affected
with complete DiGeorge anomaly, with excellent clinical and
immunologic results (141). In order to achieve immune recon-
stitution, cultured post-natal allogeneic thymus tissue slices were
transplanted into the quadriceps muscles of the athymic host
(145). The migration of host bone marrow stem cells to the donor
graft allow them to develop into naive T cells, which then emi-
grate out of the engrafted thymic tissue into the peripheral blood.
Thymopoiesis is observed in biopsies of the transplanted thymus
within 2 months of transplantation (140) and naive T cells are
detected in the peripheral blood approximately 3–5 months after
transplantation (146, 147). Taking advantage from this previous
experience, a few years ago an allogeneic thymus transplantation
has been used for the first time in two unrelated infants with
Nude/SCID phenotype due to a deficiency of the transcription
factor FOXN1 (111). The clinical phenotype of the two subjects
was characterized by the absence of naïve T cells, total alope-
cia, nail dystrophy, and severe infections, as disseminated Bacillus
Calmette–Guérin in subject 1 and severe respiratory infections
in subject 2. Molecular analysis, performed to confirm the clin-
ical suspect of the Nude/SCID phenotype, revealed the presence
of a homozygous R255X mutation in the FOXN1 gene in subject
1, the same of that previously described (107), and a homozy-
gous R320W novel missense mutation in the subject 2. Moreover,
subject 1 showed, like a small percentage of complete DiGeorge
patients, referred as atypical complete DiGeorge, circulating oligo-
clonal T cells of non-maternal origins, which were predominantly
double-negative T cells, and a T cell proliferative response to PHA
within the normal range. Because of that, before thymus trans-
plantation subject 1 have required immunosuppression regimen
to prevent graft rejection. Differently, immunosuppression was not
used for the subject 2, who had, like typical complete DiGeorge
patients, very few T cells (141, 146).

Results obtained with thymus transplantation were encourag-
ing in both FOXN1-deficient subjects, and led to a full T and B
cell reconstitution and functional rescue. Indeed, both subjects
developed naïve T cells, diverse TCR repertoires and an in vitro
proliferative T cell responses against different antigens. Eventually
they reached normal serum Ig levels with generation of protective
antibody specific titers. Of note, HLA matching for class I and II
did not seem to interfere with T cell counts after thymus transplan-
tation, being subject 2 transplanted without any HLA matches.
However, CD8+ T cell number, although apparently functional,
was disproportionally low compared to CD4+ T cells (111). A
poor CD8 recovery has also been described in complete DiGeorge
patients, who underwent HLA-mismatched thymic transplanta-
tion (141, 148). Possible explanations are that the phenomenon is
related to the HLA mismatch between host hematopoietic precur-
sors and allograft thymic epithelia or to alterations in the thymic
graft due to transplantation procedures.

Functionality of the thymic allograft has been assessed for
the first time through signal joint (sj) and DβJβ T cell recep-
tor rearrangement excision circle (TREC) analyses (109). The
sj/βTREC represents a ratio between early and late products of
TCR rearrangements, which directly correlate with thymic output
and provide an indirect measurement of thymocyte division-
rate (149–151). The sj/βTREC ratio quantification, conducted
in subject 1 with R255X mutation, was very low during the
peri-transplant period and comparable to those observed in
healthy children at 2.5 years post-transplant. Of note, 4 years post-
transplantation a decrease of sj/βTREC ratio associated with a
reduction in sjTREC levels and in the number of naïve cells
were found, suggesting the decline in thymic allograft output
(109). This decline might be due to the reduced longevity of
the thymus allograft or to peripheral homeostasis of the T cell
pool maintenance following its replenishment. Overall, the thy-
mus transplantation seems to be a promising curative strategy
for subjects with athymia due to FOXN1 deficiency or com-
plete DiGeorge syndrome in the perspective of long-term clinical
benefit.

CONCLUSION
The integrity of the thymic epithelial architecture allows the
growth, the differentiation, and TCR repertoire selection of imma-
ture T cells, thus originating fully mature and functional T cells.
Of note, the failure to generate or to maintain the proper 3D
thymic architecture leads to severe immunodeficiency or autoim-
munity. The unique function of the thymus in the establish-
ment/maintenance of the T cell pool is related not only to the
peculiar 3D structure, but also to the specialized functions of the
thymic stroma. Indeed, lympho-stromal interactions within the
multicellular thymic microenvironment play a crucial role in the
regulation of the T cell development. Moreover, these interactions
are based on a bilateral crosstalk between stromal cells and trav-
eling thymocytes, which, in turn, are able to provide important
signals for the TECs differentiation.

Thymus organogenesis and T cell development are sophisti-
cated biological processes, which require the activation of a wide
panel of genes. There is evidence that the master regulator of
the thymus development is the Foxn1 gene, since it is required at
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multiple intermediate stages of the TE-lineage specification either
in the fetal and adult thymus, through the direct or indirect regu-
lation of genes involved in the thymus development and function.
These genes include Pax1, Hoxa3, CCL25, Dll4, p63.

Studies on the animal and human model of the Nude/SCID
phenotype have provided an enormous contribution in identify-
ing the crucial role of Foxn1 to drive the thymus development,
even though many issues regarding the transcriptional regula-
tion of the TECs specification and homeostasis still remain to be
solved. The development in vitro of cellular models of TEC lineage

differentiation, by using the technology of nuclear reprograming,
will be certainly useful to better characterize the discrete stages of
the TECs differentiation and the molecular mechanism involved
in the process.

Eventually, the in vitro re-build of a thymic environment capa-
ble to reproduce tissue features of primary lymphoid organs (139,
152) could be a promising and valuable tool for the treatment of
congenital athymia, including FOXN1 deficiency, along with the
thymus transplantation, which is emerged as a potential treatment
for these disorders.
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The discovery of Aire-dependent transcriptional control of many tissue-restricted self-
antigen (TRA) genes in thymic epithelial cells in the medulla (medullary thymic epithelial
cells, mTECs) has raised the intriguing question of how the single Aire gene can influence
the transcription of such a large number of TRA genes within mTECs. From a mechanistic
viewpoint, there are two possible models to explain the function of Aire in this action. In
the first model, TRAs are considered to be the direct target genes of Aire’s transcriptional
activity. In this scenario, the lack of Aire protein within cells would result in the defective
TRA gene expression, while the maturation program of mTECs would be unaffected in prin-
ciple.The second model hypothesizes that Aire is necessary for the maturation program of
mTECs. In this case, we assume that the mTEC compartment does not mature normally
in the absence of Aire. If acquisition of the properties of TRA gene expression depends
on the maturation status of mTECs, a defect of such an Aire-dependent maturation pro-
gram in Aire-deficient mTECs can also result in impairedTRA gene expression. In this brief
review, we will focus on these two contrasting models for the roles of Aire in controlling
the expression of TRAs within mTECs.

Keywords: autoimmunity, thymic epithelial cell, self-antigen, gene transcription, cell differentiation

The current prevailing view regarding the role of Aire in self-
tolerance is that it is involved in the transcriptional control of many
tissue-restricted self-antigen (TRA) genes in medullary thymic
epithelial cells (mTECs) (1). In other words, TRAs are considered
to be the direct target genes of Aire’s transcriptional activity (the
transcription model) (2). This view was first suggested in a paper
reporting that Aire-deficient mTECs showed dramatically lower
expression of TRAs than wild-type mTECs (3). Since this land-
mark report, the transcription model has prompted many studies
of Aire in an attempt to clarify how the single Aire gene can influ-
ence the transcription of such a large number of TRAs within
mTECs (4–7). Unfortunately, to obtain a mechanistic insight into
this interesting phenomenon, it has been necessary to employ cul-
tured cells transfected with the Aire gene, because the fraction
of naturally Aire-expressing mTECs in the thymic stroma is too
small to work with. However, no appropriate cultured cell lines
that could be used reliably in place of Aire-expressing mTECs
in vivo have been available. Nonetheless, overexpression of Aire in
cultured cells resulted in increased transcription of many TRAs,
in accordance with the transcription model. However, it is impor-
tant to pay more attention to the uniqueness of bona fide mTECs
in vivo, which show characteristics very different from those of
cultured cell lines; although several cell lines derived from the
thymic stroma are available for both humans and mice, none of
them show typical characteristics of mTECs such as high expres-
sion of FoxN1, MHC class II, and CD80, even though they are
positive for cytokeratin and epithelial cell markers (e.g., keratin 5,

EpCAM, and lectin UEA-1 binding). Most importantly, none of
these cell lines express a reliable level of Aire at the protein level.
However, large aspects of Aire’s action on TRA gene expression in
the transcription model were deduced on the basis of the effects of
lack of Aire expression in mTECs in vivo (i.e., the phenotypes of
Aire-deficient mice) and the opposite effects of Aire overexpres-
sion in mTEC-“like” cells in vitro (i.e., in transfection studies).
The reality is that there is still a fairly wide gap between these two
experimental settings that needs to be bridged.

In comparison with the remarkable changes noted in the
expression profiles of TRA genes in Aire-deficient mTECs, mor-
phological alterations in the medullary components from Aire-
deficient mice were not initially appreciated until Farr’s paper
had appeared (8). This was the main reason why insufficient
attention was paid initially to another proposed explanation for
the reduced TRA gene expression in Aire-deficient mTECs: the
maturation model (2). However, fairly recent detailed studies of
Aire-deficient thymi have revealed several important aspects of
the Aire-dependent differentiation programs of mTECs, such as
increased numbers of mTECs with a globular cell shape (8, 9), con-
trasted with reduced numbers of terminally differentiated mTECs
expressing involucrin, the latter being associated with reduced
numbers of Hassall’s corpuscles (9, 10). Although not fully inves-
tigated, increased percentages of mTECs expressing high levels
of CD80 (CD80high) is another suggested aspect of the Aire-
dependent mTEC differentiation program (11–13). In this regard,
it is noteworthy that the Aire-dependent mTEC differentiation
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program can be linked to the control of TRA gene expression, in
which the role of Aire may be perceived from a different viewpoint.
Given that acquisition of the properties of TRA gene expression
depends on the maturation status of mTECs (14, 15), any defect in
such an Aire-dependent maturation program could also account
for defects of TRA gene expression in Aire-deficient mTECs. In
such a case, TRA genes would not have to be the direct target
of Aire. Instead, Aire-deficient mTECs would have defective TRA
gene expression, because they are not fully differentiated to stage(s)
where other undetermined transcriptional means for TRA gene
expression beyond Aire become available and/or active (Figure 1).
Having said so, the exact point in the differentiation process at
which Aire-deficient mTECs are prevented from differentiating
further still remains unclear. Investigation of this issue has been
hampered by the current lack of suitable markers for the mTEC
differentiation program: so far, CD80 and MHC class II remain
the few that are available. Precise elucidation of the target gene(s)
relevant to the progression of mTEC differentiation controlled by
Aire is an essential task to support the maturation model.

Currently, there is no firm evidence to support either model
for Aire’s role in the control of TRA gene expression. Therefore,
there is a need to develop better in vivo experimental systems for
investigating this issue. In this connection, the results obtained by
examining Aire gene expression under control of the rat insulin
promoter using transgenic mice merit attention (16). It was found
that alterations of the transcriptome did not mirror those created
by abrogation of Aire within mTECs. This may not be surpris-
ing, but it is nevertheless important: if cell types differ, the effects
of functional gain or loss of a transcription factor, such as Aire,
can in turn differ markedly. This is especially important in the
case of Aire, since mTECs are unique in showing promiscuous
gene expression and a heterogeneous composition (17, 18). Thus,
it cannot be over-emphasized that the roles of Aire need to be
studied using in vivo models, and not in vitro systems using
mTEC-surrogate cells.

Regardless of the models employed, there are several important
issues related to the molecular regulation of TRAs within mTECs
in the context of Aire. Obviously, the transcriptional control of
TRAs is different from the regulation seen in their authentic tis-
sues, as exemplified by differences in the transcriptional start sites
of individual TRA genes (19). Although the fact that transcrip-
tional hierarchies driving the development of the pancreas and
transcription of the insulin 2 gene are not maintained in mTECs
(19, 20) might be more consistent with the transcription model,
it does not contradict the maturation model in explaining why
Aire-deficient mTECs show impaired insulin 2 gene expression;
the maturation model does not require the transcriptional hier-
archies driving the development of authentic tissues. Instead, the
maturation model has its own mTEC developmental process in
which expression of particular TRAs is acquired at specific time
points during the differentiation program. For example, expres-
sion of Aire-dependent TRA genes, such as insulin 2 and SAP1,
can be accomplished in terminally differentiated mTECs that have
fully matured with the help of Aire protein. Lack of Aire in mTECs
results in premature termination of differentiation, although Aire-
deficient mTECs can still develop and pass a certain maturation
stage. These Aire-less mTECs, which are rather mature (CD80high)

      

CD80low 
MHC-2low 

Aire- 

TRA 

Progenitor Immature Mature 

Transcription model 

Aire+ 

CD80high 
MHC-2high 

Maturation model       

Aire-KO 
mTECs 

            

FIGURE 1 | Schematic representation of the roles of Aire inTRA gene
expression associated with the mTEC differentiation program.
Aire-expressing mTECs develop from their progenitor via an immature
stage (CD80lowMHC-2low) where only limited numbers of TRAs (e.g., 1 and
2 ) are expressed. Aire is expressed at the mature stage

(CD80highMHC-2high), and the transcription model (upper) suggests that Aire
directly activates many target TRA genes within mature mTECs (so-called
Aire-dependent TRAs; 3 – 6 ). Consequently, lack of Aire results in defective
expression of Aire-dependent TRA genes. In contrast, the maturation model
suggests that Aire plays an important role in the maturation program of
mTECs, and that expression of Aire-dependent TRA genes, such as 3 – 6 ,
can be accomplished in terminally differentiated mTECs showing a dendritic
to fibroblastic morphology that have fully matured with the help of Aire.
According to this scenario, lack of Aire causes a halt in mTEC maturation at
a stage where promiscuous gene expression in the cells is still not possible
(marked as “Aire-KO mTECs”); lack of Aire in mTECs results in premature
termination of differentiation, and these CD80high Aire-less mTECs have a
more globular cell shape and lack the transcriptional machinery for
Aire-dependent TRA genes (lower). Because Aire-independent TRA genes,
such as 1 and 2 , can be expressed before the mature stage, lack of Aire
has little impact on their expression.

but not fully competent for TRA expression, have a more globular
cell shape and lack transcriptional machinery and/or activity for
Aire-dependent TRA genes (9) (Figure 1). In this scenario, Aire-
independent TRA genes, such as CRP and GAD67, can be normally
expressed even in Aire-deficient mTECs, because these TRAs can
be expressed before the terminal differentiation stage(s), and con-
sequently the lack of Aire has little impact on their expression. It is
still unknown why some (Aire-independent) TRAs are expressed
from the immature stage(s), whereas (Aire-dependent) others are
expressed only after they become fully mature. For this reason,
it would be important to clarify the exact timing of Aire expres-
sion during the course of mTEC differentiation (21). Nevertheless,
promiscuous gene expression seems to be accomplished in termi-
nally differentiated mTECs that have matured in the presence of
Aire protein (the maturation model). Alternatively, reduced TRA
gene expression could represent failure of heterogeneity in terms
of TRA gene expression due to a halt in differentiation at a prema-
ture stage before heterogeneity of individual mTECs has occurred.
In contrast, the transcription model may explain why some TRA
genes are Aire-dependent and others are not, as outlined in the
following. Aire-PHD1 binding with H3K4me0 is an interesting
finding, and a model has been proposed suggesting that Aire’s
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PHD1 acts as a chromatin reader, searching for genes showing low
expression (5, 22); Aire preferentially binds with weakly expressed
genes harboring the silent chromatin signature of H3K4me0, and
may help to up-regulate TRA genes whose expression levels would
otherwise remain low (23). In this model, TRAs showing relatively
high expression would do not require the help of Aire, and their
expression would be Aire-independent.

One caveat of the transcription model is that expression of Aire
and Aire-dependent genes does not always overlap at the single-
cell level (19, 24, 25). If Aire were controlling the expression of
TRAs in any way by means of direct transcriptional control, we
would expect to see both Aire and Aire-dependent TRAs within
the same individual cell, although one could argue that the timing
of expression of Aire and Aire-target genes might not always be
the same within any given analytical snapshot time frame.

Involucrin is an interesting TRA in that it is sometimes used
as an example of an Aire-dependent TRA that follows the tran-
scription model: when cultured cell lines were introduced with an
Aire-expressing plasmid, transcription of the endogenous involu-
crin gene was up-regulated possibly due to the transcriptional
activity of Aire (26). However, at the same time, involucrin is
also used as a marker of mTEC maturation status. Similarly to
its expression in the epidermis of the skin, involucrin is expressed
by mature epithelial cells in the thymic medulla; it is expressed
most strongly in Hassall’s corpuscles, which seem to be the prod-
uct of terminally differentiated mTECs, and Aire-deficient thymi
show reduced numbers of involucrin-expressing mTECs, even in
Hassall’s corpuscles (9, 10). These findings are consistent with
data favoring the maturation model derived from in vivo systems
suggesting that Aire is required for promotion of the mTEC mat-
uration program. Thus, there is a need to understand the types of
effects that can be expected according to the experimental systems
employed.

Regarding the role of Aire in the mTEC maturation pro-
gram, an important issue that needs to be carefully investigated
is whether or not Aire has proapoptotic activity. Introduction of
Aire into cultured cells has been reported to result in apoptosis
(11). Accordingly, increased MHC class IIhigh/CD80high mTECs
seen in Aire-deficient mice was considered to explain the lack of
Aire-mediated proapoptotic activity, because loss of Aire did not
result in augmented proliferation of mTECs (11). Given that Aire
plays an important role in the induction of a wide variety of TRAs,

concomitant induction of apoptosis in Aire-expressing mTECs by
Aire itself might be an effective way to promote cross-presentation,
thereby facilitating negative selection (1). Once again, however,
this attractive hypothesis needs to be investigated in more depth
using in vivo experimental systems.

Finally, there is a need to discuss the implications of these
two different models for the mechanisms underlying the defect
of negative selection in Aire-deficient animals. In principle, the
transcription model restricts the failure of negative selection in
Aire-deficient mice to reduced expression of TRA gene prod-
ucts. In contrast, the maturation model suggests that Aire may
affect the thymic microenvironment more globally than through
simple control of TRA expression levels. Consequently, the mat-
uration model allows for the possibility that regulation of TRA
gene expression may not be the major defect of Aire-deficient
mTECs responsible for impaired negative selection. Instead, other
alterations in the function of mTECs lacking Aire might equally
account for the defective negative selection in Aire-deficient mice.
These changes could include processing and/or presentation of
self-antigens within the mTECs (27), the process of thymo-
cyte maturation (28), the process by which mature thymocytes
are attracted to their proper location for negative selection by
production of chemokines from mTECs (27, 29), control of
cross-presentation through alteration of the relationship between
BM-APCs and mTECs (30), and the balance between negative
selection and regulatory T cell production (31). Furthermore,
modification of microRNA-regulated TRA gene expression by
Aire might represent another dimension in this field that war-
rants further investigation (32). All of the above issues may be
largely clarified once the target genes of Aire have been deter-
mined using in vivo models. Thus, our current understanding
of the fundamental function of Aire still seems to be in its
infancy, and the proposal and evaluation of different models
would doubtless lead to further advances in this fascinating field
of research.
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Elimination of potential self-reactiveT cells in the thymus is crucial for preventing the onset
of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary
thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of
self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expres-
sion of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of
which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive
T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive reg-
ulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral
tissues.TheTNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found
to promote the differentiation of AIRE- andTSA-expressing mTECs. Furthermore, activation
of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular
mechanisms that regulate induction of AIRE and TSA expression and discuss possible
contributions of these mechanisms to prevent the onset of autoimmune diseases.

Keywords: medullary thymic epithelial cells, autoimmune disease, NF-κB,TNF receptor family, gene expression

INTRODUCTION
The thymus contributes to self-tolerance of T cells by eliminating
potentially self-reactive T cells and generating immunosuppressive
T cells, which are essential for preventing the onset of autoimmune
disease. Epithelial cells localized in the thymic medulla [medullary
thymic epithelial cells (mTECs)] are non-hematopoietic in origin
and play non-redundant roles in the elimination of self-reactive
T cells (1–4). Recent studies have revealed that mTECs also
contribute to the selection and survival of immunosuppressive
Foxp3-positive regulatory T cells (Tregs) (5–8).

Medullary thymic epithelial cells express several functional
molecules required for the selection of self-tolerant T cells and
Tregs (3). Mature types of mTECs express MHC molecules and
co-stimulatory molecules essential for antigen presentation to
developing T cells. In addition, mTECs secrete several types of
chemokines (e.g., CCL19, CCL21, and CCL22) that attract T
cells or dendritic cells in the medulla (2, 9). Moreover, a recent
study has shown that the expression of CD70 in mTECs enhances
the development and survival of Tregs via an interaction with
its receptor, CD27, which is expressed on thymic T cells (5).
A key feature of mTECs is their ability to express hundreds of
self-antigens that are normally expressed in a tissue-specific man-
ner (TSAs) (4, 10). TSAs are processed and directly presented by
mTECs or indirectly presented by thymic DCs receiving TSAs from
mTECs (4, 7, 11–13). T cells that recognize TSAs with high avid-
ity undergo apoptosis (so-called negative selection) or survive as
regulatory T cells (4, 14). Many studies have suggested significant

roles of mTEC-dependent self-tolerance in preventing the onset of
some autoimmune diseases in humans. Expression of some TSAs
requires a nuclear protein autoimmune regulator (AIRE), the dys-
functional mutations of which are responsible for an inherited
human autoimmune disease, autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED) (15, 16). Whereas
the expression of AIRE mRNA is detected in different cell types,
AIRE expression at the protein level is remarkably high in mTECs
(17). A previous study using AIRE-deficient mice provided evi-
dence that autoimmunity, provoked by dysfunction of AIRE, is
thymic stroma-dependent (18). In addition to APECED, recent
studies have demonstrated that single-nucleotide polymorphisms
(SNPs) in the AIRE gene are associated with rheumatoid arthri-
tis (19, 20). In addition to mutations in the AIRE gene, reduced
expression of the muscle acetyl choline receptor (CHRNA1) in
mTECs was shown to be associated with the onset of myasthe-
nia gravis (21). Moreover, impairment of the mTEC-dependent
tolerance might explain the relationship between myocarditis and
autoimmunity (22). These findings also imply that the onsets of
various human autoimmune diseases could be related to dysreg-
ulation of mTEC-dependent tolerance. Interestingly, in addition
to relationships with autoimmune diseases, recent studies have
uncovered roles for mTEC-dependent T-cell tolerance in tumor
tolerance (8, 23, 24).

Because expression of AIRE and TSAs is characteristic of
mTEC, mTECs should harbor specific mechanisms to direct AIRE
and TSA expression. Expression of TSAs appears to be correlated
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with the differentiation of mTECs. In this mini-review, we spe-
cially focus on molecular mechanisms regulating the expression
of AIRE and TSAs and the process of mTEC differentiation.

DEVELOPMENT OF mTECs
Thymic epithelial cells are classified into mTECs and cortical
thymic epithelial cells (cTECs) (2). Several lines of evidence
indicate the existence of a bi-potent TEC progenitor capable of
differentiating into mTECs and cTECs in the fetal and adult thy-
mus (25–29). The bi-potent TEC progenitor seems to give rise
to each progenitor of mTECs and cTECs in the next stage (30,
31). Recent studies revealed that mTECs differentiate from prog-
enitors expressing cTEC-markers (32, 33). These data imply that
mechanisms determining the mTEC commitment suppress the
cTEC-driving program. However, master molecules that decide
the fate of the bi-potent TEC progenitor expressing cTEC-markers
to the mTEC lineage have not been determined yet.

Currently, mTECs are classified based on the expression of
MHC II, CD80, AIRE, and involucrin (Figure 1). mTECs (typ-
ically defined as CD45− EpCAM+ Ly51− and UEA-1+ by flow
cytometric analysis) in adult mice are divided into two sub-
populations, according to the expression levels of MHC II and
CD80 (34). mTECs expressing high levels of MHC II and CD80
(mTEChi) express a more diverse set of TSAs than mTECs express-
ing lower levels of MHC II and CD80 (mTEClo) do (35). Moreover,
precursor-product relationship analysis has suggested that the
mTEClo fraction can differentiate into mTEChi (36, 37). There-
fore, the mTEChi fraction would be the more mature type of mTEC
than mTEClo.

The mTEChi fraction is further separated on the basis of
AIRE expression (36, 38). Because previous studies have indi-
cated that the AIRE-expressing mTECshi (AIRE+ mTEChi) are
postmitotic and susceptible to apoptosis (36), AIRE+ mTECshi

are postulated to be the more differentiated cell types than
AIRE-negative mTECshi. mTECs expressing involucrin, a marker
of terminally differentiated keratinocytes, are considered to be
terminally differentiated mTECs that may be derived from
AIRE+mTEChi (39, 40).

REGULATION OF AIRE mRNA EXPRESSION
Molecular mechanisms regulating the expression of AIRE, which
are likely critical for preventing autoimmunity, remain unclear.
In the fetal thymus, expression of AIRE starts at embryonic day
14.5 (41). Consistently, mature mTECs emerge around this embry-
onic day (42). Thus, AIRE expression seems to be closely linked
to mTEC differentiation. However, because mTEChi is separated
into AIRE+ and AIRE-fractions, the mTEC differentiation mech-
anism might be necessary but is not entirely sufficient for AIRE
expression.

A study using a luciferase reporter assay identified a plausi-
ble minimal promoter region of the AIRE gene (43). This region
contains binding sequences for Sp1, AP-1, NF-Y, and ETS fam-
ily of transcription factors. Indeed, luciferase reporter analysis
suggested regulation of the AIRE gene promoter by ETS family
proteins (44). However, in vivo genetic studies are necessary to
prove that these sequence-specific transcription factors are critical
for the regulation of AIRE expression.

FIGURE 1 | Proposed model for differentiation of mTECs. Both mTECs
and cTECs are generated from a bi-potent progenitor in the fetal and adult
thymus. mTECs are classified by expression of MHC class II (MHC II),
CD80, AIRE, and involucrin. mTECs expressing low levels of MHC II and
CD80 are considered immature and give rise to mature mTECs, expressing
high levels of MHC II and CD80, and a more diverse set of tissue-specific
antigens (TSAs). MHC II-high and CD80-high mature mTECs are further
separated into AIRE-positive and AIRE-negative subpopulations.
AIRE-positive mature mTECs are postmitotic and undergo apoptosis or
otherwise differentiate into involucrin-positive mTECs.

The promoter region of AIRE contains a high ratio of CpG sites
(43). These CpG sites are hypermethylated in established cell lines
defective in the AIRE expression. A subsequent study showed that
these CpG sites are hypomethylated in isolated mTECs compared
to thymocytes (45). These findings suggest that DNA demethyla-
tion might be prerequisite for AIRE expression. However, interest-
ingly, hypomethylation was also observed in cTECs and thymoma
with defective AIRE expression (45). Hence, DNA hypomethyla-
tion appears to be required but not sufficient for inducing AIRE
expression.

Overall, AIRE expression seems to be regulated by combi-
nations of chromatin modification and sequence-specific tran-
scription factors. However, precise mechanisms and regulatory
molecules remain to be determined.

REGULATION OF TSA mRNA EXPRESSION
TSA expression appears to be regulated by complicated mecha-
nisms. Single-cell PCR analyses revealed a stochastic nature of TSA
expression in mTECs (38, 46). Each TSA is expressed in a subset of
mTECs (38, 46). The frequency of mTECs expressing a particular
TSA was different, depending on the TSA (38, 46). Interestingly,
various combinations of TSAs are expressed in individual mTECs
(38, 46). These studies suggest that regulatory mechanisms of TSA
expression in mTECs are different from those used in inherent
tissues.

Several studies suggest that TSA expressions are epigenetically
controlled. A comprehensive mRNA expression study revealed
that TSA gene loci tend to co-localize in chromosomal clus-
ters (35, 47). Moreover, genomic imprinting of the Igf2 gene, a
TSA, was lost in mTECs (35), implicating the involvement of
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a DNA demethylation mechanism in TSA expression. Interest-
ingly, another imprinted gene, Cdkn1c, was not affected. These
data imply the existence of mTEC-specific mechanisms for
demethylation of DNA.

Control of TSA gene expression by AIRE has been intensively
studied (48–50). Several studies have revealed a function of AIRE
as a transcription factor that directly promotes TSA expression
(51, 52). Furthermore, AIRE binds to hypomethylated Histone 3
Lys 4 (H3K4) through its plant homology domain (53, 54). This
finding suggests that AIRE modifies the chromatin structure in the
TSA genes. AIRE also binds to DNA-PK (55–57), which functions
in the repair of DNA-double strand breakage. A study using an
mTEC cell line suggested that interactions of AIRE with H3K4
and DNA-PK are critical in recruiting AIRE to TSA gene loci and
promoting TSA expression (57). Additionally, it was reported that
AIRE interacts with P-TEFb, a component of the super elongation
complex (58). It is generally accepted that transcription elonga-
tion, via the release of “paused” RNA polymerase II, is critical for
the regulation of many genes (58, 59). AIRE may recruit P-TEFb
to the TSA gene locus and promote elongation of the arrested TSA
transcripts by releasing RNA polymerase II from the proximal
promoter (60). Recent comprehensive analysis of mRNA tran-
scripts in mTECs supports this mechanism (61). In addition to the
TSA expression, the AIRE-dependent expression of some microR-
NAs (miRNAs) was recently revealed (62, 63). Consistently, genetic
studies revealed important roles played by miRNA expressions in
functions and maintenance of mTECs (63–65).

Compared to the mechanisms underlying Aire-dependent TSA
expression, molecular mechanisms underlying Aire-independent
TSA expression are less understood. As described above, whereas
epigenetic regulations of TSA genes would be critical, mechanisms
underlying epigenetic changes specific for mature mTECs remain
unclear. Moreover, unidentified transcription factors may be
involved in the promotion of Aire-independent TSA expressions.

EXTRACELLULAR SIGNALING TO PROMOTE
DIFFERENTIATION OF mTECs EXPRESSING AIRE AND TSAs
Differentiation of TECs is well known to be correlated to differ-
entiation of T cells in the thymus (so-called thymic cross-talk)
(3). mTEC maturation was reported to be abolished in severe
combined immunodeficiency (SCID) patients (66). This finding
supports the idea that failure of the thymic cross-talk results in the
onset of autoimmune manifestation through inhibition of mTEC
function. Interestingly, a recent study showed that administra-
tion of anti-CD3ε antibody ameliorated autoimmunity in leaky
SCID model mice possibly through improvement of the thymic
cross-talk (67).

Molecular basis of the thymic cross-talk in mTEC develop-
ment has been reported. Several lines of evidence revealed that
TNF family cytokines expressed in thymocytes and other cells
of hematopoietic origin (2) and their receptors expressed in
mTEC are critical for the thymic cross-talk. Briefly, signaling of
TNF receptor family members, RANK, CD40, and lymphotoxin-β
receptor (LtβR), play essential roles in the development of mTECs
expressing Aire and TSAs. This topic has been summarized in a
recent review (1).

DOWNSTREAM OF TNF RECEPTOR FAMILY SIGNALING
TNF receptor family signaling induces the activation of NF-κB
and MAPK pathways (68). To date, the involvement of the MAPK
pathway in the development of mTEC remains to be addressed.
However, several lines of evidence have indicated that the NF-κB
family plays a critical role in the development of mTECs expressing
AIRE and TSAs.

NF-κB members are sequestered in the cytoplasm in an inactive
state by the binding of the inhibitory protein IκB in resting cells
(69–71). Ligations of receptors induce phosphorylation and sub-
sequent degradation of IκB proteins, thereby leading to nuclear
localization of NF-κB to activate transcription. Two distinct NF-
κB activation pathways, the classical pathway and the non-classical
pathway, are currently known (70–72) (Figure 2). The classical
pathway is required in inflammatory responses and lymphocyte
activation (71). On the other hand, the non-classical pathway
mainly promotes development and architecture formation of lym-
phoid organs, including the thymus. In the non-classical pathway,
receptor ligation induces accumulation of the NF-κB-inducing
kinase (NIK), which is normally degraded by the ubiquitin-
dependent proteasome in resting cells. Subsequently, accumulated
NIK phosphorylates and activates IKKα, which induces partial
degradation of p100 to p52. p100 preferentially binds to and
sequesters RelB in the cytoplasm, and the partial degradation of
p100 to p52 induces translocation of RelB and p52 as a heterodimer
into the nucleus.

The requirement for NF-κB activation in the development of
mTEC was initially identified by the analysis of RelB-deficient
mice (73, 74). RelB-deficient mice showed severe reduction in
medulla size, accompanied by a lack of UEA-1-positive mTECs.
Consistently, the expression of AIRE was abolished in the RelB-
deficient thymus (6, 41, 75). As expected, RelB-deficient mice
showed severe autoimmune diseases. A recent study demonstrated
that autoimmunity of RelB mice was due to the defect in thymic
stroma function (6). Mice carrying a dysfunctional mutation, NIK
(aly/aly), also showed a similar defect in mTEC development and
autoimmune phenotypes (76–78). Whereas IKKα-deficient mice
die shortly after birth, neonatal IKKα-deficient mice and trans-
plantation of IKKα-deficient thymic stroma indicates a require-
ment of IKKα in the development of mTECs (79, 80). mTEC
development in p100-deficient mice is partially defective (81, 82),
but this appears to be due to a partial rescue of p100 function by
p105 (or its processed product, p50) because the double deficien-
cies of p100 and p105 resulted in severe defects in mTEC devel-
opment, similar to the RelB- and NIK-mutant mice (83). Overall,
these results support the idea that activation of the non-classical
NF-κB pathway is essential for the development of mTECs.

TRAF6 is a signal transducer that mediates signaling from TNF
receptor family members (84, 85). TRAF6-deficient mice exhibit
severe autoimmune disease (86, 87). Additionally, recent studies
suggest possible associations between SNPs of the TRAF6 gene
with rheumatoid arthritis and systemic lupus erythematosus in
humans (88, 89). Previous studies showed that TRAF6 promotes
the development of mTECs expressing AIRE and TSAs, thereby
suppressing autoimmunity (86). Moreover, RANK-mediated dif-
ferentiation of mTECs requires TRAF6 in in vitro organ culture
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FIGURE 2 | NF-κB activation pathways triggered byTNF family
signaling. Interaction of TNF family ligand (RANK ligand, CD40 ligand, and
lymphotoxin α and β complex) with their respective receptors (RANK,
CD40, and LtβR) induces activation of NF-κB pathways. Interaction between
the ligand and its receptor induce the binding of TRAF-family proteins to the
cytoplasmic domains of TNF receptors. TRAF-family proteins in turn activate
downstream serine/threonine kinase cascade. These kinases trigger the
degradation of inhibitory proteins that sequester NF-κB in cytosol, thereby
leading to the translocation and transcriptional activation of NF-κB
members. NF-κB pathways are classified into classical and non-classical
pathway. In the non-classical pathway, NF-κB complex consisting of RelB
and p52 is activated. NIK is critical for the non-classical NF-κB pathway.
TRAF6, a member of the TRAF protein family, was reported to regulate only
the classical NF-κB pathway, which causes nuclear translocation of mainly
the RelA complex. On the other hand, other TRAF members function in the
non-classical NF-κB pathway by binding to the TNF family receptors.

of fetal thymic stroma (90). Notably, TRAF6 is a signal transducer
that mediates the activation of the classical NF-κB pathway but
not the non-classical NF-κB pathway (84, 85). Thus, these data
imply a role for TRAF6-mediated activation of the classical NF-κB
pathway in mTEC differentiation.

In addition to the above findings, a scaffold protein, Sin (also
called Efs), was proposed to be expressed downstream of TNF
receptor family signaling. Sin-deficient mice showed reduced
numbers of mTECs and thymic stroma-dependent autoimmunity
(91). In addition to the role of Sin in FGF-mediated proliferation
signaling (91), a recent study suggested that Sin might regulate the
non-classical NF-κB pathway activated by RANKL signaling (92).
Because the SH3 domain and phosphorylation of tyrosine residues
of Sin might be critical for its function (93, 94), these studies also
imply unrecognized roles of Src-type tyrosine kinases in mTEC
development.

CONCLUDING REMARKS
Whereas significant roles for NF-κB in signal activation of mTEC
differentiation and subsequent expression of AIRE and TSAs are
indisputable, molecular events connecting these signaling path-
ways to induction of AIRE and TSA remain unclear. It was reported
that LtβR signaling induces the expression of AIRE in an mTEC
line in the presence of a DNA methylation inhibitor (95). How-
ever, it is still unclear whether NF-κB binds to the promoter of
the AIRE gene. Moreover, a wide variety of TSA expression would
not be explained only by NF-κB-dependent transcriptional acti-
vation because NF-κB family members are generally known to
be sequence-specific transcription factors. Thus, the link between
NF-κB activation and expression of AIRE and TSAs remains largely
enigmatic.

In addition, differentiation stages regulated by these sig-
naling molecules and their mechanisms need to be clarified.
mTECs have different properties in each developmental stage,
with regard to TSA expression, AIRE expression, and DNA
methylation status. Therefore, it is important to clarify types
of mTECs in which each TNF receptor family signal func-
tions. Overall, more studies are needed to understand the mol-
ecular and cellular mechanisms regulating the development of
mTECs with the final aim to develop novel therapeutic strate-
gies preventing autoimmune diseases caused by defective thymic
functions.
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Loss-of-function mutations in the Autoimmune Regulator (AIRE) gene cause a rare inherited
form of autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy, also known as autoimmune polyglandular syndrome type 1. The patients suffer
from multiple endocrine deficiencies, the most common manifestations being hypoparathy-
roidism, Addison’s disease, hypogonadism, and secondary amenorrhea, usually accompa-
nied by typical autoantibodies against the target tissues. Chronic mucocutaneous candidi-
asis is also a prominent part of the disease. The highest expression of AIRE is found in
medullary thymic epithelial cells (mTECs). Murine studies suggest that it promotes ectopic
transcription of self antigens in mTECs and is thus important for negative selection. How-
ever, failed negative selection alone is not enough to explain key findings in human patients,
necessitating the search for alternative or additional pathogenetic mechanisms. A striking
feature of the human AIRE-deficient phenotype is that all patients develop high titers of
neutralizing autoantibodies against type I interferons, which have been shown to downreg-
ulate the expression of interferon-controlled genes. These autoantibodies often precede
clinical symptoms and other autoantibodies, suggesting that they are a reflection of the
pathogenetic process. Other cytokines are targeted as well, notably those produced by
Th17 cells; these autoantibodies have been linked to the defect in anti-candida defenses.
A defect in regulatoryT cells has also been reported in several studies and seems to affect
already the recent thymic emigrant population. Taken together, these findings in human
patients point to a widespread disruption of T cell development and regulation, which is
likely to have its origins in an abnormal thymic milieu. The absence of functional AIRE in
peripheral lymphoid tissues may also contribute to the pathogenesis of the disease.

Keywords: APECED, AIRE,T cells, autoimmunity, thymus

INTRODUCTION
Monogenic diseases, although rare, provide a unique possibil-
ity to obtain information in the human system on the signif-
icance and function of the molecules affected by the muta-
tions. Autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy (APECED), also known as autoimmune polyendocrine
syndrome type 1 (APS-1), is one such natural knockout pheno-
type, and has provided important information on T cell selection
and pathogenesis of organ-specific autoimmunity (1, 2). It is a
recessively inherited human autoimmune disease, caused by loss-
of-function mutations in the Autoimmune Regulator (AIRE) gene
(3, 4). It is enriched in certain populations, most notably the Finns
(prevalence 1:25 000), Sardinians (1:14 000), and Iranian Jews (1:9
000) (5). The pathognomonic triad consists of chronic candidia-
sis, hypoparathyroidism, and Addison’s disease, with several other
endocrine and non-endocrine manifestations affecting a smaller
fraction of the patients.

Abbreviations: AIRE, autoimmune regulator; ALAT, alanine amino transferase;
APECED, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy;
APS-1, autoimmune polyendocrine syndrome type 1; CMC, chronic mucocuta-
neous candidiasis; GAD, glutamic acid decarboxylase; LKM, liver-kidney microso-
mal; mTEC, medullary thymic epithelial cells; RTE, recent thymic emigrant; TRA,
tissue-restricted antigen; Treg, regulatory T cell.

Since the discovery of the underlying genetic defect in 1997,
the pathogenesis of this rare polyendocrine syndrome has been
the focus of considerable interest. In particular, studies in Aire-
deficient mice have shown that AIRE plays an important role in
T cell development and negative selection in the thymus, thus
elucidating general pathways of thymic development (2). How-
ever, the murine phenotype differs in several key points from the
human disease, not least in the absence of all the defining triad
components mentioned above (6). It is clear that to understand
how AIRE works in the human immune system, the human dis-
ease mechanisms have to be studied on their own terms, and not
only as an extension of the murine phenotype. Such an approach
has already proved successful, for example by revealing the role
of anti-cytokine antibodies in causing the increased susceptibility
to Candida infections (7). Here, we review the main features of
human APECED, both clinical and immunological. Although sev-
eral important questions remain open, we also attempt to provide
an explanation of the pathogenetic mechanisms, looked at from
the human viewpoint.

CLINICAL FEATURES
The classic triad of APECED consists of Addison’s disease,
hypoparathyroidism, and chronic mucocutaneous candidiasis
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(CMC), two of which are required for the diagnosis. The autoim-
munity in APECED is organ-specific but with many components.
There is no gender bias. Virtually all patients have more than two
disease components and up to 10 components have been reported.
On the average patients have four components (8). First symp-
toms occur on average at the age of five (range 0.2–18 years) (9).
The most common endocrinopathies, hypoparathyroidism, and
Addison’s disease are usually diagnosed at the age of 3–5 years
and 11–15 years, respectively. New components appear through
life (9).

Chronic mucocutaneous candidiasis is usually the first sign of
APECED and in Finnish patients its prevalence is 100%. Can-
didiasis is the most common component of APECED except in
Iranian Jews in whom it is rarely described (10). The severity of
the symptoms varies from redness and soreness of the corners of
the mouth to inflamed mucosal surfaces in the whole oral cavity.
Candidiasis increases the risk of oral carcinoma by causing chronic
inflammation (1).

Hypoparathyroidism is the most common autoimmune com-
ponent in APECED and APECED should be considered in the
differential diagnosis of every patient with hypoparathyroidism
of unknown cause. Addison’s disease is the second most common
autoimmune component and its prevalence was 78% in a large
patient series (9). It most often presents with both mineralo- and
glucocorticoid deficiency. Gonadal failure is a common compo-
nent, especially in women. Ovarian insufficiency is actually the
third most common autoimmune component, affecting approxi-
mately 65% of APECED women and starting in early adulthood
(9). It can present with primary amenorrhea with a complete fail-
ure of or arrested pubertal development. About half of the cases
develop premature menopause (9). Testicular failure has a max-
imum prevalence of 25% in men and starts usually at an older
age (11).

About one third of APECED patients develop hypothyroidism,
usually after puberty (9). Thyroid autoantibodies are found com-
monly but clinical disease is not always present. The preva-
lence of type I diabetes mellitus among APECED patients varies
between populations. In a large Finnish patient series, the preva-
lence was about 30% (8). Gastrointestinal symptoms, such as
chronic diarrhea, constipation, hepatitis, and gastritis are com-
mon. Autoimmune gastritis with pernicious anemia is present in
approximately 30% of patients by middle age (9). In severe forms,
patients develop chronic atrophic gastritis and pernicious anemia
(9). About 20% of patients develop autoimmune hepatitis with
variable severity (8).

Ectodermal manifestations include enamel hypoplasia of the
teeth, alopecia, nail dystrophies, vitiligo, and ocular keratopathy
(8, 9). Keratitis occurs in 25% of the patients and can lead to
vision loss. Keratitis can be an early and even the first manifesta-
tion of the disease. Alopecia and vitiligo affect up to 30–40% of
the patients by middle age (5, 12).

DIAGNOSIS AND AUTOANTIBODY FINDINGS
The diagnosis of APECED is based on the clinical features,
detection of autoantibodies, and genetic analysis. Two of the
most common disease components are required for APECED
diagnosis. Candidiasis is usually the first symptom, while

hypoparathyroidism and Addison’s disease are the most common
endocrinopathies. Since the gene test is available, the diagnosis is
confirmed with the identification of the mutation. The type of
mutation, however, does not predict the disease course. Due to the
rarity of APECED, there is often delay of years before the diagnosis
is set (13).

An important feature in the diagnostics is the existence of
IgG autoantibodies. Their possible pathogenetic role is mostly
unknown. Many autoantibodies in APECED are targeted against
intracellular enzymes (14). It is possible that the detected autoanti-
bodies are not pathogenetic but, instead, are a marker of the ongo-
ing T cell activity at the target tissue (14). The presence of autoanti-
bodies correlates with the disease components but autoantibodies
can also precede the onset of the target organ failure (15). Some
autoantibodies are closely associated with the corresponding dis-
ease manifestation, while others are found only in a subset of
patients with the particular manifestation. For example, autoan-
tibodies against calcium-sensing receptor are found in almost all
APECED patients with hypoparathyroidism, whereas anti-NALP5
antibodies, also linked to hypoparathyroidism, are much less com-
mon (16, 17). Also, autoantibodies found in APECED patients
may be different from those found in patients with an isolated
autoimmune disease. A case in point is GAD (glutamic acid
decarboxylase), an important autoantigen in type I diabetes but
rarely targeted in APECED patients with diabetes as a disease
component (18).

Once the initial diagnosis is made, APECED patients must
be evaluated regularly and tested for autoantibodies, since new
disease components appear through life (19). Suggestions for lab-
oratory testing in the follow-up of APECED patients are presented
in Table 1.

The recently discovered neutralizing antibodies against type I
interferons are found in 100% APECED patients (20, 21). Anti-
interferon antibodies are present before symptom development at
high titers. In addition to APECED, type I interferon autoantibod-
ies have been found only in patients with thymoma, but with lower
prevalence and titers (20, 21). Thus, measurement of neutralizing

Table 1 | Suggested tests in suspected APECED and for the follow-up

of APECED patients.

Disease component Autoantibody Other tests

APECED Interferon-α and/or

interferon-ω

Hyperparathyroidism NALP5 Plasma calcium

Calsium-sensing receptor Plasma phosphate

Addison’s disease 21-hydroxylase Plasma renin

Adrenocortical antibodies Plasma ACTH

Diabetes mellitus type I IA-2

Hypothyroidism Thyroid peroxidase

Gonadal insufficiency Steroid cell antibodies FSH, LH, estrogen

Gastritis Parietal cell antibodies vitamin B12

Hepatitis LKM antibodies ALAT

In diagnosed APECED patients the aim is to screen for new disease components

for early diagnosis.
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antibodies against the type I interferons α and ω is a sensitive
diagnostic test.

Chronic mucocutaneous candidiasis correlates with autoanti-
bodies against Th17 class cytokines, both in APECED patients and
CMC patients without APECED (22–24). The autoantibodies are
neutralizing and have been found against IL-22 (91% of patients),
IL-17F (75%), and IL-17A (41%) (22). Testing for these antibod-
ies is not commonly used in the diagnostic evaluation, since the
abovementioned type I interferon antibodies are more prevalent
and specific.

NACHT leucine-rich-repeat protein 5 (NALP5) is a protein
expressed in the cytoplasm of parathyroid chief cells. Forty-nine
percent of APECED patients with hypoparathyroidism are posi-
tive for NALP5 antibodies (16). These antibodies are not found
in APECED patients without hypoparathyroidism or in non-
APECED patients with hypoparathyroidism. NALP5 antibodies
thus represent APECED-specific autoantibodies.

Adrenocortical autoantibodies can be detected by indirect
immunofluorescence assays. These antibodies recognize 21-
hydroxylase, 17-hydroxylase, and side-chain cleavage enzymes,
which are involved in the steroid hormone synthesis (11). Ovarian
insufficiency correlates with the presence of autoantibodies against
side-chain cleavage enzyme (11). Steroid cell autoantibodies can be
screened for by indirect immunofluorescence assays with ovarian
and testicular tissues. APECED patients with ovarian insufficiency
also have elevated FSH and LH levels and low estrogen levels (1).

Fifty percent of APECED patients with hepatic involve-
ment have liver-kidney microsomal (LKM) antibodies (25). The
cytochrome target antigen is CYP1A2. Autoantibodies against
CYP1A2 are highly specific (100%) but their sensitivity is only
50% (12). Plasma alanine amino transferase (ALAT) are a good
marker for developing autoimmune hepatitis in APECED (1).
Smooth muscle cell antibodies, which are a marker for autoim-
mune hepatitis, are not commonly present in APECED-associated
hepatitis (25).

In APECED,autoantibodies against IA-2 (tyrosine phosphatase-
like protein IA-2) correlate with the development of type I dia-
betes. However, the sensitivity is low (11). GAD antibodies are
relatively common (33%) in APECED patients but their pres-
ence does not correlate with diabetes, in contrast to non-APECED
patients (11, 18).

Gastrointestinal symptoms, for example constipation and diar-
rhea are common among APECED patients. Hypocalcemia due
to hypoparathyroidism can cause diarrhea. Exocrine pancreatic
failure occurs in a few percent of patients and can present with mal-
absorption and steatorrhea (9). Plasma calcium levels and exocrine
pancreatic function should be assayed in APECED patients with
diarrhea.

GENETICS OF APECED
Autoimmune polyendocrinopathy-candidiasis-ectodermal dys-
trophy is caused by loss-of-function mutations in the AIRE gene.
The human AIRE gene is found in the q22 region of chromosome
22, and shares a 71% sequence homology with its murine counter-
part Aire (3, 4, 26). At full length, AIRE encodes a 58 kDa protein
of 545 amino acids, although two other, shorter splice variants of
unknown significance have been described (4, 27). AIRE contains

a N-terminal caspase-recruitment domain and SAND domain
that together regulate AIRE’s multimerization, two plant home-
odomains (PHDs), and a proline-rich region (Figure 1) (28, 29).
The N-terminus also contains a nuclear localization signal, while
C-terminus is important for transcriptional activation. PHDs are
zinc fingers involved in protein-protein interaction, and PHD1 has
been shown to mediate the binding of AIRE to non-methylated
histone H3 (30–34). Together, these sequence and structural fea-
tures suggest a role in the regulation of gene transcription, but
despite some data suggesting otherwise (35), it is unlikely that
AIRE is a transcription factor that directly binds DNA.

Today, more than 60 APECED mutations have been identified.
The mutations are found throughout the coding region in AIRE
and include nonsense mutations causing premature stop codons,
frameshifts caused by deletions and missense mutations (36). The
most common ones are the mutations R257X (c.769C > T) in exon
6 and a 13-base pair deletion (c.967–979del) in exon 8 (37, 38).
APECED is inherited in an autosomal recessive manner and het-
erozygosity does not cause APECED. However, there is one Italian
family where a dominantly inherited mutation in the AIRE gene
(G228W) causes APECED (39).

In general, the type of mutation in APECED does not cor-
relate with the clinical features (40). Phenotype can vary even
between siblings carrying the same mutation (9). However, the
R257X mutation carriers have more commonly candidiasis than
patients with other mutations (40). Also, Iranian Jews APECED
patients have a unique mutation (Y85C, c.374A > G) and do not
develop keratopathy or candidiasis (10).

AIRE’s EXPRESSION AND FUNCTION
A few years after the discovery of the genetic defect responsible
for APECED, experiments with knockout mouse models linked
AIRE to the transcription of tissue-restricted antigens (TRAs) in
thymus. The highest expression of AIRE is found in medullary
thymic epithelial cells (mTECs) (41), which are capable of express-
ing a diverse set of genes normally restricted to certain tissues
(42, 43). This phenomenon has been denoted ectopic transcrip-
tion and is likely to be important for the deletion of autoreactive
thymocytes. In the absence of Aire a subset of thymic TRAs was

FIGURE 1 |The structure of AIRE protein. CARD: caspase recruitment
domain; SAND: human Sp100, Aire1, NucP41/P75, and Drosophila DEARF1
domain; PHD: plant homeodomain; PRR: proline-rich region. CARD and
SAND are associated with AIRE multimerization and nuclear localization,
while PHD1 mediates binding to non-methylated histone H3. Mutations
disrupting AIRE’s function have been found in all domains except PRR, and
also at the extreme C-terminus. Areas where recessive mutations have
been found are shown below the schematic structure as horizontal lines,
while the location of the dominant mutation is shown as a vertical line.
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down-regulated, suggesting that Aire functioned as a regulator of
the ectopic transcription of some TRAs in mTECs (44). Another
study using a model antigen with Aire-regulated promoter pro-
vided evidence of increased development of autoreactive T cells
and subsequent autoimmunity when Aire was knocked out, at least
in that particular transgenic system (45). Later studies have con-
firmed but also complicated the link between TRA transcription
and Aire (2).

It has been difficult to establish how AIRE facilitates TRA tran-
scription, given the promiscuous nature of its function and the
diverse and context-dependent set of genes affected by AIRE’s
absence. Several studies have reported that AIRE can bind DNA,
suggesting that it might function as a transcription factor (35, 46).
Others, however, have challenged the significance of direct DNA
binding by AIRE (32, 47, 48). Moreover, the genes regulated by
AIRE lack shared promoter elements (47), and it is thus difficult
to see how AIRE could by direct DNA binding regulate such a
diverse set of genes.

A detailed analysis of AIRE’s molecular partners suggests a less
direct role for AIRE in gene transcription. A common feature of
AIRE-regulated genes is that they are associated with a stalled
RNA polymerase II (RNAPII), which stops full-length transcrip-
tion (34, 49, 50). AIRE then seems to allow further elongation
of the target genes. A recent attempt to formulate a model sug-
gests that AIRE first binds to non-methylated histone H3 (29). It
then recruits positive transcription elongation factor b (P-TEFb)
to phosphorylate RNAPII, reactivating the stalled polymerase and
gene transcription. Although this would allow for a broad range of
genes to be activated, a major problem with this model is to explain
how AIRE’s control on TRAs is maintained even when the TRAs
are expressed as transgenes, outside of their normal epigenetic
environment.

A competing explanation is that AIRE is not directly involved
in TRA transcription, but rather regulates mTEC maturation and
death, thus indirectly affecting also mTEC-expressed TRAs. In
support of this possibility are numerous studies showing that Aire-
deficiency results in fundamental changes in the mTEC population
(51–54). The expression of AIRE is a late event in the lifespan of
mTECs (55), and it has been suggested to be a terminal differenti-
ation factor for mTECs. Thus, in the absence of AIRE, the altered
developmental pathway of mTECs might lead to a decrease in the
TRA-expressing stages, either because of abnormal cell death or
diverted or arrested maturation. However, although the mTEC
differentiation model is compatible with most reported effects
of AIRE-deficiency, the molecular mechanisms by which AIRE
regulates mTEC biology are largely unknown.

The strengths and weaknesses of scenarios involving regula-
tion of gene transcription versus regulation of mTEC homeostasis
have been more fully summarized in a recent review (47). At the
moment the available data do not provide unequivocal support to
either of the two main models, and it should also be noted that
practically all the data come from studies on the murine system
or cell lines. Nevertheless, we would argue that the human phe-
notype is difficult to reconcile with models invoking regulation of
TRA transcription as the main function of AIRE. We discuss these
aspects in more detail below, in the chapter on the pathogenesis of
APECED.

A further complication is AIRE’s expression in peripheral tis-
sues, a phenomenon of largely unknown significance (56). Early
studies showed AIRE mRNA expression in a wide range of tissues,
but not all of these studies were confirmed on protein level. In the
periphery AIRE is expressed at significantly lower levels than in the
mTECs, making reliable detection with mostly polyclonal antibod-
ies difficult, and some studies have questioned the presence of any
extrathymic AIRE (57). Nevertheless, a wide agreement exists for
the expression of AIRE in lymphoid tissues, with perhaps den-
dritic cells as the main AIRE+ population (58, 59). The peripheral
AIRE+ cells can also express TRAs, although the genes are only
partly overlapping with the thymic set (60).

IMMUNOLOGICAL ABNORMALITIES
The most obvious immunopathological finding in APECED
patients is the diverse set of autoantibodies, mostly against tis-
sues affected by the disease. The autoantibodies are often directed
against enzymes involved in hormone synthesis, but since these
enzymes are intracellular, the organ-specific autoantibodies rarely
have pathogenetic significance. Of special interest are the neu-
tralizing autoantibodies to cytokines, since they are likely to have
pathogenetic effects. These autoantibodies are found in practi-
cally all APECED patients, while extremely rare in healthy people,
and can block interferon-induced gene expression both in vivo and
in vitro (21, 61). The more recently described neutralizing autoan-
tibodies against the Th17 cytokines IL-17A, IL-17F, and IL-22 are
linked to the defective antifungal defense and CMC (22, 24).

However, the organ-specific autoimmune manifestations of
APECED are generally held to be T cell-mediated, and therefore
the T cell compartment in APECED patients has been studied in a
number of studies. A recent study showed that APECED patients
have a significantly increased frequency of highly differentiated
CD8+ effector T cells (62). These cells express CD45RA and lack
CCR7, a phenotype similar to that found in some chronic viral
infections, and express cytotoxic molecules, such as perforin. The
specificity of these cells is not known, but it is likely that at least
some of them represent the autoreactive population.

The CD4+ population likewise shows changes, but so far the
data are scant and partly contradictory. An increased frequency of
CD25 + CD4+ cells, including both regulatory and activated pop-
ulations, was reported in one series of patients (63), while a later
study failed to find differences between patients and controls in
the frequency or number of CD4+ activated/memory T cells (64).
With the discovery of anti-cytokine antibodies the cells produc-
ing Th17 cytokines have also been studied. Despite the presence
of anti-IL17 antibodies, IL-17A production is generally normal or
even increased, while IL-17F is reduced. An even greater reduction
is found in IL-22 responses (22, 65, 66). These defects are closely
linked to the chronic candidiasis.

The best-defined T cell defects, confirmed by several studies, are
found in the regulatory T cell (Treg) population. The earliest report
showed that APECED patients have a decrease of CD25 + CD4+

Tregs, a finding later confirmed in another cohort (64, 67). A more
detailed examination was facilitated by the discovery of FOXP3 as
the key transcription factor in Tregs, and subsequent development
of mAb allowing the identification of FOXP3+ cells. APECED
patients have a decreased frequency and number of FOXP3+ Tregs,
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and in a single-cell analysis the Treg cells express reduced levels of
FOXP3 protein (68). Moreover, in an in vitro co-culture assay
Tregs isolated from APECED patients show defective suppressive
function. The most clear-cut Treg abnormalities are found in the
CD45RO+ activated subset, the population mostly responsible for
the regulatory activity (62, 69). Cells of the innate immune sys-
tem have also been analyzed, especially those in which AIRE is
expressed. The frequency of circulating dendritic cells has been
reported to be normal (64, 70), but several studies suggest func-
tional changes, at least in monocyte-derived dendritic cells (58,
71, 72). However, here again the published results have been partly
conflicting, with some reporting hyperactivation of dendritic cells,
and others defective cytokine production and functional impair-
ment. The expression of pattern-recognition receptors has also
been studied and seems normal (70).

An altogether different putative role for AIRE links it with
Dectin-1, a receptor of the innate immune system (73). AIRE
was reported to form transient complexes with Dectin-1 path-
way components and localize with Dectin-1 at the cell mem-
brane. In APECED patients peripheral blood mononuclear cells
the production of TNF-α in response to Dectin-1 ligation was
reduced. Because Dectin-1 is important in innate recognition of
β-glucan and anti-Candida responses, these findings offer an alter-
native mechanism for the defective antifungal defense in APECED
patients.

With the exception of the increased susceptibility to Candida,
the general view emerging from these studies, perhaps not unex-
pectedly, is one of increased effector activity and decreased regu-
lation. As in all human studies, two major problems complicate
the interpretation of these results. First, the analysis is restricted to
circulating cells, which are likely to be at best a partial reflection of
the local autoimmune process. Secondly, most of the studies have
been performed on adult patients with long-established disease,
and care is needed to separate primary pathogenetic factors from
secondary effects of the disease process. We will discuss pathogen-
esis below. Nevertheless, it is also important to note that not all
secondary processes are irrelevant to the pathogenesis. In most
patients, new targets of autoimmunity and new disease mani-
festations continue to appear later in life, and it is likely that
the general immune dysregulation is a contributing factor in this
unpredictable progression of the disease.

PATHOGENESIS
Given the expression pattern of AIRE, it is highly likely that the
thymus is in a central role in the pathogenesis of APECED. The
simplest putative explanation for the disease is based on the link
between AIRE and ectopic transcription of TRAs in the thymus.
In this model the absence of AIRE-regulated TRAs in the thymus
disrupts negative selection and allows the escape of autoreactive
T cells to periphery, which leads to organ-specific autoimmunity
(Figure 2). Support for this scenario comes from murine studies,
and in particular transgenic settings with Aire-regulated model
antigens (44, 45, 74, 75).

However, several aspects of both the murine and human AIRE-
deficient phenotype are very difficult to reconcile with this simple
model. A corollary of TRA-driven autoimmunity is that at least
the earliest events should be specific to AIRE-regulated TRAs and

FIGURE 2 | A hypothesis of the pathogenesis of APECED. In the normal
thymus mTECs express a range of tissue-restricted antigens, shown here
as red and green circles within the mTECs. This facilitates the deletion of
autoreactive thymocytes, shown as cells with a red or green TCR, so that
only T cells reactive to non-self antigens migrate to the periphery. The
normal thymus also supports the development of regulatory T cells (Tr). In
the absence of functional AIRE the epithelial compartment is disrupted, as
indicated by the malformed mTEC, and some of the TRAs are no longer
transcribed. Thymocytes specific to these TRAs mature in increased
numbers. They may also become activated already in the thymus, shown
here as an increase in cytoplasm volume, so that the thymus exports
functional effector cells. At the same time the development of Tr cells is
defective, leading to insufficient suppression in the periphery. The outcome
is organ-specific autoimmunity, at least partly directed by the range of TRAs
missing in the AIRE-deficient thymus (here indicated by the red tissue).

the response limited to clones that escaped negative selection. In
the murine system some of the reported manifestations involve
antigens that are independent of AIRE, suggesting that loss of
TRAs is not an obligatory prerequisite of the autoimmunity (76).
In humans, perhaps the main problem for the TRA model is to
explain the early and universal incidence of anti-interferon anti-
bodies. As noted earlier, these antibodies can precede any clinical
symptoms or organ-specific autoantibodies (5), strongly suggest-
ing that their appearance is an important part of the pathogenetic
process, or at least reflects it. It is very difficult to see how, without
any additional defects, the loss of TRAs in mTECs alone could give
rise to this particular phenomenon. Another difficulty arises from
the study of thymomas. The disorganized thymoma tissue often
lacks AIRE expression, yet continues to support T cell matura-
tion. If the loss of TRAs and subsequent escape of autoreactive
T cells would suffice to cause APECED, a substantial fraction
of thymoma patients should develop it. Yet the patients rarely
show APECED-like manifestations (77, 78). Instead, autoimmu-
nity associated with thymomas is dominated by myasthenia gravis,
which conversely is not a manifestation of APECED (9, 79).

An alternative model suggests that the loss of AIRE leads to a
more extensive disruption of the thymic microenvironment, creat-
ing conditions that favor activation instead of tolerance. Although
a primary lymphoid organ, thymus is also capable of developing
tertiary lymphoid organization, with germinal centers and induc-
tion of adaptive immunity (5). The unique feature of thymus is
that, unlike in the secondary lymphoid organs, many of the T cells
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inhabiting the organ have not yet passed negative selection and are
potentially highly autoreactive. The crucial difference when com-
pared with the TRA model is that here the thymus would export
preactivated autoreactive T cells, perhaps in high numbers, and
not naive, clonally restricted autoreactive precursors. Moreover,
since the absence of AIRE is also likely to disrupt the develop-
ment of natural Tregs (80–82), the defect in immunoregulatory
mechanisms contributes to the emerging autoimmunity.

Several observations support the view that a more wide-
spread thymus disturbance than decreased TRA expression alone
is responsible for APECED. First, thymoma patients also develop
anti-interferon antibodies (83), a feature shared only by these two
diseases affecting the thymus, and resected thymoma tissue often
shows tertiary lymphoid structures (79, 84). Secondly, in APECED
patients even cells expressing markers typical of naive lympho-
cytes, e.g., CD45RA and CCR7, show clear signs of functional
activation, such as the expression of perforin (62). Interestingly,
this also applies to CD8+ T cells expressing CD31, a marker of
recent thymic emigrants (RTEs). This is consistent with activat-
ing events taking place already in the thymus, so that the cells
migrate to the periphery preactivated. Similarly, the CD31+ sub-
set among resting Tregs is clearly abnormal, suggesting that the
Treg cell defect is also traceable to the thymic development (80).
And thirdly, indirect support is provided by the studies showing
disruption of thymic medulla in the absence of functional Aire. A
dysregulated thymus functioning as an induction site for autoim-
mune responses would also explain the relatively early onset of the
disease.

Nevertheless, the fact that most patients develop similar main
components of the disease suggests that the initiation of autoim-
munity does show predilection to certain self antigens. It is there-
fore likely that the range of TRAs missing from the AIRE-deficient
thymus, whether primarily due to transcriptional failure or dis-
rupted mTEC development, defines at least to some extent which
peripheral organs are targeted. The early pathogenetic events in
the thymus would thus be a combination of a general failure to
imprint tolerance and a clonally restricted targeting of a subset of
potential self antigens.

This thymus-centered view on the pathogenesis of APECED
leaves important questions open, including the significance of
peripheral AIRE. So far, this is issue is largely unknown, apart from
what can be extrapolated from murine studies and the observed
changes in the characteristics of dendritic cells and other AIRE+

peripheral cells when AIRE is absent. Likewise, AIRE’s interac-
tion with Dectin-1 partners and its contribution to the antifungal
defense remains to be defined.

Moreover, the disease manifestations traditionally held to
be caused by factors other than autoimmunity need to be re-
examined. The recent data on neutralizing antibodies against
Th17 cytokines, and on the importance of these cytokines in anti-
Candida defense strongly suggests that the chronic candidiasis is
basically an autoimmune phenomenon, too (7). It may also be
questioned whether the ectodermal disease components represent
developmental dystrophies, as was originally believed. The argu-
ment against this view holds that since they are not congenital
but develop later, a primary defect is unlikely. However, with the
exception of such clearly autoimmune manifestations as alopecia

and vitiligo, the pathogenesis of ectodermal components is still
unknown.

AIRE IN OTHER DISEASES
Because the effects of AIRE-deficiency are so drastic, many stud-
ies have addressed the possibility that heterozygous mutations or
genetic variants of AIRE might also predispose to autoimmu-
nity. So far, the results are intriguing but inconclusive and to
some extent contradictory. Studies on the first-degree relatives
of APECED patients have generally failed to find a link between
heterozygous carriage of AIRE mutations and autoimmune dis-
eases (85, 86), although some data suggesting otherwise have been
reported (87). A clear limitation in all such studies is the small
number of study subjects. Another approach has been to search
for AIRE mutations in patients with isolated autoimmune diseases.
In most cases heterozygotes have not been found to be enriched
among the patients (88, 89), but again there are some conflicting
data (90). However, several recent studies suggest that single-
nucleotide polymorphisms in the AIRE gene are associated with
an increased risk of autoimmunity, including rheumatoid arthri-
tis and vitiligo (91–93). It is therefore probable that more detailed
analysis of AIRE will reveal more instances in which genetic vari-
ation in AIRE, presumably leading to modulation of its function,
affects the predisposition to non-APECED autoimmunity.

CONCLUDING REMARKS
Despite the simple genetics of AIRE, the resulting phenotype is
highly complex, and the disease manifestations can vary greatly
between patients with identical mutations. The significance of
this complexity has sometimes been dismissed by attributing it
to secondary effects of a longstanding disease or the genetic het-
erogeneity of the patients. Although both arguments are relevant,
they can also be a too facile way to sidestep important issues.
The simple model of reduced TRA expression as the main mech-
anism of APECED is increasingly untenable, so alternative and
additional mechanisms must be considered, and human patients
studied to test them. Moreover, although the genetic diversity
of the human patients certainly influences and complicates mat-
ters, it must be accepted and addressed. The relative simplicity of
inbred Aire-deficient animal models is attractive but also poten-
tially deceptive. After all, in the end the results have to be taken
back to human patients, when the outbred nature of the subjects
is an unavoidable fact.

The existing data indicate that the earliest pathogenetic events
leading to APECED take place in the thymus, and it is very likely
that a general disturbance of mTEC population is involved. The
associated disruption of TRA expression, whatever its exact mech-
anism, is likely to limit the targets of the resulting autoimmunity,
but perhaps not the later appearance of additional, less com-
mon disease components. Some of the disease manifestations
may also reflect the failure of peripheral tolerance, although the
significance of peripheral AIRE expression remains poorly under-
stood. Because the relevant tissues cannot be accessed in APECED
patients, many of the open questions can be addressed only indi-
rectly. In particular, innovative organ culture methods to analyze
the role of AIRE in the human thymus are likely to provide a means
to test the proposed pathogenetic pathways.
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Although the role that Autoimmune Regulator (Aire) plays in the induction of central toler-
ance is well known, the precise cellular and molecular mechanisms are still unclear and
debated. In the prevailing view, Aire serves mainly as a direct inducer of tissue-specific
antigens. However, there is a growing amount of evidence suggesting that Aire modu-
lates the differentiation program of medullary thymic epithelial cells, which may directly
contribute to the negative selection of self-reactive thymocytes. In addition, Aire has been
shown to regulate the expression of many intrathymic chemokines that are required for the
proper localization of thymocytes and dendritic cells, and thus are potentially important for
direct and indirect self-antigen presentation in the thymic medulla. Further, recent evidence
suggests that the induction of certain antigen-specific regulatoryT-cells that translocate to
tumors and peripheral tissues can be Aire dependent and may contribute to tissue-specific
tolerance.This review summarizes the current understanding of the effects of Aire on these
alternative mechanisms for the induction of Aire-induced central tolerance.

Keywords: Aire, thymus, Hassall’s corpuscle, thymic epithelial cells, central tolerance, chemokines, negative
selection, epithelial differentiation

The thymus is the primary lymphoid organ involved in thymocyte
development and thus plays a central role in establishing immune
tolerance (1). During the course of central tolerance induction,
single-positive thymocytes are guided from the thymic cortex to
the medulla, tested there for reactivity to self-antigens and, if they
are self-reactive, either deleted or directed to become regulatory
T-cells (Tregs). Impaired clonal deletion or Treg induction can
lead to a breakdown of central tolerance and the development of
autoimmune diseases.

AIRE DEFICIENCY RESULTS IN AUTOIMMUNITY
An essential molecule in the induction of central tolerance
is Autoimmune Regulator (Aire). The AIRE gene was identi-
fied by positional cloning of a locus linked to a rare disease,
Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal Dys-
trophy (APECED) (2, 3). This syndrome usually starts during
childhood with chronic mucocutaneous candidiasis, which may
correlate with autoantibodies to interleukin (IL)-17 and IL-22
(4). The later stages of this disease are characterized by the pres-
ence of autoantibodies to multiple self-antigens and lymphocytic
infiltration of various endocrine glands, which finally leads to
autoimmune endocrine disorders (5, 6). Although the phenotype
of Aire-deficient mice is considerably milder than in APECED and
is dependent on the genetic background, it is also characterized by
autoantibodies and autoimmune infiltrations, and thus resembles
the pathological characteristics of APECED patients (7).

AIRE DEFICIENCY RESULTS IN DEFECTIVE NEGATIVE
SELECTION
There is strong experimental evidence that Aire deficiency directly
results in the defective negative selection of thymocytes. This
evidence comes from transgenic mice in which most of the
T-cells express T-cell receptors (TCRs) specific for a certain

neo-self-antigen, such as hen egg lysosome (HEL). When this
transgenic line is crossed with another transgenic line express-
ing HEL under the rat insulin promoter [i.e., an RIP-HEL
mouse expressing HEL in thymic medullary thymic epithelial cells
(mTECs) and in the pancreas], the effectiveness of eliminating
autoreactive T-cells by negative selection is strictly dependent on
the presence of Aire (8). This role in regulating the thymic clonal
deletion of autoreactive thymocytes has also been shown for other
neo-self-antigens and for different promoters and clearly indicates
a role for Aire in negative selection (9, 10).

AIRE IS PREDOMINANTLY EXPRESSED IN MHC CLASS
II-HIGH, CD80-HIGH mTECs
Several studies have expanded our knowledge of Aire and illus-
trate its key role in central tolerance induction. The majority of
Aire signal have been shown to come from mTECs, a very spe-
cific set of cells in the thymus (11). mTECs are unique because
they can express thousands of tissue-specific self-antigens that are
presented to developing thymocytes and are thus associated with
negative selection (12). The phenomenon, known as promiscu-
ous gene expression, and the role that Aire plays in this process,
have been covered in detail by Ucar et al. in this Research Topic of
the Frontiers in Immunology. Within mTECs, Aire expression is
specifically located in a subpopulation of cells characterized by the
surface expression of MHC class II, and the co-stimulatory mole-
cules CD80 and CD86 (13), indicating that, in addition to antigen
cross-presentation by dendritic cells (DCs), Aire+ mTECs also
have the potential for direct antigen presentation. Within these
MHC class II mTECs, Aire localizes in the nuclei, forming discrete
dot-like structures that resemble promyelocytic leukemia (PML)
nuclear bodies (11, 14). PML bodies have been associated with sev-
eral activities, including the modulation of chromatin structure,
transcriptional control, DNA repair, and antiviral response (15).
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In addition to mTECs, some recent studies have also identified
the Aire protein in peripheral lymph nodes both in humans as well
as mice (16, 17). It has been shown that the peripheral expression
of Aire may contribute to the autoimmune phenotype either via
its effects on T-cells as well as directly on B-cells (16, 18). Thus, in
addition to its major role in the induction of central tolerance, as
is covered in this review, Aire is likely to play a role in peripheral
tolerance as well, as has been covered in recent reviews (19).

Thus, in summary, it is well established that (1) the insufficient
expression of Aire results in autoimmunity in both humans and
mice, (2) Aire is required for negative selection, and (3) the MHC
class II-high, CD80-high mTEC population is the primary source
of Aire. However, the precise mechanisms that link the expression
of Aire in the thymus to the effective induction of tolerance, are
still widely debated and are summarized in the remainder of this
review (Figure 1).

AIRE AND TSA EXPRESSION
The role of Aire as a master regulator of tissue-specific antigens
(TSA) was first proposed by Anderson et al. (20) and is by far the
best studied and established mechanism behind Aire-induced neg-
ative selection. It is clear that Aire controls the expression of many
TSAs in mTECs and that Aire-dependent expression of these TSAs
leads to the negative selection of self-reactive thymocytes. These
aspects of Aire have been covered in depth in recent reviews on Aire
(21, 22), and also in a review on promiscuous expression by Ucar
et al. in this Research Topic of the Frontiers in Immunology. How-
ever, there is also accumulating evidence that the impaired expres-
sion of TSAs is not the only mechanism behind Aire-induced
central tolerance. For example, Aire-deficient mice develop a Sjö-
gren’s syndrome-like autoimmune reaction to α-fodrin, which is

FIGURE 1 | Alternative mechanisms of Aire-induced central tolerance.
In addition to the well-described roles in tissue-specific antigen (TSA)
expression and induction of negative selection Aire has been shown to
affect maturation of medullary thymic epithelial cells (mTECs), expression
thymic chemokines, and induction of naturally occurring Tregs, which may
all contribute to the induction of central tolerance. Other possible
mechanisms, such as induction of mTEC apoptosis or disturbances in
thymocyte maturation have also been suggested.

a self-antigen not regulated by Aire (23). Similarly, Aire-deficient
non-obese diabetic (NOD) mice develop autoimmune pancreatitis
to isomerase A2, another Aire-independent self-Ag (24). There-
fore, it is clear that Aire has an additional effect on T-cell selection
independent of its effect on TSA expression. The precise mecha-
nisms responsible for these additional effects of Aire, however, are
still unclear and deserve further studies.

AIRE AND mTEC MATURATION
During maturation, mTECs must pass through several develop-
mental stages that are characterized by the expression of a few
key proteins that are related to specific functions at that partic-
ular stage of development (Figure 2). The classical subpopula-
tions are composed in consecutive order of the (1) MHC class
II-low, CD80-low, Aire-mTECs, which are considered to be an
immature, highly proliferating population, that is already com-
mitted to the mTEC lineage; (2) MHC class II-high, CD80-high,
Aire-mTECs, a subpopulation that is already capable of expressing

FIGURE 2 | Proposed program of mTEC differentiation and the effect of
Aire on mTEC development at different stages of differentiation.
Consecutive developmental stages are indicated based on key molecules
predominantly expressed at this stage: (1) MHC class II−, CCL21+*; (2)
MHC class II+, Aire−; (3) MHC class II+, Aire+; (4) MHC class II-low,
Aire−, keratin high; (5) Hassall’s corpuscles. Possible pathway from MHC
II+, Aire+ cells to apoptosis is shown in pale. The pentagonal signs indicate
presence of the specific marker at this stage of differentiation, whereas the
color of a sign indicates the change of this marker in the Aire-deficient
mice: green corresponds to a decrease and red to an increase in Aire KO
mice. TSA stands for tissue-specific antigens and excludes
keratinocyte-specific TSAs; KSA stands for keratinocyte-specific antigens.
*In parallel to the developmental sequence presented here, the MHC class
II−, CCL21+ mTEC stage has been suggested to follow the MHC class II+,
Aire+ stage of development (50).
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Laan and Peterson The many faces of Aire in central tolerance

many (Aire-independent) TSAs and directly presenting them to
developing thymocytes; and (3) MHC class II-high, CD80-high,
Aire+mTECs. This last cell population consists of matured, post-
mitotic mTECs that express a wide variety of TSAs, including the
ones under control of Aire (25, 26). Until quite recently, it was
widely accepted that these post-mitotic Aire+mTECs represented
the final stage of mTEC maturation. More recent data, how-
ever, suggest that the maturation of mTECs may extend beyond
the Aire+ stage, and Aire in fact may modulate several different
aspects of mTEC differentiation. The first indications that Aire
may alter mTEC differentiation came from studies by Gillard et
al. and Dooley et al., that characterized the staining patterns of
UEA1, Keratin (K)-5/K8/K14, and p63 in Aire-deficient thymi.
These authors observed changed proportions of stellate versus
globular mTECs and more frequent thymic cysts in Aire-deficient
thymi. Although these findings were only apparent after careful
analysis, and their functional significance is difficult to evaluate,
they clearly suggest that the loss of Aire alters the basic para-
meters that determine mTEC morphology and maturation stage
(27, 28). In addition, a study by Milicevic et al. looked at the
ultrastructure of mTECs of Aire-deficient mice using electron-
microscopy and found profound changes in all subpopulations
of mTECs (29). Rather strikingly, all mTECs in Aire-deficient
mice, regardless of their differentiation stage, showed profound
ultrastructural changes. These changes were collectively charac-
terized as signs of activation and increased intracellular traffic.
Thus, although mTECs classified by either electron-microscopy
or functional surface markers are not directly comparable, this
ultrastructural study suggested that the effect of Aire on mTEC
maturation is not restricted to the final (i.e., Aire+) cells, but
rather covers all mTEC subpopulations.

Direct evidence suggesting that mTECs survive and further dif-
ferentiate after the Aire+ stage originated from recent studies by
Yano et al., Nishikawa et al., and Wang et al., all of which used
different reporter mice to follow the faith of Aire+ cells (30–32).
These studies demonstrated that Aire+ mTECs develop further
into MHC class II-low, CD80-low, Aire-mTECs, and thus lose
their unique property of direct TSA presentation in parallel with
the loss of Aire (31, 32). In addition, the loss of another unique
property of Aire+ cells, promiscuous TSA expression, was indi-
cated by the down-regulation of many Aire dependent as well as
Aire-independent TSAs in these post-Aire mTECs (32). Instead,
post-Aire cells upregulated the expression of keratins and thus
came to resemble keratinocytes, at least in terms of the gene-
expression pattern (30, 32). Finally, it was shown that the post-Aire
cells lose their nuclei and merge to become Hassall’s Corpuscles
(HC), well known but poorly characterized concentric structures
in thymic medullary areas (30, 32). Although the precise func-
tion of these structures is unknown, they may have the potential
to induce Treg development through expression of TSLP (33).
In addition, it has been shown that intrathymic expression of
some keratinocyte-specific TSAs, including the expression of the
well-known pemphigus-related autoantigens, desmoglein-1 and
-3, is clearly restricted to HCs (32, 34–36). Thus, it is plausi-
ble that these post-Aire structures contribute to the induction
of central tolerance by negative selection of keratinocyte-reactive
thymocytes as well as by induction of keratinocyte-specific Tregs.

The lack of Aire seems to block the maturation of mTECs,
resulting in the accumulation of MHC class II+, CD80+, trun-
cated Aire+ mTECs, and in a severe reduction in the expression
of many keratins and the numbers of HCs (28, 31, 32) (Figure 2).
The reduction in the expression of keratinocyte-specific proteins
in Aire-deficient thymi involves also desmoglein-3 and results in
the altered selection of desmoglein-3-specific T-cells and defective
tolerance against desmoglein-3 (37). Thus, it has been formally
demonstrated that through its effect on mTEC differentiation,Aire
can promote tolerance at least against this specific keratinocyte-
related TSA. Whether, and to what extent, the broad effect of
Aire on gene expression is regulated through mTEC differenti-
ation rather than direct transcriptional activity, remains to be
determined in future studies.

AIRE AND CHEMOKINE EXPRESSION
The negative selection of developing thymocytes is also depen-
dent on coordinated migration through distinct thymic niches,
that provides timely interactions with mTECs and DCs (38).
Cell–cell contact with TSA-expressing mTECs requires that the
positively selected thymocytes migrate from the thymic cortex
to the medulla, whereas indirect TSA presentation is likely to
be dependent on the physical proximity of thymocytes, mTECs
and DCs (39) (Figure 3). The ligands of two chemokine recep-
tors, CCR7 and CCR4, have been previously associated with
thymocyte migration to the site of negative selection. Both recep-
tors are predominantly expressed on double positive (DP) and
single-positive (SP) CD4-thymocytes (40–42), while the ligands
for CCR7 and CCR4 are produced predominantly in the thymic

FIGURE 3 | Aire regulates chemokines required for proper localization
of thymocytes and dendritic cells. For effective direct antigen
presentation (shown as green pentagons) from mTEC to thymocyte, the
positively selected single-positive thymocytes need to migrate from cortex
to medulla. For effective indirect antigen presentation both, the positively
selected thymocytes and the DCs, need to migrate to medulla. Only the
key chemokines (shown as red particles) known to mediate the migration of
single-positive thymocytes or DCs, and also known to be regulated by Aire
(shown as yellow dots) are listed.
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medulla (40, 41, 43–45). The importance of CCR7 ligands in
thymocyte development has been further highlighted in the CCR7-
deficient mouse, in which the impaired intrathymic migration
of thymocytes resulted in a delay of mature T-cell emigration
and a leakage of premature T-cells (45). Significantly, a lack of
CCR7 caused defective induction of central tolerance and the
presence of multiple autoantibodies and autoimmune infiltra-
tions in many peripheral organs, resulting in a phenotype almost
identical to that of Aire-deficient mice (46, 47). In turn, the impor-
tance of Aire in the regulation of thymic chemokine expression
has been reported in many studies. First, microarray analysis of
sorted mTECs has demonstrated the down-regulation of several
chemokines in the Aire-deficient mouse (10). Second, the effect
of Aire on CCR4 and CCR7 ligand expression has been fur-
ther validated with both the up- and down-regulation of Aire
(48, 49). Third, the delay of thymocyte emigration (in a man-
ner similar to that in CCR7-deficient mice) is also present in the
Aire-deficient mice (48). Notably, the highest expression of CCR7
ligands, although Aire dependent, occurs in the MHC class II-
low mTECs, i.e., in a population not expressing Aire (48, 50).
Further, during mouse ontogeny, CCL21+ (i.e., CCR7 ligand-
producing) cells appear after the appearance of Aire+ cells (50). It
has therefore been proposed that MHC class II-, CD80−, CCL21+
mTECs represent the post-Aire population (50). However, we
have measured the levels of multiple chemokines directly in the
post-Aire population in the Aire-reporter mouse, and found a
clear down-regulation of all measured chemokines in these post-
Aire cells (32). Therefore, although the precise developmental
sequence is still clearly under debate, we feel that the MHC class
II-, CD80− population prior to the induction of Aire is a more
likely source of CCR7 ligands (Figure 2). It remains unclear,
however, how the expression of Aire in one cell can influence
another mTECs in a less mature stage. In addition to possible
direct paracrine signaling from mTEC to mTEC, another possi-
bility involves cross-talk between mTECs and thymocytes, which
do not receive all appropriate signals from the mTECs under
Aire-deficient situation, resulting in improper signaling from thy-
mocytes back to immature mTECs. This effect of Aire on mTEC
maturation and differentiation before and after Aire expression
is in agreement with the ultrastructural changes observed dur-
ing all stages of mTEC development that have been discussed
above (29).

In addition to its effect on thymocyte migration,Aire expression
in mTECs has been shown to regulate the chemokines responsi-
ble for DC migration. Although not characterized in the thymus,
peripheral DCs bear the CCR7 receptor, which is required for their
proper localization within lymph nodes (51). In addition, it has
been shown by Lei et al. that thymic DCs express the receptor for
the chemokine XCL1, which is specifically expressed by mTECs in
an Aire-dependent fashion, and is required for the proper local-
ization of DCs to the cortico-medullary junction (49). Thus, there
is evidence that Aire-dependent chemokines are required for thy-
mocyte and DC migration to the location where antigen (cross)-
presentation and negative selection are likely to occur (Figure 3).
In fact, altered cross-presentation in Aire KO mice has previously
been demonstrated (52), although the roles of specific chemokines
in this process are still unclear.

AIRE AND Treg INDUCTION
There is an increasing amount of direct evidence that, in addition
to their proposed role in negative selection, mTECs contribute to
central tolerance by inducing naturally occurring Tregs (53, 54).
Accordingly, since the characterization of an autoimmune pheno-
type in Aire-deficient mice, a significant number of studies have
focused on the potential role of Aire in thymic Treg induction.
However, there was no major change in either Treg numbers or
function in transgenic models (RIP-HEL, RIP-mOVA), in which
the negative selection of neo-self-antigen-specific thymocytes was
clearly Aire dependent (8–10). Likewise, the lack of Aire had no
major effect on TCR usage by Foxp3+ Tregs, in a study where
the effect of Aire on Treg TCR repertoire was assessed in a mouse
model with restricted TCR repertoire (55). Thus, initial studies
that looked at the total numbers and/or function of Tregs, indi-
cated that defects in central tolerance in Aire-deficient mice are not
Treg related. Nevertheless, a recent study showed that Aire expres-
sion is required for the intrathymic production of tumor-specific
Tregs in a mouse model of oncogene-driven prostate cancer (56),
and clearly demonstrated a role for Aire in induction of a specific
population of naturally occurring Tregs. Thus, this study demon-
strates directly that the key role of Aire in central tolerance is not
limited to its effect on negative selection but also includes its effect
on thymic Treg induction. Future studies will determine, whether
this intriguing effect of Aire extends to a significant pool of TSA-
specific Treg induction and, if so, what mechanisms cause this
effect.

OTHER PLAUSIBLE MECHANISMS BEHIND AIRE-INDUCED
CENTRAL TOLERANCE
There are also a number of studies indicating that in addition to
the mechanisms covered above, Aire may influence other basic
mechanisms, directly in mTECs or indirectly in other thymic cells
which, at least hypothetically, may contribute to defects in negative
selection.

Thus, Aire may play a role in the induction of apoptosis, as the
over-expression of Aire results in the induction of apoptosis in
several in vitro cell-lines (25, 57, 58). Based on these data, it has
been proposed that the absence of this effect is responsible for the
increased numbers of MHC class II+ mTECs observed in Aire-
deficient mice and that Aire-induced apoptosis may facilitate the
cross-presentation of TSAs expressed by these apoptotic cells to the
thymic DCs (25, 28). As the apoptotic processes in the thymus are
very dynamic and thus difficult to monitor, this attractive hypoth-
esis has not yet been validated in vivo. It is, however, completely
plausible that, in addition to the maturation of post-Aire mTECs
and HCs, a subpopulation of Aire+ mTECs are directly guided
to undergo apoptosis and are then quickly removed by resident
macrophages (Figure 2).

In addition, a report by Li et al. shows that the development
of SP CD4-thymocytes is blocked at the transition from SP3 to
SP4 in Aire-deficient mice (59). Although this may be due to
imperfect cross-talk between defectively matured Aire-deficient
mTECs and developing thymocytes, or to insufficient cell–cell con-
tact as a result of reduced chemokine expression, neither of these
possibilities has been formally tested. Additionally, the functional
consequences of this phenomenon remain unknown.
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In summary, although the effects of Aire on central tol-
erance are well established, the cellular and molecular mech-
anisms are still unclear. Along with the better-understood
effects on TSA expression, Aire can also alter the differenti-
ation program of mTECs, regulate the expression of thymic

chemokines, contribute to specific Treg induction, and induce
mTEC apoptosis. It remains to be determined, however, what
extent these alternative mechanisms contribute to the autoim-
mune phenotype observed in Aire-deficient mice and APECED
patients.
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Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare
autosomal recessive disease, caused by mutations of a single gene named Autoimmune
regulator gene (AIRE) which results in a failure of T-cell tolerance. Central tolerance takes
place within the thymus and represents the mechanism by which potentially auto-reactive
T-cells are eliminated through the negative selection process. The expression of tissue-
specific antigens (TSAs) by medullary thymic epithelial cells (mTECs) in the thymus is a
key process in the central tolerance and is driven by the protein encoded by AIRE gene,
the transcription factor autoimmune regulator (AIRE). A failure in this process caused by
AIRE mutations is thought to be responsible of the systemic autoimmune reactions of
APECED. APECED is characterized by several autoimmune endocrine and non-endocrine
manifestations and the phenotype is often complex. Although APECED is the paradigm of
a monogenic autoimmune disorder, it is characterized by a wide variability of the clinical
expression even between siblings with the same genotype, thus implying that additional
mechanisms, other than the failure of Aire function, are involved in the pathogenesis of
the disease. Unraveling open issues of the molecular basis of APECED, will help improve
diagnosis, management, and therapeutical strategies of this complex disease.

Keywords: autoimmune polyglandular syndrome type 1, APECED, autoimmune regulator gene, phenotypic
variability, tolerance

INTRODUCTION
Autoimmune Polyglandular Syndrome Type 1 (APS-1), also
called Autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy (APECED), is a rare autosomal recessive disease caused
by mutations of the autoimmune regulator gene (AIRE). Immuno-
logically, APECED is characterized by destruction of the target
organs by a cellular- and/or antibody-mediated attack (1). In the
past decade, much interest has been focused on the pathogene-
sis of this syndrome. Indeed, APECED represents a paradigm of
genetically determined systemic autoimmunity. However, the great
variability that characterizes APECED, irrespectively of the AIRE
genotype, implies that several factors are involved in the disease
phenotypic expression.

In this review, we will focus on the complex pathogenesis of
APECED and on the potential interfering factors involved in the
clinical expression of the disease.

THE BASIS OF THE IMMUNOLOGICAL TOLERANCE
Tolerance represents a state of immunologic non-responsiveness
in the presence of a particular antigen. In this context, T-cell
tolerance is crucial for the creation of a proper T-cell reper-
toire, able to respond to a huge number of foreign antigens, but
preventing autoimmune reactions. Imposition and regulation of
self-tolerance within the T-cell repertoire is exerted at two levels:
(1) central tolerance (development and selection of T-cells in the
thymus) and (2) peripheral tolerance (deletion, anergy of mature
T-cells in lymphoid and non-lymphoid organs) (2).

T-cell central tolerance, established within the thymus, mostly
relies on two main mechanisms: negative selection, also referred
to as clonal deletion of maturing thymocytes and positive selec-
tion of maturing T-cells able to bind to a surface major histo-
compatibility complex (MHC) molecule with mild threshold of
reactivity (Figure 1). The thymus provides the necessary envi-
ronment for thymopoiesis and establishment and maintenance
of self-tolerance (3–5). Thymus contains thymic epithelial cells
(TECs) that form a complex three-dimensional network orga-
nized in cortical and medullary compartments (6). On entering the
thymus, immature thymocytes promote the differentiation of pre-
cursor thymic epithelial cells (pTECs) into cortical TECs (cTECs)
and medullary TECs (mTECs), playing an important role in the
formation of the thymic microenvironment (7–9). During post-
natal life, hematopoietic progenitors enter the thymus from the
bloodstream (10) and cells committed to the T lineage undergo
division, mostly within the double-negative (DN) stage of the T-
cell development. The first checkpoint is the rearrangement of
T-cell receptor (TCR) β and α locus. Expression of αβ TCR het-
erodimers on the cell surface allows DN thymocytes to progress
to the double-positive (DP) CD4+CD8+ stage. At DP stage, the
TCR affinity for self-peptide-MHC on mTECs within the thymus
determines thymocyte’s fate. mTECs express a wide array of tissue-
specific antigens (TSAs) in the context of MHC class II molecules;
these TSAs include self-proteins derived from different organs in
the body. DP thymocytes expressing TCRs that do not bind self-
peptide-MHC complexes are programed to undergo “death by
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De Martino et al. Factors involved in the pathogenesis of APECED

FIGURE 1 | Positive and negative selection of immature thymocytes within thymus.

neglect” or apoptosis. Only about 5% of DP has a low affinity for
self-peptide-MHC complexes and differentiate to CD4+CD8− or
CD4−CD8+ single positive (SP) lineage (positive selection) (11–
13). DP thymocytes with high-affinity TCR for MHC complexes
represent a potential reservoir of auto-reactive lymphocytes and
“clonal deletion” (negative selection) is the main mechanism in
the thymus to preserve self-tolerance (14, 15). Compelling evi-
dence indicates that an altered promiscuous thymic expression of
TSAs leads to autoimmunity. In the autoimmune attack, T helper
cells (Th) escaped to self-tolerance, produce pro-inflammatory
cytokines able to begin inflammation and activate auto-reactive
B-cells, resulting in autoantibodies production, which lead to tis-
sue inflammation and damage (1). Some of the thymocytes that
recognize self-peptide-MHC complexes with high-affinity express
Foxp3 and through “clonal diversion” mature as regulatory T-
cells (Tregs), which are able to suppress auto-reactive T-cells in
the periphery (16–18). The central tolerance is not able alone to
completely remove mature T-cells with self-antigens specificity,
therefore additional mechanisms in the periphery are also needed
to maintain immunological tolerance.

The peripheral tolerance recognizes as possible mechanisms the
induction of functional anergy, deletion of auto-reactive clones,
and the suppressive action of T-regulatory cells (Tregs). Anergy
is a state of long-term hyporesponsiveness with inactivation of
self-reactive T-cells in the presence of a TCR signal but in the
absence of a second costimulatory signal, necessary to T-cell acti-
vation. Deletion of self-reactive lymphocytes is achieved in both
the thymus and the periphery by apoptosis through interaction of
Fas/FasL. The function of Tregs (Foxp3-expressing CD4 T-cells)
is to suppress immune responses through numerous mechanisms

including the production of anti-inflammatory cytokines, direct
cell–cell contact, and by modulating the activation state and func-
tion of antigen-presenting cell (APC) (19). An additional mech-
anism involved in controlling reactivity to self in the periphery is
NK cell activity.

AIRE AND THE MAINTENANCE OF IMMUNOLOGICAL
TOLERANCE
Autoimmune regulator gene encodes for a transcription factor
(Aire) involved in the maintenance of tolerance. In humans, the
AIRE gene maps to chromosome 21q22.3 (20, 21). It consists of 14
exons spanning 11.9 kb of genomic DNA (22) and encodes a 545
amino acid protein with a molecular weight of 58 kDa that works as
a “non-classical” transcriptional factor in immune-related organs.
The highest level of AIRE expression has been detected within the
thymus (23) in mTECs, followed by thymic dendritic cells (DCs).
In addition to the thymus, low level of Aire seems to be expressed
in secondary lymphoid organs, such as lymph nodes, fetal liver,
and spleen (24, 25). The Aire protein, mostly localized in the cell
nucleus, is composed by specific domains including the amino-
terminal HSR domain, the nuclear localization signal (NLS), the
Sp100, AIRE1, nucP41/75, DEAF 1 (SAND) domain, two plant
homeodomain (PHD) type zinc fingers, and four LXXLL motifs
(26) (Figure 2). The HSR region has been shown to be responsible
for the dimerization of the polypeptides belonging to the Sp100
protein family (27). The SAND domain is important for AIRE
transactivation capacity and subcellular localization. The PHD
zinc fingers are often found in proteins involved in the regulation
of transcription (28). The LXXLL motifs are found on coactiva-
tors nuclear receptors and proline-rich regions (PRR) and are also
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De Martino et al. Factors involved in the pathogenesis of APECED

FIGURE 2 | AIRE gene (top) and corresponding protein (bottom) with functional domains. The Aire protein is composed by nuclear localization sequences
(NLS), two planthomeodomain (PHD) zinc fingers, a caspase recruitment domain (CARD)/homogeneously staining region (HSR), a SAND domain, and a
proline-rich region (PRR).

associated to transcription regulation (29). Although the precise
molecular mechanism is still unclear, Aire seems to regulate the
transcription process acting as a coactivator in a large transcrip-
tional complex (30), and interacting with a large set of partners,
divided into four main classes based on their function: nuclear
transport, chromatin binding/structure, transcription, and pre-
mRNA processing factors (31). The first protein reported to bind to
AIRE was CREB-binding protein (CBP) (32). Its interaction with
AIRE may lead to promotion of gene transcription through histone
acetylation and the recruitment of chromatin-transcription fac-
tors (33). Other AIRE partners have been identified, such as DNA
protein kinase (DNA-PK), SP-RING domain protein inhibitor of
activated STAT1 (PIAS1), positive transcription elongation factor
b (P-TEFb) (34–36). Moreover, it has been proposed a possible
epigenetic control of the AIRE target genes since AIRE’s PHD1
finger domain appears to be able to bind histone three molecules
with unmethylated lysine at position 4, generally associated with
repressed genes (37). Overall, it is possible that Aire mediates the
expression of TSA in mTECs through its co-transcriptional part-
ners (38). The intriguing question is how the AIRE gene alone can
influence the transcription of such a large number of TSA genes.
Indeed, two models have been suggested to explain the action of
Aire: transcription model and maturation model. In the transcrip-
tion model, TSAs are considered to be the direct target genes of
Aire’s transcriptional activity and the lack of Aire protein within
the cell would result in the defective TSA gene expression, while the
maturation program of mTECs would be in principle unaffected.
The maturation model suggests that Aire may affect the thymic
microenvironment more globally than through simple control of
TSA expression levels. Consequently, in keeping with the latest
model the regulation of TSA gene expression might not be the
major defect of Aire-deficient mTECs responsible for impaired
negative selection (39).

Although the exact role of AIRE in controlling T-cell tolerance
is still largely unclear, several mechanisms have been suggested.
Functional alterations of AIRE may affect processing and/or

presentation of self-antigens within the mTECs (40). The process
of thymocyte maturation (41), the attraction of mature thymo-
cytes to their final location for a proper negative selection (40,
42), the control of cross-presentation through alteration of the
relationship between APCs and mTECs (43) may also represent
potential mechanisms by which AIRE alterations may lead to func-
tional abnormalities of the central tolerance. The alteration in the
balance between negative selection and regulatory T-cell produc-
tion (44) may also be implicated in the pathogenesis. In addition,
Aire may also play a role in the proper differentiation of the thymic
medullary epithelium, in the induction of apoptosis in end-stage
terminally differentiated mTECs (39) as well as in mTECs’ dif-
ferentiation program. In particular, evidence suggests that lack of
Aire in mTECs results in an arrest of the differentiation program,
with the cells remaining at the premature stage just before terminal
differentiation (45, 46).

THE CLINICAL COUNTERPART OF AIRE MUTATION: APECED
GENETIC BACKGROUND
Mutations in AIRE gene result in development of APECED, which
represents the paradigm of a genetically determined failure of
central tolerance leading to autoimmunity (46). APECED is a
rare autoimmune syndrome, but it has been reported worldwide
showing a relatively higher prevalence in genetically isolated pop-
ulations such as Iranian Jews (1:9,000) (47), Finns (1:25,000)
(48, 49), and Sardinians (1:14,400) (50). It is also quite fre-
quent in Norway (1:90,000) (51) and in some regions of Italy
(52–55). The most frequent model of inheritance is autosomal
recessive, even though a dominant pattern has also been spo-
radically reported (56). So far, over 70 different mutations of
AIRE have been documented (2). Due to the molecular organi-
zation and the complexity of intermolecular connection of Aire, it
would be expected that different mutation in the molecule might
imply different functional abnormalities, thus being associated
with a variable phenotypic expression. Single nucleotide substi-
tutions, small insertions, deletions, and mutations affecting splice
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consensus sequences have been identified along the entire coding
region, and include either nonsense or frameshift mutations that
result in truncated polypeptides, or missense mutations that result
in single amino acid-changing (27). Most of these AIRE mutations
lead to a change in its subcellular location altering the distrib-
ution of the protein between the nucleus and cytoplasm (27).
Mutations of the predicted surface area of the HSR domain cause
the protein accumulation in the nucleus blocking its cytoplas-
mic localization probably enhancing nuclear import or inhibiting
nuclear export (57). Mutations of the SAND domain disturb the
distribution of Aire between the nucleus and cytoplasm suggesting
a role for the SAND domain in nuclear transport mechanisms (57).
Moreover, since the six helix CARD domain is involved in homod-
imerization, missense mutations in this region often affect Aire
multimerization or localization to nuclear bodies (58) while most
of the missense mutations in PHD domains alter the zinc-finger
fold and decrease Aire’s transcriptional activation capacity (38).

Some different mutations have been found to be peculiar to
certain populations. R257X is the most common mutation among
Finnish and other European patients (59–61). R257X is a nonsense
mutation, which most probably results in a carboxy-terminally
truncated, non-functional Aire protein leading to alterated sub-
cellular localization and inhibition of the transactivation function
and complex formation of Aire (27). The 1094–1106 del113 (or
967–979 del-13 bp) is the most common mutation in British (62),
Irish (63), North American (64, 65), and Norwegian patients (51)
leading to the truncation and loss of function of Aire. Y85C is the
only missense mutation found among Iranian Jews (57). In Italy,
typical mutations of AIRE have been detected in Sardinia (R139X
on exon 3) (50, 54), where this nonsense mutation leads to a total
absence of Aire and seems to be associated with a more severe
phenotype. In Apulia, the missense mutation W78R on exon 2,
and the nonsense mutation Q358X on exon 9 have been found.
The mutation Q358X lies in the PRR resulting in a truncated pro-
tein which lacks the second PHD finger and thereby is most likely
non-functional protein (53). In Sicily, the most frequent mutation
is R203X on exon 5, and two novel mutations, S107C and Q108fs
on exon 3, have been detected. The mutation S107C is a mis-
sense mutation, whilst Q108fs is a small deletion, both affecting
the HSR domain of Aire protein and it is likely that the Aire pro-
tein loses its homodimerization properties (66, 67). In Venetian
patients, the most frequent mutations are R257X on exon 6 and
979 del-13 bp on exon 8, that are analogous to those detected in
Finnish and Anglo-saxon patients but different from Italian ones
(55). No typical mutations have been identified neither in Calabria
nor in Campania (52, 68) even though patients from Campania
show a high frequency of mutations in the exon/intron 1 junction.
Compared to other mutations, the R257X results in a total loss of
function, whereas the less dramatic truncations of the AIRE pro-
tein and many missense mutations, especially the predicted surface
mutations of the HSR domain and the mutations in the leucine
zipper domain, seem to exert less severe effects on the function of
the Aire protein (27). Therefore, despite considerable variations in
the APECED genotype, correlations with specific phenotypic fea-
tures are far from being well elucidated. Only in patients affected
with Candida infection, a correlation has been proved. In fact, can-
didiasis was significantly less prevalent in patients homozygous for

967–979del-13bp than in patients carrying the R257X or R139X,
suggesting that AIRE truncation upstream the SAND domain
promotes the susceptibility to this infection (69).

DIAGNOSIS OF APECED
The onset of APECED usually occurs during childhood. The clin-
ical diagnosis is based on the presence of two of the three classical
components: chronic mucocutaneous candidiasis (CMC), chronic
hypoparathyroidism (CH), and Addison’s disease (AD). The pres-
ence of only one of these features is sufficient for the diagnosis,
when a sibling is affected. Molecular analysis of AIRE may help
to confirm the clinical diagnosis, in particular in those cases
with an atypical presentation (70, 71). Neutralizing autoantibodies
against IFN-ω and IFN-α may represent a precocious biomarker
detectable in the majority of patients and, thus they have been
recently included in the diagnostic criteria of APECED (72).

CLINICAL EXPRESSION, AUTOANTIBODIES PROFILE, AND
SUSCEPTIBILITY FACTORS
APECED is characterized by a highly variable pattern of
destructive autoimmune reaction, mainly mediated by specific
autoantibodies toward different endocrine and non-endocrine
organs. Virtually, all tissues and organs may represent the tar-
get of the autoimmune attacks, thus leading to a wide spectrum
of clinical features. As already mentioned, the three main compo-
nents of APECED are CMC, CH, and AD. CMC is, generally, the
first component to develop, often followed by CH, before the age
of 10 years and later by adrenal insufficiency (73, 74). In addition
to the main components, the spectrum of minor manifestations
may include ectodermal dystrophy, other endocrinopathies, such
as hypergonadotripic hypogonadism, insulin-dependent diabetes,
autoimmune thyroiditis, and pituitary dysfunction. Moreover,
gastrointestinal disorders (chronic atrophic gastritis, pernicious
anemia, malabsorption, autoimmune hepatitis and cholelithia-
sis), skin diseases (vitiligo and alopecia), keratoconjunctivitis,
immunological defects, asplenia may be present (70). More rare
manifestations of the disease include immune-mediated cen-
tral and peripheral neurological manifestations, such as chronic
inflammatory demyelinating polyneuropathy (54) and posterior
reversible encephalopathy syndrome (PRES) (75), tubulointersti-
tial nephritis, autoimmune bronchiolitis, reversible metaphyseal
dysplasia, hypokalemia, and hypertension (72).

The majority of APECED components have been correlated
with specific autoantibodies that may represent an useful tool for
the diagnosis and the follow-up of patients (Table 1). Autoan-
tibodies’ profile may parallel clinical expression even though a
strong correlation with the phenotype and the severity of the dis-
ease is not always present. Indeed, only some autoantibodies are
highly predictive of specific organ’s failure, being detectable years
before the onset of the overt clinical manifestations.

APCED-related CMC has been associated with the presence
of specific autoantibodies against the Th17-related cytokines
interleukin- (IL-) 22 and IL-17F (76, 77). A parathyroid-
specific autoantigen called NACHT leucine-rich-repeat protein 5
(NALP5), which is expressed in the cytoplasm of the main cell type
in the parathyroid glands (78), has been recently proposed as the
immunological hallmark of APECED-related CH.
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Table 1 | Clinical counter part of autoantibodies profile in APECED

[modified by Capalbo et al. (73)].

Clinical features Autoantibodies

CMC Abs against IL-22, IL-17F, and myosin-9

ENDOCRINE MANIFESTATIONS

HP Abs against NALP5

AD Abs against CYP21, CYP11A1, CYP17

Ovarian failure Ab against CYP11A1, CYP17, and NALP5

Type 1 diabetes Ab against IA-2 and insulin

Autoimmune thyroiditis Ab against TPO and Tg

NON-ENDOCRINE MANIFESTATIONS

Ectodermal manifestations

Vitiligo Abs against Melanocytes, SOX-9,

SOX-10, and AADC

Alopecia Abs against TH

Gastrointestinal manifestations

Autoimmune gastritis/

pernicious anemia

Abs against parietal cells and IF

Autoimmune hepatitis Abs against CYP-1A2, CYP-2A6, AADC,

and TPH

Autoimmune enteropathy Abs against TPH, HD, and GAD

Rare manifestations

Pulmonary disease Abs against KCNRG

Demyelinating polyneuropathy Abs against myelin protein zero

Tubular interstitial nephritis Abs against proximal tubule

Non-organ specific Abs Abs against IFN-α and IFN-ω

Abs, autoantibodies; IL-17F, interleukin 17F; IL-22, interleukin 22; NALP5,

NACHT leucine-rich-repeat protein 5; CYP21, 21-hydroxylase; CYP11A1, cho-

lesterol side-chain cleavage enzyme; CYP17, 17-α-hydroxylase; IA-2, tyrosine

phosphatase-like protein; TPO, thyroid peroxidase; Tg, thyroglobulin; AADC, aro-

matic l-amino acid decarboxylase; TH, tyrosine hydroxylase; IF, intrinsic factor;

TPH, tryptophan hydroxylase; HD, histidine decarboxylase; GAD, glutamic acid

decarboxylase; CYP-1A2, cytochrome P450 1A2; CYP-2A6, cytochrome P450

2A6; KCNRG, potassium channel-regulating protein; IFN-α, interferon α; IFN-ω,

interferon ω.

Antibodies against the enzyme 21-hydroxylase (CYP21) are
strongly associated and highly predictive for the development
of AD in patients with CH and/or CMC (79, 80). Steroido-
genic enzymes such as Cholesterol side-chain cleavage enzyme
(CYP11A1) and 17α-hydroxylase/17,20-lyase (CYP17) represent
a further targets of autoimmune reaction against adrenal cortex,
moreover they are highly correlated with ovarian insufficiency due
to lymphocytic oophoritis and can precede the clinical onset of the
component (81, 82). Autoimmune gastritis is associated with the
presence of autoantibodies against parietal cells and intrinsic fac-
tor (IF), the latter being involved in the development of pernicious
anemia (83). The presence of autoantibodies against tryptophan
hydroxylase (TPH), an enzyme involved in the synthesis of neu-
rotransmitters in the nervous system and in the gastrointestinal
endocrine cells correlates with Autoimmune enteropathy (84–87).
Moreover, autoantibodies against both histidine decarboxylase
(HD), an enzyme expressed in entero-chromaffin-like cells, and

GAD (88, 89) have been associated with an autoimmune intestinal
involvement. AH is mainly associated with the presence of autoan-
tibodies against cytochrome P4501A2 (CYP-1A2), CYP-2A6, and
aromatic l-amino acid decarboxylase (AADC), even though other
types of autoantibodies, such as those directed against TPH, have
been correlated with the AH component of the APECED pheno-
type (54, 90–92). Complement-fixing melanocyte autoantibodies
and antibodies against transcription factors SOX-9, SOX-10, and
AADC (83, 89) and tyrosine hydroxylase (TH) strongly corre-
late with the presence of vitiligo and alopecia (72, 83). Recently,
several reports have confirmed an important role of autoantibod-
ies against IFN-α and IFN-ω, which, although not tissue-specific,
have been detected in the serum of almost all APECED patients
(93, 94). Furthermore, they appear at a very early stage, often
before the onset of any clinical manifestation. With this regard,
their presence may be considered as an additional diagnostic
marker of the disease, especially in those cases with an atypi-
cal presentation (94, 95). Although autoantibodies’ production
seems to be a key-event in the development of the clinical dis-
ease, their role in the pathogenesis of APECED still remains to be
defined.

APECED is a paradigmatic example of an autoimmune mono-
genic disease, however, the phenotypic presentation can widely
vary from one patient to another (67, 70, 96, 97). Indeed, there
are observations documenting a genotype-phenotype correlation
only for specific traits (98, 99), but a clear genotype-phenotype
correlation is lacking. We have, recently, reported on a family
with an extremely wide intra-familial clinical variability despite
the same mutation of AIRE (100). These observations suggest
that genetic background is not able to explain alone the vari-
ability of the clinical expression and the severity of APECED
and that, as for other monogenic diseases, the phenotypic vari-
ability of the syndrome may result from the complex interaction
between several genetic, epigenetic, immunological, and/or envi-
ronmental factors. The HLA class I and class II alleles have been
reported to confer susceptibility to develop autoimmune diseases,
such as Type 1 diabetes and autoimmune thyroid diseases (101).
Only few studies investigated the association between the APECED
phenotype and HLA genotypes, reporting conflicting results. In
fact, although some studies did not find any significant asso-
ciation between HLA antigens class I or II and autoantibodies’
production or clinical expression of the disease (74, 102–104),
other showed an increased frequency of specific HLA genotypes
in APECED patients (105). However, in a more recent study
on 18 Sardinian patients (54) autoimmune hepatitis, as well as
LKM autoantibodies, have been found to be strongly associated
with HLA-DRB1*0301/DQB1*0201. However, there is no evi-
dence indicating that the HLA haplotype might be associated to
a particular severity of the disease. Infectious agents are potent
stimuli for the immune system, and thus both viruses and bacte-
ria can be considered as trigger of an autoreaction via different
mechanisms, such as molecular mimicry, bystander activation,
and epitope spreading (106–111). Moreover, evidence suggests
that a genetically determined susceptibility may favor the devel-
opment of an autoimmune disorder after an infection. Many
viruses have also been proposed as factors exacerbating several
autoimmune processes (112). However, the role of the infectious
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triggers has not been sufficiently investigated in patients with
APECED, and preliminary results did not show any significant
effect of different infections on the phenotypic expression of the
syndrome (100). As already mentioned, along with the central
tolerance network, which is primarily involved in the pathogen-
esis of APECED, several peripheral mechanisms are capable of
contributing to the control and regulation of the immune sys-
tem. These factors are involved in maintenance of the homeostasis
by controlling residual auto-reactive clones, which escape neg-
ative selection within the thymus and play a significant role in
preventing or minimizing reactivity to self-antigens. The periph-
eral tolerance recognizes as possible mechanisms the induction
of functional anergy with inactivation of self-reactive T-cells,
deletion of auto-reactive clones by apoptosis, through Fas/FasL
interaction, and the suppressive action of Tregs. An additional
mechanism involved in controlling reactivity to self engages in
the periphery is represented by NK cell activity. A possible role
of altered peripheral tolerance in the pathogenesis and clinical
expression of APECED might be hypothesized also considering
that recent evidence suggesting that Aire may also be implicated in
the control of peripheral mechanisms dedicated to the peripheral
maintenance of self-tolerance. In the periphery, Aire is expressed
in DCs and a specific population of extrathymic Aire-expressing
cells (113, 114). As in the thymus, also in secondary lymphoid
organs Aire is required for the expression of many TSAs. How-
ever, only few studies investigated the functionality of peripheral
tolerance mechanisms in patients with APECED and the role of
a failure in the peripheral mechanisms of Aire’s function is still
poorly defined. Studies on animal models of APECED suggest
that Aire does not influence per se Tregs as in Aire-KO mice
the number of CD4+CD25+ cells are normal, and the func-
tionality in in vitro suppression assays is normal as well (115,
116). However, the link between Aire and Treg cells is still not
fully understood. Some recent studies suggest that Aire-expressing
mTECs are involved in the generation of TSA-specific Foxp3+

Treg cells. A recent study supports this concept by showing that
Aire-expressing mTECs, in addition to providing an antigen reser-
voir, also serve as APCs, thus enhancing the selection of Treg
cells. The commitment of Tregs was shown to occur indepen-
dently of Foxp3, and interaction of developing thymocytes with
thymic stromal cells may drive the differentiation of a thymocyte
subpopulation into the Treg cell lineage and, subsequently, trig-
ger the expression of Foxp3 (117). Some adult APECED patients
have lower proportion of Tregs (118), this finding being probably
related to chronic infections, to the extent of autoimmune inflam-
mation or therapy. Unfortunately, Tregs have been evaluated in
only two children with APECED. Although in these children the
number of Tregs was reduced in comparison to healthy controls,
confirming the results obtained in adult patients, this reduc-
tion was not related to the severity of the disease, thus ruling
out a potential role in modulating the clinical expression of the
syndrome (100).

CLOSING REMARKS
Although APECED is a monogenic autoimmune disease, the great
variability of the clinical expression and the absence of a clear
genotype-phenotype correlation implies that, beyond AIRE muta-
tions, other susceptibility factors such as immunological and envi-
ronmental factors may be involved in the pathogenesis of the
disease. The evidence of a role of an impairment of central and
peripheral tolerance and of other susceptibility factors in the phe-
notypic variability of APECED is limited and needs to be further
investigated. So far, the reason of such variability still remains
obscure. Unraveling the open issues of the molecular basis of
APECED, will be extremely useful in improving the diagnosis,
management, and therapeutical strategies of this complex disease.
As for other Mendelian diseases, total exome sequencing could
be a good perspective to analyze other genetic variations and to
identify potential disease-modifying genes involved in the clinical
expressivity of organ-specific autoimmunity.
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The commonest association of thymic stromal deficiency resulting in T-cell immunodefi-
ciency is the DiGeorge syndrome (DGS). This results from abnormal development of the
third and fourth pharyngeal arches and is most commonly associated with a microdeletion
at chromosome 22q11 though other genetic and non-genetic causes have been described.
The immunological competence of affected individuals is highly variable, ranging from nor-
mal to a severe combined immunodeficiency when there is complete athymia. In the most
severe group, correction of the immunodeficiency can be achieved using thymus allografts
which can support thymopoiesis even in the absence of donor-recipient matching at the
major histocompatibility loci. This review focuses on the causes of DGS, the immunolog-
ical features of the disorder, and the approaches to correction of the immunodeficiency
including the use of thymus transplantation.

Keywords: DiGeorge syndrome, immunodeficiency, thymus transplantation, 22q11 deletion,T-cell development

INTRODUCTION
DiGeorge syndrome (DGS) was first described in the 1960’s and
classically comprises T-cell deficiency (due to thymic hypoplasia),
hypoparathyroidism, cardiac malformations, and facial abnormal-
ities. Subsequently, it was recognized that deletions of the long arm
of chromosome 22 at position q.11 were most commonly associ-
ated with DGS (1, 2). DGS is also found associated with other
genetic abnormalities and with certain teratogenic influences. It
was also recognized that multiple other clinical features could be
associated with this deletion. The DGS phenotype is very heteroge-
nous with variable expression of the different features including
the immunodeficiency.

CAUSES OF DGS
EARLY THYMIC DEVELOPMENT
At an early stage of embryonic development the pharyngeal appa-
ratus can be recognized. This becomes segmented into a series of
pharyngeal arches and pouches each comprising an outer ectoder-
mal and inner endodermal layer separated by mesodermal tissue
and neural crest cells (NCC) (3,4). The thymus,parathyroid glands
and great vessels of the heart develop from these structures notably
the third and fourth arch structures. Thymic epithelial develop-
ment is under the control of the transcription factor, FoxN1, and
studies of expression of this factor have demonstrated that the
thymus derives from an area of the endoderm in the ventral aspect
of the third pouch (5). The mesoderm and NCC contribute to
the thymic connective tissue including vascular endothelium and
mesenchymal cells, the latter thought to be important in regu-
lating early thymic epithelial development (6). Parathyroid gland
development is closely allied, this organ being derived from the
endoderm of the ventral part of the third pharyngeal pouch again
with mesodermal cells and NCC contributing the connective tissue
and vascular endothelium. From the eighth week of human ges-
tation, bone marrow derived T-cell precursors have been shown

to enter the thymic structure (7). The further development of
the thymus is dependent on two-way interactions between these
lymphoid cells and the thymic stroma (8, 9).

Hematopoietic cell defects resulting in severe combined
immunodeficiencies lead to failure or disturbed thymic develop-
ment as a consequence of failure of this lymphoid – stromal inter-
action (10, 11) which can be reversed by successful hematopoietic
stem cell transplantation (12). These aspects of thymic stromal
deficiency are considered elsewhere in this Research Topic.

The classical features of DGS occur as a result of the early
embryonic disturbance of development of the pharyngeal arch
apparatus and are independent of the influence of hematopoietic
cell precursors on thymic development.

GENETIC ASSOCIATIONS OF DGS
DiGeorge syndrome overlaps considerably with velocardiofacial
(VCF) syndrome and to a lesser extent with conotruncal anomaly
face syndrome; all these are associated with hemizygous 22q.11
deletions manifesting with a wide array of clinical features (13).
The deletion is also associated with neurodevelopmental delay,
behavioral, and psychiatric features. The multitude of possible
clinical features (over 180) have been reviewed by Shprintzen (14).
DGS and VCF are sometimes collectively referred to as the 22q.11
deletion syndrome. The incidence of this deletion is high at around
1:4000 (15). In 90–95% of cases this arises de novo with the other
5–10% being inherited from an affected parent (13). Over 90% of
cases have a typical 3 Mb deletion including over 30 different genes
(16). This seems to occur between two regions with homologous
low copy repeats suggesting that deletion occurs through a process
of homologous recombination. Most other patients have a smaller,
1.5 Mb, deletion (17, 18). There is no correlation between the size
of the deletion and the clinical phenotype. Discordance between
phenotypes has been described in monozygotic twins carrying the
deletion (19). In rare cases mutations in a single gene, TBX1, have
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been described resulting in the DGS phenotype (20, 21). TBX1
is one of the T-box genes with an important role in regulating
the expression of transcription factors (22). Studies of a mouse
model with a syngenic deletion on chromosome 16 have helped
elucidate the role of Tbx1. Homozygous deletions of this gene
result in a very severe, lethal phenotype including all the features
of DGS whilst hemizygous loss of the gene produces a milder phe-
notype with variable penetrance of the different clinical features
(23). However, implicating TBX1 as the sole gene causing DGS
in 22q deletion syndromes may not be the whole story. Adjacent
deletions not involving TBX1 can give a phenotype with some
overlapping features (24) as can atypical deletions covering dif-
ferent critical regions in the same part of the chromosome (25).
Other genes in the region, also affected in the typical DGS dele-
tion, may have a modifying effect on expression of the disorder.
These include CRKL, coding for an adaptor protein involved in
growth factor signaling. Crkl is expressed in neural crest derived
tissues and in mice null for the gene there is aberrant or absent
thymic development (26). However, hemizygous Crkl loss is not
associated with an abnormal clinical phenotype suggesting a gene
dosing effect. The effect of compound heterozygosity for Tbx1 and
Crkl deletions, on development of DGS features, is additive (27).
The function of TBX1 is complex and mediated through regu-
lation of downstream transcription factors. The detailed role of
TBX1 in 22q.11 deletion syndromes and in thymus development
in particular has been reviewed by others (28, 29).

A much rarer but well characterized genetic association with
a DGS phenotype occurs with interstitial deletions at chromo-
some 10p (30–33). This has been designated DGS 2.The clinical
phenotype overlaps with that associated with 22q.11 deletion but
with some important differences. Sensorineural hearing loss and
mental retardation are relatively common features in those with
10p deletions but rare in 22q11 deletion cases; renal anomalies,
and general growth retardation are more prevalent in 10p dele-
tion than in 22q11 deletion cases (34). Deletions at 10p syndrome
have been estimated as having an incidence of 1 in 200,000, some
50 times less common than 22q.11 deletions (35, 36). The role of
the genes deleted and responsible for the clinical picture is less
well understood than in 22q deletion DGS but on-going work
has identified some critical regions involved in developmental
abnormalities (32, 37).

Mutations in the Chromodomain Helicase DNA-binding pro-
tein 7 (CHD7) gene are responsible for most cases of Colobo-
mata, Heart defect, Atresia choanae, Retarded growth and devel-
opment, Genital hypoplasia, Ear anomalies/deafness (CHARGE)
syndrome. A DGS phenotype including complete athymia may be
part of this syndrome but there is marked variability in expression
of the multiple clinical features. The incidence has been estimated
at 1 in 8500 (38). CHD7 acts as a regulator of transcription of
other genes. Its expression has been demonstrated in the NCC
of the pharyngeal arches. Normal development of these structures
has been shown to be dependent on the co-expression of Chd7 and
Tbx1 in mice suggesting the likely mechanism by which CHARGE
syndrome can lead to a DGS phenotype (39, 40).

NON-GENETIC ASSOCIATIONS OF DGS
Embryopathy induced by exposure of the fetus to retinoic acid
can include a DGS phenotype (41). Retinoic acid affects Tbx1

expression in avian embryos (42) whilst it has also been shown that
Tbx1 can, in at least some circumstances, regulate retinoic acid
metabolism (43). Fetal alcohol syndrome (44–46) and maternal
diabetes (47, 48) have also been associated with the DGS pheno-
type. In the latter, there is often an associated renal agenesis. It has
been postulated that maternal diabetes can lead to interference
with neural crest and mesenchymal cell migration (49).

IMMUNOLOGICAL FEATURES OF DGS
INCIDENCE AND SEVERITY
DiGeorge syndrome may be associated with a complete range of
T-cell deficiency from normal T-cell numbers and function to
complete DGS (cDGS) with a T-negative severe combined immun-
odeficiency (SCID)-like picture. It was recognized early on that the
T-cell immunodeficiency may be incomplete and the term partial
DGS (pDGS) was coined (50). In a large series of patients with
22q11 deletions, the proportion of affected individuals falling into
the cDGS category was around 1.5% of the 218 who underwent
immunological testing or around 0.5% of the whole series of over
550 patients (13). A much higher proportion had minor laboratory
abnormalities suggesting pDGS. In one series, from a major refer-
ral center, mild-moderate lymphopenia, consistent with pDGS,
was reported in 30% of 22q.11 patients (51).

Less is known of the frequency of severe immunodeficiency in
10p deletion DGS. A review of published cases identified low levels
of T cells and immunoglobulins as well as a small or hypoplastic
thymus in 9 of 32 (28%) patients evaluated. However none of
these patients were reported as having significant infections, sug-
gesting that the immunodeficiency was likely partial rather than
complete (34).

In CHARGE syndrome, severe immunodeficiency has been
described (51–55). The proportion of cases affected with immun-
odeficiency is not well established as there is no reported large
series looking at immunological parameters. Immunodeficiency
may not always be considered in CHARGE; one recent report of
a large series of 280 cases did not provide any information on the
prevalence of recurrent infections or immunodeficiency (56). In a
series of 25 cases (51), 16 (60%) were found to have lymphopenia.
Only nine had full immunophenotyping performed and two of
these had a picture of cDGS. A further five of eight patients dying
in infancy had marked lymphopenia but did not have lympho-
cyte phenotyping performed so it is possible that the incidence of
cDGS was higher. The authors do however concede that this series
of patients referred to a specialist center might present a biased
view. Nevertheless, the proportion of children with CHARGE syn-
drome affected by a significant immunodeficiency is probably at
least as high as the proportion in DGS associated with 22q dele-
tion. This conclusion would be consistent with the report of a
series of 54 cases of patients referred for thymus transplantation
for cDGS where the numbers of CHARGE and of 22q deleted cases
were roughly in proportion to the incidences of the two genetic
defects (55).

IMMUNODEFICIENCY IN PARTIAL DGS
The majority of children with thymic insufficiency as part of
DGS, whatever the underlying cause, will have only a partial
form of immunodeficiency. The consequences are an increased
susceptibility to infections and sometimes immunodysregulation
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Davies Immunodeficiency in DiGeorge syndrome

resulting in autoimmunity. A wide range of T-cell immunity is seen
in pDGS from near normal to near completely deficient. Normal
or near normal T-cell numbers can be found even in those with an
apparently absent or hypoplastic thymus and in these it is probable
that some thymic tissue is ectopically placed (57). There may be
a small subset of more severely deficient 22q.11 – pDGS patients
with T-cell numbers near the lower end of the range who have an
increased susceptibility to “T-cell” type pathogens such as Can-
dida albicans and viral infections and an increased non-cardiac
mortality (58, 59). Hypocalcemia was an associated feature of
this subgroup in one of these studies (58) and was also associ-
ated with lymphopenia in another study of CHARGE patients
(51). Otherwise there is no correlation between the severity of
immunodeficiency and the clinical phenotype in regard the other
features of DGS (60). Most pDGS patients do not suffer oppor-
tunistic or life-threatening infections. Their infections tend to be
of a sinopulmonary nature, more consistent with a humoral than
a T-cell immunodeficiency. Susceptibly to such respiratory tract
infections is likely to be at least partly due to non-immunological
issues such as velo-pharyngeal insufficiency, eustachian tube dys-
function, disco-ordinate swallowing, gastro-esophageal reflux, and
sometimes tracheo-bronchomalacia (59, 61).

As is the case with other partial T-cell deficient states, autoim-
mune disease can occur in pDGS. This has most commonly been
reported as manifesting with immune cytopenias, arthritis, or
hyper/hypothyroidism (62–73). The mechanism by which toler-
ance breaks down leading to autoimmunity in pDGS is not clear.
Many forms of primary immunodeficiency are associated with an
increased risk of autoimmune disease including conditions not
associated with dysregulation of T cells. It has been suggested
that persistent antigen stimulation from frequent and/or persis-
tent infections may predispose to autoimmunity (74). However,
in pDGS autoimmunity is not predominantly found in those with
the most severe or frequent infections (65, 75). It is more likely that
disturbance of central or peripheral tolerance or both occur as a
consequence of the thymic abnormality. In the normal situation,
central tolerance is generated through the presentation of tissue
specific peptides to developing thymocytes by medullary thymic
epithelial cells in the context of autologous major histocompat-
ibility antigens and under the regulation of the autoimmune
regulator (AIRE). There is subsequent deletion (negative selec-
tion) of thymocytes recognizing these self-antigens. It is possible
that a reduced bulk of thymic tissue in pDGS results in incomplete
negative selection or that AIRE expression in pDGS is reduced
or otherwise abnormal. The author is not aware of any reported
studies of AIRE expression in thymic tissue from pDGS cases.
Abnormalities of thymic tissue, including AIRE expression, has
been described in SCID due to recombination activating gene
(RAG) defects and may contribute to the multisystem inflam-
mation/autoimmunity seen in Omenn syndrome (76) though
these patients also have a defect of regulatory T cells suggest-
ing a possible peripheral tolerance defect in addition (77). In
pDGS, negative selection must occur in relation to most antigens
since the autoimmune disease seen is usually limited to one or
two organs or systems. By contrast, in autoimmune polyglandular
syndrome type 1 (APS-1) (78) caused by mutations in the AIRE
gene, multiple autoimmune disorders are typical. Breakdown of

peripheral tolerance is another possible explanation for autoim-
munity in pDGS. One study reported reduced numbers of circu-
lating CD4+ Foxp3+ T cells, described as natural T regulatory
cells (nTregs) in pDGS patients compared to controls. The lev-
els of these cells correlated closely with the numbers of recent
thymic emigrant cells suggesting they were at least partially thy-
mus derived (75). Another study (79) looked at CD4+ CD25+

cells which include Treg cells. In both studies these populations
were present in reduced numbers in pDGS patients compared to
controls at all ages but there was no difference between the lev-
els in patients with and without autoimmunity. Immunological
assessment of pDGS patients often shows low overall numbers
of T cells compared to normal with a tendency to improve after
the first year of life, although in 10p deletion syndrome a pro-
gressive T-cell lymphopenia has been reported (33). Mitogen
responsiveness is generally normal in pDGS (80, 81). An increase
in T-cell numbers with age may in part be due to the devel-
opment of oligoclonal expansions resulting in abnormal T-cell
receptor spectratypes. (75, 82–85). Naïve T-cell proportions are
lower than normal and fall off more quickly with age than in an
age – matched control group (82). T-cell recombination excision
circles (TRECs) were found to correlate well with the propor-
tions of circulating naïve T cells (86), though a cautionary note
was struck by the report of a patient, with what turned out to
be pDGS, showing very low TREC levels with good naïve cell
proportions (87).

Humoral immune defects and disturbance of B-cell immunity
were recognized very early on after DGS was first described (50).
These may be relevant to the types of infections suffered. A num-
ber of relatively small series have looked at immunoglobulin and
antibody levels in DGS associated with 22q.11 deletion (62, 63, 65,
68, 75, 88–90) and CHARGE syndrome (51). Low immunoglobu-
lin levels were reported with variable frequency, most commonly
affecting IgM but also occasionally causing a sufficiently low IgG to
merit immunoglobulin replacement therapy. Defective antibody
responses to polysaccharide antigens were reported in a signifi-
cant minority of patients. A recently published, much larger study
reported on over 1000 patients, with a median age of 3 years, from
the European Society for Immunodeficiency and US Immunode-
ficiency Network (91). Forty two percent were recorded as having
22q.11 deletion but the underlying cause was not reported in the
remainder. Overall, 2.7% were on immunoglobulin replacement
therapy (3% in those over 3 years old). In the over 3 years age
group 6.2% had IgG levels below 5 g/l. Amongst patients over
3 years of age, around 0.7% had complete and 1% partial IgA defi-
ciency whilst 23% had low levels of IgM. There was no association
between low immunoglobulin levels, in any of the isotypes, and
T-cell counts nor between low T-cell counts and immunoglobulin
levels. The authors acknowledged that the data were incomplete
and that there may have been some reporting bias in that these
patients were registered through immunodeficiency networks.
Nevertheless, this study provides the best estimate of the preva-
lence of humoral immune deficit in DGS. B-cell numbers were
not reported in this study but in another study were found to be
generally normal though sometimes low in the first year of life,
normalizing later (92). The repertoire of IgH usage is also nor-
mal but further diversification through somatic hypermutation is

Frontiers in Immunology | T Cell Biology October 2013 | Volume 4 | Article 322 | 58

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Davies Immunodeficiency in DiGeorge syndrome

deficient (93). It has also been shown that the maturation of B-cells
toward a memory phenotype is impaired in pDGS (88). Given the
specific role of the thymus in T- but not B-cell development it is
probable, but not proven, that B-cell abnormalities are secondary
to the T-cell deficiency in these patients.

IMMUNODEFICIENCY IN COMPLETE DGS
Complete DGS is associated with athymia and results in a pic-
ture of SCID in a patient showing other variable features of DGS.
Affected patients suffer opportunistic infections and, like other
infants with SCID, are likely to die early unless they can be treated
with a corrective procedure. In addition to susceptibility to infec-
tions these patients are at risk from transfusion acquired graft
versus host disease (55).

In the typical form of cDGS the T-cell numbers are <50/cumm
and mitogen responses are absent. B cells are usually present in
normal numbers and NK cells in normal or high numbers. In a
proportion of cases there may be some mature T cells present either
through maternal engraftment (94) or through oligoclonal expan-
sion of memory phenotype T cells which have developed without
thymic processing (95). In the latter case, as in SCID these cells can
mediate severe inflammation leading to an Omenn-like picture
with erythrodermic rashes, enteropathy, and lymphadenopathy
(53, 96) This is called atypical cDGS. The diagnosis of com-
plete athymia then depends on showing absence (<50/cumm)
of T cells with a naïve (CD3 + CD45 RA+CD62L+) phenotype
as well as abnormal T-cell receptor usage either by T-cell recep-
tor spectratyping or FACS analysis of usage of V Beta TCR chains

(96). An example of the abnormal spectratype in an atypical cDGS
patient is shown in Figure 1 which can be compared to the normal
spectratype achieved in the same patient after successful thymus
transplantation (Figure 2). Mitogen responsiveness is usually, but
not invariably, impaired in these atypical patients (96).

Diagnosis of cDGS depends on the findings of the clinical fea-
tures of DGS together with the above immunological findings with
or without identification of one of the associated genetic abnor-
malities. A recent report (97) describes two patients with absent
T cells and DGS associated with 22q.11 deletion who were also
found to have pathogenic mutations in the DCLRE1C (Artemis)
gene, a classical cause of SCID. A clue to the latter diagnosis was
the virtual absence of B cells as well as T cells which is very unusual
in cDGS alone.

Newborn screening for SCID using TREC detection on blood
spots has been in place in certain states of USA for around 3 years
(98, 99). Since TRECs will be absent or extremely low (86) this
allows the early diagnosis of cDGS. In the California program
(98) screening of nearly one million newborns picked up one
cDGS case who went on to thymus transplantation, eight with
T-cell lymphopenia associated with 22q.11 deletion and one with
CHARGE association. Picking up the latter group was useful in
the early identification of these children as having significant
immunodeficiency and allowed infection prevention measures to
be put in place including avoidance of live viral vaccinations. New-
born screening programs should offer the opportunity of a better
outcome through earlier intervention in both cDGS and some
cases of pDGS.

FIGURE 1 |T-cell receptor spectratyping of 24 Vβ families obtained
using polymerase chain reaction amplification across the VDJ region
and then plotting according to the size of the PCR products. Patient

with atypical cDGS showing very abnormal spectratype with several
completely missing families and abnormal skewed distribution in
other families.

FIGURE 2 |T-cell receptor spectratyping performed as in legend to Figure 1. Same patient as in Figure 1, 23 months after thymus transplantation.
Much more normal spectratype. All families represented mostly with Gaussian distribution.
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Davies Immunodeficiency in DiGeorge syndrome

CORRECTIVE TREATMENT FOR cDGS
HEMATOPOIETIC CELL TRANSPLANTATION
Treatment with hematopoietic cell transplantation (HCT) for
athymia is dependent on the transfer of mature post-thymic T
cells. Long term survival after such transplants has been reported
(100, 101) though at a low rate (41–48%) compared to survival
after HCT for SCID (102). Survival in the subgroup receiving
matched sibling donor transplants was better at over 60% (100).
Mortality was related to other features of DGS, to graft versus host
disease and to pre-existing viral infections. The quality of immune
reconstitution achieved, as expected, is poor with no evidence of
naïve T cells and often low CD4 counts with skewed distribution
of T-cell receptor usage. However immunoglobulin production
and antibody responses were relatively good. Though overall the
outcome after HCT for cDGS is not good, in some circumstances,
such as overwhelming viral infection, HCT from a matched sibling
may be life-saving (103).

THYMUS TRANSPLANTATION
Replacement of thymic function using allografted tissue was first
achieved using human fetal thymic tissue (104, 105). The use of
post natal human thymus, necessarily removed at the time of
cardiac surgery in infants undergoing median sternotomy,was pio-
neered by Markert at Duke University (106, 107) and has become
established as the treatment of choice for cDGS. More recently this
approach has also been used in London using an almost identical
approach (manuscript in preparation). The thymus is cultured for
12–21 days prior to transplantation into the quadriceps muscle of
the patient. During this period most thymocytes are washed out or
undergo apoptosis whilst the thymic stroma is preserved. Patients
with atypical cDGS are pre-treated with anti thymocyte globulin
and continuing cyclosporine A (108) whilst typical cases receive no
pre-conditioning. The results have been published (55, 109) and
of 60 patients treated 43 survived (72%). This compares favorably
with the outcome after HCT described above though strict com-
parison is not possible as the thymus transplant patients were a
selected group. After successful transplantation, patients develop
host derived naïve T cells with a normal T-cell receptor reper-
toire (Figure 2), normal mitogen responses and antigen specific
immune responses restricted to the host major histocompatibility
complex (MHC). There is normalization of the TCR repertoire in
circulating regulatory T cells (110). Biopsies of transplanted thy-
mus taken from 2 months onward show thymopoiesis (111) and
normal thymus architecture (Figure 3). The levels of circulating T
cells achieved do not usually match normal age matched controls
and are more akin to the levels seen in children with pDGS. Tol-
erance to the donor’s MHC has been demonstrated (112) and this
has been exploited to enable parathyroid transplantation from a
parent in situations where there is coincidental partial MHC class
2 matching between the donor and the parent (113).

Deaths after thymus transplantation were related mainly to pre-
existing co-morbidities, mostly chronic lung disease and systemic
viral infections such as cytomegalovirus (CMV) (114). This virus is
a particular problem. Screening of potential thymic donors always
excludes CMV positive donors but a proportion of cDGS patients
will have acquired the virus before thymus transplantation. Biop-
sies of transplanted thymus tissue from two patients with CMV

FIGURE 3 | Low-power view of a biopsy of transplanted thymus
stained with Hematoxylin and Eosin. Normal looking thymic tissue
surrounded by striated muscle.There is good corticomedullary
distinction.

in the Markert series showed no evidence of thymopoiesis even
though the epithelium was viable (111). Both patients died. A sim-
ilar appearance was found in a CMV infected patient in London
who also died without evidence of thymopoiesis (manuscript in
preparation). The mechanism by which CMV interferes with thy-
mopoiesis is not clear but as a result of this experience, CMV infec-
tion should be considered at least a relative contraindication to
thymus transplantation. After successful thymus transplantation
patients are able to control infections and to come off antibiotic
prophylaxis and immunoglobulin therapy with normal responses
to immunization. The main problem that has been encountered is
the development of autoimmunity. Around one third of patients
have shown autoimmunity, mainly hypothyroidism but also with
a significant number of immune cytopenias (109). It is interesting
that this spectrum of autoimmunity is similar to that seen in pDGS
patients, as discussed above, and may have the same causation or
may be related to faulty thymic education related to the fact that
the transplanted thymic epithelial cells are not MHC matched,
as discussed below. No clinical or methodological correlates with
risk of autoimmune development could be identified in the Duke
University series. (114).

The success of transplantation of thymus which is not matched
at the MHC loci offers interesting insights into thymocyte devel-
opment. In particular, it suggests that positive and negative selec-
tion of developing thymocytes can occur in the absence of self
MHC expressed on thymic epithelial cells. The mechanism by
which this takes place is incompletely understood. Reconstitu-
tion experiments in nude mice with MHC incompatible thymic
tissue showed that functional T cell development could be sup-
ported by haematopoeitic cell-expressed MHC instead of TEC-
expressed MHC (115). Further work showed that development of
functional CD4 (but not CD8) cells however does seem to require
interaction with MHC on TECs but not any particular allelic form
of MHC (116). Under the influence of AIRE expressed on thymic
epithelium dendritic cells have been shown to have a role in neg-
ative selection in mice (117). Whilst negative selection may be
imperfect resulting in autoimmunity in some cases, it must be
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Davies Immunodeficiency in DiGeorge syndrome

largely effective since multiple system/organ autoimmunity from
widespread lack of central tolerance has not been seen. Positive
selection has also been shown to be mediated by fibroblasts (118)
and by thymocytes (119, 120). Influx of these cell types expressing
host MHC to the developing thymus allograft could therefore have
the potential for mediating the selection processes.

CONCLUSION
Study of the thymic deficiency in DGS provides insights into the
development of the thymus and the mechanisms of thymopoiesis
required to generate a robust and diverse T-cell mediated immu-
nity. Thymus transplantation offers a novel way of correcting the
immunodeficiency in this disorder.
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Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED)
and its mouse model – both caused by mutant AIRE – have greatly advanced the under-
standing of thymic processes that generate a self-tolerant T-cell repertoire. Much is now
known about the molecular mechanisms by which AIRE induces tissue-specific antigen
expression in thymic epithelium, and how this leads to negative selection of auto-reactive
thymocytes. However, we still do not understand the processes that lead to the activa-
tion of any infrequent naïve auto-reactive T-cells exported by AIRE-deficient thymi. Also,
the striking phenotypic differences between APECED and its mouse models have puz-
zled researchers for years. The aim of this review is to suggest explanations for some of
these unanswered questions, based on a fresh view of published experiments. We review
evidence that auto-reactive T-cells can be activated by the prolonged neonatal lymphope-
nia that naturally develops in young Aire-deficient mice due to delayed export of mature
thymocytes. Lymphopenia-induced proliferation (LIP) helps to fill the empty space; by favor-
ing auto-reactive T-cells, it also leads to lymphocyte infiltration in the same tissues as in
day 3 thymectomized animals. The LIP becomes uncontrolled when loss of Aire is com-
bined with defects in genes responsible for anergy induction and Treg responsiveness, or
in signaling from the T-cell receptor and homeostatic cytokines. In APECED patients, LIP
is much less likely to be involved in activation of naïve auto-reactive T-cells, as humans
are born with a more mature immune system than in neonatal mice. We suggest that
human AIRE-deficiency presents with different phenotypes because of additional precipi-
tating factors that compound the defective negative selection of potentially autoaggressive
tissue-specific thymocytes.

Keywords: AIRE, APECED, lymphopenia-induced proliferation, thymus, negative selection, autoantigens, immune
privilege, NOD

INTRODUCTION
The autoimmune regulator (AIRE) is a transcriptional activator
with a restricted expression pattern and important functions in
medullary thymic epithelial cells (mTECs) (1). The thymus is the
organ where a self-tolerant T-cell repertoire is established via pos-
itive and negative selection of thymocytes. To ensure tolerance
toward the set of tissue-specific antigens (TSAs) from different
peripheral organs, mTECs “promiscuously” express thousands of
TSAs that are then presented to developing thymocytes; one of
the best known among them is insulin (2, 3). AIRE is the best
characterized transcriptional regulator in mTECs. It is generally
accepted that its main thymic role is to ensure negative selection
of thymocytes with T-cell receptors (TCRs) with high affinities for
epitopes from TSAs. At first sight, this idea seems to fit with the
variety of endocrine, ectodermal, and lymphoid autoimmune dis-
eases that present in patients with AIRE mutations and comprise
the Autoimmune polyendocrinopathy candidiasis ectodermal dys-
trophy (APECED) or autoimmune polyendocrine syndrome type
I (APS-I) syndrome (4–6). However, there is curiously little dis-
cussion about how these infrequent naïve auto-reactive T-cells that

escape negative selection in AIRE-deficient thymi are activated to
cause disease in the periphery, or about the rather consistent early
onset of its highly unusual cardinal manifestations, or about the
strikingly different phenotypes in Aire−/−mice (7–9). Table 1 lists
the autoimmune features of AIRE-deficient humans vs. mice and
highlights their surprisingly limited overlap (7–21). Here, we pro-
pose the hypotheses that defective thymic negative selection is not
sufficient by itself to induce autoimmunity and that these differ-
ences in disease phenotypes reflect distinct varieties of additional
influences in Aire−/− mice vs. humans.

AIRE IS RESPONSIBLE FOR NEGATIVE SELECTION OF
TSA-SPECIFIC THYMOCYTES
The normal roles of Aire in TSA up-regulation by mTECs, and
thus in central tolerance induction, are firmly established. In mice
transgenic for single TCRs specific for immune-dominant epi-
topes from hen egg lysozyme (HEL) or ovalbumin (OVA), large
proportions of thymocytes are efficiently deleted if their neo-
self-antigens are expressed under Aire-dependent gene promoters.
Membrane-bound HEL or OVA (mHEL or mOVA) under the rat
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Table 1 | Phenotypes and autoantibodies differ between APECED patients and Aire−/− mice.

APECED patientsa Aire−/− miceb APECED patientsa Aire−/− miceb

DISEASES/IMMUNE CELL INFILTRATIONS AUTOANTIBODIESTO:

Chronic mucocutaneous candidiasis Type I IFNs

Hypoparathyroidism IL-22, IL-17F, IL-17A IL-17A (IL-17F) (11)

Addison’s disease NALP5

Ovarian failure Infertility CaSR

Testicular failure P450c17, P450c21, P450scc

Hypopituitarism IA-2, GAD65

Autoimmune hepatitis Liver infiltration TG, TPO

Intestinal dysfunction TDRD6

Pancreatitis AADC

Tubulointerstitial nephritis P450 1A2

Interstitial lung disease Lung infiltration TPH

Alopecia HDC

Vitiligo TH

Rash with fever SOX9/SOX10

Asplenia KCNRG

Keratoconjunctivitis Myelin protein zero (12)

Dental enamel dysplasia LPLUNC1 (13) Vomeromodulin (13)

Nail dystrophy BPIFB1 (14) BPIFB9 (14)

Type 1 diabetes OBP1a (16)

Hypothyroidism SVS2 (17)

CIPD (10) IRBP (15)

Pernicious anemia Gastritis alpha-fodrin (18)

Uveoretinitis TRP-1 (19)

Dacryoadenitis Mucin 6 (20)

Salivary gland infiltration

aAutoimmune phenotypes of APECED patients and their autoantibody reactivities are summarized from (21).
bSummarized from (9), only Aire−/− mice on C57BL/6 and BALBc backgrounds without additional immune defects are included.

CIDP, Chronic inflammatory demyelinating polyneuropathy; NALP5, NACHT leucine-rich-repeat protein 5; CaSR, calcium-sensing receptor; P450c17, steroid 17-α-

hydroxylase; P450c21, steroid 21-hydroxylase; P450scc, side chain cleavage enzyme; IA-2, islet antigen-2; GAD65, glutamic acid decarboxylase; TG, thyroglobulin;

TPO, thyroid peroxidase; TDRD6, tudor domain containing protein 6; AADC, aromatic l-amino acid decarboxylase; P450 1A2, cytochrome P450 1A2; TPH, tryp-

tophan hydroxylase; HDC, histidine decarboxylase; TH, tyrosine hydroxylase; KCNRG, potassium channel-regulating protein; BPIFB1, 1 bactericidal/permeability-

increasing fold-containing B1; OBP1a, odorant binding protein 1a; SVS2, seminal vesicle secretory protein 2; IRBP, interphotoreceptor retinoid-binding protein;TRP-1,

tyrosinase-related protein-1; LPLUNC1, Long palate lung nasal epithelium clone.

Shared autoimmune features are indicated in bold.

insulin promoter (RIP) is expressed in both pancreatic β cells
and the thymus (22, 23), and mHEL under the interphotorecep-
tor retinoid-binding protein (IRBP) promoter in both retina and
thymus (24). When these mice are crossed with the respective TCR-
transgenic animals, their clonotypic thymocytes are deleted with
75–97% efficiency, but only in mice with intact Aire, highlighting
its indispensable role in negative selection. Moreover, the preva-
lence of neo-self-antigen-reactive T-cells is reduced still further
in the periphery, underlining the importance of active peripheral
tolerance mechanisms.

Interestingly, expression levels of the transgenes in the thymus
varied in different studies. In a retinal neo-self-antigen model, the
transgenic mRNA (Escherichia coli β-galactosidase under arrestin
promoter) was undetectable even in the wild-type (wt) thymus
(25). Whereas mHEL showed the expected Aire-dependent pattern

of higher expression in wt than Aire−/− mTECs (24, 26) (when
driven by the insulin or IRBP promoters), transcript levels for RIP-
driven mOVA were not markedly decreased in Aire−/− thymi (22).
This raises the possibility that, besides up-regulation of TSAs in the
thymus Aire plays additional roles in generating self-tolerance, e.g.,
inducing the maturation of mTECs, as reviewed recently (27, 28).
Loss of Aire also alters thymic architecture and mTEC ultrastruc-
ture (29, 30), and these effects reach back even to the immature
Aire-negative mTEC subset (31). Indeed, there are reports that
Aire-deficiency leads to breakdown of tolerance even to appar-
ently Aire-independent antigens (18). Moreover, the development
of the most mature single CD4 positive thymocyte subpopulation
(CD69−, Qa-2+) is impaired in Aire-deficient thymi (32).

The role of Aire in negative selection has also been studied
in TCR-transgenic models where clonotypic T-cells are targeted
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toward naturally expressed self-antigens such as the melanocyte-
/melanoma-specific tyrosinase-related protein-1 (TRP-1). In these
mice (on a Rag−/− background), negative selection again
depended on Aire; when its only change was the dominant negative
Aire G228W point mutation, melanoma growth was decreased.
Surprisingly, however, vitiligo was not reported in this study,
although TRP-1 is also expressed in normal melanocytes (19).

The role of Aire in negative selection has also been studied in
another TCR-transgenic model with reactivity to the major retinal
autoantigen – IRBP. Although its thymic expression is reportedly
Aire-dependent, clonotypic thymocytes were not deleted in any of
three transgenic mouse lines on the uveitis-susceptible B10.RIII
background (33). On the contrary, in two of them, the majority
of CD4 single positive thymic T-cells bound IRBP–MHC dimers;
strikingly they were several-fold more frequent than in wt animals
(33). Uveitis developed spontaneously in these two mouse lines,
but not in the third, where frequencies were lowest in both thymus
and periphery: 6 and 1% respectively; those were still much higher
than in Aire−/− mice with no TCR-transgene (34). Clonotypic T-
cell deletion was also incomplete in mice transgenic for an insulin
B chain epitope-specific TCR, only a fraction of which developed
diabetes (35).

Several studies have confirmed the importance of thymic nega-
tive selection of auto-reactive T-cells in physiological settings, i.e.,
in mice with un-manipulated T-cell repertoires (34, 36). Indeed,
thymic stromal or lymphoid cells were necessary to confer toler-
ance to the central nervous system (CNS) antigen myelin prote-
olipid protein (PLP) (36). Importantly, susceptibility to experi-
mental autoimmune encephalomyelitis (EAE) in SJL/J mice could
be explained by the exclusion of the immunodominant epitope
of PLP (for this strain) from the thymic isoform of PLP, and
the export of potentially auto-reactive cells to the periphery (36).
However, this model of EAE in SJL/J mice does not develop spon-
taneously, but requires immunization with antigen emulsified in
complete Freund’s adjuvant (CFA).

NAÏVE AUTO-REACTIVE T-CELLS DO NOT CAUSE
AUTOIMMUNITY BY DEFAULT
According to current models, AIRE’s main role is to ensure nega-
tive selection of TSA-specific thymocytes. If so, self-reactive T-cells
escaping from Aire−/− thymi must normally be naïve and infre-
quent. Even when frequencies are much higher in TCR-transgenic
models, disease penetrance is not always 100%, especially when
the TCRs are expressed in CD4+ T-cells. In the TCR–TrpHEL
model, with neoantigen expression in melanocytes, 12% of the
animals remained free of vitiligo (37); in an RIP–OVA OTII model
with neo-self-antigen expression in pancreatic β-cells, about 1/3
were persistently non-diabetic (23) in spite of large numbers of
auto-reactive T-cells in the periphery. TSA-specific T-cells are
much less frequent in Aire−/− animals with un-manipulated T-
cell repertoires. How their uncommon naïve thymic emigrants are
activated to induce autoimmune disease in the periphery remains
unexplained, one might expect them to get tolerized instead (38,
39). Indeed, when naïve T-cells encounter self-antigen in tissue-
draining lymph nodes or spleen in wt mice, they undergo an initial
burst of proliferation that is followed by deletion and anergy (40–
44) or acquisition of regulatory T-cell (Treg) phenotypes (35, 45).

In intriguing contrast, autoimmunity readily develops when naïve
auto-reactive T-cells are transferred to lymphopenic hosts (46, 47).

LYMPHOPENIA TRIGGERS AUTOIMMUNITY IN AIRE −/− MICE
The striking similarities in manifestations in Aire−/− and day 3
thymectomized mice (d3tx) have been noticed earlier (48–50).
Both models show inflammatory infiltrates in similar tissues plus
autoantibodies against some of their antigens in: stomach, thyroid,
ovaries, prostate, pancreas, lacrimal and salivary glands, and testis
(9, 18, 50–55). With both types of models, the manifestations even
follow the same strain-specific preferences: e.g., generally lower
autoimmune susceptibility in C57BL/6 mice, whereas gastritis is
the most prevalent feature on the BALBc background.

In d3tx mice, the autoimmunity is explained by prolonged
lymphopenia-induced proliferation (LIP) of auto-reactive lym-
phocytes that out-compete Tregs in susceptible animals (56, 57).
Although normal neonatal mice show a physiologic lymphope-
nia, it does not induce substantial LIP (56). We have shown that,
besides inducing TSA expression, thymic Aire normally upreg-
ulates several chemokines, especially CCR7 and CCR4 ligands,
that attract immature thymocytes to the medulla. Their cortico-
medullary migration is delayed in Aire−/− mice, and that, in turn,
delays the export of their mature progeny, prolonging the post-
natal lymphopenia at least through day 5 (31). Interestingly, mice
deficient in CCR7 (or its ligands) show not only similar delays in T-
cell emigration from the thymus but also inflammatory infiltrates
in the very organs listed above (58–60). We therefore hypothe-
size that LIP also contributes to these inflammatory infiltrates and
compensates for the relatively low numbers of naïve auto-reactive
T-cells that escape from Aire−/− thymi. This notion is supported
by the evidence that the lymphopenia in irradiated Aire−/− mice
increases the gastric autoimmunity (20); and that Aire expression
is required only in the fetal and early post-natal periods to prevent
autoimmunity (48).

Lymphopenia-induced proliferation is sometimes classified
according to the rate of division of T-cells to homeostatic and
spontaneous proliferation (56). It is highest when chronically
lymphopenic adult mice are reconstituted with low numbers of
lymphocytes (56, 61). In this case, T-cells respond to antigens
derived from commensals, which probably translocate from the
gut to lymphoid organs due to the host immunodeficiency (61).
Commensals seem unlikely contributors to the LIP that occurs
early in life, e.g., in d3tx mice. Nevertheless, LIP favors auto-
reactive cells, as they get stronger signals through their TCRs
as well as from homeostatic cytokines (IL-7 and IL-15) that are
upregulated in lymphopenic hosts. As they concomitantly differ-
entiate, these T-cells acquire the markers of activated memory cells
(CD44+CD62L−) (62–66).

There are several indications of homeostatically proliferating
T-cells in Aire−/− mice, including signs of oligoclonality (67).
Whereas thymocytes from Aire-deficient and wt mice showed no
differences in TCR Vβ-chain CDR3 length and spectratype, splenic
T-cells from Aire−/− mice showed a clear alteration in the TCR
repertoire distribution in 3 out of 24 Vβ families at 2 and 6 months
of age (67). A more recent study also found slight perturbations in
CDR3 Vβ length distribution, and significantly higher percentages
of CD44+ T helper cells in spleens and lymph nodes of Aire−/−
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mice than in wt controls (9). CD44 up-regulation in T-cells from
Aire−/− mice was also noted by Anderson et al. (68).

Looking for further activation of auto-reactive cells in lym-
phopenic conditions, Kekalainen et al. (69) transferred lymph
node cells from Aire+ and Aire−/−mice to immunodeficient hosts.
However, although especially the CD8+ Aire−/− T-cells prolifer-
ated more, there was no clinical disease, and the mild infiltrates
in the livers, salivary glands, and pancreata did not differ from
those in the controls. The rare auto-reactive cells in these animals
had probably already been tolerized by peripheral mechanisms in
the donors themselves. This suggests that prolonged lymphope-
nia in the neonatal period, together with export of naïve cells to
the periphery, contributes substantially (but not exclusively) to the
development of inflammatory infiltrates in Aire−/−mice, and that
the auto-reactive cells are subject to regulation in the periphery
that prevents serious damage to the target organs.

Certain TCR-transgenic T-cells are also prone to homeosta-
tic proliferation. These include the MHC-class I-restricted OT-I
line recognizing a peptide from OVA (62). Interestingly, sponta-
neous diabetes already appears in neonatal RIP–OVA Aire−/−OT-I
mice (22). This severe autoimmunity might well have been poten-
tiated by perinatal activation of the transgenic T-cells in these
lymphopenic hosts.

AIRE AND LIP IN AUTOIMMUNITY AGAINST PRIVILEGED
ORGANS
Autoantigens from some organs like the CNS/retina were thought
to be sequestered from the immune system, which might there-
fore not be fully tolerant to them. It has been suggested that AIRE
might play especially important roles in protecting these organs
from autoimmune attack, e.g., provoked by local infections (49).
Indeed, central deletion of auto-reactive thymocytes would be a
particular priority for CNS and eye antigens, as regeneration is
minimal in these tissues, and their peripheral tolerizing mech-
anisms might be inefficient. The intraocular compartments are
isolated from the circulation – by barriers formed by tight junc-
tions between the endothelial cells of the ciliary blood vessels,
and between the lining epithelial cells; also in the retinal pigment
epithelium (RPE) and the local endothelium (70–72). These bar-
riers are impermeable to circulating soluble macromolecules and
most cell types except for activated T-cells and immature antigen-
presenting cells (APCs). In the other direction, any soluble retinal
antigens (such as IRBP) shed physiologically or injected exper-
imentally can drain via the aqueous fluid and episcleral veins to
reach the thymus, liver, and spleen (70). The resulting systemic tol-
erance is termed anterior chamber-associated immune deviation
(ACAID). The presumed privilege of the eye used to be attributed
to paucity of APCs and lymphatics, but it is now known that there
are rich networks of APCs and a functioning lymphatic system
draining all parts of the eye, except the retina proper, via the sub-
mandibular node (70–72). Thus, ocular privilege is not due to a
passive barrier, but instead depends on inducible active processes
that can be transferred by immune cells.

One prominent feature in Aire−/− mice is their retinal disease.
Although it is extremely rare in APECED patients who frequently
suffer from keratito conjunctivitis (4, 73), it affects ~30% of these
mice by age 20 weeks on a C57BL/6 background (34). Recently,

they were backcrossed onto the autoimmune uveitis-susceptible
B10.RIII background to monitor eye pathology more carefully
(74). Surprisingly, the spontaneous disease was milder on the
Aire−/− background than in the other two models (induced by
immunization with IRBP+CFA or arising spontaneously in IRBP
TCR-transgenic mice), and rarely caused blindness. Instead, it pre-
sented with relatively low-grade but multi-focal retinal inflamma-
tion and severe choroiditis, possibly hinting at moderately potent
regulatory mechanisms.

There are many indications that EAU is enhanced by LIP of self-
reactive T-cells (33,75,76). In intact wt recipients, IRBP-transgenic
T-cells only induced uveitis after antigen-activation: recipients
of naïve cells, even from the highest transgenic TCR-expressing
line, remained disease-free. In telling contrast, naïve T-cells did
induce disease when transferred to lymphopenic Rag2−/− recipi-
ents, again implicating LIP in converting them into effector cells
(33). In the same study, LIP was evidenced in the mouse lines
with higher prevalences of TCR-transgenic T-cells by increases in
CD44+CD62L− activated T-cells, even in peripheral lymph nodes
that do not drain the eye. This implicates LIP in these transgenic
animals too, possibly due to aberrant thymic development, and
probably lymphopenic periods earlier in life (33). LIP has also
been identified as a potent activator of EAU in another transgenic
model (76) and, interestingly, uveoretinitis develops in unimmu-
nized d3tx mice if subsequently injected with anti-CD25 to deplete
CD25+CD4+ Tregs (75).

REVERSAL OF LYMPHOPENIA ALLEVIATES AUTOIMMUNITY
Autoimmunity that results from LIP should be down-modulated
by transfer of lymphocytes. This indeed occurs in Aire−/− mice,
where the appearance of inflammatory infiltrates could be sup-
pressed by introducing a controlled excess of T-cells from normal
donors – by co-transplanting 1:4 mixes either of Aire−/−: wt
stroma from thymic lobes, or of splenocytes, into athymic or
Rag−/−recipients, respectively (22).

As the phenotypes of Aire−/− mice are so mild, it is difficult to
dissect the mechanisms that might be modulating their autoim-
munity. Therefore, crosses of Aire−/− with NOD mice have been
used, as they develop earlier and more severe autoimmunity (48).
In these crosses, Aire expression is especially important during
perinatal life. Moreover, intraperitoneal injection of adult T-cells
on days 1 and 7 conferred significant but not complete protection
from this exaggerated autoimmunity (48) (see below).

IS ABSENCE OF SELF-ANTIGEN FROM THE THYMUS
SUFFICIENT BY ITSELF TO INDUCE ORGAN-SPECIFIC
AUTOIMMUNE DISEASE?
It is sometimes assumed that the autoimmunity results solely from
the absence of a single autoantigen from the thymus in the presence
of wt Aire. That is apparently contradicted by our hypothesis that
prolonged lymphopenia in Aire−/− mice is an important cofactor
for auto-aggression, so we now discuss two models that might help
to distinguish between these possibilities.

DeVoss et al. identified IRBP as the major target in autoim-
mune uveitis in Aire−/− mice (15). Its thymic expression is Aire-
dependent, although it is barely detectable in wt thymic stroma.
Absence of IRBP in the thymic compartment alone was sufficient
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to cause disease when athymic nude mice were transplanted with
fetal thymic stroma from IRBP−/− mice or wt mice. Mononu-
clear infiltrates appeared in their retinae, but not in recipients of
wt stroma. Here again, lymphopenia must have been an impor-
tant early contributor, as the first thymic emigrants appeared to
abnormal lymphopenic adults.

When DeVoss et al. also crossed Aire−/− with IRBP−/− mice,
the retinae showed no infiltrates, as expected because there was
no target for the IRBP-specific cells to attack. However, IRBP is
secreted, and even reaches the vitreous, and eventually drains to
the spleen and lymph nodes (77). Hence this major eye retinal
autoantigen was missing from the peripheral immune system too,
and was not available to fuel homeostatic proliferation of IRBP-
specific T-cells. Also the IRBP−/− retina is atrophic and might be
depleted of other autoantigens.

Interestingly, when mice transgenic for mHEL under the IRBP
promoter were crossed with HEL-specific TCR-transgenic mice,
they showed severe spontaneous EAU even on a wt Aire back-
ground (24). Negative selection of clonotypic T-cells was not
complete in this model, and many neo-self-antigen-specific T-
cells were exported to the periphery. The mHEL – unlike soluble
IRBP itself – may have failed to access lymphoid organs/induce
peripheral tolerance. The resulting disease was already so severe
that any exacerbating effect of Aire-deficiency was not detectable.
If these HEL-specific clonotypic T-cells were susceptible to LIP
due to cross-reactivity with some self epitopes (which has not
been checked), that might well have contributed too.

In another study, mice were engineered specifically to prevent
any insulin expression in mTECs, and to use only one of the two
insulin genes (Ins2) in their pancreatic β-cells (78). They devel-
oped spontaneous diabetes within 3 weeks after birth. However,
there are also some caveats with this study (79). The diabetes
was not transferrable to immunodeficient adult hosts with lym-
phocytes or thymi from the transgenic mice, which showed only
moderate insulitis (80). This apparently implicates the additionally
impaired physiology of Ins1−/− β-cells (compensatory hyperpla-
sia, increased death during the developmental wave of apoptosis
that occurs in normal development) in disease initiation in very
young mice (81). In this model again, loss of thymic negative selec-
tion alone was not sufficient to cause clinical disease. Furthermore,
since insulin is already secreted in the fetus, it should normally be
available for thymic deletion, e.g., when presented by medullary
dendritic cells, without promiscuous expression in mTECs, but its
levels may be decreased prenatally in Ins1−/− mice, reducing its
availability for negative selection.

AIRE-DEFICIENCY BECOMES LETHAL IF PERIPHERAL
BACK-UP MECHANISMS ARE ELIMINATED
Two highly informative crosses of Aire−/− mice – with strains
with other immune defects – underline the importance of back-
up mechanisms that are apparently responsible for the mildness
of the disease phenotypes in Aire−/− mice. Crosses onto Cbl-b-
deficient or diabetes-prone NOD backgrounds show astonishing
similarities (39, 53, 82). They both suffer from early wasting disease
and succumb to acute exocrine pancreatitis around 3–4 weeks of
age. Aire−/−/Cbl-b−/− mice showed additional lymphocytic infil-
trates in submandibular salivary glands and stomach (39), while

Aire-deficiency on the NOD background was accompanied by
severe pulmonitis and infiltrates in liver, salivary gland, prostate,
ovary, stomach, and thyroid (53, 82).

Interestingly, mice deficient in Cbl-b alone are healthy in the
absence of additional triggers (83), so it was a major surprise that
crossing with Aire−/− mice led to such severe disease. Cbl-b nor-
mally renders naïve T-cells highly dependent on co-stimulation;
when it is deleted, they are “trigger-happy,” and much less sus-
ceptible to anergy. Clonal deletion of CD8+ T-cells also depends
on Cbl-b, and Cbl-b-deficient T-cells are partially resistant to
Treg cell-mediated suppression (83). Furthermore, induction of
Tregs from naïve precursors is likewise impaired in the absence of
Cbl-b (84).

The CD44+ memory phenotype T-cells generated by LIP are
normally restrained by Tregs that proliferate rapidly in d3tx mice
and are crucial for preventing autoimmunity in lymphopenic
animals (50, 85). In Aire−/−/Cbl-b−/− mice, readier activation
of homeostatically proliferating T-cells, impaired induction of
peripheral Tregs and lower responsiveness of proliferating lym-
phocytes to the influence of Tregs are probably responsible for
their severe early autoimmunity. The proportions of CD4+ and
CD8+ T-cells with CD44high were greatly increased in these
double knock-outs. This supports the idea that LIP is partici-
pating during prolonged lymphopenia in Aire−/− mice, where
“trigger-happy” polyclonal T-cells proliferate in response to avail-
able self-peptide-MHC complexes in the presence of homeostatic
cytokines.

Interestingly, the immune defects in NOD mice include mild
lymphopenia and dysregulated function of homeostatic cytokines
(46). Indeed, T-cell transfer and CFA injection protect NOD mice
against diabetes (46). The efficiency of their thymic selection has
been a matter of controversy; recent data are in line with normal
negative selection but impaired positive selection in NOD mice
due to selective defects in the Erk1/2 signaling module down-
stream of TCR (86) that is important for T-cell survival and
tuning of TCR responsiveness. In the periphery, anergy induction
appears normal in NOD T-cells. Insulin-specific effector T-cells
were generated in pancreatic lymph nodes only between 3 and
5 weeks of age, at the time of increased release of β-cell anti-
gens (87). In all mouse strains, a wave of β-cell apoptosis occurs
during the neonatal period, peaking at 9–15 days, but apoptotic
debris is cleared less efficiently in NOD mice (88). Interestingly,
diabetes is accelerated in mice thymectomized at week 3 – i.e.,
precisely when β-cell-specific T-cells are initially activated – when
Tx caused moderate lymphopenia. Furthermore, the timing of
that lymphopenia is evidently critical in target organ selection;
while d3tx in NOD mice did not affect diabetes incidence, gas-
tritis became much commoner (88). Indeed, this Aire−/−/NOD
combination may maximize homeostatic proliferation just when
exocrine pancreatic antigen release is greatest. The combination
of impaired positive selection in NOD mice with delayed migra-
tion of thymocytes into the Aire−/− medulla apparently ampli-
fies the neonatal lymphopenia, which is further exaggerated by
hyper-responsiveness of NOD T-cells to IL-21 and poor T-cell sur-
vival. Homeostatically proliferating cells compete for IL-7 and/or
available MHC/(cross-reactive) self peptides (56). Therefore the
absence of diabetes in Aire−/−/NOD mice may implicate the early
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proliferation of T-cells that encounter other available autoantigens
and fill the space before the β-cell antigens are released.

Why the autoimmune attack focuses on the exocrine pancreas
remains obscure. We suggest that three peculiarities of neona-
tal mice might be relevant: (1) readier access of neonatal T-cells
to peripheral organs (89) where they normally differentiate into
TSA-specific Tregs (45). Interestingly, this conversion to Tregs is
subverted by IL-7 (45); (2) rapid changes and increased blood
flow to certain organs (lungs, pancreas, liver, and intestine) after
birth that renders their antigens more accessible to T-cells; (3)
autophagy that is naturally upregulated immediately after birth –
to adapt to the loss of the constant trans-placental supply of nutri-
ents – especially in muscle/diaphragm, heart and lungs; also the
pancreas, which undergoes major changes after birth too, to meet
the demands for the proteolytic enzymes it must now secrete (90).
Their premature intracellular activation in autophagolysosomes,
together with autoimmune attack by “trigger-happy” homeostati-
cally proliferating T-cells, might greatly exacerbate the tissue dam-
age. The thymic involution in Aire−/−/Cbl-b−/− mice could be
the result of stress or a “cytokine storm” created by this fulminant
pancreatic disease.

TREG CELLS IN AIRE-DEFICIENCY
Studies in APECED patients have shown significantly lower Treg
numbers and function than in healthy controls (91–94). Whether
this is a direct effect of the thymic AIRE-deficiency or secondary
to the severe autoimmune diseases in these patients remains
unknown. By contrast, the role of Aire-deficiency in the devel-
opment of Treg cells in the mouse thymus is controversial. Many
studies have reported that their numbers are unchanged (9, 18, 26,
95), but others have found them reduced (22, 96, 97). In peripheral
organs, their numbers and function are similar to those in wt mice
(9, 22). Recently, Malchow et al. showed appearance of Tregs spe-
cific for an Aire-dependent TSA that proliferated in tumors and
could therefore interfere in their rejection (96). The autoimmunity
in d3tx mice was initially thought to arise because of significantly
later maturation and release of Tregs than of effector cells (55).
However, Tregs proliferate equally well in d3tx lymphopenic hosts,
which is important in the prevention of autoimmunity (50, 64).
Interestingly, LIP is even greater in Tregs from Aire−/− than wt
mice when transferred to lymphopenic hosts (69).

One of the crosses that showed no additive effect on the phe-
notype of Aire−/− mice was with Card11unm/unm (39). Normally,
Card11 acts in the NFκB module of TCR-signaling, and this
mutation leads to impaired Foxp3+ Treg differentiation in the
thymus, 6–7 times fewer peripheral Tregs, and a gradual increase
in Th2 cells (98). Interestingly, however, in Aire−/− mice, these
low-frequency Tregs could still reduce tissue infiltration. Further-
more, while Tregs are crucial for controlling autoimmunity against
several organs, they seem to play no prominent role in eye disease:
FoxP3-mutant scurfy mice do not develop spontaneous uveitis,
suggesting that other tolerance mechanisms are more important
than Tregs in protecting against retinal autoimmunity.

Also very informative are the crosses of B6.Foxp3sf mice (with
the null “scurfy” Foxp3 gene mutation) onto the Aire−/− mice
or NOD genetic backgrounds (99). The Sf mutation by itself
causes characteristic skin disease, massive lymphoproliferation,

and infiltration most severely in the liver, but also the lungs and
exocrine pancreas (100, 101). The crosses onto both backgrounds
started to develop more severe lung and liver infiltrates much
earlier and died significantly younger than B6.Foxp3sf mice (99).
While there were no changes in the infiltrates characteristically
seen in other organs in B6.Foxp3sf mice, those typical of Aire−/−

mice on the C57BL/6 background (in the eyes, salivary glands)
were – surprisingly – not seen in the B6.Foxp3sf Aire-deficient mice.
Moreover, phenotypes were identical in sf mutant mice on these
Aire−/− and NOD backgrounds; to us, that implicates prolonged
neonatal LIP rather than deficiency in thymic negative selection
in this aggravated pathology in both crosses. Sf mutant Tregs are
evidently not able to limit the activation of homeostatically pro-
liferating T-cells. This is also illustrated by the similar wasting
disease (with infiltrates in lungs, liver, pancreas, and stomach) in
a model where neonatal T-cells are unable to respond to TGF-β
signaling (102).

WHAT IS TRIGGERING AUTOIMMUNITY IN APECED
PATIENTS?
If the mild phenotypes in Aire−/−mice are in line with the require-
ments for pathogenic T-cell activation, why are the phenotypes
so much more severe in APECED patients? In humans too, it
seems very unlikely that defective negative selection is the only
cause of the severe autoimmune destruction of endocrine glands
and other tissues (6, 21, 103). We are born with a much more
mature immune system than mice (104, 105). Although lym-
phocyte function is under-developed in neonates, their numbers
per milliliters of blood are even higher than in adult humans.
Therefore, even if thymocyte migration is delayed because of
impaired chemokine secretion by AIRE-deficient mTECs in the
human fetus, this is probably compensated by the longer gestation.
Neonatal lymphopenia has not been studied in APECED because
the disease is usually diagnosed much later. Interestingly though,
adult APECED patients have increased IL-7 concentrations in their
sera that may be related to impaired T-cell homeostasis (106).
The clear differences in disease phenotypes between APECED
patients and Aire−/− mice suggest separate precipitating factor(s)
in humans. These remain unidentified, but the surprisingly simi-
lar autoantibodies in patients with APECED and thymoma make
any contribution from lymphopenia in human AIRE-deficiency
seem even less likely (107). Nevertheless, the same logic – that
additional activation is required before the rare naïve auto-reactive
cells that escape from human AIRE-deficient thymi/thymomas can
induce autoimmune disease – must apply in humans too (6, 103).
In APECED, CMC, hypoparathyroidism, and Addison’s disease
sometimes present even at 2–3 years of age (4). Evidently, T-cells
must go onto attack very soon after birth to destroy sufficient tis-
sue to cause disease so soon; to us, that argues against any need for
environmental triggers. Moreover, the first targets of the autoim-
mune attack are not AIRE-dependent TSAs (21). We propose that
the pathogenic T-cells are already primed before their export from
AIRE-deficient thymi or thymomas. A study on T-cells in APECED
adults has shown gross alterations, especially in the CD8+ pop-
ulation, that include increased proliferation, lower expression of
both IL-7R and the negative regulator of TCR-signaling CD5, and
also absence of the regular naïve T-cell compartment, relative to
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age-matched healthy controls (106). That could be secondary to
the autoimmune diseases in APECED, a possibility that could be
tested by assessing the activation of recent thymic emigrants before
onset of APECED in pre-symptomatic young siblings of known
patients.

In APECED, autoantibodies neutralizing type I IFNs and IL-22
can reach high titers even by 7 months of age, when autoantibodies
to steroidogenic enzymes may also start to appear (108). Moreover,
these autoantigens are produced in the thymus by cell types other
than mTECs, so they should be available for negative selection
even when AIRE is deficient (103). To explain these peculiarities,
we have suggested biased selection or active autoimmunization
in human thymi rendered “dangerous” by AIRE-deficiency (21,
103). That even leads to other secondary lymphoid tissue behav-
ior in thymomas such as spontaneous production of anti-IFN-α
and IL-12 autoantibodies by terminal plasma cells in sero-positive
patients (109).

FURTHER PREDICTIONS
If gastritis in BALBc mice and EAU in B10.RIII mice are caused by
LIP, they should be ameliorated by blocking homeostatic cytokines
postnatally and simultaneously transferring lymphocytes into the
lymphopenic hosts. As these cytokines sensitize TCRs through
induction of pERK1/2, its inhibitors could be tested instead (65).

The phenotype of Cbl-b- and Aire double deficient mice
could be mimicked by crossing with other mutant mouse strains
with impaired T-cell susceptibility to anergy induction, or by
thymectomizing Cbl-b−/− mice on days 1–3.

Curiously, autoimmunity is more often related to lower than
higher TCR-signaling, perhaps because of weaker peripheral tol-
erance (65, 86). During their development, cortical thymocytes
are positively selected when their receptors are triggered by self-
peptide-MHC complexes. These so called “tonic” signals are also
needed for T-cell survival in the periphery, but they are regulated
to remain just below the threshold for activation and proliferation
(62). When TCR-signaling is impaired, the cells have to adapt to
respond to weaker signals, which makes them more responsive to
self-antigens, e.g., during periods of over-production of homeo-
static cytokines. Theoretically, crosses of Aire−/− mice onto back-
grounds with decreased TCR-signaling and reduced T-cell survival
could lead to phenotypes similar to those in Aire−/−

×NOD
crosses.

SUMMARY
It is unlikely that defective negative selection of auto-reactive
thymocytes in AIRE-deficient thymi is the only cause of the asso-
ciated autoimmune diseases in either model mice or APECED
patients. Naïve T-cells require activation before they can cause tis-
sue destruction: in uninfected neonates with no danger signals,
tolerization by peripheral mechanisms seems a much likelier out-
come. A hitherto under-recognized feature of Aire−/−mice is their
prolonged neonatal lymphopenia: by inducing LIP, it favors the
proliferation and activation particularly of auto-reactive T-cells.
This also helps to explain the strikingly similar phenotypes of
lymphopenic day 3 thymectomized and Aire−/− mice. However,
the many developmental (ontogenetic) differences make LIP seem
a much less likely contributor in humans – where we propose

that additional mechanisms promote the early and much more
sharply focused autoimmune attack on such unusual targets as
the parathyroids, steroidogenic tissues/enzymes, and cytokines.

The mouse model has been extremely valuable in demonstrat-
ing Aire’s role in negative selection of auto-reactive thymocytes.
However, the differences in pathogenetic mechanisms and in
autoimmune phenotypes in APECED patients question its suit-
ability for testing new treatment options, and imply that merely
restoring thymic TSA expression might not be enough to halt the
autoimmunity in the patients. They also emphasize the impor-
tance of studies in human subjects, and again underline the need
for caution when extrapolating from mouse models.
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Thymocytes and thymic epithelial cells (TECs) cross-talk is essential to supportT cell devel-
opment and preserve thymic architecture and maturation of TECs and Foxp3+ natural
regulatory T cells. Accordingly, disruption of thymic lymphostromal cross-talk may have
major implications on the thymic mechanisms that governT cell tolerance. Several genetic
defects have been described in humans that affect early stages ofT cell development [lead-
ing to severe combined immune deficiency (SCID)] or late stages in thymocyte maturation
(resulting in combined immunodeficiency). Hypomorphic mutations in SCID-causing genes
may allow for generation of a limited pool of T lymphocytes with a restricted repertoire.
These conditions are often associated with infiltration of peripheral tissues by activated T
cells and immune dysregulation, as best exemplified by Omenn syndrome (OS). In this
review, we will discuss our recent findings on abnormalities of thymic microenvironment
in OS with a special focus of defective maturation of TECs, altered distribution of thymic
dendritic cells and impairment of deletional and non-deletional mechanisms of central tol-
erance. Here, taking advantage of mouse models of OS and atypical SCID, we will discuss
how modifications in stromal compartment impact and shape lymphocyte differentiation,
and vice versa how inefficientT cell signaling results in defective stromal maturation.These
findings are instrumental to understand the extent to which novel therapeutic strategies
should act on thymic stroma to achieve full immune reconstitution.

Keywords: thymus, Rag deficiency, Omenn and leaky SCID models, central tolerance, thymic reconstitution, thymic
cross-talk

INTRODUCTION
Thymocytes and thymic epithelial cells (TECs) cross-talk is essen-
tial to support T cell development and preserve thymic architecture
and maturation of TECs and Foxp3+ natural regulatory T (nTreg)
cells. In particular, deletion of self-reactive thymocytes in the
thymic medulla is based on the recognition of self-antigens that
are presented by medullary TECs (mTECs) and thymic dendritic
cells (DCs). In this process, a key role is played by the autoimmune
regulator (AIRE), a transcription factor expressed by a subset of
mature mTEC that drives the expression of tissue-restricted anti-
gens (TRAs), thus mediating negative selection of autoreactive
thymocytes (1, 2). In addition, mature TECs from the Hassall cor-
puscles secrete thymic stromal lymphopoietin (TSLP), a cytokine
that acts through thymic DCs and activates them to instruct self-
reactive T cells to be diverted into Foxp3+ nTreg cells (3). These
findings highlight the critical role played by the thymus not only in
the generation of a diversified and functional T cell repertoire, but
also in the prevention of autoimmune manifestations. To this end,
defects in T cell development represent a valuable model for study-
ing mechanisms by which severe impairment in thymopoiesis may
impinge on thymic stromal cell homeostasis and deletional and
non-deletional mechanisms (4). In particular, severe combined
immune deficiency (SCID) includes a heterogeneous group of

genetic disorders that abolish T cell development at early stage of
T cell differentiation by affecting survival of lymphoid progenitors
(as in adenosine deaminase deficiency and reticular dysgenesis),
interleukin (IL)-mediated expansion of lymphoid progenitors (as
in patients with mutations in the γ common chain, JAK3, or IL-7
receptor), V(D)J recombination [as in recombination activating
gene (Rag)1 and 2, and Artemis deficiency] in lymphoid pre-
cursors and signaling through the pre-T cell receptor (mutations
of CD3δ, CD3ε, CD3ζ, and CD45) (5). Null mutations in these
SCID-causing genes are associated with a virtual lack of circu-
lating T lymphocytes. However, hypomorphic mutations in the
same genes may allow for development of a restricted number
of T lymphocytes with limited repertoire diversity, which, when
exported to the periphery, may infiltrate target tissues and cause
autoimmunity and organ dysfunction, as in patients with Omenn
syndrome (OS) (6–10). Finally, defects in T cell development that
compromise thymocyte development beyond the CD4+ CD8+

[double-positive (DP)] stage result in combined immunodefi-
ciency with residual number of circulating T lymphocytes that
show abnormal phenotype and function. In particular, impaired
production of single-positive (SP) CD4+ cells is observed in major
histocompatibility complex (MHC) class II deficiency, whereas
generation of SP CD8+ lymphocytes is compromised in ZAP70
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deficiency (11, 12). Association of these conditions with immune
dysregulation has been reported, although not as frequently as in
OS due to hypomorphic mutations in SCID-causing genes (13).

In this review, we will focus the discussion on the contribution
of thymic microenvironment on the pathogenesis of peripheral
immune pathology in the presence of residual V(D)J recombi-
nation activity. To this end, we will discuss findings observed in
Rag2R229Q/R229Q and Rag1S723C/S723C mutant mice, which repre-
sent a valuable model of OS and atypical SCID, respectively (14–
18). Collectively, we provide evidence that abnormalities of thymic
stroma secondary to impaired development of T lymphocytes may
affect key mechanisms of immune tolerance and ultimately result
in severe manifestations of immune dysregulation.

MOUSE MODELS OF LEAKY SCID AND OS
Mutations of Rag genes result in a variety of clinical and immuno-
logical phenotypes. In particular, while null mutations cause a
severe block in T and B cell development (T− B− SCID), hypo-
morphic Rag1 and Rag2 mutations may cause a spectrum of
phenotypes, including OS, atypical SCID, combined immune
deficiency with expansion of TCRαβ+ T cells, and combined
immune deficiency with granuloma and/or autoimmunity (CID-
G/A) despite their common molecular mechanisms underlying
the disease (19–25). While all of these conditions associated with
hypomorphic Rag mutations are characterized by residual devel-
opment of T (and in some cases, B) lymphocytes, some of them
(especially OS and CID-G/A) present with prominent immune
dysregulation. However, the cellular and molecular mechanisms
underlying autoimmunity have remained poorly defined until
recently, when animal models of OS and leaky SCID have become
available (16, 17, 26). In particular, Khiong and colleagues have
reported on a spontaneously occurring mouse mutant (named
MM) in which a homozygous point mutation in the Rag1 gene
(R972Q) was associated with a high proportion of memory T
cells in the periphery. Although MM mice showed skin redness
when shaved, no T cells infiltration was observed in the tissues
and no obvious signs were reported, making this mutant strain a
model of leaky SCID, in which T and B cells are present in low
number and T cells are predominantly activated, but no obvi-
ous signs of autoimmunity are present (26). In another mouse
model, homozygosity for the Rag1 S721C mutation was associ-
ated with impaired T cell development, presence of oligoclonal,
activated T cells, profound B cell lymphopenia, and yet signif-
icant serum levels of immunoglobulin (15, 17, 18). Although
only a minority of Rag1S723C/S723C mice developed signs of OS, T
cell infiltrates in peripheral tissues, and autoantibodies to double
stranded DNA (dsDNA) and other self-antigens were demon-
strated in a significant proportion of mutant mice 15. Immune
dysregulation was even more prominent in another mutant mouse
model carrying a homozygous Rag2 R229Q mutation, as shown
by expansion of oligoclonal activated T cells infiltrating target
organs including skin, gut, liver, and lung and by the presence
of high IgE serum levels and autoantibodies, despite the absence
of circulating B cells (14, 16). Of note, immune dysregulation in
Rag1S723C/S723C and Rag2R229Q/R229Q mutants was associated with
profound thymic abnormalities, with lack of corticomedullary
demarcation (CMD), and impaired maturation of TECs (17, 27).

In particular, both Rag1S723C/S723C and Rag2R229Q/R229Q mice dis-
played altered maturation of mTECs, as indicated by the virtual
absence of expression of claudin-4 (Cld4) and Ulex europaeus
Agglutinin 1 (UEA-1) ligand. Furthermore, analysis of cytok-
eratin (CK) expression in the thymus revealed abundance of
CK8+ CK5+ cells, which represent immature TEC progenitors
and a severe reduction of CK8− CK5+ mTECs. FACS analysis
labeling CD45− Epcam+ thymic stromal cells with UEA-1 and
Ly51 specific antibodies for mTECs and cTECs, respectively, have
demonstrated the increased frequency of cTECs with consequent
reduction in mTEC compartment in Rag2R229Q/R229Q mouse com-
pared to WT (Figure 1A). However, all epithelial populations were
significantly diminished in number given the dramatic reduction
in total thymic cellularity (Figure 1B). Defective maturation of
mTECs in Rag1S723C/S723C and Rag2R229Q/R229Q mice was associ-
ated with severe reduction of AIRE-expressing cells and markedly
reduced expression of TRAs, such as cytochrome P450, insulin
2, glutamic acid decarboxylase 67, and fatty acid-binding pro-
teins (17, 27). These defects inevitably lead to a severe impair-
ment in the process of negative selection of autoreactive T cells
clones.

Unexpectedly, abnormalities of thymic DCs, which are involved
in promoting negative selection of self-reactive thymocytes and
in the generation of nTregs, were also demonstrated in both
mutant models. In particular, a relative abundance of CD11cint

CD45RA+ plasmacytoid DCs (pDCs), and a decreased proportion
of CD11c+ CD45RA− conventional DCs (cDCs) was demon-
strated in Rag1S723C/S723C mice (17). A severe reduction of both
cDCs and pDCs was demonstrated in Rag2R229Q/R229Q mice, and
was associated with a random distribution of these DC subsets
throughout the thymus. Furthermore, a significant reduction in
the expression of MHC-II and CD86 was found in both DC sub-
set populations, suggesting impairment in DC maturation process
(28). Of note, impaired maturation of mTECs, defective expres-
sion of AIRE and reduced number of thymic DCs have been
also reported in patients with hypomorphic mutations of genes
involved in early stages of T cell development (29, 30). While
the mechanisms accounting for thymic DC abnormalities in mice
and patients with hypomorphic Rag mutations remain poorly
defined, they have important consequences on maintenance of
immune homeostasis. In particular, cDCs have been described to
contribute to the generation of nTregs (31). Consistent with this, a
reduced number of Foxp3+ nTreg cells have been observed in both
Rag1S723C/S723C and Rag2R229Q/R229Q mice, as well as in patients
with Rag-dependent OS (16, 17, 30).

Altogether, the study of animal models carrying hypomor-
phic Rag mutations has demonstrated that defective T cell lym-
phopoiesis affects maturation and function of thymic stroma, and
impinges on both deletional and non-deletional mechanisms of
immune tolerance, thereby providing important insights on the
pathophysiology of OS.

ANIMAL STUDIES TO TARGET THYMIC STROMA IN Rag
DEFICIENCIES
GENE THERAPY IN Rag1 KNOCK-OUT MICE
An additional demonstration of the importance of thymic
lymphostromal cross-talk has been provided by recent data
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FIGURE 1 |Thymic epithelial cell alterations in Rag2R229Q/R229Q mouse.
(A) Representative FACS analysis of thymic epithelial compartment defined
as Epcam+ cells in the CD45 negative fraction obtained after enzymatic
digestion and enriched through AUTOMACS selection. Digested cells were
stained with specific antibodies (Ly51, UEA-1, and MCH-II) to identify the
different epithelial subsets as indicated in the dot-plots. Numbers represent
the percentage within the indicated regions. (B) Graphic representation of
absolute numbers for each epithelial population obtained upon enzymatic
digestion in all mice analyzed (WT, n=5; Rag2R229Q/R229Q, n= 9). Groups
were analyzed with Prism software (GraphPad) using a two-tailed
Mann–Whitney unpaired test. Data are presented as mean±SD. P -values
of <0.05 were considered significant.

demonstrating that inefficient T cell reconstitution following gene
therapy in Rag 1 deficient mice results in an OS-like phenotype
(32). In this particular model, the majority of Rag1 knock-out
(KO) mice treated with lentiviral vectors carrying codon optimized
human Rag1 cDNA driven by ubiquitous and cell type-restricted
promoters showed low level of T cell reconstitution. In this setting
of T cell lymphopenia, homeostatic proliferation led to peripheral
T cell expansion, associated with a restricted T cell repertoire and a
tendency of T cells to infiltrate peripheral tissues such as skin, lung,
and kidney. Impaired T cell reconstitution, with reduced thymic
cellularity, led to only partial rescue of thymic stroma morphol-
ogy and maturation, with focal areas of CMD and low number
of mature mTECs expressing AIRE. By contrast, transplantation
of wild-type bone marrow cells into Rag1−/− mice leads to the
rescue of thymopoiesis and thymic stroma architecture, with pres-
ence of a well-defined CMD and a normal distribution of cTEC,

immature and mature TEC expressing UEA-1 ligand and AIRE.
Of note, 2 months after treatment, 50% of gene therapy-treated
mice started to develop skin rash and wasting syndrome, which
in some cases led to death. Poor thymic reconstitution correlated
with massive lymphocytic infiltrates in peripheral tissues and pres-
ence of activated (CD44+CD69+) T cells, despite the presence
of Foxp3+ cells. Moreover, gene therapy-treated mice showed a
significant increase in serum IgE levels, presence of anti-dsDNA
antibodies and increased BAFF levels, which represent typical bio-
markers of immune dysregulation in patients and animal models
of OS (14, 18). These data indicate that inadequate rescue of Rag1
expression leads to poor reconstitution of T and B cells and is
insufficient to restore thymic stroma architecture, maturation of
AIRE and TSA-expressing mTECs, and induction of both T and
B cell tolerance. In this scenario, development of a limited num-
ber of T and B lymphocytes and inability to maintain efficient
tolerance checkpoints lead to the development of OS-like mani-
festations. Overall, these data illustrate the importance of T cell
reconstitution for restoring the differentiation and maturation of
TECs, and emphasize the relevance of thymic stroma in ensuring
immune tolerance and preventing thymic egress of autoreactive T
cell clones.

ANTI-CD3ε mAb TREATMENT IN Rag2R229Q/R229Q MOUSE MODEL OF OS
As previously described, OS is an atypical SCID in which the
coexistence of immunodeficiency and autoimmunity remains an
intriguing aspect that needs to be further investigated. Thanks to
availability of the Rag2R229Q/R229Q mouse model, we have stud-
ied various mechanisms that contribute to the pathogenesis of
autoimmune manifestations of OS. We have demonstrated that
in addition to hypomorphic Rag defect leading to generation of
a limited number of T cells, severe defects in thymic epithelial
compartment occur, which contribute to the escape of autore-
active T cells that invade the periphery triggering autoimmunity
(24). This model represents also a valuable tool to evaluate the
effects of TCR signaling on maturation of the thymic stromal
compartment. To this end, we evaluated the in vivo effect of anti-
CD3ε monoclonal antibody (mAb) administration in neonatal
and adult mice. While no significant changes were noticed in
the thymus of adult treated mice, injection of anti-CD3ε mAb
at neonatal age resulted in a dramatic amelioration of the epithe-
lial compartment and peripheral immunopathology. In partic-
ular, treatment was associated with a marked reduction in the
frequency of effector/memory T cells in the periphery and a
significant decrease in interferon-γ (IFN-γ) and tumor necro-
sis factor-α (TNF-α) production by peripheral T cells. These
changes were paralleled by significant modification in thymus
morphology, with appearance of distinct areas of CMD and sig-
nificant improvement of the medullary/cortical ratio (27). Double
staining for CK5 and CK8 further confirmed these findings by
revealing the presence of well-defined cortical and medullary
areas showing that anti-CD3ε mAb treatment enforces matura-
tion of TECs leading to compartmentalization of CK8+CK5−

cTECs and CK8−CK5+ mTECs (Figure 2A). Moreover, we have
described an increase in the presence of UEA-1+ cells, although
the formation of UEA-1+ mature mTECs clusters was not fully
restored.
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FIGURE 2 | Anti-CD3ε mAb administration enhances thymic epithelium
compartmentalization and maturation and modifies thymic DCs
frequency and distribution in Rag2R229Q/R229Q newborns. (A) Left panel
shows representative immunohistochemistry from WT thymus displaying a
well-defined corticomedullary differentiation and normal
compartmentalization of CK8+CK5− cTECs (CK8, blue) and CK8−CK5+

mTECs (CK5, brown). mTECs show mature morphology with large
cytoplasm and delicate CK5 positivity with rare double-positive CK8+CK5+

immature TECs disposed along the corticomedullary junction (asterisk
within inset). Corticomedullary differentiation and maturation of TECs are
profoundly impaired in Rag2R229Q/R229Q mouse (middle panel) in which
immature TECs expressing both CK5 and CK8 are highly represented
(asterisk within inset). Anti-CD3ε mAb administration enforces maturation of
TECs leading to compartmentalization of CK8+CK5− cTECs and CK8−CK5+

mTECs (right panel), although mTECs are still closely packed and irregularly
distributed with intense CK5 positivity as compared to the normal medulla

(detail of morphology within inset). Double immunohistochemical staining:
CK5 (brown staining) and CK8 (blue staining). (m, medulla; c, cortex; scale
bars corresponds to 200 and 50 µm for 10× and 40× (insets) original
magnification, respectively). (B) Graphic representation of the percentage
and absolute number of CD11c+ cells in the thymus of all mice analyzed
(WT, n=7; Rag2R229Q/R229Q, n=7; Rag2R229Q/R229Q

+ anti-CD3 n=9). The last
graph on the right indicates mean fluorescence intensity (MFI) of MHC-II
expression on total CD11c+ cells in all mice analyzed (WT, n=5;
Rag2R229Q/R229Q, n=6; Rag2R229Q/R229Q

+ anti-CD3 n=4). (C) Representative
dot plot indicating the distribution of myeloid (CD8−) and lymphoid (CD8+)
populations in the gate of CD11c+ cells (upper panel). Statistics of the
percentage and the absolute numbers of CD8+ and CD8− CD11c+ in all mice
analyzed (WT, n=5; Rag2R229Q/R229Q, n=4; Rag2R229Q/R229Q

+ anti-CD3 n=4)
(lower panel). Groups were analyzed with Prism software (GraphPad) using
a two-tailed Mann–Whitney unpaired test. Data are presented as
mean±SD. P -values of <0.05 were considered significant.

Furthermore, treatment with anti-CD3ε mAb normalized the
frequency while did not change the absolute number of total
thymic DCs and significantly increased MHC-II expression in
this population normally down-regulated in Rag2R229Q/R229Q

mice respect to WT counterpart (Figure 2B). More interestingly,
anti-CD3ε mAb treatment induced a redistribution of the two

thymic DCs main subsets CD8− (myeloid) and CD8+ (lymphoid)
(Figure 2C). The improvement of thymic stroma architecture and
maturation were associated with a reduction in tissue infiltrates,
as demonstrated by the reduced frequency of CD4+ and CD8+

cells in the skin, gut, lung, and liver. Altogether, these data indi-
cate that treatment with anti-CD3ε mAb has a beneficial effect
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on thymic stroma and on peripheral immunopathology, and may
pave the way for similar therapeutic modalities aiming at improv-
ing immune function and reducing signs of immune dysregulation
in patients with SCID characterized by poor thymic maturation,
while waiting for definitive treatment based on hematopoietic cell
transplantation.

CONCLUSION
Thymocytes and TEC cross-talk are fundamental for the main-
tenance of thymic architecture and function. Investigation on
thymic morphology and immunophenotype in SCID patients and
in parallel analysis of murine models of OS and Leaky SCID
have revealed the extent to which altered thymic cross-talk might
lead to immune dysregulation and ultimately cause peripheral
immunopathology. Thymic stromal improvement and amelio-
ration of peripheral immunopathology upon anti-CD3ε mAb
administration in OS mouse model have further highlighted the
contribution of thymic stroma in the pathogenesis of immune
dysregulation. In parallel, poor immunological reconstitution
observed in the preclinical study of gene therapy caused by inad-
equate Rag1 expression has further emphasized the relevance of
stromal thymic compartment in the induction and maintenance
of immune tolerance. Overall these findings further define the role
of thymic epithelium in immune reconstitution and indicate that
cTECs and mTECs full restoration has to be achieved to prevent
immune dysregulation.
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